

NETWORKING
AND ONLINE GAMES

Networking and Online Games: Understanding and Engineering Multiplayer Internet Games
Grenville Armitage, Mark Claypool, Philip Branch 2006 John Wiley & Sons, Ltd ISBN: 0-470-01857-7

NETWORKING
AND ONLINE GAMES
UNDERSTANDING AND ENGINEERING
MULTIPLAYER INTERNET GAMES

Grenville Armitage,
Swinburne University of Technology, Australia

Mark Claypool,
Worcester Polytechnic Institute, USA

Philip Branch,
Swinburne University of Technology, Australia

Copyright 2006 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk
Visit our Home Page on www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or
otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a
licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK,
without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the
Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex
PO19 8SQ, England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

This publication is designed to provide accurate and authoritative information in regard to the subject matter
covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If
professional advice or other expert assistance is required, the services of a competent professional should be
sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 42 McDougall Street, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data:

Armitage, Grenville.
Networking and online games : understanding and engineering multiplayer

Internet games / Grenville Armitage, Mark Claypool, Philip Branch.
p. cm.

Includes bibliographical references and index.
ISBN-13: 978-0-470-01857-6 (cloth : alk. paper)
ISBN-10: 0-470-01857-7 (cloth : alk. paper)

1. Computer games – Programming. 2. TCP/IP (Computer network protocol)
3. Internet games. I. Title: Understanding and engineering multiplayer
Internet games. II. Claypool, Mark. III. Branch, Philip. IV. Title.
QA76.76.C672A76 2006
794.8′1526 – dc22

2006001044

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN-13: 978-0-470-01857-6
ISBN-10: 0-470-01857-7

Typeset in 10/12pt Times by Laserwords Private Limited, Chennai, India
Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire
This book is printed on acid-free paper responsibly manufactured from sustainable forestry
in which at least two trees are planted for each one used for paper production.

Contents

Author Biographies xi
Acknowledgements xiii

1 Introduction 1

2 Early Online and Multiplayer Games 5
2.1 Defining Networked and Multiplayer Games 5
2.2 Early Multiplayer Games 6

2.2.1 PLATO 8
2.2.2 MultiUser Dungeons 8
2.2.3 Arcade Games 9
2.2.4 Hosted Online Games 11

2.3 Multiplayer Network Games 12
2.3.1 DOOM – Networked First-Person Shooters Arrive 12

References 14

3 Recent Online and Multiplayer Games 15
3.1 Communication Architectures 15
3.2 The Evolution of Online Games 17

3.2.1 FPS Games 18
3.2.2 Massively Multiplayer Games 21
3.2.3 RTS Games 22
3.2.4 Sports Games 24

3.3 Summary of Growth of Online Games 27
3.4 The Evolution of Online Game Platforms 29

3.4.1 PCs 29
3.4.2 Game Consoles 29
3.4.3 Handheld Game Consoles 30
3.4.4 Summary 32

3.5 Context of Computer Games 32
3.5.1 Physical Reality 32
3.5.2 Telepresence 33
3.5.3 Augmented Reality 34
3.5.4 Distributed Virtual Environments 39

References 39

4 Basic Internet Architecture 41
4.1 IP Networks as seen from the Edge 42

4.1.1 Endpoints and Addressing 43

vi Contents

4.1.2 Layered Transport Services 44
4.1.3 Unicast, Broadcast and Multicast 46

4.2 Connectivity and Routing 47
4.2.1 Hierarchy and Aggregation 49
4.2.2 Routing Protocols 51
4.2.3 Per-hop Packet Transport 55

4.3 Address Management 60
4.3.1 Address Delegation and Assignment 60
4.3.2 Network Address Translation 61
4.3.3 Dynamic Host Configuration Protocol 64
4.3.4 Domain Name System 66

References 67

5 Network Latency, Jitter and Loss 69
5.1 The Relevance of Latency, Jitter and Loss 69
5.2 Sources of Latency, Jitter and Loss in the Network 70

5.2.1 Propagation Delay and the Laws of Physics 71
5.2.2 Serialisation 71
5.2.3 Queuing Delays 72
5.2.4 Sources of Jitter in the Network 73
5.2.5 Sources of Packet Loss in the Network 74

5.3 Network Control of Lag, Jitter and Loss 75
5.3.1 Preferential IP Layer Queuing and Scheduling 76
5.3.2 Link Layer Support for Packet Prioritisation 77
5.3.3 Where to Place and Trust Traffic Classification 78

5.4 Measuring Network Conditions 79
References 81

6 Latency Compensation Techniques 83
6.1 The Need for Latency Compensation 83
6.2 Prediction 86

6.2.1 Player Prediction 87
6.2.2 Opponent Prediction 89
6.2.3 Prediction Summary 92

6.3 Time Manipulation 93
6.3.1 Time Delay 93
6.3.2 Time Warp 94
6.3.3 Data compression 96

6.4 Visual Tricks 97
6.5 Latency Compensation and Cheating 98

References 98

7 Playability versus Network Conditions and Cheats 101
7.1 Measuring Player Tolerance for Network Disruptions 101

7.1.1 Empirical Research 102
7.1.2 Sources of Error and Uncertainty 105
7.1.3 Considerations for Creating Artificial Network Conditions 107

Contents vii

7.2 Communication Models, Cheats and Cheat-Mitigation 108
7.2.1 Classifying and Naming Methods of Cheating 109
7.2.2 Server-side Cheats 109
7.2.3 Client-side Cheats 111
7.2.4 Network-layer Cheats 115
7.2.5 Cheat-mitigation 116

References 118

8 Broadband Access Networks 121
8.1 What Broadband Access Networks are and why they Matter 121

8.1.1 The Role of Broadband Access Networks 121
8.1.2 Characteristics of Broadband Access Networks 121

8.2 Access Network Protocols and Standards 123
8.2.1 Physical Layer 124
8.2.2 Data Link Layer 125

8.3 Cable Networks 125
8.4 ADSL Networks 127
8.5 Wireless LANs 128

8.5.1 IEEE 802.11 Wireless LAN Standards 129
8.5.2 Wireless LAN Architectures 129
8.5.3 Recent Developments in WLAN Quality of Service 131

8.6 Cellular Networks 132
8.6.1 GPRS and EDGE 132
8.6.2 3G Networks 133

8.7 Bluetooth Networks 134
8.8 Conclusion 135

References 136

9 Where Do Players Come from and When? 137
9.1 Measuring Your Own Game Traffic 138

9.1.1 Sniffing Packets 138
9.1.2 Sniffing With Tcpdump 140

9.2 Hourly and Daily Game-play Trends 142
9.2.1 An Example Using Quake III Arena 142
9.2.2 An Example Using Wolfenstein Enemy Territory 144
9.2.3 Relationship to Latency Tolerance 144

9.3 Server-discovery (Probe Traffic) Trends 145
9.3.1 Origins of Probe Traffic 145
9.3.2 Probe Traffic Trends 146

9.4 Mapping Traffic to Player Locations 148
9.4.1 Mapping IP Addresses to Geographic Location 148
9.4.2 Mapping by Latency Tolerance 149

References 149

10 Online Game Traffic Patterns 151
10.1 Measuring Game Traffic with Timestamping Errors 152
10.2 Sub-second Characteristics 153

viii Contents

10.2.1 Ticks, Snapshots and Command Updates 153
10.2.2 Controlling Snapshot and Command Rates 155

10.3 Sub-second Packet-size Distributions 156
10.4 Sub-Second Inter-Packet Arrival Times 162

10.4.1 Example: Wolfenstein Enemy Territory Snapshots 164
10.4.2 Example: Half-life 2 Snapshots and Client Commands 164

10.5 Estimating the Consequences 167
10.6 Simulating Game Traffic 168

10.6.1 Examples from Halo 2 and Quake III Arena 169
10.6.2 Extrapolating from Measurements with Few Clients 172

References 172

11 Future Directions 175
11.1 Untethered 175

11.1.1 Characteristics of Wireless Media 176
11.1.2 Wireless Network Categorization 177

11.2 Quality of Service 178
11.2.1 QoS and IEEE 802.11 179
11.2.2 QoS Identification 179

11.3 New Architectures 180
11.4 Cheaters Beware 181
11.5 Augmented Reality 182
11.6 Massively Multiplayer 182
11.7 Pickup and Putdown 183
11.8 Server Browsers 183

References 184

12 Setting Up Online FPS Game Servers 187
12.1 Considerations for an Online Game Server 187
12.2 Wolfenstein Enemy Territory 188

12.2.1 Obtaining the Code 188
12.2.2 Installing the Linux Game Server 189
12.2.3 Starting the Server 191
12.2.4 Starting a LAN Server 192
12.2.5 Ports You Need Open on Firewalls 193
12.2.6 Dealing with Network Address Translation 193
12.2.7 Monitoring and Administration 194
12.2.8 Automatic Downloading of Maps and Mods 196
12.2.9 Network Performance Configuration 197

12.2.10 Running a Windows Server 197
12.2.11 Further Reading 198

12.3 Half-Life 2 198
12.3.1 Obtaining and Installing the Linux Dedicated Server 199
12.3.2 Starting the Server for Public Use 200
12.3.3 Starting a LAN-only Server 202
12.3.4 Ports You Need Open on Firewalls 202
12.3.5 Dealing with Network Address Translation 202
12.3.6 Monitoring and Administration 203
12.3.7 Network Performance Configuration 204

Contents ix

12.3.8 Running a Windows Server 204
12.3.9 Further Reading 206

12.4 Configuring FreeBSD’s Linux-compatibility Mode 206
12.4.1 Installing the Correct Linux-compatibility Libraries 206
12.4.2 Ensuring the Kernel ‘Ticks’ Fast Enough 207

References 208

13 Conclusion 209
13.1 Networking Fundamentals 209
13.2 Game Technologies and Development 210
13.3 A Note Regarding Online Sources 211

Index 213

Author Biographies

Grenville Armitage Editor and contributing author Grenville Armitage is Director
of the Centre for Advanced Internet Architectures (CAIA) and Associate Professor of
Telecommunications Engineering at Swinburne University of Technology, Melbourne,
Australia. He received his Bachelor and PhD degrees in Electronic Engineering from
the University of Melbourne, Australia in 1988 and 1994 respectively. He was a Senior
Scientist in the Internetworking Research Group at Bellcore in New Jersey, USA (1994
to 1997) before moving to the High Speed Networks Research department at Bell Labs
Research (Lucent Technologies, NJ, USA). During the 1990s he was involved in various
Internet Engineering Task Force (IETF) working groups relating to IP Quality of Service
(QoS). While looking for applications that might truly require IP QoS he became interested
in multiplayer networked games after moving to Bell Labs Research Silicon Valley (Palo
Alto, CA) in late 1999. Having lived in New Jersey and California he is now back in
Australia – enjoying close proximity to family, and teaching students that data networking
research should be fascinating, disruptive and fun. His parents deserve a lot of credit for
helping his love of technology become a rather enjoyable career.

Mark Claypool Contributing author Mark Claypool is an Associate Professor in Com-
puter Science at Worcester Polytechnic Institute in Massachusetts, USA. He is also the
Director of the Interactive Media and Game Development major at WPI, a 4-year degree
in the principles of interactive applications and computer-based game development. Dr.
Claypool earned M.S. and Ph.D. degrees in Computer Science from the University of
Minnesota in 1993 and 1997, respectively. His primary research interests include multi-
media networking, congestion control, and network games. He and his wife have 2 kids,
too many cats and dogs, and a bunch of computers and game consoles. He is into First
Person Shooter games and Real-Time Strategy games on PCs, Beat-’em Up games on
consoles, and Sports games on hand-helds.

Philip Branch Contributing author Philip Branch is Senior Lecturer in Telecommuni-
cations Engineering within the Faculty of Information and Communication Technologies
at Swinburne University of Technology. Before joining Swinburne he was a Development
Manager with Ericsson AsiaPacific Laboratories and before that, a Research Fellow at
Monash University where he conducted research into multimedia over access networks.
He was awarded his PhD from Monash University in 2000. He enjoys bushwalking with
his young family and playing very old computer games.

Acknowledgements

We would like to acknowledge the permissions of, and give special thanks to, a number
of copyright owners for the use of their images in this book.

Figures 2.3, 2.4 and 2.8–Photos reproduced by permission of William Hunter, “The Dot
Eaters: Videogame History 101”, http://www.thedoteaters.com

Figure 3.10 Warcraft provided courtesy of Blizzard Entertainment, Inc.

Figure 3.20 is reproduced by permission of Tiffany Wolf

Figure 3.21 is reproduced by permission of Konami

Figures 3.22 and 3.23 are reproduced by permission of Adrian Cheok

Figures 3.24(a) and (b) are reproduced by permission of Wayne Piekarski

Figures 3.6, 3.9, 3.11, 3.14, and 3.15 are reproduced by permission of Electronic Arts

Figures 2.11, 3.4, 3.5, 7.5, 7.6, and 7.7 are reproduced by permission of Id Software, Inc.

Figure 3.12 Pole Position and Figure 3.13 Ridge Racer provided courtesy of Namco

We would also like to acknowledge the work of Warren Harrop and Lawrence Stewart in
constructing a large collection of client-side cheat scenarios from which Figures 7.5, 7.6
and 7.7 were selected.

1
Introduction

A lot has happened since 1958 when William A. Hinginbotham used an oscilloscope to
simulate a virtual game of tennis. Computing technology has made staggering leaps for-
ward in power, miniaturisation and sophistication. High speed international data networks
are part of modern, everyday life in what we call ‘the Internet’. Our peculiarly human
desire for entertainment and fun has pushed the fusion and evolution of both computing
and networking technologies. Today, computer games are sold to an increasingly signifi-
cant market whose annual revenues already exceed that of the Hollywood movie industry.
Multi-player games are making greater use of the Internet and the driving demand for
‘better than dial-up’ access services in the consumer space. Yet many networking engi-
neers are unfamiliar with the games that utilise their networks, as game designers are
often unsure of how the Internet really behaves.

Regardless of whether you are a network engineer, technical expert, game developer,
or student with interests across these fields, this book will be a valuable addition to
your library. We bring together knowledge and insights into the ways multi-party/multi-
player games utilise the Internet and influence traffic patterns on the Internet. Multi-player
games impose loads on Internet Service Providers (ISPs) quite unlike the loads generated
by email, web surfing or streaming content. People’s demand for realistic interactivity
creates somewhat unique demands at the network level for highly reliable and timely
exchange of data across the Internet – something the Internet rarely offers because of its
origins as a ‘best effort’ service. Game designers have developed fascinating techniques
to maintain a game’s illusion of shared experiences even when the underlying network is
losing data and generally misbehaving.

For those with a background in data networking, we begin with two chapters by Mark
Claypool, ‘Early Online and Multi-player Games’ and ‘Recent Online and Multi-player
Games’, covering the history of computer games and the various ways in which game-
related technology has branched out. From the earliest single-player electronic games,
through multi-user dungeons and first-person shooters, to today’s emerging augmented-
reality games and simulation systems, we have come a long way in 40 years. We cover the
definition of multi-player networked games and discuss the meaning of peer-to-peer and
client–server communication models in the context of game systems. For those readers
with a background in game design and development, our next chapter, ‘Basic Internet
Architecture’, provides a refresher and short introduction to the basics of Internet Protocol

Networking and Online Games: Understanding and Engineering Multiplayer Internet Games
Grenville Armitage, Mark Claypool, Philip Branch 2006 John Wiley & Sons, Ltd ISBN: 0-470-01857-7

2 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

(IP) networking. We review the concept of ‘best effort’ service, IP addressing and the role
of transport protocols such as TCP (Transmission Control Protocol) and User Datagram
Protocol (UDP) as they pertain to game developers. When you complete this chapter, you
will have an understanding of the differences between routing and forwarding, addresses
and domain names. You will learn why Network Address Translation (NAT) exists and
how it impacts on network connectivity between game players.

Our next chapter, ‘Network Latency, Jitter and Loss’, should be of interest to all
readers. Here we look in detail at how modern IP networks fail to provide consistent
and reliable packet transport service – by losing packets or by taking unpredictable time
to transmit packets. We discuss how much of this network behaviour is unavoidable
and how much can be controlled with suitable network-level technology and knowledge
of game traffic characteristics. This leads naturally to Mark Claypool’s next chapter,
‘Latency Compensation Techniques’, where we look at the various techniques invented
by game developers to cope with, and compensate for, the Internet’s latency and packet
loss characteristics. A fundamental issue faced by multi-player online games is that the
latency experienced by each player is rarely equal or constant. And yet, to maintain a
fair and realistic immersive experience, games must adapt to, predict and adjust to these
varying latencies. We look at client-side techniques such as client prediction and opponent
prediction, and server-side techniques such as time warping. Compression of packets over
the network is introduced as a means to reduce network-induced latency.

Our next chapter, ‘Playability versus network conditions and cheats’, takes a different
perspective. We look at how two separate issues of network conditions and cheating
influence player satisfaction with their game experience. First, we look at the importance
of knowing the tolerance your players have of latency for any particular game genre.
Such knowledge helps game hosting companies to estimate which area on the planet
their satisfied customers will come from (and where to place new servers to cover new
markets). We discuss existing research in this area and issues to consider when trying to
establish this knowledge yourself. Next we look at communication models, cheats and
cheat mitigation. Cheating is prevalent in online games because such games combine
competitiveness with a sense of anonymity – and the anonymity leads to a lessened sense
of responsibility for one’s actions. We look at examples of server-side, client-side and
network-based cheating that may be attempted against your game, and discuss techniques
of detecting and discouraging cheating.

In ‘Broadband Access Networks’, Philip Branch takes us through a discussion of the
various broadband access technologies likely to influence your game player’s experiences
in the near future. Access networks are typically the congestion point in a modern ISP
service; they come in a variety of technologies allowing fixed and wireless connectivity,
and have unique latency and loss characteristics. From a high level, we review the archi-
tectures of cable modems, Asymmetrical Digital Subscriber Line (ADSL) links, 802.11
wireless Local Area Networks (LANs), cellular systems and Bluetooth.

We then move in an entirely different direction with the chapter ‘Where do players
come from and when?’. One of the key questions facing game hosting companies is
determining where their market exists, who their players are, and where they reside. This
has an impact on the time zones over which your help desk needs to operate and the
ebb and flow of game-play traffic in and out of your servers. Taking a very practical
direction, we first discuss how you can monitor and measure traffic patterns yourself with

Introduction 3

freely available open-source operating systems and packet sniffing tools. Then we look
at existing research on daily and weekly player usage trends, trends in server-discovery
probe traffic that hit your server whether people play or not, and note some techniques
for mapping from IP addresses to geographical location.

At the other end of the spectrum is the packet-by-packet patterns hidden in packet size
distributions and inter-packet arrival times. In ‘Online Game Traffic Patterns’, we look at
how to measure traffic patterns at millisecond timescales, and show how these patterns
come about in First-Person Shooter (FPS) games – the most demanding interactive games
available. It is at this level that network operators need to carefully understand the load
being put on their network in order to properly configure routers and links for minimal
packet loss and jitter. We review how typical FPS packet size distributions are quite
different in the client-to-server and server-to-client directions, and how server-to-client
packet transmissions are structured as a function of the number of clients. Overall this
chapter provides great insight into the burstiness that your network must support if you
wish to avoid skewing the latency and jitter experienced by every player.

Then in ‘Future Directions’, Mark Claypool provides general thoughts on some topics
relating to the future of online multi-player games. We particularly focus on the use
of wireless technologies, automatic configuration of Quality of Service without player
intervention, hybrid client–server architectures, cheaters, augmented reality, massively
multi-player games, time-shifting games (where you can start and stop at anytime) and
new approaches to server discovery.

Finally, in ‘Setting up online FPS game servers’, we wrap up this book with a practical
introduction to installing and starting your own FPS game servers on free, open-source
platforms. In particular, we look at the basics of downloading, installing and starting both
Wolfenstein Enemy Territory (a completely free team-play FPS game) and Valve’s Half-
Life 2 (a commercial FPS). In both cases, we discuss the use of Linux-based dedicated
game servers, and provide some thoughts on running them under FreeBSD (both Linux
and FreeBSD are free, open-source UNIX-like operating systems available for standard
PC hardware).

We hope you will find this book a source of interesting information and new ideas,
whether you are a networking engineer interested in games or a game developer interested
in gaining a better understanding of your game’s interactions with the Internet.

Grenville Armitage (author and editor)

2
Early Online and Multiplayer
Games

In this chapter, we cover some of the history of early online and multiplayer games.
Like most computer systems and computer applications, online games evolved as the
capabilities of hardware changed (and became cheaper) and user expectations from those
games grew to demand more from the hardware.

Besides being interesting in their own right, examining early online and multiplayer
game history can help us understand the context of modern network games. We will deal
with the following:

• Introduce important early multiplayer games that set the tone for the networking mul-
tiplayer games that would follow.

• Describe early network games that often had a centralised architecture, suitable for the
mainframe era in which they were developed.

• Provide details on turn-based games that were popular before low latency network
connections were widespread.

• End with popular network games that made use of widespread Local Area Network
(LAN) technology.

2.1 Defining Networked and Multiplayer Games
By its very definition, a network game must involve a network, meaning a digital connec-
tion between two or more computers. Multiplayer games are often network games in that
the game players are physically separated and the machines, whether PCs or consoles or
handhelds, are connected via a network. However, many multiplayer games, especially
early ones were not network games. Typically, such multiplayer games would have users
take turns playing on the same physical machine. For example, one player would take turns
fighting alien ships while the second player watched. Once the first player was destroyed
or when he/she completed the level, the second player would have a turn. Scores for each
player were kept separately. For simultaneous multiplayer play, either cooperatively or
head-to-head, each player would see their avatar on the same screen or the screen would
be ‘split’ into separate regions for each player. For example, a multiplayer sports game

Networking and Online Games: Understanding and Engineering Multiplayer Internet Games
Grenville Armitage, Mark Claypool, Philip Branch 2006 John Wiley & Sons, Ltd ISBN: 0-470-01857-7

6 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

Multiplayer
Games

Networked
Games

Figure 2.1 The sets of multiplayer games and network games are overlapping, but not subsets or
supersets of each other

• 1958 Tennis for Two

• 1961 Space War

• 1970 Galaxy War

• 1972 Pong

• 1978 Atari Football

• 1993 Doom

• 1960s
– Era of early multiplayer
 games

• 1970s and 1980s
– Era of arcade multiplayer
 games

• 1990s and beyond
– Era of on-line, multiplayer
 games

(a) (b)

Figure 2.2 Timeline overview of early online and multiplayer games. (a) Lists approximate game
eras. (b) Lists the release of milestone games mentioned in this chapter

may have each player working one member of opposing teams. The game field could
either be entirely seen by both players or the screen would be physically split into the
part of the field viewable by each player. Thus, the area of multiplayer games includes
some games that are not network games.

On the flip side, some network games are not multiplayer games. A game can use a
network to connect the player’s machine to a remote server that controls various game-
play aspects. The game itself, however, can be entirely a single-player game where there
is no direct interaction with other players or their avatars. Early games, in particular, were
networked because a player logged into a mainframe server and played the game remotely
over a network via a terminal. Even with today’s modern computer systems, players can
run a game locally on a PC and connect to a server for map content or to interact with
Artificial Intelligence (AI) units controlled by a server.

Thus, multiplayer and network games overlap, as depicted in Figure 2.1, but neither
fully contains the other.

This sets the stage for discussing the evolution of computer games, starting with early
multiplayer games, early networked games and progressing to early, multiplayer net-
worked games (Figure 2.2)

2.2 Early Multiplayer Games
In 1958, William A. Hinginbotham, working at the Brookhaven National Laboratory,
used an oscilloscope to simulate a virtual game of tennis. This crude creation utilised
an overhead view, allowing two players to compete against each other in an attempt to
sneak the ball past the paddle of their opponent. Hinginbotham called this game Tennis

Early Online and Multiplayer Games 7

William A.
Hinginbotham

Figure 2.3 William Hinginbotham invented the multiplayer game Tennis for Two using an
oscilloscope. Reproduced by permission of William Hunter.

Steve Russel, J.M. Graetz,
and Alan Kotok

Figure 2.4 Spacewar was the first real computer game, and featured a multiplayer duel of rocket
ships. Reproduced by permission of William Hunter.

for Two [PONG] and it was perhaps the first documented multiplayer electronic game
(Figure 2.3).

However, while definitely a multiplayer game Tennis for Two used hard-wired circuitry
and not a computer for the game play. The honour of the first real computer game goes
to Spacewar, which was designed in 1961 to demonstrate a new PDP-1 computer that
was being installed at MIT (Figure 2.4). In Spacewar, two players duelled with rocket
ships, firing torpedos at one another. Spacewar had no sound effects or particle effects,
but illustrated just how addictive compelling game play could be even without fancy
graphics. It even showed sophisticated AI was not needed since real intelligence, in the
form of a human opponent, could enhance game play in both competitive and cooperative
modes.

Soon after its creation, Spacewar programmers were discovering the tradeoffs between
realism and playability, adding gravity, star maps and hyperspace. Although the price
of the PDP-1 (then over $100 000) made it impossible for Spacewar to be a commer-
cial success, it had lasting influence on the games that followed, including subsequent
multiplayer and networked games.

A version of Spacewar that was a commercial success was Galaxy War, appearing on
campuses in Stanford in the early 1970s (Figure 2.5). It may have been up and running
even before the far more popular Pong by Atari.

8 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

Figure 2.5 Galaxy War, early 1970s. Reproduced by permission of Id Software, Inc.

2.2.1 PLATO

Perhaps the first online network community was PLATO (which initially was supposedly
not an acronym for anything, but later became an acronym for Programming Logic for
Automatic Teaching Operations) that had users log into mainframe servers and interact
from their terminals [PLATO]. PLATO included various communication mechanisms such
as email and split-screen chat and, of course, online games. Two popular PLATO games
were Empire, a multiship space simulation game and Airfight, what may have been the
precursor to Microsoft flight simulator. There was even a version of Spacewar written
for PLATO. These early online games were networked only in the sense that a terminal
was connected to a mainframe, much like other interactive applications (such as a remote
login shell or an email client) of the day. Thus, the game architecture featured a ‘thin’
game client (the terminal) with all the computation and communication between avatars
taking place on the server.

The network performance of early systems was thus determined by the terminal commu-
nication with the mainframe server via the protocol used by the Telnet program [RFC854].
A Telnet connection uses the Transmission Control Protocol (TCP) connection to transmit
the data users type with control information. Typically, the Telnet client will send char-
acters entered by keystrokes and wait for the acknowledgment (echo) to display them on
the screen. From the user perspective, a typical measure of performance is the echo delay,
the time it takes for a segment sent by the source to be acknowledged. Having charac-
ters echoed across a TCP connection in this manner can sometimes lead to unpredictable
response times to user input.

2.2.2 MultiUser Dungeons

MultiUser Dungeons (MUDs) rose to popularity shortly after PLATO, providing a virtual
environment for users to interact with the world and with each other with some game-
play elements. MUDs are effectively online chat sessions with game-play elements and
structure; they have multiple places for players to move to and interact in like an adventure
game, and may include elements such as combat and traps, as well as puzzles, spells and
even simple economics. Early MUDs had text-based interfaces that allowed players to type
in basic commands, such as ‘go east’ or ‘open door’ (Figure 2.6). Typically, characters

Early Online and Multiplayer Games 9

Figure 2.6 Screen shot of MUD 1, one of the early Multiuser Dungeons

can add more structure to the world by adding more content to the world database. The
open source nature of many MUDs spurred them on to become popular in academia.
Early MUDs became a source of inspiration for later multiplayer network games, such as
Everquest, and many MUDs still support a core group of dedicated players.

‘The game was initially populated primarily by students at Essex, but as time wore
on and we got more external lines to the DEC-10, outsiders joined in. Soon, the
machine was swamped by games-players, but the University authorities were kind
enough to allow people to log in from the outside solely to play MUD, as long as
they did so between 2 am and 6 am in the morning (or 10 pm to 10 am weekends).
Even at those hours, the game was always full to capacity’.

– Richard Bartle, Early MUD history, 15 Nov 90.

MUDs used a client–server architecture, where the MUD administrator would run the
server and MUD players would connect to the MUD server with a simple Telnet program,
initially from a terminal (Figure 2.7). The disadvantage of Telnet was that it did not always
do an effective job of wrapping lines text and incoming messages sometimes got printed in
the middle of the commands the user was entering. In response to Telnet’s shortcomings,
there sprang up a range of specialised MUD client applications that addressed some of the
interface issues that Telnet had, and also provide extra capabilities such as highlighting
certain kinds of information, providing different fonts and other features.

2.2.3 Arcade Games
Nolan Bushnell, an electrical engineer, was another person influenced by Spacewar,
encountering it during the mid-1960s at a university campus in Utah. Apart from just

10 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

Network

Terminal

Terminal

Terminal

Server

Figure 2.7 Basic client–server topology used by early MUD games

Figure 2.8 Pong, one of the best known of the early multiplayer games. Reproduced by permission
of William Hunter.

seeing Spacewar as fun, Nolan saw Spacewar as having economic potential. So in 1972,
he formed Atari, a company dedicated to producing video arcade games. One of the
earliest games Atari produced was known as Pong, an arcade-friendly version of Hing-
inbotham’s Tennis for Two. Pong was the first big commercially successful video game,
while also being a multiplayer game (Figure 2.8).

The 1970s saw a tremendous growth in computer games, with video arcades gaining
widespread popularity, and with them, new styles of multiplayer action. In 1978, Atari
developed Football for video arcades, a game based on American football (not to be
confused with European football, also known as Soccer in places such as America and
Australia), and rendered with simple X’s and O’s. Atari Football featured addictive multi-
player game play, initially for two players and later for four players (Figure 2.9). Despite
the crash in computer games in the early 1980s, Atari released Guantlet, an innovative
dungeon crawl for up to four players simultaneously (Figure 2.10).

Early Online and Multiplayer Games 11

Figure 2.9 Atari Football featured two- or four-player multiplayer play

Figure 2.10 Gauntlet, released right about the time of the arcade decline, featured two to four
players in cooperative, multiplayer hack-and-slash

2.2.4 Hosted Online Games

In the 1980s, the idea of ‘pay for play’ first emerged, with several game companies
hosting online games and charging a monthly fee to play them. Companies such as Dow-
Jones (The Source) and Compuserv (H and R Block) made use of the idle compute-cycles
on their servers during nonbusiness hours by charging non-premium fees to access their
computers to play games. Such systems primarily featured text-based games that were
prevalent in academia, but several were multiplayer versions such as Compuserv’s Mega
Wars I, a space battle that supported up to 100 simultaneous players. Even though such
games were limited by today’s gaming standards, the prices charged were steep, ranging
from $5 per hour up to $22.50 per hour.

12 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

The high fees for such online game play brought a new group of users who would
host individual Bulletin-Board Systems (BBSes) that provided play-by-email or play-by-
bulletin-board system versions of table-top games such as chess or Dungeons and Dragons.
Users connected to these BBSes by modem (usually by making only a local phone call).
Some hobbyists provided richer gaming experiences, still charging money for MUDs, but
at much lower, flat monthly rates than had previously been charged.

Although commercial successes, the early computer games were fundamentally different
from today’s modern computer games. Players would move a dot or simple geometric
shape on the screen, perhaps push a button to shoot and something would happen if one
shape hit another. There were no opportunities to control anything near human-like avatars,
or have complex interactions with other characters or the game-world environment. The
game-world environment did not support a variety of vehicles, weapons or even different
levels. It is not just that the early games had poorer graphics, rather the game play itself
was fundamentally different. Immersiveness, often cited as very important for the success
of modern games, was out of the question – a player just controlled abstract shapes on
the screen, with any immersiveness coming from the imagination of the player. These
early computer games were relatively easy to produce, too, both in terms of cost and
time. This is in striking contrast with today’s popular computer games, which take 18 to
24 months to produce and often have budgets in millions of dollars.

2.3 Multiplayer Network Games
By the early to mid-nineties, computer power was increasing rapidly, allowing comput-
ers to produce more realistic graphics and sound. Computer game players were no longer
forced to go to great lengths to suspend their disbelief. Instead of controlling a square mov-
ing slowly around on a four-colour screen, they were able to move rapidly in a 256-colour
environment, heightening the overall experience of a more realistic, lush, virtual world.
In addition, it was increasingly common for computers to have network connections,
ushering in a new area in multiplayer games, the multiplayer networked game.

2.3.1 DOOM – Networked First-Person Shooters Arrive
At the end of 1993, id Software produced Doom, a First-Person Shooter (FPS) game.
Although there had been other FPS games produced before, Doom took the genre to the
next level, providing a powerful engine that enabled a fast-paced and violent shoot-’em-up
with more realistic levels and creatures than had been seen in previous shooter games
(Figure 2.11).

For multiplayer players, Doom enabled up to four players to play cooperatively using the
IPX protocol (an early internetworking protocol from Novell) on a LAN, (Figure 2.12)
or competitively in a mode that was coined ‘death-match’. In the death-match mode,
players compete against each other in an attempt to earn more ‘frags’ (kills) than their
opponent(s).

Note: Novell’s Internet Packet Exchange (IPX), was an internetworking protocol pri-
marily for interconnecting LANs (Figure 2.13). It was often combined with Novell’s
Sequence Packet Exchange (SPX), to form the SPX/IPX stack – functionally equiv-
alent to the TCP/IP stack on which today’s Internet is based. SPX/IPX could not
compete with TCP/IP for wide area performance, and has since all but disappeared.

Early Online and Multiplayer Games 13

Figure 2.11 Screen shots of Doom, the popular First-Person Shooter that started a surge in online,
multiplayer gaming. Reproduced by permission of Id Software, Inc.

Doom node

IPX driver

Device
driver

Network
card

Local area network

Doom node

IPX driver

Device
driver

Network
card

Software

Hardware

Figure 2.12 The hardware and software layers required to run multiplayer networked Doom

Computer
(a) (b)

Computer

Computer

Computer Computer

Ethernet

Modem Modem

Figure 2.13 Network topologies used by Doom. Computers connected to an ethernet LAN acted
as ‘peers’ (a), or computers connected by a modem acted as ‘peers’ (b)

Doom used a peer-to-peer topology for networking. All players in the game were
independent ‘peers’ running their own copy of the game and communicating directly
with the other Doom peers. Every 1/35th of a second, each Doom game sampled the
input from each player (such as move left, strafe, shoot, etc.) and transmitted them to all
other players in the game. When commands for all other players for that time interval had
been received, the game timeline advanced. Doom used sequence numbers to determine
if a packet was lost. If a Doom node received a packet number that was not expected (i.e.
the previous packet was lost), it decided that a packet had been lost and sent a resend
request (a negative acknowledgement, or NACK) to the sender [DOOMENGINE].

14 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

Doom peers communicated by using Ethernet broadcasts for all of its traffic. This had
the side effect that when a player shot a bullet, the Ethernet packet the Doom peer sent
was not only received by all other Doom nodes, but also all other computers on the
same LAN were interrupted. The other computers not playing Doom would ignore the
broadcast packet, but their processing was still interrupted so they can receive the packet,
transfer it to main memory and then have the operating system determine that they do
not need it. Normally, LAN traffic is addressed directly to a machine and it is either not
received by other machines or it is discarded by the network card before interrupting the
processor.

The significant processor time wasted by the computers not participating in a Doom
game, but still handling the broadcast packets, was significant, especially for the slower
machines of the day, and could even cause them to drop keyboard keystrokes. This was
a serious problem for network managers, prompting companies such as Intel and many
colleges and universities across the United States to implement specific anti-Doom policies
in an attempt to reduce congestion on the local computer networks.

Doom was immensely popular. While the total game sales of 1.5 million copies is not
enormous compared with modern blockbuster titles, the shareware version better reflects
Doom’s popularity. The shareware version of Doom was estimated to have been down-
loaded and played by 15 to 20 million people [MOD], and installed on more computers
than Microsoft’s Windows NT and IBMs OS/2 combined. The popularity of multiplayer
Doom, particularly the death-match mode, influenced the genre of nearly all FPS games
to follow, both in terms of game play and in terms of networking code.

In 1994, id Software produced Doom 2, an impressive sequel to Doom. Doom 2 sold
over two million copies, making it the highest-selling game by id at that time. Doom 2
could support eight players and, more importantly, Doom’s initial use of broadcast packets
was removed, and this change brought with it a marked change in the acceptability of
networked games on LANs and wide area links.

References
[DOOMENGINE] http://doom.wikicities.com/wiki/Doom networking engine, Accessed 2006
[PONG] The Pong Story. The Site of the First Video Game. [Online] http://www.pong-story.com/intro.htm
[MOD] David Kushner. Masters of Doom, Random House, 2003. ISBN 1588362892.
[PLATO] Dear, B., PLATO People – A History Book Research Project, http://www.platopeople.com/
[RFC854] Postel, J. and Reynolds, J., “Telnet Protocol Specification”, RFC 854. (May 1983)

3
Recent Online and Multiplayer
Games

In this chapter, we will deal with the following:

(a) Introduce game communication architectures and their communication models.
(b) Briefly describe the developments in online game play for First Person Shooter (FPS)

games, Massively Multiplayer Online games, Real-Time Strategy (RTS) games, and
Sports games.

(c) Briefly describe the evolution of game platforms to support online play, including
Personal Computers (PCs), Game Consoles and Handheld Game Consoles.

(d) Put games into the broader context of other immersive environments and distributed
simulation, including augmented reality (AR), telepresence and virtual reality.

3.1 Communication Architectures
The evolution of online games must consider several different architectures for arrang-
ing the communication between game nodes. The different alternatives are depicted in
Figure 3.1. The circles represent different processes on remote computers with the links
denoting processes that exchange messages.

In the earliest days of multiplayer games, there was no networking between players.
Multiplayer functionality was achieved by having both players interacting with the same
computer. Players could manipulate their avatars on a shared, common screen or the
screen could be physically ‘split’ by partitioning part of the video screen for each player.
Many console games that allow multiple players still use the single screen, multiplayer
architecture.

In a peer-to-peer architecture, each client process is a peer in that no process has
more control over the game than the others. There are no mediator nodes to control
game state or route game messages. Peer-to-peer architectures are popular in multiplayer
games played on a Local Area Network (LAN) because of the broadcast support of
many LANS (e.g. wired or wireless Ethernet) and generally small number of players that
participate in a single game. While peer-to-peer architectures can be applied to Wide

Networking and Online Games: Understanding and Engineering Multiplayer Internet Games
Grenville Armitage, Mark Claypool, Philip Branch 2006 John Wiley & Sons, Ltd ISBN: 0-470-01857-7

16 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

(a)

(c)

(d) (e)

Client

Client

Client

Client

Client

(b)

Server ClientClient

Client

Client

Server ClientClient

Client

Client

Server

Client

Client

Client

Client

Client

Client

Server

Server

Figure 3.1 The possible communication architectures for multiplayer and network games:
a) single screen, possibly ‘split’, on a single computer, b) peer-to-peer, c) a client–server,
d) peer-to-peer-client server hybrid, and e) network of servers

Area Networks (WANs) (i.e. the Internet), they do not scale well without an additional
hierarchical structure.

In a client–server architecture, one process plays the role of the server, communicating
with each client and mediating the game state. The clients do not communicate directly
with each other but rather have the server route messages to the appropriate clients.
The server is the critical part in the communication link; if a client cannot communicate
with the server the game cannot be played and if the server cannot keep up with the
communication and computation required, the gameplay can degrade for all clients. The
client–server architecture is the most popular architecture used in commercial online
games as well as in the classic MultiUser Dungeon (MUD) games (see Chapter 2 for a
description of a MUD).

In the peer-to-peer, client–server hybrid architecture, the server process mediates game
states on the basis of information sent by clients as in the traditional client–server archi-
tecture, but the clients are also able to communicate with other clients as in the traditional
peer-to-peer architecture. The communication amongst the client peers is generally for
game information that is not essential for achieving consistent views of the game state

Recent Online and Multiplayer Games 17

by all clients. For example, it is common to have player Voice over Internet Protocol
(VoIP) communication done peer-to-peer with the commands to control an avatar-done
client–server.

With a client–server architecture, pure or hybrid, the server can readily become the
bottleneck to performance, either because it cannot keep up with the sending and receiving
rate for all clients or it cannot process the game-state updates fast enough. With a network
of servers architecture, the single server can become a pool of several interconnected
servers. The communication among the servers can be set up in a peer-to-peer fashion
(i.e. all servers are equal) or in a client–server fashion where servers communicate with
master servers, obtaining a hierarchical game architecture. By splitting the load from the
clients across multiple servers, the network of servers can reduce the capacity requirements
imposed on a single server. This can increase the scalability of the game architecture, but
has the drawback of a more complicated communication mechanism overall with extra
difficulty in keeping game-state information consistent.

When considering communication architectures, it can be useful to differentiate between
game system level communication and network level communication. Game system level
communication is the manner in which the game elements perceive themselves to be
exchanging game-state information and can be both peer–peer and client–server. The
network-level communication is how the system-level communication is instantiated when
sending data over the Internet, and can also be peer–peer or client–server.

client–server game systems would normally be instantiated by client–server at the
network level, but peer–peer at the game system level can be instantiated by peer–peer
or client–server at the network level. client–server at the network level is particularly
advantageous when the network level server provides minimal processing of game-state
information, but otherwise does not parse or modify the game-state messages as it relays
between peers. For example, such a server may hide information on Internet Protocol (IP)
addresses of the players/clients.

3.2 The Evolution of Online Games
The evolution of online games is best looked at through individual milestones in three of
the most popular and influential game genres: FPS games, Massively Multiplayer games,
RTS games and Sports games (Figure 3.2).

• 1992 Dune II
• 1993 EverQuest
• 1993 Doom
• 1994 Warcraft
• 1994 Doom 2
• 1995 Ultima Online, Asheron’s Call
• 1995 Warcraft II
• 1996 Quake
• 1999 Dreamcast (with modem)
• 2000 Xbox and PS2 (with LAN)
• 2005 DS and PSP (with wireless LAN)

Figure 3.2 Timeline overview of online and multiplayer games. The above figure contains notable
releases mentioned in this chapter

18 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

0

200

400

600

800

1000

1200

1993 1995 1997 1999 2001 2003

P
os

ts
 p

er
 m

on
th

Year

Doom clone
First Person Shooter

Figure 3.3 Evidence of the popularity and influence of Doom. The term for a game based on
Doom (a ‘Doom clone’) was more common than the now popular term ‘First Person Shooter’ until
the late 1990s

3.2.1 FPS Games

As described in Chapter 2, the advent of Doom brought the genre of the FPS to the
forefront as one of the most prominent computer game genres, where it has remained
since. Interestingly, the term FPS did not come into popular usage until the late 1990s.
The popularity of Doom meant that the phrase ‘Doom clones’ was more commonly used
to refer to what we now called FPS games. Figure 3.3 depicts how pervasive the respective
terms were in Usenet news group postings, showing ‘Doom clone’ was more common
than “FPS” until the late 1990s.1

By the time of the release of Doom 2 in 1994, multiplayer network games were gen-
erally played by several players over a LAN (see Figure 3.4). For two-player games
where the players were not on the same LAN, some games provided support for con-
nections through phone lines by way of a modem or serial cable between the two
machines. These early games often used Novell’s Internetwork Packet Exchange (IPX)
as their networking protocol because of its simplicity. However, IPX was not gener-
ally routed on WANs, such as the then-emerging Internet. To overcome this, software
such as Kali and iFrag emerged that allowed IPX to be tunnelled over the Internet
(in addition to helping players find other players, a service similar to today’s popular
GameSpy). This tunnelling software enabled players to connect their client PCs to one
another for multiplayer network play even though the game software was only designed
for LAN play and their PCs were on different LANs. While effective in practice, the
early multiplayer network games, such as Doom, were not designed with WAN perfor-
mance in mind, often suffering when the network capacities were limited or latencies
were high.

1 This data originally appeared at http://en.wikipedia.org/wiki/Doom clone.

Recent Online and Multiplayer Games 19

Figure 3.4 Screenshot of Doom 2. Reproduced by permission of Id Software, Inc.

Note: Tunnelling is an often-applied technology where a network packet from one
kind of network protocol is encapsulated, headers and all, into a data packet in
another, lower network protocol. One computer then encapsulates the higher protocol
packet, sends (tunnels) it over the lower protocol to a destination where another com-
puter will unpack the higher protocol packet and transmit it normally (see Chapter 4
for more details on IP tunnelling).

Multiplayer network gameplay was significantly improved in 1996 with the release
of id Software’s Quake (Figure 3.5). Quake featured a method that allowed players to
compete against each other over the Internet without the need for tunnelling. Before
Quake, players needed to coordinate times and places (Internet addresses) to meet online
in a game. Quake addressed these problems with the inclusion of servers that stayed-up for
repeated rounds, hosting death-match after death-match, so that players from all over the
world could connect to these servers at any time of the day or night, and always be able
to find a game. The Quake servers acted as persistent game hosts. Players would connect
via their Quake clients, with the player’s input sent to the server, which would keep
track of the state of the game world. Information about the world would be periodically
transmitted back to each of the clients, updating their view of the world to match the one
currently running on the host machine.

This paradigm created new network problems that had not been faced by game devel-
opers before. In particular, the client–server architecture had worked well on a LAN
with its high-bandwidth, low-latency connections that were capable of quickly sending
and receiving many transmissions for each player. Unfortunately, most WAN (Internet)
connections were not capable of LAN transmission speeds, with most players at the time
connecting to the Internet through relatively low-speed dial-up modems.

20 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

Figure 3.5 Screenshot of Quake. Reproduced by permission of Id Software, Inc.

In 1996, standard-model modems transmitted at 14,400 bps and it took the packets a
long time to travel from a client over the modem and across the Internet to a server and
back (in games, this time is often referred to as the ping time). The time it took to send
a command to the server (such as the firing of a gun) and have it result in a change to
the game world (such as hitting an opponent) directly affected the realism, immersiveness
and overall playability of the game. Players became interested in minimising their ping
times. Lower ping times lead to smoother and more immersive gameplay, and, for some
games, a higher score (see Chapter 5 for more information on the effects of ping times,
i.e. latency, on gameplay).

Note: The ping time measured by computer games is somewhat different than the
ping time measured by network tools such as the network ping tool found on many
systems. In particular, computer game ping time measures the time to send a User
Datagram Protocol (UDP) packet from the client game process to the server game
process and back again. Network ping times, on the other hand, measure the time to
send an Internet Control Message Protocol (ICMP) packet from the client operating
system to another host and back again. Game ping times are usually slightly higher
than network ping times since they include additional overhead from processing by
the server and client applications.

id Software responded by releasing QuakeWorld in 1996, a free add-on to Quake that
included rewritten network code and a number of game updates [QWORLD]. Quake-
World was a specific version of Quake optimized for multiplayer Quake play over a
modem connection to the Internet. QuakeWorld allowed players to adjust network param-
eters to minimise the effect of their slow Internet connection on gameplay. In particular,

Recent Online and Multiplayer Games 21

QuakeWorld implemented a technique known as client-side prediction. Clients no longer
had to wait for data from the server to update the state of the game world. They were
now able to partially predict the future game state, updating it at more regular intervals.
Players could then manually set their ‘pushlatency’, which governed how far in advance
many of their clients predicted the game state (see Chapter 6 for more information on
latency compensation techniques). QuakeWorld also allowed a player to set a rate limit
on the number of packets per second the server would send them, thus avoiding filling up
router queues and adding the corresponding latency for a low-bitrate modem connection.

With the release and widespread popularity of QuakeWorld, users all over the world,
with different Internet connection speeds were more readily able to play multiplayer Quake
with decent performance over the Internet. Organised teams of users called clans sprang
up, with clans competing other clans, sometimes even in online tournaments for a chance
to win cash prizes. Thousands of players competed for the chance to enter id Software’s
Red Annihilation tournament. Multiplayer online gaming even became the full-time job of
some gifted players. Dennis ‘Thresh’ Fong earned well over $100,000 in 1998 competing
in Quake tournaments. An organisation known as the Cyberathlete Professional League
(CPL) was started in the late nineties with a goal of bringing in crowds of spectators to
watch live death-match tournaments [Kus03].

3.2.2 Massively Multiplayer Games

Besides FPS games, the massively multiplayer on line role-playing (MMORPG) genre
started to grow in 1995 with Ultima Online (Figure 3.6), a multiplayer network game
based on the popular, but single player, Ultima series by Origin. Ultima Online initially
supported 50 players, a lot at the time but small by today’s standards, but was the first

Figure 3.6 Screenshot of Ultima Online. Reproduced by permission of Electronic Arts.

22 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

successful game in the MMORPG genre. Microsoft released Asheron’s Call (with the
publishing rights later purchased by the game developer, Turbine) shortly thereafter, along
with its online gaming service. At nearly the same time, Sony released EverQuest, which
soon became the most popular massively multiplayer game thanks in large part to rich
graphics and interesting gameplay.

EverQuest had nearly 500,000 subscribers in 1993 [Ken03], and opened the door to
dozens of new massively multiplayer online games. Titles such as Asheron’s Call, Dark
Age of Camelot and Star Wars Galaxies were follow-on successes to EverQuest. In terms
of networking service, these massively multiplayer games charged players a monthly
fee (typically around 10 US dollars) to access their characters and the persistent world,
which was unique to their commercial successes as opposed to other Internet games where
players could play online for free. The Square-Enix’s massively multiplayer game Final
Fantasy XI became the first massively multiplayer game to allow players on PCs and
players on game consoles to intermingle in a common world.

An analysis of the growth in massively multiplayer online games, depicted in Figure 3.7
and 3.8, shows a dramatic increase in the number of total subscriptions to MMORPG
games since the late 1990s. MMORPG population growth has a hyperbolic or parabolic
curve, with little variation in this shape from one MMORPG to another.

3.2.3 RTS Games

The first RTS game released for the computer was Westwood’s Dune II, released in
1992 [Ger02]. Dune II brought the elements of real-time (as opposed to turn-based) game-
play, with the concepts of building structures with race-specific units and special abilities.
Although multiplayer online play was not supported, the potential for multiplayer RTS
games had been revealed. Dune II was Westwood’s precursor to the popular Command
and Conquer RTS series (Figure 3.9).

The first RTS game that supported multiplayer online play was Blizzard’s 1994 War-
craft, that took the Dune II futuristic gameplay to the fantasy world. Although not a big

R2 = 0.97

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

5000000

Jan-
97

Jul-
97

Jan-
98

Jul-
98

Jan-
99

Jul-
99

Jan-
00

Jul-
00

Jan-
01

Jul-
01

Jan-
02

Jul-
02

Jan-
03

Jul-
03

Jan-
04

Jul-
04

Jul-
05

Jan-
05

T
ot

al
 S

ub
sc

rib
er

s

Figure 3.7 Total MMORPG active subscriptions (excluding Lineage, Lineage II, and Ragnarok
Online which are much larger) [Woo05]

Recent Online and Multiplayer Games 23

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

3,000,000

Ja
n-

97

Ju
l-9

7

Ja
n-

98
Ju

l-9
8

Ja
n-

99

Ju
l-9

9

Ja
n-

00
Ju

l-0
0

Ja
n-

01

Ju
l-0

1

Ja
n-

02
Ju

l-0
2

Ja
n-

03

Ju
l-0

3

Ja
n-

04

Ju
l-0

4

Ja
n-

05
Ju

l-0
5

To
ta

l
S

ub
sc

rib
er

s

Ultima Online

Lineage

EverQuest

Final Fantasy XI

Lineage II

World of Warcraft

Figure 3.8 Active MMORPG subscriptions for games with 120, 000 + players (excluding City
of Heroes, EverQuest II, Dark Age of Camelot, Runescape, Ragnarok Online, Star Wars Galaxies
which are all smaller) [Woo05]

Figure 3.9 Screenshot of Dune II. Reproduced by permission of Electronic Arts.

hit, Warcraft set the stage for Blizzard’s Warcraft II in 1995, one of the biggest successes
the RTS genre has known. WarCraft II allowed up to eight people to play simultaneously
on a LAN using the IPX protocol. The v1.2 patch for Warcraft II included optimization for
network play, but was not, in fact, playable on the Internet since it still used IPX instead of
IP. In the light of this, Blizzard released a special executable to facilitate multiplayer War-
craft II over the Kali network. Warcraft II showed that the Internet could support superb
multiplayer RTS gameplay that appeared surprisingly resistant to the effects of latency
and bit rate limitations, even on slow modem connections. Because of this, Warcraft II

24 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

(c)

(a) (b)

Figure 3.10 Screenshots of Warcraft. Warcraft I is shown in (a), Warcraft II is shown in (b) and
Warcraft III is shown in (c). Reproduced by permission of Blizzard Entertainment, Inc.

developed a vigorous online community that even developed into several competitive
leagues. Blizzard released Warcraft III in 2002, featuring new gameplay including Heroes
and 3-D graphics (Figure 3.10).

The success of multiplayer gaming over the Internet was obvious, so Blizzard introduced
Battle.net, an online gaming service. Like Kali, Battle.net was a virtual meeting place that
permitted players to easily find opponents for Internet play. Use of Battle.net was (and is)
free with the purchase of a Blizzard game. Battle.net essentially provided a meeting place
for game players, complete with chat rooms and challenge ladders, but without Battle.net
actually hosting the game in a client–server fashion (although games such as Diablo keep
persistent characters and worlds on the Battle.net servers). This kept the bulk of the game
traffic from passing through the Battle.net servers, saving on Blizzard’s hosting costs and
increasing the scalability over a single, centralised client–server model.

3.2.4 Sports Games

Nearly as long as there have been computer games there have been computer games based
on sports (see Atari Football in Chapter 2). Sports lend themselves to competition that
naturally suggests multiplayer sports games. While the field of sports is nearly as varied
as computer games themselves, two multiplayer online games that are popular and have
been studied academically are American Football and Car Racing.

Recent Online and Multiplayer Games 25

Figure 3.11 Screenshots of Madden NFL. The 1993 Sega Genesis version is shown on the left,
the 2005 Microsoft Xbox version is shown on the right. Reproduced by permission of Electronic
Arts.

Figure 3.12 Screenshot of pole position. Copyright Namco.

Establishing itself in the mid-1990s, Madden NFL Football (Figure 3.11), in its various
versions, is the highest revenue-generating video game franchise in North America and
in computer game history [MADDEN05]. Online play, however, was only introduced to
the 2003 version and was only available for the Sony Playstation console or a Microsoft
Windows PC. As of July 2004, Madden games are also enabled for online play on the
Microsoft Xbox Live network. As of 2005, Madden only supports two-player games.
Online services (such as for the Playstation or Xbox) via a centralised server enable
opponents to locate each other, but players communicate in a peer-to-peer fashion directly
with each other [NC04].

The first computer racing game that was released was Pole Position (Figure 3.12),
popular in the early 1980s because of the quality of the graphics at the time [http://
en.wikipedia.org/wiki/Sim racing]. Although early versions of computer racing games

26 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

were single player, by the early 1990s, popular series such as Ridge Racer and Need for
Speed had multiplayer support (Figures 3.13 and 3.14). In 2001, Electronic Arts released
Motor City Online depicted in Figure 3.15, the first online racing game that offered per-
sistent profiles for players. Players earned points and money in racing through different
tracks, head-to-head or solo, and could then level up the avatar, and purchase and upgrade
vehicles.

Other notable online racing games include the POD series that allowed simultaneous
play for eight players over the Internet with POD, Speedzone being the first online racing

Figure 3.13 Screenshot of Ridge Racer (Sony Playstation version). Copyright Namco.

Figure 3.14 Screenshot of Need for Speed Underground 2. Reproduced by permission of
Electronic Arts.

Recent Online and Multiplayer Games 27

Figure 3.15 Screenshot of Motor City Online. Reproduced by permission of Electronic Arts.

game for game consoles. The game 4 × 4 Evolution for the Sega Dreamcast console was
the first game to allow online play between Dreamcast, Macintosh and PC platforms.

