

POSTMORTEMS

FROM

Austin Grossman,
editor

San Francisco, CA • New York, NY • Lawrence, KS

P u b l i s h e d b y C M P B o o k s
a n i m p r i n t o f C M P M e d i a L L C
M a i n o f fi c e : 6 0 0 H a r r i s o n S t r e e t , S a n F r a n c i s c o , C A 9 4 1 0 7 U S A
Te l : 4 1 5 - 9 4 7 - 6 6 1 5 ; f a x : 4 1 5 - 9 4 7 - 6 0 1 5
E d i t o r i a l o f fi c e : 1 6 0 1 W e s t 2 3 r d S t r e e t , S u i t e 2 0 0 , L a w r e n c e , K S 6 6 0 4 6 U S A
w w w . c m p b o o k s . c o m
e m a i l : b o o k s @ c m p . c o m

Designations used by companies to distinguish their products are often claimed as trademarks. In all
instances where CMP is aware of a trademark claim, the product name appears in initial capital letters,
in all capital letters, or in accordance with the vendor’s capitalization preference. Readers should contact
the appropriate companies for more complete information on trademarks and trademark registrations.
All trademarks and registered trademarks in this book are the property of their respective holders.

Copyright © 2003 by CMP Media LLC, except where noted otherwise. Published by CMP Books, CMP
Media LLC. All rights reserved. Printed in the United States of America. No part of this publication may
be reproduced or distributed in any form or by any means, or stored in a database or retrieval system,
without the prior written permission of the publisher; with the exception that the program listings may
be entered, stored, and executed in a computer system, but they may not be reproduced for publication.

The publisher does not offer any warranties and does not guarantee the accuracy, adequacy, or complete-
ness of any information herein and is not responsible for any errors or omissions. The publisher assumes
no liability for damages resulting from the use of the information in this book or for any infringement of
the intellectual property rights of third parties that would result from the use of this information.

Acquisitions editor: Dorothy Cox
Managing editor: Michelle O’Neal
Copyeditor: Madeleine Reardon Dimond
Layout design: Justin Fulmer
Cover design: Damien Castaneda

D i s t r i b u t e d t o t h e b o o k t r a d e i n t h e U . S . b y : D i s t r i b u t e d i n C a n a d a b y :
P u b l i s h e r s G r o u p We s t J a g u a r B o o k G r o u p
1 7 0 0 Fo u r t h S t r e e t 1 0 0 A r m s t r o n g Av e n u e
B e r ke l ey, C A 9 4 7 1 0 G e o r g e t o w n , O n t a r i o M 6 K 3 E 7 C a n a d a
1 - 8 0 0 - 7 8 8 - 3 1 2 3 9 0 5 - 8 7 7 - 4 4 8 3

For individual orders and for information on special discounts for quantity orders, please contact:
CMP Books Distribution Center, 6600 Silacci Way, Gilroy, CA 95020
Tel: 1-800-500-6875 or 408-848-3854; fax: 408-848-5784
email: cmp@rushorder.com; Web: www.cmpbooks.com

Printed in the United States of America

03 04 05 06 07 5 4 3 2 1

I S B N : 1 - 5 7 8 2 0 - 2 1 4 - 0

iii

TABLE OF CONTENTS

Introduction: Tales from the Front Line ix

SECTION I STARTUPS 1

Irrational Games’ SYSTEM SHOCK 2 5
by jonathan chey

It’s the Engine, Stupid . 7
What Went Right . 7
What Went Wrong . 12

Bohemia Interactive Studios’ OPERATION FLASHPOINT 19
by marek spanel and ondrej spanel

What Went Right . 21
What Went Wrong . 24
Future Dreaming . 28

Surreal Software’s DRAKAN: ORDER OF THE FLAME 29
by stuart denman

Origins of the Team . 29
Origins of the Beast . 30
What Went Right . 31
What Went Wrong . 36
Onward to the Next Project . 40

Pseudo Interactive’s CEL DAMAGE 41
by kevin barrett, john harley, rich hilmer, daniel posner, gary snyder, and david wu

What Went Right . 42
What Went Wrong . 47
Damage Control . 50

Table of Contentsiv

Nihilistic Software’s VAMPIRE: THE MASQUERADE—REDEMPTION . 51
by robert huebner

What Went Right .53
What Went Wrong .58
At Last, Redemption .61

Ensemble’s AGE OF EMPIRES . 63
by matt pritchard

Designing the Past Perfect .63
Blazing the Multiplayer Path .65
Painting the Scene .66
Going for Speed .67
Things That Worked Out (S)well .68
Things That Went Wrong Or We Could Have Done Better 70
Patching It All Up .73

SECTION II SEQUELS AND SOPHOMORE
OUTINGS . 75

Blizzard Entertainment’s DIABLO II 79
by erich schaefer

What Went Right .81
What Went Wrong .86
The Final Word .90

Epic Games’ UNREAL TOURNAMENT 91
by brandon reinhart

Early Development .91
A Game Takes Shape .92
New Code, New Features .94
In the End, It All Worked Out .95
What Went Right .96
What Went Wrong .100
Where We Go from Here .102

Table of Contents v

Westwood Studios’ TIBERIAN SUN103
by rade stojsavljevic

What Went Right . 104
What Went Wrong . 109
Overall Tips . 113

Ensemble Studios’ AGE OF EMPIRES II: THE AGE OF KINGS . . .115
by matt pritchard

Catching Up . 115
Designing a Sequel . 115
What Went Right . 117
What Went Wrong . 121
The Show Goes On . 124

Presto Studios’ MYST III: EXILE .127
by greg uhler

What Went Right . 128
What Went Wrong . 133
Closing Thoughts . 135

Poptop Software’s TROPICO .137
by brent smith

What Went Right . 138
What Went Wrong . 141
In Hindsight . 146

SECTION III MANAGING INNOVATION 147

Lionhead Studios’ BLACK & WHITE151
by peter molyneux

What Went Right . 152
What Went Wrong . 156
“Just More” . 160

Table of Contentsvi

Bungie Software’s MYTH: THE FALLEN LORDS 161
by jason regier

The Making of a Legend, er, Myth .162
What Went Right .163
What Went Wrong .165
Post-Release Reactions .168

Looking Glass’s THIEF: THE DARK PROJECT 171
by tom leonard

The Concept .171
What Went Right .173
What Went Wrong .178
Stepping Back from the Project .181

DreamWorks Interactive’s TRESPASSER 183
by richard wyckoff

An Ambitious Project .183
The Concept .183
What Went Right .184
What Went Wrong .188
Lessons Learned .193

Ion Storm’s DEUS EX . 195
by warren spector

What Went Right .196
What Went Wrong .202
The Bottom Line .207

Naughty Dog’s JAK & DAXTER: THE PRECURSOR LEGACY 209
by stephen white

What Went Right .210
What Went Wrong .214
The Legacy .217

Table of Contents vii

SECTION IV BUILDING ON A LICENSE 219

LucasArts’ STAR WARS™ STARFIGHTER223
by chris corry

What Went Right . 225
What Went Wrong . 231
Back to Earth . 235

Raven Software’s STAR TREK™: VOYAGER—ELITE FORCE237
by brian pelletier, michael gummelt, and james monroe

What Went Right . 239
What Went Wrong . 245
Final Thoughts . 249

Red Storm Entertainment’s RAINBOW SIX251
by brian upton

The Concept . 251
The Production . 252
What Went Right . 255
What Went Wrong . 257
In the End… . 258

Raven Software’s SOLDIER OF FORTUNE259
by eric biessman & rick johnson

What Went Right . 261
What Went Wrong . 265
A Direct Hit . 270

SECTION V THE ONLINE FRONTIER 273

Mythic Entertainment’s DARK AGE OF CAMELOT277
by matt firor

What Went Right . 281
What Went Wrong . 283
For the Ages . 285

Table of Contentsviii

Multitude’s FIRETEAM . 287
by art min

Brief History .288
FIRETEAM’s Components .289
Who Worked on FIRETEAM .289
What Went Right .290
What Went Wrong .293
Evolving Right Along .297

Turbine’s ASHERON’S CALL . 299
by toby ragaini

What Went Right .301
What Went Wrong .306
A Unique Company Résumé .309

Afterword Independent Game Development310

Appendix A Game Development Team Roles 313
Artist .313
Audio .314
Designer .314
Producer .315
Programmer .315
Quality Assurance .315

Glossary .317

Index of Game Titles & Developers 319

Index .323

ix

INTRODUCTION

Tales from the Front Line
We are only beginning to understand how to
make video games.

A couple of years ago I was working at a com-
puter game company in Los Angeles, and one
afternoon I took a walk through Universal Stu-
dios’ nearby lot. I was new to the West Coast, so
it was a big thrill knowing that I was standing at
the physical place where movies were made. I
roamed around and peered in open doorways at
the cavernous sound stages stacked with pipes
and lumber.

I had no idea what any of it was, but two things
were immediately clear: (a) whatever they were
doing was enormously complicated and expen-
sive, and (b) they knew exactly how to do it.

Universal Studios was founded in 1912, and
after 90 years of filmmaking, they have it down
to something like a science. Every single item,
down to the orange cones, had a name or num-
ber stenciled onto it. Somewhere someone with
a clipboard knew what everyone on the project
was doing that day and every day until the red-
carpet premiere, and how much every minute
was costing the studio. If the movie runs over

time and budget, they know it and they know
what to do to minimize losses and get it in the
can and out the door. They have put their pro-
duction techniques through more-than-complete
shakedown.

Compare this to making a video game. This is
another enormously complicated and expensive
enterprise, but one much less clearly under-
stood. Schedules, staffing, and budget are rou-
tinely inaccurate, if not vastly overoptimistic.
Projects routinely run months and millions of
dollars over what was initially projected. Job
descriptions are vague and changeable. No uni-
versal vocabulary of design and production ter-
minologies exists. Individual jargons are ad-hoc
inventions, varying from company to company
and project to project.

Every year new technologies for both produc-
tion and display are introduced, and every year
audience expectations change and the scale of
the enterprise goes up. During the two years a
project is in production, the whole medium
evolves. The product quality in the game indus-
try is immensely variable. Only a relatively
small percentage of video and computer games

Section I: STARTUPSxx

are substantially profitable and many lose
money. What’s going on?

The game industry is in its shakedown phase.
We have a loose set of procedures, methodolo-
gies, heuristics, and advice about how to make
games, but judging by the rate at which projects
go seriously off-track, it’s not enough.

One reason for this is that the medium itself is
still changing rapidly—in form, in content, and
in scale. Computer games began as one-person
projects, a single person doing code, design, art,
and possibly marketing and distribution. The
whole thing could be around 100 kilobytes,
something like 50 typewritten pages of data. In
the year 2000, an average game published by a
major game publisher cost $5–10 million to
develop, required 1–3 years in development time
and a team of 10–50 developers and artists pro-
ducing 500 megabytes of data, comparable to a
10-volume encyclopedia set.

Organizing the creation of this much data is
daunting, to say nothing of shaping it into a
functional software application that produces
the delicate, ephemeral quantity known as
“fun.” To compound this, we have the indus-
try’s collective lack of experience. The entire
industry is only 25–30 years old, and for the
first 20 years of that it was relatively tiny.
According to a survey by the IDSA, the average
game programmer has 1–2 years experience;
other game development staff, including techni-
cal directors, lead artists, and designers have on
average 3–5 years’ experience. So only half of
the people in the industry have been there long
enough to have shipped more than 2.5 games.

Our collective inability to complete projects
smoothly is damaging on a number of fronts.
Budget overruns and delayed product releases
are obviously costly and make it much harder
for companies to stay in business. This has indi-
rect effects as well, as small companies without
financial resources can go under even if they
have strong, original game ideas. It suppresses
creativity—with smaller profit margins and tight
schedules, there is increased pressure to stick to
proven formulae and reliable money-makers,
rather than to experiment.

Too many games are released before they are
actually complete, because they have to be
shipped in order to balance the quarterly bud-
get. The pressure to sign off on a game is enor-
mous. This is clear from the number of games
that require patches, meaning that they weren’t
ready to ship at all. Game companies operate so
close to the margin that almost no one has the
luxury of shipping a game “when it’s ready.”

When projects go bad, the first casualty is qual-
ity of life. Many products are shipped only at a
grueling cost of lost sleep, strained relationships,
weekends away from family and friends. There
is such a thing as hard-core dedication, where
you work long hours for the tremendous thrill
of getting paid for what you love, of staying up
until 3 A.M. to get a key feature up and run-
ning, and watching the game come alive before
your eyes. But too many of us have experienced
the agony of being stuck in a morass of a
project, missing milestone after milestone with
no end in sight, flinching and growling when
innocent bystanders ask us how “that game
thing is going.” This has become an accepted

INTRODUCTION xi

part of the industry, rather than a symptom of
project mismanagement.

As an industry, we are gradually becoming
aware of this. Grim experience tells us that no
matter how good your idea or how brilliant and
dedicated your team, project mismanagement
can wreck things. Project management is a com-
plex subject worth studying—a collection of
skills and knowledge as difficult and important
to game production as art, programming, and
design. While it is generally becoming accepted
that the simple “waterfall” model of software
development isn’t enough, flexible development
models are harder to implement than they look,
and require daily courage, patience, and good
judgment.

What this book hopes to do is speed up the
game industry’s shakedown process. The post-
mortems in this book are the next best thing to
actual game development experience. They fol-
low projects from start to finish, talking about
mistakes as well as good decisions, giving can-
did accounts, rather than just trying to abstract
general guidelines. They record the experiences
of average game developers as well as high-
ranking producers.

Each article is written in the same simple for-
mat. A member of the development team writes
down how the game got made, starting from the
initial vision and the starting goals, what kind of
company and project team was involved, what
tools were used, and any major events along the
way. The author then lists five successes, five
things that Went Right and conspicuously con-
tributed to the project’s success. This is followed

by What Went Wrong, a list of five misjudg-
ments, failures, or missed opportunities.

The postmortems in this book are grouped into
five sections:

• Startups,
• Sequels and Sophomore Outings,
• Managing Innovation,
• Building on a License, and
• The Online Frontier.

These categories are designed to group games by
factors relevant to production, rather than (for
instance) gameplay or technology issues. They
don’t function with true Aristotelian purity,
however, so some of the postmortems concern
games that belong to more than one cate-
gory—some of the online games were also made
by startup companies, and so on.

The Game Developer postmortems have gradu-
ally become an industry institution, and deserv-
edly so. The honesty, thoroughness, and
specificity of these accounts make them a unique
resource. One of the great strengths of the game
industry is its ethic of cooperation and commu-
nication, and the belief that our identity as a
community of passionate creators is more
important than edging each other out for more
money. This has created an atmosphere where
we can share information about our successes
and failures and help each other make better
games.

This is part of the reason that games as a
medium has come so far, so fast. This book will,
I hope, be a part of that process, the candid
exchange of experiences as we all struggle up
the learning curve together.

1

SECTION I

Startups
The startup company is truly the heroic myth of
the game industry. It’s the young success story of
a new generation, like a garage band getting a
big record contract, or a goateed 22-year-old
writing the latest Great American Novel. We
know it by heart already: a collection of dedi-
cated twentysomethings (the genius hacker, the
visionary designer, the gifted artist), college bud-
dies or the remnants of someone’s high school
D&D campaign; the brilliant concept, the next
DOOM or TETRIS, neon lightning caught in a
bottle; the cluster of PCs set up in low-rent
office space or someone’s living room; the late
nights, the pizza boxes, the copy of Business
Plans for Dummies. And of course the happy
ending: killer demo for an industry publisher, a
distribution deal, internet buzz, and the private
dream is now a number-one seller. Fame and
fortune, not to mention royalties and stock
options, ensue. And above all, a true passion for
the work, the holy fire.

And it happens, too. Look at the game indus-
try’s premier development houses, and you’ll see
garage companies started by hobbyists and ama-
teurs who worked out a way to package and sell

what they love. Even as the industry matures,
there is still a niche for startups, as larger com-
panies sometimes fail to keep pace with street-
level innovation.

The realities of the startup company are often
hard work, long odds, endless delays and hassle
and frustration. The postmortems collected here
are the rare success stories—we don’t chronicle
the hundreds (thousands?) of startup efforts that
broke apart when money ran out, enthusiasm
flagged, schedules slipped, or law school beck-
oned. Startup companies tank far more often
than they succeed, and in the end the deal
doesn’t get made, the product never ships, and
people go their separate ways. What makes the
difference?

The postmortems in this section were all written
by developers who succeeded. They all shipped
great games their first time out, and were willing
to share what went right and what went wrong.
If you’re working on a startup game company,
none of their situations will be exactly the same
as yours, but chances are much of it will have a
familiar ring.

Section I: STARTUPS 2

Startups typically have a few enormous advan-
tages, which we’ll see repeated in the pages to
come:

Youth. Young, enthusiastic teams, willing to
work long hours for low salaries.

No bureaucracy. When the whole company
fits into one office and your CEO is also
your lead programmer, communication
happens faster.

Low overhead. Lean and mean companies
have a low burn rate, especially when you’re
working out of someone’s parents’ living
room.

Freedom. Until you’ve made a distribution
deal, you call the shots—you can make the
game you want to make, not the one you got
handed because upper management
managed to score the interactive licensing
rights to a 70s TV show.

New company culture. It’s a chance to form
your own company culture and try out new
models of game development, instead of
inheriting them from an older company’s
bureaucracy. You design the work pipeline,
organizational chart, greenlight process
yourself, and change them right away if they
don’t work out.

There are also some perilous downsides:

Rookie management. Software development is
an enormously complex task, almost a
discipline in itself. Screwing it up can have
grievous costs in time, money, and quality.

No money. Unless you have a sweetheart deal
from the start, you’ll be running on a

shoestring budget, conceivably angsting
about making payroll.

Overtasking. Everyone seems to be in
agreement that small teams work better for
many projects, but this can mean team
members wear multiple hats. The problem is
compounded when the same people are
running the business and administration of a
small company.

Overambition. Sometimes total freedom can
be too much of a good thing. Big-company
structures that force you to make milestones
and ship product can be necessary discipline,
ensuring that you cut unnecessary features
and that someday you actually put the
product in a box and ship it.

New company culture. A project being run at
an existing firm already has guidelines and
an outline of how to build a game. These
can be a hindrance, but they can also be the
road map that gets you through unknown
territory.

Here are a few of the lessons that can be drawn
from them:

• There’s more than one way to form a
startup.

Bohemia Interactive and Surreal Software
both took the traditional garage-band route,
but there are other models. Some develop-
ment houses start small, just doing ports of
existing games, or add-on packs—you don’t
necessarily have to reinvent the wheel. Maybe
someone has a gee-whiz piece of technology
that needs a game built around it. Maybe a
project team detaches from an existing com-
pany, then contracts with the parent

Section I: STARTUPS3

firm—this is a model that gives you some of
the freedom of a startup, but with an experi-
enced team and a useful relationship to a
larger company.

• Publishers aren’t necessarily the enemy.
It’s easy to adopt a siege mentality when you’re
a small developer: your publisher is The Man,
and he’s going to stifle your creativity, make
you jump through bureaucratic hoops, and
then take the lion’s share of the profits. Occa-
sionally there’s a grain of truth to this pic-
ture… but it’s also possible for the publisher to
be a partner. A truthful, realistic relationship
may serve both parties better than the usual
adversarial one—the publisher is putting up
the money, and if they understand what the
product is and when it’s actually shipping, they
can market it more effectively and everyone
can benefit. If they’re an established game pub-
lisher, they may actually be able to help man-
age the project or put you in touch with
reliable contractors to help finish the game on
time.

• Perseverance counts.
None of these projects shipped without diffi-
culties, and part of the reason they did ship is
that the developers didn’t give up, even when
they lost their publisher, or key technologies
didn’t work out, or they ran years longer than
they had expected, or they had to slash key
features to keep their budget and schedule
realistic. It was hard, but there isn’t much
glory in the making the Greatest Game That
Never Shipped.

• Hire the right people.
Startups are almost always small operations,
which means every employee has to be some-
one you can work with and rely upon, and a
good team dynamic is absolutely essential.
Also, in a small company you probably won’t
have every single one of the skill-sets needed
to make a game, so very likely you’ll have to
contract out certain elements of the game,
like animation or some modular part of the
engine. This means finding reliable contrac-
tors and managing them carefully, giving
them a clear idea of how their work fits into
the game you’re making.

The grand tradition of the garage startup com-
pany is changing. Over the last decade there has
been a trend toward consolidation, larger com-
panies buying up smaller development houses,
companies with deep pockets that could survive
lean fiscal quarters while smaller companies
went bankrupt. It’s a high-risk industry, and
diversified product lines mean you don’t have to
craft a hit every time out, especially if you have
a few regular sellers to keep you in the black.

The scale of game production is also chang-
ing—consumers are expecting higher and higher
production values, up-to-date technology, and
Hollywood-quality art and animation. These
are things that require multimillion-dollar bud-
gets and bigger teams. It may become harder
and harder to write a hit game with five people
and a brilliant idea.

There may be a valid analogy with the film or
music industry, with the way independent film
and grassroots music movements feed their

Section I: STARTUPS 4

influences in to the more commercial scene. As
id Software’s Jay Wilbur once told Wired maga-
zine, “People ask me who I fear, which of our
competition—LucasArts, Microsoft, any of the
big companies. They don’t frighten me. What

I’m afraid of is two guys in a garage, working in
total obscurity. That’s where the heart and soul
of this business is at. Those are the guys who are
going to come up with the stuff that blows us
out of the water.”

5

Irrational Games’

SYSTEM SHOCK 2
by jonathan chey

This is the story of a young and inexperienced
company that was given the chance to develop
the sequel to one of the top ten games of all
time. The sequel was allotted roughly one year
of development with its full team. To make up
for the short development cycle and correspond-
ingly small budget, the project was supposed to
reuse technology. Not technology in the sense of
a stand-alone engine from another game, but
individual components that were spun off from
yet another game, THIEF: THE DARK PROJECT.
The THIEF technology was still under develop-
ment and months away from completion when
our team started working with it. To cap every-
thing off, the project was a collaborative effort
between two companies based on a contract
that only loosely defined the responsibilities of
each organization.

Add to these gloomy initial conditions the fact
that the game from which our shared
technology was derived slipped more than six
months from the initially estimated date, that
several developers quit during the project, that
we didn’t bring the full team up to strength until
six months from the final ship date, and that we
struggled with financial and business problems
during the entire project. Having learned this,
you might anticipate the worst. Strangely,

SYSTEM SHOCK 2 shipped within two months of
its targeted date and will, I hope, be recognized
as a sequel worthy of its esteemed ancestor.

Let’s step back and trace the origins of the com-
panies and the project. Looking Glass Studios is
familiar to many as the creator of a series of
highly innovative titles including the original
SYSTEM SHOCK, the ULTIMA UNDERWORLD

series, the FLIGHT UNLIMITED line and TERRA

Back-Story
SYSTEM SHOCK 2 came out in 1999, as the sequel to SYS-

TEM SHOCK, the critically acclaimed action/role-playing

game released in 1994 by Looking Glass Studios. Like

its predecessor, SYSTEM SHOCK 2 is an action game

shown in first-person perspective but with a richer nar-

rative and game-system than most shooters—players

could hack into computers and access psychic abilities.

It also tells a complex story—the player explores a dere-

lict spacecraft after something has gone wrong with

humankind's first interstellar colony mission. These ele-

ments blend in a marriage of design and technol-

ogy—the rich level design and complex character-

creation never get in the way of the storytelling and sus-

penseful action gameplay. SYSTEM SHOCK 2 is part of a

wave of deeper, more story-oriented action games that

began appearing in the late 90s (starting with UNREAL

and HALF-LIFE), a change from the stripped-down, all-

action approach of DOOM and QUAKE.

Irrational Games’ SYSTEM SHOCK 2 6

NOVA, among others. Three years ago, Ken
Levine, Rob Fermier and I were developers at
Looking Glass, struggling with the aftermath of
VOYAGER, an aborted Star Trek™: Voyager™–
licensed project. At the time, Looking Glass was
in financial and creative disarray after a series of
titles that, though critically acclaimed, had

failed to meet sales expectations, the latest being
TERRA NOVA and BRITISH OPEN CHAMPIONSHIP

GOLF.

Frustration with the 18 months wasted on VOY-

AGER and a certain amount of hubris prompted
three of us to strike out on our own to test our
game design and management ideas. We wanted
to nail down a rigorous and technologically fea-

sible design, focus on gameplay, and force our-
selves to make decisions rather than allow
ourselves to stagnate in indecision. We wanted
to run a project. So we formed Irrational
Games.

After some misadventures with other develop-
ment contracts, we unexpectedly found our-
selves back at work with Looking Glass as a
company rather than as employees. Initially, our
brief was to prepare a prototype based on the
still-in-development THIEF technology recast as
a science-fiction game. The scope of the project
was very wide, but we quickly decided to follow
in the footsteps of the original SYSTEM SHOCK.
Our initial design problem was how to con-
struct such a game without the luxury of the
actual SYSTEM SHOCK license, since no publisher
had yet been signed.

Our initial prototype was developed by the
three of us working with a series of contract art-
ists. Our focus was on the core game-play ele-
ments: an object-rich world containing lots of
interactive items, a story conveyed through
recorded logs (not interaction with living
NPCs), and gameplay realized through simple,
reusable elements. This focus enticed Electronic
Arts into signing on as our publisher early in
1998—a fantastic break for us. It meant we
could now utilize the real SYSTEM SHOCK name
and characters.

Immediately, we went back to our original
design, threw away some of the crazier ideas
that had been percolating and began integrating
more of the rich SYSTEM SHOCK universe into

Game Data
Release date: August 1999

Publisher: Electronic Arts

Genre: 1st-person science fiction action-adventure

Intended platform: Windows 95/98

Project budget: $1.7 million

Project length: 18 months

Team size: 15 full-time developers, 10–15 part-time
developers

Critical development hardware: Pentium II
machines, 200MHz to 450MHz with 64MB to 128MB
RAM, Nvidia Riva 128, Voodoo, Voodoo 2, TNT cards,
Creative Labs’ sound cards, Wacom tablets, Windows
95/98. Also used SGI Indigo workstations.

Critical development software: Microsoft Visual C++
5.0, Opus Make, 3D Studio Max, Adobe Photoshop,
Alias|Wavefront Power Animator, DeBabelizer Pro,
RCS, Filemaker Pro, and Adaptive Optics motion
capture software.

Section I: STARTUPS77

the title. That was the point at which the real
development began.

I t ’s the Eng ine , S tup id
Nothing impacted the development of SYSTEM

SHOCK as much as the existing technology we
got from Looking Glass. This fact cannot be
classified monolithically under the heading of
“what went wrong” or “what went right,”
however, because it went both wrong and right.
The technology we used was the so-called
“Dark Engine,” which was essentially technol-
ogy developed as a result of Looking Glass’s
THIEF: THE DARK PROJECT (for more about its
development, see “Looking Glass’s THIEF: THE

DARK PROJECT,” Postmortem on page 171).

The THIEF technology was developed with an
eye toward reuse, and I will refer to it in this
article as an “engine.” However, it is not an
engine in the same sense as QUAKE’s, UNREAL’s,
and LithTech. The Dark Engine was never deliv-
ered to the SYSTEM SHOCK team as a finished
piece of code, nor were we ever presented with a
final set of APIs that the engine was to imple-
ment. Instead, we worked with the same code
base as the THIEF team for most of the project
(excluding a brief window of time when we
made a copy of the source code while the THIEF

team prepared to ship the game). Remarkably, it
is still possible to compile a hybrid executable
out of this tree that can play both THIEF and
SYSTEM SHOCK 2 based on a variable in a con-
figuration file.

This intimate sharing of code both helped and
hurt us. We had direct access to the ongoing

bug-fixes and engine enhancements flowing
from the THIEF team. It exposed us to bugs that
the THIEF team introduced, but it also gave us
the ability to fix bugs and add new features to
the engine. Because we had this power, we were
sometimes expected to fix engine problems our-
selves rather than turning them over to Looking
Glass programmers, which wasn’t always to our
benefit. At times we longed for a finished and
frozen engine with an unalterable API that was
rigidly defined and implemented—the perfect
black box. But being able to tamper with the
engine allowed us to change it to support SYS-

TEM SHOCK–specific features in ways that a gen-
eral engine never could.

1. The irrational development
model
In our hubris after leaving Looking Glass, we
formulated several informal approaches to
development that we intended to test out on our
projects. Most of these approaches proved to be
successful and, I think, formed the basis of our
ability to complete the project to our satisfac-
tion.

First, we designed to our technology rather than
building technology to fit our design. Under this
model, we first analyzed our technological capa-
bilities and then decided on a design that would
work with it. This process is almost mandatory
when reusing an engine. Sometimes it can be dif-
ficult to stick with this when a great design idea

What Went Right

Irrational Games’ SYSTEM SHOCK 2 8

doesn’t fit the technology, but we applied the
principal pretty ruthlessly. And many of the
times when we did deviate, we had problems.

Another feature of our development philosophy
is that everyone participates in game design.
Why? Because all three of the Irrational
founders wanted to set the design direction of
our products, programmers were able to resolve
design issues without having to stick to a design
spec, and we strongly emphasized game design
skills when hiring all of our employees and con-
tractors. In all our interviews, one of our most
pressing questions to ourselves was “Does this
person get games?” Failure to “get” them was a
definite strike against any prospective employee.
Ultimately, the team’s passion for and under-
standing of games was a major contributor to
the design of the final product.

The final goal of our development process was
to make decisions and hit deadlines. We focused
on moving forward, and we didn’t allow our-
selves to be bogged down. We desperately
wanted to ship a game and believed that the dis-
cipline imposed by the rule of forward motion
would ultimately pay off in terms of the final
product quality as well as delivery date. While
there are features in SYSTEM SHOCK 2 that could
have been better if we had not rushed them (the
character portraits for example), we still firmly
believe that the game as a whole was made bet-
ter by our resolve to finish it on time.

2. Use of simple, reusable
game-play elements
The field of companies developing first-person
shooters like id and Valve, among others, is
impressive. It would be a futile attempt to create
scarier monsters, bigger guns, or higher-polygon
environments. Additionally, we realized that our
design time and budget were very tight and that
we would not have time to carefully hand-script
complicated game-play sequences in the engine.

Cold comfort in Hydroponics.

Xerxes, central computer of the Von Braun.

Section I: STARTUPS99

Instead, in an attempt to shift the battlefield, we
chose to focus on simple, reusable game-play
elements. The success of HALF-LIFE, which
launched while we were in the middle of SYS-

TEM SHOCK 2 confirmed our intuitions in this
respect. We simply didn’t have the time,
resources or technology to develop the scripted
cinematic sequences used by HALF-LIFE. We con-
soled ourselves with the knowledge that we
were not even trying to do so. This strategy
melded very well with our acquisition of the
SYSTEM SHOCK license, as the original SYSTEM

SHOCK had already been down this road. We
decided to expand on elements that we liked in
SYSTEM SHOCK and then add similar new sys-
tems. Each such new system was evaluated rig-
orously in terms of game-play benefits,
underlying technology, and design-time require-
ments.

For example, take the ship’s security system.
Early on we decided that we wanted to continue
the surveillance theme from SYSTEM SHOCK,
which we could leverage throughout the game
to provide lots of gameplay for very little imple-
mentation cost. We realized that security cam-
eras would be trivial to implement using
existing AI systems (they are just AIs pruned of
many of their normal abilities) and that once we
had cameras that could spot and track the
player, we would be able to build several game-
play elements out of them. Cameras could sum-
mon monsters to the player, so much of the
gameplay consisted of avoiding detection by
security cameras and destroying cameras before
you were seen. Because cameras scan fixed arcs,
the player can utilize timing to sneak by cam-
eras, pop out and shoot them at the right
moment, or get underneath them and bash them
with a melee weapon. Once a player is spotted,
monsters flood the area until the player is able
to shut off the security system somehow or the
system times out. This introduces the need to
deactivate security systems via security comput-
ers that are scattered throughout the level.

This type of system was technologically simple
to implement and required minimal design
effort. While not completely formulaic, the basic
procedure to set up a camera and security sys-
tem could be shown to designers quickly using a
few simple rules. From this one system and a
couple of associated subsystems, we derived a
large amount of gameplay without having
designers create and implement complicated
scripted sequences and story elements. When
you throw together many such systems (as we
did), you end up with a lot of gameplay.

Concept Sketch and game version of the Psi Reaver.

Irrational Games’ SYSTEM SHOCK 2 10

3. Cooperative development
SYSTEM SHOCK 2 was truly a cooperative devel-
opment between Irrational and Looking Glass.
Looking Glass provided the engine and a lot of
infrastructure support (such as quality assur-
ance), while Irrational handled the design,
project leadership, and the responsibility for
marshaling resources into the final product.
Both entities contributed personnel to the devel-
opment team. Inevitably, some friction arose
from this process while we sorted out who was
responsible for what. However, this cooperation
was ultimately successful because both sides
were interested in developing a great product,
and we were able to compromise on most issues.
(On the most mundane level, Irrational ended
up providing late-night, weekend meals for its
development team and for Looking Glass on
some days during the week.) Our cooperative
arrangement was founded on a contractual
agreement, but we avoided falling back on this
contract in most cases. We preferred to resolve
issues through informal discussions. Conceptu-
ally, Irrational was to be responsible for the
development of the product and Looking Glass
was to provide A/V content and quality assur-
ance services.

During the early stages of the project, a deal was
worked out whereby a small number of Looking
Glass personnel were subcontracted to Irratio-
nal when it was determined that Irrational’s
development budget could not cover all the SYS-

TEM SHOCK 2 development costs, and as com-
pensation for the late delivery of the THIEF

technology. Unfortunately, these personnel were
not always available on time—a situation which
caused us much concern. We knew that this

“resource debt” could never really be paid off
until THIEF shipped—nothing is so difficult as
prying resources away from a team that is trying
to ship a product before Christmas. It wasn’t
until December 1998 that we first began to see
some of these promised resources. However,
these “resources”—real people—had just fin-
ished up THIEF and were totally fried following
the grueling crunch to ship THIEF. The saving
grace and reason that this arrangement was ulti-
mately successful was that these developers were
all talented and experienced and already knew
the technology. Their addition to the team gave
us a solid boost during the final months in our
ship cycle.

The other benefit of the cooperative develop-
ment agreement between Irrational and Looking
Glass was that our respective engine program-
mers could share knowledge. The ability to
walk over and quiz engine programmers about
systems proved to be an invaluable benefit that
more than compensated for the lack of a rigor-
ously specified and documented engine. Without
a formal understanding of the engine, we had to
resolve engine issues in a personal and informal
manner. This process relied on the personalities
of the responsible individuals on the engine
team. Thus, the Irrational programmers bal-
anced their time not only according to the com-
plexity of their tasks but also according to how
much support was available from the engine
side. Overall, Irrational’s relationship with
Looking Glass was an unusually close one and
ultimately successful as a result of our mutual
respect and willingness to work with each other.
Despite our partnership being based on a formal
contractual arrangement, it was our ability to

Section I: STARTUPS1111

work flexibly above this
legal level that enabled the
development to proceed
smoothly.

4. Design lessons
from SYSTEM SHOCK

Though the SYSTEM SHOCK

license was wonderful,
there were some problems.
The biggest was simply the
challenge of living up to the
original. Fortunately, we
had the freedom to pay
homage to SYSTEM SHOCK

legitimately by reusing ele-
ments from it. Additionally,
we had access to some of
the original developers,
including our own lead pro-
grammer Rob Fermier.

As with most sequels, we faced the challenge of
keeping the good elements of the original game
while not blindly copying them. We knew that
most players would want a new story set in the
same world, with the same basic flavor as the
original game, yet we also wanted to reach out
to a broader audience. We resolved these issues
by identifying the key elements that made SYS-

TEM SHOCK so good and reinterpreting those
elements using current technology. Some ele-
ments made it through largely unchanged (for
example, the storytelling logs and e-mails, the
übervillain Shodan and her close involvement
with the player throughout the game, and the
complexity of the world). Other elements were

reinterpreted (such as the
look of the environment,
player interface, and tech-
niques for interacting with
the world). A small number
of items were simply cut,
most notably the cyber-
space sequences—we were
fairly united in our opinion
that these just didn’t work
well in the original.

Notably, as with the origi-
nal SYSTEM SHOCK, we
opted to omit interactive
NPCs in the game. SYSTEM

SHOCK eschewed living
NPCs because the technol-
ogy of the day was simply
inadequate to support
believable and enjoyable

interactions with them. It’s been four years, and
that technology is still not available. So we con-
tinued the tradition of SYSTEM SHOCK and pro-
vided players with background information
using personal logs and e-mails gleaned from
the bodies of dead NPCs.

Perhaps our biggest deviation from the original
revolved around the player interface. It’s com-
monly accepted that SYSTEM SHOCK’s interface,
while elegant and powerful once understood,
presented a significant barrier to entry. Our pri-
mary goal was to simplify this interface without
dumbing it down. We devoted more design
effort to this task than to any other system in
the game, and it required many iterations before
we were happy with it. We adopted a bi-modal

Concept
sketches of the Cyborg Midwife.

Irrational Games’ SYSTEM SHOCK 2 12

interface in which there are two distinct modes
(inventory management and combat/explora-
tion) between which the player can toggle. This
was a risky decision. This bi-modal model was
mandated by our desire to keep the familiar and
powerful mouse-look metaphor common to
first-person shooters while retaining cursor-
based inventory management. How we switched
between modes became our biggest design chal-
lenge. Sometimes these mode changes are explic-
itly requested through a mode change key, and
sometimes they are invoked automatically by
attempting to pick up an object in the world. So
far this system seems to be working well, though
only time and user feedback will tell whether we
really got it right.

5. Working with a young team
The SYSTEM SHOCK team was frighteningly
young and inexperienced, especially for such a
high-profile title. Many of our team members
were new to the industry or had only a few
months’ experience, including the majority of
artists and all the level builders. Of the three
principals, only Rob had previous experience in
his role as lead programmer. Neither Ken, the
lead designer, nor I, the project manager, had
previously worked in these roles. It’s not totally
clear how we pulled off our project with our
limited experience.

Partially, it must have been due to our ability to
bond as a team and share knowledge in our
communal work environment (“the pit”). To a
certain extent, inexperience also bred enthusi-
asm and commitment that might not have been
present with a more jaded set of developers. We

also worked hard to transfer knowledge from
the more experienced developers to the less sea-
soned individuals. Rob worked on an extremely
comprehensive set of documentation for the
functional object tools, as well as a set of exer-
cises (“object school”) to be worked on each
week. These kinds of efforts paid back their
investment many times over.

This is not to say that our progress was all
sweetness and light. The art team, for example,
floundered for a long time as we tried to inte-
grate the junior artists and imbue a common art
look in the team’s psyche. We had a lot of very
mediocre art midway through our project and
the art team was stagnating. Ultimately, man-
agement had little to do with the art team’s suc-
cess—they were largely able to organize
themselves and create a solid, original look. On
the management front, our inexperience was
apparent. We blundered through the early stages
of development with scheduling and manage-
ment issues. A large problem was our failure to
assign specific areas of responsibility and
authority early on. Bad feelings arose as a result,
which could have been avoided if we had clearly
delineated areas of responsibility from the start.

1. Poor level design process
Level design is a clearly defined professional
activity in the game industry. It’s a profession
that mixes artistic and technical skills in equal
measure, and the bar is raised on both fronts

What Went Wrong

Section I: STARTUPS1313

every year. Despite our understanding from the
very beginning that the level building would be
a problematic part of the SYSTEM SHOCK

development process, we didn’t quite grasp
how difficult and time consuming it would be,
nor did we expect that it would eventually
block the shipment of the game.

In hindsight, our failure to understand the
amount of work needed to design levels is repre-
hensible given that we had seen the same prob-
lems emerge on THIEF, and that SYSTEM

SHOCK 2 levels involved substantially more
complex object placement than THIEF. I
attribute this error mostly to
our denial of the prob-
lem—we had a limited bud-
get for level designers and
there is a long training time
required to get designers
familiar with the complex
Dark Editor. So we locked
ourselves into working with
the resources we had.

Since each individual task
required from the designer (apart from initial
architectural work) was relatively simple, it was
easy to believe that the sum total of work was
also relatively small. What we overlooked was
the fact that SYSTEM SHOCK 2 involves so many
objects, scripts and parameters. As such, the
work load on level designers was excessively
large. In addition, we made a classic beginner’s
mistake and failed to provide adequate time for
tuning in response to playtesting feedback. In
SYSTEM SHOCK 2 this was particularly impor-
tant because the ability of the player to reenter

levels means that the difficulty of a level cannot
be adjusted in isolation from the rest of the
game. Often we had to impose global changes
across all levels, which could be very expensive
even when the change was relatively minor.

We took a novel approach to the level building
process by attempting to design levels using a
production-line method. Using this metaphor,
we attempted to divorce the different stages of
work on the level: rough architecture, decora-
tive and functional objects, architectural polish,
and lighting. It was not considered necessary for
the same individual to be involved in all stages

of this production process.
This approach had positive
and negative consequences.
The advantages were that we
could track progress on lev-
els, we could “bootstrap”
levels fairly quickly, and we
could (in theory) swap indi-
viduals in and out of different
tasks. The disadvantages are
fairly obvious, and most stem
from the fact that the various

stages of level design are clearly not independent
(for example, architecture is ideally built with
an understanding of the functional objects that
are to be used in the level).

Although I think our process was necessary in
order to get the game out on time, it probably
detracted from the quality of some of the levels.
In addition, psychological factors, such as lack
of ownership and training issues (stemming from
unfamiliarity with levels) speak very strongly
against transferring people from one task or

Hacking the security system.

Irrational Games’ SYSTEM SHOCK 2 14

level to another. Nevertheless, there were several
benefits of our procedure—mostly the ability to
employ particularly talented individuals to pinch
hit on particular levels, and the psychological
benefits of completing architectural work early
in the schedule.

Perhaps the rudest shock in our level building
process came from our misunderstanding of
what part of the process would prove to be most
difficult. Architectural work was actually fairly
simple, because we intentionally kept our spaces
fairly clean and did not attempt anything too
unusual. However, placing and implementing
our objects was far more complex and involved
than we expected. One difficulty that we
encountered was educating our designers in
what was expected from them in terms of game-
play implementation. Most of our level builders
had previously built QUAKE or UNREAL levels
and were not familiar with the style of gameplay
that we were trying to build in SYSTEM SHOCK

2. Partially this was because we were simply
exploring a style of gameplay that we did not
entirely understand ourselves. But it reflected a
failure on our part to properly educate the
designers. Building prototypical spaces, looking
at past games, and conducting more intensive
discussions about gameplay will all be part of
our future projects.

2. Motion capture difficulties
The Dark Engine has a complex creature anima-
tion playback system and deformable mesh ren-
derer. We encountered many problems with this
piece of technology along our data integration
path, and found quirks in the playback systems

as well. Primarily, the system was hampered by
the fact that data frequently had to be modified
by hand, that mysterious bugs would appear in
motions during playback which had not been
present in the source data, and that few tools
were available for debugging and analysis. We
were ill-equipped to deal with these kinds of
problems, having devoted few resources to deal-
ing with the technology problems.

Our primary animation source was motion cap-
ture data. We were nervous about the technol-
ogy from the start and attempted to minimize
our risk by concentrating primarily on human-
oid creatures with a small number of interesting
variants such as spiders and floating boss mon-
sters. In retrospect, this was a very wise deci-
sion, as we had a lot of trouble even with this
simple set of creatures.

Motion capture technology and capture services
were contracted from a local company, but
unfortunately this company viewed its motion
capture work primarily as a side business and
did not display much interest in it. In fact, they
cancelled this sector of their business during our
project, and we had to fight hard to complete
the sessions that we had already scheduled with
them.

Our capture sessions were hampered by our
inexperience with the technology and by the fact
that we did not plan properly for the sessions.
We hadn’t defined key poses, rehearsed the
motions, or ensured that our motions were com-
patible with the technology. Optical capture
technology, the technology that we used, can be
glitchy and has difficulty with motions that have

Section I: STARTUPS1515

obscured markers, as in the death motions that
were necessary for SYSTEM SHOCK 2. Over the
course of three sessions, we gradually refined
our motions, but we spent a lot of time reshoot-
ing failed captures from earlier sessions. Even in
the best cases, most of our captures exhibit
strange artifacts (feet pointing down through
the ground, hands improperly aligned, and so
on), whose causes are still unknown to us. In
future projects we will hand-animate almost all
of the data, and we will need to understand bet-
ter what aspect of the conversion process intro-
duced these artifacts into our final game
animations, although the irregularities never
appeared in our raw data. Motion capture tech-
nology, while highly efficient compared to hand
animation, must be approached carefully to
obtain good results.

3. Implementing scripted
sequences
Motivated by the dramatic scripted sequences in
HALF-LIFE, we attempted to introduce similar
elements into SYSTEM SHOCK 2. In doing so, we
broke one of our rules: we tried to step outside
the bounds of our technology. Although we
attempted relatively simple sequences and ulti-
mately got them working, they were time sinks,
and the payback was relatively slight. For exam-
ple, we scripted a hallucinatory sequence in
which the player character rides through the
interior of the alien boss-monster, known as the
Many. This so-called “Many ride” was the
source of innumerable bugs—the player would
be thrown off the moving platform, manage to
kill his projected self, bump into walls, and so
on. We confirmed our intuition that the Dark

Engine does not support complex scripted
sequences well because the toolset (AI, moving
terrain, and animation) is not optimized for this
sort of behavior. The moral is, once again, to
work with your technology, not against it.

4. Inexperience with multiplayer
game development
Early in the project we were asked to identify
the major risks associated with the project. Our
number one candidate by far was the multi-
player component. This was the only new sub-
stantial engine feature that was to be added and
it was a complicated piece of work. We were
particularly nervous about this technology for a
couple of reasons. First, it is usually much
harder to make this kind of pervasive change to
an existing piece of software than it is to build
it in from scratch. Second, Looking Glass had
no track record in shipping multiplayer tech-
nology, and we were not confident that the
development was fully understood. Irrational
did not want to introduce multiplayer support
into SYSTEM SHOCK 2 because we considered it
a tangential feature that did not contribute to
our core strengths. However, marketing con-
cerns dictated it, so ultimately we acquiesced.
Our lack of enthusiasm for this feature contrib-
uted to its developmental problems because we
failed to monitor its progress adequately or
raise concerns when that progress fell behind
schedule. Because this was the first multiplayer
product developed by Irrational or Looking
Glass, we did not properly estimate the time
required for the multiplayer testing. We did not
devote adequate quality assurance resources to
this feature. Too much time was spent testing

Irrational Games’ SYSTEM SHOCK 2 16

the multiplayer features over the LAN and not
enough over the more demanding modem con-
nections. Given the difficulties posed by the
multiplayer technologies, the engine developers
working on the task made great efforts, and
their early results were promising. However, the
early departure of one of the programmers, and
the fact that he was not replaced, ultimately
doomed any possibility of shipping the multi-
player technology with the initial SKU. Reluc-
tantly, we opted for a patch that would be
available at the same time as the single-player
box reached shelves. Our cooperative multi-
player game will undoubtedly be fun and will
probably be enjoyed immensely by a relatively
small number of our customers.
However, we wonder whether our
failure to deliver a promised feature
in the box will ultimately hurt us
more than the absence of that fea-
ture from the start would have.

5. Running a company
while building a game
As the principals of the company,
Ken, Rob, and I didn’t really under-
stand what it took to run a business
and simultaneously work in that
business. None of the Irrational
founders started the company to be
businessmen, and we have always
believed that the ultimate health of
the company depended on us all
staying involved in the development
process, which is, after all, what
each of us enjoys and wants to do.
Unfortunately, as anyone who has

run a business knows, there is a lot more to
starting and maintaining a company than sitting
around at board meetings smoking cigars. From
the mundane matters of making payroll, orga-
nizing taxes and expense reports to business
negotiations and contract disputes, there is sub-
stantial overhead involved in running even a
small company such as Irrational.

In our naïveté, we did not factor these tasks into
our schedules, and the result was that they
mostly became extra tasks that kept us in the
office late at night and on weekends. As a result
of our misjudgment, we just had to work harder.
Rather than enduring a crunch period of a few

The team at Irrational Games, from left to right: FIRST ROW:
Steve Kimura/Artist, Jonathan Chey/Project Director, Justin
Waks/Multiplayer Programmer, Mauricio Tejerina/Artist, Rob
“Xemu” Fermier/Lead Programmer, Dorian Hart/Designer,
Lulu Lamer/QA Lead. SECOND ROW: Ian Vogel/Level
Designer, Scott Blinn/Level Designer, Michael
Swiderek/Artist, Rob Caminos/Motion Editor, Nate
Wells/Artist. THIRD ROW: Mike Ryan/Level Designer, Ken
Levine/Lead Designer, Mathias Boynton/Level Designer.
NOT SHOWN: Gareth Hinds/Lead Artist.

Section I: STARTUPS1717

months, the entire last year of the project was
our crunch time, as we struggled desperately to
fulfill our jobs as programmers, designers, and
managers as well as keep the money flowing in
(and out) of the company.

Our tasks were complicated further by the need
to reincorporate the company from an S-corpo-
ration to an LLC during the final two months of
the project (a legal maneuver designed to allow
me, an Australian national, to be allocated com-
pany stock). As well as destroying our personal
lives, our failure to judge the magnitude of our
task meant that we had to devote less time than
we desired to every aspect of our work. My pro-
gramming time was severely curtailed and I was
able to spend far less time on SYSTEM SHOCK 2’s
AI than I wished. Simultaneously, I was unable
to provide the level of direct management that I
wanted, and I was forced to postpone company

financial work until the end of the project or
hurry it through. The results were less than opti-
mal all around.

Ultimately, SYSTEM SHOCK 2 turned out better
than I ever hoped it would. The final vindication
for me was sitting in my office and playing the
game in the final couple of weeks of the project,
while waiting for EA to approve our final build.
Despite the lack of sleep, the near-complete
breakdown of my nervous system, and the 18
months of time I spent working on the project,
it was still fun to play. I like to think that we
have managed to capture the feel of the original
game by putting more gameplay into what ini-
tially looks like a fairly straightforward first-
person shooter. It’s been a great first project for
Irrational Games and we look forward to doing
even better the next time around.

Irrational Games’ SYSTEM SHOCK 2 18

This Page Intentionally Left Blank

19

Bohemia Interactive Studios’

OPERATION FLASHPOINT
by marek spanel and ondrej spanel

The story of OPERATION FLASHPOINT’s develop-
ment is quite unusual in the game industry these
days. For one thing, the team didn’t start out as
professionals; originally only the lead program-
mer was allowed to work on the game full-time.
Switching publishers three times, starting a new
company, growing the team from one to 12 full-
time members, and moving offices five times
during the game’s development were just some
of the hurdles we had to clear. Only the team’s
vision and obsession for the game remained
consistent from the very first playable version
until the end. It’s not possible to describe whole
story in the space given for this article, so let’s
just jump directly to the final moments.

It was 8 P.M. on Friday, May 25, 2001. Our
publisher’s representative, who had been in Pra-
gue for the last few days to make sure every-
thing was going OK as we were finalizing the
gold master, left Prague feeling confident that
things were going well—the disc was almost
ready and could be sent to final testing and then
to manufacturing after some weekend testing.

Meanwhile, our lead programmer (To make
matters even more exciting, he was then work-
ing at his temporary home in France for couple
of weeks.) was trying to resolve some serious

graphical anomalies with the hardware transfor-
mation and lighting (HW T&L) rendering. If he
were to fail, HW T&L would not be included in
the final release. If he solved it, some data orga-
nization changes would be necessary to suit the
needs of the HW T&L. He spent nearly the
whole day resolving some random crashes that
appeared in the game during the last day, going
back and forth over e-mail with an Nvidia sup-
port engineer.

The crash was fixed by late afternoon, and by
10 P.M. it looked like the HW T&L problems
were at an acceptable level. Around midnight,

Back-Story
OPERATION FLASHPOINT is one of the most realistic simu-

lations yet made of modern infantry combat. Players

assume the role of a Marine and progress from basic

training to command roles, in a variety of real-world mis-

sions set against a background of 1980s central-Euro-

pean realpolitik. Bohemia Interactive accomplished the

difficult task of adding realistic details, such as limited

inventory and critical hits, without losing gameplay, rais-

ing the difficulty bar while substituting tension and

immersion for the usual explosion-heavy killfest. OPERA-

TION FLASHPOINT expands the standard formula with

ground and air vehicles and squad-based combat, mak-

ing this game as much a tactical simulator as first-per-

son-shooter.

Bohemia Interactive Studios’ OPERATION FLASHPOINT 20

the tools that would perform the data format
change were ready. On the other front, the team
had received the final localized strings for the
game. However, the file containing the core
strings of the game that had been delivered by
our publisher appeared to be untested and unus-
able. After spending a couple of hours dealing

with it, most of the team had to go home to
have some sleep. Still, the team leader stayed
behind at the office, trying to use the new HW
T&L data format, going over each step by
phone or e-mail with the lead programmer
(while also trying to implement new localized
string tables and fix some problems in the cam-
paign and missions). At 3 A.M. it looked like all
the data had been converted—and both the lead
programmer and the team leader could go have
some sleep.

Saturday morning, our publisher realized that
the gold master hadn’t actually been delivered.
Tensions rose even further, and nerves began to
unravel. Only two days remained before mass
production was scheduled to begin. Everyone on
the team had been working since early Saturday
morning, but at times a successful end to these
last-minute crises seemed to be so far away. By
around 5 P.M. on Saturday, most of the impor-
tant issues in the code had been resolved, and
the lead programmer decided to take another
look at the HW T&L implementation. Luckily,
within a few hours, he suddenly discovered the
root of all of the HW T&L problems and fixed
them.

The plan was to deliver the gold master to our
publisher via FTP by that evening. Nobody
expected that it would actually take until Sunday
morning. After a long, sleepless night of playing
through the game and fixing any problems that
appeared, everything looked fine, and most of
the team could finally go to sleep again. With
some relief, we finally started the game upload
on Sunday around 9 A.M. But were we done?
Not yet. Suddenly, a seagull stopped flying in

Game Data
Release date: June 22 (worldwide except North

America), August 29 (North America), 2001

Publisher: Codemasters

Genre: realistic first-person shooter

Platform: Windows 98/ME/2000

Full-time developers: 10

Part-time contractors: 3

Estimated budget: $600,000

Length of development: Over 4 years

Development hardware: Various PC systems from
266MHz Pentium IIs to 1GHz Pentium 4s and 1.2GHz
Athlons with 20GB hard drives and Voodoo 2 or
GeForce 2 graphics cards

Development software: Windows 98/2000, Linux
servers, Visual C++ 6, SourceSafe, Adobe Photoshop
5.0, 3DS Max, Microsoft Office, TextAloud (for voice
prototyping)

Proprietary software: Oxygen (3D low polygon
modeling and texturing tool), Visitor (landscape
editor), and some other proprietary tools

Notable technologies: DirectX, Vorbis Ogg, Vicon 8
motion capture system

Project size: 10,000+ files, 250,000 lines of C++
(some assembly), 5,000 textures, 800 3D models,
100,000 words (localized into six other languages),
more than 60 single-player and multiplayer missions

SECTION I: STARTUPS2121

some of the in-game cut-scenes. The team leader
called to wake up the lead programmer in
France: “The seagull is not flying. What should I
do?” We had to stop the upload until the lead
programmer delivered necessary code fix.

After the project leader received the updated files
from the lead programmer, he started to rebuild
the game in Visual Studio. It was Sunday around
noon, and the game had finally gone to the pub-
lisher for final testing. The publisher’s test staff
started playing the game Sunday afternoon.
Everything went smoothly at first, but later they
discovered one serious scripting bug in one of
the campaign missions that made it unplayable.
Late in the evening, they called the team leader
about the bug, and he had to drive to the office
after sleeping just a couple of hours over the past
three days to fix the bug as quickly as possible
and then upload the fixed version to the pub-
lisher’s server in the U.K. Around midnight Sun-
day night, the disc was finally ready to go.

Three weeks later, hundreds of thousands of
copies of the game were available in stores
worldwide. In the meantime, the development
team was playing the game, terrified of finding a
disastrous bug. Fortunately, no such critical bug
appeared. Considering the amount of work
we’d done on the game in those last couple of
days and hours, the risk of finding some major
problems was pretty high. On Friday, June 22,
the game was released, and it immediately
became the top-selling PC game in many coun-
tries. The team knew that their mission was suc-
cessfully completed. The passion and hard work
of every single member of the development and
publishing teams started to pay off.

1. The team
Probably the most positive thing we encoun-
tered during development of this game was the
people working on it. Almost all of the people
who joined the team really helped to improve
the game and remained fully dedicated to it
from the first day until the final moments. While
we were understaffed almost all the time, we are
happy to say that while the team was growing
steadily, it was very stable—almost all the peo-
ple who participated in the development of
OPERATION FLASHPOINT are still working at our
studios now that the game is finished.

Another advantage was that the team was very
cooperative. Some roles on the team were not
demarcated very strictly. Still, between the pro-
grammers, designers, and artists, everyone could
comment on any part of the game, and every-
one’s opinions were taken seriously. While this
often made communication more difficult, it
definitely helped the design and development
process and enriched the game in many areas.
One of the most powerful tools we used for
internal communication was our intranet news
server, which proved to be an invaluable tool
during the whole design process. The game was
mostly designed on the fly, and the newsgroups
made the design process not only convenient,
but really quite enjoyable.

What Went Right

Bohemia Interactive Studios’ OPERATION FLASHPOINT 22

2. The community
OPERATION FLASHPOINT’s public following is
incredible. We ourselves are surprised by the
number of people creating fan sites, developing
new content for the game, or just keeping in
touch with the community by reading news and
forums. Currently there are hundreds of differ-
ent sites dedicated to FLASHPOINT, and dozens
of them are of a truly professional quality with
news updated almost hourly. Another great
thing about the community is that some of the
people have been following this game for years
already, and they still carry a great deal of
enthusiasm for it.

Some of the first great fan sites started out more
than two years before the game was released,
and we managed to keep people’s excitement
going with regular updates about the improve-
ments we were making to the game throughout
its development. We take it as a good sign that
most of the sites are still online and updated reg-
ularly. About halfway through development, we
invited some people from the community to par-
ticipate in the design of the game directly, via
external forums and newsgroups. Their skills in
both military and gaming areas were invaluable,
and we constantly used their feedback to
improve the game.

