
Programming Linux Games

John R. Hall
Loki Software, Inc.

January 15, 2001



2



Contents

Work In Progress i

1 The Anatomy of a Game 1

A Quick Survey of Game Genres . . . . . . . . . . . . . . . . . . . . . . 2

Simulation Games . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

First Person Shooters . . . . . . . . . . . . . . . . . . . . . . . . . 4

Real-time Strategy Games . . . . . . . . . . . . . . . . . . . . . . . 5

Turn-based Strategy Games . . . . . . . . . . . . . . . . . . . . . . 7

Role-playing Games . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Puzzle Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Multi User Dungeons . . . . . . . . . . . . . . . . . . . . . . . . . . 9

A Quick Look Under The Hood . . . . . . . . . . . . . . . . . . . . . . . 11

The Input Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . 11

The Display Subsystem . . . . . . . . . . . . . . . . . . . . . . . . 12

The Audio Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . 13

The Network Subsystem . . . . . . . . . . . . . . . . . . . . . . . . 13

The Update Subsystem . . . . . . . . . . . . . . . . . . . . . . . . 14

The Game Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3



4 CONTENTS

2 Linux Development Tools 17

Programming Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

vi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Emacs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

NEdit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Compiling Programs Under Linux . . . . . . . . . . . . . . . . . . . . . 21

Using The Make Utility . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Creating Makefiles . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Working With Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Static Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Shared Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Linux Linker Quirks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Debugging Linux Applications . . . . . . . . . . . . . . . . . . . . . . . 33

Compiling For Debugging . . . . . . . . . . . . . . . . . . . . . . . 33

The GNU Debugger, gdb . . . . . . . . . . . . . . . . . . . . . . . 34

The Data Display Debugger . . . . . . . . . . . . . . . . . . . . . . 40

Bug Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Project Management With CVS . . . . . . . . . . . . . . . . . . . . . . 42

A Brief CVS Tutorial . . . . . . . . . . . . . . . . . . . . . . . . . 43

Other Useful Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Rapid Text Searching with grep . . . . . . . . . . . . . . . . . . . . 49

Updating Source with diff and patch . . . . . . . . . . . . . . . . . 50

3 Linux Gaming APIs 53

Times Have Changed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53



CONTENTS 5

Graphics APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

SVGALib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

General Graphics Interface, LibGGI . . . . . . . . . . . . . . . . . 56

Simple DirectMedia Layer, SDL . . . . . . . . . . . . . . . . . . . . 56

ClanLib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

OpenGL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Plib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Glide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Xlib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Graphical User Interface Toolkits . . . . . . . . . . . . . . . . . . . . . . 59

GTK+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Tk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Fltk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Qt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

SDL GUI support . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Audio APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

The Open Sound System, OSS . . . . . . . . . . . . . . . . . . . . 61

Advanced Linux Sound Architecture, ALSA . . . . . . . . . . . . . 61

The Enlightened Sound Daemon, EsounD . . . . . . . . . . . . . . 62

The Open Audio Library, OpenAL . . . . . . . . . . . . . . . . . . 62

Scripting Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Tcl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Guile and MzScheme . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Python and Perl . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Networking APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64



6 CONTENTS

BSD Sockets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

OpenPlay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

IPX and SPX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

File Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

libpng and libjpeg . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

libaudiofile and libsndfile . . . . . . . . . . . . . . . . . . . . . . . . 66

Ogg Vorbis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

The SDL MPEG Library, SMPEG . . . . . . . . . . . . . . . . . . 67

zlib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4 Mastering SDL 69

Computer Graphics Hardware . . . . . . . . . . . . . . . . . . . . . . . . 70

The Framebuffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

The SDL Video API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Setting Up The Display . . . . . . . . . . . . . . . . . . . . . . . . 73

Direct Surface Drawing . . . . . . . . . . . . . . . . . . . . . . . . 77

Drawing With Blits . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Colorkeys And Transparency . . . . . . . . . . . . . . . . . . . . . 85

Loading Other Image Formats . . . . . . . . . . . . . . . . . . . . . 89

Alpha Blending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Achieving Smooth Animation With SDL . . . . . . . . . . . . . . . 95

Input and Event Processing . . . . . . . . . . . . . . . . . . . . . . . . . 105

Processing Mouse Events . . . . . . . . . . . . . . . . . . . . . . . 105

Processing Keyboard Events . . . . . . . . . . . . . . . . . . . . . . 110

Joystick Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Portable Threading Support . . . . . . . . . . . . . . . . . . . . . . . . . 117



CONTENTS 7

SDL Audio Programming . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Representing Sound with PCM . . . . . . . . . . . . . . . . . . . . 121

Feeding a Sound Card . . . . . . . . . . . . . . . . . . . . . . . . . 124

An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Integrating OpenGL with SDL . . . . . . . . . . . . . . . . . . . . . . . 135

Penguin Warrior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Creating Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Implementing a Parallaxing Scroller in SDL . . . . . . . . . . . . . 142

A Simple Particle System . . . . . . . . . . . . . . . . . . . . . . . 147

Game Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

To Be Continued... . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

5 Linux Audio Programming 155

Competing APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Introducing Multi-Play . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Loading Sound Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Using libsndfile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Other Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Using the Open Sound System . . . . . . . . . . . . . . . . . . . . . . . 163

Reality Check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Squeezing Sound Performance with Direct DMA Access . . . . . . 171

Playing Sound with ALSA . . . . . . . . . . . . . . . . . . . . . . . . . . 181

Sharing the Sound Card with ESD . . . . . . . . . . . . . . . . . . . . . 187

Building Multi-Play . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

Environmental Audio with OpenAL . . . . . . . . . . . . . . . . . . . . 198

OpenAL Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198



8 CONTENTS

Adding Environmental Audio to Penguin Warrior . . . . . . . . . . 204

Implementing Game Music with Ogg Vorbis . . . . . . . . . . . . . . . . 212

Working with Vorbis Files . . . . . . . . . . . . . . . . . . . . . . . 213

Adding Music to Penguin Warrior . . . . . . . . . . . . . . . . . . 216

6 Game Scripting Under Linux 227

A Crash Course in Tcl . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

Built-in Tcl Commands . . . . . . . . . . . . . . . . . . . . . . . . 230

Interfacing Tcl With C . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

Linking Against Tcl . . . . . . . . . . . . . . . . . . . . . . . . . . 236

Executing Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

Commands And Objects . . . . . . . . . . . . . . . . . . . . . . . . 240

A Simple Scripting Engine . . . . . . . . . . . . . . . . . . . . . . . . . . 241

Designing A Game Script . . . . . . . . . . . . . . . . . . . . . . . . . . 247

Applying Scripting To The Real World . . . . . . . . . . . . . . . . . . . 254

Single Versus Multiple Contexts . . . . . . . . . . . . . . . . . . . . 255

Can We Trust The Script? . . . . . . . . . . . . . . . . . . . . . . . 256

Script Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

Who’s Writing The Script? . . . . . . . . . . . . . . . . . . . . . . 257

7 Networked Gaming with Linux 259

’Tis A Big Net, Quoth The Raven . . . . . . . . . . . . . . . . . . . . . 260

Internet Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

Addresses and Ports . . . . . . . . . . . . . . . . . . . . . . . . . . 261

Name Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

Socket Programming 101 . . . . . . . . . . . . . . . . . . . . . . . . . . 263



CONTENTS 9

Sockets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

Connecting TCP Sockets . . . . . . . . . . . . . . . . . . . . . . . . 264

Receiving TCP Connections . . . . . . . . . . . . . . . . . . . . . . 273

Working With UDP Sockets . . . . . . . . . . . . . . . . . . . . . . . . . 279

Multiplayer Penguin Warrior . . . . . . . . . . . . . . . . . . . . . . . . 287

Network Gaming Models . . . . . . . . . . . . . . . . . . . . . . . . 287

Penguin Warrior’s Networking System . . . . . . . . . . . . . . . . 288

Network Game Performance . . . . . . . . . . . . . . . . . . . . . . . . . 297

Security Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

10 To Every Man A Linux Distribution 301

Source Or Binary? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

Local Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

Linux Isn’t Alone: Supporting FreeBSD . . . . . . . . . . . . . . . . . . 304

Packaging Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

Graphical Installation Goodness: Loki’s Setup Program . . . . . . . . . 308

Grokking The Linux Filesystem Standard . . . . . . . . . . . . . . . . . 313

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

Glossary of Terms 319



10 CONTENTS



Work In Progress

This is a recent draft of the partially-completed book Programming Linux Games,
to be published by No Starch Press (http://www.nostarch.com) early in 2001.
This book was previously being written in DocBook, but it has recently been
converted to LATEX. For this reason the HTML version of this document is no
longer available.

This document is copyright c© 2000 by Loki Software, Inc.

Neither Loki Software, No Starch Press, nor John Hall make any claim as to the
correctness of the information in this document. If you find any errors, please let
us know. You may contact the author at overcode@lokigames.com.

Thanks, and enjoy!

-John Hall, author

i



ii WORK IN PROGRESS



Chapter 1

The Anatomy of a Game

In 1991 a Finnish university student named Linus Torvalds began working on a
new operating system in his spare time. He didn’t work in isolation, nor did he
make a big deal about what he was doing; rather, he modestly invited
programmers from all over the world to join his project, which he dubbed
“Linux.” This loosely knit team of students, professionals, and hobbyists
collaborated through the Internet, with the expectation of learning a bit about
programming and having a good time. Linus never thought that his project
would spawn an entire industry.

Since then, Linux has grown into a general-purpose operating system for a wide
variety of hardware platforms. With over 10 million users (a number which is
constantly growing), there is a sizeable audience for Linux-based computer
games. Linux is now capable of accelerated 3D graphics, environmental audio,
and seamless game controller handling, in addition to the server tasks that
UNIX-like operating systems generally carry out. Although Linux is still
evolving, it is already a solid environment for serious game development.

This book is about the toolkits and the environments that allow programmers to
write 2D and 3D games for Linux. We will learn how to draw animated graphics
on the screen, how to play high-quality digital sound through several different
software libraries, and how to set up OpenGL to create fluid 3D graphics. By
the end of this book, you will know what makes Linux games tick, and how to
create your own games for this platform.

This book is not about game design, the mathematics of 3D graphics, or

1



2 CHAPTER 1. THE ANATOMY OF A GAME

advanced OpenGL programming. These topics are best left to books of their
own; I could not hope to do them service here. However, with the knowledge you
will gain from this book, you will be prepared to tackle these topics later on.

Before we begin our discussion of Linux game programming, however, let’s take
a quick glance at our surroundings in the gaming industry so that we can better
understand what goes into this type of project.

A Quick Survey of Game Genres

Computer games tend to fall into a number of distinct genres. Many players
have strong preferences for certain genres, which makes this an important issue
for game designers to consider. And, the presentation of a game concept can
make an enormous difference in its success.

Simulation Games

The simulation genre encompasses a wide variety of games, from flight
simulators to Mech combat scenarios. An ideal simulator provides a high level of
realism in graphics, sound, and game physics. Some popular simulation games
are Heavy Gear II, Mech Warrior, and Microsoft Flight Simulator. The basic
goal of any simulation game is to put the player behind the controls of
something exciting, something that he probably would not have access to in real
life. Simulations strive for immersion.

Simulation games (sims) are basically at two extremes. Some aim for absolute
realism, seeking to entertain the player with an almost completely accurate
portrayal of real life. These “games” are sometimes even used for real-life
training purposes. Other sims, like the Heavy Gear and Mech Warrior series,
trade realism for pure entertainment value. These games are based only loosely
on reality; they simulate imaginary vehicles with extraordinary but rather
impossible capabilities. (Interestingly, the Mech Warrior and Heavy Gear
computer games are based on pencil-and-paper role-playing games.)

Simulations pose a serious development challenge. Since a good modern
simulation requires high-quality 3D graphics, detailed vehicle models, a game
physics system for simulating the physics of the real world, realistic input
response, network capabilities, and possibly a certain amount of artificial



A QUICK SURVEY OF GAME GENRES 3

intelligence for the computer-controlled players, a contemporay sim is not trivial
to construct.

What makes a simulation game successful? Let’s look at an example of a
“realistic” simulator and an “action” simulator. Microsoft Flight Simulator is a
popular flight simulator for the PC (and in fact the current iteration of a long
line of flight simulators by the same developers, dating back to the Commodore
64) that combines realistic control with excellent 3D graphics and interesting
airplanes. Its simulated instrumentation is extremely true to life (though I’m not
a pilot, so this is mainly hearsay), and the terrain looks reasonably close to the
real world’s1.

Microsoft Flight Simulator tries to make the player feel like he’s in the cockpit,
not just collecting cellulite behind the keyboard of a fast computer. Although
this game will not run under Linux (except possibly under WINE2), it’s certainly
worth a look if you’re thinking of writing a flight simulator.

On another front, the Flight Gear project is presently developing a free flight
simulator for Linux. The simulator already sports a realistic physics model and
an excellent terrain engine, and it is slated to eventually become one of the best
flight simulators ever. Flight Gear is portable to many platforms, as it is based
almost entirely on open technology.

Heavy Gear II from Activision is a good example of an action simulator. It puts
the player behind the controls of a multi-ton Gear (a two-legged walking vehicle
with big guns), and succeeds because of its realistic graphics, simple but capable
control system, damage simulation, and interesting gameplay. The player is in
complete control of his Gear, and is free to do anything during the game
(although accomplishing the mission without getting killed is usually the best
plan). Heavy Gear II creates a sense of power and euphoria in the player, and
this makes it a pleasant experience. Activision has also published several Mech
Warrior titles that are very similar to the Heavy Gear series.

Finally, one of my personal favorite simulation games (from many years ago) is
Corncob 3D, a completely unrealistic shareware DOS-based flight simulator.
Guised as a flight simulator, this is a classic “Defend Earth from Space Invasion”

1One of the first rules of game design (and, to some extent, computer graphics in general) is
that it doesn’t matter if something is realistic, as long as it looks realistic. Unfortunately, most
people don’t have 5 terahertz machines, so game creators have to take a few shortcuts. Most
flight simulators really aren’t that realistic when it comes down to it, but they sure seem realistic.

2http://www.winehq.com



4 CHAPTER 1. THE ANATOMY OF A GAME

Figure 1–1: Screenshot of Heavy Gear II

game with lots of missions, missiles, and mayhem. By today’s standards, of
course, this game is laughable. But it ran well on the low-end hardware of the
day, and it was a lot of fun to play. Corncob 3D is a good example of a simulator
that trades realism for entertainment value.

First Person Shooters

First person shooters (FPS) are some of the most popular games today.
They typically involve a weak storyline (with exceptions, of course), hordes of
enemies, big explosions, and lots of blood. The basic premise of most first person
shooters is to give the player an adrenaline rush by putting him in the middle of
a hostile environment with insidious monsters and powerful weapons. These
games have improved in quality over the years, and are beginning to reach a very
high level of realism. Some popular ones are Quake 3, Half-Life, and Soldier of
Fortune, all of which are available for Linux (though Half-Life is not native to
Linux, and requires the WINE (http://www.winehq.com) library to run).



A QUICK SURVEY OF GAME GENRES 5

High-quality first person shooters are difficult to produce, not just because
they’re hard to program (facilitated by standard 3D libraries such as OpenGL),
but also because they require detailed 3D character models and levels. 3D game
engine programming requires a solid knowledge of linear algebra and a firm
grasp of certain types of data structures. However, mathematically-inclined
people are likely to find 3D game programming both challenging and rewarding.

Valve’s Half-Life is one of the most successful first person shooters, combining
the thrill of a typical FPS with a compelling storyline, amazingly realistic
enemies, and an excellent multiplayer mode. Half-Life is based on Quake II’s
rendering technology, but that is where the similarities end. Unlike the Quake
series, Half-Life has a plot, an excellent single player mode as well as network
game support, and a more complex virtual environment (complete with
moveable objects and vehicles).

Another interesting first person shooter (also based on the Quake II engine) is
Activision’s Soldier of Fortune. Although decried by critics as gratuitously
violent (and hence “indexed” in Germany and classified as an adult title
elsewhere), Soldier of Fortune combines traditional first person shooter action
with frightening realism, even going so far as to correctly simulate bodily
damage due to gunshot wounds. It also has a solid plot that develops throughout
the game. Overall, a very enjoyable title, if you’re not disturbed by the violence
(I won’t go into the highly emotional politics surrounding this subject).

A current trend is to mix first person 3D technology with the role-playing game.
Deus Ex is one such example, an RPG based on the Unreal engine. Deus Ex has
been ported to Linux, and I strongly recommend giving it a try.

Real-time Strategy Games

This genre includes such popular titles as StarCraft, Command and Conquer,
and Total Annihilation – games that allow the player to command individual
parts of an army from an overhead view, with success in battle usually leading to
better equipment and soldiers. Because success is usually determined by a
player’s tactics, these are considered strategy games. Real-time strategy
(RTS) games often have a high replay value; they’re fun to play again and again.

Real-time strategy games are comparatively easy to program, because, with
some exceptions, they do not involve 3D graphics or complicated mathematics;



6 CHAPTER 1. THE ANATOMY OF A GAME

Figure 1–2: Screenshot of StarCraft

however, good real-time strategy games are hard to produce, and they tend to be
few and far between. RTS games also often involve a certain amount of artificial
intelligence (AI) programming for controlling the simulated opponents in
single-player games — a fascinating field and an area that we won’t touch in this
book.

StarCraft is by far the most successful RTS game, combining pleasing graphics, a
large selection of well-balanced units, and interesting battlefields in a very
well-rounded game and exciting game. Solid game design is by far the most
important issue in creating a real-time strategy game, and StarCraft is an
excellent example. StarCraft (which will run under Linux with WINE3) is not
the first notable game from Blizzard Entertainment, and it will be interesting to
see what Blizzard comes up with in the future.

3WINE is an open source implementation of the Win32 API, as well as a layer for loading
Windows .EXE files. This allows Linux to run a number of Windows applications out of the
box. It is not perfect, but it is improving rapidly.



A QUICK SURVEY OF GAME GENRES 7

Turn-based Strategy Games

Turn-based strategy (or TBS) games are like real-time strategy games, but
the gameplay is divided into turns, usually with no time limit, thus giving the
player time to think and relax, while giving the game an entirely different feel
from the faster-paced strategy games. TBS games are not decided by reflexes,
but rather by careful planning, which often makes them more difficult, and more
attractive to many players. Sid Meier’s Civilization II is widely regarded as the
best turn-based strategy game, because of its balance and replay value.

Deceptively Complex

I once thought that TBS games were easy to write, but then I saw the
source code to Sid Meier’s Alpha Centauri. Most players don’t realize
it, but SMAC actually uses a 3D technique called voxels to render its
units on the fly, and to draw a height-sensitive landscape with
perspective texture mapping and dynamic palette mapping (made
possible by self-modifying assembly code). Sid Meier’s Alpha Centauri
was obviously not easy to port to Linux. While it’s possible to write a
good TBS game without such sophistication, don’t think of the TBS
genre as an easy way out — its complexity can be deceiving.

Role-playing Games

The role-playing game (or RPG) stems from the Dungeons and Dragons
role-playing system4. In RPGs, the player assumes the role of one or more
characters on some sort of quest. role-playing games put the player in a world
with many possibilities; a good one gives the player a sense of immersion and
true interaction, and allows him to effectively become someone else.

The quality of a role-playing game depends much more on its storyline,
interaction, and depth than on its graphics. Ultima Online is an example of a
good online RPG. While its graphics are not spectacular, the depth of its
gameplay is incredible, because it allows for complex interactions between

4There are lots of similar role-playing systems; I just give DND as an example.



8 CHAPTER 1. THE ANATOMY OF A GAME

Figure 1–3: Screenshot of Civilization: Call To Power

players in a virtual universe. Ultima is not exactly a “hardcore” RPG though;
true die-hard role-playing fans often prefer other types of RPGs, like the
Wizardry series, for example.

Puzzle Games

Puzzle games receive less attention than the other game genres because they are
less spectacular, but they certainly deserve mention. Puzzle games challenge the
player with problems that require thought and patience. This genre includes
everything from simple box-pushing games (Boxxel and the dangerously
addictive Sokoban) to the animated and ubiquitous Tetris.

A successful puzzle game is usually challenging (but not impossible), pleasant to
look at (graphics should not be ignored), and replayable (one-shot puzzle games
are usually not very enjoyable the second time around, and players don’t
appreciate that). The difficulty in creating a puzzle game depends on the



A QUICK SURVEY OF GAME GENRES 9

Figure 1–4: Screenshot of Ultima Online

particular game; some are extremely complex, involving massive amounts of
artwork and graphics processing, while others are simple to implement.

Multi User Dungeons

Multi User Dungeons (commonly known as MUDs) are massively multiplayer
games, typically hosted on Internet servers and accessed with special MUD client
programs. MUDs are extremely popular because one’s opponents are real people,
not computer-controlled robots. MUDs are essentially text-based role-playing
games, immersing their players in worlds with magical objects, wizardry, and
battle. MUD fans wishing to host a game of their own often obtain a pre-written
MUD server program and develop their own ”world” through configuration files
and scripting languages. If they do a good job, they may attract lots of players,
which is very satisfying. Two popular MUD server programs are ROM and
DikuMud, which may be downloaded from the Internet. There are untold



10 CHAPTER 1. THE ANATOMY OF A GAME

Figure 1–5: Screenshot of KSokoban, a version of Sokoban for KDE

thousands of private ROM-based MUDs on the Internet.

MUDs are relatively easy to create, though writing a MUD server is not trivial,
requiring a solid background in C or similar and a knowledge of network
programming. Creating MUD data files requires little programming knowledge,
but a lot of creativity. A good MUD has an interesting game world to explore
and a good balance of races and abilities. Also, some MUDs are prone to “god
moding”, or abuse by the person running the server; while this obviously
depends on the players, good design can lessen this undesirable effect.

If you’ve never been “mudding”, give it a try. A good MUD can provide a truly
interesting experience. You can find MUDs all over the Internet; just search the
Web for the word “mud”.



A QUICK LOOK UNDER THE HOOD 11

A Quick Look Under The Hood

Most games have a lot in common behind the scenes. The engine, or main code,
of a “typical” game (if there is such a thing) can be logically divided into several
subsystems: the Input Subsystem, the Display Subsystem, the Audio Subsystem,
the Networking Subsystem, the Update Subsystem, and the main loop. These
subsystems are rarely labelled as such, but you are likely to find all of these
components in any given game engine. Each subsystem is most often
implemented with several separate source files; two or three in small games, but
easily hundred or more in a large production. We’ll look briefly at each of these
subsystems now, and explore the implementation of each through the rest of the
book.

This Code Is Awful!

If you ever get a peek at the code behind a major commercial game,
please do not take it as a treatise on proper software design or coding!
Games often start out as well-designed software, and they sometimes
even make it to the shelves in a tolerable state of internal organization,
but more often than not a game’s code falls into disarray during the last
few months of development. Why, you might ask? The gaming industry
is volatile, dangerous, and extremely competitive. Game studios seem
to find themselves in a perpetual struggle to meet release deadlines, get
their games out ahead of their competitors, and implement the features
that players demand, lest they be left in the dust with a stack of unsold
games. This often results in extremely hurried and sloppy code.
Unfortunately, this often causes serious problems if someone later tries
to add an expansion pack to the game or port the game to another
operating system.

The Input Subsystem

The input subsystem receives the user’s commands through an input device (like
the keyboard or a joystick) and records these commands for further processing.
While input device programming is not difficult, it should be done carefully,
because flawed input processing can easily ruin an otherwise excellent game. The



12 CHAPTER 1. THE ANATOMY OF A GAME

first version of Apogee’s Rise of the Triad (a first person shooter from several
years ago) suffered from particularly bad input handling, and the game was
aggravating to play until this problem was fixed.

One of the input subsystem’s most important jobs is to simultaneously support a
variety of input devices. A well-written input subsystem should be able to
integrate just about type of oddball game controller with minimal effort (this is
made a bit easier by libraries like SDL, but it’s still something to keep in mind
as you code). Some players prefer to use joysticks rather than mice, and an input
subsystem should be able to accomodate this preference without modification to
the main game code. As far as the game is concerned, the joystick should appear
as a generic device, capable of producing “left”, “right”, “up”, and “down”
commands. We will discuss SDL’s input handling and abstraction in 4, and we’ll
touch on the lower levels of input handling in Linux later on.

Nearly every game on the market allows you to remap the keyboard and other
input devices to your liking, and this is a feature that players demand. Many
people have non-US keyboards with different key locations, and you’ll end up
cutting off a lot of would-be players unless you allow them to configure the game
to work with their keyboards. Fortunately, this is not difficult; it can be
accomplished with a simple lookup table. It is also a good idea to allow the
player to store and retrieve multiple key mappings, in case a friend prefers a
different configuration.

The Display Subsystem

The display subsystem conveys the game’s status to the player in a visually
impressive way, whether through simple 2D graphics, or advanced 3D rendering
(the method doesn’t matter, as long as it is appropriate for the game).
Regardless of the type of graphics produced by the display subsystem, the
structure of the code is substantially the same.

The display subsystem is responsible for taking advantage of the available
display hardware. Serious gamers often equip their machines with snazzy 3D
graphics cards, which can bring enormous performance and quality improvement
to 3D games. However, utilizing these devices is not automatic, and requires
special effort by the programmer, which is usually accomplished through a game
programming API like OpenGL. 3D acceleration is beyond the scope of this
book, but we’ll demonstrate how to get OpenGL up and running in 4.



A QUICK LOOK UNDER THE HOOD 13

Before you can show off your graphics code, you’ll need something to display.
Although it is common for a programmer to develop temporary artwork for
testing purposes, few are skilled artists, and it is usually necessary to enlist the
help of a skilled digital artist to produce acceptable game artwork. Players are a
finicky bunch, and they are most intolerant of sub-par graphics. Game
programmers should spend a great deal of time developing a good graphics
engine, and a designer should place a high priority on obtaining quality artwork
for a game.

The Audio Subsystem

Although computer audio technology has not been hyped as much as computer
rendering technology during the past few years as, a game’s audio subsystem is
every bit as important as its graphics subsystem. Fortunately, producing
high-quality sound on a computer is not as difficult as producing high-quality
graphics.

Sound is easy to play back (usually a simple matter of a few function calls with a
multimedia toolkit), but creating production-quality sound effects for a game is
as much an art as creating graphics, and should be left to a specialist. Stellar
sound effects can boost a game’s atmosphere, and lousy sound effects can
seriously damage a game’s potential.

3D enhanced audio is one of the latest trends in computer sound technology with
modern sound cards (like Creative’s SB Live! series) supporting four-speaker
surround sound, and 3D-aware sound processing to simulate the Doppler effect
and other complex sound wave interactions. (Simple two-channel stereo sound
just falls short of the immersive environments of today’s 3D games.) In fact,
some sound cards can even accelerate these effects in hardware. Several
competing 3D sound API’s have emerged, and we will discuss one of these
(OpenAL) in Chapter 5.

The Network Subsystem

Multiplayer gaming is very popular these days, and it is reasonable to assume
that this trend will continue. The network subsystem connects a game to other
computers over a network so that multiple players can participate in the action.
Network programming is not as difficult as it used to be, especially with the



14 CHAPTER 1. THE ANATOMY OF A GAME

advent of the Internet as we know it. Still, the network subsystem must be
extremely robust and flexible, as, not surprisingly, gamers are rather intolerant
of network failures during games.

Basically, the network subsystem informs the other computers in a network of
the current state of the game so that the players stay synchronized. This can be
quite a trick, and so it is wise to develop the game with network capabilities in
mind. You may find that a networking library such as Apple’s OpenPlay makes
this job a bit easier.

Above all, do not implement network support as an afterthought, because it
often affects the entire design of the game. Decide whether your game lends
itself to netwok play and build this requirement into the fundamental game
design; doing so will save headaches later on when the designer invariably
demands that multiplayer capabilites be added.

The Update Subsystem

Games generally have to track a lot of rapidly changing data, including the state
of the player and the condition of each enemy; information that must be updated
frame by frame to keep the game moving. The update subsystem manages this
data.

The update subsystem is the game’s brain. It enforces the game’s rules for
movement upon the player, “plays” the role of each enemy (which might involve
a certain amount of artificial intelligence), ensures that every object is within the
allowed boundaries, and inflicts injuries. It could almost be said that the other
game modules are merely interfaces to the update subsystem.

Although it may be tempting to haphazardly throw the update subsystem into
the game loop (which is discussed in the next section), do not do so. Game
projects tend to get out of hand quickly if they are not kept in a reasonable
amount of order, and the update subsystem usually grows steadily throughout
the development cycle; make the update system a separate module to begin
with. If you don’t pay attention to code organization, you’ll end up with code
that looks like the 500,000 lines of spaghetti behind (no offense, Activision)
Civilization: Call To Power.



A QUICK LOOK UNDER THE HOOD 15

Figure 1–6: A typical game loop

The Game Loop

The game loop is the “glue” that binds the various game subsystems. It is
simply a while loop that runs throughout the entire game, looping anywhere
from thirty to sixty times per second. The game loop invokes the correct
routines to gather input from the player and from the network, updates the
status of all objects in the game, draws the next frame of graphics, and produces
audio. While this process may sound complicated, it is actually quite trivial,
because all of this functionality is provided by the game’s input, network,
graphics, and audio subsystems.

The game loop should start as soon as the game’s other subsystems have been
initialized, and should end when the player exits the game. It may be a good
idea to separate the menu system from the main game loop in some cases, but
doing so could actually complicate the game’s code. With a properly written
game loop, a game becomes a “state machine” that acts on its current state
based on the player’s input.



16 CHAPTER 1. THE ANATOMY OF A GAME

Organization is important too, since the game loop sequences the other
subsystems. This should not be a haphazard decision; for instance, the data
gathered from the networking subsystem often influences the decisions of the
other subsystems, so it should be invoked first. The graphics subsystem should
probably be last, since it reflects the data generated by all of the other
subsystems.

In the next chapter we’ll become familiar with the tools we’ll use for Linux game
programming, and then we’ll start to work with the libraries and interfaces that
make it all possible. If you’re already familiar with development tools like gcc
and gdb, you may wish to skim over Chapter 2 and move on to 3 or 4.



Chapter 2

Linux Development Tools

As an operating system created by computer geeks, Linux provides a particularly
nice programming environment. This environment may be a bit intimidating and
confusing at first, it provides a great deal of power after the initial learning
curve. In this chapter we will examine the basic Linux programming tools from
the perspective of a game developer.

If you are already experienced with Linux or UNIX programming, some parts of
this chapter will be of less interest to you. We will cover specific details of these
tools as we encounter them; you will not be at a loss for skipping over sections of
this chapter.

Programming Editors

Before we can dive into the subject of Linux game coding, we’ll need a way to
write our source code. Although simple editors such as pico and joe are sufficient
for some simple tasks, they are inadequate for programming. It would be
preferable to use a text editor with support for syntax highlighting,
brace-matching, and other niceties. We’ll now take a look at several of the more
popular code editors. If you have never written code with a UNIX-like system, it
would be a good idea to try out these editors to see which suits your
programming style the best. This chapter is not meant to be a reference manual
or tutorial on these editors; rather, it is intended as a starting point for those
who have never written code on a Unix platform.

17



18 CHAPTER 2. LINUX DEVELOPMENT TOOLS

vi

vi (pronounced vee-eye or vie) is a rather old text editor with a strong following.
It is difficult to learn, but once one has learned its keystrokes and its quirks, it is
hard to use anything else. vi works well on just about any Linux configuration; it
requires almost no processor power and very little memory. vi has the nice
advantage of being present on nearly every UNIX-like system you’ll encounter,
including most Linux systems. It is a standard component of every major Linux
distribution.

Although vi is an old editor from the days when everyone worked over slow text
terminals, it has been improved substantially by its users, and some modern
versions (such as vim) are capable of syntax highlighting and other niceties.
There are also several versions of the editor for the X Window System, featuring
pull-down menus and convenient shortcuts. However, these X versions defeat one
of the greatest features of vi: it can be used over nearly any type of terminal. vi
can be efficiently used over low-speed codetelnet connections, within local
terminals, and even from Palm Pilots and other unusual devices. Its minimalistic
interface requires very little functionality from the terminal. Graphical versions
of vi throw this feature away, and so they can hardly be considered substitutes
for the original vi editor.

vi is actually a full-screen interface to the command-based ex editing engine. ex
can also be used outside of the vi editor as a command line tool, and it can be
used to add editing capabilities to shell scripts. For instance, a shell script might
invoke ex to automatically edit a configuration file. ex commands can be
specified within the vi editor, though a tutorial on the nuts and bolts of ex is
beyond the scope of this chapter.

vi is a mode-based editor, and this is a major source of confusion. vi has two
main modes: command mode and insertion mode. Command mode is
strictly for giving commands to vi. For instance, one might use this mode to
move to a certain line in the document and delete a word. This mode may not
be used for typing text into the document. Anything you type in command
mode will be interpreted as a vi command (and indeed there are so many
possible vi commands that nearly anything you type in command mode will do
something). The insertion mode, on the other hand, is strictly for typing text
into the document. Most commands are not recognized in this mode, and
anything you type will be inserted into the document.



PROGRAMMING EDITORS 19

vi initially starts up into command mode. To enter insert mode, press i. To
switch back into command mode, press Escape. This mode switching may seem
like quite a hassle, but it becomes second nature after a bit of practice.

Emacs

GNU Emacs is uncontested as the behemoth of text editors (indeed, some think
of it as an operating system in itself). It is based on its own variant of the LISP
programming language; almost all of the editor’s functionality is implemented in
customizable Emacs LISP. Emacs has a loyal following among programmers,
partly because absolutely every aspect of this editor can be changed by the user.
I started writing this book with NEdit, but I eventually switched over to Emacs
because it works well on the Linux console and doesn’t require a mouse. (I’m
also a bit of a LISP enthusiast, and in that regard Emacs is a perfect match.)

Emacs is not initially as difficult as vi to learn, but there is simply a lot more to
learn. Its basic commands and keystrokes are not hard to get used to, but
becoming “fluent” with Emacs is a major undertaking. Emacs includes a mail
and news client, editing modes for nearly every language you’d ever want to use,
several types of documentation readers, and even optional IRC clients and web
browsers. Many of these features define their own sets of command keys, leaving
much for the would-be user to learn. In return for this hassle, Emacs provides an
enormous amount of power; it’s quite literally possible to set your login shell to
Emacs and never leave its environment.

To get started with Emacs, run the editor (the command is usually emacs), press
Ctrl-h , and then t . This will open the Emacs tutorial, which explains the
basic keys and editing modes.

In addition to the “real” GNU Emacs, there are several other editors that are
very similar in capabilities and usage. XEmacs (http://www.xemacs.org) is a
code fork from GNU Emacs with a number of added features and an improved
interface. JED (http://space.mit.edu/%7Edavis/jed.html) is a
programmer’s editor that closely resembles Emacs but has fewer features and a
smaller memory footprint.

Emacs is an ideal editor for people who appreciate a large (perhaps
overwhelming) amount of functionality and don’t mind a bit of a learning curve.
It is excellent for those who would like to add custom abilities to their editor



20 CHAPTER 2. LINUX DEVELOPMENT TOOLS

Figure 2–1: The Nirvana Editor

with a scripting language (entire applications have in fact been written in Emacs
LISP). Emacs is available as part of nearly every Linux distribution, but it can
be obtained directly from the GNU project’s FTP server (ftp://ftp.gnu.org)
or one of its mirrors.

NEdit

NEdit, the “Nirvana Editor”, is a very slick code editor from Fermilab. It is
neither as absurdly customizable as Emacs nor as ubiquitous as vi, but it is
much easier to learn (since its keystrokes are similar to those of many popular
word processors) and powerful enough for serious work. NEdit’s main downside
is that it requires the X Window System to run. It is a good idea to at least
have a working knowledge of another editor if you choose to use NEdit for your
daily work. This book was written partly with NEdit (though I later switched to
Emacs).

Although previous versions of NEdit were encumbered by a license that was not
palatable to most Linux distributors, the NEdit license was change to the GNU
General Public License with the 5.1 release. The editor is now truly free



COMPILING PROGRAMS UNDER LINUX 21

software, and it is currently under active development by a team of volunteers.
The project is hosted at http://www.nedit.org.

Compiling Programs Under Linux

We’re here to talk about game programming, not the basics of C programming,
so we won’t discuss the language itself; however, it’s quite possible that you’ve
never worked with a C compiler under UNIX. In this section we will demonstrate
how to compile and link programs in the Linux (or more accurately,
GNU/Linux) programming environment. There really isn’t much to it; our
compiler provides hundreds of possible command line options, but most of them
aren’t necessary for our purposes.

gcc is the most popular C compiler for Linux. It was developed by the Free
Software Foundation for the GNU project, and it is available on many platforms.
gcc is free software, and it is included as a standard component of nearly every
Linux distribution. There are several other C/C++ compilers for Linux (such as
Kao C++ and the yet-unreleased Metrowerks CodeWarrior), but gcc is used for
the vast majority of Linux software development. Some eschew gcc (and its
C++ brother, g++) as quirky or incomplete, but in reality it’s at least as good
as the other mainstream C compilers.

gcc’s basic job is to compile C source code into executable programs. To compile
one or more files, simply pass them to gcc on the command line:

$ gcc file1.c file2.c file3.c

If there are no serious errors, gcc will create an executable file named a.out in
the current directory. Otherwise, you will receive warning and error messages
describing the problems the compiler encountered, and gcc will not produce any
compiled output. If multiple files are given on the command line, gcc will
compile them separately and attempt to link them into one executable, and will
stop if any individual file produces an error. If gcc is given files that end in .o
(object files) or .a (static libraries), they will be linked directly into the
executable. This allows gcc to serve as a simple interface to the linker.



22 CHAPTER 2. LINUX DEVELOPMENT TOOLS

Warning

You may be in the habit of using the shell’s tab-completion feature to
fill in filenames. Be careful when you use this with gcc; it’s easy to
accidentally overwrite your source files by accidentally tab-completing
the wrong filenames. This may sound like a stupid warning, but I’ve
lost work because of it.

It is often useful to compile a C source file into an object file instead of an
executable. Object files are not directly executable, but they contain the
machine code translation of the source, and multiple object files can be pieced
together into complete programs. To create object files, supply gcc with the -c
option. This will instruct gcc to skip its final linking phase and to write one
object file for each source file on the command line.

gcc is a complex and capable tool, and it supports a large number of command
line options. Here we list only the most important options.

-ansi Disable non-ANSI extensions, such as the asm and inline keywords.
This might be a good idea if you are concerned with portability between
ANSI C compilers. However, most programmers aren’t this careful about
standards, and strict ANSI mode tends to break a lot of existing software.

-c Compile to an object (.o) file instead of an executable. This is important for
creating libraries.

-D symbol Define the given symbol in the preprocessor. This is convenient for
setting up conditional compilation based on the system’s configuration.
We’ll use this in some of our examples to switch between different versions
of code.

-o filename Output to the given filename instead of the default a.out. For
instance, -o foo will cause the program to be compiled into an executable
named foo (or foo.exe under Windows).

-l libname Attempt to link in the given library, following the standard library
naming convention. For instance, -lSDL would link in libSDL.so. See our
discussion of shared libraries (below) for more info.



USING THE MAKE UTILITY 23

-L path Specify an additional directory for libraries. For instance,
/usr/X11R6/lib is not normally in the library path, so it is common for
X programs to specify -L/usr/X11R6/lib.

-O n Set the optimization level. The default is to perform no optimization. It’s
reasonable to make a practice of compiling code with -O2; it doesn’t mess
with the structure of the code too much, and you can still (usually) debug
it with gdb. In some cases this can really speed up the compiled code.
Finished products should almost always be compiled with optimization
enabled.

-pedantic Enable a strict interpretation of the ANSI C Standard. Compile
with -pedantic -W -Wall if you want gcc to nag you about sloppy
programming.

That’s it for gcc! There are a few quirks and obscure features, but we’ll get to
those as we need them1. Like most GNU tools, gcc comes with excellent online
documentation. In particular, refer to the manpage or info node for a description
of gcc’s command line options.

Using The Make Utility

Most game development projects consist of multiple source files, for the simple
reason that it is impractical to manage thousands of lines of code in a single file.
Since a large project can involve many source files, it would be wasteful to
recompile everything if only one file had been changed since the program was
last compiled (however, this happens if all of the files are given to gcc on the
command line). For instance, the Linux version of Civilization: Call To Power
consists of over 500,000 lines of C++ code in well over 100 files, and a full
recompile of the entire source tree takes nearly an hour (whereas a partial
rebuild assisted by make usually takes 15-20 minutes).

The make utility speeds up software development by automatically determining
which files actually need to be recompiled after changes have been made. Make
also eliminates the need to type long command lines to rebuild programs, since it
stores all of the required commands and invokes them as needed.

1Richard Stallman’s book Using and Porting gcc is the authoritative guide to hacking gcc.



24 CHAPTER 2. LINUX DEVELOPMENT TOOLS

Although Make has a lot of functionality, its basic usage is quite simple. Make is
based on targets, which are sets of directions for maintaining components
(object files, libraries, etc.) of a program. Targets specify the name of the
component to track, a list of source files and other targets that the component
depends on, and a list of commands for rebuilding the target. The instructions
for building a component are called rules, and the list of files that a component
depends on are called dependencies. When make is invoked upon a certain
target, it checks that target’s dependency list first. If any of the dependencies
have been changed since the target was last rebuilt, the target’s rules are
executed. Make also recursively rebuilds any out-of-date targets in the
dependency list. This is extremely convenient for large, modular programming
projects.

Creating Makefiles

Make looks for targets and rules in a file called Makefile or makefile. This file
may contain any number of targets. If make is started with no command line
options, it automatically attempts to rebuild the first target it encounters.
Consider the following makefile:

program: file1.c file2.c graphics.a
gcc -c file1.c file2.c
gcc file1.o file2.o graphics.a -lSDL -o program

graphics.a: graphics.c draw.c
gcc -c graphics.c draw.c
ar rcs graphics.a graphics.o draw.o
ranlib graphics.a

This file describes how to build an executable called program and a static library
called graphics.a (don’t worry about the commands for building the library -
we’ll discuss libraries later in this chapter). program depends on file1.c, file2.c,
and graphics.a - if any of these have been modified since program was last
built, make will rebuild program. graphics.a is also a target, and it depends on
graphics.c and draw.c. The indented lines under each target are rules. If
program needs to be rebuilt, Make will execute the two rules that have been
provided. These lines must be indented with tab characters; spaces will not
work. Make is rather particular about syntax.



USING THE MAKE UTILITY 25

Variable Substitution

The make utility provides convenient access to environment variables. Makefiles
can set, combine, and retrieve environment variables as text strings, and include
these variables in targets and rules. It is common to use the variable CC to
represent the C compiler command (which in our case is gcc), CFLAGS to
represent the standard set of command line options to pass to the compiler, and
LDFLAGS to represent the options to pass to the linker (which is normally just the
C compiler, but sometimes explicitly invoked with the ld command). For
example, the previous makefile can be rewritten as follows to take advantage of
variable substitution:

CC=gcc
CFLAGS=-O2 -W -Wall -pedantic
LIBS=-lSDL -lpthread

program: file1.c file2.c graphics.a
$(CC) $(CFLAGS) -c file1.c file2.c
$(CC) file1.o file2.o graphics.a $(LIBS) -o program

graphics.a: graphics.c draw.c
$(CC) $(CFLAGS) -c graphics.c draw.c
ar rcs graphics.a graphics.o draw.o
ranlib graphics.a

As you can see, variables are substituted into the makefile with the $(VARNAME)
notation. This is a literal text substitution, and it takes place before the rule is
otherwise processed. What if we want to add to the end of a variable without
destroying its old contents? You might try something like this:

FOO=bar
FOO=$(FOO) baz
FOO=$(FOO) qux

At a glance, it would appear that the FOO variable would end up with the value
bar baz qux. However, Make does not normally evaluate variables until they
are used (in targets), so FOO actually ends up with the string $(FOO) qux. There
are two solutions to this problem. GNU Make (the default Make on Linux
systems) provides a := operator for assignments, which evaluates its right hand



26 CHAPTER 2. LINUX DEVELOPMENT TOOLS

side before the variable is assigned. It also provides a += operator for directly
appending to variables. A more portable solution would be to assign bar, baz,
and qux to three different variables, and to combine them all at once:

BAR=bar
BAZ=baz
QUX=qux
FOO=$(BAR) $(BAZ) $(QUX)

This (hacked) solution allows the variable FOO to be correctly constructed when
it is used in a rule. This is rather ugly, so we suggest using the GNU Make
extensions.

Although the use of variables might lengthen a makefile, it can provide a nice bit
of abstraction. Variables make it easy to modify the options used throughout the
build process without changing the whole makefile.

Implied Rules

Since C files are almost always compiled with the cc command (which is a
symbolic link to the gcc command on Linux machines), there is really no need to
specify build rules for each source file in the project. Make allows for implied
build rules — if a target is followed by no rules and does not specify any
dependencies (or simply does not exist), Make will attempt to use a default build
rule based on the target’s file extension.

For example, let’s say that foo.c is a C source file containing the function bar,
and that main.c is a C source file containing a main function that calls bar. The
following makefile will build the program. Notice that there is no target for
foo.o – it is referenced by the foo target, and Make assumes that it should be
created by compiling the file foo.c (actually, Make knows of several different
source file type, C being perhaps the most common). When Make automatically
invokes the C compiler, it adds the CFLAGS variable to the command line.

CFLAGS=-O2 -W -Wall -pedantic
foo: foo.o main.c

gcc foo.o main.c -o foo



USING THE MAKE UTILITY 27

Phony Targets

Programmers often use make for purposes other than building executables. It’s
really a general-purpose project management tool. For instance, I’m currently
using a makefile so that I don’t have to delete a bunch of files and then run
LATEX, makeindex, and dvips every time I want a preview of this book. Consider
the following makefile:

foo: foo.c
gcc foo.c -o foo

clean:
rm *.o
rm foo

The clean target has no dependencies, and is therefore built only when it is
specifically requested on the command line. The command make clean causes all
object files as well as the executable foo to be deleted, and therefore serves to
force a complete rebuild of the project. Programmers commonly include a clean
target in their makefiles for convenience.

In a more general sense, Make is often used as a simple interface to complex
commands. Targets used for this purpose do not actually describe a build
process, but rather a set of commands to be executed when the target is
requested. But what happens if such a “phony” target has the same name as a
file in the current directory? For instance, what if there is a file called clean?
Make would detect that this file exists, and decide not to build the target.

Make provides a special pseudo-target called .PHONY for this purpose. .PHONY
takes a dependency list, just like other targets, but no build rules. .PHONY’s
dependencies are marked as phony targets, and will always be built when
requested, regardless of any existing file by the same name. We will now rewrite
the previous makefile to use the .PHONY target.

foo: foo.c
gcc foo.c -o foo

.PHONY: clean

clean:



28 CHAPTER 2. LINUX DEVELOPMENT TOOLS

rm *.o
rm foo

Error Handling

In the event of an error, Make immediately stops and prints an error message (in
addition to whatever was printed by the command that failed). Make detects
errors by the return codes of the rules it executes: a return code of zero indicates
success, and anything else indicates an error. Most UNIX commands follow this
convention. If there is a syntax error in the makefile itself, Make will complain
about it and exit.

Working With Libraries

Libraries provide a way to package code into reusable binary modules. Linux
software can use two types of libraries: static and shared. A static library is
simply a collection of object files that have been archived into one file with a
symbol table. Static libraries have a file extension of .a, and they can be linked
into programs as normal object files. A shared library is similar to a static
library, except that it permanently resides in a separate file and is never directly
linked into an application. Shared libraries are linked at runtime by the
operating system’s dynamic linker.

Static Libraries

Static libraries are extremely simple to create and use. Once you have created
the object files you wish to package as a library, combine them with the ar
command:

$ ar rcs something.a file1.o file2.o file3.o

ar is a simple archiving utility. The r option specifies an operating mode: it tells
ar to add the given files to the archive, replacing any existing files with the same
names. c specifies that the archive should be created if it does not already exist.



WORKING WITH LIBRARIES 29

Finally, s informs ar that this is an archive of object files (ie, a static library)
and that a symbol table should be added. Optionally, you can leave out the s
flag and use the ranlib utility to add the symbol table; the resulting file will be
equivalent.

To use a static library, pass it to gcc just as you would pass a normal object file.
gcc will recognize the .a file extension as an archive of object files.

Shared Libraries

Shared libraries are a bit more complex to manage than static libraries, but they
are worth the extra effort in many cases. Shared libraries are not stored in
executables that use them; they are independent files, and they are linked into
executables at runtime. In many cases shared libraries can be updated without
recompiling programs that depend on them. It is possible for the operating
system to load a shared library into memory once, for use by multiple
applications.

Shared libraries follow a very specific naming scheme designed to keep
incompatible versions separate. Each shared library should be given a unique
base name (or soname) of the form libFooBar.so.n , where n is a major release
number. The major release number should be incremented whenever backwards
compatibility is broken. Minor version and release numbers are added to the end
of the base name, so that the final name looks something like
libFooBar.so.2.1.3.

The ldconfig utility is responsible for imposing sanity upon the various versions
of a library that might exist. It searches for libraries in a certain set of
directories, usually specified in /etc/ld.so.conf or the environment variable
LD LIBRARY PATH. For each library it finds with a name in the form
libSomething.so.m.n.r , it creates a symbolic link for libSomething.so.m . If
two libraries have the same base name, ldconfig creates a symbolic link to the
later version. Applications reference these symbolic links rather than the full
names of the libraries. If a new release of a library is installed, the symbolic link
is updated by ldconfig and all applications that use the library will automatically
reference the new version.



30 CHAPTER 2. LINUX DEVELOPMENT TOOLS

Creating Shared Libraries

Shared libraries are simple to create. First, compile your sources into object files
with the -fPIC flag (this causes gcc to output position-independent code, which
is more palatable to the dynamic linker). Then, link with gcc’s -shared flag.
You will also need to inform the linker of the soname you wish to use. To see
how this is done, take a look at the following example:

$ gcc -fPIC -c foo.c bar.c

$ gcc -shared -Wl,-soname,libFooBar.so.1 foo.o bar.o -o
libFooBar.so.1.1.1

$ install -m 0755 libFooBar.so.1.1.1 /usr/lib

$ ldconfig

$ ln -s /usr/lib/libFooBar.so.1 /usr/lib/libFooBar.so

The first command produces the object files foo.o and bar.o, and the second
creates the shared library. Note the use of the -Wl flag to send options directly
to the linker. The library is then installed to the standard location with a
reasonable set of permissions (note: this step will require write permission to
/usr/lib), and ldconfig is executed to set up the proper symbolic link. Finally,
another symbolic link is created to the base name of the library. This allows the
library to be linked into a program with the -lFooBar gcc option.

Using Shared Libraries

Shared libraries are extremely versatile. Once they are linked into an
application, they act as part of the program, except that the actual linking is
done at runtime. Shared libraries can also be manually loaded and accessed via
the dlopen C interface.

To link a properly installed shared library into an application, use gcc’s -l
option. For instance, to link with /usr/lib/libFooBar.so (which is a symbolic
link to /usr/lib/libFooBar.so.1), specify -lFooBar. If the library resides in a
nonstandard directory (such as the X libraries in /usr/X11R6/lib), use the -L
option (-L/usr/X11R6/lib). When the application is run, the runtime linker
attempts to locate the library (by name) and match its symbols with the
symbols the application thinks it should have. If any symbols are missing, the



WORKING WITH LIBRARIES 31

linker reports an error, and the application fails to load. Otherwise, the shared
library becomes part of the application.

dlopen/dlsym is another approach to using shared libraries. This interface
allows shared object files to be opened and accessed manually. For example,
suppose that libfoo.so is a shared object file containing a function bar. The
following example will open the file and call the function:

#include <dlfcn.h>
/* dlfcn.h provides the dlopen() interface */

int main()
{

void *handle;
void (*bar)(void);

/* Open the library and save the handle */
handle = dlopen("libfoo.so",RTLD_NOW);
if (handle == NULL) {

/* dlerror() returns an error message */
printf("dlopen failed: %s\n",dlerror());
return 1;

};

/* Attempt to find the address of bar() */
bar = dlsym(handle,"bar");
if (bar == NULL) {

printf("dlsym failed: %s\n",dlerror());
return 1;

};

/* Good, we found bar(), so call it */
bar();

/* Close libfoo.so */
dlclose(handle);

return 0;
}

The RTLD NOW flag in dlopen means that dlopen should attempt to resolve all
symbols that the shared library depends on immediately (shared libraries can



32 CHAPTER 2. LINUX DEVELOPMENT TOOLS

depend on other libraries, so this is a serious concern). The other option is
RTLD LAZY, which instructs the dynamic linker to resolve symbols as they are
encountered.

Sometimes a dynamically loaded library needs to access symbols in the parent
application. To allow these symbols to be resolved, compile the application with
the -rdynamic option and the --export-dynamic linker option (the correct
syntax is -wl,--export-dynamic). The -rdynamic option allows unresolved
symbols in a shared library to be matched with symbols in the parent
application, and the --export-dynamic option instructs the linker to generate
extra symbol information suitable for this purpose.

Linux Linker Quirks

The Linux linker, GNU ld, is a complex but quirky tool. Although a complete
discussion of ld is far beyond the scope of this book, here are some hints that
might make your life easier.

ld (and therefore gcc) is sensitive about the order in which libraries and object
files are specified on the command line. If libfoo.so depends on libbar.so,
libfoo.so must be specified first (as counterintuitive as this may be). The reason
is that ld only keeps track of unresolved symbols as it links. If libfoo.so and
libbar.so depend on each other, one of the libraries will have to be specified
twice (for example, -lfoo -lbar -lfoo). This is different from the behavior of
Visual C++’s linker, and this causes headaches when porting games from
Windows. If the linker can’t find a symbol but you’re sure that you’ve given it
the right libraries, double check the order in which they’re specified on the
command line.

The Linux runtime linker does not respect the LD LIBRARY PATH environment
variable with setuid root executables. This is a bit annoying, but it is important
for security; consider the implications of allowing users to modify the library
search path for executables that are run as the root user.

Name collisions are annoying, especially because they can be extremely hard to
trace. The -warn-common flag will cause a warning to be printed whenever
symbols (global variables, for instance) are combined between object files.

Finally, keep in mind that some Linux distributions (notably Red Hat) do not



DEBUGGING LINUX APPLICATIONS 33

recognize /usr/local/lib as a library directory, and hence any libraries placed
there will not be accessible. You can fix this by editing /etc/ld.so.conf.
Remeber to run the ldconfig program after editing the library path list.

Debugging Linux Applications

Linux’s programming environment provides support for interactive debugging.
The gcc compiler can generate symbol information for debugging, and there are
several debuggers available. We will begin by demonstrating how to add
debugging information to an executable, and then take a brief tour of two
popular debugging environments for Linux.

Compiling For Debugging

In order for a debugger to analyze an executable’s behavior in a way that is
useful to humans, it needs to determine the exact locations of the program’s
variables and function entry points. This requires a bit of help from the
compiler; applications must be specifically compiled for debugging, or symbolic
debuggers will be useless. To compile a program with the necessary debugging
support (and in particular, support for the gdb debugger), use the -ggdb flag:

$ gcc -ggdb foo.c -o foo

It is a good idea to disable optimization when debugging (that is, do not use the
-On compiler option). Although gcc and gdb allow you to debug optimized
executables, the results might be a bit surprising (since optimization, by
definition, changes the internals of a program).

Although the -fomit-frame-pointer compiler option is sometimes used in the
hope of improving performance, this option is incompatible with debugging in
most cases (as it causes the compiler to omit the instructions that usually keep
track of an important piece of information). Compiling an executable for
debugging will increase its size and most likely decrease its performance;
executables intended for public release should not be compiled for debugging.



34 CHAPTER 2. LINUX DEVELOPMENT TOOLS

The GNU Debugger, gdb

GNU gdb is the primary debugger for Linux. It allows you to single-step
programs, inspect variables while programs are running, and analyze core files
(memory dump files generated automatically when applications crash,
affectionately dubbed “core pies”). gdb is an extremely powerful tool, but its
interface is likely to throw beginners for a loop.

gdb is a text-based interactive debugger. Once a program is loaded into the
debugger, gdb accepts commands to direct the program’s operation. There are
lots of commands, but there is also a nice online help facility. Simply type help
for an index.

A Trivial Example

The following program is supposed to print the numbers from 0 to 9. However, it
has a bug. There is an extra semicolon after the for loop, which causes the
printf statement to be separated from the loop. This is a fairly common error,
simple to fix but often hard to locate. gdb is great for pinpointing this type of
error, since it lets you see exactly what’s happing in the program.

#include <stdio.h>

int main()
{

int i;
for (i = 0; i < 10; i++);

printf("Counter is now %i\n",i);
return 0;

}

First, we compile the program and test it:

$ gcc -ggdb buggy.c -o buggy

$ ./buggy

Counter is now 10



DEBUGGING LINUX APPLICATIONS 35

Yikes! That shouldn’t have happened – we’ll use gdb to figure out what’s
happening. To load a program into gdb, pass the name of the program on the
command line:

$ gdb buggy

GNU gdb 4.18
Copyright 1998 Free Software Foundation, Inc.

license notice removed

This GDB was configured as "i386-redhat-linux"...}

(gdb)

gdb is now ready to accept commands. We will set a breakpoint (a position at
which gdb suspends the process for inspection) and then start the program:

(gdb)b main

Breakpoint 1 at 0x80483d6: file buggy.c, line 6.

(gdb)r

Starting program: /home/overcode/book/test/buggy

Breakpoint 1, main () at buggy.c:6
6 for (i = 0; i < 10; i++);

(gdb)

The b command (short for breakpoint) sets a breakpoint at the specified function
name. We also could have specified a line number or an actual memory address.
In this case, gdb reports that a breakpoint #1 has been successfully added for
line 6 of the source file buggy.c. The r command starts the program’s execution.
Since we have set a breakpoint on the function main, gdb immediately suspends
the program and prints the current line (which happens to be the for loop with
the error). We will now use the n (next) command to single-step the program:



36 CHAPTER 2. LINUX DEVELOPMENT TOOLS

(gdb)n

7 printf("Counter is now %i\n",i);

The n command runs the program until it reaches a different line of code, so this
is the expected result. After executing this line of code, the program should
continue through the loop. Let’s see what happens:

(gdb)n

Counter is now 10
8 return 0;

That’s not good - the program moved on to line 8, meaning that the loop is no
longer running. It is now fairly obvious that line 7 is not part of the loop. We
can take a quick look at the source code with the l (list) command:

(gdb)l

3 int main()
4 {
5 int i;
6 for (i = 0; i < 10; i++);
7 printf("Counter is now %i\n",i);
8 return 0;
9 }

At this point the programmer would hopefully notice the extra semicolon and fix
the problem (one would hope that the programmer would have found it before
the gdb session, but we all make dumb mistakes). gdb doesn’t prevent the
programmer from having to study the source code for errors - it just helps him
focus on the right areas.

Accessing Data

gdb can report the value of any variable that is accessible from the current scope
in the program. It can also modify variables while the program is running. To



DEBUGGING LINUX APPLICATIONS 37

view a variable, use the p (codeprint) command. p foo would report the current
value of foo (that is, if foo is visible from the current location in the program).
There is also a printf command, which behaves much like its C namesake. To
modify a variable, use the set var varname=value command.