3.3 Summary of Growth of Online Games
The different game genres can be summarised in the form of a table with some online
characteristics:

Genre Notable release Max players Architecture

Real-Time Strategy Warcraft About 10 Client–Server
Sports Games Madden NFL About 10 Peer-to-Peer
First Person Shooter Doom About 50 Client–Server
Online Role Playing EverQuest About 10,000 Client–Server

The introduction, growth in popularity and in some cases the decline for each of the
genres can be depicted by examining the number of Usenet news posts related to each
genre. The data from Figure 3.3 can be combined to have Usenet newsgroup posts on
‘Doom clones’ and ‘FPSs’ represent all FPS games. Similarly, the number of Usenet
posts2 related ‘MMORPG’, ‘Real-Time Strategy’ and ‘Racing Game’ can represent the
pervasiveness of the Massively Multiplayer, RTS and Sports genres, respectively. Notice
that all genres have seen a rise and then subsequent fall in popularity (at least according
to Usenet posts in Figure 3.16) with the exception of the MMORGP genre which is still
going strong.

2 Obtained from http://groups.google.com/

28 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

0

2000

4000

6000

8000

10000

12000

1994 1996 1998 2000 2002 2004

P
os

ts
 p

er
 y

ea
r

Year

FPS
MMORPG

RTS
Racing

Figure 3.16 The growth in Internet games, depicted by the frequency of occurrence in Usenet
news group postings

0

50

100

150

200

250

300

350

400

1993 1995 1997 1999 2001 2003 2005

N
um

be
r

of
 In

te
rn

et
 h

os
ts

 (
in

 m
ill

io
ns

)

Year

Figure 3.17 The growth of the Internet, depicted by the number of Internet addresses that have
been assigned a name

While the growth in the online game genres have been substantial and perhaps even
impressive, it is interesting to put the online game growth in the context of Internet
growth. Figure 3.17 depicts the growth of the Internet in terms of the number of hosts.3

The Internet has shown exponential increase in the number of hosts during the same time
period, although there are signs that this exponential growth may be slowing.

3 Data obtained from Network Wizards, http://www.nw.com/

Recent Online and Multiplayer Games 29

3.4 The Evolution of Online Game Platforms
3.4.1 PCs

The PC has continued to evolve as a general computing platform, as well as a gaming
platform, at a phenomenal pace. Improvements to processing power have continued to
follow Moore’s law, doubling approximately every 18 months. Graphics cards, the core
component of any PC used for serious gaming, have done even better, doubling in speed
about every 6 months. Random access memory (RAM) speeds and capacities have kept
pace with processor improvements. Disk drives that are not generally used during real-time
gameplay because their access times are slow, have kept up with the demand for storage
capacity increases for games that require more space. Displays have gone from small,
monochrome cathode-ray tubes to 24-bit colour, high-resolution, wide-screen liquid crystal
display (LCD) displays. Audio has gone from tiny-sounding, integrated PC speakers to
surround-sound, 6.1 channel audio. Input devices for PC games are still primarily via a
keyboard and mouse, but PCs support game controllers as well as force feedback joysticks
(particularly useful for flight simulators).

Figure 3.18 summarises the performance evolution of the personal computer. A 1981
point of reference is provided as a standard4 computer that had a unit performance of 1.
Depicted are power, memory capacity and network capacity and a typical price of about
$2500 for a machine.

3.4.2 Game Consoles

By the late 1990s, online gaming really only existed for PCs, with game console systems
still being off-line (but certainly multiplayer via split-screen or joint-screen technologies).
That all changed as the year 2000 approached. In 1999, Sega introduced the Dreamcast
that was the first console to include a built-in 56k modem. While the Dreamcast had
numerous technically advanced hardware features and even the support of several popular
network games such as Quake 3 and Phantasy Star online through the SegaNet gaming
service, it was unable to unseat Playstation and Nintendo as the dominant home consoles.
The years right after 2000 saw each of the three major consoles (Sony’s Playstation 2,
Microsoft’s Xbox, and Nintendo’s Gamecube) equipped with online capabilities (although
Nintendo’s Gamecube did not feature built-in networking, users were able to buy network
adapters that connected via the Gamecube’s serial port). By 2004, Microsoft’s online live
service reportedly had over 1 million subscribers [Tut04].

1981 2005 Factor

Power 1 1600

$/Power $100K 100,000

Memory 128K 15,000

Disk capacity 10M 1000

Net bandwidth 9600b/s 1Gb/s

1600

$1
2G

10G

100,000

Figure 3.18 Evolution of the PC computer hardware, from 1981 to 2005

4 Measured by SPEC, the Standards Performance Evaluation Corporation.

30 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

As of 2005, the hardware components of today’s consoles are as follows [Tys06]:

Sony PlayStation 2

• Processor: 128-bit “Emotion Engine”, 300 MHz
• Graphics: 150 MHz, 4 MB VRAM cache, 75 million polygons per second
• RAM: 32 MB RDRAM
• Other features:

◦ Two memory card slots
◦ Optical digital output
◦ Two USB ports
◦ FireWire port
◦ Support for audio CDs and DVD-Video

Nintendo GameCube

• Processor: “Gekko” IBM Power PC microprocessor, 485 MHz
• Graphics: ATI 162 MHz, 4 MB RAM, 12 million polygons per second
• RAM: 40 MB (24 MB 1T-SRAM, 16 MB of 100-MHz DRAM)
• Other features:

◦ Two flash memory slots
◦ High-speed parallel port
◦ Two high-speed serial ports
◦ Analog and digital audio-video outputs

Microsoft Xbox

• Processor: Modified Intel Pentium III, 733 MHz
• Graphics: nVidia, 250 MHz, 125 million polygons per second
• RAM: 64 MB (unified for audio, video, graphics)
• Network 10/100-Mbps Ethernet, broadband enabled, 56K modem (optional)
• Other features:

◦ 8-GB built-in hard drive
◦ 5X DVD drive with movie playback
◦ 8-MB removable memory card
◦ Expansion port

The next generation of consoles promises to be even more powerful [CNET05].

3.4.3 Handheld Game Consoles

Early handhelds were primarily single player. Multiplayer mode was generally enabled
by players taking turns, as in Mattel’s Electronic Football, but some handhelds allowed
two players to play simultaneously on the same device, sharing the display. Nintendo’s
Game Boy, released in 1989 and the most popular handheld console ever, was the first
handheld console to support networked multiplayer gaming. This was accomplished by

Recent Online and Multiplayer Games 31

connecting a (short) wire between up to four Game Boys, and the game software could
even be downloaded from one handheld to another.

The newest generation of handheld gaming systems are equipped with a wireless
mode for multiplayer network gameplay. Sony’s Playstation Portable (PSP), and Nin-
tendo’s Dual-Screen (DS) support the IEEE 802.11b wireless local area network (WLAN)
standard. The Nintendo DS provides a specific subset of the features of 802.11b in order
to save battery power for wireless network play. Notably, only a short preamble is used,
and only the WLAN capacities of 1 Mbps and 2 Mbps are used, even though 802.11b
supports capacities up to 11 Mbps, because these lower capacities consume less power.
The Nintendo DS does not support any network layers above the 802.11 layer (in other
words, no Internet packets), while the Sony PSP allows and supports Internet packets
(IPv4) in the 802.11 infrastructure mode. This allows the PSP to connect to an Access
Point (AP) and provide gameplay over the Internet.

The newest release of the PSP even includes a Web browser.

Nintendo DS

System

• Resolution 256 × 192, 260k colors
• Dual ARM processors
• ARM 9 at 67 MHz, ARM 7 at 33 MHz
• 4 MB RAM
• Touch-pad

Network

• WLAN is IEEE 802.11b
• Short preamble
• Wireless capacities of 1 Mbps or 2 Mbps, only
• Ad hoc mode (peer-to-peer)
• No IP stack (UDP/TCP)

Sony PSP

System

• Resolution 480 × 272 pixels, 24-bit color
• Dual MIPS R4000 processors at 333 MHz
• 32 MB RAM
• Analog joystick

Network

• WLAN is IEEE 802.11b
• 1, 2, 5.5, 11 Mbps
• Ad hoc mode (peer-to-peer) and infrastructure mode (Internet)
• IP stack

32 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

3.4.4 Summary

The evolution of gaming platforms can be summarised by a table, taking a representative
example from each genre and comparing the gaming capabilities:

Platform Processor Memory Resolution Network

Handheld 333 Mhz 32 MB 480 × 272 WLAN
Console 733 Mhz 512 MB 640 × 480 10/100 Ethernet
PC 3500 Mhz 2048 MB 1600 × 1200 100/1000 Ethernet

3.5 Context of Computer Games
Shared space technologies, including computer games, can be classified according to their
transportation, the extent to which participants leave behind their local space, and their
artificiality, the extent to which the space is generated by a computer [BGR+98]. From
these two dimensions, broadly, there emerge four classifications of technology (depicted
in Figure 3.19):

(a) In physical reality, participants reside in the immediate, physical world in that physical
game elements are tangible and the participants are corporeal.

(b) With telepresence, the participants are transported to a real-world location that is
separated from their physical location.

(c) For augmented reality, the local, physical environment is present, but synthetic,
computer-generated objects are overlaid on the local environment.

(d) Virtual reality allows the participants to be immersed in a remote, synthetic world.
Computer games typically are completely artificial in that the game world is entirely
generated by a computer and completely transportive in that the player controls an
avatar immersed in the game world.

3.5.1 Physical Reality

Physical reality encompasses interactions with objects in the world that take place in
everyday life. Games based on physical reality have the participants in the same location,

Transportation(local) (remote)

A
rt

ifi
ci

al
ity

(p
hy

si
ca

l)
(s

yn
th

et
ic

)

Physical
reality

Augmented
reality

Tele
presence

Virtual
reality

Figure 3.19 Classification of shared spaces according to transportation and artificiality (from
[BGR+98])

Recent Online and Multiplayer Games 33

Figure 3.20 Real people playing Rugby. Do not underestimate the immersiveness of Physical
Reality!. Reproduced by permission of Tiffany Wolf.

with the game objects being tangible and concrete. The variety of such physical reality
games range from sports, such as cricket and rugby (Figure 3.20), to board games such
as chess and backgammon. While games in this cluster are generally not computer sup-
ported, there can be computers enhancing aspects of the game. For example, sensors and
computer equipment allow accurate calling of the boundary lines in professional tennis. In
addition, asynchronous communication by computers can allow games to be played with-
out participants being in the same physical location. For example, chess can be played by
two people who are geographically separated and use email or even VoIP to communicate
their moves to their opponent.

3.5.2 Telepresence

Telepresence uses computers and networks to provide a feeling of immersiveness for a
user that is physically separated from the environment. Sensors gathering information
on the local environment transmit information to a physically separated user, providing
feedback that allows some recreation of the local world from the remote location.

With telepresence, managing latency is critical for providing a feeling of immersiveness.
In the local world, an action has an immediate consequence, whereas in telepresence, an
action done remotely is delayed by the time it takes to travel from the remote user
to the local environment, plus any additional processing time. Force feedback, where
tension or pressure occurs from physically manipulating the local environment, is also
often necessary to make the remote user immersed in the local world and can often help
overcome deficiencies in the display from a low resolution or frame rate [MS94].

Examples of telepresence include undersea work to repair pipelines and cabling system.
Deep water diving is risky and costly, so telepresence systems can prove cheaper as well as

34 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

posing fewer risks to humans. Similarly, other hazardous environments such as explosive
disposal, rescue work and even mining can benefit from telepresence systems.

Another example of telepresence is computer-assisted surgery, which is gaining in
popularity because it allows specialists to provide medical care to a geographically broader
audience, as well as providing opportunities for computers to make surgeons more precise.
When there are concerns about hazardous environments, this brings telepresence to the
front line of battlefields, allowing surgeons to aid soldiers during combat.

Telepresence in education can allow people to experience environmentally fragile loca-
tions, such as the coral reefs or Egyptian tombs. Space exploration can also benefit from
telepresence, as in operating a rover on Mars from Earth [http://marsrovers.jpl.nasa.gov/
home/]. Telepresence systems could even be incorporated in entertainment systems beyond
games, by allowing the experience of a roller coaster or sky-dive without the associ-
ated risks.

Telepresence has even been applied to human-animal communication. A system has
been developed that allows humans to remotely ‘touch’ poultry by having the animal
wear a lightweight, tactile pet jacket. The human interacts with a physical representation
of the animal (a chicken-robot) and the feedback from the robot is passed through the
Internet to the real chicken [PCS+06].

3.5.3 Augmented Reality

With Augmented Reality (AR), the users can still interact with the local, physical envi-
ronment but artificial, computer-generated objects and attributes are used to enhance the
local reality.

A popular game that is a step toward AR is the arcade hit Dance, Dance Revolution
(DDR), initially released by Konami in 1998 with numerous variations available in the
arcade, home PCs and game consoles. In DDR, players move their feet to a set pattern,
stepping on arrows on the floor to the rhythm of the song. Multiplayer versions allow two
players to play cooperatively or in competition. In some sense, DDR as in Figure 3.21
provides a novel interface to a computer game, but in another sense, it augments the reality
of dancing to music by providing visual feedback on the dancing itself as gameplay.

As an example that augments reality even more, consider the original Pacman game
that featured the well-known, cookie-shaped disk that game players manoeuvred through
maze munching dots. An AR version of the game called Human Pacman depicted in
Figure 3.22 [CFG+03] has game players assume the role of the gobbling disk where the
physical world is augmented with virtual dots the players see by means of a wearable
computer with a head-mounted display. Sensors on the display indicate the direction the
player is looking and the GPS provides positional information to generate virtual dots at
the appropriate physical locations. Multiplayer aspects are incorporated by having some
players assume the role of the ghosts that chase Pacman. Bluetooth technology provides
networking to enable the Pacman player to ‘pickup’ power pills to then chase the ghosts.
Human Pacman goes beyond basic Pacman gameplay of one yellow disc against all
the ghosts by enabling an additional player to see an overview of the game field on a
networked computer, then relaying information about the location of ghosts and power
pills to the human Pacman (Figure 3.23).

FPSs have also entered the AR game space, notably with ARQuake an AR version of
the popular Quake game [PT02]. ARQuake players as in Figure 3.24 use a head-mounted

Recent Online and Multiplayer Games 35

Figure 3.21 Picture of an arcade version of Dance, Dance Revolution. Reproduced by permission
of Konami.

display, mobile computer, head tracker, and GPS system to provide inputs to the game
computer, allowing the player to walk around the real, physical world and fight against
virtual Quake monsters.

A game called Real Tournament5 is also an AR shooting game. However, instead of a
head-mounted display, Real Tournament (Figure 3.25) attaches an IPAQ Pocket PC with a
802.11 WLAN network card to a super-soaker squirt gun. A microcontroller resolves com-
munication between the trigger, the GPS and an electronic compass and sends the informa-
tion to the IPAQ. The IPAQ also provides team communication by a push-to-talk audio fea-
ture over the wireless network, allowing players to synchronise their actions. The network
includes a wireless network around parts of a University campus, based on IEEE 802.11b
and GPRS. The IPv6-enabled IPAQs are mobile, allowing players to transparently roam
between the wireless networks without losing connectivity or disrupting the game state.

5 The name is a play of words from Epic’s Unreal Tournament.

36 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

Figure 3.22 Screenshot of Human Pacman showing first person view of game from head-mounted
display. Reproduced by permission of Adrian Cheok.

Figure 3.23 Information flow in Human Pacman. Reproduced by permission of Adrian Cheok.

Recent Online and Multiplayer Games 37

(a) (b)

Figure 3.24 ARQuake, with user wearing head-mounted display and holding a gun (a) and game
scene depiction (b). Reproduced by permission of Wayne Piekarski.

(a)

Health

Karma

(b)

Figure 3.25 Real Tournament, showing super-soaker gun with attached IPAQ computer (a), and
game scene depiction (b)

Another AR, location- action game uses mobile phones, Bluetooth network technology
and high-precision location-aware hardware, called BATS [MSTM04]. The BATS mobile
device has enough precision to infer user gestures such as picking virtual objects up or
shooting (Figure 3.26). The mobile phone provides map information with the location
of game objects to augment the reality of the physical walls and doors. A centralised
computer that controls the game play also allows observers to monitor game play or even
serve as commanders surveying the game battlefield.

38 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

atr

eoa

nt h

mlc

(a)

SPIRIT

Bat sensors

Game server

Bat feedback

Phone
Interface

Environmental
Display

Clic
ks

loc
at

ion

Beeps

Events

Events

Events

Video

Audio

Bluetooth Daid

Horn

(b)

Figure 3.26 The BATS game, with a mobile phone providing the interface (a), and the game
architecture (b)

Recent Online and Multiplayer Games 39

AR provides a means of combining computer gameplay, physical exercise and social
interaction. Beyond entertainment, more serious uses include the potential for military or
disaster response training, allowing physical training exercises with computer augmenting
physical reality with virtual conflicts.

3.5.4 Distributed Virtual Environments

Most computer games are in the virtual reality cluster, and within this cluster, virtual
reality has produced three branches of research that have some relevance to computer
games [SKH02]: military simulations, Computer Supported Cooperative Work (CSCW),
and virtual reality.

(a) Military simulations have proceeded through Distributed Interactive Simulation (DIS),
an IEEE standard for communication designed to allow networked simulators to inter-
act through simulation using compliant architecture, modelling, protocols, standards
and databases [Ney97]. A DIS system must be flexible and powerful enough to support
up to hundreds or even thousands of simulators. The Virtual Cockpit, a tactics trainer
for pilots, is an example of a typical vehicle that participates in DIS [MSA+94]. The
Virtual Cockpit is a low-cost, manned flight simulator of an F-15E jet fighter built by
the Air Force Institute of Technology. A soldier flies the Virtual Cockpit using the
hands-on throttle and stick, while the interior and out-the-window views are viewed
within a head-mounted display.

(b) Computer Supported Cooperative Work (CSCW) focuses on using computers to sup-
port the collaboration of users. An example of a CSCW application would be a
shared whiteboard, where participants can read, edit, and annotate a shared docu-
ment using a variety of media including text, pictures, video and voice. Efforts to
combine CSCW with virtual reality has produced collaborative virtual environments
(CVEs) [BGRP01] with network architectures to support their online use [SG01].
Successful CVE applications allow users to remotely control avatars to operate on a
shared media, allowing 3-D editing, product development and even game design.

(c) Distributed Virtual Environments (DVEs) are technology-oriented environments for
users to immerse themselves in the virtual world. An example of a DVE is a ‘Cave’
wherein users immerse themselves in an artificial 3-D world using various combi-
nations of VR goggles, VR gloves and wands and various 3-D audio components
[http://www.evl.uic.edu/pape/CAVE/, CSD+92]. DVEs concentrate on the player rep-
resentation and the technology for interacting with the world. Typically, they only
support participation by a few, physically local users, although architectures are being
developed to allow larger-scale interaction by more participants [BWA96, FS98].

References
[BGR+98] S. Benford, C. Greenhalgh, G. Reynard, C. Brown and B. Koleva, “Understanding and constructing

shared spaces with mixed-reality boundaries”, ACM Transactions on Computer-Human Interaction (TOCHI),
Vol. 5, No. 3, pp. 185–223, 1998.

[BGRP01] S. Benford, C. Greenhalgh, T. Rodden and J. Pycock, “Collaborative virtual environments”, Com-
munications of the ACM, Vol. 44, No. 7, pp. 79–85, 2001.

[BWA96] J.W. Barrus, R.C. Waters and D.B. Anderson, “Locales: supporting large multiuser virtual environ-
ments”, IEEE Computer Graphics and Applications, Vol. 16, No. 6, 1996.

40 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

[CFG+03] A. David Cheok, S. Wan Fong, K. Hwee Goh, X. Yang, W. Liu and F. Farzbiz, “Human Pacman:
A Sensing-based Mobile Entertainment System with Ubiquitous Computing and Tangible Interaction”, Pro-
ceedings of ACM Network and System Support for Games Workshop (NetGames), Redwood City, CA, May
2003.

[CNET05] CNET Networks, Inc.,“Playstation3–Xbox 360: Tech Head to Head”, 05/16/2005 [Online] http://
hardware.gamespot.com/Story-ST-x-1985-x-x-x

[CSD+92] C. Cruz-Neira, D.J. Sandin, T.A. DeFanti, R. Kenyon and J. Hart, “The CAVE: audio visual expe-
rience automatic virtual environment”, Communications of the ACM, Vol. 35, No. 6, pp. 65–72, 1992.

[FS98] E. Freecon and M. Stenius, “DIVE: A scalable network architecture for distributed virtual environments”,
Distributed Systems Engineering, Vol. 5, No. 3, pp. 91–100, 1998.

[Ger02] B. Geryk, “A History of Real-Time Strategy Games, Part I: 1989-1998”, Gamespot, 2002,
[Online]http://www.gamespot.com/gamespot/features/all/real time.

[Ken03] S.L. Kent, “Making an MMOG for the Masses”, GameSpy.com, October 10, 2003.
[Kus03] D. Kushner, Masters of Doom, Random House, 2003, ISBN: 0-375-50524-5.
[MADDEN05] Wikipedia,“Madden NFL”, (as of 20 January 2006) [http://en.wikipedia.org/w/index.php?title=

Madden NFL&oldid=36020223
[MS94] M.J. Massimino and T.B. Sheridan, “Teleoperator Performance with Varying Force and Visual Feed-

back”, Journal of Human Factors, Mark Vol. 36, No. 1, pp. 145–157, 1994.
[MSA+94] W. Dean McCarty, S. Sheasby, P. Amburn, M.R. Stytz and C. Switzer, “A Virtual Cockpit for a

Distributed Interactive Simulation”, IEEE Computer Graphics and Applications, Vol. 14, No. 1, pp. 49–54,
January 1994.

[MSTM04] K. Mansley, D. Scott, A. Tse and A. Madhavapeddy, “Feedback, Latency, Accuracy: Exploiting
Tradeoffs in Location-Aware Gaming”, Proceedings of ACM Network and System Support for Games Work-
shop (NetGames), Portand, OG, 2004.

[NC04] J. Nichols and M. Claypool, “The Effects of Latency on Online Madden NFL Football”, In Proceedings
of the 14th ACM International Workshop on Network and Operating Systems Support for Digital Audio and
Video (NOSSDAV), Kinsale, County Cork, Ireland, June 16–18, 2004.

[Ney97] D.L. Neyland, “Virtual Combat: A Guide to Distributed Interactive Simulation”, Stackpole Books,
Mechanicsburg, PA, 1997.

[PCS+06] L.S. Ping, A.D. Cheok, J.T. Kheng Soon, G.P. Lyn Debra, C.W. Jie, W. Chuang and F. Farzbiz,
“A Mobile Pet Wearable Computer and Mixed Reality System for Human – Poultry Interaction through the
Internet”, Springer Journal of Personal and Ubiquitous Computing, ISSN: 1617-4909, (Paper) 1617-4917,
(Online)03 November, 2005.

[PT02] W. Piekarski and B. Thomas, ARQuake: the outdoor augmented reality gaming system, Communications
of the ACM, Vol. 45, No. 1, pp 36–38, 2002.

[QWORLD] Quake World.net, http://www.quakeworld.net/, Accessed 2006.
[SG01] S. Shirmohammadi and N.D. Georganas, “An End-to-end Communication Architecture for Collabora-

tive Virtual Environments”, Computer Networks, Vol. 35, No. 2–3, pp. 351–367, 2001.
[SKH02] J. Smed, T. Kaukoranta and H. Hakonen, Aspects of networking in multiplayer computer games, The

Electronic Library, Vol. 20, No. 2, pp. 87–97, 2002.
[Tut04] W. Tuttle, “The Future of Live?”, GameSpy, October 24, 2004, [Online] http://xbox.gamespy.com/

articles/559/559846p1.html.
[Tys06] J. Tyson, “How Video Game Systems Work”, HowStuffWorks, Inc, [Online] http://computer.

howstuffworks.com/video-game5.htm
[Woo05] B.S. Woodcock. “An Analysis of MMOG Subscription Growth”, MMOGCHART.COM 12.0 29 29

2004. January 1, 2005. Online: http://www.mmogchart.com/.

4
Basic Internet Architecture

Many design decisions and end-user experiences of multiplayer, networked games derive
from the particular nature and characteristics of Internet Protocol (IP) networks. In this
chapter we will cover the following core aspects of IP networking:

• ‘Best effort’ service
• IP addressing of hosts and other endpoints in the network
• Transport protocols – Transmission Control Protocol (TCP) and User Datagram Proto-

col (UDP)
• The difference between unicast, multicast, and broadcast communication
• Networks as meshes of routers and links
• Network hierarchies, address aggregation and shortest-path routing protocols
• Address management – Dynamic Host Configuration Protocol (DHCP), Network

Address Translation (NAT) and the Domain Name System (DNS).

Feel free to skip this chapter if you already understand IP networking basics (such
as IP addressing, subnets, prefixes, shortest-path routing, the role of routers and routing
protocols). This chapter is primarily to refresh your memory and provide a backdrop for
the interaction between IP network services and networked games.

We will illustrate IP networking principles with examples based on the current Internet’s
core technology, known as IP version 4 (IPv4) [RFC791]. We will review how IP networks
come in a variety of sizes, the rationale behind IP addressing, the differences between
unicast and multicast packet delivery, the roles of the TCP and UDP transport layer
protocols, hierarchies in network routing, and shortest-path routing protocols. (We will not
discuss an emerging new version known as IP version 6 (IPv6). IPv6 has broadly similar
architectural characteristics and is not covered in this book. Even the most optimistic
estimates do not see IPv6 being widely relevant to consumer-based networked games
until 2010 or beyond.)

Figure 4.1 attempts to illustrate how end-user applications (such as our favourite net-
worked games) and support services (such as DNS or DHCP, which are rarely exposed
to the end user) are layered on top of the basic data transport services provided by an IP
network. The Internet Protocol is so named because it hides the many underlying tech-
nologies that can make up an IP network (such as optical fibre links, microwave links,

Networking and Online Games: Understanding and Engineering Multiplayer Internet Games
Grenville Armitage, Mark Claypool, Philip Branch 2006 John Wiley & Sons, Ltd ISBN: 0-470-01857-7

42 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

IP Transport
[packet delivery, TCP, UDP, multicast, QoS,]

Services
[POP3, SMTP, HTTP, DNS, DHCP, Routing protocols,]

Applications
[Half-Life, Everquest, Mozilla, IM,....]

Figure 4.1 End-user applications and services utilise packet transport services provided by the IP
network

ethernet Local Area Networks (LANs), 802.11/WiFi networks, cable modems and so on).
IP provides a single, global addressing scheme across all the underlying technologies.

4.1 IP Networks as seen from the Edge
From an end user’s perspective, there is a reasonable analogy between the postal service
and an IP network. With traditional postal service we place letters into envelopes, address
them to the final destination, and place them into a local post box. After that, we simply
trust the postal service to transport our envelope to its destination in some reasonable
time. We neither know nor care how the envelope gets to the destination, the delivery
time is measured in days, and we accept that envelopes are sometimes lost. And we
implement our own end-to-end strategies to confirm delivery (such as a phone call to the
recipient some days later, or reposting a copy of the original letter every few days until
the recipient responds). The postal service is a network, and its edges are the post-boxes
and letter-boxes where we drop off and pick up our mail.

A simple way to view an IP network is as an opaque cloud with devices attached
around the edges. These edge devices may be any piece of hardware (or software) that
transmits or receives digital information. The primary goal of an IP network is to provide
connectivity, that is, deliver data (in packets) from sources (who transmit packets) to
destinations (who receive packets). Devices at the edges of IP networks typically act as
both sources and receivers. IP edge devices (or endpoints) are identified with IP addresses,
and endpoints are required to look after their own needs for reliable delivery of data. And
finally, the IP network is presumed to be totally agnostic towards the actual contents of
the packets each endpoint is sending.

Traditionally, IP networks provide few guarantees of timeliness or certainty in packet
delivery – usually referred to as best effort service (although it might be more aptly
considered a ‘no guarantees’ services). Milliseconds, hundreds of milliseconds, or seconds
may elapse between the time a source injects (transmits) a packet into the network cloud,
and the destination edge receives that same packet. Sometimes packets simply get lost
inside the network and never arrive at all.

Basic Internet Architecture 43

The time it takes for a packet to reach its destination is often referred to as latency.
Short-term variation in this latency from one packet to the next is referred to as jitter.
Packet loss is often described in terms of a packet loss rate – the probability of an IP
packet being lost across a certain part of the IP network.

Despite the simplicity of best effort service, IP networks can be quite complex internally.
In all but the most trivial networks, there will be multiple internal paths a packet may take
between any given source and destination. The network must continually make internal
choices as to which path is most optimal at any given time. This is the task of routing
protocols, which we will discuss later in the chapter.

4.1.1 Endpoints and Addressing

IPv4 endpoints are identified with numerical 32-bit (4 byte) values, conventionally written
in dotted-quad form – four decimal numbers (representing each of the four bytes making
up the IP address) separated by periods. For example, the 32-bit binary address 1000
0000 0101 0000 1100 0101 0000 0111 is written as 128.80.195.7 in dotted-quad form.
In theory, this allows for 232 IPv4 addresses. Later in this chapter we will discuss why
significantly fewer than 232 IPv4 addresses are available in practice.

Endpoints are also often referred to as hosts, although a host (whether a Personal
Computer (PC), game console with network port, or any device capable of attaching to a
IP network) may have multiple interfaces to an IP network. A host with multiple interfaces
(commonly referred to as a multihomed host) will have unique IP addresses on each of
its interfaces to the IP network. Servers (e.g. web sites or game servers) and clients (e.g.
someone running a browser on their home computer) are both hosts on the IP network.

Figure 4.2 shows a simple case where an IP network has three hosts attached, with
IP addresses 136.80.1.2, 21.80.1.32, and 142.8.20.8. When host 136.80.1.2 wants to send
an IP packet to another host (for example, host 142.8.20.8), it specifies this destination
address 142.8.20.8 in the packet and passes the packet to the IP network. The IP network
itself worries about how to locate and reach 142.8.20.8.

As a consequence of IP networking’s hierarchical routing scheme (described later in
this chapter), an IP address is tied closely to where the host is attached in the network.

136.80.1.2

IP Network

142.8.20.8

21.80.1.32

Destination
142.8.20.8

Source
136.80.1.2

Payload Destination
142.8.20.8

Source
136.80.1.2 Payload

Figure 4.2 An IP Network – opaque cloud with attached devices – looks after getting packets to
their destinations

44 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

In other words, an IP address represents both the identity of the attached host and the
host’s ‘location’ on the network. (This location is topological rather than geographical.
It reflects where the host exists within the interconnections of IP networks and service
providers that make up the Internet.)

IP addresses are closely related to, but not the same as, Fully Qualified Domain
Names (FQDNs, or simply ‘domain names’). Domain names (often imprecisely referred
to as Internet addresses) are textual addresses of the form ‘www.gamespy.com’,
‘www.freebsd.org’ or ‘www.bbc.co.uk’. Domain names must be resolved into IP addresses
using the Domain Name System (DNS). Endpoint applications typically hide this
translation step from the user, and use the resulting numeric IP address to establish
communication with the intended destination. (We will discuss the DNS in greater detail
later in this chapter.)

4.1.2 Layered Transport Services

Most game developers will utilise IP in conjunction with either the TCP [RFC793] or
UDP [RFC768]. TCP and UDP are transport protocols, designed to provide another
layer of abstraction on top of the IP layer’s network service. Both TCP and UDP support
the concurrent multiplexing of data from multiple applications onto a single stream of IP
packets between two IP hosts. TCP additionally provides reliable delivery on top of the
IP network’s best effort service.

4.1.2.1 Transmission Control Protocol (TCP)

Early Internet applications – such as email, file transfer protocols and remote console login
services – were sensitive to packet loss but relatively insensitive to timeliness (everything
sent had to be received, but delays from tens of milliseconds to a few seconds were
tolerable). The common end-to-end transport requirements of such applications (reliable
ordered transfer of bytes from one endpoint to another) motivated development of TCP.

TCP sits immediately above the IP layer within a host (see Figure 4.3), and creates
bidirectional paths (sometimes referred to as TCP connections or TCP sessions) between
endpoints. An application’s outbound data is broken up and transmitted inside TCP frames,
which are themselves carried inside IP packets across the network to the destination. The

136.80.1.2

IP Network

Destination
142.8.20.8

Source
136.80.1.2 TCP Frame 142.8.20.8

TCP
header

TCP payload
(application data)

TCP layer

IP layer

TCP layer

IP layer

Figure 4.3 TCP runs transparently across the IP network

Basic Internet Architecture 45

destination host’s TCP layer explicitly acknowledges received TCP frames, enabling the
transmitting TCP layer to detect when losses have occurred. Lost TCP frames are retrans-
mitted until acknowledged by the destination, ultimately ensuring that the application’s
data is transferred with a high degree of reliability.

TCP uses windowed flow control to regulate how fast it transmits packets through the
network. The current window size dictates how many unacknowledged packets may be
in transit across the network at any given time. The source grows its window as packets
are transmitted successfully, and shrinks its window when packet loss is detected (on
the assumption that packets are only lost when the network is briefly overloaded). This
regulates the bandwidth consumed by a TCP connection. Flow control and retransmission
are handled independently in each direction.

Because TCP may keep retransmitting for many seconds when faced with repeated
packet loss, the end application can experience unpredictable variations in latency
(Figure 4.4). Thus, TCP is generally not suitable as the transport protocol for real-time
messaging during game play of highly interactive networked games.

4.1.2.2 User Datagram Protocol (UDP)

UDP is a much simpler sibling of TCP, providing a connectionless, unreliable, datagram-
oriented transport service for applications that do not require or desire the overhead of
TCP’s service. UDP imposes no flow control on packet transmission, and no packet loss
detection or recovery. It is essentially a multiplexing layer sitting directly on top of IP’s
best effort service. As such an application using UDP will directly experience the latency,
jitter and loss characteristics of the underlying IP network.

4.1.2.3 Multiplexing and Flows

Extending the postal service analogy a little further, while the IP address is analogous
to a street address both TCP and UDP add the notion of ports – additional identification
analogous to an apartment number or hotel room number. Each TCP or UDP frame carries
two 16 bit port numbers to identify the source and destination of their frame within the
context of a particular source or destination IP host. This allows multiplexing of different
traffic streams between different applications residing on the same source and destination
IP endpoints.

IP Network

TCP layer

Applications

TCP layer

Applications
Application data flow

Losses here cause delays here

Figure 4.4 TCP converts IP layer packet loss into application layer delays

46 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+ -+-+-+-+-+
|Version| IHL |Type of Service| Total Length |
+-+ -+-+-+-+-+
| Identification |Flags| Fragment Offset |
+-+ -+-+-+-+-+
| Time to Live | Protocol | Header Checksum |
+-+ -+-+-+-+-+
| Source Address |
+-+ -+-+-+-+-+
| Destination Address |
+-+ -+-+-+-+-+
| Options | Padding |
+-+ -+-+-+-+-+
| Source Port Destination Port |
+-+ -+-+-+-+-+

IPv4
header

TCP/UDP
ports

Figure 4.5 Header fields of interest in IPv4 packets

IP address and port number combinations are often written in the form ‘ip-address:port’,
with a ‘:’ separating the address (either in dotted-quad or fully qualified domain name
form) and the numerical port number.

Figure 4.5 shows the key fields of an IPv4 header and the first 32 bits of the TCP or UDP
transport header. The protocol field specifies whether the IP packet carries TCP (protocol
6), UDP (protocol 17), or some other type of frame (discussed further in ‘Directory of
General Assigned Numbers’ [IANAP]). The source and destination addresses identify a
packet’s source and destination host at the IP level.

Taken together, port numbers and IP addresses uniquely identify the source and desti-
nation applications that are generating and consuming the traffic. A sequence of packets
exchanged between the same TCP or UDP ports on the same two endpoints is often
referred to as an application flow (or just flow). Many applications use ‘well-known’ port
numbers, often making it possible to infer the identity of an application from the source
or destination port numbers. For example, the Simple Mail Transport Protocol (SMTP)
typically uses TCP to port 25 on the mail server host [RFC2821], Quake III Arena servers
default to using UDP port 27960, Half-Life 2 servers default to using UDP port 27015
and web servers typically respond to Hypertext Transport Protocol (HTTP) traffic on TCP
port 80 [RFC2616].

Note that there are no rules preventing applications from using unconventional
ports – we could, for example, just as easily run Quake III Arena on port 27015 and
Half-Life 2 on port 27960, so long as everyone knows what is happening.

4.1.3 Unicast, Broadcast and Multicast

Sending a packet to a single destination is known as unicast transmission. Sending a
packet to all destinations (within some specified region of the network) is known as
broadcast transmission. Broadcasting may be implemented as multiple separate unicast
transmissions, but this requires the source to actually know the IP addresses of all intended
destinations. Usually the network supports broadcast natively – the source sends a single

Basic Internet Architecture 47

136.80.1.2

IP Network

142.8.20.8

21.80.1.32

Destination
224.50.1.8

Source
136.80.1.2

Payload

Destination
224.50.1.8

Source
136.80.1.2

Payload

Destination
224.50.1.8

Source
136.80.1.2

Payload

Figure 4.6 IP multicasting replicates a single packet to (potentially multiple) group members

packet into the network with a specific ‘broadcast’ destination address, and the network
itself replicates the packet to all attached hosts within a restricted region.

A little-used alternative is IP multicast [RFC1112]. A source transmits one packet and
the network itself delivers identical copies to multiple destinations (known as a multicast
group, identified by special ‘class D’ IP destination addresses). Hosts explicitly inform the
network when they wish to join or leave multicast groups. (Broadcast can be considered
a special case of multicast, where every endpoint within a specific region of the network
is automatically considered to be a group member.)

In IPv4, addresses in the range 224.0.0.0 to 239.255.255.255 are class D addresses, and
represent multicast groups. Sources indirectly specify group members by using a class D
address in their packet’s destination address field.

Two attractive qualities of IP multicast are that a source does not need to track the
multicast group members over time, and a source only sends one copy of each packet
into the network. The network itself tracks group members and performs the necessary
packet replications and deliveries.

Figure 4.6 shows a packet being sent to a group identified only by the destination
address 224.50.1.8. Only the network is aware that the group includes endpoints 142.8.20.8
and 21.80.1.32. IP multicast is an ‘any to many’ service – a multicast group can have
many members, and anyone can transmit to a multicast group from anywhere on the IP
network (even if they are not a member of the group).

IP multicast holds some promise as a mechanism for efficiently delivering content,
that is intended for concurrent delivery to multiple recipients. For example, replicating
common game state across multiple clients or servers. Unicast requires a source to
transmit its packets multiple times (once for each recipient), while multicast requires
only one packet per update. However, because of the internal complexity required to
support IP multicast there is little support in most public IP networks. This makes
IP multicast difficult to use in networked games beyond specially constructed private
networks.

4.2 Connectivity and Routing
From the game developer’s perspective, it is often not necessary to understand the internal
structure of IP networks. It is usually sufficient to comprehend the network’s behaviour

48 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

as seen from the edges. However, it is valuable to reflect on the internal details if you
wish to more fully understand the origins of IP addressing schemes, latency, jitter, and
packet loss.

An IP network is basically an arbitrary topology of interconnected links and routers.
These terms are often thrown around casually, so we will define them here as follows:

• Links provide packet transport between routers.
• Routers are nodes in the topology, where packets may be forwarded from one link to

another.

Upon receipt of an IP packet the router’s primary job is to pick another link (the next-
hop link) on which to forward (transmit) the packet, and then to do so as quickly as
possible. Except for simple networks a router will usually have more than one possible
choice of the next-hop link. Routers implement routing protocols to continuously exchange
information with each other, subsequently learning the network’s overall topology and
agreeing on the appropriate next hops for all possible destinations.

This approach is known as hop-by-hop forwarding:

• An independent next-hop choice is made at each router.
• Each next-hop choice usually depends solely on the packet’s destination address field.
• Routing protocols ensure that the network’s routers agree on a coherent set of next-hop

choices for all possible destinations.

Consider the network in Figure 4.7 where multiple paths exist between 136.80.1.2 and
21.80.1.32. Router R1 could send the packet to R2 or R3, both of which have the capability
to forward the packet even closer to 21.80.1.32. In this example, R1 decides to use R2
as the next hop toward 21.80.1.32, and R2 has decided to use R5 as its next hop toward
21.80.1.32.

An IP network provides a connectionless service because it can transport IP packets
from source to destination without any a priori end-user signalling. However, it is not
stateless. The set of all source-to-destination paths currently considered optimal by the
routing protocols is the state of the entire network.

In the rest of this section, we will look at how network hierarchies and address aggre-
gation have been used to minimise the amount of state information that routing protocols
need to handle. We will also touch on some routing protocols used in the Internet today.

136.80.1.2 142.8.20.8

21.80.1.32

R1
R2

R3

R4
R5

Figure 4.7 An arbitrary topology of routers may have multiple next hops

Basic Internet Architecture 49

4.2.1 Hierarchy and Aggregation

The following issues are all closely related.

• IP address formats
• The association of IP addresses to endpoints
• How IP routing protocols establish appropriate paths?
• How routers make their next-hop forwarding decisions?

For small networks, it might seem reasonable for every router to simply know the
identity and location of every endpoint. In practice, this approach is unworkable, as real
networks may have thousands or tens of thousands of endpoints. Considering the many
millions of hosts on the Internet itself, it is clearly impossible to expect routers (having
only finite memory and processing capacity) to know all possible destinations.

The solution has been to introduce hierarchy into the IP address space – one that maps
closely related IP addresses onto topologically localised sets of actual IP endpoints. This
hierarchy allows routers to carry summarised information for regions of the network
further away from them, and increasingly more detailed information for closer regions
of the network. Hierarchy also creates sparseness of address allocation (consequently, far
less than 232 IP addresses can actually be allocated).

4.2.1.1 Class-Based Hierarchy

The IPv4 unicast address space was originally blocked into three classes – A, B and
C (see Figure 4.8) [RFC791]. Specific combinations of an address’ most significant 3
bits identified an addresses class. The next most significant 7, 14 or 21 bits of the IP
address represented a network number. The Internet itself (at the time known as ARPAnet)
was modelled as a backbone (a network of routers) with multiple independent networks
directly attached. Each attached network was assigned a specific class A, B or C network
number. Endpoints (hanging off each network) had their IP addresses constructed from
their network’s class bit(s), network number bits and a locally significant value for the
remaining 24, 16 or 8 host bits. A router could easily determine which part of a packet’s
destination address represented the destination network, because the class of an IP address
was encoded in the top 3 bits.

However, this class structure was particularly wasteful of address space. Many com-
panies or institutions with more than 254 hosts had to obtain multiple class C networks
(filling the backbones router tables) or a single class B (which would be barely utilised). In
response, the Internet Engineering Task Force (IETF) developed Classless Inter Domain
Routing (CIDR) in the early 1990s.

Class Address Format in Binary Networks Hosts
A 0nnnnnnn.hhhhhhhh.hhhhhhhh.hhhhhhhh 27 nets 224hosts
B 10nnnnnn.nnnnnnnn.hhhhhhhh.hhhhhhhh 214 nets 216 hosts
C 110nnnnn.nnnnnnnn.nnnnnnnn.hhhhhhhh 221 nets 28 hosts

Figure 4.8 Early IPv4 space divided into fixed-size classes

50 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

4.2.1.2 Classless Inter Domain Routing

CIDR replaced the previous A, B and C class rules (hence, classless) [RFC1519] with a
flexible value/prefix-size pair scheme for identifying networks – the network number is
encoded in the top bits of a 32-bit value, and the number of valid bits in the network
number indicated by an integer prefix-size (Figure 4.9). Figure 4.9 shows that, in general,
a prefix size of X results in a network that can theoretically contain up to 2(32−X) endpoints.

A key benefit of CIDR was that variably sized networks could now be built from the old
class C space. For example, 192.80.192/22 represents a single network with a 22-bit prefix
and a network number of 192.80.192 – equivalent to four contiguous class C networks
(192.80.192.*, 192.80.193.*, 192.80.194.* and 192.80.195.*, where ‘*’ represents any
number between 0 and 255). In other words, it represents a single ‘/22’ network prefix in
the backbone routers rather than four class C prefixes.

In the absence of CIDR, the last class B address would have been assigned in early
1994. CIDR significantly slowed the growth rate of the backbone routing tables, and
increased the density with which IP addresses could be packed into a 32-bit field.

4.2.1.3 Subnetting

Creating a single network from multiple old class C networks is known as supernetting.
The reverse, creating hierarchy within individual networks, is known as subnetting. Groups
of endpoints may be aggregated into subnetworks (commonly referred to as subnets) if
they are topologically localised within the scope of a larger network. Individual subnets
contain endpoints whose addresses all fall under a common prefix (or subnet mask), a
prefix that is itself a subset of the class or CIDR prefix assigned to the network of which
they are a part. Subnets are networks within networks that can be described by a longer
(that is, more precise) prefix or mask than the one that describes the network itself.

IP subnets are the lowest level of the IP routing and addressing hierarchy. Routing
protocols do not concern themselves with local details within subnets. In all except the
most simplistic network topologies, routers are needed in order to forward packets between
subnets.

Layer 2 links between routers, such as Ethernet or similar LANs, are also often referred
to as subnets. However, while multiple IP subnets may run over a single link, an IP subnet
cannot (by definition) span more than one link without an intervening router.

Consider Figure 4.10, where Network 1 is made up of two internal subnets. The net-
work’s public identity (as advertised to the IP backbone’s routers) is 128.80.0.0/16.
Internally, Network 1 has two subnets – each with a longer, more precise 24-bit prefix (a
subnet mask of 255.255.255.0). Subnet 1 covers all addresses in the range 128.80.1.0 to
128.80.1.255, whereas subnet 2 covers addresses in the range 128.80.9.0 to 128.80.9.255.

Subnet 1 and 2 may be geographically separate from each other yet owned by a com-
mon administrative entity (for example, a large company). Router R1 only advertises a

Address Format (binary) Networks and Hosts
nnnnnnnn.nnnnnnnn.nnnhhhhh.hhhhhhhh

|< - - - X - - - - >| 2X nets, 2(32-X)
hosts

Figure 4.9 CIDR relaxes the Network Prefix Lengths

Basic Internet Architecture 51

R1

IP backbone

Network 1
128.80/16

Subnetwork 1
128.80.1/24

Subnetwork 2
128.80.9/24

Figure 4.10 Subnetting allows aggregation within a network

single prefix (128.80.0.0/16) to the outside world, and takes care of forwarding packets
to whatever subnets have been internally carved from the 128.80.0.0/16 address space.

Subnets may themselves be internally subnetted, with increasingly longer prefixes.
Taken to an extreme, a subnet may map directly to a single link and have only two
members (the IP interfaces at either end of the link).

The IPv4 address 255.255.255.255 is a special address meaning ‘broadcast to all hosts
on the local subnet’. Packets to 255.255.255.255 are never forwarded beyond the IP subnet
on which they originate. A more general form, known as the directed broadcast address,
is constructed by setting the host part of an IP address to ones. For example, you could
transmit a packet to members of subnet 128.80.1.0/24 by using a destination address of
128.80.1.255. Because of the potential for remotely triggered mischief, routers are often
set to filter out directed broadcast packets.

4.2.2 Routing Protocols
Network topologies change frequently, may be due to human interventions or the usual
unpredictable failures that bedevil any large-scale system. Routing protocols must perform
a number of tasks such as the following in a timely manner:

• Dynamically discover a network’s topology, and track the topology changes that occur
from time to time.

• Build shortest-path forwarding trees.
• Handle summarised information about external networks, possibly using different met-

rics to those used in the local network.

The Internet uses distributed routing protocols, which push topology discovery and route
calculation processes out into every router. Since the processing load is shared across all
routers, sections of the network can continue to adapt locally to changing conditions even
if they become isolated from the rest of their network.

Figure 4.11 illustrates how every router participates both in forwarding packets (on the
basis of previously calculated rules) and in performing distributed routing calculations
(updating the forwarding rules as necessary).

The detailed art of IP routing is beyond the scope of this book, so we will only briefly
summarise a few routing protocols used in the Internet.

4.2.2.1 Shortest-Path Routing

When multiple paths exist between a source and a destination, IP networks use shortest-
path routing to pick one particular path. The ‘length’ of a path is typically measured in

52 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

R1
R2

R3

R4
R5

Forwarding
plane

Routing
plane

Figure 4.11 IP routing conceptually consists of separate forwarding and routing functions within
each router

terms of hops (the number of routers or links through which the packet passes) but may
be defined using any metric desired by the network operator. The path with the lowest
‘sum of metrics over the entire path’ is the shortest path. (for example, in Figure 4.7
the path through R1, R2 and R5 is the shortest path from 136.80.1.2 to 21.80.1.32 when
measured by number of router hops.)

Metrics may reflect physical characteristics such as available bandwidth (lower weight-
ing typically given to links with more bandwidth), link delays (higher weighting typically
given to links with higher delay) and link costs; or weights may simply represent the
administrator’s relative preference for traffic to be on a particular link.

The results of a router’s shortest-path calculations are stored as a set of forwarding
rules in a forwarding table, sometimes also referred to as a Forwarding Information Base
(FIB). Forwarding rules specify the appropriate next-hop destinations for packets matching
various combinations of network/prefix pairs.

To ensure that routers always utilise the most precisely specified path, they are required
to implement a longest prefix match when forwarding packets. In essence, the forwarding
table’s entries must be searched for the entry with the longest prefix that matches a
packet’s destination. The entry thus discovered is the correct next hop.

The routing protocol may also choose to use (or be required to account for) two extreme
network/prefix pairs – default routes and host routes. Default routes are represented by
the network/prefix 0.0.0.0/0 – a guaranteed match to any IP address. Because the prefix
length is zero, this route is the last entry in a router’s forwarding table.

Default routes are the ultimate in aggregation – if there is only one next-hop link
out of the local network, a default route entry can point to that link (instead of having
explicit forwarding rules for all the network/prefix pairs that can be reached in the world
outside the local network). For example, in Figure 4.7 router R1 would have specific
routes pointing into Network 1 for destinations under 128.80/16, and a default route entry
pointing out toward the IP Backbone.

Host routes are represented by the network/prefix w.x.y.z/32 – a rule that only matches
packets specifically destined for endpoint w.x.y.z. Host routes are discouraged because
they are very difficult to aggregate and therefore can consume disproportionate amounts
of memory resources in routers throughout the network.

Each destination prefix (whether a network, subnet, or actual host) known to the local
network’s routing protocol is said to be the root of its own particular shortest-path tree.

Basic Internet Architecture 53

The tree has branches passing through every router in the network, although not all links
in the network are branches on every shortest-path tree. No matter where a packet appears
within the network, the packet will find itself on a branch of a shortest-path tree leading
toward its desired destination.

The challenge for a dynamic IP routing protocol is to keep these shortest-path trees
current in the presence of router failures, link failures or deliberate modifications to the
network’s topology – link failures usually require recalculating the shortest-path trees for
many destination prefixes.

4.2.2.2 Autonomous Systems (ASs)

IP networks contain one additional component to their hierarchy – the Autonomous Sys-
tem (AS). An AS is defined loosely as a self-contained, independently administered
network or internally connected set of networks. Larger networks, including the Internet
itself, can be viewed as an arbitrary topology of interconnected ASs.

The AS exists to provide a bounded scope over which any given routing protocol must
track internal topology. Within an AS, routing is managed by Interior Gateway Protocols
(IGP, gateway being an old name for routers). Routing of traffic between ASs is managed
by an Exterior Gateway Protocol (EGP). The IGP can focus on specific and detailed
routes and destinations within the AS, while the EGP deals with summarised information
about the AS and networks that can be reached through the AS.

4.2.2.3 Interior Gateway Protocols

Routing protocols that operate within ASs are called IGPs. Distance Vector (DV) and
Link State (LS) algorithms have both been used as the basis of IGPs. DV algorithms tend
to be simpler to implement, while LS algorithms are more robust when faced with regular
topology changes within a network.

DV algorithms require each router to advertise to its neighbours information about the
relative distance to each network the router knows (a vector of distances). A router may
receive multiple advertisements for the same network X, each from a different neighbour,
in which case the router remembers the advertisement with the lowest distance. The neigh-
bour advertising the lowest distance toward X becomes the next hop for packets heading
to any destination within network X. The advertising process (typically with intervals in
the tens to hundreds of seconds) ensures that information about new networks, or new dis-
tances to existing networks, ripples out across the local network whenever changes occur.

LS algorithms distribute maps of the local network’s entire topology (along with the
state and metrics of all the links in the topology). The maps are distributed by flooding LS
advertisements, whereby each router informs its neighbours about sections of the network
topology that the local router knows about. When a state change occurs (for example, a
link goes up or down, or a new route is associated with an existing link), the new LS
information is flooded across the local network to ensure that all router’s have up-to-date
LS maps.

Each router then uses LS maps to locally calculate shortest-path trees to all listed des-
tination networks, and hence determine the appropriate next hops out of the router itself.
Because the next-hop calculations are based on complete knowledge of the network’s
state, every router can be expected to agree on the shortest-path trees.

54 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

Although DV protocols are simple to describe and implement, a network’s shortest-path
trees can get tangled up in transient loops while DV algorithms converge after topology
changes. (Slow convergence is a fundamental limitation of any scheme in which the local
router has only second hand, interpreted information about the nature of the network
beyond the router’s local interfaces.)

LS protocols are more complex than DV protocols. They contain two separate func-
tions – maintenance of a distributed LS database and stand-alone shortest-tree calculation.
The shortest-path trees can be assured to be loop free almost immediately after any
LS changes occur and the information is flooded throughout the network. However, the
network-wide flooding of state changes also limits the scalability of LS-based networks.

Two examples of DV IGPs are the Routing Information Protocol (RIPv2) [RFC2453]
and IGRP (a proprietary IGP from Cisco Systems, which became Enhanced IGRP,
EIGRP). Two examples of LS IGPs are Open Shortest Path First (OSPF) [RFC2328]
and Intermediate System to Intermediate System (IS–IS).

4.2.2.4 Exterior Gateway Protocols

Border Gateway Protocol (BGP) version 4 is the standard EGP used in the Internet
today [RFC1771]. BGP-4’s primary role is to distribute information between ASs indicat-
ing where all the constituent networks are located. Every AS has one or more routers that
interface to a peer AS – these are the border routers for the AS. Each border router runs
an instance of BGP-4, enabling them to distribute to their neighbouring ASs information
about the reachable networks within the local AS.

BGP-4 is a path vector protocol, which borrows a number of key DV concepts. In
path vector, each border router advertises not only the existence of a path to particular
networks (reachability) but also the list of ASs through which the path passes. Any given
border router can confirm that an advertisement for a given network is loop free if the
border router’s own AS number does not already appear in the path vector. After an
advertisement is accepted, the local border router inserts its own AS number into the path
vector before readvertising the reachability information to its neighbours.

It is beyond the scope of this book to describe BGP’s mechanisms to control the scope
of reachability advertisements, support relative priorities between different inter-AS paths,
and support policies that may restrict the ASs through which certain traffic can be routed.

4.2.2.5 Backbones and Routing Policies

There is no single backbone in today’s Internet. Instead, we have a number of peer back-
bones. Top-level backbones typically interconnect only at a few geographically diverse
points – Network Access Points (NAPs) or Internet exchanges (IX) – to ensure that any
point on the Internet can connect to any other. Backbones interconnect at multiple points,
providing redundancy against failure and potentially shortening many end-to-end paths.

However, political, geographical and/or commercial reasons mean that not all backbones
wish to directly interconnect, even if physically possible. BGP-4 allows operators to
constrain the advertisement of AS reachability in accordance with routing policies that
reflect each operator’s political or business agreements. As a result, IP paths may be
convoluted simply because the source and destination are connected to different backbones

Basic Internet Architecture 55

that have no agreement to directly exchange traffic. Two geographically close sites (for
example, London and Paris, Sydney and Melbourne, or Los Angeles and San Francisco)
might find themselves communicating over paths that loop through New York, Tokyo,
or Amsterdam depending on their choice of backbone provider and where the backbone
providers interconnect.

4.2.3 Per-hop Packet Transport

This section reviews how an individual IP interface (whether on a router or an endpoint)
uses the services of an underlying link to get IP packets to the appropriate next hop.