Since the release of the public demo version
(around three months prior to the release of the
final game), the community following has
become much bigger. The only downside to the
increase in the community base is that the com-
munity has become much less focused and less
mature, as the average age of those visiting the
Web sites has descended.

But the community still looks really vital and
the most-visited fan site has counted millions of
page views already. Recently, fans have been cre-
ating custom-made tools and enhancements to
the game in addition to the various Web sites
and services.

The Head of a tank crew in Oxygen. You
can see face of Petr Pechar, one of the
artists on OPERATION FLASHPOINT, under the
helmet.

A Soviet AKSU rifle shown in Bohemia
Interactive’s proprietary modeling tool,
Oxygen, with direct real-time previewing
using the game’s engine.

SECTION I: STARTUPS2323

3. Open architecture
Since we know that plenty of players enjoy not
just playing games but also providing their own
content for them, we wanted to enable this
extensibility as much as possible. Therefore, the
game included exactly the same mission editor
that we had used to design our missions. In
addition, much of the game’s functionality is
data-driven instead of being hard-
coded. This includes not only the
mission files and world maps but
also the capabilities and properties
of units. The units are stored in a
very powerful hierarchical configu-
ration tree with inheritance capabil-
ity, yet they are relatively easy to
edit.

By using these configuration files, it
is possible to add completely new
units and worlds to the game or
add modified versions of existing
ones, which is what many players
are doing to create their own con-
tent, thus lengthening the product’s
lifespan. We wanted to use configu-
ration files to shorten coding time as well,
because we figured that the fine-tuning of most
values could be done by designers or testers
instead of programmers. But this didn’t work as
we expected, mostly because only the program-
mers really knew meaning of the values.

Our scripting language also featured promi-
nently in the game’s development and extensibil-
ity. We started to build the mission editor as a
visual tool, but we soon recognized its limita-
tions in certain areas. Seeing this, we added an

expression evaluator for trigger activation,
which was surprisingly powerful, and a full
scripting language soon followed. When the
game was released, we knew immediately that
scripting was a really good choice, as many user-
made mission used scripts to implement specific
new functionality. Looking back, we can say
scripting proved to be much more powerful
than we expected.

We only wish we had added it sooner in the
development cycle, so that some of the function-
ality that we hard-coded into the game could
have been scripted instead, including some AI
behavior.

At a later stage of development (after the Euro-
pean release, in fact), we extended the game’s
ability to support add-on content. Single files
stored in specific folders could add, for
instance, new models, units, or islands. Besides

Bohemia Interactive’s in-house motion capture facility has
proven very beneficial in creation of lifelike human
movement animations.

Bohemia Interactive Studios’ OPERATION FLASHPOINT 24

some official add-ons that we have introduced
since the game’s release, there is already a mas-
sive number of user-made add-ons, all available
for free on the Internet.

4. Creative freedom
From the very beginning of the project, we tried
to create the game that we really wanted to play.
We didn’t look too much toward other games
for inspiration, and we virtually ignored games
that might be considered our competition. We
also gave little regard to whether the market
would like the game or not. Our relationships
with publishers were never too strong (actually,
we changed publishers several times), and all
important decisions were made by the core
development team, keeping us relatively inde-
pendent throughout the game’s development.

In fact, changing publishers so many times
wasn’t strictly a negative thing. Even though it
led to some financial uncertainties, the creative
freedom we enjoyed instead of some more
money was more than worth it. The result of
this creative freedom is a game that is really dis-
tinct. Our design-on-the-fly approach (or
“design by playing,” as we prefer to think of it)
made the game very enjoyable and a different
experience from any other.

Most design decisions were first discussed
(mostly in newsgroups as mentioned earlier) and
then tried out in the game. No matter how nice
a design idea might have seemed at first, only
the elements that worked well in the game
ended up being included.

5. Long development cycle
The unusually long time that FLASHPOINT was
in development was very beneficial. In terms of
gameplay, the game is very mature, which
would not have been possible in a shorter devel-
opment cycle, especially because this was our
first major game. Two or three years into devel-
opment, the game started to be really enjoyable.
In fact, it was polished enough then to suit our
original plans for the release version. But due to
various things (mainly on the publishing side),
the game wasn’t released at that point, which
gave us more time to polish and improve it. We
were able to incorporate various features that
we originally hadn’t planned to develop, either
because they were too difficult or required
excessive CPU or memory resources.

We were also able to incorporate feedback from
various external testers—our friends as well as
colleagues at well-known gaming companies
who evaluated the game throughout its develop-
ment. We refocused and redesigned the game a
couple of times, always opting to keep every-
thing that worked well and change the things we
felt could work better.

1. Development cycle much
longer than expected
Ironic as it is, we have to start What Went
Wrong exactly where we left off with What
Went Right. Despite some of the usefulness the

What Went Wrong

SECTION I: STARTUPS2525

extra development time offered
us, in the end the cycle was
probably too long, and in opti-
mal conditions would have
been at least 20 percent shorter.
It may have been possible to
shorten the cycle, but we expe-
rienced various external events
or internal missteps that pre-
vented us from accomplishing
that.

First of all, some technologies
in the game were a bit outdated
after more than four years. We
didn’t know at the outset that
the game would be still in
development after so long, and
we hadn’t left time at the end to
rework parts of the engine. Some of the criticism
of OPERATION FLASHPOINT addresses the
amount of detail in the textures and some mod-
els—and we have to admit that these could have
been better.

Furthermore, the excessively long development
cycle led to burnout and heavy exhaustion, par-
ticularly for the people who had been working
on the game since very beginning (the lead pro-
grammer, lead artist Jan Hovora, and the team
leader). In some cases, we weren’t able to sus-
tain some of the features we’d implemented two
or more years prior. They just disappeared
somehow in the process of reworking parts of
the code, and we didn’t even notice. Newcomers
to the development and testing process never
knew such features had ever existed.

The main problem wasn’t that
the development cycle was too
long per se, but that the devel-
opment was so much longer
than we’d expected. Next time,
we will work much more dili-
gently to better estimate our
development time—and we will
probably try to aim higher with
the detail of our artwork, even
if it seems insanely detailed for
present and predicted hardware
capabilities.

2. Documentation
Lack of documentation is a
common affliction among game
developers, but some aspects of

this problem were so severe in our case that they
are worth mentioning. While we’d never
believed too much in designing the game on
paper, the real problem was that we never even
had documentation of the things that we’d fin-
ished. This situation led to incredible problems
in the final stages of development. Many tasks
could only be done by one person on the whole
team. In other cases, hours were spent trying to
investigate how something had originally been
meant to work.

We recognized these problems and tried to
improve them, but apart from a few instances,
our effort wasn’t really successful. As the devel-
opment team grew, the missing documentation
was becoming a more serious problem. But the
final project deadlines were getting closer as

OPERATION FLASHPOINT
enables the player to use any
vehicles, including gunships
and planes.

Bohemia Interactive Studios’ OPERATION FLASHPOINT 26

well, so it was nearly
impossible to find the
time to address the prob-
lem.

3. Quality
assurance
We experienced various
problems in communica-
tion and cooperation
with our publisher. Gen-
erally, their focus and
assistance in some areas
of the production of the
game (design sugges-
tions, voice-overs, trans-
lation, scriptwriting)
were really helpful. But in
other areas, we experi-
enced some events and
circumstances that
slowed down and compli-
cated the game’s develop-
ment rather than moving
things forward.

One of the most unsatisfactory areas was the
way the QA procedures were managed and
designed to work by the publisher. We never
succeeded in achieving a common bug database,
and the publisher enjoyed an illusory feeling
that its QA database really covered the project.
The truth was that such a database (even with-
out any direct access for the development team)
hardly said anything about the project’s status
because it covered just small fraction of all the

problems we had tried to
fix.

Even when the publisher
dedicated a pretty big
testing team to the game,
it sometimes seemed
something of a waste of
time for everyone
involved in it. In the end,
we had to largely ignore
the publisher’s QA
reports, because they con-
tained too much useless
information and very few
real bugs. We tried to
focus on very limited
external testing managed
directly in the very late
stages of development to
ameliorate this prob-
lem—but this approach
could hardly replace real,
full-time testing of the
game.

We admit the situation was very difficult for the
QA team as well—in no small part because of
the lack of documentation on our side—but we
still believe this process could have been han-
dled much better. One of the mistakes we made
was assuming that the publisher’s QA would be
sufficient, so we didn’t build a strong testing
team in-house. We definitely will find a solution
for any future projects, because the way it was
done for OPERATION FLASHPOINT wasn’t satis-
factory.

The combination of infantry combat with
full simulation of vehicles is a crucial part
of the design of OPERATION FLASHPOINT.

SECTION I: STARTUPS2727

4. Some content was not under
our full control
One area of concern thing was that our final CD
was still manipulated by the publisher. The pub-
lisher applied SafeDisc protection to the final
code, which caused some unexpected compati-
bility problems that we weren’t able to control.
The mixing of various SafeDisc versions and a
serious compatibility problem with Windows
2000 that was present in the first European
batch of CDs could have been avoided.

In addition, we weren’t able to finalize the
English language in the game because we didn’t
have a native English writer on the team. We
also didn’t oversee the voice recording and voice
actor selection, which led to some results that
were unsatisfactory to us.

5. Multiplayer API
From the very beginning we were aware that
our game had huge multiplayer potential, espe-
cially if it were implemented as a massively mul-
tiplayer online game. But we knew we would be
unable to deliver such experience.

Instead of aiming for such an unrealistically
high goal, we decided to implement mission-
based multiplayer that shared as much code as
possible with single-player game. Even this
effort proved to be extremely difficult.

OPERATION FLASHPOINT was always developed
primarily as single-player game with a strong
story, but for a very long time we were thinking
about multiplayer functionality, and we tried to

design the game code in such a way that it
would help us incorporate multiplayer later. For
implementation, we wanted to avoid low-level
network coding and instead use a high-level
API.

As we were already using Direct3D for graphics
and DirectSound for audio, and both suited our
needs quite well, we decided to use DirectPlay as
our network API. DirectPlay offered high-level
handling of all network communication, includ-
ing Voice Over Net capabilities. Unfortunately,
our experience with this API was extremely bad.
Often when trying to get some high-level func-
tionality working, we realized it contained bugs
that rendered it almost unusable. We had to
implement our custom code for things we
thought DirectPlay would provide, but that was
sometimes very hard, as we did not have the
low-level control that we needed.

Daytime and weather changes dynamically
in the game so the area looks pretty
different in various daytime and weather
conditions.

Bohemia Interactive Studios’ OPERATION FLASHPOINT 28

We also encountered many performance prob-
lems, some very strange, such as significant (par-
ticularly server-side) slowdown even with no
traffic over the network. This along with the
lack of documentation and a lack of stability
resulted in many problems that were hard to
debug. Another drawback that we didn’t recog-
nize beforehand is that DirectPlay is Windows-
only, but many dedicated servers for games cur-
rently being played online run on Linux. Over-
all, selecting DirectPlay as our network API was
one of the most unfortunate decisions in the
whole game’s development.

Future Dreaming
Most start-up game developers dream of devel-
oping a number-one title. We weren’t any differ-
ent. With OPERATION FLASHPOINT, this dream
has come true for us. The game achieved the
number-one position in sales charts of various
countries and regions, including the U.S., Ger-
many, the United Kingdom, Benelux, Scandina-
via, and Australia. More than 500,000 copies
sold worldwide in just three months, proving to
us that our last four years of effort were worth
something.

We always stayed focused on the game, and we
didn’t have too much regard for those who
believe that the success of any game is mainly a
question of marketing, securing a big license, or
working on a sequel. We always believed that
it’s the game itself that makes the difference
between success and failure. We’re still playing
the game and we still like it. After such a long
time, it’s hard to believe that OPERATION FLASH-

POINT remains the favorite choice of games for
most of the development team. We’re still work-
ing on new content for FLASHPOINT out of pure
enthusiasm. In the end, we don’t feel ourselves
to be anything more than proud members of a
big and healthy FLASHPOINT fan community
that has arisen around the world.

We know that someday we will have to leave
FLASHPOINT to its own destiny. But currently,
we still feel too involved in the game. We are
already looking forward to future projects, but
it will take months for us to start one. We con-
sider the success of OPERATION FLASHPOINT as
the pole position for our next race. We plan to
use all the experience and resources that we
have gained during the last couple of years to
push gaming even further in the future.

29

Surreal Software’s

DRAKAN:
ORDER OF THE FLAME
by stuart denman

Or ig ins o f the Team
Because DRAKAN was Surreal’s first product, the
story of DRAKAN’s development is also the story
of Surreal’s development as a company. Surreal’s
creation is the classic game development story in
which four ambitious recent college graduates
decided they had nothing to lose and formed a
game company. These four founders contributed
four critical skills to the team: art, program-
ming, design, and business skills. None of us
had ever run a company or managed schedules,
but we all loved games, and we knew what it
took to make a good one.

Lead designer Alan Patmore had always played
games and had the business savvy to comple-
ment Nick Radovich’s business experience and
connections. I had been programming games
and graphics since the age of ten, so even
though I didn’t have experience working at a
game development company, I did have the
skills and motivation. Mike Nichols, our cre-
ative director, came from within the industry

and was the only member with any titles under
his belt.

Our initial goal was to develop several game
concepts and a solid technological foundation
that we could pitch to game publishers. This
would get us the funding we needed to pay our-
selves and start hiring programmers and artists
without having to involve venture capitalists.
Once we got project funding, we were able to
build a strong team of artists, programmers, and
designers who all played games. Some of the
team came from other game companies—lured
by the informal atmosphere and the focus on
games, not profit. Others were inexperienced
with game development, but had the skills and
fresh ideas we needed.

Back-Story
DRAKAN: ORDER OF THE FLAME is a fantasy 3D action-

adventure game on the TOMB RAIDER model with third-

person perspective highlighting the iconic central char-

acters: a beautiful woman with a sword teamed with a

fire-breathing dragon. The different abilities of the pro-

tagonists combine to produce varied and new gameplay

possibilities, with an aerial perspective unusual to the

genre.

Surreal Software’s DRAKAN: ORDER OF THE FLAME 30

As the technology lead, I was determined to
build Surreal’s foundations on its technology. By
retaining rights to our engine and tools, we
always had something to fall back on if a game
design was cancelled by the publisher. This also
allowed us to develop multiple game titles from
one generic technology and license the technol-
ogy to other companies. Any investment in time
that the programmers and I put into the engine

could be quickly put to use on another project if
anything went awry.

We moved away from the popular DOOM-type
engines toward a landscape-style rendering
engine in order to set our games apart. There
were many unique ideas that we could build
from this: flying, underwater environments, out-
door deathmatch, and so on. But the technology
was not only about rendering; the tools had to
empower the designers and be general enough
to support almost any game. So I designed a
toolset in which every game-specific property
and behavior would be provided by the game
code itself, and the editor would be just a
generic interface to the underlying game specif-
ics.

Or ig ins o f the Beast
After pitching several game ideas to all the
major publishers, we finally sold the first
“dragon” concept to Virgin Interactive Enter-
tainment (VIE) in the summer of 1996. The con-
cept was very different from today’s DRAKAN.
The first concept was for a dragon RTS game in
which the player’s dragon could fly around tak-
ing over villages and forcing them to do their
bidding. VIE wanted a more arcade-style
shooter game to fill a slot in their product line,
so we started developing a fast-paced, third-per-
son dragon-flying game.

It was not until early 1997 (when VIE began
cutting projects just prior to closing its doors)
that Surreal sold the DRAKAN concept to
Psygnosis. Psygnosis saw the strength in our
team and gave us complete freedom to perfect

Game Data
Release date: August 1999

Developer: Surreal Software Inc., Seattle, Wash.
http://www.surreal.com

Genre: 3rd-person fantasy action-adventure

Intended platform: Windows 95/98

Project budget: $2.5 million

Project length: 28 months

Team size: 23 full-time developers, 2 sound and
music contractors

Critical development hardware: Pentium II and AMD
K6-2 (3DNow!), 200 to 450MHz, 128MB RAM with
Nvidia Riva 128 and TNT, 3dfx Voodoo 2 3D
hardware. Artist workstations: Wacom tablets.

Critical development software: Windows software,
Programming software: Microsoft Visual C++ 5.0 and
6.0, Visual SourceSafe 5.0, Intel VTune 2.5,
InstallShield International 5.0. Art and animation
software: Softimage, 3D Studio Max, Adobe
Photoshop, In-house modeling and texturing tools.
Sound and music: Sonic Foundry Soundforge, Emagic
Logic Audio

Section I: STARTUPS3131

the design. We wanted more of an RPG feel, but
as a dragon, the player was limited in what he
or she could carry or interact with. Adding a
human rider was the best solution, and a female
character was the natural choice since she
would offset the dragon’s immense size and
power. With an increased budget under Psygno-
sis, we hired more team members and increased
the art and game-play content to a level that the
press called “ambitious” at our public debut at
E3 in 1998.

The production under Psygnosis allowed us to
expand the technology as well. We added real-
time lighting effects and expanded the simple
height-field landscape engine into our seamless
indoor/outdoor layer technology. Critical to this
technology was Psygnosis’s willingness to drop
support for software rendering (a risky market-
ing decision at the time). This allowed us
unprecedented freedom. We switched over to
true-color textures, increased the polygon
counts throughout the game, and built arbitrary
geometry for our worlds. The downside to rely-
ing on 3D hardware was that we faced serious
compatibility challenges—the game would have
to run on almost every 3D card. This also meant
battling Direct3D driver bugs, and the possibil-
ity that we would be inundated with technical

support calls, since people would not have soft-
ware rendering to fall back on if the 3D hard-
ware failed to work correctly.

1. Success with graphics
There’s no doubt DRAKAN had an ambitious
design, so the graphics had to be top-notch in
order to make the game world believable. The
amount of art and animation content we would
need mandated careful planning, lest our sched-
ule slip. The solution to the problem was what I
call “flexible reuse.” In addition to the sharing
of texture and geometry data between objects,
DRAKAN’s engine (code-named the Riot engine)
was programmed to allow arbitrary scaling and
rotation of art content. By assigning different
behaviors and combining multiple art compo-
nents, we were also able to create totally new
structures with minimal effort. Because we
dropped 3D software rendering, we knew all of
our textures could be created in true color. This
vastly improved the look of DRAKAN, so much
so that we decided to switch from using palette-
based textures to true-color textures, which

What Went Right

A panoramic view of the first level in DRAKAN.

Surreal Software’s DRAKAN: ORDER OF THE FLAME 32

required quite a bit of
reworking on most of the
textures in the first few lev-
els.

This decision is just one
example of Surreal’s aes-
thetic fussiness. Often if a
few people thought that
something within the game
didn’t look good enough, it
would end up getting
redone until everyone was
satisfied. The benefits can
be seen in the final product,
but our schedule some-
times suffered as a result.
Though the artists created
the objects and buildings in
the game, the designers
were responsible for placing
the objects into the game
and gave immediate aes-
thetic and game-play feed-
back to the artists. They
also were responsible for
building the landscapes and
caves, which defined the overall level flow. This
process evened out the workload between artists
and designers, but it required the designers to
have a good artistic sense. This can be seen in
the very fantastical landscape architectures that
the designers constructed and then painted with
tileable textures. The textures were drawn by
the artists to have many variations and transi-
tions, which added to the organic nature of the
terrain.

2. A green team
with fresh ideas
DRAKAN had an advantage
that many large game
development companies
sometimes overlook. It had
a young team, highly moti-
vated, bursting with ideas,
and ready to take risks. The
ideas were unique and
motivated by the desire to
set DRAKAN apart from the
shooters and TOMB RAIDER

clones (although this was
still difficult, given the ten-
dency of the gaming press
to compare games to one
another).

The most original idea in
DRAKAN was the combina-
tion of dragon flight with
sword and bow combat on
the ground. This fundamen-
tal idea formed a devel-
oper’s carnival for more

innovative ideas and forced the player to strate-
gize in a way not often seen in action games.
The relative vulnerability of the female rider
contrasted with the powerful dragon required
careful thinking by the designers. Levels were
created with restrictions on the dragon’s ability
to go places. Rynn could enter caves, but would
come across areas where the dragon’s flying
abilities or strength would be necessary to pro-
ceed. The player (as Rynn) would then have to
find a large door or other method to get the
dragon inside the cave system. In this world of

Arokh’s polygon mesh and alpha-
blended wings (above).

Section I: STARTUPS3333

magic, creative ideas for special effects are very
important, and these tasks were ideally suited to
people who were not afraid to do things “out-
side the box.”

3. Engine and tools
If ever there was an example to put the C vs.
C++ argument to rest, it is DRAKAN. There sim-
ply are no performance reasons not to go with
C++, as long as the programmers understand
what is happening under the covers. Object-ori-
ented code generates so many benefits, espe-
cially for an engine that you plan to build on for
many years to come. In DRAKAN, the game-spe-
cific source code and engine source code were
separated into different projects, so no game-
specific code was allowed in the engine. The
game-specific code included such features as the
user interface, AI, and
game entities, and con-
tained no platform-specific
code.

The engine is broken up
into many classes that han-
dle various engine tasks
and are the interfaces by
which the game code
accesses the engine. For
instance, there is a sound
class for playing sounds, a
texture class for working
with textures, a sequencing
class for playback of
scripted cut-scenes, and
numerous others. These
also form a framework for

future porting of the system-specific functions to
other platforms. The stability of this system can
be validated; we are currently creating addi-
tional games based on the DRAKAN engine with
little or no code changes to the engine project.
To further reduce the debugging time, we put
coding guidelines in place to ensure the consis-
tency of code between programmers, and cre-
ated classes to catch array boundary violations
and memory allocation problems.

DRAKAN has no scripting language. Instead, the
programmers create modules that are visually
connected by the designers to create scripted
events in the game. Such modules include trig-
gers, switches, timers, counters, and more com-
plex modules such as doors, enemy creatures,
and weapons. The modules have programmer-
defined parameters associated with them. A

parameter can be almost
anything: a number, a list
of options, a sound, a tex-
ture, another module, and
so forth. The system meant
designers could tweak
parameters and combine
modules in ways that the
programmers never
intended.

One particularly nice
example was an effect that
was originally created for
the “ice sword.” The effect
was made up of a number
of particles (originally
snowflakes) that would col-
lect for a certain amount of

Concept sketch of the Dark Union
sailing ship.

Surreal Software’s DRAKAN: ORDER OF THE FLAME 34

time on the mesh of an
affected object. After a time,
the particles would fall to
the ground and stick for a
bit. All these properties,
from the timings to the par-
ticle texture, are config-
urable. With this feature at
their disposal, the designers
created glowing auras
around ghosts by increas-
ing the particle size and
making the stick-time infi-
nite. They created snow that
landed on invisible plat-
forms to guide players
across them. The snow
effect was attached to
arrows to drop ice behind
them as they flew. All this
from a small bit of pro-
gramming.

The engine also has an effi-
cient caching system, so it’s
able to handle hundreds of
megabytes of data on our
minimum system require-
ment of 32MB RAM. The two main characters,
Rynn and Arokh, total more than 20MB of ani-
mations, plus 12MB of sounds (including in-
game cut-scenes). To pull this off, the system
keeps the most recently used sounds or anima-
tions in the cache and can flush memory that it
hasn’t used in a long time. Further reduction of
memory usage is achieved by sharing anima-
tions between characters with the same skele-
ton, even if they have completely different skins.
The system only loads the data that it needs, as

it needs it. This is important
during development, as art-
ists and designers are prone
to leave unused textures,
sounds, and models in a
database. The result is good
engine performance during
development, which is also
representative of the final
product.

We tried to ensure that the
engine and tools always dis-
played to the artists and
designers something that
was representative of the
final game (WYSIWYG).
The best example of this
was our real-time 3D editing
system. The engine was inte-
grated into the editor, so any
geometry, texture mapping,
or lighting changes made by
the designer would be
immediately reflected in the
3D view. The importance of
this aspect of the tools
should be emphasized

because it gave the designers the ability to tune
levels and game play very quickly and with a
minimum of guesswork.

4. Compelling design
A good design will not only sell a game—it can
also help smooth the development process. The
DRAKAN world has immense possibilities, so
new ideas were born easily within its scope. This
kept the team highly motivated, as there were

Colored conceptual sketch of a
Wartok grunt.

Section I: STARTUPS3535

always innovative things to do with the genre.
The varied environments gave a wealth of new
things to work on for the art and design team,
and were an ideal canvas for programmer inven-
tion. The design also kept Psygnosis very inter-
ested. DRAKAN became its top PC product, and
it was comforting to us as developers to know
that our publisher was behind the product.

Psygnosis saw the marketing potential in a
beautiful female character combined with a
fearsome, fire-breathing dragon and the press
latched on to the concept with excitement. They
could market it to TOMB RAIDER fans, AD&D
fanatics, and even 3D shooter addicts.

Even the most brilliant design would be difficult
to implement lacking a proper design document.
The 175-page DRAKAN design document con-
tained outlines for the entire game, including all

AI behaviors, weapons, and level flows. It
served its initial purpose well, and was a blue-
print for our lead designer’s vision. The docu-
ment was vital to the development team,
especially when it came to scheduling, creating
tasks, and communicating with the publisher.
But as you will read in the following “What
Went Wrong” section, feature creep overtook
the project halfway through, and the document
never kept up with the changes. A design docu-
ment should always be maintained throughout
development to preserve it as a useful resource
for the team. Fortunately, the team could always
rely on Alan to explain anything or to fill in any
holes in the design document.

5. Indoor/outdoor environments
One of the major technologies that set the Riot
engine apart from the other landscape engines

was its ability to render both indoor
and outdoor environments using the
same engine. The benefits to game
play were huge because we could do
arbitrary cave systems, arches, over-
hangs, and other structures that
were perfect for a fantasy game. The
“layer” system that the landscape
was created with was ideal for mas-
sive outdoor environments and
allowed the designers to create very
organic-looking worlds.

Rectilinear structures such as build-
ings and objects were created using
arbitrary models imported from
external 3D modeling programs.Surreal’s in-house level editing tool showing the real-time

3D editing window in the center and top-down layout view
in the upper-left.

Surreal Software’s DRAKAN: ORDER OF THE FLAME 36

Although these models were not included in the
visibility calculations, the layers were included
and were nicely suited for use in the visibility
culling of large environments. Because the layers
were small height fields that made up the ceil-
ings and floors of the surroundings, they took
up very little space in memory. This meant that
the levels could be vast, and it helped give the
player a sense that there was a living world
around them.

1. Staying on schedule
DRAKAN was originally slated for release in Feb-
ruary 1999, but ended up being released six
months later. Even with careful scheduling and
task planning, we failed to meet the final dead-
lines. Part of the problem was that we didn’t
account for the time the team
would spend creating versions of
the game for E3 and for maga-
zine and Internet demos. Each
demo pulled nearly two weeks of
time away from our normally
scheduled tasks. The majority of
the scheduling problems were
due to feature creep and other
improvements that were consid-
ered necessary during develop-
ment.

In March 1998, the design team was faced with
a mountain of work ahead in order to complete
the 14 original levels as designed. After careful

consideration, the designers decided to spend
their efforts on enlarging and improving upon
the ten best level designs. They also ended up
cutting many features that did not show much
game-play promise. The dart gun and the boo-
merang weapons were among those eliminated
from the game. Even though these tasks had
already been mostly completed (in terms of
code) for several months, they had not yet been
put into the game.

By the end of the project, the designers did not
have adequate time left to work with program-
mers to play-balance those features, and the art
staff had not done any work on them either. So
they got cut. The decision allowed us to focus on
improving the weapons that worked well, such
as the bows and arrows. We now know that it’s
critical that programming tasks get put into the
game and tested almost immediately so that their
effectiveness can be realized early on. This lack
of coordination between designers, artists, and

programmers often caused prob-
lems during development. Some
of this was because our design
document wasn’t updated when
weapons, levels, or AI were rede-
signed.

The initial AI programming fol-
lowed the original design docu-
ment, but didn’t work well when
put into the game. It wasn’t until
our designers worked with the AI

programmers to figure out exactly what they
wanted for our combat system that the AI really
came together. This kind of collaboration

What Went Wrong

Section I: STARTUPS3737

should have occurred at the begin-
ning of the AI programming process
and the lack of it caused moderate
delays.

DRAKAN’s art team often rebuilt
geometry and model textures,
sometimes up to three times before
they were satisfactory. This may
have been partially due to Surreal’s
high aesthetic standards, but a lack
of consistent artistic vision is also to
blame. DRAKAN had lots of charac-
ter conceptual art, but no “art
bible” to document all the models
and environments for the game.
This meant that if our art lead was
not satisfied with work of another
artist, he would often rebuild it
himself. At various points during
development his time was spread
thin across many different tasks. In
addition, the art team went through
communication problems and
power struggles that hampered the
coordination of the team.

2. Inadequate testing
Although we tracked bugs inter-
nally before and during the alpha
and beta releases, Psygnosis was
responsible for the bulk of the test-
ing after alpha. For a game as vast
and ambitious as DRAKAN, the time
that we allocated for testing was inadequate.
Multiplayer and collision detection issues, in
particular, were not given enough testing time.

When the final shipping date
approached, we reluctantly agreed
to allow some noncritical bugs to
slip through to the gold master in
the interest of meeting the deadline.
A patch was inevitable.

Other testing complications added
to the problems. As Psygnosis was
being reorganized by its parent
company, Sony Computer Enter-
tainment Europe (SCEE), half the
testing department was let go and
merged with SCEE’s U.K. testing
group. This caused minor hiccups
in tester allocations to DRAKAN.
Since the testing team was located
in Europe, communication was dif-
ficult, and often messages were
delayed by a day or two. Bug
reports were sent to us via
Microsoft Excel worksheets, which
were converted from an Oracle
database that sat isolated on their
LAN in the U.K. Often the Excel
worksheets would come to us cor-
rupted or would have incomplete
bug descriptions. Bug responses
from Surreal’s programmers had to
be tracked carefully and entered
back into the Oracle database by
hand.

We kept our own internal database
at Surreal using Outlook forms in special public
folders on our Exchange Server. We ended up
generating almost 1,000 internal design, art,
and programming bugs during the entire

Rynn’s highest
polygon count was
only 538.

Surreal Software’s DRAKAN: ORDER OF THE FLAME 38

project. This rivaled the number of bugs gener-
ated by the testing team during alpha and beta.
The internal system worked very well, but it
could have been more useful if the Psygnosis
testers had access to the system as well. We tried
getting on-site testers, and some of the U.K.
team did come to Surreal for about a week. But
it was too late in the project and for too short a
time to be effective.

3. Collision detection and
response
One of the biggest chores for the testing team
was to make sure that all of our hundreds of 3D
models could not be penetrated by missiles,
NPCs, or Rynn. Each model had to be properly
bounded by the artist during the model’s con-
struction, a process which took about 20 per-
cent of their modeling time to construct.
Bounding was generated in our custom model-
ing tool and approximated the polygons of the
model using a hierarchy (tree) of bounding

spheres or oriented bounding boxes (OBBs).
This made the collision detection system very
fast and accurate, but it also meant that if an
artist made a mistake in the bounding tree, colli-
sion detection might not work.

To say this created a testing challenge would be
an understatement. Even though the engine was
capable of rendering arbitrary meshes, the colli-
sion detection system was not designed to han-
dle some of the detailed meshes that the artists
produced. Some of our AI used the bounding
information at the lowest level, while Rynn’s
collision response system used a polygon-accu-
rate analysis, which didn’t work perfectly for
some complex models. Frame-rate variations
across machines also caused differing results,
making it hard for programmers to reproduce
the bugs and correct the problems. Finally, our
indoor/outdoor landscape system created some
challenging collision-detection problems that we
hadn’t anticipated when it was originally
designed.

4. Multiplayer
Considered by some the Achilles’ heel of DRA-

KAN, its multiplayer suffered from developmen-
tal neglect. For the game’s multiplayer to have
succeeded, the design, art, and programming
teams would have had to spend at least twice as
much time on it than they did. The two multi-
player designers did most of their level and
weapon work during the alpha and beta peri-
ods. The same designers also created most of the
artwork for the multiplayer effects and weap-
ons. Any game-related bugs that came up were
fixed by our single network programmer, who

Lighting effects created varying moods. This
bridge model was reused from the islands
level.

Section I: STARTUPS3939

already had his hands full optimizing the under-
lying network engine.

Most of these game-related problems arose
because the same weapons were used in both
single and multiplayer games, but the original
programmers were not careful to make them
“network aware.” Originally, we thought that
DirectPlay was the easiest networking solution
for us. But as the design got more complex, we
found that DirectPlay just did not work well for
us. DirectPlay was a debugging nightmare. The
network programmer’s machine crashed several
times per day when debugging the networking
code and we couldn’t determine what was caus-
ing that to happen. It wasn’t until we switched
to Winsock that we discovered that the crashes
were caused by DirectPlay.

DirectPlay also caused a serious problem for us
while we debugged the game under the first
release of Windows 98. DirectPlay actually
caused the system clock to slow down. This
caused the game to run slower and sucked up
tons of CPU cycles, forcing a reboot. When put
to the test, DirectPlay also had issues with fire-
walls, which we were not able to resolve. Under
certain circumstances, the way DirectPlay han-
dled the message queues sometimes caused mes-
sages to pile up until the application hung.
Perhaps Microsoft will be addressing these
issues in future releases.

It was clear even before alpha that the network-
ing code would need to be rewritten. In the final
design, we only used the TCP/IP portion of
DirectPlay, and we used a Winsock front end to
handle communication with the master server.

We proposed to Psygnosis that they give us
more time to convert the system over to Win-
sock, to which they replied yes—but only as a
downloadable patch, since the additional work
would have delayed the game’s release. The
Winsock conversion was not finished until a
month after DRAKAN’s release, and greatly stabi-
lized the multiplayer experience. This, combined
with the release of the level editor and mods,
has created a resurgence in multiplayer support,
but it will never be as good as it could have
been.

5. Badly executed story
Although the overall story concept of DRAKAN

was a great, the script and execution of the idea
were lacking. We hired a movie scriptwriter to
do the initial work on the script, but he was not
familiar with the fantasy genre and did not have
a firm grasp on Alan’s vision for the design.
From there, the script was edited and rewritten
by several more people: members of Surreal,
members of Psygnosis, even one of the voice
actors. Under pressure to finish the script, it was
completed with cheesy one-liners and other
badly written dialog.

Once it had been recorded by the voice actors, it
was very difficult to rerecord lines that were
badly written or acted. Some were re-recorded,
but that was a luxury we could only afford for
the completely failed lines. The voice acting was
difficult to get right, because just as some of the
writers had almost no vision of the game, the
voice actors likewise had little understanding of
the characters they portrayed.

Surreal Software’s DRAKAN: ORDER OF THE FLAME 40

Another problem with the execu-
tion of the story was that most of
the construction of the cut-scenes
was left until the last minute, since
all the levels had to be “geometry
complete” before cut-scenes could
be created. This meant that the
scenes at the end of the game were
hastily done, and some even had to
be cut from the game.

Onward to the
Next Pro ject
DRAKAN’s development was a
bumpy ride, but it went suitably
well considering it was the first
game developed by an inexperi-
enced team. Even with some of the
schedule slips that occurred, the
great design, art, and program-
ming kept the project going strong.
DRAKAN has been a great learning
experience for the team, and the
careful evaluation of our past mis-
takes has helped us in the develop-
ment of our current projects.
DRAKAN was recently named “PC
Game of the Year” by several pop-
ular magazines, and it has sold
very well. If DRAKAN showcases
what this team is capable of in our
first project, it will be very exciting
to see what we are capable of in
the future.

The DRAKAN team: FRONT ROW, FROM LEFT TO RIGHT: Satish
Bhatti (network programmer), Tim Ebling (programmer), Todd
Andersen (designer), Susan Jessup (artist), Louise Smith
(artist/animator), Andre Maguire (designer), Mel Guymon
(lead animator), Tom Vykruta (programmer). MIDDLE ROW:
Shaun Leach (programmer), Armen Levonian (programmer),
John Whitmore (designer), Greg Alt (programmer), Heron
Prior (animator), Tom Byrne (artist). BACK ROW: Stuart
Denman (lead programmer), Scott Cummings (animator),
Boyd Post (sound engineer), Alan Patmore (lead designer),
Hugh Jamieson (character artist), Mike Nichols (lead artist),
Hans Piwenitzky (artist), John McWilliams (designer), Nick
Radovich (business/sound).

NOT PICTURED: Joe Olson (artist), Duncan (designer), Isaac
Barry (designer), Ben Olson (artist).

41

Pseudo Interactive’s

CEL DAMAGE
by kevin barrett, john harley, rich hilmer,
daniel posner, gary snyder, and david wu

The story behind CEL DAMAGE is long, winding,
and harrowing, but ultimately uplifting. And
because CEL DAMAGE is our first published title,
its story is also the story of our company,
Pseudo Interactive. Based in Toronto, we began
work on the technological core of the game four
years ago. A demo of our driving-combat phys-
ics engine at the Game Developers Conference
in 1997, PI’s first year of operations, received a
warm reception. Shortly thereafter, PI struck up
a relationship with Microsoft’s Entertainment
Business Unit (EBU). Over PI’s first two years,
we started up and killed a few projects. How-
ever, with the coming of Xbox, we found a
proper niche for our emerging technology.

The physics engine that PI president and tech-
nology director David Wu was developing lent
itself well to console applications. EBU recog-
nized this, and an early alliance was formed
between PI and the embryonic Xbox team. A
high-profile Microsoft producer came to PI with
a vision of where PI needed to take its game
technology, and a new project was born. At that
time, the project was called CARTOON MAYHEM

and was primarily a car-based racing game with
ancillary gag and weapon features. As we strug-
gled with the demands of Microsoft’s vision for

IP development, rendering, and weapon effects,
we realized that the game engine, which was a
patchwork of two years’ worth of diverging
demands and evolution, would need a complete
overhaul.

For better or for worse, we undertook that over-
haul. So it was that just as we were getting into
CARTOON MAYHEM’s development, our engine,
and our ability to iterate content in playable
builds, went down for over eight months. This
was a crucial time for Xbox and its first-party

Back-Story
CEL DAMAGE achieves an ambitious vision—to set a

combat driving game in a universe with the look and

feel of the golden age of cartoon violence. This feat is

accomplished through a fusion of artistic vision with

technical expertise—a renderer that mimics the look of

cel animation and a cartoon physics engine that allows

meshes to deform and bounce with the dynamic

expressiveness of Warner Brothers mayhem. A range of

entertaining cars and drivers contend in a variety death-

match, capture-the-flag, and racing events. The action

has an intuitive fast-paced arcade feel, and the range of

powerups and characters give CEL DAMAGE depth and

replayability. CEL DAMAGE is notable as part of a trend

one could call post-realism—a high-tech tour de force

whose aim is not just to mimic reality but to create a

world with a particular feel and flavor.

Pseudo Interactive’s CEL DAMAGE 42

developers. Microsoft was allocating its
resources to those teams with proven track
records and those showing steady progress. We
were obviously lacking in both areas. Microsoft
cut PI, along with our Xbox title, at the end of
2000. Though this was a disheartening develop-
ment for us, by this time we had the game

engine back up and running, and we were sud-
denly able to produce good demo levels. It
wasn’t long before we drew interest from several
other publishers. We had a quickly evolving
technology and a ton of assets ready to go. The
demos we put together enabled us to land a new
publishing deal with Electronic Arts.

Switching publishers allowed us to prepare
some great new material, including an internally

developed IP, extra gameplay features, a new
renderer, and a new title: CEL DAMAGE. We real-
ized we were going to make the Xbox launch,
and we were going to do it with our own prop-
erty and the backing of the world’s largest third-
party publisher. These three facts alone made all
the work of the previous several years worth-
while.

1. Staffing
Two years ago, when we started work on our
Xbox title, we had a core group of about eight
people. It was apparent that if we wanted to
develop a console game, whole cloth, in time for
the Xbox launch, we would need more staff in
every department. We hired more team mem-
bers as we progressed through development. We
were fortunate in that we were able to find very
talented and motivated people who were also
able to contribute to our corporate élan. We
brought our staff in from all over North Amer-
ica, and although none of us had console devel-
opment experience, each new member brought a
rich skill set to the company.

The search and interview process for each team
member was exhaustive. We would often see a
candidate two or three times before rejecting
him or her and moving on to someone else. Tal-
ent and experience were sought-after attributes,
but not at the expense of team chemistry. In the
end, our hiring methods were vindicated. We
were able to create a group of friends who

What Went Right

Game Data
Release date: November 1, 2001

Publisher: Electronic Arts

Genre: physics-based cartoon racing/combat

Platform: Microsoft XBox

Number of full-time developers: 16

Number of contractors: 12

Estimated budget: $2 million

Length of development: 2 years

Development hardware used: 600MHz Pentium IIIs
with 256MB RAM, 30GB hard drives, and Nvidia
GeForce cards

Development software used: Microsoft Visual Studio,
3DS Max, Photoshop, Illustrator, Winamp, SourceSafe

Notable technologies: pitaSim, Vtune, Microsoft
Visual C++

Project size: 800,000 lines of code

Section I: STARTUPS4343

enjoyed working with one another and were
deeply devoted to the project.

Our approach to team communication went
hand in hand with our approach to staffing. We
found that weekly full-staff meetings, individual
weekly lectures or presentations to the entire
staff, and regular departmental reviews greatly
improved all team members’ understanding of
how their co-workers contributed to the project.

We also held an ace up our sleeve. We formed a
strategic alliance with a local technical college
that offered a diploma course in 3D visual arts.
Through the school, we instituted an internship
program in our art department. We integrated
top students into our team, which was a very
successful exercise that we will maintain during
our next project.

Moral: Wait for the cream to rise, then scoop
it off the top.

2. Early development with Xbox
As a new entrant in the highly competitive con-
sole market, the Xbox group was looking for
game experiences that would make their console
stand out. As Microsoft pointed out so often
during the Xbox design period, “Great technol-
ogy does not sell game systems, great games sell
game systems.” Picking up on that mantra, we
started our development when the console was

little more than an optimistic dream
championed by a charismatic team of
visionaries.

Chief among them was their bold
Advanced Technology Group man-
ager, Seamus Blackley. We were con-
verts to his ambitious plans for the
Xbox. With the promise of a stable,
RAMpacked, hard-drive-enabled
computational powerhouse, we were
confident that we could deliver the

breakthrough game experience that Microsoft
was seeking.

Our game grew and achieved its focus as the
Xbox did the same. Knowing that CEL DAMAGE

would be held to standards set by second-gener-
ation Playstation 2 titles during the 2001 Christ-
mas buying season, we were spurred on to
utilize whatever technology the Xbox team was
stuffing into the system. We believe that through
this evolving relationship, we’ve managed to
create an innovative and highly entertaining
title. It’s also worth noting that CEL DAMAGE

probably would not exist today were it not for
the support and inspiration provided by Seamus
and the rest of the Xbox team. They stood up

Pseudo Interactive’s CEL DAMAGE 44

for our project and pushed as hard as any of us
to make CEL DAMAGE a reality.

Moral: It’s all about whom you know.

3. Synchronization tools
PI grew a great deal over the course of the
project, and we knew it was important to keep
everyone synchronized. The increasing size of
the team, combined with the growing mountain
of content and code, made regular updates more
difficult and time consuming. The process of
creating a build became a black art that only
one or two people could do correctly.

The first step toward synchronization
came fairly early on with the creation of
an automated code-compilation process,
dubbed AutoBuild. We investigated a few
different automated build programs, but
none was as flexible or complete as a
home-brewed batch file (or rather, a col-
lection of batch files and supplementary
programs). Each night, or whenever nec-
essary, AutoBuild could check out all
source code to a clean directory tree. It
then built and executed any code genera-
tors, built all binaries, copied the output
to a shared directory, and generated an e-
mail report containing a .ZIP file of all
build output, along with a summary of
errors and warnings. Whenever conve-
nient, our programmers could run another
batch file to synchronize completely.

Although we implemented AutoBuild with low-
tech Windows commands and utilities, this one-
button solution proved to be extremely valu-
able. Each build that the process generated
served as the absolute point of reference for the
current code base. Even with six people working
simultaneously on the same source code, we
were able to keep inconsistencies and problems
to a minimum.

Another low-tech solution, MakeBuild, filled
our largest gap in synchronization, though its
implementation came quite late in the project.
MakeBuild consisted of our source game con-
tent, automatically compiled into run-time for-
mat by adding a few simple commands to the

game editor, and a few batch files. By automati-
cally running MakeBuild after AutoBuild, we
had a brand-new build waiting for us each
morning. Our daily build process kept artists

Early in development, CEL DAMAGE was more
race-themed. Here’s an early concept for a
loop-the-loop road gag in the desert theme.

Section I: STARTUPS4545

and QA staff up to date without bogging down
any individual with responsibility for creating
the builds. MakeBuild accelerated the feedback
cycle between content creation and gameplay
review.

Of course, not all updates were visible in the
build, and we made several other utilities to help
keep everyone abreast of changes under the
hood. Our CheckInReporter was a simple
Visual Basic program that scanned the Source-
Safe database for all check-ins over the previous
24 hours, and then created and e-mailed out an
Excel spreadsheet report. These were especially
helpful in tracking down regressions. We cre-
ated another simple VB program that e-mailed
out active bug lists to each team member once
per day.

Moral: Spending a few days creating simple
tools pays big dividends throughout the
project.

4. Internal bug tracking and QA
We made sure that our daily build process was
up and running before we built our internal QA
department. The daily build mentality was
instrumental in the iterative process and was
QA’s greatest ally. New art and game logic assets
could be evaluated in-game within 24 hours of
their creation, allowing broken assets and bad
functionality to be identified immediately.

Asset pound-downs and targeted focus testing
ran concurrently as soon as we had four func-
tional game levels. As development progressed,

focus testing generated reams of data, which
was boiled down to nearly 400 gameplay and
asset recommendations. This information pro-
vided an important perspective on what people
were interpreting as fun and fair. This feedback
was very valuable, since we’d lost all objectivity
toward the game and its difficulty level once
we’d mastered the various weapons and gags.

The bug-tracking software that our internal QA
used for the duration of the project was called
PI_Raid. This tool, designed and customized in-
house, allowed us to stay on top of game
defects, generate work items, and comment on
evolving game features. We kept our bugs small
and focused. While this approach often left each
of us with a lot of bugs in our “bin,” we were
able to close out several per day, providing mini
morale boosts throughout the project. Though
some of the bugs that we logged might have
been considered trivial, cumulatively tackling
them had a dramatic, positive effect on the game
and our level of polish.

Moral: Get fresh eyeballs on your game and
efficiently iterate gameplay.

5. Coordinated schedule
One of the pleasures of working on CEL DAM-

AGE was the lack of a brutal crunch period in
the final weeks of development. We also felt
throughout the last year of the project that we’d
be able to realize our desired feature set. A good
schedule, coordinated with each department,
helped us achieve this unique state. Our early
work with Microsoft taught us the value of

Pseudo Interactive’s CEL DAMAGE 46

adhering to a schedule, and after we
moved on from that relationship, we
were able to maintain, and even
improve, our scheduling skills. Our guess
is that badly maintained and poorly
enforced schedules are the primary cause
of game projects missing their ship dates,
dropping features, and winding up with
morale-busting, project-end crunch peri-
ods. Following are some schedule-related
factors that worked for us:

Estimating task duration. No one can
estimate with 100 percent accuracy.
However, our leads and staff communi-
cated constantly to refine delivery date
estimates. If an asset looked as though it was
going to run overtime, we would cut it or some
of that person’s later deliverables, from the
schedule. If such changes created holes in the
game’s design, we would be flexible and design
around the holes.

Software. We used Microsoft Project. If you’ve
used it, you know it’s not great, but it gets the
job done. That was all we needed. Once we got
used to Project’s idiosyncrasies, it was smooth
sailing to the end of development.

Team-wide involvement. We periodically
printed the master schedule and posted it on a
wall where everyone could see it. This helped in
many ways. First, it demonstrated the interde-
pendence of the departments. Each staff mem-
ber could see that an asset he or she was
working on was needed by someone in another
department. Second, missing items could be
identified more easily, since more eyes were

looking at the schedule. Third, seeing the sched-
ule updated gave people a strong sense of mak-
ing progress. This progress contributed to team
confidence and morale.

Short, staggered crunches. We crunched, but we
did it early in small, manageable, prescribed
intervals, giving us a buffer at the end of the
project, after our feature set was complete. Peo-
ple were then freed up to work on visual
weapon enhancements and level polish. At the
end of the project, the team was playing full-
and split-screen CEL DAMAGE during and after
business hours. This intense play period helped
identify exploits and balance the gameplay. This
data wouldn’t have been available to us if we
had crunched long and hard at the end of the
project.

Moral: The schedule is your friend. Never let

friends down.

Some early desert environment renders made to test
scale, detail, and color. Our tests included fog, vertex
lighting, and gradations with the goal of evoking a
classic Warner Brothers style. These elements were
actually dropped as the vision of our own house style
came into focus.

Section I: STARTUPS4747

1. Design on the fly
Once we got our technology back online in
December 2000, it began evolving very quickly.
Feature sets for weapon and death effects, driv-
ing behaviors, gag functionality, and animations
were growing every day. Because we were
designing a game to the technology (rather than
the other way around), we were throwing out
design documents as quickly as they could be
written. Art assets had to be revised, retextured,
discarded, and rebuilt from scratch several
times. As most readers will know from experi-
ence, this is a scenario for feature creep, obso-
lete tool sets, and blown deadlines.

While we were able to nail down our feature set
four months before shipping, our evolving
engine did cause other problems. Essentially,
our strategic preplanning was stillborn. Every
week, we had to revise our perceptions of what
the game would really be, which frustrated our

attempts to describe the game to prospective
publishers at the beginning of 2001. Different
staff members had different ideas of what our
game would finally end up looking and playing
like.

Fortunately, once publishers and press played
the game for themselves, the core of CEL DAM-

AGE’s identity as a cartoon-based vehicular com-
bat game became self-evident.

Moral: It’s OK to design to an evolving tech-
nology, but institute hard cut-off dates for
code development and features.

2. Asset tracking and
implementation
Our initial efforts produced large amounts of
art content to show off the XBox’s power. How-
ever, evolving performance specs for the Xbox
and our game engine, along with a new IP intro-
duced early in 2001, generated several massive
content revisions. These revisions were neces-
sary for level geometry, static world objects,

gags, skyboxes, cars, characters,
weapons—everything. In the worst
cases, we saw at least 12 major revi-
sions to individual assets.

While we had an established direc-
tory structure for storage at the
beginning of the project, new work-
flows, staff, and management meth-
ods precipitated a patchwork of file-
naming conventions and tracking
methods. Final game meshes were

What Went Wrong

A before and after shot using the desert theme’s General
Store. Cel-shading conventions were prototyped in 3DS
Max using the Illustrate! plug-in.

Pseudo Interactive’s CEL DAMAGE 48

inadvertently overwrit-
ten with geometric prim-
itives. We “lost” assets
on the server for days at
a time. Other tracking
problems cropped up as
well. A bug in our game
engine created duplicate
textures that were diffi-
cult to hunt down and
eliminate. Also, we had
a problem with texture
revisions that got wiped
out on import to the
game editor. To com-
pound our headaches,
objects were often used
in several different levels, but if an optimization
was made to one, that change was not automat-
ically propagated through all levels.

Obviously, we needed a tool to track our art
assets and their properties and to update con-
tent in the game. We created the robust PI_Asset
for just such a use. Unfortunately, it was intro-
duced too late in the project for full implemen-
tation. As a stopgap measure, artists began
sending out dailies through e-mail. These
reports proved useful in tracking what had been
accomplished in the course of a day and what
should be updated in the build, but data man-
agement was still a problem. PI_Raid showed us
just how many holes our pipeline had in it.
While the primary purpose of PI_Raid was to
track and resolve bugs, the artists and level
builders found themselves using it as a means to
provide a pathway to updated content. Through
PI_Raid, a person could know when an asset

had been updated, where
it could be found, and
what had changed in it.
Using our bug reporter
to track game assets was
not an ideal solution, but
it did serve us well in a
pinch.

While the build-discard-
rebuild process hit our
staff pretty hard, it cre-
ated a sturdy spring-
board for future asset-
tracking methods, and it
also reinforced a better
mentality for thorough-

ness in our development procedures. Our next
project will definitely see better tracking and
implementation methods.

Moral: Don’t overwrite finished, textured
building models with spheres.

3. Single member over-tasking
Due to our relatively small staff, we had to put
managers in the critical path of day-to-day asset
delivery. These same people held crucial, unique
skill sets. As you know, this is a recipe for bot-
tlenecks that hamper development. One exam-
ple among several was the role of our art
director. We made this person responsible for
overseeing the game art, scheduling his staff’s
workweeks while developing their technical
expertise, modeling, creating the game’s inter-
face, producing our cut-scenes, overseeing

Section I: STARTUPS4949

interns, and distributing hundreds of art bugs.
The time needed for one person to do all these
things just wasn’t available every day.

Fortunately, we were able to create an art lead
position to handle the staff and bug tasks. How-
ever, not every instance of over-tasking could be
fixed by adding a new body. We had one texture
artist, but three or four art staff members were
generating meshes. Add to this the frequent dis-
carding of textures and rebuilding of models,
and the amount of work crossing the texture
desk became enormous. We also had a single
staff member who was responsible for updating
level content every day. If you consider that on
some days we’d generate 100 updated assets,
and each one had to be imported, adjusted, and
hand-tweaked in the levels, you can gain an
appreciation for the bottleneck occurring there.

With so many items funneling through one
mouse, the balance between efficiency and
human error was highly stressed. Ultimately we
dealt with the regressions that cropped up, but
it’s clear that better integration tools for our
next project will help a lot.

Moral: Spot bottlenecks early and divert the
work as necessary.

4. Last-minute implementation
of crucial elements
Our inexperience in console game development
caught up with us about three months away
from the end of the project. For the better part
of two years, we had spent all of our efforts on

developing in-game assets and gameplay. As our
delivery date to EA came into focus, we realized
that we still needed to get a fair bit of content
underway, including a solid front-end interface,
music, cut-scenes, voice acting, foley sound, and
sound effects. Once we had our budget in place,
we scrambled to pull together a stack of con-
tracted, out-of-house assets.

We drew up a shopping list that looked some-
thing like this: 13 cut scene scripts and story-
boards, 12 pieces of in-game music, a theme
song, interface music, 450 sound effects, 1,000
lines of in-game dialogue and 200 lines of cut
scene dialogue to be read by seven different
voice actors, six minutes of foley sound and cut
scene music, and six man-months of modeling
and animation talent. We also realized we
needed a way to play back our cut-scenes in real
time through the game engine and renderer,
even through these code elements were not
designed to handle the task.

We took on the interface and playback tasks in-
house, but farmed out everything else. Obvi-
ously, the work was finished on time, but to
accomplish this we had to divert the attention of
all of our in-house managers to get these items
implemented. Spillover bottlenecking was
unavoidable. Though we were ironing out
implementation bugs until the day we shipped,
the quality of the talent and assets we were able
to find on short notice shone through in the fin-
ished product.

Moral: The last 5 percent of a game takes 50
percent of the effort.

Pseudo Interactive’s CEL DAMAGE 50

5. Switching publishers
As we already mentioned, we switched to a new
publisher halfway through development. Going
from Microsoft to EA was a mixed blessing.
While we were able to improve gameplay and
develop our own IP, we lost both our financial
backing and our internal focus at a crucial time
in the project. We were also forced to reinvent
all of our art assets to avoid an IP conflict with
Microsoft.

However, what could have been a project-wide
meltdown actually hardened our resolve to get
CEL DAMAGE on store shelves. Once we realized
that the CEL DAMAGE property would belong to
us, and that our mistakes and successes would
be our own, the training wheels came off. We
became more determined and professional. As a
rite of passage, this publishing switch might
have been exactly what we needed. In the end,
perseverance carried the day, and getting

dropped as a first-party title was a black eye
from which we recovered.

Moral: When life gives you lemons, start
drinking hard lemonade.

Damage Contro l
Now that CEL DAMAGE is out the door, PI’s last
monkey is off its back. We are published and
moving ahead. There is plenty for us to look
forward to now, not the least of which is CEL

DAMAGE 2. We are excited about the prospects
for Xbox and hope to continue to exploit its
strengths with network and team-based play in
our next game. Fortunately, our experiences
with CEL DAMAGE have shown us where we can
improve our processes and strategic planning on
our next venture.

51

Nihilistic Software’s

VAMPIRE:
THE MASQUERADE—
REDEMPTION
by robert huebner

When Nihilistic Software was founded in 1998,
there were only two things we knew were cer-
tain. The first was that we wanted to form a
company with a small number of very experi-
enced game developers. The second was that we
wanted to make a killer role-playing game.
Nihilistic got started without much fanfare, just
a few phone calls and e-mails. After finishing
work on JEDI KNIGHT for LucasArts, the core
team members had, for the most part, gone their
separate ways and moved on to different teams
or different companies. About eight months
after JEDI KNIGHT shipped, various people on
the original team began to gravitate together
again, and eventually formed Nihilistic just a
few exits down Highway 101 in Marin County,
Calif., from our previous home.

Having moved into our new offices and bolted
together a dozen desks from Ikea, our first
project was to build a 3D RPG based on White
Wolf’s pen-and-paper franchise, Vampire: The

Masquerade. Before linking up with Activision
as our publisher, Nihilistic president Ray
Gresko already had a rough design and story
prepared for an RPG with similar themes and a
dark, gothic feel. After Activision approached
us about using the White Wolf license, we
adapted parts of this design to fit the World of

Back-Story
VAMPIRE: THE MASQUERADE—REDEMPTION success-

fully translates the popular paper-and-pencil role-playing

system to the PC environment, bringing the lush, atmo-

spheric Old-World mythos to digital life. Players take the

part of Christof Romuald, a Christian knight turned vam-

pire, in a lavish, complex storyline spanning 800 years,

from Eastern Europe to London. The game plays

through combat and the use of various disciplines, spe-

cialized vampire powers of mind and body. VAMPIRE is

notable for its addition of Storyteller Mode, which

allows players to fashion and run their own multiplayer

campaigns in the engine, just as in paper-and-pencil

gaming, a move that prefigures games, such as Never-

winter Nights, and might be a new direction for player-

driven creativity.