Programmers frequently need to track variables as they change throughout the
program. With gdb, you can define a list of variables to display each time the
program is suspended. The display command adds variables to this list, and
the undisplay command removes them.

gdb’s watchpoints are useful for tracing variable corruption. A watchpoint is a
hardware trap placed on a memory location. If that memory location is read
from or written to, gdb will catch the access pause the program for inspection.
Since watchpoints are independent of the semantics of a particular programming
language, they can be used to trace memory corruption from misplaced pointers.
There are three types of watchpoints: write-only, read-only, and access.
Write-only watchpoints detect modifications but not reads, read-only
watchpoints detect reads but not modifications, and access watchpoints detect
any type of access to the given memory address. The watch, rwatch, and
awatch commands correspond to these types of watchpoints. These three
commands take a symbol name as an argument. Use the enable and disable
commands to toggle watchpoints. info breakpoints prints a list of all
breakpoints and watchpoints.

Viewing The Stack

It is often useful to examine the call stack. Programs often crash because of
invalid data passed to the C library (notably the free function), and a normal
gdb crash report will only list the name and memory address of the function
where the crash actually occurred. This is essentially useless in a typical
program that makes hundreds of calls to these functions; the bewildered
programmer would have no idea where the erroneous library call took place. For
instance, the following is the late-night programmer’s worst nightmare (other
than a copy of eggdrop found running in an unknown account):

Program received signal SIGSEGV, Segmentation fault.
0x401371eb in free () from /lib/libc.so.6



38 CHAPTER 2. LINUX DEVELOPMENT TOOLS

This is a crash in the C library itself, resulting from an invalid call to free. This
information is almost useless to us, since most non-trivial C programs make
hundreds of calls to free. Since the segmentation fault occurred in a function
outside of our program (and, more importantly, one that does not contain
debugging information), gdb cannot simply tell us the line number of the crash
location.

gdb solves this problem with its backtrace command. When a program crashes
under gdb, backtrace will display the names of all functions that are currently
active on the stack. In this particular program, backtrace provides us with the
following information:

(gdb)backtrace

#0 0x401371eb in free () from /lib/libc.so.6
#1 0x804b85e in ParseSurf (f=0x8112568, buf=0xbfffd6f0 "SURF 0x10")

at ac3dfile.c:252
#2 0x804c71f in ParseObject (scene=0x8112620, f=0x8112568,

buf=0xbfffe34c "OBJECT poly") at ac3dfile.c:545
#3 0x804c7c3 in ParseObject (scene=0x8112620, f=0x8112568,

buf=0xbffff380 "OBJECT world") at ac3dfile.c:559
#4 0x804cb74 in AC3D_LoadSceneFile (filename=0xbffff957 "crashandburn.ac")

at ac3dfile.c:829
#5 0x804d7a2 in main (argc=3, argv=0xbffff7e4) at ac3dembed.c:15

Aha! The invalid free call occurred while the program was executing line 252 of
ac3dfile.c, in the function ParseSurf. We now know exactly where the
erroneous call to free was made, and we could use standard debugging
techniques to figure out why this particular line caused a crash. (A hint, in case
you find yourself in this situation: crashes in free are usually due to heap
corruption, which can result from overrunning allocated memory buffers.)

backtrace’s output will be useless if the program has corrupted the stack in
some way. If this happens, you’re in for a challege, but at least you’ll know to
look for memory accesses that might cause stack corruption. If you’re feeling
particularly adventurous, you can try setting a watchpoint on an address in the
stack, but this could easily be triggered by legitimate accesses as well as bugs.



DEBUGGING LINUX APPLICATIONS 39

Remote Debugging

Linux is a network-enabled multi-user operating system, and it makes remote
debugging extremely easy. Remote debugging (that is, debugging from a
different console that the one the program is running on) is useful when dealing
with applications that take over the screen or keyboard (this is frequently the
case with games). Anyone who has had to debug a fullscreen OpenGL game can
attest to the importance of remote debugging.

gdb supports two types of remote debugging. It provides support for debugging
over a serial connection, which is useful for kernel debugging but probably
overkill for game development. Serial debugging is important when one cannot
count on the stability of the operating system itself (and therefore the stability
of the debugger). gdb also has the ability to attach to programs that are already
running. The buggy application (compiled for debugging) is started normally,
and gdb is launched via a remote login from a second computer. gdb is then
attached to the buggy application, and the programmer can use the debugger
without fear of losing control of the console. Note that gdb is running on the
same computer as the application; it is just controlled from a remote terminal.

To attach gdb to a running program, first use the file command with the name of
the executable you wish to debug:

(gdb)file foo

Reading symbols from foo...done.

gdb is now ready to attach to a running copy of foo. Now use the attach
command with the process ID of the running application:

(gdb)attach 3691

Attaching to program: /home/overcode/test/foo, Pid 3691
Reading symbols from /usr/X11R6/lib/libX11.so.6...done.
Reading symbols from /lib/libc.so.6...done.
Reading symbols from /lib/ld-linux.so.2...done.
0x4016754e in __select () from /lib/libc.so.6



40 CHAPTER 2. LINUX DEVELOPMENT TOOLS

The debugger has suspended foo, and the normal gdb debugging commands can
now be used, just as if you had started foo under gdb directly.

Debugging Multithreaded Applications

Games frequently use multiple threads of execution to smoothly coordinate the
various parts of the game engine. Unfortunately, multithreading has always been
a thorn in the side of source-level debuggers. gdb can debug multithreaded
applications locally, but it cannot attach to more than one thread of an
application that is already running. This is because threads under Linux are
implemented as separate processes that share an address space, and each thread
has a separate process ID. gdb needs to catch threads as they are created in
order to debug them.

When gdb suspends a multithreaded application, it suspends all of its threads at
once. This allows you to switch between threads and examine the program
without fear of something changing in the background. However, keep in mind
that single-stepping a multithreaded application may result in more than one
line of code being executed in some threads; gdb only directly controls the
execution of one of the threads.

Working with threads in gdb is not particularly difficult. The info threads
command prints a list of threads owned by the application, and the thread id
command switches between threads. gdb assigns its own thread ID’s to a
program’s threads; these are listed in the leftmost column of the info threads
display. To apply a gdb command to one or more threads, use thread apply
ids, where ids is a list of thread ID’s or “all”.

Unfortunately, multithreading causes problems with watchpoints. gdb can only
reliably detect memory changes within the current thread; it might fail to detect
a change caused by another thread. Watchpoints can still be useful in
multithreaded applications, but you will have to determine which thread is
causing the change on your own.

The Data Display Debugger

Many people find the gdb interface hard to live with, and so several frontends
have been created. Perhaps the best known frontend is the Data Display



DEBUGGING LINUX APPLICATIONS 41

Figure 2–2: The Data Display Debugger

Debugger, or ddd. This program adds a nice interface to gdb, perhaps limiting
its usefulness to hardcore gdb fans but certainly making life considerably easier
for beginners.

ddd requires only a minimal introduction, because it closely mirrors the
functionality provided by gdb (and with good reason; it is gdb, inside a GUI
wrapper). To begin a debugging session with ddd, choose “Open Program” from
the File menu. You may then set breakpoints and control execution with ddd’s
toolbar and menus. ddd allows you to attach to running programs after the
corresponding executables have been opened. If you need a piece of functionality
provided by gdb but not ddd, you can send commands directly to gdb with the
console at the bottom of the screen.

Bug Tracking

A very important but often-overlooked aspect of debugging is keeping track of
the information pertaining to identified bugs. A game development team might



42 CHAPTER 2. LINUX DEVELOPMENT TOOLS

easily receive hundreds of bug reports during the course of a game’s development
and beta test, and it is essential to organize these reports so that the developers
can easily verify and resolve the bugs. Bug tracking software is every bit as
important to a serious game development operation as the debugger itself.

The Mozilla project’s Bugzilla has emerged as one of the best and most widely
used bug tracking systems. Bugzilla is a web-based system written in Perl and
designed for use with the popular Apache web server and MySQL database
server. Users can report bugs, check to see if a reported bug has been resolved,
and browse through other bugs that have been reported. Bugzilla is covered
under the Mozilla Public License, and it can be freely used and modified.
Bugzilla is relatively simple to install if MySQL and Apache are already
configured. To see Bugzilla in action, visit http://bugzilla.mozilla.org.

Project Management With CVS

Collaboration is the only way to get a large programming task accomplished in
any reasonable amount of time, but coordination can become difficult with even
two or three developers working on a project. In particular, care must be taken
to ensure that one programmer’s work does not overwrite another’s. It is also
important to keep development and release versions of a piece of software
separate.

These problems are addressed by version control software. The capabilities of
these tools vary, but we will discuss the most popular tool, the Concurrent
Version System (CVS). CVS is a tool for managing repositories, which are
simply directory trees of source code with a bit of extra control information.
Each project in a repository is called a module. Modules are initially
imported into the repository, and additional files may be subsequently added.
Individual developers may check out modules, make changes, and commit the
updated files back into the master source repository when they are finished.
CVS keeps a record of the changes made to each file, and allows individual files
or entire trees to be tagged with version designations. Developers can also create
separate branches of a source tree if they intend to make substantial and
possibly dangerous modifications. Successful branches can later be merged back
into the main source tree.

What if two developers make (conflicting) modifications to the same file? Some



PROJECT MANAGEMENT WITH CVS 43

version control systems physically prevent this with ”strong” file locking, but
CVS allows it. In the case of a conflict, CVS will prevent the most recent
modification from being committed to the repository, but instead will provide
the developer with a reject file listing the source code lines in question. The
developer must then merge his changes with the other developer’s changes by
hand and then re-commit the file. This would obviously be a continuous hassle
without a bit of coordination between developers; CVS does not replace
communication and management. It is best to avoid conflicts in th first place,
but sometimes they are inevitable.

CVS is a free tool, and this has played a role in its almost universal acceptance
in the Linux development community. Free software would not be where it is
today without CVS.

A Brief CVS Tutorial

We will now work through a complete example of using CVS to manage a small
project. Suppose that we have four files: Makefile, foo.c, foo.h, and main.c.
These constitute a small programming project, but their contents are not
relevant for our purposes. We would like to create a CVS module out of these
files so that other developers can join in. For now we’ll assume that all
developers have local access to the machine hosting the repository, though it is
possible to use CVS remotely.

Creating a CVS Module

The first step is to create a repository, if one does not already exist. A repository
can host any number of modules, and it is common for software teams to use one
central repository for all of their projects (this facilitates routine backups, among
other things). To create a repository, set the CVSROOT environment variable to a
suitable location and type cvs init. This will create the CVS repository
directory and initialize several important control files. The location of CVSROOT
is not especially important, but make sure that your account has write access to
it. If a repository already exists, make sure the CVSROOT environment variable is
set to the repository’s location.

$ export CVSROOT=/home/overcode/cvs



44 CHAPTER 2. LINUX DEVELOPMENT TOOLS

$ cvs init

Warning

Do not create a CVS repository in the same directory as a project you
wish to add to the repository. This would result in an infinite loop.
CVS is remarkably braindead about some things, but a useful tool
nonetheless.

Now we need to import the initial set of source files to the repository. Assuming
that we are in the project’s directory and that CVSROOT is set correctly, we use
the command cvs import -m "Some descriptive comment" projname
vendor label, where projname is the name of the project (“foobar” for now),
vendor is the name of the organization responsible for the project (which doesn’t
matter too much to us), and label is an indication of the software’s progress,
such as initial or start. This command will copy the project’s files into the
CVS repository under the given project name. The project is now controlled by
CVS, and the original files may be safely deleted.

For the purposes of our tutorial, the correct import command is cvs import -m
"CVS Example" example xyz start. This must be executed from the directory
containing the four source files, and CVSROOT must point to the initialized
repository.

$ cvs import -m "CVS Example" example xyz start

N example/foo.h
N example/foo.c
N example/main.c
N example/Makefile

No conflicts created by this import



PROJECT MANAGEMENT WITH CVS 45

Working With a CVS Project

Once a project is in CVS, multiple developers can safely access the project’s files
without too much fear of colliding with one another. Each developer should
make his own working copy of the project (with the cvs checkout projname

command). For our tutorial, switch to a new directory and type cvs checkout
example. CVS will copy the four example files to a new directory called
example. You may now make any modifications you wish to the files, and other
developers main join in by checking out their own copies of the project.

Warning

Try to avoid editing files in a CVS repository directly. This defeats the
whole purpose of CVS, and doing so is likely to cause massive
headaches for the next person to commit his working copy to the
repository. CVS-controlled files are marked read-only to help prevent
this from happening. CVS is not designed to be a nuisance (quite the
opposite, actually), but it requires a bit of cooperation from its users.

When you have finished making modifications to a project’s files, you should
commit them back into the repository for everyone else to use. For example,
suppose that we have corrected an error in foo.c, and we want to integrate this
modification back into the master source tree. From the directory containing our
working copy, we would type cvs commit -m "Description of changes.".

$ cvs commit -m "Fixed a typo."

cvs commit: Examining .
Checking in foo.c;
/home/overcode/testcvs/example/foo.c,v <-- foo.c
new revision: 1.1; previous revision: 1.0
done

But what if someone has made conflicting modifications to the master copy of
foo.c? It would be bad to simply overwrite their changes; they may have spent a
lot of time on them. CVS obviously doesn’t know how to rewrite source code to
integrate changes (beyond a certain, very limited extent), so we must intervene
and merge the changes ourselves. The transaction might look something like this:



46 CHAPTER 2. LINUX DEVELOPMENT TOOLS

$ cvs commit

cvs commit: Examining .
cvs commit: Up-to-date check failed for ‘foo.c’
cvs [commit aborted]: correct above errors first!

This indicates that foo.c has been modified by somebody else, and so this file
requires special attention. To correct problem we need to perform a CVS
update, which will compare our modified version with the one on the server and
produce a list of conflicts.

$ cvs update

cvs update: Updating .
RCS file: /home/overcode/testcvs/example/foo.c,v
retrieving revision 1.4
retrieving revision 1.5
Merging differences between 1.4 and 1.5 into foo.c
rcsmerge: warning: conflicts during merge
cvs update: conflicts found in foo.c
C foo.c

The file foo.c now contains diff-like information showing which lines need to be
merged. We should edit the file, decide how to resolve the conflicting lines of
code, remove CVS’s information, and perform another cvs commit. Unless more
modifications have been made to the master file, CVS will accept the second
commit.

CVS Revision Numbers

CVS automatically assigns revision numbers to the files in a source
repository. These numbers are incremented after each successful
commit. These numbers are intended for reference within the CVS
system, and they generally do not correspond to a product’s actual
version numbers.



PROJECT MANAGEMENT WITH CVS 47

Adding and Removing Files

To add a file to a CVS module (that is, to ask CVS to start controlling a
newly-added file from your working directory), use the cvs add command. For
instance, to add a file named qux.c to the foo module, you would use the
command cvs add qux.c. You may specify wildcards, but be careful. To add a
directory to a CVS module, simply add one or more files within that directory.

Removing files from CVS is a bit trickier. There is a cvs remove command, but
it can only be used if the file in question no longer exists. For example, suppose
that you erroneously added qux.c to CVS. To remove it, you would first have to
delete or rename your working copy of qux.c, and then run the cvs remove
command. This is veritably annoying, but it does at least make you think twice
before you rip a file out of the source tree. CVS never actually deletes these files;
they are stored in a special directory called Attic, and they can usually be
recovered.

Branching Source Trees

Developers often have great ideas, but they’re sometimes risky or difficult to
implement. CVS allows developers to create branches of source trees so that
they can test these ideas without jeopardizing everyone else’s work. If these
experimental branches work out, CVS can merge them back into the main source
tree. Branches are also good for creating release snapshots of a source tree so
that individual releases can be maintained while the main development process
continues. For instance, if the Linux kernel team were to use CVS (which it does
not), the “cutting edge” kernel would probably be in the main tree, while each
major release (2.2, 2.4, and so on) would have its own branch for continued
maintenance (such as security patches and driver backports).

To branch a source repository, use the cvs rtag (remote tag) command with the
-b (branch) option. This will create a new branch of the current source tree and
tag it with a name. For example, suppose we want to add a gltweak branch
(presumably for OpenGL tweaking) to the example tree:

$ cvs rtag -b gltweak example

cvs rtag: Tagging example/foo.h
cvs rtag: Tagging example/foo.c



48 CHAPTER 2. LINUX DEVELOPMENT TOOLS

cvs rtag: Tagging example/main.c
cvs rtag: Tagging example/Makefile

Most CVS commands allow you to select a branch with the -r option. To check
out the new gltweak branch, use cvs co -r gltweak example (and likewise
you would use cvs update -r gltweak example to update an already checked
out source tree to a new copy of the branch). Once you’ve checked out a tagged
branch, all further updates and commits from that directory will automatically
refer to the branch rather than the master source tree. It is possible to merge a
branch back into the main tree with the cvs update -j branchname command
(of course, this is likely to produce conflicts just like any other merge).

You may have noticed that the cvs rtag command operates on the CVS
repository rather than a checked out copy of the code. You can tag an existing
directory just as easily (in which case the branch will actually be created
whenever it is committed). This might be useful if you decide that things are
getting out of hand halfway into a major hacking session. The command for this
is simply cvs tag.

Branching is certainly useful, but use it with care. It’s easy to make a mess of a
source repository unless you manage this sort of thing carefully.

Remote CVS Access

CVS is well-suited to the Internet’s massively distributed environment. It
supports remote access with its client/server mode. Setting up a CVS server
is not too difficult, but it is beyond the scope of this section2. However, it is
important to know how to access remote CVS servers, since they are frequently
used for Linux-related projects on the Internet.

CVSROOT normally points to a directory on the local machine, but it may also
specify a remote CVS site. The general syntax of a remote CVSROOT is:

:pserver:username@hostname:path

username must exist on the remote CVS site, though many projects provide a
2SourceForge (http://www.sourceforge.net) offers free remote CVS repositories to open

source developers.



OTHER USEFUL TOOLS 49

username for the general public to use. path specifies the the directory location
of the CVS repository on the remote machine.

Remote CVS access is similar to local access, but you must first log in to the
remote site with the cvs login command. For example, suppose you wish to
obtain the latest version of SDL from Loki Software’s public CVS server:

$ export CVSROOT=:pserver:guest@cvs.lokigames.com:/cvs

$ cvs login

(Logging in to guest@cvs.lokigames.com)

CVS password: guest

$ cvs checkout SDL

cvs server: Updating SDL
...

Since source modules can grow quite large, CVS provides a compression option
for bandwidth-deprived users. The -zn option asks CVS to use compression for
its downloads, where n is a number from zero to nine. CVS actually uses GNU’s
gzip program for its compression, and n specifies the gzip compression level to
use. Compression is a very good idea for performing CVS updates over slow
connections.

Other Useful Tools

UNIX is full of useful programming tools, and unfortunately we can’t cover them
all. This section points out several standard shell utilities that often come in
handy for programming projects. A full explanation of these utilities is left to
the appropriate online manual pages.

Rapid Text Searching with grep

Programmers often need to search source code for specific strings. For instance,
a programmer might need to check the way that a certain OpenGL function is



50 CHAPTER 2. LINUX DEVELOPMENT TOOLS

implemented, but might not know which source file contains the function’s code.
The grep utility can quickly search any number of files for a given piece of text.

grep is based on regular expressions. A regular expression (regex) is a
pattern for matching textfootnoteDo not confuse regular expressions with globs,
which provide a much simpler (and less powerful) way to match strings. Most
UNIX shells (such as bash) use globs for matching filenames, and this throws
many UNIX users for a loop.. A regex matches a string of text if all of the
string’s characters are described by the regular expression in some way. grep’s
basic job is to search text files and print out all lines that match a given regex.
For an explanation of regular expressions, see the grep(1) manpage (type man
grep at a shell prompt).

Updating Source with diff and patch

If you’ve worked with CVS, you’ve probably seen diff and patch (or a close
equivalent) in action. Source code tends to change quickly, though specific
changes are often small and isolated. If another developer is collaborating on a
project, it doesn’t make sense to trade entire source trees; it would be better to
send just the parts of a source tree that have changed since the last update. diff
is a utility for comparing two files or directories and generating a delta (or
patch) that can be used to change one into the other. Deltas can be applied with
the patch utility. CVS uses this patching technique internally to keep track of
project revisions without maintaining multiple copies of the entire project. The
Linux kernel development team uses patches to exchange code improvements.

The basic usage of diff is very simple. To create a delta file that describes how to
convert the file foo into the file bar, simply feed the two files to diff and catch
diff’s output with redirection:

$ diff foo bar > foo.patch

foo.patch now contains a description of the differences between the files foo
and bar, and this file is sufficent information for the patch utility to convert foo
into bar.



OTHER USEFUL TOOLS 51

Warning

When you specify files to diff on the command line, be sure to put the
original file first and the new file second. Programmers often generate
deltas in the wrong order. This is a bad thing!

To patch a file with a delta, supply the patch utility with the name of the file on
the command line, and the delta information on standard input. The following
example will use the delta we just generated to patch foo into bar:

$ cat foo.patch | patch foo

Or, equivalently:

$ patch foo < foo.patch

The patch utility generally prints status information to indicate its success or
failure. Patching usually succeeds, but it can fail if the file to be patched has
been otherwise modified since the delta was generated. The patch utility tries to
recover from this situation, but sometimes it is necessary to perform the patch
yourself. It’s not too hard, but it’s a situation you’ll want to avoid if possible.

Patch can also handle entire directories. Suppose you’ve made modifications to a
source tree in the new/ directory, and there is a copy of the original source tree
in the old/ directory. You can generate a complete diff of the two directories
with the following command:

$ diff -ubr old/ new/ > foo.patch

This command causes diff to recursively scan through each directory, comparing
files with the same name and outputting a complete chunk of patch data for the
entire set. The -b options instructs diff to ignore changes in whitespace (such as
indentation). You would obviously leave this out if your code involves a language
in which indentation is significant (such as Python). To apply the patch
generated with this command, change to the directory containing the source tree
you wish to patch and feed the file to the patch utility:



52 CHAPTER 2. LINUX DEVELOPMENT TOOLS

$ patch -p1 < foo.patch

The -p1 option tells patch that it is already in the directory to be patched
(which in all liklihood has a different name than the directory the patch file was
generated from), and that it should ignore the first part of each filename it
encounters.

Time To Move On

There are a lot of use utilities that we haven’t mentioned (or just haven’t done
justice to) here, but we have covered the most valuable tools for game
programming. gcc and gdb are the most important by far (after a
programmer-friendly text editor, of course), and you would do yourself a favor to
become proficient with them.

It’s time to move on. The next chapter concerns the programming toolkits
you’re likely to use for programming Linux games, and after that we’ll get into
programming with the SDL library.



Chapter 3

Linux Gaming APIs

In this chapter we will tour the variety of game programming toolkits available
under Linux. Most are free and open (indeed, I am wary of any Linux toolkit
that isn’t these days). If you intend to use these toolkits, familiarize yourself
with the terms of the GNU Library General Public License (GPL): It is possible
to legally develop closed-source, commercial software using LGPL libraries under
certain conditions; something that has been a frequent source of confusion
among developers.

Multimedia programming is a broad field, and so we have divided our tour into
several categories. Some packages provide several types of functionality, and they
will be mentioned more than once. Finally, some capabilities are provided by the
Linux kernel itself, in which case we will simply refer to “the kernel” or “Linux”.

Times Have Changed

I still remember the first game programming book I ever read. It was entitled
PC Game Programming Explorer (by Dave Roberts), and it demonstrated game
programming with a game called Alien Alley. This was actually a neat game,
especially for one intended as a book example: its graphics were smooth, the
artwork was top-notch, and it ran well on my (rather underpowered) system. It
would be easy to write such a game today, even in a matter of a few hours, but
at the time, it seemed a towering monolith to a neophyte game programmer.

53



54 CHAPTER 3. LINUX GAMING APIS

Back in the days of DOS-based gaming, programmers generally wrote games by
issuing commands directly to the computer’s hardware. There were only a few
popular types of sound cards on the market, and many were at least partially
compatible with Creative Labs’ Sound Blaster. Input devices were trivial to
program: accessing the mouse required only a few assembly language
instructions (interrupt 33h, for those who remember), reading the joystick’s
position was a matter of a dozen lines of code, and there were several easy ways
to collect keyboard input. Video programming was the hardest part of game
development at the time: Although nearly every computer had a
VGA-compatible display chip, it took a significant amount of skill to coax fast
and smooth graphics out of it (due to some of the PC architecture’s braindead
limitations). In fact, Alien Alley was mostly video code.

Times have changed (arguably for the better). Very few game programmers
actually write register-level video code these days; instead, they rely on
pre-written interfaces (such as OpenGL, SDL, and DirectDraw). Direct
hardware hacking is fun, but it slows down game development, and usually
produces unportable code (with the unfortunate effect that many “old school”
games would be extremely difficult to port to modern environments). Even if I
could find the floppy disk that came with my copy of PC Game Programming
Explorer, I doubt I could port Alien Alley to Linux in any reasonable amount of
time, simply because it depends on certain hardware-level features of the original
VGA graphics adapter.

DOS programs are given free reign of the entire system; they may freely access
memory or hardware ports, and they are allowed to effectively shove the
operating system out of the way. Linux programs, on the other hand, are not
generally allowed direct access to the system’s hardware; they must either use
interfaces provided by the Linux kernel, or obtain special permissions, requiring
the program to be executed under the god-like root account (a potential security
risk). The Linux kernel also prevents programs from directly accessing certain
areas of the system’s memory. In return for these restrictions, Linux is able to
prevent applications from interfering with one another, thereby ensuring the
system’s stability and security.

The bottom line is that we’ll probably want to avoid talking directly to the
system’s multimedia hardware, but instead use one of many existing libraries for
the purpose. It saves time and effort, and libraries are usually more fully
developed and stable than code written for a particular game.



GRAPHICS APIS 55

Graphics APIs

Linux offers several options for graphics programming. Most of today’s Linux
games use the X Window System in some way, as it is almost universally
available, well supported, and at least tolerably fast1. Recently the Linux
framebuffer device interface has been making inroads into gaming, and this
interface has a lot of potential. Finally, SVGALib provides a way to get
extremely fast access to SVGA compatible video devices.

SVGALib

As its name implies, SVGALib is a library for programming
SuperVGA-compatible video hardware, which is extremely fast because it
directly accesses the system’s video hardware. SVGALib has fallen out of favor
recently, due to its inconvenient interface, its failure to fully support many of
today’s video chipsets, and its demand for root privileges. Furthermore, it is
known to conflict with the X Window System, and in some cases it is
incompatible with Linux’s new framebuffer device system. While SVGALib is
still under development, it is reasonable to predict that its use will continue to
decline.

SVGALib is distributed with a sister library called vgagl (not to be confused
with the OpenGL library). The vgagl library provides higher-level drawing and
blitting functions that make an SVGALib programmer’s life a bit easier.
SVGALib also includes sub-libraries for keyboard and mouse access.

If you really want to mess with SuperVGA video cards, don’t mind locking up
your console occasionally, and don’t care too much about wide compatibility,
SVGALib may be worth looking into. Otherwise, your hacking effort is probably
better spent elsewhere.

1The X Window System is incredibly flexible, and it’s really not a bad platform for gaming.
However, its design requires all graphics data to pass through certain pre-defined channels, and
the use of extensions is required to achieve acceptable game performance in most cases (among
these extensions are shared memory access and the XVideo extension). X was never really
intended for today’s level of high-speed graphics processing. Some people think X should be
replaced with a new system, but I believe that it just needs a bit of reworking in some areas. X
has a lot going for it.



56 CHAPTER 3. LINUX GAMING APIS

General Graphics Interface, LibGGI

LibGGI is a massive, general purpose, multi-targetted graphics library that
provides a complete graphics system for games and other applications. Its
companion library, LibGII, provides portable input device support, and games
that use it are meant to be easily portable to any platform. LibGGI does not
depend on any one method of accessing graphics devices; instead, it provides a
system of “backends” that can support just about anything remotely resembling
a graphics device. The GGI Project is also working on a kernel-based graphics
infrastructure, KGI. LibGGI is free software, distributed under the GNU LGPL
license. The GGI Project’s web site is http://www.ggi-project.org.

Simple DirectMedia Layer, SDL

SDL is a cross-platform multimedia library, developed with commercial game
porting in mind (in fact, it has already been used to port a number of games
from Windows to Linux, including most of Loki’s titles). SDL supports almost
all major operating systems, including Linux, Windows, BeOS, and MacOS. In
addition to fast graphics support, SDL provides interfaces for playing sound,
accessing CD-ROM drives, and portable multithreading.

SDL is also an excellent library for free software projects: Released under the
GNU LGPL, it has everything a programmer needs to write fast, portable
games. SDL has accumulated a collection of add-on libraries which provide
additional functionality for game developers.

We will discuss the SDL library in detail later. SDL’s website is
http://www.libsdl.org, and a helpful group of SDL enthusiasts (including
myself2) can be found on IRC at irc.openprojects.net, #sdl.

ClanLib

ClanLib is a C++ game programming library which, like SDL, stresses platform
independence and optimal use of the system’s underlying multimedia resources.
Released under the GNU LGPL, ClanLib’s design is very clean and extensible.

ClanLib is a higher-level library than SDL: Whereas SDL provides a relatively
2My nick on IRC is “overcode”. I’m not difficult to find.



GRAPHICS APIS 57

small set of C functions for accessing the computer’s hardware in a portable way,
ClanLib provides a complete C++ infrastructure for game development. We will
cover SDL rather than ClanLib in this book, but ClanLib is certainly a worthy
contender. You can find more information about ClanLib at
http://www.clanlib.org.

OpenGL

OpenGL is a 3D graphics API designed by Silicon Graphics. Though not
originally intended as a game programming library, OpenGL has found a place
as a convenient interface standard for hardware-accelerated 3D graphics, and
therefore lends itself well to gaming. The Mesa 3D Graphics Library is a free
implementation of the OpenGL specification, and there are Mesa-based Linux
drivers for several popular 3D accelerator cards.

Unfortunately we can’t cover OpenGL in the detail it deserves (3D graphics is a
subject of its own and not specific to Linux programming), but we’ll at least
demonstrate how to gain access to OpenGL from within SDL programs. This
particular combination allows us to use the rendering power of
hardware-accelerated OpenGL with the various amenities provided by SDL, and
it is an excellent platform for developing games. Loki Software has successfully
used SDL and OpenGL to port several commercial games to Linux, including
Heavy Gear II and Soldier of Fortune.

For more information on OpenGL, see the most recent version of the OpenGL
Architecture Review Board’s OpenGL Programming Guide, or visit
http://www.opengl.org.

Plib

Plib is the collective name for several individual game programming libraries
written by Steve Baker, designed to make it easier to write portable OpenGL
games. This collection includes sg (“Simple Geometry”, routines for fast 3D
math), ssg (“Simple Scene Graph”, for manipulating 3D scene data), pui
(“Picoscopic User Interface”, a simple menu and dialog box system), sl (“Sound
Library”, a portable sound interface), and several other useful components. Plib
is available at http://plib.sourceforge.net. These libraries are free software,
available under the GNU LGPL.



58 CHAPTER 3. LINUX GAMING APIS

Glide

Glide is 3Dfx’s native 3D programing library, designed specifically for 3Dfx
graphics chips. It is a much lower-level library than OpenGL, serving mainly as
a consistent interface for all video cards based on 3Dfx chipsets. Since 3Dfx no
longer has a virtual monopoly in the 3D accelerator business, Glide has lost a
certain amount of popularity recently. With the advent of accelerated OpenGL
under Linux, there are very few good reasons to use Glide for new game projects
(I’m sure 3Dfx will have my hide for saying that, though, as they still vigorously
defend Glide as an API of choice). More information about Glide is available at
http://www.3dfx.com.

Xlib

Some game programmers eschew all of these “programmer-friendly” libraries in
favor of using the X Window System directly (via the native Xlib API). While
experienced programmers may achieve small performance gains this way, they do
so at the expense of portability and simplicity.

Xlib is not particularly difficult to use, but it is meant to be used as a base for
constructing other toolkits, rather than as a library for writing actual
applications. Xlib is a bit too verbose for my taste, but you might find it
enjoyable. If you’ve ever written an application with the Win32 API, you have a
good idea of what Xlib programming is like, except that in most cases Xlib
requires even more library calls to get anything done. Remember that toolkits
such as SDL and ClanLib already use a number of Xlib tricks to achieve their
level of performance, and if you code for Xlib directly you’ll be duplicating this
work.

If you’re interested in learning Xlib (perhaps not a bad exercise, whether or not
you actually intend to use it), you’ll want to get one or two of the books from
the official X Window System documentation series. See the Bibliography for
more info.



GRAPHICAL USER INTERFACE TOOLKITS 59

Graphical User Interface Toolkits

Many games use menus and dialogs to let the user make configurations changes
and select the type of game to play. In many cases it’s practical to build an ad
hoc interface for a particular project, but games with complex settings might
benefit from a more substantial user interface toolkit. There are plenty of good
GUI packages to choose from.

GTK+

Originally developed to serve as the GNU Image Manipulation Program’s user
interface, GTK+ (formerly just GTK) is an enormous GUI librariy that
somewhat resembles the time-tested Motif toolkit. GTK+ is implemented on top
of an abstraction layed called GDK, freeing GTK+ from low-level concerns like
input gathering and pixel format conversion.

GTK+ is implemented in pure C, but C++ wrapper libraries are available. Its
programming model takes a bit of getting used to, but it is powerful enough for
building interfaces for large applications. It would be a major hassle to port
GDK/GTK+ to work with anything but the X Window System or Microsoft
Windows, so you can pretty much forget about using it to develop games for the
framebuffer console.

The GTK+ project is online at http://www.gtk.org.

Tk

The Tk toolkit was originally created as a windowing interface for the Tcl
scripting language, but it’s since found its way into a number of other
environments. It is an extensible and flexible GUI toolkit for X11, Windows, and
MacOS. Tk is tied to Tcl, but you can still develop your application in C and
only use Tcl to build the interface. (If you don’t mind a bit of extra effort, you
can bypass Tcl entirely, but Tk wasn’t really designed for this.)

Tk is available under the same (extremely liberal) license as Tcl, and it can be
modified and used in any type of application with very few restrictions. More
information is available on http://www.tcltk.org.



60 CHAPTER 3. LINUX GAMING APIS

Fltk

Fltk stands for “fast, light toolkit”. It is a very small C++ GUI toolkit that
works on several different platforms (and is easily portable to others). Fltk
requires very little of the underlying platform, and this makes it a good
candidate for integrating into existing graphics systems (games, for instance).

Qt

Qt is a comprehensive, portable application development system for C++. It
shares some similarities with Microsoft’s MFC toolkit, but it’s refreshingly
different in implementation. Qt is portable between UNIX and Windows, and
there is even an embeddable version of Qt for handheld devices. It’s really not
fair to call Qt a GUI toolkit; it does serve that purpose, but it also provides
basic data structures, file I/O, networking, image loading and saving.

TrollTech (a free software-friendly Norwegian company) created and maintains
Qt as a commercial product, and you need to buy a license if you intend to use
Qt in proprietary software. The Linux version is available under both the GNU
General Public License and the custom Q Public License, but these require all
unlicensed Qt applications to be free. Qt is great for creating free software and
for serious commercial development, but it’s probably not what you want if
you’re interested in small-scale, non-free development.

More information on Qt is available at http://www.trolltech.com.

SDL GUI support

There’s no “official” SDL GUI toolkit, but there are a few user-contributed
libraries that fill this niche. The SDL gui library provides basic things like
frames, menus, and widgets, while the SDL console library implements a
Quake-like popup console system. Both of these libraries are free software, and
you can hack them to your liking (provided, of course, that you contribute your
modifications back to the community at large).

These and other user-contributed SDL addons are available on
http://www.libsdl.org



AUDIO APIS 61

Audio APIs

Linux supports most of today’s sound cards. There are two competing standards
for kernel level sound support, but fortunately neither is difficult to work with,
and games commonly support both.

The Open Sound System, OSS

OSS is the original sound programming interface for Linux. Maintained by
4Front Technologies, OSS provides a consistent kernel-based interface to sound
hardware. Its API is not especially pretty, but if you close your eyes and pretend
you’re doing something fun you can almost forget about it.

OSS supports most of today’s sound cards, but some of the newer drivers are not
free and require a commercial OSS license. The free portions of OSS (OSS/Free)
are included in the Linux kernel (and are no longer directly maintained by
4Front).

There are two types of OSS programs: “nice” and “rude”. Nice OSS programs
are likely to work on just about anything that remotely claims to be OSS
compatible, including vendor-supplied drivers, FreeBSD’s sound system, and
ALSA’s OSS emulation module. In fact, most OSS programs are basically nice.
Rude OSS programs do unusual things with the driver, such as memory-mapping
the driver’s DMA buffer. While the maintainers of OSS discourage this, some
people do it anyway (Quake 3 is a notable example). We’ll discuss a variety of
OSS programming techniques in Chapter 5.

More information on OSS is available from 4Front Technologies at
http://www.4front.com.

Advanced Linux Sound Architecture, ALSA

ALSA is a community project that seeks to surpass OSS in all areas. The ALSA
team has created a complete set of kernel-level sound card drivers, an easy to use
programming interface, and a facility for emulating OSS. ALSA is not without
its fair share of quirks, but it is a viable alternative to OSS for sound support
and, with few exceptions, games that support OSS are also compatible with
ALSA. It would be good to see ALSA grow in popularity since it has a lot of



62 CHAPTER 3. LINUX GAMING APIS

functionality and a lot of promise. The only serious problem with ALSA is that
it is somewhat of a moving target; its API changes frequently. For more
information on ALSA, visit http://www.alsa-project.org. We’ll address
ALSA programming in Chapter 5.

The Enlightened Sound Daemon, EsounD

The Enlightened Sound Daemon (more commonly known as ESD) is a sound
server that allows multiple applications to share a single sound card. ESD-aware
applications send their sound streams to ESD, and ESD mixes them internally
into a single output stream. Some people love ESD, and some hate it; it has its
fair share of technical problems, but results are acceptable in most cases. The
main problem with ESD (other than its bugginess and lack of documentation) is
the basic fact that it takes time for audio data to travel over a network, and this
results in a significant delay before sound actually gets to the soundcard. ESD
currently uses a fixed-sized buffer, regardless of the type of network or sound
card. This latency can be rather disruptive for gameplay, but it’s usually not a
problem for music playback and other things that don’t need to be precisely
timed.

Recently some sound card drivers have started to support multiple device opens;
that is, the driver allows multiple programs to use the sound card at once. This
renders ESD more or less obsolete, but these drivers are in the minority right
now.

ESD is an excellent software package, but programming information is very
sparse, other than a few spare comments in the header file, and various
ESD-enabled projects that users have written. We will cover the basics of ESD
programming in Chapter 5.

The Open Audio Library, OpenAL

OpenAL is an environmental 3D audio library that supports just about every
major platform. It aims to provide an open replacement for proprietary (and
generally incompatible) 3D audio systems such as EAX and A3D. OpenAL can
add realism to a game by simulating attenuation (degradation of sound over
distance), the Doppler effect (change in frequency as a result of motion), and
material densities. OpenAL has been used in several Linux game ports,



SCRIPTING LIBRARIES 63

including Heavy Gear II and Sid Meier’s Alpha Centauri.

The OpenAL web site is http://www.openal.org, and we will cover its API in
5.

Scripting Libraries

Tcl

Tcl (Tool Command Language) is a very simple extension language designed to
automate a variety of tools. Tcl often loses out because some people try to use it
as a replacement for Perl (which it is not), but its simple syntax and convenient
extension mechanism make it an ideal candidate for game scripting. Tcl is good
at processing strings, but it is a poor choice for high-volume number crunching
and data manipulation. We will implement a game scripting engine with Tcl in
Chapter 6.

The command-line Tcl interpreter and extension libraries are available as source
and binaries from http://www.scriptics.com. Although Tcl is commercially
maintained, it is free software.

Guile and MzScheme

Scheme is a modern programming language that draws heavily from LISP. It was
designed primarily by Guy Steele in 1979, and it has evolved quite a bit since
then. Scheme tends to scare away novices due to its prefix notation, its heavy use
of recursion, and the simple fact that it is a LISP derivative, but advanced users
generally find it an amazingly expressive language. Scheme can be parsed and
executed very quickly, and it is sufficiently powerful to serve as an excellent game
scripting language. The decision to use Tcl instead of Scheme for our scripting
examples was difficult, but I felt that Tcl would make for more straightforward
examples. However, Scheme would probably provide better performance.

Guile is the official GNU extension language. It is a reasonably complete Scheme
implementation, but its documentation is extremely sparse. You can find it at
http://www.gnu.org/guile.

MzScheme is a complete and actively maintained Scheme system from Rice



64 CHAPTER 3. LINUX GAMING APIS

University (and others). It implements the latest official Scheme standard
(R5RS) almost completely, and it extends the language in various ways to make
it more practical as a general-purpose programming language. MzScheme
functions both as a standalone Scheme interpreter and an embeddable scripting
library. If you’re interested in using Scheme as an extension language, MzScheme
would be an excellent choice. It is available at http://www.cs.rice.edu/PLT.

Python and Perl

You’re probably familiar with Python and Perl, and you may already be
proficient in one of these languages. While most commonly used as standalone
scripting languages, Python and Perl can also be embedded in applications to
provide modular scripting support. We won’t be using these languages in this
book (we’ll use Tcl instead), but their scripting interfaces are not terribly
difficult (very similar to Tcl, which we’ll discuss in Chapter 6). Perl is superb at
string processing, and Python has a bit of an object oriented slant. Which
language is better suited to game development is anybody’s guess.

Perl and Python are available from http://www.perl.org and
http://www.python.org, respectively, and each language comes with plenty of
online documentation.

Networking APIs

Networked gaming is big, and it is here to stay. There are several networking
interfaces for Linux, but almost all of them revolve around the BSD sockets API
that became a standard part of UNIX years ago.

BSD Sockets

A socket is a UNIX file descriptor that designates a network connection rather
than a file on disk. Sockets can be thought of as telephone handsets; they are
communication endpoints, through which data can be transferred in either
direction. Sockets are most commonly used with TCP/IP, the stack of protocols
behind the Internet.



NETWORKING APIS 65

The advantage of programming with TCP/IP sockets is that TCP/IP is an
incredibly versatile protocol. Some version of the sockets API can be found in
nearly every operating system, including Linux, Windows, BeOS, and MacOS.
TCP/IP can be used for both local (LAN) and wide-area (WAN) networking,
and the protocol can be adapted to the nature of a particular game.

We will focus on socket programming in Chapter 8. Even if you decide to use an
additional toolkit for convenience, it is important to understand how sockets and
the underlying network protocols operate.

OpenPlay

OpenPlay is the successor to NetSprocket, Apple’s network gaming support
library. It is a crossplatform library (implemented in C), and it compiles on
Linux as well as Windows and MacOS. OpenPlay is released under the terms of
the Apple Public Source License, which is a corporate-friendly license that seems
to be remotely inspired by the GNU GPL. OpenPlay is a substantial API
designed to compete with Microsoft’s closed and proprietary DirectPlay.
OpenPlay shows promise, but its Linux port is still under development.

It remains to be seen whether OpenPlay for Linux will catch on. Some Linux
developers seem to distrust Apple (not always for rational reasons), but the
finished port of OpenPlay will have a lot to offer. OpenPlay is available on
Apple’s public source site, http://publicsource.apple.com.

IPX and SPX

IPX (Internetwork Packet eXchange) is a simple networking protocol similar to
the Internet’s underlying IP protocol, and SPX (Sequenced Packet eXchange) is
a higher-level protocol similar to the Internet’s TCP protocol. These protocols
(often collectively referred to as IPX) were designed by Novell for its NetWare
line of products. IPX has fallen out of favor, but it is still used in a number of
games. IPX is fine for small private LANs, but it is not ideal for large networks.
Should you choose to support IPX in your games, the Linux kernel provides the
necessary networking code (via the normal BSD sockets interface). It is not
terribly difficult to support both TCP/IP and IPX with the same networking
code.



66 CHAPTER 3. LINUX GAMING APIS

File Handling

Games often need to load images and audio samples from files. This can be a bit
of a trick with today’s complex file formats and compression techniques.
Fortunately, you can usually avoid doing this decoding yourself – there are
Linux-compatible libraries for just about every type of image or sound file you
could possibly want to load. Many of these libraries are free software.

libpng and libjpeg

These two libraries allow you to load Portable Network Graphic (.png) and
JPEG (.jpg) images, respectively. PNG is an excellent general-purpose image
format that compresses images without loss in detail. It is based on a completely
open specification, and it is widely supported by image manipulation programs.
JPEG is an older, “lossy” image format that does a good job with landscapes
and other natural scenes but produces noticeably lousy results with precise
images such as line art. JPEG is also an open standard.

If you need to add support for PNG or JPEG images to a game, these libraries
are the way to go. It would not be a good idea to try to implement either format
yourself unless you have a lot of time on your hands. We’ll use these libraries in
this book, albeit indirectly: the SDL image library (Chapter 4) links against
them to provide seamless PNG and JPEG loading support.

libpng is the offical PNG reference library, and it is available at
http://www.libpng.org. libjpeg is maintained by the Independent JPEG
Group at http://www.ijg.org. These libraries are included in most Linux
distributions.

libaudiofile and libsndfile

libaudiofile and libsndfile are libraries for loading audio data from files. Each can
read and write a wide assortment of file formats. There is a lot of functional
overlap between these two libraries, but they have different interfaces. libsndfile
is probably the more convenient of the two, and we will use it for loading wave
files in Chapter 5. libaudiofile has a slightly more arcane (but perhaps more
powerful) interface, but it can be a bit annoying to use.



FILE HANDLING 67

libsndfile was designed and written by Erik de Castro Lopo, and it is available
under the GNU LGPL license. libaudiofile was originally implemented by Silicon
Graphics for its multimedia workstations, but it has since been largely
reimplemented as free software, and it has been officially adopted by the
GNOME project.

You can find more information about libsndfile in Chapter 5 or at the library’s
home page, http://www.zip.com.au/%7Eerikd/libsndfile/.

libaudiofile is available at http://www.68k.org/%7Emichael/audiofile/, but it
is included in most Linux distributions. You’ll probably have to download
libsndfile yourself. It’s worth the trouble.

Ogg Vorbis

Ogg Vorbis is a new audio compression scheme designed to compete with MP3
and the upcoming (stymied) SDMI format. Vorbis is patent-free, and support for
it can easily be dropped into an application with the libvorbis library. Although
Ogg Vorbis is still under development, the bitstream format is finalized (meaning
that future versions of Vorbis will not break compatibility), and, at this writing,
it already compresses audio data slighly better than MP3 (with further
improvements expected soon). Let’s hear a round of applause for the people
behind the Ogg project!

We will use Ogg Vorbis to implement game music in Chapter 5. The Vorbis
library is available for free download online at http://www.vorbis.com.

The SDL MPEG Library, SMPEG

The SDL MPEG library is a free MPEG-1 video and audio library with a heavy
SDL slant. If you want to add MPEG-1 video or MP3 audio playback to your
SDL-based game or application, SMPEG is an excellent choice. It may or may
not be a viable solution for non-SDL programs, though (since SMPEG outputs
directly to SDL surfaces).

MPEG-1 is popular compressed video format based on the discrete cosine
transform and motion prediction. It is lossy (that is, it discards video data that
it judges to be of less importance), but it generally produces good results, and it
is commonly used for game cinematics. MPEG-2 is a newer video codec that



68 CHAPTER 3. LINUX GAMING APIS

produces higher quality results at the expense of a lower compression ratio, but
it is encumbered by patents and is therefore not supported by SMPEG.

The SMPEG library is available in the Development section of
http://www.lokigames.com. Loki Software commercially maintains it for use in
its games, but SMPEG is free software.

zlib

zlib (pronounced zee-lib or zeta-lib is a general-purpose data compression library
that implements the gzip format. It features an interface very similar to the
stdio codefopen and codefwrite functions, and it is often used as a drop-in
replacement for such. zlib is a good option when you need decent compression
and don’t want to code it yourself.

This library is very widely used, and there’s a very good chance that it’s already
present on your Linux installation. You can download zlib’s source code from
http://www.gzip.org.

On To The Code!

Enough groundwork. It’s time to throw around some code. In the next chapter
we’ll talk about the SDL library, a one-stop shop for portable graphics and
audio. We’ll also get started on Penguin Warrior, a complete Linux game that
we’ll develop over several chapters.



Chapter 4

Mastering SDL

SDL (Simple DirectMedia Layer) is a cross-platform multimedia library that has
been used in countless free games and several commercial projects. SDL works
with a platform’s underlying multimedia capabilities to provide a consistent and
open API across multiple operating systems. In this chapter we will tour the
various facets of SDL with respect to Linux game programming.

SDL is an acronym for Simple DirectMedia Layer, and this summarizes the
design of the library. SDL is simple to learn and use: its API is well-defined (if a
bit sparsely documented in the recently added areas), uncluttered, and to the
point. It provides direct access to the computer’s multimedia capabilities where
possible, and does its best to compensate if the computer’s underlying support is
missing in some area. Finally, SDL is a thin and well-behaved layer of code,
rather than a subsuming beast. It is possible and often desirable to use
individual components of SDL separately, and it is possible to integrate SDL into
applications other than games to provide special multimedia capabilities. For
instance, a game might use SDL for audio and some other toolkit for graphics, or
an office suite might use SDL to display video clips. The most important use of
SDL, though, is game programming.

The SDL library consists of several sub-API’s, providing cross-platform support
for video, audio, input handling, multithreading, OpenGL rendering contexts,
and various other amenities. We’ll begin our tour with graphics programming.
But before we jump into the world of surfaces and pixels, let’s take a look at the
hardware that makes it all possible.

69



70 CHAPTER 4. MASTERING SDL

Computer Graphics Hardware

Every personal computer is equipped with a video controller of some sort. This
set of chips is responsible for producing images on the screen, based on the data
contained in a certain area of memory (the framebuffer). In addition to this
basic drudgery, the video controller often assists software by providing
hardware-accelerated drawing functions. Video controllers usually reside on a
replaceable video card, allowing them to be easily upgraded as video
technology progresses.

Video cards contain a unit called a CRTC, an acronym for Cathode Ray
Tube Controller. This device (either a separate chip or part of another chip)
instructs the monitor to redraw its picture at regular intervals. The image on a
computer screen is composed of horizontal lines on a fluorescent surface, and the
monitor’s hardware updates these from top to bottom. Each completed image is
called a refresh. The CRTC instructs the monitor to perform a new refresh at
least 60 times each second. The brief pause between refreshes is known as the
vertical retrace, because this is when the monitor’s electron beam returns to
the top of the screen. No matter how quickly the data in the framebuffer
changes, the monitor is not updated until the next refresh. The video hardware’s
refresh rate is therefore of great interest to a game developer.

The image on a computer screen is divided into discrete colored areas called
pixels (for pictorial elements). Each pixel can be individually controlled by
the video card. The resolution of a display specifies the number of pixels across
and down; for instance, a screen with a resolution of 640x480 is a matrix of 640
columns and 480 rows. The video card uses a device called a RAMDAC to
pump these individual pixels from the framebuffer memory to the monitor. Video
card manufacturers like to brag about the speed of their RAMDAC components.

Since there are a lot of pixels on the screen (anywhere from 64,000 to over a
million), producing complete images can be an intensive process, especially if a
program needs to change the entire contents of the screen several times every
second. Video chip manufacturers have invested a large amount of research in
this problem, and have produced video accelerator chips to help with this work.
Video accelerators can speed up graphical applications (such as games) by
performing time-consuming updates with dedicated hardware. For instance,
video accelerators can often help out by performing high-speed copying between
the framebuffer and other areas of memory. Computer memory is fast, but



THE FRAMEBUFFER 71

today’s video games need every bit of performance they can get.

The Framebuffer

The framebuffer is an area of memory that describes the image on the screen,
with each onscreen pixel corresponding to one memory location. The exact
format of the framebuffer is determined by the video chipset, but it is most
commonly a simple array (this is known as a linear framebuffer). To change
the color of a pixel on the screen, a program must calculate the location of the
pixel in the array (with the formula width ∗ x+ y), determine the correct
representation of the desired color, and store the color representation in the
framebuffer. The video card will then send the new pixel color to the monitor
during its next screen refresh.

Pixels are almost always represented by 1-4 byte values, but the exact format of
these values depends on the current video mode. These are several schemes for
specifying pixel colors in the framebuffer:

Indexing Pixel values are indices into a preset table of color values, which is
called the colormap or palette. Each entry in this table consists of a red,
green, and blue intensity level. The video card converts indices into actual
color intensities (signals for the monitor’s electron guns) as it goes. These
video modes generally use one byte per pixel, allowing for a meager 256
colors on the screen at once. The palette can usually be changed at will
(but updates to the palette will not show up until the next refresh). Clever
programmers occasionally use the palette to implement animation tricks
and special effects. Indexed modes offer extremely fast performance but
relatively few simultaneous colors.

High Color Pixel values are 16 bits (two bytes) each. These bits are divided
into red, green, and blue fields. It is common for High Color modes to
allocate 5 bits to red, 6 bits to green, and 5 bits to blue, but one can not
assume that this will be the case. High Color offers excellent performance
potential and a decent representation of the color spectrum, and it is
frequently used for game programming. However, it lacks the color depth
necessary for professional graphics. This is currently the most important
pixel format for game programming. High Color is also known as hicolor.



72 CHAPTER 4. MASTERING SDL

True Color Pixel values are 24 bits each, alloting one byte to each color
channel. True Color modes are extremely easy to program (since they do
not require bit shifting or masking), but they tend to be rather slow due to
the increased amount of video data. Some True Color modes use 32 bits for
each pixel, simply wasting the fourth byte. This improves performance in
many cases, because 32-bit processors are usually more efficient at
accessing data aligned on four-byte boundaries.

Direct Color Pixel values are divided into three bit fields, each of which is an
index into a palette for a particular color channel. That is, Direct Color
provides a separate palette for red, green, and blue. This combines the
advantages of indexing with the excellent color depth of True Color. Direct
Color is rarely used for game programming (it is mainly a feature of
high-end graphics workstations), and is mentioned here only for the sake of
completeness.

Although the variety of video modes may appear to be a serious programming
nightmare, most games simply choose one mode to support (such as hicolor),
and inform the video card of their choice when they start. If a video card does
not allow a certain mode, it is often possible to perform on-the-fly conversion
between pixel formats with only a minor performance loss. It is sometimes even
possible to write programs in a depth-independent manner.

The SDL Video API

SDL uses structures called surfaces for manipulating graphical data. A surface
is simply a block of memory for storing a rectangular region of pixels. You can
think of a surface as a generic chunk of video data. Surfaces have widths,
heights, and specific pixel formats, just like framebuffers. In fact, SDL represents
the video card’s framebuffer as a special surface. The rectangular regions of data
stored in surfaces are often called bitmaps or pixmaps.

The most important property of surfaces is that they can be copied onto each
other very quicky. That is, one surface’s pixels can be transferred to an
identically-sized rectangular area of another surface. This operation is called a
blit, or block image transfer. Blits are a fundamental part of game
programming, because they allow complete images to be composed out of
pre-drawn graphics (often created by artists with image processing software).



THE SDL VIDEO API 73

Since the framebuffer is a surface, entire images can be sent to the screen with a
single blitting operation. SDL provides a function for performing fast blits
between surfaces, and it can even convert between surfaces of different pixel
formats on the fly.

Most games rely almost exclusively on surface blits for their drawing (as opposed
to drawing with individual pixels). For example, consider the game Civilization:
Call To Power (which was ported to Linux using SDL). Other than the lines
used to indicate paths and gridpoints, every character and building that you can
see is stored in memory with surfaces, and they are drawn to the screen with
blits. All of the game’s artwork was created by artists and stored in files. The
game assembles its screen images almost entirely out of pre-drawn graphics.

We will now examine a series of SDL video programming examples. It would be
a good idea to compile and run each of these examples, and to tweak them until
you understand how they work. Don’t worry about typing in all of the examples;
they are available on the book’s web page. Throughout the rest of the chapter
(and throughout chapters to come) we’ll make note of important structures and
functions with boxes like this:

Function foo(kilotons, target)
Synopsis Sets up a tactical nuke and aims it at target.
Params kilotons — Power rating of the desired nuke.

target — Target of the nuke. 0 picks a random destination.
Be careful.

Don’t worry if you don’t understand the relevance of a particular function or
member of a structure at first; some are presented as a reference for advanced
SDL users. Most of them should make sense by the end of the chapter.

Setting Up The Display

Before we can begin writing to the framebuffer, we need to tell the video card
what we expect of it. It needs to know the screen resolution we want, as well as
the pixel format to expect in the framebuffer. SDL can handle this for us with
the SDL SetVideoMode function. The following example demonstrates how to set
the display to a particular video mode and prepare the framebuffer for drawing.



74 CHAPTER 4. MASTERING SDL

Code Listing 4–1 (initializing-sdl.c)

/* A simple example of initializing the SDL library. */

#include <SDL/SDL.h>
#include <stdio.h>
#include <stdlib.h>

int main()
{

SDL_Surface *screen;

/* Initialize SDL’s video system and check for errors */
if (SDL_Init(SDL_INIT_VIDEO) != 0) {

printf("Unable to initialize SDL: %s\n",SDL_GetError());
return 1;

};

/* Make sure SDL_Quit gets called when the program exits! */
atexit(SDL_Quit);

/* Attempt to set a 640x480 hicolor video mode */
screen = SDL_SetVideoMode(640,480,16,SDL_FULLSCREEN);
if (screen == NULL) {

printf("Unable to set video mode: %s\n",SDL_GetError());
return 1;

};

/* If we got this far, everything worked */
printf("Success!\n");

return 0;
}

This program includes the SDL.h header file, in the SDL subdirectory. This is
the master header file for SDL; it should be included in all SDL applications. It
also includes two standard headers, for the printf and atexit functions.

We begin by calling SDL Init to initialize SDL. This function takes an or’ed list
of arguments to indicate which subsystems should be initialized; we are only
interested in the video subsystem, so we pass SDL INIT VIDEO. Unless an error
occurs, this function should return zero to indicate its success. We also use C’s



THE SDL VIDEO API 75

atexit facility to request that SDL Quit be called before the program exits. This
function makes sure that SDL shuts down properly.

Function SDL Init(flags)
Synopsis Initializes one or more subsystems of SDL.
Returns Zero on success, a negative number on failure.
Params flags — Subsystems to initialize. This is an OR’ed list of

flags. Possible flags are SDL INIT VIDEO, SDL INIT AUDIO,
among others.

Next, we use the SDL SetVideoMode function to inform the display of our desired
resolution and color depth. There is a catch here: SDL will try to set up the
display as requested, but it might fail. If this happens, SDL won’t tell us, but it
will instead emulate the requested mode internally. This is usually acceptable,
since the emulation code is relatively fast, and we would usually rather not deal
with multiple modes ourselves. SDL SetVideoMode returns a pointer to the
surface that represents the framebuffer. If something goes wrong, this function
returns NULL.