4.2.3.1 Link Layer Networks

For most of this chapter links have been treated as simple, point-to-point paths with only
two interfaces attached. In reality, links are often networks in their own right. LAN (such
as Ethernet) and wide area networks (such as frame relay) are examples of the link layers
that support multiple attached devices. Devices attached to a link layer network may
support IP, some other services, or a mixture of both.

Two addresses are associated with an IP interface attached to a given link layer network:

• The interface’s IP address (representing the interface’s identity in the IP topology).
• The interface’s link layer address (representing the interface’s specific identity in the

context of the underlying link layer network).

In general, the link layer network is unaware of the IP address assigned to any given
IP interface attached to the link. An IP packet’s next hop (expressed as an IP address
in a router’s forwarding rules) must be translated to a link layer address before packet
transmission can occur across the link.

Consider Figure 4.12, where a single Ethernet LAN [8023] has three attached interfaces,
belonging either to routers or hosts on the 136.80.1/24 subnet. At the IP level, Interface 1
is known as 136.80.1.2, Interface 2 is known as 136.80.1.5, and Interface 3 is known
as 136.80.1.9. Yet the Ethernet LAN only knows these interfaces by their 48-bit (6 byte)
‘Media Access Control’ (MAC) addresses (in this example MAC.1, MAC.2, and MAC.3,
respectively).

MAC.1
136.80.1.2

MAC.3
136.80.1.9

MAC.2
136.80.1.5

Interface 1 Interface 2 Interface 3

Ethernet LAN carrying IP subnet 136.80.1/24

Figure 4.12 Each interface on an Ethernet LAN has both IP and Ethernet addresses

56 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

Destination
136.80.1.5

Source
w.x.y.z

TCP or UDP
payload

Destination
MAC.2

Source
MAC.1

IP packet

IP packet

Ethernet frame

EtherType
0x800

Figure 4.13 IP packets from the router at 136.80.1.2 to the host at 136.80.1.5 are encapsulated
for transmission between Ethernet addresses MAC.1 and MAC.2

For example, if Interface 1 belonged to a router whose forwarding rules had just decided
‘send this packet to the interface identified as 136.80.1.5’, the following two steps would
be executed

• A mapping would be established from 136.80.1.5 to MAC.2, the link layer address of
Interface 2.

• The IP packet would be sent from MAC.1 to MAC.2 inside a suitably constructed
Ethernet frame.

Figure 4.13 shows a highly simplified picture of how an IP packet from outside
the 136.186.1/24 subnet would be encapsulated inside an Ethernet frame to be sent
from Interface 1 to Interface 2. Ethernet frames carry an ethernet protocol type code –
EtherType – of 0x800 to identify the payload as an IP packet (or more precisely, an IPv4
packet).

4.2.3.2 Address Resolution

Next-hop IP addresses are mapped to link layer addresses in a process referred to as
address resolution. Address resolution may occur using information that is manually con-
figured or is dynamically discover on-demand.

Manual configuration is unwieldy in all but the simplest of static network configurations.
Most routers and hosts implement a dynamic Address Resolution Protocol (ARP) to
identify what link layer address is associated with a particular IP address. ARP allows IP
interfaces to move from one link layer interface to another without manually reconfiguring
all the other interfaces attached to the link. This can be useful when, for example, an
Ethernet card is replaced on a host or router – the Ethernet address changes, and the
dynamic ARP process will ensure other interfaces on the link soon learn the new mapping.
Figure 4.14 attempts to capture how ARP is both a peer of, and a service for, the IP layer.

Interfaces keep current address mappings in a local cache, an ARP table, which is
searched each time a packet is transmitted. If a mapping exists, it is used. Otherwise the
ARP is executed to discover the desired mapping. To ensure that old or incorrect mappings
are regularly refreshed, cached ARP table entries are deleted after a period of time.

Each link layer technology has its own ARP mechanism. Some examples are ARP for IP
over FDDI [RFC1390] and IP over ATM [RFC2225]. Perhaps the longest serving example

Basic Internet Architecture 57

Link layer

IP layer

Interface 1 Interface 2 Interface 3

Link layernetwork

ARP
Link layer

IP layer

ARP
Link layer

IP layer

ARP

Figure 4.14 ARP is both peer of, and service for, the IP layer. Both sit over the Link Layer

Ethernet frameInterface 1 Interface 2

Destination
<broadcast>

Source
MAC.1

ARP Request “Where is
136.80.1.5?”

EtherType
0 × 806

Destination
MAC.1

Source
MAC.2

ARP Reply “136.80.1.5
is at MAC.2”

EtherType
0 × 806

Destination
MAC.2

Source
MAC.1

IP packet destined for
136.80.1.5

EtherType
0 × 800

Broadcast Unicast

T
im

e

T
im

e

Figure 4.15 Frame sequence when initially sending an IP packet from Interface 1 to Interface 2

is ARP for Ethernet [RFC826], usually just referred to as ARP. When an IP address cannot
be located in the local interface’s ARP table, the interface issues a broadcast ARP Request
on the LAN, essentially asking anyone else if they know the mapping. (Transmitting the
ARP Request to the Ethernet broadcast address ensures that all attached devices are
reached without the local interface needing to know who is, or is not, attached to the
LAN at any given time.) Usually, the target (the interface whose IP address is being
queried) will respond with a unicast ARP Reply containing the requested IP to Ethernet
address mapping.

Figure 4.15 shows the packet exchange that would have occurred in the example of
Figure 4.12 if Interface 1’s local ARP table did not have a mapping for 136.80.1.5. (An
EtherType 0x806 indicates an ARP Request or Reply, while EtherType of 0×800 indicates
an IPv4 packet.) The sequence would be as follows:

1. Interface 1 transmits a broadcast ARP Request for 136.80.1.5.
2. Interface 2 unicasts back an ARP Reply (it knows the Ethernet address of Interface 1

from the initial ARP Request)
3. Interface 1 unicasts the IP packet to Interface 2.

58 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

For the curious reader: If you are running Windows XP or similar, entering arp -a in a
console window will show the current local ARP cache entries. Under many versions of
Unix (for example, FreeBSD or Linux) the command arp -an will show the current local
ARP cache entries.

4.2.3.3 Time to Live

Transient errors in router forwarding tables can sometimes create loops in the IP network,
known as routing loops. Routing loops tend to occur shortly after topology changes, while
the network’s routing protocol converges on a new set of shortest-path trees. Routing loops
often act like black holes in the network – packets head into the region of the routing loop,
and then get stuck, consuming bandwidth as they circulate. Under extreme circumstances,
the routing loop can disrupt the routing protocol itself, by saturating links carrying routing
protocol update messages.

To prevent endless looping, IP packets carry an 8-bit Time to Live (TTL) field (see
Figure 4.5). In practice, the TTL represents ‘hops to live’ – a limit on the maximum
number of router hops a packet can traverse before it expires in transit. A packet’s TTL
field is set to a nonzero value by the source, and is decremented by one every time the
packet passes through a router. The packet is discarded when its TTL field is decremented
to zero (whether or not it has reached its final destination).

If the source sets the TTL too low, some distant regions of the Internet may become
unreachable. (Indeed, there were examples of this occurring with a popular PC operat-
ing system’s default TTL in the early 1990s as the Internet became more topologically
convoluted.) Setting the TTL too high increases the potential disruption a source’s pack-
ets can cause during routing loops (by increasing the length of time the packets stay in
transit around the loop). Many operating systems today set their initial TTL to 64 or
some multiple of 32 above that (more by historical quirk than any particular mandatory
requirement).

4.2.3.4 Maximum Transmission Units and IP Fragmentation

Although in principle, IP packets may be as large as 64 K bytes, most link layer technolo-
gies impose a substantially smaller limit on link level frame size. For example, Ethernet
imposes a limit of 1500 bytes on the size of IP packets that can be carried in an Ether-
net frame.

The underlying link layer’s frame size limit is reflected at the IP layer by a parameter
known as the Maximum Transmission Unit (MTU). When forwarding an IP packet larger
than the link’s MTU, IP interfaces must perform IP fragmentation – chopping (fragment-
ing) the IP packet up into a sequence of smaller IP packets that all fit under the MTU
limit. IP fragmentation occurs underneath the TCP or UDP layer, which allows the source
UDP- or TCP-based applications to be unaware of the actual MTUs of links along the
path to the destination. The ultimate destination is responsible for reassembling the frag-
ments into the original packet, and then treating the reassembled IP packet as though it
had arrived in one piece.

IP fragmentation tends to occur when a packet’s path originates on a link with a
large MTU, and then at some point along the route passes across a link with a smaller
MTU. It is not considered a good thing, as it creates less efficient data transfer along the
path [RFC1191][RFC1981].

Basic Internet Architecture 59

For the curious reader: Under many versions of Unix (for example, FreeBSD or Linux)
the command ifconfig shows a variety of details about a host’s currently attached link
layers, including the currently assigned IP address(es), subnet mask(s), and MTU(s). If
you are running Windows XP or something similar, the command ipconfig /all at a console
window will also print out a variety of details about the host’s current configuration.

4.2.3.5 First and Last Hops

Forwarding tables are not just for routers. Hosts also have a limited forwarding table that
tells them the initial next hop (often referred to as the first hop) for outbound packets.
The first hop will either be to a router (for traffic destined beyond the local subnet) or
directly to a neighbour on the same subnet. In cases where the next hop goes directly to
a neighbour on the same subnet it is referred to as the last hop. (The first and last hops
may be one and the same in the case of communication between two hosts on the same
subnet.)

Forwarding tables have special rules for subnets that are directly attached to one of the
host’s or router’s IP interfaces. Rather than having a specific entry for every IP interface
reachable on a local subnet, the ‘next-hop’ IP address is copied directly from the packet’s
destination address field. The ARP cache is then scanned for a match to this next-hop IP
address, and the packet transmitted to the link layer destination found in the ARP cache.

Hosts typically only have a few entries in their forwarding table, for example, one entry
for the directly attached subnet, and a default route (network/prefix 0.0.0.0/0) pointing
to a router on the local subnet that provides access to the rest of the network. If a host
has link interfaces to multiple IP subnets, it will have forwarding table entries for each
directly attached subnet, and possibly multiple forwarding entries for nonlocal traffic.

For the curious reader: If you are running Windows XP or something similar, entering
route print in a console window will show the current forwarding rules. Under many
versions of Unix (for example, FreeBSD or Linux) the command netstat -rn will show
the host’s current forwarding rules.

4.2.3.6 Tunnels as Links

Links are simply mechanisms for getting an IP packet from one router to another. A link
may even be an IP network in its own right. Transmission of IP packets within other
IP packets is known as IP tunnelling, and the link is known as an IP tunnel. From the
perspective of the outer IP packet, the packet being tunnelled is just another payload
(as uninteresting as a TCP or a UDP frame). From the perspective of the tunnelled
packet, the tunnel looks like another link layer. From an implementation perspective, an
IP tunnel is a link layer where source and destination addresses also happen to be IP
addresses.

The tunnel’s endpoint is the IP interface identified by the destination IP address in the
outer packet’s header. When the outer IP packet reaches its destination, the original (inner)
IP packet is extracted and processed as though it had arrived over a regular interface.
The outer packet’s IP Protocol Type identifies the payload as a tunnelled packet, for
example, protocol type 4 indicates that the payload is an IPv4 packet [RFC2003]. Because
a tunnel represents a single hop from the perspective of the tunnelled packet, its TTL is
decremented by one (rather than the number of hops between the tunnel endpoints).

60 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

Tunnelling over an IPv4 network imposes an additional 20 bytes of overhead (the header
of the outer IP packet) [RFC2003]. The MTU of the tunnel’s virtual link is 20 bytes
smaller than the smallest MTU along the outer packet’s path. (RFC 2004 suggests a more
efficient encapsulation mechanism incurring only 8 or 12 bytes of overhead but with some
loss of generality, for example, fragmented IPv4 packets cannot be tunnelled [RFC2004].
For RFC2004-based tunnelling, the protocol type in the encapsulating/tunnelling header
is 55.) When tunnelling over IPv6 networks, the MTU drops by at least 40 bytes (the size
of the encapsulating IPv6 header) [RFC2473].

4.3 Address Management
Every IP interface needs an IP address, which raises some very real administrative issues
when building big networks. There are two key aspects to address management:

• Establishing an IP subnet from which you can assign IP addresses
• Actually assigning individual IP addresses to interfaces.

In this section, we will review how address blocks are assigned to customer networks
from blocks delegated to Internet Service Providers (ISPs); how NAT can be used to over-
come limitations in ISP address assignments; how the DHCP simplifies address assignment
to individual devices inside your networks and how the domain name service attempted
to decouple the naming of endpoints from the addressing of endpoints.

4.3.1 Address Delegation and Assignment

To be part of the wider Internet you cannot pick a subnetwork number and prefix at
random. You need IP addresses that are globally unique and routable on the Internet.
Such addresses are typically obtained from your ISP, which assigns you addresses from
larger blocks allocated to the ISP by regional registries around the world [RFC2050].

For example, ARIN (the American Registry for Internet Numbers) manages space under
204/8 (204.0.0.0/8) and a number of other large blocks of IPv4 address space, and APNIC
(the Asia-Pacific Network Information Center) manages space under 218/8 and a number
of other large blocks. An ISP who asks for space from APNIC will receive an allocation
under 218/8 or one of APNIC’s other address blocks. Regional registries develop their
own policies for subdividing the address blocks they manage. Up-to-date information
on registries and assignment policies can be found in the Internet Assigned Numbers
Authority web site, http://www.iana.org.

Problems arise when you decide to change ISPs. You will usually be forced to adopt a
new IP address space assigned by your new ISP (called renumbering). Renumbering of
your network is usually required by ISPs because routing would become more convoluted
if the address hierarchy was allowed to arbitrarily diverge from the hierarchy of actual
connectivity among the service providers.

A number of IPv4 address blocks (10/8, 172.16/12 and 192.168/16) have been reserved
for use in private internets [RFC1918]. These are useful when building IP networks that
will never be connected to the Internet, or will be connected only in a very limited
fashion. In principle, such IP networks could be built using any prefixes. However, using
designated private IP address spaces helps administrators distinguish between internal and

Basic Internet Architecture 61

external hosts in cases where their network contains a mixture of internal and external
connectivity.

Interesting problems arise when a previously private network wishes to connect to the
Internet. These will be discussed in the following section, along with a currently popular
solution – NAT.

4.3.2 Network Address Translation

NAT is used at the boundaries between IP networks, most often between private networks
and the public Internet [RFC3022]. Fundamentally, it solves the problem of a private
network whose internal IP address space does not map cleanly into an unused, publicly
routable IP address space.

4.3.2.1 Pure NAT

Pure NAT is best explained with an example. Consider the situation in Figure 4.16.
A company has a private network of 100 hosts, using addresses in the private range
192.168.0.1 to 192.168.0.100. At some point in time, the company wishes for all hosts
on its internal IP network to access the Internet. The company contacts an ISP and is
allocated a CIDR block of 256 addresses, perhaps 128.80.6/24. If there were only a router
between the private network and the ISP, every host would need to be renumbered to a
unique address in the 128.80.6/24 range.

However, NAT provides an alternative to renumbering. Basically, NAT dynamically
modifies the source and destination addresses in packets as they are forwarded between
the private network and the ISP.

For packets being transmitted out to the Internet, the steps are as follows:

• Source hosts use their own private address in the packet’s source address field.
• Internal routing forwards packets to the NAT-enabled router linking the private network

to the ISP.
• The NAT-enabled router swaps the source address in each packet with a source address

taken from the publicly routable address space 128.80.6/24, and then forwards the
packet to the ISP.

Private IP subnet 192.168.0/24

192.168.0.10 192.168.0.12 192.168.0.23

NAT-enabled
router

ISP

128.80.6/24

All outbound packets will
have source addresses from
public 128.80.6/24 space

Figure 4.16 NAT helps map a private address space into the public address space

62 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

• The router remembers the address mapping it used, so it can reverse the process for
inbound packets coming from the ISP.

For packets coming back in from the Internet, the reverse steps are as follows:

• A packet arrives at the NAT-enabled router, with a destination address in the 128.80.6/24
range.

• The NAT-enabled router looks up the mapping between 128.80.6/24 addresses and
internal 192.168.0.*, and replaces the packet’s destination address with the private IP
address of the intended destination host.

• Internal routing (within the private network) forwards the modified IP packet to the
correct destination.

A NAT-enabled router is generally free to use whatever address mapping schemes
it chooses. For example, in Figure 4.16 the NAT-enabled router might choose to map
internal address 192.168.0.10 to public address 128.80.6.20, or indeed any address in
the 128.80.6/24 range. Mappings may be statically assigned, or dynamically generated
on-demand. The only requirement is that mappings are unique – multiple private host
addresses should never map to the same public IP address, and vice versa.

4.3.2.2 Network Address Port Translation

A common scenario for home networks is where the ISP (whether regular modem dial-
up or a broadband service) charges additional monthly fees for a second or third public
IP address. The solution is an extended version of NAT called Network Address Port
Translation (NAPT) [RFC3022]. An NAPT-enabled router transparently makes multiple
hosts on the private network appear to be a single host from the perspective of the public
Internet.

NAPT extends NAT by additionally manipulating the port numbers of TCP and UDP
traffic going in and out of the private network. Consider the scenario of Figure 4.17,
where two hosts on a private LAN (192.168.0.12 and 192.168.0.13) are sharing a single
public IP address (128.80.6.200).

Home subnet 192.168.0/24

192.168.0.13 192.168.0.12

NAPT-enabled
router

ISP

All outbound
packets have

source address
128.80.6.200

192.168.0.1128.80.6.200

Addresses and ports are re-mapped on the way to ISP
Source 192.168.0.12:W becomes Source 128.80.6.200:Y
Source 192.168.0.12:X becomes Source 128.80.6.200:Z

Figure 4.17 NAPT maps both addresses and TCP/UDP ports to share public IP addresses across
multiple private hosts

Basic Internet Architecture 63

Imagine that both hosts are engaged in separate TCP connections with other, unrelated
hosts on the Internet. The host TCP connections originate from 〈addr=192.168.0.12,
port=W〉 and 〈addr=192.168.0.13, port=X〉 respectively. Because there is no coordination
between hosts when they choose their TCP source ports, there is no guarantee that W and
X are different.

NAPT remaps both the source port and source address fields to ensure that the
individual TCP connections appear unique on the public side of the router. In this
example, outbound packets from 〈addr=192.168.0.12, port=W〉 are modified to appear
as packets from 〈addr=128.80.6.200, port=Y〉 and forwarded to the ISP. Likewise,
packets from 〈addr=192.168.0.13, port=X〉 are modified to appear as packets from
〈addr=128.80.6.200, port=Z〉, where Z and Y are guaranteed to be different. Packets
coming back in from the Internet are modified with the reverse mappings before being
forwarded onto the private network.

4.3.2.3 Convenience and Limitations

Both NAT and NAPT provide independence from the need to renumber when your public
IP address(es) change. Only the NAT-enabled router needs to be aware of any change in
the range of public IP addresses assigned to the company’s network – the hosts remain
unchanged. This makes it easy for small companies to change ISPs with minimal disrup-
tion of internal network operations. NAPT also allows multiple hosts on a home LAN to
access the Internet while avoiding additional charges for more than one IP address.

Naturally, all this convenience comes with caveats [RFC2993]. NAT and NAPT break
the transparency of TCP and UDP communication between hosts, and require special-case
coding to handle other protocols. While hosts on the private network may initiate com-
munication with anyone else on the Internet, the reverse is far more complex. Additional
functionality is required in your NAT/NAPT router to enable hosts inside the private
network to support ‘well-known’ servers visible to the rest of the Internet.

For example, imagine you have a small corporate site with 200 hosts and three of them
want to run publicly accessible web servers. The default ‘http://www.companyname.com’
web address format actually implies that the web server is listening for HTTP traffic on
TCP port 80. However, if you only have one public IP address, the NAPT router can only
map inbound 〈dst addr, port=80〉 traffic to one of your internal hosts, not three. The second
and third would-be web servers will either need to give up on their plans, merge with first
machine, or configure the NAPT router to utilise nonstandard mappings (for example,
mapping ports 8080 and 8081 to the second and third internal machines respectively,
and giving external web addresses of the form ‘http://www.companyname.com:8080’ and
‘http://www.companyname.com:8081’ respectively).

Running game servers behind NAT/NAPT is similarly problematic. Many games
require the server to register its IP address and port number with a master server
(through which potential players find available game servers). But when sitting behind
NAT/NAPT, inbound connections (e.g. from new players) are typically only allowed by
the NAT/NAPT router if they correspond to a recently initiated outbound connection.
But since players initiate contact with the game server, not the other way round, we
have a dilemma. (For example, consider Figure 4.17 with a Quake III Arena server
running on host 192.168.0.13 at port 27960. Further, assume the NAPT router is

64 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

manually configured to map 128.80.6.200:28000 to 192.168.0.13:27960. The master
server ‘sees’ the Quake III Arena server at 128.80.6.200:28000. However, without
special configuration the NAT/NAPT router will not allow new players to actually
connect through 128.80.6.200:28000 to the game server itself. We discuss this again in
Chapter 12.)

NAT/NAPT has its admirers and detractors. Nevertheless, it does serve a purpose for pri-
vate networks that cannot afford lots of public IP addresses or wish to avoid renumbering
of their internal networks on a regular basis.

Consumer home routers/gateways invariably support some form of NAT/NAPT func-
tionality. Demand is driven by the deployment of broadband IP access over Asymmetric
Digital Subscriber Line (ADSL) or cable modem services, and the fact that many homes
have multiple computers. Typically the home router has one Ethernet port to the ADSL
modem or cable modem, and one or more Ethernet ports for the internal, home network.
(To assist in address management of a small home network, many home routers also
support the dynamic host configuration protocol described in the following section.)

4.3.3 Dynamic Host Configuration Protocol

The DHCP [RFC2131] automates the configuration of various fundamental parameters
hosts need to know before they can become functional members of an IP network. For
example, every host minimally needs to know the following:

• The host’s own IP address
• The subnet mask for the subnet on which it sits
• The IP address of at least one router to be used as the default route for all traffic

destined outside the local subnet.

Without these pieces of information, a host cannot properly set the source IP address
of its outbound packets, cannot know if it is the destination of inbound unicast packets,
and cannot build a basic forwarding table that differentiates between on-link and off-link
next hops.

DHCP allows hosts to automatically establish the preceding information, and provides
two key benefits:

• The need for manual intervention is minimised when installing and turning on new
hosts.

• IP addresses can be leased for configurable periods of time to temporary hosts.

Minimising administrative burdens clearly saves money and time, and increases overall
convenience. The benefits of dynamic address leasing become apparent in networks where
not all hosts are attached and operational at the same time.

4.3.3.1 Configuring a Host

DHCP is a client–server protocol. Each host has a DHCP client embedded in it, and
the local network has one or more nodes running DHCP servers. DHCP runs on top
of UDP, which at first glance suggests a Catch-22 situation with the unconfigured IP

Basic Internet Architecture 65

interface. However, DHCP only requires that an unconfigured IP interface can transmit a
broadcast packet (IP destination address ‘255.255.255.255’) to all other IP interfaces on
the local link.

A DHCP client solicits configuration information through a multistep process:

• First the client broadcasts a DHCP Discover message in a UDP packet to port 67, to
identify its own link layer address and to elicit responses from any DHCP servers on
the local network.

• One or more DHCP servers reply with DHCP Offer messages, containing an IP address,
subnet mask, default router, and other optional information that the client may use to
configure itself [RFC2132].

• The DHCP client then selects one of the servers, and negotiates confirmation of the
configuration by sending back a DHCP Request to the selected server.

• The selected DHCP server replies with a DHCP Ack message, and the host begins
operating as a functional member of the subnet to which it has been assigned.

Address administration is thus centralised to one or more DHCP servers.

4.3.3.2 Leasing Addresses

DHCP servers may be configured to allocate IP addresses in a number of ways:

• Static IP mappings based on a priori knowledge of the link layer addresses of hosts
supposed to be on the managed subnet.

• Permanent mappings that are generated on-demand (the server learns client link layer
addresses as clients announce themselves).

• Short-term leases, where the DHCP client is assigned an IP address for a fixed period
of time after which the lease must be renewed or the address returned to the server’s
available address pool.

The third option is most useful where network access must be provided to a large
group of transient hosts using a smaller pool of IP addresses. For example, consider a
public access terminal centre at a university with 50 Ethernet ports into which students
can plug their laptop computers. Many hundreds or thousands of students might use the
centre over a week or a month. Thousands of IP addresses would be required for a static
IP address assignment scheme, one for each student’s laptop. On the contrary, leasing
addresses for short periods of time means that a much smaller pool of IP addresses can
serve the terminal centre’s needs.

A DHCP server can specify lease times in the order of hours, days, or weeks with
a minimum lease time of one hour. DHCP clients are informed of the lease time when
they first receive their address assignment. As the lease nears expiration, DHCP clients
are expected to repeat the Request/Ack sequence to renew their lease. The DHCP server
usually allows clients to continue with their leases at renewal.

DHCP clients are also allowed to store their assigned IP address in long-term storage
(battery-backed memory, or local disk drive) and request the same address again when it
next starts up. If the address has not subsequently been issued to another client, DHCP
servers typically allow a lease to be renewed after clients go through a complete restart.

66 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

4.3.4 Domain Name System

As noted earlier in this chapter, IP addresses are not the same as FQDNs (often referred
to simply as domain names). Domain names are human-readable, text-form names that
indirectly represent IP addresses.

The DNS is a distributed, automated, hierarchical look-up and address mapping ser-
vice [RFC1591]. People typically use domain names to inform an application of a remote
Internet destination, and the applications then use the DNS to perform on-demand map-
pings of domain names to IP addresses. This level of indirection allows consistent use of
well-known domain names to identify hosts, while allowing a host’s IP address to change
over time (for whatever reason).

Two forms of hierarchy exist in the DNS – hierarchy in the structure of names them-
selves and a matching hierarchy in the distributed look-up mechanism.

4.3.4.1 Domain Name Hierarchy

Domain names are minimally of the form 〈name〉.〈tld〉 where 〈tld〉 specifies one of a
handful of Top Level Domains (TLDs) and 〈name〉 is an identifier registered under the
specified top-level domain. Examples of generic three letter TLDs (gTLDs) include com,
edu, net, org, int, gov, and mil. Country code TLDs (ccTLDs) are constructed from
standard ISO-3166 two letter ‘country codes’ (e.g. au, uk, fr, and so on) [ISO3166].

The nested hierarchy is read from right to left, and 〈name〉 may itself be broken up into
multiple levels of subdomains. Some TLDs are relatively flat (for example, the ‘com’
TLD), with companies and originations around the world able to register second-level
domains immediately under ‘com’. Country code TLDs have varied underlying structures,
sometimes replicating a few of the existing three letter TLDs as second-level domains
(for example, Australia registers domain names under a range of second-level domains
including ‘com.au’, ‘edu.au’, and so on.)

The hierarchical structure reflects the administrative hierarchy of authority associated
with assigning names to IP addresses. For example, consider an address like
‘mail.accounting.bigcorp.com’. The managers for ‘com’ have delegated all naming
under ‘bigcorp.com’ to a second party (most likely the owners of ‘BigCorp, Inc.’).
BigCorp no doubt has various internal departments, including the Accounting department.
Someone in the accounting department has been delegated authority for naming under
‘accounting.bigcorp.com’, and they have assigned a name for the mail server in the
accounting department. Figure 4.18 represents the relationships between the subdomains
discussed so far.

A domain name hierarchy is independent of the hierarchy of IP addresses and sub-
nets discussed earlier in this chapter. For example, onemachine.bigcorp.com might well
be on an entirely different IP subnet (indeed, even a different country) from otherma-
chine.bigcorp.com.

Domain name registration has become a commercial business in its own right, and mul-
tiple registrars jointly manage different sections of the DNS. Up-to-date information on
registrars and domain assignment policies can be found in the Internet Assigned Numbers
Authority web site, http://www.iana.org.

Basic Internet Architecture 67

.com .edu .org .au

.bigcorp.com

.accounting
.bigcorp.com

.iana.org

www.iana.org

mail.accounting
.bigcorp.com

.com.au .edu.au

Top-level
domains

Figure 4.18 Hierarchy within domain name structure reflects a hierarchy of delegation authority

4.3.4.2 DNS Hierarchy

The hierarchy in a domain name essentially describes a search path across the distributed
collection of name servers that together make up the Internet’s DNS. Name servers
are queried whenever a domain name needs to be resolved to an IP address. Certain
name servers are responsible for being authoritative sources of information for particular
domains or subdomains. The name servers ultimately responsible for each TLD are known
as root name servers.

Before hosts can use the DNS they must be configured with the IP address of a local
name server – the host’s entry point into the DNS. The ISP or whoever supports your
network typically provides the local name server. The name server’s IP address is either
manually configured into each host, or can be automatically configured (for example,
DHCP provides an option for configuring the local name server’s address [RFC2132]).

Local name servers are manually configured to know the IP address of at least one root
name server, and possibly another name server further up the domain name tree. Name
servers either answer queries with local knowledge, or seek out another name server who
is responsible for mappings higher up the domain name hierarchy. Local knowledge is
often held in a cache built from recent queries from other hosts – the cache allows rapid
answers for frequently resolved domain names.

For the curious reader: Many recent versions of Windows, and Unix-link operating
systems such as Linux and FreeBSD have a tool called nslookup. Often installed as a
command line application, nslookup allows you to manually perform DNS queries and
explore your local network’s DNS configuration. Similar tools may be found under names
like dig or host.

References
[ISO3166] http://www.iso.org/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/list-en1-semic.txt.
[RFC768] J. Postel, Ed, “User Datagram Protocol”, RFC 768. August 1980.
[RFC791] J. Postel, Ed, “Internet Protocol Darpa Internet Program Protocol Specification”, RFC 791. September

1981.

68 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

[RFC793] J. Postel, Ed, “Transmission Control Protocol”, RFC 793. September 1981.
[RFC826] D.C. Plummer, “An Ethernet Address Resolution Protocol”, RFC 826. November 1982.
[RFC1112] S. Deering, “Host Extensions for IP Multicasting”, RFC 1112. August 1989.
[RFC1191] J. Mogul, S. Deering, “Path MTU Discovery”, RFC 1191. November 1990.
[RFC1390] D. Katz, “Transmission of IP and ARP over FDDI Networks”, RFC 1390. January 1993.
[RFC1519] V. Fuller, T. Li, J. Yu, K. Varadhan, “Classless Inter-Domain Routing (CIDR): an Address Assign-

ment and Aggregation Strategy”, RFC 1519. September 1993.
[RFC1591] J. Postel, “Domain Name System Structure and Delegation”, RFC 1591. March 1994.
[RFC1771] Y. Rekhter, T. Li, “A Border Gateway Protocol 4 (BGP-4)”, RFC 1771. March 1995.
[RFC1918] Y. Rekhter, B. Moskowitz, D. Karrenberg, J. de Groot, E. Lear, “Address Allocation for Private

Internets”, RFC 1918. February 1996.
[RFC1981] J. McCann, S. Deering, J. Mogul, “Path MTU Discovery for IP version 6”, RFC 1981. August

1996.
[RFC2003] C. Perkins, “IP Encapsulation within IP”, RFC 2003. October 1996.
[RFC2004] C. Perkins, “Minimal Encapsulation within IP”, RFC 2004. October 1996.
[RFC2050] K. Hubbard, M. Kosters, D. Conrad, D. Karrenberg, J. Postel, “Internet Registry IP Allocation

Guidelines”, RFC 2050. November 1996.
[RFC2131] R. Droms, “Dynamic Host Configuration Protocol”, RFC 2131. March 1997.
[RFC2132] S. Alexander, R. Droms, “DHCP Options and BOOTP Vendor Extensions”, RFC 2132. March

1997.
[RFC2225] M. Laubach and J. Halpern, “Classical IP and ARP over ATM”, Internet Request for Comment

2225. April 1998.
[RFC2328] J. Moy, “OSPF Version 2”, RFC 2328. April 1998.
[RFC2453] G. Malkin, “RIP Version 2”, RFC 2453. November 1998.
[RFC2473] A. Conta, S. Deering, “Generic Packet Tunneling in IPv6 Specification”, RFC 2473, December

1998.
[RFC2616] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee, “Hypertext

Transfer Protocol – HTTP/1.1”, RFC 2616. June 1999.
[RFC2821] J. Klensin, Ed, “Simple Mail Transfer Protocol”, RFC 2821. April 2001.
[RFC2993] T. Hain, “Architectural Implications of NAT”, RFC 2993. November 2000.
[RFC3022] P. Srisuresh, K. Egevang, “Traditional IP Network Address Translator (Traditional NAT)”, RFC

3022. January 2001.
[IANAP] Internet Assigned Numbers Authority, “Directory of General Assigned Numbers (last viewed January

2006)”, http://www.iana.org/numbers.html.
[8023] IEEE Std 802.3. “IEEE Standards for Local and Metropolitan Area Networks: Specific Requirements.

Part 3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical
Layer Specifications”, 1998.

5
Network Latency, Jitter and Loss

Regardless of game genre, the realism of online game play depends on how well the
underlying network allows game participants to communicate in a timely and predictable
manner. In the previous chapter, we broadly reviewed the nature of modern IP network
services. In this chapter we will discuss in more detail three characteristics of best effort
Internet Protocol (IP) service – latency, jitter and loss – that have a significant impact
on game play experience and game design. We will also look briefly at the technical
methods Internet Service Providers (ISPs) can utilise to control these characteristics of
their network services.

5.1 The Relevance of Latency, Jitter and Loss
As noted in the previous chapter, IP packets carry information between sources and
destinations on the network. Latency refers to the time it takes for a packet of data to be
transported from its source to its destination. In many networking texts, you will also see
the term Round Trip Time (RTT) in reference to the latency of a round trip from source
to destination and then back to source again. In many cases the RTT is twice the latency,
although this is not universally true (some network paths exhibit asymmetric latencies,
with higher latencies in one direction than the other). In online gaming communities, the
term lag is often colloquially used to mean RTT.

Variation in latency from one packet to the next is referred to as jitter. There are a
number of mathematically precise ways to define jitter, usually depending on the timescale
over which the latency variation occurs and the direction in which it occurs. For example,
a path showing an average 100 ms latency might exhibit latencies of 90 ms and 110 ms
for every alternate packet – fairly noticeable jitter in the short term, even though the
long-term average latency is constant. Alternatively, the path might exhibit latency, that
is, drifting – 90 ms, 95 ms, 100 ms, 105 ms, 110 ms, 105 ms, 100 ms. . . and so on. For our
purposes, it is sufficient to know that latency can fluctuate slowly or rapidly from one
packet to the next.

Figure 5.1 summarises the key difference between latency and jitter.
Packet loss refers to (not surprisingly) the case when a packet simply never reaches

its destination. It is lost somewhere in the network. A path’s packet loss characteristic is
often described in terms of packet loss rate or packet loss probability (ratio of the number
of packets lost per number of packets sent).

Networking and Online Games: Understanding and Engineering Multiplayer Internet Games
Grenville Armitage, Mark Claypool, Philip Branch 2006 John Wiley & Sons, Ltd ISBN: 0-470-01857-7

70 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

Packet 1

IP Network

Packet 2 Packet 3

Packet 1 Packet 2 Packet 3

Time t1

Time t 2

Interval d1 Interval d2

Interval d3 Interval d4

Latency: t2 – t1
Jitter: d3 > d1, d4 < d2

Source
Destination

Figure 5.1 Latency and jitter affect streams of packets travelling across the network

All three have a negative impact on online game play. Latency affects the absolute
sense of real-time interactivity that can be achieved within the game context. The latency
of a network path between client and game server puts a lower bound on how quickly
game-state information can be exchanged and consequently limits each player’s ability to
react to situational changes within the simulated game world. Jitter can make it difficult
for players (and the game engine itself) to compensate for long-term average latency
from the network. Jitter must be kept as low as possible. The consequences of packet
loss should be self-evident – game-state updates are lost, and the game engine (at client
and/or server) must cover up the loss as best as it can.

In the rest of this chapter, we will review the various sources of latency, jitter and loss
inside ISP networks, and briefly outline the technical methods ISPs can utilise to reduce
and control these characteristics.

5.2 Sources of Latency, Jitter and Loss in the Network
Three main sources of delay add cumulatively to the total latency experienced by a packet.

• Finite propagation delays over large distances (we must obey the laws of physics)
• Serialisation delays (particularly over low bit rate links)
• Congestion-related queuing delays.

A number of mechanisms introduce jitter by causing variations in latency from one
packet to the next.

• Path length changes
• Packet size variations and
• Transient congestion.

Packet losses are typically due to:

• Excess transient congestion causing queues to overflow;

Network Latency, Jitter and Loss 71

• Link layer bit errors causing packet corruption or
• Routing transients temporarily disrupting the path.

5.2.1 Propagation Delay and the Laws of Physics

The speed of light dictates the top speed with which any information can propagate in
a particular medium (air or optical fibre, for example). The speed of transmission along
copper wires and cables is usually less than the speed of light in air, depending on the
particular physical construction of the cables (for example, the dielectric properties of the
insulation). Since the speed of light is finite, the laws of physics impose a lower bound
on latency between geographically distant points on the Internet. We refer to this latency
as propagation delay.

As the speed of light is roughly 299,792 kilometres per second, propagation delays
become noticeable over links spanning many thousands of kilometres or where the path
hops through a number of routers each thousands of kilometres apart. For example, a
12,000-km path (roughly Sydney to Los Angeles in an airplane) would exhibit at least
40-ms latency (or 80-ms RTT) simply because of the finite speed of light. Most game
players will come across this issue when they are connected to servers in different states
or countries. It is also possible to find a high latency network path between two geo-
graphically close sites if the sites connect to the Internet via different ISPs (as noted in
Chapter 4).

A rough rule of thumb for propagation delay is

latency (ms) = (distance of link in kilometres)/300

(If the speed of light in the medium is less than 300,000 kilometres per second the
latency will be higher. This would be the case, for example, in optical fibre where the
speed of light is about 30 % slower than that in a vacuum.)

5.2.2 Serialisation

Serialisation occurs in many real-life situations. Crowds of people getting on a bus go
through the door one at a time; we board planes one at a time; a worker loads crates onto
a truck one at a time; and the one remaining bank teller who has not taken a lunch break
can only process us one at a time. Serialisation occurs on most link layers, and is another
source of latency in IP networks.

Most link technologies are, at their lowest level, serial in nature. Frames are broken
into sequences of bytes, and the bytes are sent one bit at a time. The finite period taken
to transmit an IP packet one bit at a time is referred to as serialisation latency. This
period of time depends on the speed of the link (in bits per second) and the length of the
packet being sent. Serialisation latency adds to any speed of light delays experienced by
a packet.

Depending on the link layer technology, there might be extra bits at the beginning and
end of each byte (traditional serial ports, for example) or at the beginning and end of
each frame (standard Ethernet LANs, for example). Thus, the total serialisation latency
experienced by an IP packet also depends on the framing protocol used by a particular
link layer. Consider the time taken to transmit a 1500-byte IP packet on a 100-Mbps Fast

72 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

Ethernet LAN and a nominally ‘56-Kbps’ V.90 dial-up connection using Point-to-Point
Protocol (PPP) [RFC1661]):

• On the Ethernet link, a 1500-byte IP packet becomes 1526 bytes long (8 bytes of ethernet
preamble, 12 bytes for source and destination MAC address, two bytes ethernet pro-
tocol type and 4 bytes trailing Cyclic Redundancy Check [CRC]), or 12,208 bits. At
100 Mbps, it takes 122 microseconds to transmit the frame containing this packet.

• On a V.90 dial-up link, the uplink is limited to 33.6 Kbps while the downlink rarely
exceeds 51 Kbps. If we further assume PPP encapsulation of 8 bytes, the 1500-byte
IP packet requires 1508 × 8 = 12,064 bits to transmit. Thus, a 1500-byte IP packet
takes 359 ms to transmit towards the ISP (upstream) and 237 ms towards the client
(downstream).

Serialisation latency is primarily an issue with low-speed links common in consumer
access networks (for example, dial-up modem service or consumer Asymmetric Digital
Subscriber Link, ADSL). Using the above numbers, even a small 40-byte IP packet
(48 bytes including PPP overhead) takes 11.4 ms on a V.90 upstream and 7.5 ms on a
V.90 downstream (contributing 19 ms to any RTT measured using 40-byte packets).

A similar situation occurs on high speed links when your ISP imposes temporary rate
caps. For example, consider an ISP using ADSL2 + to offer 4 Mbps downstream service
and a customer who has exceeded the download limit for the month. The ISP temporarily
applies a rate of 64 Kbps until the end of the month, imposed at the IP packet level.
Although each packet is still individually transmitted at 4 Mbps, the ISP achieves a 64-
Kbps long-term rate cap by limiting the number of packets per second that can be sent.
The effective serialisation delay is as though the ADSL2 + link was literally running at
64 Kbps.

Serialisation latency should only be calculated once (at one end of the link) since the
receiving end is pulling bits off the link at the same rate that the transmitting end is sending
them. Aside from a slight offset in time due to propagation delay, the transmission and
reception processes occur essentially concurrently.

A rough rule of thumb for serialisation delay is

latency (ms) = 8*(link layer frame length in bytes)/(link
speed in Kbps)

(Note that for some link technologies, such as Asynchronous Transfer Mode (ATM)
and Data over Cable Service Interface Specification (DOCSIS), the relationship between
link layer frame length and IP packet length is nonlinear and nontrivial to calculate.)

5.2.3 Queuing Delays

One of the core underlying assumptions of the Internet’s best effort philosophy is that
everyone’s traffic is largely bursty and uncorrelated, allowing us to benefit from a concept
known as statistical multiplexing. Multiplexing occurs when multiple inbound streams of
packet traffic converges on a single outbound link at a particular router or switch. The
inbound packets are multiplexed (interleaved in time) onto the outbound link.

However, unlike traditional telephone company networks IP routers do not prearrange
guaranteed timeslots on the outbound link for the competing inbound packet streams.

Network Latency, Jitter and Loss 73

Statistical multiplexing assumes that everything will be okay if the average bit rate of
all the inbound packet streams does not exceed the capacity of the outbound link. Or
alternatively stated, ‘most of the time most packets do not arrive at the same time and
will not collide with each other’s need for the outbound link’. Of course, in reality, packet
arrivals do coincide. When multiple inbound packets arrive at the same instant for the
same outbound link, the packets are queued up and transmitted one after the other. We
will refer to this situation as transient congestion.

As previously noted, transmitting a single packet on a physical link introduces a finite
serialisation delay proportional to the link’s speed. Consequently, any packet queued
up for transmission on a particular link will experience additional latency due to the
serialisation delays of every packet in the queue ahead of it. We refer to this as queuing
delay.

Queuing delays appear under many guises in everyday life. Teller service at your local
bank, or check-in at your favourite airline, involve queues to cope with customer arrival
patterns that are bursty and that often exceed the processing capacity of the available tellers
or check-in agents. The delay you personally experience can be short or long, depending
on how many people arrived just before you and how fast the tellers (or check-in agents)
are processing previous customers.

In a typical consumer environment, queuing delays are seen when multiple computers
on a home LAN try to send packets out through the same cable modem or ADSL modem.
When outbound packets converge on the broadband router they will be queued up, waiting
their turn to be transmitted on the upstream link to the ISP (which is usually ten to a
hundred times slower than the local LAN link).

Another form of queuing delay occurs on shared links where only one host can transmit
at a time, and a link access protocol operates to share transmission opportunities amongst
attached hosts. A modern example involves 802.11 b/g wireless LANs (so-called “WiFi”
networks). The Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA) mech-
anism and four-way handshake protocol (to avoid hidden-node problems) create access
variable delays that depend on the traffic load on the wireless network (number of clients
and/or number of packets per second being sent). For example, 802.11 b networks have
been shown experimentally to add 50 to 100 ms to the RTT when heavily loaded by bulk
TCP file transfers [NGUYEN04].

5.2.4 Sources of Jitter in the Network

As noted in Chapter 4, the actual path taken by a stream of packets can vary over time.
When a route change occurs, the new path may be shorter or longer (in both kilometres
and number of hops). Packets sent immediately after the route change will still get to their
destination and yet experience a different latency. Route changes are usually uncommon,
but can create a noticeable change in lag between a game client and server.

On links that introduce noticeable serialisation delay, we can experience jitter due
simply to the variations in size between consecutive packets sent over the link. This
relates directly to congestion-induced queuing delay. Queuing delay depends entirely on
the statistical properties of other traffic sharing a congested outbound link – not just when
and how fast the competing packets arrive, but their size distribution too. Because transient
congestion depends on the vagaries and burstiness of entirely unrelated traffic, the queuing
delay seen by any particular flow of packets can seem entirely random.

74 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

100-Mbit/sec home LAN and
NAPT-enabled broadband router

192.168.0.13 192.168.0.12

ISP

192.168.0.1128.80.6.200

80-byte
packets

1500-byte
packets128-Kbit/sec

uplink

Figure 5.2 A congested uplink can introduce jitter through queuing streams of different sized
packets

Consider the case of two home computers on a single 100-Mbps Ethernet LAN, com-
municating to the outside world over a ‘broadband’ 128 Kbps link (perhaps early cable
modem or ADSL service, Figure 5.2).

Host 1 is generating a stream of 80-byte IP packets, one every 40 ms. Assume (for
the sake of argument) link layer overheads on the broadband link add a fixed 10 bytes,
making the frame 90 bytes long. These frames take 5.6 ms to transmit at 128 Kbps. Now
host 2 suddenly decides to transmit a random stream of 1500 byte IP packets, with a mean
interval of 500 ms. These larger packets arrive at the cable or ADSL modem and take
roughly 94.4 ms to transmit. From host 1’s perspective, its stream of 80-byte IP packets
now experience random jitter – much of the time the packets go through immediately,
but every so often there are a couple of packets that are delayed by up to 94.4 ms in
excess of their usual transmission time. When host 2’s 1500-byte packet arrives at the
broadband modem, subsequent packets from host 1 (which are arriving every 40 ms) must
be queued for up to 94.4 ms while the 1500-byte packet is transmitted. After that, the
queued 80-byte packets are transmitted (in 94.4 ms at least two packets are likely to have
arrived from host 1). Host 1’s packets who were queued suffer additional latency relative
to their siblings who arrived while the broadband modem’s queue was empty.

There is one more source of jitter that only affects IP over PPP/High-level Data Link
Control (HDLC) [RFC1662]) over serial links. HDLC framing implements a technique
known as byte stuffing to ensure reliable identification of frame boundaries over serial
links. In simple terms, whenever the byte 0x7E appears in the IP packet, it is replaced
by two bytes 0x7D-0x5E for transmission over the serial link. Thus, for example, a User
Data Protocol (UDP)payload containing only the value 0x7E repeated 200 times would
appear to be a 238-byte UDP/IP/PPP frame. However, the two hundred 0x7E bytes would
each be doubled, resulting in a 438-byte frame being transmitted over the link. The
associated serialisation delay would be that of a 438-byte frame rather than a 238-byte
frame. In short, the serialisation delay over such links can be randomly influenced by the
unknowable distribution of HDLC control bytes in the IP packets.

In Chapter 10, we will look at typical game traffic packet sizes and inter-packet inter-
vals – information that can help estimate latency and jitter over various links.

5.2.5 Sources of Packet Loss in the Network

A packet may be lost at many different points within the network, and for a number of
entirely different reasons.

Network Latency, Jitter and Loss 75

First, at the physical layer all links experience a finite (albeit usually extremely low) rate
of data corruption – which we refer to as bit errors, and characterise by a link’s bit error
rate. Bit errors may be introduced by poor signal-to-noise ratios in the digital-to-analogue-
to-digital conversion process, resulting in erroneous encoding or decoding of data. Bit
errors may simply be due to electrical glitches in hardware. Some link technologies
encode additional information within each frame to enable limited reconstruction of a
frame after one- or two-bit errors. This is known as forward error correction , (FEC). In
any case, uncorrected bit errors are usually discovered through cyclic redundancy check
(CRC) calculations at both the transmitting and receiving end of a link. The CRC is a 16-
or 32-bit value mathematically calculated during transmission and sent along with each
frame, and then recalculated at the receiver. If the original and recalculated CRCs differ,
the frame is discarded. Since this can occur anywhere along an IP path, there is no way
to inform the end hosts why or how their packet was lost.

Second, transient congestion can become so severe that queuing points along the path
simply run out of space to hold new packets. When this happens new packets are simply
dropped until the queue(s) have emptied enough to take new packets. This is the network’s
most aggressive form of self-protection against too much traffic. Some networks even
employ proactive packet drop mechanisms that introduce a random, nonzero loss probabil-
ity well before the queue is full. (This is referred to as active queue management, with the
most well-known variant known as Random Early Detection (RED) [RFC2309]). Proac-
tive packet dropping is intended to force TCP-based applications to slow down before
congestion becomes too serious, but they have little effect on non-reactive UDP-based
game traffic (except to cause packet loss).

Third, dynamic routing changes do not always converge immediately on a fully func-
tional and complete end-to-end path. When route changes occur, there can be periods of
time (of tens of seconds to minutes) where no valid shortest path exists between previ-
ously connected sources and destinations. This manifests itself as unexpected packet loss
affecting tens, hundreds or thousands of packets.

5.3 Network Control of Lag, Jitter and Loss
Online games, particularly the real-time interactive genres, need greater control over
network latency, jitter and loss than more traditional email, online ‘chat’ and web surfing
applications. In this section, we will briefly review the mechanisms that ISPs can deploy
to control network conditions on behalf of game players, and the difficulties faced by
ISPs in utilising these techniques effectively.

One approach is for ISPs to ensure that their link and router capacities far exceed the
offered traffic loads, and to utilise creative routing of traffic to ensure that no single router
becomes a point of serious congestion. Attractive because of its conceptual simplicity,
this approach tends to be practical only for large or core network operators who have
flexible access to physical link infrastructures (for example, a telephone company that
owns both an ISP and the underlying optical fibre between cities).

The ‘just deploy more bandwidth’ approach tends not to work where high speed tech-
nologies simply cannot be deployed in a cost-effective manner (for example, where
100-Mbps home LANs meet sub-1 Mbps ‘broadband’ access links, as in Figure 5.2). ISPs
and consumers must contemplate ways of prioritising access rather than simply hoping

76 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

for the best. This means identifying some IP packets as worthy of ‘better’ service than
other IP packets, and this carries with it many questions of how to differentiate between
types of IP packets and what constitutes ‘better’ service.

5.3.1 Preferential IP Layer Queuing and Scheduling

There is not a lot we can do about packet loss due to bit errors except invest in and
install high-quality link technologies. On the other hand, we can provide some control
over congestion-induced loss, latency, and jitter by preferentially handling and forwarding
important game packets over and above other traffic.

Preferential treatment occurs in many real-world situations. Airlines have separate
check-in counters for business and first-class passengers. Freeways have high-occupancy
or peak-period lanes restricted to cars carrying multiple passengers. Police and emergency
services vehicles can gain temporary preferential treatment and road access by turning on
their sirens and warning lights.

Central to any of these schemes is the goal of letting some people ‘jump the queue’
and get ahead of others. This requires three steps – classification (to identify who or
what deserves preferential treatment), separate queuing (to isolate those getting preferen-
tial treatment) and scheduling (to actually provide the preferential treatment). The same
applies in IP networks. Congested routers need to classify, separately queue and prefer-
entially schedule some packets over others. Output ports that previously used only one
queue will now have two (or more) queues – one for normal best effort service, and
another for high-priority packets.

Many edge and access network routers today are capable of classifying IP packets using
five pieces of information from inside each packet:

• The packet’s source and destination IP addresses,
• The packet’s protocol type, and
• Source and destination port numbers (if the packet is TCP or UDP).

This is sometimes referred to as flow classification, microflow classification or 5-tuple
classification. A set of rules in each router dictates which combinations of IP address
and port numbers are considered priority packets and which are not. On the basis of
these rules, every packet can be classified into a high-priority or normal priority queue.
Ultimately, the scheduler decides when to transmit packets from each queue.

Serialisation delays still apply to each packet transmission, and congestion-induced
transmission delays and the potential for packet loss still exist. However, these events
now occur on a per-queue basis. By splitting traffic into separate queues, we isolate the
game traffic from much of the queuing and serialisation delays that afflict regular best
effort traffic.

Consider the two cases in Figure 5.3. Five packets converge on a congested router
interface – the first four are just regular traffic, the fifth packet is associated with an
active game. In the absence of preferential queuing and scheduling, all five packets will
be queued and transmitted in order or arrival. However, imagine if the router implements
two queues – normal and high priority. The first four packets can be placed in the normal
traffic queue. The fifth packet is recognised as a game packet, placed in the high-priority
queue, and is transmitted as soon as the current packet from the normal queue finishes

Network Latency, Jitter and Loss 77

Packet 1

Packet 2

Packet 3

Packet 4

Packet 1 Packet 2 Packet 3 Packet 4 Packet 5

Packet 1 Packet 2 Packet 3 Packet 4Packet 5

Packet 5

Packet 1

Packet 2

Packet 3

Packet 4

Packet 5
Time

No preferential queuing for
transmission of packets

Preferential transmission queuing
for packet 5

Arrival Transmission

Figure 5.3 Preferential queuing and scheduling can allow priority packets to ‘jump the queue’

transmission. The game packet has effectively jumped the queue of normal packets. (A
real-world analogue would be a police car going around a queue of cars and trucks waiting
to enter a single-lane toll road.)

Because many scenarios involve only two priority levels, routers may also choose a
simpler classification scheme based on a 6-bit Differentiated Services Code Point (DSCP)
embedded in the IP header [RFC2474, RFC2475]. Often the 5-tuple classification occurs
near the edges of an ISP network, and the result is encoded into the packet’s DSCP field.
Core routers then use simplified classification rules based on the DSCP to assign packets
into priority and normal queues.

Packet loss is also controllable on a per-queue basis. Each queue can be allocated
different amount of space, ensuring that game packets can still be queued even when
the normal traffic queue is full and starts to drop packets. Each queue may implement a
different form of active queue management [RFC2309].

We have deliberately simplified this discussion to focus on the key elements. There are
many different variations on classification, queuing and scheduling algorithms, which we
do not need to explore here. Interested readers might refer to a book on IP quality of
service for more details (for example [ARM2000]).

5.3.2 Link Layer Support for Packet Prioritisation

Unfortunately, classification, queuing and scheduling at the IP packet layer does not solve
all our problems when facing serialisation delays on low-speed links. Consider the real-
world case of a police car jumping a queue of cars and trucks for entry into a single-lane
toll road. The ‘normal traffic’ is a mixture of short cars and long articulated trucks. Yet
no matter how much priority we give the police car, if a long truck commenced onto the
toll road an instant before the police car arrived, it may still have to wait awhile at the
entrance to the single-lane toll road. There is no way for the police car to pull back the
truck, or slice the truck in half, in order to avoid waiting.

The same occurs when, for example, an ADSL modem only prioritises upstream traffic
into game and normal categories at the IP packet level. In Figure 5.3, if packet 1 was

78 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

1500 bytes long and had begun transmission just before packet 5 arrived, no amount of
preferential queuing at the packet level could avoid packet 5 having to wait until packet
1 is transmitted.

A partial solution to this scenario is offered by link layer technologies capable of
concurrently interleaving multiple IP packets during transmission.

For example, most consumer ADSL services actually run ATM over the ADSL physical
layer, and then implement their packet service over a single ATM virtual channel [TR017,
ARM2000]. However, in principle, the ADSL modem could utilise two or more parallel
virtual channels upstream towards the ISP, and send different streams of cells on each vir-
tual channel [I311]. Game packets and normal packets would be segmented onto distinct
virtual channels and their constituent cells interleaved in time according to the packet’s
priority. Recall that ATM cells are only 53 bytes long (carrying 48 bytes of payload and
5 bytes of header). Thus, the serialisation delay experienced by a game packet drops down
to the time it would take to send an ATM cell belonging to the normal packet already in
flight. It is as though the police car could cut the truck in half.

Unfortunately, ATM over ADSL is not used in this manner as of the time of writing,
although it remains a distinct possibility as ISPs grapple with offering the best control of
jitter and latency on the upstream side of consumer broadband links. Similar approaches
are theoretically possible with Multi-Class Multi-Link (MCML) and Real-Time Fram-
ing (RTF) PPP over serial links [RFC2686, RFC2687] and segmenting packets across
minislots in DOCSIS-based cable modem systems [DOCSIS]. Further discussion of such
schemes is beyond the scope of this book.