Nihilistic Software’s VAMPIRE: THE MASQUERADE— REDEMPTION 52

Darkness universe presented in White Wolf’s
collection of source books, and this became the
initial design for REDEMPTION.

Because of our transition from first- and third-
person action games to RPGs, we approached
our first design in some unique ways. Many fea-
tures that are taken for granted in action games,
such as a rich true 3D environment, 3D charac-
ters, and the ability for users to make add-ons
or modifications, were reflected in our project
proposal. We also adopted many conventions of
the FPS genre such as free-form 3D environ-

ments, ubiquitous multiplayer support, and fast
real-time pacing. To this we added the aspects of
traditional role-playing games that we found

most appealing: a mouse-driven point-and-click
interface, character development, and a wide
variety of characters, items, and environments
for exploration.

Using the White Wolf license also meant that
our users would have high expectations in terms
of story, plot, and dialogue for the game. It’s a
role-playing license based heavily around dra-
matic storytelling, intense political struggles,
and personal interaction. Fans of the license
would not accept a game that was mere stat-
building and gold-collecting.

In keeping with our basic philosophy, we built
up a staff of 12 people over the course of the
project’s 24-month development cycle. The bud-
get for the game was fairly modest by today’s
standards, about $1.8 million. The budget was
intentionally kept low for the benefit of both
Nihilistic and our publisher. We wanted our first
project to be simple and manageable, rather
than compounding the complexities of starting a
company by doing a huge first project. Also, we
were looking to maximize the potential benefits
if the game proved successful. For its part,
Activision was new to the RPG market and was
testing the waters with RPGs and the White
Wolf license in particular, so they probably con-
sidered the venture fairly high risk as well.

Development started around April 1998. When
we began, we examined several engine technolo-
gies available, such as the Unreal engine and the
Quake engine, but ultimately decided against
licensing our engine technology. The game we
envisioned, using a mouse-driven, point-and-
click interface, had a lot more in common with

Game Data
Release date: June 2000

Publisher: Activision

Genre: 3rd-person vampire role-playing game

Platform: Hardware-accelerated PC

Full-time developers: 12

Contractors: 8

Budget: $1.8 million

Length of development: 24 months

Hardware used: Intel and AMD PCs, Nvidia and 3dfx
3D accelerators

Software used: Alias|Wavefront Maya, Photoshop,
QERadiant, Visual C++

Technologies: 3D skinned characters, continuous
level-of-detail, custom-built 3D engine, MP3 audio
compression, lip synching

Lines of code: 300,000 for game, 66,000 lines of Java
for scripts.

Section I: STARTUPS5353

games such as STARCRAFT than even the best
first-person engines. We decided to create a new
engine focused specifically on the type of game
we wanted to create, and targeted 3D-acceler-
ated hardware specifically—bypassing the tre-
mendous amount of work required to support
nonaccelerated PCs in a 3D engine. As an added
benefit, the company would own the technology
internally, allowing us to reuse the code base
freely for future projects or license it to other
developers.

1. Letting the artists and
designers pick their tools
With such a small team and tight budget, boost-
ing the team’s efficiency was our primary focus.
If bad tools or art paths slowed down progress in
the art or level design
departments, we would
have no chance of hitting
our milestones. When we
started to map the devel-
opment project, the pro-
grammers gravitated
toward using a package
such as 3D Studio Max
for both art and level
design. Our argument
was that doing everything
in a single package would
increase portability of
assets between levels and

art, and save the company money by licensing a
single, relatively inexpensive tool.

Thankfully, however, our leads in these areas
strongly objected to this plan. They argued for
allowing each department to use the tools that
allowed them to do their work most efficiently.
This single decision probably accounted for
more time saved than any other. The level
designers cited QERadiant as their tool of
choice, since most of them had previously done
work with id Software on QUAKE mission
packs. id was generous in allowing us to license
the QERadiant source code and modify it to
make a tool customized to our 3D RPG environ-
ments.

Because QERadiant was a finished, functional
tool even before we wrote our own export mod-
ule, the level designers were able to create levels
for the game immediately, even before an engine
existed. And since QERadiant stores its data in
generic files that store brush positions, the levels

were easily tweaked and
re-exported as the engine
began to take shape. If
the level designers had
spent the first six months
of the project waiting for
the programmers to cre-
ate a level editing tool or
learning how to create
levels in a 3D art tool, we
would not have been able
to complete the more
than 100 level environ-
ments in 24 months with
just three designers.

What Went Right

Locations included both interior and
exterior cityscapes, allowing dramatic
situations such as this battle atop a clock
tower in medieval Prague.

Nihilistic Software’s VAMPIRE: THE MASQUERADE— REDEMPTION 54

On the art side, lead artist Maarten Kraaij-
vanger lobbied hard for the adoption of
Alias|Wavefront tools for 3D art. We tried to
convince him that a less expensive tool would
work just as well, but in the end we decided to
allow the art department to use what they felt
would be the most efficient tool for the job.
Since Maya was just being released for Win-
dows NT at that time, the costs of using that
toolset were not as great as we feared, and it
allowed the artists the produce an incredible
number of 3D art assets for the project. During
the 24 months of the project, an art department
of four people produced nearly 1,500 textured
models, a mind-boggling figure using any tool.

2. Small team,
one project, one
room
When we started Nihil-
istic, we had a theory
that a small number of
highly experienced
developers would be
able to produce a title
more efficiently than a
larger team with fewer
battle scars. In my
experience, success-
fully delivering a game
is less about what you
do and more about
what you choose not to
do. Most games that ship late do so because the
development team went down one or more
“blind alleys”—development ideas or strategies
that for whatever reason didn’t pan out, and the

work done in that direction is lost. As a small
team on a tight budget, we could not afford to
lose valuable time on these diversions. Experi-
enced team members have the wisdom to look
down a particular path and recognize when it’s
a likely dead end.

We also knew that we wanted an office environ-
ment where all the team members were in a sin-
gle room without any walls, doors, or offices
whatsoever. This didn’t really seem like a radical
decision—many of us got our start working for
teams that operated like this—but it seems like
these sorts of companies are becoming less and
less common in today’s industry. My first game
job was working at Parallax (now Volition) soft-

ware. We were eight
people sitting along one
wall of a narrow office
space in Champaign,
Ill. Even the original
DARK FORCES develop-
ment team was seques-
tered in a one-room
studio in a building
separate from most of
the other LucasArts
teams.

This type of environ-
ment doesn’t just foster,
but rather forces com-
munication between all
parts of the team. For
instance, a programmer

can overhear a discussion between two artists
about how to proceed with something and be
able to jump in with an answer that will save the
project days or months of work. This sort of

A set of four interactive 3D head models at
the bottom of the screen are skinned and
animated in real time to give lifelike status for
each party member.

Section I: STARTUPS5555

thing happens on a daily basis; artists correct
missteps by the technology team before they are
made, a level designer can immediately show a
bug to a programmer, and so on. Each of these
incidents represents hours or days of project
time saved. In an office environment with walls
and doors, most of these situations would go
unnoticed or unaddressed.

3. Using Java as a scripting
engine
We knew from the start that allowing the user
community to edit the game was an important
part of the design. After working in the first-per-
son action-game market, we saw the benefits of
supporting the user community
and wanted to carry this idea
over into role-playing games,
where it is not the norm. A
built-in scripting system makes
a game engine much more
extendable by fans. In JEDI

KNIGHT, we created our own
customized game language
called COG. Creating COG
took a lot of effort from the
development team; several
months of work went into cre-
ating the compiler, testing the
generated code, and imple-
menting the runtime kernel
used to execute the scripts. The
end result was worth it, but it
cost a lot in terms of time and
resources to pull it off.

When starting VAMPIRE, we looked for ways to
incorporate a scripting engine more easily than
creating our own from scratch yet again. There
were several scripting systems we examined and
tested. At about that time, another game devel-
opment company, Rebel Boat Rocker software,
was getting a lot of attention for its use of Java
technology. After exchanging a few e-mails with
lead programmer Billy Zelsnak, we decided to
give Java a try. Up to this point I knew very little
of Java, and had largely dismissed it as a lan-
guage suitable only for making icons dance on a
web page and the like.

After a crash course in Java, we did a few simple
tests incorporating it into our game engine. It

passed each one with flying col-
ors. In a matter of a few weeks,
we had solved the major chal-
lenges involved in interfacing a
standard, freely distributable
Java virtual machine to our 3D
RPG engine. From that point
on, the only maintenance
required was to add new native
functions to the scripting lan-
guage, which we did whenever
we added new engine function-
ality that we wanted exposed to
the script writers.

We also trained several design-
ers in the use of the scripting
language, and they started creat-
ing the hundreds of small scripts
that would eventually drive the
storyline of the game. Ever since
those initial tests, I kept waiting

Professional conceptual art,
such as this rendering of
Alessandro Giovanni by
contractor Patrick Lambert,
helped the characters evolve
as the art design took shape.

Nihilistic Software’s VAMPIRE: THE MASQUERADE— REDEMPTION 56

for the other shoe to drop, so to speak. I
expected to come to work one day and find out
that the Java thread was chewing up 100MB of
RAM or eating 50 percent of the CPU time, but
amazingly, the system was trouble-free through-
out development and never became a significant
resource drain. If for some reason we had hit a
dead end with the Java system late in the project,
it would have easily taken three to four months
to get back on track using a different scripting
technology. In the end, the gamble paid off. We
saved months of programmer time that would
have otherwise been devoted to creating a script-
ing environment, and the result was a system sig-
nificantly more efficient and robust than any we
could have created ourselves.

4. Storyteller mode
Throughout the project, the design slowly took
shape through a series of meetings that involved
the entire staff. Each new design element was
presented to the group and subjected to a (some-
times heated) discussion. This process of open
discussion and free exchange of ideas resulted in
a lot of the most interesting design aspects of the
game. It was in one of our earliest design meet-
ings that we came up with the idea of develop-
ing the multiplayer aspect of the game not as a
typical deathmatch or cooperative system, but
rather to create a “storyteller” or “dungeon-
master” system. The idea was inspired by the
venerable text-based multi-user dungeon
(MUD) games that date from a calmer time in
the history of the Internet.

Many of us at Nihilistic had played MUDs in
college, often to the detriment of our studies.

One thing that made MUDs so appealing was
the ability for “wizards,” high-ranking users of
the MUDs, to manipulate the game environment
and create virtual adventures for the players in
real time. The Vampire license from White Wolf
emphasizes the role of the “storyteller,” or mod-
erator, so we felt the time was right to take this
style of play out of the college computer lab and
into a commercial RPG. Implementing the sto-
ryteller system turned out to be fairly simple
from a technology standpoint. Most of the basic
functionality for a storyteller game is identical
to what would be required in a traditional cli-
ent/server multiplayer game.

The added cost was mostly in the area of design
and the user interface. It took a bit of experi-
mentation and redesign to arrive at an interface
that was powerful enough to run games as a sto-
ryteller without being overly confusing to the
novice player. The UI work included new inter-
face panels with lists of objects, actors, and
other resources, and a few buttons to manipu-
late the selected resources. Our overall design
goal for the user interface was to ensure that

Section I: STARTUPS5757

important functionality was accessible using
only the mouse, and all keyboard functionality
represented only “advanced” controls such as
hotkeys and shortcuts. Even though the story-
teller system is something used primarily by
advanced players, we wanted to preserve this
design goal, which meant quite a bit of extra UI
work to make a mouse-driven interface power-
ful enough to drive a
storyteller game.

In the end, the story-
teller feature ended up
being one of the gems
of the game design, and
resonated with both the
press and gamers alike.
Activision made good
use of the feature in
their PR and market-
ing campaigns, and we
hope the expandability
and storyteller aspects
of the game will give
the game an increased
shelf life.

5. Using experienced
contractors
One problem with our strategy of using a small
core team is that we couldn’t possibly cover all
the aspects of designing a commercial game
with just 12 people. Instead, we relied heavily
on external contractors for certain key aspects
of the game. Sound was one area where we
made use of external talent. Our colleagues
from LucasArts referred Nick Peck to us, based

on his excellent work on Tim Schafer’s GRIM

FANDANGO. Nick ended up not only supplying
us with sound effects, but also working on some
of the additional voice recording and ambient
loops. For our music, we teamed up with Kevin
Manthei who scored the Dark Ages portion of
the game, and with Youth Engine, a local duo,
for the modern-day tracks.

Even in the conceptual
stages, we used external
artists to help us sketch
and visualize the game.
Peter Chan was the
lead conceptual artist
for JEDI KNIGHT and
had subsequently
become an indepen-
dent contractor. His
work in the first
months of the project
was key in establishing
the look of the game’s
environments. We also
worked with Patrick

Lambert for character concepts and he delivered
incredibly detailed full-color drawings that
really brought the characters to life for the mod-
elers and animators.

Perhaps the most critical external relationship
was with Oholoko, a small startup spun off
from Cyclone Studios. We hired them to do our
cinematic sequences that introduce the story
and provide the endings. While starting the
project, we met with several firms specializing
in computer animation, but pretty much across
the board their rates were well beyond our

The ambitious design included parties of up
to four 3D characters, each with
interchangeable weapons and armor.

Nihilistic Software’s VAMPIRE: THE MASQUERADE— REDEMPTION 58

budgets for that part
of the game. It
seems that the high
demand for com-
puter animation
from movies and
television has driven
the larger firms’
prices beyond the
reach of typical
game budgets. By
working with a
smaller, less estab-
lished company, we
were able to get
more bang for our
buck in our cinemat-
ics, and the results
proved to be of the
highest quality.

1. Overly ambitious design
In retrospect, we were in some ways our own
worst enemy. Many of the team members had
wanted for some time to do a really huge,
ambitious role-playing game. When we actu-
ally started the project and had a budget and
schedule, we probably weren’t realistic about
how long RPGs typically take to develop, espe-
cially one that travels to four different cities
across an 800-year timeframe. We were very
reluctant to make big cuts in the design, such
as cutting one of the two time periods or

removing the multi-
player aspect.
Because of this, we
eventually had to
make the decision to
miss our first sched-
uled release date of
March 2000. We
also cut back on our
plans to release an
interactive demo
some months before
the game and scaled
back the scope of
the multiplayer beta.

Fortunately, by
expanding the sched-
ule a few months
(from March to
June), we were able
to preserve almost

all the elements from the initial design. But to
accomplish this, the art and design departments
really had to work above and beyond the call of
duty for an extended period of time. We did cut
back a bit in the area of multiplayer by remov-
ing the ability to play through the entire single-
player scenario cooperatively as a team, and
instead replaced that with two smaller, custom-
made multiplayer scenarios using levels and art
from the single-player game.

Part of this was because we did not plan prop-
erly for multiplayer when making some of the
Java scripts that drive the single-player game. If
the multiplayer game had been functional earlier
in the schedule, the single-player game scripts

What Went Wrong

All of the more than 100 3D characters, such as
Lucretia, a Setite priestess, were modeled and
animated by hand by a team of four artists using
Maya.

Section I: STARTUPS5959

might have been written from the start to be
“multiplayer friendly” and we could have
shipped more multiplayer content in the box.

2. Prototyping with a proprietary
API
When we started developing the 3D engine for
the game, which we named Nod, the 3D API
landscape was quite a bit different from how it
is now. We decided to use Glide as an initial pro-
totyping API with the belief that it would be a
more stable platform and avoid the complexities
of supporting multiple hardware through a
more general API until we had solidified the
engine a bit. However, once we had a basic,
functional engine running under Glide, the pro-
grammers’ attentions turned toward game play
and functionality rather than switching the
graphics engine to a more general API such as
Direct3D or OpenGL. Because of this “if it ain’t
broke” mindset, we expanded our support
beyond Glide fairly late in development. At the
first public showing of the game at E3 in 1999,
we were still basically a Glide-only game, which
meant we couldn’t demonstrate the game in 32-
bit modes or support some features not present
in Glide at the time.

The extensive use of Glide also gave us some
unrealistic performance estimates for other
hardware. Since Glide allows low-level access to
things like texture-memory management, we
spent significant time writing our own opti-
mized texture manager. When we switched to
Direct3D, most of this work had to be dis-
carded. Since Glide allows more flexible vertex
formats than Direct3D, some of our underlying

data structures needed to be changed, which
meant re-exporting hundreds of levels and mod-
els. We were making low-level architectural
engine changes at a stage when the engine
should have been pretty much locked down.

Also, because we switched late in our develop-
ment schedule, we probably didn’t spend as
much time as we should have on compatibility
testing with a wide variety of hardware. In ret-
rospect, we should have switched to Direct3D
or OpenGL several months earlier in the devel-
opment schedule.

3. Pathfinding difficulties
One problem we identified early in the develop-
ment process was the problem of pathfinding.
Navigation of variably-sized characters through
a completely free-form 3D environment is one
of the most difficult problems I’ve had to tackle
as a game programmer. Unit navigation is hard
enough when you have a flat 2D plane or
restricted 3D environment, but in an environ-
ment where the level designers are free to make
stairs, ramps, or any other 3D construct you can
imagine, the problem becomes exponentially
more difficult.

My natural tendency when presented with such
a sticky problem is, unfortunately, to make it
good enough for the early milestone and demo
builds, and then just “deal with it later.” Unfor-
tunately, “later” quickly became “now,” and
“now” turned into “yesterday.” We should have
tackled this problem much earlier, before the
levels were near completion. We should have
worked with the level designers to come up with

Nihilistic Software’s VAMPIRE: THE MASQUERADE— REDEMPTION 60

a set of restrictions for their levels, or some
additional tagging in the editor to specify to the
engine where characters should and should not
move. Instead, the only hints from the level-
design tool were “walkable” floor flags, but lit-
tle or no special marking of walls, cliffs, and
other pathing hazards.

Since we waited too long to address the prob-
lem, better solutions such as walk boxes or walk
zones would have taken too long to retrofit into
the more than 100 levels already in the can.
Instead, we spent weeks making small iterative
fixes to the system to hide the most extreme
errors and turn what was an “A” bug into a “B”
or “C” level problem.

4. Feature and data timing
This is a fairly common problem in games I’ve
worked on, and VAMPIRE was no different. The
technology team typically looks at the develop-
ment schedule and schedules that entire block of
time to achieve a certain feature set. Often,
however, new engine features get added too late
in the schedule to be utilized fully by the design-
ers and artists.

This happened several times during VAMPIRE.
Some of the more interesting special effects, for
example, were added only a few weeks before
the data was to be locked down for final testing.
Other features that we added couldn’t even be
implemented extensively. For example, we added
a more flexible shader language so late that only
one to two percent of the surfaces in the game
were able to take advantage of it. Some features
that we had originally planned for the engine,

like bump mapping and specular lighting, were
cut completely from the initial release because
there was insufficient time both to complete the
feature and to create art to drive it.

We softened the blow somewhat by moving
some of these features to a planned patch, which
would add them later if the game proved suc-
cessful. Unfortunately there are very few pro-
gramming tasks that don’t require some sort of
artist or designer input to find their way into the
finished product, so unless programmers spend
the last six months of the project doing nothing
but fixing bugs, some of this is inevitable. We
can justify it to a degree by looking toward the
likely sequel or add-on projects as a way to take
advantage of some of the engine work that was
underutilized in the original title.

5. Self-restraint
As the project was drawing to a close, we found
that we ended up with a bit “too much game,”
as someone put it. From the start, we decided to
author our data for a high end platform, so
we’d have a good-looking game at the end of
the 24-month schedule, and also because it’s
much easier to scale art down than up. Unfortu-
nately, we never really started to rein in our art
and design teams when we should have near the
middle of the project. Instead, we continued to
add more and more resources to the project,
resulting in a minimum installation footprint of
about 1GB.

We authored all our textures in 32-bit color and
then scaled them down at load time for 16-bit
cards. Our models were also extremely detailed

Section I: STARTUPS6161

(1,000 to 2,000 triangles each,
on average) and relied on auto-
matic level-of-detail algorithms
to scale them down for slower
machines. We lit our levels
with relatively high light-map
resolutions. All of this made
the game look great on high-
end systems but it meant the
game was fairly taxing on low-
to midrange systems.

In the end, the game just barely
fit on two CD-ROMs. We had
originally planned to include
both 16-bit and 32-bit versions
of the game textures and allow
players to choose which ver-
sion to install, but after all the
art was completed there was
no room on the CD for more
than one version. Likewise for
sounds: we wanted to include
multiple quality levels but
space prevented this. We actu-
ally compressed most of the
voice samples with MP3 and had to remove sev-
eral sounds from the game in order to fit it on
two CDs.

In the end, our game looked gorgeous but had
difficulty running on machines with less than
128MB of RAM—and even then, it used a fair
amount of space on a swap drive. This glut of
resources will also make it more difficult if we
choose to port the game to a more limited con-
sole environment.

At Last ,
Redempt ion
For the first project from a new
development startup, I can’t
imagine how things could have
gone much better than they
did, except perhaps if we could
have avoided shipping it the
same year as DIABLO II. As a
company, we managed to
accomplish the three most
important things in this busi-
ness: not running out of
money, not losing any team
members, and actually ship-
ping the product. Our pub-
lisher remained committed to
the project throughout its life
cycle, and even increased their
support as the project contin-
ued to take shape.

The course of development
was amazingly smooth, with

very few surprises or conflicts along the way. In
this industry, you can almost bet that at some
point in a two-year development cycle some-
thing traumatic will happen to either the devel-
opment team or its publisher, but for us the
waters were remarkably calm. About the most
exciting thing to happen during development
was when we lost our entire RAID server while
attempting to add drivers to it, resulting in the
loss of a few months’ worth of archived e-mails.

Our good fortune allowed the team to focus
strictly on the game and prevented distractions

Characters were created with
a budget of between 1,000 and
3,000 triangles. Boss
characters, such as Ahzra the
Tzimisce Elder were generally
the most complex.

Nihilistic Software’s VAMPIRE: THE MASQUERADE— REDEMPTION 62

from outside the company. Also, keeping our
company focused on just one title and resisting
the frequent temptation to take on more work
and more staff allowed everyone to be on the
same team with little or no secondary distrac-
tions. Hopefully, by avoiding feature creep and
a four-year “death march” kind of ending to
this saga, we can avoid a lot of the burnout that
we have seen and often experienced on other
teams. By maintaining links with both the fan
community through our web board, and with

the developer community at large by attending
shows like GDC, E3, and Siggraph, our team
was able to keep a positive attitude and high
energy level throughout the schedule. We
remain convinced that small development teams
with a single-title focus are the best way to ship
quality titles consistently, so our plans moving
forward are to staff up gradually from 12 to
perhaps 16 people over the next few months
and embark on our next two-year ordeal a little
older, a little wiser, and just a tiny bit larger.

63

Ensemble’s

AGE OF EMPIRES
by matt pritchard

I had an experience in a local computer store
recently that caused me to burst out laughing. I
had stopped to self-indulgently admire the top-
10 PC games display when I overheard the fol-
lowing exchange between two young men:

“What do you think about this one, AGE OF

EMPIRES?” wondered the first.

His companion shot back, “Aww, the Borg at
Microsoft just combined WARCRAFT and CIVILI-

ZATION to cash in on these kind of games.”

Always eager to boost our sales, I took this
opportunity to tell the young men how AOE
wasn’t the creative product of a giant corpora-
tion, but of a small group of talented people liv-
ing right in their own backyard. For us, AGE OF

EMPIRES was not only a game of epic propor-
tions, it was an epic journey for a small band of
people determined to turn an idea into a real
game company. Along the way, we laughed, we
cried, we consumed pizza and caffeine, and we
learned a great deal about making games.

Des ign ing the Past
Per fect
Obviously, AGE OF EMPIRES didn’t start out
looking like the final product. Despite some
accusations, DAWN OF MAN (AOE’s original
title) wasn’t created to be a WARCRAFT II clone.
(In fact, WARCRAFT II wasn’t released until after
AOE’s development was well underway.)
Instead, the final design was evolved and refined
over time, with a few significant design events
along the way. One of the best things I think
you can have in a game company is a staff that
plays a lot of different games. This was true of
our staff at Ensemble, and was helped in no

Back-Story
AGE OF EMPIRES gives a real-time-strategy treatment to

early world history, from 5000 BC to 800 AD, in what

many see as the real-time update to the classic CIVILIZA-

TION. Players choose one of the major ancient peoples

(each with their own characteristic strengths and weak-

nesses) and bring their nation from Stone-Age squalor

up the cultural-technological ladder to the sprawling

splendor of the empires of antiquity. The action unfolds

in real time—players harvest grain, conduct diplomacy,

marshal troops from the genre's godlike perspective,

watching their shining white cities unfold across jewel-

green landscapes. Strong play balance and beautiful

presentation have made this game a pillar of the genre.

Ensemble’s AGE OF EMPIRES 64

small part by programmer Tim Deen’s habit of
buying and actually playing almost every new
PC game as it came out.

It was Tim who brought WARCRAFT II to the
attention of the rest of the Ensemble staff. At

that time, many of AOE’s game elements, such
as resource management, empire building, and
technology research, were taking clear shape.
However, we didn’t really know what to do
about combat. WARCRAFT II was a splash of
cold water in the face, waking us up to how
much fun real-time combat could be. Several
times a week, the staff would stay late to play
multiplayer WARCRAFT. These impromptu
events continued until AOE reached the point in
development when it became more fun to play
than WARCRAFT.

Another major shift occurred a little over half-
way through development, when the designers
were looking at AOE’s localization plans. They
realized that AOE would be sold in Asia, but
didn’t include a single culture from that region.
We held a company-wide meeting and decided
to add early Asian civilizations to the early
European, African, and Middle-Eastern tribes
that we’d already developed. Though the addi-
tion would create more work for the artists and

designers, the enhanced appeal that the game
would have in Asia would make this a profitable
decision.

All of these changes occurred because the game’s
designers weren’t afraid of taking design input
from the rest of the staff. Making a game that
everyone would be proud of and would want to
play was something that got more than just lip
service at Ensemble.

Perhaps the best example of this core value is
the Wonder, the penultimate building that a
player can build and use to win the game. In
early 1997, AOE was great for slugfests, but
everyone felt that the game play needed to offer
something more. Numerous ideas were tried
and rejected. Then Mark Terrano, our commu-
nications programmer, hit upon the idea of
building an “Armageddon Clock” that would
force players to drop what they’re doing and
respond to the new challenge. AOE is chock full
of little ideas and touches that were thought up
by the artists and programmers. This participa-
tion tangibly increased the sense of ownership
and pride that we all took in the game.

One of things that is truly underappreciated
about the designer’s job is play balancing. The
designers spent months and months adjusting
costs, strength, speed, and many other statistics
in an effort to create a game that was fun to
play and yet didn’t offer any loopholes or
cheats. At this point, I realized that Tim Deen
was truly a gamer’s gamer. During development,
if any of the various iterations of AOE’s design
opened up a way for one player to take advan-
tage of another player and thus make the game

Game Data
Release Date: 1997

Publisher: Microsoft

Genre: Strategy

Platform: Windows 95 & Macintosh

Section I: STARTUPS6565

one-dimensional, Tim would find it. And when
we didn’t believe his assessments, he would
promptly show us by using the loophole to kick
our butts at the game. For the better part of a
year, play balancing was a prominent task, and
it paid off in giving AOE more staying power
and better game play than many others in the
recent crop of real-time strategy games.

Blaz ing the
Mul t ip layer Path
Multiplayer support was an integral
part of the early design, and AOE was
structured in such a way that most of
the game could not differentiate
between human and computer players.
When DirectX first came out, it
appeared that DirectPlay would be the
best choice for providing communica-
tions over the widest variety of connection
types. To support a high number of moving
units, we went with a modified game synchro-
nous model, where the entire game is simulta-
neously run on all machines. Only moves,
changes, and commands are communicated to
other machines. This approach has the advan-
tage of minimizing the amount of data that has
to be sent. The unanticipated danger of using
this model is that it can generate a condition
where the game on one machine becomes out of
sync with the game on other machines.

This caused some very hard-to-reproduce bugs
with AOE. Load metering, the process of deter-
mining how much bandwidth the game updates

required, was done before the computer AI was
completed, and was based on the data flow
model taken from human players. As a result, we
initially missed the fact that computer players
would sometimes issue large numbers of com-
mands in quick bursts. We did, however, address
this oversight with the first patch. An area where
AOE’s communications worked out better than

expected was the game’s ability to dynamically
adapt to latency. A sliding window delays the
actual game time when a command takes effect,
so that all players receive the command and do
not have to pause before executing it.

The problem of handling players who have
dropped from a game presented Mark Terrano
with difficult challenges. Since drops are unpre-
dictable, usually there is no way to know what
happened. The problem could be the game
logic, Winsock, the physical connection, or the
ISP, and could exist on either the sender’s or
receiver’s side. Getting the game to handle drops
by anyone at anytime required a great deal of
work.

All of the 2D sprites in AOE began life as 3D models.

Ensemble’s AGE OF EMPIRES 66

One of the lessons learned from the multiplayer
experience was to make full use of communica-
tions testing tools, such as automated logs and
checksums. Also, we discovered that creating a
simple communications data flow simulator
program can provide great benefits and isolate
the communications code from the rest of the
game.

DirectPlay also turned out to be problematical.
Difficult-to-reproduce bugs, quirky behavior,
and poor documentation made the going more
difficult. Guaranteed packet delivery for IPX
was one of the more notable examples. At the
CGDC, Microsoft promised to deliver this fea-
ture with DirectX 5 and even included in the
beta. However, when DirectX was actually
released, this feature was nowhere to be found.
The cost of that one missing item was the extra
time we had to spend writing our own guaran-
teed delivery system and a bad packet generator
program with which to test it.

Paint ing the Scene
AGE OF EMPIRES contains 20MB of in-game
sprite graphics. Even though all of the displays
are 2D, we decided early on that all of the
graphics in the game would be taken from 3D
models. We used 3D Studio and 3D Studio
MAX for art production. Because 3D rendering
is so time-consuming, each artist was issued two
machines each, both usually 200MHz Pentium
Pros with 128MB of RAM, which at the time
was better equipment than the programmers
were using. The objects in the game were cre-
ated as 3D models that had anywhere from a
couple thousand to 100,000 polygons. The

models were then textured, animated, and ren-
dered out to a .FLC (Autodesk Animator) file
with a fixed 256-color palette.

So far, the process I’ve described is identical to
that of many other games. At this point, how-
ever, the artists added another time-consuming
step. The .FLC files were handed off to a 2D
specialist, who took the animation apart frame
by frame and “cleaned up” each image with
Photoshop. The clean-up process involved
sharpening detail and smoothing the edges of
the irregular shapes. Since most of the sprites in
AOE had screen dimensions of only 20 to 100
pixels in each direction, the visual quality
improvement that we realized was significant.
When AOE was shown at the 1997 E3, the art-
ists received numerous compliments on their
work from their peers at other companies.

The choice to go with 3D models for the in-
game objects provided benefits for other art
needs, as they were readily available for use in
the static background scenes that appear on the
menu, status screens, and the various cinemat-
ics. The cinematics, including the three-minute
opener, were a fulltime project unto themselves.

The 256-color palette (actually 236) used in
AOE was something of a problem. The palette
was chosen and set in stone at the very begin-
ning of the project, before most of the models
and textures had been created. As a result, it
turned out that some portions of the color spec-
trum, such as browns for wood textures, had
too few available colors to get the best visual
quality.

Section I: STARTUPS6767

The palette wasn’t revised
during the development pro-
cess because that would have
required rerendering and
touching up every image in
the game—far too expensive
time-wise. On the other
hand, the palette did have a
wide and balanced range of
colors, which contributed to
the overall bright and cheer-
ful look of the game’s graph-
ics. If we do another 8-bit
color game, we’ll generate
the palette at a point further
along in the development
process.

Going for
Speed
Performance is an issue for
all but the simplest of games,
and it certainly was for AOE.
When I joined Ensemble, the
game was still in an early form and slow. The
two biggest problems were the graphics engine
(which was just plain slow) and various update
procedures, which produced occasional pauses
of up to a second in game play. If we were going
to sell to anything but the most cutting-edge sys-
tems, some serious optimization was in order.

The story gets personal here, as I did a great
deal of the work on this part of AOE. I started
by trying to get a handle on what the over
100,000 lines of C++ code did (the source

would rise to over 220,000
lines before it was finished).
After spending a few weeks
studying what we had, I pro-
posed a major overhaul of
the graphics engine structure,
including writing a major
portion in assembly. AOE’s
original design team asked if
the frame rate of a bench-
mark scenario could be
raised from its current 7–12
fps to 20 fps. I told them yes.
Inside I was sweating bullets,
hoping that I could deliver
that much improvement.

I couldn’t just go ahead and
rip out the old graphics
engine, as it would hold up
everyone else, so I spent the
next five months working
mostly on the new engine.
Along the way, I managed
some incremental improve-
ments that upped the frame

rate to 10–14 fps, but the big breakthrough
came during an all-nighter, when the last piece
of the new design was put into place. Much to
my surprise, the benchmark scenario was now
running at 55 fps. It was exciting to come back
into the offices the next day and see the formerly
sluggish animation running silky smooth.

But my work was not all on the graphics engine.
I also spent a great deal of time identifying and
optimizing myriad processes in the game. Since
the game was real-time, many improvements

Early Asian civilizations had to be
added when Microsoft
announced plans to distribute
AOE in Asia.

Ensemble’s AGE OF EMPIRES 68

involved spreading out a process over several
turns rather than of stopping the game until it
completed. In the end, the optimizations paid
off handsomely and allowed us to raise the
default resolution from 640×480 to 800×600.

A practical lesson that I learned from this expe-
rience was how much additional overhead and
slowdown a game can acquire as it approaches
completion. Often, early in a game project the
engine will show great performance—but the
game’s not finished. When you replace the sim-
ple test levels with the complex final levels, add
all the AI, UI, and bells and whistles, you can
find a world of difference in actual performance.
This was true for AOE as well. As we
approached completion and all of the loose ends
were tied off, many of the performance gains
were traded in for new features.

1. The game was broken into
separate engine and game
components
About halfway through development, there was
concern that the code base had expanded far
enough beyond the initial design in some areas
that every new change and addition would look
like an ugly hack. Lead programmer Angelo
Laudon and Tim Deen took two weeks and sep-
arated the code base into two separate sections,
the general engine (Genie), and the game itself

(Tribe). The conversion was very successful and
allowed the AOE programmers to retain a
nicely object-oriented design. The benefit here
was that it made the code much easier to modify
and extend, saving the programmers a great
amount of development time.

2. We made the game database
driven
Thanks to the object-oriented design, almost
nothing about any object in AOE is hard-coded
into the program. Instead, huge tables of infor-
mation describe every characteristic of every
object that appears in the game. The designers
used a system of over forty Paradox tables to
control and shape the game. As a result, they
were able to constantly update and tweak the
game, and then test their changes without hav-
ing to involve a programmer.

3. We stayed in close contact
and working together with the
publisher
I can’t say enough good things about how the
close contact with our publisher, Microsoft,
helped the development of AOE. By keeping
them “in the loop” on our progress, they worked
with us instead of against us as things happened.
The best example of how this relationship aided
development is the way we handled schedule slip-
page. Each time something took longer than
expected or new problems cropped up, we effec-
tively communicated the delay to Microsoft.
With a clear understanding of what was happen-
ing and why, they reaffirmed their commitment to
assist us in producing a quality game, whatever

Things That Worked
Out (S)well

Section I: STARTUPS6969

amount of time that would take. So instead of
being panic-stricken and whacked out, we
remained professional and focused on our goals.

4. We played our own game
While this may sound simple, it’s very impor-
tant. Throughout the development process,
every person in the company not only play-
tested, but played AOE with the purpose of hav-
ing fun. As a result, we were very in tune with
why the game was fun, and what people were
likely to get out of it. We had 20 guys who were
determined not to let the game play be compro-
mised or watered down.

5. Performance was good
Performance truly means a lot if you want your
game to have broad appeal. AGE OF EMPIRES

can adequately run an eight-player game in
16MB of RAM on a P120 system. Contrast that
with TOTAL ANNIHILATION, which requires
32MB and at least a 200MHz CPU for an eight-
player game. Achieving this level of perfor-
mance required a group effort. The program-
mers expended extra energy on keeping memory
consumption in check and identifying bottle-
necks, while the artists culled extra animation
frames and reorganized the graphics to maxi-
mize free memory.

6. The company respected its
employees
I have to say something about the way Ensemble
Studios treated its employees and their families.
It is well-known that software development,

especially game development, involves great sac-
rifices of time and can be hell on personal rela-
tionships. Ensemble’s thoughtful management
respected that by going out of their way to
include families at numerous company dinners
and other events, and to make them feel wel-
come to come by the offices at any time.

Additionally, after crunching hard to meet a
milestone, they would insist that employees take
a couple of days off to catch up with their fami-
lies. People were allowed flexible schedules if
they needed them, and flowers or other tokens
of appreciation were sent to the families period-
ically. The result of this deliberate action by
company management should be obvious; com-
pany morale and loyalty was higher than I have
ever seen in fourteen years of software develop-
ment. My wife loves my job as much as I do.

7. Localization really worked
From the beginning, we knew that Microsoft
wanted to release AOE in six different lan-
guages, including Japanese. About halfway
through development, we updated our code
base to provide full localization support. This
required stripping out and replacing all text ref-
erences in the source code and maintaining all
game text in an external resource file. It also
placed severe restrictions on how we could draw
and display the text. We had to use the Win-
dows GDI exclusively, something most games
shun like the plague. It also meant that interface
items such as buttons had to be sized to hold the
largest possible translated form of their cap-
tions, limiting the clever things one could do
with the design of the user interface.

Ensemble’s AGE OF EMPIRES 70

But we buckled down and did it, following the
guidelines exactly. And to our pleasant surprise,
the conversion was swift and painless. We felt
even better when the translators at Microsoft
told us that localizing AOE was the smoothest
and most pain-free project they had ever done.
The benefit to us was enormous in that we had a
single executable program file that was the same
for all translated versions of the game, thus
avoiding the huge headache that comes with
tracking bugs and releasing updates for multiple
versions.

8. We worked as a team that
respected all its members
A project of AOE’s size required that we all
work together in close quarters for extended
periods of time. One of our expressed criteria in
hiring new people is that we must be able to
respect each other. This respect, complemented
by the company’s actions towards its employees,
fostered an excellent sense of family and team
spirit among everyone. We avoided having dif-
ferent groups develop a sense of isolation from
the project, and as a result, attitudes and spirits
remained high even during the worst crunch
time. Had tempers flared and cliques developed,
I honestly don’t believe that AOE could have
made it out the door in 1997.

1. We held the beta test too late
in the development cycle
A public beta test of AOE was held in August
1997, but we didn’t come near to exploiting the
full potential of it. We were too close to the end
of the project to make any game play changes,
despite the wealth of useful feedback we
received. Manuals were already set to be
printed, and most of the design had been set in
stone. All we could really do was fix any bugs
that were found. For any future projects, we
vowed to hold the beta testing earlier.

Things That Went Wrong
Or We Could Have Done
Better

Section I: STARTUPS7171

2. There was inadequate
communication with the QA
people at Microsoft
For most of the project, bug reporting was han-
dled through a database and developers didn’t
directly communicate with the testers. As a
result many bugs wound up taking much longer
to resolve, and new features went untested. An
intermediate database was simply not enough to
let testers and developers know what the other
was really thinking. In future projects, we
would like to assign a specific tester to each pro-
grammer and have them communicate by phone
every couple of days. Near the end of develop-
ment, this did happen for a couple people—for
them productivity with testing and bug resolu-
tion was drastically improved.

3. We sometimes failed to
coordinate development through
the leads
Yet another area where personnel communica-
tion could have improved the development was
among our own teams. Each team—Program-
ming, Art, Game Design, and Sound—has a
lead person who is responsi-
ble for keeping track of what
each member of his or her
team is doing. The lead is the
go-to person when someone
outside has new requests for
the team. As the development
of AOE progressed and the
pressures rose, adherence to
this system broke down as people went direct to
get their needs filled quickly. We paid a price for

it. People didn’t know about programming
changes or new art that was added to the game,
and the level of confusion rose, creating a time
drain and distraction. We all had to stop at
times just to figure out what was going on.

4. We failed to adequately test
multiplayer games with modem
connections
One problem with our development environ-
ment is that it isn’t comparable to the typical
end user system. During the course of develop-
ment, the multiplayer portions of AOE were
tested extensively. When we played a game in
the office, our fast machines, stuffed full of
RAM, communicated with each other on our
high-speed LAN. When we tested Internet play,
our communications were handled through the
company’s T1 line. One thing that we failed to
realize in our testing was the fact that most
players would be using dial-up modem connec-
tions to commercial Internet service providers.
And it wasn’t just us; the same situation applied
to the testing labs at Microsoft. As a result,
modem connection games were undertested.
Bugs that were harmless when ping times were

low resulted in dropped
games for users on slower
Internet connections. And our
high-speed network masked
the fact that under certain
not-so-uncommon circum-
stances, AOE could require
15K of network bandwidth
per second—six times what

even a 56K modem can provide on the uplink
side. As a result, we were taken a bit by surprise

Ensemble’s AGE OF EMPIRES 72

when reports of multiplayer game problems
rolled in. Though our first patch fixed this prob-
lem, the situation was unacceptable. Now, each
developer has a modem and several different
ISPs are used, as modem testing is a big part of
our testing process.

5. Portions of development
relied on products that were not
delivered on time
There was a second reason that modem games
were undertested: problems with the delivery
and quality of DirectPlay from Microsoft. Fea-
tures that were promised, and even included in
beta releases, weren’t present when the delayed
final release was delivered. DirectX 5a wasn’t
available to us until a month before the game
shipped. In the meantime, our communications
programmer was burning the midnight oil writ-
ing the functionality that was expected but not
delivered. Waiting on promised drivers and
SDKs is one of the harder things that developers
have to deal with; even those with Microsoft as
a publisher have no control over them.

6. We did not plan for a patch
The version 1.0a patch, even though it was a
success, was problematic in that as a company
we had not planned for it. The general argument
is that if you know you are going to need to
release a patch, then you shouldn’t be shipping
the game in the first place. While one can take
that stand, it’s also a fact that no game devel-
oper’s testing can match that of the first 50,000
people who buy and play the game. Your cus-
tomers will do and try things that you never

dreamed of, while running on hardware and
drivers that you never heard of. Looking
around, nearly every significant game released
this year has had a patch or update released for
it. Rather than deny this reality, we would like
to allocate resources and expectations in the
future so that we can release any necessary
updates days or weeks after our games ship,
rather than months.

7. We didn’t manage “surprise”
events as well as we could have
During the development period, we experienced
several sudden events that caused us, as a com-
pany, to stop what we were doing. These events
included the creation of a demo version of the
game and materials for press coverage of AOE.
While most of the events were beneficial to the
company, we weren’t very good at handling
them, and they threw off our schedules. These
disruptions mostly came late in development,
when their impact was felt the most. One of our
goals for future games is to minimize the impact
of unplanned events by giving advance notice
when possible and restricting them by minimiz-
ing the number of people that have to respond
to them.

8. We didn’t take enough
advantage of automated testing
In the final weeks of development, we set up the
game to automatically play up to eight comput-
ers against each other. Additionally, a second
computer containing the development platform
and debugger could monitor each computer
that took part. These games, while randomly

Section I: STARTUPS7373

generated, were logged so that if
anything happened, we could
reproduce the exact game over and
over until we isolated the problem.
The games themselves were allowed
to run at an accelerated speed and
were left running overnight. This
was a great success and helped us in
isolating very hard to reproduce
problems. Our failure was in not
doing this earlier in development; it
could have saved us a great deal of
time and effort. All of our future
production plans now include auto-
mated testing from Day One.

Patch ing I t A l l Up
Once AOE was shipped off to production, we
threw ourselves a big party to let off some
stress. It turns out we were a bit premature in
our revelry. Shortly after AOE arrived on store
shelves we began receiving feedback on prob-
lems with the pathfinding, unit AI behaviors,
population limits, and multiplayer play. Addi-
tionally, some bugs were found that a player

could exploit to gain an unfair advantage in the
game. Management was stirred to action at
both Ensemble and Microsoft, and the decision
to do a patch for AOE was made. Although
time was taken away from other projects, and it
took longer than desired, the patch was a suc-
cess; it vastly improved the quality of multi-
player games, fixed the bugs, and addressed the
game play concerns that had been raised. And
that brings the development of AOE to where it
is today, which I hope is somewhere on your
hard drive…

The AGE OF EMPIRES development team. The author is
second from the right in the row of guys who are kneeling.

Ensemble’s AGE OF EMPIRES 74

This Page Intentionally Left Blank

75

SECTION II

Sequels and Sophomore
Outings
A sequel project (and really any company’s next
game after producing a signature hit) marks a
particular point in a company’s life-cycle.
You’ve made a game that sold, and maybe even
made a profit. Your game idea is no longer a
crazy experiment, it’s a proven commodity. The
fly-by-night startup is an actual business. People
know your company’s name, there are fans out
there with Web sites and bulletin boards, talking
about you. And your publisher is eager to make
the next deal, in fact they’ve already penciled it
in for Q4 of next fiscal year: the sequel.

There is, no question, a luxurious feeling to
doing a sequel. It’s a victory lap, an encore. So
what if you’re not blazing a trail into unknown
territory—at least you get to travel in comfort.
You don’t have to explain your high concept to
glassy-eyed listeners, waving your hands in the
air to evoke an imaginary interface. Publishers
love it. They know you’re a bankable commod-
ity now; they’ll take your calls and return your

e-mails. You are, to some extent, resting on your
laurels, and a soft comfy perch it is.

At first glance it seems like easy money—if they
bought the first one, they’ll buy the next. But
when you sit down to make a sequel, you realize
it’s not quite so simple. There are unique chal-
lenges involved. Sequels and follow-ups are
harder than they look, as the postmortems in
this section tell us.

It’s true that any company making a sequel has
several advantages. Obviously, name-recogni-
tion is one—there is a pool of people who
bought the first game and presumably liked it,
who will immediately be interested in the next
one. Financially, there’s a certain guaranteed
level of sales. There is already a community of
players out there who will buzz about it on
gaming boards, and publicize details of the
sequel on their Web sites. Game journalists will
be more willing to write a preview, since the
article has a ready-made hook. And, for better

Section II: SEQUELS AND SOPHOMORE OUTINGS 76

or for worse, you will have already have work-
ing code, proven game mechanics, and art assets
to recycle or use for inspiration when you get
down to work.

Crucially, the release of the first game has pro-
vided enormously rigorous testing of key tech-
nology and design elements. No amount of in-
house quality assurance testing can replace hun-
dreds of thousands of users out there in the real
world installing your game on any and all
machine types and display devices, now matter
how inappropriate or unlikely. If it’s for a gam-
ing console, an army of twelve-year-old boys
will have devoted weeks of their time to discov-
ering any and all flaws in the design and tech-
nology. Any flaws in the renderer, any
compatibility problems, will have been
announced in magazine reviews, and shouted
out in ALL CAPS on popular gaming forums.
The almighty power of the Internet will leave no
aspect of your game unmolested.

The feedback will also be about the design, and
no matter how painful it is, it is worth listening
to. Any imbalance in the gameplay and any
exploitable bugs in the level design will have
been thoroughly hashed over on half a dozen
Web sites, most likely with illustrative screen-
shots. The judgment-calls you agonized over in
design meetings will be re-argued endlessly in
public, and it may be clear that you should
reverse your decision in your next game, or at
least try an alternate path. Regardless, you will
know the public’s opinion, most likely expressed
in jauntily intercapped slang.

The advantages are obvious, but the difficulties
of creating a sequel game are not always as
apparent until you attempt to do it. The basic
challenge of making a sequel is paradoxi-
cal—your job is to make exactly the same game,
but more/different/better. Some things (graph-
ics? story?) have to change, but others (audio?
weapons?) must be exactly the same, yet some-
how improved and more intense. You have to
decide what the essence of the game is, what the
fundamental thing about it that worked was,
and then deliver it again in an improved pack-
age, with better graphics and a few new toys
that extend the basic concept without deviating
from it. The games discussed in this section all
seemed to succeed by innovating on the small
level, expanding and enhancing existing features
rather than transforming them.

The first time the game shipped, it had nothing
to live up to. This time, there will be a whole set
of user expectations. Not everyone likes the
same game in the same way, and some people
will inevitably complain that what they liked
about the original game is gone. Everyone will
have some idea of what you should do, or
should have done, with the sequel, how the
basic formula can be improved. Not everyone
will be pleased.

Also, as noted above, you will have existing
assets to draw upon—code, design ideas, art-
work. Again, you will have to decide what to
keep, what to tinker with, and what to scrap
wholesale. Sloppy hacks put in at the last
minute to ship the first game can be rewritten
cleanly or papered over and kept around for
next time. The question of when to fix broken

Section II: SEQUELS AND SOPHOMORE OUTINGS7777

code and when to rewrite from scratch seems to
be one of the most persistent and vexing in the
whole field of software management. The argu-
ments on both sides are endless—the pressure to
reuse assets to save production time is balanced
against the appeal of the clean slate.

It is worth noting, of course, that by the time the
sequel ships, the entire industry will have moved
forward. Any code you keep from the first game
may be three or four years old by that time, an
eternity in software years. The minimum accept-
able standard for certain features may have
changed utterly, and Moore’s Law waits for no
man.

On the production side, you will have a whole
history of development processes to follow
again, or change around—your own in-house
postmortem of what you did right and wrong
last time. Did weekly staff meetings work, or
turn into an expensive waste of time? How bad
was the crunch phase, and how can it be
avoided? This can be difficult to evaluate, espe-
cially when it involves key personalities on the
team. But a good, honest postmortem can save
months of work and hassle and pain. Get it all
out on the table, and the team will be stronger
for it.

Finally, there is the issue of team fatigue. No one
is more uniquely qualified to do a sequel than
the existing team, but chances are they are ones
most in need of a change. Unless they’re very
lucky or truly excited about the project, they’ll
be sick and tired of hockey or orcs or rabbits or
whatever the first game was about and be ach-
ing to work on something new and completely

different. Your hotshot renderer jockey may not
feel like polishing up old code—he or she may
only be interested in writing next-generation
applications. After all (they may well argue), the
team shipped a successful game, and their
reward should be a chance to be creative again,
not to grind out the same thing again.

Even if your company’s second game is not a
true sequel, many of the problems and opportu-
nities are the same. If your first game was a suc-
cess there are still challenges of continuity,
because your company now has an identity, a
vibe associated with it. It’s a brand that you
must now manage. You have a company culture
and a set of production processes that have now
shipped one game, and you have to make deci-
sions about what to keep and change next time
around.

Viewed in the wider context of the games indus-
try, sequels are likewise a double-edged sword.
In a sense, they help keep the industry alive by
reducing risk, guaranteeing a certain amount of
sales. This is incredibly important in an industry
as expensive and as risky as the game industry.
An average game published by a major game
publisher costs $5–10 million to develop, and
requires 1–3 years in development time and a
team of 10–50 developers and artists. Anything
that increases the odds of a decent return on this
investment is important, especially since many,
many games never make back their production
costs, while a handful of hits take most of the
profits. Sequels, and the brand name any studio
represents, offer a modicum of stability in a des-
perately random industry. From the point of
view of the consumer, buying a sequel means

Section II: SEQUELS AND SOPHOMORE OUTINGS 78

reducing their risk. They have a better sense of
what’s inside the box and whether it’s worth
investing their hard-earned $50.

The other side of the argument is that sequels
and copycat titles lack innovation. The dull
logic of capitalism supports design by for-
mula—what sold before will sell again. The
result is that the industry fails to move improve
and invent as fast as it should, and the shelves of
retail outlets are stacked with versions of the
same title year in and year out. Clearly both
sides of the argument contain an element of
truth.

But sequels advance the field in their own way
by refining existing styles of gameplay, innovat-
ing within known genres rather than creating
new ones. As we can see in the following post-
mortems, sequels are a chance to use what has
been learned in the first outing. Experimentation
is useful, but only if we take the time to learn
from the results, to build on the foundation.
Someday the medium of digital games will
mature, and we will have an established tradi-
tion and body of technique to build on when we
make a game. In a sense, the sequels here are a
glimpse of what that future will look like.

79

Blizzard Entertainment’s

DIABLO II
by erich schaefer

The original DIABLO went gold on the day after
Christmas in 1996, after a grueling four-month
crunch period. We hadn’t put any thought into
what game to do next, but as most developers
can probably relate to, we were pretty certain
we weren’t ready to return to the DIABLO world
after such a long development cycle. The only
thing we were certain of was that we wanted to
avoid another crunch like we had just experi-
enced. DIABLO II went gold on June 15, 2000,
after a grueling 12-month crunch period. After
DIABLO shipped, we spent about three months
recovering and kicking around game ideas for
our next project, but nothing really stuck.

The idea of returning to DIABLO began to creep
into the discussions, and after a couple of
months of recuperation, we suddenly realized
we weren’t burned out on DIABLO anymore. We
dusted off the reams of wish-list items we had
remaining from the original, compiled criticisms
from reviews and customers, and began brain-
storming how we could make DIABLO II bigger
and better in every way.

DIABLO II never had an official, complete design
document. Of course, we had a rough plan, but
for the most part we just started off making up
new stuff: four towns instead of the original

game’s one; five character classes, all different
from the previous three; and many new
dungeons, vast wilderness tile-sets, and greatly
expanded lists of items, magic, and skills. We
wanted to improve upon every aspect of the
original. Where DIABLO had three different
armor “looks” for each character, DIABLO II
would use a component system to generate
hundreds of variations. Where DIABLO had
“unique” boss monsters with special abilities,
DIABLO II would have a system for randomly
generating thousands of them. We would
improve the graphics with true transparency,
colored light sources, and a quasi-3D
perspective mode. Level loads would be a thing
of the past. The story would be factored in from

Back-Story
The DIABLO series belongs to one of the oldest of all

genres, the dungeon crawl—a lone adventurer exploring

labyrinths full of monsters, traps, and treasure, accumu-

lating experience, ability, and power. In their sequel to

the original, Blizzard added a skill system to help differ-

entiate characters and suit different playing styles and

further polished the jewel-like simplicity of the game to

refine the genre almost as far as it could go. DIABLO II's

stripped-down one-click interface, online competition,

and dynamically generated dungeons make for simple,

addictive, endless exploration.

Blizzard Entertainment’s DIABLO II 80

the beginning and actually have some bearing
on the quests.

We knew creating this opus would be a big job.
Because we had the gameplay basics already
polished, we figured we would hire some new
employees, create some good tools, and essen-

tially make four times the original game doing
only two times the work. We estimated a two-
year development schedule. The DIABLO II team
comprised three main groups: programming,
character art (everything that moves), and
background art (everything that doesn’t move),
with roughly a dozen members each. Design
was a largely open process, with members of all
teams contributing. Blizzard Irvine helped out
with network code and Battle.net support. The

Blizzard film department (also in Irvine) con-
tributed the cinematic sequences that bracket
each of DIABLO’s acts, and collaborated on the
story line.

Almost all of DIABLO II’s in-game and cinematic
art was constructed and rendered in 3D Studio
Max, while textures and 2Dinterface elements
were created primarily with Photoshop. The
programmers wrote in C and some C++, using
Visual Studio and SourceSafe for version con-
trol.

Blizzard North started out as Condor Games in
September 1993. The first contracts we landed
were ports of Acclaim’s QUARTERBACK CLUB

football games for handheld systems and, more
significantly, a Sega Genesis version of JUSTICE

LEAGUE TASK FORCE for Sunsoft. Silicon and
Synapse, a developer that would later change its
name to Blizzard Entertainment, was developing
a Super Nintendo version of JUSTICE LEAGUE

TASK FORCE. Condor ended up pitching the idea
for DIABLO to Blizzard, and halfway through
the resulting development process Blizzard’s
parent company acquired Condor, renaming us
Blizzard North.

Throughout a tangled history of corporate jug-
gling and ownership changes, Blizzard North
has remained a very independent group. Our
staff has grown steadily from about 12 at the
start of DIABLO to 24 at the start of DIABLO II,
and finally to our current group of more than
40. We concentrate 100 percent of our efforts
on game development. To help keep this focus,
Blizzard’s headquarters in Irvine manages other
functions, such as quality assurance, marketing,

Game Data
Release date: June 28, 2000

Publisher: Blizzard Entertainment

Genre: dungeon crawl

Platforms: Windows and Macintosh

Full-time developers: 40

Length of development: more than 3 years

Development hardware used: Typical programmer
workstation: 500 MHz Pentium II running Windows NT
with 128MB RAM and 9GB hard drive. Typical artist
workstation: dual 500 MHz Pentium IIs running
Windows NT with 256MB RAM and 14GB hard drive.

Development software used: 3D Studio Max,
Photoshop, Microsoft Developer Studio/Visual Studio
and SourceSafe

Notable technologies used: Glide, Direct3D, RAD
Game Tools’ Bink, DirectSound3D, and Creative Labs’
EAX.

SECTION II: SEQUELS AND SOPHOMORE OUTINGS8181

public relations, technical and customer sup-
port, as well as the operation of the Battle.net
servers. Our parent company, Havas Interactive,
deals with business functions such as sales, man-
ufacturing, and accounting.

1. DIABLO II is still DIABLO

A constant theme in previews and reviews of
DIABLO II was that we didn’t change anything; it
was more of the same. At first that struck us as
odd. We kept less than one percent of the code
and art from the first game. We rewrote the
graphics engine, changed all the character
classes and skills, shifted and expanded the set-
ting, reworked and added to the magic items,
brought back only a handful of our favorite
monsters, and designed a ton of new gameplay
elements, such as running, hirelings, left-click
skills, and random unique monsters.

Why, then, did everyone think it was the same
thing? In the end, we decided just to take it as a
compliment. The play-testers and reviewers
meant they were having exactly the same kind
of fun that they had in the original game. Both
DIABLO and DIABLO II provide a constant
source of simple pleasures, many of which are
perhaps too basic and obvious to mention in
evaluations and reviews, but which are funda-
mental to their success.

We used the term “kill/reward” to describe our
basic gameplay. Players continually kill monsters

and get rewarded with treasure and experience.
But the rewards don’t stop there. We offer a
steady stream of goals and accomplishments to
entice the player to keep playing. There’s always
a quest that is almost finished, a waypoint
almost reached, an experience level almost
achieved, and a dungeon nearly cleared out.