Function SDL SetVideoMode(width, height, bpp, flags)
Synopsis Creates a window or initializes the video adapter to prepare

for SDL video output.
Returns Pointer to a valid SDL Surface structure on success, NULL on

failure.
Params width — Width (x-resolution) of the desired video mode.

height — Height (y-resolution) of the desired video mode.
bpp — Desired color depth. Likely values are 8, 15, 16, 24,
or 32. 0 lets SDL pick any supported mode.
flags — Mode flags. Possible values are SDL FULLSCREEN
(requests a fullscreen video mode), SDL DOUBLEBUF (requests
a double buffered video setup), SDL HWSURFACE (requests a
hardware framebuffer for fast updates), SDL OPENGL (requests
an OpenGL context), and others. We’ll discuss most of these
later.

Finally, we report success and exit. The C library calls SDL Quit automatically
(since we registered it with atexit), and SDL returns the video display to its
original mode.



76 CHAPTER 4. MASTERING SDL

Function SDL Quit()
Synopsis Shuts down SDL cleanly, regardless of its present state.

Function SDL QuitSubSystem()
Synopsis Shuts down a particular component of SDL, leaving the oth-

ers untouched. It is safe to shut a subsystem down twice;
SDL keeps track of its state internally.

Params flags — OR’ed bitmask of subsystems to shut down. These
are the same flags you would pass to SDL Init. To shut down
the audio subsystem without touching the video subsystem,
you would use SDL QuitSubSystem(SDL INIT AUDIO).

Now that we’ve created an SDL application, we need to compile it. SDL
applications are easy to compile; assuming a proper installation of SDL (see the
Appendix), they just require a few flags and libraries. The standard SDL
distribution includes a program called sdl-config (similar to the gtk-config and
glib-config programs that ship with the GTK+ toolkit) for supplying the
appropriate command line arguments to gcc. The command sdl-config
--cflags produces a list of the options that should be passed to the compiler,
and sdl-config --libs produces a list of libraries that should be linked in.
This allows SDL applications to compile correctly regardless of the location or
version of the library. The following command will correctly build an SDL
application:

$ gcc sdltest.c -o sdltest ‘sdl-config --cflags --libs‘

Or, to separately compile and link multiple source files that use the SDL library,

$ gcc -c file1.c ‘sdl-config --cflags‘ $ gcc -c file2.c ‘sdl-config
--cflags‘ $ gcc file1.o file2.o -o mygame ‘sdl-config --libs‘

Note the use of backtick substitution (a standard shell feature) to insert the
output of sdl-config into the command line. Of course, it would also be
possible to run sdl-config yourself and insert its output into the command line
by hand, but this would reduce the portability of your makefile. sdl-config
produces the following output on one particular Linux installation:



THE SDL VIDEO API 77

$ sdl-config --cflags

-I/usr/include/SDL -D_REENTRANT

$ sdl-config --libs

-L/usr/lib -lSDL -lpthread

Direct Surface Drawing

Putting data into an SDL surface is simple. Each SDL Surface structure
contains a pixels member. This is a void pointer to the raw image, and we can
write to it directly if we know the type of pixel that the surface is set up for. We
must call the SDL LockSurface function before accessing this data (because
some surfaces reside in special memory areas and require special handling).
When we are finished with the surface, we must call SDL UnlockSurface to
release it. The width and the height of the image are given by the w and h
members of the structure, and the pixel format is specified by the format
member (which is of type SDL PixelFormat). SDL often emulates nonstandard
screen resolutions with higher resolutions, and the pitch member of the pixel
format structure indicates the actual width of the framebuffer. You should
always use pitch instead of w for calculating offsets into the pixels buffer, or
else your application might not work on some configurations.

Structure SDL Surface
Purpose Represents a video surface.

Members flags — OR’ed bitmask of surface flags. For instance, the
SDL HWSURFACE bit of flags will be set if this is a hardware
(video memory) surface. Read-only.
format — Pointer to this surface’s pixel format information
(a SDL PixelFormat structure). Read-only.
w — Width of this surface (in pixels). Read-only.
h — Height of this surface (in pixels). Read-only.
pitch — Number of pixels per scanline in memory. This is
often different from the surface’s width – beware! Always use
pitch for pixel offset calculations. Read-only.
pixels — void pointer to the actual data that makes up
this image. Read-write only after you call SDL LockSurface.



78 CHAPTER 4. MASTERING SDL

Function SDL LockSurface(surf)
Synopsis “Locks” a surface, making its pixels available for direct ac-

cess. You can use SDL MUSTLOCK(surf) to determine whether
a particular surface requires locking; some surfaces don’t. Do
not call SDL BlitSurface on a locked surface.

Returns Non-NULL on success, NULL on failure.
Params surf — Surface to lock.

Function SDL UnlockSurface(surf)
Synopsis “Unlocks” a surface. Use this as soon as you have finished

drawing on a locked surface.
Params surf — Surface to unlock.

Our next example will use the SDL pixel format information to draw individual
pixels on the screen. We have chosen to use a 16-bit (hicolor) mode for
demonstration purposes, but other modes are equally simple to program. Bear in
mind that plotting pixels this way is invariably slow – don’t even think about
using this code for any major drawing in a real program!

Code Listing 4–2 (direct-pixel-drawing-sdl.c)

/* Example of drawing pixels directly to an SDL surface. */

#include <SDL/SDL.h>
#include <stdio.h>
#include <stdlib.h>

Uint16 CreateHicolorPixel(SDL_PixelFormat *fmt,
Uint8 red, Uint8 green, Uint8 blue)

{
Uint16 value;

/* This series of bit shifts uses the information from the SDL_Format
structure to correctly compose a 16-bit pixel value from 8-bit red,
green, and blue data. */

value = ((red >> fmt->Rloss) << fmt->Rshift) +
((green >> fmt->Gloss) << fmt->Gshift) +
((blue >> fmt->Bloss) << fmt->Bshift);



THE SDL VIDEO API 79

return value;
}

int main()
{

SDL_Surface *screen;
Uint16 *raw_pixels;
int x,y;

/* Initialize SDL’s video system and check for errors. */
if (SDL_Init(SDL_INIT_VIDEO) != 0) {

printf("Unable to initialize SDL: %s\n",SDL_GetError());
return 1;

};

/* Make sure SDL_Quit gets called when the program exits! */
atexit(SDL_Quit);

/* Attempt to set a 256x256 hicolor (16-bit) video mode.
This will set some type of 16-bit mode, but we won’t
know which particular pixel format ahead of time. If
the video card can’t handle hicolor modes, SDL will
emulate it. */

screen = SDL_SetVideoMode(256,256,16,0);
if (screen == NULL) {

printf("Unable to set video mode: %s\n",SDL_GetError());
return 1;

};

/* Video memory can be strange, and it’s sometimes necessary to
"lock" it before it can be modified. SDL abstracts this with
the SDL_LockSurface function. */

SDL_LockSurface(screen);

/* Get a pointer to the video surface’s memory. */
raw_pixels = (Uint16 *)screen->pixels;

/* We can now safely write to the video surface. We’ll draw a nice
gradient pattern by varying our red and blue components along
the X and Y axes. Notice the formula used to calculate the
offset into the framebuffer for each pixel.
(The pitch is the number of bytes per scanline in memory.) */

for (x = 0; x < 256; x++) {



80 CHAPTER 4. MASTERING SDL

for (y = 0; y < 256; y++) {
Uint16 pixel_color;
int offset;
pixel_color = CreateHicolorPixel(screen->format,x,0,y);
offset = (screen->pitch/2 * y + x);
raw_pixels[offset] = pixel_color;

};
};

/* We’re finished drawing, so unlock the surface. */
SDL_UnlockSurface(screen);

/* Inform SDL that the screen has been changed. This is necessary
because SDL’s screen surface is not always the real framebuffer;
it is sometimes emulated behind the scenes. */

SDL_UpdateRect(screen,0,0,0,0);

/* Pause for a few seconds as the viewer gasps in awe. */
SDL_Delay(3000);

return 0;
}

The code’s comments give the play-by-play, but a few points should be clarified.
This program employs a very general routine for constructing hicolor pixel
values; this routine will work with any hicolor format that SDL recognizes.
Although we could write a separate (faster) routine for each possible hicolor data
layout, this would require a lot of work and would only marginally improve
performance. The 565 (5 red bits, 6 green bits, and 5 blue bits) pixel format is
perhaps the most widely-used and could be reasonably optimized, but 556 and
555 are not uncommon. In addition, there is no guarantee that the bit fields will
be in the red-green-blue order. Our CreateHicolorPixel routine solves this
problem by referring to the data in the SDL PixelFormat structure. For
instance, the routine uses the Rloss member of the structure to determine how
many bits to drop from the 8-bit red component, and it then uses the Rshift
member to determine where the red bits should be located within the 16-bit
pixel value. It would be an interesting experiment to have the program print out
these fields and determine which particular hicolor layout your video card has
given to SDL. My video card (a Matrox G400 under XFree86 3.3.6) happens to
use the 565 format.



THE SDL VIDEO API 81

Structure SDL PixelFormat
Purpose Contains information about a surface’s pixel composition.

Members palette — Pointer to this surface’s palette (of type
SDL Palette, if this is a paletted image.
BitsPerPixel — Color depth of this surface. Possible values
are 8, 15, 16, 24, or 32.
BytesPerPixel — Number of bytes needed for each pixel.
This is usually BitsPerP ixel/8, rounded up to the nearest
integer.
Rloss — Number of bits to remove from an 8-bit red color
value in order for it to fit in the allotted space. For instance,
a 565 video mode allows for 5 bits of red color data, so the
Rloss would be 3. SDL PixelFormat also contains Gloss,
Bloss, and Aloss members for the green, blue, and alpha
channels.
Rshift — Number of bits to shift the red value in order to
position it in the correct bit field. There are similar Gshift,
Bshift, and Ashift members.
Rmask — Bitmask for extracting the red component from
a pixel value. There are similar Gmask, Bmask, and Amask
members.
colorkey — Color value for colorkey blitting. Set this with
SDL SetColorKey. More on colorkey blitting later.
alpha — Transparency value for the surface associated
with this SDL PixelFormat structure. Set this with
SDL SetAlpha. More on alpha blitting later.

Another important issue involves the SDL UpdateRect function. As we
mentioned earlier, SDL sometimes emulates video modes if the video card is
unable to provide a certain mode itself. If the video card does not support a
requested 24-bit mode, for instance, SDL might select a 16-bit mode instead and
return a fake framebuffer set up for 24 bit pixels. This would allow your program
to continue normally, and SDL would handle the conversion from 24 bits to 16
bits on the fly (with a slight performance loss). The SDL UpdateRect function
informs SDL that a portion of the screen has been updated and that it should
perform the appropriate conversions to display that area. If a program does not
use this function, there is a chance that it will still work. It is better to be on the
safe side and call this function whenever the framebuffer surface has been



82 CHAPTER 4. MASTERING SDL

changed.

Function SDL UpdateRect(surface, left, top, right, bottom)
Synopsis Updates a specific region of a surface. Normally used to make

changes appear on the screen (see text above).
Params surface — Surface to update. Usually the screen.

left — Starting x coordinate of the region to update. If all
coordinates are zero, SDL UpdateRect will update the entire
surface.
top — Starting y coordinate of the region to update.
right — Ending x coordinate of the region to update.
bottom — Ending y coordinate of the region to update.

Finally, if you run the program you might notice that it runs in a window
instead of taking over the entire screen. To change this, replace the zero in the
SDL SetVideoMode call with the constant SDL FULLSCREEN. Be careful, though;
fullscreen applications are harder to debug, and they tend to mess things up
badly when they crash. It’s a good idea to use normal windowed mode until
you’re pretty sure your app isn’t going to crash.

Drawing With Blits

We’ve seen how to draw pixels directly to a surface, and there’s no reason one
couldn’t create an entire game with this alone. However, there is a much better
way to draw large amounts of data to the screen. Our next example will load an
entire surface from a file and draw it with a single SDL surface copying function.
Without further ado, here is the code.

Code Listing 4–3 (blitting-surfaces-sdl.c)

/* Example of loading a surface from a file and drawing it to the screen. */

#include <SDL/SDL.h>
#include <stdio.h>
#include <stdlib.h>

int main()
{



THE SDL VIDEO API 83

SDL_Surface *screen;
SDL_Surface *image;
SDL_Rect src, dest;

/* Initialize SDL’s video system and check for errors. */
if (SDL_Init(SDL_INIT_VIDEO) != 0) {

printf("Unable to initialize SDL: %s\n", SDL_GetError());
return 1;

};

/* Make sure SDL_Quit gets called when the program exits! */
atexit(SDL_Quit);

/* Attempt to set a 256x256 hicolor (16-bit) video mode.
Since 256x256 is rarely a valid video mode, SDL will
most likely emulate this resolution with a different
video mode. */

screen = SDL_SetVideoMode(256, 256, 16, 0);
if (screen == NULL) {

printf("Unable to set video mode: %s\n", SDL_GetErrorff());
return 1;

};

/* Load the bitmap file. SDL_LoadBMP returns a pointer to a
new surface containing the loaded image. */

image = SDL_LoadBMP("test-image.bmp");
if (image == NULL) {

printf("Unable to load bitmap.\n");
return 1;

};

/* The SDL blitting function needs to know how much data to copy.
We provide this with SDL_Rect structures, which define the
source and destination rectangles. The areas should be the
same; SDL does not currently handle image stretching. */

src.x = 0;
src.y = 0;
src.w = image->w; /* copy the entire image */
src.h = image->h; /* (the full width and height) */

dest.x = 0;
dest.y = 0;
dest.w = image->w;



84 CHAPTER 4. MASTERING SDL

dest.h = image->h;

/* Draw the bitmap to the screen. We are using a hicolor video
mode, so we don’t have to worry about colormap silliness.
It is not necessary to lock surfaces before blitting; SDL
will handle that. */

SDL_BlitSurface(image, &src, screen, &dest);

/* Ask SDL to update the entire screen. */
SDL_UpdateRect(screen, 0, 0, 0, 0);

/* Pause for a few seconds as the viewer gasps in awe. */
SDL_Delay(3000);

/* Free the memory that was allocated to the bitmap. */
SDL_FreeSurface(image);

return 0;
}

As you can see, the bitmap file is loaded into memory with the SDL LoadBMP
function. This function returns a pointer to an SDL Surface structure containing
the image, or a NULL pointer if the image cannot be loaded. Once this file has
been successfully loaded, the bitmap is represented as an ordinary SDL surface,
and a program can draw it onto the screen or any other surface. Bitmaps use
dynamically-allocated memory, and they should be freed when they are no longer
needed. The SDL FreeSurface function frees the memory allocated to a bitmap.

Function SDL LoadBMP(filename)
Synopsis Loads a .bmp image file from disk into an SDL surface.
Returns Pointer to a newly allocated SDL Surface containing the

loaded image.
Params filename — Name of the bitmap file to load.

The SDL BlitSurface function performs a blit of one surface onto another,
converting between pixel formats as necessary. This function takes four
arguments: a source surface (the image to copy from), an SDL Rect structure
defining the rectangular region of the source surface to copy, a destination
surface (the image to copy to), and another SDL Rect structure indicating the
coordinates on the destination that the image should be drawn to. These two



THE SDL VIDEO API 85

rectangles must be of the same width and height (SDL does not currently
perform stretching), but the x and y starting coordinates of the regions may be
different.

Function SDL BlitSurface(src, srcrect, dest, destrect)
Synopsis Blits all or part of one surface (the source) onto another (the

destination).
Params src — Source surface. Pointer to a valid SDL Surface struc-

ture.
srcrect — Region of the source surface to copy. This is a
pointer to an SDL Rect structure. If this is NULL, SDL will
try to copy the entire surface.
dest — Destination surface.
destrect — Region of the destination surface to replace
with the source surface. The width and height of the desti-
nation surface don’t matter; SDL only cares about the x and
y coordinates.

Structure SDL Rect
Purpose Specifies regions of pixels. Used for clipping and blitting.

Members x — Starting x coordinate.
y — Starting y coordinate.
w — Width of the region, in pixels.
h — Height of the region, in pixels.

There is really nothing complicated about producing graphics with SDL, once
you understand the basics of working with surfaces. If you don’t feel comfortable
with the SDL BlitSurface function yet, it would be a good idea to work with
the previous example a bit before moving on. For instance, it might be helpful to
load several bitmaps and draw them onto each other before blitting them to the
screen.

Colorkeys And Transparency

Games often need to simulate transparency. For instance, suppose that we have
a bitmap of a game character against a solid background, and we want to draw
the character in a game level. It would look silly to draw the character as-is; the



86 CHAPTER 4. MASTERING SDL

background would be drawn too, and the character would be surrounded by a
block of solid color. It would be much better to draw only the pixels that are
actually part of the character, and not its solid background. We can do this with
a colorkey blit. SDL provides support for this, and it even provides support for
run-length colorkey acceleration (a nice trick for speeding up drawing). RLE
acceleration provides an enormous performance boost for blitting colorkeyed
images, but this is only practical for bitmaps that will not be modified during
the course of the program (since modifying an RLE image necessitates
unpacking and repacking the image).

A colorkey is a particular pixel value that a program declares to be transparent
(in SDL, this is done with the SDL SetColorKey function). Pixels that match an
image’s colorkey are not copied when the image is blitted. In our example of a
game character, we could set the colorkey to the color of the solid background,
and it would not be drawn. Colorkeys therefore make it simple to combine
rectangular images of non-rectangular objects.

Function SDL SetColorKey(surface, flags, colorkey)
Synopsis Adjusts the colorkey information for an SDL Surface.
Params surface — Surface to modify.

flags — OR’ed bitmask of colorkey flags. SDL SRCCOLORKEY
enables colorkey blitting for this surface. SDL RLEACCEL en-
ables runlength acceleration, which can speed up colorkey
operations (but can also slow down SDL LockSurface signif-
icantly).
colorkey — If SDL SRCCOLORKEY is set, this specifies the
pixel value to use as a colorkey.

In the next example we will use a colorkey blit to draw an image of Tux, the
Linux penguin, against another image. Tux is stored against a solid blue
background, and so we will use blue (RGB 0, 0, 255) as our colorkey. For
comparison, we will also draw the same penguin image without a colorkey.

Code Listing 4–4 (colorkeys-sdl.c)

/* Example of using colorkeys in SDL blitting. */

#include <SDL/SDL.h>



THE SDL VIDEO API 87

Figure 4–1: Tuxedo T. Penguin, hero of the Linux world

#include <stdio.h>
#include <stdlib.h>

int main()
{

SDL_Surface *screen;
SDL_Surface *background;
SDL_Surface *image;
SDL_Rect src, dest;
Uint32 colorkey;

/* Initialize SDL’s video system and check for errors. */
if (SDL_Init(SDL_INIT_VIDEO) != 0) {

printf("Unable to initialize SDL: %s\n", SDL_GetError());
return 1;

};

/* Make sure SDL_Quit gets called when the program exits! */
atexit(SDL_Quit);

/* Attempt to set a 640x480 hicolor (16-bit) video mode. */
screen = SDL_SetVideoMode(640, 480, 16, 0);
if (screen == NULL) {

printf("Unable to set video mode: %s\n", SDL_GetError());
return 1;

};



88 CHAPTER 4. MASTERING SDL

/* Load the bitmap files. */
background = SDL_LoadBMP("background.bmp");
if (background == NULL) {

printf("Unable to load bitmap.\n");
return 1;

};

image = SDL_LoadBMP("penguin.bmp");
if (image == NULL) {

printf("Unable to load bitmap.\n");
return 1;

};

/* Draw the background. */
src.x = 0;
src.y = 0;
src.w = background->w;
src.h = background->h;
dest.x = 0;
dest.y = 0;
dest.w = background->w;
dest.h = background->h;
SDL_BlitSurface(background, &src, screen, &dest);

/* Draw the penguin without a colorkey. */
src.x = 0;
src.y = 0;
src.w = image->w;
src.h = image->h;
dest.x = 30;
dest.y = 90;
dest.w = image->w;
dest.h = image->h;
SDL_BlitSurface(image, &src, screen, &dest);

/* The penguin is stored on a blue background. We
can use the SDL_MapRGB function to obtain the
correct pixel value for pure blue. */

colorkey = SDL_MapRGB(image->format, 0, 0, 255);

/* We’ll now enable this surface’s colorkey and draw
it again. To turn off the colorkey again, we would



THE SDL VIDEO API 89

replace the SDL_SRCCOLORKEY flag with zero. */
SDL_SetColorKey(image, SDL_SRCCOLORKEY, colorkey);
src.x = 0;
src.y = 0;
src.w = image->w;
src.h = image->h;
dest.x = screen->w - image->w - 30;
dest.y = 90;
dest.w = image->w;
dest.h = image->h;
SDL_BlitSurface(image, &src, screen, &dest);

/* Ask SDL to update the entire screen. */
SDL_UpdateRect(screen, 0, 0, 0, 0);

/* Pause for a few seconds as the viewer gasps in awe. */
SDL_Delay(10000);

/* Free the memory that was allocated to the bitmaps. */
SDL_FreeSurface(background);
SDL_FreeSurface(image);

return 0;
}

Loading Other Image Formats

SDL provides built-in support for loading .bmp files, but this is a fairly limited
file format. In particular, it supports only minimal compression and does not
provide an alpha channel (see section 4). The SDL image add-on library adds
support for several different formats to SDL, including the popular .png, .jpg,
and .gif formats.

SDL image is extremely simple to use. Once you have installed the library on
your system (see the Appendix), your program should include
SDL/SDL image.h and link with -lSDL image. Assuming this is successful,
your programs may use the IMG Load function to load any supported image file
format. We will demonstrate this function in the next section.

$ gcc program.c -o program ‘sdl-config --libs --cflags‘ -lSDL image



90 CHAPTER 4. MASTERING SDL

Figure 4–2: Tux, with and without a colorkey

There are several other SDL add-on libraries, and you should become familiar
with obtaining and using them. There are currently libraries for processing
TrueType fonts, accessing the network, mixing sound effects, playing music
(including MIDI), and managing graphical user interfaces. Most of these
libraries are portable, but a few are OS-specific. More information on these
libraries is available on http://www.libsdl.org.

Alpha Blending

Although graphics and sound are only part of what goes into a successful game,
visually impressive games do tend to be more fun than games with lackluster
graphics. Game programmers often add special effects to make their graphics
stand out. Alpha blending is a special effect that adds varying degrees of
translucency to surfaces.

Most images use three color channels (red, green, and blue) to describe each



THE SDL VIDEO API 91

pixel. Alpha blending adds a fourth, the alpha channel. For this reason,
alpha-enabled images are often called RGBA images. The alpha value of each
pixel is an indication of that pixel’s opacity. An alpha value of zero indicates
that a pixel is completely transparent, and higher alpha values indicate
increasing opacity. The alpha channel can be created on the fly according to a
program’s needs, or it can be stored with an image created in a graphics package.

To draw an RGBA pixel onto another, the alpha function simply performs a
weighted average of the two pixels, processing each color channel separately.
Suppose that a pixel has RGB values (50,20,30) with an alpha value of 50. This
alpha value corresponds to approximately 20% opacity (80% transparency), since
the scale is zero to 255. If this pixel is drawn on top of a pixel with RGB values
(60,80,100), the resulting pixel will take 20% of its color from the first pixel and
80% of its color from the second, and so its final RGB values will be (58,68,86).
This weighted average can be computed with simple arithmetic. Unfortunately,
multiplication and division are comparatively slow operations for most
processors, so alpha blending generally means a significant performance hit
unless it is supported by a video accelerator.

SDL provides full support for alpha blending. If an image already contains alpha
data (from an image processing program), the SDL SetAlpha function can be
used to enable alpha blending (as we will see in the next example). If the image
does not contain an alpha channel, it can still be blended, but the entire surface
will have the same opacity value. This is called per-surface alpha blending.
Per-surface alpha is also set with SDL SetAlpha.

Function SDL SetAlpha(surface, flags, alpha)
Synopsis Enables alpha blending on a particular surface.
Params surface — The surface to modify.

flags — OR’ed list of alpha blending flags. SDL SRCALPHA
enables alpha blending, and SDL RLEACCEL enables RLE
acceleration (with the same ramifications described under
SDL SetColorKey).
alpha — Per-surface alpha value. 255 represents complete
opacity, and 0 represents complete transparency.



92 CHAPTER 4. MASTERING SDL

The Great Alpha Flip

SDL used to interpret alpha values as transparency, not opacity (in
other words, alpha values now mean exactly the opposite of what they
used to – they now work like the alpha values in nearly every other
graphics system). The old style was fine within SDL circles, but it made
porting applications that depended on proper alpha support a serious
hassle. This has been fixed, and it was announced on the SDL
development mailing list as the Great Alpha Flip.
This really shouldn’t matter, unless you intend to work with legacy
SDL code that isn’t aware of the change.

The next example demonstrates these two types of alpha blending. Since .bmp
files do not support an alpha channel1, we will use the SDL image library to read
our images from .png (Portable Network Graphic) files instead. Our example
will require three image files: one 640x480 background image, one 100x100 image
with an alpha channel, and one 100x100 image with no alpha channel2. All of
these images should be saved in the .png file format.

Code Listing 4–5 (alpha-sdl.c)

#include <SDL/SDL.h>
#include <SDL/SDL_image.h>
#include <stdio.h>
#include <stdlib.h>

int main()
{

SDL_Surface *screen;
SDL_Surface *background;
SDL_Surface *image_with_alpha;
SDL_Surface *image_without_alpha;
SDL_Rect src, dest;

1Some variants of .bmp do support an alpha channel, but most image manipulation programs
do not write this format. SDL may or may not eventually support bitmap files with alpha data.

2A tutorial in using The GIMP to manipulate an alpha channel is beyond the scope of this
book, but these images are available on the book’s website.



THE SDL VIDEO API 93

/* Initialize SDL’s video system and check for errors. */
if (SDL_Init(SDL_INIT_VIDEO) != 0) {

printf("Unable to initialize SDL: %s\n", SDL_GetError());
return 1;

};

/* Make sure SDL_Quit gets called when the program exits! */
atexit(SDL_Quit);

/* Attempt to set a 320x200 hicolor (16-bit) video mode. */
screen = SDL_SetVideoMode(320, 200, 16, 0);
if (screen == NULL) {

printf("Unable to set video mode: %s\n", SDL_GetError());
return 1;

};

/* Load the bitmap files. The first file was created with
an alpha channel, and the second was not. Notice that
we are now using IMG_Load instead of SDL_LoadBMP. */

image_with_alpha = IMG_Load("with-alpha.png");
if (image_with_alpha == NULL) {

printf("Unable to load bitmap.\n");
return 1;

};

image_without_alpha = IMG_Load("without-alpha.png");
if (image_without_alpha == NULL) {

printf("Unable to load bitmap.\n");
return 1;

};

background = IMG_Load("background.png");
if (background == NULL) {

printf("Unable to load bitmap.\n");
return 1;

};

/* Draw the background. */
src.x = 0;
src.y = 0;
src.w = background->w;
src.h = background->h;



94 CHAPTER 4. MASTERING SDL

dest.x = 0;
dest.y = 0;
dest.w = background->w;
dest.h = background->h;
SDL_BlitSurface(background, &src, screen, &dest);

/* Draw the first image, which has an alpha
channel. We must specifically enable alpha
blending. */

SDL_SetAlpha(image_with_alpha, SDL_SRCALPHA, 0);
src.w = image_with_alpha->w;
src.h = image_with_alpha->h;
dest.w = src.w;
dest.h = src.h;
dest.x = 40;
dest.y = 50;
SDL_BlitSurface(image_with_alpha, &src, screen, &dest);

/* Draw the second image, which has no alpha
channel. Instead, we will set a 50% transparency
factor for the entire surface. */

SDL_SetAlpha(image_without_alpha, SDL_SRCALPHA, 128);
src.w = image_without_alpha->w;
src.h = image_without_alpha->h;
dest.w = src.w;
dest.h = src.h;
dest.x = 180;
dest.y = 50;
SDL_BlitSurface(image_without_alpha, &src, screen, &dest);

/* Ask SDL to update the entire screen. */
SDL_UpdateRect(screen, 0, 0, 0, 0);

/* Pause for a few seconds as the viewer gasps in awe. */
SDL_Delay(3000);

/* Free the memory that was allocated to the bitmaps. */
SDL_FreeSurface(background);
SDL_FreeSurface(image_with_alpha);
SDL_FreeSurface(image_without_alpha);



THE SDL VIDEO API 95

Figure 4–3: Output of listing 4–5

return 0;
}

Look closely at the output of this program. Notice that the background only
shows through the outer edges of the first image, but that it shows through the
entire second image equally. This is due to the fact that the first image uses a
separate alpha value for each pixel, and the second image uses one alpha value
for all of its pixels.

Achieving Smooth Animation With SDL

We can now draw simple bitmapped graphics on SDL surfaces (and we could
easily do so with other multimedia libraries as well). However, games are not
made of static displays. Most games make heavy use of animation – that is, the
simulation of fluid motion – to provide the player with an enjoyable and visually
impressive experience.

The basic idea behind computer animation is to rapidly draw a sequence of
incrementally changing bitmapped images on the screen over a tightly controlled



96 CHAPTER 4. MASTERING SDL

time interval. Executed properly, this fools the human eye into perceiving
smooth movement rather than discrete steps. Each screen update in an
animation sequence is called a frame, and the number of frames drawn in a set
period of time is called the framerate. The quality of an animation depends
both on the framerate and on the distance each animated object moves between
frames.

Fooling the eye is not easy. If a bitmap moves too quickly or completed frames
are not displayed frequently enough, the illusion will begin to break down, and
the viewer will begin to see each frame as a separate image. This “jittery”
animation can become very distracting, and so it must be avoided at all costs.

A First Attempt

The next code listing uses SDL to animate 100 penguins on the screen. These
penguins are a bit smaller than the ones in the last example, but they are drawn
the same way. It would be a very good idea to run this example on your
computer to provide a basis for comparison with subsequent examples.

Code Listing 4–6 (sdl-anim1.c)

/* Invasion of the penguins! */

#include <SDL/SDL.h>
#include <stdio.h>
#include <stdlib.h>

#define NUM_PENGUINS 100
#define MAX_SPEED 6

/* This structure stores the information for one
on-screen penguin. */

typedef struct penguin_s {
int x, y; /* position on the screen */
int dx, dy; /* movement vector */

} penguin_t, *penguin_p;

/* Array of penguins. */
static penguin_t penguins[NUM_PENGUINS];



THE SDL VIDEO API 97

/* This are now global variables, for convenience. */
static SDL_Surface *screen;
static SDL_Surface *penguin;

/* This routine loops through the array of penguins and
sets each to a random starting position and direction. */

static void init_penguins()
{

int i;

for (i = 0; i < NUM_PENGUINS; i++) {
penguins[i].x = rand() % screen->w;
penguins[i].y = rand() % screen->h;
penguins[i].dx = (rand() % (MAX_SPEED * 2)) - MAX_SPEED;
penguins[i].dy = (rand() % (MAX_SPEED * 2)) - MAX_SPEED;

};
}

/* This routine moves each penguin by its motion vector. */
static void move_penguins()
{

int i;

for (i = 0; i < NUM_PENGUINS; i++) {
/* Move the penguin by its motion vector. */
penguins[i].x += penguins[i].dx;
penguins[i].y += penguins[i].dy;

/* Turn the penguin around if it hits the edge
of the screen. */

if (penguins[i].x < 0 || penguins[i].x > screen->w - 1)
penguins[i].dx = -penguins[i].dx;

if (penguins[i].y < 0 || penguins[i].y > screen->h - 1)
penguins[i].dy = -penguins[i].dy;

};
}

/* This routine draws each penguin to the screen surface. */
static void draw_penguins()
{

int i;
SDL_Rect src, dest;



98 CHAPTER 4. MASTERING SDL

for (i = 0; i < NUM_PENGUINS; i++) {

src.x = 0;
src.y = 0;
src.w = penguin->w;
src.h = penguin->h;

/* The penguin’s position specifies its
center. We subtract half of its width
and height to get its upper left corner. */

dest.x = penguins[i].x - penguin->w / 2;
dest.y = penguins[i].y - penguin->h / 2;
dest.w = penguin->w;
dest.h = penguin->h;

SDL_BlitSurface(penguin, &src, screen, &dest);
};

}

int main()
{

SDL_Surface *background;
SDL_Rect src, dest;
int frames;

/* Initialize SDL’s video system and check for errors. */
if (SDL_Init(SDL_INIT_VIDEO) != 0) {

printf("Unable to initialize SDL: %s\n", SDL_GetError());
return 1;

};

/* Make sure SDL_Quit gets called when the program exits! */
atexit(SDL_Quit);

/* Attempt to set a 640x480 hicolor (16-bit) video mode. */
screen = SDL_SetVideoMode(640, 480, 16, 0);
if (screen == NULL) {

printf("Unable to set video mode: %s\n", SDL_GetError());
return 1;

};

/* Load the bitmap files. */
background = SDL_LoadBMP("background.bmp");



THE SDL VIDEO API 99

if (background == NULL) {
printf("Unable to load bitmap.\n");
return 1;

};

penguin = SDL_LoadBMP("smallpenguin.bmp");
if (penguin == NULL) {

printf("Unable to load bitmap.\n");
return 1;

};

/* Set the penguin’s colorkey. */
SDL_SetColorKey(penguin,

SDL_SRCCOLORKEY,
(Uint16) SDL_MapRGB(penguin->format, 0, 0, 255));

/* Initialize the penguin position data. */
init_penguins();

/* Animate 600 frames (approximately 10 seconds). */
for (frames = 0; frames < 300; frames++) {

/* Draw the background image. */
src.x = 0;
src.y = 0;
src.w = background->w;
src.h = background->h;
dest = src;

SDL_BlitSurface(background, &src, screen, &dest);

/* Put the penguins on the screen. */
draw_penguins();

/* Ask SDL to update the entire screen. */
SDL_UpdateRect(screen, 0, 0, 0, 0);

/* Move the penguins for the next frame. */
move_penguins();

};

/* Free the memory that was allocated to the bitmap. */
SDL_FreeSurface(background);



100 CHAPTER 4. MASTERING SDL

SDL_FreeSurface(penguin);

return 0;
}

It is possible that this animation will run smoothly on your particular system,
but it is not optimal for two reasons. The first is that SDL might or might not
be using the video card’s actual framebuffer for drawing. If it is using the
framebuffer, the penguin graphics will be drawn directly to the screen, and the
monitor’s refresh might occur while the frame is being composed. This can lead
to half-drawn or even missing images on some frames. These problems are
known as shearing and flicker, respectively, and they are even more distracting
than jittery animation. The second reason is that the penguin bitmap’s pixels
are stored in a different format than the screen’s pixels, and so SDL is forced to
convert between pixel formats as it draws the images. This is very time
consuming and therefore lowers the framerate of the animation.

The first problem can be solved with a technique known as double buffering.
By specifying the SDL DOUBLEBUF and SDL HWSURFACE flags to
SDL SetVideoMode, we can instruct SDL to always use a fake (offscreen)
framebuffer, even if a direct one is available. This offscreen framebuffer is called
a double buffer or back buffer. The back buffer can be quickly displayed to
the screen with the SDL Flip function (note that the SDL UpdateRect function is
not used with double buffering). By using a second framebuffer for composing
the complete frame, we ensure that everything can be drawn to the screen with
one carefully timed blit, rather than the 100 our penguin example performs.
This significantly mitigates the problems of shearing and flicker.

Function SDL Flip(surf)
Synopsis Swaps the front buffer and the back buffer on a double

buffered SDL display. If the display is not double buffered,
SDL Flip just updates the entire screen.

Params surf — Pointer to the main video surface (returned by
SDL SetVideoMode).



THE SDL VIDEO API 101

Warning

The SDL DOUBLEBUF and SDL HWSURFACE flags can actually damage
performance or introduce new bugs in some cases. It wouldn’t be a bad
idea to provide a game option for turning off these flags.

The second problem is equally simple to avoid. The SDL DisplayFormat function
converts an image’s pixels to the correct format for fast blitting. This function
accepts a surface as input and creates a new surface that can be displayed
without conversion. The old surface may then be freed with SDL FreeSurface.

Function SDL DisplayFormat(surface)
Synopsis Converts an image into an optimal format for fast blitting

onto the screen.
Returns Pointer to a newly allocated SDL Surface on success, NULL

on failure. Don’t forget to free the original surface – this
function creates a new surface and doesn’t touch the old one.
This is a very common memory leak.

Params surface — Pointer to the surface to convert.

Warning

The SDL DisplayFormat function destroys an image’s alpha channel,
because alpha more or less precludes fast blitting (at least without
hardware acceleration). Do not use this function on images intended for
alpha blending.

An Improved Version

Our next example integrates both of these improvements, and the resulting
animation is considerably smoother. Since the code is largely unchanged, we
have not reprinted the entire example, but only the main function.



102 CHAPTER 4. MASTERING SDL

Figure 4–4: One frame of Listing 4–6

Code Listing 4–7 (sdl-anim2.c)

int main()
{

SDL_Surface *temp;
SDL_Surface *background;
SDL_Rect src, dest;
int frames;

/* Initialize SDL’s video system and check for errors. */
if (SDL_Init(SDL_INIT_VIDEO) != 0) {

printf("Unable to initialize SDL: %s\n", SDL_GetError());
return 1;

};

/* Make sure SDL_Quit gets called when the program exits! */
atexit(SDL_Quit);



THE SDL VIDEO API 103

/* Attempt to set a 640x480 hicolor (16-bit) video mode
with a double buffer. */

screen = SDL_SetVideoMode(640, 480, 16, SDL_DOUBLEBUF);
if (screen == NULL) {

printf("Unable to set video mode: %s\n", SDL_GetError());
return 1;

};

/* Load the background image and convert it to the display’s
pixel format. This conversion will drastically improve the
performance of SDL_BlitSurface, as it will not have to
convert the surface on the fly. */

temp = SDL_LoadBMP("background.bmp");
background = SDL_DisplayFormat(temp);
if (background == NULL) {

printf("Unable to load bitmap.\n");
return 1;

};
SDL_FreeSurface(temp);

/* Load the penguin image. */
temp = SDL_LoadBMP("smallpenguin.bmp");
if (temp == NULL) {

printf("Unable to load bitmap.\n");
return 1;

};

/* Set the penguin’s colorkey. Ask for RLE acceleration,
a technique which can significantly speed up colorkey
blits. */

SDL_SetColorKey(temp,
SDL_SRCCOLORKEY | SDL_RLEACCEL,
(Uint16) SDL_MapRGB(temp->format, 0, 0, 255));

/* Convert the penguin to the display’s format. We do this after
we set the colorkey, since colorkey blits can sometimes be
optimized for a particular display. */

penguin = SDL_DisplayFormat(temp);
if (penguin == NULL) {

printf("Unable to convert bitmap.\n");
return 1;

};
SDL_FreeSurface(temp);



104 CHAPTER 4. MASTERING SDL

/* Initialize the penguin position data. */
init_penguins();

/* Animate 300 frames (approximately 10 seconds). */
for (frames = 0; frames < 300; frames++) {

/* Draw the background image. */
src.x = 0;
src.y = 0;
src.w = background->w;
src.h = background->h;
dest = src;

SDL_BlitSurface(background, &src, screen, &dest);

/* Put the penguins on the screen. */
draw_penguins();

/* Ask SDL to swap the back buffer to the screen. */
SDL_Flip(screen);

/* Move the penguins for the next frame. */
move_penguins();

};

/* Free the memory that was allocated to the bitmap. */
SDL_FreeSurface(background);
SDL_FreeSurface(penguin);

return 0;
}

The animation produced by this example is drastically improved, mainly due to
the much faster blitting. Since we are now explicitly using an offscreen surface
for our drawing, we are relatively safe from shearing and flicker. Performance is
now in the hands of the X server (which will vary depending on the underlying
hardware).



INPUT AND EVENT PROCESSING 105

Input and Event Processing

SDL uses the notion of events to report the users input and window
management actions. For instance, events are produced whenever the user moves
the mouse, presses a key, or resizes the SDL video window. A program may use
an event loop to listen to SDL’s events. SDL stores unprocessed events in an
internal list, the event queue This allows SDL to collect as many events as
possible each time it performs an event update.

There are four main categories of events: keyboard events, mouse events
(movement and button clicks), window events (gaining and losing focus, as well
as “exit” requests), and system-dependent events (raw messages from Windows
or X11 that SDL otherwise would ignore). SDL provides a structure type for
recording each kind of event, and these are wrapped by the SDL Event union.
The particular type of event stored by an SDL Event is indicated by the type
member. Most SDL applications use a switch statement to identify and process
the various types of events.

Structure SDL Event
Purpose Structure for receiving events from SDL. More specifically, a

union of all possible event types.
Members type — enum indicating the type of event. Each event type

corresponds to a specialized event structure in the SDL Event
union. See SDL events.h in the SDL API for a list of event
types and their corresponding entries in SDL Event; there are
quite a few.

The SDL event subsystem is closely tied with the video subsystem, considering
that nearly every event represents some sort of interaction with the application’s
main window. Since the two subsystems cannot logically be separated from one
another, they are both initialized with the SDL INIT VIDEO parameter to
SDL Init. It would not make sense to use the event subsystem separately from
the video subsystem.

Processing Mouse Events

The mouse is a fairly simple input device. A mouse (or trackball) reports
changes in its position with respect to a fixed unit of measure. For instance, a



106 CHAPTER 4. MASTERING SDL

movement of one inch forward and two inches to the left (with respect to the
mousepad) might correspond to 400 vertical mouse units and −800 horizontal
units. These units are called mickeys, and their exact meaning varies from
mouse to mouse. It is important to realize that, at the lowest level, the mouse
has no concept of screen area or the pointer; it simply measures relative motion.

The next code listing demonstrates simple mouse event processing with the SDL
event interface.

Code Listing 4–8 (mouse-events-sdl.c)

/* Tracking the mouse with SDL. */

#include <SDL/SDL.h>
#include <stdio.h>
#include <stdlib.h>

int main()
{

SDL_Surface *screen;
SDL_Event event;

/* Initialize SDL’s video system and check for errors. */
if (SDL_Init(SDL_INIT_VIDEO) != 0) {

printf("Unable to initialize SDL: %s\n", SDL_GetError());
return 1;

};

/* Make sure SDL_Quit gets called when the program exits! */
atexit(SDL_Quit);

/* Attempt to set a 256x256 hicolor (16-bit) video mode. */
screen = SDL_SetVideoMode(256, 256, 16, 0);
if (screen == NULL) {

printf("Unable to set video mode: %s\n", SDL_GetError());
return 1;

};

/* Start the event loop. Keep reading events until there
is an error, or the user presses a mouse button. */

while (SDL_WaitEvent(&event) != 0) {



INPUT AND EVENT PROCESSING 107

/* SDL_WaitEvent has filled in our event structure
with the next event. We check its type field to
find out what happened. */

switch (event.type) {

/* The next two event types deal
with mouse activity. */

case SDL_MOUSEMOTION:
printf("Mouse motion. ");

/* SDL provides the current position. */
printf("New position is (%i,%i). ",

event.motion.x, event.motion.y);

/* We can also get relative motion. */
printf("That is a (%i,%i) change.\n",

event.motion.xrel, event.motion.yrel);
break;

case SDL_MOUSEBUTTONDOWN:
printf("Mouse button pressed. ");

printf("Button %i at (%i,%i)\n",
event.button.button, event.button.x, event.button.y);

break;

/* The SDL_QUIT event indicates that
the windows "Close" button has been
pressed. We can ignore this if we
need to, but that tends to make
users rather impatient. */

case SDL_QUIT:
printf("Quit event. Bye.\n");
exit(0);

};
};

return 0;
}

This program begins exactly as one of our early SDL video examples (in fact, it
is one of our early video examples, minus the drawing code). We need to open a
window in order to receive events, but the window’s contents are inconsequential.



108 CHAPTER 4. MASTERING SDL

Once the window is open, the program kicks off the event loops and begins to
monitor the mouse.

Suppose the user quickly moves the mouse from the coordinates (10,10) to
(25,30), relative to the position of the window. SDL would report this as an
SDL MOUSEMOTION event. The event structure’s motion.x and motion.y fields
would contain 25 and 30, respectively. The xrel and yrel fields would contain
15 and 20, since the mouse travelled 15 pixels to the right and 20 down. It is
possible that this motion would be broken into two or more mouse events
(depending on the speed at which the user moved the mouse, among other
things), but this can be dealt with by averaging mouse motion over several
animation frames.

SDL’s event processing model is sufficient in most cases, but sometimes a
program simply needs to know the current position of the mouse, regardless of
how it got there. Programs may bypass the event interface entirely with the
SDL GetMouseState function. Unfortunately, this function does not
automatically read the mouse’s current state; it simply reports the most recently
read coordinates. If you choose to bypass the event system, you must call the
SDL PumpEvents function periodically to ensure that your program receives
up-to-date input device information.

Function SDL GetMouseState(x, y)
Synopsis Returns the current coordinates of the mouse pointer. This

is the same information that would be provided through the
event interface, but sometimes it’s more convenient to poll
input devices rather than collect event.

Returns State of the mouse buttons as a Uint8 (which you can test
by OR’ing with the SDL BUTTON(num ) macro). Stores the x
and y coordinates of the mouse in the given pointers.

Params x — Pointer to the integer that should receive the mouse’s x
coordinate.
y — Pointer to the integer that should receive the mouse’s y
coordinate.



INPUT AND EVENT PROCESSING 109

Function SDL WaitEvent(event)
Synopsis Retrieves the next event from SDL’s event queue. If there

are no events, waits until one is available or something bad
happens. On success, copies the new event into the provided
SDL Event structure.

Returns 1 on success, 0 on failure.
Params event — Pointer to the SDL Event structure that should

receive the event.

Function SDL PollEvent(event)
Synopsis Retrieves the next event from SDL’s event queue. If there

are no events, returns immediately. On success, copies the
new event into the provided SDL Event structure.

Returns 1 if an event was available, 0 otherwise.
Params event — Pointer to the SDL Event structure that should

receive the event.

Function SDL PumpEvents()
Synopsis Checks all input devices for new data. You only need

to call this if you intend to bypass the normal event sys-
tem; SDL WaitEvent and SDL PollEvent call this auto-
matically. If you don’t call this, SDL GetKeyState and
SDL GetMouseState are unlikely to return correct informa-
tion. It’s common to put this at the top of a game loop.

Warning

SDL’s event processing is not completely thread-safe. In particular,
functions that collect new input (SDL PollEvent, SDL WaitEvent, and
SDL PumpEvents) should only be called from the thread that originally
set the video mode (with SDL SetVideoMode). However, it is safe to call
SDL PeepEvents (not discussed here) from another thread.
It’s possible to have SDL set up a completely separate event processing
thread, but this is only partially implemented and generally unportable.
Your best bet is to handle input processing in your game’s main thread.



110 CHAPTER 4. MASTERING SDL

Processing Keyboard Events

SDL’s keyboard event handling is analogous to its mouse event handling, but the
keyboard event structure is a bit more complex.

SDL assigns a virtual keysym to each key on the keyboard. These codes map
at some level to the operating system’s keyboard scancodes (which in term map
to the codes produced by the keyboard’s hardware), but SDL takes care of the
mapping behind the scenes. SDL provides a preprocessor symbol for each virtual
keysym; for instance, the Escape key corresponds to the symbol SDLK ESCAPE.
We use these codes whenever we need to directly check the state (up or down) of
a particular key, and SDL uses them to report key events. Virtual keysyms are
represented by the SDLKey type.

What about the “special” keys on the keyboard, such as Control, Alt, and Shift?
These do in fact correspond to virtual keysyms, and they can be treated as
ordinary keys (you can find their keysyms in SDL keysym.h); however, they
are also considered modifier keys. Each key event carries information about
which modifiers were in effect when the key was pressed. Modifiers are
represented by OR’ed bit flags; for instance, a combination of the left Control
and Alt keys would be flagged as (KMOD LCTRL | KMOD LALT). SDL provides the
SDLMod enum for representing these combinations. Note that SDL makes a
distinction between the left and right modifier keys.

The next example prints out information about SDL keyboard events. It prints
the virtual keysym of each key, the key’s symbolic name, and indicates whether
the left shift key was down when the key was pressed.

Code Listing 4–9 (keyboard-events-sdl)

/* Reporting on the keyboard with SDL. */

#include <SDL/SDL.h>
#include <stdio.h>
#include <stdlib.h>

int main()
{

SDL_Surface *screen;
SDL_Event event;



INPUT AND EVENT PROCESSING 111

/* Initialize SDL’s video system and check for errors. */
if (SDL_Init(SDL_INIT_VIDEO) != 0) {

printf("Unable to initialize SDL: %s\n", SDL_GetError());
return 1;

};

/* Make sure SDL_Quit gets called when the program exits! */
atexit(SDL_Quit);

/* Attempt to set a 256x256 hicolor (16-bit) video mode. */
screen = SDL_SetVideoMode(256, 256, 16, 0);
if (screen == NULL) {

printf("Unable to set video mode: %s\n", SDL_GetError());
return 1;

};

printf("Press ’Q’ to quit.\n");

/* Start the event loop. Keep reading events until there
is an error, or the user presses a mouse button. */

while (SDL_WaitEvent(&event) != 0) {
SDL_keysym keysym;

/* SDL_WaitEvent has filled in our event structure
with the next event. We check its type field to
find out what happened. */

switch (event.type) {

case SDL_KEYDOWN:
printf("Key pressed. ");
keysym = event.key.keysym;
printf("SDL keysym is %i. ", keysym.sym);
printf("(%s) ", SDL_GetKeyName(keysym.sym));

/* Report the left shift modifier. */
if (event.key.keysym.mod & KMOD_LSHIFT)

printf("Left Shift is down.\n");
else

printf("Left Shift is up.\n");

/* Did the user press Q? */
if (keysym.sym == SDLK_q) {

printf("’Q’ pressed, exiting.\n");



112 CHAPTER 4. MASTERING SDL

exit(0);
};

break;

case SDL_KEYUP:
printf("Key released. ");
printf("SDL keysym is %i. ", keysym.sym);
printf("(%s) ", SDL_GetKeyName(keysym.sym));

if (event.key.keysym.mod & KMOD_LSHIFT)
printf("Left Shift is down.\n");

else
printf("Left Shift is up.\n");

break;

case SDL_QUIT:
printf("Quit event. Bye.\n");
exit(0);

};
};

return 0;
}

It is important to note that a keystroke only generate one event, regardless of
how long a key is held down. Games generally use the keyboard as a set of
control buttons, not character input devices, and so the normal key repeat
feature is most often of no use to us. However, key repeat can be enabled with
the SDL EnableKeyRepeat function. This might be useful for implementing text
fields in dialog boxes, for instance.

Function SDL EnableKeyRepeat(delay, rate)
Synopsis Enables key repeating. This is usually disabled for games,

but it has its uses, and is almost always enabled for normal
typing.

Params delay — Milliseconds to wait after a key is initially pressed
before repeating its event. A delay of 0 disables key repeat-
ing. A typical value is somewhere in the range of 250-500.
rate — Milliseconds between repeats. A typical value is 30.



INPUT AND EVENT PROCESSING 113

As with the mouse, it is possible to read the keyboard’s state directly, bypassing
the event interface. There is no function for directly obtaining the state of an
individual key, but a program can obtain a snapshot of the entire keyboard in
the form of an array. The SDL GetKeyState function returns a pointer to SDL’s
internal keyboard state array, which is indexed with the SDLK keysym constants.
Each entry in the array is a simple Uint8 flag indicating whether that key is
currently down. Remember to call SDL PumpEvents before reading the
keyboard’s state array, or the array’s data will not be valid.

Function SDL GetKeyState(numkeys)
Synopsis Retrieves a snapshot of the entire keyboard as an array. Each

entry in the array corresponds to one of the SDLK name con-
stants, where 1 means that the corresponding key is currently
down and 0 means that the key is currently up. This array
pointer will never change during the course of a program;
it’s one of SDL’s internal data structures. Be sure to call
SDL PumpEvents periodically, or the keyboard state data will
never change.

Returns Pointer to SDL’s keyboard state array. Stores the size of the
array in numkeys.

Params numkeys — Pointer to an integer to receive the size of the
key array. Most programs don’t care about this and just pass
NULL.

Joystick Events

SDL provides a complete interface for joystick management. A modern game can
no longer assume that the player will use a traditional two-button, two-axis
joystick; many joysticks are equipped with programmable buttons, hat switches,
trackballs, and throttles. In addition, some serious gamers like to use more than
one joystick at once. Aside from physical limitations (such as the number of
ports on a computer or low-level support from the kernel), SDL can manage any
number of joysticks with any number of additional buttons, hats, and trackballs.
If the Linux kernel recognizes a device as a joystick, so will SDL.

Joystick axes (directional controls) produce simple linear values indicating their
positions. SDL reports these on a scale from −32768 to 32767. For instance, the



114 CHAPTER 4. MASTERING SDL

leftmost position of a joystick would produce a value of −32768 on axis 0, and
the rightmost position would produce 32767. SDL provides the
SDL JOYAXISMOTION event type for joystick motion.

Hat switches (small directional controls on top of a joystick) are sometimes
represented as additional axes, but they are more frequently reported with a
separate SDL JOYHATMOTION event type. Hat positions are reported with respect
to the four compass directions and the four diagonals. These positions are
numbered clockwise, starting with 1 as North. The center position is zero.

Warning

Before you assume that your joystick code isn’t working, try running
the test programs that come with the Linux kernel’s joystick driver. If
the kernel doesn’t know how to deal with your joystick, SDL won’t
either, and your code will not work.

The SDL joystick event interface works as you might expect: an event is
generated each time the value of a joystick axis or button changes. There are
also functions for polling the state of a joystick directly. The SDL joystick
interface is fairly simple, so we won’t spend much more time on it.

Code Listing 4–10 (joystick-events-sdl.c)

/* Reading a joystick with SDL. */

#include <SDL/SDL.h>
#include <stdio.h>

int main()
{

SDL_Event event;
SDL_Joystick *js;
int num_js, i, quit_flag;

/* Initialize SDL’s joystick and video subsystems. */
if (SDL_Init(SDL_INIT_JOYSTICK | SDL_INIT_VIDEO) != 0) {

printf("Error: %s\n", SDL_GetError());



INPUT AND EVENT PROCESSING 115

return 1;
};

atexit(SDL_Quit);

/* Create a 256x256 window so we can collect input events. */
if (SDL_SetVideoMode(256, 256, 16, 0) == NULL) {

printf("Error: %s\n", SDL_GetError());
return 1;

};

/* Find out how many joysticks are available. */
num_js = SDL_NumJoysticks();
printf("SDL recognizes %i joystick(s) on this system.\n", num_js);
if (num_js == 0) {

printf("No joysticks were detected.\n");
return 1;

};

/* Print out information about each joystick. */
for (i = 0; i < num_js; i++) {

/* Open the joystick. */
js = SDL_JoystickOpen(i);

if (js == NULL) {
printf("Unable to open joystick %i.\n", i);

} else {
printf("Joystick %i\n", i);
printf("\tName: %s\n", SDL_JoystickName(i));
printf("\tAxes: %i\n", SDL_JoystickNumAxes(js));
printf("\tTrackballs: %i\n", SDL_JoystickNumBalls(js));
printf("\tButtons: %i\n", SDL_JoystickNumButtons(js));

/* Close the joystick. */
SDL_JoystickClose(js);

};
};

/* We’ll use the first joystick for the demonstration. */
js = SDL_JoystickOpen(0);
if (js == NULL) {

printf("Unable to open joystick: %s\n", SDL_GetError());



116 CHAPTER 4. MASTERING SDL

};

/* Loop until the user presses Q. */
quit_flag = 0;
while (SDL_WaitEvent(&event) != 0 && quit_flag == 0) {

switch (event.type) {

case SDL_KEYDOWN:

if (event.key.keysym.sym == SDLK_q) {
printf("Q pressed. Exiting.\n");
quit_flag = 1;

};

break;

/* This event is generated when an axis on an open
joystick is moved. Most joysticks have two axes,
X and Y (which will be reported as axes 0 and 1). */

case SDL_JOYAXISMOTION:

printf("Joystick %i, axis %i movement to %i\n",
event.jaxis.which,
event.jaxis.axis,
event.jaxis.value);

break;

/* The SDL_JOYBUTTONUP and SDL_JOYBUTTONDOWN events
are generated when the state of a joystick button
changes. */

case SDL_JOYBUTTONUP:
/* fall through to SDL_JOYBUTTONDOWN */

case SDL_JOYBUTTONDOWN:

printf("Joystick %i button %i: %i\n",
event.jbutton.which,
event.jbutton.button, event.jbutton.state);

break;

};



PORTABLE THREADING SUPPORT 117

};

/* Close the joystick. */
SDL_JoystickClose(js);

return 0;
}

Portable Threading Support

Multithreading is the ability of a program to execute multiple parts of itself
simultaneously in the same address space. This feature can be useful to game
developers; for instance, a programmer might elect to use separate threads for
video processing and music playback so that they can run simultaneously. If
properly used, multithreading can simplify game programming and make the end
result smoother and more efficient. Threads can significantly boost performance
on multiprocessor systems, since each thread can run on a separate processor
(this is up to the operating system, though).

There are several different thread programming libraries between the
mainstream operating systems. Windows and Linux use completely different
threading interfaces, and Solaris (Sun Microsystems’ flavor of UNIX) supports
both its own threading API and the one that Linux uses. SDL solves this
cross-platform inconsistency with its own set of portable threading functions.

Threads are essentially asynchronous procedure calls that return immediately
but continue running in the background. An SDL thread entry point is simply a
pointer to a void function that takes a void as a parameter. Threads have
their own stacks, but they share the application’s global variables, heap, code,
and file descriptors. You can start new threads with the SDL CreateThread
function. SDL CreateThread returns a pointer to a thread handle (of type
SDL Thread) that can be used to interact with the new thread. SDL provides
functions for terminating threads (SDL KillThread) and waiting for them to
finish executing (SDL WaitThread). Waiting for a thread to finish is sometimes
called joining the thread.



118 CHAPTER 4. MASTERING SDL

Function SDL CreateThread(func, data)
Synopsis Starts func in a separate SDL thread, with data as an ar-

gument. Makes whatever low-level threading calls are appro-
priate for the given platform (pthread create, in the case of
Linux).

Returns Pointer to an SDL Thread structure that represents the newly
created process.

Params func — Entry point for the new thread. This function should
take one void * argument and return an integer.
data — void * to be passed verbatim to func. This is for
your own use, and it’s perfectly safe to pass NULL.

Function SDL KillThread(id)
Synopsis Terminates an SDL thread immediately. If the thread could

possibly be doing anything important, it might be a good
idea to ask it to end itself rather than just terminating it.

Params id — Pointer to the SDL Thread structure that identifies the
thread you wish to kill.

Function SDL WaitThread(id)
Synopsis Waits for an SDL thread to terminate. This is also known as

joining a thread.
Params id — Pointer to the SDL Thread structure that identifies the

thread you wish to join.

Multithreaded programming requires a bit of extra caution. What happens if
two threads attempt to modify the same global variable at the same time? There
is no way to tell which thread will succeed, and this can lead to strange and
elusive bugs. If there is any chance that two threads will attempt to modify an
important data structure simultaneously, it is a good idea to protect the
structure with a mutex (mutual exclusion flag). A mutex is simply a flag that
indicates whether a structure is currently in use. Whenever a thread needs to
access a mutex-protected structure, it should set (lock) the mutex first. If
another thread needs to access the structure, it must wait until the mutex is
unlocked. This can prevent threads from colliding, but only if they respect the
mutex. SDL’s mutices are advisory in nature; they do not physically block
access.