5.3.3 Where to Place and Trust Traffic Classification

Much of the classification, queuing and scheduling techniques discussed so far are prac-
tical with today’s technology. The major stumbling block faced by ISPs today actually
revolves around how they know, for certain, what packets to give priority to at any given
time. (Or, in the terminology of this chapter, which packets are game traffic deserving
preferential treatment.) Conversely, how does the ISP ensure that only authorised traffic
gets preferential treatment?

Only a game client and game server know for sure what IP packets constitute game
traffic. The ISP wishing to provide preferential service must configure their routers with
the 5-tuple rules or DSCP values that identify packets deserving preferential treatment.
But how does the ISP initially discover the right 5-tuple or DSCP values? Ask the game
clients for 5-tuple values? Trust the game clients to set the DSCP to a ‘well-known’ value?

In general, ISPs should not trust an outside entity (which includes hosts it does not
control) to set the DSCP value appropriately. If it becomes well known that ‘DSCP == 1’
results in priority traffic handling, every application on every host will naturally be inclined
to set DSCP to one on their outbound packets. We would be right back at the beginning
of the problem, with everyone’s packets classified into the game traffic queue.

Thus the assignment of DSCP values must be performed by routers the ISP trusts,
typically at the edges of the ISP’s network. DSCP assignment will occur after 5-tuple
classification by the ISP’s router. This begs an obvious question – how does the ISP’s
router know which 5-tuples represent game traffic?

If an ISP hosts its own game server, then it knows one side of the 5-tuple – the IP
address and port number of the game server. This information may well be sufficient to

Network Latency, Jitter and Loss 79

perform classification at the edges and assign trusted DSCP values to game packets as
they progress across the ISP’s network. (Any packet heading to or from the game server’s
IP address and port is considered a game packet regardless of the client’s IP address and
port number.)

In principle, the game client might use a signalling protocol to inform the ISP, on a
case-by-case basis, when a new flow of game packets begins. This would inform the ISP
of the specific 5-tuple associated with any particular game traffic. However, at the time
of writing this book, no ISP implemented any such IP signalling protocol that is of use to
a game client. (And if they did, there would be a number of difficult questions regarding
authentication of signalling messages to ensure that only legitimate game clients were
telling the ISP ‘this 5-tuple represents game traffic’.)

An emerging approach is for ISPs to automatically detect game traffic by looking
for particular statistical properties rather than specific 5-tuple values or well-known port
numbers. Once a flow has been identified as having the statistical properties of game
traffic, the flow’s 5-tuple can be passed out to routers along the path who need to provide
preferential treatment [STE2005].

When the ISP classifies on a 5-tuple, it becomes difficult for an opportunistic client
to create packets that “look like” game traffic even though they are not. Given that the
source and/or destination IP addresses are a key part of the 5-tuple classification rules, the
opportunistic packets would have to actually be going to or from a known game server in
order to gain preferential treatment. This is unlikely to be generally useful to non-game
applications.

Given that there are hundreds of ports on which game traffic might exist, and thousands
of IP addresses that might represent game servers, ISPs and game developers face an
interesting challenge to correctly, safely and securely identify game traffic for preferential
treatment. This is very much an open question, unsolved as of the time of writing.

5.4 Measuring Network Conditions
We can use the ‘ping’ command to get an approximate sense of the RTT between one
of our hosts and one of the other endpoints on the Internet. Ping is available on UNIX-
derived systems (for example, FreeBSD and Linux) and Microsoft Windows systems. Ping
uses Internet Control Message Protocol (ICMP) packets [RFC792] to probe a specified
remote host and to measure the time it takes for the probe packet to go out and return.
There is a caveat regarding ping – many routers handle ICMP messages differently from
regular packets, and thus ping can sometimes return RTT estimates that are higher (by a
few milliseconds) than the RTT that would be experienced by actual TCP or UDP traffic
along the same path. Nevertheless, running multiple repeated pings against a fixed, remote
IP host can reveal paths where the RTT fluctuates around a reasonably consistent average
value. Ping defaults to using a small, 64-byte IP packet. However, the user can force the
use of larger ICMP packets in order to reveal the possible effect of serialisation delay
along the path.

Another tool that can provide insight into network path characteristics is ‘traceroute’
(under UNIX-derived systems) or ‘tracert’ (under Windows). Traceroute attempts to
estimate the RTT to each router hop from your host to a nominated destination host.
The difference in RTT reported at different numbers of hops away from your host can

80 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

reveal links that include significant propagation delays. Traceroute can assess paths using
different sized probe packets, which can be used to reveal serialisation delay sensitivities
along a path. (As of writing, Windows XP’s ‘tracert’ did not allow configuration of the
probe packet’s size.)

Both traceroute and tracert can resolve the IP addresses into domain names of routers
seen along a path. If the ISPs have used human-readable names, you can sometimes infer
things about the geographical path being followed (e.g. if city names are encoded in the
domain names of the router interfaces seen by traceroute).

There are many web sites around the Internet that offer traceroute facilities from their
location. You can find a list of pointers to such sites at http://www.traceroute.org

For example, Figure 5.4 shows one of the listed sites (located at Telstra in Canberra,
Australia) revealing the effect of propagation delay when performing a traceroute to
www.lucent.com (192.11.226.2, based in New Jersey, USA). The traceroute output shows
about 5 ms between first and seventh hop, then ∼145 ms between seventh and eighth hops
(from Sydney to Los Angeles) followed by another jump between Los Angeles and New
York of ∼70 ms (essentially next door to New Jersey).

Note that the ∼145-ms RTT between Sydney and Los Angeles is substantially higher
than the ∼80 ms estimate in Section 5.2.1. This can be attributed to the lower propagation
speed of signals in optical fibre, queuing delays over multiple hops and the fibre’s indirect
physical path between Sydney and Los Angeles being much longer than 12,000 km.

Another approach is to use information gathered by a modified game server. Figure 5.5
shows one published experiment where RTT samples from an active Quake III Arena
server were used to plot the average jitter (per map played) against the average latency
(per map played) [ARM2004]. One of the paper’s conclusions was that jitter typically
never exceeded 20 % of the average latency. Another observation from Figure 5.5 is
that there are two broad clusters – one where jitter is low regardless of latency (out to
300 ms latency) and another where jitter is roughly proportional to latency. The former
is attributed to paths where most latency is propagation delay. The latter is attributed to

1 FastEthernet6-0.civ-service1.Canberra.telstra.net
(203.50.1.65) 0.225 ms 0.193 ms 0.268 ms

[..]
7 i-7-0.syd-core02.net.reach.com (202.84.221.90) 5.457 ms

5.636 ms 5.349 ms
8 i-0-0.wil-core02.net.reach.com (202.84.144.101) 153.923 ms

153.935 ms 154.057 ms
[..]

11 0.so-3-0-0.CL1.LAX15.ALTER.NET (152.63.117.90) 153.84 ms
154.67 ms 154.303 ms

12 0.so-5-0-0.XL1.NYC9.ALTER.NET (152.63.0.174) 227.725 ms
265.947 ms 227.653 ms

[..]
17 192.11.226.2 (192.11.226.2) 228.585 ms 229.29 ms 227.779 ms

Figure 5.4 Traceroute from Australia to the USA showing long-haul propagation delays

Network Latency, Jitter and Loss 81

 0

10

20

30

40

50

60

70

80

0 100 200 300 400 500 600 700

Ji
tte

r
(m

s)

Latency (ms)

Average jitter per map versus average latency per map

Figure 5.5 Jitter versus latency measured from an active Quake III Arena server in Australia
[ARM2004]

paths where delay accumulates from many router and link hops – also places more likely
to contribute to jitter.

References
[ARM2000] G. Armitage, “Quality of Service in IP Networks: Foundations for a Multi-Service Internet”,

Macmillan Technical Publishing, April 2000.
[ARM2004] G. Armitage, L. Stewart, “Limitations of using Real-World, Public Servers to Estimate Jitter Tol-

erance of First Person Shooter Games”, ACM SIGCHI ACE2004 Conference, Singapore, June 2004.
[DOCSIS] CableLabs, “Data-Over-Cable Service Interface Specifications Radio Frequency Interface Specifica-

tion SP-RFIv1.1-I01-990311”, 1999.
[I311] ITU-T Recommendation I.311, “B-ISDN General Network Aspects”, August 1996.
[NGUYEN04] T.T.T. Nguyen, G. Armitage, “Quantitative Assessment of IP Service Quality in 802.11b Net-

works and DOCSIS networks”, Australian Telecommunications Networks & Applications Conference 2004,
(ATNAC2004), Sydney, Australia, December 8–10, 2004.

[RFC792] J. Postel, “Internet Control Message Protocol”, STD 0005, RFC 792. September 1981.
[RFC1661] W. Simpson Ed, “The Point-to-Point Protocol (PPP)”, STD 51, RFC 1661. July 1994.
[RFC1662] W. Simpson Ed, “PPP in HDLC-like Framing”, STD 51, RFC 1662, July 1994.
[RFC2474] K. Nichols, S. Blake, F. Baker, D. Black. “Definition of the Differentiated Services Field (DS Field)

in the IPv4 and IPv6 Headers.” RFC 2474. December 1998.
[RFC2475] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, W. Weiss. “An Architecture for Differentiated

Services.” RFC 2475. December 1998.

82 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

[RFC2309] B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin, S. Floyd, V. Jacobson,
G. Minshall, C. Partridge, L. Peterson, K. Ramakrishnan, S. Shenker, J. Wroclawski, L. Zhang, “Recom-
mendations on Queue Management and Congestion Avoidance in the Internet”, RFC 2309. April 1998.

[RFC2686] C. Bormann, “The Multi-Class Extension to Multi-Link PPP”, RFC 2686. September 1999.
[RFC2687] C. Bormann, “PPP in a Real-time Oriented HDLC-like Framing”, RFC 2687. September 1999.
[STE2005] L. Stewart, G. Armitage, P. Branch, S. Zander, “An Architecture for Automated Network Control

of QoS over Consumer Broadband Links”, IEEE TENCON 05, Melbourne, Australia, 21–24, November,
2005.

[TR017] ADSL Forum, “TR-017: ATM over ADSL Recommendation”, 1999.

6
Latency Compensation Techniques

The delay (and variance in delay) illustrated in Chapter 5 comes from both delay caused
by processing updates and delay caused by the network. While processing delay can be
reduced by hardware and game algorithm improvements, networking delay is harder to
reduce.

‘There is an old network saying: ‘Bandwidth problems can be cured with money.
Latency problems are harder because the speed of light is fixed – you can’t bribe
God.’

—David Clark, MIT

The first section of this chapter presents the need for latency compensation techniques
against the backdrop of a basic client–server game architecture. Next, we talk about how
the architecture can be enhanced using prediction, both for the server response to user
input and for the behaviour of other units, to mitigate the impact of latency. Manipulation
of game time using time delay and time warp can equalise gameplay for players with
disparate latencies to the server. Various data compression techniques primarily reduce
game bitrates, but in doing so can also reduce latency by reducing the time to process
network data. Although not network related, visual tricks can reduce the user awareness
of any remaining residual latency. Lastly, latency compensation can also have an impact
on cheating and cheat detection, and so extra precautions must be taken.

6.1 The Need for Latency Compensation
While there has been substantial work in network congestion control toward reducing
queuing delay at routers and reducing packet loss (thus avoiding extra delays added by
any retransmissions), substantial delays remain, especially for network connections over
the Internet to “last-mile” hops in home residences. Some see broadband as a solution
for the latency problems with online gaming. However, while broadband generally offers
significant improvements in network bitrates, there are other factors in network designs
that limit the benefits of broadband.

(a) Despite the promise of higher bitrates, some broadband solutions still have periodic
high latencies or significant packet loss during congestion.

Networking and Online Games: Understanding and Engineering Multiplayer Internet Games
Grenville Armitage, Mark Claypool, Philip Branch 2006 John Wiley & Sons, Ltd ISBN: 0-470-01857-7

84 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

(b) It will be quite some time before broadband is globally adopted by all online game
players.

(c) There is an increasing number of mobile, wide-area wireless environments that cannot
benefit from the fixed infrastructure of broadband to the home.

(d) Despite technology improvements, a certain amount of network delay will always
remain because of the speed of light in fibre. For example, coast-to-coast delays
across the United States of America cannot be less than about 25 milliseconds, not
counting any additional delays from buffering. Intercontinental times will be even
higher.

Most games today basically run on a client–server architecture with a single, author-
itative server that handles the game logic. The clients collect input from the user and
send it to the server. The server computes game state, sending the revised game state
information back to the client. The client then renders the new game state to the player,
and the process repeats. In some cases, the server can also act like a client, allowing a
player to use the same machine as the server. In this case, the player offers to ‘host’ a
game. That player’s computer then acts like a server for all players, as well as a client for
the current player. This is still fundamentally a client–server architecture, even though
it may look like client–client (or peer-to-peer) on the surface, in that all machines are
being used as game clients.

To illustrate the effects of latency on this basic architecture, consider the client to be
where the user input is taking place. In the basic client–server model, the client sends a
message to the server when user input is received. The server processes (and validates)
the input and sends the results back to the waiting client to render on the local display.
Thus, the players’ actions are lagged by the round-trip latency between client and server.
When the client acts in this manner, it is often called a ‘Dumb’ client since it only acts
on commands from the server, and is depicted in Figure 6.1.

Time

User
input

Render
input

Process
and

validate
input

Message:
user input

Message:
ok user input

Figure 6.1 Basic client-server with ‘dumb’ client. Client only renders output of user input when
it receives input ‘ok’ from server

Latency Compensation Techniques 85

Basic Algorithm (Client Side)

• Sample user input
• Pack up data and send to server
• Receive updates from server and unpack
• Determine visible objects and game state
• Render scene
• Repeat.

If the latency between the client and server is large enough, the user is aware of the
delay between the commands given to the game and the response to the game state. As
an example of this impact, consider an online American football game (e.g. Madden NFL
Online) in which the player is responding to events on the screen but the input is lagged
to the server by about a second. In Figure 6.2, the running back is running toward the
left side of the field to avoid the defender. The user sees that there is an open lane along
the sideline and pushes the controller up to run between the defender and the sideline.
However, because of the latency, the processing of this input is delayed by the round-trip
time to the server (one second, in this example) so that the command is actually processed
after the runner goes out of bounds. Because of the latency, the user failed to gain as
many yards on this running attempt as she/he would have if there was no latency.

(a) (b)

(c)

Figure 6.2 Illustration of the effects of latency on running (Madden NFL 2003). (a) User is
pressing left and the player moves left. (b) User is pressing up, but player continues left because
of latency. (c) Running back goes out of bounds! User curses

86 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

(a) (b)

(c)

Figure 6.3 Illustration of the effects of latency on passing (Madden NFL 2003). (a) User is
pressing throw, but throw is not processed yet because of latency. (b) Throw starts processing here
because of the latency. (c) Defender intercepts throw! User curses

As another example, in Figure 6.3, the user is trying to get the quarterback to throw
(‘pass’) the ball to a receiver. The receiver might only be away from a defender (‘open’)
for a short window of time before crossing the boundary and being too close to the
defender. At the start of play, as the receiver begins his route, the user presses the pass
button in order to deliver the pass to reach the receiver at the boundary between defenders.
The receiver should catch the ball at the boundary since he is open. However, because of
the latency, the processing of the quarterback throwing the ball actually begins too late.
By the time the ball reaches the receiver, the receiver has fully crossed the boundary and
the defender catches the ball instead (an ‘interception’).

These examples, and many more like them in real-time game genres of all kinds, occur
quite frequently in online games unless latency compensation techniques are deployed.

6.2 Prediction
Instead of waiting for the server to respond to each client action before rendering it,
the client can predict the server response, allowing the game client to respond to user

Latency Compensation Techniques 87

input immediately, rendering player and opponent movements before getting authoritative
responses from the server.

Broadly, there are two categories of prediction that can take place. In the first pre-
diction category, the client takes input from the player and predicts the server response
related to only the player’s units. We call this ‘Player Prediction’. In the second pre-
diction category, the client predicts the location of units that are not controlled by
the player, being controlled either by other players or by a computer. We call this
‘Opponent Prediction’ (even if some of the other units are not necessarily on another
team).1

6.2.1 Player Prediction

The client can predict the server response, allowing the game client to respond to user
input and render player actions before getting the authoritative response from the server.
This allows the game to appear immediately responsive to the user input, not need-
ing to take a round-trip to the server and back before impacting the game. In fact, the
response can be as fast as a non-networked game, thus completely removing any net-
work latency. Using prediction, however, means the game state on the server (and the
state on other client machines) will differ somewhat from the game state on the client.
The amount it differs depends on the round-trip latency and, to some extent, the user
actions taken. The client must therefore fix up any discrepancies in the game state when
it finally does get a response from the server. The player prediction process is depicted
in Figure 6.4.

Time

User
input

Render
input

Process
and

validate
input

Message:
user input

Message:
ok with updateFix

up

Figure 6.4 Client-server in which client renders input with predicted state before getting ‘ok’
from server

1 Prediction of units controlled by others is often called ‘Dead Reckoning’ [Dead reckoning, CLC99, DF98],
but that name does little to help remember the technique, hence our term ‘Opponent Prediction’.

88 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

Predicted Algorithm

• Sample user input
• Pack up data and send to server
• Determine visible objects and game state
• Render scene
• Receive updates from server and upack
• Fix up any discrepancies
• Repeat.

As an illustration of the effects of latency on this architecture, consider the screen-
shots in Figure 6.5, in which both game consoles (the client and server) are connected
to the same television. In the figure, the client’s display is the larger picture, while the
server’s display is inset in the picture-in-picture. The client puts a man in motion (causing
a football player to go from left to right across the screen), the result is that the client
sees the in-motion player movement first, and subsequently, the player is one or two steps
ahead on the client’s display than he is on the server’s display. We have manually drawn
a box around the man in motion on each display to indicate the player of interest. Notice
how the boxed player for the client in the large picture is further to the left than the boxed
player for the server in the inset picture.

The notable additional step the player prediction approach has that the basic
client–server approach does not is the step to ‘fix up any discrepancies’. These
discrepancies may occur because the server still has the master copy of the game state,
and this master copy may differ from the predicted copy the client has. As an example,
suppose the user moves an avatar to the right. The game at the client sends this movement

Figure 6.5 Depiction of state inconsistency (Madden NFL 2003). The large picture showing the
first player’s view differs from the second player’s view, shown by the smaller, inset picture. A
black box (drawn manually, not by the game) highlights the main difference

Latency Compensation Techniques 89

command to the server, a trip that may take hundreds of milliseconds. Before receiving
the server’s response, the client game then predicts the new location for the avatar and
renders the new position on the right, thus appearing very responsive to the player input.
Sometime later, when the server receives the command, it checks if the avatar was allowed
to move to the right. If so, the client is allowed to move, and the new state is sent to
the client where it is confirmed. If not, perhaps because another avatar had moved to the
same spot first, effectively blocking the way, the server would respond to the client that
the move to the right was not allowed, providing the correct game state to the client.
Upon receiving the server update, the client would have to fix the discrepancy between
the server’s master view and the client’s predicted view, ultimately rendering the correct
world to the client.

The benefits of client-side prediction to responsiveness are tremendous – an online
game can effectively feel as responsive as a single-player, non-networked game, short-
circuiting any network latency. However, fixing up the discrepancies between the actual,
server-controlled game state and the client-side predicted game state can be equally
destructive – having the display of an avatar abruptly changed by rendering the correct
actual scene over the incorrect predicted scene (essentially ‘warping’ or ‘rubber-banding’
the world back to the correct state from the incorrect one) can be jarring, impacting
gameplay and greatly reducing immersiveness.

Fundamentally, while client-side prediction allows the game to be more responsive, it
trades off consistency between the game state at the client with the game state at the server.
Figure 6.6 depicts the trade-off between responsiveness to the user input and consistency
to the server view of the world. On the right is the basic client–server approach, in which
the user view of the world always follows the view of the world presented by the server,
being consistent with the world state as computed by the server. On the left is client-side
prediction, where the view of the world is predicted by the client, thus sometimes causing
inconsistencies in the world state at the server and the world state at the client.

6.2.2 Opponent Prediction

With opponent prediction, the location of a unit that is controlled by another player (or
computer) is estimated. The estimation starts with the last known position of the unit and
computes its current, predicted position based on the speed and direction it was travelling.
This predicted position is then used unless and until the unit owner sends an update of
the new location, speed or direction or both. This update would be sent when the unit
owner determines that the other clients cannot accurately predict the position within a
predetermined threshold. The update sent contains the correct position and orientation as
well as velocity vectors and other derivatives that the clients can use to initiate a new
prediction. Figure 6.7 depicts the difference between the actual path of a unit and the
predicted path computed by the other clients.

More responsive,
less consistent

Less responsive,
more consistent

Client uses prediction Client waits for server ok

Figure 6.6 The trade-off between consistency and responsiveness in games with network latency

90 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

t0
t1

t3

t2

Send initial
position

Send
update

Send
update

Send
update

Unit owner
Actual path

Opponent
Predicted path

Figure 6.7 Opponent Prediction, showing actual path versus predicted path. The opponent uses
the last known unit information in computing its path. The unit owner sends updates when the
predicted location differs from the actual location by more than a given threshold

The top picture in Figure 6.7 shows the view by the owner of the unit (in this case,
the unit is an airplane but could just as easily be a car, boat or even a human). The solid
line in the middle shows the actual path as the player controlling the unit would see it.
The two thinner, dashed lines that run parallel to the middle line represent the threshold
for the opponent predictions. The thicker dashed lines represent the unit owner’s record
of the opponent’s prediction. If the unit owner’s predicted location of the airplane goes
outside this threshold, the unit owner sends a message to all opponents with an update
on the new position and heading. In Figure 6.7, after the initial position and heading is
sent at time t0, updates are sent at t1, t2, and t3. The bottom picture depicts the view that
opponents would see. The opponent uses the last known position and heading to predict
the unit location until an update is received, whereupon the new position and heading are
used.

Smaller values for the update threshold can provide more fidelity in opponent pre-
dictions at the cost of requiring more frequent updates (hence, higher bandwidth and
processing overhead). Larger values for the update threshold decrease prediction fidelity,
and also decrease the update rate (also decreasing the bandwidth and processing over-
heads). The optimal values for the threshold depend on the game, the network and
processing capacities of the clients and, to some extent, the player preferences.

In making the predictions on location, there are two commonly used unit estimation
algorithms from the Distributed Interaction Simulation2 standard, both derived from basic
Physics. The first predicts the location of a unit on the basis of its last known position
and its velocity at that time. The second predicts the location of a unit on the basis of
the last known position, velocity and acceleration. More sophisticated algorithms can use

2 Distributed Interactive Simulation (DIS) is a protocol to support large-scale simulations developed by the
Defense Advanced Research Project Agency (DARPA) Simulation Network project [Ney97, DIS].

Latency Compensation Techniques 91

roll, pitch, heading and even do predictions on different parts of a unit independently (e.g.
the angle of a tank turret can be predicted independently of the prediction of the location
of the tank itself).

Assuming x(t) is the position at time t and the last update for a unit’s position was
received at time t0. With the simplest form of opponent prediction, a client could assume
the location of a unit at time t1 is the same as the location of a unit at time t0.

x(t1) = x(t0)

Assuming a constant velocity (v), using the velocity at time t0, a slightly more sophis-
ticated algorithm would predict the location of the unit to be:

x(t1) = x(t0) + v∗(t1 − t0)

Adding information about a constant acceleration (a), the location of the unit would
be predicted to be:

x(t1) = x(t0) + v∗(t1 − t0) + (1/2)a∗(t1 − t0)
2

In general, the opponent prediction algorithm for the unit owner looks like:

• Sample user input
• Update {location | velocity | acceleration} on the basis of new input
• Compute predicted location on the basis of previous {location | velocity | acceleration}
• If (current location – predicted location) < threshold then

◦ Pack up {location | velocity | acceleration} data
◦ Send to each other opponent
◦ Repeat.

While the opponent prediction algorithm for the opponent would look like:

• Receive new packet
• Extract state update information {location | velocity | acceleration}
• If seen unit before then

◦ Update unit information
• Else

◦ Add unit information to list
• For each unit in list

◦ Update predicted location
• Render frame
• Repeat.

In general, units with high inertia are easy to predict (i.e. a rock rolling down a hill or
a player in free-fall from an airplane), while models with little inertia are harder (i.e. a
pixie with 360 degrees of movement freedom or an avatar that can teleport). Game-specific
prediction algorithms can even be crafted. For example, a real-time strategy game may
define what it means for a unit to ‘return to base’. As long as the unit continues to return
to base, all clients can accurately predict the position over time without any updates.

92 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

Opponent prediction does have its costs. It requires that each client run an algorithm to
extrapolate the location of each unit for each frame rendered. If units behave unpredictably,
such as is often the case in a frenetic first-person shooter game with permissive physics
constraints, the benefits of trying to predict unit locations diminish.

While opponent prediction is presented here as a means to reduce latency, in many
cases, it can also greatly reduce bitrates. For large-scale simulations with relatively static
units, or units that move in a very predictable fashion, the use of opponent prediction can
eliminate the interchange of most state update messages. Even for computer-controlled
units that use random variables to add variety to their actions, as long as the clients have
the same prediction algorithms and same initial random seed, their predictions can remain
faithful even through “random” behaviour. And for unreliable network messages, such as
over UDP, the use of opponent prediction can help smooth over lost update messages. In
these cases, the trade-off is using more CPU cycles at each client to reduce the latency
in updating units and, in some cases, the bitrate required in exchanging messages.

One approach of managing any inconsistent behaviour in predicted game state infor-
mation when an update arrives is to have the game clients use any new state update
information as part of a ‘rendezvous’ with the goal of achieving that new state in a short
amount of time [CF05]. With this rendezvous idea, instead of immediately jumping to
the new state, rules, customised for each game, determine how the game world is to be
updated to the new representation. For example, if it is determined that the position of
a soccer ball is incorrect, the game may move a computer-controlled player to kick the
ball to get the ball to the correct location.

Another aspect of opponent prediction is the potential for unfairness in the case where
players have heterogeneous latencies. In general opponent prediction schemes, an update
to a position is provided when the predicted position deviates by a threshold from the
actual position. If an update on the actual position is sent to several players, the players
that are farther away, in terms of network latency, will get the update later, making the
difference in the predicted position and the actual position larger than the difference in
the same for updates sent to closer players. This results in unfairness in that closer players
have more accurate game world representations than farther player.

This unfairness can be removed completely by the use of Time Delay (see below),
whereby the update to closer players are held up by exactly enough to make their effective
latency the same as the farthest player [AB05]. This results in an additional trade-off.
Namely, minimising the unfairness of differences in the accuracy of opponent prediction
among players, while maximising the amount of prediction error all players receive.

Another method of reducing unfairness is to send more frequent updates to the players
that are farther, thus reducing the error in their predicted versus actual prediction [AB05].
If a budget on the total update rate is required, the update rate to the closer players can
be reduced to make the update rate to the farther players higher.

6.2.3 Prediction Summary

In general, any game state predicted at the client may differ from the real, authoritative
game state at the server because:

(a) users are controlling the other states and it may be difficult, or even impossible, to
predict in a precise way what action the user will take. The prediction may be that another

Latency Compensation Techniques 93

player’s avatar will continue running straight, but the other player suddenly moves the
avatar left, or the avatar may be predicted to be standing still when it is actually shooting.
The prediction can be constrained by the physics of the gameplay (for example, a user can
only run at a certain speed, cannot fly over water, etc.), but since games are designed to
give users choices, the user-controlled avatar may act in an unexpected fashion, causing
the client-side view of the game state to diverge.

(b) the prediction the client may use is a simplistic approximation of the game state
computation at the server. This can happen for more complex predictions. For example,
the server may be computing the velocity, acceleration and rotational torque of a flying
projectile to precisely compute the current location and facing of the object. A client using
simplistic prediction may only use the last known location and velocity in predicting the
new location, resulting in a discrepancy in the predicted and actual locations. Client-side
predictions that are too simplistic can generally be solved by using more CPU cycles and
more complex prediction models at the client.

6.3 Time Manipulation
It must be noted that even without prediction, game states rendered at the clients will
differ from each other. This is because it takes some time (about a half a round-trip time)
for a client to receive the world state from the server. When one client is further away
(has a higher round-trip time) from the server than another client, there may be unfairness
in the game play. For example, suppose two players finally defeat a monster they had
been battling. The server, controlling the now defeated monster, generates some treasure
as a reward for the battle and drops it on the ground for the players to pick-up. A message
with the location of the treasure is sent to the clients for each of the players. Suppose
the first client is quite close (in terms of network latency) to the server, so the player
sees the treasure and acts upon it immediately, moving to gather the loot. The second
client is farther away from the server and thus responds more slowly, in fact, after the
first player has moved to get the treasure. This unfairness can degrade the gameplay for
many games.

Even though many online games are real-time, the actual progression of time in the
game can be manipulated to account for disparities in latency among clients. Two tech-
niques to do this are a time delay for all commands to handicap players with a low
latency, and a complementary technique called time warp to accommodate players with
a high latency.

6.3.1 Time Delay

A common technique for dealing with differences among clients is to delay processing
and sending of user commands to equalise latency. Essentially, instead of processing
client commands right away, the server delays them for some time, allowing a client that
is further away (in terms of network latency) to respond to the game state. In essence,
this allows both the clients to have the same effective latency in providing updates to the
game world at server with a delay as large as the buffer chosen by the server. World-state
updates sent by the server can also be delayed in being sent out, sending the update to
the client that is further away before sending updates to the client that is closer. Or, the

94 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

Time

Client 1
command arrives

Client 2
command arrives

Server processes
both client commands

Time delay

Figure 6.8 Time Delay. A game server can hold client commands for a fixed amount of time, the
time delay, before processing in order to compensate for clients with higher latency than others

clients themselves can use buffering to equalise the latency, with the client that is closer
to the server delaying processing of the server state updates, while the client that is further
away acting on the updates immediately upon receiving them.

Thus, buffering can provide fairness between clients with disparate latencies, but at
the cost of making the gameplay less responsive. A related technique at the client
is called interpolation, where a client has rendered the local world, but has a server
update showing the position of units at a later time. Instead of immediately render-
ing the latest server world state, the client can interpolate the world at intermediate
states, allowing the local world state to progress smoothly to the server world state.
Another technique commonly used with interpolation is extrapolation where the world
state at a future time is predicted. Extrapolation is, in fact, another form of prediction
presented above.

In choosing a time delay buffer, it should be noted that users often prefer a consistent,
even if large, delay, rather than a variable delay that jumps about widely. The effects of
variable delays in terms of response time for interactive processes (e.g. Telnet or Internet
phone) is well-known. In fact, Internet phone applications make use of time delay to
explicitly avoid varying delays. Thus, the size of any time delay chosen should be adjusted
infrequently (on the order of tens of seconds), even if the latency measurements from the
server change more frequently.

6.3.2 Time Warp

A successful, widely used time manipulation mechanism is to have a server to rollback (or
time warp) the events in a game to the time when a client command was inputed [Mau00,
Valve]. The player provides input on the basis of the current state of the game at the client.
Because of the lag between the client input and the server receiving the command, the state
at the server may have changed. For example, the player shoots at an opponent at time t0,
but by the time the message arrives at the server at time t2, the opponent had moved at
time t1. Using time warp, the server rolls back the events it had processed since the client
provided the input (roll back to time t0 in the above example). In this case, the server
might determine that this older event has a bearing on subsequent events, changing their
effect to make the global world state consistent. For example, the server may determine
the player had hit and killed the opponent, meaning the opponent movement at time t2
was invalid.

Latency Compensation Techniques 95

The general algorithm for the server is as follows:

• Receive packet from client
• Extract information (user input)
• Elapsed time = current time – latency to client
• Rollback all events in reverse order to current time – elapsed time
• Execute user command
• Repeat all events in order, updating any clients affected
• Repeat.

Note that for time warp to be effective, it requires an accurate measurement of the
latency between a client and server in order that the game time can be rolled back the
proper amount. Fortunately, the frequent message exchanges between server and client
provide many opportunities for client–server latencies to be refined as the game is played.

By using time warp, clients that have a high latency to the server can still have their
commands executed in the correct game-time order without impacting other players
through a time delay. This allows players to respond to the current state of the game
world without having to account for latencies to the server. For example, with time warp,
a player in a first-person shooter can aim directly at an opponent, not having to worry
about the opponent moving before the server gets the shot update message. Without time
warp, in the same first-person shooter a player would have to ‘lead’ an opponent by
aiming in front of them in order to hit the opponent when they did move.

The popular first person shooter game, Half-Life 2 (HL2), makes use of time
warp [Valve] (along with some other techniques mentioned in this chapter). For testing
purposes, the HL2 server allows additional lag to be added to the clients. The server
administrator can observe the actual location of a unit and the location for the unit with
time warp by having a separate client on the same machine as the server (a listen server).
Figure 6.9 shows a screenshot of an HL2 listen server. The round-trip latency to the client
is 200 ms, meaning the user’s commands are executed 100 ms before the screenshot. The

Figure 6.9 Example of Time Warp (Half-Life 2). The target is on the left and is ahead (in terms
of time) of the client. The boxes on the right represent the targets the client had when shooting
(back in time) and that the server uses when time is warped back to determine a hit

96 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

grey boxes show the target position on the client where it was 100 ms ago. Since then,
the target moved to the left while the user’s command was travelling over the network
to the server. When the user command arrives at the server, the server rolls back time
(time warp) to put the target in the position it was at the time the user shot, indicated
by the black boxes. The server determines there was a hit (the client sees blood from
the wounds). Note that the client (grey) and server (black) boxes do not match precisely
because of small differences in the time measurements and the speed of the moving target.

Time warp can cause some inconsistencies, however. Suppose a player places the cross-
hairs of a gun on an opponent and fires. The server, using time warp, will ultimately
determine this is a “hit”. However, in the meantime, because of client–server latency,
the opponent may have moved, perhaps even around a corner and out of sight. When the
server warps time back to when the shot was fired and determines the opponent was shot,
it will seem to the opponent that the bullets actually bent around the corner. Fortunately,
this disconcerting effect is minimised if the opponent cannot see the attacker or if the
opponent was still in the open and not hiding.

6.3.3 Data compression

While the propagation delay between a client and a server may be fixed (ultimately
bounded by the speed of light), reducing the size of the messages sent between client
and server can also reduce latency. As noted in Chapter 5, a small packet has a shorter
transmission time than a large packet because of serialisation delay, a component of delay
that accumulates at each router between the server and the client.

There are several ways that packet sizes can be reduced.

(a) Lossless Compression. Data can be manually compressed using well-known data algo-
rithms. Unlike compression techniques for audio, video and images, compression for game
data must be lossless, meaning all the bits that are compressed must be restored when
uncompressed. Lossless data compression finds repeated patterns in the bits and com-
presses the repeats to use fewer bits. Most algorithms used for lossless compression are
based on techniques developed by Lempel and Ziv in 1977 and later refined by Terry
Welch’s 1984, and are hence called ‘LZW algorithms’ [Wel84].

(b) Opponent Prediction. As mentioned above, for some game units, opponent prediction
can greatly reduce the amount of data that needs to be transmitted between game clients.

(c) Delta Compression. Rather than sending complete state information whenever there
is a change to the world or its units, it may be possible to send updates as changes (or
deltas) from the previous world. This technique requires reliable delivery of data (such
as, by using TCP as the transport protocol), but can be effective when the entire game
world update is large but the changes are small.

(d) Interest Management. Instead of sending all data to each client, only a subset of data,
the data that is of interest to the client, can be sent [BGRP01, MBD00]. The area of
interest for a client is called the aura and is where the interaction between the client and
other game units occurs (Figure 6.10). Auras need not be symmetric, where the focus of
one object needs to intersect the nimbus of another object in defining the aura. The goal of
interest management is to reduce the number of messages needed to be sent to every client.

Latency Compensation Techniques 97

Hider’s
nimbus

Seeker’s
nimbus

Hider’s
focus Seeker’s

focus

Where are
you?

Figure 6.10 Aura of interest, illustrated by the game ‘Hide and Seek.’ The Aura is made up of a
Focus and Nimbus. If the Focus of a unit intersects the Nimbus of another unit, they can interact.
Here, the Hider can see the Seeker, but the Seeker cannot see the Hider

(e) Peer-to-Peer. Using a peer-to-peer network where clients send data directly to each
other rather than to the server can reduce bitrates to the server. Peer-to-peer architectures
are used for some common game aspects, such as voice chat during a game, but can
be extended to include all non-essential game aspects (e.g. players could customise their
avatar appearance, sending these appearances only changes directly to other peers).

(f) Update Aggregation. Sending updates after some periodic delay can avoid some of
the network overhead associated with each message. For example, if player A moves at
time t0 and player B moves at time t1, rather than send two messages to player C, the
server may choose to send one, slightly larger message at time t1 containing the moves
for A and B, thus avoiding the network overhead for packing and sending an additional
message. In some cases, update aggregation can even reduce the number of messages sent.
For example, if A turns an avatar to face left and then turns to face right, the server may
choose to elide the commands and send only the latest facing to the right to other clients.

In general, using compression trades off CPU cycles at the client and server for
reduced network load. If the network reduction is significant, and the compression and
decompression is not computationally prohibitive, compression makes sense as a latency
compensation technique.

6.4 Visual Tricks
This section mentions a few techniques that do not really involve networking, but can
cover up network latency to the user.

A start-up animation can be used to hide latency from the client to the server. For
example, if a boat gets ready to move, the game may require it to visually raise sails
before it starts to actually move. Such animation delays can take a couple of hundred
milliseconds, even allowing a message to go the server and back before the unit actually
moves. This way, if the server indicates the move is not allowed (perhaps another boat is

98 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

blocking the way), there is no discrepancy to fix, while the player still receives immediate
feedback making the game feel responsive.

Similarly, local confirmation can be used immediately even if the remote effect is not
confirmed by the server. For example, if a player pulls the trigger on a gun, the game
client can play a shooting sound effect and show a puff of smoke, even if the impact of
the shot is not determined for some time.

6.5 Latency Compensation and Cheating
Unfortunately, the anonymity that the Internet provides often promotes behaviour that
would not occur offline. For online games, this often means the propensity for cheating.
Some of the latency compensation techniques, while attractive for helping gameplay by
reducing the effects of Internet latency, provide new opportunities for cheating.

It may occur to the astute reader that using opponent prediction could eliminate the
need for a server completely. Each client could compute their own actions and send the
needed updates to the other clients when there is a change. In fact, this model of client-
side communication only is the one proposed in DARPA’s DIS protocol and works quite
well if the clients can be trusted. However, for many game conditions, especially online,
multiplayer games where players do not know one another, pure-client control of the
game world state is prone to cheating. For example, a client could just send a message
to another client saying ‘my player is right behind your player and just shot you in the
head’. Without an authoritative server to confirm or refute such client actions, some games
would suffer from rampant cheating.

With time warp, a client could interfere with measurements about round-trip time,
making the server believe the client is further away than it actually is. This would allow
the client to respond to events that, in essence, happened in the past and hence giving
unfair advantage. Similarly, with time delay, a client with slow reflexes could claim a
higher latency than it actually has, causing a large time delay at the server, thus neutral-
ising the better reflexes that opponents may have. Opportunity to cheat with these time
manipulations are exacerbated if the client controls the timing measurements and time
delays.

Interest management, while reducing network bitrates, can also be abused by cheaters.
Clients can claim interest in game state that they could otherwise not see, using this
information to gain a tactical advantage. For example, in a strategy game, a client could
freely scan the other side of the map, locating the opponents base and attacking when
the base should be concealed by the ‘fog of war’. Or, in a shooter game, a player could
observe an opponent on the other side of the wall, when the opponent should be concealed.

References
[AB05] S. Aggarwal and H. Banavar, “Fairness in Dead-Reckoning Based Distributed Multi-Player Games”, In

Proceedings of the 4th ACM Network and System Support for Games (NetGames), Hawthorne, NY, USA,
October 2005.

[BGRP01] S. Benford, C. Greenhalgh, T. Rodden, and J. Pycock, “Collaborative virtual environments”, Com-
munications of the ACM, Vol. 44, No. 7, pp. 79–85, 2001.

[CF05] A. Chandler, J. Finney, “On the Effects of Loose Causal Consistency in Mobile Multiplayer Games”,
In Proceedings of the 4th ACM Network and System Support for Games (NetGames), Hawthorne, NY, USA,
October 2005.

Latency Compensation Techniques 99

[CLC99] W. Cai, F. Lee, L. Chen, “An Auto-Adaptive Dead Reckoning Algorithm for Distributed Interactive
Simulation”, In Proceedings of the 13th ACM Workshop on Parallel and Distributed Simulation, Atlanta,
Georgia, USA, Pages: 82–89, 1999.

[Dead reckoning] Wikipedia, “Dead Reckoning”, [Online] http://en.wikipedia.org/wiki/Dead reckoning,
Accessed 2006.

[DF98] C. Durbach and J.M. Fourneau, “Performance Evaluation of a Dead Reckoning Mechanism”, Proceed-
ings of the Second International Workshop on Distributed Interactive Simulation and Real-Time Applications,
page 23, July 19–20, 1998.

[DIS] Wikipedia, “Distributed Interactive Simulation”, [Online] http://en.wikipedia.org/wiki/Distributed Inter-
active Simulation, Accessed 2006.

[Mau00] M. Mauve, “How to Keep a Dead Man from Shooting”, Proceedings of the 7th International Work-
shop on Interactive Distributed Multimedia Systems and Telecommunication Services (IDMS), 2000, pages
199–204, Enschede, Netherlands, October 2000.

[MBD00] K.L. Morse, L. Bic, and M. Dillencourt, “Interest Management in Large-Scale Virtual Environments”,
Presence, Vol. 9, No. 1, pp. 52–68, 2000.

[Ney97] D.L. Neyland, “Virtual Combat: A Guide to Distributed Interactive Simulation”, Stackpole Books,
Mechanicsburg, PA, 1997.

[Wel84] T.A. Welch, “A Technique for High Performance Data Compression”, IEEE Computer, Vol. 17, No.
6, pp. 8–19, 1984.

[Valve] Valve Developer Community, “Source Multiplayer Networking”, [Online] http://developer.
valvesoftware.com/wiki/Source Multiplayer Networking, Accessed 2006.

7
Playability versus Network
Conditions and Cheats

Ultimately, a game hosting company, an Internet Service Provider (ISP) and a game
manufacturer are aiming for the same thing – satisfied consumers. Satisfaction is achieved
by understanding, and avoiding, the circumstances that would undermine an enjoyable
game-play experience.

In this chapter we look at methods people have used to measure and infer player
tolerance for network issues (such as latency, loss and jitter). We also look at how network
communication models impact on cheats and cheat-mitigation techniques available to
game developers.

7.1 Measuring Player Tolerance for Network Disruptions
Quantifying the typical player reaction to network-level characteristics is a nontrivial task.
Everyone knows that ‘latency is bad for gaming’. The task for ISPs and game hosting
companies is to determine just how much latency becomes noticeably ‘bad’ for some
definitions of bad, and to develop similar insights for loss and jitter as well.

A player’s sense of satisfaction with any particular game will usually depend on a range
of environmental factors. Players may be more or less judgemental of network-induced
game-play disruptions if they are tired, hungry or have pre-existing social relationships
with other players on the server. Any technique for inferring a relationship between player
satisfaction and network conditions must consider these other influences.

There are two distinct approaches for discovering player tolerance to network
disruptions.

• Build a controlled lab environment in which to test small groups of players under
selected conditions

• Monitor player behaviour on public servers over many thousands of games.

Controlled usability trials are preferable whenever possible. One can monitor (and
later account for) tiredness, hunger and social relationships between players. Arbitrary
and repeatable network-level latency, loss and jitter between the players and the game
server are introduced artificially. By varying the network conditions and keeping other

Networking and Online Games: Understanding and Engineering Multiplayer Internet Games
Grenville Armitage, Mark Claypool, Philip Branch 2006 John Wiley & Sons, Ltd ISBN: 0-470-01857-7

102 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

environmental conditions steady, we can draw fairly solid conclusions about player
tolerances from modestly small groups of players.

Unfortunately, it is often hard to find a set of people willing to sit and play in a controlled
lab environment, let alone actually obtain the resources to create the lab, in the first place.
The alternative is to correlate user behaviour on an existing game server with changes in
network conditions over time. This approach is less than ideal, because we cannot control
(or even know) the environmental factors affecting every player who joins our server. We
cannot control the precise network conditions affecting each and every player. At best we
can wave our hands around and invoke the ‘law of large numbers’ – make measurements
over thousands of games, correlate player success with known network conditions and
hope the remaining unknown factors cancel themselves out.

Defining a metric for player satisfaction can also be problematic. In controlled trials,
every player can be asked to fill out a survey form after each game, allowing self-
reporting of subjective ‘satisfaction’. When running a public game server it is far harder
to entice players into filling out your survey. Unless the game’s developer integrates a
survey mechanism into the game itself, you are asking players to make a special, separate
visit to your web site after playing on your server [OLI2003]. In all cases, care must
be taken to provide questions that discover a player’s environmental circumstances and
avoid questions that bias player’s answers.

Another approach is to track objective in-game measures of success, for example, the
‘frag’ (kill) rate of players on a First Person Shooter (FPS) game. This can usually be
done equally well with both controlled lab trials and public servers, since the information
will be contained in the server’s own log files.

7.1.1 Empirical Research

Over the past few years, a number of empirical trials have been run using public
servers – here we will touch on work done with games such as Quake III Arena, Half-Life,
Unreal Tournament 2003 and Warcraft III.

In 2001, two Quake III Arena servers were established with identical map cycles,
identically limited to six players at a time, had two ‘bots’ at all times, and virtually
identical ‘server names’ visible to the public [ARM2001, ARM2003]. They differed only
in that one was located in Palo Alto, California (USA) and the other was located at
University College London, London (UK). The Californian server ran from May 17 to
August 18, 2001 and saw 5290 unique clients who accumulated a total of 164 ‘days
played’. Of the 5290 clients, 338 clients each accumulated more than 2 hours total playing
time during this period. The London server ran from May 29 to September 12, 2001 and
saw 4232 unique clients who accumulated a total of 77 ‘days played’. Of the 4232 clients,
131 clients each accumulated more than 2 hours total playing time during this period.

Figure 7.1 illustrates the impact of a player’s median latency (ping) on their average
‘frag rate’. Since games run for many minutes, a fractional improvement on your frag
rate can make quite a difference in your ranking relative to other players.

Another perspective on latency is provided by Figure 7.2. This shows, as a cumu-
lative histogram, the number of games played by clients who experienced a particular
median latency throughout their game. A somewhat tenuous argument can be made that
players come back more frequently if the latency is tolerable, hence the drop off from

Playability versus Network Conditions and Cheats 103

0

 0.5

1

 1.5

2

 2.5

3

 3.5

0 50 100 150 200 250 300 350 400

F
ra

gs
 p

er
 m

in
ut

e

Median ping (milliseconds)

Frag rate as a function of player’s median latency (Quake III Arena in 2001)

Palo Alto server
London server

Figure 7.1 Frag rate as a function of median latency (Quake III Arena in 2001)

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300

P
la

ye
d

ga
m

es
 (

%
)

Median ping (milliseconds)

Distribution of played games as a function of
experienced median latency (Quake III Arena in 2001)

Palo Alto (active)
London (active)

Palo Alto (all)
London (all)

Figure 7.2 Percentage of ‘played games’ as a function of median latency (Quake III Arena in
2001)

104 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

games played by people, which have over 150–180 ms latency, reflects an upper bound
of tolerance for players of Quake III Arena.

Unfortunately, the 2001 Quake III Arena trials lacked any information on player motiva-
tions and personal environmental conditions. They also did not measure the network jitter
and packet loss rates being experienced by players who experienced particular median
latencies. Thus Figure 7.1 and Figure 7.2 are more illustrative of what we might expect,
and should not be taken as hard data.

Another study in 2001 was based on a public Half-Life server in the UK [HEN2001].
For over three and a half weeks the maps rotated every 60 minutes, and they saw 31,941
instances of a player joining and then leaving the server, attributable to 16,969 unique
players. This study concluded that latencies around 225–250 ms dissuade players from
joining a server, but below that level there was no strong evidence of absolute latency
alone being a predictor of a player’s likelihood of joining, staying or leaving a server.
Another key conclusion was that simplistic correlation of data measured from public
servers is fraught with potential errors.

Early research results led to the development of more sophisticated testbeds. In a 2003
follow-up to [HEN2001], two identical (with respect to configuration and location) public
Half-Life servers were augmented with a Linux-based network switch. Using the Linux
iptables and libipq functionality [IPTABLES], this switch could add controlled latency to
particular client traffic arriving over the Internet [HEN2003]. Player behaviour over weeks
and months was monitored as latency was alternately added to one server and then the
other. When one server had 50 ms added there was a definite player-preference towards
joining the server with lower latency at any given time. Interestingly, when latency was
added to an individual player after they had started playing, the likelihood that the player
would subsequently leave seemed to decrease the longer that player had been playing.

In another example, the latency and packet loss tolerance of ‘Unreal Tournament 2003’
(UT 2003, an online multiplayer FPS game) was publicised in 2004 [BEI2004]. The
authors established a controlled network environment of four client hosts and a local UT
2003 server (somewhat like Figure 7.3). A Linux-based network router running NISTnet
[NISTNET] was used for introducing configurable latency and packet loss to each client.
Results suggested that players were unaware of packet loss rates of up to 5 %, and had only
limited latency sensitivity when performing simple or complex movements. However, a
distinct latency sensitivity emerged when using weapons, and players using more precise
weapons were more impacted by increases in latency. [The paper’s authors concluded
‘. . . even modest (75–100 ms) amounts of latency decreases accuracy and number of kills
by up to 50 % over common Internet latency ranges.’ and noted that ‘latencies as low as
100 ms were noticeable and latencies around 200 ms were annoying’.]

Of course, FPS is not the only game genre of interest. In 2003, a study was published on
the latency tolerance of players in Warcraft III – a multiplayer, online Real-Time Strategy
(RTS) game [SHE2003]. A controlled network environment (rather like Figure 7.3) was
established, with two local Warcraft III clients and a local Warcraft III server. Latency
was varied over multiple games while monitoring player behaviour during distinct ‘build’,
‘explore’ and ‘combat’ phases within the game. The authors concluded that ‘. . . overall
user performance is not significantly affected by Internet latencies ranging from hundreds
of milliseconds to several seconds.’ In addition, Warcraft III uses TCP rather than UDP
for its underlying transport protocol, ensuring that packet loss is translated into additional

Playability versus Network Conditions and Cheats 105

Local LAN

Client 1

Game
server

Client 4Client 2 Client 3

Router with controllable latency and loss
(e.g. NISTnet/Linux or
dummynet/FreeBSD)

Internet

Figure 7.3 A small testbed for controlled latency and packet loss trials

latency at the application level. The evidence supports a belief that RTS games are signif-
icantly more tolerant of network latency than FPS games – success in the game depends
more on strategic decisions than sheer reflex and reaction time.

Sports games have also been evaluated for latency tolerance. In 2004, a study was
published on network latency and EA Sports’ ‘Madden NFL Football’ [NIC2004,
MADDEN]. The authors used a small, dedicated lab network (along the lines of
Figure 7.3) with two play stations, two consoles and a router running NISTnet for
controlled delays. A player’s success at ‘running’ and ‘passing’ were not noticeably
affected until latency reached approximately 500 ms. The authors conclude that this game
has latency requirements falling somewhere between the strict demands of typical FPS
games and the looser demands of RTS games.

7.1.2 Sources of Error and Uncertainty

A number of limitations plague most published research to date in this area. Public-server
studies usually lack any real knowledge about every player’s external environmental con-
ditions, and experience a limited range of network conditions. Lab-based studies usually
only control network conditions and often collect an insufficient number of data points to
be statistically rigorous.

Rather than being insurmountable problems, these are simply issues to be considered
in future work. It is important to test player behaviour under a broad mix of network
and environmental conditions. One key limitation of public servers is that you do not get
much choice in the range of latency, jitter and loss rates experienced by the players. Some
public-server studies have seen network-induced jitter to be almost always less than 20 %
of the latency [ARM2004A]. This limits one’s ability to draw conclusions about player
behaviour under low-latency/high-jitter conditions because such conditions rarely occur
on public servers.

Public-server trials may also suffer from variability in the RTT estimation algorithms
used within each game server. The simplest way to track client latency is to mod-
ify each server to log the server’s own per-client, dynamically updated RTT estimates.

106 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

0
195 200 205 210 215 220 225

5

10

15

20

25

30
R

el
at

iv
e

fr
eq

ue
nc

y
(%

)

Latency (ms)

Relative frequency versus latency

Ping perceived network latency
Server perceived network latency

Figure 7.4 Measuring RTT with ‘ping’ versus a Quake III Arena server’s internal mechanism

Unfortunately, the game server’s RTT estimation occurs in the application space rather
than kernel space, and is not necessarily strictly designed for accuracy.

Figure 7.4 shows an example where a Quake III Arena server was separated from a
client by a router providing configurable network delay [ARM2004A]. Regular ‘pings’
(ICMP echo/reply) were run concurrently over the same link. The ICMP echo/reply tech-
nique reveals path RTT tightly sitting between 199–200 ms. In contrast, the Quake III
Arena server’s internal RTT estimates range between 198–214 ms (with most between
200–210 ms) – the median RTT reported by the game server is 5 ms higher than the
network path’s RTT, and suffers from some self-inflicted jitter.

Creating statistically relevant lab-based studies can also be rather problematic. It is
not uncommon for researchers to believe that they, and a handful of close friends or
colleagues, are representative of all players. Unfortunately, the rules of statistics say that
many tens, if not hundreds, of independent repeat trials are required before one can draw
solid conclusions.

For example, consider a generic study of player tolerance for latency and loss. A game
is played with a fixed latency and loss, the player experiences are recorded, and then
a new game is played again with a different latency and loss. If the estimated standard
deviation of measurements for any given latency and loss settings was one (1) and we
wanted to achieve 95 % confidence intervals with an error of 0.25, we would need at
least 62 independent samples [ZAN2004]. For each and every latency and loss setting,
that is a lot of samples. Particularly when you realize that, strictly speaking, ‘independent
samples’ means using different players, not simply the same player repeating the game a
number of times.

Practical considerations come into play when aiming for statistically valid lab-based
studies. Consider the logistics of setting up 62 PCs with 62 licensed copies of an FPS game

Playability versus Network Conditions and Cheats 107

client and getting 62 people to give up their afternoon to play the same map repeatedly.
One game for every permutation of controlled network conditions. For example, six
possible latencies and three possible loss rates give you 18 repetitions of the same map.
Play each map for a realistic 10–15 minutes. Now keep the 62 volunteers focused, alert,
fed and somehow independent throughout the entire period.

It is hardly surprising that most published lab-based studies of FPS games have yet to
come close to this level of statistical accuracy.

Finally, one might be tempted to consider a game’s own lag-compensation mechanisms
to be a source of uncertainty, because it hides the consequences of latency. Some games
allow players to turn off lag-compensation on a game-by-game basis. However, if the
game is normally shipped with lag-compensation enabled, this will be part of the typical
player experience in the face of network latency. Controlled lab trials should mimic the
real-world situation as closely as possible, which means leaving in-game lag-compensation
enabled.

7.1.3 Considerations for Creating Artificial Network Conditions

Controlled test environments often look a lot like Figure 7.3, using either Linux +
NISTnet [NISTNET, CAR2003] or FreeBSD + dummynet [DUMMYNET, RIZ1997]
for the router that actually instantiates desired latency and loss characteristics. Both
approaches have been widely tested and utilised, but they must be used with clear under-
standing of their underlying limitations.