On a smaller scale, we tried to make every single
action fun. Moving around inventory items pro-
duces pleasing sounds. Monsters die in spectac-
ular fashion, like piñatas exploding in a shower
of goodies. We strove for overkill in this sense,
in that players are constantly on the verge of
something great—only a few mouse-clicks away
from a dozen interesting things.

DIABLO II retained DIABLO’s randomly gener-
ated levels, monsters, and treasure. This obvi-
ously allows for better replay potential, but also
serves to make each player’s game his or her
own. Players feel an ownership of their own
game experience in that they are actively gener-
ating a unique story. It’s enjoyable to tell friends
about what you have just done in the game,
knowing for sure that they have not done the
same thing. Simply following an online walk-
through won’t help them accomplish goals with-
out effort.

Finally, DIABLO and DIABLO II are easy to play.
We used what we call the “Mom test”—could
Mom figure this out without reading a manual?
If we see new players struggling with how to sell
items, we look at how they’re trying to do it and
make that way work too. We strove to make the
interface as transparent as possible. You want to
open a door? Left-click on it.

What Went Right

Blizzard Entertainment’s DIABLO II 82

Want to move to a target location? Left-click on
it. Want to attack a monster, pick up an item, or
talk to a non-player character? Well, you get the
idea. It’s amazing how many games have differ-
ent controls and key combination for all these
actions when simpler is always better.

2. Blizzard’s development
process
Blizzard’s development process is designed to
ensure that we make a great game. While our
goal is to meet the milestones we set, our pro-
cess, in terms of design and business, is struc-
tured to allow us to wait until the game is as
good as it can be before we ship it. We recognize
that not all developers have this same opportu-
nity, but many of the methods we use along the
way are applicable to any development environ-
ment.

First, we make the game
playable as soon as pos-
sible in the develop-
ment process. Our
initial priority was to
get a guy moving
around on the screen
and hacking monsters.
This is what players
would be doing most of
the time, and it had to
be fun. We were con-
stantly able to hone the
controls, pathfinding,
and feedback mecha-
nisms during the entire

length of the game’s development. Most impor-
tantly, it allowed us to determine what was fun
to do, so we could provide more of it, and dis-
cover what was awkward or boring, so we could
modify or remove it.

For instance, it became obvious very early that
players would be killing large amounts of the
same monsters, and those monsters would pre-
dominantly be attacking the players. This gave
us the opportunity to plan for multiple death
sound effects and additional attacking anima-
tions for each monster. If we hadn’t experienced
the core gameplay as early as we did, combat
would have ended up feeling much more repeti-
tive.

Also, we constantly reevaluate gameplay and
features. Up until the very end, if we can make
the game better we will, even if it means redoing
big tasks. For instance, we decided that we
didn’t like the Bone Helmet graphics for the

The player characters have modular armor of three varieties, light,
medium, and heavy, which were mixed and matched to provide more
individualized character appearances. “Paper dolls” created on paper
and in Photoshop allowed mixing and matching of different pieces of
armor to see how they worked together on the Barbarian.

SECTION II: SEQUELS AND SOPHOMORE OUTINGS8383

characters more than a year after having ren-
dered them, but we went ahead and remade
them, even though it took a couple of weeks and
the collaboration of four artists. Only weeks
away from scheduled beta testing, we scrapped
our Act IV level layout schemes because they
were just a bit too empty
and similar. The last-
minute fixes turned these
levels into some of the
best, befitting their climac-
tic function. DIABLO II
took more than 40 people
and over three years,
essentially because we
made two or three games
and pared them down to
the best one.

Another gigantic reason
for our success is our open
development process. We
strive to hire people who
love games, and we make
games that we want to
play. Every member of the team has input into
all aspects of the game. Discussions around the
halls and at lunch become the big ideas that
shape the game. A programmer suggested to a
designer the concept of gem-socketed, upgrade-
able weapons, which turned out to be a huge
crowd-pleaser. A musician’s dislike for the old
frog-demon’s animation inspired us to redo it.
As a team, we don’t have to wonder what our
audience wants, because we are our audience.

If we like the game we are making—especially
if, after two years of playing it, we are not bored

to death—the game is clearly going to be a win-
ner.

3. Character skill tree
Our most revolutionary new idea was the char-

acter skill tree. For a char-
acter to attain more
powerful skills, he or she
must master prerequisite
skills. The ability for char-
acters to branch into dif-
ferent areas of the skill
tree, and to choose a level
of specialization in each
skill along the way, pro-
vides truly unique charac-
ters. At the start of
development, we planned
to use the model from the
original DIABLO: charac-
ters would find and read
books to learn spells and
skills. Unlike DIABLO,
which had 28 spells shared

by all three characters, we wanted to create a
separate group of 16 skills for each of our five
new character classes. This would definitely
have been an improvement, but every character
of a given class would still end up knowing all
the same skills as other members of their class.

Another problem was that players would likely
be finding spell books for other character classes
much more often than for their own. The skill
tree solved these problems. The general idea was
taken from the tech trees many strategy games
employ. In strategy games, players advance by

Creating detailed sketches of settings,
such as this hut in the Act III dock town
of Kurast, preceded the actual
modeling of background art. Much time
was spent perfecting Act I since it
would likely be used in a beta test or
demo. The Amazon was the first
character to be completed.

Blizzard Entertainment’s DIABLO II 84

researching new technologies, which in turn
open up further avenues of research. We
adapted this to have our characters advance by
choosing a new skill or strengthening an old
skill every time they gain an experience level.
Characters can gener-
alize by choosing a
wide variety of skills,
or specialize by allo-
cating many skill
choices into a small
group of skills.

We also created a
strategy element of
choosing skills you
might not use, just so
you can get to one
further up the tree
later.

The end result of the
skill tree is that one
player can develop a
Necromancer who
kills monsters with a powerful poison dagger
skill augmented by curses that cause monsters to
fight each other, while his friend’s Necromancer
will summon hordes of skeletons to fight for
him, and doesn’t use any curses at all. The lon-
gevity of DIABLO II will be enhanced by the end-
less strategies that can be debated and
experimented with.

4. Quality assurance
The task of testing a game of DIABLO II’s scope,
with its huge degree of randomness and its

nearly infinite character skill and equipment
paths, required a Herculean effort. We found we
could not play-balance the climactic fight
against Diablo without actually playing the
entire game up to that point, because we could

not predict what
kinds of equipment a
character might have,
or what path through
the skill tree he or she
may have followed.
This meant 20 or 30
hours of play for all
the different charac-
ters, with a good vari-
ety of skill sets and
equipment for each.
Whenever we
changed the game’s
treasure spawn rate
or experience curve,
we had to test it all
again.

Further complicating
matters were multiplayer and difficulty-mode
balance. Would a party of five Paladins, each
using a different defensive aura, be untouch-
able? After more than 100 hours of play, is a
fire-based Sorceress unable to continue in “Hell
mode”?

The QA team created a web-based bug-report-
ing database through which we categorized and
tracked all bugs, balance issues, and gameplay
suggestions. In the end, this list delineated more
than 8,300 issues and suggestions. Well-orga-
nized teams of testers concentrated on different

The architecture in DIABLO combines aspects of
many different cultures in order to arrive at an
interesting mix that doesn’t look too much like
any single one. Here, the buildings of Travical
from Act III are based on Mayan and Aztec
references.

SECTION II: SEQUELS AND SOPHOMORE OUTINGS8585

aspects of the game, divided into groups that
would specifically test character skills, item
functionality, monster types, and spawn rates,
or explore the countless variations found in the
random level generation system. The members
of the QA team became very good players and
astute observers of the progress of the game.
Everything worked much more smoothly than
our experiences with the original DIABLO.

5. Simultaneous worldwide
release
In the past, Blizzard’s strategy for shipping its
game has been to get games on North American
retailers’ shelves as quickly as possible after the
English version of the game went gold. With the
original DIABLO, we created our gold master on
December 26, and some stores had it on the
shelves by the 30th. Since DIABLO was released,
the percentage of international customers had
increased substantially, and with DIABLO II, we
fully expect more than half of our sales to come
from outside North America.

With such a large number of customers located
outside the United States, for DIABLO II we
decided that there would be significant advan-
tages to coordinating the U.S. release to coincide
with the rest of the world, not only to build
anticipation for the product, but for the benefit
and satisfaction of our customers as well. If we
release a game in the United States first, custom-
ers in the rest of the world don’t want to wait a
few months while we translate and localize it for
their country. Due in part to the international
climate fostered by the Internet, players around
the world all know about the game at the same
time and want to get it while it’s hot. They
might buy the U.S. version under the table or
search out a pirated copy. Worse, they might
lose interest by the time we release a localized
version.

DIABLO II’s simultaneous worldwide release also
allowed our marketing and PR departments to
focus their efforts toward creating a frenzy of
interest for the first week of sales. Although the

While the player characters are only seen in
the game as 75 pixels tall, all were modeled
and rendered in high resolution for use on
the character selection screen and in
promotional materials. Here, the Paladin
stands tall.

Blizzard Entertainment’s DIABLO II 86

simultaneous release was a logistical headache,
it was all worth it in light of DIABLO II’s superb
success.

1. Developing the new
Battle.net
We have always been very proud that our com-
pany launched Battle.net with the original
DIABLO. Just a couple of months after DIABLO

shipped, Battle.net was the largest online game
service in the world. At DIABLO II’s launch, Bat-
tle.net had more than 6 million unique active
users. Despite the original DIABLO’s success
online, we knew as we began development that
to create the type of multiplayer experience that
we wanted to achieve in DIABLO II, we would
need to fundamentally change the game net-
work.

And, as we expected, this became one of our
biggest challenges during development. We had
to reinvent Battle.net’s structure by melding
existing technology with new programming and
feature sets. This had implications across the
board. We had to rethink everything—program-
ming, hardware, bandwidth, staffing, online
support, and how we could financially support
this model while keeping it free.

Although the original Battle.net had been fur-
ther modified to support STARCRAFT as a chat
and matchmaking service, for DIABLO II we
needed much more: game servers where the

Realm games would actually be played, secure
character-data servers, and game tracking sys-
tems. Trying to shoehorn these elements in the
existing Battle.net system proved very difficult.
For instance, we planned to have character
names represent players in Battle.net, but it was
designed to handle chatting between account
names.

It took a lot of design and implementation time
to arrive at our final system, where users see
character names but have to send remote mes-
sages to account names. We initially believed
that working with the existing Battle.net would
save us time, but in retrospect, we learned that
melding technologies is a difficult process, and
in some cases, recoding instead of integrating is
the better course of action.

What Went Wrong

Characters and monsters, such as this
Vampire, were created in 3D Studio Max. An
in-house tool would render the files from many
different angles (eight for all monsters, 16 for
player characters), and export them in the file
formats used in the game.

SECTION II: SEQUELS AND SOPHOMORE OUTINGS8787

2. Launching the new Battle.net
The success of Battle.net after DIABLO’s launch
created a new challenge for us. When DIABLO

was released, Battle.net was a new online ser-
vice. Basically, we were able to ramp up as more
customers joined the service. When DIABLO II
shipped, Battle.net had millions of users. The
level of anticipation was higher than for any of
our other games. We were well aware of the
expectations, and we knew that no other com-
pany had ever attempted to
create and sustain an online
service that could support
the type of usage DIABLO II
would experience right out
of the chute.

We spent countless hours
preparing for Battle.net’s
DIABLO II debut. We
teamed with the best ISPs in
the word, and conducted
months of internal and external beta testing. We
ramped up bandwidth and hardware. We beefed
up the Battle.net, quality assurance, and support
service teams.

Although we had more than 100,000 people
testing the DIABLO II Realms, having more than
one million customers in just three weeks
proved to be very different from beta testing.
The beta test was very successful in uncovering
many stability issues that were addressed before
the launch. After the game shipped, we faced
bugs that only appeared at much higher usage
rates. The issues that we faced at launch were
ones that could not have been simulated in a
beta test of 100,000 people. It took a much

larger influx of players to trigger certain situa-
tions.

Knowing the massive scope of what we were
trying to achieve with Battle.net, we had mea-
sures in place at launch to help us deal with
issues that arose as usage increased. For
instance, we maintained both a team of pro-
grammers and the entire quality assurance
department to solve problems as they appeared,
and had our support team working overtime.

We also had an action plan
in place to increase hard-
ware and bandwidth as
needed. In some respects,
we are victims of our own
success. We underesti-
mated sales, but we also
underestimated the allure
of playing on the Battle.net
Realms. By solving the
cheating problem in

DIABLO and enhancing Battle.net with new fea-
tures—such as the ability to see everyone’s char-
acters in the chat room—we seem to have
attracted a larger share of Battle.net players
than with any of our previous titles.

3. Graphics
Shortly before DIABLO II shipped, we began
noticing some feedback from customers about
the resolution of the graphics in the game. They
were frequently labeled “outdated” or “pixel-
lated.” The shame is that the technology choices
we made eclipsed the recognition of the fantas-
tic job the artists did. We put a lot of effort into
creating characters, monsters, and landscapes

Blizzard Entertainment’s DIABLO II 88

with a lot of unique character. The game dis-
plays an incredible amount of action happening
onscreen in an easy-to-follow manner. Still, with
all the negative reaction, we probably should
have done it differently. When we began pro-
ducing art for DIABLO II in mid-1997, we inves-
tigated a lot of options. We mocked up a 3D
engine and checked out voxel systems. It didn’t
take us long to go back to what we used in
DIABLO: 2D graphics at 640×480 resolution
with 8-bit color depth. At that time it was still
the only way to get eight characters, upwards of
30 monsters, and upwards of 100 missiles all
interacting on the screen at one time without
sacrificing detail and atmosphere.

The graphics criticism caught us by surprise. We
thought (and still think) that the game looked
great. We probably should have built in a scal-
ing technology to take advantage of hardware
that could display the same graphics at higher

resolutions. In any case, DIABLO II will probably
be our last 2D game.

4. Tools
We developed the original DIABLO with almost
no proprietary tools at all. We cut out all the
background tiles by hand and used commercial
software to process the character art. Spells and
monsters were balanced by verbal estimates
(“Hey, let’s make the lightning about ten percent
weaker.”).

DIABLO II’s vastly increased scale required much
better tools, and we made some, but not
enough. In many cases we created tools to speed
up content creation, but then abandoned them.
Too often, we decided to keep using inferior
tools because we thought we were almost done
with the game, and didn’t want to take the time
to improve them. Unfortunately, in most of
these cases, we were not really almost done with
the game, and in retrospect, a couple of weeks’
worth of work would have helped in the year or
more of development remaining.

The greatest deficiency of our tools was that
they did not operate within our game engine.
We could not preview how monsters would look
in the environments they would inhabit. We
couldn’t even watch them move around until a
programmer took the time to implement an AI.
Even after that, an artist would have to hassle
someone to get a current working build of the
game to see his creation in action. Our sound
effects engineers ended up painstakingly creat-
ing .AVI movie versions of animations in order
to synch sounds with actions.

The Barbarian, translated from the sketches into
a full, high-polygon model. Each part of a
character’s armor (the head, the torso, the legs,
each arm, a weapon, and a shield) was rendered
separately with in-house tools.

SECTION II: SEQUELS AND SOPHOMORE OUTINGS8989

Our lack of tools created
long turnaround times,
where artists would end up
having to re-animate mon-
sters or make missing back-
ground tiles months after the
initial work was completed.
We should have made tools
that let us create content
within the game engine.
Instead of just handing off a
set of animations and hoping
they looked all right when
dropped into the game, art-
ists should have had the abil-
ity to position and
orchestrate their creations
themselves. The extra tool
development time would
have been more than offset
by increased efficiency and
higher-quality work.

5. Save-game
methodology
As much as we tried to make
a frustration-free game, we
seem to have failed some
people with our save-game
scheme.

Eschewing the common save-game feature we
used in the original DIABLO’s single player
mode, where every facet of the game state can
be saved to files and reloaded at will, we opted
to make all modes behave more like DIABLO’s
multiplayer game. In DIABLO II, we do not save

the world state. Reloading
the game resets the location
of monsters and treasures
every time. The character is
placed in the town he or she
last visited, not in the wilder-
ness or a dungeon.

Although this choice was
slightly controversial around
the office, it had a lot of
advantages. For one, players
could not get stuck, unable
to progress further. At any
time you can restart in town,
refight the same monsters for
more experience and loot,
and return to a difficult area
when ready. We created a
waypoint system that allows
characters in new games to
return quickly somewhere
close to where they quit the
previous game. Finding new
waypoints is a rewarding
mini-goal during play. We
also wanted to discourage
the type of play where play-
ers feel they must always
save the game right before a
difficult section, then con-
stantly die and reload until

they get lucky and make it through. Finally, it
was just easier to make single-player games and
multiplayer games work the same way, and mul-
tiplayer requires the method we used.

Some of the many locales in Act II:
The Sand-Maggot lair (top),
Jerhyn’s Palace (middle), and the
Sewers (bottom).

Blizzard Entertainment’s DIABLO II 90

A lot of players don’t like our decision. They
feel it is too inconvenient to have to fight their
way back though the same areas and monsters.
Many also want the opportunity to experiment
with skill choices and equipment purchases,
then later revert the game back to an earlier
state if they don’t like the results. There are
good points on both sides, and we probably
didn’t spend enough time developing alterna-
tives.

The F ina l Word
Many more things “went right” than could fit in
that section. Our internally controversial plan to
tell a separate but parallel story through our cin-
ematic sequences seems to have succeeded, and
the workmanship and quality of these sequences
has set a new standard. Our marketing and PR
departments did a fantastic job building cus-
tomer awareness and creating a frenzy of inter-
est. DIABLO II’s music is outstanding, and along
with an amazing array of sound effects, contrib-
utes hugely to the atmosphere of the game.

The development of DIABLO II is a remarkable
success story. We got the opportunity to make
the game we wanted to make—and the game we

wanted to play. DIABLO II turned out to be a
great game, one that many of us still play every
day. Initial sales figures are phenomenal, and
reviews have tended to be better than those of
its predecessor. We have gained a lot of experi-
ence that should help us make even better games
in the future. The only major downside to
DIABLO II’s development was the inhuman
amount of work it required. A year-long crunch
period puts a huge burden on people’s relation-
ships and quality of life.

Our biggest challenge for the future is figuring
out how to keep making giant games like
DIABLO II without burning out. As a start, we
are hoping our experience will help us do a bet-
ter job scheduling and managing the workload.
We also believe that taking the time to make
better tools will make things easier at the end of
projects. Although I tried to avoid personalizing
this article, I am extraordinarily proud of the
entire development team. DIABLO II could not
have happened without all the superb individual
efforts, the incredible creativity, and the whole
team’s dedication to the project, for which they
have earned my gratitude, and no doubt that of
the legions of players who enjoy the game.

91

Epic Games’

UNREAL TOURNAMENT
by brandon reinhart

UNREAL TOURNAMENT, released in November
1999, was, in a way, an accident. After the orig-
inal UNREAL was completed, Epic wanted to fol-
low up the project with some sort of add-on
pack. UNREAL multiplayer code was very poor,
so the team felt that an expansion that improved
multiplayer would be ideal. As feature lists grew
and patches to UNREAL were released, the add-
on turned into a complete and independent
game.

UNREAL TOURNAMENT has certainly seen a very
nontraditional development cycle, one that I feel
would not have succeeded in any other genre.
Ultimately, our decisions paid off, because the
game earned more than five “Game of the Year”
awards and is consistently rated in the top nine-
tieth percentile in reviews. The online commu-
nity is producing excellent expansions and
modifications to the game and we feel that
UNREAL TOURNAMENT will be around for a
long time to come.

Ear ly Deve lopment
A proper look at the development of UNREAL

TOURNAMENT begins with the completion of
UNREAL. The Unreal engine was four years

under development and the team was wearing
down. When the game shipped, it met with a
large amount of acclaim, but that positive image
was tarnished over time as hardcore players
began to complain about the terrible network
support. The UNREAL team was now faced with
several more months of work on the game,
essentially to bring it to the point it should have
been at when it was put on shelves.

Early in the process, plans were discussed to
work on an official Epic add-on to UNREAL. The
add-on would introduce much-improved net-
work play, new maps, and probably some new
game features. The original ideas for the add-on
were never put on paper, and it never had a
name. I was hired by Epic in August 1998 to
assist with patching UNREAL. Eventually I
started to write new code for the add-on with
Steve Polge.

Back-Story
UNREAL TOURNAMENT is the sequel to one of the defini-

tive first-person shooters, UNREAL. For UNREAL TOUR-

NAMENT, Epic shifted from a hybrid of single-player

exploration and multiplayer deathmatch to a purely glad-

iatorial format. UNREAL TOURNAMENT has no single defin-

ing innovation, but multiple game modes, inventive level

design, and improved AI make it a solid incremental

improvement to the genre.

Epic Games’ UNREAL TOURNAMENT 92

Initial work on the add-on in early summer
1998 was made difficult by the fact that Epic
was a virtual company. The last year of
UNREAL’s development took place in Canada,
with the U.S.-based Epic team flying back and
forth to work with Digital Extremes in London,
Ontario. When UNREAL was finished, no one at

Epic wanted to travel anywhere, but at the same
time the team recognized that they needed to
move to a central location. The team decided to
relocate all of its employees to Raleigh, N.C.

By September 1998 everyone was together or
had a travel plan. Work started to come together
rapidly on the add-on project. Steve Polge had
laid the groundwork for several new game types,
including Capture the Flag and Domination. The
level designers had five or six good maps ready
for testing. Throughout sporadic but intense
meetings, the team agreed to focus the add-on
entirely on improving the multiplayer aspect of

the game with new features and better net code.
The amount of content grew, and we soon real-
ized we had a much larger project on our hands
than we had originally thought. In November,
after meetings with our publisher GT Interactive,
Mark Rein suggested we turn the add-on into a
separate game. Initially, the team opposed the
idea. We wanted to finish the project quickly and
move on to something fresh. The promise of a
much higher profit potential, coupled with our
recognition of the state of the project finally led
us to agree with GT. In December, the name
UNREAL: TOURNAMENT EDITION was chosen,
with “Edition” subsequently dropped from the
title.

A Game Takes Shape
Epic’s internal structure is extremely liberal,
probably the most liberal in the entire gaming
industry. Programmers work on the projects
they want to work on, with major features being
assigned to whoever steps forward to take on
the task. Artists work with level designers but
are given significant design freedom. Level
designers work on the kinds of maps they think
would be cool. This design philosophy pervaded
UNREAL TOURNAMENT’s development. In
December, I downloaded a sample of a new
UNREAL mod under development by an Austra-
lian named Jack Porter. The mod, UBrowser,
was a server browser using a Windows-like
GUI. It was impressive, so I showed it to James
Schmalz, lead designer at Digital Extremes, who
said, “We need that, we need to hire this guy.” A
few weeks later Jack was a part of the team,
expanding his UWindow GUI and reworking

Game Data
Release date: November 1999

Publisher: Info Games

Genre: first-person shooter

Intended platform: Windows 95/98/NT, Linux

Project budget: $2 million

Project length: 18 months

Team size: approximately 16 developers

Code Length: 350,000 lines of C++ and UnrealScript

Critical development hardware: Pentium II 400s
with 256MB RAM and Voodoo 2 or TNT-based cards

Critical development software: Microsoft Visual
Studio, 3D Studio Max, UnrealEd

SECTION II: SEQUELS AND SOPHOMORE OUTINGS9393

UNREAL TOURNAMENT’s menus to use the sys-
tem.

Jack fit into the team perfectly, bringing a com-
plete solution for the interface and menus as
well as his own independent programming ini-
tiative. Weekly meetings infused order into our
chaotic corporate structure. Everyone would
debate and yell about what features were cool
and what features sucked.

The assignment of major features was largely
automatic. Tim Sweeney
worked on improving net
code and engine fixes. Steve
Polge wrote the original AI
code and focused on adding
player orders and other
improvements (in addition to
filling out the new game
types). Jack had the window-
ing system and a lot of menus
to work on. Programmer Erik
de Neve was in Europe put-
ting together level-of-detail
code as well as experimenting
with next-generation technol-
ogy. I worked on the single-
player game, game-play fea-
tures, scoreboards, HUDs,
special level actors, tutorials,
and wrote a lot of the game’s
story and character back-
ground content.

The best features were added
entirely by the initiative of
individuals. Level designer

Cedric “Inoxx” Fiorentino designed CTF-Face,
an extremely popular Capture the Flag map. I
added the Multi-Kill system after a short discus-
sion with lead designer Cliff Bleszinski sparked
the idea, and Jack implemented decals shortly
before we shipped. It was this individual creativ-
ity that ultimately bound the team together.
Each new feature infused everyone with the
enthusiasm to add more.

Once the first batch of new player models,
weapon models, and maps was completed we

realized we had a game quite
different from UNREAL. Feed-
back from the UNREAL death-
match community (including
the highly vocal QUAKE com-
munity’s complaints) also
drove our designs. Subtle
alterations to player move-
ment and control changed the
feel of the game completely.
Some changes in game
play—such as whether to
enable weapon-stay in single
player—were controversial, so
we held polls on popular
UNREAL message boards.

Throughout the spring and
summer of 1999, Epic was
pursuing contract renegotia-
tions with GT Interactive.
Everyone believed the game
could ship at any time, so
development became stop-
and-go. We would be in a
code lockdown one week and

The characters in UNREAL
TOURNAMENT were designed to
be futuristic pit fighters. The
selection of characters include
ex-military specialists,
criminals, and alien warriors
such as the Necris Phayder
Assassin pictured above.

Epic Games’ UNREAL TOURNAMENT 94

adding major new features the
next. The result of this jarring
development cycle was good and
bad. The periods of code lock-
down allowed us more time to
play-test and fix bugs, which con-
tributed greatly to the game’s
overall polish. On the other hand,
it prevented us from adding many
features that would have other-
wise been included, and it was
detrimental to the morale of the
team. We liked working on
UNREAL TOURNAMENT, but it still
felt like old technology to us. The
world had seen the Unreal engine;
we were ready to move on.

New Code , New
Features
As it turned out, though, we had a lot of time to
enhance the engine. UNREAL was before its time,
and a lot of the content and code was rushed by
the need to ship. With UNREAL TOURNAMENT,
the team had a lot of time to use previously
unexplored engine features. Erik de Neve’s level-
of-detail code ended up really speeding the game
up, giving us room for beefier characters and
more map decorations. Early on we experi-
mented with using 16 256×256 textures per
player, but opted for three or four 256×256
pieces out of memory considerations. This qua-
drupled the detail available to our skin artists
for the player models. Reserving one of the
256×256 textures for the head alone allowed us
to mix and match body skins with heads, yield-

ing a massive amount of customization with
only a small amount of work. Another one of
the 256×256 textures was reserved for team
color bits, so that a player skin could encompass
all five possible team colors (none, red, blue, yel-
low, green) without too much memory use.

Level design didn’t stand still either. Changing
from single player to deathmatch-oriented
design was refreshing for the designers, but not
without its unique challenges. One issue was the
task of balancing the number of “hardcore”
maps with “theme” maps. A hardcore map
focuses entirely on layout and game play, while
the overall style of the map comes second.
Theme maps, on the other hand, focus on a uni-
fying idea or look and build from that. For
example, the Koos Galleon, designed by Pancho
Eekels of Digital Extremes, is a large sailing

A close-up shot of the Black Thunder skin on Shane Caudle’s
Male1 model. This was one of the first new skins developed
for UNREAL TOURNAMENT.

SECTION II: SEQUELS AND SOPHOMORE OUTINGS9595

ship. It’s a very beautiful level, but focuses on
the theme of being a ship more than being a
deathmatch map. The UNREAL TOURNAMENT

team decided that mixing the two styles was the
best approach.

While most magazine reviews have expressed
frustration at the theme-oriented maps, we
didn’t want to appeal to only the hardcore

crowd. Including maps
that were designed for
their look and feel
increases the game’s
interest to average play-
ers who aren’t skilled
enough at the game to
benefit from hardcore
designs. Realism through
textures and architec-
ture is one of the Unreal
engine’s strengths and it
was critical that we
exploit that strength.
Ultimately, we shipped
UNREAL TOURNAMENT

with somewhere around
45 to 50 maps, offering
more than enough vari-
ety and replay value for
everyone.

Another task we faced
was choosing which of
UNREAL’s weapons to
keep and which to ditch.
UNREAL TOURNAMENT

has two firing modes,

which makes designing a weapon like designing
two weapons in one. UNREAL’s stinger and dis-
persion pistol were not needed in UNREAL

TOURNAMENT. Those weapons were good in
UNREAL, because a player needed to start with
simple, weak weapons and build up. In UNREAL

TOURNAMENT, all the weapons had to be
equally effective and carefully balanced. A
player good with the minigun needed to be
lethal with it. A player good with the pulse gun
needed to be lethal with it. Eventually we settled
on the current load-out, but made quite a few
gameplay changes to the weapons that stayed
from UNREAL. Each weapon was also given a
much more beefed-up look and sound.

In the End ,
I t A l l Worked Out
While the talents and devotion of individual
team members created the content, the overall
team spirit tied it together. UNREAL TOURNA-

MENT’s design process was often reckless, but
the game that resulted is nevertheless very pol-
ished and a hell of a lot of fun. The deathmatch-
focused first-person shooter doesn’t need a
story, dialogue, or scripted sequences, which are
all features that more or less require an orga-
nized design. Had we applied our hodgepodge
design approach to a more focused genre, we
probably would not have had such a successful
game. UNREAL TOURNAMENT should not be
seen as a lesson in how to design a game, but as
a lesson on how to organize a small team of
developers.

Epic hired several
extremely skilled
contractors to assist
with art production.
This is an extremely
detailed female skin
by Steve Garofalo.

Epic Games’ UNREAL TOURNAMENT 96

1. Smart internal marketing
team
At the front of Epic’s public relations were
Mark Rein and Jay Wilbur. Their job was par-
ticularly difficult during the development of
UNREAL TOURNAMENT. The media perceived us
as impossible upstarts, tak-
ing an engine with terrible
net-play and attempting to
compete against id Soft-
ware, the industry multi-
player champion. Both
Mark and Jay fought hard
to win over supporters in
the online and magazine
press. Mark made sure that
the team stayed profes-
sional and that everyone
was saying what he needed
to be saying. Jay hunted
down potential engine lic-
ensees, and helped establish
a level of curiosity among
the community and media.

UNREAL TOURNAMENT

was able to garner signifi-
cant magazine coverage
because of the ongoing
“QUAKE killer” debates.
Mark and Jay worked to
turn the initially negative

public response into something positive. While
we felt that our game would definitely stand on
its own, we had to ensure that the positives were
being clearly broadcast. Epic was very careful to
avoid mentioning QUAKE 3: ARENA whenever
possible, keeping the focus solely on UNREAL

TOURNAMENT’s features and staying away from
comparative previews.

Most interviews and previews would ask us the
inevitable “What about QUAKE 3?” question, to

which we tried to answer
with complete respect for
id’s project. Everyone knew
that UNREAL TOURNA-

MENT and QUAKE 3 would
be pitted against each
other. Mark and Jay estab-
lished very early on that the
competition would be
friendly.

2. Liberal
internal structure,
open design
discussion
The laid-back environment
that both Epic and Digital
Extremes fostered greatly
enhanced the quality of
UNREAL TOURNAMENT.
Everyone was free to sug-
gest or implement an idea.
Programmers had as much
design freedom as anyone

What Went Right

UNREAL TOURNAMENT’s deathmatch
maps were not constrained to any one
particular theme or timeframe. Cliff
Bleszinski’s DM-Barricade, shown
above, is a castle floating above a
storm, while Pancho Eekels’
DMGalleon is a massive ship sailing
the ocean (bottom).

SECTION II: SEQUELS AND SOPHOMORE OUTINGS9797

else on the team. Cliff Bleszinski (Epic) and
James Schmalz (DE) were the lead designers of
their respective companies and served as content
filters. They worked towards focusing the ideas
put forth in the meetings. In addition, both of
them contributed significantly to the final game
content. James designed two of the player mod-
els and created many skins and faces, while Cliff
designed many of the game’s best maps.

Team members were allowed to come into work
when they wanted and stay however long they
felt like being there. The only requirement was
that every member attend a weekly design and
focus meeting. This system worked because Epic
was very careful to hire mature, dedicated
employees and the core development team was

kept small. The open hours often saw team
members working a 24-hour day, sleeping on a
couch for six hours, and then working another
24-hour day.

In addition to fostering a hardcore work ethic,
the system created a sideways information flow.
A programmer would go straight to the artist he
needed something from, instead of through an
art director. The fast communication allowed
the programmers to stomp out bugs relatively
quickly and the level designers to talk directly to
the texture artists. An example of this was the
single-player ladder system. Shane Caudle
designed the art and I wrote the code. The fewer
people we had to consult in order to complete
the task meant a much faster turnaround.
Everyone participated in giving the “coolness
factor” thumbs-up or thumbs-down, but the
actual development process was intentionally
kept thin.

3. Direct communication with
the gaming community
Nearly every Epic and Digital Extremes
employee frequented message boards dedicated
to the subject of UNREAL and UNREAL TOURNA-

MENT. The majority of Epic employees were
drawn directly from the gaming community,
either through mod projects or independent
game work. Keeping in contact with the gaming
community allowed Epic to focus on the target
audience during the design process. Beyond our
direct communication with the UNREAL commu-
nity, we also trolled QUAKE 3 message boards,
reading the discussions of the fans of our lead
competitor’s game. Learning what people liked

After the release of UNREAL TOURNAMENT, the Epic
team started working on a free bonus pack
containing additional models. These are concept
drawings of the Skaarj Warrior model for the pack.

Epic Games’ UNREAL TOURNAMENT 98

in a first-person shooter
and why they liked it
helped us change the
marginal multiplayer
experience in UNREAL to
the much faster paced
gameplay in UNREAL

TOURNAMENT.

The gaming community
can really help set the
tone for your game.
When UNREAL was
released, the online com-
munity became
extremely vocal and
angry about the state of
the net play. While most
magazines had reported
positive experiences with UNREAL’s single-player
mode (reflected in positive reviews), the media
eventually came to reflect the cries of the hard-
core gaming community. This was in part
because the net play was poor, but also due to
the fact that many members of the gaming
media are themselves hardcore game players
and visit those same message boards and com-
munity outlets.

We also learned that while the hardcore commu-
nity is very vocal, it is also relatively small.
Designing a game to appeal to that community
alone is a critical mistake. Early in 1999 we
started work on tutorials for each game type.
The tutorials are far from definitive, but they
did cover the basics of playing a 3D shooter.
Testing on the parents and grandparents of team

members demonstrated
that the tutorials were
useful for attracting and
keeping new players.

This community-minded-
ness greatly contributed to
the quality and complete-
ness of UNREAL TOURNA-

MENT. We had a very
good idea of what players
wanted. As I mentioned
earlier, we often posted
controversial design ques-
tions on public message
boards to gauge public
reaction. The results of
these polls were taken into
consideration when the

feature in question was implemented.

4. Strongly object-oriented
engine design
The Unreal Tournament engine’s strong object-
oriented design makes it extremely modular.
This modularity allowed our programmers to
make massive changes to parts of the game
without affecting other features. Each sub-
system is connected to other subsystems through
a clearly defined interface, and platform-specific
code is consigned to separate libraries. Creating
the Linux port, for example, was simply a mat-
ter of rewriting an input and sound device and
writing a Linux version of the platform-specific
library behavior.

In the Assault game type, players have to
enter a heavily defended base and
complete map-specific objectives to win.
Assault was the most difficult UNREAL
TOURNAMENT game type to design,
balance, and play-test.

SECTION II: SEQUELS AND SOPHOMORE OUTINGS9999

Throughout UNREAL TOURNAMENT’s develop-
ment, Tim Sweeney and Steve Polge worked on
improving the networking code. The modularity
of the engine meant that their work didn’t dis-
turb anyone else’s work. Some features, such as
Jack’s decal system, were added very late in the
project. The decal system added a lot of depth
and feedback to the game, and took less than a
week to get working and fully debugged. Erik de
Neve’s mesh level-of-detail code touched only a
handful of source files. This ease of use is also
reflected in the engine’s
scripting language, Unreal-
Script. Calling it a scripting
language is a misnomer; it’s
actually a lot like Java.
Weapons, pickups, level
events, AI nodes, and other
world actors are all inde-
pendent objects.

A weapon can be added to
the game without touching
any source files but the new
object definition. This
highly extensible language
meant that each program-
mer could add extensive
new game-play features with a very limited set
of potential side effects. In the end, 90 percent
of UNREAL TOURNAMENT’s game-play code was
written in UnrealScript.

The Unreal Tournament engine’s modular pack-
age system coupled with UnrealEd makes the
game a mod-creation system out of the box. We
designed a lot of our code with amateur exten-
sion in mind. Everyone at Epic recognized the

value of the mod community and we wanted to
make the game attractive to new artists and pro-
grammers. Constructing game code in this way
made it much easier for us to prototype our own
new features. Early UT weapons and pickups
were child objects of UNREAL. The two games
can easily coexist even now.

5. Good timing
As I said earlier, UNREAL TOURNAMENT was

developed in the same time
period as id Software’s
QUAKE 3: ARENA. The two
games promised to be of
the same genre and the two
companies were known for
a high level of competition.
While we tried to avoid the
“QUAKE 3 vs. UT” compar-
isons, they ultimately
worked in our favor. The
high level of public interest
in the new engine war
greatly increased our visi-
bility. Magazines and Web
sites often posted split pre-
views instead of focusing

on one game in particular. Interviews with id
employees would always lead to UNREAL TOUR-

NAMENT questions and vice versa.

UNREAL TOURNAMENT took almost exactly a
year and a half to develop, giving the team a lot
of time to pack in features. We didn’t have to
focus on writing an engine from scratch, so we
were free to focus entirely on improvements. At
this point, we’ve released three patches for

Steve Polge, our AI and game play
programmer, made the bots
understand the unique advantages
and disadvantages of each weapon.
Here a bot is moving in very close to
use the powerful Flak Cannon.

Epic Games’ UNREAL TOURNAMENT 100

UNREAL TOURNAMENT that have solved a
handful of relatively minor problems. The team
has had a lot of time available to spend on add-
ing even more features to the game since its
release, instead of fixing outstanding issues. By
the time this article hits the stands, we’ll have
released our first bonus pack: a free collection
of new models, maps, and game-enhancing fea-
tures.

1. Bad timing
Many aspects of the game’s timing worked
against us. While the QUAKE 3 vs. UT hype
increased our exposure, it also set a very hard
deadline for completion. It was critical that we
complete the game before QUAKE 3 was
released. The media advantage belonged to id
and we believed that if UNREAL TOURNAMENT

launched after QUAKE 3, we would be forgotten
in the storm. At the same time, however, we
were caught up in grueling contract renegotia-
tions with GT Interactive. We did not want to
deliver the completed game until we knew the
contract would work in our favor. Many times
during the development of the game we were
promised that a resolution to the contract issue
was close at hand.

The team would race to reach a point where the
game could be shipped, only to have negotia-
tions drag on. The gold master was delivered to
GT days after a final contract was agreed upon.
Unfortunately, the game hit shelves in Novem-

ber, pushing us very close to QUAKE 3’s release
date. While UNREAL TOURNAMENT often per-
formed better than QUAKE 3 in reviews, we
believe that sales would have been much higher
still had we released in October. Word-of-mouth
is a powerful force and the extra month would
have given us time to build a larger community
before Christmas.

2. No central design document
While I am a big supporter of open, cabal-style
design, I have to stop and wonder how UNREAL

TOURNAMENT would have turned out had we a
strong initial design. It’s quite possible that the
game’s weaker elements would have been much
stronger if we had put together some concept art
and focus material. In reviews, we have been
criticized for not having enough variation in
characters. If UNREAL TOURNAMENT had had a
library of concept art to draw from, we might
have had more interesting alien warriors. The
story is more or less nonexistent in UNREAL

TOURNAMENT, but at times we considered hav-
ing in-game cut-scenes as rewards for a player’s
progress. The idea was dumped, but a design
document might have made it easier to visualize
those scenes.

I suppose this isn’t really a “what went
wrong.” It’s simply more of a “what we should
have done.” I think it’s important to think
about the game in that light. UNREAL TOURNA-

MENT is a very fun game with a lot of features
packed into a short amount of development
time. Those features were largely added
through spur-of-the-moment decisions. A more
unified approach to design would have allowed
us to construct features that play on features,

What Went Wrong

SECTION II: SEQUELS AND SOPHOMORE OUTINGS101101

or even think of ideas we didn’t have the per-
spective to realize.

Epic will always be a very open, liberal com-
pany when it comes to the design process. If we
develop a design document, we’ll use it with the
understanding that it can be modified at any
time. That having been said, I think there is a
definite positive argument for having some sort
of central guide to everyone’s ideas. Having the
ability to sit down and look over the big picture
is very valuable.

3. Co-development across two
countries
Epic Games and Digital Extremes co-developed
UNREAL TOURNAMENT. The Digital Extremes
team was located in Canada and Epic was
located in the U.S. Epic supplied the program-
ming team and a large group of content design-
ers. Digital Extremes provided level designers, a
sound guy, and texture artists. James Schmalz,
the high-up man at Digital Extremes, contrib-
uted two of the game’s player models and a lot
of art. This co-development worked well for
the most part, but near the end of the project it
became very difficult. During UNREAL, Epic
team members flew to Canada to work at Digi-
tal Extremes’ offices. With UNREAL TOURNA-

MENT, it became Digital Extremes’s turn to do
the traveling. Unfortunately, flying and driving
back and forth every couple of weeks is a very
draining experience. Many of the Digital
Extremes team members spent several weeks
away from their wives and girlfriends. Near the
end of the project, they grew increasingly frus-
trated with the situation.

To compound this problem further, Digital
Extremes and Epic were attempting an expensive
merger. As UNREAL TOURNAMENT came to a
close, it became clear that the merger would not
happen. It was prohibitively expensive for a
small company to move across the border. Many
Digital Extremes team members already had
apartments and plans for living in Raleigh, and
the news of the terminated merger process was
devastating.

Much to Digital Extremes’s credit, the company
quickly recovered and moved to its backup plan
of developing its own game with the Unreal
Tournament engine. Nonetheless, the process of
co-developing the game had taken its toll on
everyone. The ups and downs of the merger pro-
cess had a negative effect on team morale. Had
the co-development happened between compa-
nies more closely situated, it would not have
been a problem.

UNREAL TOURNAMENT used from three to four
256×256 textures per model. This allowed us to
focus a lot of detail in the head and face area.
Within the game a player can choose a skin and
then swap through several different faces.

Epic Games’ UNREAL TOURNAMENT 102

4. Not enough artists
On the content side, UNREAL TOURNAMENT

was held back by the number of available art-
ists. Epic’s artist, Shane Caudle, is a supreme
Jack-of-all-trades, creating skins, models, and
levels of the highest quality. He spent most of
his time working on new player models and
skins for those models. Digital Extremes
brought a few texture artists to the table, but
not enough to create the huge libraries of new
textures needed for the game. In order to sup-
plement the skin and texture production, Epic
turned to contract artist Steve Garofalo.

Even with the additional help from external
sources, the team was unable to produce enough
new textures. Level designers who wanted cus-
tom textures for their maps had to make do
with their own texturing ability. While the final
texture and level count in UNREAL TOURNA-

MENT is quite high, the levels would have been
much more impressive had the team been able
to act with full freedom. Since the completion of
UNREAL TOURNAMENT, Epic has hired both
Steve Garofalo and John Mueller to strengthen
the art team for future projects.

5. Visual Basic editor interface
The Unreal Tournament engine uses UnrealEd
as its level design and content management tool.
For several years, UnrealEd has used a window-
ing interface written in Visual Basic. The VB
code is fragile and very old. Add to this the fact
that nobody at Epic except Tim Sweeney knows
or cares about VB, and you have a level design
team that is stuck with a tool that’s not easily

updated. Several interface bugs have plagued
UnrealEd for some time and nobody on the
team had the time or inclination to fix them. If
we had a more easily extensible tool, the team
would have been able to add extra features to
the editor for level designers to use. As it stood,
the editor was considered “off limits” for new
features.

Where We Go f rom
Here
The things that went wrong are, all in all, much
less significant than what went right. UNREAL

TOURNAMENT could have benefited from a
more focused initial design and a more solid
ship date, but it turned out to be very polished
and a lot of fun. Many of the factors that
worked in our favor, like timing, also worked
against us to some extent. “What went wrong”
is a good way of looking at what we could have
done to make UNREAL TOURNAMENT even bet-
ter.

UNREAL TOURNAMENT served as a good learn-
ing tool for the team. We have a good idea of
what processes we need to adopt to produce
larger, more story-driven games in the future.
We see UNREAL TOURNAMENT as a good lesson
in how to organize a team and produce a game
in a short amount of time. The team has grown
socially, and everyone is much more experienced
in the process of game development. We feel
very prepared to face the upcoming challenges
and, hopefully, to continue to be seen as innova-
tors in the industry.

103

Westwood Studios’

TIBERIAN SUN
by rade stojsavljevic

Ever since the release of Westwood’s DUNE 2 in
1992, real-time strategy (RTS) games have
become the hottest-selling computer games
around. Countless RTS games were released
soon afterward including COMMAND & CON-

QUER (C&C), RED ALERT, WARCRAFT II, AGE

OF EMPIRES, and TOTAL ANNIHILATION. These
games have propelled the genre to new heights
and have drawn an increasing number of fans.

After the success of C&C and RED ALERT, the
team at Westwood Studios started work on
TIBERIAN SUN, the sequel to C&C. To build the

game, we assembled a team that consisted of
veterans from C&C and RED ALERT along with
a couple of new faces, including me. We started
with the goal of taking what made C&C fun
and expanding it even further. To begin the
development process we reviewed what makes a
great RTS game and came up with one answer:
tactics. Westwood doesn’t build games based on
a specific technology and we never sell technol-
ogy over the game play. We have a firm belief
that a great strategy game must have interesting,
fun, and new tactics that afford players a multi-
tude of unique ways to play a game. We wanted
TIBERIAN SUN to appeal to a broad audience, yet
also appeal to core game players and fans of the
series.

Towards this goal, we continued to apply a
“wide and deep” approach to designing the tac-
tics we created. Wide and deep essentially means
a nice assortment of diverse yet readily apparent

Back-Story
COMMAND AND CONQUER is one of the widest-selling

series of all time for the PC, a real-time strategy game

set in a future history of Western allied nations, terrorist

cults, and rogue mutants. Like any good sequel, TIBE-

RIAN SUN took the familiar formula up a notch with new

units, improved AI, and cinematics starring big-money

actors, such as James Earl Jones.

Westwood Studios’ TIBERIAN SUN 104

tactics that, under the surface, contain an even
greater number of tactics. With this approach,
you can provide first-time players with a num-
ber of different things to do while letting more
experienced players discover new and advanced
tactics on their own. These design goals made
working on the game more challenging—as if

being the biggest project in Westwood Studios’
history wasn’t enough.

1. Maintained C&C style of
game play
One of the most difficult tasks we had to over-
come during the development of TIBERIAN SUN

was to maintain the feel of the original. When
making a sequel, the question that always has to
be answered first is, How far do you stray from
the original game to make it compelling, yet still
familiar? The intent with TIBERIAN SUN was to
maintain, as much as possible, the feeling of the
original while providing new and interesting
tactics for players to master. To aid in this goal,
when adding a new feature we asked the ques-
tions, “Is this consistent with COMMAND &
CONQUER?” and “How can we make it easier
and even more exciting?”

In this area, it really helped to have a develop-
ment team that worked on the previous games.
They were able to draw from previous experi-
ences to create a consistency in the game
dynamics. This gave the team a great deal of
independence since everybody already had a
good idea of how the game was supposed to
look, play, and feel. The main areas we focused
on in order to be consistent with previous games
were the user interface and unit behavior. We
knew we had to keep the sidebar metaphor for
unit construction, but we wanted to update it to
accommodate new features, such as unit queu-
ing, waypoints, and power/energy control.

For unit behavior there was a set of rules that
we had to conform to, specifically how a unit
deals with player commands so that its internal
logic never overrides a player’s orders. One of
the times we tried to change the rules was when
harvester threat-avoidance logic was intro-
duced. I remember hearing lead designer Adam
Isgreen screaming at his computer when his har-
vesters refused to obey his orders to retreat. We
decided to scrap that idea shortly afterward.

What Went Right

Game Data
Release date: September 1999

Genre: real-time strategy; science fiction

Intended platform: Windows 95/98/NT 4.0

Project length: 36 months

Team size: 25 full-time, 15 part-time developers

Critical development hardware: Pentium Pro and
Pentium II machines, 200 to 450MHz dual-processor
with 128 to 256MB RAM,
Creative Labs sound cards, Windows 95/98/NT, SGI
02 workstations, BlueICE accelerators

Critical development software: Microsoft Visual
C++, Lightwave, 3D Studio Max, Discreet Flint, Adobe
Photoshop, Adobe After Effects, Adobe Illustrator, Avid
Media Composer, Filemaker Pro, Deluxe Paint

SECTION II: SEQUELS AND SOPHOMORE OUTINGS105105

It was important for the
overall visual presentation
of the game to bear a resem-
blance to its predecessors in
order to maintain a consis-
tent artistic style. We
decided to alter the perspec-
tive slightly, rotating the
camera to create a three-
fourths isometric perspec-
tive that afforded a better
sense of depth and realism
in a 3D perspective. It was
at this point that we decided not to use a polyg-
onal engine since it wouldn’t be possible for us
to keep the system requirements low enough to
achieve the mass-market appeal that we wanted.
Also, at the time we planned to release TIBERIAN

SUN, 3D accelerator cards and systems weren’t
fast enough for us to maintain the visual detail
we wanted for the hundreds of units and struc-
tures on-screen at once.

2. Working on a sequel to a
successful franchise
Being the fourth RTS game Westwood has done,
there were a lot of lessons learned that the team
was able to carry forward into TIBERIAN SUN.
First, we had an established and streamlined
user interface. This user interface has been a
cornerstone of Westwood RTS games since
DUNE 2, and we’ve been gradually improving it
ever since. Anyone who has ever played a West-
wood RTS is immediately familiar with the con-
trols and can jump right into the action.
Additionally, the interface is simple and intuitive
enough to let new users become comfortable

with it in a short time.
Another nice benefit of mak-
ing a sequel is that we had a
set of basic features we knew
worked based on previous
games. These provided a
solid foundation that could
be expanded upon and modi-
fied as needed.

We started with features
from the previous games that
we knew we wanted and

updated them to fit a world that was 30 years in
the future. Tanks evolved into two-legged mech-
anized walkers, soldiers could now use drop
pods launched from space, and cloaking tech-
nology advanced to yield a stealth generator
that hid many units and buildings at once.
When it came time to create the story, we
already had the basic framework in place. There
was a very rich and fascinating world to draw
upon when creating new characters for this
story. The one difficulty encountered was mak-
ing sure the story could stand up on its own and
be accessible to new players without subjecting
players familiar with previous games to mind-
numbing exposition. To solve this problem, we
set the story 30 years after the end of the origi-
nal, which provided an opportunity to create an
outstanding introduction that showed players
what had been going on in the world.

3. Team experience and
cohesion
The TIBERIAN SUN development team is one of
the most experienced and professional teams

Concept sketch of an Orca
bomber.

Westwood Studios’ TIBERIAN SUN 106

I’ve ever had the privilege of
working with. For many of
the team members, this was
the fourth RTS game they
had done (the previous being
DUNE 2, C&C, and RED

ALERT). This level of experi-
ence was key in allowing the
team to conquer all the
obstacles thrown in their
path.

Even though I had worked on
half a dozen titles before I
started on TIBERIAN SUN, at
first it was a little unnerving
for me to be working with a
team of this caliber. Several
members of the programming
team had worked together on
previous Westwood RTS
products and were accus-
tomed to each other’s coding
styles. New programmers
were quickly assimilated into
the team and were able to adapt well. The cod-
ing rules and Westwood libraries allowed the
programmers to familiarize themselves with
each other’s work with minimal difficulty.

The designers had worked on previous RTS
games and were very familiar with the universe
before we started the project. This saved several
months since no one had to familiarize them-
selves with anything except the design for TIBE-

RIAN SUN. The tools used were derivatives of the
C&C and RED ALERT editors, which also mini-
mized the ramp-up time required before they

could produce missions. The
designers worked well
together and were friends;
something that helped a lot
when there were differences
of opinion. It proved to be
very beneficial to know that
you could argue your point
and not have to worry that
the person you were arguing
with would hold a grudge
afterward.

Without the technical knowl-
edge and creativity of the art-
ists on the project, we would
have suffered a great deal of
pain when integrating art-
work. Like most projects,
TIBERIAN SUN had a specific
set of technical criteria that
had to be satisfied when cre-
ating art for the game engine.
On this front, we reaped the
rewards of having artists who

had done it all before. They had worked with
our programming team and knew the tools well
enough that they were able to head off potential
problems before they could get out of control.

The cinematic artists had much of the same
experience; they didn’t have as many technical
restrictions as the in-game artists, which
allowed them to be able to express unbridled
creativity. The cinematic artists didn’t have to
deal with frame limitations or palettes. Also,
compared to previous games, the movie player
in TIBERIAN SUN allowed for full-resolution

Concept sketch of a GDI Titan.

SECTION II: SEQUELS AND SOPHOMORE OUTINGS107107

movies (as opposed to previous games where
every other line was cut out) using 24-bit color
depth and a 15FPS frame rate. I still remember
the first time we saw the movie in which the
Mammoth Mk. II laid waste to an entire Nod
base by itself; it left everyone in the room
speechless.

The final piece was the management team.
Under executive producer Brett Sperry’s strong
leadership, we established systems to deal with
routine tasks, facilitated communication
between the teams, and were able to avoid a lot
of problems early on. Brett
has always been very pro-
tective of the C&C fran-
chise and with TIBERIAN

SUN, his clear and consistent
vision of where the game
should be was absolutely
critical to the project.

4. Balancing
process
Balance is one of the things
that can make or break a
RTS game. It’s one of the
hardest things to do on the
design side of the product
since you’re essentially try-
ing to optimize an equation
with dozens of independent
variables. If you get it wrong, you’ll have a bor-
ing game and a horde of disgruntled fans curs-
ing your name forever.

When the issue of balancing comes up, you’ll
often hear about the “rock-paper-scissors” idea,
but I like to think of it more in terms of a chess
game. You’ve got a lot of different pieces, each
with a unique function and set of strategies that
takes a long time to master. Having made sev-
eral RTS games before, the team knew how to
balance a game. We started with two
approaches: one scientific and one artistic. Using
the scientific approach, we started with the rela-
tively simple idea that in a steady state units
with an equivalent cost should do equivalent
damage to one another. The basic idea is that if I

have $1,000 worth of units
and you have $1,000 worth
of units and they fight, the
fight better be really close.
From here, we kept adding
variables until we had a rel-
atively playable game.

The next step was a lot
more artistic and was where
experience really paid off,
keeping the team from long
periods of fumbling around
blindly. We played count-
less games with each of us
championing one side vs.
the other, carefully noting
how effective units and tac-
tics felt against one another.
We would get together after

each game to compare notes, argue our points,
get into fights, and then make one change at a
time to the game and try it again until we were
all satisfied with the results.

Nod bikes fire at an underground
UFO. Nod bikes flee from the
ensuing explosion.

Westwood Studios’ TIBERIAN SUN 108

The whole process took about three months for
TIBERIAN SUN, compared to six months for
C&C and four months for RED ALERT. Even
after the countless games we played against one
another, we still got into shouting matches dur-
ing close multiplayer games. When this happens,
you know you’ve got a winner on your hands.

5. Mission design
Mission design is one of the most important ele-
ments of RTS games. Based on experience with
previous games, Westwood has established a
series of processes that are used whenever a mis-
sion is created. We’ve
designed these pro-
cesses to foster creativ-
ity, maximize
efficiency, and pro-
mote communication
between the design,
programming, art, and
management groups.
This process has been
refined on every
project, and we’ve
taken it to the next
level with the upcoming FIRESTORM add-on.

The process begins with a mission design pro-
posal submitted to the lead designer and pro-
ducer. The proposal is a two- to three-page
document that contains summary information
about the mission such as name, side, difficulty,
map size, mission type, and so on. The mission
briefing is included along with a description of
what the briefing movie should be and all of the

critical information that must be revealed to the
player. Mission objectives are listed as they
would appear in the game, along with specific
information on how to achieve the objectives.
Win and lose conditions are created, as well as
descriptions of the victory and defeat movies
that play at the end of a mission. The last things
included are all of the new voice and text mes-
sages used in the mission.

Once this proposal has been approved, the map
for the mission is sketched out on paper. We’ve
found that this process can save a great deal of

time since it eliminates
distractions and allows
the designers to get an
overall view of the map
quickly. When the
designers finish sketch-
ing their mission, they
proceed to the editor
and begin to create the
basic battlefield. Ter-
rain is laid down first,
followed by buildings,
roads, trees, and pave-
ment. The final step to

complete a mission is to take a map and add
scripting, which takes approximately two-thirds
of the time to create a mission. One of the great
things about TIBERIAN SUN is that the editor is
tied directly into the game, which allowed
designers to switch rapidly between the editor
and the game. This feature also proved to be a
liability, however, because if a bug appeared that
prevented the game from running, we couldn’t
run the editor, either.

A Nod obelisk of light incinerates its attackers.

SECTION II: SEQUELS AND SOPHOMORE OUTINGS109109

TIBERIAN SUN features a good blend of produc-
tion (such as building bases) and nonproduction
missions that keep the pace of the game interest-
ing and challenging. We tried not to do the same
mission twice and added variety by combining
mission types into nonproduction/production
missions that switch from one to the other when
players reach specific objectives. Branching mis-
sions were added to give players the option of
completing sub-missions before they tackled the
main objective. By playing sub-missions first,
the player makes the final objective easier and it
gave the designers added granularity when cre-
ating the difficulty levels for the game.

1. Unrealistic expectations
The degree of hype and expectations that TIBE-

RIAN SUN had to fulfill was staggering. We had a
team of experienced developers who wanted to
beat their own expectations while simulta-
neously building a game
that would be everything
the fans of the series
expected and more. This
was not a realistic goal
since it’s just not possible
to make something that
will meet everyone’s
expectations. One of the
things that we did not do
was explore all of the new
features to their logical
conclusions. This would

have allowed us to do a lot more with a smaller
feature set and provide an even better game.