PORTABLE THREADING SUPPORT 119

The next example creates three threads that increment a global variable and
print out its value. A mutex is used to synchronize access to the variable, so that
the variable can be modified by multiple threads without conflicts.

Code Listing 4–11 (sdl-threading.c)

/* Portable threading with SDL. */

#include <stdio.h>
#include <stdlib.h>
#include <SDL/SDL.h>

/* We must include SDL_thread.h separately. */
#include <SDL/SDL_thread.h>

static int counter = 0;
SDL_mutex *counter_mutex;

/* The three threads will run until this flag is set. */
static int exit_flag = 0;

/* This function is a thread entry point. */
int ThreadEntryPoint(void *data)
{

char *threadname;

/* Anything can be passed as thread data.
We will use it as a thread name. */

threadname = (char *) data;

/* Loop until main() sets the exit flag. */
while (exit_flag == 0) {

printf("This is %s! ", threadname);

/* Get a lock on the counter variable. */
SDL_mutexP(counter_mutex);

/* We can now safely modify the counter. */
printf("The counter is currently %i\n", counter);
counter++;

/* Release the lock on the counter variable. */
SDL_mutexV(counter_mutex);



120 CHAPTER 4. MASTERING SDL

/* Delay for a random amount of time. */
SDL_Delay(rand() % 3000);

};

printf("%s is now exiting.\n", threadname);

return 0;
}

int main()
{

SDL_Thread *thread1, *thread2, *thread3;

/* Create a mutex to protect the counter. */
counter_mutex = SDL_CreateMutex();

printf("Press Control-C to exit the program.\n");

/* Create three threads. Give each thread a name
as its data. */

thread1 = SDL_CreateThread(ThreadEntryPoint, "Thread 1");
thread2 = SDL_CreateThread(ThreadEntryPoint, "Thread 2");
thread3 = SDL_CreateThread(ThreadEntryPoint, "Thread 3");

/* Let the threads run until the counter reaches 20. */
while (counter < 20)

SDL_Delay(1000);

/* Signal the threads to exit. */
exit_flag = 1;
printf("exit_flag has been set by main().\n");

/* Give them time to notice the flag and exit. */
SDL_Delay(3500);

/* Destroy the counter mutex. */
SDL_DestroyMutex(counter_mutex);

return 0;
}

If you have used another thread programming library (such as Win32’s threads



SDL AUDIO PROGRAMMING 121

or the POSIX pthread library), you’ll notice that SDL’s threading API is
somewhat incomplete. For instance, SDL does not allow a program to change a
thread’s scheduling priority or other low-level attributes. These features are
highly dependent upon the operating system, and it would be difficult to support
these in a consistent manner across platforms. If your game needs more complete
threading abilities, you might consider using a platform-dependent threading
toolkit, but this will make your game more difficult to port to other platforms.
SDL’s threading API is sufficient for almost anything a game might need,
though.

SDL Audio Programming

An often-overlooked but essential area of game programming is sound.
Computer sound processing is as much of a science as computer graphics, but
the basics of format conversion, mixing, and playback are fairly straightforward.
In this section we will discuss the basics of computer audio and investigate SDL’s
audio programming interface.

Representing Sound with PCM

Computer sound is based on PCM, or pulse-code modulation. As you know,
pixels in a video surface encode the average color intensities of an optical image
at regular intervals, and more pixels allow for a closer representation of the
original image. PCM data serves the same purpose, except that it represents the
average intensities of sequential intervals in sound waves. Each “pixel” of PCM
data is called a sample. The rate at which these samples occur is the sampling
rate or frequency of the sound data. Sampling rates are expressed in the
standard SI frequency unit, Hertz (Hz). A higher sampling rate allows for a
closer representation of the original sound wave.

Individual PCM samples are usually 8 or 16 bits (one or two bytes) for each
channel (one channel for mono, two channels for stereo), and game-quality sound
is most often sampled at either 22050 or 44100 Hz. Samples can be represented
as signed or unsigned numbers. A 16-bit sample can obviously express the
intensity of a sound with much greater precision than an 8-bit sample, but this
involves twice as much data. At 44100 Hz with 16-bit samples, one second of
sound data will consume nearly 90 kilobytes of storage, or twice that for stereo!



122 CHAPTER 4. MASTERING SDL

Mono Stereo
8 bit 16 bit 8 bit 16 bit

11025 Hz 11025 22050 22050 44100
22050 Hz 22050 44100 44100 88200
44100 Hz 44100 88200 88200 176400

Table 4–1: Storage consumed by various sound formats (bytes per second)

Game programmers must decide on a tradeoff between sound quality and the
amount of disk space a game will consume. Fortunately, this has become less of
a problem in recent years, with the advent of inexpensive high-speed Internet
connections and the nearly universal availability of CD-ROM drives.

Just as raw pixel data is often stored on disk in .bmp files, raw PCM sound
samples are often stored on disk in .wav files. SDL can read these files with the
SDL LoadWAV function. There are several other PCM sound formats (such as .au
and .snd), but we will confine our discussion to .wav files for now. (There is
currently no audio file equivalent to the SDL image library – want to write one
for us?)

Function SDL LoadWAV(file, spec, buffer, length)
Synopsis Loads a RIFF .wav audio file into memory.
Returns Non-NULL on success, NULL on failure. Fills the given

SDL AudioSpec structure with the relevant information, sets
*buffer to a newly allocated buffer of samples, and sets
*length to the size of the sample data, in bytes.

Params file — Name of the file to load. The more general
SDL LoadWAV RW function provides a way to load .wav data
from non-file sources (in fact, SDL LoadWAV is just a wrapper
around SDL LoadWAV RW).
spec — Pointer to the SDL AudioSpec structure that should
receive the loaded sound’s sample rate and format.
buffer — Pointer to the Uint8 * that should receive the
newly allocated buffer of samples.
length — Pointer to the Uint32 that should receive the
length of the buffer (in bytes).



SDL AUDIO PROGRAMMING 123

Function SDL FreeWAV(buffer)
Synopsis Frees memory allocated by a previous call to SDL LoadWAV.

This is necessary because the data might not have been allo-
cated with malloc, or might be subject to other considera-
tions. Use this function only for freeing sample data allocated
by SDL; free your own sound buffers with free.

Params buffer — Sample data to free.

Structure SDL AudioSpec
Purpose Contains information about a particular sound format: rate,

sample size, and so on. Used by SDL OpenAudio and
SDL LoadWAV, among other functions.

Members freq — Frequency of the sound in samples per second. For
stereo sound, this means one sample per channel per second
(ie, 44100 Hz in stereo is actually 88200 samples per second).
format — Sample format. Possible values are AUDIO S16 and
AUDIO U8. (There are other formats, but they are uncommon
and not fully supported – I found this out the hard way.)
silence — PCM sample value that corresponds to silence.
This is usually either 0 (for 16-bit signed formats) or 128 (for
8-bit unsigned formats). Calculated by SDL. Read-only.
channels — Number of interleaved channels. This will nor-
mally be either one (for mono) or two (for stereo).
samples — Number of samples in an audio transfer buffer.
A typical value is 4096.
size — Size of the audio transfer buffer in bytes. Calculated
by SDL. Read-only.
callback — Pointer to the function SDL should call to re-
trieve more sample data for playback.

PCM data is convenient to work with, despite the necessary size considerations.
The key is to realize that PCM is simply a set of measurements that
approximate a wave of energy. A strong sound wave will result in large PCM
sample values, and a weak sound wave will result in small values. To increase or
decrease the volume of a PCM sound wave, simple multiply each sample by a
constant. To create a volume fading effect, multiply each sample by a
progressively larger or smaller value. To fade between two samples, simply
perform an average with changing weights. Waves are additive; a program can



124 CHAPTER 4. MASTERING SDL

combine (mix) sounds simply by adding (or averaging) the samples together.
Remember that binary numbers have limits; multiplying a sample by a large
constant or adding too many samples together is likely to cause an overflow,
which will result in distorted sound.

Feeding a Sound Card

A sound card is conceptually simple: it accepts a continuous stream of PCM
samples, and recreates the original sound wave through a set of speakers or
headphones. Our basic task, then, is to keep the sound card supplied with PCM
samples. This is a bit of a trick. If we want 44.1 KHz (CD-quality) sound, we
must supply the sound card with 44100 samples per second. With 16-bit samples
and two channels (stereo), this comes out to 176400 bytes of sound data (see
Table 4)! In addition, timing is critical. Any lapse of data will result in a
noticeable sound glitch.

It would be both difficult and woefully inefficient to make a game stop 44
thousand times each second to feed more data to the sound card. Fortunately,
the computer gives us a bit of help. Most modern computer architectures include
a feature called DMA, which is an acronym for Direct Memory Access. DMA
provides support for high-speed background memory transfers. This is used for a
variety of purposes, but most commonly for shovelling data to sound cards and
hard drives. We can periodically give the computer’s DMA controller buffers of
several thousand PCM samples to transfer to the sound card, and the DMA
controller can alert our program when the transfer is complete so that the next
packet can be sent.

The operating system’s driver takes care of DMA for us; we simply have to make
sure we can produce the several thousand bytes of sample data whenever it’s
needed. We do this with a callback function. Whenever the computer’s sound
hardware asks SDL for more sound data, SDL in turn calls our audio callback
function. The callback function must quickly copy more sound data into the
given buffer. This usually involves mixing several sounds together.

There is a small problem with this scheme: since we send data to the sound card
in chunks, there will always be a slight delay before any new sound can be
played. For instance, suppose that our program needs to play a gunshot sound.
It would probably add the sound to an internal list of sounds to mix into the
output stream. However, it might be a few tenths of a second before the sound



SDL AUDIO PROGRAMMING 125

card’s next request for more sound data. This effect is called latency, and we
should minimize it whenever possible. We can reduce latency by specifying a
smaller sound buffer when we initialize the sound card, but it’s not possible to
completely elimate latency (this is usually not a problem in terms of realism;
there is latency in real life, because light travels much faster than sound).

An Example

We have discussed the nuts and bolts of sound programming for long enough; it
is time for an example. This example is a bit lengthier than our previous
examples, but the code is fairly straightforward.

Code Listing 4–12 (audio-sdl.c)

#include <SDL/SDL.h>
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>

/* Structure for loaded sounds. */
typedef struct sound_s {

Uint8 *samples; /* raw PCM sample data */
Uint32 length; /* size of sound data in bytes */

} sound_t, *sound_p;

/* Structure for a currently playing sound. */
typedef struct playing_s {

int active; /* 1 if this sound should be played */
sound_p sound; /* sound data to play */
Uint32 position; /* current position in the sound buffer */

} playing_t, *playing_p;

/* Array for all active sound effects. */
#define MAX_PLAYING_SOUNDS 10
playing_t playing[MAX_PLAYING_SOUNDS];

/* The higher this is, the louder each currently playing sound will be.
However, high values may cause distortion if too many sounds are
playing. Experiment with this. */

#define VOLUME_PER_SOUND SDL_MIX_MAXVOLUME / 2



126 CHAPTER 4. MASTERING SDL

/* This function is called by SDL whenever the sound card
needs more samples to play. It might be called from a
separate thread, so we should be careful what we touch. */

void AudioCallback(void *user_data, Uint8 * audio, int length)
{

int i;

/* Clear the audio buffer so we can mix samples into it. */
memset(audio, 0, length);

/* Mix in each sound. */
for (i = 0; i < MAX_PLAYING_SOUNDS; i++) {

if (playing[i].active) {
Uint8 *sound_buf;
Uint32 sound_len;

/* Locate this sound’s current buffer position. */
sound_buf = playing[i].sound->samples;
sound_buf += playing[i].position;

/* Determine the number of samples to mix. */
if ((playing[i].position + length) > playing[i].sound->length) {

sound_len = playing[i].sound->length - playing[i].position;
} else {

sound_len = length;
};

/* Mix this sound into the stream. */
SDL_MixAudio(audio, sound_buf, sound_len, VOLUME_PER_SOUND);

/* Update the sound buffer’s position. */
playing[i].position += length;

/* Have we reached the end of the sound? */
if (playing[i].position >= playing[i].sound->length) {

playing[i].active = 0; /* mark it inactive */
};

};
};

}

/* This function loads a sound with SDL_LoadWAV and converts



SDL AUDIO PROGRAMMING 127

it to the specified sample format. Returns 0 on success
and 1 on failure. */

int LoadAndConvertSound(char *filename, SDL_AudioSpec * spec,
sound_p sound)

{
SDL_AudioCVT cvt; /* audio format conversion structure */
SDL_AudioSpec loaded; /* format of the loaded data */
Uint8 *new_buf;

/* Load the WAV file in its original sample format. */
if (SDL_LoadWAV(filename,

&loaded, &sound->samples, &sound->length) == NULL) {
printf("Unable to load sound: %s\n", SDL_GetError());
return 1;

};

/* Build a conversion structure for converting the samples.
This structure contains the data SDL needs to quickly
convert between sample formats. */

if (SDL_BuildAudioCVT(&cvt, loaded.format,
loaded.channels,
loaded.freq,
spec->format, spec->channels, spec->freq) < 0) {

printf("Unable to convert sound: %s\n", SDL_GetError());
return 1;

};

/* Since converting PCM samples can result in more data
(for instance, converting 8-bit mono to 16-bit stereo),
we need to allocate a new buffer for the converted data.
Fortunately SDL_BuildAudioCVT supplied the necessary
information. */

cvt.len = sound->length;
new_buf = (Uint8 *) malloc(cvt.len * cvt.len_mult);
if (new_buf == NULL) {

printf("Memory allocation failed.\n");
SDL_FreeWAV(sound->samples);
return 1;

};

/* Copy the sound samples into the new buffer. */
memcpy(new_buf, sound->samples, sound->length);



128 CHAPTER 4. MASTERING SDL

/* Perform the conversion on the new buffer. */
cvt.buf = new_buf;
if (SDL_ConvertAudio(&cvt) < 0) {

printf("Audio conversion error: %s\n", SDL_GetError());
free(new_buf);
SDL_FreeWAV(sound->samples);
return 1;

};

/* Swap the converted data for the original. */
SDL_FreeWAV(sound->samples);
sound->samples = new_buf;
sound->length = sound->length * cvt.len_mult;

/* Success! */
printf("’%s’ was loaded and converted successfully.\n", filename);

return 0;
}

/* Removes all currently playing sounds. */
void ClearPlayingSounds(void)
{

int i;

for (i = 0; i < MAX_PLAYING_SOUNDS; i++) {
playing[i].active = 0;

};
}

/* Adds a sound to the list of currently playing sounds.
AudioCallback will start mixing this sound into the stream
the next time it is called (probably in a fraction of a second). */

int PlaySound(sound_p sound)
{

int i;

/* Find an empty slot for this sound. */
for (i = 0; i < MAX_PLAYING_SOUNDS; i++) {

if (playing[i].active == 0)
break;

};



SDL AUDIO PROGRAMMING 129

/* Report failure if there were no free slots. */
if (i == MAX_PLAYING_SOUNDS)

return 1;

/* The ’playing’ structures are accessed by the audio callback,
so we should obtain a lock before we access them. */

SDL_LockAudio();
playing[i].active = 1;
playing[i].sound = sound;
playing[i].position = 0;
SDL_UnlockAudio();

return 0;
}

int main()
{

SDL_Surface *screen;
SDL_Event event;
int quit_flag = 0; /* we’ll set this when we want to exit. */

/* Audio format specifications. */
SDL_AudioSpec desired, obtained;

/* Our loaded sounds and their formats. */
sound_t cannon, explosion;

/* Initialize SDL’s video and audio subsystems.
Video is necessary to receive events. */

if (SDL_Init(SDL_INIT_VIDEO | SDL_INIT_AUDIO) != 0) {
printf("Unable to initialize SDL: %s\n", SDL_GetError());
return 1;

};

/* Make sure SDL_Quit gets called when the program exits. */
atexit(SDL_Quit);

/* We also need to call this before we exit. SDL_Quit does
not properly close the audio device for us. */

atexit(SDL_CloseAudio);

/* Attempt to set a 256x256 hicolor (16-bit) video mode. */



130 CHAPTER 4. MASTERING SDL

screen = SDL_SetVideoMode(256, 256, 16, 0);
if (screen == NULL) {

printf("Unable to set video mode: %s\n", SDL_GetError());
return 1;

};

/* Open the audio device. The sound driver will try to give us
the requested format, but it might not succeed. The ’obtained’
structure will be filled in with the actual format data. */

desired.freq = 44100; /* desired output sample rate */
desired.format = AUDIO_S16; /* request signed 16-bit samples */
desired.samples = 4096; /* this is more or less discretionary */
desired.channels = 2; /* ask for stereo */
desired.callback = AudioCallback; /* our callback function */
desired.userdata = NULL; /* we don’t need this */
if (SDL_OpenAudio(&desired, &obtained) < 0) {

printf("Unable to open audio device: %s\n", SDL_GetError());
return 1;

};

/* Load our sound files and convert them to the sound card’s format. */
if (LoadAndConvertSound("cannon.wav", &obtained, &cannon) != 0) {

printf("Unable to load sound.\n");
return 1;

};

if (LoadAndConvertSound("explosion.wav", &obtained, &explosion) != 0) {
printf("Unable to load sound.\n");
return 1;

};

/* Clear the list of playing sounds. */
ClearPlayingSounds();

/* SDL’s audio is initially paused. Start it. */
SDL_PauseAudio(0);

printf("Press ’Q’ to quit. 1 and 2 play sounds.\n");

/* Start the event loop. Keep reading events there is



SDL AUDIO PROGRAMMING 131

an event error or the quit flag is set. */
while (SDL_WaitEvent(&event) != 0 && quit_flag == 0) {

SDL_keysym keysym;

switch (event.type) {

case SDL_KEYDOWN:
keysym = event.key.keysym;

/* If the user pressed Q, exit. */
if (keysym.sym == SDLK_q) {

printf("’Q’ pressed, exiting.\n");
quit_flag = 1;

};

/* ’C’ fires a cannon shot. */
if (keysym.sym == SDLK_c) {

printf("Firing cannon!\n");
PlaySound(&cannon);

};

/* ’E’ plays an explosion. */
if (keysym.sym == SDLK_e) {

printf("Kaboom!\n");
PlaySound(&explosion);

};

break;

case SDL_QUIT:
printf("Quit event. Bye.\n");
quit_flag = 1;

};
};

/* Pause and lock the sound system so we can
safely delete our sound data. */

SDL_PauseAudio(1);
SDL_LockAudio();

/* Free our sounds before we exit, just to be safe. */
free(cannon.samples);
free(explosion.samples);



132 CHAPTER 4. MASTERING SDL

/* At this point the output is paused and we know for certain that the
callback is not active, so we can safely unlock the audio system. */

SDL_UnlockAudio();

return 0;
}

We begin by initializing SDL as usual, adding the SDL INIT AUDIO bit flag to
specify that SDL should prepare the audio subsystem for use. We also initialize
the video subsystem for the purpose of reading keyboard events. Next we install
two atexit hooks: one for the usual SDL Quit function, and one to specifically
close the audio device on shutdown. This is important, as failure to properly
close the audio device can result in a segmentation fault when the program exits.
At this point the sound card is not actually ready for output; we have only set
up SDL’s basic infrastructure.

The next step is to initialize the sound card for an appropriate sample format.
Our program builds an SDL AudioSpec structure with the desired sound
parameters and calls SDL OpenAudio to prepare the sound card. Since it is
possible that the requested sample format will not be available, SDL OpenAudio
stores the actual sample format in the SDL AudioSpec structure passed as its
second parameter. We can use this structure to convert our sound data to the
correct format for playback. Our program requests signed 16-bit samples at 44
KHz. 8-bit sound lacks in quality, and unsigned 16-bit samples are not fully
supported by SDL.



SDL AUDIO PROGRAMMING 133

Function SDL OpenAudio(desired, obtained)
Synopsis Initializes the computer’s sound hardware for playback at the

specified rate and sample format. If the requested format
isn’t available, SDL will pick the closest match it can find.
This function does not let you select a particular sound de-
vice; if you need to do that, check out the SDL InitAudio
function (not documented here, since SDL Init normally
takes care of that).

Returns 0 on success, -1 on failure. On success, fills obtained with
the rate and sample format of the sound device (which may
not be exactly what you requested).

Params desired — Pointer to an SDL AudioSpec structure contain-
ing the desired sound parameters.
obtained — Pointer to an SDL AudioSpec structure that will
receive the sound parameters that SDL was able to obtain.

Function SDL CloseAudio()
Synopsis Closes the audio device opened by SDL OpenAudio. It’s a

good idea to call this as soon as you’re finished with playback,
so that other programs can use the audio hardware.

Function SDL PauseAudio(state)
Synopsis Pauses or unpauses audio playback. Playback is initially

paused, so you’ll need to use this function at least once to
start playback.

Params state — 1 to pause playback, 0 to start playback

Now that the sound card is initialized and ready for data, our program loads two
.wav sound files and converts them to the correct format for playback. It uses
the information provided by SDL OpenAudio to perform this conversion. The
only trick to using SDL’s conversion routines is to make sure that there is
enough memory to store the converted data. For example, suppose that the
sound card expects 16-bit stereo sound at 44 KHz, but the .wav file contains 11
KHz 8-bit mono samples. The conversion would result in eight times as much
sample data. SDL performs sample conversions in place, so it is up to our
program to ensure that it has allocated a sufficiently large buffer. The end result
is that we cannot simply convert the buffer returned by the SDL LoadWAV
function; we must allocate our own buffer and copy the loaded samples into it.



134 CHAPTER 4. MASTERING SDL

Function SDL BuildAudioCVT(cvt, srcfmt, srcchan, srcfreq,
destfmt, destchan, destfreq)

Synopsis Builds a structure that contains the information necessary
for converting between sample formats (src to dest). Use
SDL ConvertAudio to actually perform the conversion.

Returns 0 on success, -1 on failure.
Params cvt — Pointer to an SDL AudioCVT structure that will receive

the conversion information.
srcfmt — Sample format of the source sample data. This
corresponds to the format member of SDL AudioSpec.
srcchan — Number of channels in the source sample data.
1 for mono, 2 for stereo.
srcfreq — Frequency in hertz of the source sample data.
destfmt — Sample format of the destination sample data.
destchan — Number of channels in the destination sample
data.
destfreq — Frequency in hertz of the destination sample
data.

Function SDL ConvertAudio(cvt)
Synopsis Converts the buffer of audio data in cvt->buf (of length

cvt->len bytes) in-place between sample formats, as set up
by a previous call to SDL BuildAudioCVT. Make sure that
cvt->buf is big enough to accept the resulting sample data.

Params cvt — Audio conversion structure as described above.

Our program is now ready to mix and play sounds. It unpauses the SDL audio
system by calling SDL PauseAudio with an argument of zero. SDL will now call
the audio callback function several times each second to request sound data. An
SDL audio callback takes three arguments: a user-defined pointer (from the
SDL AudioSpec structure’s userdata field), an empty audio buffer, and an
integer representing the length of the buffer. The callback must fill the audio
buffer with the requested amount of audio data, which usually involves mixing
samples from several different sound effects together on the fly. Our callback
function simply loops through the playing array and mixes in the next block of
samples from each currently playing sound effect. We reduce the volume of each
sound effect to prevent the end result from overflowing and becoming distorted.



INTEGRATING OPENGL WITH SDL 135

Warning

SDL audio callbacks are usually called from a separate thread within
SDL. The SDL LockAudio and SDL UnlockAudio functions provide a
convenient way to protect audio-related structures from concurrency
issues. SDL LockAudio temporarily disables the audio callback, and
SDL UnlockAudio enables it. This feature is implemented with a simple
mutex.

The rest of the program simply plays sounds according to keyboard input. To
play a sound, we add it to the playing list and mark it active. The audio
callback function will start mixing this sound into the output the next time it
executes.

Once the event loop exits, our program pauses and locks the audio system so
that the two sounds (which might otherwise still be playing) can be safely
deleted. It is a good idea to unlock the audio system before shutting it down.
atexit then shuts down SDL with SDL CloseAudio and SDL Quit.

Warning

Be careful with pointers returned by SDL LoadWAV(). They might be
allocated in shared memory, and so it is unsafe to free them with the
normal free function. Instead, always use SDL FreeWAV to free these
pointers. However, it is perfectly safe to free sound buffers that we
have allocated ourselves — provided that the buffers are not currently
playing.

Integrating OpenGL with SDL

The OpenGL library is the defacto standardf for accelerated 3D graphics under
Linux. Designed by Silicon Graphics as a programming interface for their
high-performance graphics workstations, OpenGL has been adopted as the



136 CHAPTER 4. MASTERING SDL

preferred 3D API on most major platforms. It is used in many games as well as
professional engineering applications. Microsoft’s Direct3D is OpenGL’s main
competition in the gaming industry, but Direct3D is not a cross-platform
solution. SDL hides the platform-dependent details of initializing OpenGL,
making it simple to implement accelerated 3D graphics on any major platform.

OpenGL is not difficult to use, but it is a bit tricky to initialize. OpenGL is
based on rendering contexts, structures which encapsulate information about
the current 3D view settings and the rendering acceleration hardware. In
general, OpenGL requires one rendering context for each window that will
produce 3D graphics. We will learn how to create our own X11 (GLX) rendering
contexts later, but SDL can help us out for now by creating and managing a
rendering context for its direct graphics window.

SDL vs. GLUT

GLUT (GL Utility Toolkit) is a simple OpenGL support library that
hides the details of rendering contexts and input devices. It was created
by Mark Kilgard (of Silicon Graphics and recently NVIDIA) as a simple
OpenGL demonstration environment. GLUT is intended as a platform
for learning OpenGL and for creating proof-of-concept applications, but
it is not designed to be a general purpose multimedia library. This
limits its usefulness to game programmers. GLUT is great for giving
OpenGL a test drive or for trying new ideas without unnecessary
overhead, but SDL is a better platform for serious game development.

Unfortunately, OpenGL support more or less takes over the SDL video
subsystem. If OpenGL is initialized, direct framebuffer access is no longer
available, and any attempt to blit onto the framebuffer is likely to result in a
crash. This is not a very serious limitation, since OpenGL is a fully capable
graphics library in itself. We can still create and write to off-screen surfaces, and
we can even use SDL surfaces as OpenGL textures. The rest of SDL (audio,
input, etc) is unaffected by OpenGL.

The next example initializes SDL with OpenGL support and renders a colored
3D triangle. If you wish to compile and run this program, you will need a copy
of the Mesa 3D graphics library (http://www.mesa3d.org) or another Linux



INTEGRATING OPENGL WITH SDL 137

OpenGL implementation. The program should be compiled and linked with the
-I/usr/X11R6/include -L/usr/X11R6/lib flags to ensure that the correct
header files and libraries can be located. Furthermore, your copy of SDL needs
to be compiled with OpenGL video support.

Code Listing 4–13 (opengl-sdl.c)

/* Using SDL as a portable OpenGL support library. */

#include <SDL/SDL.h>
#include <GL/gl.h>

int main()
{

int i;

/* Initialize SDL as usual. */
if (SDL_Init(SDL_INIT_VIDEO) != 0) {

printf("Error: %s\n", SDL_GetError());
return 1;

};

atexit(SDL_Quit);

/* Enable OpenGL double buffering. */
SDL_GL_SetAttribute(SDL_GL_DOUBLEBUFFER, 1);

/* Set the color depth (16-bit 565). */
SDL_GL_SetAttribute(SDL_GL_RED_SIZE, 5);
SDL_GL_SetAttribute(SDL_GL_GREEN_SIZE, 6);
SDL_GL_SetAttribute(SDL_GL_BLUE_SIZE, 5);

/* Create a 640x480, 16 bit window with support for
OpenGL rendering. Unfortunately we won’t know
whether this is hardware accelerated. */

if (SDL_SetVideoMode(640, 480, 16, SDL_OPENGL) == NULL) {
printf("Error: %s\n", SDL_GetError());
return 1;

};

/* Set a window title. */
SDL_WM_SetCaption("OpenGL with SDL!", "OpenGL");



138 CHAPTER 4. MASTERING SDL

/* We can now use any OpenGL rendering commands. */
glViewport(80, 0, 480, 480);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glFrustum(-1.0, 1.0, -1.0, 1.0, 1.0, 100.0);
glClearColor(0, 0, 0, 0);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glClear(GL_COLOR_BUFFER_BIT);
glBegin(GL_TRIANGLES);
glColor3f(1.0, 0, 0);
glVertex3f(0.0, 1.0, -2.0);
glColor3f(0, 1.0, 0);
glVertex3f(1.0, -1.0, -2.0);
glColor3f(0, 0, 1.0);
glVertex3f(-1.0, -1.0, -2.0);
glEnd();
glFlush();

/* Display the back buffer to the screen. */
SDL_GL_SwapBuffers();

/* Wait a few seconds. */
SDL_Delay(5000);

return 0;
}

Our program begins by initializing SDL as usual and registering SDL Quit with
atexit. SDL Quit is especially important for programs that use OpenGL;
Linux’s OpenGL support is flaky enough as it is, and forgetting to shut it down
properly could cause serious problems. Next we use the SDL GL SetAttribute
functions to ask for a double buffer and a 565 hicolor pixel weighting. Finally, we
create a 640x480, 16 bit output window. We don’t care about the video surface
that SDL SetVideoMode returns, and so we simply check that the returned value
is not NULL. SDL is not initialized with OpenGL support, and we can now use
any of OpenGL’s rendering commands (the semantics of which are beyond our
discussion in this book) to draw on the back bufferfootnoteWe will not cover the
OpenGL API in this book; it is sufficient material for many books of its own.
With this knowledge, though, you could easily use SDL to run the examples in



PENGUIN WARRIOR 139

any OpenGL book.. The SDL GL SwapBuffers function serves the same purpose
as SDL Flip does for 2D graphics; it displays GL’s back buffer to the screen,
allowing for smooth and flicker-free animation.

Now that a rendering context is in place, we can use OpenGL exactly as we
would with GLUT or a platform-dependent OpenGL toolkit, and we have SDL’s
powerful input and audio subsystems at our disposal. SDL gives us everything
we need to create high-quality, portable 3D games. Most of Loki Entertainment
Software’s 3D game ports use SDL for their OpenGL rendering needs.

Function SDL GL SetAttribute(attr, value)
Synopsis Sets an OpenGL context attribute. Valid attributes are de-

fined in SDL video.h. See Listing 4–13 for examples.
Params attr — Attribute to set.
Params value — Integer value to assign to the attribute.

Function SDL GL SwapBuffers()
Synopsis Swaps the front buffer and the back buffer in a dou-

ble buffered SDL OpenGL context. Analogous to
glutSwapBuffers.

Penguin Warrior

We’re now well versed in the mechanics of SDL. We can initialize the display,
draw pixels, blit bitmaps, and even set up SDL for OpenGL rendering. However,
this is of no use unless we know how to actually use it in a real project.
Throughout the rest of the book we will develop a small but playable game
called Penguin Warrior, complete with parallaxing graphics, a particle system,
network capabilities, background music, and environmental audio.

That’s a lot of stuff to cram into an example – and that’s why we won’t do it all
at once. In this chapter we will code the basic engine, just enough to let a single
player fly a ship around and gawk at the parallaxing background. We’ll add
environmental audio, music, and network play in later chapters. By the end of
the book, we will have a simple but enjoyable multiplayer game. Due to the size
of the source code, there will not be a complete Penguin Warrior listing in this



140 CHAPTER 4. MASTERING SDL

Figure 4–5: An early version of Penguin Warrior

book, but you’ll find this chapter’s files in the pw-ch4/ subdirectory of the
listings archive.

This game was conceived to illustrate several of the topics in this book, and as
such it is not the product of a formal design process (which is a substantial and
complex subject worthy of its own book). This is certainly not the right way to
design software; however, our present intent is to demonstrate game
programming, not design. The game engine is designed to be easy to understand
rather than easy to market. (However, if you think you can make a marketable
game out of it, go right ahead!)

Without further ado, let’s begin.



PENGUIN WARRIOR 141

Creating Graphics

Any serious game development team should hire at least one artist, and probably
more. A professional artist can almost always produce higher-quality game
artwork than a programmer. However, it is often useful for programmers to
create temporary artwork for the purpose of development. By creating a
low-quality set of test artwork (models, images, and even audio effects), a
programmer can get a better idea of exactly what to ask of the artist. This can
prevent misunderstanding and frustration on the part of both the artist and the
programmer. It also gives the programmer something to work with while the
artist comes up with higher-quality release artwork.

I created the Penguin Warrior spaceship model in the shareware AC3D modeller
(http://www.ac3d.org)3 and rendered it at various angles in the free POV-Ray
3.1 raytracer (http://www.povray.org). I drew the starry background in The
GIMP. Though these aren’t professional-quality graphics, they serve their
intended purpose, and I had fun creating them.

After creating the ship model in AC3D, I exported it to POV-Ray, manually
tweaked the camera position in the .pov file, and added a clock variable to
allow it to be automatically rotated. I wrote a script to automatically render
96x96 images of the model in 4-degree rotation increments (thereby saving the
tedious work of rotating the model by hand). The entire rendering process took
only a few minutes on a fast laptop. Finally, I used the free ImageMagick
package to assemble the individual ship images into one long strip, saved as a
bitmap file. I developed this particular procedure throughout several of my own
projects, but there are other ways to go about the task of creating 3D graphics
with POV-Ray. POV-Ray is worth learning. It can be a great tool for creating
prototype graphics, even if you are not a graphic artist, and it can produce
amazing images in the hands of a master.

3Although many Linux users (including myself) have a strong preference for free software,
AC3D is better than most of the free 3D modellers out there, and it’s only $40 (the unregistered
version lacks loading/saving capabilities). A possible free (as in beer, not speech) alternative to
AC3D is Blender, but its user interface is about as counterintuitive as they come. Take a pick,
or even better, write a new modeller and release it as free software!



142 CHAPTER 4. MASTERING SDL

Figure 4–6: Creating the Penguin Warrior ship model

Implementing a Parallaxing Scroller in SDL

Since this game takes place in outer space, one would expect to see stars in the
background. These stars should move, or scroll, as the player flies around.
Although this only bears a faint resemblance to what a pilot would actually see
in space, it’s common in space games, and this game is not intended to be a
realistic simulator.

Penguin Warrior draws its starry background by covering the screen with
individual tiles (small bitmaps) before drawing each frame of animation.
Background images tend to be rather repetitive as well as large, and they can
often be created on the fly by putting together tiles in a predetermined pattern.
Penguin Warrior generates a two dimensional array of random tile indices, then
draws the starry background by assembling the tiles into a complete image. A
20x20 array of 64x64 tiles yields a virtual 1280x1280 image, using only a fraction
of the memory it would take to store the entire image directly. This technique
lends itself nicely to random patterns, but it has also been used to generate



PENGUIN WARRIOR 143

intricate battlefields for games such as StarCraft and Civilization. Tiling can
produce ugly results if the tiles look bad to begin with (by the Garbage In,
Garbage Out principle), but otherwise the only real disadvantage to tiling is
code complication. No matter which technique we use to paint our game’s
background, we’ll still have to redraw the entire screen for each frame. This
shouldn’t be a problem as long as we use standard SDL optimization techniques,
such as calling SDL DisplayFormat on our surfaces before using them and
avoiding alpha when we can.

Where does parallaxing fit in? Next time you’re in a car, look out the side
window. We tend to take for granted that objects in the distance appear to
move past us more slowly than nearby objects. This effect is known as parallax,
and we can exploit it to make our 2D graphics more convincing. Instead of
drawing one sheet of tiles in the background, we will draw two (one will
obviously have to be transparent or translucent). These layers will scroll past the
player at different speeds, giving the illusion of depth. To do this, we’ll need two
sets of background tiles, one with a colorkey (transparent) and one without.
We’ll also need two tile index arrays, one twice as large as the other (assuming
that we want the top layer to scroll twice as fast as the bottom layer).

There is really nothing complicated about parallax scrolling. The only trick is to
do it quickly enough to avoid destroying the smooth scrolling effect, and to
achieve this we’ll need to squeeze every bit of performance SDL can provide.

Enough rambling, let’s dig into some code! This code is in background.c in the
Penguin Warrior source directory, which is available on the book’s website. It
would be a good idea to run the game and observe parallaxing in action, since it
is hard to demonstrate motion effects with screenshots.

Code Listing 4–14 (background.c)

/* A parallaxing background system for Penguin Warrior. */

#include <time.h>
#include "gamedefs.h"
#include "background.h"
#include "resources.h"

/* Two-dimensional arrays for storing the world’s tiles (by index). */
static int front_tiles[PARALLAX_GRID_WIDTH][PARALLAX_GRID_HEIGHT];
static int back_tiles[PARALLAX_GRID_WIDTH][PARALLAX_GRID_HEIGHT];



144 CHAPTER 4. MASTERING SDL

/* This is a simple custom pseudorandom number generator. It’s not a very
good one, but it’s sufficient for our purposes. Never trust the rand()
included with the C library. Its quality varies between implementations,
and it’s easy to run into patterns within the generated numbers. At least
this one is somewhat consistent. */

static Sint32 seed = 0;

static void initrandom()
{

seed = time(NULL);
}

static unsigned int getrandom()
{

Sint32 p1 = 1103515245;
Sint32 p2 = 12345;
seed = (seed * p1 + p2) % 2147483647;
return (unsigned) seed / 3;

}

/* Sets up the starry background by assigning random tiles.
This should be called after LoadGameData(). */

void InitBackground()
{

int x, y;

initrandom();
for (x = 0; x < PARALLAX_GRID_WIDTH; x++) {

for (y = 0; y < PARALLAX_GRID_HEIGHT; y++) {
front_tiles[x][y] = getrandom() % num_star_tiles;
back_tiles[x][y] = getrandom() % num_star_tiles;

};
};

}

/* Draws the background on the screen, with respect to the global
"camera" position. The camera marks the 640x480 section of the
world that we can see at any given time. This is usually in the
vicinity of the player’s ship. */

void DrawBackground(SDL_Surface * dest, int camera_x, int camera_y)
{



PENGUIN WARRIOR 145

int draw_x, draw_y; /* drawing position on the screen */
int start_draw_x, start_draw_y;

int tile_x, tile_y; /* indices in the back_tiles[][] array */
int start_tile_x, start_tile_y;

/* Map the camera position into tile indices. */
start_tile_x = ((camera_x / PARALLAX_BACK_FACTOR) /

TILE_WIDTH) % PARALLAX_GRID_WIDTH;
start_tile_y = ((camera_y / PARALLAX_BACK_FACTOR) /

TILE_HEIGHT) % PARALLAX_GRID_HEIGHT;

start_draw_x = -((camera_x / PARALLAX_BACK_FACTOR) % TILE_WIDTH);
start_draw_y = -((camera_y / PARALLAX_BACK_FACTOR) % TILE_HEIGHT);

/* Use nested loops to scan down the screen, drawing rows of tiles. */
tile_y = start_tile_y;
draw_y = start_draw_y;
while (draw_y < SCREEN_HEIGHT) {

tile_x = start_tile_x;
draw_x = start_draw_x;
while (draw_x < SCREEN_WIDTH) {

SDL_Rect srcrect, destrect;

srcrect.x = TILE_WIDTH * back_tiles[tile_x][tile_y];
srcrect.y = 0;
srcrect.w = TILE_WIDTH;
srcrect.h = TILE_HEIGHT;
destrect.x = draw_x;
destrect.y = draw_y;
destrect.w = TILE_WIDTH;
destrect.h = TILE_HEIGHT;

SDL_BlitSurface(back_star_tiles, &srcrect, dest, &destrect);

tile_x++;
tile_x %= PARALLAX_GRID_WIDTH;
draw_x += TILE_WIDTH;

};
tile_y++;
tile_y %= PARALLAX_GRID_HEIGHT;
draw_y += TILE_HEIGHT;

};



146 CHAPTER 4. MASTERING SDL

}

void DrawParallax(SDL_Surface * dest, int camera_x, int camera_y)
{

int draw_x, draw_y; /* drawing position on the screen */
int start_draw_x, start_draw_y;

int tile_x, tile_y; /* indices in the back_tiles[][] array */
int start_tile_x, start_tile_y;

/* Map the camera position into tile indices. */
start_tile_x = ((camera_x / PARALLAX_FRONT_FACTOR) /

TILE_WIDTH) % PARALLAX_GRID_WIDTH;
start_tile_y = ((camera_y / PARALLAX_FRONT_FACTOR) /

TILE_HEIGHT) % PARALLAX_GRID_HEIGHT;

start_draw_x = -((camera_x / PARALLAX_FRONT_FACTOR) % TILE_WIDTH);
start_draw_y = -((camera_y / PARALLAX_FRONT_FACTOR) % TILE_HEIGHT);

/* Use nested loops to scan down the screen, drawing rows of tiles. */
tile_y = start_tile_y;
draw_y = start_draw_y;
while (draw_y < SCREEN_HEIGHT) {

tile_x = start_tile_x;
draw_x = start_draw_x;
while (draw_x < SCREEN_WIDTH) {

SDL_Rect srcrect, destrect;

srcrect.x = TILE_WIDTH * front_tiles[tile_x][tile_y];
srcrect.y = 0;
srcrect.w = TILE_WIDTH;
srcrect.h = TILE_HEIGHT;
destrect.x = draw_x;
destrect.y = draw_y;
destrect.w = TILE_WIDTH;
destrect.h = TILE_HEIGHT;

SDL_BlitSurface(front_star_tiles, &srcrect, dest, &destrect);

tile_x++;
tile_x %= PARALLAX_GRID_WIDTH;
draw_x += TILE_WIDTH;

};



PENGUIN WARRIOR 147

tile_y++;
tile_y %= PARALLAX_GRID_HEIGHT;
draw_y += TILE_HEIGHT;

};
}

The InitBackground function initializes the background drawing system by
randomly generating maps of tiles for the top and bottom background layers. It
stores this data in the front tiles and back tiles arrays (which can hold
20x20 and 40x40 tiles, respectively). This code does not seed the random
number generator, so the generated maps will be the same each time.

DrawBackground fills the screen with the appropriate background tiles, relative
to the coordinates in the camera x and camera y variables. These variables are
updated elsewhere; they usually track the position of the ship within the world.
DrawParallax is similar to DrawBackground, but it draws the (transparent)
parallax layer. It scales the camera coordinates to make the parallax layer move
more quickly than the solid layer. These two functions get their starfield tiles
from the front star tiles and back star tiles arrays, which are strips of
multiple 64x64 tiles stored in the same surface and loaded from the same bitmap
file. The tile drawing loops use a simple calculation to determine the location of
the desired tile within the strip, and rely on SDL BlitSurface to copy the
correct rectangle of the strip onto the screen. This is a common and powerful
technique — instead of loading graphics as individual surfaces, it is often more
convenient to use an image editor to assemble them into a strip, and to copy
from sections of the strip as needed.

If you don’t quite understand how this code works, it’s sometimes helpful to
chart out the drawing process on graph paper — the basic idea is very simple,
but it’s easy to make mistakes.

A Simple Particle System

A particle system is a set of tiny objects, usually drawn with single pixels or
small alpha-blended images, that move under the control of a simulated system
of physics. Particle systems can be used for simulated smoke trails, flying sparks,
dust effects, and just about anything else that involves small bits of matter. With
a bit of help from a graphics accelerator, particle systems can be used to create
breathtaking effects. They can be implemented in many ways, and our particle



148 CHAPTER 4. MASTERING SDL

system implementation in Penguin Warrior is only one possible approach.

Penguin Warrior uses a particle system to simulate explosions. Whenever an
object explodes, Penguin Warrior releases thousands of individual visible specks
(particles) onto the playing field. Each particle is assigned a random direction
and velocity, originating from the center of the explosion. Each particle is also
given a color according to its velocity (roughly approximating the heat of the
particle). This is actually a pretty bad simulation of an explosion, but it looks
impressive, and that’s all that matters (since the particles have no bearing on
the actual gameplay).

We’ll draw our particles as single pixels, but it might be an interesting
experiment to use alpha blits of small images instead (this would be slower, and
you’d probably want to reduce the number of particles in the system to avoid
losing performance). Alpha blended particles can result in high-quality eye
candy.

Let’s take a look at Penguin Warrior’s particle code.

Code Listing 4–15 (particle.c)

/* A particle system for Penguin Warrior. */

#include <math.h>
#include <stdlib.h>
#include "gamedefs.h"
#include "particle.h"

particle_t particles[MAX_PARTICLES];
int active_particles = 0;

static void AddParticle(particle_p particle);
static void DeleteParticle(int index);
static Uint16 CreateHicolorPixel(SDL_PixelFormat * fmt, Uint8 red,

Uint8 green, Uint8 blue);

static void AddParticle(particle_p particle)
{

/* If there are already too many particles, forget it. */
if (active_particles >= MAX_PARTICLES)

return;



PENGUIN WARRIOR 149

particles[active_particles] = *particle;
active_particles++;

}

/* Removes a particle from the system (by index). */
static void DeleteParticle(int index)
{

/* Replace the particle with the one at the end
of the list, and shorten the list. */

particles[index] = particles[active_particles - 1];
active_particles--;

}

/* Draws all active particles on the screen. */
void DrawParticles(SDL_Surface * dest, int camera_x, int camera_y)
{

int i;
Uint16 *pixels;

/* Lock the target surface for direct access. */
if (SDL_LockSurface(dest) != 0)

return;
pixels = (Uint16 *) dest->pixels;

for (i = 0; i < active_particles; i++) {
int x, y;
Uint16 color;

/* Convert world coords to screen coords. */
x = particles[i].x - camera_x;
y = particles[i].y - camera_y;
if ((x < 0) || (x >= SCREEN_WIDTH))

continue;
if ((y < 0) || (y >= SCREEN_HEIGHT))

continue;

/* Find the color of this particle. */
color = CreateHicolorPixel(dest->format,

particles[i].r,
particles[i].g, particles[i].b);

/* Draw the particle. */
pixels[(dest->pitch / 2) * y + x] = color;



150 CHAPTER 4. MASTERING SDL

};

/* Release the screen. */
SDL_UnlockSurface(dest);

}

/* Updates the position of each particle. Kills particles with
zero energy. */

void UpdateParticles(void)
{

int i;

for (i = 0; i < active_particles; i++) {
particles[i].x += particles[i].energy *

cos(particles[i].angle * PI / 180.0) * time_scale;
particles[i].y += particles[i].energy *

-sin(particles[i].angle * PI / 180.0) * time_scale;

/* Fade the particle’s color. */
particles[i].r--;
particles[i].g--;
particles[i].b--;
if (particles[i].r < 0)

particles[i].r = 0;
if (particles[i].g < 0)

particles[i].g = 0;
if (particles[i].b < 0)

particles[i].b = 0;

/* If the particle has faded to black, delete it. */
if ((particles[i].r + particles[i].g + particles[i].b) == 0) {

DeleteParticle(i);

/* DeleteParticle replaces the current particle with the one
at the end of the list, so we’ll need to take a step back. */

i--;
};

};
}

/* Creates a particle explosion of the given relative size and position. */
void CreateParticleExplosion(int x, int y, int r, int g, int b, int energy,

int density)



PENGUIN WARRIOR 151

{
int i;
particle_t particle;

/* Create a number of particles proportional to the
size of the explosion. */

for (i = 0; i < density; i++) {

particle.x = x;
particle.y = y;
particle.angle = rand() % 360;
particle.energy = (double) (rand() % (energy * 1000)) / 1000.0;

/* Set the particle’s color. */
particle.r = r;
particle.g = g;
particle.b = b;

/* Add the particle to the particle system. */
AddParticle(&particle);

};
}

/* This is directly from another code listing. It creates a 16-bit pixel. */
static Uint16 CreateHicolorPixel(SDL_PixelFormat * fmt, Uint8 red,

Uint8 green, Uint8 blue)
{

Uint16 value;

/* This series of bit shifts uses the information from the SDL_Format
structure to correctly compose a 16-bit pixel value from 8-bit red,
green, and blue data. */

value = ((red >> fmt->Rloss) << fmt->Rshift) +
((green >> fmt->Gloss) << fmt->Gshift) +
((blue >> fmt->Bloss) << fmt->Bshift);

return value;
}

Our particle system is limited to 20,000 particles. This should be plenty, since
there will rarely be more than two or three explosions on the screen at once.
This is an arbitrary limit; I have tested this code with five times that many
particles, but it takes a noticeable toll on the game’s framerate after a point.



152 CHAPTER 4. MASTERING SDL

CreateParticleExplosion is the main interface to the particle system. This
function creates the requested number of particles of a given color and maximum
velocity, blasting outward from a given origin. We’ll create explosions by calling
CreateParticleExplosion several times, with different velocities and colors.
This will allow us to simulate a colorful explosion with hotter particles closer to
the center of the blast. Remember that we care little about proper physics - it’s
been said that game programming is all about taking as many shortcuts as
possible without cheating the player of a good experience. If an explosion looks
good, it is good!

The other two important particle system routines are UpdateParticles and
DrawParticles. The former recalculates the position and color of each particle
and check to see if it should be removed from the system. Particles are removed
when they have faded to black and are therefore invisible (seeing as we have a
black space scene for a backdrop). The latter draws a pixel for each currently
visible particle. Note that we use the CreateHicolorPixel routine from a
previous example, and therefore commit to using a 16-bit framebuffer. It would
be fairly simple to modify this to work for 8- or 24-bit surfaces as well, but I
doubt it would be worth the effort.

Particle systems are amazingly versatile, and you could easily create custom
versions of CreateParticleExplosion to simulate various types of explosions.
The game Heavy Gear II uses dozens of different types of particle simulations for
everything from rain to smoke.

Game Timing

Try running our SDL animation examples on a computer with a slow video
system, and then on a computer with a cutting-edge accelerator that is
supported by X. It is very likely that you will notice a large difference between
the two, and this can be a serious problem for games. While it is important to
draw frames as quickly as possible (30-60 per second, if possible), it is also
important to make sure that this does not give players with slow hardware an
unfair advantage (since speed often corresponds to difficulty).

We have two options: we could lock the framerate at a certain value and simply
refuse to run on machines that can’t keep up, or we could measure the framerate
and adjust the speed of the game accordingly. Most games choose the latter
option, so as not to exclude gamers with slow computers. It turns out that this



PENGUIN WARRIOR 153

is not terribly difficult to implement.

Instead of specifying game object movement in pixels per frame, we will use
pixels per unit time (just about any unit of time would work, but we’ll use
1/30th of a second as our baseline, so that a performance of 30 frames per
second will result in no adjustment to the game’s speed). To calculate how far
each game object should move in a frame, we’ll determine how much time has
passed since the last update, and scale our movement accordingly. We will
update a global time scale variable with this information at the start of each
frame. Each time we need to move an object, we will scale the distance by this
amount. We will also apply this scaling to acceleration and turning.

Take a look at the Penguin Warrior code to see how this is done. It’s not too
complicated, and it lets the game run at its highest performance on any
computer.

To Be Continued...

With the parallaxing code, the particle system, a timing mechanism, and a bit of
other SDL voodoo, we now have a working game engine, albeit a simple one. It
lacks sound, other players, and weaponry, but we’ll add these later on. It’s time
to take a break from SDL and Penguin Warrior for a tour of the slightly
maddening world of Linux audio.



154 CHAPTER 4. MASTERING SDL



Chapter 5

Linux Audio Programming

Hardware manufacturers are often reluctant to release programming
specifications to independent developers. This has impeded Linux’s development
at times, and has resulted in less than optimal drivers for certain devices.
However, the recent explosion in Linux’s popularity has drawn attention to the
project, and hardware support has improved considerably of late. Most
consumer audio hardware is now fully supported under Linux, and some
manufacturers have even contributed their own open source drivers for their
hardware. In this chapter we will discuss the ups and downs of Linux sound
programming with several important APIs.

If you haven’t yet read Chapter 4, it would be a good idea to flip back to its
basic explanation of sound samples, buffers, and frequencies (Section 4. This
chapter will assume that you are familiar with these basics, and we won’t spend
any more time on the subject.

This chapter will comment on the development of a complete Linux sound file
player, dubbed Multi-Play. In the course of developing this real-world
application, we will learn how to load sound data from disk and discuss four
common methods of playing sound under Linux. By the end of the chapter, you
will know how to integrate sound into a Linux game using any of the major
APIs. We will end the chapter with a discussion of the OpenAL environmental
audio library, which is very useful for producing realistic sound effects in 3D
environments.

155



156 CHAPTER 5. LINUX AUDIO PROGRAMMING

Competing APIs

Linux is home to two competing sets of sound drivers. While Linux skeptics are
likely to shout “Aha! Fragmentation!” upon hearing this, this competition has
raised the bar and has resulted in a much higher quality set of sound drivers.
Linux now supports almost every sound card on the market. One set of drivers is
very consistent, complete, and stable, while the other set frequently breaks
compatibility in order to cleanly integrate cutting-edge features. These two sets
are largely interoperable, and so Linux users can enjoy the best of both worlds.

The original Linux sound API is OSS, the Open Sound System. OSS consists of
a set of kernel modules that provide a common programming interface to
hundreds of different sound cards. Some of these modules (OSS/Free) are
distributed for free with the Linux kernel, and some are available in binary-only
form for a fee from 4Front Technologies (http://www.4front-tech.com). The
OSS modules are well written and commercially supported, but the OSS
programming interface leaves something to be desired. Nonetheless, OSS is more
or less a defacto standard for Linux audio, and supporting OSS virtually
guarantees that your application will work on most sound hardware.

The ALSA project (http://www.alsa-project.org) has created an alternate
set of Linux sound drivers. ALSA consists of a set of kernel modules as well as a
programming library, providing support for a substantial and ever increasing
number of sound cards. The ALSA library is much more convenient than the
OSS’s ioctl-based interface, and there is a simple emulation driver to support
programs that don’t use the native ALSA API. Perhaps the most significant
difference between ALSA and OSS is that ALSA is a free software project
maintained by volunteers, whereas OSS is a commercial venture that can
support the latest hardware through non-disclosure agreements. There are
advantages to each approach. ALSA’s biggest problem is that it is not quite
ready to go mainstream yet; its programming interface changes with every major
release (but this is slowing down). Many people use ALSA exclusively for its
OSS compatibility mode, since many application’s don’t support ALSA directly.

With this brief comparison in mind, which sound interface should your games
use? ALSA is a bit more programmer-friendly, if you can tolerate its evolving
API. It has a well-designed (albeit changing) interface with lots of bells and
whistles. OSS currently has a wider base of users, but a rather crude
programming interface. If providing support for both API’s is out of the



INTRODUCING MULTI-PLAY 157

question, we recommend coding for OSS and then testing with the ALSA
emulation facility. An alternate approach would be to use a higher-level library
such as SDL or OpenAL that can work with either interface.

Introducing Multi-Play

Multi-Play is a simple command-line sound file player. It works with normal
OSS, OSS using direct DMA, EsounD, and ALSA, and supports a large number
of sound file formats. Since it is designed to clearly demonstrate audio
programming, Multi-Play lacks a few of the features one might find in an
end-user player program, such as support for nonstandard frequencies and
sample sizes. Feel free to use pieces of the Multi-Play code in your own projects,
or even develop the complete player into a finished product. It’s meant to be a
Rosetta Stone of sorts, performing the same basic task (sound playback) in
several different ways.

Since Multi-Play is meant to demonstrate the mechanics of audio programming
(and not really intended for day-to-day use), it doesn’t compensate for certain
types of “errors”. For instance, ESD does not properly handle 8-bit samples in
some cases, but Multi-Play will attempt to use them anyway (whereas an
end-user player might automatically change 8-bit samples into 16-bit samples for
ESD playback). It also blindly tries to set the driver to the sample rate indicated
by the sound file. This will not work in some cases, since drivers often don’t
support oddball sample rates. A high-quality sound player should compensate
for this if possible. However, this shouldn’t be necessary for most game
development situations.

The complete code is available on the web site, and we have excerpted from it as
appropriate. It would be a good idea to obtain and compile a copy of the code.
Experimentation is the best way to learn any new area of programming.

Loading Sound Files

SDL provides a convenient SDL LoadWAV function, but this is of little use to
programs that don’t use SDL, and it only reads the wave (.wav) file format.
There is a better option: Erik de Castro Lopo maintains a library called



158 CHAPTER 5. LINUX AUDIO PROGRAMMING

libsndfile, which contains routines for loading nearly every common sound
format. This library is easy to use, and it is available under the GNU LGPL
license (formerly the more restrictive GPL). You might also consider Michael
Pruett’s libaudiofile library, a free implementation of an API originally
developed by Silicon Graphics. However, libaudiofile is a bit less straightforward
than libsndfile.

Using libsndfile

The libsndfile library makes it easy to read sample data from a large number of
sound file formats. Sound files in any supported format are opened with a single
library function, and individual samples may then be read with a common
interface, regardless of the file format’s encoding or compression. Your program
still must take the size and signedness of the sample data into account, but
libsndfile provides the necessary information.

The sf open read function opens a sound file for reading. This function accepts
a filename and a pointer to an SF INFO structure, and returns a pointer to a
SNDFILE structure. The SF INFO structure represents the format of the sound
data: its sample rate, sample size, and signedness. sf open read fills in this
structure; your program does not need to supply this information in most cases.
The SNDFILE structure returned by sf open read is a file handle; its contents
are used internally by libsndfile, and they are not important to us. sf open read
returns NULL if the requested file cannot be opened. For the curious, libsndfile
does provide a sf open write facility for writing sound files, but this is beyond
our present needs.

Function sf open read(filename, info)
Synopsis Opens a sound file (such as a .wav or .au file) for reading.
Returns Pointer to a SNDFILE structure that represents the open

file. Fills in the provided SF INFO structure with informa-
tion about the sound data.

Params filename — The name of the file to open.
info — Pointer to the SF INFO structure that should receive
information about the sound data.



LOADING SOUND FILES 159

Structure SF INFO
Purpose Information about the data contained in a sound file.

Members samplerate — Sample rate of the sound data, in Hertz.
samples — Number of samples contained in each channel
of the sound file (the total number of samples is channels ∗
samples).
channels — Number of channels contained in the sound file.
This is usually 1 for mono or 2 for stereo.
pcmbitwidth — Number of bits per sample.
format — Sample format. Format constants are defined in
sndfile.h. In this chapter we only use a small portion of
libsndfile’s capabilities – it can understand a wide variety of
encoding formats, not just raw PCM.

After opening a sound file and obtaining a SNDFILE pointer, your program may
read samples from it. libsndfile provides functions for reading samples as short
integers, integers, or doubles. Each sample (8- or 16-bit) is termed an item, and
a pair of stereo samples (or one mono sample) is a frame. libsndfile allows you
to read individual items or complete frames. The sf readf short,
sf readf int, and sf readf double functions read frames from a SNDFILE into
buffers of various types. sf readf double can optionally scale samples to the
interval [−1..1], which is convenient for advanced audio processing. We will
demonstrate this function in the next example.

Function sf readf type (sndfile, buffer, frames)
Synopsis Reads PCM data from an open sound file and returns it as

a particular data type (regardless of the sample’s original
format). Possible types are short, int, and double. The
double version of this function takes an extra boolean flag
that indicates whether libsndfile should normalize sample val-
ues to the range [−1..1].

Returns Number of frames successfully read.
Params sndfile — Pointer to an open SNDFILE handle.

buffer — Pointer to a buffer for the data.
frames — Number of frames to read. (A frame consists of
one sample from each channel.)