One of the first things to be recognised is that neither FreeBSD nor Linux (in most incar-
nations) are real-time operating systems. NISTnet and dummynet instantiate bandwidth
limits as variable per-packet delays to meet a long-term average rate-cap. They instanti-
ate delays by queuing packets for later transmission. The definition of ‘later’ is whenever
the operating system next schedules the relevant process to check its queues. Thus, an
NISTnet-based or dummynet-based ‘controlled latency’ router may be introducing its own
timing errors into the packet streams.

For example, dummynet wakes up and processes queued packets once every ‘tick’ of
the FreeBSD system’s software clock. At least up to FreeBSD 5.4 the software clock
defaulted to 100 ticks per second. In other words, dummynet’s activities are quantised to
discrete multiples of 10 ms. Configure a 42 ms delay, and packets will experience between
50–60 ms of delay (relative to their arrival time) depending on how soon the kernel’s
software clock ‘ticks’ after each packet’s arrival.

Dummynet’s accuracy is improved by adjusting the FreeBSD kernel’s tick-
rate – preferably to at least 1000 ticks per second (one tick every 1 ms, the default for
FreeBSD 6.0 onwards). This can be achieved either by recompiling the kernel [FBKERN]
or adding the following line to the file ‘/boot/loader.conf’ and rebooting the machine.

kern.hz=‘1000’

Modern motherboards will handle this happily and it reduces dummynet’s error to 1 ms.
Under these circumstances dummynet is quite a useful and accurate tool [VAN2003].
(Linux kernels have a similar issue with default internal tickrates. At the time of writing,
some distributors were beginning to ship products with the default tickrate set to 1000
ticks per second.)

108 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

Creating artificial packet loss is relatively easy – make a random decision, and either
‘drop’ the packet or queue it according to whatever latency or rate-cap rules would
otherwise be applied.

Artificial jitter, on the other hand, is harder to get right. One might think that it is
sufficient to simply randomise the latency added to each packet in a flow of packets.
Unfortunately, if per-packet latency is implemented naively, this can result in packet
re-ordering. Packet re-ordering is highly undesirable, both in real network paths (where
it is possible but rare) and in your controlled network testbed. It can cause TCP to
aggressively shrink its flow control window, and cause unpredictable reactions from UDP-
based applications.

To understand the potential for re-ordering, consider the following scenario. You have a
router capable of adding a fixed latency to packets flowing through it. The fixed latency is
being updated (changed) at intervals of tens to hundreds of milliseconds, and set to values
randomly distributed between 90 ms and 110 ms. Re-ordering can occur in the following
way:

• Packet P1 arrives at time T1, and P1 is assigned a delay of 110 ms.
• The ‘jittering’ process now modifies the router’s fixed latency to 95 ms.
• Packet P2 arrives at time T2, and is assigned a delay of 95 ms.
• Packets P1 and P2 are transmitted (forwarded) when their assigned delay periods expire.
• If T2 – T1 > 15 ms packet P2 will emerge after P1 (normal).
• If T2 – T1 < 15 ms packet P1 will emerge after P2 (re-ordered).

The key is step 3. If the router’s artificial delay mechanism transmits packets at a
fixed delay after the packet’s arrival, independent of packets which have arrived before
or after, re-ordering can occur. Versions of NISTnet introduce re-ordering when used to
create artificial jitter in the manner described above.

Dummynet may be used to introduce artificial jitter without re-ordering because packets
are queued for transmission in the order they arrive [ARM2004B]. [In the example above,
P2 would be queued behind, and transmitted after, P1 even if (T2 – T1) was less than
15 ms.]

One final issue with artificial jitter is the choice of randomised fixed-latency values
applied to the dummynet-enabled router. If your ‘jittering function’ uniformly distributes
latency, the resulting RTT can end up having a triangular probability distribution rather
than uniform. To a statistician this is obvious – the consequence of independent jittering
in both directions through the router is the convolution of two uniform distributions,
which is a triangular distribution. However, if you use a normal distribution for latency
values (probably a more reasonable approximation of real-world jitter) the convolution is
also normally distributed [ARM2004B].

7.2 Communication Models, Cheats and Cheat-Mitigation
Wherever a set of rules governs human interactions, some participants will be inclined to
ignore, bend or break those rules. Online games are no different in this regard. Human
participants bring various personal motivations to the game, not all of which involve
playing ‘fair’ or ‘according to the rules’. And when the rules themselves are enforced

Playability versus Network Conditions and Cheats 109

inadequately or incompletely by the computer, there is a temptation to play by ‘what is
possible’ rather than what is intended. This leads us to the difficult definition of cheating.

Broadly speaking, cheating could be described thus: ‘Any behaviour that a player uses
to gain an advantage over his peer players or achieve a target in an online game is cheating
if, according to the game rules or at the discretion of the game operator (i.e. the game
service provider, who is not necessarily the developer of the game), the advantage or the
target is one that he is not supposed to have achieved.’ [YAN2005].

Although many cheats do not directly involve the underlying network, all forms of
cheating are of interest in the context of online games. When we play human-mediated
games face-to-face (for example, a card or dice game), great skill is required to hide
cheating from the other participants around the table. When playing LAN-based computer
games it is also difficult to hide cheating from your opponents since they will usually be
within sight and earshot. However, when playing online, the participants are invariably
nowhere near each other and thus unable to verify that everyone’s game play experience
is consistent with the game’s notional rules. Combined with the de-personalising influence
of interacting with people through avatars or characters, the temptation to ‘cheat’ can be
substantial.

In this section, we will briefly review how cheating can be classified and then dis-
cuss examples of cheats involving misuse of server-side, client-side and network-layer
technologies. Finally we will review possible methods of cheat-mitigation.

7.2.1 Classifying and Naming Methods of Cheating
There is no general agreement on classification and naming of cheats, and we will not
attempt to force a particular approach here. It has been observed [YAN2005] that cheats
and cheating can be described using three orthogonal attributes.

• What is the underlying vulnerability (what is exploited?)
• What are the consequences of cheating (what type of failure can be inflicted?), and
• Who is doing the cheating?

Vulnerabilities can occur in server or client software (bugs), incompletely specified
game-state machines (e.g. the game rules programmed into the clients and servers do
not cover all possible scenarios), instability of the communication medium (transmission
of game traffic can be quite unreliable) or the incomplete hiding of internal game-state
information (e.g. ostensibly hidden server-side information leaking to a player via sniffing
of network traffic or un-sanctioned modification of the client).

Every cheat brings different benefits and risks to the cheater, influencing the likelihood
of a given cheat being used. Risk occurs when the cheat creates a change in game play
that is easily noticed by other players, or automated cheat-detection schemes are coupled
with effective sanctions against players caught cheating.

Finally, cheats may be implemented by a single player without anyone’s knowledge,
they may include other players in collusion, or even include trusted nonplayers who have
access to the game server or central game-state databases.

7.2.2 Server-side Cheats
Two broad vulnerabilities exist on the server side. First, the server itself may implement
game-play rules in a manner that incompletely predicts the space of possible player

110 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

actions. Second, the human administrator(s) of the game server may not be trustworthy
(or be subject to external influence sufficiently to elicit corrupting behaviour).

One example of game-play corruption is the ‘escape’ cheat. Upon realising that they
are losing the game, a player withdraws at the last minute rather than risk having their
final score logged for public record and display. Their withdrawal (escape) prevents
their own reputation from being damaged and, in some games, denies their opponent a
legitimate win.

Escape cheating can occur in any game where the server forgets about a player as soon
as they leave. The partial solution involves tracking ‘escapees’ as well as winners and
losers, and publicising a player’s ranking in all three categories. Where the game server
keeps comprehensive activity logs it may also be possible to reconstruct, and publish, the
cheater’s lack of success up to the point where they left. This solution works because it
modifies the metrics by which ‘success’ is measured socially, putting pressure on players
to be seen to play games through to the end.

For example, at the end of a map, Quake III Arena only prints on screen the scores of
players who remained connected to the server. The server logs do contain all kill/death
information, so a cheater’s actual success can be determined by an external program.
Similar problems have been reported with online strategy games such as ‘Go’ and
‘Bridge’ [YAN2003, YAN2002].

Alternative methods of pressuring players to stay have their own weaknesses. For
example, a person ‘escaping’ a game may simply be declared the loser if they do not rejoin
and continue in a short period. Unfortunately, such a server-side rule invites malicious
players to ‘frame’ another player – use a network DoS attack (discussed later) to force
someone else’s disconnection in such a way that the victim cannot reconnect in time and
thus is declared the loser. (This works better with games such as Go and Bridge, rather
than fast-paced FPS games.)

Another example of incompletely specified in-game behaviour was the ‘skin cheat’ of
early Counter-Strike servers. Counter-Strike is a team-play mod of Half-Life, where two
competing teams (‘terrorists’ and ‘counter-terrorists’) do battle. The original servers did
not expect players to request a change in their skin (the image they project to other players)
after the beginning of each game. Because it wasn’t expected, the server did not block
such requests either. So unscrupulous players would switch skins in-game to infiltrate
opposition positions, achieving a substantial tactical advantage in the process [CHO2001].

For games that rely on players ‘logging in’ with a user name and password, there can
be issues associated with protection of the password system from attack. The simplest
cheat would be to launch a dictionary attack on the online login process of a game
server – cycling through thousands of possible words as passwords for your intended
victim. On the face of it, the game server can compensate by enforcing a minimum
delay to every password attempt and then freeze the account after a certain number of
failed login attempts. Unfortunately, this leads to another type of cheat – freeze another
player out of the game by deliberately logging into the game server as the victim, using
passwords you know are not right. Once you hit the server’s limit for bad passwords your
victim can also not login. This would be a major problem for the victim if the freeze
was triggered just before they were going to login for some critical events in an RTS or
MMORPG game.

Playability versus Network Conditions and Cheats 111

A broad range of cheating becomes possible when the server administrator(s) cannot be
trusted. Administrators can meddle in a ‘God’ mode within the game, completely subvert
the game-state by modifying the game’s database from outside the game itself, or modify
the game server’s internal game-play rules in subtle ways.

One of the authors tried exactly this kind of server-side cheat with a simple Quake
III Arena mod. In this FPS, the server tells clients the ‘rules’ of game physics, and
clients fall in line. The author’s server-side modification gave extra flight time to rockets
fired by the author. Conversely, the rockets of another specific player (the victim) were
given truncated flight times (so they often self-destruct after flying a shorter-than-normal
distance) proportional to how many rockets the victim had left. (The victim – a relatively
good Quake III Arena player at the time – did not notice the imbalance for a number of
days.)

The more usual annoyances imposed by server administrators include changing con-
figurable game physics parameters (such as gravity), capriciously banning or kicking
off players and generally being a disruptive ‘god’ character. Such abuses tend to be
self-limiting though, as the administrator soon ends up with an unpopular and empty
server.

Finally, it is worth noting a particular style of game play, known as camping, that is
often described as cheating. Particularly in FPS games, there may be places in a map
where a player has a good shooting position while at the same time being hard to kill.
When so positioned, a player can rack up a large number of kills without moving around
(i.e. they ‘camp’). On the one hand it may be cheating to use a camping position that
exists only because the map was poorly designed. On the other hand, in real life you
cannot complain that the enemy is being ‘unfair’ if they find a location with admirable
camping potential – and to the extent a game tries to emulate real-life scenarios, camping
is not cheating. The decision ultimately depends on the game players themselves on a
case-by-case basis.

7.2.3 Client-side Cheats

A huge degree of trust must be placed in the client side of an online game. The game-play
experience is entirely mediated by the combination of game client software and the oper-
ating system, and hardware environment on which the game client runs. Unfortunately,
this is almost precisely the wrong place to put much trust because the client software runs
on physical hardware entirely under control of the player. (Whilst this is trivially true for
PC games, it is often also true of console games where the console’s internal security
mechanisms are reverse-engineered by third parties.)

Cheats in games using peer-to-peer communication models are essentially variations of
client-side cheats, made possible because the local rendering of game-state occurs on the
player’s own equipment.

Most client-side cheats involve manipulating the software context within which the
game client operates to augment a player’s apparent reflexes and presence, or augment a
player’s situational awareness by revealing supposedly hidden information.

In FPS games, the most important augmentation is aiming of one’s gun. In real-time
strategy and role-playing games, augmentation may be in the form of automated ‘bots’

112 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

who play on your behalf to execute basic strategies 24 hours a day while you are off
elsewhere (or sleeping). In all interactive game types, there are advantages to being able
to execute certain sequences of moves (e.g. jump, spin and shoot). Thus people develop
software tools to automate (and thus augment) the player’s execution of such moves.

One of the most common augmentations in FPS games is the ‘Aimbot’ – automated
code to assist in aiming and shooting at other players. Once patched into the actual game
client software, an aimbot is fully aware of the precise locations of all other players
within the client’s view. When the player issues ‘shoot’ commands, the aimbot rewrites
the aiming information with precise coordinates of the target, guaranteeing a hit every
time. More sophisticated aimbots may track and automatically shoot targets you have
pointed at. Naturally, this is considered an extremely annoying cheat by the victims.

Another form of augmentation involves violating the game’s laws of physics that would
normally impede a player’s perception of the world around them. There are a number of
examples.

• Over-riding other players’ choices of avatar skin (colour schemes), making them clearly
stand out visually on screen regardless of ambient lighting

• Revealing tactically useful information on screen about other players (e.g. their remain-
ing strength, what weapons they are carrying), regardless of whether or not the players
are actually visible

• Eliminating game elements that obscure a player’s vision or knowledge of the sur-
rounding map regions. (E.g. ‘fog of war’ obscuring maps in RTS games, or snow/rain
in most games, and opaque walls and boxes hiding enemies in FPS games.)

These cheats violate the trust model of the original game server and client. The server
provides information about the game (e.g. other players or map layout) that would not
normally be revealed to the actual player until such time as the player reaches a point in
the map where the information would naturally become apparent. Augmentation cheats
remove such restrictions.

One source of tactical advantage is to simply augment the skins of other players with a
glow or colours that otherwise dramatically contrast with the textures, colours and lighting
around the map. This defeats the ability of other players to blend into the shadows and
camouflage colouring around a map. To a certain degree you can ‘see into’ shadows by
adjusting the brightness and gamma on your video card and monitor. However, this can
create eye strain as the rest of the map becomes too bright and washed out. A client-side
software modification targeting only the other players is much more effective. Figure 7.5
shows two versions of the same scene in Quake III Arena with normal and glowing skins.
The glow cheat makes the character on the left easy to see even in a fast-paced game.

Another form of cheat involves revealing information about the character in view.
Figure 7.6 shows a close-up of a Quake III Arena character with its name and current
weapon overlaid (this example also shows the ‘glow’ hack).

The most useful cheat is the ‘wallhack’. This refers to any cheat that allows you to ‘see’
through opaque objects (such as walls). There is incredible tactical benefit to being aware
of an oncoming opponent before they are aware of you. Figure 7.7 shows an example in
the context of Wolfenstein Enemy Territory. With the cheat activated, you become aware
of the medic and soldier hidden from view at the end of the corridor well before they
become aware of you.

Playability versus Network Conditions and Cheats 113

Figure 7.5 Scene from Quake III Arena – regular view (top) and ‘glow’ hack (bottom).
Reproduced by permission of Id Software, Inc.

Figure 7.6 Close-up of a Quake III Arena character – regular view (left), name and weapon
revealed (right). Reproduced by permission of Id Software, Inc.

Wallhacks can be achieved by modifying game client code directly or modifying exter-
nal software, such as video device drivers, on which the client relies to render images on
screen. Today’s graphically advanced games offload much of their actual 3D graphics ren-
dering to the operating system’s graphics drivers. Opaque objects are drawn by sending a

114 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

Figure 7.7 Scene from Wolfenstein Enemy Territory – regular (top) and with wallhack, glow and
names (bottom). Reproduced by permission of Id Software, Inc.

request to the graphics driver to ‘draw an opaque object’. The 3D graphics drivers render
each scene by drawing more distant objects first and then overlaying these with closer
objects. When the closer objects are opaque the more distant objects (e.g. other players)
are effectively hidden. If the cheater can modify the graphics driver to interpret ‘opaque’
as ‘mostly transparent’ (or ‘draw as an open wire frame’), then a wallhack is created
without touching the game client software at all.

Client software can sometimes also be tricked into revealing information without mod-
ifying or patching the client software itself. Many clients have configurable video display
options that players can tweak to optimise their client’s relationship with the player’s
choice of video/graphics card. Sometimes these settings can, themselves, cause disconti-
nuities in how map elements are rendered – creating holes and gaps between walls and
doors where they should not be.

Client-side cheats are problematic. Players must trust that every other player’s game
client is obeying the game’s rules and laws of physics, yet the potentially malicious
player controls the entire hardware and software environment within which their game

Playability versus Network Conditions and Cheats 115

client operates. At the end of the day we can only reduce the likelihood of client-side
cheats rather than remove them entirely.

7.2.4 Network-layer Cheats

The Internet has a number of characteristics that benefit potential cheaters. There is not a
great deal of control over resource consumption – both how much you choose to consume,
and how much consumption is imposed upon you. There is not much attention to identity,
authentication and privacy at the IP layer either.

Perhaps one of the most annoying cheats is disruption of another player’s network
connection by ‘flooding’ it with excess IP packet traffic. Since many players are con-
nected via dial-up or consumer broadband ADSL or Cablemodem links, even a minimalist
application of distributed denial of service (DDoS) techniques can be quite effective.
The main goal of a DDoS attack is to overload some part of the victim’s network
access path, leading the victim to experience a large spike in latency and packet loss
rates. Depending on how it is applied, the victim may not even consider the degraded
service to be unusual. In most cases the victim has no way of blocking the inbound
flood of traffic before it reaches, and saturates, the weakest part of the victim’s Internet
connection.

Figure 7.8 shows how a flooding/DDoS attack could be launched against an unsuspect-
ing victim. In principle, the cheater can launch the attack from anywhere, keeping their
own game client’s network connection free of excess traffic.

Increasing the victim’s latency is intended to lead directly to degraded game play
(particularly in FPS games) and eventual disconnection of the victim from the game. The
flooding attack may be an end unto itself, or simply a means to trigger a disconnection
that will by itself cause negative consequences for the victim (e.g. if the game server

Victim

Game
server

Cheater

Host B

Host A

Influx of packets floods
victim's access link,
causes latency spike

and packet loss

Internet

Flood packets

Game traffic

Cheater acts alone, or
co-opts other hosts to
magnify flood traffic

Figure 7.8 DDoS being targeted at a victim while playing a game

116 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

penalises disconnections before a game ends). Or the attack could turn the victim into a
‘high ping’ player, making him or her undesirable to the team on which they had been
playing.

This problem is not limited to FPS games. It has been noted that ‘. . . many online Go
players choose to play 25 stones in 10 minutes, and it is not unusual for them to play five
stones in the last 10 seconds. During the 10 seconds, the [flood attack] is always deadly.
Most victims lose their games, and they are not sure whether they are attacked or the
network connection is jammed due to other normal reasons.’ [YAN2002].

Network traffic is relatively easy to intercept. This truth lends itself to proxies that
assist in game-play without requiring any modification to one’s game client. Aimbots have
been implemented as network-layer proxies on this basis – intercepting and interpreting
snapshot packets in one direction and rewriting ‘shoot’ command packets in the other
direction.

Another form of cheating is to connect as multiple users at the same time and ‘collude
with each other’. For example, one person could play as both partners in a game of online
Bridge [YAN2003], thereby having an out-of-band path between the two partners who
nominally should have no way to communicate in private.

7.2.5 Cheat-mitigation

A central principle of online, multiplayer game design should be:

• Do not delegate more trust than is absolutely necessary.

There will always be someone in a position to abuse trust. The goal is to spread risk by
minimising the amount of control different people have, while still maintaining the desired
level of interactivity and immersion/realism. (This is actually a good design principle for
all network-mediated communication systems.)

Some server-side cheats are mitigated by discovering (and fixing) incomplete in-game
interpretation of game-play rules. Other cheats can be avoided by deploying appropriate
personnel security practices with respect to employees who maintain the servers (e.g.
authenticated audit trails on database or configuration changes). At the end of the day,
server-side cheats are self-correcting – an easily abused server quickly becomes unpopular
and either dies through lack of use, or becomes a customer-support nightmare for the
hosting company.

Network-layer DoS attacks rely on knowledge of the victim’s IP address. Anything that
hides player IP addresses will reduce the likelihood of such attacks. This is one significant
advantage of client–server network communication model – only the game server needs
to know each player’s IP address, and each player only needs to know the server’s IP
address. Games utilising a peer-to-peer communication model at the network layer by
definition must expose every player’s IP address to every other player.

Note that a game may employ a peer-to-peer system model whilst employing a
client–server network model. The peers can utilise a central server at the IP layer to pass
game-state updates between themselves without having to reveal their own IP addresses
to each other. (Using IP multicast would not help here. Although each player does not
need to know anyone else’s IP address to send packets, each player’s own IP address is
revealed in the source address field of packets they send to other clients.)

Playability versus Network Conditions and Cheats 117

In principle, a malicious player could attempt to flood through the game itself (e.g.
sending in-game text messages to other players at a high rate, which could create the
desired flood of traffic at the IP layer). However, a centralised game server can impose
limits on the rate at which it forwards in-game messages between players. A reasonable
rate limit (on the basis of the ability of the human recipients to read legitimate messages)
would be far below the rate needed to flood a victim’s underlying network links.

There are two broad approaches to mitigating client-side cheats – minimise the amount
of game-state information proactively distributed by the server, and verify that the client’s
operating environment is within ‘normal’ parameters.

The following trade-off enables wallhacks to provide tactical advantage:

• There is information a player should not see until ‘the right time’.
• To ensure a player sees new events as quickly and smoothly as possible, the server’s

snapshots carry information about objects and players not yet visible to the player.
• The client software is trusted to only reveal this additional information at an appropriate

time and in an appropriate manner.

This set of trade-offs are understandable, particularly as they minimise the processing
load at the game server and maximise the client’s ability to reveal in-game objects the
instant they ‘should’ come into view.

One solution would be for game servers to only send to each client snapshots pertaining
to in-game entities that each player should be able to see. This would negate the value
of most wallhacks as the client will not be told what is behind objects that the server
believes are opaque. Unfortunately, there are two problems with this solution. First, this
increases the processing required to calculate each snapshot at the game server. Second,
the server’s knowledge of each player’s field of view lags by at least one RTT. Thus, the
server cannot send data about other objects coming into view until after the player has,
for example, walked around a corner. This would create a somewhat jarring experience
(particularly in FPS games), and likely disadvantage players with high RTT relative to
those with low RTT.

A compromise is for the game server to only include in each snapshot the entities
the player can see and entities the player is likely to see within a very short period
into the future (given the trajectories of the relevant entities). The trade-off is this: By
reducing how far into the future a server’s snapshots ‘see’ you certainly reduce how much
information can be revealed by a wallhack; yet you also reduce the ability of the client
to smoothly render other entities coming into view. The converse is also true.

An alternative approach is to verify that the client’s operating environment is within
‘normal’ parameters. This is the principle behind PunkBuster [PBUSTER] and similar
services. A third-party application inspects the client software’s integrity, client-side con-
figuration variables and the video software/hardware combination to verify that no known
‘cheats’ are being employed. The cheat-detection application will usually monitor the
client host’s operating environment continuously throughout a game, rather like an embed-
ded anti-virus tool. For example, PunkBuster (available for 14 FPS games at the time of
writing) has both client and server components that communicate regularly throughout
a game to ensure that client-side parameters are within bounds as appropriate for the
game. PunkBuster’s client and server components also regularly ‘call home’ to the main

118 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

PunkBuster site for updates and upgrades, thus automatically staying abreast of the latest
cheats.

Current anti-cheat tools are quite sophisticated. Yet, ultimately they too can be corrupted
because, as noted earlier, all client-side software runs on physical hardware entirely under
control of the player. At best, tools like PunkBuster can only aim to be so complicated
and comprehensive that potential cheaters are discouraged from even risking an attempt
due to the chance of being caught.

This leads to the question of consequences. Anti-cheat tools are neutered if there are
no consequences to being caught. Valve, developers of Half-Life 2 utilise ‘Valve Anti-
Cheat’ (‘VAC’), (although the current version is sometimes known as VAC2) to detect
corruption of client-side environment and explicitly ban players caught cheating. Because
of the tight integration of VAC and Valve’s Steam player authentication system [STEAM],
VAC banning is quite effective. PunkBuster can also keep a record of cheaters, and
impose long-term bans if the underlying game’s authentication mechanism allows long-
term identification of a particular player.

Given the feasibility of introducing severe consequences for cheating, another approach
to cheat-mitigation is to verify a game’s integrity after cheating has occurred. Although
this does not prevent someone from cheating in the first instance, the risk of being later
discovered and banned from a game should reduce the incentive for people to try cheating.
Proposals along these lines have been made for RTS games [CHA2005]. Players might
regularly create cryptographically hashed versions of their map view and own movements
and share this information with other players during the game. Clear-text information is
only sent when other players claim to have viewable areas overlapping your units. Hashing
prevents the other players from extracting information about your units that they should
not know at a particular point in time. At the end of the game, each player shares their
actual moves and the temporary secret key they used to generate their hashed information.
The validity of every other player’s claimed viewable area at every step of the game can
thus be verified through the (now decoded) log of hashed move information.

More information about cheats and anti-cheat techniques for a range of games can be
found in many online forums (for example, Counter-Hack [CHACK]).

References
[ARM2001] G. Armitage, “Sensitivity of Quake3 Players To Network Latency”, Poster session, SIGCOMM

Internet Measurement Workshop, San Francisco, November 2001.
[ARM2003] G. Armitage, “An Experimental Estimation of Latency Sensitivity in Multiplayer Quake 3”, 11th

IEEE International Conference on Networks (ICON 2003), Sydney, Australia, September 2003.
[ARM2004A] G. Armitage, L. Stewart, “Limitations of using Real-World, Public Servers to Estimate Jitter

Tolerance of First Person Shooter Games”, ACM SIGCHI ACE2004 conference, Singapore, June 2004.
[ARM2004B] G. Armitage, P. Branch, L. Stewart, “Mathematical and Experimental Analysis of Limitations in

Creating Artificial Jitter for Networked Usability Trials”, 3rd Workshop on the Internet, Telecommunications,
and Signal Processing (WITSP’04), Adelaide, December 20–22, 2004.

[BEI2004] T. Beigbeder, R. Coughlan, C. Lusher, J. Plunkett, E. Agu, M. Claypool, “The Effects of Loss and
Latency on User Performance in Unreal Tournament 2003”, ACM SIGCOMM 2004 workshop Netgames’04:
Network and System Support for Games, Portland, USA, August 2004.

[CAR2003] M. Carson, D. Santay, “NIST Net: A Linux-based network emulation tool”, ACM Computer Com-
munication Review, Vol. 33, No. 2, pp. 111–126, 2003.

[CHA2005] C. Chambers, W.C. Feng, W.C. Feng, D. Saha, “Mitigating Information Exposure to Cheaters in
Real–Time Strategy Games”, Proceedings of the 15th ACM workshop on network and operating systems
support for digital audio and video (NOSSDAV 2005), Skamania, Washington, USA, June 2005.

Playability versus Network Conditions and Cheats 119

[CHACK] Counter Hack, http://www.counter-hack.net/, Accessed 2006.
[CHO2001] C Choo, “Understanding Cheating in Counterstrike”, (online) http://www.fragnetics.com/articles/

cscheat/print.html, November 2001.
[DUMMYNET] “Dummynet – Traffic Shaper, Bandwidth Manager and Delay Emulator”, http://www.

FreeBSD.org/cgi/man.cgi?query=dummynet&sektion=4, Accessed 2006.
[FBKERN] Chapter 8 Configuring the FreeBSD Kernel, FreeBSD Handbook, 2005 (http://www.freebsd.org/

doc/en US.ISO8859-1/books/handbook).
[HEN2001] T. Henderson, “Latency and user behaviour on a multiplayer game server”, Proceedings of the 3rd

International Workshop on Networked Group Communications (NGC), London, UK, November 2001.
[HEN2003] T. Henderson, S. Bhati, “Networked games – a QoS-Sensitive Application for QoS-insensitive

Users?” ACM SIGCOMM RIPQoS Workshop 2003, Karlsruhe, Germany, August 2003.
[IPTABLES] “The Netfilter/iptables Project”, http://netfilter.samba.org, Accessed 2006.
[MADDEN] “Madden NFL 2004 on EASPORTS.com”, http://www.easports.com/games/madden2004/, 2004.
[NIC2004] J. Nichols, M. Claypool, “The Effects of Latency on Online Madden NFL Football”, Proceedings

of the 14th ACM International Workshop on Network and Operating Systems Support for Digital Audio and
Video (NOSSDAV), Kinsale, County Cork, Ireland, June 16–18, 2004.

[NISTNET] National Institute of Standards and Technology, “NIST Net Home Page”, USA, http://snad.ncsl.
nist.gov/itg/nistnet/, Accessed 2005.

[OLI2003] M. Oliveira and T. Henderson, “What Online Gamers Really Think of the Internet”, Proceedings
of the 2nd Workshop on Network and System Support for Games (NetGames 2003), Redwood City, CA,
USA, May 2003.

[PBUSTER] “PunkBuster Online Countermeasures”, http://www.punkbuster.com/, Accessed 2006.
[RIZ1997] L. Rizzo, “Dummynet: A Simple Approach to the Evaluation of Network Protocols”, ACM Computer

Communication Review, Vol. 27, No. 1, pp. 31–41, 1997.
[SHE2003] N. Sheldon, E. Girard, S. Borg, M. Claypool, E. Agu, “The Effect of Latency on User Performance

in Warcraft III”, Proceedings of the 2nd Workshop on Network and System Support for Games (Netgames
2003), Redwood City, CA, USA, May 2003.

[STEAM] “Welcome to Steam”, http://steampowered.com/, Accessed 2006.
[VAN2003] W.A. Vanhonacker, “Evaluation of the FreeBSD Dummynet Network Performance Simulation Tool

on a Pentium 4-based Ethernet Bridge”, CAIA Technical Report 031202A, December (http://caia.swin.edu.au/
reports/031202A/CAIA-TR-031202A.pdf), 2003.

[YAN2002] J. Yan, H-J Choi, “Security Issues in Online Games”, The Electronic Library: International Journal
for the Application of Technology in Information Environments, Vol. 20, No. 2, 2002, Emerald, UK.

[YAN2003] J. Yan, “Security Design in Online Games”, Proceedings of the 19th Annual Computer Security
Applications Conference (ACSAC’03), IEEE Computer Society, Las Vegas, USA, December, 2003.

[YAN2005] J. Yan and B. Randell, “A Systematic Classification of Cheating in Online Games,” 4th Workshop
on Network & System Support for Games (NetGames’05), Hawthorne, New York, USA, pages 10–11,
Oct 2005.

[ZAN2004] S. Zander, G. Armitage, “Empirically Measuring the QoS Sensitivity of Interactive Online
Game Players”, Australian Telecommunications Networks & Applications Conference 2004, (ATNAC2004),
Sydney, Australia, pages 8–10, December 2004.

8
Broadband Access Networks

In this chapter, we examine the networks used to connect users to the Internet. These
networks are commonly known as Access Networks. There is no single network technology
that comprises an access network. Access networks can be based on wireless, coaxial
cable, existing telephony cables or fibre optic cable. Access networks might be run by
telecommunications companies, corporate entities, private users or a combination of all
three. There are many different ways in which users can gain access to the Internet. In
this chapter, we survey the most important ones.

8.1 What Broadband Access Networks are and why they Matter
Our interest in this chapter is in broadband access networks. In this context, ‘broadband’
refers to the bit rate at which the network connects the user. There is no widely accepted
agreement as to what bit rate constitutes ‘broadband’ access. Some definitions have it
as a minimum of 256 kbps, others 512 kbps and still others at 1 Mbps or more. For the
purpose of this chapter, we will refer to broadband as being at least 256 kbps.

8.1.1 The Role of Broadband Access Networks

Figure 8.1 shows in a simplified form the relationship between the game client, the access
network, the Internet and the game server. The client is connected to their Internet Ser-
vice Provider’s (ISP’s) router across their access network. Similarly, the game server is
connected to their ISP through another access network.

It is important that those involved in developing and deploying games have an under-
standing of the strengths and weaknesses of the many different kinds of access networks.
Different access networks have quite different characteristics, which can have impacts on
the quality of the game experience. Depending on the access network, game players may
experience quite different effects with regard to latency, jitter, capacity and usage costs.

8.1.2 Characteristics of Broadband Access Networks

Access networks differ from core networks in a number of ways. Generally, these differ-
ences are a consequence of the ‘Last Mile’ problem – the cost of providing connectivity
to a geographically distributed population. Core networks shift large volumes of traffic

Networking and Online Games: Understanding and Engineering Multiplayer Internet Games
Grenville Armitage, Mark Claypool, Philip Branch 2006 John Wiley & Sons, Ltd ISBN: 0-470-01857-7

122 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

Access network

Game
server

Game
client

The
Internet

Client
ISP

router

Server
ISP

router

Access network

Figure 8.1 Access network

between different nodes in the network, which may be located vast distances apart. Access
networks take comparatively smaller traffic volumes from geographically distributed users
and deliver it in aggregate form to the core network.

There is no one best solution to connecting users to a core network. The most appro-
priate solution will depend on many different factors, including the population density of
users to be connected, the distance to the nearest core network node (such as a telephone
exchange or wireless base station), and existing installed network infrastructure amongst
other factors [ARM2000].

Consequently, there is no single broadband access network. Instead, there are a number
of different network technologies that come under the general category of being access
networks.

Not all kinds of access networks are available in all places at all times. For example,
coverage of some broadband wireless networks is often limited. Wireless local area net-
work (LAN) for example, has a range of only tens of metres. Availability of some
networks depends on what other infrastructure has been deployed. For example, cable
modem networks have usually been deployed in the wake of cable television deployment.
Asymmetric Digital Subscriber Link (ADSL) networks are usually deployed on exist-
ing two-wire telephony infrastructure. A game developer cannot assume that their player
market will either use, or have available for use, a specific access network.

Not all access networks have the same level of reliability. Wireless transmission,
although having many advantages over wired transmission, is inherently unreliable
[RAPP2002]. Generally, this unreliability is controlled through transmitter and receiver
design for constructing a reliable wireless network that provides a satisfactory service
to customers, but nevertheless, game players are likely to experience a greater level of
unpredictable variations in delay and capacity if their access network is wireless-based
than if it is cable based or fibre optic–based.

Usage costs of different broadband networks vary tremendously. The infrastructure
needed, the number of users supported by the network and competition from other tech-
nologies and service providers, all affect prices that individual users will be charged.
Usage costs themselves can be charged in different ways – time-based, volume based, a
regular flat fee, or a combination of all three. Although it is difficult to generalise, broad-
band cellular networks, because of the vast infrastructure investment needed to provide
global coverage and seamless mobility support, are typically much more expensive to use
than other networks.

Different networks have different capacities. Generally, cellular wireless networks have
much lower bit rates than wired networks. Also, some broadband technologies use a
shared medium, which means that, although total capacity might be constant, the capacity
available to an individual user depends on the number of other users.

Broadband Access Networks 123

Network capacity is not always the same in both directions. The oldest access net-
work application is telephony. With telephony, capacity is usually the same in both
directions. Parties involved in a conversation talk, approximately, the same amount dur-
ing a conversation. Of course, this is not always the case, and some conversations may
be quite one-sided. Nevertheless, telephone systems have evolved with the assumption
that capacity in both directions needs to be the same. However, many new applications,
including most Internet games, require more capacity in the network to the user direction
(the forward link) than in the user to the network direction (the reverse link). Typically, a
player will receive a great deal of information about the state of the game from the game
server on the forward link but will transmit relatively little information (mainly player
actions) on the reverse link. Some access networks such as ADSL and cable modem net-
works naturally support this asymmetry. Their forward link capacity is much greater than
their reverse link capacity. Other technologies, such as some cellular broadband networks,
are capable of adapting to this asymmetry while other networks provide only symmetric
capacity.

Very few access networks are able to offer Quality of Service guarantees. That is, the
network guarantees that important connection characteristics such as bit rate, delay and
delay variation will be within agreed limits. Specification of these limits form a spec-
trum ranging from ‘best effort’ networks where there are no guarantees through networks
where guarantees are specified in terms of long-term averages, to networks where bit
rates, error rates, delays and variation in delays are tightly specified. As we move across
this spectrum, networks generally become less commonly available and more expensive
to implement and to use.

Access networks are also often a major source of latency and jitter. Latency is the delay
experienced in a game before a command by the user is reflected in the game state. Jitter
is the variation in delay. Networks where the same medium is shared among many users,
such as wireless and cable modem networks, are more prone to variations in delay than
other networks.

Often users will want to access a game while they are mobile. Perhaps they are travelling
on public transport, or they might be passengers in a car. Some access networks are
able to support mobile users more effectively than others. Although there have been
many interesting developments in Mobile Internet Protocol (IP) networks, cellular wireless
networks are currently most effective in supporting mobile users.

Some access networks are more convenient to access and to use than others. For
example, connecting to a cellular network is usually trivial. The telecommunications
company running the network provides direct access to the Internet. However, connecting
through a Wireless Local Area Network (WLAN) may require significant reconfiguring
of the device used to connect to the network.

In this chapter, we provide an outline of the strengths and weaknesses of the most
commonly used access network technologies. We discuss their design, capacity, potential
to introduce latency and jitter, reliability, usage costs and how they are typically used. We
hope that through understanding these networks, game developers and those deploying
games will have a better understanding of the network constraints within which their
games must operate.

8.2 Access Network Protocols and Standards
In this section, we discuss some of the general characteristics of access networks.

124 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

Access networks are concerned with the delivery of framed packets from the user’s
network connected device to the network. Access networks are differentiated from each
other by their physical and data link layers.

8.2.1 Physical Layer
A network’s physical layer specifies the transmission medium and how individual bits are
encoded onto it. The media used in access networks are wireless, coaxial cable, twisted
copper pairs and optic fibre. The physical layer may also be responsible for minimising
or even correcting errors as well as controlling access by multiple users.

Physical media include wireless where communications are mapped onto Radio Fre-
quency electromagnetic radiation. For example, WLANs use a range of frequencies
denoted as the Industrial, Scientific and Medical (ISM) Bands of around 2.4 GHz or
5.8 GHz. Cellular networks use frequencies around 800 to 900 MHz or 1900 MHz, depend-
ing on the particular network.

Coaxial cable is another commonly used medium. This is most commonly used in
cable modems where the access network is overlayed on cable television network infra-
structure.

Another broadband access network overlaid on an existing network is ADSL, which
uses the twisted pair last hop of the Public Switched Telephony Systems Network (PSTN).
Using sophisticated coding and error correction techniques, high bit rates can be obtained
over the existing twisted pair medium.

The other commonly used medium is fibre optic cable. With this technology, the
medium comprises very thin lengths of glass or plastic down which high-speed lasers
or light-emitting diodes send light as the signal. Fibre optic cable is often used in hybrid
fibre-coax Cable TV networks.

The physical layer specifies how individual bits are mapped onto the physical medium.
The process of mapping a bit or a series of bits onto a medium is referred to as modulation.
Wireless systems may encode bits as variations in the amplitude, phase or frequency of a
carrier wave. Similar modulation schemes are used for coaxial cable and other electrical
wire media. Bits transmitted across a fibre optic cable are typically encoded as pulses of
light. The best method of modulation depends on the characteristics of the media it will
use and the purpose of the network.

The physical layer specifies how communication channels are mapped onto the physical
medium. There needs to be some way of dividing the physical medium into multiple
channels. The process of mapping multiple channels onto one physical medium is called
multiplexing. Multiplexing can be done using frequency division, time division, code
division or a combination of all three.

In frequency division multiplexing (FDM), communications are modulated onto a car-
rier wave of a specified frequency and transmitted. The receiver filters out all frequencies
other than that of the specified carrier wave, then demodulates the carrier wave to recover
the original signal.

Time division multiplexing (TDM) involves allocating the medium to each channel for
short periods of time. These periods of time are commonly called timeslots. TDM can
be synchronous, where each channel is allocated a fixed number of timeslots in a given
period, or asynchronous, where each channel is allocated a variable number of timeslots
in a given period.

Broadband Access Networks 125

Code division multiplexing (CDM) uses complex coding to separate multiple channels.
CDM is a spread-spectrum technique. In this approach, each user’s communication is
spread across the available spectrum along with everyone else’s but is encoded in such a
way as to enable separation of different communication channels. This approach to mul-
tiplexing is widely used in wireless communication since it tends to be more resistant to
the random variations in signal strength that wireless transmission is commonly subjected
to and it makes very efficient use of scarce wireless bandwidth.

8.2.2 Data Link Layer
The data link layer is concerned with transmitting blocks of bits, called frames, from the
transmitter to the receiver. In cases where multiple users access a single physical channel,
it will usually provide some mechanism for managing the resulting contention which may
occur if multiple users attempt to access the medium at the same time. This mechanism is
identified as belonging to a sublayer within the data link layer, called the Medium Access
Control (MAC) layer. The data link layer may also be responsible for error detection
and correction and perhaps include some mechanism for retransmission of corrupted or
missing frames.

Most broadband access networks, with the exception of ADSL use a shared medium
and hence have an MAC sublayer. The most commonly used techniques for sharing access
are contention-based schemes, where devices wishing to access the medium wait for it
to be idle for a period of time before transmitting. If other users also transmit during
this time, causing a collision, there must be some mechanism for resolving the conflict
and retransmitting. Usually the approach is for all users to wait a random amount of time
before retransmitting once the shared medium has become silent. This approach is used in
some wired networks such as Ethernet and also some wireless networks such as WLAN.
Another approach is a master-slave polling system where one device or node controls
access to the medium. It specifies which device may transmit. This approach is also used
in some wireless networks, notably Bluetooth and less commonly, WLANs.

The data link layer may also include some form of error correction or error detection,
but this too is strongly dependent on the physical medium. In very reliable, high capacity
media such as fibre optics, it may be unnecessary to provide any error correction. Where
the medium is inherently unreliable, such as wireless, some form of error correction or
detection is essential.

The physical and data link layers characterise the Access Network. They specify the
medium to be used, how information is encoded, how users are multiplexed onto the
medium and if any error control or detection is to be used. We now look at the most
significant broadband access networks.

8.3 Cable Networks
Cable television networks are commonly used as an access network where there is a
substantial cable television infrastructure. Using cable television networks as an access
network allows owners of cable television networks to leverage their investment by pro-
viding network access to business and residential customers [ARM2000].

Cable television networks are usually implemented as an inverted tree, with the root of
the tree referred to as the head-end where programming is injected into the network. The
head-end supplies programming to the branches of the tree, which correspond to delivery

126 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

to particular regions of coverage and localities within those regions, and finally to the
leaves of the tree representing the residential receivers of the television signal.

Cable television is built on the existing analogue TV distribution mechanism, and
is thus intrinsically an analog medium at the consumer’s end. Each television channel
occupies approximately 6 MHz. If a coaxial cable network is used from the head-end to
the customer premises, then the signal that is distributed occupies Radio Frequencies (RF)
in the range of 50 to 450 MHz in the downstream direction. For hybrid fibre-coaxial cable
systems that use fibre optic cable in all but the last hop, the frequency range available is
much higher, typically from 50 to 750 MHz. In the upstream direction, a much smaller 5
to 42 MHz may be available.

To use this analog medium as an Access Network for transporting digital communica-
tion, the digital signal must be modulated onto the analog carrier. An RF signal of 6 MHz
can support bit rates in the megabit per second range, but to achieve this, there are a
number of obstacles to overcome.

The first difficulty is that cable television is primarily a downstream broadcast medium.
Upstream capacity is often limited or nonexistent. The second is that RF transmission is
often subject to electrical noise that can severely limit modulation efficiency, particularly
in the upstream direction. Finally, even with 750 MHz available, there is not enough
capacity to allow a full channel to every user. The capacity has to be shared between
multiple users through an MAC sublayer.

Dealing with the situation where there is no reverse channel is the most difficult. In
this case, a hybrid solution where downstream communication is provided by the cable
network and upstream communication is provided by the telephone network (using a
suitable modulation system) is the most common solution, particularly where the network
is solely coaxial cable based. Where the network is the more modern hybrid fibre-coaxial
network, a reverse channel in the 5 to 42 MHz range, operating at a much lower rate than
the downstream network, is a typical solution.

In order to control individual usage, some ISPs impose rate caps on the downstream
bit rate. This has been shown to have quite serious consequences for latency when the
link is overloaded with data traffic [NGUY2004a]. Even modest rate caps, in conjunction
with excess data traffic, can cause latency increases of 100 ms or more. Certainly, this
is something that should be of concern to game players and those deploying networked
games requiring low latencies.

Standardisation of access networks using cable modems has been dominated by the
industry-sponsored Data over Cable Service Interface Specification (DOCSIS). DOCSIS
supports the delivery of Ethernet frames between the cable modem and the head-end.
It implements a medium access control mechanism allowing shared access by multiple
users.

Figure 8.2 shows the main components in a simplified Data over Cable TV network. At
the root of the tree that makes up the network is the head-end which provides connectivity
to the Internet via a router or bridge. Each user connects to the branch which ultimately
connects to the head-end.

Cable networks are an important and effective broadband access network. However,
since they are based on a shared medium and rate caps, they can be subject to arbitrary
variations in bandwidth and consequent random variations in delay.

Broadband Access Networks 127

IP router
or bridge

Cable modem Cable modemCable modem

Head-end

Figure 8.2 Data over a cable TV network

8.4 ADSL Networks
In the same way that cable modems leverage cable television networks to provide broad-
band access, so Digital Subscriber Line (DSL) technologies leverage existing telephone
networks to provide broadband access. The most important of these technologies is Asym-
metric Digital Subscriber Link (ADSL). ADSL is a member of a family of subscriber
link technologies referred to as xDSL. It includes High-speed Digital Subscriber Line
(HDSL), Very high-speed Digital Subscriber Line (VDSL) and others. The most com-
monly deployed is ADSL [ARM2000].

ADSL uses the existing PSTN twisted pair copper loop otherwise used for standard
telephony. It operates in parallel with the existing telephone service but entirely indepen-
dently of it. Broadband communications are transmitted over the copper loop at different
frequencies to that used by standard telephony. With appropriate equipment it can be run
in parallel but without affecting the existing telephony service.

Figure 8.3 shows the main components of the ADSL architecture. At each end of the
analog loop is an ADSL Transmission Unit (TU). It modulates the digital bitstream onto
the local analog loop using frequencies above those used by telephony. At the local
PSTN exchange the bitstream is demodulated by another ADSL TU and passed onto
the parallel data network via a Digital Subscriber Line Access Module (DSLAM) which
provides connectivity to the Internet. Unlike other networks, ADSL is not an end-to-
end networking technology. It merely provides the last hop to a customer site. At the
exchange, communications over the ADSL link are separated from any other telephony
communications and transferred through an entirely independent network.

ADSL is, as its name suggests, highly asymmetric in its upstream and downstream data
rates. Downstream rates are typically from 1.5 Mbps to 9 Mbps, whereas upstream rates
are typically 16 kbps to 640 kbps. The actual speeds obtained depend on the distance and
quality of the copper loop between the customer’s residence and the local exchange.

The international telecommunications union (ITU) specification for ADSL (G.992.1)
specifies two quite distinct paths with quite different latency characteristics in each
direction [ITU1999a]. The fast path minimises latency but at the possible expense of

128 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

Analogue loop

Parallel
network

ADSL TU

Local PSTN
exchange

ADSL TU

DSLAM

Internet

PSTN

Figure 8.3 Asymmetric digital subscriber line

reliability while the interleave path provides mechanisms for improving reliability but
at the cost of additional delay. An interleave path only version of ADSL is defined in
G.992.2 [ITU1999b]. In cases where both paths are defined, capacity can be distributed
between the two paths. This distribution can occur during use, but causes latency of up
to 20 ms.

ADSL is designed to adapt to changing characteristics of the copper loop. Although it
occurs infrequently, when link speeds are adapted up or down, quite long delays of up to
3 seconds can be experienced during the adaptation process with obvious consequences
for game players.

ADSL is mostly used in association with another access network technology. ADSL
provides connectivity between the residence and the exchange. Another home network
technology is used to connect individual users to the ADSL network. A typical installation
will use ADSL to provide connectivity to the wide area and WLAN to provide multi-
user access within the residence. Consequently, apart from variations in latency caused
by capacity distribution between the interleave and fast paths, it can also be subject to
random variations in capacity caused by sharing the link with other users within the
residence.

ADSL is an important broadband technology. It provides high-speed access over exist-
ing telephony links. However, like most broadband access networks, it can be subject to
random fluctuations in bit rates and latency.

8.5 Wireless LANs
Perhaps the most interesting recent developments in access networks have been in wireless-
based access, particularly that class of wireless technologies known as WLAN or WiFi.

WLANs provide great flexibility and convenience for those providing and using an
access network. Access network coverage can be provided quickly and easily. Many user
devices such as laptops and Personal Digital Assistants now have WLAN networking
cards built into them.

Broadband Access Networks 129

WLAN coverage is usually quite small. Depending on the power of the transmitter and
receiver, reliable coverage is usually restricted to a radius of twenty metres although with
line of sight and sophisticated antennae much greater distances can be covered. However,
its purpose is primarily to provide coverage over a reasonably small area. Consequently,
WLAN is usually deployed in association with some other access network technology,
such as ADSL or cable modem.

8.5.1 IEEE 802.11 Wireless LAN Standards

WLANs use the family of protocols defined by the Institute of Electrical and Elec-
tronic Engineers (IEEE) who have also been instrumental in standardising other pop-
ular protocols such as Ethernet. WLAN standards are collectively known as the 802.11
standards [IEEE2004], [GAST2002].

802.11 is a family of standards. All 802.11 networks use a common MAC layer but
vary in the physical layer details. There have been a number of different physical layer
standards released since the original 802.11 standard in 1997, but the most commonly
used are the 802.11b and the 802.11g standards operating in the 2.4 GHz ISM band. The
ISM band is an area of minimally regulated bandwidth in which anyone may operate radio
equipment subject to a minimal set of restraints, primarily on power levels. Consequently,
although 802.11 equipment does not need special licensing to install and run, it is poten-
tially subject to interference from other equipment. These include short range Bluetooth
communications devices, some cordless telephones and microwave ovens. In designing
the IEEE 802.11 protocol, care was taken to make it resistant to interference from other
sources. However, this resistance is implemented as a graceful degradation from high bit
rates where there is no interference to lower bit rates as interference increases. Conse-
quently, WLANs can be subject to seemingly random changes in bit and error rates when
other equipment that broadcasts in the ISM band is used nearby.

802.11b and 802.11g divide the ISM band into 14 overlapping channels with centre
frequencies 5 MHz apart. Channels are numbered consecutively from 1 to 14. Within the
same coverage area, users may access channels separated by 25 MHz. So in one coverage
area users might access channels 1, 6 and 11, while in a neighbouring area they might
use 2, 7 and 12. Separation of these channels is important. If user equipment or access
points do not maintain this separation, then the result can be additional interference and
consequent increases in errors and lower bit rates.

8.5.2 Wireless LAN Architectures

The 802.11 standard specifies two kinds of network architectures: infrastructure and ad
hoc networks. Infrastructure networks make use of an Access Point (AP) to control com-
munication between users and to provide a communication path to the Internet. In ad hoc
networks (or peer-to-peer), users’ equipment communicates directly without mediation by
an AP. For 802.11 to be used as an access network, communication must be via an AP.
However, the AP itself needs to be connected to the Internet. This is often via another
broadband access network such as an ADSL or a Cable Modem network. Figure 8.4
shows an infrastructure network connecting three APs, each with two wireless nodes. In
this kind of network, communication between wireless nodes is usually via the AP rather
than directly between them.

130 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

The Internet

Figure 8.4 Infrastructure wireless LAN

Access to any of the channels supported by the AP is shared. That is, the same channel
can support multiple users. However, since the channel has a maximum bit rate, (11 Mbps
in 802.11b and 55 Mbps in 802.11g) increasing the number of users decreases the bit rate
available to each user.

802.11 networks provide some support for mobility. Users can move from one AP
network to another where the APs belong to the same Extended Service Set. However,
handover between access points can be quite slow.

WLAN has also experienced security and privacy problems [POTT2002]. Whether this
is an important issue for game players is something that individual players and game
system operators need to decide for themselves. However, in cases where games intersect
with the real economy through professional games with prize money or where game
artefacts can be sold for real money, security is certainly important. In general, security
on 802.11 networks is weak. The original intention was to have security comparable to
wired networks; the so-called Wired Equivalence Privacy (WEP). Unfortunately, because
it is so easy to eavesdrop on wireless communication, a level of security appropriate
for wired communication has proven to be unsatisfactory for wireless communication.
Fortunately, the IEEE and the WiFi alliance have recognised this weakness and have
released other solutions such as WPA and 802.1X, which provide a more satisfactory
level of security.

Shared communication in a wireless environment suffers a problem not experienced in
wired communications; that of the hidden terminal. Shared media are usually managed
through some kind of contention scheme. A station waits until the shared medium is idle
and then, after a random amount of time, transmits onto the shared medium. If another
station is also waiting to transmit, there will be a collision. This is usually managed
through some random wait before transmitting again. Such a scheme is the basis of
Ethernet. However, adapting this scheme to a wireless network is difficult. In a wired
medium, a collision is easy to detect. The station monitors the signal it transmits and
compares it with what actually appears on the medium. If they differ, then there has been
a collision. Unfortunately, detecting collisions where a wireless medium is involved is
much more complicated. Two stations may be within range of an AP but not within range

Broadband Access Networks 131

of each other. They may both transmit at the same time causing a collision at the AP, but
which they will be unaware of. The terminals are ‘hidden’ from each other.

To manage the hidden terminal problem, WLAN uses Carrier Sense Multiple Access/
Collision Avoidance (CSMA/CA). CSMA/CA works by requiring an acknowledgement
from the destination of every frame transmitted. While this is effective in detecting
collisions, it has the effect of reducing the available bit rate substantially. Simulations
have suggested that for 802.11b, if communication is primarily TCP-based, 5.9 Mbps is
available to be shared and if communication is primarily UDP, 7.1 Mbps is available,
substantially less than the raw 802.11b bit rate of 11 Mbps.

Most 802.11 networks use the Distributed Coordination Function (DCF), with
CSMA/CA to manage contention for the shared channel. In the DCF, a station that
wishes to transmit must detect that the medium has been idle for a specified period of
time, which is referred to as the Distributed Control Function Interframe Space (DIFS).
If another station also tries to transmit at the same time, there will be a collision which
will be detected through the CSMA/CA mechanism. The station now waits an Extended
Interframe Space (EIFS). The EIFS is a randomly selected length of time whose maximum
value increases as the number of failed attempts to transmit increases.

Although DCF is simple, it causes random variations in delay and bit rate. With DCF,
once a station gains access to the medium it may keep the medium for as long as it
chooses. The number of users sharing the medium and interference from other devices
operating in the ISM band will further affect the bit rate available to each user while the
CSMA/CA contention mechanisms reduces it even further. Consequently, WLAN access
networks can be subject to random variations in delay and bandwidth depending on the
number of users and other devices operating in the ISM band.

8.5.3 Recent Developments in WLAN Quality of Service

Because WLAN channels are shared, Quality of Service can be difficult to guarantee.
The available capacity is not only shared by all users but also users whose traffic has
different round trip times (as the result of one user accessing a local server and another
a more remote server) it can experience quite different values in latency [NGUY2004b].
For example, where an 802.11b WLAN is shared between clients accessing data from
a local server while others accessing it from a remote server, latencies of up to 100 ms
have been observed. For game players, latencies of this order are a serious problem.

To provide some guarantees of Quality of Service (QoS) for delay-sensitive applications,
the 802.11e Working group has been investigating enhancements to the 802.11 MAC
layer. The work of 802.11e builds upon the little used Point Coordination Function (PCF)
defined, but rarely implemented, in the 802.11 MAC layer. The purpose of the PCF is to
allow access to the medium in a fair manner controlled by the AP. When PCF is used,
time on the medium is divided into a Contention Free Period (CFP) and a Contention
Period (CP). During the Contention Period, access is controlled by the DCF. During the
Contention Free Period, access is controlled by the PCF. Each station is polled by the AP
for any data to be transmitted. If no response is received within a Point Control Function
Interframe Spacing (PIFS) then the next station is polled. The PIFS is shorter than the
DIFS, ensuring that PCF has priority over DCF. This mechanism provides guaranteed
bandwidth for delay-sensitive applications such as voice and games.