A perfect example of a feature that was begging
to be used more is the dynamic-battlefield con-
cept. The basic idea behind the dynamic-battle-
field concept is that players’ actions alter the
battlefield. For example, a player could set fire
to trees to burn a path into an enemy’s base. We
wound up cutting this particular feature because
it caused path-finding problems. Also, battles
with heavy weapons would cause cratering of
terrain which hindered unit movement. We
could have used it to create more new strategies
for players, and since it was one of the more
expensive features in the game, we could have
squeezed a lot more use out of it.

Trying to fill the shoes left behind by RED ALERT

proved to be daunting. If you had asked a dozen
people what they expected out of TIBERIAN SUN

before it was released, you would have heard a
dozen different answers. We devoted a lot of
effort to add as many features into the game as
possible instead of just trying to make the best

game we could. Getting
into a feature war is one
of the worst things that
can occur during develop-
ment because it siphons
effort away from adding
the “fun” to the game.

2. Feature creep
TIBERIAN SUN started
strong and we developed
a robust and large feature

What Went Wrong

On location at Red Rock, Nev. Chandra,
McNeil, and Brink pose on the Kodiak
Bridge.

Westwood Studios’ TIBERIAN SUN 110

set we intended to fulfill. The project started
smoothly, but as we progressed, the temptation
to add new features not included in the design
document grew. These features arose out of
shortfalls in the original design, omissions from
the original design, and input from fans. Every-
body stresses the importance of working off of a
design document and not deviating from it.
Unfortunately, this just isn’t realistic since every
product evolves during the
course of development
and sometimes the origi-
nal design proves to be
lacking. A team has to be
able to incorporate new
ideas during development
if the final project is to be
better. However, the flip
side of this idea is that the
team must be able to cut
features diplomatically
when it is in the best interest of the project.

TIBERIAN SUN‘s development had many chal-
lenging moments when features had to be cut
for one reason or another. A perfect example of
this was the ability to order a limited number of
units through a drop-ship loading screen before
a mission. This sounded like a great idea on
paper and we had already coded it and incorpo-
rated it into the game. It wasn’t until we actually
played with it that we realized it just didn’t fit
and had to be removed.

Looking back at the project, I think we could
have been more aggressive in cutting or chang-
ing certain features to make sure their returns
were really worth the development investment.

I’m a firm believer in the idea that less is more
and that fewer but more fully developed fea-
tures are the way to go. If a feature isn’t amaz-
ing, you should cut it or make damn sure it
becomes amazing before you ship the product.

3. Post-production
complications, compositing woes

TIBERIAN SUN features the
most complex and high-
est-quality cinematic
sequences Westwood has
ever done. These movies
help drive the story ele-
ments forward. However,
these movies came at a
very high price. West-
wood has a soundstage
with a bluescreen and in-
house post-production

capability that allowed us to handle the entire
production ourselves. We’ve done several differ-
ent projects with video, including RED ALERT,
DUNE 2000, and RED ALERT RETALIATION for
the Playstation.

Based on these past experiences, it was decided
that we would push the limits of what we could
do in TIBERIAN SUN. We started by fully story-
boarding every scene in the script. From the sto-
ryboards, we built concept sketches of the major
sets to be constructed (practical as well as com-
puter-generated) and proceeded to build the sets
Before the shoot there was a three-month lead
time for our team of six 3D artists to build the
sets. We wanted to have the sets 100 percent

Umagon prepares for a take.

SECTION II: SEQUELS AND SOPHOMORE OUTINGS111111

complete so we would have camera and lighting
information to match up with the live actors.

For various reasons, the pre-production for
TIBERIAN SUN was much shorter than it should
have been. If you’ve ever worked in film or tele-
vision production, you’ve probably heard the
phrase “we’ll fix it in post.” Believe me when I
say there’s a reason why this little phrase can
spook even the most veteran members of any
production crew. Anything
you have to fix after the fact
winds up being ten times as
difficult and ten times more
expensive than planning for
it in the first place. Every-
body on the team knew this,
and we tried as hard as we
could to work out all the
details before we started the
shoot. The problem was we
didn’t have enough time and
couldn’t change the date of
the shoot because we
wouldn’t have been able to
get our two main actors,
James Earl Jones and
Michael Biehn.

Going into the shoot, we
had a pretty good idea of
how we were going to work
out all of the technical details such as camera
tracking on a bluescreen, matching lighting to
computer graphics, compositing, and so on.
However, we ran into difficulties because we
didn’t allow enough time for the more complex
shots and were forced to edit on the fly during

the shoot. An unforeseen problem during the
post-production was that we dramatically
underestimated the storage and network
requirements of working with 60 minutes of
digitized video. Westwood has a very robust and
fast network with a large amount of storage
space, but it was never designed to meet the
needs of video post-operation. An amazing
effort by the MIS staff and a couple of called-in
favors got us enough storage space on the net-

work to keep going.

From the start, the team
struggled to get video from
digital beta to the SGI– and
PC–based compositing sys-
tems. Footage was digitized
on an Avid system and cop-
ied to file servers for distri-
bution to the PCs. The SGIs
grabbed the footage directly
from tape using built-in digi-
tizing hardware. From the
compositing stations, vari-
ous shots were completed
and transferred back to a file
server to be compressed and
put in the game. This, along
with the fact that many indi-
vidual scenes were worked
on by several artists, multi-
plied the storage require-

ments several times over.

In the end, the video assets were spread across
four separate file servers and took up well over
500GB of space. Not only was space a problem,
but moving hundreds of megabytes of files a day

Concept sketch of a GDI carry-all.

Westwood Studios’ TIBERIAN SUN 112

from machine to machine became a bottleneck.
A few minutes here and there to transfer files
doesn’t sound like much until you add it all up.
If we had it to do over again, we could have
alleviated the problem by building a very spe-
cialized (and expensive) network, by getting
hardware that allowed artists to digitize their
footage directly from tape, or by reducing the
scope of the project and sidestepping the prob-
lem entirely.

4. Locked documents too early
One of the side effects of schedule slippage was
that we locked our documents too early in order
to achieve the localization plan. We knew this
was going to wind up causing us significant
pain, but at the time there was nothing we could
do to avoid it. The result turned out well, but a
lot of time and effort was spent to make every-
thing work together. At the point when we
locked the audio script, mission design and bal-
ancing were not complete. As we played
through the missions, we realized that certain
objectives were not clear and needed to be
explained further.

The previous method for doing this was to have
the in-game AI persona (Eva or Cabal) relay the
information to the player through voice cues.
This was not an option for TIBERIAN SUN, how-
ever, since we made the switch to professional
voice talent for Eva and Cabal. Costs and sched-
uling didn’t allow us to do as many pickup
recording sessions as we wanted. Also, the
locked audio scripts were already localized and
recorded, which made recording additional lines
out of the question.

The only option available was to redesign the
missions or add text to the missions to make the
objectives clearer. Redesigning the missions
would have added at least a month to the
already late schedule, so we quickly ruled that
option out. We wound up going with text that
popped up in the missions, although the original
design called for all text in the game to be
accompanied by a voice-over.

5. Scheduling problems
As with most projects in development today,
TIBERIAN SUN suffered from scheduling prob-
lems; ours resulted in a nine-month delay. There
wasn’t a single reason that caused the product
to be delayed, but rather a series of seemingly
minor contributing factors. Brett Sperry has a
rule of thumb that we often refer to when sched-
uling projects. When you add one fundamental
new technology to a project, it can cause slip-
page up to 90 days. When you add two funda-
mental new technologies it can add a year to the
anticipated release date. When you add three or
more new technologies it becomes impossible to
predict the release date of the project accurately.

Nod laser turrets repel a GDI horde.

SECTION II: SEQUELS AND SOPHOMORE OUTINGS113113

TIBERIAN SUN features three
new systems that resulted in
an unpredictable schedule.
First, we switched our core
graphics engine to an isomet-
ric perspective in order to
enhance the game’s 3D look.
This resulted in a cascade
effect of broken systems that
weren’t anticipated. Bridges
that could be destroyed and
rebuilt, for example, wound
up taking over ten times as
long to program as we origi-
nally estimated. Adding bridges complicated
systems such as path-finding, Z-buffering, ren-
dering, unit behavior, and AI. Scripting was
another area in which we added a slew of new
functionality.

We added an increasing number of triggers to
the game to allow the designers flexibility in cre-
ating the missions. Each new trigger added was
more specific than the last and was used for
increasingly rarer conditions. Since triggers
could be used in combination, we ended up with
an overwhelmingly large number of events that
needed to be debugged. We would often fix one
trigger to work in a specific situation and inad-
vertently break the same trigger in a different
situation.

AI and unit behavior was the third main area
that used new technology. We set out to create a
challenging and fun AI that could react to the
player’s actions and change tactics to compen-
sate. We should have focused on fewer areas of
the AI instead of trying to redesign the whole
package from the ground up.

Overa l l Tips
With TIBERIAN SUN, we built
the game we originally set
out to build over three years
ago. Almost all of the new
engine features we designed
were implemented in the
final product, and many
more were added along the
way. We built a game that is
as easy to play as its prede-
cessor while offering up lots
of new units featuring inter-

esting tactics. All of this was done while keeping
the system requirements low enough to run on
most systems: a 166MHz Pentium with 32MB
RAM and a 2MB video card. We learned, or
relearned actually, a few more things about
making RTS games that weren’t listed above.

They are:

• If the game has Internet or multiplayer
capability, build this functionality as soon
as possible since it will let you get into the
game and balance it early.

• Don’t shield yourself from reality. If your
game supports Internet play as well as
LAN play, don’t play only LAN games
and assume that Internet performance is
acceptable.

• Keep the story tightly focused on players’
actions and don’t treat the story as a sepa-
rate entity. Remember that the player is
always the main character.

An Orca carry-all transports a
hover MLRS.

Westwood Studios’ TIBERIAN SUN 114

• Wherever possible, try not to mix dispar-
ate technologies (3D visual systems with
2D, for example) that have inherent prob-
lems working together. Instead, go back
and modify the design.

After three years of working on TIBERIAN SUN,
it was a great feeling to finally finish the game
and see it on the shelves. No matter how many

products you ship, that feeling never goes away.
TIBERIAN SUN broke Electronic Arts’ sales
record for the fastest-selling computer game in
the 17-year history of the company with more
than 1.5 million units sold so far. But best of all,
the team is proud of the product they created
and can’t wait to get started on the next one.

115

Ensemble Studios’

AGE OF EMPIRES II:
THE AGE OF KINGS
by matt pritchard

Catch ing Up
Two years ago in this very column (You can
read the original AOE article on page 63.) I told
you the story of Ensemble Studios, a scrappy
upstart that overcame challenges to create the
game AGE OF EMPIRES (AOE). Since its release
two years ago in the great real-time strategy
(RTS) wars of 1997, approximately three mil-
lion copies of AOE have been sold worldwide,
along with almost a million copes of the RISE

OF ROME (ROR) expansion pack. The totals
don’t give the whole story, though. AOE proved
to be a consistent seller, hanging around the top
of the PC Data charts, and even re-entered the
top ten a year-and-a-half after its release. The
demographics of the buyers were another sur-
prise. Sure, we had the sales to the 14- to 28-
year-old male hard-core players, but we also
had significant sales to older players, women of
all ages, and casual game players of all sorts.
That is to say, we had a crossover hit on our
hands.

If you have ever watched the VH1 show Behind
the Music, then you know the story of the
upstart band that finds itself suddenly on top of
the world—things change, and not always for
the better. I wouldn’t go so far as to say that we
sank into a wild orgy of sex, fast cars, and
money—despite the wishes of a couple of our
guys—but this change along with the benefits of
success brought us a whole new set of chal-
lenges, making our next game no easier than the
first.

Des ign ing a Seque l
It was a surprise to no one that Ensemble Stu-
dios’ next game would be a sequel to AOE,
although most people probably didn’t know

Back-Story
AGE OF KINGS advances the historical timeline begun in

the first AGE OF EMPIRES, encompassing the thousand

years from the fall of Rome through the Middle Ages.

Meanwhile nearly every aspect of the game was

updated to deliver a worthy sequel—graphics and AI

saw improvement, and new units, technologies, and

game modes were added.

Ensemble Studios’ AGE OF EMPIRES II: THE AGE OF KINGS 116

that we had a contract with our publisher for a
sequel long before the original game was fin-
ished. Given our historically-based themes and
time periods in AOE, the chosen time period for
AGE OF EMPIRES II: THE AGE OF KINGS (AOK),
the Middle Ages, practically picked itself. That
was the only easy part, however.

Like a band going back into the studio after a
hit record, there were differing opinions of what

direction to take next. Do we play it safe and
stick tightly to the AOE formula, or do we get
bold and daring and take the whole game genre
in new directions? This is the million-dollar
question every successful game is faced with
when the topic of a follow-up is raised. But the
successful band I’m using as an analogy is fortu-
nate. They don’t have to contend with the unbe-
lievably rapid pace of evolution in PC hardware
and games.

Improvements to the game in every area from
graphics to user interface are expected in this

business as a matter of fact. Expectations can be
a bitch sometimes. Take the vast demographics
of AOE players that I mentioned earlier—they
are the largest group of people most likely to
buy the sequel—and everyone is concerned
about making sure that this huge and diverse
group will like the next game so much they will
run out and buy it. We’ll just do more of what
we did right in AOE, we said. That sounds
great, but it’s almost impossible to quantify in a
meaningful, detailed way. The game business is
brutal to those who fail to move forward with
the times, but it’s also equally brutal to those
who experiment too much and stray from the
expectations of the players.

When we started work on AOK, we thought
that we could make use of our existing code and
tools, and that this would make the sequel easier
to create than the original. Filled with these
optimistic thoughts, we concluded that we could
develop AOK in a single year. This was also
going to be our opportunity to add all those
dream features and make our magnum opus of
computer games. So we set about to do just
that. To make enhancements for AOK, we had
pulled together a giant wish list of features and
ideas from inside and outside sources. To the
game design we added all sorts of neat new fea-
tures such as off-map trade, renewable
resources, combat facings, sophisticated diplo-
macy and systems of religion, and so on. Of
course, the art, sound, and game content were
also going to be bigger and better and bolder
and brighter and…well…you get the idea.

Several months down the road, reality reared its
ugly head in big way: we had bitten off more

Game Data
Release date: October 1999

Publisher: Microsoft

Genre: real-time strategy; historical

Intended platform: Windows 95/98/NT

Project length: 24 months

Team size: 40

Critical development hardware: Pentium II 450
128MB, Dual Xeon 450 512MB

Critical development software: Visual C++, 3D
Studio Max

SECTION II: SEQUELS AND SOPHOMORE OUTINGS117117

than we could chew and the game’s design was
losing focus. Instead of sticking to the core of
what makes an RTS game great, we had gone
off in many contradictory directions. Along
with that came the realization that there was no
way that we were going to finish AOK in a sin-
gle year and have it anywhere close to the qual-
ity of AOE. This was a sobering time for
Ensemble Studios staff and our publisher,
Microsoft. While the Ensem-
ble Studios crew adjusted
quickly, it caused a few prob-
lems for some of the people at
Microsoft: “Uh, guys, we’ve
already gone ahead and com-
mitted to our bosses that we
would have another AGE OF

EMPIRES game this year,” is
probably a good way to para-
phrase it.

From this situation, a contin-
gency plan was born. We were
going to take another year to
finish AOK, giving us time to
get the game back on track
and to create the ambitious
content for it. We also had a
plan to help our publisher out: we would create
an in-house expansion pack for AOE. It would
be a significant addition to the game, yet require
only a small amount of our resources, and most
importantly, it would be ready in time for
Christmas 1998, taking the slot originally
planned for AOK. Thus was born the ROR
expansion pack. ROR helped, but it didn’t take
all the pressure off us. Unlike the latitude we
had with AOE, which had also come out a year

late, our new deadlines for AOK were very firm
and hung over us the entire time. The pressure
was very much on.

We did what it took to make
AOK a triple-A game. While
the decisions to take an extra
year and reset the units to an
AOE baseline were tough in
the short term, they were the
right decisions to make. The
commitment of Ensemble Stu-
dios to exceed the quality of
its prior games never wavered.
To realize our goals, we added
the additional programmers,
artists, and designers that we
needed. When we needed to
stop, take a hard assessment
of what we were doing, and
kill our own children if need
be, we did just that. We
pushed ourselves hard and we
came together as a team.

1. Addressed the major
criticisms of the first game
Despite AOE’s success and generally glowing
reviews, there were two things about the game
that were repeatedly criticized: the artificial
intelligence of the computer players and the
pathfinding and movement of units. And to be
honest, they were right. Because these issues got

What Went Right

A Turkish mosque shows off the
greater detail and improved
skills of our art staff.

Ensemble Studios’ AGE OF EMPIRES II: THE AGE OF KINGS 118

so much press, we knew going in
that if we didn’t address them in a
visible and obvious way, AOK was
going to be raked over the coals
by reviewers and users. It didn’t
matter that other popular RTS
games had pathfinding that was
just as bad, or that our AIs didn’t
cheat and theirs did—we weren’t going be
judged against them, but rather against our-
selves.

To handle the computer-player AI, we hired
Mario Grimani, an industry veteran with signifi-
cant AI experience under his belt. The com-
puter-player AI from AOE was thrown out, and
a new, expert system, script-based AI was devel-
oped. While Grimani was doing the coding,
Sandy Petersen led the design team in develop-
ing scripts for the new AI. Input from the whole
company was encouraged, and various people
contributed scripts that were pitted against each
other in an evolutionary fashion to develop a
computer player that could race a human player
up through the ages and react to his tactics.

For the pathfinding problems, nothing less than
an all-out blitz was ordered up. The game
engine’s movement system was redesigned and
no fewer than three separate pathfinding and
two obstruction systems were developed, requir-
ing five different people working on them at var-
ious times. A high-level pathfinder computes
general routes across the world map, ignoring
such trivial things as people walking, which
were handled by lower-level pathfinders that
could thread a path through a closely packed
group of units. In the end, we were so successful

in ridding the movement problems that ham-
pered AOE that reviewers and players couldn’t
help but take notice and acknowledge the
improvement.

2. We innovated within the
genre
While in the end AOK stayed much closer to its
AOE roots than we had initially envisioned, we
pushed the RTS gaming experience forward
with a host of improvements. Some of these
were interface-only improvements, such as the
“Find Next Idle Villager” command, completely
customizable hot-keys, and the extensive roll-
over help. Other improvements changed the
game play itself, such as the Town Bell (ring it
and all your villagers run inside the Town Cen-
ter to defend it), in-game technology tree, and of
course, Automatic Formations.

One of the most praised features, Automatic
Formations caused a group of selected units to
automatically arrange themselves logically by
putting the strongest units up front and the
ones needing protection in the rear. They stay
in formation while traveling, replacing the
“random horde” that players had become
accustomed to in RTS games. Programmer
Dave Pottinger originally set out to create a

SECTION II: SEQUELS AND SOPHOMORE OUTINGS119119

formation system incorporating characteristics
of a turn-based war game’s formation system,
but as the game progressed and our under-
standing and vision for the game matured, a
complicated formation system gave way to a
simpler system that better served the game.

When I wrote the graphics engine for AOE, I
used a 166MHz Pentium at work and tested on
my 486 at home. A 2MB video card was my tar-
get, but the game would run with only 1MB of
video memory. Today I have a 32MB TNT2
card in my 500MHz Pentium III system.
These changes in the typical game
player’s system are mirrored by the
increase in player expectations for a
great visual experience.

In AOK, I’m proud to say, we met and
exceeded game players expectations.
The first thing that you notice upon
playing AOK is the scale. The units in
the game are about the same size, but
the buildings and trees are no longer
iconic. They are large structures with a
scale that looks as if the units could
comfortably reside inside them. Castles
and Wonders are now gigantic, imposing
structures that fill the screen.

And the art itself is just so much better.
Our entire art staff gained a great deal of experi-
ence and skill with AOE and ROR, and AOK
became a showcase for their improved talent. It
wasn’t just the units and buildings, though. In
AOE, the terrain had something of an Astroturf
feel to it and the need to make transition tiles by
hand limited the game to four terrain textures.

For AOK, a whole new terrain system was
developed, allowing us to mix terrains together,
shade elevation in 3D, greatly increase the num-
ber of textures, and even alpha-blend textures
such as water. The highest compliments came at
the 1999 E3 show when we were unable to con-
vince people from some of our biggest competi-
tors that AOK was still a 256-color game

3. Better use of bug tracking
software and crunch-time

management
During the development of AOE, we had a single
machine in the office that would connect up to
RAID, a remote bug database in Redmond,
Wash., via an ISDN modem. This was used to
handle bugs found by testers at Microsoft. Every
so often someone would fire the connection up

A scene from one of the game scenarios. The
updated graphics engine and building scale allowed
us to create scenes much more impressive than in
A0E.

Ensemble Studios’ AGE OF EMPIRES II: THE AGE OF KINGS 120

and, if the machine at the other end was in a
good mood, make hard copies of new bug
reports to pass around to people.

We also had a different software package for
communicating bugs and issues among our-
selves, but there were not enough users on the
license for everyone. Suffice it to say, this system
left something to be desired, but it was all we
had. During the development of AOK, Thin-
RAID was made available to us, allowing every-
one to access the bug database directly from
their web browser. Having only one system on
everyone’s desktop, available whenever needed,
that was always up-to-date made a huge
improvement in our ability to track bugs, stay
on top of things, avoid
redundancies, and just plain
save time.

The last six months of
development on AOE were
pretty much one continuous
blur of people working non-
stop. This took a heavy toll
on people, sometimes even
straining their health or
marriages. As a company,
we vowed to not let things
get that bad again. To fur-
ther underscore the need,
the composition of Ensem-
ble Studios had shifted dramatically away from
being mostly young, single men (with presum-
ably no life) to being dominated by married men
with a growing number of children and babies
on the way.

To protect ourselves, we scheduled crunch time
well in advance at multiple points in the devel-
opment process. The hours were 10 A.M. to
midnight, Monday through Friday, with
Wednesday nights ending at 7 P.M. so we could
go home to our families. We had weekends off
and meals were provided during the week. For
the most part this worked very well, although
having a “family night” where family members
could join us for dinner once a week proved to
be more of a distraction than we would have
liked. Producer Harter Ryan deserves much
credit for making crunch time so much easier on
AOK.

4. Better use of
tools and
automated testing
After AOE was finished, we
developed several in-house
and in-game tools to make
the job of development eas-
ier. The most-used tool was
ArtDesk, a multipurpose
program that converted
graphics from standard for-
mats to our proprietary for-
mats, which allowed us to
view and analyze the con-
tent of our graphics data,
and generated many of the

custom data files for the game. This easy-to-use
GUI-based program replaced several antiquated
DOS command-line utilities and automated
many tasks, saving a huge amount of time over
the development span.

A 3D Studio Max model of the
Mameluke character. Twenty
thousand polygons got reduced
down to several hundred pixels for
the final game.

SECTION II: SEQUELS AND SOPHOMORE OUTINGS121121

In an effort led by Herb Marselas, programming
tools such as Lint, BoundsChecker, and True-
Time were used to a degree never approached
during AOE’s development and proved invalu-
able in improving the quality of our code.
Finally, in-game utilities such the Unit Combat
Comparison simulator allowed the designers to
balance the game in a more scientific way. Every
effort made in the tools area was rewarded with
either time saved or significant improvements in
the product. The only glaring omission in all
this was the lack of an art asset management
tool.

5. We met our system
requirements
A game that’s expected to sell in the millions
needs to be able to run on most of the comput-
ers it will encounter. Requiring cutting-edge sys-
tems or specific video cards won’t work. With
AOK being an 8-bit 2D game, meeting video
card requirements wasn’t going to be very diffi-
cult. But memory and processor speed targets
were another story. All the new systems in AOK
would put their demands on the computer.
Optimization issues were worked on hard for
the last several months of development.

The eleventh-hour addition of some clever tricks
and a variable graphics-detail switch allowed us
to hit our CPU target of a Pentium 166MHz,
MMX-supported CPU. The minimum memory
requirement of 32MB was also met, but with
some reservations. Large multiplayer games on
huge maps would need an extra eight or 16MB
to be really playable. All in all though, the mini-
mum system requirements for AOK are some of

the lowest for games released in the Christmas
1999 season, widening the game’s potential
audience.

I’d like to say that we had fewer problems devel-
oping AOK than we did for AOE, but it didn’t
turn out that way. Some problems listed in the
AOE Postmortem were addressed in AOK and
others weren’t. And like that band going back
into the studio to record a follow up to a hit
album, we encountered a whole slew of brand
new problems, many of which we found we
were just as unprepared for as we were the first
time around. I’ve tried to include some of the
issues that became more important due to the
fact that we were making a sequel to a success-
ful game.

1. We still don’t have a patch
process
This was a problem area from the AOE Post-
mortem, and as of this writing it still has not
been addressed. I outlined the reasons we
needed a process to issue patches for our game
in a timely manner in the AOE Postmortem.
Additionally, a new reason reared its ugly head:
cheating in multiplayer games. At first people
found bugs in AOE and exploited them to win
unfairly. Then it got even worse. Programs
called “trainers” were developed that would
actually modify the game’s code while it was
running to allow players to cheat.

What Went Wrong

Ensemble Studios’ AGE OF EMPIRES II: THE AGE OF KINGS 122

Being the developer—not
the publisher—of AOE, we
don’t have the final decision
if or when a patch is to be
released. As a result, all
during 1999 our reputa-
tion as developers was
assaulted by fans who saw
us as uncaring about the
problems that were driving
people away from online
play of our games. The
topic of cheating in multi-
player games is so extensive I hope to do an arti-
cle on it in the near future. We addressed this
problem with our publisher and were promised
a patch process.

Unfortunately, AOK shipped with a couple bugs
that seriously needed addressing in the short
term. They’re not show stoppers, but if not
addressed soon, the game’s (and our) reputation
may suffer another black eye. If a patch for
AOK is out by the time you read this, then you
can conclude that we finally established our pro-
cess.

2. Unfinished versions of the
game got out
This is a problem that is born of success. Prere-
lease versions of nearly all games wind up circu-
lating in pirate channels known as “warez.”
This happened with AOE. Imagine our surprise
at reading an entire review of the game (an
alpha version) eight months before it was
released. Fortunately, almost no one bothered

with it until the game was
properly released because
nobody knew much about
it. AOK was a completely
different story. It was a
highly anticipated sequel to
a very successful game, and
the various warez sites were
tripping all over themselves
to get a copy of the latest
build. And get a copy they
did.

They were usually only one or two weeks
behind our latest build. It seemed as though
copies were leaking out from every imaginable
source—play-testers at Microsoft, previews sent
to magazines, even internal sources. Unfortu-
nately, positively identifying and fingering the
culprits was almost impossible.

There were hacking attempts on our FTP server
and network, although the real rub came from
the pirates in Hong Kong and Singapore. They
took the warez versions of AOK, burned them
onto CDs, added some cover art, and sold the
game throughout the Pacific Rim. In Korea, the
CD vendors operating in front of Microsoft’s
headquarters had a warez version of AOK for
sale. Warez versions were even turning up on
eBay.

Though we doubt bottom-line sales were hurt
much, our pride certainly suffered. Any of our
future games will probably require connecting
to a secure server of our own design to operate,
even for single-player games.

A 3D Studio Max model for a male
villager. For AOK, female villagers
were also added.

SECTION II: SEQUELS AND SOPHOMORE OUTINGS123123

3. Play-testing had a lot of
problems
This item is a catchall for several problems that
we encountered. On the good news front, our
new offices have a dedicated play-test area
equipped with identically configured machines.
The bad news is that we didn’t make the best of
it. Many of our play-tests were not organized
and focused enough, seriously reducing the
amount of new and meaningful feedback
obtained. It wasn’t always clear when we were
testing for specific bugs and issues, and when we
were testing for “fun.”

We had a schedule of participants which drew
upon the whole company, but schedule conflicts
and lax enforcement resulted in the same people
playing most of the games. We played too much
multiplayer and not enough attention was given
to the single-player game. And some people
took it much too seriously, trash-talking other
players, celebrating wins at the loser’s expense
and storming off when they were losing.

Play-test problems weren’t confined to Ensem-
ble, though. At Microsoft, it was discovered
that a play-tester had turned cheats on, playing
to win not to test, in almost every game for over
a month, which invalidated all the feedback
from that group for the prior two months.

4. Art asset management was
nonexistent
The number of individual frames of graphics in
AOK is in the tens of thousands, and we didn’t

do a good job managing it. The programmers
had a source-control system to help coordinate
their primary output of code and the designers
had the game’s database system, but no such
equivalent existed for the game’s art assets. Art-
ists could be working on something with no idea
that anyone else was also working on it. There
was no way to get a momentary snapshot of
who was working on what, other than going
around from office to office. Plus, there was no
way to tell which files were actually live and
being used and which ones were just taking up
space.

Also missing was a way to go back and find
prior versions of art, or to guarantee that new
versions wouldn’t be overwritten. As we have
grown as a company, this problem has grown
even faster. To address this problem in the
future, a source-control similar to the art asset
management system is being developed for use
in all future projects.

A bird’s-eye view of the AOK game world.
Compared to AOE, AOK has bigger worlds with
more objects and richer graphics.

Ensemble Studios’ AGE OF EMPIRES II: THE AGE OF KINGS 124

5. Problems with third-party
APIs and software
Another one of the items from the AOE post-
mortem returns again. Microsoft’s DirectPlay
API still has a number of issues that make it less
than perfect. One of its biggest problems is doc-
umentation and testing of the lesser-used por-
tions of the API, or rather the lack thereof. Late
in the development of AOK, our communica-
tions programmer, Paul Bettner, was able to
communicate with the DirectPlay developers
and an interesting scenario played out several
times: Paul would attempt to solve some prob-
lem and the developers would indicate that it
wouldn’t work because of bugs in DirectPlay
that they knew about but that were not docu-
mented.

DirectPlay wasn’t the only problem. We decided
to use DirectShow to handle our cinematics.
The short version of this story is that it just
didn’t work. And then there was the Zone soft-
ware for Microsoft’s online Gaming Zone. The
Zone software was developed too late in the
process and had a number of problems, due to a
lack of time to test and correct. Unfortunately,
this means that direct TCP/IP games are more
reliable than those played over the Zone, which
is disappointing. This was not all the Zone’s
fault because we did not get our requirements to
them soon enough.

The Show Goes On
One of the touchiest and most personal issues
concerned letting success go to our heads. The
success of AOE is something that a lot of people

TOP ROW, from left to right: Jeff Goodsill (COO),
Brad Crow (art lead), Brian Hehmann (artist),
Angelo Laudon (lead programmer), Sandy
Petersen (designer), Dave Pottinger
(programmer), Ian Fisher (designer), Harter Ryan
(producer), Duncan McKissick (artist), Trey Taylor
(programmer), Mario Grimani (programmer), Paul
Bettner (programmer), Chris Van Doren (artist),
Jeff Dotson (artist), John Evanson (programmer),
Doug Brucks (programmer), Roy Rabey (IS
support), Paul Slusser (artist), Chea O'Neill
(artist), Bob Wallace (strategic), Mike McCart
(webmaster). BOTTOM ROW: Rob Fermier
(programmer), Nellie Sherman (logistics),
Stephen Rippy (music), Herb Marselas
(programmer), Mark Terrano (lead designer),
Chris Rippy (sound), Herb Ellwood (artist), Thonny
Namounglo (artist), Duane Santos (artist), David
Lewis (programmer), Sean Wolf (artist), Bruce
Shelley (lead designer), Matt Pritchard
(programmer), Brian Moon (CFO), Tony Goodman
(CEO), Don Gagen (artist), Greg Street (designer).
NOT PICTURED: Tim Deen (programmer) Brian
Sullivan (strategic), Chad Walker (artist), Eric
Walker (artist), Scott Winsett (lead artist).

SECTION II: SEQUELS AND SOPHOMORE OUTINGS125125

in this business have not experienced. It
exceeded our wildest dreams and allowed our
company to take charge of our destiny. I remem-
ber when we got our first AOE royalty check—I
had never held a multimillion dollar check
before. That was great. We all got caught up in
how good we were doing. Over time an attitude
of invincibility set in. With a success like AOE,
it’s easy to forget what it was like to wonder if
we were going to be in business the next year.

At some of the industry events such as the Game
Developers Conference and E3, some of our
people behaved in ways that embarrassed us.
With success comes a responsibility to behave
appropriately—the game industry is a small and
incestuous one, and nothing lasts forever.
Behaving in an exemplary manner and being
friends with the industry at large is far more
important than chest-beating about our current
success. Suffice it to say that people in the

Ensemble Studios organization have stepped
forward to address this and we have challenged
ourselves to be better people.

All the early indications for AOK are that it’s
going to be a blockbuster on the order of its pre-
decessor, and maybe even greater. The reviews
from the press have been unbelievably positive.
According to PC Data, AOK was the number-
one selling game in October. The great success
of AOE made it possible for us to go to the next
level of making great games. Though it enabled
us to grow and acquire greater resources, it also
raised expectations for our next game and
spawned a host of new challenges. Meeting
these new expectations has proved to be just as
tough and rewarding a journey as creating the
first game. In the end we succeeded in creating a
game to be proud of, and I feel privileged to
have been part of it.

Ensemble Studios’ AGE OF EMPIRES II: THE AGE OF KINGS 126

This Page Intentionally Left Blank

127

Presto Studios’

MYST III: EXILE
by greg uhler

“Hello?”

“Hi, Greg, this is Bret Berry from Mindscape.
How ya doin’?”

“Just great, thanks. What can I help you with?”

“Well, I’m calling about a game proposal we’d
like you guys at Presto to put together for us.
We’ve contacted several developers about this.
Whoever gives the best proposal will get the
project.”

“OK, what’s the project?”

“MYST III.”

Did he say MYST III? A new sequel in the MYST

series that has sold almost 10 million copies
worldwide? After picking the phone up off of
the floor and closing my gaping mouth, I could
only say, “Wow!”

“Yeah, I thought you’d be excited. The proposal
we require needs to include some story con-
cepts, an analysis of MYST and RIVEN, a tech-
nology discussion, and, if at all possible, a
technology demonstration. Oh, and we need
this in five weeks.”

Needless to say, we hit the ground running.
Presto Studios has been in the computer game
business for more than 10 years. We began as a
group of friends working out of a home in San
Diego on an interactive CD-ROM game called
THE JOURNEYMAN PROJECT. Since that time,
we’ve shipped six other products, grown to as
many as 45 employees, and have enjoyed lim-
ited success with our games. MYST III: EXILE,
however, had the potential to take Presto to a
whole new level. Production of EXILE began
with a very small team: a writer, a creative direc-
tor, three conceptual designers, and me as pro-
ducer.

The first subject we tackled was an analysis of
MYST and RIVEN. What worked? What didn’t?

Back-Story
MYST 3 is the second sequel to MYST, the phenome-

nally successful work of the mid-90s, and the first MYST

game to be produced outside the original development

house, Cyan. The MYST games follow the model of

some of the earliest text adventures, in which the play-

ers solve puzzles to find their way through beautiful

static environments, revealing a story as they go. CD-

ROM technology allowed these environments to be

realized in splendid visual and auditory detail, and their

serene beauty drew many PC owners to enjoy their first

computer game ever.

Presto Studios’ MYST III: EXILE 128

Why were those particular games so phenome-
nally successful? And what did we want to do
differently?

Our discussions eventually led to the formation
of a few overriding goals for EXILE. First, we
would strive for great visual variety in the game.

We much preferred the varied worlds of MYST

over the more homogeneous chain of islands
found in RIVEN. Second, we would need to pro-
vide a way in which players could gauge their
progress throughout the game.

Players who had failed to complete MYST or
RIVEN did so because they were unsure of how
much remained of the game and what their
goals were. We didn’t want that to happen with
EXILE. Finally, we wanted an extremely satisfy-
ing ending to the game, one which drew upon
all of the knowledge that players had acquired
throughout their journey. With these goals in
mind, we set out on a two-and-a-half-year jour-
ney to create a worthy sequel to MYST and
RIVEN.

1. Identifying the customer
Who played MYST and RIVEN? What did they
like and dislike? What type of computer do they
own? We felt that answering these questions
would be instrumental in shaping what a MYST

sequel should be. So we obtained data from reg-
istered owners of the two products, read all of
the reviews and articles we could get our hands
on, and became active readers of the MYST-
related Internet fan sites and web boards. All of
the information we gathered was used by the
preproduction team to evaluate every part of
our game—the visuals, story, puzzles, music,
and technology.

For example, the hottest debate in preproduc-
tion was whether or not EXILE should use prer-
endered or real-time 3D graphics. By using
prerendered graphics, we felt that we could
meet or exceed the visual quality that RIVEN had
achieved, but our puzzles would be more limited

What Went Right

Game Data
Release date: May 7, 2001

Publisher: UBI Soft

Genre: adventure

Platforms: Macintosh and PC (hybrid)

Staff: 22 full-time employees, 1 full-time contractor, 2
part-time contractors

Budget: Multimillion-dollar budget

Length of development: Two and a half years

Development hardware: Mostly Dells, averaging dual
700MHz Pentium IIIs with 1GB RAM and 30GB hard
drives

Development software: Discreet 3DS Max, Discreet
Combustion, Apple Final Cut Pro, Adobe Photoshop,
Metrowerks CodeWarrior, Microsoft Visual C++,
Microsoft Word, Microsoft Excel, Microsoft Project,
Digidesign Pro Tools.

Notable technologies: RAD Game Tools’ Bink and
Miles Sound System, Apple’s QuickTime

Project size: A feature-length animated film like Toy
Story uses 120,000 frames of animation; EXILE used
more than 150,000

SECTION II: SEQUELS AND SOPHOMORE OUTINGS129129

than if we used real-time 3D, because we would
need to precalculate all the possible states for
each puzzle from every viewable location. Con-
versely, real-time 3D would allow us to make
the worlds more active and constantly changing,
but to achieve the graphic realism of the worlds,
the customer would be required to have a very
fast CPU and a high-end 3D card.

In the end, this debate was resolved by identify-
ing the MYST consumer. Our research showed
us that many MYST players only played a few
games each year. They are not out buying new
computer systems every few years, so they typi-
cally have a slightly older computer, one that
would have a hard time keeping up with an
advanced real-time 3D game. So, we decided to
use prerendered visuals for EXILE, in order to
give us the largest possible customer base.

2. Preproduction and planning
Having created adventure games for eight years,
you’d think that we would have been able to
skip a lot of preproduction and just get to the
production of the game very quickly. Actually,
the opposite was true. For EXILE, we wanted
more preproduction and planning time than
we’d had for any of our other products. We had
been burned too many times in production, and
didn’t want that to happen again. There is noth-
ing more disheartening for an artist than to see
his or her work go down the drain because of
last-minute changes or redesigns.

With this foresight in mind, we convinced our
publisher that we required a full nine months to
design EXILE on paper, before we would create a
single graphic. Though I’m sure it made our
publisher quite nervous, we knew that this

Spiney bridge in Voltaic.

Presto Studios’ MYST III: EXILE 130

amount of preproduction time would help
ensure a smooth production phase. Preproduc-
tion of EXILE began with two teams, one work-
ing on story and the other on visuals. We didn’t
want either team constrained by the other, so we
kept them separate for the first month or so.
Then we met together and began bouncing ideas
around. It was amazing to see the two teams
inspire each other—concept sketches led our
writer down new plot lines, while story ideas
and characters caused our artists to break out
their sketchbooks during the meeting. Gradually
the two camps met more frequently until the
story and visuals became inseparable, ensuring
continuity between the final game’s world, plot,
and characters.

Once the overall story and visual ideas began
coming together, we focused on
what we call the gameplay
structure. This refers to the
puzzles or challenges and their
accompanying solutions and
rewards that the player experi-
ences during the adventure.
This gameplay structure needed
to allow for the story to be
revealed over the course of the
entire game, the level of diffi-
culty to increase during the
course of the game, and nonlin-
ear events to be employed. We
created a flowchart of the
game, listing all of the chal-
lenges along the way, what they
reveal when solved, and any
interdependencies between puzzles or areas of
exploration. This flowchart was used as a tool

to see the game at a glance and make sure that it
met our goals of gradual story revelation,
increasing difficulty level, and a nonlinear expe-
rience.

When the gameplay flowchart, visual concept
sketches, and story were complete, we had our
blueprint for the game. This 160-page document
was required reading for the entire team. But
now it was time to put our money where our
mouth was and develop the graphics for the
game.

3. Using 3DS Max for art
To be honest, we were at a bit of a crossroads
when it came to what 3D package to use for the
art of EXILE. We had been using Electric Image

on Macintoshes for many
years, but had also recently
been using Discreet’s 3DS Max
on PCs for our real-time 3D
work. Could 3DS Max create
the type of prerendered photo-
realistic scenes we required for
EXILE? And what else could it
offer? Our lead animator, Mike
Brown, was convinced that
with the right finesse, 3DS Max
could rival any high-end ren-
dering package, so he set out to
do a few tests. In about a week,
he re-created one of the small
islands in RIVEN and also built
a prototype of one of our con-
cept worlds. The results were

very encouraging. We also explored the work

Gameplay flowchart.

SECTION II: SEQUELS AND SOPHOMORE OUTINGS131131

flow of an artist using 3DS Max and discovered
that the benefits of it being an integrated pack-
age were tremendous. The ability to model, tex-
ture, light, and animate in the same package
solved a huge production nightmare for us. In
the past, if an animator found something wrong
while he was lighting a scene, he’d have to tell
the modeler, who would fix the problem in a dif-
ferent package and send it to the animator, who
would need to update his file with the fix. Talk
about a recipe for disaster when you’re dealing
with tens of thousands of objects.

Our evaluation of 3DS Max proved that it was
also the right choice for many practical reasons.
First, we knew that we would need to hire many
more artists to create EXILE. We found that
there were many knowledgeable, talented 3DS
Max artists available all over the world. Second,
3DS Max’s open architecture and resulting lit-
any of third-party plug-ins meant we could pick
and choose additional features for the program
at a very low cost. Why spend huge R&D costs
to develop realistic ocean water when you can

buy the plug-in for a few hundred dollars and
have the same water that was used in Titanic?
We took great advantage of this not only for
water, fire, and hair, but also for production
tools that helped us model, texture, light, and
render much more quickly. 3DS Max proved to
be a great choice—loved by the artists and indis-
cernible from more expensive packages by our
customers.

4. Technology
Having decided to use prerendered graphics for
EXILE, we were faced with the challenge of mak-
ing these traditionally static images as immer-
sive as possible. In one of our previous games,
we had licensed a technology that displayed still
images as 60-degree panoramic views (similar to
QuickTime VR) but were unhappy with its per-
formance and image quality. To overcome these
deficiencies, we decided to write our own 360-
degree technology. We developed a technique
that took advantage of the speed and quality of
real-time 3D cards. Quickly prototyping our
idea with existing imagery, we realized that it
worked flawlessly, allowing for very high frame
rates without any degradation in image quality.
We felt this was exactly the right technology to
immerse a player in the worlds of EXILE.

With the basic technology complete, we pursued
how to integrate animation, video, and water
movement into the panoramic views. For ani-
mations and video, we wanted to avoid the
QuickTime bounding-area rectangle and harsh
compression artifacts that were typical of MYST

and RIVEN. So we investigated several other
compression algorithms and playback engines,

An example of EXILE’S Ocean water texture.

Presto Studios’ MYST III: EXILE 132

finally deciding on RAD Game Tools’ Bink tech-
nology. Bink provides fantastic compression and
high image quality, playback engines for both
Macintosh and PC, a fairly low
processor speed requirement,
and a host of special features.
For instance, using the alpha
channel support inherent in
Bink, we were able to display
animations and video in such a
manner that only the changing
pixels were drawn. This meant
that the bounding box rectan-
gle of the movie was gone and
the compressed pixels were
much less noticeable in the
changing image.

The last piece of the technology
puzzle was the procedural
effects, such as the moving
ocean water. The waves needed
to move realistically, look cor-
rect from altitudes ranging
from five to 400 feet, and fade
off into perspective toward the
horizon.

To accomplish this, we first generated alpha
channels of the ocean water for each panoramic
image in the game. Next, we wrote an image
manipulation algorithm (similar to a Photoshop
filter) that properly bent and twisted the water
pixels. The altered pixels were then applied to
the ocean water texture (using the alpha channel)
15 or more times per second to give the water the
illusion of movement. Variations of this tech-
nique were also used to simulate bubbling and

ebbing lava as well as one puzzle’s visible sound
waves.

5. Web support and
fan community
One of our early concerns for
EXILE was that MYST fans
seemed to believe that only
Cyan (the creators of MYST

and RIVEN) could create a great
MYST game. We had to find a
way to convince the
MYST/RIVEN/D’ni fan commu-
nity that even though Presto
was creating the game, EXILE

would meet or exceed their
expectations. Our solution was
the Internet. First, we identified
two leading fan sites on the
Internet, and in May 2000 (one
year prior to shipping) invited
their webmasters to come to
Presto for a special sneak pre-
view of EXILE. After viewing
our teaser trailer, getting a
hands-on demo, and browsing

our concept sketches, both webmasters were
sufficiently impressed and vowed to share their
positive experience on their sites. Furthermore,
we established such a good relationship with
both webmasters that we coordinated with them
over the next year and worked with one of them
to create the official Myst3.com site.

Our second solution using the Internet was to
release a teaser trailer and early screenshots.
The trailer was intended to evoke the spirit of

Villian’s costume concept
sketch.

SECTION II: SEQUELS AND SOPHOMORE OUTINGS133133

MYST and RIVEN while providing a sneak peek
at what EXILE had to offer visually. Supporting
the trailer were numerous screenshots that
showed the detail and beauty of the first world
of EXILE. The trailer was downloaded more
than half a million times in the first month, and
the screenshots were posted on numerous Web
sites and scrutinized by the diehard fans. In
short, our underground public relations cam-
paign was working well, and the fans were reju-
venated, eager to follow EXILE’s progress over
the next year, culminating with the game’s
launch.

1. Video quality
The live-action video shoot, and everything
leading up to it, was probably the game’s most
important development milestone. It was an
extremely hectic time. The scriptwriting had to
be completed, the costumes designed and sewn,
the props built, the CG backgrounds rendered,
the actors hired and rehearsed, and the studio
and personnel booked. All of these individual
elements did come together, but one critical
oversight prevented our resulting video from
being crisp and perfect: we didn’t use HDTV
cameras.

Months after the video shoot was complete, we
began compositing the video footage—remov-
ing the blue backgrounds from the live-action
video and replacing them with our computer-

generated worlds. After running a de-interlace
filter on the footage (to remove the inherent
NTSC scan lines), it quickly became evident
that the lack of source video resolution (the
number of pixels) was resulting in a blurry
image. Even with image-sharpening tools and
the latest filters in our compositing package, we
were unable to achieve the crisp video that we
had hoped for. This issue would have been
avoided entirely if we had used the vastly supe-
rior image resolution of HDTV. We certainly
now know the adage: Garbage in, garbage out.

2. Underestimating the budget
Having created many adventure games in the
past, we had a reasonable estimation of how
much it would cost to develop EXILE. However,
what we didn’t account for was how much extra
effort it would take to reach the image quality
level that was required. We were no longer
working under our own quality levels, but
rather ones that MYST and RIVEN had estab-
lished. This mistake meant that we underesti-
mated the cost of the game, though we had
signed a contract to produce the game for that
amount.

Underestimating the budget translated directly
into not being able to hire enough team mem-
bers, which translated into an insane schedule.
It really was as simple as that. We all had to,
and did, work our tails off, but this only
resulted in a general feeling of “Whew! Glad
that’s over” rather than “That was a blast! Let’s
do another one!”

What Went Wrong

Presto Studios’ MYST III: EXILE 134

3. Sacrificing future projects
Undermanned and underfunded, everyone
hunkered down and focused solely on EXILE.
Not just the team, but the entire company. Per-
sonally, I was producing the game, prototyping
puzzles, and programming many of our final
worlds. Our president was executive producer
for the title, technical
director for the video
shoot, and responsible
for compositing all of
the live-action footage.
Clearly, we were wear-
ing too many hats. So
many, in fact, that we
lost sight of some com-
pany goals and, most
importantly, landing
more projects. As a
result, we only had one
project in development
after EXILE was com-
plete, and we were
forced to lay off staff. It
was very disappointing
to me personally to see
people who had slaved
over the project be
“rewarded” with being laid off. The devotion
that we all had to EXILE clearly had its cost.

4. So we’ve made another
adventure game
Prior to EXILE, Presto was already known as an
“adventure game company,” having worked on
six of these games in the past. We were eager to
shake this image and prove that we could do

much more. Obviously, the fantastic opportu-
nity to create EXILE was something we could not
resist. However, we are very concerned that the
completion of EXILE will further brand us as an
“adventure game only” company. Will EXILE’s
completion bring us many new opportunities?
Or will we have to try even harder to avoid this
moniker? Only time will tell.

5. The launch: It’s out of our
hands now
The launch of any title is usually one of the
most stressful times for the developer-publisher
relationship. The developer is exhausted, hav-
ing just crunched through several years of pro-
duction, yet hopeful and full of expectations
for the success of “their” product. However,
the publisher then takes the reins, promoting

Amateria world from wireframe to final image.

SECTION II: SEQUELS AND SOPHOMORE OUTINGS135135

the product, manufacturing
the boxes, selling as many cop-
ies as possible, and handling
customer support. But where
does this leave the developer?
In truth, the developer is still
financially tied into the prod-
uct but has absolutely no more
control over it. That is why
the launch is always so stress-
ful, for it represents the transi-
tion of power that has taken
place from the developer to
the publisher.

This stressful launch period
was no different for EXILE. We
were exhausted. We obviously
had high hopes for the game.
We felt that if EXILE was pro-
moted as being “big,” it would
be big. After all, MYST and
RIVEN are the best-selling PC
games of all time. Unfortu-
nately, the purchase of our
publisher by another publisher
changed the decision-making
process, the people in power, and the manage-
ment approach. What we felt should have been
a huge launch was, in our opinion, slightly dis-
appointing. A great multilingual feature of the
game was cancelled in the last few weeks. Our
presence at E3 was minimal, due to our pro-
ducer being taken out of the loop on the deci-
sion-making process. Advertisements were

scarce and short-lived. And
negotiations for a possible
sequel ground to a halt.

Even with these occurrences,
however, we believe that time
will determine EXILE’s success,
not the minor setbacks from
the launch period of the game.
Going forward, we expect that
the launch will only be a bump
in the road, not a sign of things
to come.

Clos ing
Thoughts
As you’ve seen, some elements
of our production worked out
perfectly, and probably saved
us months of time and tens of
thousands of dollars. Others
didn’t go quite as well as we’d
hoped, and parts of the product
suffered because of them.

Throughout the process, we tried to appreciate
the positives and learn from the negatives. I’ve
heard it said that good judgment comes from
experience, and experience—well, that comes
from poor judgment. Here’s hoping that we
showed a lot of good judgment and that the
“experience” wasn’t too painful.

Atrus’ costume sketch.

Presto Studios’ MYST III: EXILE 136

This Page Intentionally Left Blank

137

Poptop Software’s

TROPICO
by brent smith

In the spring of 1999, Poptop had just wrapped
up development on the successful RAILROAD

TYCOON II (RT2) and its expansion, THE SEC-

OND CENTURY. At the time, Poptop was staffed
by the overwhelming count of four artists and
two programmers. Being that small, we had had
no time to think about anything other than the
current project, and suddenly we found our-
selves sitting around a table, eyes still slightly
glazed from the inevitable project-end rush we
had just gone through, looking for new ideas.
These were uncharted waters for Poptop. RT2
had been based very closely on Sid Meier’s clas-
sic RAILROAD TYCOON. The original RAILROAD

TYCOON had been an inspiration, a design man-
ual, a blueprint for making a good game, and a
launching point for new ideas. The upside was
that a good part of the design work had been
done for us. The downside,
as we were to find out on
our next project, was that
it left us a bit naïve about
the effort it would take to
create a new game from an
original idea.

As we sat around our com-
pany card table, brain-
storming ideas, one idea

quickly jumped to the forefront. The idea of
taking a building game and putting a political
game on top of it had captured everyone’s imag-
ination. With our creative energies renewed by a
fresh idea and the thrill of starting a new project
in our hearts, we rushed off to create TROP-

ICO—each of us in our own
way. Actually, it wasn’t
that bad. We did discuss
major elements of the
game. We knew that it
would have buildings and
people that the player
would not control directly.
We knew it would use the
RT2 engine but would be

Back-Story
Some games form their own mini-genre, and TROPICO is

one. Players take the role of a petty dictator, el Presi-

dente of a Caribbean island, with control of its political

and economic development. Poptop's previous game

was the economic strategy game RAILROAD TYCOON II,

but TROPICO is a much deeper, broader simulation of an

entire mini-republic, reaching down to the level of indi-

vidual citizens and across the board from education to

tourism. Despite its depth and complexity, TROPICO also

manages to convey the quirky, cynical humor of its

banana-republic material.

The almanac.

Poptop Software’s TROPICO 138

more ambitious than RT2 had been. As we
rushed off to begin development, that was about
all we knew—and, as we were to discover later,
each person on the team didn’t even share the
same vision about the things we thought we did
know.

During the project, Poptop grew to the bloated
size of 10 employees—seven artists and three
programmers. It is a testament to the talent and
hard work of this team that we ended up with a
strong, fun product in spite of the pitfalls that
we encountered along the way.

1. Created “deep” character
It was obvious from the beginning that the most
important aspect of TROPICO would be the peo-
ple. If we intended to have a game in which the
player didn’t have direct control of the units on
the map, then we had better make sure that the
people acted in a reasonable and somewhat pre-
dictable fashion.

This was no trivial task. Each unit on the map
(in the later stages of the game there can easily
be more than 500 units) has more than 70 char-
acteristics, which determine its actions and reac-
tions to the player. This includes items as simple
as name, age, and what part of the island the
unit was “born” on, to things as complex as the
unit’s satisfaction with various aspects of the
environment (religion, national pride, pay com-
pared to others in the same situation, and so
on). Additionally, as units live their sim
lives—they are born, prance about as children,
enter the workforce at a certain age, and eventu-
ally retire and die—we keep track of their fami-
lies. Each unit potentially has a mother, father,
spouse, and multiple children. Units also know
about their grandparents, cousins, aunts, and
uncles. What this means to the player is that the
repercussions for treating one unit badly filter
through their family tree much like you would
expect in real life. Send Juan Pablo Ramirez to
jail, and not only are his parents, wife, and chil-
dren upset, so are his five siblings, their 18 chil-
dren, and so on down the line. This added a lot
to the political atmosphere of TROPICO.

What Went Right

Game Data
Release Date: April 2001

Publisher: Gathering of Developers

Genre: real-time strategy/”god game”

Platforms: Windows 95/98/ME/2000/NT 4, Mac

Number of Full-time Developers: 10 (7 artists, 3
programmers)

Number of Contractors: 1 musician

Estimated Budget: $1.5 million

Length of Development: 2 years

Development Hardware (average): 550MHz Pentium
IIIs with 512MB RAM, 40GB hard drives, and a variety
of 3D cards running Windows ME or 2000
(programmers) or Windows NT (artists)

Development Software: Visual C++ 6.0, Visual
SourceSafe 6.0, 3DS Max 3.1, Character Studio 2.2,
Photoshop 5.5, Tree Factory plug-in for 3DS Max

Notable Technologies: Bink Video, Miles Sound
System

Project Size: Approx. 150,000 lines of code (plus
20,000 for tools)

SECTION II: SEQUELS AND SOPHOMORE OUTINGS139139

Our second goal with this system was hiding its
complexity from the player. Part of the fun of
TROPICO is trying to see and understand what
response your actions will evoke from the popu-
lation of your island. Although we kept detailed
information about each unit in the game, there
was a balancing act in taking advantage of it
without flooding the player with
information. I think we suc-
ceeded here. Our interface pro-
vides the player with in-depth
information about the people in
the game—making them come
alive—without overwhelming
the player with having to know
trivial details about them.

Unit development was not easy,
but because we identified this as
a critical area up front and spent
a lot of time and manpower
addressing it, it turned into one
of the strengths of TROPICO.

2. Small, streamlined, and
talented team
Being as small as we are certainly has a down-
side, the most serious being that we are limited
in the things we can do in a given amount of
time by sheer lack of manpower. However, the
advantages to a team this small, at least in terms
of developing a project such as TROPICO, out-
weighed the disadvantages. Everybody at Pop-
top knows everyone else. Not just knows them,
but knows what they are working on, what their
strengths and weaknesses are, the name of their
significant other, and so on. There’s no hiding

here. If you screw up, people know it was you.
If you do something brilliant, everyone knows
that too.

This kind of intimacy makes us very stream-
lined. Everybody knows where he stands and
what his job is. There is no middleman; if you

need to talk to someone, you
talk directly to him. There is no
distraction of having team mem-
bers pulled off to work on a dif-
ferent, behind-schedule project
or promotional material. We did
one thing, TROPICO, and that’s
all we did. Of course, this kind
of team only works if every
member is talented, and that is,
without a doubt, the case at Pop-
top. I see it every day, and I think
the players of RT2 and now
TROPICO have seen the result as
well.

3. Homegrown tools
Upon the completion of RT2, we had accumu-
lated a nice suite of tools for preprocessing and
manipulating art assets and interface elements.
With TROPICO, we continued this work, both
improving the existing tools and developing new
ones. Our most-used tool was a program writ-
ten to preprocess art assets into our custom for-
mat. It also had the ability to clip and scale the
art, and also reduce animations to a keyframe
and delta information for efficient storage.

When TROPICO began, we further modified this
tool to allow it do work with 24- and 32-bit

Banker.

Poptop Software’s TROPICO 140

TIFF files. A palette reducer/optimizer was
added to create 8-bit palettes from one or more
higher color-depth images. We also included the
ability to add parameters to the instruction set
that the program used to process the files, allow-
ing such things as tinting (which allowed us to
construct placeholder art rapidly by simply tak-
ing an existing image and tinting it to another
color), and lightening or darkening of the
image.