160 CHAPTER 5. LINUX AUDIO PROGRAMMING

Function sf close(sndfile)
Synopsis Closes a sound file.
Params sndfile — Pointer to the SNDFILE to close.

When your program is finished reading sound data from a SNDFILE, it should
close the file with the sf close function.

Code Listing 5–1 (mp-loadsound.c)

#include <stdio.h>
#include <stdlib.h>
#include <sndfile.h>

/* Loads a sound file from disk into a newly-allocated buffer.
Sets *rate to the sample rate of the sound, *channels to the
number of channels (1 for mono, 2 for stereo), *bits to the sample
size in bits (8 or 16), *buf to the address of the buffer, and
*buflen to the length of the buffer in bytes. 16-bit samples will
be stored using the host machine’s endianness (little endian on
Intel-based machines, big endian on PowerPC, etc).

8-bit samples will always be unsigned. 16-bit will always be signed.
Channels are interleaved.

Requires libsndfile to be linked into the program.

Returns 0 on success and nonzero on failure. Prints an error
message on failure. */

int LoadSoundFile(char *filename, int *rate, int *channels,
int *bits, u_int8_t **buf, int *buflen)

{
SNDFILE *file;
SF_INFO file_info;
short *buffer_short = NULL;
u_int8_t *buffer_8 = NULL;
int16_t *buffer_16 = NULL;
int i;

/* Open the file and retrieve sample information. */
file = sf_open_read(filename, &file_info);
if (file == NULL) {



LOADING SOUND FILES 161

printf("Unable to open ’%s’.\n", filename);
return -1;

};

/* Make sure the format is acceptable. */
if ((file_info.format & 0x0F) != SF_FORMAT_PCM) {

printf("’%s’ is not a PCM-based audio file.\n", filename);
sf_close(file);
return -1;

};

if ((file_info.pcmbitwidth != 8) && (file_info.pcmbitwidth != 16)) {
printf("’%s’ uses an unrecognized sample size.\n", filename);
sf_close(file);
return -1;

};

/* Allocate buffers. */
buffer_short = (short *)malloc(file_info.samples *

file_info.channels *
sizeof (short));

buffer_8 = (u_int8_t *)malloc(file_info.samples *
file_info.channels *

file_info.pcmbitwidth / 8);

buffer_16 = (int16_t *)buffer_8;

if (buffer_short == NULL || buffer_8 == NULL) {
printf("Unable to allocate enough memory for ’%s’.\n", filename);
fclose(file);
free(buffer_short);
free(buffer_8);
return -1;

};

/* Read the entire sound file. */
if (sf_readf_short(file,buffer_short,file_info.samples) == (size_t)-1) {

printf("Error while reading samples from ’%s’.\n", filename);
fclose(file);
free(buffer_short);
free(buffer_8);
return -1;



162 CHAPTER 5. LINUX AUDIO PROGRAMMING

};

/* Convert the data to the correct format. */
for (i = 0; i < file_info.samples * file_info.channels; i++) {

if (file_info.pcmbitwidth == 8) {
/* Convert the sample from a signed short to an unsigned byte */
buffer_8[i] = (u_int8_t)((short)buffer_short[i] + 128);

} else {
buffer_16[i] = (int16_t)buffer_short[i];

};
};

/* Return the sound data. */
*rate = file_info.samplerate;
*channels = file_info.channels;
*bits = file_info.pcmbitwidth;
*buf = buffer_8;
*buflen = file_info.samples * file_info.channels *

file_info.pcmbitwidth / 8;

/* Close the file and return success. */
sf_close(file);
free(buffer_short);

return 0;
}

This routine serves as Multi-Play’s file loader. It begins by opening a sound file
with sf open, checking that the samples in plain PCM format (libsndfile does
support other sample types), and verifying that the samples are either 8-bit or
16-bit (again, other sample types are possible, but less common). It then
allocates memory for the samples. Since the size of short integers can vary from
platform to platform, this routine takes a safe approach of allocating a
temporary buffer of type short for loading the file and then copying the samples
to a buffer of either int16 t or u int8 t. This is a bit wasteful, and a
production-quality sound player should probably take a different approach (such
as using sizeof to determine the size of short, and handling particular cases).
With the sample data now in memory, the routine passes the relevant data back
to its caller and returns zero.

libsndfile treats all PCM samples as signed, and reads them as short, int, or
double. The actual number of bits used by each sample is indicated in the



USING THE OPEN SOUND SYSTEM 163

pcmbitwidth field of the SF INFO structure. Since our sound player will treat all
8-bit samples as unsigned and all 16-bit samples as signed (the usual convention
for sound playback), our loader converts 8-bit samples to unsigned by adding 128
(bringing them into the range [0..255]). 16-bit samples need no special handling,
since libsndfile returns samples in the host machine’s endianness (little endian on
Intel-based machines and big endian on many others).

Other Options

If for some reason libsndfile doesn’t appeal to you, there are several options. You
could use the libaudiofile library, which has a slightly different API and similar
capabilities. libaudiofile has been around for a long time, and it is widely used.
You could implement your own wave file loader, but this is extra work. The
original wave file format has a very simple structure, consisting of little more
than a RIFF header and a block of raw sample data. Unfortunately, some wave
files are encoded in strange ways, and these must either be specifically handled
or rejected. Libraries such as libsndfile and libaudiofile handle these quirks
automatically.

Another option is to convert your sound files into a simpler format that can be
trivially loaded. The SoX (Sound eXchange) utility is handy for this purpose.
SoX can rewrite sound files as raw, headerless data, which you can then load
with the C library’s fopen and fread functions. The main drawbacks to this
approach are that the sound will be completely uncompressed (assuming that it
was compressed to begin with), and that you will have to keep track of the
sound’s sample format by hand. This is a general nuisance, and so we again
recommend the use of a library for loading sound files.

Using the Open Sound System

The OSS API is based on device files and the ioctl facility. UNIX device files
are files that represent devices in the system rather than ordinary data storage
space. To use a device file, an application typically opens it by name with the C
library’s open function, and then proceeds to exchange data with it using the
standard read and write functions. The kernel recognizes the file as a device
and intercepts the data. In the instance of a sound card, this data would consist
of raw PCM samples. Device files are traditionally located in the /dev directory



164 CHAPTER 5. LINUX AUDIO PROGRAMMING

on UNIX systems, but they can technically exist anywhere in the filesystem. The
main OSS device files are /dev/dsp and /dev/audio.

This explains how a program can get samples into the sound card, but what
about the sound card’s other attributes, such as the sample format and sampling
rate? This is where ioctl comes in. The ioctl function (a system call, just like
read or write) allows you to send special commands to device files, usually to
configure the device before sending data with write. ioctl is a low-level
interface, but there is really nothing difficult about it, so long as you have plenty
of documentation about the device file you are working with (hence this book).
OSS provides a header file (soundcard.h) with symbols for the various ioctl
calls it supports. Be careful with ioctl; its data goes directly to the kernel, and
you could possibly throw a wrench into the system by sending unexpected data
(though this would be considered a bug in the kernel, and if you find such a bug,
please report it).

Before we discuss ways to improve OSS’s performance for gaming, let’s examine
the code for Multi-Play’s OSS backend.

Code Listing 5–2 (mp-oss.c)

/* Simple buffer playback with OSS. */

#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <sys/soundcard.h>
#include <sys/mman.h>

/* Plays a sound with OSS (/dev/dsp), using default options.
samples - raw 8-bit unsigned or 16-bit signed sample data
bits - 8 or 16, indicating the sample size
channels - 1 or 2, indicating mono or stereo
rate - sample frequency
bytes - length of sound data in bytes
Returns 0 on successful playback, nonzero on error. */

int PlayerOSS(u_int8_t *samples, int bits, int channels, int rate, int bytes)
{

/* file handle for /dev/dsp */
int dsp = 0;



USING THE OPEN SOUND SYSTEM 165

/* Variables for ioctl’s. */
unsigned int requested, ioctl_format, ioctl_channels, ioctl_rate;

/* Playback status variables. */
int position;

/* Attempt to open /dev/dsp for playback (writing). */
dsp = open("/dev/dsp",O_WRONLY);

/* This could very easily fail, so we must handle errors. */
if (dsp == -1) {

perror("OSS player: error opening /dev/dsp for playback");
return -1;

};

/* Select the appropriate sample format. */
switch (bits) {

case 8: ioctl_format = AFMT_U8; break;
case 16: ioctl_format = AFMT_S16_NE; break;
default: printf("OSS player: unknown sample size.\n");

return -1;
};

/* We’ve decided on a format. We now need to pass it to OSS.
ioctl is a very generalized interface. We always pass data
to it by reference, not by value, even if the data is a
simple integer. */

requested = ioctl_format;
if (ioctl(dsp,SNDCTL_DSP_SETFMT,&ioctl_format) == -1) {

perror("OSS player: format selection failed");
close(dsp);
return -1;

};

/* ioctl’s usually modify their arguments. SNDCTL_DSP_SETFMT
sets its integer argument to the sample format that OSS
actually gave us. This could be different than what we
requested. For simplicity, we will not handle this situation. */

if (requested != ioctl_format) {
printf("OSS player: unsupported sample format.\n");
close(dsp);
return -1;



166 CHAPTER 5. LINUX AUDIO PROGRAMMING

};

/* We must inform OSS of the number of channels (mono or stereo)
before we set the sample rate. This is due to limitations in
some (older) sound cards. */

ioctl_channels = channels;
if (ioctl(dsp,SNDCTL_DSP_CHANNELS,&ioctl_channels) == -1) {

perror("OSS player: unable to set the number of channels");
close(dsp);
return -1;

};

/* OSS might not have granted our request, even if the ioctl
succeeded. */

if (channels != ioctl_channels) {
printf("OSS player: unable to set the number of channels.\n");
close(dsp);
return -1;

};

/* We can now set the sample rate. */
ioctl_rate = rate;
if (ioctl(dsp,SNDCTL_DSP_SPEED,&ioctl_rate) == -1) {

perror("OSS player: unable to set sample rate");
close(dsp);
return -1;

};

/* OSS sets the SNDCTL_DSP_SPEED argument to the actual sample rate,
which may be different from what the requested. In this case, a
production-quality player would upsample or downsample the sound
data. We’ll simply report an error. */

if (rate != ioctl_rate) {
printf("OSS player: unable to set the desired sample rate.\n");
close(dsp);
return -1;

};

/* Feed the sound data to OSS. */
position = 0;
while (position < bytes) {

int written, blocksize;



USING THE OPEN SOUND SYSTEM 167

/* We’ll send audio data in 4096-byte chunks.
This is arbitrary, but it should be a power
of two if possible. This conditional just makes
sure we properly handle the last chunk in the
buffer. */

if (bytes-position < 4096)
blocksize = bytes-position;

else blocksize = 4096;

/* Write to the sound device. */
written = write(dsp,&samples[position],blocksize);
if (written == -1) {

perror("\nOSS player: error writing to sound device");
close(dsp);
return -1;

};

/* Update the position. */
position += written;

/* Print some information. */
WritePlaybackStatus(position, bytes, channels, bits, rate);
printf("\r");
fflush(stdout);

};

printf("\n");
close(dsp);

return 0;
}

This is the first of five Multi-Play player backends, and one of three relating to
OSS. These players are self-contained, and handle all necessary initialization and
cleanup internally. Their parameters are self-explanatory: the sound buffer to
play is passed as a u int8 t pointer, and various information about the sample
format and playback rate is passed in as integers.

Our player begins by opening the /dev/dsp device file. A production-quality
player would likely provide some sort of command line option to specify a
different OSS device, but /dev/dsp is valid on most systems. If the file is
opened successfully, the player begins to set the appropriate playback parameters



168 CHAPTER 5. LINUX AUDIO PROGRAMMING

with the ioctl interface.

The first step in configuring the driver is to set the sample size. Our loader
recognizes both 8-bit unsigned and 16-bit signed samples, and these are the only
cases our player needs to account for. After selecting the appropriate constant
(codeAFMT S16 NE for 16-bit signed, default endianness, or AFMT U8 for 8-bit
unsigned), it calls ioctl with SNDCTL DSP SETFMT. This ioctl call could fail if
the driver does not support the requested format, but this is unlikely to happen
unless the user has an extremely old sound card. We could instead use
AFMT S16 LE or AFMT S16 BE to explicitly set little- or big-endianness,
respectively. If this ioctl succeeds, the player sets the number of channels and
the sample rate in a similar fashion. It is important to set the number of
channels before the sample rate, because some sound cards have different
limitations in mono or stereo mode.

The sound driver is now configured, and our player can begin sending samples to
the device. Our player uses the standard UNIX write function to transfer the
samples in 4096-byte increments. Since sound cards play samples at a limited
rate (specified by the sampling frequency), it is possible that these write calls
will block (delay until the sound card is ready for more samples), and thereby
limit the speed of the rest of the program. This would not be acceptable in a
game, since games typically have better things to do than wait on the sound
card. We will discuss ways to avoid this in the next section.

When the entire set of samples has been transferred to the sound card, our
player closes the /dev/dsp device and returns zero.

Reality Check

The OSS web site has two main documents about OSS programming: Audio
Programming, and Making Audio Complicated. The former describes the basic
method of OSS programming, and it is fairly simple to understand. The latter is
aptly named. Sound programming can quickly devolve into a messy subject, and
we will now cover some of the ugly details that are necessary for real world game
development. Unfortunately, the simple example we just discussed is woefully
inadequate.

Perhaps the stickiest issue in game sound programming (particularly with OSS)
is keeping the sound playback stream synchronized with the rest of the game.



USING THE OPEN SOUND SYSTEM 169

SDL provided a nice callback that would notify our program whenever the sound
card was hungry for more samples, but OSS doesn’t have a callback system. If
we try to write too many samples before the card has a chance to play them,
the write function will block (ie, not return until it can complete), and as a
result the timing of our entire program will depend on OSS’s playback speed.
This is not good.

A closely related issue is latency. It is inevitable that our game’s sound will lag
slightly behind the action on the screen; all games experience this, and it is not a
problem so long as the latency is only a small fraction of a second (preferably
under 1/10 of a second). Unfortunately, OSS has quite a bit of internal buffer
space, and if we were to fill it to capacity by blindly calling write, our latency
would go through the roof. Imagine playing Quake and hearing a gunshot sound
several seconds after firing the gun – you would probably laugh and switch to a
different game!

OSS stores samples in an internal buffer that is divided into equally-sized
fragments. Each fragment stores approximately 1

2 second of audio data
(resulting in a potential latency of 1

2 second). When the sound card is finished
playing a fragment, it jumps to the next. If the next fragment has not been filled
with samples, the sound card will play whatever happens to be there, which
results in audio glitches. We would ideally like to stay just a few fragments
ahead of the sound card, to avoid skipping while keeping latency to a minimum.
We can, within limits, specify the number of fragments and the size of each.

To set OSS’s internal fragment size, send the SNDCTL DSP SETFRAGMENT ioctl
with a bitfield-encoded argument:

int ioctl_frag;

/* Set the fragment parameters. See the text for an explanation. */
ioctl_frag = 10; /* fragment size is 2^10 = 1024 bytes */
ioctl_frag += 3 * 65536; /* fragment count is 3 */
if (ioctl(dsp,SNDCTL_DSP_SETFRAGMENT,&ioctl_frag) != 0) {

/* handle error */
};

This ioctl should be called as soon as possible after opening the audio device; it
will not work after the first write call has been made, and it might not work
after other settings have been applied. Its unsigned integer argument is divided



170 CHAPTER 5. LINUX AUDIO PROGRAMMING

into two bit fields. The lower 16 bits specify the fragment size as a power of two.
For instance, a value of ten in the lower 16 bits requests a fragment size of two to
the tenth, or 1024 bytes. The high 16 bits of the argument specify the number of
fragments to allocate. In this case we request only three fragments, meaning that
we will have to be fairly attentive to the audio device if we wish to avoid
glitches.

Our next task is to get rid of the blocking write call. We can use OSS’s buffer
information ioctl to avoid blocking:

for (;;) {
audio_buf_info info;

/* Ask OSS if there is any free space in the buffer. */
if (ioctl(dsp,SNDCTL_DSP_GETOSPACE,&info) != 0) {

perror("Unable to query buffer space");
close(dsp);
return 1;

};

/* Any empty fragments? */
if (info.fragments > 0) break;

/* Not enough free space in the buffer. Waste time. */
usleep(100);

};

This addition to the main player loop (right before the actual write call) simply
queries OSS to check for an empty fragment. If there is at least one fragment
available, we can safely write a chunk of sample data without blocking. If there
is no space in the outgoing sound buffer, we kill time with the usleep function A
game would probably use this time to do something productive, such as
updating the video display. We use the SNDCTL DSP GETOSPACE ioctl to check
for the availability of a fragment. This ioctl returns a structure (defined in
soundcard.h) with various statistics about OSS’s internal buffers.



USING THE OPEN SOUND SYSTEM 171

Warning

Generally speaking, minor tweaks to OSS parameters (such as setting a
custom fragment size) are safe; they are unlikely to break compatibility
with most drivers or even ALSA’s OSS emulator. I used a laptop with
the ALSA sound driver to create these code examples. ALSA’s OSS
emulation is less than perfect, and the examples worked slightly
differently under ALSA and OSS. It is important to test audio code on
as many systems as possible and with both ALSA and OSS. Audio
programming involves a lot of fine tuning; in a world with thousands of
different audio cards, it is far from a precise science.

Squeezing Sound Performance with Direct DMA Access

Sometimes OSS’s basic mechanism of writeing samples to the sound device does
not provide sufficient performance. OSS provides an alternative, but it is neither
pretty nor simple. It is possible to use the UNIX mmap function to gain direct
access to the sound driver’s DMA buffer. The DMA buffer is a region of memory
scanned at regular intervals by the sound system’s hardware for samples; it is the
audio equivalent of the raw video framebuffer. If your program can somehow
gain access to the DMA buffer, it can mix and send its own fragments directly to
the sound card, without any driver intervention. Latency is still a concern, but
this technique bypasses the driver’s internal buffering, and therefore gives you
the power to push latency as close to the line as you wish (at the risk of skipping
or other anomolies).

Direct DMA buffer access is absolutely not portable. It is known to be
incompatible with certain configurations (including my laptop, much to my
chagrin), but it will probably work on most Linux-based systems with “normal”
sound hardware. This particular example did work on my FreeBSD 4.1 system,
but with a noticable choppiness. So far it has worked on one of my Linux
systems. We recommend avoiding this technique if possible, or at least providing
a “safe” alternative in case DMA initialization fails. If you’ve ever been
frustrated that an OSS application (such as Quake 3) would not work with the
ALSA or ESD emulation drivers, direct DMA access is the likely cause. However,
these applications do enjoy improved audio performance with less CPU usage.



172 CHAPTER 5. LINUX AUDIO PROGRAMMING

The next player backend uses direct DMA buffer access with OSS. It utilizes the
basic technique presented in 4Front Technologies’ original mmap test.c
example, but with a slightly different buffering scheme in the main loop. This
player backend has been tested successfully on a number of sound cards, but it is
not compatible with ALSA’s OSS emulation driver.

Code Listing 5–3 (mp-dma.c)

/* DMA buffer playback with OSS. */

#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <sys/soundcard.h>
#include <sys/mman.h>

/* Plays a sound with OSS (/dev/dsp), using direct DMA access.
Returns 0 on successful playback, nonzero on error. */

int PlayerDMA(u_int8_t *samples, int bits, int channels, int rate, int bytes)
{

/* file handle for /dev/dsp */
int dsp = 0;

/* Variables for ioctl’s. */
unsigned int requested, ioctl_format, ioctl_channels, ioctl_rate,

ioctl_caps, ioctl_enable, ioctl_frag;
audio_buf_info ioctl_info;

/* Buffer information. */
int frag_count, frag_size;
u_int8_t *dmabuffer = NULL;
int dmabuffer_size = 0;
int dmabuffer_flag = 0;

/* Playback status variables. */
int position = 0, done = 0;

/* Attempt to open /dev/dsp for playback. We need to open for
read/write in order to mmap() the device file. */

dsp = open("/dev/dsp",O_RDWR);



USING THE OPEN SOUND SYSTEM 173

/* This could very easily fail, so we must handle errors. */
if (dsp < 0) {

perror("DMA player: error opening /dev/dsp for playback");
goto error;

};

/* Select a 1k fragment size, with 4 fragments. */
ioctl_frag = 10; /* fragment size is 2^10 = 1024 bytes */
ioctl_frag += 4 * 65536; /* fragment count is 4 */

if (ioctl(dsp,SNDCTL_DSP_SETFRAGMENT,&ioctl_frag) != 0) {
perror("DMA player: fragment configuration request failed");
goto error;

};

/* Select the appropriate sample format. */
switch (bits) {

case 8: ioctl_format = AFMT_U8; break;
case 16: ioctl_format = AFMT_S16_NE; break;
default: printf("DMA player: unknown sample size.\n");

goto error;
};

/* We’ve decided on a format. We now need to pass it to OSS.
ioctl is a very generalized interface. We always pass data
to it by reference, not by value, even if the data is a
simple integer. */

requested = ioctl_format;
if (ioctl(dsp,SNDCTL_DSP_SETFMT,&ioctl_format) == -1) {

perror("DMA player: format selection failed");
goto error;

};

/* ioctl’s usually modify their arguments. SNDCTL_DSP_SETFMT
sets its integer argument to the sample format that OSS
actually gave us. This could be different than what we
requested. For simplicity, we will not handle this situation. */

if (requested != ioctl_format) {
printf("DMA player: unsupported sample format.\n");
goto error;

};



174 CHAPTER 5. LINUX AUDIO PROGRAMMING

/* We must inform OSS of the number of channels (mono or stereo)
before we set the sample rate. This is due to limitations in
some (older) sound cards. */

ioctl_channels = channels;
if (ioctl(dsp,SNDCTL_DSP_CHANNELS,&ioctl_channels) == -1) {

perror("DMA player: unable to set the number of channels");
goto error;

};

/* OSS might not have granted our request, even if the ioctl
succeeded. */

if (channels != ioctl_channels) {
printf("DMA player: unable to set the number of channels.\n");
goto error;

};

/* We can now set the sample rate. */
ioctl_rate = rate;
if (ioctl(dsp,SNDCTL_DSP_SPEED,&ioctl_rate) == -1) {

perror("DMA player: unable to set sample rate");
goto error;

};

/* OSS sets the SNDCTL_DSP_SPEED argument to the actual sample rate,
which may be different from what the requested. In this case, a
production-quality player would upsample or downsample the sound
data. We’ll simply report an error. */

if (rate != ioctl_rate) {
printf("DMA player: unable to set the desired sample rate.\n");
goto error;

};

/* Now check for DMA compatibility. It’s quite possible that the driver
won’t support this. It would be a *very* good idea to provide a
fallback in case DMA isn’t supported - there are some sound cards that
simply don’t work with the DMA programming model at all. */

if (ioctl(dsp,SNDCTL_DSP_GETCAPS,&ioctl_caps) != 0) {
perror("DMA player: unable to read sound driver capabilities");
goto error;

};

/* The MMAP and TRIGGER bits must be set for this to work.
MMAP gives us the ability to access the DMA buffer directly,



USING THE OPEN SOUND SYSTEM 175

and TRIGGER gives us the ability to start the sound card’s
playback with a special ioctl. */

if (!(ioctl_caps & DSP_CAP_MMAP) || !(ioctl_caps & DSP_CAP_TRIGGER)) {
printf("DMA player: this sound driver is not capable of direct DMA.");
goto error;

};

/* Query the sound driver for the actual fragment configuration
so that we can calculate the total size of the DMA buffer.
We cannot assume that the driver granted our previous buffering
requests. */

if (ioctl(dsp,SNDCTL_DSP_GETOSPACE,&ioctl_info) != 0) {
perror("DMA player: unable to query buffer information");
goto error;

};

frag_count = ioctl_info.fragstotal;
frag_size = ioctl_info.fragsize;
dmabuffer_size = frag_count * frag_size;

/* We’re good to go. Map a buffer onto the audio device. */
dmabuffer = mmap(NULL,

dmabuffer_size, /* length of region to map */
PROT_WRITE | PROT_READ, /* select the output buffer

(PROT_READ alone selects
input) */

MAP_FILE | MAP_SHARED, /* see the mmap manual
page for more info about
these flags. */

dsp, /* opened file to map */
0); /* start at offset zero */

/* This could fail for a number of reasons. */
if (dmabuffer == (u_int8_t *)MAP_FAILED) {

perror("DMA player: unable to mmap a DMA buffer");
goto error;

};

/* The DMA buffer is ready! Now we can start playback by toggling
the device’s PCM output bit. Yes, this is a very hacky interface.
We’re actually using the OSS "trigger" functionality here. */

ioctl_enable = 0;
if (ioctl(dsp, SNDCTL_DSP_SETTRIGGER, &ioctl_enable) != 0) {



176 CHAPTER 5. LINUX AUDIO PROGRAMMING

perror("DMA player: unable to disable PCM output");
goto error;

};

ioctl_enable = PCM_ENABLE_OUTPUT;
if (ioctl(dsp, SNDCTL_DSP_SETTRIGGER, &ioctl_enable) != 0) {

perror("DMA player: unable to enable PCM output");
goto error;

};

/* The done variable simply makes sure that the last chunk actually
gets played. */

while (done < 2) {
struct count_info status;
int i;

/* Find the location of the DMA controller within the buffer.
This will be exact at least to the level of a fragment. */

if (ioctl(dsp, SNDCTL_DSP_GETOPTR, &status) != 0) {
perror("DMA player: unable to query playback status");
goto error;

};

/* Our buffer is comprised of several fragments. However, in DMA
mode, it is safe to treat the entire buffer as one big block.
We will divide it into two logical chunks. While the first chunk
is playing, we will fill the second with new samples, and
vice versa. With a small buffer, we will still enjoy low latency.

status.ptr contains the offset of the DMA controller within
the buffer. */

if (dmabuffer_flag == 0) {
/* Do we need to refill fragments 3 and 4? */
if (status.ptr < dmabuffer_size/2) {

int amount;

/* Copy data into the DMA buffer. */
if (bytes - position < dmabuffer_size/2) {

amount = bytes-position;
} else amount = dmabuffer_size/2;

for (i = 0; i < amount; i++) {



USING THE OPEN SOUND SYSTEM 177

dmabuffer[i+dmabuffer_size/2] = samples[position+i];
};

/* Zero the rest of this half. */
for (; i < dmabuffer_size/2; i++) {

dmabuffer[i+dmabuffer_size/2] = 0;
};

/* Update the buffer position. */
position += amount;

/* Next update will be fragments 1 and 2 */
dmabuffer_flag = 1;

/* Have we reached the end? */
if (position >= bytes) done++;

};
} else if (dmabuffer_flag == 1) {

/* Do we need to refill fragments 1 and 2? */
if (status.ptr >= dmabuffer_size/2) {

int amount;

/* Copy data into the DMA buffer. */
if (bytes - position < dmabuffer_size/2) {

amount = bytes-position;
} else amount = dmabuffer_size/2;

for (i = 0; i < amount; i++) {
dmabuffer[i] = samples[position+i];

};

/* Zero the rest of this half. */
for (; i < dmabuffer_size/2; i++) {

dmabuffer[i] = 0;
};

/* Update the buffer position. */
position += amount;

/* Next update will be fragments 3 and 4 */
dmabuffer_flag = 0;

/* Have we reached the end? */



178 CHAPTER 5. LINUX AUDIO PROGRAMMING

if (position >= bytes) done++;
};

};

WritePlaybackStatus(position, bytes, channels, bits, rate);
printf("\r");
fflush(stdout);

/* Wait a while. A game would normally do the rest of its
processing here. */

usleep(100);
};

printf("\n");

munmap(dmabuffer,dmabuffer_size);
close(dsp);

return 0;

/* Error handler. goto’s are normally bad, but they make sense here. */
error:

if (dmabuffer != NULL)
munmap(dmabuffer,dmabuffer_size);

if (dsp > 0) close(dsp);

return -1;
}

The program begins as usual, loading a sound file and setting a few OSS
parameters via ioctl. It then queries the OSS device’s capabilities and checks
for DMA compatibility. If the sound card is capable of this type of DMA access,
the SNDCTL DSP MMAP and SNDCTL DSP TRIGGER bits will be set (however,
initialization can still fail). The program queries OSS for the size and number of
buffer fragments, multiplying them to obtain the total size of the sound buffer in
bytes. Next it mmaps a buffer onto the sound device.

mmap is a strange beast. It can be used for a variety of purposes, but its most
common use is to map buffers of memory onto files (so that accesses to the
memory will result in accesses to the file). This provides a very convenient way
to load large data structures from disk; you can simply map the file into memory
and grab the data with memcpy. OSS uses it to provide a convenient way to map



USING THE OPEN SOUND SYSTEM 179

the sound card’s DMA buffer into a program’s address space. We will leave a full
discussion of mmap to other sources, but its use in this case is fairly
straightforward.

With a DMA buffer in place and the card properly configured, the program
“triggers” the sound card’s DMA by toggling the driver’s PCM output enable
bit. The trigger feature is designed to allow applications to gain precise control
over playback timing, but it doubles as a way to set off DMA transfers. Once the
DMA controller has been started, it cannot be stopped without shutting down
OSS. This is a flaw, in my opinion, but it is only a minor issue (to effectively
stop playback, simply fill the buffer with zeroes). After this bit has been cleared
and then reset, the DMA controller (either part of the sound card or a
component of the motherboard’s chipset) will repeatedly loop over the DMA
buffer and send whatever it finds directly to the sound card. To play sound, we
simply have to copy our samples into the DMA buffer.

This is the tricky part. The DMA controller is a separate piece of hardware, and
we have little control over its operation once it has been started. It sweeps across
the DMA buffer at a predictable rate, returning to the start of the buffer when it
reaches the end. We need to make sure that we always keep a fresh set of sample
data in front of the DMA controller’s path. We have chosen a simple method
that seems to work fairly well. The DMA buffer contains several (probably four
or five) fragments of data, each of 1024 bytes. We disregard this organization
and treat the buffer as one chunk. While the DMA controller is busy scanning
the first half of the buffer, we (quickly) fill the second half with new samples.
When the controller crosses the halfway mark, we update the first half of the
buffer. We could reduce latency by dividing the buffer into more sections, but
this should rarely be necessary. When the entire sound clip has been played, our
program unmaps the DMA buffer and shuts down OSS.

In conclusion, direct DMA buffer access provides a powerful tool for squeezing
performance out of OSS, but you should not count on its availability or even
reliable detection. Don’t be surprised if it doesn’t work on any given sound card,
or under different operating systems. The SDL toolkit uses DMA when it can,
but it supports several other methods in case DMA is not supported by the
sound driver.



180 CHAPTER 5. LINUX AUDIO PROGRAMMING

ioctl call Purpose
SNDCTL DSP SETFMT Sets OSS to use a particular sample for-

mat. Takes a pointer to an integer con-
taining an AFMT format constant (defined in
sys/soundcard.h). Changes this integer to
reflect the format that OSS was able to ob-
tain.

SNDCTL DSP CHANNELS Sets the number of channels. Takes a pointer
to an integer containing 1 for mono, 2 for
stereo.

SNDCTL DSP SPEED Sets the sound device’s sampling rate. Takes
a pointer to an integer containing the desired
sampling rate. Changes this integer to reflect
the closest match that OSS could obtain.

SNDCTL DSP SETFRAGMENT Sets the sound driver’s fragment size. Takes
a pointer to an integer. The top 16 bits de-
fine the number of fragments desired, and the
lower 16 bits define the size of each fragment
as a power of two (for instance, a value of 10
would result in a fragment size of 210 = 1024
bytes). There are reasonable limits on the
minimum and maximum number of fragments
and the size of each, and OSS reserves the
right to reject your selection.

SNDCTL DSP GETOSPACE Queries the amount of available buffer space
in the sound driver. Takes a pointer
to an audio buf info structure (defined in
sys/soundcard.h). Fills the structure with
information about the driver’s buffer frag-
ments.

SNDCTL DSP GETCAPS Queries the sound driver’s capabilities. Takes
a pointer to an integer. Sets the integer to a
bitmask of supported DSP CAP func functions
(defined in sys/soundcard.h).

Table 5–1: A few important OSS ioctl calls



PLAYING SOUND WITH ALSA 181

Playing Sound with ALSA

ALSA is a well-designed API, but unfortunately its design is still in progress.
The native ALSA API seems to change slightly with each major release, and so
it’s somewhat of a moving target. Therefore, we will describe the release that is
current at the time of this writing, the 0.5.x series. For those who are frustrated
with ALSA’s evolution, remember that OSS provides a somewhat ugly but
consistent API that is ready now, while the ALSA project is trying to decide
how to do it right (and from what I’ve seen, they are doing an excellent job).
The finished product (that is, when the team stops changing the interface) will
be much more polished and more pleasant to use than OSS. For the time being,
ALSA’s OSS emulation module seems to work well enough, and the adventurous
might enjoy using its API directly.

With that in mind, let’s look at the Multi-Play ALSA backend.

Code Listing 5–4 (mp-alsa.c)

/* An ALSA backend for Multi-Play. */

#include <stdio.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/time.h>
#include <sys/asoundlib.h>

/* Plays a sound with the Advanced Linux Sound Architecture, ALSA.
Returns 0 on successful playback, nonzero on error. */

int PlayerALSA(u_int8_t *samples, int bits, int channels, int rate, int bytes)
{

int i;

/* ALSA is a bit verbose, and it tends to require
lots of structures. */

int alsa_device, alsa_card;
char *alsa_card_name;
snd_ctl_t *alsa_ctl;
snd_ctl_hw_info_t alsa_hw_info;
snd_pcm_t *alsa_pcm;
snd_pcm_channel_params_t alsa_params;



182 CHAPTER 5. LINUX AUDIO PROGRAMMING

/* Playback status variables. */
int position;

/* Scan for ALSA cards and devices. Each card has an integer ID
less than snd_cards(). We scan for the first available card
in order to demonstrate ALSA’s organization, but we could
find the default card and PCM device numbers immediately with
the snd_defaults_pcm_card(), snd_defaults_pcm_device() functions. */

alsa_pcm = NULL;
for (alsa_card = 0; alsa_card < snd_cards(); alsa_card++) {

/* Try to open this card. */
if (snd_ctl_open(&alsa_ctl,alsa_card) < 0)

continue;

/* Retrieve card info. */
if (snd_ctl_hw_info(alsa_ctl,&alsa_hw_info) < 0) {

snd_ctl_close(alsa_ctl);
continue;

};

snd_ctl_close(alsa_ctl);

/* Find a suitable device on this card. */
alsa_pcm = NULL;
for (alsa_device = 0; alsa_device < alsa_hw_info.pcmdevs; alsa_device++) {

if (snd_pcm_open(&alsa_pcm,alsa_card,
alsa_device,SND_PCM_OPEN_PLAYBACK) < 0) continue;

/* Device successfully opened. */
break;

};

if (alsa_pcm != NULL) break;
};

/* Were we able to open a device? */
if (alsa_card == snd_cards()) {

printf("ALSA player: unable to find a configured device.\n");
return -1;

};



PLAYING SOUND WITH ALSA 183

/* Print info about the device. */
if (snd_card_get_longname(alsa_card,&alsa_card_name) < 0)

alsa_card_name = "(unknown)";
printf("ALSA player: using device %i:%i (%s)\n",alsa_card,alsa_device,alsa_card_name);

/* Configure the device for the loaded sound data. */
memset(&alsa_params, 0, sizeof (alsa_params));
alsa_params.channel = SND_PCM_CHANNEL_PLAYBACK;

/* Use stream mode. In this mode, we don’t have to give ALSA complete blocks;
we can send it data as we get it. Block mode is needed for mmap() functionality.
Unlike OSS, ALSA’s mmap() functionality is quite reliable, and easily accessible
through library functions. We won’t use it here, though; there’s no need. */

alsa_params.mode = SND_PCM_MODE_STREAM;
alsa_params.format.interleave = 1;

/* We’ll assume little endian samples. You may wish to use the data in the GNU
C Library’s endian.h to support other endiannesses. We’re ignoring that case
for simplicity. */

if (bits == 8)
alsa_params.format.format = SND_PCM_SFMT_U8;

else if (bits == 16)
alsa_params.format.format = SND_PCM_SFMT_S16_LE;

else {
printf("ALSA player: invalid sample size.\n");
return -1;

};
alsa_params.format.rate = rate;
alsa_params.format.voices = channels;
alsa_params.start_mode = SND_PCM_START_DATA;
alsa_params.stop_mode = SND_PCM_STOP_ROLLOVER;
alsa_params.buf.block.frag_size = 4096;
alsa_params.buf.block.frags_min = 1;
alsa_params.buf.block.frags_max = 2;

if ((i = snd_pcm_plugin_params(alsa_pcm,&alsa_params)) < 0) {
printf("ALSA player: unable to set parameters.\n");
snd_pcm_close(alsa_pcm);
return -1;

};

if (snd_pcm_plugin_prepare(alsa_pcm, SND_PCM_CHANNEL_PLAYBACK) < 0) {



184 CHAPTER 5. LINUX AUDIO PROGRAMMING

printf("ALSA player: unable to prepare playback.\n");
snd_pcm_close(alsa_pcm);
return -1;

};

/* Feed the sound data to ALSA. */
position = 0;
while (position < bytes) {

int written, blocksize;
int fd;

if (bytes-position < 4096)
blocksize = bytes-position;

else blocksize = 4096;

/* Write to the sound device. */
written = snd_pcm_plugin_write(alsa_pcm, &samples[position], blocksize);

/* If ALSA can’t take any more data right now, it’ll return -EAGAIN.
If this were sound code for a game, we’d probably just contine the
game loop and try to write data the next time around.
In a game, you’d probably also want to put the device in nonblocking
mode (see the snd_pcm_nonblock_mode() function). */

if (written == -EAGAIN) {
/* Waste some time. This keeps us from using 100% CPU. */
usleep(1000);

written = 0;
} else
if (written < 0) {

perror("\nALSA player: error writing to sound device");
snd_pcm_close(alsa_pcm);
return -1;

};

/* Update the position. */
position += written;

/* Print some information. */
WritePlaybackStatus(position, bytes, channels, bits, rate);
printf("\r");
fflush(stdout);



PLAYING SOUND WITH ALSA 185

};

printf("\n");

/* Wait until ALSA’s internal buffers are empty, then stop playback.
This will make sure that the entire sound clip has played. */

snd_pcm_channel_flush(alsa_pcm, SND_PCM_CHANNEL_PLAYBACK);
snd_pcm_close(alsa_pcm);

return 0;
}

ALSA is a bit of a change from OSS. A welcome change, to be certain; it
presents a library-based interface, not a system of semi-intuitive and
inadequately-documented ioctls. ALSA is based on cards and devices, where
a card is simply a piece of sound hardware and a device is a logical piece of
functionality provided by that card (such as PCM sampling or MIDI
sequencing). A card generally encompasses multiple devices. Cards and devices
are numbered, starting with zerov. The first step in writing an ALSA sound
player is to locate a suitable card and device. Our program loops through the
possible cards, from zero to the limit returned by the snd cards function,
attempting to find an available PCM output device on each. If this loop is
successful, the alsa pcm variable will end up pointing to an open PCM playback
device. We could save some work by jumping directly to the card and device
suggested by the snd defaults pcm card and snd defaults pcm device
functions, but the loop does a better job of illustrating ALSA’s organization.

ALSA devices are marked with states. A PCM playback device can be not
ready (uninitialized), ready (initialized, but not capable of processing sound),
prepared (ready to start immediately upon receiving audio data), running
(actually playing back samples), underrun (in limbo because samples were not
received quickly enough), or paused. A PCM device moves to the ready state
when it receives its initial configuration data, and to the prepared state when
snd pcm playback prepare is called. We must put the ALSA device into the
prepared state before we can play samples. This system of states might seem like
overkill, but they make ALSA programming much more predictable than OSS
programming. Given a particular state, you can always expect a certain set of
responses from the sound device. The distinction between “prepared” and
“ready” allows you to set up an ALSA device to start playback with almost no
advance notice. This is hardly an issue for games, but it could be important for



186 CHAPTER 5. LINUX AUDIO PROGRAMMING

other applications.

After opening a PCM output device, our player clears a
snd pcm channel params structure and fills in the relevant pieces of information
about our sound data. It is important to zero this memory first; some fields in
the structure are only considered valid if a certain bit is set, and we generally
don’t want to mess with these. Take note of the mode, start mode, and
stop mode fields. mode should be either SND PCM MODE STREAM or
SND PCM MODE BLOCK. The block mode can allow for higher performance, but it
requires all of our data transfers to be even multiples of the fragment size (4096
bytes in this case), and it disallows the use of the plugin functions (see footnote).
That really wouldn’t be a problem; if we ran out of samples, we could just send
zeroes (for silence), and we could handle format conversions by hand. Block
mode also allows you to use snd pcm mmap, which is nice, but overkill for our
example. The start and stop modes tell ALSA when to start playback and how
to handle underrun conditions. Our player uses SND PCM START DATA to instruct
ALSA to begin playback as soon as we send the first chunk of data, and
SND PCM STOP ROLLOVER to ask ALSA not to stop playback if it runs out of data
(instead, it will loop over the data it already has until it gets more). In theory,
underruns should never happen unless the application can’t keep up with the
sound card (which is unlikely). When all of the required information has been set
in the structure, our program sends it to ALSA with snd pcm plugin params.

Finally, our program shifts the sound device into the prepared state with the
snd pcm plugin prepare1 function and begins writing PCM data. We detect
errors from snd pcm plugin write, and we handle the EAGAIN condition
separately. This error occurs when the device is (probably) not in a state of
error, but unable to respond immediately. This can happen if it’s not ready for
more data. If this happens, we waste a bit of time with usleep and try again. If
you remove the usleep, the program will probably eat up a lot of CPU in a tight
loop. In a game programming situation you’d probably want to use this time to
do useful work (for instance, you might continue the game loop and try audio
write again on another pass).

1The “plugin” functions we’ve used here provide a few advantages over the normal ALSA
functions. In particular, they can handle format conversions when the underlying hardware
would normally be incapable of using a particular sample format. This would allow you to, say,
use 16-bit samples with an 8-bit sound device. This comes at the expense of direct buffer access
— you can’t use ALSA’s mmap functionality with the plugin functions. Don’t be fooled by the
name; the plugin functions are part of the ALSA library, and they don’t require any extra work
on your part.



SHARING THE SOUND CARD WITH ESD 187

When our player has finished writing samples to the ALSA device, it calls
snd pcm channel flush to make sure the output buffer has finished playing, and
then closes the device with the snd pcm close function.

ALSA is an enormously powerful audio system, and we’ve only scratched the
surface of its capabilities in this simple player. It offers a lot to game
programmers, but unfortunately it’s not as universally supported as OSS just
yet. With any luck, this API will catch on and we can be free of OSS’s lousy
interface forever2.

Sharing the Sound Card with ESD

OSS and ALSA share a serious weakness: they allow the sound card to be used
by only one application at a time. This can be quite an annoyance, since many
users like to listen to MP3 music or streaming radio while they use the
computer, and these compete with other applications for the sound card. Some
third-party OSS drivers (such as the Sound Blaster Live driver from Creative)
allow multiple applications to share the sound device, but the 4Front
Technologies drivers don’t generally permit this.

The Enlightened Sound Daemon (also known as ESD or EsounD) is a
network-enabled realtime sound mixer. Any number of ESD-capable applications
can share the computer’s sound hardware seamlessly; ESD mixes their sound
streams together, just as we mixed several samples together in the SDL sound
demo. ESD is a server-based sound toolkit, and a running ESD server can even
accept connections from remote machines. The ESD interface is a bit less flexible
than the low-level OSS interface (for instance, it doesn’t allow direct access to a
sound card’s DMA buffers), but it provides the basic functionality needed to
select sample formats and send samples to the card. ESD also has the ability to
“cache” samples, so that they can be played back with a single command. ESD
does not directly interface with the system’s sound hardware. It uses whichever
low-level sound API happens to be present (OSS or ALSA).

Unfortunately, ESD has a serious latency problem; it is common for ESD’s

2In an ideal world, 4Front Techonologies would throw its full support behind the ALSA project
and start writing commercial ALSA drivers instead of OSS drivers. Competition is good, but
there’s no reason competition can’t take place within a single, well-designed API. Alas, this is
unlikely to happen, but it would be great for Linux.



188 CHAPTER 5. LINUX AUDIO PROGRAMMING

latency to weigh in at over half a second, which is entirely unacceptable for most
games. There is no simple way to reduce this latency. ESD uses a fixed buffer
(currently 4,096 bytes, specified by the ESD BUF SIZE constant), and this cannot
be changed. Even if the buffer size could be reduced, ESD would still experience
high latency due to its internal mixing and network overhead. ESD is therefore
not well suited for gaming; its real use is for playing background music without
obstructing the audio device. Nonetheless, several audio toolkits such as OpenAL
and the SDL audio subsystem provide optional support for ESD. We will discuss
a possible workaround for the latency problem after the next example.

The next player plays sound through a local ESD connection. It would be trivial
to modify the code to connect to ESD servers on remote machines; the
programming interface is the same. If you play around with this code a bit,
you’ll notice the extreme latency inherent in ESD.

Code Listing 5–5 (mp-esd.c)

/* Sound playback with ESD. */

#include <stdio.h>
#include <esd.h>

/* Plays a sound with the Enlightened Sound Daemon (ESD).
Returns 0 on successful playback, nonzero on error. */

int PlayerESD(u_int8_t *samples, int bits, int channels, int rate, int bytes)
{

/* ESD data socket. */
int esd = 0;

int esd_flags;

/* Playback status variables. */
int position;

/* Select the appropriate ESD flags. */
switch (channels) {

case 1: esd_flags = ESD_MONO; break;
case 2: esd_flags = ESD_STEREO; break;
default: printf("ESD player: unknown number of channels.\n");

return -1;
};



SHARING THE SOUND CARD WITH ESD 189

switch (bits) {
/* ESD sometimes has problems with 8-bit sound. */
case 8: esd_flags |= ESD_BITS8; break;
case 16: esd_flags |= ESD_BITS16; break;
default: printf("ESD player: unknown sample size.\n");

return -1;
};

/* Open ESD with the desired parameters. */
esd = esd_play_stream(esd_flags | ESD_PLAY | ESD_STREAM, rate,

NULL ,"PlayerESD");

if (esd < 0) {
printf("ESD player: unable to connect to ESD.\n");
return -1;

};

/* Feed the sound data to ESD. */
position = 0;
while (position < bytes) {

int written, blocksize;

/* ESD has a fixed buffer size. */
if (bytes-position < ESD_BUF_SIZE)

blocksize = bytes-position;
else blocksize = ESD_BUF_SIZE;

/* Write to the sound device. */
written = write(esd, &samples[position], blocksize);
if (written == -1) {

perror("\nESD player: error writing to sound device");
close(esd);
return -1;

};

/* Update the position. */
position += written;

/* Print some information. */
WritePlaybackStatus(position, bytes, channels, bits, rate);
printf("\r");
fflush(stdout);



190 CHAPTER 5. LINUX AUDIO PROGRAMMING

};

printf("\n");
close(esd);

return 0;
}

Having already battled our way through OSS’s slightly testy interface, ESD is no
surprise. Our modified player opens a connection to the ESD server with
esd play stream, then simply feeds samples to ESD through the returned socket
(for more about sockets, see the later chapter on network programming chapter;
for now, think of a socket as a simple file handle). When it is finished playing the
sound clip, it closes the socket with esd close. This is very similar to our first
OSS programming example. You will notice that the sound continues playing up
to a full second after the program exits, due to ESD’s internal buffering.
Remember that ESD is a server that your program communicates with through
a network socket; the ESD server does not shut down when your program exits.

As we briefly mentioned, ESD allows applications to cache samples in the server
itself, so that they can be quickly retrieved and played without actually
writeing them again. This is convenient, since it delegates the task of mixing to
ESD and reduces latency considerably. It would be a markedly bad idea to
upload hundreds of large samples into the ESD server (since they remain
resident in memory until they are deleted), but there should be no problem with
uploading a set of reasonably small sound clips for the duration of a game. As
useful as this may sound, however, there is a problem: it is not possible to adjust
the volume of a sound clip once it has been uploaded. Games frequently vary the
volume of sounds to indicate their relative distance from the listener’s position,
and this is not possible with ESD sample caching. Nonetheless, this limitation
may not be an issue for some games, and sample caching may provide a practical
way to avoid extreme latency.

The ESD library actually supports two types of server connections. We have
already seen the first type, which is used for sound playback. Most ESD
applications only need this type of connection. The second type provides a
channel for controlling the server. After obtaining a control connection handle
with esd open sound, an application may lock the ESD daemon (block all other
clients from connecting), temporarily shut down ESD’s sound playback



SHARING THE SOUND CARD WITH ESD 191

capabilities (and release the /dev/dsp device), or manage the sample cache.
Control connections should be closed with esd close when they are no longer
needed.

To upload a sample to ESD’s cache, establish a control connection and call
esd sample cache. This will return an integer cache ID which may be used to
reference the sound clip in the future. Upload the complete sample with write,
making sure to check write’s return values to verify that the entire sample has
been uploaded. Finally, call esd confirm sample cache with the clip’s ID to
check that ESD received all of the data. After the sample has been uploaded,
you may play it by calling esd sample play with the sample’s ID. A program
should explicitly delete all of its cached samples before it exits by calling
esd sample free with each sample ID.

In conclusion, ESD is a useful but somewhat flawed sound interface, and you
should support it if you can do so without giving yourself a headache. Many
games support ESD with the realization that its latency will be annoying, but
that some users will want to use it anyway.

Function esd play stream(flags, rate, host, progname)
Synopsis Opens a connection to a local or remote ESD server and

prepares to play an audio stream.
Returns Open file descriptor connected to the ESD server. This might

be a pipe or a socket. Returns ¡ 0 on failure.
Params flags — ESD playback flags. See Listing 5–5 for a typical

set of flags.
rate — Playback sampling rate.
host — Hostname of a remote ESD server, or NULL to con-
nect to a local server.
progname — Name of this program (to appear in ESD’s client
list).

Function esd close(fd)
Synopsis Closes an ESD connection.
Params fd — File descriptor to close.



192 CHAPTER 5. LINUX AUDIO PROGRAMMING

Building Multi-Play

We’ve seen how Multi-Play handles its output, and it’s now time to flesh out the
application. Multi-Play is simple. It comes with almost no frills other than the
ability to play sound in five different ways. Without further ado, here is the
main Multi-Play code:

Code Listing 5–6 (multi-play.c)

/* Multi-Play’s main file. */

/* Selectively enable parts of the player at compile time.
For instance, to compile without OSS support, pass -DDISABLE_OSS
on the gcc command line. */

#ifndef DISABLE_OSS
# define ENABLE_OSS
#endif

#ifndef DISABLE_ESD
# define ENABLE_ESD
#endif

#ifndef DISABLE_ALSA
# define ENABLE_ALSA
#endif

#include <stdio.h>
#include <sndfile.h>
#include <endian.h>

/* sys/types.h provides convenient typedefs, such as int8_t. */
#include <sys/types.h>

/* ESD header. */
#ifdef ENABLE_ESD
# include <esd.h>
#endif

/* ALSA header. */
#ifdef ENABLE_ALSA
# include <sys/asoundlib.h>
#endif



BUILDING MULTI-PLAY 193

/* Prototypes. */
void WritePlaybackStatus(int position, int total, int channels, int bits, int rate);
int LoadSoundFile(char *filename, int *rate, int *channels,

int *bits, u_int8_t **buf, int *buflen);

int PlayerOSS(u_int8_t *samples, int bits, int channels, int rate, int bytes);
int PlayerOSS2(u_int8_t *samples, int bits, int channels, int rate, int bytes);
int PlayerDMA(u_int8_t *samples, int bits, int channels, int rate, int bytes);
int PlayerESD(u_int8_t *samples, int bits, int channels, int rate, int bytes);
int PlayerALSA(u_int8_t *samples, int bits, int channels, int rate, int bytes);

/* The loader code. */
#include "mp-loadsound.c"

/* Optionally include the OSS player code. */
#ifdef ENABLE_OSS
# include "mp-oss.c"
# include "mp-oss2.c"
# include "mp-dma.c"
#endif

/* Optionally include the ESD player code. */
#ifdef ENABLE_ESD
# include "mp-esd.c"
#endif

/* Optionally include the ALSA player code. */
#ifdef ENABLE_ALSA
# include "mp-alsa.c"
#endif

/* Writes a playback status line, with no \n.
This is purely for aesthetic value. */

void WritePlaybackStatus(int position, int total, int channels,
int bits, int rate)

{
int i;

printf("[");
for (i = 0; i < (10*position/total); i++) printf("-");
printf("|");



194 CHAPTER 5. LINUX AUDIO PROGRAMMING

for (; i < 10; i++) printf("-");
printf("] %3i%% ", (100*position/total));
printf("%2i-bit %s @ %i KHz",

bits,
(channels == 1 ? "mono " : "stereo"),
rate/1000);

}

/* Prints a summary of command-line usage. */
void usage(char *progname)
{

printf("Usage: %s player filenames\n", progname);
printf(" Available players are:\n");

#ifdef ENABLE_OSS
printf(" --oss Normal OSS output, somewhat latent.\n");
printf(" --oss2 Normal OSS output, less latency.\n");
printf(" --dma Direct DMA access with OSS.\n");

#endif
#ifdef ENABLE_ESD

printf(" --esd Output to ESD.\n");
#endif
#ifdef ENABLE_ALSA

printf(" --alsa Normal ALSA output.\n");
#endif
}

/* The main player program. */
int main(int argc, char *argv[])
{

char *filename;
int arg;
enum { OSS, OSS2, OSSDMA, ESD, ALSA } player;

/* Variables for the loaded sound. */
u_int8_t *samples = NULL;
int sample_size;
int sample_rate;
int sample_bytes;
int num_channels;

if (argc < 3) {
usage(argv[0]);
return 1;



BUILDING MULTI-PLAY 195

};

/* Decide which player to use. */
if (0) { }

#ifdef ENABLE_OSS
else if (!strcmp(argv[1],"--oss"))

player = OSS;
else if (!strcmp(argv[1],"--oss2"))

player = OSS2;
else if (!strcmp(argv[1],"--dma"))

player = OSSDMA;
#endif
#ifdef ENABLE_ESD

else if (!strcmp(argv[1],"--esd"))
player = ESD;

#endif
#ifdef ENABLE_ALSA

else if (!strcmp(argv[1],"--alsa"))
player = ALSA;

#endif
else {

usage(argv[0]);
return 1;

};

/* Treat the rest of the command line as filenames to play. */
for (arg = 2; arg < argc; arg++) {

filename = argv[arg];

/* Load the sound data. */
if (LoadSoundFile(filename, &sample_rate, &num_channels,

&sample_size, &samples, &sample_bytes) != 0) {
printf("Skipping ’%s’.\n", filename);
continue;

};

switch (player) {
#ifdef ENABLE_OSS

case OSS:
if (PlayerOSS(samples, sample_size, num_channels,

sample_rate, sample_bytes) != 0)
printf("Sound playback with OSS failed.\n");

break;



196 CHAPTER 5. LINUX AUDIO PROGRAMMING

case OSS2:
if (PlayerOSS2(samples, sample_size, num_channels,

sample_rate, sample_bytes) != 0)
printf("Sound playback with OSS2 failed.\n");

break;

case OSSDMA:
if (PlayerDMA(samples, sample_size, num_channels,

sample_rate, sample_bytes) != 0)
printf("Sound playback with DMA failed.\n");

break;
#endif
#ifdef ENABLE_ESD

case ESD:
if (PlayerESD(samples, sample_size, num_channels,

sample_rate, sample_bytes) != 0)
printf("Sound playback with ESD failed.\n");

break;
#endif
#ifdef ENABLE_ALSA

case ALSA:
if (PlayerALSA(samples, sample_size, num_channels,

sample_rate, sample_bytes) != 0)
printf("Sound playback with ALSA failed.\n");

break;
#endif

default:
printf("Bug!\n");
return 1;

};

free(samples);
};

return 0;

}

The main file uses the fairly common technique of selective compilation to allow
the various backends to be individually disabled. This is useful, for instance, if
you wish to build the player on a system with OSS but not ALSA or ESD. In
this case, you would compile the player with -DDISABLE ALSA -DDISABLE ESD



BUILDING MULTI-PLAY 197

(the -D option, as you may recall, adds the equivalent of a preprocessor #define
to the top of your program). The player backends are simply #included. This is
an acceptable way to assemble a small project, but a larger project would more
appropriately use separate header and object files for each module.

Multi-Play requires at least two command line options: the name of a player
backend, and a list of filenames to play. The player backends are selected with
--oss (the simple OSS player), --oss2 (the low-latency version of the OSS
player), --dma (the DMA-enabled player), --alsa (the ALSA player), and --esd
(the ESD player). The rest of the command line arguments are treated as
filenames and are player in sequence.

Compiling Multi-Play is trivial, but it requires several libraries to link properly.
In addition to the libsndfile.so shared library, Multi-Play needs libraries for
ALSA and ESD (if it is compiled with support for these players). The following
command builds Multi-Play on my particular configuration (Linux, with a
working installations of ALSA and ESD):

$ gcc multi-play.c -o multi-play -lasound -lesd -lsndfile

Or, to build without ALSA support,

$ gcc -DDISABLE ALSA multi-play.c -o multi-play -lesd -lsndfile

Since these files can be in various places on different Linux configurations, it
might be worthwhile to set up a GNU Autoconf script for this program. We’ll
talk about the capabilities of Autoconf in Chapter 10, but we’ll leave a full
discussion to other sources.

When Multi-Play is compiled, give it a spin. It can handle just about any
common (uncompressed) audio file format. Multi-Play’s main limitation is that
it cannot stream audio data directly from disk, so the entire sound file must be
loaded into memory. Streaming might make for an interesting project. This
concludes our discussion of Multi-Play, since our main coding project in this
book is Penguin Warrior.



198 CHAPTER 5. LINUX AUDIO PROGRAMMING

Environmental Audio with OpenAL

OpenAL (AL for short) is a portable environmental audio library. In addition to
interacting with the sound card (most likely through another audio API, such as
OSS), it provides the ability to simulate real-world physics on audio, including
the Doppler shift (change in apparent frequency due to relative motion) and
attenuation (loss in intensity over distance). These effects can add a great deal
of depth and realism to game environments. OpenAL is designed to be hardware
acclerated on multiple platforms by multiple vendors, and as such it is a
completely open standard (under the control of a review board very similar to
that of OpenGL). OpenAL is free to download, modify, and use in any type of
application, subject to the terms of the GNU LGPL. Although OpenAL is still
evolving rapidly, it is usable right now on Linux, Windows, and several other
platforms.

Not everything needs environmental audio, and sometimes it’s a better idea to
stick with SDL’s audio system, OSS, or ALSA. For instance, it would probably
be silly to use OpenAL for a sound file player or a recording program. However,
OpenAL is flexible enough to handle just about any environmental audio
situation as well as basic things like background music, so it’s well suited to
serve as a general purpose audio library for games. Later in this chapter we’ll
use OpenAL to add environmental audio and music support to Penguin Warrior.
First, let’s talk out about the basic terminology and philosophy of OpenAL.