132 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

Working group 802.11e has developed both the DCF and PCF schemes to introduce
a more effective Quality of Service mechanism. The Enhanced Distributed Coordination
Function (EDCF) distinguishes between high priority traffic and low priority traffic. High
priority traffic waits a shorter period of time than low priority traffic before transmitting.
This scheme is simple to implement but provides only relative guarantees of QoS.

The second mechanism developed by 802.11e is the Hybrid Coordination Function
(HCF). This is based on the PCF but allows the definition of traffic classes. Different
traffic classes can be defined to provide different QoS based on characteristics such as
bandwidth and maximum jitter. These are controlled by modifying the frequency with
which a station generating a particular traffic class is polled and the maximum number
of frames that a station may transmit in response to a poll.

8.6 Cellular Networks
Cellular voice networks such as Global System for Mobile (GSM) and cdmaOne have
been commonplace now for over twenty years, but cellular networks able to support
packet data at broadband rates are only just becoming widely available. Generally, when
compared with other wireless technologies, broadband cellular networks provide much
greater coverage, lower latency and seamless handover but at lower bit rates and often,
at very high usage costs. Important developments in broadband cellular access networks
are Enhanced Data Rates for Global System for Mobile Equipment (EDGE), General
Packet Radio System (GPRS), CDMA2000 and Universal Mobile Telecommunications
System (UMTS). EDGE and GPRS are sometimes referred to as 2.5G networks, while
CDMA2000 and UMTS are sometimes referred to as 3G networks. These technologies
can provide broadband wireless access across a much wider area than is possible with
other wireless technologies. However, they require the deployment of a great deal of
infrastructure, the purchase of bandwidth licenses at often staggeringly high prices, and
sophisticated end-user equipment. Consequently, usage costs tend to be high.

Because of their expense and strict bandwidth licensing requirements, cellular networks
are usually deployed by large telecommunications companies or specialised wireless com-
munications companies. Comparatively low cost, privately deployed cellular networks are,
at least for now, not possible.

8.6.1 GPRS and EDGE

GPRS is derived from the GSM telephony system. Its purpose is to make efficient use
of the GSM network for data purposes with a minimum deployment of additional hard-
ware. GPRS is now commonly deployed wherever GSM telephony systems are deployed.
However, while GPRS is an excellent packet data network, its delay performance is very
poor. It is intended for the efficient communication of nonreal-time communications such
as emails and web browsing [PAHL2002]. The GPRS standard defines four delay classes.
Class 1 specifies a mean delay of less than two seconds, class 2 a delay of less than 15
seconds, class 3 a delay of less than 75 seconds and class 4 does not specify any delay.
Clearly, delays of this magnitude make it unsatisfactory for real-time games. Nevertheless
it may be of use to players of nonreal-time games.

EDGE is not so much an alternative network as an improvement to the modulation
scheme used in the GSM air interface. By adapting the bit rate to the quality of the link,

Broadband Access Networks 133

much higher bit rates are possible than with standard GSM. However, once again its
purpose is primarily the transfer of nonreal-time data with no guarantees as to the delay.

8.6.2 3G Networks

3G technologies such as CDMA2000 and the UMTS are probably of much more interest
to game players. CDMA2000 has been standardised in the United States by the Telecom-
munications Industry Authority and UMTS (sometimes W-CDMA) has been standardised
by the European Telecommunications Standards Institute (ETSI). CDMA2000 has largely
been derived from the earlier IS95 standard (often referred to as cdmaOne) while UMTS
is derived from the GSM standard [DAHL1998].

Both UMTS and CDMA2000 support similar services including high-speed Internet
access and QoS guarantees. Both can support asymmetric data rates.

Broadband cellular networks are being standardised as part of the International Mobile
Telecommunications 2000 Programme (IMT-2000) under the auspices of the ITU.
Although terminology differs between standards, broadband cellular networks generally
share a common architecture. The simplified architecture for UMTS is shown in Figure 8.5
[UMTS2005]. There are three high-level components in this architecture: the User
Equipment (UE), the Universal Terrestrial Radio Access Network (UTRAN) and the Core
Network (CN). This high-level architecture is typical of cellular networks [SCHI2003].

In UMTS, the UE is a multimedia capable handset. Apart from voice calls, it supports
multimedia calls and packet data. The UE is connected to the UTRAN via the radio
interface. The UTRAN is concerned with maintaining connectivity to the UE and with
seamless handover both within and between Radio Network Subsystems (RNSs). The CN
is responsible for more complex forms of handover and for providing connectivity to
other networks, including the Internet.

Each of these systems has an internal structure. The UE is made up of the actual
handset itself (the mobile equipment or ME) and a smart card containing user identity

User
equipment

UTRAN Core network

Node B

RNC

Node B

MSC

GGSNSGSN

GMSC

HLR

VLR

Internet

PSTN

Figure 8.5 UMTS cellular broadband network

134 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

information (the UMTS Subscriber Identity Module or USIM). The UTRAN is made
up of a number of RNSs. Each RNS contains a number of radio transceivers, perhaps
more commonly referred to as Base Stations, but known in UMTS as Node B, and
a number of Radio Network Controllers (RNCs). Each Node B can have associated
multiple radio transceivers. The CN contains even more nodes, the key ones being the
Mobile Switching Centre (MSC) responsible for call switching, the Gateway Mobile
Switching Centre (GMSC) responsible for connecting voice calls to the Public Switched
Telephone Network (PSTN), the Home Location Register (HLR) containing subscriber
data, the Visitor Location Register (VLR) containing location data about users, the Serving
General Packet Radio System Node (SGSN) which terminates data calls and the Gateway
GPRS Support Node (GGSN) which acts as a gateway for packet data to the Internet.
From this brief description, it should be apparent that broadband cellular networks are
complex and expensive systems.

UMTS defines different levels of service based on two criteria: Quality of Service type
and Service Capability. Quality of Service specifies minimum bit rates, delay and delay
variation. Although quality of service across the air interface is inherently difficult to
provide, the standard allows for flexible allocation of bandwidth to enable a reasonably
consistent quality of service to be maintained. The Service Capability specifies a number
of capabilities rather than performance requirements. Such capabilities might include loca-
tion services, perhaps using the Global Positioning System (GPS), extended capabilities
built around data stored in the smart card originally included in Mobile Telephones for
identification but now, given advances in flash memory capacity, able to store more and
different kinds of data, or the Customised Applications for Mobile Network Enhanced
Logic (CAMEL) which provides a full development environment.

3G networks are able to support a range of Quality of Service values [3GPP1999].
Latency within the 3G network across the air interface is able to be controlled to a high
level of accuracy. Depending on the application, latencies of 10 ms, 20 ms and 80 ms
within the network and across the air interface can be specified.

Broadband cellular access networks are reliable, handle mobility well, usually have
good coverage and can provide guarantees of quality of service. However, they are also
complex, expensive to install and expensive to use. Whether they become a successful
and widely used access network is still an open question.

8.7 Bluetooth Networks
Bluetooth networks are included in this chapter even though they are not really an access
network technology. Bluetooth is more of a short distance cable replacement technology.
Typically, Bluetooth networks extend to no more than 10 metres and are used primarily
for peripheral device connectivity such as printers, mice and the like [HAAR1998]. Nev-
ertheless, Bluetooth is an increasingly important technology, typically used in conjunction
with broadband access networks or used to construct small ad hoc networks. It is perhaps
this last characteristic of Bluetooth that is of most interest to game players. Bluetooth-
enabled devices can be brought together to form a network with minimal configuration
and difficulty.

Bluetooth bit rates are comparatively low. It provides shared bit rates up to 1 Mbps.
However, a substantial amount of this is used in Bluetooth overhead leaving approximately
720 to 760 kbps for user data.

Broadband Access Networks 135

M

S

S

S

S

S

S

S

S

M

S

S

Master

Active slave

Parked slave

Standby

S

M

S

S

S

S

Figure 8.6 Bluetooth scatternet

Bluetooth has been criticised by game players for its latency. Some experiments suggest
that typical latency values are between 20 ms and 40 ms; however, higher latencies have
been observed [MANS2004]. This is likely to be a consequence of the immaturity of
the software rather than a fundamental problem of Bluetooth. In any case, the Human
Interface Device profile is claimed to reduce latency to approximately 5 ms.

Capacity is shared through a master–slave polling mechanism. The Bluetooth-enabled
devices use an election mechanism to select a master device, which then polls other
devices. When a device is polled, it may transmit any frames it has waiting. In this way,
bandwidth is shared equitably between individual users. Each master and its slaves forms
a piconet with a maximum of eight stations.

Bluetooth uses bridging to link piconets into scatternets. A slave station that forms the
bridge between piconets belongs to two piconets. A simplified Bluetooth architecture is
shown in Figure 8.6. It shows one master and several slaves in two piconets. One slave
which acts as a bridge is a member of both piconets. The two piconets together form a
scatternet. Bluetooth supports low power modes of ‘parked’ and ‘standby’.

Bluetooth operates in the unregulated ISM 2.4 GHz band. Consequently, it is subject
to interference from other devices that operate in this range. These include 802.11b and
802.11g WLANs, microwave ovens and cordless telephones.

Because Bluetooth is a shared medium subject to random interference, users may expe-
rience consequent jitter as other devices start or stop transmitting, or other players join
or depart from the network.

8.8 Conclusion
This overview of access networks is intended to give those involved in developing and
deploying games an understanding of some of the capabilities and limitations of the many
different kinds of access networks.

136 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

Broadband access networks offer different levels of capacities, delay, delay variations,
coverage, convenience and cost. Those developing and deploying games need to consider
the different requirements imposed by these networks. For some access networks, particu-
larly wireless networks, there may be random variations in capacity and delay. Games and
game servers must be able to deal with this through buffering or some kind of interpola-
tion. Players using cellular networks may be charged high rates based on traffic volumes.
Consequently, game designers need to be careful to minimise the traffic transmitted.

There is a great diversity in the kinds of broadband access networks. This diversity
means that most people (at least in developed countries) are able to access some kind of
broadband network. But it also means that those developing and deploying Internet-based
games need to understand the capabilities and limitations imposed by this diversity.

References
[3GPP1999] 3rd Generation Partnership Project (3GPP);TSG-SA Codec Working Group, “QoS for Speech and

Multimedia Codec; Quantitative Performance Evaluation of H.324 Annex C over 3G”, 1999.
[ARM2000] G. Armitage, “Quality of Service in IP Networks: Foundations for a Multi-Service Internet”,

Macmillan Technical Publishing, April 2000.
[DAHL1998] E. Dahlman, B. Gudmundson, M. Nilsson, J. Skold, “UMTS/IMT-2000 based on wideband

CDMA”, IEEE Communications Magazine, Vol. 36, No. 9, pp. 70–70, 1998.
[GAST2002] M. Gast, “802.11 Wireless Networks: The Definitive Guide”, O’Reilly and Associates, 2002.
[HAAR1998] J. Haartsen, “Bluetooth – The Universal Radio Interface for Ad-hoc, Wireless Connectivity”,

Ericsson Review No. 3, http://www.ericsson.com/, accessed October 2005.
[IEEE2004] IEEE P802.11, “The Working Group for Wireless LANs, the Institute of Electrical and Electronic

Engineers”, http://www.ieee802.org/11/, accessed October 2005.
[ITU1999a] ITU-T Recommendation G.992.1 “Asymmetrical Digital Subscriber Line (ADSL) Transceivers”,

June 1999.
[ITU1999b] ITU-T Recommendation G.992.2 “Splitterless Asymmetrical Digital Subscriber Line (ADSL)

Transceivers”, June 1999.
[MANS2004] K. Mansley, D. Scott, A. Tse, A. Madhavapeddy, “Feedback, Latency, Accuracy: Exploring

Tradeoffs in Location-Aware Gaming”, SIGCOMM’04 Workshops”, Portland, Oregon, August 2004.
[NGUY2004a] T. Nguyen, G. Armitage, “Experimentally Derived Interactions Between TCP Traffic and Ser-

vice Quality over DOCSIS Cable Links”, Global Internet and Next Generation Networks Symposium, IEEE
Globecomm 2004, Texas, USA, November 2004.

[NGUY2004b] T. Nguyen, G. Armitage, “Quantitative Assessment of IP Service Quality in 802.11b
Networks and DOCSIS Networks”, Australian Telecommunications Networks & Applications Conference
2004, (ATNAC2004), http://caia.swin.edu.au/pubs/ATNAC04/nguyen-t-armitage-ATNAC2004.pdf, Sydney,
Australia, December 8–10, 2004.

[PAHL2002] K. Pahlavan, P. Krishnamurthy, “Principles of Wireless Networks”, Prentice-Hall, 2002.
[POTT2002] B. Potter, B. Fleck, “802.11 Security”, O’Reilly and Associates, 2002.
[RAPP2002] T. Rappaport, “Wireless Communications: Principles and Practice”, 2nd Edition, Prentice-Hall,

2002.
[SCHI2003] J Schiller, “Mobile Communications”, 2nd Edition, Addison-Wesley, 2003.
[UMTS2005] UMTS Forum, http://www.umts-forum.org/, accessed October 2005.

9
Where Do Players Come from
and When?

In this chapter, we look at various methods for determining where primary player popula-
tion comes from and when they play. For a game hosting company, it is vital to know the
topological and geographical scope of the player population. This information influences
location of game servers, provisioning of network capacity, prediction of support costs
and targeting of advertising budgets.

Many Internet-based games today use a client–server network communications model
(Figure 9.1). By this, we mean that clients scattered all over the world communicate solely
with one (or possibly multiple) game servers elsewhere on the Internet. Clients do not
exchange Internet Protocol (IP) packets directly with other clients.

An important question to ask is where these clients are typically located and when do
they impose traffic on our networks and servers.

In Chapter 7, we discussed how most online interactive games have finite tolerance for
latency. A natural consequence is that your player population is most commonly drawn
from those locations in the world that are within a tolerable latency of your servers. Think
of a game’s latency tolerance as the outer radius of a circle encompassing your potential
player population. Since (as discussed in Chapter 5) latency can be (very) roughly related
to network topology and real-world geography, the tolerable latency radius provides a
rough guide to the geographical localities from which your player population may appear.

Knowing where your players are (or potentially could be) coming from helps you target
any real-world advertising. It also helps plan new server locations when attempting to
cover existing population centres that are not yet served by your game. This knowledge
also helps in provisioning link capacity through your Internet Service Provider (ISP),
planning ahead for help-desk support calls, and (in conjunction with the issues discussed
in Chapter 10) can help in establishing service-level agreements (for IP service quality)
with your local and peer ISPs.

In the following sections, we will discuss how to measure game-play and server-
discovery usage patterns, and what they reveal about player locations and preferred
playing times.

Networking and Online Games: Understanding and Engineering Multiplayer Internet Games
Grenville Armitage, Mark Claypool, Philip Branch 2006 John Wiley & Sons, Ltd ISBN: 0-470-01857-7

138 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

Server 1 Server 2

Players from everywhere on Internet

Figure 9.1 Most online games use a client–server network communication model

9.1 Measuring Your Own Game Traffic
There are two main places to measure game traffic – from game server log files, and
the network itself. Game server logs provide game-specific data on long-term trends
such as client join/leave times and high-level reporting of player activity while on the
server. However, server logs do not tell you anything about the actual traffic on your
network. For this, you need to deploy packet-level network monitoring equipment. Given
the easy availability of free, open-source UNIX-derived operating systems with ether-
net monitoring tools, everyone should feel empowered to go and measure real network
traffic.

Packet-level network monitoring (often referred to as packet sniffing) is simple to do,
but not always simple to do precisely. Generally, we want to record the length of every
packet, the time every packet is seen (a step known as timestamping) and enough of the
IP (and UDP or TCP) headers such that we can identify the flow to which every packet
belongs. Packet lengths are pretty simple to measure accurately. Complications usually
arise when timestamping.

Many of us will want to build a monitoring device from a modern PC with
a PCI-bus Ethernet interface and running an open-source UNIX-variant such as
FreeBSD [FREEBSD] or Linux [LINUX] (or, conceivably, some version of Microsoft’s
Windows [WINDOWS]). Unfortunately, generic PC hardware is not generally designed
with highly accurate on-board clocks, and these operating systems are not designed for
precise, real-time behaviour. As a result, our low-cost general-purpose monitoring system
suffers from finite and fluctuating errors in packet arrival timestamping.

Timestamping errors are most often only important for the packet-by-packet traffic
patterns discussed later in Chapter 10, so we will postpone discussion of such errors until
then. First, let us review how traffic measurement would work in the ideal world.

9.1.1 Sniffing Packets

There are three places we might monitor (sniff) packet traffic – at the server, at a client or
on a link somewhere in the middle of the network. At the server or client ends, we could
track packet flows within the actual server or client host or monitor the directly attached

Where Do Players Come from and When? 139

network link with a separate, dedicated host. We would typically want to avoid running
packet sniffing software on a game client because the additional processing load may
interfere with game-play. Running a packet sniffer on the game server creates similar, but
potentially less significant, problems. Ideally, we would use an external device whenever
possible.

For external measurements, the first challenge is getting physical access to the pack-
ets. Most servers (and many clients) will use switched ethernet as their directly attached
link technology. Switched ethernets ensure that each host attached to the network gen-
erally only sees ethernet frames going to and from the host itself. In order to see the
server’s packets, we must interpose an ethernet hub (a technological precursor to the
ethernet switch) in the path between the server and its network port. Our external sniffing
device is then attached to a spare port on the hub, and can see all packets going back
and forth.

Unfortunately, ethernet hubs are uncommon for 100 Mbps (‘Fast ethernet’) links. Plac-
ing a hub between the server and its network switch port is likely to force the server (and
switch) to run at 10 Mbps instead. An alternative option exists if your network switch (or
first hop router) explicitly supports network monitoring by replicating one port’s traffic
to another, administratively specified port. (Some vendors, such as Cisco, refer to this
as ‘port mirroring’.) In this case, the server’s ethernet link speed is not limited by an
interposed 10 Mbps hub. Figure 9.2 shows both of these scenarios.

Having arranged physical access to the ethernet packets, we need an appropriate set of
software tools. A good choice would be free, open-source tools such as tcpdump [TCP-
DUMP] and ethereal [ETHEREAL]. Both allow real-time capture of ethernet frames sent
from and received by your host’s ethernet interface. Tcpdump is a command line tool
whilst ethereal provides a comprehensive GUI. Ethereal provides more comprehensive

Switch

Hub

Server being
monitored

Server

Rest of
network

Sniffer

Switch

Server being
monitored

Server

Rest of
network

Sniffer

'Mirror' of
port 2

Port 2Port 1
Port 2

Port 1
Port 3

Sniffing can be done either by introducing a broadcast Hub
into the Server's path, or 'mirror' the Server's port

Figure 9.2 Sniffing packets with an external host (using an interposed hub or a switch with port
mirroring)

140 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

decoding of ethernet frame contents, but for our purposes either tool would suffice. Ver-
sions of tcpdump and ethereal exist for most UNIX-derived and Microsoft’s Windows
operating systems.

(We will not discuss the commercial alternatives – suffice to say that there are many
packet sniffer/traffic monitoring applications available.)

9.1.2 Sniffing With Tcpdump

Here is a tcpdump example. Assume we have a standard, possibly old PC (for example,
at least an 800 MHz Pentium III) running FreeBSD 5.4 (the production release in late
2005) [FREEBSD]. We have a generic Intel EtherExpress Pro/100+ ethernet card plugged
into the PCI bus. The Intel ethernet interface shows up as ‘fxp0’ (or fxp1, fxp2, etc., if
your box has multiple Intel cards).

Figure 9.3 shows the fxp0 interface state as it might be revealed by the console com-
mand ‘ifconfig’. In this example, fxp0 is the sniffing host’s only interface and has IP
address 192.168.50.2 on the 192.168.50/24 subnet. The interface appears to be connected
to a 10 Mbps hub (the driver as autoselected media type 10baseT/UTP).

Because we are after ethernet frames that are not destined for (or coming from) our local
host, the local ethernet interface must run in promiscuous mode. Tcpdump will configure
this mode by default when run with root user privileges.

The following command:

tcpdump -n -i fxp0

tells tcpdump to immediately start listening on fxp0, and printing decoded packet trace
information to the screen. (The ‘-n’ option speeds things up by suppressing reverse
Domain Name System (DNS) lookups of the IP addresses in received IP packets.)

Alternatively, you may want to store a finite number of packets to a file for later
processing. The following command:

tcpdump -n -i fxp0 -c 200 -w newtracefile

tells tcpdump to listen on fxp0 and store the next 200 frames into a file named ‘new-
tracefile’. (Change the ‘200’ to collect more or less frames.) Tcpdump stores the actual
ethernet frames in newtracefile, so you can later decode and analyse the traffic at your
leisure with:

tcpdump -n -r newtracefile

(Drop the ‘-n’ option if you want IP addresses converted to their equivalent DNS
names.)

fxp0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
options=8<VLAN_MTU>
inet 192.168.50.2 netmask 0xffffff00 broadcast 192.168.50.255
ether 00:03:47:74:73:e7
media: Ethernet autoselect (10baseT/UTP)
status: active

Figure 9.3 FreeBSD’s ifconfig output for fxp0

Where Do Players Come from and When? 141

By default, tcpdump captures and stores only the first 68 bytes of each frame. This is
usually enough to analyse the inner IP and UDP or TCP headers. If you wish to capture
more of a packet’s payload, the ‘-s NNN’ option ensures up to NNN bytes of each packet
is captured and saved.

Tcpdump’s filter rules come in handy when there is traffic on your network unre-
lated to the game server under analysis. You can exclude or include particular traffic
streams either during or after capture. For example, you might wish to ignore address
resolution protocol (ARP) traffic on the local Local Area Network (LAN) during
capture:

tcpdump -n -i fxp0 -c 200 -w newtracefile not arp

or analyse only UDP traffic to or from port 27960 (the default Quake III Arena game
port) after capture:

tcpdump -n -r newtracefile udp and port 27960

Filtering during capture increases the per-frame processing load on the sniffing box,
but decreases the disk space required to hold the captured traffic.

Figure 9.4 shows an example of tcpdump’s basic text output. In this case, two clients
(192.168.23.5 and 192.168.56.90) are playing a game of Quake III Arena (port 27960)
on a server at 192.168.50.10. One of the clients appears to be coming in through a
Network Address Translation (NAT) box since its source UDP port has been modi-
fied to 18756. Timestamps (the left-hand column) provide the hour, minute, second and
microsecond at which the packet was seen. On the right is the type and length of each
packet.

You can also use tcpdump’s ‘-ttt’ option to view inter-packet intervals rather than
absolute timestamps.

Filter options can also be used to separate server and client traffic flows during post-
capture analysis. For example, the following command:

tcpdump -n -r newtracefile src host 192.168.50.10

[...]
12:06:01.434563 IP 192.168.50.10.27960 > 192.168.23.5.18756: UDP, length: 66
12:06:01.462909 IP 192.168.56.90.27960 > 192.168.50.10.27960: UDP, length: 41
12:06:01.476204 IP 192.168.23.5.18756 > 192.168.50.10.27960: UDP, length: 46
12:06:01.482643 IP 192.168.50.10.27960 > 192.168.56.90.27960: UDP, length: 124
12:06:01.482892 IP 192.168.50.10.27960 > 192.168.23.5.18756: UDP, length: 117
12:06:01.488565 IP 192.168.23.5.18756 > 192.168.50.10.27960: UDP, length: 35
12:06:01.504915 IP 192.168.56.90.27960 > 192.168.50.10.27960: UDP, length: 41
12:06:01.534458 IP 192.168.50.10.27960 > 192.168.56.90.27960: UDP, length: 93
12:06:01.534703 IP 192.168.50.10.27960 > 192.168.23.5.18756: UDP, length: 114
12:06:01.546970 IP 192.168.56.90.27960 > 192.168.50.10.27960: UDP, length: 41
12:06:01.547456 IP 192.168.23.5.18756 > 192.168.50.10.27960: UDP, length: 41
12:06:01.580696 IP 192.168.50.10.27960 > 192.168.56.90.27960: UDP, length: 85
12:06:01.581020 IP 192.168.50.10.27960 > 192.168.23.5.18756: UDP, length: 189

[...]

Figure 9.4 tcpdump output of Quake III Arena traffic in both directions

142 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

[...]
12:06:01.434563 IP 192.168.50.10.27960 > 192.168.23.5.18756: UDP, length: 66
12:06:01.482643 IP 192.168.50.10.27960 > 192.168.56.90.27960: UDP, length: 124
12:06:01.482892 IP 192.168.50.10.27960 > 192.168.23.5.18756: UDP, length: 117
12:06:01.534458 IP 192.168.50.10.27960 > 192.168.56.90.27960: UDP, length: 93
12:06:01.534703 IP 192.168.50.10.27960 > 192.168.23.5.18756: UDP, length: 114
12:06:01.580696 IP 192.168.50.10.27960 > 192.168.56.90.27960: UDP, length: 85
12:06:01.581020 IP 192.168.50.10.27960 > 192.168.23.5.18756: UDP, length: 189

[...]

Figure 9.5 tcpdump output of Quake III Arena server to client traffic

would (if applied to the traffic in Figure 9.4) only print out the packets from the server
to either client (Figure 9.5).

Post-analysis of captured traffic may be done by feeding tcpdump’s text output into
other software, or writing your own code to parse and interpret tcpdump’s on-disk trace-
file format. (Tcpdump’s tracefiles can be read by many other packet capture programs,
including Ethereal.)

9.2 Hourly and Daily Game-play Trends
Long-term game-play trends show us when people tend to play, and thus what times of
the day or week we might expect the greatest demands on the latency, jitter and packet
loss control mechanisms in our network. If we are hosting a large number of servers,
these are also the times when server capacity will be in greatest demand. By tracking
and understanding daily and weekly demand cycles, we can estimate user numbers over
time, and ultimately estimate bandwidth requirements at the server and client ends of our
online games.

9.2.1 An Example Using Quake III Arena

In 2001, one of the authors instrumented two Quake III Arena [QUAKE3] servers in
different countries (California, USA and London, UK), and measured the number of
players every hour over a period of 3 months [ARM2003]. Figure 9.6 and Figure 9.7
show the daily and weekly cycles respectively for each server. (In Figure 9.7, day 0 is
Sunday and Day 6 is Saturday.)

Allowing for the 8-hour time difference between California and London, both servers
show usage fluctuations at the same local times. Most players begin joining in the
afternoon and on into the evening at each location. This seems intuitively correct, as
players would have more free time for online game-play in the late afternoon and
evenings.

The time shift of each server’s daily cycles reveal player selection of servers with
‘better’ latency (as discussed in Chapter 7). Both servers were configured identically
(same map cycles, same maximum number of players and almost identical server names).
When potential players searched through all online servers, only two pieces of information
differentiated these two servers – their IP addresses and the round trip time (RTT) to each
server. Players self-selected the server with the lowest latency, which tended to be the
server topologically closest and in the player’s time zone.

Where Do Players Come from and When? 143

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 2 4 6 8 10 12 14 16 18 20 22 24

P
la

ye
d

tim
e

(%
)

Time of day (in California)

Server usage patterns as a function of server timezone

Palo Alto
London

Figure 9.6 Daily Quake III Arena server usage cycles

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

P
la

ye
d

tim
e

(%
)

Day of week (in California)

Server usage patterns as a function of server timezone

Palo Alto
London

Figure 9.7 Weekly Quake III Arena server usage cycles

144 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

9.2.2 An Example Using Wolfenstein Enemy Territory

Figure 9.8 shows broadly similar daily variations experienced by two small Wolfenstein
Enemy Territory (ET) servers [WET2005] hosted on the east coast of Australia dur-
ing late 2004 (data collected over 20 weeks, with each server allowing a maximum
of 20 players) [ZANDER2005b]. Usage is revealed by plotting the average number of
IP flows associated with actual game play in any given hour of the day. The volume
of traffic (in Mbytes) associated with these game-play flows shows the same cyclical
fluctuation.

One of the ET servers was located at Swinburne University of Technology (Swin-
burne) in Melbourne, Australia. The other server was located in Canberra, Australia, on
GrangeNet (an experimental, high-speed research network [GRANGE2005]). The CAIA
server shows distinct use every afternoon and early evening that drops off by midnight.
The GrangeNet server saw only intermittent activity, some days having no players at all.
Yet the cycle, such as it is, follows a similar afternoon/evening pattern.

9.2.3 Relationship to Latency Tolerance

As noted in Chapter 7, most players of highly interactive games will come from within
a certain ‘radius’ of tolerable latency. More latency-tolerant games are likely to see their
usage cycles spread out somewhat over any given 24-hour period. Latency tolerance
translates to a greater number of time zones that might find a given server to be within

0

2

4

6

8

10

12

0 2 4 6 8 10 12 14 16 18 20 22 24

A
ve

ra
ge

 n
um

be
r

of
 IP

 fl
ow

s

Hour of the day (East coast Australia)

Average IP flows (game-play) per hour (Wolfenstein Enemy Territory)

Swinburne server
Grangenet server

Figure 9.8 Average number of game-play IP flows per hour on two Wolfenstein Enemy Territory
servers in Australia

Where Do Players Come from and When? 145

an acceptable latency of the players. Consequently, there is a better chance that someone
somewhere might find your server(s) interesting enough to play on regardless of local
time at the server.

9.3 Server-discovery (Probe Traffic) Trends
Compared to the traffic generated by actual game play, it is easy to overlook the net-
workwide traffic caused by in-client and third-party server-discovery mechanisms. This
probe traffic rises and falls as people turn their game clients on and off, because it derives
simply from the act of seeking out servers rather than actually playing on them. It is the
‘background microwave radiation’ of online game networks, and reveals something about
where potential (rather than actual) players reside.

9.3.1 Origins of Probe Traffic

Many First Person Shooter (FPS) games provide an in-game server-discovery func-
tion to assist players in finding active game servers on the Internet. The game’s pub-
lisher typically establishes one or more ‘master servers’ to hold lists of currently active
game servers. The addresses of these master servers are encoded into the game client
software.

A player may trigger an automated search process to find game servers of interest. The
client queries an appropriate master server, gets back a list of IP addresses representing
current game servers, and then proceeds to automatically query each and every server
in the list. The queries return information such as server type, current map, number of
players and/or teams, number of available player slots, and so on.

Using Wolfenstein ET as the example, Figure 9.9 illustrates how a client discovers
active game servers. First, a short UDP packet containing the text ‘getservers’ is transmit-
ted to etmaster.idsoftware.com:27950. This triggers a reply of one or more UDP packets
containing ‘getserversResponse’ followed by a list of 〈IP address, port number〉 pairs in

Game serverClient

Master server
etmaster.idsoftware.com

UDP port 27950
Client

getservers

getserversResponse
1...N

connect

(game begins)

Game server(s)
1...N

Client

getinfo

infoResponse

getstatus

statusResponse

Retrieve list of
all current

game servers

Probe some or
all current

game servers

Begin playing
on a selected
game server

Figure 9.9 Sources of probe traffic: Finding and joining a Wolfenstein Enemy Territory server

146 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

Figure 9.10 XQF – An open-source server-discovery tool

binary format. (These pairs represent the IP addresses and UDP port numbers of remote
Wolfenstein ET game servers that have registered with the master server.)

Armed with the getserversResponse list, the client then proceeds to interrogate each
listed game server. First, ‘getinfo’ elicts an ‘infoResponse’ containing basic server con-
figuration information. Then ‘getstatus’ elicits a ‘statusResponse’ containing a detailed
list of current players and game information.

The same basic approach is used by other FPS games such as Half-life, Quake III
Arena, Half-life 2, etc. Packet sniffing tools (such as tcpdump and ethereal, noted earlier)
can be used to observe and dissect the server-discovery packet exchange. (Ethereal has
one advantage over tcpdump in this situation – it can decode Quake III Arena/Wolfenstein
ET probe traffic.)

An extremely useful tool is the open-source program QStat [QSTAT05]. With Qstat,
you can easily probe a wide range of master servers and game servers, archiving the
parsed and interpreted replies in text files or piping them to other programs for real-time
display. For example, the open-source program ‘xqf’ [XQF05] provides a GUI front-end
for QStat under X11/UNIX and knows about a wide collection of current and old FPS
games (Figure 9.10).

9.3.2 Probe Traffic Trends

Although the individual query/response packets are small and the exchange is brief, thou-
sands of clients per day across the planet can create a substantial ‘background traffic’
over days and weeks.

Some insight into probe traffic patterns can be obtained from the previously men-
tioned study of two Wolfenstein ET servers in Australia. Figure 9.11 shows the daily
cycle of probe traffic seen by the Swinburne server broken out by approximate source
region – Europe, Australia, North America, Asia and South America [ZANDER2005b].
(GrangeNet’s results were virtually identical.)

Where Do Players Come from and When? 147

0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 6500

0 2 4 6 8 10 12 14 16 18 20 22 24

A
ve

ra
ge

 n
um

be
r

of
 IP

 fl
ow

s

Hour of the day (East coast Australia)

Average IP flows (probes) per hour (Wolfenstein Enemy Territory)

Europe
Australia

North America
Asia

South America

Figure 9.11 Probe traffic per region on Wolfenstein Enemy Territory server in Australia

A number of things are interesting when considered in light of the game-play trends
seen in Figure 9.8:

• Both servers saw virtually identical levels of probe traffic despite distinctly different
levels of game play.

• Probe traffic trends follow an entirely different time line to the game-play trends.
• The number of probe flows vastly outnumbers the number of game-play flows (by a

few orders of magnitude).

This can be explained by observing that probe traffic is dominated by clients who are
searching for playable servers, whereas game play is dominated by clients who have found
and joined an acceptable server. The former group depends on the demographics of game
ownership whilst the latter is more affected by latency, location and server configuration.
In Figure 9.11, the probe traffic was dominated by European clients (peaking around 5 am
local time), with North American clients coming in distant second (peaking around 1:30
pm local time). Probes from any particular region peak when it is, broadly speaking,
afternoon or evening in that particular region.

There is another lesson here. No matter how small you intend your public server
to be, you will attract a certain level of probe traffic from around the world simply
because you have registered with the master servers. Probe traffic is hard to predict or

148 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

control locally because it is unrelated to any configuration options on your server itself.
(For example, despite their different popularities with actual players the Swinburne and
GrangeNet servers each saw around 8 GB of probe traffic across 16 million IP flows
during the 20-week period.)

9.4 Mapping Traffic to Player Locations

For marketing and customer-support purposes, it is useful to establish the geographic
regions from which your players will (or do) originate. One server-side approach is to
map the source IP addresses of clients back to approximate geographic regions (using
one of the various ‘geo location’ services whose databases try to track which ISPs, and
hence which locations, have been assigned different IP address ranges). Another approach
is to establish the latency tolerance of players on a particular game type (as discussed in
Chapter 7), and infer from this an upper limit on the physical distance players are likely
to be from your server (a ‘latency radius’).

9.4.1 Mapping IP Addresses to Geographic Location

Client IP addresses can be extracted from both game play and probe traffic to approx-
imately identify the client’s location. In Figure 9.11, the regions were identified using
the services of MaxMind’s free GeoLite Country Database [MAX2005]. At the time of
writing, this resource claimed 97 % accuracy in mapping IP addresses to country codes
in their free offering, with higher levels of accuracy and resolution (to the level of states
and cities) in their commercial offerings.

A similar service, Geobytes [GEO2005], was used in 2003 to create a world map
showing geographic distributions of Half-life: Counter-strike players and servers around
the planet [FEN2003]. By calculating the ‘great circle’ distance between clients (using
latitude and longitude information returned by Geobytes) and a specific game server, the
authors showed cyclical patterns consistent with the ‘people play in their local afternoon
and evening’ evidence in Figure 9.6 and Figure 9.8.

A further technique is to reverse-lookup client IP addresses into their domain name
form. An ISP’s own name will often be revealed. In addition, many ISPs embed region-
specific codes and names into the domain names of IP addresses attached to customer
links. This method was used in [ARM2003] to confirm that players on the Californian
and London servers in Figure 9.6 did come largely from ISPs based close to California
and London, respectively.

These techniques are likely to be only modestly accurate and not always consistent.
An ISP rarely has much commercial incentive for providing enough detailed internal
topological knowledge for others to map the ISP’s IP addresses to geography. Nor can
ISP domain naming schemes be relied upon. Since the names are only required to be useful
to the ISP’s internal operations staff, there is no guarantee they would use geographically
meaningful names or sub-domains. Consequently, IP to country/city mapping databases
do, of necessity, include some approximations and guesses.

For example, on the day this chapter was written the author’s home broadband
connection had been assigned IP address ‘144.133.92.248’. Doing a reverse DNS

Where Do Players Come from and When? 149

lookup returned the domain name (customer premises equipment) ‘CPE-144-133-92-
248.vic.bigpond.net.au’. We might decode this as CPE device ‘144-133-92-248’ located
in Victoria (the ‘vic’ service region) of the Bigpond ISP (owned by Telstra, Australia’s
dominant telephone company). The geographic detail is ‘vic’ and the author was indeed
in the city of Melbourne in the state of Victoria at the time. Interestingly, on the same
day Geobytes reported this IP address was located in Sydney – about 713 kms away in
a different Australian state of New South Wales. (The free MaxMind country database
correctly identified the IP address range 144.130/16 to 144.140/16 as being in Australia.
But this is far more coarsely grained information.)

9.4.2 Mapping by Latency Tolerance

Establishing latency tolerance requires either controlled lab trials or weeks of monitoring
live game-play traffic patterns. (Probe traffic does not help much in this case. We know
that someone has probed our server, but we do not know why they did or did not choose
to subsequently join.)

Identifying the associated geographical boundaries on your likely player population is,
however, non-trivial. A rough approximation would be as follows: Take Z to be some
fraction of the speed of light and L to be the latency tolerance of your game. Thus,
R = Z × L is the physical radius from your server that would encompass most of your
happy players. We take Z as a fraction of the speed of light because, as discussed in
Chapter 5, geographically close players experience additional latency due to convoluted
IP layer paths, serialisation delays on slow links, and queuing delays in congested parts
of the Internet.

Lab trials have the limitation that you only know a game’s latency tolerance, and are
left with imprecise methods (such as that described above) to identify geographic areas.
Measuring latency tolerance from public server usage patterns is slightly better because
you also gain the IP addresses of actual clients who have played. A refined estimation of
player location combines latency readings with IP-to-location mapping as discussed above.
In addition, armed with the IP addresses of actual clients known to have frequented your
server, you can use tools such as traceroute (as discussed in Chapter 5) to measure the
paths back to each client. This information, along with time to live (TTL) data revealed
in every client’s inbound packet to your server, can provide further insights into the
relationship between latency tolerance and a player’s actual geographical location on the
planet.

References
[ARM2003] G. Armitage, “An Experimental Estimation of Latency Sensitivity in Multiplayer Quake 3”, 11th

IEEE International Conference on Networks (ICON 2033), Sydney, Australia, September 2003.
[ETHEREAL] “Ethereal: A Network Protocol Analyzer”, http://www.ethereal.com/ (as of July 2005).
[FEN2003] Wu-chang Feng, Wu-chi Feng, “On the Geographic Distribution of Online Game Servers and Play-

ers”, In Proceedings of NetGames, 2003, May 2003.
[FREEBSD] The FreeBSD Project, “FreeBSD: The Power to Serve”, http://www.freebsd.org (as of July 2005).
[GEO2005] Geobytes, “Geobytes Home Page”, http://www.geobytes.com/, 2005.
[GRANGE2005] GrangeNet, http://www.grangenet.net/ (as of July 2005).
[LINUX] Linux Online Inc,“Linux Online!”, http://www.linux.org (as of July 2005).
[MAX2005] MaxMind, “GeoLite Country Database IP Country”, http://www.maxmind.com/app/geoip country,

2005.

150 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

[QSTAT05] S. Jankowski, “Qstat – Real-time Game Server Status”, http://www.qstat.org/, 2005.
[QUAKE3] id Software, “id Software: Quake III Arena”, http://www.idsoftware.com/games/quake/quake3-

arena/, 2003.
[TCPDUMP] “tcpdump/libpcap”, http://www.tcpdump.org (as of July 2005).
[WET2005] Wolfenstein, http://games.activision.com/games/wolfenstein (as of October 2005).
[WINDOWS] Microsoft, http://www.microsoft.com (as of July 2005).
[XQF05] XQF Game Server Browser, http://www.linuxgames.com/xqf/index.shtml, 2005.
[ZANDER2005b] S. Zander, D. Kennedy, G. Armitage, “Dissecting Server-Discovery Traffic Patterns Gener-

ated by Multiplayer First Person Shooter Games”, NetGames 2005, pages 10–11, New York, USA, October
2005.

10
Online Game Traffic Patterns

It is important to understand a number of online game traffic characteristics when planning
new network services or trying to improve existing services. As noted in Chapter 9, many
Internet-based games today use a client–server network communications model. The
Internet Protocol (IP) service experienced by clients of an online game is influenced by the
impact of the game’s own traffic patterns on the network. Keeping in mind the issues from
Chapters 5 and 7, an Internet Service Provider (ISP) who wishes to keep its game playing
customers happy requires insights into the competing traffic patterns on its network.

Online games exhibit different patterns and characteristics relative to non–real-time
applications (such as email, web surfing and many streaming video/audio applications).
Game developers must also consider how their game’s communication model translates
to actual packet traffic pattern. Where possible, information flow should be smooth rather
than bursty, to assist ISPs in managing their infrastructure to deliver better service to
game players.

In Chapter 9, we looked at the daily and weekly trends reflecting aggregate join/play/
leave cycles of game players themselves. Such statistics help in the provisioning of game
servers and long-term sizing of links close to the servers. In this chapter, we will take a
closer look at packet-by-packet statistics during game play itself – packet-size distribu-
tions and inter-packet arrival times.

These provide an insight into the burstiness of game traffic as perceived by the network,
and can be used to model the impact of game traffic on router queues that are being shared
with other traffic.

Game traffic can also be divided along the following lines:

• Game-play traffic for which real-time interactivity requirements apply (during a game
in progress).

• Signalling/support traffic for which best effort IP service is adequate (for example,
server discovery probing, automated map and skin/avatar downloads and patch updates).

In the rest of this chapter we will look at how to measure in-game traffic, provide some
examples of traffic patterns from some well-known First Person Shooter (FPS) games
and look at how well the game traffic can be simulated and extrapolated from empirical
measurements.

Networking and Online Games: Understanding and Engineering Multiplayer Internet Games
Grenville Armitage, Mark Claypool, Philip Branch 2006 John Wiley & Sons, Ltd ISBN: 0-470-01857-7

152 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

10.1 Measuring Game Traffic with Timestamping Errors
As noted in Chapter 9, it is remarkably easy to build free packet-sniffing tools
using open-source UNIX-like operating systems and packet-capture software such
as ethereal [ETHEREAL] or tcpdump [TCPDUMP]. However, unlike hourly or daily
trends, realistic packet-by-packet pattern detection requires sub-millisecond timestamping
accuracy. In this section we extend the discussion from Chapter 9 to include the issue of
timestamping accuracy with modern, PC-based motherboards.

Most PC-based packet-capture software today will happily report timestamps in a
numerical form that implies a resolution of 1 micro-second. The implication is often
misleading. As noted earlier, the combination of non–real-time operating systems and
PC motherboard clock inaccuracies leads to random (and not so random) variations in
reported timestamps from one frame to the next.

There are two key points to remember when calibrating a low-cost PC+software traffic
monitor and understanding its limitations:

• Modern PCs have hardware clocks that are not particularly accurate at the micro-second
level.

• Operating systems such as FreeBSD [FREEBSD], Linux [LINUX] or Microsoft’s Win-
dows [WINDOWS] are not designed to respond to external events (such as packet
arrivals) consistently and in predictable time.

Hardware clocks provide the reference against which the software counts the passage
of time. They are simply a counter that increments at a fixed, known rate. The operating
system relies on knowing how many times the hardware clock increments (ticks) per
second in order to know how long a second is. If the hardware clock ticks faster than
expected, the operating system will overestimate time intervals. Conversely, if the clock
ticks slower, the operating system will underestimate time intervals. Since packet-capture
programs rely on the operating system for timestamping, the actual timestamps on every
packet are subject to vagaries in the sniffing host’s on-board clock.

For example, consider a monitoring host whose local reference clock is specified to tick
at 1 MHz but, in fact, runs 250 Hz faster (an error of 0.025 %). The operating system will
assume that 1,000,000 increments of the clock counter represents one second of elapsed
‘real-time’, when, in fact, only 0.99,975 seconds have elapsed. Conversely, if packets are
arriving over the network precisely 1 second apart, the monitoring software will report
that the packets are arriving 1,000,250 micro-seconds apart instead.

Non–real-time operating systems also contribute to inaccuracies by providing no guar-
anteed response time when handling the arrival of packets. A finite period of time elapses
between the ethernet interface hardware receiving a packet and that packet being copied
into memory and timestamped. Depending on the operating system’s internal architec-
ture for handling I/O (input/output) interrupts, the interval between a packet arriving and
being timestamped may depend significantly on the system’s processing load at the time.
Arriving packets are usually handled ‘quickly enough’, without any promises from the
operating system of how quick that actually is. Consequently, the timestamp attached to
every received packet is subject to the vagaries of processor load and interrupt handling
at any given moment in time.

Online Game Traffic Patterns 153

Despite all this, we can still use modern PCs and non–real-time operating systems
to sniff traffic and report useful inter-packet arrival statistics. There are three things to
consider.

• Calibrate your particular combination of hardware and software before putting it to use.
• Minimise unnecessary processor load on the sniffer host.
• Resynchronise the on-board clock regularly.

Calibration involves packet-sniffing a stream of packets from a known, precise source (a
number of companies sell precision traffic generators for this purpose) and then comparing
the measured spread of inter-packet intervals with the actual inter-packet intervals. This
will reveal the bounds of likely error over different timescales and indicate whether a
particular hardware and software combination can be trusted.

A trustworthy system might consistently generate timestamps that fluctuate, for example,
15 micro-second around a mean value that is 2 micro-seconds higher than the correct
inter-packet interval. We would then attribute ±15 micro-second error bars, and adjust
the means by 2 micro-seconds. Given that many games send packets that are spaced tens
of milliseconds apart, this level of accuracy is quite sufficient.

Untrustworthy systems can have all sorts of oddball error modes. For example, we have
seen situations where 7 ms deviation in the timestamp was introduced every second or
so when an active ethernet cable was plugged into an entirely unrelated interface on the
motherboard, or where the operating system only processed (and timestamped) packets
from the ethernet card every 10 ms regardless of their arrival time.

Minimising processor load on the sniffer box is another reason it can be undesirable to
perform packet capture on the actual game server or client hosts. It is also why you should
carefully consider whether to do packet filtering (which incurs slightly more processing
load) during or after capturing the traffic.

10.2 Sub-second Characteristics
The impact of network conditions on game traffic is more complex than simply measuring
the average bit rate or packet-per-second rate between servers and clients. Many online
games have quite low average bit rates. However, after the discussion of serialisation and
queuing delays in Chapter 5, it should be clear that packet sizes and inter-packet intervals
play an important part in how our game traffic will affect, and be affected by, other IP
traffic in a network.

In this section, we will look at traffic examples from a number of FPS games. We focus
on the in-game characteristics when players will be most sensitive to network service
degradation (such as jitter and packet loss). The packet size and inter-arrival distributions
between games (for example, during a map change) will not be covered.

10.2.1 Ticks, Snapshots and Command Updates
During game play, client-to-server transmissions keep the server informed of client actions,
while server-to-client transmissions keep the client informed of global state changes in the
game as a whole. Precisely how much information is sent, and how frequently, depends
both on the game’s design and actual game activity at any given point in time.

154 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

Game
server

Client

Command update
messages

Snapshot update
messages

Local
'thinking'

every
TICK

Local
rendering

Figure 10.1 Servers and clients ‘think’ and exchange information at potentially different rates

Figure 10.1 illustrates a useful conceptual model. A server typically ‘thinks’ in discrete
time intervals (which we will refer to as ticks). A server must also transmit updates
(or snapshots) of game state to every client on a regular basis. Similarly, the client is
regularly making calculations (rendering game activity on screen) and sending updates
(commands) to the server.

It is not essential that tick and snapshot rates are equivalent. Most FPS games provide
a player-configurable mechanism for the client to request different snapshot rates that are
better suited for their downstream network connection (towards the client). Clients can
usually also set their command update rate (in packets per second) to suit their upstream
network connection.

However, because an FPS server only does things at every tick:

• a client cannot request a snapshot rate faster than the tick rate.
• a client can request a snapshot rate slower than the tick rate, but the result is usually

some multiple of the server’s tick rate.

An optimal snapshot rate is a trade-off between timeliness of game-state updates and
network capacity towards the client. The product of snapshot rate and snapshot packet size
is the message rate in bytes per second, which (naturally) must not exceed the available
network capacity. If it does, even for brief instances, the client experiences additional
jitter (and possibly packet loss).

Designers of online FPS games use various techniques to minimise the size of snapshot
packets, such as:

• eliminating redundant or overly precise details in the state variables being sent to
clients.

• only sending information about game-state changes within view of the client’s current
player location.

• only sending the changes between one snapshot and the previous snapshot (sometimes
referred to as delta compression).

Similarly, commands are kept very small in the client-to-server direction. They need
to be sent frequently enough that a player’s actions are reflected into the virtual game

Online Game Traffic Patterns 155

world accurately. They need to be small because upstream bandwidth is usually highly
constrained in dial-up, DSL or cable-modem scenarios.

10.2.2 Controlling Snapshot and Command Rates

Let us take the example of Wolfenstein Enemy Territory (ET) [WET2005]. By default,
ET servers tick 20 times per second (a tick every 50 ms) and their clients usually request
20 snapshots per second. If a client requests a higher snapshot rate, such as 30 or 40
per second, the server continues to send snapshots every tick – once every 50 ms. If
a client requests 15 snapshots per second, the ET server rounds this up to the next
multiple of tick intervals – 100 ms – which corresponds to 10 snapshots per second. The
desired snapshot rate can be changed in-game using the client-side console command
‘snaps’. (This observation also applies to Quake III Arena [QUAKE3], the engine on
which Wolfenstein ET was based.)

Half-life 2 (HL2) [HALFLIFE2004] behaves slightly differently. By default, the HL2
server ticks 66 times per second (once every 15 ms) [HL2NTWK]. As with ET, a HL2
client cannot request more snapshots per second than the HL2 server’s tick rate (in this
case, 66). However, the situation is rather different when HL2 clients request less than 66
snapshots per second. Rather than simply rounding up to the next multiple of 15 ms, the
server mixes transmission intervals to approximate the client’s requested snapshot rate
over many packets.

For example, a request for 30 snapshots per second results in an uneven mix of packets
sent at 30 ms and 45 ms intervals that averages out to 30 packets per second. A request for
50 snapshots per second results in an uneven mix of packets at 15 ms and 30 ms intervals,
again averaging out to 50 packets per second. The snapshot rate can be changed in-game
by modifying the client-side ‘cl updaterate’ variable.

Some games may also allow configurable server-side limits to override the client-side
request. For example, setting HL2’s ‘sv minupdaterate’ server-side variable to 30 would
impose a minimum rate of 30 snapshots per second on clients whose ‘cl updaterate’ was
less than 30.

FPS games usually also allow capping of the downstream server-to-client traffic in
bytes per second (not just packets per second). For example, HL2’s client-side ‘rate’
setting allows a client to specify the maximum rate at which it can accept traffic in
bytes per second. It might seem redundant to have separate limits on rate (in bytes per
second) and snapshots (in packets per second). However, the bytes per second limit
protects your downstream link when the snapshot packets become large. If necessary, the
snapshot packet/second rate will be temporarily reduced if the product of packet length
and transmission frequency exceeds the bytes/second rate set by a client.

Command traffic in the client-to-server direction can also be constrained by the player.
In Quake III Arena, the client-side variable ‘cl maxpackets’ specifies a cap on the number
of command packets per second that the client will transmit to the server. This value
dictates a lower bound on inter-packet arrival times from client to server.

In the following two sections, we will look in detail at the packet size distributions and
inter-packet arrival distributions of some well-known FPS games.

156 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

10.3 Sub-second Packet-size Distributions
Not surprisingly, state information sent in server-to-client snapshots is far more var-
ied and complex than the command updates sent from client to server. We will look
at some examples from Quake II, Half-life, Quake III Arena, Halo 2, Wolfenstein ET
and HL2.

Note that our focus here is on the ‘in-game’ distributions – packet sizes that are
typically seen during the action parts of a game. The examples given here will not include
packets seen during idle times and map changes (periods where interactive performance
is less important).

Figure 10.2 and Figure 10.3 illustrate typical server-to-client and client-to-server
packet-size distributions for Quake II over a Local Area Network (LAN). Figure 10.2
reveals that although individual playing styles can create minute differences in server-to-
client packet-size distributions, the overall shape is fairly consistent. Figure 10.3 shows
that client-to-server distributions are more clearly bounded regardless of playing style.

Figure 10.4 and Figure 10.5 illustrate similar characteristics for the original Half-
life [HALFLIFE][LANG2003]. However, here we see an additional truth about server-
to-client traffic – packet sizes depend on map type. In Figure 10.4, four players played
on three different maps to show the impact on packet-size distribution. (This should not
be surprising – map design influences the frequency with which players interact, and
thus influences the amount of information carried by the average snapshot packet.) Over
the same three maps (and with four players), Figure 10.5 reveals that client-to-server
command packets are not influenced by the map type.

0

0.5

1

1.5

2

2.5

60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250

%

IP packet length (bytes)

Server-to-client packet size distribution (Quake II)

Player 1
Player 2

Figure 10.2 Quake II packet sizes: Server-to-client for two players during game play

Online Game Traffic Patterns 157

0
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

5

10

15

20

25

30
%

IP packet length (bytes)

Client-to-server packet size distribution (Quake II)

Player 1
Player 2
Player 3

Figure 10.3 Quake II packet sizes: Client-to-server for three players during game play

0

0.5

1

1.5

2

2.5

3

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350

%

IP packet length (bytes)

Server-to-client packet size distribution varies with map (Half-life)

Xflight
ChilDM

Odyssey

Figure 10.4 Half-life packet sizes: Server-to-client over three different maps

158 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

0

1

2

3

4

5

6

7

8

9

50 60 70 80 90

%

IP packet length (bytes)

Client-to-server packet size distribution per map (Half-life)

Xflight
ChilDM

Odyssey

Figure 10.5 Half-life packet sizes: Client-to-server over three different maps

Quake III Arena shows similar client-to-server packet-size distribution curves to
Quake II and Half-life in Figure 10.6 (two separate client curves are shown, essentially the
same distributions). An additional truth about server-to-client packet-size distributions is
illustrated in Figure 10.7 – the snapshots carry more information on average as the number
of players goes up. (This example is taken from [LANG2004], where the same map was
played multiple times with different numbers of players). Wolfenstein ET client-to-server
traffic shows a similar packet-size distribution to that of Quake III Arena.

In general, snapshot size distributions are relatively constant over time for a given map
type and number of players. Unfortunately, it is not immediately evident how to predict
the likely packet-size distribution of a given map without previous measurements of actual
game-play traffic.

A similar set of results emerge from the Xbox game Halo 2 [HALO2004]. Figure 10.8
and Figure 10.9 show the server-to-client and client-to-server packet-size distributions
respectively, measured on a LAN when playing in ‘System Link’ mode [ZANDER2005a].
As expected, the server-to-client distributions increase and broaden out as the number of
players increases. However, unlike the earlier PC-based games, a single ‘client’ (Xbox
console) may have one to four players on it. This results in four possible client-to-server
distributions – similarly shaped but with progressively larger packets to carry additional
player action messages to the server. Halo 2’s client-to-server packets only appear in
certain discrete sizes, always in multiples of 4 bytes and spaced 8 bytes apart. (The lines
in Figure 10.9 visually associate data points rather than imply a continuity of packet sizes
between data points.)