Finally, we added support that allowed us to
read image-depth information stored in RLA
files and store it with the image. This informa-
tion could then be used to tell us the Zorder
information of the various parts of the image,
which allowed us, for example, to handle units
walking behind parts of a building while walk-
ing in front of others. Another tool that we
inherited from RT2 and improved upon during
the development of TROPICO allowed us to cre-
ate, size, and position interface elements outside
of the code. Using a simple scripting language,
interfaces could be built and then compiled by

this tool into a format that could be used by the
TROPICO code.

A new type of tool that we developed and began
using with TROPICO, and which turned out to be
a real time-saver, was used for game data
manipulation. Using MFC (which I’d never rec-
ommend for any software intended for release,
but which is tremendous for quick development
of tools such as these), we quickly built a very
robust unit editor and building editor.

These editors allowed us to manage all the data
associated with a particular type of building or
unit outside of the program.

This capability was invaluable for balancing and
tweaking the data, as it allowed us to change
information in a relatively safe way while the
game was running and see its effects immedi-
ately upon the game world.

4. Fun topic
Without a doubt, one of the key factors in the
success of TROPICO was the topic. During our
brainstorming sessions, a number of ideas were
thrown on the table, but the idea that became
TROPICO was the one that had everybody
excited. While a lot of the elements of TROPICO

can be found in other games, the mixture of
those elements and the setting itself had every-
one eager to see what we could make. This
enthusiasm translated outside of the company,
too. Nearly everyone to whom we showed the
game voiced their enthusiasm about the fresh-
ness of the idea. Something about the idea of
ruling an island full of sun-drenched beaches

Tourists relax and sunbathe on the beach.

SECTION II: SEQUELS AND SOPHOMORE OUTINGS141141

and tropical beauties
strikes a chord in most
people’s hearts.

One of the most promis-
ing indicators late in the
project that we had
something special on our
hands was that we were
still eager to play the
game, and were still
throwing out new ideas,
even after spending two
long years developing it.

5. Localization
Having been involved in the translation of RT2
into a variety of different languages, including
double-byte handling for Asian languages, we
knew up front that this was something that we
needed to be concerned with in TROPICO. Fortu-
nately, a lot of the groundwork had been estab-
lished during RT2’s development. The code
contained home-grown string manipulation
functions, which allowed us to maintain tight
control of many of the issues associated with
localization. We also had a tool that allowed us
to pull strings out of the code base for insertion
into a string table near the end of the project.
The tool was very useful in that it not only rec-
ognized strings within the code, but it was smart
enough to disregard strings within comments
and strings on lines which we tagged with a spe-
cial comment telling the tool that it was O.K.
for this string to remain in the code (format
strings, for example).

This meant that for
much of the project we
didn’t have to concern
ourselves with trying to
keep a string table up to
date, but when the time
came, we were able to
do it quickly and effi-
ciently. Overall, localiza-
tion was a breeze.
Having seen what a
nightmare this step can
be on other projects, we
were dreading the work
we thought we would

have to do in this area, but the final tally was
less than a man-week of work spent getting the
game ready for foreign language translation.

1. Lack of up-front design work
Coming off the success of RAILROAD TYCOON

II, we were excited to get the chance to work on
something new and unique. A few company
brainstorming sessions and a game or two of
Junta, and we knew that we wanted to do a
tongue-in-cheek political game. We couldn’t
jump into the project fast enough. Ideas were
flying hot and heavy. Everyone was excited.
Unfortunately, we failed to realize at the time
that everybody was carrying a slightly different
picture in his head of what the final game would
be. Some were envisioning the stab-your-neigh-
bor, laugh-a-second antics of the Junta board

What Went Wrong

Wireframe and model of the hotel.

Poptop Software’s TROPICO 142

game. Others were seeing the close-up, detailed
view of people in action that ROLLERCOASTER

TYCOON had done so successfully. Most of us
were somewhere in between.

Having come from RT2, we really found our-
selves unprepared for this problem. With RT2,
Poptop had the original as a blueprint and
design document. Design was only an issue so
far as how the original game could be improved
upon and how current technology could be uti-
lized to improve the game. The game could
practically write itself, with Pop-
top’s main concern being to re-cre-
ate the magic of the original game
while adding a few minor twists of
our own. Now we found ourselves
with a blank slate, an original idea
where every gameplay detail had
to be created from scratch.

Unfortunately, we approached this
in much the same way as we had
approached RT2. Rather than set-
tling on a unified design, or even
trying to create one, each of us ran
back to his workstation and began
to create what we thought the
game would be.

It quickly became apparent that we
were not all moving in the same
direction. People had very different
views of where the game should
go. Decisions had to be made on
the fly. Some people’s visions were

cut out entirely, while others had theirs altered
to the point that it became something entirely
different.

This process was a very difficult growing pain
for Poptop. People’s feelings were hurt when
they realized the idea that they were so excited
about was not the idea that we were creating.
The game lost “buy-in” from people in the com-
pany as it became something that they were less
interested in or someone else’s idea that they
didn’t really understand. During this time we

struggled onward, trying to create
this game that wasn’t really what
anyone had originally intended.
Amazingly, we stubbornly refused
to stop and consolidate our ideas in
meetings or on paper so that the
team could be unified in the idea
and to rekindle the original excite-
ment for the game.

Eventually, working on TROPICO

stopped being a passion and
became just a job for many on the
team, leading to low morale and
loss of productivity. Hopefully,
we’ve learned from this mistake,
and on our next idea (original or
not) we will figure out what it is
we are creating before we start to
create it and try to keep everyone
excited about the direction in
which we are moving.

Luxury tourist.

A tourist.

SECTION II: SEQUELS AND SOPHOMORE OUTINGS143143

2. Modifying the existing code
base
One of the givens, decided before any work was
even begun on TROPICO, was that we would use
the 3D engine from RT2. This would allow us
to have working maps with many of the features
we would need in TROPICO almost immediately,
thereby giving us a huge jump start on develop-
ment. The idea was a great one and paid huge
dividends in getting us working almost immedi-
ately on the game itself rather than the engine.
Unfortunately, in conjunction with this decision,
we started from the existing RT2 code
base—not only the engine, but all the game code
from RT2 as well. We were trying to “morph”
RT2 into TROPICO, which led to all kinds of
problems and slow-downs.

First of all, a single programmer had developed
almost the entire RT2 code base. With TROPICO,
the staff of Poptop had nearly doubled in size.
Each new programmer immediately faced the
daunting task of getting a grasp of the RT2 code
before he could even begin to make the modifi-

cations necessary to create TROPICO. Second,
there were huge chunks of the code base that
became dead once TROPICO was started, such as
the multiplayer code. (We had decided pretty
early in TROPICO’s development to scrap multi-
player and concentrate on the single-player
experience.) Of course, multiplayer code was
integrated very tightly into many areas of the
RT2 code, and at first we tried to work around
it. Eventually we tore it out, once we became
frustrated trying to determine which areas of the
code were dead and which were important.

Finally, the process of working off the original
RT2 code base was inherently dangerous at
best. We automatically inherited any bug that
had managed to survive in RT2 and created
quite a few more just going through the process
of weeding out what code was unnecessary for
TROPICO. We would have been much better off
starting with a clean slate and then pulling over
those sections of the RT2 code base that we
could use. The RT2 code was not cleanly delin-
eated between engine code and game code.
However, the process of untangling the usable
engine code and importing it into a clean code
base would have been inherently more bug-free
and more comprehensible to those unfamiliar
with the RT2 code, and would have saved us
time in the long run.

3. Fun factor versus gee-whiz
factor
Because we started with an existing engine, one
of the errors that we made during development
was to see how far we could push the envelope
with the engine, working on “gee whiz”

An in-game overview of the island.

Poptop Software’s TROPICO 144

enhancements that would improve the look and
the technology of the game instead of features
that would enhance gameplay.

The biggest example of this was what we
dubbed “Zoom 0.” As the graphics in TROPICO

were much more detailed than RT2’s, we looked
for ways to show off these gorgeous images in
the game. Allowing the engine to zoom in one
level closer than it had previously been able to
(Zoom 1) was one of the ways that we did this.
In TROPICO, players can zoom in very close and
get very detailed views of the people and the
buildings. Unfortunately, Zoom 0 is not very
useful for gameplay, as it is almost impossible to
see enough of the map at that zoom level to get
a feeling for how you should play. The majority
of players tend to stay zoomed out about two
levels, occasionally zooming in or out one level
as the situation warrants.

OK, so we added a feature that allowed us to
show off the graphics even if it didn’t help
gameplay. What’s the big deal? The deal is that
we pre-scaled all of the images for the various
zooms beforehand and stored them in the data
file, so these high-resolution close-up graphics
ate up as much space as all the other zoom lev-
els’ graphics combined. We spent a full 50 per-
cent of our graphics budget on this one feature.
As we got deep into the project, it became
apparent that memory and CD file space bud-
gets were going to be tight, but we had invested
too much into this feature to be comfortable
with cutting it.

Ultimately, we had to cut other features to cre-
ate space, features which would have improved

the game. Rotatable buildings, more unit anima-
tions, and repeating animations on the buildings
(such as blinking lights and moving machinery)
all had to be cut to make room. Looking back, it
is apparent that tossing out Zoom 0 and putting
in more gameplay-friendly features would have
been a big net improvement to the overall game.

4. Waited too long for scenarios
After the scenario-intense RT2 and its add-ons,
we were more than happy to try creating a game
in which the strengths lay in randomly gener-
ated maps and sandbox-style open-ended play.
From day one we worked on TROPICO with this
goal in mind. A lot of effort went into creating a
map generator that would create pleasing, logi-
cal, and most importantly playable maps. We
modeled rainfall on what we knew and could
find out about meteorology. We researched veg-
etation, not only to find flora indigenous to a

The dictator’s mansion.

SECTION II: SEQUELS AND SOPHOMORE OUTINGS145145

Caribbean setting but also to find out under
what conditions a particular plant would thrive
and how to represent that in the game.

A significant amount of time went
into creating realistic mountains
and series, even ranges, of moun-
tains. We even went so far as to
model the terrain under the water,
so that shallow beach areas and
deeper waters would be accurately
created. As we neared the end of the
project, we had no doubt that our
map generator could create some
fabulous-looking maps, and, given
the number of factors we allowed
the player to tweak during map
generation, an endless supply of
playable maps.

However, the game was missing clearly defined
goals. Using the map generator, there was no
way to create a map that had a specific situation
to solve, and only a very limited way to create
maps with unique obstacles to overcome. In
other words, the game and the maps were great
for an open-ended, sandbox style of game, but
were lacking in goal-oriented, problem-solving
gameplay.

While the sandbox mode allows players to cre-
ate a wide range of different maps, much more
depth and many hours of play could have been
added to the game if we had included a rich set
of scenarios and the tools for the players to cre-
ate even more.

As we realized this late in the project, we scram-
bled to create scenarios to include. Unfortu-
nately, our tools in this area were
underdeveloped, and time had to be squeezed

out of people’s schedules even to
produce what we did. The result
was that TROPICO included a very
limited number of scenarios (eight
with the game and two others
included in some promotional CDs)
that weren’t nearly as involved as
they could have been, and certainly
weren’t up to the standard that we
had created in RT2.

Another by-product of this over-
sight was that we never spent time
polishing the map editor tools that
we used in development.

The original game design was oriented toward
random-map play, so we never saw the need for
a more sophisticated editor until late in the
project. These tools ended up being disabled in
the release version, disappointing many fans
who were hoping to create their own maps. For-
tunately for our fans, a map editor should be
available in an upcoming patch.

5. Lack of unified artistic vision
As I mentioned, one of the effects of essentially
bypassing the design phase of this project was
that there was a lack of consistent vision among
team members. One of the places that this
became most apparent was in the game art.
Almost all of the artists at one time or another
during the project worked on creating buildings

Pit boss.

Poptop Software’s TROPICO 146

for the game. They were given only a vague
notion of what type of building they were to
create—a paper sketch or a very crude 3D
mockup—and left on their own to move for-
ward from there.

Halfway through the project, the problems with
this became apparent. Scale varied wildly from
artist to artist, as did level of detail. The same
problems were occurring with the character ani-
mations, as the two artists working on those
had taken different approaches. One artist was
striving toward very lifelike figures with com-
plex animations, while the other created more
cartoonish parodies of TROPICO’s inhabitants
with more outlandish but less complex anima-
tions. Both artists had a clear idea of what they
were trying to do, and both accomplished their
respective goals brilliantly, but the difference in
their approaches can still be seen in the release
version of the game if you compare, for exam-
ple, the banker to the female luxury tourist.

At this point we appointed a person to take on
the role of art producer. His job was to try to
coordinate the artists’ efforts and make sure
they shared more or less the same vision. But the
damage had been done. Team members had to
spend valuable time sifting through and rework-
ing art. Frustrations mounted as artists who pre-
viously had been able to work toward their
personal vision now found themselves having to
compromise to a shared vision of the whole
team. This problem could have been signifi-
cantly reduced with more up-front planning and
more ongoing feedback to the artists as they
completed each task. We definitely learned from

this process and will improve upon it in our
next game.

In H inds ight
It’s pretty much the experience with any game
project, whether the developers will admit to it
or not, that you look back and see mistakes that
you made and bemoan the ways that the game
could have been better if only those mistakes
had been avoided. TROPICO is certainly no dif-
ferent in that regard. Every member of the
TROPICO team felt the sting of loss at some
point or another when a feature that they were
particularly fond of was cut. Each of us can
look back and think of a hundred ways that we
could improve TROPICO. That, in itself, is a
good sign. At the end of two years of develop-
ment, we still cared about the game and wanted
to make it better. Everyone was happy with
what we had created, but no one was satisfied
with the details. Art is never done.

We learned a lot individually and as a team
about how to approach a project and how to
manage it once it is underway. This was our first
attempt at a completely original idea, and
although we encountered a lot of pitfalls along
the way and stumbled more than a few times, I
think the end result is pretty amazing—some-
thing that we are proud of and that the game’s
fans will enjoy. Considering that TROPICO was
done with a team of only 10 people—tiny by
today’s standards—the game’s success is a testa-
ment to the Poptop team’s talent, creativity, and
hard work.

147

SECTION III

Managing Innovation
The great thing about an innovative game is that
it starts with desire. A person or a development
team comes up with an idea for a game no one
has seen before, and they want to play it badly
enough that they’re willing to go through all the
risk and work and inordinate hassle required to
bring it into being.

Suppose you have an idea for a game, something
no one has seen before. There are many forms
this could take. It could be a clever piece of soft-
ware you’ve been toying with, a graphic style, or
a method of telling a story, or a haunting image.
It could be an untried subject like haberdashery
or whale-watching, or a dream you had (SPACE

INVADERS, apocryphally, was based on a
dream), or just a strange indescribable feeling. It
could be anything.

This will not be easy. Someone has to fund the
game, to be convinced that the vision you and
your team share will one day be exchanged for
hard cash. A marketing team has to understand
what the game is, and why people will want it.
The development team has to communicate
effectively enough so that they can be sure that
they all share the same idea. And no one can see

this so-called “great idea”—it’s still a thought in
someone’s brain. Of course, it’s the very new-
ness of the thing that makes this process so diffi-
cult. Any game starts this way, but in the
innovative games, the radical departures, it’s
toughest—you have nothing you can point to
and say, “it’s going to be like this.”

Over the next 18–36 months, there is the task of
converting this invisible feeling, this hunch, into
a functioning piece of software that runs on an
actual machine. This is the process that is unbe-
lievably subtle and difficult. It comes down to a
series of tiny decisions made daily, about inter-
face, art direction, technology. Should such-and-
such a command be made with the right or left
mouse button; should the heroine be blonde or
brunette; should we invest CPU cycles in AI or
in rendering? All with the looming, crushing
knowledge that a factory in upstate New York is
waiting to stamp your answer onto 400,000
CDs.

These are the kinds of choices that slowly con-
vert the charged, elusive vision within you into
an application on your desktop that anyone can
run and experience. It’s particularly difficult in

Section III: MANAGING INNOVATION 148

this medium because you’re part of a group of
8–40 people, practicing at least four different
disciplines (programming, art, game design,
audio, not to mention storytelling and project
management) in an interdependent process that
is supposed to yield one unified coherent whole
that captures a feeling that 15 months into the
project you may well be unable to recollect. All
done on a tight schedule and budget, as every
day and every penny cuts into the net profit.

(The crowning irony, of course, is that other
people consider this a trivial amusement. When
you tell them what you do for a living, the inev-
itable response is, “Oh, so you get to play games
all day?” Yes. Yes, that’s exactly right.)

There is an art to this process. In an ideal world,
making an innovative game would be as simple
as (a) getting a good idea, (b) writing a detailed
technical and design document and making
some concept art, and (c) getting a development
team to make it (this is sometimes called the
“waterfall” development model). Then you wait
24 months while they work, and on the last day
the game is complete and you sit down and play
it and voila...fun.

If this book teaches one lesson, it should be that
this is not always possible. Game development
is very complex, especially new kinds of games.
Features take longer than expected, or interact
in surprising ways, or suggest other exciting fea-
tures that suddenly seem worth implementing
two weeks before beta, and so on. Experienced
teams expect surprises. They build something,
play it, double back, rethink, cut features, hold

meetings, and try again. Shipping a successful
game usually involves this iterative cycle of
building features, testing them, and then revis-
ing them, repeated several times over the devel-
opment period.

Different games present different problems.
Sometimes the initial idea proves too ambitious,
and you have to decide which features to cut
while keeping the core idea intact. Sometimes
the initial idea proves too vague, and part the
process of building the game is refining and
tightening the focus. Sometimes it’s a process of
discovery. As the game becomes a concrete
thing, as it encounters reality, it works a little
differently than it did in your head. Games are
very complex entities, and it’s impossible to
work out in advance how everything in them
will behave. You may notice playtesters using
some feature in ways you never imagined, to
defeat obstacles or just as a kind of mini-game
by itself. They’re not playing the game you
imagined, they’re playing the game you actually
made, which is slightly different but perhaps no
less fun.

• Define a high concept.
Have a clear sense of where you’re trying to
go, even if you don’t know how to get there.
Every week, you and the rest of your team
will have to make decisions, you can use the
high concept as a compass to check your
bearings against. If you can ask of any given
task, “does this bring us closer to our goal of
creating the ultimate robot ninja jai-alai sim-
ulator,” it’s easier to make these judgment
calls.

Section III: MANAGING INNOVATION149

• Know when to cut features.
A feature can be cool, but still not form an
essential part of the game you’re making.

• Build good tools for creating and editing
content.

It is essential to be able to test content in your
game engine, and revise it if things don’t
work the way you plan. The easier it is to edit
game data, the quicker you can react to test-
ing feedback, and the more cycles of testing
and revision you can go through.

• Form a solid relationship with your
publisher.

If the game needs revision, someone on the
publishing side needs to understand why and
how it’s going to take place. If they can trust
that your development process is under con-
trol, and have a sense of the goal you’re
working toward, things will go much more
smoothly.

• Create a clear chain of command, or
some other protocol for tough
decision-making.

Not every decision can be made as a group,
especially when it comes to setting the vision
for the game. If team members disagree on

some point, it has to be resolved so develop-
ment can continue.

• Prototype early.
Get the game and its core features running
and playable as soon as you can. Have people
who haven’t heard about the concept play it
and tell you whether it’s fun, and why or why
not.

Why make innovative games? They take appall-
ing chances with the time and money of the peo-
ple who make them, all for the slim chance of
becoming a breakaway win or at least a quirky
cult hit.

There are large-scale reasons to make them.
Most people agree that digital games are an
immature phenomenon and that we are far from
seeing what can be done in this medium. If
sequels are the bankable projects that keep the
industry alive from year to year, it is the radical
departures that help it grow, that expand our
sense of what the medium is. We are all waiting
for better games, and innovation is the only way
they get made. Of course, they play an economic
role as well as a creative one—games like MYST,
and, yes, BARBIE FASHION DESIGNER, changed
the market as well as the medium, by bringing
people who had never thought about it before to
sit in front of a computer play games.

Section III: MANAGING INNOVATION 150

This Page Intentionally Left Blank

151

Lionhead Studios’

BLACK & WHITE
by peter molyneux

BLACK & WHITE is the game I always wanted to
make. From the days of POPULOUS I had been
fascinated by the idea of controlling and influ-
encing people in an entire world. I was also
interested in the concepts of good and evil as
tools the player can use to rule or change the
world. These themes crop up regularly in my
games, but I realize now that with every game I
was heading toward my ultimate goal—the god
game BLACK & WHITE.

I wanted the game to be more flexible, more
open, and more attractive than anything I’d ever
played. I was determined that the player could
do almost anything he or she wanted. Instead of
leading players deeper into a world of levels and
testing them with tougher and tougher mon-
sters, I wanted players to be engaged by the
story but to take it at their own pace and decide
which bits to tackle and when to tackle them.
More technically, I didn’t want a panel of icons
or a set of on-screen options. With DUNGEON

KEEPER I felt we overdid the control panel, and,
while it worked, it didn’t add to the immersive
sense of being this evil overlord deep under-
ground. Frankly, it simply reminded you that
you were playing a video game. Finally, I
wanted to place into BLACK & WHITE the ability
to select a creature (originally any creature from

the landscape) and turn it into a huge, intelligent
being which could learn, operate independently,
and do your bidding when you wanted. I knew
that this would require an artificial intelligence
structure unlike any ever written. It had to be
the best.

Of course, I needed a team for all this, but I
wanted the right sort of team and so had to
build it slowly. A core team of about six was
formed, and at the start of Lionhead we worked
at my house. Our first task was to create a
library of tools, so we spent our time there
doing boring foundation tool-building. We

Back-Story
BLACK & WHITE belongs to the god-game genre popu-

larized by Lionhead auteur Peter Molyneux in the POPU-

LOUS series—the player is literally a god, helping his or

her people prosper, through guidance and miracles. The

showpiece is the Creature, which is a living animal ava-

tar that the player raises from childhood, shaping its per-

sonality by reward and punishment. The Creature is a

complex, semi-autonomous artificial intelligence,

whose nature changes as it grows—like the player-god,

the Creature can become good or evil, black or white.

BLACK & WHITE is an ambitious accomplishment—apart

from its originality, it features fluid, epic-scale storytell-

ing, gorgeous graphic presentation, and an elegant, ver-

satile mouse-based interface.

Lionhead Studios’ BLACK & WHITE 152

started work on the game proper when we
moved into our offices in February 1998, at
which time there were nine of us. By this time
we had begun thinking about the game in gen-
eral terms. We discussed what we could have in
it, what we should have in it, and what, in a per-
fect world, we’d like to see. Funnily enough,

much of the last category did in fact make it in,
things such as the changing atmosphere and
buildings if you change alignment between evil
and good or vice versa. Also, ideas for some
fully lip-synched characters were thrown
around. At that time, we didn’t seriously think it
could be done.

During the first year of Lionhead we added peo-
ple gradually, as I was very keen for the friendly,
family-style atmosphere of Lionhead to remain,

and it takes a certain sort of person to fit in and
enjoy working with such a close-knit team. This
policy of only recruiting people whom we felt
had the talent and a way of working which fit in
with Lionhead’s existing members meant that
our team had evolved their own way of work-
ing. They didn’t just carry out their tasks but
questioned, tested, and pushed both themselves
and each other. It’s labor-intensive, but you
often end up with more than you expected. For
example, the art team divided up the tribal
styles for the villages and tried to outdo each
other in terms of design and effort put in. The
result was better design work than we thought
we’d get.

At Lionhead Studios, we all knew that BLACK &
WHITE was going to be something special. This
belief became self-fulfilling as we were inspired
by each new feature and every neat, innovative
section of code. Naturally, this meant that
everyone worked exceptionally hard. Over the
course of the project the team did the work of a
group twice their number. We regularly went
home as dawn broke, and weekends became
something other people did.

1. It got finished
This sounds stupid, but we encountered some
big problems, and there were times when we
doubted that the game (as it ultimately ended
up) would get released. As a new company, we
not only had to work out the game we were

What Went Right

Game Data
Release date: March 30, 2001

Publisher: Electronic Arts

Genre: real-time strategy/ “god game”

Platforms: Windows 95/98/2000/ME

Full-time developers: 25

Contractors: 3

Budget: Approx. £4 million (approx. $5.7 million)

Length of development: 3 years, 1 month, 10 days

Hardware used: 800MHz Pentium IIIs with 256MB
RAM, 30GB hard drives, and Nvidia GeForce graphics
cards

Software used: Microsoft Dev Studio, 3DS Max

Notable technologies: Bink for video playback,
Immersion touch sense for force-feedback mouse

Project size: Approx. 2 million lines of code

SECTION III: MANAGING INNOVATION153153

going to create, but we had to write the tools
and libraries, create everything from scratch in
software, and also gel together as a team. We
couldn’t have a dress rehearsal for this, so we
learned by trying things and then changing them
if they didn’t work. As time rolled on, we
couldn’t afford to make
any mistakes or pursue
blind alleys.

For example, we talked
about updating some of the
graphics at one point. It
didn’t seem a big job, but
once we’d changed some of
the buildings in the tribal
villages, they showed up
any unchanged ones and
made them look less
impressive, so we had to
assign time to do them all.
We got a much better set of
buildings out of this, but if
we’d known that we’d have
had to do all of them, we
would have said, rightly,
that there wasn’t time.

The programmers were likewise coming up with
neater and neater ways of coding, and thus try-
ing to do more and more with the code they
had. It says a lot about the talented and single-
minded development team at Lionhead that
everybody always wanted to make every ele-
ment that little bit better. And as we fixed the
bugs and sent the game to QA, we felt like peo-
ple who’d run a marathon and could see the fin-
ish line, but it didn’t seem to be getting any

closer. Perhaps this is a function of not getting
enough sleep over a period of several months.

2. All the risks paid off
We wanted to do some pretty groundbreaking

things in BLACK & WHITE.
One example was doing
away with the panel of
controls and using the Ges-
ture system for casting Mir-
acles. We tried and tried to
get this feeling just right,
and if we’d had to dump it,
I’d have been so disap-
pointed. But after research,
testing, and simple trial and
error, we got it working
beautifully, and we now
have a feature no one else
does.

Also, integrating the story
line into such a free-flowing
strategy game was a risk.
We thought it would sit

quietly behind the game, popping up to direct
you if you hadn’t moved on, but the story came
alive and started to draw the player through the
game in a way none of us, apart from perhaps
scriptwriter James Leach, had envisaged. It also
gave us characters such as Sable, the Creature
trainer, and those advisors whom we hear peo-
ple now quoting lines from, and who exist out-
side the game as recognizable characters.

The huge, learning, intelligent Creature was also
more of a gamble than he now seems. To go into

Render of the evil cow Creature.

Lionhead Studios’ BLACK & WHITE 154

AI in such an in-depth way required Richard
Evans, our AI programmer, to consider what
learning was, how practice works, and how the
reinforcement of ideas comes about. Then he
built all this into a character which appeared to
live and learn like, say, a clever puppy. AI is
always a minefield, and I’m always disappointed

by great strategy games which appear to have
the most simple, easy-to-predict AI running
your enemies. We just wanted to advance the
technology to its extreme.

We also wanted to do more with graphics and
animation blending. The world changes depend-
ing on whether you’re playing as a good or an
evil god, and things take on subtle new looks.
The Creature, the player’s hand, and many of
the buildings change, and we used more anima-
tion blending to achieve smooth movement and
changes than anyone else has ever done, I
believe.

We’re also the first game (apart from
Microsoft’s FLIGHT SIMULATOR) which enables
you to import real weather in real time into the
world. We are also the first to enable unified
messaging, whereby you can send messages to
the web from the game, or receive them, using e-
mail and mobile phones. This integrated two-
way messaging as well as the ability to take your
Creature out of BLACK & WHITE and onto the
web is brand-new. Also, the game can import
names from your e-mail package and assign
them to unique villagers in your tribe in the
game. I expect lots of games to do similar things
in the future, but we took massive risks and
devoted huge amounts of effort to being the first
and to making it work properly.

3. The game looks so stunning
When we started, we used a wireframe test bed
and a couple of conceptual screenshots to pro-
vide some atmosphere. I first showed the test
bed and these mocked-up screenshots to the
press at E3 in Atlanta in 1998, and I could see
on the assembled faces that nobody believed we
could accomplish anything like it in the final
game. I was complimented on the depth and
beauty of preliminary efforts, but the compli-
ments had a slightly hollow ring. I could almost
hear people thinking, “Yeah, it looks great, but
anyone can draw pretty screens using an art
package. What’s your game really going to look
like?”

Not only did we manage to pull off the look we
wanted, but we exceeded it by some margin.
The sheer beauty of the lands is something I
hope won’t be matched for a while, and the fact

Good ape.

SECTION III: MANAGING INNOVATION155155

that you can move, zoom, and rotate to view it
from any angle, anywhere in the game, is again
something we got spot-on. Looking back, I
don’t know whether we were insanely ambi-
tious, because at the time we
started, you couldn’t have
done what we did. We needed
so much custom-written soft-
ware, and we also needed the
minimum specification of the
PC community at large to get
better before this would be
viable. When we started
BLACK & WHITE, most people
had 32MB of RAM in their
PCs. The game requires
64MB, but that’s common-
place now. So, if you like, we
aimed beyond the horizon,
and the world rotated and
caught up with us so we still hit our target.

4. The artificial intelligence
The Creature AI, as I have mentioned, is abso-
lutely spot-on. Richard Evans worked tirelessly
on this, and it became something that surprised
even him with its flexibility and power. The AI
isn’t just restricted to the Creature. Every vil-
lager in the game has it as well, and they are all
different in their wishes, desires, motivation,
and personality. Because there is no upper limit
to the number of villagers you can have, we had
to cap the AI slightly by giving some of the vil-
lager control to the Village Center, which acts
like a hive and farms out some of the coopera-
tive elements to the people. We couldn’t have
them interrogating each other, so this central

control means that they do work as a unit but
can retain their individual characteristics. This
makes the game much faster and still gives them
minds of their own.

The Creature himself is an
astonishing piece of work.
Once he starts learning, he
forms his own personality as
he goes, and no two players
will ever have the same Crea-
ture. The complexity is kept to
a minimum to keep him fast,
but we managed to steer com-
pletely clear of using random
elements to make him seem
like he has a mind of his own.
And there is nothing in the
game that you can do which
you can’t teach your Creature

to do. It’s true to say that the Creature mirrors
you and your actions, so in BLACK & WHITE

we’ve got a game in which part of the game
itself learns from everything you do and tailors
itself to you.

5. The way the team came
together to make BLACK & WHITE

happen
This is Lionhead Studios’ first project, and
everything started from scratch. The people, the
software, and the working environment were all
new. Although this was exactly what we needed
to do a game so fresh and diverse, it also created
problems which I was delighted to overcome.
The lack of any precedent meant that things
took a lot longer than they should have, and the

Concept drawing for the
tortoise Creature.

Lionhead Studios’ BLACK & WHITE 156

open-ended nature of the game throughout
much of its development meant that team mem-
bers were limited only by their own imagina-
tion.

But the nice thing is, every member of the Lion-
head team gelled brilliantly, and although I
know we picked the very best people, there is an
element of luck in whether they can all work
together so well. We cer-
tainly lucked out with the
team, and every one of
them contributed mas-
sively to making the game
what it is. The last few
months of the project were
the hardest any of us has
ever had to work, but
thanks to the people, they
were also some of the most
fun months we ever had. If
nothing else, we’ll always
remember the time we spent closeted together
making BLACK & WHITE. And I’ll never forget
that without the right team, this game never
would have happened. It’s as simple as that.

1. Planning the story
We underestimated how long it would take to
construct and write the story element of BLACK

& WHITE. The free-form nature of the game
required an unfolding tale to give it some struc-
ture and lead it to a conclusion, and in October

1999 we began to work on the story. We
thought it would take no more than two
months, but after a while we realized that we
didn’t have the skill set needed to take care of
this vital aspect of the game. I contacted James
Leach, who’d been the in-house games script-
writer at Bullfrog and had worked on SYNDI-

CATE WARS, DUNGEON KEEPER, THEME

HOSPITAL, and many others. He was working as
a freelance ad copywriter
but gladly came on board,
again in a freelance capac-
ity, and turned our ideas
into a fully plotted story
line, wrote hundreds of
challenges and quests, and
wrote all the dialogue in the
game. It ended up being
more than 60,000 words,
the size of a novel.

Hiring James meant that
we got a sense of continuity, consistency, and
style throughout the game. It also meant that we
could describe what we wanted, or even write
placeholder text, and he would rapidly turn it
into finished work. Sections of the game that
were still at an early stage seemed more easy to
understand, get a feel for, and work on when we
used dialogue and text which seemed, to us, fin-
ished. Of course, another pass was usually
needed to make it accurate and sometimes to
polish it, but having a dedicated scriptwriter
made this a simple task.

Storytelling in games, as elsewhere, is an art. If a
story line flows easily and naturally, that’s
because someone has worked incredibly hard at

What Went Wrong

The citadel.

SECTION III: MANAGING INNOVATION157157

it. I’m a great believer in the emotion and
immersion that can be added to a game through
good story and dialogue. It can’t make a bad
game good, but it can make any game better.
And when the script was looked at by Holly-
wood scriptwriters and film directors from the
BBC, we knew we were on to a winner.

Another by-product of using a professional
scriptwriter was that we morphed the in-game
advisors, the good and evil guys, from being just
sources of information and guidance into styl-
ish, popular characters who are now bankable
properties in their own right.

2. Fixing the bugs
After canceling our Christmas party on Decem-
ber 26, 2000, we managed to hit Alpha, which
as any developer knows is a very loose defini-
tion, but at least we could say that all the game

features were now locked.
After a well-deserved
Christmas break, we came
back to find that we had
more than 3,000 bugs. We
had six weeks to reduce
this to zero, but the thing
about bug-fixing is that you
can solve one problem but
in doing so create three
more. So although we
worked as hard as we
could, the overall figure
crept down slowly rather
than dropped at the rate at
which we were actually
sorting out the bugs.

By this stage the team was very tired. The only
things that kept them going were the sense that
the end was in sight and the fact that they could
now play the game and actually experience
what we had created. Bugs, of course, could
have killed the game, so there was no way
around it but to fix each and every one. We had
bug lists circulated to every member of the staff,
and we put up a chart on the wall which was
updated daily. Some days we had more bugs
than the day before, and that was like looking at
a mountain which was growing quicker than we
could climb it.

But there came a moment three weeks into this
process when we felt we’d broken the back of
the major bugs, and the numbers fell steadily.
Of course, the irony was that the last 10 bugs
were the hardest to fix, and with every one there

Tortoise morphs from evil to good.

Lionhead Studios’ BLACK & WHITE 158

were four more created. It was as if the game
just didn’t want to be finished and perfected.

3. The project was too big
BLACK & WHITE got to be so large that we
almost felt lost within the code. In fact there are
well over a million lines of code within the
game. Loading up even the most simple of the
smallest tools would take many minutes, and
compiling the entire game took over an hour.
This meant that toward the end
of the development phase even a
tiny change could take a whole
day to implement. Checking in
changes and rectifying errors was
a nightmare. We eventually
decided to limit the checking-in to
one machine, and we imple-
mented a buddy system whereby
nothing was done without an
onlooker checking it at every
stage. This put a stop to tired
people checking in changes at
four in the morning and finding
that, instead of fixing something,
they’d actually caused further
problems.

Another worry about the
project’s size was that we didn’t
think the game would fit on one
CD, although we were desperate
for it to. The audio files are
immense. Music, dialogue, and effects are all
compressed, but of sufficiently high quality that
we refused to reduce them any further. And with

15 language versions to get translated and
recorded, we had to do the biggest localization
job I’ve ever seen. This landed on Lionhead Stu-
dios at the very busiest time, and although our
publisher did an excellent job of handling it, we
were needed to check and answer questions and
to provide explanations for some of the more
arcane elements of the game.

4. Leaving things out
The idea of the game didn’t really
change much over the course of
its creation. But I do have some
regrets that features we thought
would be great proved unwork-
able. I expected this, as it happens
with every project, but I thought
the problems would be caused by
software or even hardware limita-
tions. In fact, it came down more
to emotional issues.

For example, the original idea of
the Creatures was that a player
could choose to make any living
thing a Creature. We wanted the
player to be able to select an ant
and grow that, or a human being
from a tribe, and raise him or her.
Christian Bravery, one of the art-
ists, spent a long time drawing
concept work and sketches
depicting what the Creatures

could look like at various stages of their devel-
opment. This of course included humans.

Concept sketch of the
good Celt.

SECTION III: MANAGING INNOVATION159159

We soon realized that people would have certain
expectations from a human. Players wouldn’t
expect a turtle to learn as quickly as a man, but
if we dumbed down the people, they’d seem like
a proto-hominid race from eons ago, and we
didn’t want that. Also, disci-
pline in the game involves slap-
ping your Creature. We
certainly couldn’t have the
player slapping a child or a
woman or, really, even a grown
man. The emotional feel of
raising a human, teaching him
or her to eat what you want,
and leading him or her around
in a speechless environment
was all wrong. Christian’s work
in visualizing humans as player
Creatures was all for nothing in
the end, and we dropped the
idea. We also dropped the
notion of turning any living
thing into a trainable Creature,
as ants, butterflies, fish, and
other non-mammals would
have caused big problems. A
flying Creature would change BLACK & WHITE

into a totally different game.

I also regret that we couldn’t use color as a
dynamic concept a little more. The landscapes
in the game are gorgeous, and our sound and
music man, Russell Shaw, suggested that various
spells could drain the color out of areas, or
spread different colors around. We liked this
idea for its surrealism, and we thought about
having color wars with other wizards (at this
stage you weren’t a god, you were a wizard bat-

tling others on a land). The idea lost momentum
when we thought about how the land would
actually look, and how it would seem like some-
thing drawn by a preschooler. I still like the idea
of color wars, but I think children’s TV has also

cottoned on to the idea, which
means we won’t be going there.

5. Talking about
release dates
I have to admit, ruefully, that I
have a reputation for being,
shall we say, optimistic about
when the projects I’m working
on will be completed. I opened
my big mouth and announced
that Lionhead Studios would
finish BLACK & WHITE and get
it released at the end of last
year. I just can’t resist talking
about whatever I’m currently
working on. This has been a
problem I’ve experienced with
every game I’ve ever developed.

But the thing is, when I think something is going
to be finished in December, I really do believe it.
People at Lionhead were telling me that we had
to build in time for bug-fixing, and I knew this
was true, but the truth is that there seems to be
no formula for working out how long things
will take. The best thing to do, I guess, is to take
the finishing date I first think of and move it
twice as far away—and then not announce it
until we’re halfway there.

Concept art of the evil Celt.

Lionhead Studios’ BLACK & WHITE 160

It’s a function of working on products which
could literally be endless. Unlike a film, where
once the footage is shot, you edit it with an idea
of where you’ll end up, you can add completely
new features to a game and then balance it and
change it radically right up until the last
minute. I’m sure that there were many people
who didn’t believe me when I said we’d finished
making BLACK & WHITE and were only con-
vinced when they saw a box with a CD in it.

“Just More”
BLACK & WHITE is unlike any other game ever
written. That was our goal, and we achieved it.
We wanted something more beautiful, more
complex, more emotive, more innovative, more
clever, and more, well, just more.

As you’ve read, it was beset by problems. We
nearly drove ourselves crazy solving them.
Nothing worthwhile is ever simple, though, and
for every minute spent thinking up wonderful
ideas to include in the game, there were proba-
bly 20 hours of sheer hard effort trying to get
them to work.

People told Lionhead we were perfectionists,
but if we were, the game would never have been
finished. It’s not a perfect game. Our next game
won’t be, either. But because there’s no such
thing as a perfect game, we’ll just try to do
something different, and do it as well as we pos-
sibly can. Someone asked me recently what
drove us to work so hard on this and to spend
so much time thinking outside the box. The sim-
ple truth of my answer only struck me after-
wards. With BLACK & WHITE, we made the
game that we wanted to play.

We tried to make the micromanagement of the
villagers as user-friendly as possible.

161

Bungie Software’s

MYTH: THE FALLEN
LORDS
by jason regier

As the team at Bungie Software put the finishing
touches on the MARATHON series of first-person
action games, our thoughts drifted to bringing
our 3D game experience to the real-time strat-
egy game (RTSG) genre. We were inspired by
movies such as Braveheart, with its close-up
portrayal of bloody melees between large forces,
and books such as Glen Cook’s The Black Com-
pany, in which gruesome tales of battle contrast
with engaging and intriguing characters. We
envisioned a dark, amoral world where oppos-
ing sides are equally brutal and their unity is
torn by power struggles within the ranks. We
dreamed of game play that combined the real-
ism and excitement of action games with the
cunning and planning required by strategy
games.

Our original design document, if you could call
it that, was simply opposing lists of “Stuff that
Rocks” and “Stuff that Sucks.” Anything
vaguely cliché, such as excessive references to
Tolkien novels, Arthurian legend, or “little boys
coming of age and saving the world,” went in

the “Sucks” category. The “Stuff that Rocks”
list was filled with ideas that contributed to the
visual realism of the game: a true 3D landscape,
polygonal buildings, reflecting water, particle-
based weather, “blood-spattered battlefields lit-
tered with limbs,” explosions that send shock
waves through the terrain, and “lightning frying
guys and their friends.”

Our goals for the product were lofty: simulta-
neous release on Windows 95 and Macintosh
platforms, integrated Internet play, and a free
online service to allow players from across the
globe to battle one another. From this vision,
MYTH: THE FALLEN LORDS was born.

Back-Story
MYTH: THE FALLEN LORDS uses the same overhead

view as real-time strategy games, but brings the per-

spective lower to portray the bloody details of tactical

conflict in a fantasy setting. The game follows the for-

tunes of one legion in an army of allied peoples fighting

a desperate, losing war against the undead armies of

the Fallen Lords. Well-balanced units and successful

multiplayer make this a successful piece of game

design, and the grim atmosphere of this well-executed

fantasy tale leaves a lasting impression.

Bungie Software’s MYTH: THE FALLEN LORDS 162

The Making o f a
Legend , er, Myth
The project began in January 1996 with four
programmers, two artists, and a product man-
ager. Midway through development, one pro-

grammer dropped out and an artist was added.
Music, sound effects, and cut scenes were done
out-of-house, and a few artists were contracted
to help with interface artwork. The roots of the
MYTH programming team were on the Macin-
tosh, so most initial coding was done on the
Mac with Metrowerks CodeWarrior. When PC
builds were required, though, we used
Microsoft Visual C/C++. MYTH was written
entirely in C.

In addition to creating the shipping product, we
developed four tools to aid in the construction
of the game. One utility, the Extractor, handled
the importing of sprites and the sequencing of
their animations. Another tool, dubbed Fear,
dealt with importing polygonal models such as
houses, pillars, and walls. The Tag Editor was
responsible for editing the constants stored in
cross-platform data files, which we called tags.
And finally, Loathing, our map editor, handled
the rest. Loathing was built around the MYTH

engine and allowed us to modify the landscape,

apply lighting, set terrain types, script the AI,
and place structures, scenery, and monsters.

The artists used Alias|Wavefront’s PowerAnima-
tor and StudioPaint on a single Silicon Graphics
Indigo 2 to create polygonal models and render
all the characters. At one point, the artists
worked separate day and night shifts so that
they could maximize their time on the SGI.
Models were brought into the game using Fear,
while the sprites were cleaned up in Adobe Pho-
toshop and imported with the Extractor. To cre-
ate the texture maps for the terrain, the artists
used Photoshop to draw what looked like an
aerial photo and applied it to a 3D landscape in
Loathing.

If this sounds like a lot of work to you, you’re
right. Most maps took at least a week or two to
create. We considered using fractal-generated
landscapes, but we were worried that the inher-
ent randomness of such terrain would make it
extremely difficult to design good levels. As a
result, all maps were painstakingly constructed
by hand. As the artists put the finishing touches
on the landscapes, the programmers, who dou-
bled as level designers, scripted the AI for the
levels.

MYTH took approximately two years from
start to finish. It began as a six-degrees-of-free-
dom engine that allowed you to fly around a
landscape. Soon, troops were added, heads
started flying, blood was made to destructively
alter the terrain’s color map, and the network
game was born. Most of the first year was spent
developing the initial network/multiplayer
game play. Almost the entire second year was

Game Data
Release Date: November, 1997

Genre: 3D real-time strategy; fantasy

Publishers: Eidos, Pacific Coast

Platform: Windows and Macintosh

SECTION III: MANAGING INNOVATION163163

spent developing the single-player game, refin-
ing the levels, and testing bungie.net, our free
online service.

1. Bringing carnage to the
masses
It’s a real trick to create a simultaneous, identi-
cal-look-and-feel, cross-platform release. It’s
even harder to do so within the expected time
frame with only three program-
mers. Our experience porting
MARATHON, our popular Macin-
tosh-only action game, to Win-
dows 95 was a valuable learning
experience, and we vowed when
starting MYTH that, “This time,
we’re going to do it right.”

Doing it “right” meant designing
MYTH from the ground up to be
cross-platform compatible.
Ninety percent of the code in the
game is platform independent; the
other ten percent is split evenly between routines
that handle PC- and Macintosh-specific func-
tionality. It was a programmer’s dream come
true—we spent almost all our time implementing
features and solving real problems, rather than
wasting it fighting the OS.

All of the data for MYTH, from animated cut
scenes to the percentage of warriors who are
left-handed, is stored in platform-independent

files called tags. Tags are automatically byte
swapped when necessary and are accessed via a
cross-platform file manager.

One of our programmers worked in conjunction
with Apple Computer Inc. to develop a cross-
platform networking library code-named Über.
One of the greatest things about Über is that it
supports plug-in modules for network proto-
cols. Thus, although MYTH currently only
allows games over TCP/IP, AppleTalk, and
through TEN, it would be trivial to add support
for new protocol modules. MYTH must provide
a user interface to set up the connection, but
once Über establishes that connection, game

play over a LAN is the same as
over the Internet.

To keep the game’s appearance
identical across platforms, we
implemented our own dialog and
font managers. This allowed us
(actually, it required us) to use
custom graphics for all interface
items. We designed our font man-
ager so that it supported anti-
aliased, two-byte fonts, as well as
a variety of text-parsing formats.
Thus, our overseas publishers

Eidos and Pacific Software Publishing were able
to localize relatively painlessly. The German ver-
sion of MYTH was finished only a couple of
weeks after the English release, with Japanese
and French versions close behind. The only
game experience that is different for the two
platforms is the installation, and two players on
bungie.net have no idea whether their opponents
are on Macintoshes or PCs.

What Went Right

Bungie Software’s MYTH: THE FALLEN LORDS 164

2. bungie.net and beta testing
MYTH was also released with integrated support
for our first online service, bungie.net. This ser-
vice was designed specifically for MYTH and
was developed simultaneously. Similar to online
services for other games, it allows players to
connect via the Internet to game rooms,
where they can chat or play against
one another. The Linux-based server
that runs bungie.net keeps track of
player statistics and gives every-
one a score in our ranking sys-
tem. The service’s Web site
(www.bungie.net) has access
to this database and sports a
leader board that lists the
top players.

Our networking layer is based on a
client/server model. Once you advertise
a game on the network, you become a
server, and other players join your game.
Network traffic during a game is limited to
the commands issued by the players. All cop-
ies of MYTH in a network game run determinis-
tically and merely interpret the commands that
they receive. This makes cheating difficult; if
you hack the game to perform something illegal,
such as making all your units invincible, you’ll
go out of sync with other players. When por-
tions of the game data are periodically check-
summed and compared, a message will indicate
that you’re out of sync (and out of luck). So far,
the only form of cheating we’ve encountered is
users trying to exploit the bungie.net ranking
system.

To rigorously test our server load capacity and
the bungie.net code, we released a public beta of
the network game. Initially we were apprehen-
sive because it was our first public beta test of a
product, but it was an amazing success. When
errors occur, MYTH alerts the player, logs the
error messages, and usually allows the user to

save a replay of the problem. Testers submit-
ted these detailed bug reports via e-mail

and chatted about features and improve-
ments to levels on internal news-

groups.

Best of all, the testers used
bungie.net to give instant
feedback to the developers.
This interaction allowed us
to gather even more useful

information about bugs, and it
made the testers really feel

involved in the final product. By the
end of the beta-testing cycle, we not

only had a clean product, but also had a
loyal following of users who sang our

praises when the NDAs were lifted.

3. 3D graphics acceleration
When the project started, 3D acceleration hard-
ware was only just starting to become popular.
Nevertheless, we tried to keep hardware acceler-
ation in mind when designing our rendering
pipeline. When the opportunity arose to add
hardware acceleration, the implementation
worked beautifully.

We worked closely with people from 3Dfx and
Rendition and added support for their chipsets

SECTION III: MANAGING INNOVATION165165

in about a week. It’s amazing how much these
accelerators add to the smoothness of the ter-
rain, the fluidity of camera movement, and the
realism of the units and effects. These chips
rock, and great on-site developer assistance
made them easy to support.

4. Getting back to the people
Once we had released MYTH, we definitely did
the right thing by waiting for player feedback
and then releasing a patch to address their
issues. Since our public beta test caught most of
the bugs in the shipping product, nearly all our
post-shipping efforts were directed towards
adding user-requested fea-
tures. We scoured the news-
groups, read email, and talked
to customers about their com-
plaints. From these disparate
sources, we compiled a list of
improvements for our 1.1
patch.

All major user complaints were addressed in the
patch. We added support for Rendition and
Voodoo Rush cards. We extended the camera’s
maximum zoom for a better view of the battle-
field. We made our easy difficulty levels even
easier. And we improved the unit AI. By the
time the early reviews came out, we’d already
released a beta patch that addressed almost
everything on the reviewers’ lists of MYTH’s
failings.

5. Doing more with less
It doesn’t take fifty people to create a major
cross-platform software title. Period. Bungie

Software has barely half that number of
employees in the entire company, and we not
only develop all our games, but publish and dis-
tribute them as well! Macintosh and PC ver-
sions of MYTH, all our internal tools, and our
online service were essentially developed by only
six people, and everything shipped on time with
no major glitches. There’s no big quality assur-
ance department here at Bungie; the public did
our testing for us, and we listened to them as
seriously as if they were coworkers on the
project.

We didn’t hire any game designers, writers, or
level designers to come up with our game con-

cept and story line. MYTH

truly is the combined vision of
our team, and each of us feels
that it was our game. We came
to work each day excited
about the project, and we’re
damn proud of what we man-
aged to create.

1. Staffing problems
On the flip side, it became clear very early in the
project that we were understaffed for such an
ambitious undertaking. Success or failure rested
with a handful of people, and that was
extremely stressful. Losing a programmer half-
way through development added still more pres-
sure during the final push to get the game out
the door. Additional programming tasks had to

What Went Wrong

Bungie Software’s MYTH: THE FALLEN LORDS 166

be shouldered by the remaining developers, who
were already also responsible for level design.
To alleviate the problem somewhat, we even
found it necessary to ask our busy network
administrator to aid in AI scripting and level
design.

We did hire a third artist near
the end of the project, but it
was almost too late. While his
contributions to the final
product were by no means
insignificant, it took a long
time to get him up to speed.
Similarly, when we dropped
the services of our original
sound guy late in the develop-
ment cycle, a new sound team
had to rush to redo all the
work.

If you’re looking for good
anecdotes about how we blew
off steam with wild weekend
trips to Cancún, you won’t get
any. We all worked incredibly
hard, and did so willingly because MYTH repre-
sented a two-year labor of love. All the great
previews and supportive feedback from beta
testers kept us excited and made us realize that
we really did have something special on our
hands. Nobody wanted to slack off and allow
competing products to beat us to the shelves.
The moral of the story: staff up as early as possi-
ble and plan to weather the unexpected.

2. Scripting
The biggest announced feature that didn’t make
it into the final version of MYTH was a scripting
language that would allow the player to modify
elements of the game. We had hoped that user
scripts could be written for extensible artificial

intelligence, as well as custom
formations, net game rules,
and map behaviors. We
selected Java as a good basis
for the MYTH scripting lan-
guage because of its gaining
popularity, good information-
hiding capabilities, and rela-
tively simple byte code inter-
pretation.

After several months of work,
early versions of the game
loaded, compiled, and ran
code from tag files. A few sim-
ple scripts worked for presen-
tation purposes, including one
that instructed a unit to search
the battlefield for the heads of

the enemy and collect them in a pile. Unfortu-
nately, when the programmer responsible for
the scripting language parted ways with Bungie,
we were left with a number of features to imple-
ment and no library of user-friendly interfaces
with the game code. Given its incomplete state
at such a late stage of development, there was
little choice but to drop this functionality.

SECTION III: MANAGING INNOVATION167167

3. More frames of animation
One of the complaints most often voiced by
players is that the sprite-based units’ animations
are not fluid enough. At the start of the project,
when we planned for the number of frames of
animation per unit, there was a good deal of
uncertainty regarding how much RAM would
be consumed by large texture maps, sounds,
and other resources. As things were, it was
not uncommon for our landscape textures to
reach 5MB in size, and certain animations
already consumed close to 1MB—our uncer-
tainties were not unfounded. We erred
on the conservative side. Though we
implemented caching schemes that
greatly reduced our memory
requirements, there wasn’t
enough time to rerender the units.

4. Pathfinding
Perfect pathfinding seems to have
become the Holy Grail for games in the
RTS genre, and MYTH is no exception.
The game’s terrain is a 3D polygonal
mesh constructed from square cells,
each of which is tessellated into two
triangles. Cells have an associated
terrain type that indicates their
impassability, and they may contain any num-
ber of solid objects, including trees, fence posts,
and units.

Ah! Square cells, you say? Having read previous
Game Developer articles (Bryan Stout, “Smart
Moves: Intelligent Pathfinding,” Game Devel-
oper, October/November 1996; Swen Vincke,
“Real-Time Pathfinding for Multiple Objects,”

Game Developer, June 1997), your first thought
may be that the A* pathfinding should do the
trick.

The first problem with a pure A* approach for
MYTH is that impassable obstacles, such as
troops and trees, may lie anywhere on the ter-
rain. Penalizing the cells beneath impassable
obstacles is a bad idea because the cells are

fairly large and obstacles are not guaran-
teed to be aligned at the center of a cell.

Furthermore, even if a tree did consume
exactly one cell, the A* path to avoid
it would make a unit walk up to the
tree, turn, and continue around it.
Units that bump into trees and walk
between the centers of large cells
appear extremely stupid; you
really want your group of troops
to avoid obstacles (including each
other) ahead of time, and
smoothly weave their way
through a forest.

To produce this effect, we created our
own pathfinding algorithm. First, we
ignore all obstacles and calculate the A*
path based solely on the terrain impass-
ability. For all intents and purposes,
the terrain in MYTH never changes, so

this path can be calculated once and
remembered. Now, we consider the arbi-

trarily placed obstacles and periodically refine
our path using a vector-based scheme. If the
planned path would cause us to hit an obstacle,
we need to deviate our path. We recursively con-
sider both left and right deviations, and choose
the direction that causes us to deviate least from

Bungie Software’s MYTH: THE FALLEN LORDS 168

our A* path. Thus, we’ve considered terrain
impassability information and we can avoid
arbitrarily placed (or even moving) obstacles
well before we bump into them.

For every game, pathfinding is a pretty complex
and sensitive beast. This method worked well
for 90 percent of our cases, but rigorous testing
revealed certain cases that were not adequately
handled. As the ship date drew near, we were
forced to say “good enough” rather than handle
these problem cases and risk introducing new
bugs. Our current algorithm works pretty well
and provides the effect we sought, but there’s
definitely room for improvement.

5. Features that missed the cut
With a few exceptions, everything from our list
of “Stuff that Rocks” made it into the final
product. Those features that didn’t make it
came so close and were so exciting that they def-
initely deserve mention.

Near the end of the project, we started adding
support for 3D fire, which would be ignited by
explosions and flaming arrows. Our flames were
sprite-based 3D particle effects, complete with
translucent smoke. Fire could spread across the
landscape and move at different rates over the
various types of terrain. To our dismay, when a
spark in the woods spread into a raging forest
fire (as it should), all the translucent smoke
sprites slowed even fast, 3Dfx-accelerated
machines to a crawl. With little time to rectify
the problem, we had to put out the fire, so to
speak.

We had also planned for wildlife to scamper
across the terrain and for birds to fly through
the air, breathing life into our empty landscapes.
Our attempt at ambient life started with a giant
squirrel created by one of our artists. Unfortu-
nately, due to time constraints, we didn’t have a
chance to create very interesting behaviors for
it. Just about the only AI that we had a chance
to code simply made the squirrels gravitate
towards the player’s units. We thought it best to
drop ambient life rather than subject players to
hordes of nuzzling squirrels.

Post-Re lease
React ions
With all the prerelease hype MYTH had received,
we were very anxious to see how the public
would receive the final version. The reactions
from beta testers were phenomenally positive, as
were the comments from customers and review-
ers. Our swiftness in correcting problems and
adding several user-requested features with a 1.1

SECTION III: MANAGING INNOVATION169169

patch only earned us more kudos from the press
and public.

But possibly the most satisfying result of the
game is the degree to which it lessens the appeal
of playing with a traditional isometric perspec-
tive. Working on MYTH so consumed our time
that we didn’t get a chance to play anything else;
we looked forward to playing some old favor-
ites and the latest demos of our high-profile
competition after we shipped. It was a real sur-
prise to discover that once we were accustomed
to MYTH’s 3D camera and its associated free-
dom, playing isometric games was frustrat-
ing—the action seemed distant and unrealistic,
while the view of the world was annoyingly
rigid. This sentiment was echoed in both player
comments and reviews of the game.

Since our MARATHON products were derided by
some as DOOM rip-offs, it was especially satisfy-
ing to hear players say that MYTH pushes the
genre in a new direction, from which there’s no
looking back. It remains to be seen whether
MYTH will inspire other entries into the 3D real-
time strategy game genre. But if nothing else,
MYTH is proof that a very small team with a
strong product vision can still make a very big
game.

The MYTH development team. FROM LEFT to
RIGHT: Mark Bernal (artist), Frank Pusateri
(artist), Rob McLees (artist, holding statue of
a Trow), Jason Regier (programmer), Jason
Jones (programmer/project leader) Marcus
Lehto (artist). NOT PICTURED: Ryan Martell
(programmer), Tuncer Deniz (product
manager), Jay Barry (level design).