OpenAL Basics

OpenAL is an audio rendering library (as opposed to a simple buffer playback
system like OSS). AL plays sound as it would be heard from a certain point, the
listener, in a 3D world. Sounds comes from points in space called sources, each
of which can be stationary or moving. Each source is attached to a buffer, a
chunk of raw PCM sound data that describes what the source sounds like when
the listener is right on top of it. Multiple sources can share the same buffer (just
as multiple brick walls can use the same texture in a game like Quake), but it’s
not possible to assign multiple buffers to the same source3. Sources, buffers, and
the listener are all considered objects, and they’re all easy to work with after

3This makes sense – a source is supposed to represent a particular noise coming from a certain
point in space. If you want multiple sounds coming from the same place, put multiple sources at
that position.



ENVIRONMENTAL AUDIO WITH OPENAL 199

Figure 5–1: An OpenAL world

you know which properties (position, velocity, and so forth) are relevant to each
type.

Object properties are the key to getting along with OpenAL. Rather than
providing separate functions to set each possible property of a given object,
OpenAL defines symbolic names for each property an object can have and
supplies a few generic functions for accessing them by name. Instead of functions
like alSetSourcePosition and alSetSourceOrientation, for instance, AL
provides a single alSourcefv function for modifying vector properties of source
objects. alSourcefv(obj, AL POSITION, pos) would set the position of the
source object obj to the vector in pos (a vector in this case is just an array of
three ALfloat values). The OpenAL specification lists all of the possible
properties each type of object can have, and you can find some of the more



200 CHAPTER 5. LINUX AUDIO PROGRAMMING

important ones in the Penguin Warrior code later in this chapter.

This looks familiar. . .

If you think OpenAL’s design is a cheap knockoff of the OpenGL 3D
graphics library, you’re right! OpenGL is an amazingly clean and well
designed API with a wide following, and OpenAL’s designers thought
they’d do well to follow its style. This makes a lot of sense, especially
since OpenAL is also used to provide audio support in OpenGL
applications. OpenGL-oriented data structures tend to carry over to
OpenAL without much trouble.
In particular, OpenAL uses OpenGL’s peculiar function naming scheme;
for instance, a function call that sets the AL BAR property of a Foo-type
object to the first few entries of an array of floats would look something
like alFoofv(foo id, AL BAR, position). In this case foo id is the
“name” (integer identifier) of the object to be modified, AL BAR is the
property of the object to modify, and fv signifies that the function deals
with a vector of floats. OpenAL function names are always prefixed
with al or AL.

Once you understand the basics, OpenAL is even simpler to use than OSS. First
you need a device and a context. A device represents an initialized sound card
(with possible hardware acceleration features), and a context is piece of data
that represents OpenAL’s current state. Each context represents one listener and
multiple sources, and all commands dealing with these objects affect the current
context. Since nearly everything relevant to OpenAL is stored in the current
context, it’s possible to maintain several contexts and swap them out as you
please (but this probably won’t be useful in most cases). Only one context can
be “current” at a time.

The alcOpenDevice function opens an audio device and prepares it for
OpenAL’s use. It typically does this by looking for a supported audio interface
(OSS, ALSA, or ESD) and performing whatever initialization steps the interface
requires. This function takes a single argument, a device specifier. In most cases
you can set this to NULL; it’s only useful if you want to request a particular
output device (and doing so is a quick way to kill portability). alcOpenDevice
returns NULL if it can’t find a usable device, or a pointer to a device structure if



ENVIRONMENTAL AUDIO WITH OPENAL 201

all goes well. If you can’t open a device, don’t bother with any more OpenAL
calls; nearly everything requires a valid context, and a context requires a valid
audio device.

Function alcOpenDevice(device)
Synopsis Opens an audio device suitable for OpenAL output.
Returns Pointer to an ALCdevice structure on success, NULL on fail-

ure. On failure, you can retrieve error information with
alcGetError.

Params device — Platform-dependent device specifier. This should
be NULL unless you have a good reason to use something else.

Function alcCloseDevice(device)
Synopsis Closes a device opened by a previous call to alcOpenDevice.

Never close a device that is currently in use; destroy any
context that is using it first.

Params device — Pointer to the ALCdevice to close.

Once you’ve obtained a usable device, you should create a context.
alcCreateContext creates an AL context and associates it with a particular
audio device. It takes two parameters: an open device, and a list of attributes.
The attributes let you request a particular sampling frequency or refresh rate; in
most cases, NULL is a sufficient answer. Even with a valid audio device,
alcCreateContext could fail, so be sure to check for errors. Once you have an
OpenAL context, you’re in business. It’s a good idea to explicitly set your new
context as “current” with alcMakeContextCurrent. (It’s possible, but not
common, to use multiple contexts within a single application; in this case, only
one will be current at any given time, and you would need to switch between
them manually.)



202 CHAPTER 5. LINUX AUDIO PROGRAMMING

Function alcCreateContext(device, params)
Synopsis Creates an OpenAL context.
Returns A valid OpenAL context (as an ALvoid pointer) on success,

NULL on failure. On failure, you can retrieve error information
with alcGetError.

Params device — Pointer to a valid ALCdevice.
params — Pointer to an array of configuration flags, as de-
scribed in the OpenAL specification. NULL is usually sufficient
(OpenAL will pick the best sampling rate and format it can
find, so there’s little need to interfere).

Function alcMakeContextCurrent(context)
Synopsis Makes a context current. There can only be one current

context at a time, and you must set a current context before
you make any non-alc OpenAL calls. This is not likely to
fail, but you can check for errors with alcGetError() !=
ALC NO ERROR.

Params context — Pointer to the context to make current.

Function alcDestroyContext(context)
Synopsis Destroys an OpenAL context. It’s a good idea to do this

before your program exits. Never destroy the current context;
call alcMakeContextCurrent(NULL) first.

Params context — Pointer to the context to destroy.

With a context in place, you can add sources and buffers, configure the listener,
and start playback. Once AL is in motion, you can add, remove, or modify
objects at any time; whatever changes you make will affect the outgoing audio
stream almost immediately. OpenAL runs continuously in the background and
requires no attention unless you decide to change something in its 3D world.
Sources and the listener are specific to a particular context, and changes you
make to these types of objects won’t affect other contexts. Buffers don’t belong
to any particular AL context, but you need to have a context before you can
create them (since AL uses the current context for error reporting). It follows
that you need to destroy all of your buffers before you delete the last context.
You should be wary of doing anything with OpenAL without a valid context.



ENVIRONMENTAL AUDIO WITH OPENAL 203

Function alGenSources(count, buffer)
Synopsis Creates count sources in the current AL context and stores

their names (integer id’s) in buffer. This is unlikely to
fail, but you can test for errors with alGetError() !=
AL NO ERROR. It’s not necessary for a program to clean up its
sources before it exits (destroying the context does that), but
you can do this with the alDeleteSources function (which
takes identical parameters).

Params count — Number of sources to generate.
buffer — Pointer to an ALuint buffer big enough to hold
the generated source names.

Function alGenBuffers(count, buffer)
Synopsis Generates count buffers. Buffers are not tied to any particu-

lar AL context, but alGenBuffers must be an active context
for error handling purposes. This is not likely to fail, but as
usual you can test for errors with the alGetError function.
You can delete buffers with the alDeleteBuffers function
(which takes identical parameters).

Params count — Number of buffers to generate.
buffer — Pointer to an ALuint buffer big enough to hold
the generated buffer names.

Function alSourcePlay(sourceid)
Synopsis Starts playback on a source. Uses the buffer assigned to the

source with the AL BUFFER property. If the AL LOOPING at-
tribute of the source is nonzero, playback will never stop,
otherwise it will stop when the buffer has been played once.

Params sourceid — Name of the source in the current context to
play.

Function alSourceStop(sourceid)
Synopsis Stops playback on a source immediately.
Params sourceid — Name of the source in the current context to

stop.



204 CHAPTER 5. LINUX AUDIO PROGRAMMING

Function alBufferData(bufferid, format, data, size, freq)
Synopsis Sets a buffer’s PCM sample data. This is akin to sending

texture data to OpenGL.
Params bufferid — Name of the buffer to modify.

format — Format of the sample data. Valid formats are
AL FORMAT MONO8, AL FORMAT MONO16, AL FORMAT STEREO8,
and AL FORMAT STEREO16. AL converts between formats as
necessary; there’s no need to supply data to OpenAL in a
particular format.
data — ALvoid pointer to the raw sample data. AL copies
this data into its own buffer; you may free this pointer im-
mediately after the alBufferData call.
size — Size of the sample data, in bytes.

Now the we know a bit about the API and its capabilities, let’s put OpenAL to
work as a sound engine for Penguin Warrior.

Adding Environmental Audio to Penguin Warrior

How can Penguin Warrior take advantage of environmental audio? Well, right
now it’s pretty hard to navigate in the game world. Locating the opponent ship
can be quite an annoyance, since there’s currently no radar or direction pointer.
The opponent could be anywhere, and the only way to find him, her, or it is to
fly around randomly until you make visual contact. We can make the game a lot
more interesting by using OpenAL to simulate the opponent’s engine noise and
weapon sounds4. To do this, of course, we’d place the listener at the player’s
position and orientation in the world, place a source on top of the opponent ship,
and attach this source to a buffer that sounds something like an engine. To
simulate weapon sounds, we would create another source on top of the opponent
and select appropriate buffers for the weapon. Simple? Yes. Effective? OpenAL
does an amazing job5.

4Sound doesn’t travel in space, but neither do highly maneuverable ships with curved wings
and laser cannons. At least not yet.

5OpenAL’s filtering and output is reasonably solid, but some of its effects can produce strange
results on low-end sound hardware. Penguin Warrior’s environmental audio works quite well on
my primary computer (which has an Ensoniq ES1373 card), but Doppler shifted audio sounds
awful on my laptop (which has an integrated Yamaha sound chip and tiny speakers). OpenAL
can add a lot to a game, but some players might appreciate an option for disabling advanced
environmental effects.



ENVIRONMENTAL AUDIO WITH OPENAL 205

Figure 5–2: Penguin Warrior rendered in 3D space.

Source Files

We’ll add the source files audio.c, audio.h, music.c, and music.h to
Penguin Warrior in this chapter. In addition, we’ll now need to link the
game against libsndfile, libopenal, and libvorbis (-lsndfile -lopenal
-lvorbis). To compile this chapter’s version of Penguin Warrior, you’ll
need a recent copy of OpenAL from http://www.openal.org, as well
as the Vorbis audio compression library from http://www.vorbis.com.
We’ll discuss the Vorbis code later in this chapter; for now, we’ll
concentrate on the OpenAL side of things.
In addition to the main work in audio.c, we’ll make a few simple
modifications to main.c and resources.c. These should be easy to
spot and simple to understand.
You can find this chapter’s Penguin Warrior code in the pw-ch5/
subdirectory of the source archive. You’ll also need a recent copy of the
OpenAL library, which you can get from http://www.openal.org.



206 CHAPTER 5. LINUX AUDIO PROGRAMMING

Code Listing 5–7 (audio.c)

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include "audio.h"
#include "resources.h"

/* Include the OpenAL headers. */
#include <AL/al.h>
#include <AL/alc.h>

/* We’ll set this flag to 1 after audio has been successfully initialized. */
int audio_enabled = 0;

/* Our OpenAL context. This is just like an OpenGL context, if you’re familiar
with GL’s workings. A context represents a combination of a particular
output device, a sampling frequency, and so on. */

ALvoid *audio_context = NULL;

/* An output device. We’ll set this to AL’s default in InitAudio(). */
ALCdevice *audio_device = NULL;

/* Our sources. Sources are objects in 3D space that emit sound.
We’re ignoring the fact that there’s no sound in space. */

static ALuint opponent_engine_source;
static ALuint opponent_phaser_source;
/* There is no player engine source; see note in StartAudio below. */
static ALuint player_phaser_source;

void InitAudio()
{

int err;

/* Create a context with whatever settings are available.
We could replace NULL with a list of parameters. See the
OpenAL spec for a current list.

We use alcGetError instead of alGetError for error detection.
This is because error conditions are stored within contexts,
and it’s pretty meaningless to retrieve an error code from
something that does not yet exist. */

audio_device = alcOpenDevice(NULL);



ENVIRONMENTAL AUDIO WITH OPENAL 207

if (audio_device == NULL)
fprintf(stderr, "Warning: NULL device.\n");

else
fprintf(stderr, "Got a device.\n");

audio_context = alcCreateContext(audio_device, NULL);

err = alcGetError();
if (err != ALC_NO_ERROR || audio_context == NULL) {

fprintf(stderr, "Unable to create an OpenAL context (%s). Audio disabled.\n", alGetString(err));
return;

};

/* Make sure we have a chance to clean up. */
atexit(CleanupAudio);

/* Now make the context current. The current context is the subject
of all OpenAL API calls. Some calls will even segfault if there isn’t
a valid current context. */

alcMakeContextCurrent(audio_context);
if (alcGetError() != ALC_NO_ERROR) {

fprintf(stderr, "Unable to make OpenAL context current. Audio disabled.\n");
goto error_cleanup;

};

/* Good. Now create some sources (things that make noise). These will be
given buffers later. Sources don’t do anything until you associate
them with buffers (which contain PCM sound data). */

alGenSources(1, &opponent_engine_source);
alGenSources(1, &opponent_phaser_source);
alGenSources(1, &player_phaser_source);
if (alGetError() != AL_NO_ERROR) {

fprintf(stderr, "Unable to allocate audio sources. Audio disabled.\n");
goto error_cleanup;

};

/* Set a reasonable distance scale (for attenuation). This is important because
it allows us to define our own units for space and time. */

alDistanceScale(50.0);

/* Likewise, set the reference velocity for the Doppler effect. */
alDopplerVelocity(50.0);

/* Ready to go. */



208 CHAPTER 5. LINUX AUDIO PROGRAMMING

audio_enabled = 1;
printf("Audio enabled. OpenAL information:\n");
printf(" Version: %s\n", alGetString(AL_VERSION));
printf(" Renderer: %s\n", alGetString(AL_RENDERER));
printf(" Vendor: %s\n", alGetString(AL_VENDOR));
printf(" Extensions: %s\n", alGetString(AL_EXTENSIONS));

return;

/* Invoked on error. Cleans up the context. */
error_cleanup:

alcMakeContextCurrent(NULL);
alcDestroyContext(audio_context);

}

void CleanupAudio()
{

/* If OpenAL is initialized, clean up. */
if (audio_enabled) {

/* Never try to destroy an active context. */
alcMakeContextCurrent(NULL);

alcDestroyContext(audio_context);
alcCloseDevice(audio_device);
audio_context = NULL;

audio_enabled = 0;
};

}

void UpdateAudio(player_p player, player_p opponent)
{

ALfloat position[3];
ALfloat velocity[3];
ALfloat orientation[6];

/* Is audio enabled? */
if (!audio_enabled)

return;

/* The player is the listener. Set the listener’s position to



ENVIRONMENTAL AUDIO WITH OPENAL 209

the player’s position. */
position[0] = (ALfloat)player->world_x;
position[1] = (ALfloat)player->world_y;
position[2] = (ALfloat)0.0;
alListenerfv(AL_POSITION, position);

/* Set the player’s orientation in space. The first three values are
the "up" vector (sticking out of the ship’s cockpit), and the next
three are the "at" vector (stickout out of the ship’s nose). */

orientation[0] = 0;
orientation[1] = 0;
orientation[2] = 1.0;
orientation[3] = cos(player->angle*PI/180.0);
orientation[4] = -sin(player->angle*PI/180.0);
orientation[5] = 0;
alListenerfv(AL_ORIENTATION, orientation);

/* To properly simulate the Doppler effect, OpenAL needs to
know the listener’s velocity (as a vector). */

velocity[0] = (ALfloat)player->velocity * cos(player->angle*PI/180.0);
velocity[1] = (ALfloat)player->velocity * -sin(player->angle*PI/180.0);
velocity[2] = (ALfloat)0.0;
alListenerfv(AL_VELOCITY, velocity);

/* The player’s weapon is obviously at the location of the player.
This source won’t do anything until we add weapons to the game. */

alSourcefv(player_phaser_source, AL_POSITION, position);
alSourcefv(player_phaser_source, AL_VELOCITY, velocity);

/* Now for the enemy’s information. */
position[0] = (ALfloat)opponent->world_x;
position[1] = (ALfloat)opponent->world_y;
position[2] = (ALfloat)0.0;
alSourcefv(opponent_engine_source, AL_POSITION, position);
alSourcefv(opponent_phaser_source, AL_POSITION, position);

velocity[0] = (ALfloat)opponent->velocity * cos(opponent->angle*PI/180.0);
velocity[1] = (ALfloat)opponent->velocity * -sin(opponent->angle*PI/180.0);
velocity[2] = (ALfloat)0.0;
alSourcefv(opponent_engine_source, AL_VELOCITY, velocity);
alSourcefv(opponent_phaser_source, AL_VELOCITY, velocity);

}



210 CHAPTER 5. LINUX AUDIO PROGRAMMING

void StartAudio()
{

/* Activate the opponent’s engine noise. We won’t attach an engine noise
to the player, because quite frankly it would be annoying, though perhaps
a bit more realistic. */

if (audio_enabled) {
alSourcei(opponent_engine_source, AL_BUFFER, engine_sound.name); /* assign a buffer */
alSourcei(opponent_engine_source, AL_LOOPING, 1); /* enable looping */
alSourcePlay(opponent_engine_source); /* set it to playback mode */

}
}

void StopAudio()
{

/* Stop all sources. */
if (audio_enabled) {

alSourceStop(opponent_engine_source);
alSourceStop(opponent_phaser_source);
alSourceStop(player_phaser_source);

}
}

Penguin Warrior’s audio interface is straightforward. main.c calls InitAudio
during startup, and CleanupAudio at exit. During each frame of animation, the
game loop calls UpdateAudio with pointers to the current player data structures
to update the positions and velocities of the audio sources. StartAudio actually
starts playback (by setting the relevant sources to playback mode with
alSourcePlay), and StopAudio stops playback on all sources. We’ll need to add
more to this interface in Chapter 7 so that we can trigger weapon and explosion
sound effects, but this is sufficient for now.

InitAudio does most of the OpenAL setup work. It opens a device with
alcOpenDevice, creates a context with alcCreateContext, and makes the
context current with alcMakeContextCurrent. It then uses alcGenSources to
create sources for all of the sound-emitting objects in the game (weapons for
both players, and the opponent’s engine). Sources and buffers are always
represented by integer handles (type ALuint or just unsigned int). The actual
source, listener, and buffer data structures are of no consequence to us; they’re
hidden inside OpenAL, and we access them by passing their handles to the



ENVIRONMENTAL AUDIO WITH OPENAL 211

various AL object functions. Finally, InitAudio sets a few environmental
parameters (relative distances for the Doppler effect and distance attenuation),
prints a bit of information about the AL library, and returns successfully.

UpdateAudio keeps OpenAL informed about the state of the game world. It uses
alListenerfv to set the listener to the position and direction of the player’s
ship, and alSourcefb to position each source. These functions expect their
information as vectors: a 3-element 3D < x, y, z > vector for position and
velocity, and a 6-element < fx, fy, fz > < ux, uy, uz > pair of 3D vectors for
orientation (indicating the “forward” and “up” vectors of the object in question).
Since our game takes place in two-dimensional plane, the z coordinates of these
vectors will always be constant (see Figure 5 for an idea of what the game looks
like if we bring it into 3D space with a constant z coordinate).

CleanupAudio is charged with shutting down OpenAL safely. This isn’t too
difficult; it deactivates and destroys the current context, closes the audio device,
and marks audio as disabled. As with any multimedia toolkit, it’s a good idea to
close OpenAL cleanly when you’re finished with it. It’s probably safe to leave an
OpenAL context hanging when your program exits, but this could be messy if
your OpenAL library happens to be using the sound card’s hardware
acceleration features.

Finally, there is some new sound file loading code in resources.c. The
LoadSoundFile function (not shown here) is adapted from Multi-Play’s
libsndfile-based loader code. Instead of returning a buffer of loaded samples,
LoadSoundFile creates a new OpenAL buffer and copies the sample data into it.
The code should be self explanatory; buffers work like sources for the most part,
since they are also OpenAL objects. There’s one important stipulation on calling
LoadSoundFile, though: since it uses the OpenAL API, it’s important to make
sure OpenAL is initialized first. This means that we need to call InitAudio
before LoadResources at startup.

Viola! Penguin Warrior now has environmental audio. Give it a try. You should
be able to locate the opponent without even looking at the screen, especially if
your sound card supports surround sound. Now for some music.



212 CHAPTER 5. LINUX AUDIO PROGRAMMING

Implementing Game Music with Ogg Vorbis

Unless you’ve been living under a rock for the past few years, you’ve probably
heard of MP3. Since high-quality PCM audio data can take up an enormous
amount of space (over a megabytes every ten seconds, in some cases), raw PCM
samples are not an ideal way to store music and other long audio clips. A typical
music album is likely to occupy several hundred megabytes. This is not a
problem when music is distributed on physical media, as ordinary compact discs
can hold around 650 megabytes, but this is an impractical way to download
music over the Internet. The MP3 compression system offers a solution to this
problem by compressing audio data (sometimes by as much as ten to one) while
preserving most of the audio’s original quality6. MP3 is an open standard
(meaning that anyone can learn how it works), but it is encumbered by patents
(meaning that anyone who writes MP3 encoding software without purchasing a
license is likely to be sued). Needless to say, this has been the cause of great
consternation among some segments of the (generally anti-patent) online
community. Although the free SMPEG library can handle MP3 audio (and has
been used for that purpose in at least one commercial title), there is a better
option.

The Xiphophorous Company, an oddly named team of smart hackers previously
known for the popular cdparanoia program, has created an alternative to MP3
called Ogg Vorbis. The Vorbis codec (coder/decoder) offers audio compression
very similar to MP3 (slightly better in some cases), free of patents and available
to everyone. Ogg, the streaming media infrastructure, provides support for
multiple Vorbis streams within a single bitstream or file, and provides robustness
against many types of corruption. The Ogg Vorbis team has created a
libvorbisfile library to allow programmers to easily add Ogg Vorbis support to
applications, and they have created a set of utilities for working with Ogg Vorbis
(.ogg) files from the command line. The Vorbis code is still in development, but
the bitstream format is finalized, and future releases will be backwardly
compatible (that is, your Vorbis-enabled software will be able to process all
future versions of the Vorbis bitstream specification).

6MP3 compression does trash some audio frequency ranges, and it is certainly possible to hear
a difference in a side-by-side comparison of CD and MP3 music. However, this is usually not a
severe problem. MP3 compression is not all-or-nothing; music can be only slightly compressed
(with very little loss in quality), or heavily compressed (reducing the audio to telephone quality,
or worse).



IMPLEMENTING GAME MUSIC WITH OGG VORBIS 213

To my knowledge, there are no real drawbacks to using Ogg Vorbis for
high-quality game music, except perhaps that Vorbis takes a significant amount
of CPU horsepower to decode (especially on antequated, register-poor CPU
architectures like the x86). MP3 does generally provide better performance than
Vorbis at low data rates (significant quality/size tradeoff) and on low-end
processors, but these are both improving in Vorbis’ favor. Modern Linux boxes
should have no trouble decoding high-quality Vorbis streams in the background.

More information on the Ogg Vorbis project is available on the Web at
http://www.xiph.org/ogg/vorbis/index.html, or in #loki on
irc.openprojects.net.

Working with Vorbis Files

SDL does support Ogg Vorbis music (through the external SDL mixer library),
but this doesn’t help much if we’re using OSS or OpenAL. Fortunately, the
Vorbis API is straightforward, and a complete Vorbis client can be written in
fewer than 50 lines of code, with a bit of help from the libvorbisfile utility library.

Decoding Ogg Vorbis streams is just as you’d imagine: the Vorbis libraries take
in a stream of encoded packets and return a stream of PCM samples. There’s a
small amount of extra complication involving multiple logical bitstreams within a
single physical stream, but we can more or less avoid this if we’re only interested
in implementing game music (though we could use this capability to store more
than one soundtrack in the same music data file). Logical bitstreams are easy to
create – just shove two .ogg files into a single file with the cat command.

We’ll get to the nuts and bolts of working with Ogg Vorbis streams in the next
section, but here’s a basic overview of what’s required:

1. Install the Ogg Vorbis development kit, available from
http://www.xiph.org/ogg/vorbis/index.html. At the time of this
writing, you’ll need at least libao, libogg, libvorbis, and libvorbisfile. These
are all rather easy to configure and install.

2. Include vorbis/vorbisfile.h and vorbis/codec.h (assuming a standard
installation of the Ogg Vorbis libraries).

3. Link in libvorbisfile.so, libvorbis.so, and libogg.so in that order
(-lvorbisfile -lvorbis -logg).



214 CHAPTER 5. LINUX AUDIO PROGRAMMING

4. Create a buffer for storing the decoded PCM data. The Xiphophorous
documentation recommends a 4096-byte buffer, but games usually need
larger chunks of music than that.

5. Open the .ogg file you wish to play with the normal stdio (fopen)
interface, and prepare an OggVorbis File structure with ov open. After
ov open succeeds, don’t touch the original FILE structure. Find out
relevant facts about the stream with the ov info function.

6. Fill buffers of PCM samples with ov read. This function does not always
return the requested amount of data7; if it doesn’t, call it repeatedly to
build up a sufficient amount of data. Play the buffers with your audio API
of choice. Repeat until ov read returns zero, indicating the end of the
stream.

7. Close the OggVorbis File with ov clear. libvorbisfile will close the
original file automatically.

That’s it! You’ll need to add a bit more code if you care about properly handling
logical bitstreams, but there’s not much to that. Now let’s put Ogg Vorbis to
work with, you guessed it, Penguin Warrior.

Function ov open(file, ovfile, initial, initialsize)
Synopsis Prepares an OggVorbis File structure for decoding. If you

need to use a data source other than a file, you probably want
the ov open callbacks interface, not ov open.

Returns 0 on success, an error code on failure.
Params file — Pointer to an open FILE (from fopen). You do not

need to close this file – libvorbisfile takes care of that.
ovfile — Pointer to an OggVorbis File structure.
initial — char * to any data you’ve already read from
file. Usually NULL.
initialsize — Size of initial in bytes. Usually zero.

Function ov clear(ovfile)
Synopsis Closes an OggVorbis File.
Params ovfile — OggVorbis File to close.

7It seems that ov read never processes more than 4096 bytes, regardless of how much data
you request. I’m sure there’s a perfectly good reason for this, but it escapes me.



IMPLEMENTING GAME MUSIC WITH OGG VORBIS 215

Function ov info(ovfile, stream)
Synopsis Retrieves information about an Ogg Vorbis stream.
Returns Pointer to a vorbis info structure that describes the given

stream.
Params ovfile — Pointer to the OggVorbis File to query.

stream — Logical bitstream number. −1 selects the current
bitstream.

Function ov read(ovfile, buffer, length, beflag,
samplesize, signedflag, stream)

Synopsis Reads PCM data from an Ogg Vorbis stream.
Returns Number of bytes successfully decoded on success, OV HOLE on

any type of (probably recoverable) data glitch, OV EBADLINK
if the requested logical stream is invalid, or zero if there is no
more data to decode.

Params ovfile — Pointer to the OggVorbis File to decode.
buffer — Pointer to the buffer to receive the decoded sam-
ples. This is prototyped as a char *, but of course you can
use any type of buffer you wish.
length — Maximum number of bytes to decode. There is
no guarantee that libvorbisfile will return this much data –
it’s only an upper limit. libvorbisfile seems to return at most
4096 bytes per call to ov read.
beflag — 1 to request big endian samples, 0 otherwise.
(Intel-based machines are little endian, many others aren’t.
You can find this out from the endian.h header file.)
samplesize — Bytes per sample. libvorbisfile is nice enough
to give us a choice so we don’t have to convert between sample
sizes ourselves. This will obviously be 1 for 8-bit samples and
2 for 16-bit samples.
signedflag — 1 to request signed samples, 0 to request un-
signed samples. In practice, 16-bit samples are almost always
signed (−32768..32767) and 8-bit samples are almost always
unsigned (0..255).
stream — Pointer to an integer to receive the number of the
logical bitstream that libvorbisfile is currently working on.



216 CHAPTER 5. LINUX AUDIO PROGRAMMING

Structure vorbis info
Purpose Contains basic information about an Ogg Vorbis stream.

Members version — Vorbis encoder version. This is mostly useless,
since today’s decoder is designed to be compatible with all
future Vorbis encoder releases.
channels — Number of channels in this stream. 1 for mono
and 2 for stereo.
rate — PCM sampling frequency of this stream. Although
the bitrate (bits of encoded data per second of audio) can
change throughout the stream, the sampling frequency will
stay constant throughout. The sampling rate can change
between logical bitstreams.

Adding Music to Penguin Warrior

Penguin Warrior needs some music. Music can add a lot of atmosphere to a
game, and it can dramatically affect the player’s mood. Would the first level of
Doom have been quite as exciting without the fast-paced soundtrack, or the first
level of Descent as enthralling without the mysterious, cold, and robotic
background tune? Matt Friedly of phluid.acid.org kindly gave us permission
to use some of his music for this game, and we need to write some code to play
it. The music was originally an .s3m (Scream Tracker) module8, but it’s now an
Ogg Vorbis stream (reflux.ogg in this chapter’s Penguin Warrior directory). We
need a way to play Ogg Vorbis music through OpenAL.

This would be straightforward with just about any other audio API, but we’ll
have to nudge OpenAL a bit to get it to play streaming stereo music without
unwanted environmental effects. Background music shouldn’t really come from
any particular point in space, and it should be played in stereo. There’s no such
thing as stereo environmental audio, since the effect we call stereo is really just a
product of speaker positioning. Fortunately, OpenAL does provide a “backdoor”
(via an extension) for injecting stereo sound into a buffer. We’ll use this
backdoor in a moment.

We have another problem: since music files tend to be enormous and time
consuming to decode, it would be a bad idea to load entire tracks into OpenAL

8Scream Tracker is a rather old but well written program for assembling music out of pre-
recorded samples.



IMPLEMENTING GAME MUSIC WITH OGG VORBIS 217

buffers. It might work for small files (under a few megabytes), but that’s still a
lot of wasted memory. But how else can we play music? Until now we’ve only
worked with simple OpenAL buffers that never change. It turns out that
OpenAL defines a special type of buffer for streaming audio data. Streaming
buffers don’t take fixed-size pieces of PCM data like most buffers; instead, they
start out empty and play data as it arrives (so long as it arrives in a timely
fashion). This lets us incrementally decode music throughout the program. We
just have to make sure we decode it quickly enough to stay ahead of OpenAL.

Streaming buffers are simple to work with. The alGenStreamingBuffers
function creates one or more streaming buffers in the current AL context, and
the alBufferAppendData family of functions adds PCM data to the end of a
streaming buffer.

Function alGenStreamingBuffers(count, buffers)
Synopsis Generates count streaming buffers. Semantics are identical

to alGenBuffers.
Params count — Number of buffers to generate.

buffer — Pointer to an ALuint buffer big enough to hold
the generated buffer names.

Now that we have a basic idea of how OpenAL music playback works, let’s dig
into the Penguin Warrior music code.

Code Listing 5–8 (music.c)

#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <AL/al.h>
#include <AL/alext.h> /* alBufferAppendWriteData_LOKI is an extension. */
#include <AL/alkludge.h> /* alGenStreamingBuffers is likely to change soon. */
#include <vorbis/codec.h>
#include <vorbis/vorbisfile.h>

#include "audio.h"
#include "music.h"
#include "resources.h"

/* We’ll set this flag to 1 after music has been successfully initialized. */



218 CHAPTER 5. LINUX AUDIO PROGRAMMING

int music_enabled = 0;

/* We’ll set this to 1 as soon as we start playback, and to 0 when there’s no more data. */
int music_playing = 0;

/* OpenAL source and buffer for streaming music. */
static ALuint music_source = 0;
static ALuint music_buffer = 0;

/* Ogg Vorbis stream information. */
static OggVorbis_File music_file;
static vorbis_info *music_info = NULL;
static int music_section = -1; /* Streams can have multiple sections.

This lets Ogg Vorbis tell us which
section we’re dealing with. */

static int music_file_loaded = 0; /* 1 if a file is loaded, 0 if not. */

/* Buffer for decoding music. We use an ALshort because we’ll always request
16-bit samples from Vorbis. If you experience skipping or other anomalies,
increase the size of this buffer, */

#define MUSIC_BUF_SIZE 8192
static ALshort buf[MUSIC_BUF_SIZE];
static int buf_count = 0; /* Number of samples in the buffer. */
static int buf_pos = -1; /* Playback position within buffer. */

void InitMusic()
{

/* Check that InitAudio was successful. We’ll be using
a multichannel OpenAL streaming buffer for output,
so OpenAL needs to be initialized. */

if (!audio_enabled) {
printf("Unable to initialize music since audio isn’t enabled.\n");
return;

}

/* Generate a streaming buffer. */
alGenStreamingBuffers(1, &music_buffer);

/* Create a source for the music. */
alGenSources(1, &music_source);

/* Set the source’s position to be considered relative



IMPLEMENTING GAME MUSIC WITH OGG VORBIS 219

to the listener. This way we won’t have to update its
position each time the listener moves. */

alSourcei(music_source, AL_SOURCE_RELATIVE, AL_TRUE);

/* Assign the streaming buffer to the music source. */
alSourcei(music_source, AL_BUFFER, music_buffer);

/* Check for errors. */
if (alGetError() != AL_NO_ERROR) {

printf("Music initialization failed.\n");
return;

}

printf("Music enabled.\n");
music_enabled = 1;

}

void CleanupMusic()
{

if (music_enabled) {
/* Stop music playback. */
alSourceStop(music_source);

/* Delete the buffer and the source. */
alDeleteBuffers(1, &music_buffer);
alDeleteSources(1, &music_source);

/* Close the music file, if one is open. */
if (music_file_loaded) {

ov_clear(&music_file);
music_file_loaded = 0;

}

music_enabled = 0;
}

}

int LoadMusic(char *filename)
{

FILE *f;

/* First, open the file with the normal stdio interface. */
f = fopen(filename, "r");



220 CHAPTER 5. LINUX AUDIO PROGRAMMING

if (f == NULL) {
printf("Unable to open music file %s.\n", filename);
return -1;

}

/* Now pass it to libvorbis. */
if (ov_open(f, &music_file, NULL, 0) < 0) {

printf("Unable to attach libvorbis to %s.\n", filename);
fclose(f);
return -1;

}

/* Retrieve information about this stream. */
music_info = ov_info(&music_file, -1);

printf("Reading %li Hz, %i-channel music from %s.\n",
music_info->rate,
music_info->channels,
filename);

music_file_loaded = 1;

return 0;
}

void StartMusic()
{

/* If music is enabled and a file is ready to go, start playback. */
if (music_enabled && music_file_loaded) {

alSourcePlay(music_source);
music_playing = 1;

}
}

void StopMusic()
{

if (music_enabled) {
alSourceStop(music_source);
music_playing = 0;

}
}

void UpdateMusic()



IMPLEMENTING GAME MUSIC WITH OGG VORBIS 221

{
int written;
int format;

if (music_enabled && music_file_loaded) {

/* Do we need to fetch more data? */
if (buf_pos == -1) {

buf_count = 0;
buf_pos = 0;

if (music_playing) {
/* libvorbisfile does not always return the full amount of

data requested, so loop until we have a full 64k. */
while (music_playing && buf_count < MUSIC_BUF_SIZE) {

int amt;
amt = ov_read(&music_file,

(char *)&buf[buf_count],
(MUSIC_BUF_SIZE-buf_count)*2,
0, 2, 1, &music_section) / 2;

buf_count += amt;

/* End of the stream? */
if (amt == 0) {

printf("End of music stream.\n");
music_playing = 0;
break;

}
}

} else {
/* No more music, so fill the buffer with zeroes. */
buf_count = MUSIC_BUF_SIZE;
memset(buf, 0, MUSIC_BUF_SIZE*2);

}
}

/* Determine the correct format. This can change at any time.
(it probably won’t, but Vorbis allows for this) */

if (music_info->channels == 1)



222 CHAPTER 5. LINUX AUDIO PROGRAMMING

format = AL_FORMAT_MONO16;
else

format = AL_FORMAT_STEREO16;

/* If we have a buffer of data, append it to the playback buffer.
alBufferAppendWriteData_LOKI is similar to the well-documented
alBufferAppendData, but it allows us to specify the internal storage
format for the data. This prevents OpenAL from converting stereo data
to mono. (With this function, we should get stereo playback.) */

if (buf_count != 0) {

written = alBufferAppendWriteData_LOKI(music_buffer,
format,
&buf[buf_pos],
MUSIC_BUF_SIZE-buf_pos,
music_info->rate,
format);

/* Check for (unlikely) errors. If something went wrong, disable music. */
if (written < 0 || alGetError() != AL_NO_ERROR) {

printf("OpenAL error, disabling music.\n");
CleanupMusic();

}

/* Update the buffer position based on how much data we wrote.
If we’ve played the entire buffer, set the position to -1 so
that the next call to UpdateMusic will refill the buffer. */

buf_pos += written;
if (buf_pos >= buf_count)

buf_pos = -1;
}

}
}

The overall structure of music.c should be pretty clear. InitMusic creates a
streaming buffer and a source to go along with it. It sets the source to relative
mode, which means that its position will be determined as a vector relative to
the listener (and hence the default position of < 0, 0, 0 > will remain directly on
top of the listener, no matter where the listener moves). This will keep
environmental audio effects out of our music stream – you obviously can’t detect
attenuation or the Doppler effect from a pair of headphones.



IMPLEMENTING GAME MUSIC WITH OGG VORBIS 223

CleanupMusic deletes the streaming buffer and the relative source. Nothing
breathtaking here.

LoadMusic sets up the music system to play a new Ogg Vorbis file. It opens the
file with fopen, makes it into an OggVorbis File structure with ov open, and
gets information about the sampling rate and number of channels with ov info.
Once the file is ready to go, LoadMusic sets the music file loaded flag to let
the playback code know it’s OK to start playing.

StartMusic calls alSourcePlay to begin playback. Nothing will actually
happen until UpdateMusic gets around to decoding and writing some PCM data
to the streaming buffer, but at this point it’s primed and ready to go.
StopMusic does just the opposite; it calls alSourceStop to end playback.

Finally, the meat of the music system: UpdateMusic is responsible for actually
decoding and writing music data. It decodes chunks of data with ov read,
looping until it gets as much data as it wants, and writes the data to the
streaming buffer with alBufferAppendWriteData LOKI. This function is easy to
understand, despite its long-winded name: it adds a buffer of PCM data to the
end of a streaming buffer, preserving the requested sample format. This is the
“backdoor” we mentioned earlier. The LOKI at the end of the function name
means that this is a vendor-specific OpenAL extension and not part of the core
specification. However, since Loki Software is responsible for most of the
OpenAL specification, it’s a safe bet that LOKI extensions will be part of any
future OpenAL implementations.



224 CHAPTER 5. LINUX AUDIO PROGRAMMING

Function alBufferAppendWriteData LOKI(buffer, format, data,
size, freq, iformat)

Synopsis Adds PCM data to the end of a streaming buffer, preserving
the requested sample format internally. This is generally used
to preserve multi-channel (stereo) sound, which is normally
converted to mono in OpenAL.

Returns Number of samples successfully appended to the buffer. Since
streaming buffers have a limited amount of space, it’s neces-
sary to check for partial writes.

Params buffer — Name (integer id) of the buffer to append the data
to.
format — Sample format of the incoming data. One of the
AL FORMAT fmt constants.
data — Pointer to the raw PCM data to append.
size — Length of the data in samples (not bytes, not frames)
– one stereo frame is two samples.
freq — Sampling frequency of the incoming data.
iformat — Desired internal storage format. OpenAL will
store the data in this format internally.

The game loop is supposed to call UpdateMusic very frequently. If you take a
look at main.c, you’ll see that we’ve actually put UpdateMusic in its own
thread, launched with SDL CreateThread. This makes sure that UpdateMusic
gets called at regular intervals (timed with SDL Delay), regardless of the speed of
the game loop. Since streaming buffers do store a few seconds of audio in
advance, the timing isn’t absolutely critical, but slowdowns in the game loop
might cause sporadic glitches in the music. This isn’t a problem when the music
system runs in a separate thread. OpenAL is thread safe, so there’s no harm in
calling AL functions from more than one thread at a time.

That’s all there is to it. OpenAL’s streaming buffer interface might change in
the near future, but the changes should be easy to integrate into our music
system. If anything does change, you’ll be able to find updated source listings on
the book’s website.



IMPLEMENTING GAME MUSIC WITH OGG VORBIS 225

Wow, that was a long ride. It’s time for a game of Command and Conquer for
me, and then hopefully some fresh air. In the next chapter will talk about
scripting systems and what they can do for a game. We’ll put scripting to work
by adding a scripted opponent to Penguin Warrior.



226 CHAPTER 5. LINUX AUDIO PROGRAMMING



Chapter 6

Game Scripting Under Linux

Games tend to be extremely large these days, and it is usually impractical for
programmers to worry about the details of level design and character behavior.
For example, the game Soldier of Fortune (which has been ported to Linux)
weighs in at over 700 megabytes of disk space, and only a small fraction of this
data contains actual code. The bulk of this space is consumed by 3D world data,
character models, and scripts.

Scripts allow game creators to control the behavior and artificial intelligence of
maps and game characters without actually modifying the game’s compiled code.
Just as high-level languages (such as C and Java) allow programmers to
accomplish tasks that would be practically impossible in pure assembly language
(due to development time and complexity), game scripting languages allow game
developers to quickly implement features that would not be practical to
implement directly in the game engine. Scripts are simply special-purpose
programs, usually written in customized scripting languages, that tie game
worlds together. Game scripting languages are often specially designed for a
particular game, but programmers sometimes opt to use off-the-shelf scripting
languages for their games. Scripting also allows non-programmers to create game
worlds, and it can add a great deal of realism to games.

In this chapter we’ll use the Tcl scripting language to add a scripted opponent to
Penguin Warrior. Although Tcl is neither the fastest scripting language nor the
most popular, it is extremely simple to embed into a program and extend with
custom commands, and the language is trivial to learn. Before we learn how to

227



228 CHAPTER 6. GAME SCRIPTING UNDER LINUX

weld the Tcl library into our game engine, however, we’ll spend a few pages on
the Tcl language itself. If you’re just interested in learning how to hook up a
scripting engine or you happen to have a distaste for Tcl, you may wish to skim
over the next section.

A Crash Course in Tcl

Tcl is an extremely simple language to learn; in fact, the single biggest problem
with Tcl is that people often try to second-guess its trivial syntax. Once we
know the basics of Tcl syntax, we will examine the embeddable Tcl scripting
library and learn how to add its functionality to our game. This is not a book on
scripting languages, nor is it a treatise on the fine points of Tcl coding. We’ll
keep this brief.

Tcl is based almost entirely on substitution. It has no notion of data types;
numbers and strings are the same thing, represented internally as strings and
converted as necessary1. Tcl programs consist of words. The first word on each
line is a command, and the rest of the words on each line are arguments to
that command. Many commands are provided by Tcl, but you can easily add
your own either as scripts or as native C code. Tcl has no keywords; everything
is implemented with commands, even such high-level constructs as codefor and
codewhile.

There are two types of strings in Tcl. The first type is delimited by curly braces
({ }). These strings are not affected by Tcl’s normal substitution rules (which
we will discuss shortly). The second type is delimited by double quotes. These
are subject to substitution and backslash escapes (such as
n and
t, which you are probably familiar with from C). The first type of strings are
processed a bit more quickly, so it is a good idea to use them whenever possible.
They’re also a bit more convenient for enclosing entire scripts, since you don’t
have to escape quotes.

1For the performance-minded readers who are concerned about the implications of treating
all variables as strings, there is no need to worry. Tcl does a bit of voodoo internally to avoid
unnecessary conversions; for instance, if it becomes apparent that a certain variable contains a
floating-point number, it will be stored as such. This improves memory usage and performance.
However, this optimization takes place behind the scenes, and you can treat everything as a
string.



A CRASH COURSE IN TCL 229

Let’s take a look at a simple Tcl script.

Code Listing 6–1 (basictcl.tcl)

# A very basic Tcl example.

# Print "Hello, world!" using the two string types.
puts "Hello, world! (using quotes)"
puts {Hello, world! (using braces)}

# Demonstrate simple variable substitution.
set foo {Foo!}
puts "This is the variable foo: $foo"

# This won’t be substituted, since the string is in curly braces.
puts {This is not the variable foo: $foo}

# Change the value of the variable foo.
set foo {Bar!}
puts "The variable foo is now $foo."

# Read a string from the console (stdin).
puts -nonewline {Please enter your name: }
flush stdout
set name [gets stdin]
puts "You entered: $name"

Give this script a try by feeding it to the Tcl shell (tclsh). tclsh is simply a
command-line utility that provides an interface to an embedded Tcl interpreter
(the same interpreter library that we will build into Penguin Warrior). From the
script’s output you can see that strings enclosed in curly braces are not scanned
for substitution, whereas strings enclosed in quotes are processed. Variables are
inserted into strings with the $name notation ($name also works, and this can be
useful if a variable has a name with special characters). Variable substitution
also works outside of strings. This script also uses command substitution,
which is invoked with brackets ([ ]). Any text within a set of square brackets is
evaluated as a separate Tcl script, and the brackets are replaced by the result of
the script. Our example uses command substitution to assign a variable to the
output of the gets command. Command substitution is allowed both inside and
outside of quoted strings.



230 CHAPTER 6. GAME SCRIPTING UNDER LINUX

In case you don’t have access to a Tcl interpreter, the output of the script should
look something like this:

$ tclsh basictcl.tcl

Hello, world! (using quotes)
Hello, world! (using braces)
This is the variable foo: Foo!
This is not the variable foo: $foo
The variable foo is now Bar!.

Please enter your name: John

You entered: John

Commercially Maintained Free Software

Tcl is free and open source software with almost no usage restrictions,
but it is commercially supported by Scriptics, Inc. (recenty acquired by
Ajuba and then by Interwoven). Tcl comes with most Linux
distributions, and you can also download it separately at
ftp://ftp.scriptics.com. As well as the embeddable scripting
library, the Tcl distribution comes with a command line script loader
and shell called tclsh. This is good for learning Tcl and for writing
scripts for quick jobs. Tcl can actually serve as a powerful replacement
for traditional shell scripting languages.Scriptics developed but no
longer maintains a commercial Tcl development system called TclPro.
It’s now open source and available to the public on SourceForge
(http://www.sourceforge.net). TclPro includes a bytecode compiler,
a graphical debugger, a code checker, and other utilities that might be
of interest for large-scale Tcl development.

Built-in Tcl Commands

We’ve covered enough of Tcl’s syntax to talk about a few of its built-in
commands. Some of these commands are essential, and some of them are just
nice to have around. In general, we should use as many built-in commands as



A CRASH COURSE IN TCL 231

possible, rather than write our own, since C code executes much more quickly
than interpreted Tcl. Performance is very much a concern since we are writing
scripts for realtime games, and we are working with a language that isn’t
especially fast to begin with.

Recursive Evaluation

It’s sometimes nice to be able to evaluate arbitrary pieces of text as separate
scripts. The eval command evaluates its argument (or arguments) as a complete
script, returning the result of the script if there are not showstopping errors. In
addition to providing a clean way to implement control structures, eval is useful
for forcing the interpreter to perform multiple passes of substitution over a
string. The key to understanding Tcl’s power is to realize that everything is
treated as text, and that substitution takes place before execution. If a variable
containing the text “$foo” is substituted into a string and the string is evaluated
again (with eval), Tcl will try to substitute the value of the variable foo into
the final string. Consider the following:

$ tclsh

% set foo {$bar} $bar % set bar {Hello, world!}

Hello, world!

% eval puts $foo

Hello, world!

Tcl automatically performs substitution on each line of code before it actually
evaluates the code, and this immediately transforms our last line of input into
eval puts $bar. The explicit call to eval forces another substitution pass,
which transforms the code into puts Hello, world!. This is a very trick useful
for game scripting; Tcl has very weak array support, and it is often more
practical to create variable names (such as missile3 and ship5) on the fly. You
can abuse eval in any number of ways. We’ll see how eval can be used to create
control structures shortly.



232 CHAPTER 6. GAME SCRIPTING UNDER LINUX

Evaluating Mathematical Expressions

Tcl itself has no support for mathematical operations; this, too, is implemented
as a command. The expr command takes a mathematical expression as input
and returns its result as a string. expr introduces a mini-language of its own
(documented in its manpage), and it can handle just about any expression you
would expect a command-line calculator to understand. You can use normal Tcl
substitution to introduce variables into mathematical expressions. For example,
set bar [expr $foo + sin($angle)] adds the sine of the angle variable to
foo, and saves the result in the variable bar. We could then use this value by
substituting it in with $bar.

If you just need to increment or decrement a variable, the incr command is
much more efficient than expr. For instance, incr foo -2 is equivalent to set
foo [expr $foo - 2], but a bit faster.

expr is not as slow as you might think, but it’s certainly a good idea to avoid it
when you can. Tcl is designed for flexibility and simplicity, not speed. It is much
better at string processing than number crunching; keep this in mind if you
decide to use Tcl for your own projects.

Lists

Tcl does not have built-in support for lists or arrays. Instead, it provides a set of
functions for treating specially formatted strings as lists. This is clearly not the
most efficient way to manage large sets of data, but it is fairly elegant, and it fits
well with Tcl’s philosophy of simplicity and consistency. Tcl does perform a
certain amount of runtime optimization on its data storage mechanisms, but
don’t count on it. If you need to store a large amount of data in your script,
consider using associative arrays (which we won’t cover here) or storing the data
in your C program.

A Tcl list is simply a string of space-separated elements. For instance, the string
foo bar baz qux can be considered a four-element list. If an individual element
contains spaces, it should be enclosed in braces to prevent it from being treated
as multiple elements (for instance, foo {Hello, world!} bar is a three-element
list). You can create lists by hand or with Tcl’s list command. For instance,
list foo {Hello, world} bar would return a three-element list. However,
since Tcl lists are just strings, list is really just a command for quickly



A CRASH COURSE IN TCL 233

assembling a bunch of strings into one. This is handy for strange constructs
involving multiple passes of substitution.

Control

Tcl doesn’t have an if statement (a feature of just about every other language
out there), but rather an if command. This is really a technicality; it works
exactly as you might expect. It takes an expression (of the same format expected
by the expr command) and one or two pieces of code. If the expression evaluates
to a value that is considered “true” (nonzero), the first piece of code will be
recursively executed. If the expression evaluates to “false” (zero) and a second
piece of code is provided, preceded by the token else, it will be executed
instead. These pieces of code are simply strings contained in curly braces.

Likewise, Tcl provides a while command that executes a piece of code while an
expression holds true. This is self explanatory. It would be extremely simple to
implement the while command in Tcl (but rather pointless).

The last Tcl control command we’ll discuss is the switch command, which
allows a program to quickly compare a string against several other strings and
execute a piece of code as soon as one of the strings matches. This matching can
be done with exact comparison (codestrcmp), globbing (the type of matching
most UNIX shells use for comparing filenames, allowing asterisks and question
marks for wildcards), and regular expressions. For example, the following
switch command would compare the string in the variable foo against the
strings bar, baz, and qux:

switch $foo {
bar { puts "Bar!" }
baz { puts "Baz!" }
qux { puts "Qux!" }
default { puts "Nothing!" }

}

The switch command’s other matching modes are even more powerful. To use
globbing or regex matching, add -glob or -regexp as the first argument to
switch. However, these modes are not likely to be useful in a game script, and
they aren’t nearly as fast as normal string matching.



234 CHAPTER 6. GAME SCRIPTING UNDER LINUX

Procedures

Tcl procedures are commands that are implemented in Tcl rather than in C.
They can take any number of arguments, and they may optionally return a
single value. Tcl provides a proc command for creating procedures. Once a
procedure has been created, it may be invoked by name, just like any other Tcl
command. For instance, the following script creates an avg command for
averaging two numbers:

proc avg { a b } {
return [expr ($a + $b) / 2]

}

proc takes three arguments: the name of the command to define, a list of the
parameters it takes, and a script to associate with the command (as a string).
Since all Tcl variables (except for associative arrays, which we won’t discuss
here) are strings, there is no need to specify anything else about the parameters,
only the names. When the command is executed, the arguments passed to the
command will be available as variables with these names.

Tcl handles local and global variables a bit differently from most other
languages. All variable names are assumed to be local, unless you specify
otherwise; that is, global variables are not normally visible from procedure
bodies. For example, the following code is incorrect:

set status {Ok}

proc printstatus { } {
puts "Status: $status"

}

status is a global variable, and so by default it is not available to printstatus.
To remedy this, use the global command to bring in the global variables you
need to access:

set status {Ok}

proc printstatus { } {
global status



INTERFACING TCL WITH C 235

puts "Status: $status"
}

This is annoying, but it does allow Tcl to optimize its variable namespace
searching a bit. It is a good idea to avoid excessive use of global variables, since
they often lead to unwanted side effects and sloppy programming.

Tcl also provides two other commands, upvar and uplevel, which allow you to
link variables between stack frames. This is important for implementing control
structures (for instance, a pure Tcl implementation of the while command
would most likely rely on uplevel to keep variables from disappearing), but
we’ll leave these commands to Tcl’s online documentation.

Error Handling

Tcl commands can fail for a number of reasons, and it’s a good idea to be ready
to handle this when it happens. Error conditions normally stop the interpreter,
but you can use the catch command to trap errors and keep them from bringing
your script down. This command is extremely simple; if you enclose a block of
code in a catch { } block, it won’t be able to crash the interpreter. The catch
command returns zero if nothing disasterous happens, and nonzero if something
failed. You can even nest catch blocks for fine-grained error detection. Keep in
mind that catch is just another Tcl command, rather than special syntax.

Interfacing Tcl With C

Enough about the Tcl language; our main interest is to add a scripting engine to
our game. Penguin Warrior is pretty boring at the moment. There’s really
nothing to do except fly around. It’s now time to add a computer-controlled
opponent, scripted in Tcl of course, and some heavy weaponry for doing battle.
To do this we’ll need to link the Tcl library into our program and use its C
interface to create a few Penguin Warrior-specific commands.



236 CHAPTER 6. GAME SCRIPTING UNDER LINUX

Linking Against Tcl

First things first: we need access to the Tcl library before we can use it as an
extension language. Fortunately, this is pretty easy. Once you’ve installed the
library and C headers on your system, you can include tcl.h and link your
programs against libtcl.so (with the -ltcl flag). You’ll also need to link in the
standard math library (-lm). Beware that some distributions try to be clever by
renaming their Tcl libraries to reflect a particular version number, so you may
have to look around a bit. Try compiling a simple “Hello, world!” program with
the Tcl library. If this works, you’re ready to go. For the purposes of this
chapter, we’ll assume that your system has an appropriate libtcl.so and that
you know where to find it. You may have to modify Penguin Warrior’s makefile
accordingly.

If your Linux distribution didn’t come with a working Tcl library, you can
download one from ftp://ftp.scriptics.com. Follow the installation
instructions included with the package. The current version at the time of this
writing is 8.3, but later versions will probably work just as well.

Executing Scripts

Each Tcl session is represented internally by a Tcl Interp structure. This
structure keeps track of the script’s text, its activation stack, and its variables.
Everything in Tcl is dynamically allocated, so there’s no harm in creating as
many of these structures as you might find useful (but one will usually suffice).
Tcl CreateInterp returns a pointer to a new Tcl Interp structure, and
Tcl DeleteInterp gets rid of an interpreter that’s no longer needed. Penguin
Warrior is a simple game, and it will run all of its scripting out of one interpreter.

Once we have a Tcl Interp to play with, we can feed it a script. There are two
ways to get Tcl code into an interpreter: we could load the script file ahead of
time and pass it to Tcl (as a string) with the Tcl Eval function, or we could use
the Tcl EvalFile function to run a script directly from a file. It’s really just a
matter of convenience; Tcl doesn’t care how it gets its input. Once Tcl has a
script to chew on, it will rip through the script as quickly as possible, adding any
newly defined commands or variable assignments to its reportoire and executing
anything else it finds. Tcl Eval saves the result of the last command it executed
for later use (it’s the return value of the script, in a sense).



INTERFACING TCL WITH C 237

Let’s see exactly how this is done.

Code Listing 6–2 (tclshell.c)

/* A very simple but fully functional Tcl command shell. */

#include <stdio.h>
#include <stdlib.h>
#include <tcl.h>

int main()
{

Tcl_Interp *interp;
char input[16384];

/* Create an interpreter structure. */
interp = Tcl_CreateInterp();
if (interp == NULL) {

printf("Unable to create interpreter.\n");
return 1;

}

/* Add custom commands here. */

/* Loop indefinitely (we’ll break on end-of-file). */
for (;;) {

int result;
char *message;

/* Print a prompt and make it appear immediately. */
printf("> ");
fflush(stdout);

/* Read up to 16k of input. */
if (fgets(input, 16383, stdin) == NULL) {

printf("End of input.\n");
break;

};

/* Evaluate the input as a script. */
result = Tcl_Eval(interp, input);

/* Print the return code and the result. */



238 CHAPTER 6. GAME SCRIPTING UNDER LINUX

switch (result) {
case TCL_OK:

message = " OK ";
break;

case TCL_ERROR:
message = "ERR ";
break;

case TCL_CONTINUE:
message = "CONT";
break;

default:
message = " ?? ";
break;

};

printf("[%s] %s\n", message, Tcl_GetStringResult(interp));

};

/* Delete the interpreter. */
Tcl_DeleteInterp(interp);

return 0;
}

This program implements a very simple command line Tcl shell. It collects input
from standard input (up to 16K of it), evaluates it with Tcl Eval, and prints the
result along with any errors that occurred.

To compile this Tcl shell, you’ll need the Tcl library and the floating point math
library:

$ gcc -W -Wall -pedantic tclshell.c -o tclshell -ltcl -lm

Your Tcl library may be named differently; if it refuses to link with -ltcl, try
-ltcl8.2 or -ltcl8.3. Failing everything, look for something starting with
libtcl in /usr/lib or /usr/local/lib and use that name (this is the kind of
situation in which Autoconf would be handy; more on this in Chapter 10).

Go ahead and give this program a try. Feed it some of our scripts from earlier in
the chapter, or anything else you can think of. Remember that this simple shell



INTERFACING TCL WITH C 239

can’t handle partial statements; for instance, you can’t enter proc foo { } { on
one line and expect to continue it on the next. You can exit with an end-of-file
character (Control-D) or with the builtin exit command.

Structure Tcl Interp
Purpose Encapsulates a Tcl interpreter’s stack, variables, and script.

Tcl Interp is a large structure, but most of it is meant to
be internal to Tcl.

Members result — Most recently set result, as a string. (You may
retrieve a Tcl interpreter’s most recent result as a Tcl object
with Tcl GetObjResult.)
freeProc — Function to call if Tcl DeleteInterp is ever
invoked on this interpreter. You only need to use this if
you’ve set the result pointer to memory that you own and
you’d like a chance to free it before the pointer is lost.
errorLine — If Tcl Eval returns TCL ERROR, this will con-
tain the line number of the error. Read-only.

Function Tcl CreateInterp()
Synopsis Allocates a new Tcl Interp structure and prepares it to re-

ceive a script.
Returns Pointer to a new Tcl Interp, or NULL on error.

Function Tcl DeleteInterp(interp)
Synopsis Shuts down and deletes a Tcl interpreter.
Params interp — Pointer to the Tcl Interp to delete.