Figure 10.10 and Figure 10.11 show the server-to-client and client-to-server packet-size
distributions seen with HL2. Since server-to-client size distribution generally varies with

Online Game Traffic Patterns 159

0

2

4

6

8

10

12

60 65 70 75 80 85 90 95

%

IP packet size (bytes)

Quake III Arena client-to-server packet size distribution

Client 1
Client 2

Figure 10.6 Quake III Arena client-to-server packet-size distribution

0

0.5

1

1.5

2

2.5

3

50 75 100 125 150 175 200 225 250 275 300 325 350

%

IP packet length (bytes)

Server-to-client packet size distribution versus number of players (Quake III Arena)

2 players
4 players
5 players
6 players
8 players

Figure 10.7 Quake III Arena’s server-to-client packet distributions versus number of players

160 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

0

2

4

6

8

10

12

14

16

18

20

22

60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400

%

Packet size (bytes)

Halo 2 server-to-client packet size distribution versus number of players in game

3 players
5 players
7 players
9 players

11 players

Figure 10.8 Halo 2 server-to-client packet-size distribution (IP packets over LAN)

0

10

20

30

40

50

60

50 60 70 80 90 100 110 120 130 140 150 160

%

Packet size (bytes)

Halo 2 client-to-server packet size distribution versus number of players on client

1 player
 2 players
3 players
4 players

Figure 10.9 Halo 2 client-to-server packet-size distribution (IP packets over LAN)

Online Game Traffic Patterns 161

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 100 200 300 400 500 600 700 800

%

IP packet length (bytes)

Packet length distributions: Half-life 2 server snapshots

Client 1
Client 2

Figure 10.10 Half-life 2 server-to-client packet-size distributions of two clients on the same server

0

1

2

3

4

5

6

7

8

50 60 70 80 90 100 110 120 130 140

%

IP packet length (bytes)

Packet length distributions: Half-life 2 client commands to server

Client 1
Client 2

Figure 10.11 Half-life 2 client-to-server packet-size distributions of two clients on the same server

162 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

the number of players and map layout, Figure 10.10 should be treated as indicative of
what to expect, rather than setting specific boundaries on possible packet sizes.

10.4 Sub-Second Inter-Packet Arrival Times
Inter-packet arrival times reflect the actual, packet-by-packet burstiness of traffic between
a game server and its clients. From server to client, the distribution of inter-packet intervals
depends on the server’s snapshot update algorithm. From client to server, the patterns are
more complex, being the result of multiple unsynchronised clients sending player action
messages continuously (but somewhat irregularly) to the server.

Once every tick, a game server transmits a back-to-back burst of one or more snapshot
packets towards its clients (Figure 10.12). The precise number of packets sent per each
tick depends on the snapshot update strategy employed by the server.

Burstiness is highest at the server, gradually dropping as packets branch out along
network paths towards each client (Figure 10.13). Inter-packet interval histograms of the
aggregate snapshot traffic at a server will show one peak at some multiple of the server’s
tick interval and another peak down under 1 ms (from snapshots sent back to back during
the same tick interval).

Packet 1 Packet 2 Packet 3

Time t 1 Time t 2

Snapshot interval

Packet 1 Packet 2 Packet 3

Figure 10.12 Servers transmit one or more back-to-back packets every tick to meet snapshot rate
limits

Game
server

Client 2

Snapshot interval

Client 1

P1 P2 P3 P1 P2 P3

P2 P2

P1 P3 P1 P3

P1 P1

P3 P3

Client 3

Router 1 Router 2

Figure 10.13 Updates become less bursty closer to clients

Online Game Traffic Patterns 163

Table 10.1 Default FPS snapshot and tick rates

Game type Snapshot
rate

(per second)

Tick rate
(per second)

Quake II 10 ?
Half-life 16.67 ?
Quake III Arena 20 20
Wolfenstein

Enemy Territory
20 20

Half-life 2 20 66
Halo 2 25 ?

For a game such as Quake III Arena or Wolfenstein ET, if there are n players on
your server, all requesting 20 snapshots per second, then (100 × (n − 1)/n) percent of the
measured inter-packet intervals will be in the sub-millisecond region. The same applies
to HL2 if the clients have all requested 33 or 66 snapshots per second. The inter-packet
interval distribution becomes more complex to predict when concurrently connected HL2
clients request different snapshot rates.

Table 10.1 shows the default snapshot rates for a number of well-known FPS games
along with the server’s tick rate (where known).

Snapshot intervals do not generally vary with map choice or number of players. How-
ever, game server tick timing can fluctuate by a few milliseconds due to central processing
unit (CPU) load, resulting in observable jitter of snapshot transmissions.

Client-to-server intervals of the PC-based FPS games are more difficult to characterise.

• Client transmissions towards the server are uncorrelated (so inter-packet intervals of
the aggregate traffic close to the server are spread widely).

• Many games have user-configurable rates (and thus minimum inter-packet interval) at
which they send updates from client to server.

• Actual distributions seem to depend strongly on each player’s game-play behaviour, the
client settings and their system’s technical capabilities (e.g. CPU speed and graphics
card hardware acceleration) [LANG2003, LANG2004].

Most published empirical results suggest intervals clustered between 10 ms and
30–50 ms. (Although this is not always so – Halo 2’s XBox System Link clients
transmit their updates at regular 40 ms intervals, same as the server-to-client inter-packet
interval.) [ZANDER2005a]

One final note. When interpreting inter-packet interval statistics, be aware that you may
sometimes find multiple clients hiding behind a single IP address. Two or more people
playing on your Internet-based server from their home LAN will usually be connecting
through a home ‘gateway’ implementing Network Address Translation (NAT). Their user
datagram protocol (UDP) packets will have the same home IP address. It is important
to always use both the port number and IP address to differentiate remote clients. (You
may also be able to confirm multiple distinct client machines behind the NAT box by the
unique ‘IP ID’ field patterns in packets from each client [BELLOVIN2002].)

164 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

0

2

4

6

8

10

12

30 40 50 60 70 80 90 100 110 120

%

Interval (milliseconds)

Inter-packet arrival distribution: Wolfenstein Enemy Territory snapshots

20 snapshots/sec
30 snapshots/sec

10 snapshots/sec
15 snapshots/sec

Figure 10.14 Inter-packet intervals for Wolfenstein ET snapshots towards a single client

10.4.1 Example: Wolfenstein Enemy Territory Snapshots

Figure 10.14 shows the inter-packet intervals for snapshot traffic from a Wolfenstein ET
server to a single client. The client was approximately 12 hops and 15–20 ms away
from the server over a regular (consumer grade) broadband Internet connection. Mea-
surements were taken at the client end. There are four histograms, corresponding to the
client requesting 10, 15, 20 and 30 snapshots per second. We can clearly see that the
server has quantised the snapshot rate to an integer multiple of the server’s internal tick
interval of 50 ms when 20 or 30 snapshots/second are requested, and 100 ms when 10 or
15 snapshots/second are requested.

Figure 10.15 shows the inter-packet intervals for command traffic from a Wolfenstein
ET client to its server (measured at a server 15 hops from the client).

10.4.2 Example: Half-life 2 Snapshots and Client Commands

Figure 10.16 illustrates the difference between HL2’s snapshot transmission strategy and
that of ET. As with Figure 10.14, the client is 12 hops (roughly 15–20 ms) from the
server, inter-packet intervals are being measured at the client and the four histograms
correspond to the client requesting 30 and 50 snapshots per second. At 30 snapshots per
second, the HL2 server emits a stream of snapshot packets having a mixture of 30 ms
and 45 ms intervals. At 50 snapshots per second, the actual snapshot stream is a mix of

Online Game Traffic Patterns 165

0

5

10

15

20

25

0 10 20 30 40 50 60

%

Interval (milliseconds)

Inter-packet interval distributions: Wolfenstein Enemy Territory client commands to server

Figure 10.15 Inter-packet intervals for Wolfenstein ET command traffic from client to server

0

 0.5

1

 1.5

2

 2.5

3

 3.5

4

0 10 20 30 40 50 60

%

Interval (milliseconds)

Inter-packet arrival distribution: Half-life 2 snapshots

50 snapshots/sec
30 snapshots/sec

Figure 10.16 Inter-packet intervals for Half-life 2 snapshots to one client (30 and 50 snapshots
per second)

166 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

0

1

2

3

4

5

0 10 20 30 40 50 60

%

Interval (milliseconds)

Inter-packet arrival distribution: Half-life 2 snapshots

80 snapshots/sec
66 snapshots/sec
33 snapshots/sec

Figure 10.17 Inter-packet intervals for Half-life 2 snapshots to one client (33, 66 and 80 per
second)

15 ms and 30 ms intervals. The average snapshot rate is what the client requested, but the
actual inter-packet interval distributions are bi-modal.

HL2’s inter-packet interval distributions for 33, 66 and 80 snapshots per second are
shown in Figure 10.17. Since 33 snapshots per second is an even multiple of the tick
timer, the distribution has a single peak at 30 ms. At 66 and 80 snapshots per second,
we see identical distributions around 15 ms. Because of the way HL2 orders updates to
individual clients per tick, the nominal 15 ms peak in the histogram appears as two peaks
closely straddling 15 ms (∼12 ms and ∼18 ms).

Figure 10.18 shows the inter-packet interval distributions of client-to-server HL2 traffic
as measured at a server. In this case, there were eight clients playing at the same time. We
have plotted the inter-packet intervals of three representative clients and of the aggregate
traffic from all eight clients as seen by the network link coming into the server. Two
things are noteworthy.

• Each client has quite a distinct distribution of its own (because of client-side settings,
CPU speed, graphics cards and player activity).

• The aggregate distribution is clustered well below the mean interval of each client
(because client-to-server command traffic is not synchronised across clients).

Online Game Traffic Patterns 167

0

1

2

3

4

5

0 10 20 30 40 50 60 70

%

Interval (milliseconds)

Inter-packet interval distributions: Half-life 2 client commands to server

Client 1
Client 2
Client 3

All 8 Clients

Figure 10.18 Inter-packet intervals for Half-life 2 client commands towards the server (three
clients and aggregate of eight clients)

10.5 Estimating the Consequences
Many discussions of online games characterise game traffic in average ‘packet per second’
(pps) or ‘bits per second’ (bps) rates. Average packets per second is the inverse of the
average inter-packet interval (for example, a 50 ms inter-packet interval equates to 20
packets per second). Bits per second represents the length of the average packet multiplied
by the number of packets per second.

Unfortunately, the attractive simplicity of such single-value metrics hides the
packet-by-packet realities revealed in packet-size distribution and inter-packet interval
distributions.

For example, consider a Quake III Arena server with 15 players sending update packets
every 50 ms to each client (default client settings). This server is transmitting 300 packets
per second for an average inter-packet arrival time of 3.3 ms. If the average packet size was
∼160- bytes (not unreasonable given Figure 10.7), that would equate to ∼384 Kbit/second.
However, as we know from direct traffic measurement, this stream is not uniform. Every
50 ms the server sends 15 packets back to back, as fast as possible – limited only by the
server’s hardware and local link speed.

Assume that link speed is the limiting factor, and the server is on a 100 Mbit/second
ethernet connection. An average IP packet of 160 bytes translates to roughly 1472 bit-

168 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

times on the ethernet [add 12 bytes for source and destination media access control
(MAC) address, 2 bytes for ethernet type field, 4 bytes ethernet cyclic redundancy check
(CRC) and 64 bit-times inter-frame preamble]. This translates to ∼15 micro-seconds per
IP packet, or 225 micro-seconds per burst. (Alternatively, this equates to a burst at roughly
67 K packets per second every 50 ms.)

The situation is substantially different if we consider the local server’s link to be a
1.522 Mbit/second T1 link. For simplicity, let us assume 8 bytes overhead (e.g. for Point to
Point Protocol (PPP), encapsulation [RFC1661]), so the average 160- byte packet becomes
168 bytes, or 1344 bits long. Each packet now takes 883 micro-seconds to transmit at
1.522 Mbit/second, and it takes 13.2 ms to send all 15 packets back-to-back. Thus, for
13.2 ms out of every 50 ms, the server transmits at 1136 packets per second.

These two examples show that the server’s local link speed has a big impact on how
bursty the server’s outbound traffic will appear at early router hops along the path out
towards the clients. In neither case does the server impose an even load of 300 packets
per second on the network. In the latter case the regular update packets for the 1st and
15th clients are almost 12 ms apart.

Of course, the mean packet size can be quite misleading too. As Figure 10.7 suggests,
depending on map type and number of players, a Quake III Arena server might easily find
itself sending a burst of 300 byte packets at any given moment. Assume that at a particular
instant the server update sends 15 packets of 350 bytes each. This translates to a worst-
case instantaneous link bandwidth requirement of more like 840 Kbit/second – rather
more than the nominal 384 Kbit/second calculated previously using average packet sizes.
(The burst length would be 449 micro-seconds and 28 ms long at 100 Mbit/second and
1.522 Mbit/second respectively.)

The probability of such a worst-case burst happening depends on correlation (or lack of
it) between the packet-size distributions of each server-to-client stream. Establishing this
knowledge requires the kind of detailed traffic measurement discussed in section 10.1.
Nevertheless, we can see that, for example, a 15-player Quake III Arena server could not
reliably send client update packets with predictable latency if the local link was under
840 Kbit/second. (If you had provisioned a 512 Kbit/second link instead, there would be
occasions when the Quake III Arena server would be unable to transmit all 15 update pack-
ets within a 50 ms update interval. Most likely this would cause update packets to briefly
queue up inside the operating system of the server’s host machine, adding temporary jitter
to some of the server-to-client packet streams.)

10.6 Simulating Game Traffic
When an ISP wishes to explore the consequences of new network designs or deployment
of new applications, it is generally impractical to simply build the new network and test it.
The alternative is to simulate the interactions between new network configurations and new
types of networked applications. Two questions arise from measurement of actual game
traffic. First, can we create simulated traffic generators with similar statistical properties.
Second, can we reasonably extrapolate from small numbers of clients to simulate the
consequences of large client populations.

At least for a number of FPS games, it is not difficult to construct reasonably accu-
rate statistical traffic generator functions. Some of the earliest work analysed Doom

Online Game Traffic Patterns 169

[BORELLA99] without quite taking it to the level of simulation tool traffic generators.
Subsequent work ([LANG2003, LANG2004] and [ZANDER2005a]) developed models
for Half-life, Quake III Arena and Halo 2 respectively that could be used to specify
ns-2 [NS2SIM] traffic generators.

Our aim is to approximate empirically observed traffic characteristics with a pre-existing
statistical model that is both ‘good enough’ and simple to implement. (All other things
being equal, simple traffic generator functions increase the speed with which simulations
run and the scale of network topologies that can be simulated.)

10.6.1 Examples from Halo 2 and Quake III Arena

As an example, Halo 2’s client-to-server inter-packet arrival times can be modelled as
a normal distribution, while the server-to-client times were better approximated by an
extreme distribution [ZANDER2005a]. Figure 10.19 shows the relationship between mea-
sured and synthesised intervals using the normal distribution for client-to-server traffic.
(QQ-plots in [ZANDER2005a] show that errors in the synthesised distributions become
noticeable only for 2 % of client-to-server traffic in the tails and 5 % of server-to-client
traffic in the tails.)

Extreme distributions create a good match to packet sizes in each direction (Figure 10.20
and Figure 10.21).

0

2

4

6

8

10

12

14

34 36 38 40 42 44 46

%

Inter-packet interval (milliseconds)

Measured versus synthesised Halo 2 client-to-server inter-packet arrival distributions

Measured
Synthesised

Figure 10.19 Measured and synthesised Halo 2 inter-packet arrival times for client-to-server
traffic

170 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

0

10

20

30

40

50

60

50 60 70 80 90 100 110 120 130 140 150 160

%

Packet size (bytes)

Measured versus synthesised Halo 2 client-to-server packet size distributions

1 player (measured)
1 player (synthesised)
4 players (measured)

4 players (synthesised)

Figure 10.20 Measured and synthesised Halo 2 packet sizes for client-to-server traffic

0

2

4

6

8

10

12

14

16

18

20

22

70 90 110 130 150 170 190 210 230 250 270 290 310 330 350 370 390

%

Packet size (bytes)

Measured versus synthesised Halo 2 server-to-client packet size distributions

3 players (measured)
3 players (synthesised)

8 players (measured)
8 players (synthesised)
11 players (measured)

11 players (synthesised)

Figure 10.21 Measured and synthesised Halo 2 packet sizes for server-to-client traffic

Online Game Traffic Patterns 171

// client to server traffic model
setMillisecondTimer(Random::normal(40,1))
...

timerExpired() {
case numberOfPlayers == 1 :
pktSize = Random::extreme(71.2, 5.7)

case numberOfPlayers == 2 :
pktSize = Random::extreme(86.9, 5.1)

...
// round to nearest 8 byte packet size
pktSize = round((pktSize-52)/8)*8 + 52
sendPkt(pktSize)

}

Figure 10.22 ns-2 code fragment for generating Halo 2 client-to-server traffic

An ns-2 code fragment to generate client-to-server packet traffic would look something
like Figure 10.22 [ZANDER2005a]. (In this case the code utilises extreme distributions
with different parameters depending on the number of players on the simulated client.
The ns-2 code also mimics Halo 2’s generation of packet lengths rounded to specific
multiples of eight.)

A similar example is the analysis of Quake III Arena traffic performed in [LANG2004].
The authors ascertained that server-to-client packet-size distribution could be modelled
as a lognormal (‘. . . with mean 79.340,543 and standard deviation 0.24,507,092’) for
a two-client game, plus one additional exponential (with mean 13) for every additional
client.

The code fragment in Figure 10.23 shows how easy this is to incorporate into ns-2.
Here we simplistically assume that the packet generation occurs precisely every 50 ms
(timer interval) and focus on the random variation in packet size depending on the number
of clients. We also assume that every client receives a packet of the same size in each
update interval. A more sophisticated ns-2 traffic generator model would randomise the
packet size for each client, and slightly randomise the inter-packet intervals to match
observed jitter in server-to-client transmissions.

It is not possible to itemise every possible traffic generator. What we should take from
the preceding section is the knowledge that it is quite easy to simulate new network
scenarios with relatively accurate models of game traffic.

/* the packet size is dependent on the number of players */
/* it is the base packet size distribution (for 2 players) */
/* plus a negative exponential with mean 13 for every additional player */
size_ = int (Random::lognormal(79.340543, 0.24507092));
for (int i=3; i<=nrOfPlayers; i++)

size_ += int (Random::exponential(13));
/* send one packet to each player */
for (int i=1; i<=nrOfPlayers; i++)

send(size_);
/* schedule the next transmission */
/* interval_ is 0.05 sec */

timer_.resched(interval_);

Figure 10.23 ns-2 code fragment for generating Quake III Arena server-to-client traffic

172 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

10.6.2 Extrapolating from Measurements with Few Clients

Recent analysis of FPS traffic models suggests that we can plausibly synthesise traffic with
many clients from the models developed by measuring traffic for only a small number of
clients [BRANCH2005].

Given n clients connected to the server, each server-to-client snapshot packet carries
state-change information derived from all n client-to-server command messages received
in the previous snapshot interval (roughly speaking). Thus, the size distribution of the
server-to-client snapshot packets can be approximated by the convolution of n client-
to-server packet-size distributions plus a small negative exponential function. Analysis
in [BRANCH2005] showed that, starting with a simple client-to-server packet-distribution
model we could reasonably predict the server-to-client packet-size distributions actually
measured for four, six and eight-player games of Quake III Arena. This principle is
expected to hold for higher numbers of players and similar FPS games (since the log-
ical extrapolation makes very limited assumptions about the underlying game engine
design).

References
[BELLOVIN2002] S. Bellovin, “A Technique for Counting NATted Hosts”, Proceedings of Second Internet

Measurement Workshop, November 2002.
[RFC1661] W. Simpson (editor), “The Point-to-Point Protocol (PPP),” STD 51, RFC 1661, July 1994.
[BORELLA99] M.S. Borella, “Source models of network game traffic”, Proceedings of networld+interop ’99,

Las Vegas, NV, May 1999.
[BRANCH2005] P. Branch and G. Armitage, “Towards a General Model of First Person Shooter Game

Traffic”, CAIA Technical Report 050928A, Centre for Advanced Internet Architectures, Swinburne Uni-
versity of Technology, Australia, September 2005. (http://caia.swin.edu.au/reports/050928A/CAIA-TR-
050928A.pdf)

[ETHEREAL] Ethereal, “Ethereal: A Network Protocol Analyzer”, http://www.ethereal.com/ as of July
2005.

[FREEBSD] FreeBSD, “FreeBSD: The Power to Serve”, The FreeBSD Project, http://www.freebsd.org as of
July 2005.

[HALFLIFE] Planet Half-Life, http://www.planethalflife.com/half-life/, Accessed 2006.
[HALFLIFE2004] H A L F – L I F E 2, http://half-life2.com, 2004.
[HALO2004] Bungie.net, “Bungie.net : Games : Halo 2”, http://www.bungie.net/Games/Halo2/, 2004.
[HL2NTWK] “Source Multiplayer Networking”, http://developer.valvesoftware.com/wiki/Source Multiplayer

Networking, as of August 2005.
[LANG2003] T. Lang, G. Armitage, P. Branch and H-Y. Choo, “A Synthetic Traffic Model for Half Life”,

Australian Telecommunications Networks & Applications Conference 2003, (ATNAC 2003), Melbourne,
Australia, December 2003.

[LANG2004] T. Lang, P. Branch and G. Armitage, “A Synthetic Traffic Model for Quake 3”, ACM SIGCHI
ACE2004 conference, Singapore, June 2004.

[LINUX] Linux Online Inc, “Linux Online!”, http://www.linux.org as of July 2005.
[NS2SIM] “The Network Simulator–ns–2”, http://www.isi.edu.nsnam/ns/ (as of January 2006).
[QUAKE3] id Software, “id Software: Quake III Arena,” http://www.idsoftware.com/games/quake/quake3-

arena/, Accessed 2006.
[TCPDUMP] “tcpdump/libpcap,” http://www.tcpdump.org as of July 2005.
[WET2005] “Wolfenstein,” http://games.activision.com/games/wolfenstein as of October 2005.

Online Game Traffic Patterns 173

[WINDOWS] Microsoft, http://www.microsoft.com as of July 2005.
[ZANDER2005a] S. Zander and G. Armitage, “A Traffic Model for the XBOX Game Halo 2”, 15th ACM

International Workshop on Network and Operating System Support for Digital Audio and Video (NOSSDAV
2005), Washington, USA, June 2005.

11
Future Directions

The future of online games holds lots of changes. Emerging technologies will affect
network services in support of interactive, multiplayer games, new architectures will
support massively multiplayer games in a variety of genres, server selection will become
easier even as games crack down on cheaters, and novel game design will broaden the
scope of online interactions.

11.1 Untethered
End-hosts will be increasingly untethered by wired networks. Online games of the future
will travel over wireless networks to the end-clients. Wireless networks, because of their
low cost and convenience of installation, are already becoming increasingly widespread.
There are universities and even entire towns that have established wireless local area
network (WLAN) access. Large cities are even in the process of planning ubiquitous, free
wireless access for everyone.

Mobile telephone networks increasingly carry general, Internet Protocol (IP)-based traf-
fic. These mobile networks have customers using increasingly sophisticated, yet low cost,
mobile phones and personal digital assistants that are capable of playing a variety of
interactive games. In fact, these mobile phones can have more computing power than
early personal computers (PCs) that played games.

Gaming platforms are following suit. As mentioned in Chapter 3, the newest handheld
game consoles are all enabled with Institute of Electrical and Electronic Engineers (IEEEs)
802.11 WLAN. The next generation of game consoles also follow this ‘untethered’ trend.
Sony’s Playstation 3 comes with a built-in Ethernet adapter, but also includes an IEEE
802.11 WLAN wireless adapter. The Xbox 360 comes with a built-in Ethernet adapter,
but with an 802.11 wireless attachment purchased separately.

Figure 11.1 depicts the past, present and future of network connections for online
games. Yesterday’s online gaming networks were only wired, and with somewhat lim-
ited connectivity at that. Today’s gaming networks are mostly wired, but with increased
capacity to the end-user. More importantly, increasingly the last-mile connection is wire-
less. Beyond PCs and terminals, there is an increasing diversity of game devices that can
network for online play. Today, it is the PCs, consoles and some limited mobile devices.
Tomorrow, this trend will continue, with the variety of gaming devices growing, with most

Networking and Online Games: Understanding and Engineering Multiplayer Internet Games
Grenville Armitage, Mark Claypool, Philip Branch 2006 John Wiley & Sons, Ltd ISBN: 0-470-01857-7

176 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

Yesterday Today Tomorrow

ad hoc

Figure 11.1 Network connections for online games yesterday, today and tomorrow

devices connecting via a wireless connection, although high-capacity wired connections
will still continue.

This pervasiveness of wireless will impact online games considerably. Even for cases
where a game server is on a well-connected, wired host, the game clients will often be
wireless, through a WLAN or a wireless wide area network. Moreover, ad hoc wireless
networks, where hosts do not join a fixed, preset network environment but rather form a
network with willing hosts in range, are a natural mechanism to support online games for
players in close proximity. These ad hoc networks present additional challenges of routing,
stability and security all of which will impact the performance of game traffic they carry.

11.1.1 Characteristics of Wireless Media

The characteristics of wireless networks that have the most impact on online games and
that differ from wired network are [PK02]:

(a) Shared Medium. Unlike the wired media of today, broadcasting is natural in wireless
networks since all transmissions share the same medium. However, this shared medium
causes collisions as computers transmit at the same time, and can suffer from interference
even from computers transmitting on different channels. This can degrade network per-
formance beyond today’s Internet congestion that commonly occurs at routers or at the
network interface cards. Finally, the shared medium also makes it impossible to increase
the total capacity simply by adding media, as can be done in a wired network. With the
wireless medium, the network is restricted to a limited available band for operation, and
cannot obtain new bands or duplicate the medium to accommodate more capacity.

(b) Propagation. Wireless radio transmissions propagate over the air and are suspect to
attenuation, reflection, diffraction and scattering effects. The multipath fading caused by
these effects results in time-varying conditions, meaning the received signal power (and
hence, the network performance) varies as a function of time. In today’s wired networks,
the physical performance on a given link is fairly consistent over time.

(c) Large, bursty channel errors. Owing to the attenuation, interference, and fading effects,
wireless networks suffer from higher loss rates than typical wired networks. Wireless

Future Directions 177

networks can see bit error rates of 10−3 or even higher and often in bursts. To accom-
modate these errors, most of the wireless network standards implement a variety of error
recovery mechanisms, such as the Forward Error Correction (FEC), Automatic ReQuest
(ARQ) for retransmission and rate adaptation.

(d) Location dependent carrier sensing. In wireless networks, performance is greatly
determined by location. A hidden terminal where one sender is inside the range of the
intended destination but outside of range of the sender causes collisions if the sender
and the hidden terminal transmit to the destination at the same time. Similarly, an
exposed terminal where one node is within the range of the sender but out of interference
range of the destination may cause unexpected backoffs when an exposed terminal is
transmitting, even if that transmission will not collide with the sender’s transmission at the
destination.

The spread of wireless networks that will support tomorrow’s online, network games
demand increasing attention be paid to the above effects on games.

11.1.2 Wireless Network Categorisation

The general way to categorise wireless networks is based on the range of coverage.

(a) Wireless Personal Area Networks (WPANs) operate within a confined space, such
as a small office workspace or single room within a home with a coverage of less than
30 feet. For example, Bluetooth, which is defined under IEEE 802.15.1, can provide up to
720 Kbps capacity over less than 30 feet distance. Ultra Wideband (UWB), defined in IEEE
802.15.3a (still under development) is designed to provide up to 480 Mbps throughput
over a short distance [Intel04].

(b) Wireless Local Area Networks (WLANs) have a broader range than WPANs, but are
still typically confined within a single building such as a restaurant, store or home. WLAN
has become perhaps the most popular wireless data communication technique with the
production of the IEEE 802.11 standards.

(c) Wireless Metropolitan Area Networks (WMANs) cover a much greater distance than
WLANs, connecting buildings to one another over a broader geographic area. For example,
the emerging WiMAX technology, IEEE 802.16d today and IEEE 802.16e in the near
future, will further enable mobility and reduce reliance on wired connections. Typical
WMANs have a throughput of up to 10–20 Mbps and can cover a distance of approxi-
mately several miles [Intel04].

(d) Wireless Wide Area Networks (WWANs) have the broadest range and are most widely
deployed today in the mobile voice market, where the WWAN provides the capability of
transmitting data. The most popular WWAN techniques include the cellular 2.5 G data
services, such as General Packet Radio Service (GPRS) and Enhanced Data Rates for
GSM Evolution (EDGE), and the next-generation cellular services based on various 3G
technologies.

178 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

The following table summarises approximate characteristics for the above networks.

Technology Use Range Capacity

WPAN Single room 100 m 1 Mbps
WLAN Single building 1 km 50 Mbps
WMAN Multiple buildings 10 km 20 Mbps
WWANs Entire country 1000 km 100 Kbps

Out of these wireless network techniques, WLANs and WWANs are the most widely
deployed wireless networks. WLANs are already used for all sorts of data communications
over PCs, including online games, but the use of WWANs for online gaming is just
beginning. The next generation of WWAN networks promise to provide even higher
capacities than the current standards, but latency problems (300 ms to 1000 ms) are still
formidable.

11.2 Quality of Service
Quality of Service (QoS) has been a popular, if challenging, research area for over a decade
(Figure 11.2). While there have been a number of standards and approaches published,
most notably Integrated Services (IntServ) [BCS94], the Resource Reservation Protocol
(RSVP) [BZB+97] and Differentiated Services (DiffServ) [BBC+98], the deployment
today of these technologies has been lacking.

Approaches that try to provide some QoS without signalling rely upon packet inspec-
tion to classify traffic into QoS classes. This means the IP header and the transport
[transmission control protocol (TCP)/User Datagram Protocol (UDP)] header (typically,
to get port numbers) and sometimes the payload are used to infer what type of traffic the
flow is carrying. However, inspecting packet contents (transport and application layer) is
becoming increasingly problematic with encrypted data and even ‘well-known’ port num-
bers are often not a reliable means of classifying traffic. The application-layer protocols
themselves can be very complex, and often change making the QoS devices themselves
very brittle.

Yesterday’s networks were not well-connected or provisioned, depicted in the picture
on the left of figure 11.2 by the narrow network ‘pipe’, and carried mostly one class of
traffic as depicted by the gray squares. Today’s networks, and end-host operating systems,
are increasingly well-connected and provisioned, as represented by the thicker network
pipe in the picture in the middle. However, today’s networks still almost exclusively use
‘best effort’ services that do not provide explicit QoS guarantees, hence all the squares are

Yesterday Today Tomorrow

Figure 11.2 Quality of Service (QoS) yesterday, today and tomorrow

Future Directions 179

still gray. Tomorrow’s networks will be of even higher capacity with the biggest network
pipes and will provide opportunities to classify traffic based on some QoS requirements.
This is indicated in the picture on the right by the classification of some packets as white,
amongst the gray squares.

QoS can be characterised as either being parameter-based or priority-based. Parameter-
based QoS specifies a strict QoS such as latency bound or required data rate [BCS94].
Priority-based QoS specifies relative importance, such as this application’s data is more
important than that one [BBC+98]. In general, per-flow, parameter-based QoS on the
Internet has been of interest, yet is difficult to achieve end-to-end because of signalling
and scalability concerns. Priority-based QoS can be more easily deployed on select nodes
in a network.

11.2.1 QoS and IEEE 802.11

Wireless LAN equipment is low cost, convenient to deploy and use, can provide high
user bit rates (typically in the Megabits per second range) and, provided care is taken in
limiting sources of interference, is reliable. However, as mentioned above, wireless links
can have high loss rates, bursts of lost frames, and high latency and jitter, making QoS
difficult. And delay-sensitive applications, such as online games, require QoS guarantees,
such as bandwidth, delay and jitter. Providing QoS for upper layer applications is one of
the most challenging functions the wireless media access control (MAC) layer is trying
support.

To meet this challenge, the dominant WLAN protocol, IEEE 802.11, has one incar-
nation, the 802.11e standard, designed to provide some QoS performance. As described
in Chapter 8, IEEE 802.11e provides priority-based QoS to 802.11 to allow different
kinds of applications (e.g., file download, voice over IP and online games) to be placed
in different transmission queues with its own contention parameters. This allows queue
bounds, backoffs during congestion and other channel characteristics to be managed on
an application class basis. With these developments, 802.11e will be able to provide QoS
guarantees. It is in many ways one of the most promising and significant developments
in broadband access networks in recent years.

11.2.2 QoS Identification

One of the difficulties in QoS approaches is the requirement for applications, such as the
games themselves, to indicate their explicit QoS requirements to the underlying network.
Requiring this assumes developers are aware of QoS issues and understand the signalling
parameters and its ramifications for their applications. But QoS requirements for games
are still not well-understood and are hard to state explicitly.

Since backbone Internet network links are often overprovisioned and thus have little
queuing delay or variance in delay, one approach is to provide QoS across the ‘last-mile’
link between the Internet Service Provider (ISP) and the end-host. One such approach
is the Traffic Classification and Prioritization System (TCAPS) [SAB+05], depicted in
Figure 11.3. TCAPS includes a traffic classifier that identifies traffic on the basis of its
characteristics and breaks it into two groups: real-time/interactive (i.e., online games)
and everything else. Flows identified as real-time/interactive are given priority over all
other traffic travelling via the customer/ISP link. The classification method of TCAPS

180 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

Gaming
PC

Switch

TCAPS
server

ISP
router

Internet

Customer premises ISP premises

Figure 11.3 The Traffic Classification and Prioritization System (TCAPS) architecture aims to
provide classification, and then QoS, to end-host customers

is flexible, removing the need for regular updates with new classifier information and
removes any signalling burden from the end-hosts.

Since packet inspection is slow and unreliable, machine learning approaches are applied
to learn the traffic patterns of certain kinds of traffic, so that the classifier will be able to
make decisions about multiple flows much more quickly with much less information and
processing. Work on synthetic traffic models for traffic that needs QoS, such as online
games, can be effective in helping this approach.

11.3 New Architectures
Online games of the future will exploit new architectures. While online game architec-
tures today are primarily client–server, peer-to-peer architectures naturally fit the model
of communication for many games. Especially in models where players know and trust
each other and use local predictions of server state, a centralised server plays the role of a
glorified message carrier, just taking messages from players and forwarding them to other
players. The peer-to-peer architecture allows clients (the peers) to send messages directly
to other clients, thus avoiding the need (and added overhead) of a server. This provides a
more natural model for network communication and has the potential for scalability as it
more readily removes a centralised, potentially bottlenecked, server. Bottlenecked servers
that seek to host more and more players on the same world, will incorporate increasingly
sophisticated back-end architectures.

Figure 11.4 depicts the online game architectures of yesterday, with a few comput-
ers connected to an even fewer number of game servers shown in the picture on the
left. Today, there are numerous game servers, but online games still primarily deploy a
client–server architecture shown in the picture in the middle. Today’s servers, however,
have sometimes become more than a single machine hosting all the game players but
have more sophisticated back-ends for load balancing. Tomorrow, online games will use
a mixture of peer-to-peer and client–server traffic, shown in the picture on the right, and
servers will be increasingly sophisticated.

Future Directions 181

Yesterday Today Tomorrow

Figure 11.4 Online game architectures, yesterday, today and tomorrow

11.4 Cheaters Beware
There will be an increasing emphasis on cheat protection. The human nature that drives
cheaters will remain. Namely, cheaters derive pleasure in vandalism in creating havoc in
an online game (relatively few) and dominance in an attempt to gain advantage over other
game players (most). The anonymity that is provided by network games removes many of
the social aspects that prevent cheating, making it more pervasive in online games than it
is in, say, multiplayer games on the same computer. Still, as games integrate technology
that allows more socialisation, such as the integration of voice over IP with online games
and even cameras that convey video information, the social constraints may reduce some
forms of cheating.

In terms of technology, online games have moved from being completely vulnerable to
even simple cheating exploits, to many of today’s games requiring game clients to have
some form of cheat protection software to participate in online play. New techniques
will include network protocols that both detect and prevent cheating and even work in
untrusted environments.

In practice, the fight against cheaters may never be won. An analogy may be the battle
against viruses and worms. Approaches that catch viruses and worms typically react
to past exploits, shoring up software defences to stop continued contamination. Virus
writers react by coming up with new exploits or writing about more sophisticated viruses,
thus continuing the cycle. Similarly, well-known cheating exploits can be accounted for,
but new techniques are likely to be uncovered, even as game and network technologies
grow.

Still, it can be expected that protection against simple cheating exploits, such as packet
repetition and packet replay, will be provided in nearly every online game of the future,
just as virus scanning software and firewalls are a part of nearly every modern com-
puter today.

182 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

11.5 Augmented Reality
The game world will interact with the real world. Online games will increasingly incor-
porate aspects of the physical world into the gaming world. This will happen in subtle
ways, such as new input devices allowing natural, physical input such as movements
and gestures, to be incorporated into game play. More pronounced will be motion cap-
ture systems that incorporate physical actions into the game play. The physical world
itself will become part of more online games, with computers augmenting the reality
of real-world rooms, stairs and even outdoor spaces with virtual, computer-supported
game play.

These new, augmented reality games bring new challenges for the aspects of network
games. Specifically, the amount of input can dramatically increase with motion capture
devices. Users playing in the real world are likely to be mobile, raising challenges for
degraded wireless networks or even routing for wireline networks.

11.6 Massively Multiplayer
To date, most massively multiplayer online (MMO) games are of the role-playing variety,
with massively multiplayer online role-playings (MMORPGs) having the lion’s share of
the massively multiplayer game market. In general, role-playing games allow a player
to enhance an avatar through various game-related tasks. While some MMO games have
proven popular and lucrative for some game companies, the game genre has been relatively
narrow (Figure 11.5).

However, there is nothing exclusive about large games needing to be role playing.
Consider the world itself as a massively multiplayer endeavour. Many human interactions
happen on a large scale, such as military encounters during war, voting during elections,
spectator events and even sporting events such as the Olympics, that involve hundreds and
even thousands of people. Expect to find MMO games in other genres, such as real-time
strategy, first person shooter, and racing games, as game and network technologies evolve
to support more players.

Moreover, online games that allow players to easily change perspective, from an over-
head, impartial view of the worldlike in a strategy game, to a third person perspective

Yesterday Today Tomorrow

Figure 11.5 Multiplayer, online games yesterday, today and tomorrow

Future Directions 183

of particular avatars, to a first person view of an avatar. These perspective shifts each
bring different network requirements with them, in terms of delay sensitivity and bit rate
requirements, posing new challenges as the online game must adapt to changing user
requirements with the changing perspectives.

11.7 Pickup and Putdown
Future online games will allow you to squeeze in a few minutes of game play whenever,
and wherever, you can. Game design will emphasise game play that allows a pickup
for a few minutes then a putdown. As technology becomes more pervasive in everyday
life, interactive entertainment will follow. Expect an increase in the number of games on
mobile devices, such as cell-phones and PDAs and for handheld game consoles to become
more powerful and more portable. With it will come an increasing emphasis on games
that allow players to pickup and putdown in a short amount of time. Such ‘casual games’
already exist on the Internet (and are amongst the most popular online games, in terms
of number of players not network bandwidth) and allow online play for short breaks, but
there will be an emphasis for such game style to permeate to games of interest to hard
core game players.

11.8 Server Browsers
Many network games allow players to choose which server to connect to for their online
play. For many games, this arises because individual users can run their own game
servers, allowing clients to connect to their server from anywhere on the Internet. Nearly
all popular first person shooters (such as Quake, Doom and Battlefield) allow individual
users to run game servers. Similarly, most real-time strategy games (such as Warcraft and
Age of Mythology) allow users to host a game, thus providing many choices for clients
playing online.

And the choice of game server matters. Game servers can become full, limiting a
player’s ability to join the server. The requirement of some game servers for clients to
have cheat protection enabled, or specific client versions installed may also physically
limit a player’s choices. The choice of the game map, game configuration and other
in-game parameters (such as having friendly fire disabled for a team-based first person
shooter) can determine a player’s desire to join a particular game server.

Even if all physical and preferential game conditions are met by a game server, the
network and server performance will impact the choice of the best server. The range of
latencies from a client to all game servers can be as broad as the range of end-to-end
Internet latencies. Moreover, game players care about application to application laten-
cies, not just end-host to end-host latencies, so latency from server load adds to the
network latency and makes selection of a close and fast server important for good online
game play.

With current game server selection browsers, when a player starts a game client,
the client contacts a master server that lists all game servers that are up at that time.
The client then contacts each server individually to get latency information as well
as server configuration parameters (map in play, number of players, etc.). A player
can then sort the resulting list of game server information in a variety of ways, such
as by increasing latency or by server map type. While it is somewhat flexible for

184 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

Yesterday Today Tomorrow

Figure 11.6 Server browsing yesterday, today and tomorrow

one player, current game server browsers provide little confidence on the performance
of individual servers and no support for multiple players that want to play together
(Figure 11.6).

The next generation of online game servers will make it easier to find ‘good’ servers,
with some of this process even transparent to the user. There will be no need to contact
every server in the world, sort through server lists, join a server only to find its perfor-
mance lacking and then repeat the process. This will reduce the churn on game servers
themselves, allowing their resources to be put to playing the game.

Yesterday, server browsing was easy (Figure 11.6). Online games had only one server
they could connect to, depicted in the picture on the left. No browsing was needed as
there were no choices. Today, many games have numerous servers from which to choose.
Server browsing is primitive, often requiring players to connect to servers to find out
how the game play is. This is depicted by the picture in the middle with the dashed lines
showing connections and the solid line showing the server eventually chosen. Tomorrow,
even though the number of server choices will increase, server browsing will be much
more transparent, allowing quick connections to servers that perform well, indicated on
the right by just the solid line.

References
[BBC+98] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang and W. Weiss, “An Architecture for Differen-

tiated Services”, IETF RFC 2475, December 1998.
[BCS94] R. Braden, D. Clark and S. Shenker, “Integrated Services in the Internet Architecture: an Overview”,

IETF RFC 1633, June 1994.
[BZB+97] R. Braden, L. Zhang, S. Berson, S. Herzog and S. Jamin, “Resource ReSerVation Protocol

(RSVP) – Version 1”, Functional Specification IETF RFC 2205, September 1997.
[Intel04] Intel Corporation, “White Paper: The New Era in Communications”, [Online] http://www.intel.com/

netcomms/bbw/302026.htm, 2004.

Future Directions 185

[PK02] K. Pahlavan and P. Krishnamurthy, “Principles of Wireless Networks – A Unified Approach”, Prentice
Hall PTR, 2002.

[SAB+05] L. Stewart, G. Armitage, P. Branch and S. Zander, “An Architecture for Automated Network Con-
trol of QoS over Consumer Broadband Links”, IEEE TENCON 05, Melbourne, Australia, November 21–24,
2005.

12
Setting Up Online FPS Game
Servers

To round out the book in this chapter, we will look at installing and starting dedicated
servers for two specific first person shooter (FPS) games – Wolfenstein Enemy Territory
(WET) and Half-Life 2. We will focus primarily on getting things started, and leave it to
online forums and discussion groups to provide you with tutorials on specific aspects of
running and maintaining a dedicated public server.

12.1 Considerations for an Online Game Server
Setting up a dedicated server raises many questions relating to expected performance,
resource requirements and server monitoring. Given the number of players you wish to
support at any one time you will need requirements estimates for CPU speed, memory
(RAM), disk space, and network connection speed. It is usually advisable to monitor
long-term server behaviour and usage patterns (as discussed in Chapter 9). This involves
becoming intimately familiar with the server’s own logging facilities and deploying net-
work sniffing tools such as tcpdump. Sufficient diskspace must be allocated to hold server
logs and packet tracefiles. Log rotation may be built into the game server (e.g. Half-Life 2)
or you may need to implement your own logfile rotation scripts.

The network link capacity requirements can be estimated based on game server settings
(such as snapshot and command transmission rates discussed in Chapter 10) and typical
packet size distributions. (You will probably need to run some in-house trials of each
game and map in order to measure the possible range of snapshot packet sizes.) If the
server will be placed behind a NAT-enabled router, you will need to ensure the necessary
ports are open on the router, so that people outside your network can properly connect to
your game server.

Some FPS games allow a choice of server platform (usually Linux or Microsoft’s
Windows). In general, it is far better to use a dedicated PC running Linux or FreeBSD
(with FreeBSD’s Linux-compatibility mode enabled), because they will simply be more
stable platforms than a Windows box. Aside from the zero cost of obtaining and installing
Linux or FreeBSD, a Linux-based or FreeBSD-based server can also be managed remotely
over the network. This makes it easier to hide the physical box in a cupboard, rack or a

Networking and Online Games: Understanding and Engineering Multiplayer Internet Games
Grenville Armitage, Mark Claypool, Philip Branch 2006 John Wiley & Sons, Ltd ISBN: 0-470-01857-7

188 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

hidden room. Not surprisingly your dedicated server does not require a high-end graphics
card, or indeed any graphics card at all.

You may also wish to experiment with techniques for artificially balancing the latency
experienced by different players. For example, in [LEE2005] a FreeBSD-based game
server utilised dummynet [DUMMYNET][RIZ1997] (discussed in Chapter 7) to add small
amounts of latency to each player’s traffic – ensuring that all players ‘experienced’ much
the same latency. (The game server in [LEE2005] would be regularly polled the server to
monitor each player’s experienced latency, adjusting the dummynet latency up or down
as necessary.) Because latency can only be added, not removed, players can only be
equalised if the target latency is higher than the latency usually experienced by your
players. On the other hand, you want the target latency to still be ‘low enough’ (e.g.
100 ms) that people are still willing to play on your server. So, players experience latency
equalisation only up to a point.

12.2 Wolfenstein Enemy Territory
Built on the Quake III Arena game engine technology, WET is a team-oriented FPS,
based around a number of World War II-themed missions. Players join one of two teams
(‘Axis’ or ‘Allies’) and take on a particular class of team members (Engineer, Soldier,
Medic, Field Ops or Covert Operative). Although initially developed as a commercial
add-on to Activision’s ‘Return to Castle Wolfenstein’, the complete game software (both
client and server) is now available for free download from Activision and a number of
other sites [WET2005]. There is no need to purchase any CD, DVD or download license.

In this section, we will summarise the key steps in setting up an online WET server
for multiplayer action. However, we will not provide a detailed discussion of WET itself
from the perspective of game-play, player models, weapons, 3rd-party maps, etc.

12.2.1 Obtaining the Code

Wolfenstein Enemy Territory is available for Microsoft Windows, various Linux distribu-
tions and the Apple Macintosh. As of late 2005, the latest version of WET was version
2.60 (released on March 21, 2005). The releases are available from a number of sites on
the Internet, including those shown in the list below. Generally these sites either allow
direct, free download or will require a free registration before allowing downloads.

• http://www.3dgamers.com/games/wolfensteinet/downloads/
• http://www.planetwolfenstein.com/
• http://returntocastlewolfenstein.filefront.com/
• http://www.fileplanet.com/30846/0/section/Wolfenstein-Series

(If the above URLs do not work by the time you read this chapter, try searching from the
main site in each URL or start back at the main Activision site, http://games.activision.com
/games/wolfenstein.)

For version 2.60 you can download the Linux and Macintosh versions as a single
installer. For Windows you download and install the full version 2.55, and then download

Setting Up Online FPS Game Servers 189

Table 12.1 Files required for WET version 2.60

Operating system
and type

Filename Release date Size

Windows full version 2.55 wolfet.exe 28 May 2003 258 MB
Windows, patch to version 2.60 et patch 2 60.exe 21 March 2005 5.5 MB
Linux full version 2.60 et-linux-2.60.x86.run 21 March 2005 258 MB
Macintosh full version 2.60 wolfet 2.60.dmg 21 March 2005 258 MB

(and run) the patch to version 2.60. These files are typically served from public sites using
the file names listed in Table 12.1.

Each installer is an executable that, when run, prompts you for a location to place your
WET files – the offered defaults are usually acceptable.

12.2.2 Installing the Linux Game Server

For now, we will assume that your intended server host has a keyboard and monitor and
is running at least a basic text console (the installer uses relatively primitive text mode
menus).

Create (or ask the system administrator to create) a dedicated user account for running
the WET server (for example, user name ‘et’ and a home directory of ‘/home/et/’). This
helps keep all your WET server activities distinct from other users on the server host.
Wolfenstein Enemy Territory does not need root (administrator) privileges to run. For the
rest of this description you are assumed to be logged in as the ‘et’ user.

Download et-linux-2.60.x86.run to your home directory, set the executable permission
bits and launch the installer with:

/home/et/% chmod 555 ./et-linux-2.60.x86.run
/home/et/% ./et-linux-2.60.x86.run

The installer first unpacks the entire ET distribution (about 272 MB of files) before
prompting you to accept a license and specify where the game should be installed. If your
host has less than 300 MB of free space in /tmp (the usual temporary files directory), you
should explicitly specify a different extraction directory as a parameter to the installer.
For example, if you have plenty of space in your home directory you could use:

/home/et/% ./et-linux-2.60.x86.run --target /home/et/ettmp

A new directory, /home/et/ettmp, will be automatically created and used by the installer.
However, you will need to manually delete this directory and its contents once the instal-
lation has run to completion.

Although the installer prompts with a default location of ‘/usr/local/games/enemy-
territory/’, we recommend placing the server’s installation location under ‘/home/et/
enemy-territory’ (Figure 12.1). This ensures your WET installation is localised under
the ‘et’ user’s home directory (valuable if you do not have ‘root’ access on the server

190 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

Figure 12.1 Installer requesting installation location

Figure 12.2 Installer requesting symlink location

Figure 12.3 Chose both ET and PunkBuster

host, or you are running multiple game servers on a single host – separate instances of
WET can be installed under different user accounts).

The installer will also ask for a location to place two symlinks for WET (Figure 12.2).
We suggest /home/et/bin rather than the default /usr/local/bin (ensure /home/et/bin exists
and is listed in your user’s PATH environment variable before launching the installer).
These symlinks allow you to launch the et client simply by typing ‘et’, and the et dedicated
server simply by typing ‘etded’ at a command line prompt.

You then have the option of installing PunkBuster along with the main WET client
and server code (Figure 12.3) [PBUSTER]. We recommend installing PunkBuster even if
you do not expect to use it all the time. You will then be asked to accept the PunkBuster
license conditions.

Files from the temporary directory (/home/et/ettmp, if you followed the example above)
are then copied over to ‘/home/et/enemy-territory’. You are finally offered a choice of
automatically creating KDE or GNOME desktop shortcuts before installation completes.

Setting Up Online FPS Game Servers 191

Ultimately, you will have 270 MB of files installed under ‘/home/et/enemy-territory’
along with symlinks from ‘/home/et/bin/et’ and ‘/home/et/bin/etded’ pointing to the same
named files under /home/et/enemy-territory/.

If you manually specified a directory to unpack the installation, you will now need to
manually clean it up with:

/home/et/% rm -rf /home/et/ettmp

Because the WET installer uses a text-based interface you may also do this installation
process while remotely logged into the server host from elsewhere (for example, over
an ssh connection [SSH2005]). This is most convenient when your server host is already
mounted in remote rackspace without a dedicated keyboard and monitor.

12.2.3 Starting the Server

Having installed WET you now have access to the official documentation on your local
filesystem, located at:

/home/et/enemy-territory/Docs/Help/index.htm

You now have two choices – either launch a ‘listen server’ from the game client’s
graphical interface or run a dedicated server with no graphical interface. Our interest is
solely in the latter case – you are running a dedicated server on a host that is tucked away
in a rack in a closed room somewhere.

A couple of technical decisions need to be made before starting your dedicated server.

• What UDP port will it run on?
• Is this for local LAN play, or available for anyone on the Internet?
• What is the maximum number of supportable players?

(There are also some game-specific questions you need to consider, such as ‘what
game type and map rotation do I want?’. In part, these are subjective decisions that
depend largely on your motives for running a server. Detailed descriptions of how to set
up various game types are outside the scope of this book.)

By default, a WET server will bind itself to UDP port 27960 on the local server host
(or automatically try one port higher if the default is in use). However, you can explicitly
specify an alternative port if another process on the server host is already using port
27960 (for example, another WET server, or a Quake III Arena server).

You can specify whether or not your dedicated server registers with idSoftware’s Enemy
Territory master server (etmaster.idsoftware.com). You should not register if you just want
to run a private server (even if it is on the Internet) or if you are running locally on an
isolated LAN.

Player slots should be limited based on your available network capacity and processor
speed. The official documentation (noted earlier) recommends ‘30 MHz per player slot’,
and thus recommends ∼1 GHz for 32 players, 500 Mhz for 16 players and 250 MHz
for eight players. Use the discussion in Chapter 10 to estimate your per-player network
bandwidth requirements.

192 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

The usual way to start a dedicated server is to run ‘etded’ with a number of command
line options. For example:

/home/et/% etded +set net_port 27985 +set dedicated 2 +exec
server.cfg

This particular set of options instructs the server to run on a non-standard UDP port
27985 (‘+set net port 27985’) and register with etmaster.idsoftware.com:27950 (‘+set
dedicated 2’), then pull the rest of its configuration details from a file named ‘server.cfg’
located in one of two locations:

• /home/et/enemy-territory/etmain/

• /home/et/.etwolf/etmain/ (or other, specified by fs homepath)

In fact, almost everything you might want to configure can be placed in server.cfg.
A default server.cfg is created when you first installed WET, which documents many
useful parameters and settings. An alternative configuration file can be specified on the
command line with:

/home/et/% etded +exec alternative.cfg

The file ‘alternative.cfg’ will be searched for in the two directories mentioned above,
and used instead of the default server.cfg file.

If you are running on a host with multiple IP interfaces, you may wish to explicitly
identify which IP interface should be advertised by the WET server. For example, the
following command line specifies that the server advertises itself (and only ‘exists’ on)
IP address 192.168.1.50:

/home/et/% etded +set net_ip 192.168.1.50 +exec server.cfg

(In this case, unless server.cfg contained any directives to the contrary, the server will
attempt to use UDP port 27960.)

Add ‘+set sv maxclients NN’ to establish a limit of NN players on your server (the
default is 20).

If you are simply experimenting while deciding what configuration parameters to use,
note that the server does not actually ‘go live’ until it is told what map to play. If you
have no map specified in your server.cfg file, use ‘+map MMM’ on the command line
(e.g. ‘+map oasis’).

If you chose to run a public server, you will begin to see inbound probe traffic from
remote clients within minutes (or even seconds) of your server registering with etmas-
ter.idsoftware.com (as discussed in Chapter 9).

12.2.4 Starting a LAN Server

Use ‘+set dedicated 1’ to establish a private, unadvertised server that will only respond
to direct queries from people who already know the server’s IP address and port number.

For example, use something like:

/home/et/% etded +set dedicated 1 +map oasis

Setting Up Online FPS Game Servers 193

This creates a minimalist, local server starting on the ‘oasis’ map which can be probed
by, and connected to by clients on your LAN. (In the absence of other configurations, the
server will enter the ‘campaign’ mode, and eventually move on to the next map in the
campaign sequence.)

Clients can discover servers on their local LAN by broadcasting server-discovery ‘get-
info’ probes (UDP packets sent to IP address 255.255.255.255). Each time the client
presses the ‘refresh list’ button on their PlayOnline ServerBrowser server selection screen
(when in ‘Source:Local’ mode), eight UDP broadcast probes are sent – two each to ports
27960, 27961, 27962 and 27963. This normally triggers a response from any of the ded-
icated servers on the local LAN that are listening on one of the four common WET
ports.

Note one interesting caveat: if you run a LAN-only game using ‘+set dedicated 1’
and also specify the game server’s local IP address with ‘+set net ip w.x.y.z’ the server
appears to ignore the server-discovery queries being sent to 255.255.255.255. In this case,
each client will need to manually specify the server’s IP address and port number in order
to connect.

12.2.5 Ports You Need Open on Firewalls

It is entirely possible you have a firewall between your server and the outside world. If
so, you must ensure that the server can send packets outbound to port 27950 on remote
Internet hosts (to register with etmaster.idsoftware.com, and possibly other master servers)
and receive inbound packets to whatever port you run the server itself (typically 27960).