Bungie Software’s MYTH: THE FALLEN LORDS 170

This Page Intentionally Left Blank

171

Looking Glass’s

THIEF: THE DARK
PROJECT
by tom leonard

THIEF: THE DARK PROJECT is one of those
games that almost wasn’t. During the long
struggle to store shelves, the project faced the
threat of cancellation twice. A fiscal crisis nearly
closed the doors at Looking Glass. During one
seven-month span, the producer, project direc-
tor, lead programmer, lead artist, lead designer
and the author of our renderer all left. Worse
still, we felt a nagging fear that we might make a
game that simply was not fun. But in the end,
we shipped a relatively bug-free game that we
had fun making, we were proud of, and that we
hoped others would enjoy.

The Concept
The THIEF team wanted to create a first-person
game that provided a totally different gaming
experience, yet appealed to the existing first-per-
son action market. THIEF was to present a
lightly-scripted game world with levels of player
interaction and improvisation exceeding our
previous titles. The team hoped to entice the
player into a deep engagement with the world
by creating intelligible ways for the world to be

impacted by the player. The central game
mechanic of THIEF challenged the traditional
form of the first-person 3D market. First-person
shooters are fast-paced adrenaline rushes where
the player possesses unusual speed and stamina,
and an irresistible desire for conflict. The expert
THIEF player moves slowly, avoids conflict, is
penalized for killing people, and is entirely mor-
tal. It is a game style that many observers were
concerned might not appeal to players, and even
those intimately involved with the game had
doubts at times.

The project began in the spring of 1996 as
DARK CAMELOT, a sword-combat action game
with role-playing and adventure elements, based
on an inversion of the Arthurian legend.
Although development ostensibly had been in

Back-Story
In the early 90s, Looking Glass Studios helped invent

first-person 3D gaming with ULTIMA UNDERWORLD and

SYSTEM SHOCK and, in the late 90s, reinvented the form

with THIEF: THE DARK PROJECT. THIEF breaks out of the

first-person shooter model and shifts the emphasis to

stealth. Looking Glass developed lighting, AI, and audio

technologies to allow players to use silence and shadow

and sneak attacks rather than firepower to achieve their

goals. In keeping with this new style of play, they gave

the game a cynical thief for a hero and set it in a half-

fantasy, half-Victorian steampunk world.

Looking Glass’s THIEF: THE DARK PROJECT 172

progress on paper for a year, THIEF realistically
began early in 1997 after the game was reposi-
tioned as an action/adventure game of thievery
in a grim fantasy setting. Up to that point we
had only a small portion of the art, design, and
code that would ultimately make it into the
shipping game.

Full development began in May 1997 with a
team comprised almost entirely of a different
group of people from those who started the
project. During the following year, the team cre-
ated a tremendous amount of quality code, art,
and design. But by the beginning of summer in
1998, the game could not be called “fun,” the
team was exhausted, and the project was faced
with an increasingly skeptical publisher.

The Looking Glass game design philosophy
includes a notion that immersive gameplay
emerges from an object-rich world governed by
high-quality, self-consistent simulation systems.
Making a game at Looking Glass requires a lot

of faith, as such systems take considerable time
to develop, do not always arrive on time, and
require substantial tuning once in place. For
THIEF, these systems didn’t gel until mid-sum-
mer, fifteen months after the project began full
development, and only three months before we
were scheduled to ship.

When the game finally did come together, we
began to sense that not only did the game not
stink, it might actually be fun. The release of
successful stealth-oriented titles (such as METAL

GEAR SOLID and COMMANDOS) and more con-
tent-rich first-person shooters (like HALF-LIFE)
eased the team’s concerns about the market’s
willingness to accept experimental game styles.
A new energy revitalized the team. Long hours
driven by passion and measured confidence
marked the closing months of the project. In the
final weeks of the project the Eidos test and pro-
duction staff joined us at the Looking Glass
offices for the final push. The gold master was
burned in the beginning of November, just in
time for Christmas.

In many ways, THIEF was a typical project. It
provided the joys of working on a large-scale
game: challenging problems, a talented group of
people, room for creative expression, and the
occasional hilarious bug. It also had some of the
usual problems: task underestimation, bouts of
low morale, a stream of demos from hell, an
unrealistic schedule derived from desire rather
than reality, poor documentation, and an insuf-
ficient up-front specification.

However, THIEF also differed from a number of
projects in that it took risks on numerous fronts,

Game Data
Release date: December 1998

Publisher: Cyan

Genre: first-person stealth/action; fantasy

Intended platform: Windows 95/98

Project budget: Approximately $3 million

Project length: 2.5 years

Team size: 19 full-time developers. Some contractors.

Critical development software: Microsoft Visual C++
5.0, Watcom C++ 10.6, Opus Make, PowerAnimator,
3D Studio Max, Adobe Photoshop, AntimatorPro,
Debabelizer, After Effects, and Adaptive Optics
motion-capture processing

SECTION III: MANAGING INNOVATION173173

risks that our team underappreciated. We
wanted to push the envelope in almost every ele-
ment of the code and design. The experimental
nature of the game design, and the time it took
us to fully understand the core nature of that
design, placed special demands on the develop-
ment process. The team was larger than any
Looking Glass team up until then, and at times
there seemed to be too many cooks in the
kitchen. Reaching a point where everyone
shared the same vision took longer than
expected. A philosophy of creating
good, reusable game engine compo-
nents created unusual challenges
that didn’t always fit well with
schedule and demo pressures. The
many risks could have over-
whelmed the project, if not for the
dedication, creativity, and sacrifices
of the team.

Throughout the life of the project,
more than 50 people worked in one
way or another on THIEF—some as
part of the CAMELOT project, others
as part of the Looking Glass audio-
visual and technology support staff,
some as helpful hands from other
Looking Glass projects. The core team consisted
of a number of veterans of previous Looking
Glass titles (UNDERWORLD I and II, SYSTEM

SHOCK, FLIGHT UNLIMITED, TERRA NOVA,
BRITISH OPEN CHAMPIONSHIP GOLF, and the
unpublished STAR TREK™: VOYAGER), as well
as some new industry arrivals. The project had a
number of very talented people and strong wills.
Although it took some time for the team to
unite as a tight-knit creative force, the final six

months were incredibly productive, spirited,
and punishingly fun.

1. Designing data-driven tools
Our experience on previous titles taught us that

one of the impediments to timely
game development is the mutual
dependence of artists, designers,
and programmers at every develop-
ment stage. One of the development
goals for the Dark Engine, on
which THIEF is built, was to create a
set of tools that enabled program-
mers, artists, and designers to work
more effectively and independently.
The focus of this effort was to make
the game highly data-driven and
give non-programmers a high
degree of control over the integra-
tion of their work. Media and game
systems were to be easily and intu-
itively plugged in and edited by the
team members responsible for their

creation, without requiring the direct involve-
ment of programmers.

The Dark Object System stood at the heart of
our strategy. Primarily designed by programmer
Marc “Mahk” LeBlanc, the Object System was
a general database for managing the individual
objects in a simulation. It provided a generic
notion of properties that an object might pos-
sess, and relations that might exist between two

What Went Right

Looking Glass’s THIEF: THE DARK PROJECT 174

objects. It allowed game-specific systems to cre-
ate new kinds of properties and relations easily,
and provided automatic support for saving,
loading, versioning, and editing properties and
relations. It also supported a game-specific hier-
archy of object types, which could be loaded,
saved, and edited by designers. Programmers
specified the available prop-
erties and relations, and the
interface used for editing,
using a set of straightforward
classes and structures. Using
GUI tools, the designers spec-
ified the hierarchy and com-
position of game objects
independent of the program-
ming staff. In THIEF there
was no code-based game
object hierarchy of any kind.

Although the implementation
of the system was much more
work than we expected, and
management of the object
hierarchy placed significant
demands on lead designer
Tim Stellmach, it turned out
to be one of the best things in
the project. Once the set of
available properties and relations exposed by
programmers was mature, the Object System
allowed the designers to specify most of the
behaviors of the game without scripting or pro-
grammer intervention. Additionally, the relative
ease with which variables could be made avail-
able to designers in order to tweak the game
encouraged programmers to empower the
designers thoroughly.

The second major component of our strategy
was our resource management system. The
resource management system gave the game
high-level management control of source data,
such as texture maps, models, and digital
sounds. It helped manage the game’s use of sys-
tem memory, and provided the data flow func-

tions necessary for
configuration management.
Looking Glass’s previous
resource management sys-
tem provided similar func-
tionality, but identified
resources by an integer ID
and required a special
resource compilation step.
This technique often required
recompilation of the game
executable in order to inte-
grate new art, and required
that the team exit the game
when resources were pub-
lished to the network.

The new system referred to a
resource by its file name with-
out its extension, used a file
system directory structure for
namespace management,

didn’t leave files open while working, and
required no extra compilation step. Developers
simply dropped art into their local data tree and
started using it. To expose art to the rest of the
team, lead artist Mark Lizotte just copied art
into the shared project directories. Compound
resources were treated as extensions to the file
system and were built using the standard .ZIP
format. This allowed us to use off-the-shelf tools

Concept sketches of Hammer and
a burrick.

SECTION III: MANAGING INNOVATION175175

for constructing, compressing, and viewing
resource files.

The system facilitated content development by
allowing programmers, artists, and designers to
add new data to an existing game quickly. The
data-driven approach worked so well that
through much of our development, THIEF and
SYSTEM SHOCK 2 (two very different games)
used the same executable and simply chose a
different object hierarchy and data set at run-
time.

2. Sound as a game design
focus
Sound plays a more central role in THIEF than in
any other game I can name. Project director
Greg LoPiccolo had a vision of THIEF that
included a rich aural environment where sound
both enriched the environment and was an inte-
gral part of gameplay. The team believed in and
achieved this vision, and special credit goes to
audio designer Eric Brosius.

As an element of the
design, sound played
two roles in THIEF. First,
it was the primary
medium through which
the AIs communicated
both their location and
their internal state to the
player. In THIEF we tried
to design AIs with a
broader range of aware-
ness than the typical two

states that AIs exhibit: “oblivious” and “omni-
scient.” Such a range of internal states would be
meaningless if the player could not perceive it,
so we used a broad array of speech broadcast by
the AIs to clue in the player.

While very successful for humanoid AIs, we feel
the more limited expressibility of non-human
creatures is the heart of why many customers
didn’t like our “monster levels.” Second, the
design used sounds generated by objects in the
game, especially the player, to inform AIs about
their surroundings. In THIEF, the AIs rarely
“cheat” when it comes to knowledge of their
environment. Considerable work went into con-
structing sensory components sufficient to per-
mit the AIs to make decisions purely based on
the world as they perceive it. This allowed us to
use player sounds as an integral part of game-
play, both as a way that players can reveal them-
selves inadvertently to the AIs and as a tool for
players to distract or divert an AI. Moreover,
AIs communicated with each other almost
exclusively through sound. AI speech and

sounds in the world,
such as the sound of
swords clashing, were
assigned semantic val-
ues. In a confrontation,
the player could expect
nearby AIs to become
alarmed by the sound of
combat or cries for help,
and was thus encour-
aged to ambush oppo-
nents as quietly as
possible.

Hand-to-hand combat is sometimes
necessary.

Looking Glass’s THIEF: THE DARK PROJECT 176

In order for sound to work in the game as
designed, we needed to implement a sound sys-
tem significantly more sophisticated than many
other games. When constructing a THIEF mis-
sion, designers built a secondary “room data-
base” that reflected the connectivity of spaces at
a higher level than raw geometry. Although this
was also used for script triggers and AI optimi-
zations, the primary role of the room database
was to provide a representation of the world
simple enough to allow realistic real-time propa-
gation of sounds through the spaces. Without
this, it is unlikely the sound design could have
succeeded, as it allowed the player and the AIs
to perceive sounds more as they are in real life
and better grasp the location of their opponents
in the mission spaces.

3. Focus, focus, focus
Early on, the THIEF plan was chock full of fea-
tures and metagame elements: lots of player
tools and a modal inventory user interface to
manage them; multiplayer cooperative, death-
match and “Theft-match” modes; a form of
player extra-sensory perception; player capacity
to combine world objects to create new tools;
and branching mission structures. These and
other “cool ideas” were correctly discarded.
Instead, we focused in on creating a single-
player, linear, mission-based game centered
exclusively around stealth, with a player toolset
that fit within the constraints of an extension of
the QUAKE user interface. The notion came into
full force with two decisions we made about
seven months before we shipped.

First, the project was renamed THIEF from the
working title THE DARK PROJECT, a seemingly
minor decision that in truth gave the team a
concrete ideological focus. Second, we decided
preemptively to drop multiplayer support, not
simply due to schedule concerns, but also to
allow us as much time as possible to hone the
single-player experience. In the end, some mis-
sions didn’t achieve the stealth focus we
wanted, particularly those originally designed
for DARK CAMELOT, but the overall agenda was
the right one.

4. Objectives and difficulty
One of the THIEF team’s favorite games during
development was GOLDENEYE on the N64. We
were particularly struck by the manner in which
levels of difficulty were handled. Each level of
difficulty had a different overlapping set of
objectives for success, and missions were subtly
changed at each level in terms of object place-
ment and density. Relatively late in the develop-
ment of THIEF, we decided such a system would
work well in our game. Extending the concept,
we added a notion that as difficulty increased,
the level of toleration of murder of human
beings decreased. We also allowed players to
change their difficulty level at the beginning of
each mission.

The system was a success in two ways. First, it
made clear to the player exactly what “diffi-
culty” meant. Second, it allowed the designers
to create a very different experience at each level
of difficulty, without changing the overall geom-
etry and structure of a mission. This gave the

SECTION III: MANAGING INNOVATION177177

game a high degree of replayability at a mini-
mum development cost.

5. Multiple, narrow-purpose
scripting solutions
Although the Object System provided a lot
of flexibility, we also needed a scripting lan-
guage to fully specify object behaviors.
Rather than create a single all-encompassing
scripting system, we chose to develop sev-
eral more focused tools for scripting. This
tiered scripting solution worked well. In cre-
ating our core “high-end” object scripting
technology, we wanted to allow designers
with moderate programming skill to create
complex object behaviors easily. Scripts
were event-driven objects attached at runt-
ime to game objects, and contained data,
methods, and message handlers. The game
provided a election of services to allow the
script to query the world state and the game
object state, and also to perform complex
tasks.

Our goal was to create a scripting language that
offered source-level debugging, was fast, and
was dynamic. The solution was essentially C++
in .DLLs, compiled by the C++ compiler, using a
combination of classes and preprocessor macros
to ease interface publishing, handle dynamic
linking, and provide designers a clear program-
ming model.

Though used by both programming-savvy
designers and programmers, the fact that it was
a real programming language prevented wide-

spread use by all of the designers. Most design-
ers were interested in customizing AI behaviors.
For the AI we created a simpler scripting system,
“Pseudo-scripts,” that were implemented as
properties within the Object System. Pseudo-
scripts took the burden of coding scripts off of

the designers. The AI provided a stock set of
triggers, such as “I see the player near an
object” or “I see a dead body;” the designer
provided the consequence of the trigger. Each
Pseudo-script was edited in a dialog box pre-
senting parameters to tweak the “if” clause of
the trigger, and space for a list of simple, uncon-
ditional actions to perform when the trigger
fired. In this way, the custom behavioral possi-
bilities of the AI at any moment were described
by the aggregate of Pseudo-scripts that were
attached to that AI.

Stealth is one of your best weapons in THIEF. The game’s
designers made sure that expert players would have to
make effective use of silent weapons such as the
blackjack and the bow and arrow.

Looking Glass’s THIEF: THE DARK PROJECT 178

This approach had three benefits. First, it was
simple enough so that designers with no pro-
gramming experience were comfortable using it.
Second, it narrowed the range of triggers a
designer could use to a good pre-selected set,
rather than giving them an open-ended system
that might not have worked as well. Finally,
when and how to evaluate AI triggers, a potential
run-time expense if not carefully constructed,
could be custom built by a programmer.

The final scripting system built into THIEF was
the Tagged Schema system. When the game
required motions and sounds, it requested them
as concepts modified by optional qualifiers,
rather than directly. For
example, an AI who had just
heard the player would
request the concept “moder-
ate alert,” qualified with an
optional tag like
“+sense:sound.” A potential
set of resources was then
chosen using a pattern
matcher; in this example, it
would choose all samples in
that AI’s voice expressing a
generic “something’s not
right,” all samples expressing
“I heard something fishy,”
but no samples expressing “I
saw something fishy.” From
this set, the specific resource
was then chosen using a
weighted random selection.
The tables used were specified by the designers
using a simple language. Specifying motion and
sound selection this way, designers created an

interesting variety of randomized environments
and behaviors without changing the code of the
game.

1. Trouble with the AI
If one thing could be called out as the reason
THIEF’s gameplay didn’t come together until late
in the process, it would be the AI. The AI as a
foil to the player is the central element of THIEF,
and the AI we wanted wasn’t ready until late in

the spring of 1998. As lead
programmer and author of
the final AI, I take full
responsibility for that.

The original AI for THIEF was
designed by another pro-
grammer before the require-
ments of the revised stealth
design were fully specified.
Six months after it was
begun, the project director
and overseer of the system
left the team, and the most of
the programming staff was
temporarily reassigned to
help ship another game that
was in trouble. During the
following months, develop-

ment on that AI continued without any oversight
and without a firm game design. Soon after, the
programmer working on the AI also left.

What Went Wrong

SECTION III: MANAGING INNOVATION179179

While the core pathfinding data structures and
algorithms were basically sound, the code that
generated the pathfinding database was
extremely buggy. The design of the AI decision
process was geared towards an action fighting
game requiring little designer customization,
rather than a stealth game that needed much
more customization. Even worse, the high-level
decision process in the AI had drifted away from
a rigorous design and the code was extremely
brittle. The whole situation was a disaster.
These might not have been serious issues, except
for one key mistake: I didn’t realize the depth of
the problem quickly enough, and despite con-
cerns expressed by programmer/designer Doug
Church, I didn’t act fast enough. I think highly
of the programmer involved with the initial AI
and wanted to avoid the natural but often mis-
guided programmer reaction within myself that
I should just rewrite it my way. So, I took the
position that, while buggy, the system as a
whole was probably sound. Several months and
many sleepless nights later, I concluded that I
had been sorely mistaken.

By November 1997, I had the basics of a new
design and began working on it. But all work
had to stop in order to pull together an emer-
gency proof-of-concept demo by the end of
December to quell outside concerns that the
team lacked a sound vision of the game. This
turned into a mid-January demo, followed by an
early February publisher demo, followed by a
late February make-or-break demo. During this
time the only option was to hack features as
best we could into the existing AI.

While better than losing our funding, construct-
ing these demos was not good for the project. In
the end, work on the new AI didn’t begin until
mid-March. Despite the fact that our scheduled
ship date was just six months away, we threw
away four-fifths of our existing AI code and
started over. After a hair-raising twelve-week
stretch of grueling hours, the AI was ready for
real testing. Had I committed to a rewrite two
months earlier the previous autumn, I believe
the AI would have been ready for real use three
to five months sooner.

2. An uncertain renderer
The project was started because of the renderer,
rather than the reverse. The basic core of the
renderer for THIEF was written in the fall of
1995 as an after-hours experiment by program-
mer Sean Barrett. During the following year, the
renderer and geometry-editing tools were
fleshed out, and with DARK CAMELOT supposed
to ship some time in 1997, it looked like we
would have a pretty attractive game. Then, at
the end of 1996, Sean decided to leave Looking
Glass. Although he periodically contracted with
us to add features, and we were able to add
hardware support and other minor additions,
the renderer never received the attention it
needed to reach the state-of-the-art in 1998.

The possibility that we might not have a point
programmer for the renderer weighed heavily
on the team. Fortunately, Sean remained avail-
able on a contract basis, and other members of
the team developed sufficient knowledge of the
renderer so that we shipped successfully. In the
end, we shipped a renderer appropriate for our

Looking Glass’s THIEF: THE DARK PROJECT 180

gameplay, but not as attractive as other high-
profile first-person titles.

This may prompt the question of why we didn’t
simply license a renderer. When the project
started a few months into 1996, the avalanche
of QUAKE licenses hadn’t really begun and
UNREAL was still two years away. By the time
licensing was a viable choice, the game and the
renderer were too tightly integrated for us to
consider changing.

3. Loss of key personnel amid
corporate angst beyond our
control
Midway through 1997, THIEF was just starting to
gather momentum. We were fully staffed and the
stealth design was really starting to get fleshed
out. Unfortunately, Looking Glass’s financial sit-
uation was bleak. Few emotions can compare to
the stress of heading to work not knowing who
might be laid off, including yourself, or whether

the doors would be locked when you got there.
The company shed half of its staff in a span of six
months, and while the active teams tried to stay
focused, it was hard when one day the plants
were gone, another day the coffee machine, then
the water cooler.

Some of the THIEF team couldn’t continue under
these conditions. We lost two programmers,
including the former lead programmer, and a
designer. When we were forced to close our Aus-
tin office, we lost our producer, Warren Spector,
as well as some programmers who made valu-
able technology contributions to our engine. All
of these individuals are now on Ion Storm’s
DEUS EX team. Although it took some months
to fully restore the spirit of the rest of the team,
we held together and the company eventually
rebounded. Perhaps it bestowed a stoicism that
comes from knowing that however bad things
might seem, you’ve already seen worse.

4. Undervalued editor
One of the boils never lanced on the project was
our editor, Dromed. Although it was sufficiently
powerful and provided the essential functional-
ity we needed to ship the game, Dromed was a
poorly documented and sometimes disagreeable
editor. Dromed was first developed as a demon-
stration editor when the target platform of the
game was DOS. As a demo, it never received the
kind of formal specifications and designs one
would expect for the central experience of the
design team. As a DOS application, it lacked the
consistent and relatively easy-to-use user-inter-
face tools of Windows.

One of the featured weapons is the fire arrow.

SECTION III: MANAGING INNOVATION181181

An early mistake was our failure to step back
and formally evaluate the editor, and then
rebuild it based on our experience constructing
the demo editor. We also should have designed a
proper editor framework, and hired a dedicated
Windows user-interface programmer to support
it through development. In retrospect, the time
lost cleaning up the editor probably would have
been saved on the back end of the project.

5. Inadequate planning
Although it is a cliché in the software industry
to say our scheduling and budget planning were
woefully inadequate, the THIEF project suffered
greatly from this malady. There were several ele-
ments to our deficient planning. During DARK

CAMELOT, and continuing through the first half
of THIEF, we staffed the team before the design
and technology was sufficiently mature. In
THIEF, this led us to rush towards finishing the
design, when we didn’t necessarily understand
the design and technology. With insufficient
specifications of both the code systems and mis-
sion designs, we ended up doing lots of content
that was essentially wrong for the game we were
making. Code was written and spaces were built
that weren’t well-directed towards the goals of
the project.

To make matters worse, we failed to reassess
core scheduling assumptions carefully once the
schedule began to slip. Captives of a series of
unrealistic schedules, we didn’t leave enough
time for the sort of experimentation, dialogue,
and prototyping a project like THIEF needs. Late
in the winter of 1998, many of our scheduling

mistakes had been corrected. Still, during the
remainder of the project, the legacy of our ear-
lier missteps required cutting missions that
relied on technology we didn’t have, and
reworking missions not focused on the core
gameplay.

Stepp ing Back f rom
the Pro ject
THIEF was constructed as a set of appropriately
abstract reusable game components designed for
creating object-rich, data-driven games.
Although increasing the cost of development,
this approach allowed Looking Glass to lever-
age various technologies across disparate types
of games, from the first-person action game SYS-

TEM SHOCK 2 to our combat flight-simulator
FLIGHT COMBAT. In our next-generation tech-
nology, some of the systems, such as the AI and
the Object System, will merely be revised, not
rewritten.

We intend to continue with this development
philosophy in our future games. The next time
around, our approach to constructing the engine
will differ. The engine will be scheduled, staffed,
and budgeted as a project in its own right. The
editor will be treated as more of a first-class citi-
zen than was the case in THIEF. Finally, a con-
tent development team will not be geared up
until the technology is sufficiently mature to
allow for an informed game design process.

Oh, and we’ll get our schedules right—really.

Looking Glass’s THIEF: THE DARK PROJECT 182

This Page Intentionally Left Blank

183

DreamWorks Interactive’s

TRESPASSER
by richard wyckoff

One seldom hears the true story of what hap-
pened at the place where the world changed.
How it began. What were the reasons? What
were the costs?
—John Parker Hammond

This quote from TRESPASSER’S opening movie
serves just as well to open the real story of a
game development team’s struggle to create a
breakthrough dinosaur game as it does to open
the fictional story of Hammond’s struggle to
develop a biotechnological breakthrough and
clone dinosaurs.

An Ambi t ious Pro ject
The parallels between the TRESPASSER project
and Hammond’s cloning project were numer-
ous: ambitious beginnings, years of arduous
labor, and an eventual tragic ending. Ham-
mond’s diary, as related in the game itself,
dwells on the past and never attempts to explain
Hammond’s future direction now that he has
failed so grandly. This postmortem is intended
to be much more forward looking.

TRESPASSER was begun by two former employ-
ees of Looking Glass Technologies: Seamus

Blackley and Austin Grossman. By the time the
game was rolling, two more ex-Looking Glass
employees would join the team, and our com-
mon background was instrumental in setting the
direction for the project.

The Concept
The pie-in-the-sky concept for TRESPASSER was
an outdoor engine with no levels, a complete
rigid-body physics simulation, and behaviorally-
simulated and physically modeled dinosaurs.

Back-Story
In the history of game development, TRESPASSER

stands as an ambitious but failed experiment. The game

is set in the world of Jurassic Park and portrays a young

woman named Anne exploring the abandoned island

laboratory, learning its secrets and the past of its cre-

ator. The vision for TRESPASSER is a game that pushed

the envelope in several areas at once. Foremost is the

physics-based gameplay that would allow players more

flexibility in combat and puzzle-solving and give the

game-world a heightened realism. The team also cre-

ated outdoor environments that broke shooter game-

play out of the rooms-and-corridors mold, as well as

innovations in graphics technology and storytelling. In

the end, the project proved overambitious but makes for

a fascinating case study.

DreamWorks Interactive’s TRESPASSER 184

The underlying design goal was to achieve a
realistic feel through consistent looks and
behaviors. Having an abandoned island setting
was a useful way to exclude anything which did
not seem possible to simulate, such as flexible
solids like cloth and rope, wheeled vehicles, and
the effects of burning, cutting, and digging.

The game would play from a first-person per-
spective, and you would experience the environ-
ment through a virtual body to avoid the
“floating gun” feeling prevalent in the WOLFEN-

STEIN breed of first-person games. Combat
would be less important than in a shooter, and
dinosaurs would be much more dangerous than
the enemies in traditional first-person shooters.
The point of the game would be exploration and
puzzle solving, and when combat happened, it
would more often involve frightening opponents
away by inflicting pain than the merciless
slaughter of every moving creature.

The original plan for TRESPASSER certainly
seemed like a good one. It was very ambitious,
but the team made tradeoffs on implementation
and execution time from the very beginning. For
instance, the team wouldn’t attempt to do multi-
ple or moving light sources or QUAKE-style
shadow generation in order to accommodate
arbitrary numbers of moving objects and long,
wide-open views. Unfortunately, there is a dif-
ference between having a plan and successfully
executing it, and the product that we eventually
shipped was as disappointing to us as it was to
the great majority of game players and game
critics.

Some have dismissed TRESPASSER altogether
because it was such a visible failure. Respected
industry columnists and editors use it as a rea-
son why physics is bad, or make it the butt of
their jokes (“at least it wasn’t as bad as TRES-

PASSER!”). However, from a project perspective
there were a number of successes. Before we get
into the problems which ended up sinking the
ship, let’s look at these successes.

1. Use of license
Making a new story with someone else’s licensed
property is often creatively stifling for designers
and ultimately disappointing for fans of the orig-
inal work. The Jurassic Park license could have
been an especially limiting one, representing
some of director Spielberg’s and novelist Crich-
ton’s weakest work. However, TRESPASSER’s

What Went Right

Game Data
Release date: December 1998

Publisher: Electronic Arts

Genre: first person, outdoor physics-based
action/adventure

Intended platform: Windows 95/98/NT

Project budget: Estimated $6–7 million

Project length: 32–36 months

Team size: 39 Including a full-time staff of 7
engineers, 5 game designers, and 10 artists.

Critical development hardware: 266MHz Pentium II
with 128 0r 256MB RAM

Critical development software: 3D Studio Max 1.2
and 2.5, Photoshop 4.0, Microsoft Visual C++ 6.0,
Visual SourceSafe 5.0

SECTION III: MANAGING INNOVATION185185

Hammond diary actually contains lots of inter-
esting tidbits about the early days of characters
like Henry Wu (the scientist from the beginning
of the first movie) and Dennis Nedry (Wayne
Knight’s character who basically caused the first
disaster), which made the game world a richer
environment. The player can also check out
locations on the island which imply backstory
which isn’t explicitly told, like Henry Wu’s house
with its 1980s executive bachelor stylings,
Nedry’s office with its poster for the fictional
computer game series “Swords of Kandar,” and
Hammond’s lavish mansion.

The settings and the diary itself serve to reveal
much of Hammond’s motivation and personal
reactions to the building of Jurassic Park, creat-
ing more of a character than exists in either the
books or the movies. (Crichton killed Ham-
mond off in the first book, anyway.) The overall
plot of our game is as simplistic as most others
(the character must find a way to escape a death
trap), but the details revealed about the Jurassic

Park world extend it in a way which is faithful
to the originals.

Although it is quite likely that the next Jurassic
Park movie to be released will make TRESPASSER

non-canon, for now it stands as the only real
extension of the series published. If there are
such things as Jurassic Park fanatics and they
were able to look past the game play flaws, they
hopefully enjoyed our development of the
world.

2. Art and music
On an individual basis, the models created for
TRESPASSER rank with the best-looking work
done for computer games. We limited the largest
texture size to 256×256 pixels, and at model
import time textures were converted to 8-bit
paletted images. But artists worked with their
models using 24-bit art in 3D Studio Max,
applying the textures using any mapping meth-
ods that Max supported. We had the standard
limits on visible polygons, so most models were
made with as few as possible: dinosaurs ranged
from 300 to 500 polygons and trees from 50 to
120, for example. But this still gave our artists
more complexity than was standard at the time.

Many of TRESPASSER’s artists had never worked
on games or done 3D modeling before, and
some had never even used computers at all. This
was a fairly deliberate decision, in an attempt to
achieve a much higher standard of art than we
were used to seeing on previous products. The
number and resolution of textures we were able
to support called for painting skills far beyond
the average game-trained artist.

Concept art for TRESPASSER.

DreamWorks Interactive’s TRESPASSER 186

The music is one of TRESPASSER’s best accom-
plishments. Originally, we were slated to use
John Williams’s score, but the cost proved to be
excessive. Fortunately, our sound effects com-
pany, SounDelux, put us in touch with one of
their stable of composers who specialized in
“imitation” music. With very little prompting,
he recorded about 30 minutes of music for us
which in some parts far exceeds the rather for-
gettable work Williams himself did for the
Jurassic Park movies.

Some reviews still accused us of having spotty or
inappropriate music, but this was more an
implementation problem than a problem with
the music itself.

The music was recorded as a couple dozen short
sections which were scattered through the world
on location-based triggers. Much like the voice-
overs, more attention could have been paid to
their placement so that they only played at
appropriate and regular intervals. Even more
desirable would have been a system with the
ability to play tension or combat music loops
and fade them in and out of the special-event
songs to make it seem more like a continuous
musical score.

3. Innovative systems
Our artists were able to paint textures with near-
total disregard for common memory-conserva-
tion practices, thanks to the texture caching sys-
tem which one of the last programmers to be
hired created fairly late in the project. Textures
for our game were MIP-mapped by our helper
application, GUIApp, as part of the process of

building level data (curved bump maps were also
created at this time). A level could have a nearly
unlimited amount of textures, and once MIP-
maps were created, all textures and their MIP-
maps were saved into a single swap file. GUIApp
automatically organized the swap files into pages
based on texture size, with the lowest couple of
MIP levels for all textures on a set of pages
which were always committed.

As the player moved through the level and
objects came into view, the appropriate pages
from the swap file were accessed. In any circum-
stances where an appropriate texture hadn’t
been loaded in yet, the always-committed MIP-
maps could be used until the higher-resolution
texture had been loaded. In theory, this could
result in a frame or two where an object was
textured at a lower resolution than desired, but
in practice it rarely happened, even on the most
texture-intensive levels.

Another major system for TRESPASSER was its
audio system, which we described as “real time
Foley” because of its ability to generate collision
and scraping effects between differing sound
materials in real time. Although the system
could have used more sound material data, even
with what it had it resulted in some wonderfully
immersive sound effects which most other
games do not duplicate—things like scraping a
board down a concrete surface or hitting an oil
barrel with a metal bat sound almost perfect.
The system doesn’t just play two stock effects
but actually chooses from several samples and
sets volumes based on the strength of the under-
lying physics collision, with very natural-sound-
ing results.

SECTION III: MANAGING INNOVATION187187

Finally, our image caching system, which ren-
dered groups of distant objects into single 2D
bitmaps to speed rendering, while responsible
for the most disturbing visual anomalies in the
game, was also by its own right an amazing
piece of work. Image caching allowed scenes
with tens of thousands of polygons to be ren-
dered in near-real time, and it is the first tech-
nology which has allowed outdoor scenes to
have a reasonable fraction of the complexity of
the real outdoors.

4. Outdoor level design
When we created our terrain geometry, we were
deliberately trying to avoid the “marbles in rub-
ber” look of a lot of bad fractally-generated out-
doors. To this end, we decided that we needed
to base our island on real-world terrain rather
than build it from scratch. Luckily, we had a
real-world model to go from: Costa Rica’s
Cocos Island, the same island which Crichton
used as his inspiration for Site B. Unfortunately,
no relief maps of sufficient detail existed for the
island, so we ended up having our lead artist
sculpt a large model of the entire island, had it
laser scanned, and did all our final work on it in
3D Studio Max.

Modeling was only the first step to creating a
level. After most of the terrain was established,
it took significant time to populate the levels
with objects. There were 10–15,000 trees,
shrubs, and rocks in most levels, and a few
thousand man-made objects as well. Every
object could be placed individually, but for time-
saving reasons we generally used groups of
objects for areas off the gamepath and only

spent a lot of time hand-placing items in places
we knew the player would go. The rolling ter-
rain and a random-delete tool we often ran for
optimization generally kept the repetition from
seeming obvious.

In the end, although our levels didn’t quite fulfill
our personal expectations, they usually look
more like real environments than previous
games. Starting from a real map seemed to be
the most useful tactic for this, and looking for a
real-world starting point for vegetation place-
ment is the next obvious step for outdoor
games.

5. Realistic physics in a first-
person perspective
The first discovery we made as our physics sim-
ulation was slowly implemented was that it was
an engrossing toy. When we finally got support
for compound object physics (so that a bench
could consist of a top and two legs instead of a
single block, for instance), it was possible to
spend an hour just dropping the bench onto
things to see how it would catch on edges and
flip and slide around. Toys do not make games,
however, and trying to establish game play that
would work with our simulation was our major
challenge.

Due to the vagaries of our particular physics
simulation and interface, we eventually arrived
on game play that primarily involved knocking
things over rather than stacking things up.
Knocking over will probably be the first applica-
tion of realistic physics to see widespread use, as
it will work even with a less-than perfect physics

DreamWorks Interactive’s TRESPASSER 188

model (such as TRESPASSER’s). It is also a behav-
ior which easily shows off the difference
between realistic physics and what we usually
referred to as “fake” physics—compare pushing
a box off a ledge or hill in any game which actu-
ally lets you move boxes to the same action in
TRESPASSER.

Since our game play was supposed to revolve
around the physics, however, we needed to
apply that knocking-over behavior in slightly
more sophisticated ways than just using it as eye
candy. The best uses that we found in the small
amount of time we had involved knocking
stacks of boxes down to fill holes, or unbalanc-
ing something resting on a high ledge in order to
get it or use it as a step. It also quickly became
apparent that building even a seemingly simple
knocking-down puzzle required a much more
highly refined sense of physical laws than many
of us had.

It might seem as though TRESPASSER deserves
more entries in its “what went wrong” section
than the usual project postmortem. However,
TRESPASSER’s failings are actually few in num-
ber. Unfortunately, the failings that we did have
were serious enough to more than outweigh our
successes.

1. Software-oriented renderer
TRESPASSER was begun before the original Voo-
doo started the wave of 3D hardware popular-
ity. The TRESPASSER engineers set about to
create an engine in the old-school manner: they
picked some previously-unseen rendering tech-
nologies and implemented them, ignoring any
issues of compatibility with hardware cards.
Our engine’s two most incompatible features
were its bump mapping (which used a true geo-
metrical algorithm that could take surface cur-
vature into account) and its image caching.

Image caching was intended to allow real-time
rendering of huge numbers of meshes, but it was
also the system almost solely responsible for the
graphical anomalies of popping, snapping trees
in the game. The other primary visual artifact of
the game was the frequent sorting errors, but
this was a result of poorly-constructed levels
which continually handed our depth-sort algo-
rithm more polygons than its limit, and not a
direct result of image caching itself.

The image cache system worked by rendering
distant objects into 2D bitmaps on the fly, and

What Went Wrong

Level design in Max was tolerable, not
enjoyable, for the TRESPASSER team.

SECTION III: MANAGING INNOVATION189189

then updating them when the angle or distance
changed enough so that the 2D representation
was no longer sufficiently accurate. This may
sound familiar to those who remember
Microsoft’s Talisman architecture, and there
was a hope at one time that our game would be
a “killer app” for Talisman accelerators, but
resistance from key figures in the industry and
3dfx’s sudden popularity pretty much put an
end to Talisman.

TRESPASSER ended up slipping by more than a
year, as did many games of its time. Our hard-
ware programmer put in a valiant effort in the
last half year of the project, and managed to get
much more use out of 3D hardware than we ini-
tially thought possible. We ended up with a
fairly unique mixed-mode renderer which drew
any bump-mapped objects in software and the
rest of the scene with hardware. Unfortunately,
the large number of bump-mapped objects
present in our game, such as all the dinosaurs
and nearly every crate, meant that the fill rate
advantages of accelerators were often negated.

In addition to being a costly software-only ren-
dering method, our bump mapping was never
very evident: we could have used multiple, mov-
ing light sources and had the art staff make bet-
ter use of bump maps in their objects. Many of
the bump maps were created by simply convert-
ing the original texture to grayscale, an artist’s
hack that works for rendered images and ani-
mations but not in real-time 3D. Image caching
was an even bigger problem than bump map-
ping, because although it was the key technol-
ogy that we were using to try to improve scene

complexity, the game’s visual quality was also
the source of most people’s complaints.

It seems clear in retrospect that we should have
made a tradeoff somewhere along the line and
either dropped the physics technology and
physics game play in favor of the rendering
technology, or more likely dropped the render-
ing technology and the ability to do complex
scenes in favor of the physics technology.

2. Game design problems
The biggest indication that TRESPASSER had
game design problems was the fact that it
never had a proper design specification. For a
long time, the only documents which described
the game play were a prose-style walkthrough
of what the main character would do as she
went through the game, and a short design
proposal listing the keys which would be used
and some rough ideas of what game play might
actually be.

Our experiences on TRESPASSER made it clear
that it is worse not to have a design specification
at all than to have one which becomes out of
date and is frequently rewritten. TRESPASSER

started and finished weak in the game design,
and this affected every other part of the project.
When it became clear that the technology was
not going to exist to support the initial high-
concept design, it would have been best to
throw out all our existing notions and reinvent
the game.

Unfortunately, our license made it all but impos-
sible to throw out the original TRESPASSER con-

DreamWorks Interactive’s TRESPASSER 190

cepts. The only major deviations from the
original idea were the change from constructive,
stacking-based physics puzzles to destructive,
knocking-over puzzles, and an attempt to make
combat more prevalent in order to shore up the
weakness of the destructive physics puzzles. Since
no part of the TRESPASSER code was written to be
good at doing first-person shooter game play, this
attempt to make shooting a more important fea-
ture only ended up flaunting some of the weaker
points in the game, like the lack of an inventory
system and the slow frame rate.

3. Tools problems
TRESPASSER was built entirely in 3D Studio
Max. There was no level editor, only the generi-
cally-titled GUIApp, which was the game with a
debugging shell—not really a tool at all. Our
level creation procedure consisted of arranging
20–25,000 meshes in Max,
using dummy meshes to
represent game play objects
like triggers, and typing
trigger code into these
objects’ “object properties”
buffer.

There were two unexpected
and incredibly severe draw-
backs that we discovered
only after it was far too late to change our
method of building the game world. The first
problem was that Max is basically unfit to work
with more than about 5,000 objects at a time.
TRESPASSER levels averaged 40MB in size, and
could take a couple minutes to load on the sys-

tems our designers used (Pentium II-266 with
256MB RAM). When all objects in a level were
visible, it could take from 30 to 60 seconds to
respond after clicking on an object to select it,
making fast work difficult (to say the least).

The second problem with the Max method was
our use of the object properties text buffer. The
buffer seems to be one of those features which
no one ever used before, because we discovered
that if more than 512 characters were typed into
an object’s properties buffer, Max could become
unstable. If Max didn’t crash outright and a file
was saved with one of these bad objects, it
would become unloadable. TRESPASSER’s techni-
cal artist wrote many design tools in MaxScript
and also coded warning scripts to guard against
problems such as properties buffer overflows,
but these solutions only made designing in Max
tolerable—not enjoyable.

There was an additional
wrinkle to the process of
using Max to create levels,
and this was the export
step. A Max plug-in con-
verted data into the game
format, but our particular
exporter caused a lot of
problems. It was developed
by a programmer who

worked from home, an hour away from the
office, and used a separate code base with
unique classes and a different version of the
compiler. This was also his first project in 3D,
and it became the second-most delayed part of
the project after physics. Until the last year of

SECTION III: MANAGING INNOVATION191191

the game, there were significant bugs in the
exporter which required time consuming work-
arounds.

Important functionality, such as the ability to
export object properties, also was not delivered
until very late in development, which prevented
designers from implementing game play. In the
end, the exporter was assigned to another pro-
grammer and rapidly brought up to usability,
but it had already delayed level building signifi-
cantly.

4. AI problems
The largest problem with the
AI system was that its
progress was blocked by a
lack of dinosaurs with which
to test it. The first time a
dinosaur made the transition
from a separate test applica-
tion into the game was in
early 1998, with significant
missing functionality which
prevented the completion of
visually important AI behav-
iors, like howling and glar-
ing. The first quadruped
went in around the early
summer of 1998, about four
months from the then-
intended ship date (as it
turned out we slipped by
about another month). The
dinosaur AI was a state-based system, based on
the creatures’ emotions.

It became apparent once dinosaurs were work-
ing well enough to put into levels that the differ-
ences between the activity states were not
discrete enough. Dinosaurs were governed by a
set of emotions which theoretically would
prompt them to pick appropriate responses at
any time. However, in practice they would end
up oscillating rapidly between many activities,
sometimes even literally standing still and
twitching as they tried to decide what to do.
Making a usable dinosaur required disabling all
but one or two of their activities. This allowed
aggressive dinosaurs to really be aggressive, but
it also meant that most dinosaurs were as single-
minded as the traditional video game monsters

we were trying to one-up.

The AI system suffered from
the lack of a clear game
design. There are two scenes
in the Jurassic Park movies
which demonstrate quintes-
sential dinosaur game play:
the scene in Jurassic Park
where the kids hide from rap-
tors in a kitchen, and the
scene in Lost World where
Jeff Goldblum deals with sev-
eral cautious raptors in the
ruins of the town. Both of
these scenes rely on dino-
saurs which can be fooled by
ducking behind objects and
which can home in on or be
distracted by localized noises.

Neither of these two fundamental abilities is
actually present in the TRESPASSER dinosaur AI.

DreamWorks Interactive’s TRESPASSER 192

Instead, the dinosaurs have a simpler and more
industry-standard detection radius which dou-
bles as sight and hearing and is not blocked by
objects in any way. Without a design specifica-
tion calling for these kind of behaviors, though,
the AI development went in directions which
ended up being largely unsuitable for game play.
This problem wasn’t even discovered until a few
months before we shipped, when there was only
time to work around it rather than completely
rework it.

5. Physics problems
The box model was TRESPASSER’s most signifi-
cant physics innovation: it was intended to be a
complete simulation of any arbitrarily-sized box
interacting with a number of other boxes. The
approach used in TRESPASSER was what is
known as the “penalty force” method. In
incredibly simple terms, when boxes collide,
they are allowed to intersect with each other
(mathematically), and then they push each other
apart until they are no longer intersecting.

The penalty force model is generally believed to
be an unworkable one by the few other people
in the industry attempting real-time solids mod-
els, but our physics programmer believed he
could make it work. There were several notable
flaws with TRESPASSER’s solids model as
shipped: it ended up only working well when
used with roughly cube-shaped boxes with
dimensions between 0.5 and 1 meter on a side,
it did not model friction well, it was extremely
slow, and it was not free of interpenetration
even within the size constraints.

We were aware that physics would be slow, and
that ten boxes at once would represent the prac-
tical upper limit, but we had not expected that
so much of that physics overhead would be
eaten up by the dinosaur body physics, which
used five boxes in the worst cases: head, body,
tail, and two feet. Although the dinosaur phys-
ics boxes executed faster because they did not
interact with each other, it turned out that in
common cases (like a scene displaying two rap-
tors and the player holding a gun), the physics
budget was completely consumed and there
were no were no processor cycles left to handle
knocking over a stack of boxes.

Physics speed was an issue, but other problems
were more severe. The game design depended
on boxes of sizes other than small cubes, and we
ended up including many objects outside that
safe range. Unfortunately, all objects outside the
safe range, even large cubes, were more prone to
reveal the most egregious problem with the
physics system: interpenetration. At best, these
interpenetration bugs completely blow the con-
sistency of simulation we tried to set up, and at
worst they make the game unplayable. If it was
not clear before shipping TRESPASSER, it is clear
now: no amount of interpenetration is accept-
able, and preventing it absolutely should be the
number one concern of any physics coder. TRES-

PASSER’s dinosaurs and the arm itself were
inverse-kinematic (IK) systems controlled by
physical models. Originally, the dinosaurs were
supposed to be full physically-modeled bipeds
whose physics actually knew how to use legs to
stand, walk, run, and jump. They ended up with
more standard game movement physics and an

SECTION III: MANAGING INNOVATION193193

IK animation system very similar to Looking
Glass’s TERRA NOVA.

Just like in TERRA NOVA, the dinosaur legs fre-
quently stretched, bent, and popped as the IK
system struggled to handle the physically impos-
sible movements that the simplified physics gen-
erated. This movement problem was a case of
lacking realistic boundary conditions. The joints
of the arm never had realistic limitations put on
their rotation or even limitations on the dis-
tances between joints. A system written by a dif-
ferent programmer sat on top of the underlying
arm system and continually tried to make sure it
had not moved into an impossible position, but
as a separate system it could only be partially
successful at best.

The arm as shipped would often go almost out
of control for a few frames, stretching or spin-
ning in impossible ways. During this time the
fragile feeling of connection between the player
and their character would be shattered. The arm
suffered not only from its unbounded model but
also from bad design choices. Its creator
intended it to be wholly context-insensitive. The
fact that guns, unlike other objects, get held
fairly steadily and away from the body was only
a result of some key members of the test staff
adding their voices to the cries which had been
coming from within the team to fix shooting so
that it was easy to hit a desired target. It should
have been obvious from the mere fact that a 2D
interface was being used to move in 3D space
that an even larger amount of context sensitivity
was needed.

If a truly successful virtual arm is ever to be
implemented, simple mouse movements will
have to be translated into complicated arm
movements based on what is in or near the
hand, or it will be as impossible to use as TRES-

PASSER’s arm. That there was a conscious deci-
sion to avoid context sensitivity in our project is
indicative of the larger problems with physics in
our project. The physics code was largely writ-
ten in a vacuum and tested in separate applica-
tions and non-representational levels, and not
enough attempts were made to analyze it from a
player’s perspective and design it to support
game play in every way.

Lessons Learned
How did TRESPASSER end up shipping with the
number of problems that it had? TRESPASSER

was a project with management problems at all
levels. It suffered from being an innovative,
technologically ambitious project produced by a
team with little previous management experi-
ence at a company which had not yet gained
institutional experience from publishing signifi-
cant, less-ambitious projects.

That TRESPASSER shipped at all is a testament to
the strength of the individual members of its
team. In looking back at my own experience, I
find that I learned a lot about game develop-
ment, and I’m already putting that knowledge
to work. Although the game does not fulfill the
many high hopes I had for it (or even my base
expectations), I am happy with the work I put
into it. I also hope that every other person who
contributed to the massive effort is equally
proud of their work, and that sometime in the

DreamWorks Interactive’s TRESPASSER 194

future we all have a chance to make a major
project that succeeds where TRESPASSER failed.

195

Ion Storm’s

DEUS EX
by warren spector

Fictionally, DEUS EX is set in a near-future ver-
sion of the real world (as it exists if conspiracy
buffs are right). For some real shorthand, call it
“James Bond meets The X-Files.” Conceptually,
DEUS EX is a genre-busting game (which really
endeared us to the marketing guys)—part
immersive simulation, part role-playing game,
part first-person shooter, part adventure game.

It’s an immersive simulation game in that you
are made to feel you’re actually in the game
world with as little as possible getting in the
way of the experience of “being there.” Ideally,
nothing reminds you that you’re just playing a
game—not interface, not your character’s back-
story or capabilities, not game systems, nothing.
It’s all about how you interact with a relatively
complex environment in ways that you find
interesting (rather than in ways the developers
think are interesting), and in ways that move
you closer to accomplishing your goals (not the
developers’ goals).

It’s also a role-playing game in that you play a
role and make character development choices
that ensure that you end up with a unique alter
ego. You make your way through a variety of
minute-to-minute gameplay experiences (which

add up to a story) in a manner that grows natu-
rally out of the unique aspects of your character.
Every game system is designed to differentiate
one player-character from another, and to allow
players to make decisions that reflect their own
biases and express character differences in obvi-
ous ways in the game world.

It’s a first-person shooter because the action
unfolds in real time, seen through the virtual
eyes of your alter ego in the game world. To
some extent, your reflexes and skill determine
your success in combat. However, unlike the
typical FPS, DEUS EX doesn’t force you to shoot
every virtual thing that moves. Also unlike the
average FPS, in which gameplay is limited to
pulling a virtual trigger, finding blue keys to

Back-Story
If the mid-90s were the era of stripped-down, no-frills

shooters, DEUS EX, released in 2000, is the logical back-

lash. It features both high-speed action and familiar role-

playing elements—plot twists, conversations, inventory,

and a large cast of characters. As superagent J. C. Den-

ton, players navigate a complex story of intrigue and

conspiracy, traveling the world and changing sides at

least once. DEUS EX was designed to support a range of

play styles, from full-on assault to stealth, and to allow

players to solve problems creatively, using a wide array

of gadgets and abilities.

Ion Storm’s DEUS EX 196

open blue doors, and jumping to reach seem-
ingly inaccessible locations, DEUS EX offers
players a wide range of gameplay options.

And finally, DEUS EX is like adventure games in
that it’s story-driven, linear in narrative struc-
ture, and involves character interaction and item

accumulation to advance the plot. However,
unlike most adventure games (in which you
spend the bulk of your time solving clever puz-
zles in a search for the next static, but very

pretty, screen), DEUS EX asks players to deter-
mine how they will solve game problems and
forces them to deal with the consequences of
their choices.

DEUS EX combines elements of all of these
genres. But more important than any genre clas-
sification, the game was conceived with the idea
that we’d accept players as our collaborators,
that we’d put power back in their hands, ask
them to make choices, and let them deal with
the consequences. It was designed from the start
as a game about player expression, not about
how clever we are as designers, programmers,
artists, or storytellers. Which leads naturally to
a discussion of having clear goals—the first
thing I think we did right.

1. A clear high-level vision
It’s pretty self-evident that you can’t achieve
goals if you’re not clear about what they are. We
knew with a high degree of confidence what
kind of game we wanted to make. This was pos-
sible for two reasons. First, DEUS EX is a natural
outgrowth of work done by and in some cases
with the late, lamented Looking Glass Technol-
ogies. We were inspired as well by games made
at Valve, Origin, and a host of other places.

Many of the things we wanted to do were a
reaction to things they (or we) didn’t do, didn’t
do well, or couldn’t do at all in earlier games.
We weren’t building from scratch, but rather

What Went Right

Game Data
Release date: June 23, 2000

Publisher: Eidos Interactive

Genre: first-person action/role-playing game; science
fiction

Intended platforms: Windows 95/98/NT/2000 plus
third-party Macintosh and Linux ports

Number of full-time developers: Approx. 20: 1 of
me, 3 programmers, 6 designers, 7 artists, 1 writer, 1
associate producer, 1 tech.

Number of contractors: Approx. 6: 2 writers, 4
testers.

Length of development: 6 months of preproduction
and 28 months of production.

Critical development hardware: Ranged from dual
Pentium Pro 200s with 8GB hard drives, to Athlon
800s with 9GB fast SCSI, and everything in between.
More than 100 video cards were cycled through
during development.

Critical development software: Visual Studio,
Lightwave, Lotus Notes.

Notable technologies: Unreal engine and associated
tools such as UnrealEd and ConEdit (our proprietary
conversation editor).

SECTION III: MANAGING INNOVATION197197

building on a foundation already laid for
us. Second, and on a personal level, DEUS

EX is a game I’ve been thinking about
since right around the time
UNDERWORLD 2 shipped. I’ve tried to get a
game like this started several times (as
TROUBLESHOOTER at Origin; in some
respects, as JUNCTION POINT, for Looking
Glass). Those games didn’t happen for a
variety of reasons, but I never stopped
thinking about them and, despite the fail-
ure of those games to reach production,
they laid much of the conceptual ground-
work for DEUS EX. The lesson here is that
if there’s a game you really want to make,
don’t give up on it. Someone will be fool-
ish enough to give you the money eventu-
ally.

Several years passed. I left Origin to go work for
Looking Glass, but TROUBLESHOOTER stayed on
my mind. In the fall of 1997, before Ion Storm
entered the DEUS EX picture, I drafted a mani-
festo—a description of an ideal game—and also
a set of “rules of roleplaying.” Much of that
material ended up in an article published in
Game Developer (“Remodeling RPGs for the
New Millennium,” February 1999), which is
still available online on Gamasutra.com.

The details of DEUS EX—plot, character lists,
game system designs and so on—changed radi-
cally in the years following the original TROU-

BLESHOOTER proposal and writing my manifesto
and rules list. Conceptually, however, the game
still plays much the way I hoped TROUBLE-

SHOOTER would play, and it definitely fulfills
most of the ideals I had outlined in that Game
Developer article.

Quite simply, with a solid concept of what we
wanted to achieve in mind, we were able to
assess every design decision and every game sys-
tem specification in light of our ultimate goals.

2. We didn’t skimp on
preproduction
We spent the first six months of DEUS EX (before
we licensed a game engine), with a team of
about six, just thinking about how we could
turn our high-level goals into a game. We ham-
mered on the setting and decided to move the
game into the near future to buy ourselves some
room to play around—the real world, as we
quickly discovered, was very limiting.

Ultimately, we settled on a conspiracy-oriented
background. We did a vast amount of research
into “real” conspiracies—the Kennedy assassi-
nation, Area 51, the CIA pushing crack in East

Real-world spaces, such as the Statue of Liberty in New
York City, can be compelling game spaces, but offer
unique challenges to game developers.

Ion Storm’s DEUS EX 198

L.A., Dwight Eisenhower’s UFO connection,
and of course Freemasons tunneling below the
Denver airport and building abducted-baby caf-
eterias for alien invaders at George Bush’s direc-
tion. Only a fraction of this stuff ended up in the
game, but it gave us a peek into the minds of
conspiracy buffs that was both scary and useful.

We worked on back-story stuff so we’d know
what was going on in the world, even in places
the player never got to visit. Some of this stuff
may come to the forefront in DEUS EX 2 but, for
DEUS EX, it was just a way of making sure we
knew enough to include the kinds of small
details that make a fictional world convincing.
We also created a cast of more than 200 charac-
ters, many of whom didn’t yet have specific
roles in the game. Ultimately, this list proved to
be both a help and a hindrance to designers as
they fleshed out the missions. Characters some-
times suggested missions or subquests, but just
as often ended up being filler we were reluctant
to cut, even though their missions or story pur-
poses changed during our storyline focusing
passes.

We hammered on game systems. We conceived a
skill system that didn’t depend on die-rolls or
tracking skills at a fine level of granularity. We
came up with a system of “special powers”
(nanotech augmentations) that differentiated the
player character from ordinary humans. We
designed a conversation system with some cine-
matic elements and some elements borrowed
from console RPGs. We mocked up 2D inven-
tory, skill, and augmentation upgrade screens,
map screens, even a text editor so players could
take notes. We conceived several player reward
systems, including skill point awards, augmen-

tation upgrades, weapon availability timelines
and tool/object availability timelines.

By March 1998, we had 300 pages of documen-
tation and thought we knew everything we’d
needed to know to make a game. Were we ever
wrong. In the time between March 1998 and
our Alpha 1 deadline of April 1999, that 300-
page document mushroomed into more than
500 pages, much of it radically different from
what we thought of and wrote initially.

Clear goals and a detailed script are all well and
good, but goals change, thinking changes, and
game designs have to change, too. Which leads
nicely into the next thing that went right.

3. Recognizing that game
design is an organic process
Why did our thinking and goals change? There
were lots of reasons. First, new people joined
the team, with new ideas. Our staff grew from
six people to roughly 20. I hired a bunch of peo-
ple, of course, but we had the added excitement
of integrating an entire art team assigned to us,
in Austin, by an art director a couple of hundred
miles away in Ion Storm’s Dallas office.

As we brought on new people, we found our-
selves to be a team of hardcore ULTIMA geeks,
hardcore shooter fans, hardcore immersive sim
fans, strategy game nuts, and console gamers.
Some of our new team members proved to be
“maximalists”—wanting to do everything, spe-
cial-case lots of stuff, and stick as close to reality
as possible. Other team members proved to be
minimalists—wanting to include fewer game
elements but implementing them exceptionally

SECTION III: MANAGING INNOVATION199199

well, in ways that could be universally applied
rather than special-cased. Also, we made a point
of letting select friends and colleagues play the
game at various points along the way. We were
interested in well-reasoned opinions from folks
who understood the kind of game we were mak-
ing intimately and who had a handle on the
development process that was at least as good as
our own.