Function Tcl Eval(interp, script)
Synopsis Evaluates a string in the given interpreter.
Returns One of several codes on success (usually TCL OK), and

TCL ERROR on failure.
Params interp — Tcl interpreter to evaluate script in.

script — String containing a complete Tcl script to evalu-
ate.



240 CHAPTER 6. GAME SCRIPTING UNDER LINUX

Function Tcl EvalFile(interp, filename)
Synopsis Evaluates a script file in the given interpreter.
Returns One of several codes on success (usually TCL OK), and

TCL ERROR on failure.
Params interp — Tcl interpreter to evaluate the script file in.

filename — Filename of the script to execute.

Commands And Objects

Tcl represents data as objects (of type Tcl Obj). This abstract structure allows
Tcl to deal with strings, integers, and floating point numbers without having to
covert between types more than necessary. Tcl Obj is an abstract datatype, and
you should avoid touching it directly. Tcl supplies functions for creating and
accessing Tcl Obj variables as strings, integers, and doubles. The library can
convert Tcl Obj objects between variable types whenever it needs to; for
instance, if you create a variable as an integer an then try to access it as a string,
Tcl will perform this conversion behind the scenes. There is no real limit to the
number of variables you can create, but you should probably think twice about
creating more than a few hundred (it’s rarely necessary and performance could
suffer).

codeTcl CreateObjCommand creates a new command and adds it to a given
interpreter2. It takes a pointer to a Tcl Interp, a command name, a pointer to
a handler function, an optional piece of “client data” (an integer), and a pointer
to a cleanup function. Whenever the new command is called from within Tcl, the
interpreter will give control to the handler function and await a result. It also
passes the particular command’s client data to the handler; this serves no defined
purpose, so you can use it for just about anything. One possible use would be to
allow several commands to use one big handler function. The cleanup function is
optional. Tcl will call it when it’s time to delete a command from the
interpreter, but this is only useful in a few cases. We’ll generally set this to NULL.

2There is also a Tcl CreateCommand function, but this interface is obsolete for performance
reasons. In fact, you’ll notice that a lot of Tcl library functions are obsolete. The entire library
was given a serious overhaul a while back, which improved performance drastically but left a
mound of obsolete interfaces behind. They still work, but it’s better to avoid them.



A SIMPLE SCRIPTING ENGINE 241

Function Tcl CreateObjCommand(interp, name, proc,
clientdata, deleteproc)

Synopsis Adds a new command to the given Tcl interpreter. See List-
ing 6–3 for the exact usage of this function.

Returns Command handle of type Tcl Command.
Params interp — Interpreter to receive the new command.

name — Name of the new command, as a string.
proc — Command handler procedure. See Listing 6–3 for
an example of a command handler.
clientdata — Data of type ClientData (integer) for your
own usage. Tcl will pass this integer value to proc each time
it is called. You can use this to “multi-home” commands
(serve several commands with the same handler).
deleteproc — Function to call when this command is
deleted (or the interpreter containing this command is
deleted). This function should return void and accept one
argument of type ClientData (the same clientdata listed
above). If this command doesn’t require any particular
cleanup, just pass NULL.

Pretty easy, huh? Don’t worry about the details; they’ll become apparent when
we implement Penguin Warrior’s scripting engine. Let’s do it!

A Simple Scripting Engine

It’s time for some results. We know enough about Tcl and its library to create a
simple but practical scripting interface for our game. We’ll then be able to
implement the computer player’s brain as an easily modifiable script.



242 CHAPTER 6. GAME SCRIPTING UNDER LINUX

Source Files

We will add three files to Penguin Warrior in this chapter: scripting.c,
scripting.h, and pw.tcl. The first is the C source code that embeds
the Tcl library, the second is a header file that declares our scripting
interface, and the third is the Tcl script that our scripting engine will
automatically execute. In addition, we will now link Penguin Warrior
against the libtcl.so shared library.

The scripting engine’s basic job is to provide an interface between the game
engine and a script. Ideally, the script would act just like any other player from
the game engine’s perspective. It would observe its surroundings, formulate a
plan, provide the game engine with input for controlling a ship, and eventually
destroy its target. We’ll talk more about writing the Tcl side of this project in
the next section. For now we’ll concentrate on building the Tcl library interface.

Our script will need several pieces of information, as well as the ability to cause
changes in the game world. First, we’ll need to give it the positions of the two
players in the world, as well as their headings and velocities. This will give the
script enough information to figure out where the opponent ship is relative to
the human player. The script also needs a way to control the opponent ship’s
throttle, heading, and weapons. There are several possible ways to make this
available to the script.

We could define Tcl commands for getting this information and controlling the
opponent ship. Tcl commands are easy to create, they provide decent
performance, and we can have them return information in any format we desire.
However, handler functions can get a bit messy, especially if we want one handler
function to process more than one Tcl command. Instead, we’ll communicate
using global variables. Our scripting engine will define variables with the
information about each ship, and it will update these each time the script is
called. Our script can make modifications to some of these variables (its throttle
and angle, for instance), and the scripting engine will give these back to the main
game engine each frame. Tcl makes this simple with the Tcl LinkVar command.



A SIMPLE SCRIPTING ENGINE 243

Function Tcl LinkVar(interp, name, addr, type)
Synopsis Links a Tcl variable to a C variable, so that any accesses

to the Tcl variable will result in accesses to the C variable.
This is a convenient way to share data between scripts and
C programs.

Returns TCL OK on success, TCL ERROR on failure.
Params interp — Tcl interpreter to perform the link in.

name — Name of the Tcl variable to create.
addr — Pointer to the C variable that name should reference.
type — Data type of the C variable. Valid types are
TCL LINK INT, TCL LINK DOUBLE, TCL LINK BOOLEAN (int),
and TCL LINK STRING.

Just for the sake of demonstrating a custom Tcl command, we’ll create a
command for controlling the opponent ship’s weapons. It’ll be called
fireComputerWeapons, and it will have to respect the same firing limitations as
the human player. This function won’t actually do anything until we add
weapons (in a later chapter).

Thanks to the Tcl library, none of this is too hard to implement. Here’s our
scripting system (scripting.c), in its entirety:

Code Listing 6–3 (scripting.c)

/* Penguin Warrior’s scripting engine. */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <tcl.h>
#include "scripting.h"

/* Our interpreter. This will be initialized by InitScripting. */
static Tcl_Interp *interp = NULL;

/* Prototype for the "fireWeapon" command handler. */
static int HandleFireWeaponCmd(ClientData client_data, Tcl_Interp * interp,

int objc, Tcl_Obj * CONST objv[]);

/* Ship data structures (from main.c). */



244 CHAPTER 6. GAME SCRIPTING UNDER LINUX

extern player_t player, opponent;

/* Sets up a Tcl interpreter for the game. Adds commands to implement our
scripting interface. */

void InitScripting(void)
{

/* First, create an interpreter and make sure it’s valid. */
interp = Tcl_CreateInterp();
if (interp == NULL) {

fprintf(stderr, "Unable to initialize Tcl.\n");
exit(1);

}

/* Add the "fireWeapon" command. */
if (Tcl_CreateObjCommand(interp, "fireWeapon",

HandleFireWeaponCmd, (ClientData) 0,
NULL) == NULL) {

fprintf(stderr, "Error creating Tcl command.\n");
exit(1);

};

/* Link the important parts of our player data structures to global
variables in Tcl. (Ignore the char * typecast; Tcl will treat the data
as the requested type, in this case double.) */

Tcl_LinkVar(interp, "player_x", (char *) &player.world_x,
TCL_LINK_DOUBLE);

Tcl_LinkVar(interp, "player_y", (char *) &player.world_y,
TCL_LINK_DOUBLE);

Tcl_LinkVar(interp, "player_angle", (char *) &player.angle,
TCL_LINK_DOUBLE);

Tcl_LinkVar(interp, "player_accel", (char *) &player.accel,
TCL_LINK_DOUBLE);

Tcl_LinkVar(interp, "computer_x", (char *) &opponent.world_x,
TCL_LINK_DOUBLE);

Tcl_LinkVar(interp, "computer_y", (char *) &opponent.world_y,
TCL_LINK_DOUBLE);

Tcl_LinkVar(interp, "computer_angle", (char *) &opponent.angle,
TCL_LINK_DOUBLE);

Tcl_LinkVar(interp, "computer_accel", (char *) &opponent.accel,
TCL_LINK_DOUBLE);

/* Make the constants in gamedefs.h available to the script. The script



A SIMPLE SCRIPTING ENGINE 245

should play by the game’s rules, just like the human player. Tcl_SetVar2Ex
is part of the Tcl_SetVar family of functions, which you can read about in
the manpage. It simply sets a variable to a new value given by a Tcl_Obj
structure. */

Tcl_SetVar2Ex(interp, "world_width", NULL, Tcl_NewIntObj(WORLD_WIDTH),
0);

Tcl_SetVar2Ex(interp, "world_height", NULL,
Tcl_NewIntObj(WORLD_HEIGHT), 0);

Tcl_SetVar2Ex(interp, "player_forward_thrust", NULL,
Tcl_NewIntObj(PLAYER_FORWARD_THRUST), 0);

Tcl_SetVar2Ex(interp, "player_reverse_thrust", NULL,
Tcl_NewIntObj(PLAYER_REVERSE_THRUST), 0);

}

/* Cleans up after our scripting system. */
void CleanupScripting(void)
{

if (interp != NULL) {
Tcl_DeleteInterp(interp);

}

}

/* Executes a script in our customized interpreter. Returns 0 on success.
Returns -1 and prints a message on standard error on failure.

We’ll use this to preload the procedures in the script. The interpreter’s
state is maintained after Tcl_EvalFile. We will NOT call Tcl_EvalFile after
each frame - that would be hideously slow. */

int LoadGameScript(char *filename)
{

int status;

status = Tcl_EvalFile(interp, filename);
if (status != TCL_OK) {

fprintf(stderr, "Error executing %s: %s\n", filename,
Tcl_GetStringResult(interp));

return -1;
};

return 0;
}



246 CHAPTER 6. GAME SCRIPTING UNDER LINUX

/* Handles "fireWeapon" commands from the Tcl script. */
static int HandleFireWeaponCmd(ClientData client_data, Tcl_Interp * interp,

int objc, Tcl_Obj * CONST objv[])
{

/* Do nothing for now. We’ll add weapons to the game later on. */
fprintf(stderr, "Computer is firing weapon. This doesn’t work yet.\n");

/* Return nothing (but make sure it’s a valid nothing). */
Tcl_ResetResult(interp);

/* Succeed. On failure we would set a result with Tcl_SetResult and
return TCL_ERROR. */

return TCL_OK;
}

/* Runs the game script’s update function (named "playComputer").
Returns 0 on success, -1 on failure. */

int RunGameScript()
{

int status;

/* Call the script’s update procedure. */
status = Tcl_Eval(interp, "playComputer");
if (status != TCL_OK) {

fprintf(stderr, "Error in script: %s\n",
Tcl_GetStringResult(interp));

return -1;
};

/* Enforce limits on the script. It can still "cheat" by turning its ship
more quickly than the player or by directly modifying its position variables,
but that’s not too much of a problem. We can more or less trust the script
(it’s part of the game). */

if (opponent.accel > PLAYER_FORWARD_THRUST)
opponent.accel = PLAYER_FORWARD_THRUST;

if (opponent.accel < PLAYER_REVERSE_THRUST)
opponent.accel = PLAYER_REVERSE_THRUST;

while (opponent.angle >= 360)
opponent.angle -= 360;

while (opponent.angle < 0)
opponent.angle += 360;

return 0;



DESIGNING A GAME SCRIPT 247

}

In addition to this code, we’ll need to add some fairly obvious hooks into main.c
(to initialize the scripting engine and call RunGameScript each frame) and create
a pw.tcl script. We’ll talk about the script shortly. Let’s break this code down.

InitScripting sets up a fresh Tcl interpreter and adds our game’s interface to
the interpreter. At this point our interface consists of only one function (which is
empty for now) and a few variables. We take advantage of Tcl’s variable linking
feature, which causes a Tcl variables to track a C variable. Every access to a
linked variable within a Tcl script translates into an access to the corresponding
C variable.

The next function if interest is LoadGameScript. Our game will use this to load
the script in pw.tcl at startup. Tcl EvalFile works just like Tcl Eval, except
that it reads its input from a file instead of a string. If it returns anything but
TCL OK, LoadGameScript prints an error message and reports failure.

RunGameScript is the heart of our scripting engine. This function is responsible
for giving control to the script once each frame to let the enemy ship steer itself
and fire its weapons. To do this, RunGameScript calls Tcl Eval to invoke the
playComputer script command. If there are no errors, RunGameScript performs
some basic checks on the script’s actions and then returns. Tcl Eval takes care
of the rest.

Finally, the CleanupScripting function frees the Tcl interpreter. No surprises
here.

We now have a working scripting engine! If you want to see it run, you can find
this version of the Penguin Warrior code in the ph-ch6 subdirectory of the
source archive. Now we’ll talk about creating a decent game script. We won’t
quite reach a Star Trek level of artifical intelligence, but hopefully we can make
life difficult for the (human) player.

Designing A Game Script

Our game script is charged with one simple mission: to track down and blow up
the player. It has the ability to steer a ship, control its thrust, and activate its
weapons. It also has access to the player’s current position in the world. At a



248 CHAPTER 6. GAME SCRIPTING UNDER LINUX

glance, our script should look something like this:

1. Figure out where the player is with respect to our script’s ship, and find
the angle that will point us in that direction.

2. Decide whether a clockwise or counterclockwise turn would reach that
angle the fastest.

3. If the player is in front of us, fire our weapons.

4. Lather, rinse, repeat.

This shouldn’t be too difficult to implement in Tcl. Let’s give it a try.

Code Listing 6–4 (pwscript-firsttry.tcl)

# Penguin Warrior game script (Tcl).
# A first attempt.

proc playComputer { } {
global computer_x computer_y computer_angle computer_accel
global player_x player_y player_angle player_accel

# Global constants. These are initially set by InitScripting().
global world_width world_height
global player_forward_thrust player_reverse_thrust

# Find our distance from the player.
set distance [getDistanceToPlayer]

# If we’re close enough to the player, fire away!
if {$distance < 200} {

fireWeapon
}

# Figure out the quickest way to aim at the player.
set target_angle [getAngleToPlayer]
set arc [expr {$target_angle - $computer_angle}]
if {$arc < 0} {

set arc [expr {$arc + 360}]
}



DESIGNING A GAME SCRIPT 249

# Turn 15 degrees at a time, same as the player.
if {$arc < 180} {

set computer_angle [expr {$computer_angle + 15}]
} else {

set computer_angle [expr {$computer_angle - 15}]
}

# Apply a reasonable amount of thrust.
set computer_accel 5

# That’s it! Exit from Tcl_Eval and go back to the C-based engine.
}

# Returns the distance (in pixels) between the player and the opponent.
# This is just the Pythagorean formula.
proc getDistanceToPlayer { } {

global computer_x computer_y player_x player_y

set xdiff [expr {$computer_x - $player_x}]
set ydiff [expr {$computer_y - $player_y}]

return [expr {sqrt($xdiff * $xdiff + $ydiff * $ydiff)}]
}

# Returns the angle (in degrees) to the player from
# the opponent. Uses basic trig (arctangent).
proc getAngleToPlayer { } {

global computer_x computer_y player_x player_y

set x [expr {$player_x - $computer_x}]
set y [expr {$player_y - $computer_y}]

set theta [expr {atan2(-$y,$x)}]
if {$theta < 0} {

set theta [expr {2*3.141592654 + $theta}]
}

return [expr {$theta * 180/3.141592654}]
}

Give this script a go. (It’s in the pw-chapter6 directory as
pwscript-firsttry.tcl; you’ll need to symlink or copy it to pw.tcl for the game



250 CHAPTER 6. GAME SCRIPTING UNDER LINUX

to find it.) As you can guess by the name, it’s not quite what we’re looking for.
Yes, the computer’s ship does follow the player around, and with weapons it
would probably win pretty quickly. The problem is that the script is too good —
it doesn’t give the player a fair chance. The computer’s ship is basically
impossible to avoid. Once it manages to get behind the player, it’s very difficult
to get rid of. This would make for a very boring game (aside from the fact that
weapons don’t work yet).

So we need to make the computer a little bit worse at the game. A few things
come to mind. We could limit its speed or rate of turning, but that would be
cheesy (and probably very easy to notice). It would be better to give the
computer’s AI a bit more depth, so that it would act a more like a human and
less like a machine with a one track mind. A human player makes a conscious
effort to avoid the enemy’s line of fire, and periodically seizes an opportunity to
attack. Our script would be more interesting if it were to follow this behavior.

To accomplish this we’ll use a simple state machine. The computer’s ship will
always be in either attack or evade mode, and it might switch between these two
states at any time based on its position in the world and the position of the
player’s ship. In attack mode it will steer in the direction of the player, firing its
weapons if it gets close enough, and in evade mode it will home in on a random
target (other than the player) somewhere in the game world. It will switch into
evade mode whenever it gets too close to the player, and it will switch back into
attack mode whenever it reaches a randomly-chosen point in the world. From
the player’s point of view, the computer-controlled ship will seem to dive in for
an attack and then quickly run off. Properly tuned, this looks surprisingly
similar to what a human player would do.

Here’s a bird’s-eye view of our state machine.

It looks trivial enough. Here’s the code to make it happen:

Code Listing 6–5 (pwscript-improved.tcl)

# Penguin Warrior game script (Tcl).
# This version of the script implements two states:
# attack and evade. In the attack state, the opponent
# homes in on the player and fires its weapons. After it
# gets within a certain proximity of the player, it switches
# to the evade state, in which it aims at a random point in the
# world.



DESIGNING A GAME SCRIPT 251

Figure 6–1: State diagram for Penguin Warrior’s improved script

# The name of our current state, attack or evade.
set state attack

# Coordinates to aim towards. In the attack state these will
# be set to the player’s position. In the evade state these
# will be set to random values.
set target_x 0
set target_y 0

proc playComputer { } {
global computer_x computer_y computer_angle computer_accel
global player_x player_y player_angle player_accel
global target_x target_y state

# Global constants. These are initially set by InitScripting().
global world_width world_height
global player_forward_thrust player_reverse_thrust

if {[string equal $state attack]} {
#
# Code for the attack state
#

# In attack mode, our target is the player.
set target_x $player_x
set target_y $player_y

# If we’re too close to the player, switch to evade.



252 CHAPTER 6. GAME SCRIPTING UNDER LINUX

set distance [getDistanceToTarget]
if {$distance < 30} {

set state evade

# Set an invalid target so the evade state will
# come up with a new one.
set target_x -1

return
}

# If we’re far away, speed up. If we’re close, lay off the throttle..
if {$distance > 100} {

set computer_accel $player_forward_thrust
} elseif {$distance > 50} {

set computer_accel [expr {$player_forward_thrust/3}]
} else {

set computer_accel 0
}

# If we’re close enough to the player, fire away!
if {$distance < 200} {

fireWeapon
}

} else {
#
# Code for the evade state
#

# Have we hit our target yet? (within a reasonable tolerance)
if {abs($target_x - $computer_x) < 10 && abs($target_y - $computer_y) < 10} {

puts "Going back into ATTACK mode."
set state attack
return

}

# Do we need to find a new target?
if {$target_x < 0} {

# Select a random point in the world as our target.
set target_x [expr {int(rand()*$world_width)}]
set target_y [expr {int(rand()*$world_height)}]



DESIGNING A GAME SCRIPT 253

puts "Selected new EVADE target."
}

set computer_accel $player_forward_thrust

}

#
# State-independent code
#

# Figure out the quickest way to aim at our destination.
set target_angle [getAngleToTarget]
set arc [expr {$target_angle - $computer_angle}]
if {$arc < 0} {

set arc [expr {$arc + 360}]
}

if {$arc < 180} {
set computer_angle [expr {$computer_angle + 3}]

} else {
set computer_angle [expr {$computer_angle - 3}]

}

}

# Returns the distance (in pixels) between the target coordinate and the opponent.
proc getDistanceToTarget { } {

global computer_x computer_y target_x target_y

set xdiff [expr {$computer_x - $target_x}]
set ydiff [expr {$computer_y - $target_y}]

return [expr {sqrt($xdiff * $xdiff + $ydiff * $ydiff)}]
}

# Returns the angle (in degrees) to the target coordinate from
# the opponent. Uses basic trig (arctangent).
proc getAngleToTarget { } {

global computer_x computer_y target_x target_y

set x [expr {$target_x - $computer_x}]
set y [expr {$target_y - $computer_y}]



254 CHAPTER 6. GAME SCRIPTING UNDER LINUX

set theta [expr {atan2(-$y,$x)}]
if {$theta < 0} {

set theta [expr {2*3.141592654 + $theta}]
}

return [expr {$theta * 180/3.141592654}]
}

We use a global variable to keep track of the state we’re currently in, and we test
the current state with a simple conditional. It would be a simple matter to add
more states to make for a more realistic opponent (this might make for an
interesting project). Note that our script no longer runs after the player, per se,
but rather a target coordinate. In attack mode, the target coordinate is changed
each time the script is called to reflect the player’s current position, so it’s all the
same.

Most games would employ much more complex state machines (also known as
automatons) to give life to computer-controlled characters; indeed, Penguin
Warrior’s state machine is very simple. But it’s also quite effective. If you
haven’t already, give this new script a try (rename pw-improved.tcl to pw.tcl)
and observe the opponent’s behavior. Much better! Now if there were some
weapons, it would be a worthy fight... Don’t worry, we’ll add this when we finish
off Penguin Warrior in a later chapter.

Applying Scripting To The Real World

Penguin Warrior is a bit of a pedagogical example. Sure, it’s a playable game (or
will be soon enough), but it’s not something you’d expect to find on the shelf at
a computer store or given a good review on a gaming site. But the ingredients
we’ve used to create Penguin Warrior are industrial-grade, and this book would
be pointless if we couldn’t apply them in the “real world”. To that end, now
would be a good time to discuss the problems in implementing a scripting
system in larger projects. Bear in mind that this goes for any scripting language:
Tcl, Scheme, Perl, Python, librep, or anything else you can grab off Freshmeat
(http://www.freshmeat.net).



APPLYING SCRIPTING TO THE REAL WORLD 255

Figure 6–2: Several possible scripting models

Single Versus Multiple Contexts

Suppose that you are making a game similar to StarCraft (a realtime strategy
game with hundreds of computer-controlled opponents in the world
simultaneously), and that you want to implement the scripting with Tcl. You’ll
obviously want to call Tcl Eval on part of the script at least once each frame.
Here’s the question: do you create a separate Tcl Interp for each character in
the game, or do you run all of them through the same interpreter? In the latter
case, do you invoke the interpreter once for each character, or once for the entire
group? (For lack of a better term, we’ll call an interpreter with a loaded script a
context.)

In the case of something like StarCraft, it would probably be a bad idea to use a
separate interpreter for each character in the game; that would be a horrendous
waste of memory and script loading time, even though it might make the
scripting system a bit easier to organize. In cases with only a few characters,
though, it might be desirable to use multiple scripting contexts.

If you decide to use a single interpreter for the whole thing, you still need to
decide whether you’ll make a single call to it each frame and let it sort out all of



256 CHAPTER 6. GAME SCRIPTING UNDER LINUX

the different characters (through a loop of some sort, probably), or call the script
once for each game character. The former has the advantage of fewer calls to the
scripting library (which may be expensive, depending on the language), and the
latter has the advantage of potentially simpler scripting. It’s hard to guess how
well either scenario will perform; if you’re faced with this question, you might
want to write some timing code to measure the total amount of time spent in the
scripting engine per frame.

Can We Trust The Script?

Security really doesn’t matter for a single player game; if a player wants to
cheat, so what? For that matter, you might as well publish a list of cheat codes.
But this is a huge problem in multiplayer games. You can pretty much count on
a few lamers trying to mess up the game for everyone else. If the game depends
on an interpreted (rather than compiled) script for its rules, there’s a problem.
Someone will figure out how to change the code, and without proper safeguards,
this can make the game unfair for the rest of the players.

This problem becomes even worse in open source software. Everyone has access
to all of the code, and anyone can change it to their liking. Unless the other
players have some way of telling when someone’s copy of the game has been
modified, there’s no hope of preventing cheaters from spoiling the fun, unless the
players trust each other from the start.

Penguin Warrior is wide open to script abuse. The script can essentially take
direct control of either ship, and there are no limits imposed. If security were an
issue, we would have to add a limit checking system to prevent the script from
making illegal moves. Even then, the source code to the game is available for all
to see and modify. Multiplayer games can avoid this problem by having all
players connect to a trusted central server. We’ll go over multiplayer security in
the next chapter.

Script Performance

Script interpreters are usually pretty well optimized, but unless scripts are
compiled, they are always separated from the processor by at least one layer of
code. The exact speed ratio of interpreted code to native code varies between
languages, but don’t be surprised if a script runs about a tenth the speed of



APPLYING SCRIPTING TO THE REAL WORLD 257

equivalent C code (again, it could be better or worse, depending on a lot of
factors). To achieve decent performance, you’ll need to take the properties of
your chosen language into account. Tcl, for instance, isn’t very fast at list
processing (though this has gotten much better of late), while Scheme excels at
lists. It probably wouldn’t be a good idea to use the “one interpreter, one call”
model (mentioned above) with Tcl, while this would be quite natural in Scheme.
Also, don’t be fooled by the “compilation” modes of most scripting systems;
TclPro and MzScheme can both ”compile” programs, but this does little more
than hide the source. The code is still interpreted in the same way it normally
would be, except for the initial parsing stage. (However, TclPro’s .tbc or
MzScheme’s .zo bytecode formats might be useful if you wish to hide the source
to your scripts.)

Another performance issue has to do with memory management. Tcl uses
reference counting to know when it can safely reclaim unused variable memory,
while Scheme and most other LISP-like languages use much more complicated
“garbage collection” techniques. Scheme has plenty of reasons to use garbage
collection, but it means that a Scheme program will typically use more memory
than it really needs at any given time. Garbage collection often takes place very
suddenly, and this can cause noticeable delays in your program. There are ways
to avoid this problem (such as running the scripting system in a separate thread
or scheduling garbage collection yourself at safe times), but you would do well to
become informed about these quirks before you try to use one of these libraries.

Who’s Writing The Script?

As a final thought, it’s important to note that the people who write game scripts
often aren’t programmers. Scripting is part of creating maps and characters, and
this often falls into the hands of artists and game designers. These are smart
people, no doubt, but they might not be up to speed on programming. This is
actually one of the main reasons for using scripting languages in games: it allows
non-programmers to make minor changes to the way a game behaves without
actually messing with the main source code. Scripting languages are usually
much simpler than C and C++. But even with a well designed scripting system,
some people might have trouble grokking the language or the interface. The only
real solution is to document your scripting interface well, pick an intuitive
language, and be prepared to teach it to your scripters. Almost anyone can pick
up something like Tcl without too much effort, so be patient.



258 CHAPTER 6. GAME SCRIPTING UNDER LINUX

We’ve covered a lot in this chapter, and there’s certainly a lot more to game
scripting than we’ve mentioned here. If game scripting systems interest you,
point your browser at Gamasutra (http://www.gamasutra.com) and search for
articles on scripting. Gamasutra frequently publishes retrospective accounts
from game teams after the release of major products, and one can glean a lot of
insight from these professionals’ experiences.



Chapter 7

Networked Gaming with Linux

It all started with id Software’s Doom. Now that many computers had modems
(mainly for surfing the bulletin board (BBS) systems of the time), it was possible
to build multiplayer games in which the players weren’t sitting behind the same
monitor or even in the same room. There were others, but Doom was the game
that really got people thinking about networked gaming.

Quite frankly, modem-to-modem Doom was a huge hassle. The two players had
to have exactly the same version of Doom, the same map (.wad) files, and
compatible modems with correct parameters. It was difficult or impossible to
change game settings after the connection was established, so the players
generally had to agree on these over the phone ahead of time. If the connection
failed, as would frequently happen, it was hard to know whether the next phone
ring would be your friend calling to explain the problem or his computer trying
to redial. Nonetheless, the allure of playing against a real human from halfway
across a city was enough to make deathmatch Doom one of the most popular
games of the time, and to usher in a new era of online gaming.

You’re in luck! Today, you don’t have to mess with modem init strings or design
your own transport protocol to add multiplayer support to your games. Instead,
you can rely on the operating system’s support for TCP/IP (the Internet’s
workhorse protocol) and the user’s existing Internet connection. It’s no longer
necessary to play with interrupts, serial ports, or flaky lines (though admittedly
it was fun while it lasted – there’s nothing quite like programming a buggy
UART chip in assembly). Thanks to the Internet, it’s easy to write code that

259



260 CHAPTER 7. NETWORKED GAMING WITH LINUX

communicates reliably with the other side of the world. And of course we all
know that the primary purpose of computers and the Internet is gaming, right?

In this chapter we’ll look at the protocols and techniques that make it possible
to write multiplayer games for Linux. We’ll start with a quick tour of TCP/IP
and the basic layout of the Internet, then we’ll learn about the Linux networking
interface. Finally, we’ll use this to add two-player network support to Penguin
Warrior.

’Tis A Big Net, Quoth The Raven

If you’re reading this book (which presumably you are, or else I’m talking to
myself again), there’s a good chance you’re an experienced Netizen and are more
or less familiar with the Internet’s architecture. Or perhaps you’re just getting
into the whole mess and aren’t too familiar with protocols, packets, and routing.
In any case, a quick refresher won’t hurt.

Internet Protocols

The Internet is just a bunch of computers that are set up to talk to each other.
The language of the Internet is TCP/IP, a set of protocols (communication
standards) that provides reliable data exchange over a wide area. IP (Internet
Protocol) is a simple addressing and routing system that lets computers send
short messages to each other, without any guarantee that the messages will
arrive intact or even show up at all. TCP (Transmission Control Protocol) is a
higher-level system that sits on top of IP and manages reliable point to point
data transmission. You can use IP without TCP, but TCP depends on IP. Other
protocols such as ICMP (Internet Control Message Protocol) provide error
reporting and other useful services. Together, the protocols that make up
TCP/IP provide everything you need to send data anywhere in the world and to
make sure it got there.

From an application (game) programming perspective, we have two main
protocols to work with. TCP, as we just mentioned, is good for establishing
reliable data transfer connections between two computers. At the cost of a bit of
overhead, it ensures that each byte sent from one end will arrive undamaged and
in order on the other end. TCP is called a stream protocol because it



’TIS A BIG NET, QUOTH THE RAVEN 261

implements a protected stream of data between two points. This is the
“flagship” protocol of the Internet, of sorts. Almost everything uses TCP,
including the Web (HTTP) and file transfers (FTP). We’ll use TCP to link our
multiplayer version of Penguin Warrior together.

UDP (User Datagram Protocol), on the other hand, is not reliable and not
connection-based. It is a datagram protocol – it allows applications to send
brief messages (datagrams) over the Internet, with no guarantee as to when the
data will arrive at the other end (the assumption being that it probably will get
there, if network resources can accomodate it). Packets may arrive out of order,
much later, or not at all. If they do arrive, however, UDP guarantees that they
will be correct and uncorrupted. UDP provides no flow control. It’s easy to send
UDP packets faster than the network can handle them, in which case some will
probably disappear. Furthermore, there is a maximum (system-dependent) size
for datagrams. This is never too low (or UDP would be useless), but you can’t
count on UDP to send more than a few hundred bytes per packet. Even though
UDP is unreliable, it’s useful in many cases. We won’t use UDP in Penguin
Warrior, as it would greatly increase the code’s complexity for only marginal
performance gains.

Addresses and Ports

Every computer on the Internet, whether connected through a high-speed line or
with a lowly dialup modem, has a unique IP address. This four-byte number
identifies the computer’s exact network location, and provides the underlying IP
protocol with enough information to route pieces of data to that computer from
anywhere in the world. Some computers (mainly dedicated servers) keep the
same (static) IP address indefinitely, but in most cases computers are assigned
new (dynamic) addresses each time they log on to the network. Before you can
exchange data with a remote host over the Internet, you need to know its IP
address. IP addresses are usually written as four one-byte parts, separated by
periods (for instance, my building’s router has the address 128.61.59.1). This
is known as the dotted representation of an IP address. We’ll leave a more
complete discussion of IP addresses and the mechanics routing to other sources,
since it’s mostly irrelevant to our game programming needs (and quite dry).

What happens if more than one program on a single computer needs to send and
receive packets at the same time? It seems that the networking software would



262 CHAPTER 7. NETWORKED GAMING WITH LINUX

have trouble deciding which packets should go to which program. This would be
quite a mess, especially on servers that need to handle hundreds of clients at a
time. TCP/IP fixes this with the notion of ports. A port is just a number that
identifies a particular receiving program. Certain port numbers are reserved for
basic networking services like FTP and HTTP, but most of them are available for
programs to request and use. You can think of ports as loading dock numbers in
a large shipping center. Packets are always marked with both a destination IP
address and a receiving port number. When packets come in, the networking
software sorts them out by port number and sends them to the corresponding
programs. We’ll see how this works when we dig into some socket code later on.

Name Resolution

Humans are good at remembering some things, but IP addresses can be hard to
keep track of. DNS (Domain Name System) makes the Internet easier for
humans to grok by associating short names with IP address. DNS is a
distributed database – it’s spread out all over the Internet. The DNS name for
an IP address is called a hostname, and hostnames usually belong to a TLD
(top-level domain name). For instance, my system’s hostname is neutron, and it
belongs to the patentburner.com domain (for a complete name of
neutron.patentburner.com). If you type this name into a web browser or any
other network client1, the program realizes that you did not type an IP address,
and calls DNS into play. DNS first searches the enormous com database, finds
contact information for the patentburner DNS server, and queries this server
for a machine by the name of neutron. The patentburner DNS server (which
resides on a friend’s Linux box) locates neutron in a table, finds its IP address,
and returns this information via the UDP protocol. All of this happens behind
the scenes – the network client only has to make a single system call to initiate
the lookup. We’ll demonstrate this later in the chapter.

Keep in mind that DNS is not part of the TCP/IP protocol stack, and the
Internet would work just fine without it (but humans would have a lot more
trouble finding the sites they’re interested in).

Simple enough? Good, let’s give it a spin.

1Please, not nmap!



SOCKET PROGRAMMING 101 263

Socket Programming 101

The BSD sockets API is one of the most popular TCP/IP networking interfaces
today2. There are others, but BSD sockets has become the defacto standard for
Linux and UNIX systems. The sockets API isn’t pretty, but it works well enough
to have caught on (you could say this about UNIX as a whole).

This will be a rather condensed tour. Network programming is a big subject,
and it’s not really the focus of this book.

Sockets

A socket is just a file descriptor (similar to one returned by the ordinary open
function) that represents a networking context. Usually a socket acts as an
endpoint for a TCP connection, but they’re also useful for UDP transactions.
Once a socket is ready to go, you can use the familiar read and write functions
to transfer data over the network, just as you’d access a normal file. To use an
analogy that’s been beaten to death over the years, a socket is like a handset
connected to a telephone network. Once it’s connected to another endpoint (by
initiating or receiving a call), you can use the handset to talk or listen to
whoever or whatever is at the other end.

You can create a new, unconnected socket with the socket function. This
function takes three arguments that control the socket’s properties. The first
specifies the socket’s communication domain; there are several possibilities, but
PF INET is probably what we want. This asks for a socket configured for IP
version 4, suitable for the Internet. The next parameter can be either
SOCK STREAM or SOCK DGRAM, to request a stream or datagram socket,
respectively. The final parameter specifies the socket’s communication protocol.
IPPROTO TCP is an appropriate choice (for both TCP and UDP).

2The socket interface isn’t limited to any particular protocol, but it’s most often used with
TCP/IP.



264 CHAPTER 7. NETWORKED GAMING WITH LINUX

Function socket(domain, type, protocol)
Synopsis Creates a new socket, a communication endpoint that acts

like a file descriptor.
Returns A new socket file descriptor (a small integer of type short),

or −1 on error.
Params domain — Communication domain. See the socket manpage

or system header files for a list of possibilities. The most likely
choice is PF INET, for an Internet socket.
type — Socket type. For PF INET, valid choices are
SOCK DGRAM (for a UDP socket) or SOCK STREAM (for a TCP
socket).
protocol — Protocol that this socket will speak. For TCP
and UDP, this should be IPPROTO IP.

Continuing the analogy, a telephone is of no use unless it’s connected to
something. Likewise, a socket is dead in the water until you set up a connection
(either by requesting a new connection to a remote host or by accepting an
incoming connection). Neither is hard, but the sockets API makes it a bit ugly.

Connecting TCP Sockets

To originate an Internet connection, you first need to fill in a sockaddr in
structure with information about the remote host (most importantly its IP
address and the desired remote port number). With this information ready, you
can call connect to initiate a connection attempt. This is likely to fail, so be
prepared – the Internet isn’t exactly an archetype of reliability. connect takes
three parameters. The first is the socket to connect, the second is a pointer to a
valid sockaddr in structure, and the third is the length of the address structure
(this is necessary since connect isn’t specific to any particular protocol, and
different protocols use different address lengths). connect returns zero on
success and −1 on failure.



SOCKET PROGRAMMING 101 265

Function connect(sock, addr, addr len)
Synopsis Attempts to establish a network connection with the server

at the given address.
Returns Zero on success, −1 on failure. As with most old UNIX func-

tions, connect sets the global errno variable to the relevant
error code on failure.

Params sock — Socket to connect.
addr — Address structure. Different protocols use different
versions of the address structure. sockaddr in is the correct
version for Internet sockets.
addr len — Size of the address structure, in bytes.
sizeof(addr) should do the trick.

sockaddr in specifies the intended destination of a connection attempt. This is
an Internet-specific version of the more general sockaddr address structure. To
use it, set its sin family field to AF INET (Internet address family), sin addr to
the desired IP address, and sin port to the port number you wish to connect to.
There’s a catch, though. We’ve already touched on endianness – byte ordering
on different CPU architectures – and it becomes a real problem in networking.
Should the four-byte IP address 128.61.41.1 go across the network as the bytes
128, 61, 41, 1, or as 1, 41, 61, 128? It sounds like a silly problem, but the
“obvious” way for a human to store information is irrelevant to a CPU, and it’s
not safe to make assumptions about how any given processor architecture will do
it. The same problem affects port numbers, since they are two-byte integers.

There is a well-defined network byte order for TCP/IP that specifies the
proper orientation of multi-byte values. It doesn’t really matter what this order
is3 – every system that supports BSD sockets has a set of macros for converting
values to and from this byte order. On systems that use a compatible byte
ordering natively, these macros do nothing, but they still exist for portability.
See Table 7 for a list of these macros. We’ll use them in examples throughout
this chapter. You should always use these macros where appropriate, even if
your machine already uses network byte ordering.

There are several functions to help you convert strings to IP addresses, perform
DNS lookups, and so forth. Take a look at Listing 7–1. It is a simple TCP/IP
client that establishes a TCP connection to a given hostname or IP address and
reads data until it’s stopped. You can test this program with any simple TCP

3Big endian. For comparison, Intel x86 processors use little endian ordering.



266 CHAPTER 7. NETWORKED GAMING WITH LINUX

Macro Purpose
htons(value) Converts value (a 16-bit integer) to network

byte order. Use this to convert port numbers
for the sockaddr in structure.

htonl(value) Converts value (a 32-bit integer) to network
byte order. Use this to convert IP addresses
for the sockaddr in structure.

ntohs(value) Converts value (a 16-bit integer in network
byte order) back to the system’s native byte
order.

ntohl(value) Converts value (a 32-bit integer in network
byte order) back to the system’s native byte
order.

Table 7–1: Macros for converting to and from network byte order

server. It will not work with Telnet servers, since Telnet uses a simple but
unreadable handshaking protocol. We’ll develop a server program in the next
section.

Structure sockaddr in
Purpose Specifies the destination of a connection attempt.

Members sin port — Port on the remote system to connect to. A
16-bit integer in network byte order.
sin addr — IP address of the remote system. This is a
structure of type in addr, containing a single s addr mem-
ber. s addr is the desired 32-bit IP address in network byte
order.

Code Listing 7–1 (tcpclient.c)

/* A simple TCP/IP client program that uses sockets. */
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <string.h>



SOCKET PROGRAMMING 101 267

#include <signal.h>
#include <unistd.h> /* Nice to have around for various UNIX goodies. */
#include <netinet/in.h> /* Internet structures and functions. */
#include <netdb.h> /* Access to DNS lookups. */
#include <arpa/inet.h> /* inet_ntop function. */
#include <sys/socket.h> /* Socket functions. */

struct hostent *hostlist; /* List of hosts returned
by gethostbyname. */

char dotted_ip[15]; /* Buffer for converting
the resolved address to
a readable format. */

int port; /* Port number. */
int sock; /* Our connection socket. */
struct sockaddr_in sa; /* Connection address. */

/* This function gets called whenever the user presses Control-C.
See the signal(2) manpage for more information. */

void signal_handler(int signum)
{

switch (signum) {
case SIGINT:
printf("\nReceived interrupt signal. Exiting.\n");
close(sock);
exit(0);

default:
printf("\nUnknown signal received. Ignoring.\n");

}
}

int main(int argc, char *argv[])
{

/* Make sure we received two arguments,
a hostname and a port number. */

if (argc < 3) {
printf("Simple TCP/IP client.\n");
printf("Usage: %s <hostname or IP> <port>\n", argv[0]);
return 1;

}



268 CHAPTER 7. NETWORKED GAMING WITH LINUX

/* Look up the hostname with DNS. gethostbyname
(at least most UNIX versions of it) properly
handles dotted IP addresses as well as hostnames. */

printf("Looking up %s...\n", argv[1]);
hostlist = gethostbyname(argv[1]);
if (hostlist == NULL) {

printf("Unable to resolve %s.\n", argv[1]);
return 1;

}

/* Good, we have an address. However, some sites
are moving over to IPv6 (the newer version of
IP), and we’re not ready for it (since it uses
a new address format). It’s a good idea to check
for this. */

if (hostlist->h_addrtype != AF_INET) {
printf("%s doesn’t seem to be an IPv4 address.\n",

argv[1]);
return 1;

}

/* inet_ntop converts a 32-bit IP address to
the dotted string notation (suitable for printing).
hostlist->h_addr_list is an array of possible addresses
(in case a name resolves to more than on IP). In most
cases we just want the first. */

inet_ntop(AF_INET, hostlist->h_addr_list[0], dotted_ip, 15);
printf("Resolved %s to %s.\n", argv[1], dotted_ip);

/* Create a socket for the connection. If we wanted to use UDP
instead of TCP, we would create a SOCK_DGRAM socket, skip
the call to connect, and use the recvfrom and sendto functions
instead of read and write. */

sock = socket(PF_INET, SOCK_STREAM, IPPROTO_IP);
if (sock < 0) {

printf("Unable to create a socket: %s\n",
strerror(errno));

return 1;
}

/* Fill in the sockaddr_in structure. The address is already
in network byte order (from the gethostbyname call).



SOCKET PROGRAMMING 101 269

We need to convert the port number with the htons macro.
Before we do anything else, we’ll zero out the entire
structure. */

memset(&sa, 0, sizeof(struct sockaddr_in));

port = atoi(argv[2]);
sa.sin_port = htons(port);

/* The IP address was returned as a char * for various reasons,
even though it’s a 32-bit binary value.
Just memcpy it into the sockaddr_in structure. */

memcpy(&sa.sin_addr, hostlist->h_addr_list[0], hostlist->h_length);

/* This is an Internet socket. */
sa.sin_family = AF_INET;

/* Connect! */
printf("Trying %s on port %i...\n", dotted_ip, port);
if (connect(sock, (struct sockaddr *)&sa, sizeof(sa)) < 0) {

printf("Unable to connect: %s\n",
strerror(errno));

return 1;
}

printf("Connected! Reading data. Press Control-C to quit.\n");

/* Install a signal handler for Control-C (SIGINT).
See the signal(2) manpage for more information. */

signal(SIGINT, signal_handler);

/* Read data until we encounter an error. */
for (;;) {

char ch;
int amt;

/* Read one byte at a time.
This is quite inefficient. */

amt = read(sock, &ch, 1);

/* ALWAYS check for errors on network reads.
They are MUCH less reliable than local
file accesses. */

if (amt < 0) {



270 CHAPTER 7. NETWORKED GAMING WITH LINUX

printf("\nRead error: %s\n",
strerror(errno));

break;
} else if (amt == 0) {

/* A zero-byte read means the connection
has been closed. read waits until it
can return at least one byte. */

printf("\nConnection closed by remote system.\n");
break;

}

/* Write the character to stdout. */
putchar(ch);
fflush(stdout);

}

/* Close the connection. */
printf("Closing socket.\n");
close(sock);

return 0;
}

Let’s start from the top. Networking programs generally include a lot of extra
headers. In addition to the usual stdio.h and stdlib.h, we need (in no particular
order) unistd.h (useful UNIXish functions), netinet/in.h (for the in addr and
sockaddr in types), netdb.h (for DNS), arpa/inet.h (for inet ntop and other
conversion functions), and sys/socket.h (for socket and related functions). To
make our lives even more complicated, these headers may vary between sockets
implementations (between UNIX flavors). This is one case in which the “shotgun
include” strategy might not be a bad idea – when in doubt, include ’em all.

We begin main by looking up the IP address of the remote system. The user can
pass either an IP address or a hostname on the command line, and we use
gethostbyname to convert this to a 32-bit IP address. gethostbyname takes a
string, which can be either an IP address in dotted notation or a hostname, and
returns a pointer to a structure that contains a list of possible addresses.



SOCKET PROGRAMMING 101 271

Function gethostbyname(hostname)
Synopsis Performs a DNS or /etc/hosts lookup on the given host-

name. UNIX implementations properly handle dotted IP ad-
dresses as well. (A recent version of Windows did not; this
may have changed by now, though.)

Returns Pointer to a hostent structure that contains a list of possi-
ble IP addresses. It’s possible for a single hostname to cor-
respond to multiple IP addresses. In most cases you should
just take the first address in the list. If the lookup fails,
gethostbyname returns NULL.

Params hostname — Hostname to look up (such as
"neutron.patentburner.com"), or an IP address in
dotted notation (such as "128.61.59.45").

Once we have a valid IP address for the remote system, we prepare a
sockaddr in structure. sockaddr in requires values in network byte order. The
IP address returned by gethostbyname is ready to go, but we need to convert
the port number manually (with htons). We’re working with the Internet (IPv4)
as opposed to an IPv6 or IPX network, so we set the address family of the
sockaddr in structure to AF INET.

Now it’s time to actually make the connection. We call connect with the socket
and the address structure. If the connection succeeds, the socket is ready to go,
and we can read and write data with it.

A more interesting TCP client might actually do something with the socket at
this point, but our client just reads data until it loses the connection. With
normal files, you can be fairly certain that read will return the full amount of
data you requested, unless it hits the end of the file. Sockets are considerably
more volatile. The Internet is not a reliable medium, and it takes time to
transfer data. It is very likely that read won’t return as many bytes of data as
you requested (though it’ll always return at least one as long as the connection is
still alive).

Finally, we close the socket and exit. close attempts to cleanly shut down the
given socket, sending any remaining data before it does so. By default, close
returns immediately and lets the networking system perform the shutdown in the
background.



272 CHAPTER 7. NETWORKED GAMING WITH LINUX

Signal Handlers

Listing 7–1 used a signal handler to catch interrupts ( Ctrl-C

keypresses, not hardware interrupts). If you’re new to UNIX
programming, this is probably new to you; signals don’t show up much
in other operating systems. A signal is just a way for the operating
system to notify a running program about an important event, such as
an interrupt (SIGINT), a program-requested timed alarm (SIGALRM), or
even a memory access violation (SIGSEGV). By default most signals are
ignored or handled without your program’s involvement, but you can
use the signal function to associate a handler function with a
particular signal.

Function read(sock, ptr, len)
Synopsis Attempts to read len bytes of data from the given socket into

buf.
Returns Number of bytes read, or −1 on error. If the socket is closed

(usually because the other end disconnected), read returns
zero. read also returns zero if it is interrupted by a signal
(which is not necessarily an error). If this happens, the glob-
alerrno variable (in errno.h) will be set to EINTR.

Params sock — Socket to read from.
ptr — Buffer to fill with data.
len — Maximum number of bytes to read. read may or may
not actually return this much data.

Function write(sock, buf, len)
Synopsis Attempts to write len bytes of data from buf to the given

socket.
Returns Same as read. Small writes will usually process the full

amount of data, but it’s possible to exceed the networking
system’s buffer space with larger write calls.

Params sock — Socket to write to.
buf — Buffer containing the data to send.
len — Amount of data in the buffer. Be ready for write to
not handle all of this data at once.



SOCKET PROGRAMMING 101 273

Receiving TCP Connections

Receiving network connections is just a little bit trickier than initiating them.
First you have to create a socket and bind it to an address. Binding simply tells
the networking software that a socket should be associated with a certain port on
the local system (otherwise the kernel will chose a random one, which is no good
for most types of servers). You can bind a socket to a local port with the bind
function. After binding the socket, you should inform the networking system that
this is a listening socket (not one that will be used for initiating connections),
and that it the networking system should pay attention to connection requests
on its port number. You can do this with the listen function.

Once this is ready, you can enter an accept loop, in which you call accept
repeatedly to handle incoming connections. Each accept call returns a new
socket (separate from the one you bound to the port) that’s connected with a
client. You close each of these client sockets when you’re finished with them.
When you’re ready to stop accepting new connections, close the listening socket.

It’s worth noting that more than one client can connect to any given port number
at a time. The networking software makes sure that data gets routed to the
correct sockets. The exact mechanics of this are beyond our present discussion.

Function bind(sock, addr, addr len)
Synopsis Associates (binds) a socket with a port on a local interface.
Returns Zero on success, −1 on failure.
Params sock — Socket (file descriptor) to bind.

addr — Local address to bind the socket to. This is a pointer
to a sockaddr structure. For Internet sockets, this should
be a sockaddr in structure. sin addr should be set to the
desired local IP address (or INADDR ANY for all local IP ad-
dresses), and sin port should be set to the desired port num-
ber. Most systems only have one IP address, but this call
also supports systems with multiple network devices. Use
INADDR ANY unless you have a reason to do otherwise.
addr len — Size of the address structure, in bytes.
For Internet sockets, this should just be sizeof(struct
sockaddr in).



274 CHAPTER 7. NETWORKED GAMING WITH LINUX

Function listen(sock, queue)
Synopsis Informs the networking system (the kernel, in the case of

Linux) that sock is a listening (server) socket and not a nor-
mal client socket. This allows the socket to accept incoming
connections. listen also sets the number of incoming con-
nections that the networking system should allow to stack up
in the connection queue.

Params sock — Socket to make into a listener.
queue — Desired size of the connection queue. This is the
number of clients that can try to connect to this server with-
out being accepted. If you’re using threads to handle clients
in the background, a reasonable number might be 5 or 10.
Otherwise you’ll have to base this on your expected client
load.

Function accept(sock, addr, addr len)
Synopsis Receives an incoming connection from the given socket.

Stores information about the client (its IP address and port
number) in addr. If there are no pending connections (no-
body has tried to connect), accept waits (unless it’s in non-
blocking mode, which is beyond our present scope).

Returns Zero on success, −1 on failure.
Params sock — Listening socket to check for incoming connections.

addr — Pointer to a sockaddr structure (sockaddr in for
Internet sockets) that will receive information about the con-
necting client.
addr len — Pointer to an integer to receive the size of
the address structure. For Internet sockets, this will be
sizeof(struct sockaddr in).

Now let’s make a server that can talk to the client we wrote in the previous
section.

Code Listing 7–2 (tcpserver.c)

/* A simple TCP server. Sends the system’s uptime to each client. */
#include <stdio.h>
#include <stdlib.h>



SOCKET PROGRAMMING 101 275

#include <errno.h>
#include <string.h>
#include <signal.h>
#include <unistd.h> /* Nice to have around for various UNIX goodies. */
#include <netinet/in.h> /* Internet structures and functions. */
#include <netdb.h> /* Access to DNS lookups. */
#include <arpa/inet.h> /* inet_ntop function. */
#include <sys/socket.h> /* Socket functions. */

char dotted_ip[15]; /* Buffer for converting
the resolved address to
a readable format. */

int listener; /* Our listening socket. */
int client; /* The current client’s socket. */
int port; /* Port we’re accepting connections on. */
struct sockaddr_in sa; /* Connection address. */
socklen_t sa_len; /* Length of sa. This is a bit redundant

in simple cases, but sockets aren’t just
for TCP/IP. */

/* This function gets called whenever the user presses Control-C.
See the signal(2) manpage for more information. */

void signal_handler(int signum)
{

switch (signum) {
case SIGINT:

printf("\nReceived interrupt signal. Exiting.\n");
close(client);
close(listener);
exit(0);

default:
printf("\nUnknown signal received. Ignoring.\n");

}
}

int main(int argc, char *argv[])
{

/* Make sure we received two arguments,
a hostname and a port number. */

if (argc < 2) {



276 CHAPTER 7. NETWORKED GAMING WITH LINUX

printf("Simple TCP/IP uptime server.\n");
printf("Usage: %s <port>\n", argv[0]);
return 1;

}

port = atoi(argv[1]);

/* Create the listener socket. This socket will queue
incoming connections. */

listener = socket(PF_INET, SOCK_STREAM, IPPROTO_IP);
if (listener < 0) {

printf("Unable to create a listener socket: %s\n",
strerror(errno));

return 1;
}

/* Now bind the listener to a local address. This uses
the same sockaddr_in structure as connect. */

sa_len = sizeof(sa);
memset(&sa, 0, sa_len);
sa.sin_family = AF_INET;
sa.sin_port = htons(port);
sa.sin_addr.s_addr = htonl(INADDR_ANY); /* Listen on all interfaces. */

if (bind(listener, &sa, sa_len) < 0) {
printf("Unable to bind to port %i: %s\n",

port,
strerror(errno));

return 1;
}

/* Let the networking system know we’re accepting
connections on this socket. Ask for a connection
queue of five clients. (If more than five clients
try to connect before we call accept, some will
be denied.) */

if (listen(listener, 5) < 0) {
printf("Unable to listen: %s\n",

strerror(errno));
return 1;

}

/* Ready! Now accept connections until the user presses



SOCKET PROGRAMMING 101 277

Control-C. */
signal(SIGINT, signal_handler);

for (;;) {
char sendbuf[1024];
int sent, length;
FILE *uptime;

client = accept(listener, &sa, &sa_len);
if (client < 0) {

printf("Unable to accept: %s\n",
strerror(errno));

close(listener);
return 1;

}

/* We now have a live client. Print information
about it and then send something over the wire. */

inet_ntop(AF_INET, &sa.sin_addr, dotted_ip, 15);
printf("Received connection from %s.\n", dotted_ip);

/* Use popen to retrieve the output of the
uptime command. This is a bit of a hack, but
it’s portable and it works fairly well.
popen opens a pipe to a program (that is, it
executes the program and redirects its I/O
to a file handle). */

uptime = popen("/usr/bin/uptime", "r");
if (uptime == NULL) {

strcpy(sendbuf, "Unable to read system’s uptime.\n");
} else {

sendbuf[0] = ’\0’;
fgets(sendbuf, 1023, uptime);
pclose(uptime);

}

/* Figure out how much data we need to send. */
length = strlen(sendbuf);
sent = 0;

/* Repeatedly call write until the entire
buffer is sent. */

while (sent < length) {



278 CHAPTER 7. NETWORKED GAMING WITH LINUX

int amt;

amt = write(client, sendbuf+sent, length-sent);

if (amt <= 0) {
/* Zero-byte writes are OK if they

are caused by signals (EINTR).
Otherwise they mean the socket
has been closed. */

if (errno == EINTR)
continue;

else {
printf("Send error: %s\n",

strerror(errno));
break;

}
}

/* Update our position by the number of
bytes that were sent. */

sent += amt;
}

close(client);
}

return 0;
}

Our server starts by creating a socket and binding it to a local port. It specifies
INADDR ANY for an address, since we don’t have any particular network interface
in mind. (You could use this to bind the socket to just one particular IP address
in a multihomed system, but games usually don’t need to worry about this.) It
then uses listen to set the socket up as a listener with a connection queue of
five clients.

Next comes the accept loop, in which the server actually receives and processes
incoming connections. It processes one client for each iteration of the loop. Each
client gets a copy of the output of the Linux uptime program (note the use of
popen to create this pipe). The server uses a simple write loop to send this data
to the client.



WORKING WITH UDP SOCKETS 279

If you feel adventurous, you might try modifying this program to deal with
multi-line output (for instance, the output of the netstat program).

Handling Multiple Clients

Linux is a multitasking operating system, and it’s easy to write
programs that handle more than one client at a time. There are several
ways to do this, but in my opinion the simplest is to create a separate
thread for each client (see the pthread create manpage). Be careful,
though – some sockets API functions are not thread-safe, and shouldn’t
be called by more than one thread at a time.
If you’re interested in learning how to write solid UNIX-based network
servers, I suggest the book Unix Network Programming, Second
Edition4. It was of great assistance as I wrote this chapter. Another
useful reference is The Pocket Guide to TCP/IP Sockets5, a much
smaller and more concise treatment of the sockets API.

Working With UDP Sockets

UDP is a connectionless protocol. While TCP can be compared to a telephone
conversation, UDP is more like the postal service. It deals with individually
addressed packets of information that are not part of a larger stream. UDP is
great for blasting game updates across the network with reckless abandon. They
probably won’t all get there, but enough should arrive to keep the game running
smoothly.