12.2.6 Dealing with Network Address Translation

A number of additional considerations exist if your server host is behind a router doing
Network Address Translation (NAT). This can occur if your server is on a home or small
corporate LAN sharing a single broadband connection to the outside world. As noted
in Chapter 4, NAT (or more precisely NAPT) makes multiple hosts in a hidden network
appear to be a single, large host to the rest of the Internet. This is achieved by mapping all
the hidden (or ‘inside’) IP addresses to a single external IP address, and then re-mapping
TCP and UDP port numbers to ensure every application flow retains a unique 5-tuple of
IP source and destination addresses and port numbers.

An issue arises when you try to run a public server from behind a NAT router. The server
registration process involves your server sending the ASCII text ‘heartbeat ETServer-1’
to etmaster.idsoftware.com:27950 in a single UDP packet. (If your server subsequently
shuts down gracefully, it will send the ASCII text ‘heartbeat ETFlatline-1’ in another UDP
packet to etmaster.idsoftware.com:27950, removing your server from the master server’s
list of active servers.)

Upon receipt of the registration message, the master server engages in a short handshake
to confirm your server is up and valid. Your server is now advertised as ‘being at’ the
IP source address and source UDP port number from which your server’s registration
message arrived. If your server is behind a NAT router, the master server ‘sees’ the
public IP address and port number used by the NAT router to represent your internally
hosted game server.

194 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

Private subnet 192.168.10/24
Potential
players

Addresses and ports are re-mapped between private network and ISP
Outbound: Source192.168.10.50:27960 becomes 144.133.92.248:47831

Inbound: Packets to144.133.92.248:47831 go to 192.168.10.50:27960

Game Server on
port 27960

192.168.10.50

NAPT-enabled
router

etmaster.idsoftware.com:27950

The Internet

192.168.10.2144.133.92.248

Figure 12.4 Example of game server behind a NAT router

For example, let us assume that your server is on a local LAN at 192.168.10.50:27960
and your NAT router’s external, public IP address is 144.133.92.248 (Figure 12.4). Your
game server’s registration packet was re-mapped on the way to etmaster.idsoftware.com
so that it appeared to originate from 144.133.92.248:47831. Your NAT router simulta-
neously established another internal mapping such that UDP packets coming back from
etmaster.idsoftware.com:27950 to 144.133.92.248:47831 are re-mapped and forwarded on
the internal LAN to 192.168.10.50:27960.

The problem is that your NAT router has no rules to handle UDP packets coming in
to 144.133.92.248:47831 from anyone else on the Internet. Prospective players probing
your server ‘at’ 144.133.92.248:47831 will receive no answer.

The solution is to manually configure your NAT router such that all packets coming
in to 144.133.92.248:47831 from anywhere are re-mapped and forwarded on the internal
LAN to 192.168.10.50:27960. In fact, the general approach is to create a bi-directional
mapping rule stating (effectively) that ‘144.133.92.248:47831 on the outside is equivalent
to 192.168.10.50:27960 on the inside network, regardless of who wants to talk to us’.
(Every NAT-capable router has its own technique and terminology for configuring such
mappings. You will need to consult the userguide for your own router for details.) With
this additional rule, your game server will be playable by people located on the public
side of your NAT router.

You may use any free UDP port you like on the public side of your NAT router.
Players who find you through the automated server-discovery mechanisms will usually
be unaware of your server’s actual port number – so long as they can probe your server
and connect they will be happy.

12.2.7 Monitoring and Administration

When started from the command line the game server prints information to the screen
and accepts keyboard input in real time, allowing you to monitor server state and modify
server configuration parameters. For example, you could type ‘status’ to find out the
names of all clients currently connected, along with their current ping time, IP address
and port number.

Setting Up Online FPS Game Servers 195

However, you will usually want to start the game server and then leave – returning
only occasionally to monitor activities and perhaps modify parameters. For this you need
to enable logging and ‘rcon’ (remote console).

To track server activity, you enable logging with ‘+set g log 〈logfilename〉’ – either on
the command line or in the server.cfg file you use, to carry the server’s main configuration
settings. The server log output will then be directed to the file 〈logfilename〉. By default,
this file will be placed under ‘/home/et/.etwolf/etmain’, but the actual location can be
changed with ‘+set fs homepath 〈newdirectory〉’. So, for example, the following line:

/home/et/% etded +set g_log mylog +set fs_homepath /home/et/blah/

would force the game server’s log output to be sent to ‘/home/et/blah/etmain/mylog’.
Changing fs homepath is useful when running multiple instances of WET server on

the same host – you can use a separate fs homepath for each server. The main WET
server, mods and PunkBuster will create their logging and configuration subdirectories
below fs homepath.

A relative fs homepath is interpreted relative to ‘/home/et/enemy-territory/’. Thus using:

+set fs_homepath blah

the logfile is /home/et/enemy-territory/blah/etmain/mylog, and using:

+set fs_homepath /home/et/blah

the logfile is /home/et/blah/etmain/mylog.
If you are using a modified game (a mod, such as ETPro [ETPRO05]) the logfile will

appear under the mod’s name inside the directory pointed to by fs homepath, rather than
under ‘etmain’.

Remote control of your game server is possible through the ‘rcon’ facility. Rcon is a
client-side console command that passes text to the server, and prints the server’s output
back onto the client’s console window. Rcon access to a server is enabled by setting an
rcon password with ‘+set rconpassword 〈password〉’.

For example, to set the rcon password to ‘mypass’ you would start the server with:

+set rconpassword mypass

Then from a client you could execute the ‘status’ command on the server with:

/rconpassword mypass
/rcon status

(You only need to enter the /rconpassword line once, then use multiple/rcon commands
as necessary.)

Rcon functionality is also available in tools such as the GUI-based XQF server-
discovery tool [XQF05]. Figure 12.5 shows XQF’s Rcon console in action – in this case
the number of players has been checked, the server’s name checked, then changed from
‘myserver’ to ‘newservername’ and then the change confirmed.

Unfortunately, the rcon mechanism has an important weakness. Every time an rcon com-
mand is executed, the client (or third-party application such as xqf) sends the rconpassword

196 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

Figure 12.5 Using Rcon within XQF to access a server at 192.168.10.1:27960 (client logged in
from 192.168.10.99)

in clear-text over the Internet along with the requested server-side command. (The actual
rcon command is sent as an ASCII text string ‘rcon 〈rconpasswd〉〈rcon command〉’ in a
UDP packet to the game server’s active port.) Anyone sniffing the IP network between
your client and your server will easily be able to extract your rcon password and begin
remotely interfering with your server. For this reason, rcon should only be used from client
machines that have direct IP connectivity to the server (or at least have connectivity over
a path that can be trusted).

12.2.8 Automatic Downloading of Maps and Mods

New maps and ‘mods’ (extensions to the base game engine) are often released by third-
party developers. If you run your server with one or more new maps, or a game mod,
clients cannot connect unless they too have the same maps and mods installed at their end.
Clients can manually retrieve and install the necessary maps and mods before connecting
to your server, or the server itself can automatically download the necessary maps and
mods when the client first connects. Server downloads of new maps and mods is controlled
by the ‘sv allowdownload’ option – set it to ‘1’ (the default) to enable downloads, or ‘0’
to block downloads (the client must be manually updated).

Traditional downloading involves data being streamed out to the client by the game
server itself, and is usually capped at the snapshot rate (in bytes/second) requested by the
client. (And in any case some online discussion of WET suggest the maximum achievable
rate is around 13 Kbyte/sec.) Although appropriate for game-play, this can be quite slow
for downloading files hundreds or thousands of kilobytes long. (And if you want to further
limit the impact of map downloads on the game server, set ‘sv dl maxRate’ to an even
lower value.) If you are connected via a LAN or other high-speed link to the server, WET
offers an alternative approach – downloads from a separate web site.

Setting Up Online FPS Game Servers 197

Setting ‘sv wwwDownload’ to 1 will enable your server to redirect clients to a web
site from which they can download new maps and mods. The actual web site is specified
by setting ‘sv wwwBaseURL’. For example:

+set sv_wwwBaseURL ‘‘http://www.mydomain.com/mymaps’’

would cause new clients to retrieve additional maps and mods from ‘http://www.
mydomain.com/mymaps/etmain/’ (in other words, the ‘mymaps/etmain/’ directory on the
www.mydomain.com website). Since the webserver can be an entirely different machine
to the game server (and indeed may be anywhere else on the Internet), this approach can
significantly improve download speeds for clients attaching to your server for the first
time.

If the redirection fails, and ‘sv wwwFallbackURL’ contains a valid URL, the client
will attempt to display the webpage referred to by ‘sv wwwFallbackURL’. This backup
webpage should contain instructions on how to manually retrieve the maps and/or mods
used by your game server.

12.2.9 Network Performance Configuration
Table 12.2 lists a number of server-side variables and settings affecting the network traffic
generated by your server.

Server-side variables can be set on the command line or in server.cfg file.
Table 12.3 lists a number of client-side variables and settings affecting the network

traffic generated by your server.
The settings in Table 12.2 on the server side can override settings in Table 12.3

requested at the client side. Chapter 10 provides a discussion of the underlying principles.

12.2.10 Running a Windows Server
In principle, you can start a ‘listen server’ from within a WET client on a Windows
machine. However, this is really only suitable for private, local games. To host a public

Table 12.2 Server-side settings controlling network traffic

Variable Role Default

sv maxrate Upper bound on ‘rate’ (the maximum snapshot rate
in bytes/second requested by the client)

0 (unlimited)

sv minping Clients with ping below this value will not be
allowed to join the server

0

sv maxping Clients with ping above this value will not be
allowed to join the server

0 (unlimited)

sv lanforcerate 1: If clients are on a local LAN, force their rate and
snaps settings to highest possible. 0: disable this
feature

1

sv allowdownload 1: Allow download of new maps and mods from
server. 0: disable this feature

1

sv dl maxrate Rate limit in bytes/second for downloading maps and
mods to clients (if sv allowdownload is 1)

42,000 (although
in practice often
lower)

198 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

Table 12.3 Client-side settings controlling network traffic

Variable Role Default

Rate Maximum data rate (in bytes per
second) the client wishes to receive
snapshots from the server

5000–25,000
(depends on
‘network
speed’)

cl maxpackets Rate (in packets per second) at which
client will send command packets
to the server

30

Snaps Rate (in packets per second) at which
client wishes to receive snapshots
from server

20

server on a Windows machine, you should launch the Windows equivalent of the dedicated
Linux server described in this chapter. Most of the differences exist only in the name of
the executable used to launch the server, and the syntax of filenames and pathnames.

Installation involves downloading and running the version 2.55 installer, and then down-
loading and running the 2.60 patch (see Table 12.1). Assuming you took the default
installation locations, your WET client and server files are most likely stored under
‘C:\Program Files\Wolfenstein – Enemy Territory\’, and the dedicated server executable
is ‘ETDED.exe’.

When launched from the command line, ETDED.exe uses the same command line
options as previously described for the dedicated Linux server. The hierarchy of folders
and sub-folders under C:\Program Files\Wolfenstein – Enemy Territory\’ replicates that
of the Linux installation.

12.2.11 Further Reading

It is not really within the scope of this book to provide a tutorial on tweaking server
configuration options, as most of them relate to WET game-play, in-game physics, and
the PunkBuster anti-cheat system [PBUSTER]. Documentation installed along with WET
itself (mentioned earlier) provides a starting point for further reading, and there are numer-
ous sites around the Internet with suggestions on how to tweak game-play and add ‘mods’
(modifications) such as ETPro [ETPRO05].

12.3 Half-Life 2
‘Half-Life 2’ was released as a single-player FPS game in late 2004 by Valve [VALV2005],
an innovative successor to the original Half-Life [HALFLIFE2004]. Included in the client
software, ‘Half-Life 2: Deathmatch’ allows multiplayer, online death-match style of play.
An upgraded version of Counter-Strike, the team-play modification of Half-Life, was also
released as ‘Counter-Strike: Source’.

One of the most significant aspects of Half-Life 2 was Valve’s launch of Steam – an
entirely revamped client authentication and software distribution system [STEAM2004].
All players must establish Steam accounts, which are then used for authentication and
validation purposes (even when playing the single-player mission). A player’s legitimately

Setting Up Online FPS Game Servers 199

purchased copies of Half-Life 2, Counter-Strike:Source, etc., are registered against the
player’s Steam account. With their Steam account a player can also purchase additional
games online without ever holding a CD or DVD again.

Installing Half-Life 2 on a home PC involves installing a Steam client that subsequently
auto-launches whenever the PC restarts. By making Steam an integral part of the Half-
Life 2 experience, Valve also ensure that patches to their flagship games are pushed out
as uniformly and expeditiously as possible.

In this section, we will discuss the installation and set-up of a dedicated Half-Life 2
multiplayer (HL2MP) server that can be reached by players from around the Internet.

12.3.1 Obtaining and Installing the Linux Dedicated Server

Valve’s Steam service actually simplifies the steps you need to know for initially installing
the dedicated server. For now, we will assume that your intended server host has a
keyboard and monitor and is running at least a basic text console (the installer does not
use any menus and does not require a GUI).

Create (or ask the system administrator to create) a dedicated user account for running
the HL2MP server (for example, user name ‘hl 2’ and a home directory of ‘/home/hl2/’).
This helps to keep all your HL2MP server activities distinct from other users on the
server host. HL2MP does not need root (administrator) privileges to run. For the rest of
this description you are assumed to be logged in as the ‘hl 2’ user.

Figure 12.6 shows the steps for initially retrieving the Steam client. Use the command
‘fetch’ (or a similar command ‘wget’) to retrieve hldsupdatetool.bin from the main Steam
site. Make the file executable (‘chmod 755’), then execute it. This extracts a new exe-
cutable called ‘steam’. Run this once without any command line parameters, and it will
automatically update itself over the Internet. If you were to now re-run ‘./steam’ without
parameters, you would get its usage message on the screen.

Figure 12.7 shows the command line you must now use to begin installing the HL2MP
server itself. These particular options tell the Steam client to ‘update’ (and download in its
entirety if necessary) the hl2mp server components and place them in directory ‘hl2mp’
(relative to the current directory, i.e. ‘/home/hl2/hl2mp’). The final line shows you what
files and subdirectories have been installed. At the time of writing, the full installation
takes around 671 Mbytes of disk space.

You can re-run the Steam client at any time to check for updates. Figure 12.8 shows
the output when run immediately after our first installation – there is nothing to update.
(Of course, by the time you read this the specific versions of each component are likely
to be different.)

/home/hl2% fetch http://www.steampowered.com/download/hldsupdatetool.bin
/home/hl2% chmod 755 ./hldsupdatetool.bin
/home/hl2% ./hldsupdatetool.bin
/home/hl2% ./steam
Checking bootstrapper version ...
Getting version 14 of Steam HLDS Update Tool
Downloading.
Steam Linux Client updated, please retry the command
/home/hl2%

Figure 12.6 Using the Steam installer to update itself

200 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

/home/hl2% ./steam -command update -game hl2mp -dir hl2mp
[..steam downloads roughly 671MByte of hl2 and hl2mp material..]

/home/hl2% ls -al hl2mp
total 562
drwxr-xr-x 5 hl2 hl2 512 Oct 24 21:50 .
drwxr-xr-x 5 hl2 hl2 512 Oct 24 21:50 ..
-rw-r--r-- 1 hl2 hl2 1381 Oct 24 21:52 InstallRecord.blob
drwxr-x--- 2 hl2 hl2 1024 Oct 23 23:36 bin
drwxr-x--- 7 hl2 hl2 512 Oct 23 23:36 hl2
drwxr-x--- 11 hl2 hl2 512 Oct 23 23:24 hl2mp
-rwxr-xr-- 1 hl2 hl2 183825 Oct 23 23:36 srcds_amd
-rwxr-xr-- 1 hl2 hl2 183793 Oct 23 23:36 srcds_i486
-rwxr-xr-- 1 hl2 hl2 183793 Oct 23 23:36 srcds_i686
-rwxr-xr-- 1 hl2 hl2 10164 Oct 23 23:36 srcds_run
/home/hl2%

Figure 12.7 Using the Steam installer to install a Half-Life 2 multiplayer server

/home/hl2% ./steam -command update -game hl2mp -dir hl2mp
Checking bootstrapper version ...
Updating Installation
Checking/Installing ’Half-Life 2 Deathmatch’ version 11
Checking/Installing ’Base Source Shared Materials’ version 7
Checking/Installing ’Base Source Shared Models’ version 3
Checking/Installing ’Base Source Shared Sounds’ version 3
Checking/Installing ’Source Dedicated Server Linux’ version 47
HLDS installation up to date
/home/hl2%

Figure 12.8 Updating a current hl2mp installation

If you want to install Counter-Strike:Source instead (or in addition to), then replace
‘-game hl2mp’ with ‘-game “Counter-Strike Source”’ in the examples above. You must
also specify an alternative directory location with the ‘-dir’ option (otherwise the Counter-
Strike:Source software components will likely overwrite some of your hl2mp software
components).

Because the Steam installer uses a text-based interface you may also do this installation
process while remotely logged into the server host from elsewhere (for example, over an
ssh connection [SSH2005]). This is most convenient when your server host is already
mounted in remote rackspace without a dedicated keyboard and monitor.

12.3.2 Starting the Server for Public Use

A couple of technical decisions need to be made before starting your dedicated server.

• What UDP port will it run on?
• Is this for local LAN play, or available for anyone on the Internet?
• What is the maximum number of supportable players?

(There are also some game-specific questions you need to consider, such as ‘what
game type and map rotation do I want?’. In part, these are subjective decisions that

Setting Up Online FPS Game Servers 201

depend largely on your motives for running a server. Detailed descriptions of how to set
up various game types are outside the scope of this book.)

By default, an HL2MP server will bind itself to UDP port 27015 on the local server
host. However, you can explicitly specify an alternative port if another process on the
server host is already using port 27015 (for example, another HL2MP server).

Player slots should be limited based on your available network capacity and processor
speed. Use the discussion in Chapter 10 to estimate your per-player network bandwidth
requirements.

From within the hl2mp subdirectory, the usual way to start a dedicated server is to
execute ‘srcds run’ with a number of command line options. For example:

/home/hl2/hl2mp/% ./srcds_run -game hl2mp -console +map
dm_overwatch

This particular set of options instructs the server to run the hl2mp game on the default
UDP port 27015 and start map ‘dm overwatch’. (If no map is specified the server ini-
tialises, but does not start operation.) Because of how srcds run is written you must run
this command from within the directory in which you installed the HL2MP server.

By default, the server will look for a configuration file named ‘server.cfg’ under
‘./hl2mp/cfg’(relative to the directory in which srcds run is located, which in our example
would be at ‘/home/hl2/hl2mp/hl2mp/cfg/server.cfg’). Almost everything that can be con-
figured about the HL2MP server’s operation can be specified or overridden in server.cfg.

By default, the server will start with two player slots. Adding the ‘+maxplayers N’
option tells the server to create N player slots.

If you are running on a host with multiple IP interfaces, you may wish to explicitly
identify which IP interface should be advertised by the HL2MP server. For example, the
following command line specifies that the server advertises itself (and only ‘exists’ on)
IP address 192.168.1.50:

/home/hl2/hl2mp/% ./srcds_run -game hl2mp -console +map
dm_overwatch -ip 192.168.1.50

To run your server on a non-standard UDP port, and bind to a particular IP interface
on your local server host, use both the ‘-ip’ and ‘-port’ options. For example, to use port
27085 as the port for in-game traffic in a game for 16 players:

/home/hl2/hl2mp/% ./srcds_run -game hl2mp -console +map
dm_overwatch -ip 192.168.1.50 -port 27085 +maxplayers 16

By default, your server will register with Steam and become available to other players
around the Internet. If you happen to be sniffing the network connected to your server,
you will see server-discovery probe traffic coming in within minutes (or sometimes only
seconds) of starting your server. (You may also see server-discovery probes from the
Internet for some period of time after you shut down your public server. It takes time for
knowledge of your server’s IP and port number to disappear from all the places it was
stored when you first registered as a public server.)

If you copy the ‘./steam’ executable (used to install and update HL2MP) into the same
directory as ‘srcds run’, you can use the ‘-autoupdate’ command line option to request that

202 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

srcds run updates the HL2MP server immediately prior to starting. (Internet connectivity
is required for autoupdate to work. This option will not be very helpful if you are running
a LAN-only server on an isolated network.)

12.3.3 Starting a LAN-only Server

Adding the ‘+sv lan 1’ option prevents your server from registering as a public server.
For example:

/home/hl2/hl2mp/% ./srcds_run -game hl2mp -console +map
dm_overwatch +sv_lan 1

Your server will still contact the Steam master servers, but will not register as a public
server, and will not use Steam to authenticate clients and will not use Valve Anti-Cheat
(VAC) to protect the server. The server may be located by players on your local LAN
using the ‘LAN game’ option in their Steam clients.

Clients discover servers on their local LAN by broadcasting server-discovery probes
(UDP packets sent to IP address 255.255.255.255 with the ASCII text ‘TSource Engine
Query’ in their payloads). Each time a player presses their ‘refresh’ button in the Steam
client’s LAN server locator window, six UDP broadcast probes are sent – one each to
ports 27015, 27016, 27017, 27018, 27019 and 27020 in that order. This normally triggers
a response from any of the dedicated servers on the local LAN who are listening on one
of these six common HL2MP server ports. A server using, for example, port 27085 would
not be visible to the Steam client’s LAN search function. A prospective player would
need to explicitly name the server by IP address and port number in order to connect.

As with WET (discussed earlier in this chapter) if you run a LAN-only game using
‘+sv lan 1′ and also specify the game server’s local IP address with ‘-ip w.x.y.z’ the
server appears to ignore the server-discovery queries being sent to 255.255.255.255. In
this case, each client will need to manually specify the server’s IP address (w.x.y.z) and
port number in order to connect.

12.3.4 Ports You Need Open on Firewalls

It is entirely possible you have a firewall between your server and the outside world.
If so, you must ensure that the server can send packets outbound to a range of ports.
HL2MP seems to need quite a few ports open for clients and servers to operate freely.
A dedicated public server has been seen to talk to remote Steam-related servers on ports
27011 (UDP), 27014 (UDP) and 27030 (TCP). UDP port 27020 is required open for
Half-Life TV. Inbound access is obviously required to the server’s actual game-play port
(UDP to 27015, or whatever was set with ‘-port NNN’). If remote administrative access is
required (using the ‘rcon’ function, discussed later) you will also need to enable inbound
TCP access to the game-play port.

12.3.5 Dealing with Network Address Translation

Running an HL2MP server behind a NAT-enabled router introduces a number of issues.
These have largely been discussed earlier in this chapter in relation to WET, and will not

Setting Up Online FPS Game Servers 203

be repeated here. Although HL2MP and Steam use a number of ports, only the game-
play port (‘-port NNNN’) must be visible to the outside world. For the reasons described
earlier, you will need to install a special rule into your NAT-enabled router to ensure
unsolicited server-discovery probes from the wider Internet are properly routed to your
HL2MP server. If you plan to remotely manage your server with ‘rcon’, you will need to
put in the same rule for both UDP and TCP traffic.

12.3.6 Monitoring and Administration

When started from the command line the game server prints information to the screen
and accepts keyboard input in real time, allowing you to monitor server state and modify
server configuration parameters. For example, you could type ‘status’ to find out the
names of all clients currently connected, along with their current ping time, IP address
and port number.

However, you’ll usually want to start the game server and then leave – returning only
occasionally to monitor activities and perhaps modify parameters. For this you need to
enable logging and ‘rcon’ (remote console).

To set up logging from your server, the following commands should be in your
server.cfg file:

log on
sv_logsdir "<logdirectoryname>"
sv_logfile 1
sv_logecho 1
sv_logdetail 3
sv_logmessages 1

The 〈logdirectoryname〉 parameter is the name of a directory within which you wish
to store your logfiles. If provided as a relative pathname, it is interpreted relative to the
hl2mp game directory. For example, when using the hl2 user account described above,
‘sv logsdir “logs/todayslogs”’ would result in logfiles being created inside the directory
‘/home/hl2/hl2mp/logs/todayslogs/’.

The actual logfiles will be created inside this directory with names ‘Lmmddxxx.log’,
where mm is the month, dd is the day, and xxx in an integer number starting at ‘000’
and incrementing with every map change. Each logfile will contain date and time stamps
of events such as players joining and leaving, their playernames, Steam IDs and the IP
address:port from which the client connected.

Remote control of your game server is possible through the ‘rcon’ facility. Rcon is a
client-side console command that passes text to the server, and prints the server’s output
back onto the client’s console window. Rcon access to a server is enabled by setting an
rcon password with the ‘+rcon password 〈password〉’ option when starting your server.

For example, to start a LAN-only server with the rcon password of ‘mypass’ you
could use:

/home/hl2/hl2mp/% ./srcds_run -game hl2mp -console +map
dm_overwatch +sv_lan 1 +rcon_password mypass

Figure 12.9 shows how you would then access the server from the console of an HL2
game client already connected to the server. The first use of ‘rcon status’ resulted in

204 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

Figure 12.9 Using Rcon from within Half-Life 2 client console to access a server at 192.168.10.1:
27015 (client logged in from 192.168.10.99)

an error message because the server requires an rcon password. So you set the rcon
password with ‘rcon password mypass’, and then repeat the ‘rcon status’ command. Now
you receive the server’s console output back (seeing that there’s one person, the author,
on this LAN-only server). You can issue other commands too, such as ‘rcon sv lan’ to
report the status of the LAN-only flag.

You only need to enter the ‘rconpassword’ line once, then use multiple ‘rcon’ commands
as necessary.

HL2’s rcon service runs over TCP to the server’s game-play port (27015, unless ‘-port’
was specified when the server started up). Unfortunately, the rcon mechanism has an
important weakness. Every time an rcon command is executed, the client sends the rcon-
password in clear-text over the Internet along with the requested server-side command.
Anyone sniffing the IP network between your client and your server will easily be able
to extract your rcon password and begin remotely interfering with your server. For this
reason, rcon should only be used from client machines that have direct IP connectivity to
the server (or at least have connectivity over a path that can be trusted).

At the time of writing XQF [XQF05] did not support ‘rcon’ to HL2MP servers, although
this may well have been added subsequently.

12.3.7 Network Performance Configuration

Table 12.4 lists a number of server-side variables and settings affecting the network traffic
generated by your server.

Server-side variables can be set on the command line or in server.cfg file (except for
‘-tickrate’, which must be set on the command line).

Table 12.5 lists a number of client-side variables and settings affecting the network
traffic generated by your server.

The settings in Table 12.4 on the server side can override settings in Table 12.5
requested at the client side. Chapter 10 provides a discussion of the underlying principles.

12.3.8 Running a Windows Server

In principle, you can start a ‘listen server’ from within a Half-Life 2 client on a Windows
machine. However, this is really only suitable for private, local games. To host a public

Setting Up Online FPS Game Servers 205

Table 12.4 Server-side settings controlling network traffic

Variable Role Default

sv minrate Lower bound on ‘rate’ (the maximum
snapshot rate in bytes/second requested
by the client)

0

sv maxrate Upper bound on ‘rate’ (the maximum
snapshot rate in bytes/second requested
by the client)

0 (unlimited)

sv minupdaterate Lower bound on cl updaterate (the
client-side requested snapshot rate).
Server will send at this rate if
cl updaterate is too low

10

sv maxupdaterate Upper bound on cl updaterate (the
client-side requested snapshot rate)

60

-tickrate Sets the server’s internal tick rate (in ticks
per second). Can only be set on the
command line

66

Table 12.5 Client-side settings controlling network traffic

Variable Role Default

rate Maximum data rate (in bytes per second)
the client wishes to receive snapshot data
from the server

(depends on client
‘network’ setting)

cl cmdrate Rate (in packets per second) at which client
will send command packets to the server

30

cl updaterate Rate (in packets per second) at which client
wishes to receive snapshots from server

20

server on a Windows machine, you should download the Windows equivalent of the
dedicated Linux server described in this chapter. Most of the differences exist only in
the name of the executable used to launch the server, and the syntax of filenames and
pathnames.

Valve provides an automatic update tool called hldsupdatetool.exe, located at http://
www. steampowered.com/download/hldsupdatetool.exe. Download this tool and launch it
without any options. It will update itself, and is then ready to be used to pull down the
server itself. You will be prompted by hldsupdatetool.exe to specify a directory into which
you would like to store your dedicated server. Two obvious choices would be C:\srcds\
or C:\hl2mp\ – it is up to you. Once the tool has updated itself, launch it again with the
same options as for the Linux updater, e.g.:

hldsupdatetool.exe -command update -game hl2mp -dir c:\hl2server

(The primary difference is how we locate and specify directories.)

206 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

Once all files have been downloaded, you can launch the dedicated server in a similar
fashion to the Linux server. For example, to launch HL2MP with map dm overwatch,
LAN-only and rcon password of ‘mypass’, use this line:

c:\hl2server\srcds.exe -game hl2mp -console +map dm_overwatch
+sv_lan 1 +rcon_password mypass

You may find it useful to create a short batch file that loops forever, automatically
restarting the server if it crashes for some reason.

12.3.9 Further Reading

It is not really within the scope of this book to provide a tutorial on tweaking server
configuration options, as most of them relate to HL2MP game-play, in-game physics, and
the VAC system. There are numerous sites around the Internet with suggestions on how to
tweak game-play and add ‘mods’ (modifications). A good place to start would be Valve’s
own Steam Forums at http://steampowered.com.

12.4 Configuring FreeBSD’s Linux-compatibility Mode
FreeBSD is popular in many server configurations. With its Linux-compatibility mode
FreeBSD makes a good platform for hosting dedicated game servers. In this section, we
will discuss two key steps that must be performed before running a dedicated Linux game
server under FreeBSD. The first is to ensure the correct Linux-compatibility libraries are
installed. The second is to ensure the FreeBSD kernel is ‘ticking’ fast enough.

12.4.1 Installing the Correct Linux-compatibility Libraries

Details of FreeBSD’s Linux binary compatibility are described in Chapter 10 of the
online FreeBSD documentation [FBLINUX] and will not be repeated here. FreeBSD
5.4 was current at the time of writing, and a number of Linux-compatibility options
exist.

Linux binary compatibility means that a Linux application (an ‘executable’ binary
file previously compiled under Linux) runs natively on a FreeBSD host. There is no
processor emulation occurring – compatibility is implemented within the FreeBSD ker-
nel’s loader function. When a Linux application is launched, the FreeBSD kernel will
re-write sections of the application’s internal executable code before starting the pro-
gram. (The Linux application’s calls into the Linux kernel for things like disk access,
network access and memory management are replaced with equivalent calls into the
FreeBSD kernel.) After the re-writes are complete, the application begins execution
as though nothing has happened. Many standard Linux libraries are installed under
‘/compat/linux’ on the FreeBSD host, enabling dynamically linked applications to operate
properly.

The main point to recognise is that Linux compatibility is easily configured by installing
a ‘Port’ or ‘Package’ onto your existing FreeBSD system. A number of different com-
patibility environments are available, reflecting some different Linux distributions. If you
want to run Half-Life 2 dedicated server you will need the libraries based on Red Hat
Linux 8.0, rather than the default (as of FreeBSD 5.4) based on Red Hat Linux 7.x.

Setting Up Online FPS Game Servers 207

If you are already connected to the Internet and logged in as root, simply execute:

% pkg_add -r linux_base-8

All the necessary files will be automatically retrieved over the Internet to install a
compatibility environment based on Red Hat Linux 8.0. This package will also support
the WET dedicated Linux server.

So, if you have a FreeBSD server available it is entirely reasonable to host Linux-based
dedicated game servers on this machine.

12.4.2 Ensuring the Kernel ‘Ticks’ Fast Enough
Most operating systems have some form of internal ‘software clock’ ticking along at a
fixed rate, used by programs that wish to regularly ‘wake up and do something’. This is
true of Windows, Linux and FreeBSD. (This tick rate is not to be confused with a game
server’s own internal tick rate, discussed earlier in the book. The two tick rates can be
entirely different.)

At least up until FreeBSD 5.4, the kernel’s own tick timer defaulted to 100 ticks per
second. Given the way dedicated game servers are written, this tick rate is way too low.

Fortunately, the FreeBSD tick rate can be adjusted without recompiling the kernel.
Simply add the following line to the file /boot/loader.conf and reboot the machine.

kern.hz="1000"

Once rebooted the kernel will be ticking 1000 times a second, a much better rate when
hosting game servers. (You could even set it faster – the limit really depends on how
much CPU load your machine can tolerate. There is a small, fixed amount of processing
overhead incurred for each tick of the kernel’s clock, regardless of what all the applications
are doing.)

You can check or confirm your kernel’s current tick rate with the following command:

sysctl kern.clockrate

Increasing the kernel’s own tick rate is important for any system hosting an online
dedicated game server, whether it be Linux, FreeBSD or Windows. The simple fact is
that a game server’s own activities are generally limited by the kernel’s own tick timer.

For example, an HL2MP dedicated server on a standard FreeBSD 5.4 host is limited
to sending at most (kern.clockrate/2) snapshots per second to each client, regardless of
the game server’s own tickrate (which defaults to 66). Given a default kernel tick rate of
100, your HL2MP server would be unable to send more than 50 snapshots per second to
each client. The game server’s own default sv maxupdaterate setting of 60, and default
tick rate of 66, are rendered meaningless.

Running a FreeBSD server host at, for example, 150 ticks per second would limit the
HL2MP server to 75 snapshots per second to each client. Setting the kernel’s tick rate to
1000 ensures that sv maxupdaterate, cl updaterate and the HL2MP game server’s own
tickrate become the proper limiting factors.

In summary: the maximum snapshots per second rate to each client is the smaller of
sv maxupdaterate, the game server’s tickrate, and half the underlying operating system’s
software tick rate. It is essential to reconfigure your FreeBSD’s default 100 ticks per
second to something more like 1000 ticks per second.

208 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

References
[DUMMYNET] dummynet, “Dummynet – Traffic Shaper, Bandwidth Manager and Delay Emulator”, http://

www.FreeBSD.org/cgi/man.cgi?query=dummynet&sektion=4, 2004.
[ETPRO05] ET Pro, “ET Pro – The Enemy Territory Competition Mod”, http://etpro.anime.net/.
[FBLINUX] FreeBSD Handbook, “Chapter 10 Linux Binary Compatibility”, (http://www.freebsd.org/doc/

en US.ISO8859-1/books/handbook), 2005.
[HALFLIFE2004] H A L F – L I F E 2, http://half-life2.com, 2004.
[LEE2005] S. Zander, I. Leeder and G. Armitage, “Achieving Fairness in Multiplayer Network Games through

Automated Latency Balancing”, ACM SIGCHI International Conference on Advances in Computer Enter-
tainment Technology (ACE2005), Valencia,Spain, June 2005.

[PBUSTER] PunkBuster, “PunkBuster Online Countermeasures,” http://www.punkbuster.com/, Accessed 2006.
[RIZ1997] L. Rizzo, “Dummynet: A simple approach to the evaluation of network protocols”, ACM Computer

Communication Review, Vol. 27, No. 1, pp. 31–41, 1997.
[SSH2005] OpenSSH, http://www.openssh.org, 2005.
[STEAM2004] Welcome to Steam, http://www.steampowered.com/, 2004.
[VALV2005] Valve, http://www.valvesoftware.com, 2005.
[WET2005] Wolfenstein, http://games.activision.com/games/wolfenstein as of October 2005.
[XQF05] XQF Game Server Browser, http://www.linuxgames.com/xqf/index.shtml, 2005.

13
Conclusion

By the end of a book both the authors and readers realise there is much more ‘out
there’ that we have not, and simply could not, cover. We can be sure of one thing in
this field of networking and online games – the specific technologies and games will
continue to evolve rapidly and have a deeper impact on society, but the underlying issues
and principles will remain. To that end we conclude with pointers to a small collection
of online resources – places to find the latest news, more technical details, and forums
discussing game and networking technologies.

13.1 Networking Fundamentals
We have provided an introduction to TCP, UDP and IP networking in this book, without
stressing too much on the details. A number of books are available that focus specifically
on IP networking issues, including the following well-known texts:

• “Internetworking with TCP/IP Vol. I: Principles, Protocols, and Architecture” by Dou-
glas E. Comer (5th edition June 30, 2005) Prentice Hall; ISBN: 0131876716

• “TCP/IP Illustrated, Volume 1: The Protocols” by W. Richard Stevens (January 1994)
Addison-Wesley Pub Co; ISBN: 0201633469

• “Computer Networks” by Andrew S. Tanenbaum (4th edition August 9, 2002) Prentice
Hall; ISBN: 0130661023

Various sources of online information exist. The Internet Engineering Task Force (IETF)
and Institute of Electrical and Electronic Engineers (IEEE) both have websites where you
can obtain copies of their standards documents describing a wide variety of Internet and
link layer technologies.

• Internet Engineering Task Force (IETF)
◦ http://www.ietf.org

• Institute of Electrical and Electronic Engineers (IEEE)
◦ http://www.ieee.org

• IEEE Working Group for Wireless LANs
◦ http://www.ieee802.org/11

Networking and Online Games: Understanding and Engineering Multiplayer Internet Games
Grenville Armitage, Mark Claypool, Philip Branch 2006 John Wiley & Sons, Ltd ISBN: 0-470-01857-7

210 Networking and Online Games: Understanding and Engineering Multiplayer Internet Games

IETF documents crop up in a number of chapters, known as ‘RFCs’ (from their traditional
name, ‘Requests for Comment’). A somewhat user-unfriendly search tool is available at
http://www.ietf.org/rfc.html (you must know the RFC number), or go to http://www.rfc-
editor.org/to search on various text fields.

The Association for Computing Machinery (ACM, http://www.acm.org) also provides
a wide range of publications covering networking and computing topics. A number of
ACM publications and special interest group (SIG) journals and conference proceedings
touch on issues relevant to networked game development. These include:

• SIGCHI (http://www.acm.org/sigchi)
• Computers In Entertainment (http://www.acm.org/pubs/cie.html)
• SIGCOMM (http://www.acm.org/sigcomm)
• SIGGRAPH (http://www.siggraph.org/)

13.2 Game Technologies and Development
A number of online websites and resources exist, covering various aspects of game dis-
tribution, research, development and design. These include the following:

• http://www.theesa.com/
◦ Entertainment Software Association: ‘The ESA works with the government at all

levels to make the voice of its members heard on a wide range of crucial legislative
and public policy issues, including intellectual property protection, content regulation,
and efforts to regulate the Internet’.

• http://www.gamasutra.com/
◦ Gamasutra: ‘The Art & Business of making games’. Currently an excellent and

active site for all things to do with game development, the games industry and game
technology.

• http://www.gamespy.com/
◦ GameSpy: hosts a wide variety of game-specific forums, file download areas, and so

on (consoles and PCs).
• http://www.igda.org/

◦ ‘The International Game Developers Association is a non-profit professional mem-
bership organization that advocates globally on issues related to digital game
creation’.

• http://www.gamedev.net/
◦ GameDev.net: ‘all your game development needs’. Another site with information for

game developers.
• http://www.gdconf.com/

◦ Game Developer’s Conference
• http://www.gamespot.com/

◦ Gamespot.
• http://www.3dgamers.com/

◦ 3D Gamers (news, downloads)
• http://www.digiplay.org.uk/

◦ Digiplay Initiative: ‘Research into computer gamers and the industry they are part of’.

Conclusion 211

13.3 A Note Regarding Online Sources
It has become commonplace to utilise online resources to find answers to questions,
example code or opinions on all sorts of topics. Search engines, such as Google (www.
google.com) and Yahoo (www.yahoo.com), have become an entry point to a vast range
of websites with information. Community-edited resources, such as Wikipedia (‘The Free
Online Encyclopedia’, www.wikipedia.com), have become fascinating sources of facts
and fiction. Information can be of high quality (created by people who care about the
accuracy and relevance of their material) or of entirely dubious quality (created by people
concerned more with opinion than accuracy, or created months and years in the past and
subsequently never updated to reflect a changing reality).

The best sources of information are normative – where the website is run by the
organisation who created the facts or opinions you wish to read and/or cite. Secondary
sources, those who summarise or purport to reflect the facts of a situation they did not cre-
ate or own, can be reliable to a degree. You should always consider carefully the nature of
your source’s relationship to the information and facts about which your source purports
to report. Where normative sources exist, they should always be utilised in preference to
secondary sources. Search engines can be very helpful in locating normative sources for
information you may have initially discovered through a secondary source (such as an
online newspaper or game developer’s forum).

Keep in mind that web-based content can change in seconds, so the information you
saw at a particular URL at time X may have changed when someone else accesses the
site sometime later. For example, Wikipedia cautions readers to keep track of precisely
when they saw a particular version of any given article, because they can change so
frequently (http://en.wikipedia.org/wiki/Wikipedia:Citing Wikipedia). When following an
online reference given by someone else, remember that the version you see now may differ
from what your secondary source saw in the past.

Index

3G, 132–134, 177
802.11b, 31, 35, 129, 131, 135
802.11e, 131, 179
802.11g, 129, 135
802.15, 177

Access network
data link layer, 125
physical layer, 124–125

Access Point (AP), 31, 129
Address resolution, 56–58
Address resolution protocol (ARP), 56,

141
ADSL network, 127–128
Age of Mythology, 183
Arcade games, 9–10
ARQuake, 34, 37
Artificial network condition

considerations for creating, 107–108
Asheron’s Call, 22
Asymmetric Digital Subscriber Line

(ADSL), 64, 128
Asynchronous Transfer Mode (ATM), 72
Atari, 10
Atari Football, 10
Augmented Reality (AR), 34–39, 182
Aura, 96
Autonomous Systems (ASs), 53
Avatar, 5, 89, 93, 109

BATS, 37
Battle.net, 24
Best Effort, 1, 42, 45, 76, 178
Bit error, 75
Blizzard, 22–24
Bluetooth, 2, 34, 125, 129, 134–135, 177
Border Gateway Protocol (BGP), 54

Broadband, 2, 62, 74, 75, 83
modem, 74
router, 73

Broadband Access Network, 121–136,
179

characteristics of, 121–123
role of, 121

Broadcast, 46–47
directed, 51

Byte stuffing, 74

Cable Modem (CM), 64, 73, 122, 124,
126, 127

Cable networks, 125–126
head-end, 125, 126

Carrier Sense Multiple Access/Collision
Avoidance (CSMA/CA), 73, 131

Cave, 39
CDMA2000, 132, 133
cdmaOne, 132, 133
Cellular Broadband Networks, 123
Cellular network, 132–134
Cheat, 108–118

client-side, 111–115
network-layer, 115–116
server-side, 109–111

Cheat-mitigation, 108–118
Cheating

methods, classification of, 109
Classless Inter Domain Routing (CIDR),

50
Client-server, 84, 87
Clock

hardware, 152
software, 107, 207

Code Division Multiplexing (CDM), 125

Networking and Online Games: Understanding and Engineering Multiplayer Internet Games
Grenville Armitage, Mark Claypool, Philip Branch 2006 John Wiley & Sons, Ltd ISBN: 0-470-01857-7

214 Index

Collaborative Virtual Environments
(CVE), 39

Command and Conquer, 22
Command rate, 155
Communication architectures

peer-to-peer, 15, 180
peer-to-peer, client–server hybrid, 16

Computer games, 32–39
physical reality, 32
telepresence, 33

Computer Supported Cooperative Work
(CSCW), 39

Connectionless, 48
Connectivity and Routing

hierarchy, 49–51
Core Network (CN), 121, 133
CVE, see Collaborative Virtual

Environments (CVE)
Cyberathlete Professional League (CPL),

21

Dance, Dance Revolution (DDR), 34
Dark Age of Camelot, 22
Data compression, 96

lossless, 96
peer-to-peer network, 97

DDR, see Dance, Dance Revolution
(DDR)

Dead Reckoning, 87
Defender, 85
Delta compression, 96
Diablo, 24
DiffServ, 178
Distance Vector (DV), 53
Distributed Coordination Function (DCF),

131
Distributed Denial of Service (DDoS), 115
Distributed Interactive Simulation (DIS),

39, 90
Distributed Virtual Environments (DVE),

39
Domain Name System (DNS), 44, 66–67,

140
hierarchy of, 67

Doom, 2, 12–14, 18
networking, peer-to-peer topology for,

13

Doom clone, 18, 27
Dreamcast, 29
Dual-Screen (DS), 31
Dummynet, 107–108
Dungeons and Dragons, 12
DVE, see Distributed Virtual

Environments (DVE)
Dynamic Host Configuration Protocol

(DHCP), 64–65
configuring a host, 64
leasing addresses, 65

Echo delay, 8
Electronic Arts (EA), 26
Enemy Territory (ET), 144, 155, 164,

188–198
Enhanced Data Rates for GSM Evolution

(EDGE), 177
Enhanced DCF (EDCF), 132
Ethereal, 139, 146, 152
Ethernet, 14, 50, 58, 71, 125, 130

switched, 139
EverQuest, 9, 21–22

Final Fantasy XI, 22
Firewall, 181, 193, 202
First Person Shooter (FPS), 18–21, 95,

102, 145–146, 151
5-tuple classification, 76, 77
Flooding, 115
Flow classification, 76
Forward Error Correction (FEC), 75, 177
Frames, 125
FreeBSD, 3, 58, 59, 67, 107, 138, 140,

152, 187, 207
configuring Linux-compatibility mode,

206–207
installing Linux-compatibility libraries,

206–207
Frequency Division Multiplexing (FDM),

124

Game boy, 30
Game consoles, 29–30

handheld, 30–31
Nintendo DS, 31

Index 215

Nintendo GameCube, 30
Sony PSP, 31

Game traffic
simulating, 168–172

Halo 2, 169–171
Game-play, 111, 116, 139, 196

long-term trends, 142–145
Game-play port, 202, 204
GameCube, 29, 30
Games

interactive, 3, 137, 144, 175
GameSpy, 18
Gateway GPRS Support Node (GGSN),

134
Gauntlet, 10, 11
General Packet Radio Service (GPRS),

177
Global System for Mobile (GSM), 132,

133
GSM, see Global System for Mobile

(GSM)

Half-Life, 102, 110, 146, 148, 156, 169
packet sizes, 157

Half-Life, 2, 198–206
administration, 203–204
dealing with Network Address

Translation (NAT), 202
running Windows server, 204

Halo 2, 156, 158, 169
Hierarchy

class-based, 49
domain name, 66

Histogram, 102, 162
Home Location Register (HLR), 134
Host, 19, 20, 28, 43, 47, 59

multihomed, 43
Host routes, 52
Hybrid Coordination Function (HCF), 132

ICMP, see Internet Control Message
Protocol (ICMP)

echo/reply, 106
Industrial, Scientific and Medical Band

(ISM), 124
Inter-packet interval, 153, 162, 163

for Half-life 2 snapshots, 165
for Wolfenstein ET snapshots, 164

Interior Gateway Protocols (IGPs), 53
International Mobile Telecommunications

2000 Program (IMT-2000), 133
Internet, 1, 17, 21, 28

basic architecture, 41–67
Internet Control Message Protocol

(ICMP), 20, 79
echo/reply, 106

Internet Packet Exchange (IPX), 12, 18
Internet Protocol (IP), 2, 17, 41, 69–81,

123
Internet Service Provider (ISP), 1, 60, 121,

137, 179
Interval

inter-packet, see Inter-packet interval
IntServ, 178
IP address, 42, 43, 45, 46, 59, 192, 193

mapping to geographic location,
148–149

IP multicast, 47
IP network

connectionless services, 48
host, 43

IP tunnelling, 59
IP version 4 (IPv4), 41, 47, 60
IP version 6 (IPv6), 41, 60

Jitter, 43, 69–81
network control of, 75–79
relevance of, 69–70
sources of, 70–75

Kali, 18

Lag, 69
network control of, 75–79

‘Last Mile’ Problem, 121
Latency, see Network latency
Latency tolerance, 105, 144

mapping by, 149
Layered transport service

flow, 45, 46
multiplexing, 45

Lineage, 22

216 Index

Link layer network, 55–56
address resolution, 56–58
support for packet prioritisation, 77–78

Link state (LS) algorithm, 53
Linux, 58, 67, 104, 187, 207
Linux dedicated server

installation of, 199–200
Local Area Network (LAN), 2, 5, 15, 42,

141

Madden NFL Football, 25, 105
Massively multiplayer games, 17, 21–22
Massively multiplayer online (MMO)

games, 182–183
Massively Multiplayer On line

Role-Playing (MMORPG), 21, 182
Maximum Transmission Unit (MTU), 58,

60
Medium Access Control (MAC), 125, 126
Microsoft, 22, 25
Military simulations, 39
MMO, see Massively multiplayer online

(MMO) games
MMORPG, see Massively Multiplayer On

line Role-Playing (MMORPG)
Moore’s Law, 29
MUD, see MultiUser Dungeon (MUD)
Multicast, 46–47
Multihomed host, 43
Multiplayer game, 5

communication architecture, 15–17
Multiplexing, 45–46, 124
MultiUser Dungeon (MUD), 8–9, 16

Need for Speed, 26
Network, 1–3, 5

servers, 17
Network Address Port Translation

(NAPT), 62–63
Network Address Translation (NAT), 2,

61–64, 163
pure, 61–62
router, 193, 194

Network game, 5, 6, 12–14, 21, 177, 183
Network latency, 43, 69–81

compensation

and cheating, 98
need for, 83–86

compensation techniques, 83–98
prediction, 86–93
time manipulation, 93–97

control of, 75–79
propagation delay, 71
relevance of, 69–70
Round trip time (RTT), 69
sources of, 70–75

serialisation, 71–72
Network-layer cheats

flooding, 115
Nimbus, 96
Nintendo, 29
NISTnet, 104, 107, 108
Node B, 134
ns-2, 171

Online game server
consideration for, 187–188
setting up, 187–207

Online games
evolution of, 17–27
evolution of platforms, 29
traffic pattern, 152–153

snapshots, 153–155
sub-second characteristics, 153–155
sub-second packet-size distributions,

156–162
Opponent prediction, 87, 89–92, 96, 98

Packet, 2, 3, 13, 14, 19–21, 42, 43,
45–47, 51, 52, 58

link layer support for prioritisation,
77–78

per-hop transport, 55–60
Packet loss, 69, 83, 104

consequences of, 70
reasons for, 74

Packet loss rate, 43
Packet sniffing, 138
Pacman, 34
PCF, see Point Coordination Function

(PCF)
Per-hop Packet Transport

Index 217

Time To Live (TTL), 58
tunnels as links, 59

Phantasy Star, 29
Piconets, 135
Ping, 79
Ping time, 20
PLATO, 8
Player locations

mapping traffic to, 148–149
Player prediction, 87–89
Player tolerance, 101

usability trials, 101
Playstation, 2, 25, 29
Playstation Portable (PSP), 31
POD, 26
Point Coordination Function (PCF), 131
Pong, 7, 10
Port number, 45, 46, 76, 79, 145, 163,

178, 192, 201
Poultry Internet, 34
Priority packets, 76, 78
Probe traffic, 3, 145–148

origins of, 145–146
sources of, 145
trends, 146–148

Pushlatency, 21

Quake, 19, 20
screenshot of, 20

QuakeWorld, 20, 21
Quality of Service, see Quality of Service

(QoS)
Quality of Service (QoS), 131, 178–180

identification, 179
and IEEE 802.11, 179

Queue, 73
router, 21

Queuing, 78
preferential IP layer, 76–77

Queuing delay, 72–73, 83, 179

Racing game, 25–27, 182
Radio Network Subsystem (RNS), 133
Ragnarok Online, 22
Random Early Detection (RED), 75
Real Tournament, 35, 37

Real-Time Strategy (RTS), 27, 91, 104,
111, 182

Resource Reservation Protocol (RSVP),
178

Round trip time (RTT), 69, 142
Router, 47–60, 75, 83, 105, 108, 126, 176

NAT-enabled, 61, 62, 187
Routing, 47–60

shortest-path, 51–53
Routing loops, 58
Routing protocol, 43, 48, 50–55

backbone, 54
routing policies, 54

RSVP, see Resource Reservation Protocol
(RSVP)

RTS games, 17, 22–24, 27, 91, 104, 111,
182

Runescape, 23

Scatternets, 135
Sega, 29
SegaNet, 29
Serialisation, 70–72
Serialisation delay, 73, 76, 80, 96
Serialisation latency, 71
Server, browser, 183–184
Server, centralised, 25, 180
Serving General Packet Radio System

Node (SGSN), 134
Snapshot, 154

Half-life 2, 164
Wolfenstein enemy territory, 164

Snapshot rate, 154, 196
controlling of, 155

Sniffing packets, 138–140
Sony, 22, 29, 31, 175
Spacewar, 7, 9
Speedzone, 26
Sports games, 24

Need for Speed, 26
Square-Enix, 22
Star Wars Galaxies, 22
Statistical multiplexing, 72, 73
Steam, 118, 199, 201–203
Subnet, 50, 51, 59, 64
Subnet mask, 50

218 Index

Subnetting, 50, 51
Supernetting, 50

TCAPS, see Traffic Classification and
Prioritization System (TCAPS)

TCP/IP, 12
tcpdump, 139, 152, 187

sniffing with, 140–142
Telepresence, 33
Telnet, 8, 9

disadvantage of, 9
Testbed, 104, 108

for controlled latency and packet loss
trials , 105

Tick, 152–155
Tick rate, 154, 207
Time delay, 93
Time Division Multiplexing (TDM), 124
Time To Live (TTL), 58, 149
Time warp, 94
Time zone, 2, 144
Timestamping, 138

errors, measuring game traffic with,
152–153

Traceroute, 79–80
Traffic Classification and Prioritization

System (TCAPS), 179
Transmission Control Protocol (TCP), 2,

8, 44–45, 104, 138, 178, 204
Tunnel, 59

Ultima Online, 21
screenshot of, 21

Ultra Wideband (UWB), 177
UMTS Subscriber Identity Module

(USIM), 134
Unicast, 41, 46–47
Universal Mobile Telecommunications

System (UMTS), 132–134
architecture for, 133

Universal Terrestrial Radio Access
Network (UTRAN), 133, 134

Usability trial, 101
User Datagram Protocol (UDP), 2, 20,

44–46, 163, 178
User Equipment (UE), 133
UWB, see Ultra Wideband (UWB)

Valve, 3, 118, 198, 199, 205
Visitor Location Register (VLR), 134
Voice over Internet Protocol (VoIP), 17, 33
VoIP, see Voice over Internet Protocol

(VoIP)

Wallhack, 112–114, 117
WAN, see Wide Area Network (WAN)
Warcraft, 22

screenshots of, 24
Warcraft III, 104
Westwood, 22
Wide Area Network (WAN), 16, 18, 19
WiMAX, 177
Windows, 67, 79, 138, 140, 152, 188, 207
Wired Equivalence Privacy (WEP), 130
Wireless LAN (WLAN), 128–132, 178

architectures, 129–131
recent developments in Quality of

Service (QoS), 131–132
Wireless media

characteristics of, 176–177
Wireless Metropolitan Area Network

(WMAN), 177
Wireless network

categorisation, 177–178
Wireless Personal Area Network (WPAN),

177
Wireless Wide Area Network (WWAN),

177, 178
WLAN, see Wireless LAN (WLAN)
WMAN, see Wireless Metropolitan Area

Network (WMAN)
Wolfenstein Enemy Territory, 188–198

administration, 194–196
dealing with Network Address

Translation (NAT), 193–194
installing Linux game server, 189–191
obtaining the code, 188
running Windows server , 197
starting LAN server, 192–193

WPAN, see Wireless Personal Area
Network (WPAN)

WWAN, see Wireless Wide Area Network
(WWAN)

Xbox, 25, 29, 30

	Contents
	Introduction
	Early Online and Multiplayer
	Recent Online and Multiplayer
	Basic Internet Architecture
	Network Latency, Jitter and Loss
	Latency Compensation Techniques
	Playability versus Network
	Broadband Access Networks
	Where Do Players Come from
	Online Game Traffic Patterns
	Future Directions
	Setting Up Online FPS Game
	Conclusion
	Index