As with TCP, we’ll demonstrate UDP with a sender and receiver. Here goes:

Code Listing 7–3 (udpsender.c)

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <string.h>
#include <signal.h>
#include <unistd.h>
#include <netinet/in.h>



280 CHAPTER 7. NETWORKED GAMING WITH LINUX

#include <netdb.h>
#include <arpa/inet.h>
#include <sys/socket.h>

struct hostent *hostlist; /* List of hosts returned
by gethostbyname. */

char dotted_ip[15]; /* Buffer for converting
the resolved address to
a readable format. */

int port; /* Port number. */
int sock; /* Our connection socket. */
struct sockaddr_in sa; /* Connection address. */

int packets_sent = 0;

/* This function gets called whenever the user presses Control-C.
See the signal(2) manpage for more information. */

void signal_handler(int signum)
{

switch (signum) {
case SIGINT:
printf("\nReceived interrupt signal. Exiting.\n");
close(sock);
exit(0);

default:
printf("\nUnknown signal received. Ignoring.\n");

}
}

int main(int argc, char *argv[])
{

/* Make sure we received two arguments,
a hostname and a port number. */

if (argc < 3) {
printf("Simple UDP datagram sender.\n");
printf("Usage: %s <hostname or IP> <port>\n", argv[0]);
return 1;

}

/* Look up the hostname with DNS. gethostbyname



WORKING WITH UDP SOCKETS 281

(at least most UNIX versions of it) properly
handles dotted IP addresses as well as hostnames. */

printf("Looking up %s...\n", argv[1]);
hostlist = gethostbyname(argv[1]);
if (hostlist == NULL) {

printf("Unable to resolve %s.\n", argv[1]);
return 1;

}

/* Good, we have an address. However, some sites
are moving over to IPv6 (the newer version of
IP), and we’re not ready for it (since it uses
a new address format). It’s a good idea to check
for this. */

if (hostlist->h_addrtype != AF_INET) {
printf("%s doesn’t seem to be an IPv4 address.\n",

argv[1]);
return 1;

}

/* inet_ntop converts a 32-bit IP address to
the dotted string notation (suitable for printing).
hostlist->h_addr_list is an array of possible addresses
(in case a name resolves to more than on IP). In most
cases we just want the first. */

inet_ntop(AF_INET, hostlist->h_addr_list[0], dotted_ip, 15);
printf("Resolved %s to %s.\n", argv[1], dotted_ip);

/* Create a SOCK_DGRAM socket. */
sock = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP);
if (sock < 0) {

printf("Unable to create a socket: %s\n",
strerror(errno));

return 1;
}

/* Fill in the sockaddr_in structure. The address is already
in network byte order (from the gethostbyname call).
We need to convert the port number with the htons macro.
Before we do anything else, we’ll zero out the entire
structure. */

memset(&sa, 0, sizeof(struct sockaddr_in));



282 CHAPTER 7. NETWORKED GAMING WITH LINUX

port = atoi(argv[2]);
sa.sin_port = htons(port);

/* The IP address was returned as a char * for various reasons.
Just memcpy it into the sockaddr_in structure. */

memcpy(&sa.sin_addr, hostlist->h_addr_list[0], hostlist->h_length);

/* This is an Internet socket. */
sa.sin_family = AF_INET;

printf("Sending UDP packets. Press Ctrl-C to exit.\n");

/* Install a signal handler for Control-C (SIGINT).
See the signal(2) manpage for more information. */

signal(SIGINT, signal_handler);

/* Send packets at 1s intervals until the user pressed Ctrl-C. */
for (;;) {

char message[255];

sprintf(message, "Greetings! This is packet %i.", packets_sent);

/* Send a packet containing the above string.
This could just as easily be binary data,
like a game update packet. */

if (sendto(sock, /* initialized UDP socket */
message, /* data to send */
strlen(message)+1, /* msg length + trailing NULL */
0, /* no special flags */
&sa, /* destination */
sizeof(struct sockaddr_in)) <= (int)strlen(message)) {

printf("Error sending packet: %s\n",
strerror(errno));

close(sock);
return 1;

}

printf("Sent packet.\n");

/* To observe packet loss, remove the following
sleep call. Warning: this WILL flood the network. */

sleep(1);



WORKING WITH UDP SOCKETS 283

packets_sent++;
}

/* This will never be reached. */
return 0;

}

This program starts out very much like the TCP client. It looks up the remote
system’s IP address with DNS, prepares an address structure, and creates a
socket. However, it never calls connect. The address structure is like an address
stamp that UDP slaps on each outgoing packet. This example uses the sendto
function to send data over UDP. There are other ways to go about it, but
sendto is the most common. It takes an initialized UDP socket, a buffer of data,
and a valid address structure. sendto attempts to compose a UDP packet and
send it on its way across the network. Since this is UDP, there is no guarantee as
to whether or not this will actually happen.

Function sendto(sock, buf, length, flags, addr, addr len)
Synopsis Sends a UDP datagram to the specified address.
Returns Number of bytes sent, or -1 on error. There is no guarantee

that the message will actually be sent (though it’s likely).
Params sock — Initialized SOCK DGRAM socket.

buf — Buffer of data to send.
length — Size of the buffer. This is subject to system-
dependent size limits.
flags — Message flags. Unless you have a specific reason to
use a flag, this should be zero.
addr — sockaddr in address structure that specifies the
message’s destination.
addr len — Size of the address structure. sizeof (addr)
should work.

If you want to test out your network’s capacity (or just irritate the sysadmin),
take the sleep call out of the sender program. This will make the program fire
off packets as quickly as possible. It’s not a good idea to do this in a game – it
would be wise to limit the transmission speed so that other applications can
coexist with your game on the network. (I tried this, and my network hub lit up
like a Christmas tree.)



284 CHAPTER 7. NETWORKED GAMING WITH LINUX

And now the receiver:

Code Listing 7–4 (udpreceiver.c)

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <string.h>
#include <signal.h>
#include <unistd.h>
#include <netinet/in.h>
#include <netdb.h>
#include <arpa/inet.h>
#include <sys/socket.h>

int port; /* Port number. */
int sock; /* Our connection socket. */
struct sockaddr_in sa; /* Connection address. */
socklen_t sa_len; /* Size of sa. */

/* This function gets called whenever the user presses Control-C.
See the signal(2) manpage for more information. */

void signal_handler(int signum)
{

switch (signum) {
case SIGINT:
printf("\nReceived interrupt signal. Exiting.\n");
close(sock);
exit(0);

default:
printf("\nUnknown signal received. Ignoring.\n");

}
}

int main(int argc, char *argv[])
{

/* Make sure we received one argument,
the port number to listen on. */

if (argc < 2) {
printf("Simple UDP datagram receiver.\n");



WORKING WITH UDP SOCKETS 285

printf("Usage: %s <port>\n", argv[0]);
return 1;

}

/* Create a SOCK_DGRAM socket. */
sock = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP);
if (sock < 0) {

printf("Unable to create a socket: %s\n",
strerror(errno));

return 1;
}

/* Fill in the sockaddr_in structure. The address is already
in network byte order (from the gethostbyname call).
We need to convert the port number with the htons macro.
Before we do anything else, we’ll zero out the entire
structure. */

memset(&sa, 0, sizeof(struct sockaddr_in));

port = atoi(argv[1]);
sa.sin_port = htons(port);
sa.sin_addr.s_addr = htonl(INADDR_ANY); /* listen on all interfaces */

/* This is an Internet socket. */
sa.sin_family = AF_INET;

/* Bind to a port so the networking software will know
which port we’re interested in receiving packets from. */

if (bind(sock, (struct sockaddr *)&sa, sizeof(sa)) < 0) {
printf("Error binding to port %i: %s\n",

port,
strerror(errno));

return 1;
}

printf("Listening for UDP packets. Press Ctrl-C to exit.\n");

/* Install a signal handler for Control-C (SIGINT).
See the signal(2) manpage for more information. */

signal(SIGINT, signal_handler);

/* Collect packets until the user pressed Ctrl-C. */
for (;;) {



286 CHAPTER 7. NETWORKED GAMING WITH LINUX

char buf[255];

/* Receive the next datagram. */
if (recvfrom(sock, /* UDP socket */

buf, /* receive buffer */
255, /* max bytes to receive */
0, /* no special flags */
&sa, /* sender’s address */
&sa_len) < 0) {

printf("Error receiving packet: %s\n",
strerror(errno));

return 1;
}

/* Announce that we’ve received something. */
printf("Got message: ’%s’\n", buf);

}

/* This will never be reached. */
return 0;

}

The UDP receiver program starts up much like our TCP server, except that it
doesn’t call listen or accept (since UDP is, of course, connectionless). After
binding to a local port, the program calls recvfrom to retrieve datagrams.
Datagrams are individual packages; you have to receive them all at once, or not
at all (unlike TCP, which provides a stream of bytes that you can pick off one at
a time). recvfrom is a blocking call; it will wait until a datagram arrives before
it returns.



MULTIPLAYER PENGUIN WARRIOR 287

Function recvfrom(sock, buf, length, flags, addr, addr len)
Synopsis Receives a UDP datagram from a local port.
Returns Number of bytes received, or -1 on error.
Params sock — Initialized SOCK DGRAM socket that has been associ-

ated with a local port with bind.
buf — Buffer to receive incoming data.
length — Maximum number of bytes to receive.
flags — Message flags. Unless you have a specific reason to
use a flag, this should be zero.
addr — sockaddr in address structure to receive informa-
tion about the sender of the message.
addr len — Size of the address structure. sizeof (addr)
should work.

That’s it for UDP! Now it’s time to apply this stuff (TCP at least) to Penguin
Warrior.

Multiplayer Penguin Warrior

So far, Penguin Warrior has only supported a computer-controlled opponent,
and a fairly unintelligent one at that. It’s a lot more fun to play against humans
than against Tcl scripts!

This will be a simple networking system, as games go. It’ll use a simple TCP
scheme to keep the game in sync, and it will not make use of UDP (that would
be overkill for a game like Penguin Warrior). It will trust that the clients are
secure (ie, that they have not been hacked for the purpose of cheating).
Nonetheless, it should give you an idea of what goes into a network-ready game.

Network Gaming Models

The ultimate goal of a networked game is to allow two or more players to
participate in a single game universe at the same time. Whether they are
competing against each other or cooperating in a battle against other opponents
is of little consequence. All networkable games need to solve the same basic
problem of keeping the players informed about the state of the running game.
Here are some of the more common approaches to this problem:



288 CHAPTER 7. NETWORKED GAMING WITH LINUX

Client/server Each player uses a local copy of the game (a client) to connect
to a single central machine (the game server or dedicated server) that
knows the game’s rules and serves as a master authority on the game’s
state. Clients send updates to the server, and the server sends authoritative
updates back to each client. In this model, the server is always right. It is
very difficult to cheat in a client/server gaming situation, because every
client talks to the same server, and the server applies the same rules to
everyone. This is the most common setup for major online games.

Peer-to-peer This is good for small games like Penguin Warrior. Each player’s
computer maintains a local copy of the game’s state and informs all of the
other computers whenever anything changes. The main problem with this
system is that it is very easy for players to cheat by modifying their local
copies of the game. There is no centralized “referee” in peer-to-peer
multiplayer games.

Client doubling as a server In some cases it is convenient to build the game
server code into the game itself, so that any player with a fast computer
and a reasonably fast network connection can “host” a multiplayer game
for friends. This is a little less prone to cheating than the peer-to-peer
model, but an untrustworthy player could covertly modify the server to
gain an advantage.

It is fallacious to think that closed-source binary games are immune to cheaters;
Ultima Online and Diablo are evidence to the contrary. Any sufficiently idle
3r33t h@x0ring d00d with a hex editor can have a field day with these games. If
you are concerned about possible cheating, the only real solution is to use a
design that enforces equality between the players. (Penguin Warrior does not use
such a design; it would be trivial to cheat in a multiplayer game.)

Penguin Warrior’s Networking System

In the interest of simplicity, Penguin Warrior will use the peer-to-peer model.
One copy of the game will act as a TCP server, and the other will connect as a
TCP client. It does not matter which role goes to which player; the players are
completely equal after the link is established. Once the two players are linked,
they will begin to exchange update packets with one another. Each update
packet will contain the world coordinates of the player that sent it (in other



MULTIPLAYER PENGUIN WARRIOR 289

Player Player

Player

Player

Player

Game server
(game universe)

Player Player

Player Player

Player and
game server

(same computer)

Peer-to-peer model

Client-server model

Client doubling as server

Figure 7–1: Three ways to set up a network game

words, it says “I’m at this position, now reply with your position”). The players
will send these packets back and forth as quickly as possible (with a small speed
brake to keep from flooding the network). The game will end when the
connection is broken (ie, when one of the players exits the game). It’s simple,
but it should work well given a reasonably fast network (ie, not a modem
connection).

Source Files

The Penguin Warrior networking system consists of network.c,
network.h, and some heavy modifications to main.c. You can find this
chapter’s code in the pw-ch7/ directory. No additional libraries are
needed for networking support; that’s built into the operating system.

What happens when a player fires or gets hit by a shot? Update packets also
contain fields for this information. Whenever a player fires, the networking



290 CHAPTER 7. NETWORKED GAMING WITH LINUX

system sends a packet with the “fire” flag set. The other player should then
display an appropriate moving projectile. Players keep track of their own
projectiles; if you press the fire button and launch a volley at your opponent,
your copy of Penguin Warrior is responsible for tracking the projectiles to their
respective destinations6. If your copy of the game decides that the other player
has been hit, it sends this in the next outgoing network packet.

For reference, here’s the Penguin Warrior update packet structure:

typedef struct net_pkt_s {
Sint32 my_x, my_y;
Sint32 my_angle;
Sint32 my_velocity;
Uint8 fire;
Uint8 hit;

} net_pkt_t, *net_pkt_p;

There’s not much to it (which is good, since this structure is sent over the wire
many times each second). Note that the values are sent as Sint32s (the SDL
signed 32-bit integer type) instead of doubles (which the game uses internally).
The exact meaning and encoding of double can vary between platforms. It
probably won’t (it’s a standard IEEE double precision floating point number on
most platforms), but Murphy’s Law guarantees that this is a bad assumption.
By applying a simple network encoding formula (given by macros in
network.h), we can ensure that our coordinates will always reach the other end
intact, regardless of the CPU types involved.

6Weapons are not actually present in this version of the game. We’ll add them in Chapter 7.
Our protocol for handling weapons is in place, though.



MULTIPLAYER PENGUIN WARRIOR 291

Warning

You can often ignore endianness issues when you’re writing a single
player game or coding for a particular type of machine, but unlike
Microsoft’s flagship products, Linux is not limited to the arcane x86
CPU architecture. If there’s any possibility at all that your networked
game or application will need to exchange data with another type of
system (for instance, a multiplayer game between a PC and an
UltraSPARC), it’s important to watch out for endianness and other
encoding issues. Never assume that basic datatypes will be exactly the
same on any two platforms. The sockets API can help with its network
byte order macros, and SDL provides similiar macros for ensuring a
particular endianness.

Coding time! Here’s network.c, which implements the basic two-player protocol
over TCP.

Code Listing 7–5 (network.c)

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <string.h>
#include <errno.h>
#include <netdb.h>
#include "network.h"

void CreateNetPacket(net_pkt_p pkt, player_p player, int firing, int hit)
{

/* Fill in all of the relevant values, calling
our conversion macro to preclude endianness
problems. */

pkt->my_x = DOUBLE_TO_NET(player->world_x);
pkt->my_y = DOUBLE_TO_NET(player->world_y);
pkt->my_angle = DOUBLE_TO_NET(player->angle);
pkt->my_velocity = DOUBLE_TO_NET(player->velocity);



292 CHAPTER 7. NETWORKED GAMING WITH LINUX

pkt->fire = (Uint8)firing;
pkt->hit = (Uint8)hit;

}

void InterpretNetPacket(net_pkt_p pkt,
double *remote_x, double *remote_y,
double *remote_angle, double *remote_velocity,
int *firing, int *hit)

{
/* Decode the values in the packet and store

them in the appropriate places. */
*remote_x = NET_TO_DOUBLE(pkt->my_x);
*remote_y = NET_TO_DOUBLE(pkt->my_y);
*remote_angle = NET_TO_DOUBLE(pkt->my_angle);
*remote_velocity = NET_TO_DOUBLE(pkt->my_velocity);
*firing = (int)pkt->fire;
*hit = (int)pkt->hit;

}

int ConnectToNetgame(char *hostname, int port, net_link_p link)
{

int sock;
struct sockaddr_in addr;
struct hostent *hostlist;

/* Resolve the host’s address with DNS. */
hostlist = gethostbyname(hostname);
if (hostlist == NULL || hostlist->h_addrtype != AF_INET) {

fprintf(stderr, "Unable to resolve %s: %s\n",
hostname,
strerror(errno));

return -1;
}

/* Save the dotted IP address in the link structure. */
inet_ntop(AF_INET, hostlist->h_addr_list[0], link->dotted_ip, 15);

/* Load the address structure with the server’s info. */
memset(&addr, 0, sizeof (struct sockaddr_in));
addr.sin_family = AF_INET;
memcpy(&addr.sin_addr, hostlist->h_addr_list[0], hostlist->h_length);



MULTIPLAYER PENGUIN WARRIOR 293

addr.sin_port = htons(port);

/* Create a TCP stream socket. */
sock = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP);
if (sock < 0) {

fprintf(stderr, "Unable to create socket: %s\n",
strerror(errno));

return -1;
}

printf("Attempting to connect to %s:%i...\n",
link->dotted_ip, port);

/* Ready to go! Connect to the remote machine. */
if (connect(sock, (struct sockaddr *)&addr, sizeof (addr)) < 0) {

fprintf(stderr, "Unable to connect: %s\n",
strerror(errno));

close(sock);
return -1;

}

/* Copy the socket and the address into the link structure. */
link->sock = sock;
link->addr = addr;

printf("Connected!\n");

return 0;
}

int WaitNetgameConnection(int port, net_link_p link)
{

int listener, sock;
struct sockaddr_in addr;
socklen_t addr_len;

/* Create a listening socket. */
listener = socket(PF_INET, SOCK_STREAM, IPPROTO_IP);
if (listener < 0) {

fprintf(stderr, "Unable to create socket: %s\n",
strerror(errno));

return -1;
}



294 CHAPTER 7. NETWORKED GAMING WITH LINUX

/* Set up the address structure for the listener. */
addr_len = sizeof (addr);
memset(&addr, 0, addr_len);
addr.sin_family = AF_INET;
addr.sin_port = htons(port);
addr.sin_addr.s_addr = htonl(INADDR_ANY);

/* Bind the listener to a local port. */
if (bind(listener, &addr, addr_len) < 0) {

fprintf(stderr, "Unable to bind to port %i: %s\n",
port, strerror(errno));

close(listener);
return -1;

}

/* Make this a listening socket. */
if (listen(listener, 1) < 0) {

fprintf(stderr, "Unable to listen: %s\n",
strerror(errno));

close(listener);
return -1;

}

printf("Waiting for connection on port %i.\n", port);

/* Accept a connection. */
if ((sock = accept(listener, (struct sockaddr *)&addr, &addr_len)) < 0) {

fprintf(stderr, "Unable to accept connection: %s\n",
strerror(errno));

close(listener);
return -1;

}

/* Ready to go! Save this info in the link structure. */
link->sock = sock;
link->addr = addr;
inet_ntop(AF_INET, &addr.sin_addr, link->dotted_ip, 15);

printf("Connected!\n");

return 0;
}



MULTIPLAYER PENGUIN WARRIOR 295

int ReadNetgamePacket(net_link_p link, net_pkt_p pkt)
{

int remaining, count;

remaining = sizeof (struct net_pkt_s);
count = 0;

/* Loop until a complete packet arrives.
This could block indefinitely, but it
typically won’t, and it’s of less importance
since the networking code runs in a separate
thread. */

while (remaining > 0) {
int amt;

/* Read as much as possible. */
amt = read(link->sock, ((char *)pkt)+count, remaining);

/* If read returns a positive value, or zero
with errno == EINTR, there is no error. */

if (amt <= 0 && errno != EINTR) {
fprintf(stderr, "ReadNetgamePacket: read failed: %s\n",

strerror(errno));
return -1;

}

/* Increment the counters by the amount read. */
remaining -= amt;
count += amt;

}

return 0;
}

int WriteNetgamePacket(net_link_p link, net_pkt_p pkt)
{

int remaining, count;

remaining = sizeof (struct net_pkt_s);
count = 0;

/* Loop until we’ve written the entire packet. */



296 CHAPTER 7. NETWORKED GAMING WITH LINUX

while (remaining > 0) {
int amt;

/* Try to write the rest of the packet.
Note the amount that was actually written. */

amt = write(link->sock, ((char *)pkt)+count, remaining);

/* Same error semantics as ReadNetgamePacket. */
if (amt <= 0 && errno != EINTR) {

fprintf(stderr, "WriteNetgamePacket: read failed: %s\n",
strerror(errno));

return -1;
}

/* Increments the counters by the number of
bytes written. */

remaining -= amt;
count += amt;

}

return 0;
}

void CloseNetgameLink(net_link_p link)
{

/* Close the socket connection. */
close(link->sock);
link->sock = -1;

}

The first two functions, CreateNetPacket and InterpretNetPacket, help us
deal with network packets. We can pretty much be as sloppy as we want about
our internal game state variables, but organization is very important when we’re
communicating with another program at a high speed over network. These
functions convert between a game’s state and network packet structures so that
our main code doesn’t need to worry about the “wire format” of the data.

ConnectToNetgame tries to connect to another copy of Penguin Warrior over the
network. After resolving the remote system’s IP address with DNS, it attempts
a normal TCP socket connection and stores the connected socket in the provided
net link t structure. Penguin Warrior performs no synchronization or
negotiation; it assumes that whatever answers the connection request is a copy of



NETWORK GAME PERFORMANCE 297

Penguin Warrior that speaks the same protocol. It would be a simple matter to
exchange some small piece of data over the link to make sure of this before
starting the game.

The next function, WaitNetgameConnection, waits for a copy of Penguin
Warrior to connect on a given port number. This is the counterpart of
ConnectToNetgame. It consists of simple TCP server code that we’ve already
been over. It is important to realize that this is not a client-server game; the
“server” is only called that because it waits for another player, the “client,” to
connect. After the connection, there is no difference between the two sides of the
connection.

ReadNetgamePacket and WriteNetgamePacket send and receive complete game
update packets over the network. We could probably get away with using simple
read or write calls, but there’s no guarantee that either of these calls will
process the full amount of data requested. To handle this, ReadNetgamePacket
and WriteNetgamePacket keep track of the amount of data transferred and loop
until a complete packet has been processed. It would be simple to adapt these
routines into general-purpose socket reading and writing utilities.

Finally, CloseNetgameLink closes a multiplayer game link. It uses the normal
close function to shut down the socket. The TCP/IP protocol handles this
without further interaction.

That’s it for the networking code! Everything else is in main.c. We won’t
reprint it here, since it would be largely redundant, but it’s worth taking a look
at the changes. We’ve added UpdateNetworkPlayer to send and receive update
packets, and a new thread (launched with NetworkThread) to run the
networking in the background (so that the speed of our main loop isn’t limited
by the latency of the network). Note also that the player data structures are now
protected by a mutex so that the network thread and the main loop can safely
access them without bumping into each other.

Network Game Performance

Anyone who’s ever played a multiplayer action game has probably felt the
frustration of lining up for a kill and having the game suddenly slow to an
unplayable crawl. The Internet is enormous, and its performance ranges
anywhere from solid to flaky. Multiplayer games unfortunately require a very



298 CHAPTER 7. NETWORKED GAMING WITH LINUX

high level of sustained performance, and it’s left to the game developer to make
ends meet in this turbulent medium. In this section we’ll make some
observations about network performance and suggest ways to squeeze acceptable
performance out of the Internet.

Gamers often grumble about slow network performance. There are two primary
factors that play into this problem. Packet loss is the tendency of overloaded or
unreliable networks to lose information at random. We’ve already mentioned this
with respect to UDP – if you send a UDP packet across the network, it might
get there, and it might not. TCP detects and corrects missing packets, but this
throws a monkey wrench into the communication process and kills performance.
There’s not a lot you can to to prevent packet loss, unless you intend to install
your own high-speed communication lines; you can only minimize its effects on
your games. The most common way to deal with packet loss is simply to ignore
it. TCP holds up the transmission pipeline until packets arrive at the other end
intact, by which time it’s probably past time to send the next update anyway (in
this case, error correction actually hurts game performance). UDP does not have
this problem.

Another culprit of lousy network performance is latency, the time it takes a
given piece of information to travel across the network. This depends both on the
speed of the underlying network and its current traffic load. Unless your game
uses prediction or another clever strategy, players will always be out of sync by
the amount of time it takes them to exchange network packets. 100 milliseconds
is a reasonable average latency for Internet games on fast connections, and any
game should be able to handle this amount. This can easily rise to the vicinity of
500-1000ms if slow network devices (modems) are involved, and at this level
latency can become quite distracting (for instance, a player might fire a weapon
and see the effects a full second later). Some games use statistics to guess what
the other players will do during the next update interval, and this can make a
multiplayer game much smoother. Prediction would be overkill for something
like Penguin Warrior, but Quake and Half-Life make heavy use of this technique.

Security Issues

For some reason, many players get a thrill out of disrupting the normal course of
game for others. Players of Diablo and Ultima Online have access to any number
of programs that mess with the underlying game code to give them an unfair



SECURITY ISSUES 299

advantage. Fans of the Half-Life mod Counter-Strike constantly run into “skin
cheaters” who modify their player models to make themselves invisible or make
their enemies easier to spot. Cheating is an unfortunate part of online gaming.
There are a lot of smart people out there who get a kick out of gaining an unfair
advantage in the games they play. As if this weren’t bad enough, these people
often make their cheats available to their friends, and the problem grows
exponentially. Although no game is perfectly secure against the determined
cheater, good design can make cheating very difficult.

The problem is pretty simple, actually. Most major online games use a
client-server model (Section 7). Client-server games should theoretically do all of
the game world’s processing and error checking one the server side, leaving
nothing important to the clients. If this were the case, hacked clients would be of
no consequence, and games like Half-Life would be free of cheaters.

Very few games actually work this way, for basic performance reasons. If a client
had to run everything through the server, performance would be abysmal. Most
games at least let the client do a bit of preloading, prediction, or collision
detection. This stays hidden from the player, unless someone hacks the program
to make unfair use of this information. This is exactly what happened to Quake
when id Software released its source code. Quake placed a bit too much trust in
the game client, and unscrupulous gamers were quick to take advantage of this.

The only way to get around this problem is to make sure that any
responsibilities assigned to a client can be verified by the server, and to limit the
amount of information the client gets about the state of the game. Players can
and will figure out how to modify a game to report false update information or
misuse the information it receives. In a world of hex editors, protocol sniffers,
and bored college students like myself, no game is safe from modification. Plan
on it, and make sure it can’t hurt anything.

We’ll now put Penguin Warrior on hold for a little while so we can hack some
framebuffer console code. We’ll pick the game back up in Chapter 7 and add all
of the goodies it’s missing, like weapons, player-to-player chat, and score
counters. We’ll also combine the code from chapters ??, 6, and this chapter to
into a final version with all of the subsystems present. By the end of 7, Penguin



300 CHAPTER 7. NETWORKED GAMING WITH LINUX

Warrior will be a fully operational Linux game.



Chapter 10

To Every Man A Linux
Distribution

You’ve probably noticed that there are a lot of Linux distributions floating
around the Internet. Some of these are major commercial operations (Red Hat,
SuSE, Caldera), some are massive community efforts (Debian), and some don’t
really fit in either category (my personal favorite, Slackware). Competition is
good, but this assortment sometimes leads to incompatibilities between
distributions, which you’ll have to contend with when you release your work to
the public.

Once your game is ready to see the light of day, you’ll need to come up with a
way for users to install it. This could be as simple as a .tar.gz archive (tarball)
containing your game’s source code and data files, or as complex as a CD-ROM
based graphical setup system. Whatever you decide to do, you’d be well advised
to respect the Linux filesystem standard and account for the differences between
various Linux distributions. If you don’t, you’ll irritate users at the very least
and possibly cause serious problems. On the brighter side, a well-packaged
program can make a good firt impression.

301



302 CHAPTER 10. TO EVERY MAN A LINUX DISTRIBUTION

Source Or Binary?

The first question you’ll have to answer is whether you want to release the source
code to your game. Generally speaking it’s a nice thing to do, and it’s more or
less a requirement if you’re using libraries covered under the GNU General
Public License1. Releasing the source code to your project means that bugs will
probably turn up much more quickly (since everyone will be able to pitch in and
help you track them down), and it gives other programmers the opportunity to
learn from your code. Linux exists because of its open source development
model, and many Linux advocates feel strongly about open versus closed source.
For various viewpoints on free software, open source software, and the rationale
of each, refer to the Free Software Foundation (http://www.fsf.org) and the
Open Source Initiative (http://www.opensource.org).

Sometimes it’s either impossible or impractical to release the code to a project.
For instance, non-disclosure agreements, publishing contracts, and game engine
licenses might prevent you from making a project’s code available to the public.
This is unfortunate, and you’ll probably alienate a certain number of hardcore
open source and free software advocates, but it might be the only option. In this
case you’ll have to settle for a binary distribution of your game.

Binary-only distribution is possible, but you’ll have to give a bit of thought to
preparing the binary. Binary distribution under Linux is a bit different than
binary distribution under Windows (where source distribution is almost unheard
of). Source distribution means that a user can adjust the game to work well on a
particular machine (and modify the game to his liking), but binary releases are
generally one-size-fits-all. Since various Linux distributions often ship with
different versions of basic supporting software (in particular the C library), it’s
possible that a given binary won’t get along with certain systems2.

1The GNU GPL is much stricter in this sense than the LGPL. See Chapter 10 for a discussion
of licensing issues.

2Microsoft Windows has the same problem. Most application vendors fix this by shipping
these basic system libraries (the MFC runtime, the Visual Basic library, and the Visual C++
runtime in particular) with each copy of the application. You’re likely to find several copies of
the same library on any given Windows system, and Windows users sometimes run into problems
with incorrect library versions.



LOCAL CONFIGURATION 303

Local Configuration

As we’ve said, each Linux distribution is slightly different. They all seem to have
their own ideas of how the Linux filesystem standard should be implemented
(more on this later), and each implements a slightly different etc/ directory tree.
In addition, users are usually given a choice of which libraries and other
supporting packages to install, and this means that you can’t count on the
presence of any particular development library. For these reasons, getting a large
program to compile and link correctly on any given Linux installation can be
quite a challenge.

There are several ways to approach this problem. Some developers opt to specify
local configuration options directly in a project’s makefile. For instance, the
following lines might show up in a makefile for an OpenGL-based project:

# Configuration section

CC= gcc
CFLAGS= -O2 -W -Wall -pedantic
X11LIBS= -L/usr/X11R6/lib -lX11 -lXt -lXext
GLLIBS= -lGL -lGLU -lglut

# End of configuration.

This is a bit of a hack, but it’s sufficient in some cases. All of the necessary
libraries are listed in an easy-to-find spot in the makefile, so that a user can
quickly configure the project to compile on his or her system. The program
would presumably come with a README file explaining how to do this.
However, some users don’t know anything about makefiles, C, or programming
in general, and this might be a bit intimidating.

A better option is the GNU Autoconf facility. Autoconf is a sophisticated set of
m4 scripts3 for automatically configuring source trees for compilation on a
variety of systems. Based on information in Makefile.am files throughout a
source tree, Autoconf (more specifically the Automake program) generates a
script called configure that will configure the project’s makefiles to correctly
build and install everything for the current system. If everything works correctly,
Autoconf-enabled programs are very easy to install:

3m4 is a very simple but powerful macro language that people seem to either love or hate.



304 CHAPTER 10. TO EVERY MAN A LINUX DISTRIBUTION

$ tar xvfz fooblaster-1.1.tar.gz

$ cd fooblaster-1.1

$ ./configure

$ make

$ make install

If you’ve ever installed software on a Linux system, this probably looks familiar.
Of course this is just meant to illustrate how convenient Autoconf can be — it’s
probably a bad idea to blindly install a program without reading the docs (or
typing ./configure --help to get a list of configuration options).

What exactly does this black box of a script do? You may have noticed that
Autoconf-enabled source trees are full of files called Makefile.in. configure first
gathers information about the local system, then goes through the source
directory and converts these files into final makefiles for the project. As it copies
each Makefile.in to a corresponding Makefile, configure adds a bunch of
environment variables that describe the system, as well as special preprocessor
symbols that C programs can use for customization. A simple make command
can then build the fully-configured program. It’s worth noting that you should
never need to alter a configure script by hand; the proper way to make changes
is to edit Makefile.am and generate a new script.

Autoconf can be fairly complex to set up, and we’ll leave a discussion of its
specifics to other sources. Learning Autoconf is definitely worth the effort if you
plan to make a large source tree available to your users.

Linux Isn’t Alone: Supporting FreeBSD

Linux isn’t the only contender in the free OS arena4. FreeBSD is a very similar
system with an active and knowledgeable user community. Although FreeBSD
can theoretically run Linux binaries out of the box, there are a few differences
that sometimes prevent applications (and games) from working. Aside from

4Here I speak of Linux as a complete operating system; the more correct term would be “Linux-
based system”, or as the Free Software Foundation would prefer, ”Linux-based GNU system”.
FreeBSD refers to the whole shabang — unlike Linux, FreeBSD encompasses a complete system,
including a kernel and a set of software. There is only one FreeBSD distribution, coordinated by
a well-defined team of volunteers.



LINUX ISN’T ALONE: SUPPORTING FREEBSD 305

these minor glitches, FreeBSD is rather easy to support (and certainly
worthwhile, given its userbase), so it’s a good idea to keep a few things in mind
as you develop:

• Half of the work in supporting FreeBSD is getting your build environment
set up. This should be easy: almost all Linux libraries are also available
under FreeBSD, as well as all of the familiar GNU development utilities.
Once you get your app to compile under FreeBSD, the rest is cake. This is
a good reason to use Autoconf — with a bit of help from the configure
script, there’s a good chance that your project will require no modifications
whatsoever for FreeBSD.

Note that the GNU Make utility is called gmake under FreeBSD. The
Make utility distributed with FreeBSD is actually BSD Make, which is
somewhat incompatible with GNU Make.

• FreeBSD’s filesystem is very similar to a typical Linux distribution’s
filesystem, and you should treat it accordingly. We’ll discuss filesystem
politeness later in this chapter.

• As a descendent of the original BSD, FreeBSD has no proc/ filesystem
(which the Linux kernel uses to publish live information about the system).
You probably shouldn’t mess with proc/ in most cases (since its exact
layout depends on the current kernel version), but it’s sometimes the only
sane way to get statistics about the system. If your program depends on
proc/, you’ll probably have to do some porting.

• FreeBSD has no /etc/mtab (which normally contains a list of currently
mounted filesystems). This broke Loki Entertainment Software’s CD-ROM
detection code when we tried to port it from Linux to FreeBSD. I fixed this
with a quick hack based on the output of the mount program, but we later
found out that FreeBSD has a convenient system call for retrieving the
same information. Manpages are your friend!

• FreeBSD has a completely different kernel. Slight internal differences might
cause quirky behavior when you run your newly-ported program. For
instance, networking, memory mapping (mmap), and thread scheduling
might behave differently, since these functions are closely tied into the
kernel. These usually aren’t show-stopping issues, but it’s a good idea to
test your application thoroughly if you intend to officially support
FreeBSD.



306 CHAPTER 10. TO EVERY MAN A LINUX DISTRIBUTION

• Unfortunately, FreeBSD currently has no framebuffer device interface. Of
course this won’t matter if your app uses an abstraction layer such as SDL,
but apps that require the Linux framebuffer interface are out of luck.
FreeBSD also lacks the DRI (Direct Rendering Infrastructure) system that
was recently introduced in Linux. 3D accelerated OpenGL is still
supported (via the older Utah GLX system), but performance is likely to
suffer. (For what it’s worth, many OpenGL games work fine under
FreeBSD, but it sometimes takes a bit of effort to get them installed.)

These interfaces might eventually end up in FreeBSD, or they might not.
One gets the impression that the FreeBSD team is far more concerned
about building a stable server OS than a gaming OS.

There are several other free UN*X-like operating systems (particularly NetBSD
and OpenBSD), and it would be nice to support these as well. It comes down to
a matter of how much development time and energy you want to spend on
porting your work. If you’re developing free software, other people will probably
help you with this job. Everyone likes to see new software on his or her favorite
operating system, and porting a substantial chunk of code to a new platform can
be very satisfying.

Packaging Systems

A simple tarball of source code is probably the easiest way to distribute a Linux
application or game, and this is perfectly acceptable in some cases (especially if
the project takes advantage of Autoconf). However, source tarballs have several
disadvantages:

• While developer-friendly, source tarballs aren’t exactly newbie-friendly.
New Linux users often aren’t comfortable with building and installing
software from source. (They’ll probably want to learn how to do this
eventually, of course; it really isn’t too difficult.)

• Some systems aren’t meant to be developer workstations and therefore
don’t have the necessary compilers and libraries to build a source tree.

• A lot of people just want to download and install software without having
to compile anything. In addition to the time it takes to build a project from
source, binary distributions are often smaller than source distributions.



PACKAGING SYSTEMS 307

For these reasons and others, many Linux developers make precompiled packages
of their software available. Each Linux distribution has its own idea of what
exactly constitutes a “package”, and so developers often choose just one or two
major distributions to support. The two most commonly supported package
types are Red Hat’s RPM and Debian’s DEB. Neither of these are specific to
their “parent” Linux distributions; SuSE, Caldera, and TurboLinux are
RPM-based, and Debian’s packaging system has found its way into Corel Linux
and Storm Linux (which are actually Debian offshoots).

Package systems provide a bit of extra functionality over source tarballs.
Package managers can usually install a package with a single command (in the
case of rpm, the command rpm -i package.rpm does everything), they keep
track of all files that were installed so that they can be removed later, and they
can facilitate version upgrades. Most importantly, package managers can help
enforce dependencies. If your game needs version 1.1.6 or later of the SDL
library, for instance, a package manager will make sure that the system has this
before it allows the user to install the game.

If you want to learn how to make your own RPM packages, take a look at the
book Maximum RPM by Edward C. Bailey. (This book is also available in its
entirety online.) RPM is not a simple tool by any means, but like Autoconf, it’s
worth learning if you intend to maintain complicated Linux software packages.
Debian packages are a bit trickier to roll than RPMs even, but they are
explained in detail on the Debian project’s developer website
(http://www.debian.org/devel).



308 CHAPTER 10. TO EVERY MAN A LINUX DISTRIBUTION

Making Slackware Packages

Unlike RPM and Debian packages, packages for Slackware Linux are
quite easy to create. To make a Slackware package, install your program
into a fake root (for instance, copy files into tmp/foobar/usr/bin/
instead of usr/bin/). All of your program’s installable files should be
there, but nothing else; there’s no need to duplicate anything not
related to your program. You should make sure that the permissions on
each file are correct and that all symbolic links are in place. When the
fake root tree is ready to go, run the makepkg program (included with
Slackware) to create a .tgz package that can be installed with
Slackware’s installpkg script. .tgz packages are really just tarballs with
a bit of extra information; you can even install them manually (but
that’s a bad idea).

Users really appreciate it when you take the time to create packages for their
favorite distribution — it can save them a lot of work and help them keep their
systems organized. However, it does take a bit of work to maintain packages,
and if you have to choose just one package type to support it should probably be
RPM. If you’d like to maintain packages for a particular distribution but don’t
have time, just ask around online. Chances are good that someone enjoys
making packages for that distribution and wouldn’t mind lending a hand.

As a closing thought, I’d like to point out that it is a very bad idea to release
your software in .rpm or .deb packages without providing a simple .tar.gz
option as well; many users (including myself) prefer to avoid package managers
entirely and install everything by hand.

Graphical Installation Goodness: Loki’s Setup
Program

Packages and tarballs are the staples of open source and free software
distribution, but they might not meet your needs. Off-the-shelf, boxed software
generally includes a nice, graphical installation program that copies the software
from its CD-ROM to the user’s hard drive and performs various setup tasks.
This would be easy to accomplish with a simple shell script, but it wouldn’t be



GRAPHICAL INSTALLATION GOODNESS: LOKI’S SETUP PROGRAM 309

pretty (the Linux version of Maple, an excellent computer-assisted mathematics
system, uses a shell script for installation, and it is indeed ugly). A
badly-written installation script could leave a first-time player with a bad
impression of the game as a whole, and the game industry is far too competitive
for us to let that happen.

Loki Entertainment Software developed Loki Setup to satisfy its need for a
simple, consistent, and portable installation system. Setup reads a
product-specific installation script from an XML file, then presents the user with
a GTK-based installation wizard. If X11 isn’t available, Setup provices an
equivalent terminal-based interface. Setup can check disk space, copy files, run
scripts, and launch the newly-installed application when everything is finished.
Loki Setup is free software, released under the GNU GPL. (And since the setup
program is separate from the software it installs, you can still use Loki Setup for
non-free software without being affected by the GPL.)

To understand how to use Setup for a CD-ROM title, let’s take a look at Loki’s
Heavy Gear II CD. This is a major commercial title, originally written for
Windows but later ported to Linux. We’ll start with the top-level directory:

./autorun.inf

./binaries.tar.gz

./data.tar.gz

./icon.bmp

./icon.xpm

./README

./setup.sh

setup.sh is a shell script that invokes the appropriate setup binary for the
system’s architecture. These binaries are located in subdirectories of
setup.data, which we’ll examine in a moment. The script locates the correct
subdirectory with the output of the uname -m. autorun.inf is a Windows
autorun file to deal with users who mistakenly try to install this Linux game on
a Windows machine. The various icons and tarballs are game-specific.

And now the bin/ directory:

./bin

./bin/x86

./bin/x86/glibc-2.1



310 CHAPTER 10. TO EVERY MAN A LINUX DISTRIBUTION

./bin/x86/glibc-2.1/hg2

./bin/x86/glibc-2.1/libMesaMatroxGL.so.3.2.000121

./bin/x86/glibc-2.1/libMesaVoodooGL.so.1.2.030300

./bin/x86/glibc-2.1/libMesaVoodooGL.so.1.2.030100

This contains the x86 binary for Heavy Gear II, as well as precompiled OpenGL
drivers for Matrox and 3Dfx graphics cards. Since Linux OpenGL support is
changing rapidly, it’s a good idea to include a working copy of the appropriate
drivers with any packaged game, since the next release of the drivers might not
work correctly. (3D graphics support under Linux is expected to stabilize a bit
in the near future as the new Direct Rendering Infrastructure takes over as the
new standard, but now is a rough time for 3D graphics in Linux.)

Next is the setup.data/ directory, where Setup gets most of its information:

./setup.data

./setup.data/bin

./setup.data/bin/alpha

./setup.data/bin/alpha/glibc-2.1

./setup.data/bin/alpha/glibc-2.1/setup.gtk

./setup.data/bin/alpha/setup

./setup.data/bin/ppc

./setup.data/bin/ppc/glibc-2.1

./setup.data/bin/ppc/glibc-2.1/setup.gtk

./setup.data/bin/ppc/setup

./setup.data/bin/sparc64

./setup.data/bin/sparc64/glibc-2.1

./setup.data/bin/sparc64/glibc-2.1/setup.gtk

./setup.data/bin/sparc64/setup

./setup.data/bin/x86

./setup.data/bin/x86/glibc-2.1

./setup.data/bin/x86/glibc-2.1/setup.gtk

./setup.data/bin/x86/setup

./setup.data/linkGL.sh

./setup.data/setup.glade

./setup.data/setup.xml

./setup.data/splash.xpm

This directory tree contains Setup binaries for four different architectures, with
both GTK- and terminal-based interfaces. The GTK binary requires GNU libc
2.1 or later, and so it’s placed in its own directory. The setup.sh script will only



GRAPHICAL INSTALLATION GOODNESS: LOKI’S SETUP PROGRAM 311

run it if glibc 2.1 is avalable. The plain terminal-based version is statically
linked, and setup.sh will run it regardless of the system’s C library version.
setup.glade is a Glade GUI template for the Setup wizard, splash.xpm is a
version of the Heavy Gear II logo for the setup screen, and setup.xml is XML
installation script. More on these three later.

The rest of the CD consists of Heavy Gear II’s datafiles and cinematics. Setup
just copies these files to the selected installation directory (probably
usr/local/games/hg2/), according to the setup.xml script.

setup.xml is pretty simple. XML may be overhyped, but this is actually a good
use of the language5. Here’s the Heavy Gear II installation script:

<?xml version="1.0" standalone="yes"?>
<install product="hg2" desc="Heavy Gear II" version="1.0"

readme="README" postinstall="sh setup.data/linkGL.sh $*">
<option install="true" help="Required for play" arch="x86" libc="glibc-2.1">

Base Install
<binary arch="any" libc="any" symlink="hg2" icon="icon.xpm" name="Heavy Gear II">

hg2
</binary>
<files>

data.tar.gz
binaries.tar.gz
icon.bmp
icon.xpm
README

</files>
</option>
<option install="true">

GL Drivers (STRONGLY recommended)
<option>

3dfx Voodoo Mesa 3.2 GL library
<binary arch="any" libc="any">

libMesaVoodooGL.so.1.2.030100
</binary>

</option>
<option>

3dfx Voodoo Mesa 3.3 GL library

5Don’t worry, you don’t need to know much about XML to use Setup. You can just copy an
existing script and tweak it for your particular application. If you’ve ever written Web pages or
documentation in HTML or SGML, XML’s syntax should look quite familiar.



312 CHAPTER 10. TO EVERY MAN A LINUX DISTRIBUTION

<binary arch="any" libc="any">
libMesaVoodooGL.so.1.2.030300

</binary>
</option>
<option>

Matrox G200/G400 Mesa 3.2 GL library
<binary arch="any" libc="any">

libMesaMatroxGL.so.3.2.000121
</binary>

</option>
</option>
<option>

Movies
<files>

shell/movies/asteroid.mpg
shell/movies/flight.mpg
shell/movies/gate.mpg
shell/movies/intro.mpg

(more MPEG movies)

shell/movies/sc37.mpg
shell/movies/sc3j.mpg
shell/movies/title.mpg

</files>
</option>

</install>

The root element of this XML file is labelled install, and it contains the
options needed for the complete installation process. Flags to the install
section include the name of the product, its version number, a brief description,
the name of an information file (in this case README), and a shell script to
run after the files have been copied to the user’s hard drive. You can optionally
include a preinstall script (to be executed before copying files), a default
installation path other than /usr/local/games, preuninstall and
postuninstall scripts for uninstalling the product (by default Setup will just
remove the directory tree it installed), and several other flags (documented in
the Setup source package).

install usually contains several option elements. These elements specify sets
of files that may be installed. If an option node contains the install="true"
attribute, Setup will install it by default. You can nest option sections to



GROKKING THE LINUX FILESYSTEM STANDARD 313

specify logical groups of files. If the user unchecks an option, Setup will block
out any nested options. You can also specify libc or architecture requirements
for options, making it easy to release a CD with support for several different
architectures. Setup also provides support for internationalization.

After the user selects the appropriate sets of files and clicks the “Begin install”
button, Setup performs the following tasks:

1. Runs the preinstall script, if any (none in this case).

2. Creates the installation directory, in this case usr/local/games/hg2/.
Obviously the user must have write access to this part of the filesystem;
Setup will refuse to continue otherwise.

3. Copies the selected file sets from the CD-ROM to the installation directory.

4. Writes an uninstall script in the installation directory. This script simply
removes all of the files that were copied and provides a quick way to
uninstall the software. The script also executes any requested
preuninstall or postuninstall scripts that were specified in setup.xml.

5. Runs the postinstall script, if any.

6. Offers the user a chance to view the README file, if one was given in
setup.xml.

7. Offers to run the program immediately.

Although Setup was designed primarily for CD-ROM titles, you could easily
make it work in other situations, as long as it can find the files it needs. You can
get your own copy of Loki Setup at Loki’s web site
(http://www.lokigames.com). The Setup package includes source code as well
as full documentation for the XML script format.

Grokking The Linux Filesystem Standard

Linux evolved from Linus Torvald’s pet project into a full-blown multi-user
operating system, and its filesystem has been through a long period of evolution.
A while back people decided that it wouldn’t do for each Linux distribution to



314 CHAPTER 10. TO EVERY MAN A LINUX DISTRIBUTION

Figure 10–1: Loki Setup in action

use a different filesystem, and so an effort was made to settle on a standard.
Originally dubbed the Linux Filesystem Standard, this document has grown into
the Filesystem Hierarchy Standard, and it is meant to be applicable to all
UNIX-like operating systems. Most Linux distributions do a fairly decent job of
adhering to the FHS, and this makes life easier for application (and game)
programmers who would like to support as many systems as possible.

We won’t duplicate the FHS here; it’s pretty long, and you can browse the whole
thing at http://www.pathname.org/fhs. But we will offer a brief overview of
the filesystem, and then a few hints about where your game should put its files.
This will keep your users happy and hopefully reduce the possibility of your
game damaging someone’s filesystem. We’ll start with an overview of the
top-level directories on a typical Linux box6.

/ The top-level directory. Don’t put anything here7.

6Much of this information is directly from the Filesystem Hierarchy Standard, version 2.1.
7The FHS forbids compliant distributions from adding new top-level directories, but some do

anyway.



GROKKING THE LINUX FILESYSTEM STANDARD 315

bin/ Important binaries that the system needs to boot. Don’t touch this
directory unless you have a really good reason (which is unlikely if your
product is a game).

boot/ The Linux kernel and various bootloader information.

dev/ Device files, such as dsp. You may need to access some of these, but it’s
unlikely that you’ll need to modify them.

etc/ System-wide configuration files. Game configuration files do not belong
here; see below for more information.

home/ Home directories for each user. For instance, my home directory is
home/overcode/. Programs and scripts can retrieve the current user’s
home directory with the HOME environment variable. home/ is sometimes
actually stored in usr/home/ and linked to home/.

lib/ System libraries and kernel modules. Don’t put anything here unless your
app requires special kernel modules (which is very unlikely and potentially
very dangerous).

mnt/ Temporary filesystem mount point. For instance, floppies and CD-ROMs
are frequently mounted here.

opt/ Somewhat controversial (but standardized) place for applications to add
their own directory trees. Very similar to /usr/local, and roughly
equivalent to the Program Files folder on Windows.

proc/ Dynamically generated system information. Look, but don’t touch.

root/ The root user’s little cave. Unless this happens to be the current HOME,
don’t mess with it (it’ll probably be read/write protected anyway).

sbin/ System administration binaries. I don’t see why a game would ever need
to touch this directory, except perhaps to collect information about the
system.

tmp/ Scratch pad directory. You can put anything here, but it’s polite to clean
up after yourself. Don’t count on anything remaining in tmp/ for too
long. Some systems purge tmp/ weekly.

usr/ Billed by the FHS as the “secondary hierarchy”, usr/ contains a second
directory structure very similar to the root directory but with a different
purpose. We’ll look at some of usr/’s subdirectories shortly.



316 CHAPTER 10. TO EVERY MAN A LINUX DISTRIBUTION

var/ Variable data, according to the FHS. var/ is home to logs, email, state
information, and temporary files that are too important for tmp/ (files in
var/tmp/ are guaranteed to be preserved between system reboots.).

usr/ is typically the largest top-level directory on the system. It houses almost
all of the system’s data files, application binaries (those that aren’t in opt/, at
least), and some local configuration files. Here’s a typical usr/ structure:

usr/X11R6/ The X Window System. It would more correctly be elsewhere,
but this location is well-established, and the FHS makes an exception for it.

usr/bin/ User binaries. In some cases it’s acceptable for your installation
program to put binaries or symlinks here; see below.

usr/games/ Games. If your game is small (one or two files), you might want to
have it install itself here. If you’re not using a package manager, though,
usr/local/games/ is probably a better idea.

usr/include/ Directory of .h files for the C compiler. If your game needs to
install an SDK of some sort, its header files should go here so the C
compiler can find them. It’s polite to put them in a subdirectory of
usr/include/, though. SDL puts its headers in usr/include/SDL or
usr/local/include/.

usr/lib/ Non-critical libraries. The system should be able to run without the
libraries stored in usr/lib/. Packages such as SDL and GTK usually put
their shared libraries here (or in usr/local/lib/). The distinction between
critical (lib/) and non-critical (usr/lib/) libraries is very important for
maintaining a Linux system.

usr/local/ Similar in practice to opt/. This directory is not supposed to be
under the control of any package manager (RPM packages usually install
to usr/ rather than usr/local/). If you intend to use Loki’s Setup
program for your installation, you’ll probably want to install to
usr/local/. It’s not uncommon for apps to create their own subdirectories
under usr/local/ (whereas creating a subdirectory under usr/ is very bad
style). usr/local/ contains include/ and lib/ subdirectories that are
more or less equivalent to usr/include/ and usr/lib/, respectively. The
FHS specifies that usr/local/ should be left empty by the distribution’s
installer and should not be touched during system upgrades.



CONCLUSION 317

usr/sbin/ Additional system administration binaries. This directory contains
the same sort of things that would go in sbin/, but it shouldn’t contain
anything that’s absolutely critical to the system. For instance, network
traffic monitors and improved versions of basic networking utilities might
go in usr/sbin/, while the basic system administration programs common
to all Linux systems should go in sbin/.

usr/share/ Architecture-independent data, according to the FHS. This
directory usually contains assorted program data files. For instance,
Emacs’ Lisp scripts reside in usr/share/emacs/. It’s not unreasonable to
put your own data files there (in a separate subdirectory).

Ok, so where should your game install itself? If you’re installing with a package
manager (with the ability to remove and verify the files it installs), it’s
acceptable to use usr/ directly (including usr/bin/, usr/games/, usr/lib/,
and usr/share/). If your game were FooBall, for instance, it might install its
executable to usr/games/fooball and its data files to usr/share/fooball/.
However, if it used its own installation system (not a package manager), it would
use usr/local/games/fooball and usr/local/share/fooball/ instead. It
would also be OK to install to opt/fooball/. The basic rule is that you
shouldn’t touch usr/ without involvement from the package manager; that’s
what usr/local/ and opt/ are for.

These places are fine for executables and datafiles, but what about configuration
info? Most users don’t have write permission to anything in usr/ (and certainly
not etc/), and it’s a very bad idea to require your program to be run under the
root account (for security reasons mainly). Per-user configuration files (high
scores, window/video mode info, saved games, and so on) can go in each user’s
home directory, which you can grab from the HOME environment variable (in C,
getenv("HOME") should do the trick). All of Loki’s games, for instance, use
$HOME/.loki/ for this purpose. System-wide configuration, if any, can go in
usr/local/etc. But you’ll probably want to leave most options up to the
individual user.

Conclusion

Linux distributions are largely compatible with one another, but there are a few
pitfalls you should watch out for when you release your game. Different



318 CHAPTER 10. TO EVERY MAN A LINUX DISTRIBUTION

distributions support different package management systems, each with
strengths, weaknesses, and loyal supporters. It is a good idea to support several
of these if possible. Loki’s Setup program provides a convenient way to create a
user-friendly installation program for any Linux application or game. The Linux
filesystem has a largely standardized structure, and you should take care to
respect the Filesystem Hierarchy Standard where applicable. Your game won’t
do very well if players can’t get it installed easily, but this is fortunately an easy
detail to ensure.



Glossary of Terms

alpha blending An operation that combines two pixel values together so as to
simulate a certain degree of transparency. This is done on a per-pixel basis
with an additional piece of data called an alpha value that represents each
pixel’s translucency. Page 90.

animation The art of fooling the human eye into perceiving motion. Chapter 4.

artifact A (usually minor) audio or display glitch, often caused by an
unexpected situation, insufficient performance, or a heavy system load.
Some common artifacts are shearing and flicker. Artifacts are bad.

blit A fast copy between two pieces of graphics data. Blitting is one of the most
basic operations in 2D computer graphics. The word itself comes from
block image transfer. Page 82.

colormap See palette.

direct color Somewhat uncommon but powerful display mode in which each
pixel value is divided into three bitfields, each of which indexes a separate
table. The values retrieved from these tables are used as the red, green,
and blue components for the pixel. Direct color is essentially a powerful
hybrid of indexed and true color modes. Page 71.

double buffering Technique of drawing the next frame of animation in an
offscreen buffer and blitting it quickly to the screen at the appropriate
time. This reduces the possibility of various display artifacts by confining
all actual display updates to a very short and carefully timed interval.
Page 100.

engine The core of a game. A game engine coordinates input processing,
graphics, audio, networking, and game rules to present the player with an

319



320 GLOSSARY OF TERMS

interesting experience. Engines are frequently licensed between game
companies to speed up game development. For instance, id Software has
licensed derivatives of its Quake engine to several other game development
studios. Page 11.

first person shooter (FPS) A game genre in which the player controls a
character from a first person perspective (that is, through the character’s
eyes). Examples are the id’s Quake series, Activision’s Soldier of Fortune,
and Valve’s Half-Life. Page 4.

framebuffer Block of memory that represents the data on the screen. A
framebuffer usually contains one or two bytes of information for each pixel
on the screen. Page 71.

hicolor Also known as high color. Family of 16-bit RGB display modes with
five or six bits for each color component. Page 71.

indexed display mode Display mode in which each pixel value is interpreted
as an index into a table (palette) of predefined red, green, and blue values.
Page 71.

latency In computer audio playback, the amount of time it takes a
newly-played sample to actually reach the speakers. This should only be a
small fraction of a second. Network sound mixers like ESD and (to a lesser
degree) aRts are known to produce high latency. Pages 169, 187.

mutex Mutual exclusion lock. Used in multithreaded programming to keep two
threads from trying to modify the same piece of data at once. Page 118.

page flipping Hardware-accelerated version of double buffering. In this case
the offscreen buffer and framebuffer are identical and can be switched
(“flipped”) at any time by updating a graphics card register. This obivates
the need for blitting. SDL tries to use hardware page flipping if both
SDL HWSURFACE and SDL DOUBLEBUF are specified when the video mode is
set. (Use the SDL Flip function to perform the page flip each frame.)

palette Used in indexed video modes to specify the red, green, and blue
components of each possible color value. A palette is simply a table of
RGB values, usually stored in graphics card registers. Page 71.

particle system A group of individual, tiny objects, each with a position and
path of motion. Particle systems can be used to simulate anything from
flying debris to vehicle exhaust. Page 147.



321

PCM Pulse-coded modulation. The most common way of storing and playing
digital audio samples. Each PCM sample represents the amplitude of the
sound wave at a given instant. Page 121.

pixel One blotch of color on the screen. Pixels are arranged in a precise grid on
the screen, and their colors are updated between 50 and 100 times each
second. Each pixel has a distinct color, usually specified in terms of its red,
green, and blue components, and this color data is stored in memory
accessible to the computer’s graphics hardware. Less commonly known as
pels. The name comes from pictorial element. Page 70.

packed pixel Synonymous with hicolor or true color. The term refers to the
fact that the color components of each pixel are packed into bitfields.

RGB display mode Display mode in which each pixel value is directly
expressed in terms of its red, green, and blue intensities. Each component
is usually specified with five to eight bits, depending on the particular
mode. Two popular RGB formats are hicolor and true color. Page 71.

real-time strategy (RTS) A game genre in which the player controls a group
of characters in some sort of conquest or battle, usually from an overhead
view. Examples are Westwood Studios’ Command and Conquer series and
Blizzard Entertainment’s StarCraft. Page 5.

sample A single piece of audio data. Analogous to a pixel. A computer sound
clip consists of thousands of samples taken at regular time intervals. See
also PCM.

shearing A common display artifact that occurs when a program tries to draw
on the screen while the video controller is refreshing the screen. The result
is that an image is only partially drawn on the screen for a split second.
This isn’t disasterous and often goes unnoticed, but it can become
distracting.

surface In SDL, a structure that represents a piece of graphics data. DirectX
calls them buffers. Page 72.

triple buffering Technique similar to double buffering that uses two
offscreen surfaces instead of one (three surfaces total). Triple buffering can
be useful for taking advantage of graphics acceleration. Some video
adapters are capable of copying data in the background, and triple



322 GLOSSARY OF TERMS

buffering allows a program to draw to a third buffer while the video
hardware is busy swapping the other two.

turn-based strategy (TBS) A game genre similar in some ways to the
real-time strategy genre, except that the game is divided into distinct
turns, often with no time limit imposed. At the risk of generalizing, TBS
games involve more thought and careful planning, while RTS games
require quick thinking. Examples are the Civilization series and Sid
Meier’s Alpha Centauri (SMAC). Page 7.

true color 24-bit RGB display mode with 8 bits for each color component.
Page 71.

voxel Short for Volumetric Pixel. Voxels are used to create fast but detailed
renderings of complex objects. The most familiar use of voxels is terrain
rendering, but the technique has also been applied in many other situations
(for example, character rendering in Sid Meier’s Alpha Centauri, based on
the Caviar animation library). Voxels are essentially pixels in
three-dimensional space, and entire scenes of voxels can be rendered
extremely quickly if some limits are placed on the scene’s geometry.