With all the new folks con-
tributing and all the feed-
back from our chosen
critics, well, let’s just say we
had some interesting debates
at Ion Storm, Austin. Out of
those debates new ideas
arose, and the game changed
as a result. Technology
forced design changes, too.
It took time to become
familiar with the Unreal
engine. Months of experi-
mentation were necessary to
reveal how best to do things
in Unreal and what things
not to do at all.

A third area that influenced the changing nature
of the game’s design was when the game systems
didn’t work as we intended them to. We quickly
found that descriptions of game systems are no
substitute for prototypes and actual implemen-
tation. We prototyped every game system as it
was documented relatively early on. We also
built some test missions, not quite early-on
enough, but still early. These test systems and
missions revealed gaping holes in our thinking,

or things that we thought would be true and
which turned out not to be true at all.

For instance, once implemented, our augmenta-
tion and skill systems proved dry and rather
dull, despite looking really good on paper. I
thought the tension of standing outside a locked
door, not knowing if a guard was going to show
up while you picked the lock, would provide
sufficient excitement. I thought knowing you

could leap across a chasm
because you had the Jump
augmentation at Tech Level
3, and opening up new paths
through maps that were
inaccessible to players with-
out that augmentation,
would be cool enough to
keep players interested.

We took this criticism, and
with it in mind, lead
designer Harvey Smith
revised the skill and aug-
mentation systems pretty
thoroughly, increasing the
tension level, providing new

rewards, and allowing players to think and
make informed decisions. None of this would
have happened without the prototype missions
and some harsh (but fair) criticism they elicited.

Another big reason for changes from our origi-
nal design document was our realization that
the idea of a real-world RPG, with real-world
locations and real-world weapons, was cooler in
some ways than it turned out to be on the
screen. When we started building places like the

A detailed weapon sketch.

Ion Storm’s DEUS EX 200

Statue of Liberty, a few square blocks of New
York City, the White House, Parisian streets,
and so on, we found that most of the real world
is not all that interesting as a gaming environ-
ment. We also found it difficult to live up to
people’s expectations of places they’ve actually
been.

We created an object-rich environment, only to
hear things like, “Hey, why can’t I use that tele-
phone to call anyone I want whenever I want?”
and had to cut some objects whose real-world
functionality we couldn’t capture in the game.

Finally, we had to ask ourselves whether human
non-player characters (NPCs) are interesting
enough to carry an entire game. We were about
a year into development when designers and art-
ists balked at a game entirely about human
beings. Movies don’t need non-humans to be
cool but the same cannot be said, apparently,
for games. People want monsters and bad guys.

The feeling was so pervasive that it changed my
thinking completely. The original design spec
called for a couple of robots, but the team
demanded that they be made a more important
part of the landscape, and we introduced geneti-
cally manipulated animals and some alien-look-
ing creatures. (Luckily, our game fiction
supported all of this.) The game benefited, but
this was a radical change from the original plan.

4. Creating “proto-missions”
It’s a truism that milestones should be testable,
showing visible progress, whenever possible,
and we lived up to that standard. We could

always pull a version together, always show off
for press or our publisher. Most importantly, we
always knew where we were (even if that
knowledge was sometimes painful). But the
proto-mission idea is something beyond simply
visible, testable milestones. The proto-mission is
critical in the process of design, as well as in
milestone and schedule setting.

One example of where our proto-mission idea
was successful was in May 1998, when our
milestone was to have prototypes of critical
game systems in place and two test maps run-
ning, in this case the White House and part of
Hong Kong. The maps were crude, the conver-
sations raw, and the game systems hacked, but
we could see—and show—the potential.

To our advantage, we resisted the temptation to
do just the stuff we knew would work and the
stuff that would look the prettiest, and proto-
typed new, risky stuff first. Conversation, inter-
face, inventory, skills, and augmentations were
all at least hacked in so we could see them in
action. The White House was likely to prove
our toughest map challenge, so we built it first.
(Almost unbelievably, I missed what may have
been the riskiest, most critical game system in all
of our early prototyping, NPC AI. I should have
insisted on early prototyping of our AI but I
didn’t.)

With the proto-mission system, we could imme-
diately see some of the limitations of our tech-
nology. For example, we had some serious speed
problems with areas as big as the White House
and Hong Kong. After this, we knew we’d have
to break maps up into small pieces. And we

SECTION III: MANAGING INNOVATION201201

began to suspect, though I couldn’t quite
embrace the idea, that we’d eventually have to
cut maps and missions from the game—most
notably the White House.

In May 1999, we had a milestone calling for the
delivery of the first two missions of the game,
playable start to finish. All of our game systems
were implemented (not hacked) as originally
documented. You could start a game, create a
character, upgrade skills, solve problems in a
variety of ways, manipulate
inventory, acquire augmen-
tations, talk to NPCs, get
and accomplish goals, save
your game, and so on. To
the team’s chagrin, I had a
tendency to call this the
“Wow, these missions suck”
milestone.

Our earlier demos had
shown the potential of what
we were doing. This demo
showed us how far we had
to go before we reached that
potential. This milestone
also benefited us in that it
showed us all the steps nec-
essary to create a mission,
and revealed the elements
that really made the game work. That knowl-
edge allowed us to go through our 500-page
design document and cut everything that was
extraneous, winnowing it down to a svelte 270
pages. Less game? Not at all. What was left was
the best 270 pages—the stuff that worked.

“Less is more” was something Harvey Smith
had said over and over, from the day he signed
on as lead designer. While some team members
resisted this notion outright, I took a middle
road, which just frustrated everyone. In the end,
we cut a lot, left a lot, and made a game that
everyone on the team was happy with (I think).
This milestone made it clear that the time had
come to make cuts, while giving us enough
knowledge to cut intelligently. If we had waited
until beta to make cuts, with just a few months

to go before our ship date
(as many developers do), it
would have been a disaster.

5. Licensing
technology
We went into DEUS EX hop-
ing that licensing an engine
would allow us to focus on
content generation and
gameplay. For the most part,
that proved to be the case.
The UNREAL TOURNAMENT

code we ended up going
with provided a solid foun-
dation upon which we were
able to build relatively eas-
ily. Dropping in a conversa-
tion system, skill and

augmentation systems, our inventory and other
2D interface screens, major AI changes, and so
on could have been far more difficult. We were
able to make what I hope is a state-of-the-art
RPG-action-adventure-sim with only three
slightly overworked programmers, which

The DEUS EX player’s alter ego, J.C.
Denton, strikes a heroic pose.

Ion Storm’s DEUS EX 202

allowed us to carry larger design and art staffs
than usual.

However, to my surprise, licensing technology
didn’t save us all the time I’d hoped it would.
You’d think cutting a year or more of engine-
creation off a schedule would result in an earlier
release date. On DEUS EX, that didn’t prove to
be the case. Time that would have been lost cre-
ating tools was lost instead to learning the limi-
tations and capabilities of “foreign” technology.

The biggest downside to licensing was that we
were just never going to understand the code as
well as we would have if we’d created it our-
selves. That led to two distinct kinds of prob-
lems. First, there were areas where we ended up
treating the engine as a black box. I think it’s
pretty well documented by now that we shipped
DEUS EX with some Direct3D performance
issues. Once players started reporting troubles,
we were kind of in a lurch—we couldn’t very
well go in there and mess with the Unreal
engine—we just didn’t understand it well
enough to do that safely. We had built around
the edges of Unreal without ever getting too
deeply into the nuts and bolts of it.

Second, because we didn’t know the code inside
out, and because we’d shelled out a fair amount
of money for it, we tended to be conservative in
our approach to modifying it. There were times
when we should have ripped out certain parts of
the UNREAL TOURNAMENT code and started
from scratch (AI, pathfinding, and sound propa-
gation, for example). Instead, we built on the
existing systems, on a base that was designed for
an entirely different kind of game from what we

were making. It’s not that UNREAL had bad AI
or pathfinding or sound propagation, but those
systems were designed for a straightforward
shooter, which was not what we were making.

I guess the fact that we’ll be licensing technology
for our next round of projects, DEUS EX 2 and
THIEF 3, says the price was right. But it remains
an interesting dilemma, and we will be able to
approach our next licensed engine with the wis-
dom gleaned from using UNREAL for this
project.

1. Our original team structure
didn’t work
You’d think after 17 years of making games and
building teams to make games, I’d have a clue
about team structures that work and those that
don’t. Ha! When I started pulling the DEUS EX

team together I had a core of six guys from
Looking Glass’s Austin office. Having tapped
Chris Norden to be lead programmer, I needed
to find a lead designer and a lead artist. As I
started casting about for the right person for the
design job, something really good, but ulti-
mately really bad, happened—two guys came
along with enough experience to expect a lead-
ership position.

Instead of doing the sensible thing and picking
one of them, even if that meant the other chose
not to sign on, I got cute. I created two design
teams, each with its own lead. I put together

What Went Wrong

SECTION III: MANAGING INNOVATION203203

two groups of people with differing philoso-
phies—a traditional RPG group and an immer-
sive sim group. We were making a game
designed to bust through genre boundaries, and
I thought a little competition and argumentation
would lead to an interesting synthesis of ideas. I
thought I could manage the tension between the
groups and that the groups and the game would
be stronger for it.

My plan didn’t work. The
design team was fragmented
from the start. We had to
name one of the groups
“Design Team 1” and the
other “Design Team A.”
(Neither group would settle
for “2” or “B.”) It became
apparent—later than it
should have—that I was
going to have to merge the
two groups and have a single
lead designer. When I finally
made that change I disap-
pointed some folks, but the
game was the better for it, and that’s what’s
important in the end.

There were also challenges on the art side. DEUS

EX suffered dramatically because for over a
year, the artists “on the team” worked not for
me or for the project, but for an art director in
Ion Storm’s Dallas office. Don’t misunder-
stand—the art director was a talented guy. But
talent doesn’t make up for a matrix manage-
ment structure (wherein resources in a depart-
ment or pool are “lent out” to a project until
they’re not needed anymore) ill-suited to the

game business, and it doesn’t make up for being
off-site.

During this time, the art department drifted a
bit. It was unclear whether the artists worked
for me or for the art director in Dallas. I
couldn’t hire, fire, give raises to, promote, or
demote anyone on the art team. We were

assigned some artists who
weren’t interested in the
kind of game we were mak-
ing. Matrix management
may work in some circum-
stances, at some companies,
in some businesses. But I’ve
never seen it work in gam-
ing, and I’ve seen it
attempted at three different
companies. It especially
doesn’t work when one of
the department managers
isn’t on-site.

I argued for a year that
matrix management had

failed at Origin and at Looking Glass. I had no
doubt it would eventually fail at Ion. Eventually
I got my way, and things got much better on the
art front once the artists were officially part of
the DEUS EX team. Still, I can only imagine how
DEUS EX might have looked if we’d been one big
happy team, including the artists, from the start.

If the experience of DEUS EX taught me one
thing, it’s the importance of team dynamics. You
have to build a team of people who want to be
making the game you’re making. You have to
deal with personnel issues sooner rather than

A genetically manipulated creature
called a “Greazel” was added to
DEUS EX in response to the team’s
feeling that human interaction
might not be enough to carry the
entire game.

Ion Storm’s DEUS EX 204

later. And there has to be a clear chain of com-
mand. Many decisions can be made by consen-
sus, but there can only be one boss for a project,
there can only be one boss for each department,
and department heads have to answer to the
person heading up the project.

2. Clear goals are great…when
they’re realistic
We started out thinking very big. That in itself
isn’t bad—it’s necessary to advance the state of
the art—but we were unrealistic, blinded by
promises of complete creative freedom, and by
assurances that we would be left alone to make
the game of our dreams. A really big budget, no
external time constraints, and a marketing bud-
get bigger than any of us had ever had before
made us soft.

Let me give you some specific examples of ways
in which we outreached ourselves in the original
design of DEUS EX (before we made significant
cuts). For one, there’s no way, in a first-person
RPG, to stage a raid on a POW camp to free
2,000 captives. Also, there’s no way to re-create
all of downtown Austin, Texas, with any degree
of accuracy. Third, blinded by the power of
UnrealScript, many of our original mission con-
cepts depended upon special-case scripting and
lots of it. We discovered the need for general
solutions rather than special-case solutions later
in the project than we should have (this despite
much harping on the subject by some team
members).

Find your focus early and maintain that focus
throughout. General solutions are better than

special casing. Give players a rich but limited
tool set that can be used in a variety of ways,
not a bunch of individual, unpredictable solu-
tions to every problem. Always work within the
limits of your technology rather than trying to
make your technology do things it wasn’t meant
to do. Big budgets, lots of time, and freedom
from creative constraints are seductive traps.
Don’t settle for less than greatness, but don’t
think too big. Balance should be the goal.

3. We didn’t front-load all of our
risks
In fact, we missed a big one. We were smart
enough to realize we’d have to prototype and
implement our new game systems early so we’d
have time to tweak and refine them sufficiently.

Everything in DEUS EX is about choices—who
you are in the world, how do you interact in the
world, what are you carrying, and so on. In this
case, the player has clearly decided to go
through the game as a heavy weapons
specialist, despite the fact that this will leave
little room in inventory for anything else.

SECTION III: MANAGING INNOVATION205205

We did our conversation system and our com-
plex 2D interface screens early, which was a
good thing, too—they required as much tweak-
ing as we feared. And in the end, they turned
out pretty well, I think.

Unfortunately, we missed one huge risk
area—artificial intelligence. I don’t know how
we missed it, but we did. It’s not that we didn’t
spend time on AI. We started thinking about AI
early in preproduction. Unfortunately, what that
meant was that the AI was, to a great extent,
designed in a vacuum, and as is often the case,
we didn’t really know what the game required
with respect to AI until relatively late in devel-
opment. And that meant implementing AI fea-
tures early on that ended up being unnecessary
later, once our design had evolved into its final
form.

In addition, building on the base of UNREAL

TOURNAMENT’s pure shooter AI meant that,
instead of designing a system specifically for our
needs, we ended up adding stuff and tweaking
until the bitter end, causing NPC behavior to
change constantly, right up to the last day of
development. We ended up with some pretty
compelling AI, but the problem of convincing
people they’re interacting with real people is
immense, particularly when you’re talking
about characters whose reactions have to run
the gamut from fear to friendliness to violent
enmity. Our sin was, I think, giving people a
hint of what human AI could be in games, but
delivering the goods inconsistently.

4. Proto-missions redux
Game Developer’s Postmortems typically focus
in on things the team clearly did right and things
the team clearly did wrong. It sure is nice when
things are that clear. Maybe it’s just me, but I
almost never see things in such black-and-white
terms. Most of the time, problems are knotty
and solutions are far from obvious or clear-cut,
which is where the final two “What Went
Wrongs” fall.

As I already mentioned, we recognized the need
for proto-missions relatively early on, and built
our schedule around the idea. We implemented
two such missions, which helped us identify
many things that didn’t work (and many that
did). With proto-missions in hand, we found
ourselves at a critical juncture with two possible
choices to make, the implications of which I still
don’t entirely understand.

On one hand, I could have gone off with some
subset of the team and tweaked our proto-mis-
sions until they were absolutely right and mod-
els for all subsequent mission implementation
before turning the rest of the team loose on
implementation of the rest of the missions. On
the other hand, I could have kept the entire
team in implementation mode, getting all of the
missions to the level of the proto-missions,
meaning none of them would be exactly right
but we’d be able to see the shape of the entire
game and all of the missions would be ready for
tuning at about the same time.

The first approach would have left large por-
tions of the team in thumb-twiddling or make-
work mode for some unspecified period of time.

Ion Storm’s DEUS EX 206

This promised to prove that we could create a
ground-breaking, compelling game, but could
leave us without a finished game to ship. The
second approach would have kept everyone pro-
ductive throughout the project and at least put
us in position to decide whether or not to ship
the game at some foreseeable point in the future.
The question was whether we would be able to
turn all of the bare-bones missions into some-
thing fun or not.

I chose the latter approach and told everyone to
get the game “finished” and playable at a bare-
bones level. We’d worry about fleshing out all
the missions, making the game as interesting
and fun and dense and exciting as it needed to
be during the inevitable gameplay tuning,
tweaking, and balancing phase at the end. This
probably isn’t so much of a “What Went
Wrong” as it is an open question of whether
that was the right call.

I think so, and the plan clearly worked to the
extent that we shipped a game that people seem
to like pretty well. But it’s unclear to me
whether using our proto-missions to fine-tune
might not have resulted in an even better game.

5. Is it true that any publicity is
good publicity?
This wouldn’t be a complete or accurate picture
of the development of DEUS EX if we didn’t take
a look at the Sturm und Drang that was Ion
Storm. In case you you’ve been living under a
rock, there’s been a lot of hype surrounding the
company. On the negative side, Ion Storm was
heaped with bad press for much of 1998 and

1999. The company did the same things all
game companies do, went through the same
problems, but because we painted a big ol’
“suck it down” target on our chests, the gaming
press and a fair number of hardcore gamers
went after us with a vengeance.

Not too surprisingly, this had an effect on those
of us working away in the Austin office. Morale
hits were frequent and problematic. It simply
isn’t possible to be bombarded by negative press
about the company you work for and not take it
somewhat personally. Trust me when I say that
seeing your personal and private e-mails posted
on the Internet is a devastating experience.

Also, recruiting was more difficult than it
should have been. We were able to put together
an incredibly talented team for DEUS EX, but
too many talented people told us that while they
would like to work on DEUS EX, they couldn’t
work for Ion Storm. Eventually, a “we’ll show

Bringing believable human characters to life
is no easy task. The artists, whether working
on concept art, 3D models, or texturing, had
their work cut out for them.

SECTION III: MANAGING INNOVATION207207

them” mentality became prevalent in Austin. I
don’t know that anyone who worked on DEUS

EX thought of him- or herself as part of the
same company making DAIKATANA and
ANACHRONOX up in Dallas. That kind of us-
versus-them thinking is rarely good in the long
run.

Now that we’ve shipped, the reviews seem to
fall into two categories—those that begin with
some statement implying that Warren Spector
makes games all by himself (which is silly), and
those that begin with some statement proclaim-
ing that DEUS EX couldn’t possibly have been
made by Ion Storm (also silly). Silly or not,
there’s a level on which we’re still trying to live
down our past, at least in terms of the media’s
perception of our game and the company that
paid the bills here.

But, for all the problems, being associated with
Ion Storm wasn’t all bad—far from it. On the
plus side, it isn’t as if anyone from Rolling
Stone, Entertainment Weekly, the New York
Times, the L.A. Times, USA Today, Mother
Jones, the Wall Street Journal, Forbes, Fortune,
Time, Architectural Digest, CNN, or the BBC
ever banged down the doors at Origin or Look-
ing Glass to talk to me or anyone on any of my
teams. In reality, the bad publicity was almost
entirely limited to the gaming press. The main-
stream media, which barely notice anything
about gaming (other than the fact that we sup-
posedly turn normal kids into vicious killers),

didn’t seem to care about the bad stuff. But they
sure did take notice of us. Ultimately, Ion’s abil-
ity to attract attention to itself, even if it was
sometimes in negative ways, probably worked
to our advantage. Whether publicity at any cost
is good or bad is still an open question for me.

The Bot tom L ine
Part of the challenge of game development is
making the tough decisions along the way, the
many difficult junctures when you have to deter-
mine that something that can’t be done right in
the game shouldn’t be done at all. It’s all well
and good to have design goals and an ideal
game pictured in your head when you start, but
you have to be open to change and realistic
about what can and can’t be done in a reason-
able time frame, for a reasonable amount of
money, with the personnel and technology avail-
able to you. And if you don’t have time to do
something right, cut it and do everything that’s
left so well that no one notices the stuff that
isn’t there.

I’m not saying we did that perfectly on DEUS EX.
We certainly didn’t ship a perfect game. But if
we hadn’t gone into development with the atti-
tude that we’d do things right or not at all, we
would have fallen far shorter of perfection than
we did. How close we did get is something all of
you can decide for yourselves. All I know is
we’re going to get closer next time.

Ion Storm’s DEUS EX 208

This Page Intentionally Left Blank

209

Naughty Dog’s

JAK & DAXTER: THE
PRECURSOR LEGACY
by stephen white

By the end of 1998, Naughty Dog had finished
the third game in the extremely successful
CRASH BANDICOOT series, and the fourth game,
CRASH TEAM RACING, was in development for a
1999 year-end holiday release. And though Sony
was closely guarding the details of the eagerly
awaited Playstation 2, rumors—and our own
speculations—convinced us that the system
would have powerful processing and polygonal
capabilities, and we knew that we’d have to
think on a very grand scale.

Because of the success of our CRASH BANDI-

COOT games (over 22 million copies sold), there
was a strong temptation to follow the same
tried-and-true formula of the past: create a lin-
ear adventure with individually loaded levels,
minimal story, and not much in the way of char-
acter development. With more than a little trepi-
dation, we decided instead to say goodbye to the
bandicoot and embark on developing an epic
adventure we hoped would be worthy of the
expectations of the next generation of hard-
ware.

For JAK & DAXTER, one of our earliest desires
was to immerse the player in a single, highly
detailed world, as opposed to the discrete levels
of CRASH BANDICOOT. We still wanted to have
the concept of levels, but we wanted them to be
seamlessly connected together, with non-obvi-
ous boundaries and no load times between
them. We wanted highly detailed landscapes, yet
we also wanted grand vistas where the player
could see great distances, including other sur-
rounding levels. We hoped the player would be
able to see a landmark far off in the distance,
even in another level, and then travel seamlessly
to that landmark.

It was important to us that Jak’s world make
cohesive sense. An engaging story should tie the

Back-Story
A flagship title for the PlayStation 2, JAK & DAXTER is

the latest in a line of third-person, platform-jumping,

item-collecting games featuring charismatic lead charac-

ters. To this venerable formula, Naughty Dog brought

their experience and prestige as creators of CRASH

BANDICOOT, one of the PlayStation's signature titles. JAK

& DAXTER features new-generation graphics and, nota-

bly, a huge, sprawling world that unfolds continuously

rather than in discrete levels.

Naughty Dog’s JAK & DAXTER: THE PRECURSOR LEGACY 210

game together and allow for character develop-
ment, but not distract from the action of the
game. The world should be populated with
highly animated characters that would give Jak
tasks to complete, provide hints, reveal story
elements, and add humor to the game. We also
wanted entertaining puzzles and enemies that
would surpass anything that we had done
before.

To achieve these and many other difficult tasks
required three years of exhausting work, includ-
ing two years of full production. We encoun-
tered more than a few major bumps in the road,
and there were times when the project seemed
like an insurmountable uphill battle, but we
managed to create a game that we are quite
proud of, and we learned several important les-
sons along the way.

1. Scheduling
Perhaps Naughty Dog’s most important achieve-
ment is making large-scale games and shipping
them on time, with at most a small amount of
slip. This is an almost unheard of combination
in the industry, and although there is a certain
amount of luck involved, there are valid reasons
to explain how Naughty Dog has managed to
achieve this time and again.

Experience will tell you it’s impossible to predict
the precise details of what will be worked on
more than a month or two in advance of doing
it, yet many companies fall into the trap of try-
ing to maintain a highly detailed schedule that
tries to look too far into the future. What can’t
be effectively worked into these rigid schedules
is time lost to debugging, design changes, over-
optimism, illness, meetings, new ideas, and myr-
iad other unpredictable surprises.

At Naughty Dog, we prefer a much more flexi-
ble, macro-level scheduling scheme, with mile-
stone accomplishments to be achieved by certain
dates. The schedule only becomes detailed for
tasks that will be tackled in the near future. For
example, a certain level will be scheduled to
have its background modeled by a certain date.
If the milestone is missed, then the team makes
an analysis as to why the milestone wasn’t
achieved and changes plans accordingly: the
background may be reduced in size, a future
task of that artist may be given to another artist
to free up more time, the artist may receive

What Went Right

Game Data
Release Date: December 2001

Publisher: Sony Computer Entertainment

Genre: 3D fantasy platformer/adventure

Platform: Playstation 2

Number of Full-time Developers: 35

Length of Development: 1 year of initial
development, plus 2 years of full production.

Operating Systems Used: Windows NT, Windows
2000, Linux

Development Software Used: Allegro Common Lisp,
Visual C++, GNU C++, Maya, Photoshop, X Emacs,
Visual SlickEdit, tcsh, Exceed, CVS

SECTION III: MANAGING INNOVATION211211

guidance on how to model more productively,
or some future task may be eliminated.

In the case of JAK & DAXTER, we used the
knowledge we’d gained from creating the
CRASH BANDICOOT games to help estimate how
long it should take to model a level. As we mod-
eled a few levels, however, we soon realized that
our original estimates were far too short, and so
we took appropriate
actions. If we had attempted
to maintain a long-term, rig-
idly detailed schedule, we
would have spent a lot of
time trying to update some-
thing that was highly inac-
curate. Beyond this being a
waste of time, the constant
rescheduling could have had
a demoralizing effect on the
team.

2. Effective
localization
techniques
We knew from the start that
we were going to sell JAK &
DAXTER into many territories around the world,
so we knew we would face many localization
issues, such as PAL-versus-NTSC, translations,
and audio in multiple languages. Careful struc-
turing of our game code and data allowed us to
localize to a particular territory by swapping a
few data files. This meant we only had to debug
one executable and that we had concurrent
development of all localized versions of the
game. All of our animation playback code was

written so that it could automatically step ani-
mations at a rate of 1.2 (60fps/50fps) when
playing in PAL. We also used a standardized
number of units per second so that we could
relate the amount of time elapsed in a game
frame to our measure of units per second. Once
everything was nice and consistent, then timing-
related code no longer had to be concerned with
the differences between PAL and NTSC.

Physics calculations were
another issue. If a ball’s
motion while being
dropped is computed by
adding a gravitational force
to the ball’s velocity every
frame, then after one sec-
ond the ball’s velocity has
been accelerated by gravity
60 times in NTSC but only
50 times in PAL. This dis-
crepancy was big enough to
become problematic
between the two modes. To
correct this problem, we
made sure that all of our
physics computations were
done using seconds, and

then we converted the velocity-per-second into
velocity-per-game-frame before adding the
velocity to the translation.

3. Seamless world, grand
vistas, and no load times
We knew very early on in the development of
JAK & DAXTER that we wanted to immerse the
player within one large expansive world. We

Extensive character sketches and
color key/ concept design work were
done in advance of actual modeling.

Naughty Dog’s JAK & DAXTER: THE PRECURSOR LEGACY 212

didn’t want to stall the game
with loads between the various
areas of that world. JAK &
DAXTER’s designers had to
overcome many obstacles to
achieve our open environ-
ments. They had to lay out the
levels of the world carefully so
that levels could be moved in
and out of memory without
stalling gameplay or causing
ugly visual popping. They also
had to create challenges that
would engage the player and
maintain the player’s interest,
even though the player could
roam freely around the world.
And they had to tune the chal-
lenges so that the difficulty
ramped up appropriately,
without giving players the
impression that they were
being overly directed.

The programmers had to cre-
ate tools to process intercon-
nected levels containing
millions of polygons and cre-
ate the fast game code that
could render the highly
detailed world. We developed
several complex level-of-detail (LOD) schemes,
with different schemes used for different types
of things (creatures versus background), and dif-
ferent schemes used at different distances, such
as simplified models used to represent faraway
backgrounds, and flats used to represent distant
geometry. At the heart of our LOD system was

our proprietary mesh tessella-
tion/reduction scheme, which
we originally developed for
CRASH TEAM RACING and
radically enhanced for JAK &
DAXTER.

The artists had the burden of
generating the enormous
amount of content for these
environments. Their task was
complicated by the very spe-
cialized construction rules they
had to follow to support our
various renderers. Support
tools and plug-ins were cre-
ated to help the artists, but we
relied on the art staff to over-
come many difficulties.

4. Camera control
From the initial stages of JAK

& DAXTER, we looked at the
various camera schemes used
in other games and came to
the depressing conclusion that
all existing camera schemes
had serious issues. We sus-
pected that making a well-
behaved camera might be an

unsolvable 3D problem: How could one possi-
bly create a camera that would maneuver
through a complex 3D world while behaving
both unobtrusively and intelligently? Only fools
would believe that all problems have a solution,
so, like idiots, we decided to give it a try.

A frame from Jak’s victory
animation displaced as IK,
textured, and textured with color
shading.

SECTION III: MANAGING INNOVATION213213

The resulting camera behaved extremely well,
and although it had its limitations, it proved the
problem does indeed have a solution. Jak can
jump through trees and bushes, duck under
archways, run between scaffolding, scale down
cliffs, and hide behind rocks, all with the camera
unobtrusively keeping the action in view. We
wanted the player to be able to control the cam-
era, but we did not want to force the player to
do so. Players can use the second joystick to
maneuver the camera (rotating the camera or
moving it closer to or farther from Jak), but we
were concerned that some people may not want
to manipulate the camera, and others, such as
children, may not have the required sophistica-
tion or coordination.

Therefore, we worked very hard at making the
camera do a reasonable job of showing players
what they needed to see in order to complete the
various challenges. We accomplished this
through a combination of camera volumes with
specially tuned camera parameters and special-
ized camera modes for difficult situations. Also,
creatures could send messages to the camera in
order to help the camera better show the action.

This may sound funny, but an important feature
of the camera was that it didn’t make people
sick. This has been a serious problem that has

plagued cameras in other games. We
spent a bit of time analyzing why peo-
ple got sick, and we tuned the camera
so that it reduced the rotational and
extraneous movement that contributed
to the problem. Perhaps the greatest
success of the camera is that everyone
seems to like it. We consider that a

major accomplishment, given the difficulty of
the task of creating it.

5. GOAL rules!
Practically all of the run-time code (approxi-
mately half a million lines of source code) was
written in GOAL (Game Object Assembly Lisp),
Naughty Dog’s own internally developed lan-
guage, which was based on the Lisp program-
ming language. Before you dismiss us as crazy,
consider the many advantages of having a cus-
tom compiler. Lisp has a very consistent, small
set of syntactic rules involving the construction
and evaluation of lists. Lists that represent code
are executed by evaluating the items that are in
the list; if the head of the list is a function (or
some other action), you could think of the other
items in the list as being the parameters to that
function.

This simplicity of the Lisp syntax makes it trivial
to create powerful macros that would be difficult
or impossible to implement using C++. Writing
macros, however, is not enough justification for
writing a compiler; there were features we felt
we couldn’t achieve without a custom compiler.
GOAL code, for example, can be executed at a
listener prompt while the game is running. Not
only can numbers be viewed and tweaked, code

Naughty Dog’s JAK & DAXTER: THE PRECURSOR LEGACY 214

itself can be compiled and downloaded without
interrupting or restarting the game.

This allowed the rapid tuning and debugging,
since the effects of modifying functions and data
structures could be viewed instantaneously. We
wanted creatures to use nonpreemptive cooper-
ative multi-tasking, a fancy way of saying that
we wanted a creature to be able to execute code
for a while, then “suspend” and allow other
code to execute. The advantage of implementing
the multi-tasking scheme using our own lan-
guage was that suspend instructions could be
inserted within a creature’s code, and state could
be automatically preserved around the suspend.

Consider the following small snippet of GOAL
code:

(dotimes (ii (num-frames
idle))
 (set! frame-num ii)
 (suspend)
)

This code has been simplified to make a point,
so pretend that it uses a counter called ii to loop
over the number of frames in an animation
called idle. Each time through the loop the ani-
mation frame is set to the value of ii, and the
code is suspended. Note that the value of ii (as
well as any other local variables) is automati-
cally preserved across the suspend. In practice,
the preceding code would have been encapsu-
lated into a macro such as:

(play-anim idle
 ;; Put code exe-
cuted for each time..
 ;; through the loop
here.
)

There are other major compiler advantages: a
unified set of assembly op-codes consistent
across all five processors of the Playstation 2,
register coloring when writing assembly code,
and the ability to intermix assembly instructions
seamlessly with higher-level code. Outer loops
could be written as “slower” higher-level code,
while inner loops could be optimized assembly.

1. GOAL sucks!
While it’s true that GOAL gave us many advan-
tages, GOAL caused us a lot of grief. A single
programmer (who could easily be one of the top
ten Lisp programmers in the world) wrote
GOAL. While he called his Lisp techniques and
programming practices “revolutionary,” others
referred to them as “code encryption,” since
only he could understand them.

Because of this, all of the support, bug fixes, fea-
ture enhancements, and optimizations had to
come from one person, creating quite a bottle-
neck. Also, it took over a year to develop the
compiler, during which time the other program-
mers had to make do with missing features, odd
quirks, and numerous bugs.

Eventually GOAL became much more robust,
but even now C++ has some advantages over
GOAL, such as destructors, better constructors,
and the ease of declaring inline methods. A
major difficulty was that we worked in such iso-
lation from the rest of the world. We gave up

What Went Wrong

SECTION III: MANAGING INNOVATION215215

third-party development tools such as profilers
and debuggers, and we gave up existing librar-
ies, including code previously developed inter-
nally. Compared to the thousands of
programmers with many years of C++ experi-
ence, there are relatively few programmers with
Lisp experience, and no programmers (outside
of Naughty Dog) with GOAL experience, mak-
ing hiring more difficult.

GOAL’s ability both to execute code at the lis-
tener and to replace existing code in the game at
run time introduced the problem of memory
usage, and more specifically, garbage collection.
As new code was compiled, older code (and
other memory used by the compiler) was
orphaned, eventually causing the PC to run low
on free memory. A slow garbage collection pro-
cess would automatically occur when available
memory became sufficiently low, and the com-
piler would be unresponsive until the process
had completed, sometimes taking as long as 15
minutes.

2. Gameplay programming
Because we were so busy creating the technol-
ogy for our seamless world, we didn’t have time
to work on gameplay code until fairly late in the
project. The situation caused no end of frustra-
tion to the designers, who were forced to design
levels and creatures without being able to test
whether what they were doing was going to be
fun and play well. Eventually programmers
were moved off of technology tasks and onto
gameplay tasks, allowing the designers to play
the game and make changes as appropriate. But
without our designers’ experience, diligence,
and forethought, the results could have been a
disaster.

3. Audio
We were plagued with audio-related problems
from the start. Our first indication that things
might not be going quite right was when our
sound programmer quit and moved to Austra-
lia. Quickly hiring another sound programmer
would have been the correct decision. We tried

several other
schemes, however,
made some poor
choices, and had
quite a bit of bad
luck. We didn’t rec-
ognize until fairly
late in development
what a monumental
task audio was going
to be for this project.

Screenshot showing highest level of
detail of in-game geometry for the
Forbidden Jungle level.

The same shot displayed with
textures.

Naughty Dog’s JAK & DAXTER: THE PRECURSOR LEGACY 216

Not only did JAK & DAXTER contain original
music scores, creature and gadget noises, ambi-
ent sounds, and animated elements, but there
are also over 45 minutes of story sequences,
each containing Foley effects and speech
recorded in six different languages. Our audio
issues could be broken up into four categories:
sound effects, spooled Foley, music, and local-
ized dialogue. Due to the large number of sound
effects in the game, implementing sound effects
became a maintenance nightmare. No single
sound effect was particularly difficult or time-
consuming; however, creating all of the sound
effects and keeping them all balanced and work-
ing was a constant struggle. We needed to have
more time dedicated to this problem, and we
needed better tool support.

We used spooled Foley for lengthy sound effects,
which wouldn’t fit well in sound RAM. Spool-
ing the audio had many advantages, but we
developed the technology too late in the project
and had difficulty using it due to synchroniza-
tion issues. Our music, although expertly com-
posed, lacked the direction and attention to
detail that we had achieved with the CRASH

BANDICOOT games. In previous games, we had a
person who was responsible for the direction of
the music. Unfortunately, no one performed that
same role during JAK & DAXTER.

Dialogue is a difficult problem in general due to
the complexity of writing, recording, editing,
creating Foley, and managing all of the audio
files, but our localization issues made it espe-
cially challenging. Many problems were difficult
to discover because of our lack of knowledge of

the various languages, and we should have had
more redundant testing of the audio files by peo-
ple who were fluent in the specific languages.

4. Lengthy processing times
One of our greatest frustrations and loss of pro-
ductivity came from our slow turnaround time
in making a change to a level or animation and
seeing that change in the actual game. Since all
of our tools (including the GOAL compiler) ran
across our network, we ran into severe network
bandwidth issues. Making better use of local
hard drives would have been a smarter
approach. In addition, we found extreme net-
work slowdown issues related to reading file
time/date stamps, and some tools took several
minutes just to determine that nothing needed
to be rebuilt.

When we compiled
some of our tools
under Linux, we
noticed dramatic
improvements in
network perfor-
mance, and we are
planning on using
Linux more exten-
sively in our next
project. We imple-
mented the processing of the lengthy story-
sequence animations as a hack of the system
used to process the far simpler creature anima-
tions. Unfortunately, this bad system caused
lengthy processing times, time-consuming
debugging, and a lot of confusion.

SECTION III: MANAGING INNOVATION217217

If we had initially hidden the processing com-
plexity behind better tools, we would have
saved quite a bit of time.

We used level-configuration scripts to set actor
parameters and other level-specific data. The
script processing was done at an early stage in
our tools pipeline, however, so minor data
changes took several minutes to process. We
learned that tunable data should instead be pro-
cessed as close as possible to the end of the tools
pipeline.

5. Artist tools
We created many tools while developing JAK &
DAXTER, but many of our tools were difficult to
use, and many tools were needed but never writ-
ten. We often didn’t know exactly what we
needed until after several revisions of our tech-
nology. In addition, we didn’t spend a lot of
time polishing our tools, since that time would
have been wasted if the underlying technology
changed. Regrettably, we did not have time to
program tools that were badly needed by the
artists, which resulted in a difficult and confus-
ing environment for the artists and caused many
productivity issues. Since programming created
a bottleneck during game production, the added
burden given to the artists was considered nec-
essary, though no less distasteful.

We lacked many visualization tools that would
have greatly improved the artists’ ability to find
and fix problems. For example, the main
method artists used to examine collision was a
debugging mode that colorized a small section

of collision geometry immediately surrounding
Jak. A far better solution would have been to
create a renderer to display the entire collision
of a level.

We created plug-ins that were used within the
3D modeling package; however, for flexibility’s
sake most of the plug-ins operated by taking
command parameters and outputting results as
text: not a good interface for artists. Eventually,
one of our multi-talented artists created menus
and other visualization aids that significantly
improved productivity. Many of our tools were
script based, which made the tools extremely
flexible and adaptable; however, the scripts were
often difficult for the artists to understand and
use. We are replacing many of these scripts with
easier-to-use GUIs for our next project.

The Legacy
Creating JAK & DAXTER was a monumental
effort by many hardworking, talented people. In
retrospect, we were probably pretty foolish to
take on as many challenges as we did, and we
learned some painful lessons along the way. But
we also did many things right, and we success-
fully achieved our main goals. At Naughty Dog,
there is a strong devotion to quality, which at
times can border on the chaotic, but we try to
learn from both our success and our failures in
order to improve our processes and create a bet-
ter game. The things that we learned from JAK

& DAXTER have made us a stronger company,
and we look forward to learning from our past
as we prepare for the new challenges ahead.

Naughty Dog’s JAK & DAXTER: THE PRECURSOR LEGACY 218

This Page Intentionally Left Blank

219

SECTION IV

Building on a License
A license game is a game based on an existing
creative property borrowed from some other
medium. A game could be based on nearly any-
thing—we’ve seen adaptations of books, films,
television shows, magazines, dolls, rock bands,
comic books, basketball players, and soft
drinks. For any work under copyright, some-
body holds the interactive rights and may part
with them for a price.

The prospect is enormously tempting. What
game developer hasn’t dreamed of adapting
some cherished work, of building their own per-
sonal vision of the Mines of Moria or Gormeng-
hast, of Dickensian London, Chiba City, or
Neo-Tokyo? It’s part of the basic lure of the
medium, being able to enter into and interact
with imagined worlds.

And why not? It also makes business sense. Eco-
nomically, licensing games is a method for
reducing financial risk. The licenser takes a fee
or a cut of the profits, but the combination of
name-recognition, added marketing muscle, and
an established fan base guarantees a minimum
level of sales.

From a production standpoint, the license
means you have original content you don’t have
to develop yourself, most of it probably first-
rate. Character design, world design, and story
are taken care of. If it’s a film or television
license, you may be able to pick up actual audio,
texture, and voice acting from the original
source.

There are downsides to licensing games, how-
ever. Of course, whoever owns the license is
going to receive a portion of the profits. Licens-
ers can also be extremely protective of their cre-
ative property, and not without reason. A
creative property can be damaged by improper
handling. A licensed game that is poorly done,
that fails to convey the spirit of the original cre-
ative work, or alters its fictional continuity in
some way can change how the public sees that
property. All this tends to make the owner of the
license quite nervous, quick to demand over-
sight of the project.

Licensers may set rules and limits on what the
project team can do, which may hinder their
creative freedom, especially when the licenser is
unfamiliar with interactive media. The licenser

Section IV: BUILDING ON A LICENSE 220

can even deny access to crucial resources (such
as actors for voice acting) or revoke the license
entirely.

The flip side of name recognition is high expec-
tations from fans of the original work. People
who are genuinely invested in a work may be
unhappy to see a video game based on it. People
invest emotion in works of art, and they don’t
like having their emotions messed with. Audi-
ences may not trust interactive adaptations, and
there is some justice to that attitude. If you
screw up, the potential for backlash is enor-
mous. In any case, the original creative team
behind the property may not be participating in
the production process, so even if you do a rea-
sonable job, your effort won’t bear the seal of
authenticity.

Any game released on a license bears the burden
of reproducing the thrill of the original work,
while adding interactivity. In a sense, they are
competing with the license on its home turf. For
example, a property that originates in a novel can
trade on the strengths of that medium—witty,
nuanced dialogue, direct perception of charac-
ters’ thoughts, large-scale scenes, descriptive lan-
guage that inspires the imagination. The game
version has to give players an equally good rendi-
tion of the property, but using totally different
tools. Few enough licensed games live up to the
challenge—most manage to remind us of the
original work, but don’t deliver equally. A
few—Totally Games’ X-WING, Rare’s GOLDEN-

EYE—equal or even surpass their source material.

The challenge of adapting works from other
media can tell us an enormous amount about

our own. When a film or a book or a comic
becomes a video game, everything changes, and
those changes reflect the nature of the interac-
tive medium itself. Just ask yourself why the
game industry hasn’t adapted Jane Austen,
Shakespeare, E. M. Forster, or Henry James?
Their books have been adapted into a number
of successful movies recently. They aren’t even
under copyright, so they’re available for free.
Why hasn’t anyone scooped them up? The fact
that the game industry hasn’t done so illustrates
the weaknesses of interactive media.

Every year computer game graphics improve,
but even so, no game has approached the qual-
ity of the cinematic image in a real-time interac-
tive format. This is especially true when it comes
to the human form—our ability to simulate
human faces and body language is primitive
compared to what film can do.

Films and novels show characters talking to
each other, having intimate, nuanced
exchanges—it’s one of the basics of those forms,
but computer games can’t do it interactively, not
on the same level. Natural language, facial
expressions, and body language are unsolved
problems for computers. Real people are too
hard to simulate—the best we can do at this
point is to produce consistent-looking worlds,
stylized and perhaps cartoonish, but successful
on their own terms.

Adapting story is almost as big a problem. Nov-
els and films have become the storytelling media
par excellence of the twentieth century, with a
well-understood body of techniques. Again, it’s
a basic part of those media, something you

Section IV: BUILDING ON A LICENSE221

don’t even think about, but we are still learning
how to do it in interactive media. Instead, we
stretch out narratives with long episodes of run-
ning through sewers or jumping around on
ledges, situations we do know how to show
extremely well.

We face so many obstacles—the relative clumsi-
ness of character interaction, the difficulty of
integrating gameplay with narrative exposi-
tion—that our efforts may look clumsy in direct
comparison to a film’s smooth exterior. How
many early licensed games bore almost no
resemblance to the original? The grand promises
laid out on the back of the box gave way to
stilted little cartoons within. What was a vivid
and taut action sequence on film, became hours
of jumping over boxes on a TV screen. No one
is going to forget E.T. on the Atari 2600.

But these failures at least show us how much
better we’re getting. Along the way we have
learned a few things. Aside from the advantages
listed above, the main lesson about licensed
games is this: there is more than one way to
adapt a license, so play to your strengths. You
don’t have to limit yourself to simply recreating
the original—you can use the license in different
ways to suit the style of game you’re ready to

make. You can expand a small part of the fic-
tional world, do a prequel, a sequel, or carve
out your own niche in the established universe,
far away from the main action.

In a world as expansive and rich as the Star
Wars™ universe, you don’t have to be Luke
Skywalker every time. In DUNE 2, Westwood
took their license and stripped it down to one
essential aspect—desert planet economic war-
fare—and reproduced it beautifully, while ignor-
ing other aspects of the license, characters’
personal stories, that didn’t suit their game and
were much harder to reproduce in the interac-
tive medium.

Licenses are an important section of the indus-
try. They bring much-needed financial stability
to any company’s balance sheets. They create
links between our industry and other sections of
the entertainment world, with film directors and
actors and novelists. They bring in new audi-
ences, fans of other media who might otherwise
never sit down in front of a computer to be
entertained. And, finally, they teach us about
our own medium, show us where our strengths
and weaknesses are, the things we can’t do, and
the things we can do better than anyone else.

Section IV: BUILDING ON A LICENSE 222

This Page Intentionally Left Blank

223

LucasArts’

STAR WARS™
STARFIGHTER
by chris corry

Work on Project Europa—the internal code-
name for the development effort that would
eventually metamorphose into STAR WARS

STARFIGHTER—began in earnest in April 1998.
A small crew of programmers, headed up by
director Daron Stinnet, began preproduction
work on a STAR WARS: EPISODE I PC title that
had grand ambitions. As one of LucasArts’ great
unsung talents, Daron had previously led the
DARK FORCES and OUTLAWS teams to much
critical and commercial success. Now, following
in the footsteps of Larry Holland’s X-WING

games, Europa was to bolster LucasArts’ pres-
ence in the space-combat genre and support the
new film franchise. While embracing much of
the X-WING series’s simulation-oriented aes-
thetic, the team also wanted to deliver the vis-
ceral, sweaty-fingered arcade experience that we
were starting to see in early builds of ROGUE

SQUADRON.

During the early months of 1999, a well-known
designer who was in the market for a new lead
programmer and lead level designer for his com-
pany’s overdue project secretly approached two
members of our team about the possibility of

jumping ship. Although obviously conflicted,
the allure of working with a famous industry
heavyweight proved too tempting, and within a
few short weeks we had lost our main graphics
programmer and level designer. Shaken but
undeterred, we were determined to make the
best of a bad situation, but three months later
the project suffered another blow when we lost
our second graphics programmer.

This was Europa’s darkest hour. The technology
development was progressing slowly, and our
inexperienced programming staff was still
climbing the C++ learning curve. As lead pro-
grammer, this predicament was largely of my
own making. I had joined LucasArts from out-
side the game industry, where I was accustomed
to a corporate R&D environment that valued
solid engineering and extensible software archi-
tecture over quick solutions that were perhaps

Back-Story
This air- and space-combat game is set in the Star Wars

universe of Episode One: The Phantom Menace. The

game’s story follows three protagonists—a Rebel pilot,

a bounty hunter, and a pirate captain—in a series of mis-

sions, tracing a story that interleaves cleverly with the

events of the movie.

LucasArts’ STAR WARS™ STARFIGHTER 224

less elegant or flexible. Now, with little to show
but a creaky Glide-based graphics engine and no
graphics programmer, we were at a loss as to
what to do next.

As if things weren’t bad enough, we were also
floundering on the game design side of the fence.
Although we had a lot of excellent concept art,
few of us had a clear idea about exactly what

type of game we were making. We were pain-
fully starting to discover that while it is easy to
characterize a title as being a cross between
ROGUE SQUADRON and X-WING, it’s another
thing completely to describe what that actually
means.

At this point two events occurred that I’m con-
vinced saved the project. Our multiplayer pro-
grammer, Andrew Kirmse, who had already
proven himself as a remarkably capable technol-
ogist, teamed up with two of our other pro-
grammers to create a graphics-engine “tiger
team,” a small subteam dedicated to attacking a
single task with unwavering focus. In just a few
months the three of them delivered a brand-new
OpenGL-based engine that was far better than
anything we had built previously.

Shortly after the new graphics engine came
online we also found the solution to our game
design woes. Tim Longo, who had recently
helped complete INDIANA JONES AND THE

INFERNAL MACHINE, joined the team as our
lead level designer. The change was immediate
and profound; five other level designers joined
the project at about the same time, and now we
had the foundation for a thriving, collaborative
design process. Daron worked with Tim and the
other level designers on an almost daily basis,
systematically identifying areas of the game
design that were incomplete and working
together to come up with concrete solutions.

By the end of 1999 the project had performed a
180-degree turnaround, but there was one more
significant twist in the road awaiting us. Sony
had turned the game industry on its ear with the
formal announcement of the Playstation 2 that
year, and every major development house was
furiously rewriting business plans to accommo-
date support for the new platform; LucasArts
was no exception. The biggest problem for the
company was that we wanted to have a title
close to the system’s launch, and Europa was the

Game Data
Release date: February 2001

Publisher: LucasArts

Genre: science fiction, ship-to-ship combat

Platform: Playstation 2

Full-time developers: Approximately 40 at the height
of production

Length of development: 30 months

Hardware used: 700MHz Pentium IIIs with 256MB
RAM, GeForce 256, PS2 tools

Software used: Windows 2000, Microsoft Visual C++,
Metrowerks for PS2, 3D Studio Max, Softimage,
Photoshop, Bryce, Visual SourceSafe, Perl,
AfterEffects, Premiere

Technologies: Eve level design tool, Miles Sound
System, ObjectSpace STL, Macromedia/Secret Level
Flash, Planet Blue’s Tulip for prerendered cut-scene
lip-syncing

Lines of code: 301,000 including tools

SECTION IV: BUILDING ON A LICENSE225225

only project far enough along to be a serious
candidate. The thought of throwing the PS2 into
the mix made many people very uncomfortable,
but when we were able to
port all of our non-graphics
code in a single 48-hour
period, senior management
became convinced.

The rest of the project was
an exciting and manic blur
of activity. Early in 2000 we
hit the “snowball point,”
that period when all of a
sudden the tech falls into
place, the art production
paths are running on all cyl-
inders, and the team is see-
ing exciting new gameplay on an almost daily
basis. From then on, STAR WARS STARFIGHTER

was indeed like a runaway snowball, picking up
momentum and new features almost as fast as
we could think of them.

1. Good team communication
I’ve read many Game Developer Postmortems
that blamed failures on a lack of communication,
so I’m particularly proud that we got this one
right. From the beginning of the project, Daron
worked hard to impress on the programmers
that it was the level designers and artists that
would ultimately secure the success of Europa.
As I became fond of saying, programmers build

the picture frame, but it’s up to the rest of the
team to provide the most important part, the pic-
ture.

To bring this to fruition, the
programming team needed
to understand as best we
could the way the rest of the
team worked. While
Andrew worked with lead
artist Jim Rice and our
world-builders to under-
stand their workflows, Brett
Douville, our AI and mis-
sion programmer, filled a
similar role with the level
designers. Brett scheduled
regular “LD Days” with

each individual member of the level design staff.
This gave each designer the opportunity to meet
with Brett on a regular basis and show him the
specific challenges and problems that they were
tackling in their missions.

Europa periodically had full-blown team meet-
ings where we could get together and kibitz
about the overall state of the project. However,
the most valuable meetings were at the subteam
level. Both the programming team and the art
teams would meet weekly to discuss the issues
of the day, and each of these meetings would
have an attendee from the other camp—a role
we referred to as the “exchange student.” This
meant that if questions came up in the art meet-
ing, for example, that required answers or
input from a programmer, there would always
be someone present that could give an
informed opinion. Likewise, as programmers

What Went Right

A Naboo Starfighter cruising over
an early take on the rolling hills of
Naboo.

LucasArts’ STAR WARS™ STARFIGHTER 226

would discuss issues or new features in their
weekly meeting, the art or level design repre-
sentative would be able to disseminate this
information among the other team members.

Finally, we relied on an internally maintained
Web site as a pivotal communications tool. We
tried to make the site as comprehensive as possi-
ble, organizing areas along the lines of program-
ming, art, level design, project management, and
so on. When artists had questions about how to
implement a particular effect, or a level designer

needed a refresher on our class-file script syntax,
there was usually a web page that they could be
directed to that would answer many of their
questions.

2. Project discipline
STAR WARS STARFIGHTER was a well-organized
project. In the heat of battle it’s all too easy to
let requirement lists and schedules get lost in the
shuffle of the moment. We were determined not
to let this happen. As soon as our technology
began to take shape, we started to follow an
iterative process of milestone planning and exe-
cution. These milestones were typically four to
six weeks in duration, with no milestone
extending longer than eight weeks. Milestones

were also required to demonstrate
some visual or gameplay aspect of
the game.

As a consequence, we had very
few milestone tasks that looked
like “complete the Foobar class”;
instead we would have a mile-
stone task that might read
“Explosion smoke trails,” and the
assigned programmer would
know that completing the Foobar
class was an implied requirement.
By keeping our attention focused
on a discrete and relatively small
body of work, we were able to
avoid the cumulative errors that
invariably creep into longer sched-
ules, while still allowing for
demonstrable progress.

Most of the milestones were driven by the
progress of the technical team. Programmers
were solely responsible for estimating the dura-
tion of their tasks. We would occasionally adjust
these estimates outward but would never change
an estimate to be shorter. Tasks were structured

A schematic for the Naboo Starfighter—one of the only
elements in the game that was present in both the original
design concept and the final product.

SECTION IV: BUILDING ON A LICENSE227227

so that the short-
est scheduled task
was never shorter
than a half-day.
Even if a program-
mer was certain
that a task could
be completed in
less than half a
day, experience
clearly showed
that the time
would be lost else-
where.

Using these simple
rules of thumb, we
were consistently
able to build
schedules that
were fair and accu-
rate. Out of eight scheduled milestones, we
never missed one by more than a handful of
days. Best of all, most team members completely
avoided extended periods of crunch time. Like
most game teams as they approach their ship
date, everyone was working hard and often into
the evenings; however, this period of time was
short, and we never had to resort to all-nighters.

We also closely managed the process we used to
distribute new binaries to the team at large.
Since most of our development occurred on the
PC even after making the decision to ship on the
PS2, it was important that team members have
timely access to stable builds of the game. We
accomplished this through weekly public builds.
Once a week we would package and distribute

the current code as a full-blown InstallShield-
compiled install. This provided team members
with debug and production versions of the
game, along with level design tool and art
exporter updates.

Predicting that public builds would become crit-
ically important, we tried to be as ruthless as
possible about maintaining the build schedule.
As we got closer to our ship date, the frequency
of these public builds increased until we were
performing new builds as often as three times a
week. By this point we had a full-time staff
member dedicated to managing the public build
process and ensuring that the distributed code
met quality and functionality expectations.

Storyboard depicting Rhys Dallow’s ship getting hit.

LucasArts’ STAR WARS™ STARFIGHTER 228

3. A well-executed PC-to-PS2
transition
Making the decision to move the project to the
PS2 could have been a complete disaster. Yet,
despite paying little attention to portability dur-
ing the earliest stages of the project, the Europa
code base was well positioned to make the jump
to the PS2 platform. With the aid of strong and
generally stable development tools provided by
Metrowerks, the core port went off without a
hitch.

The biggest trick was on the graphics side,
because this was clearly where we were most
vulnerable. None of our
programmers had any
console experience, and
none of us was up to the
task of tackling the PS2’s
infamous low-level vector
units. Enter LECgl. LECgl
was the brainchild of Eric
Johnston and Mark Blat-
tel, two of LucasArts’
most senior console pro-
grammers. They had
recently shipped STAR

WARS: EPISODE I RACER

for the N64, and they wel-
comed the opportunity to
tackle a problem tempo-
rarily that was one step
removed from the day-to-
day pressures of a project team. Although
Europa was the most immediate recipient of
their efforts, Eric and Mark were never officially

on the project. Instead they worked in a support
role, providing us with regular LECgl library
drops and immediate “on-call” PS2 graphics
support.

There was another, more subtle problem that we
had to conquer when we made the decision to
adopt the PS2 as our primary platform. Most of
the team members were big PC game players,
but very few of us played console games. Intel-
lectually, we knew that there were huge philo-
sophical differences in game design between
consoles and the PC. Much of our original game
design had used the X-WING games as a concep-
tual leaping-off point, wandering into the

arcade action of ROGUE

SQUADRON only when it
suited us.

Now that we were on the
PS2 we recognized that
our design priorities
needed to be completely
flipped. Instead we would
use ROGUE as our primary
point of reference and
work from there, layering
on gameplay elements bor-
rowed from X-WING as
needed. As such, I think
the final game demon-
strates our successful
indoctrination into the
console mindset. We were

having so much fun blowing things up that we
had little desire to start adding sim-like features
to the gameplay experience.

A page from the programming section
of the STAR WARS STARFIGHTER internal
Web site.

SECTION IV: BUILDING ON A LICENSE229229

4. Macromedia
Flash
As we approached the
end of summer in 2000,
we realized that we had
a serious problem on our
hands. Despite our best
efforts, we still had not
addressed the issue of
our out-of-game user
interface. We had a 2D
virtual-page system that
we were using for our
HUD (heads-up display)
symbology, and we had
always planned to evolve that into something
that could be used for what we called the
“administrative interface.” However, in August,
with the quality assurance department nipping
at our heels and our ship date looming omi-
nously in the distance, things were not looking
good.

We had heard that a small San Francisco–based
company named Secret Level was adapting
Macromedia’s Flash technology for use in PS2
games. After meeting with company representa-
tives, we were excited by the prospect. The
Macromedia content-authoring tools were far
more elaborate than anything we could come up
with in the same time frame. We also suspected
that there was a wealth of Flash authoring
expertise available from out-of-house contrac-
tors which would help us smooth out the work
load. Most importantly, we were very impressed
by the intelligence and games savvy of the Secret
Level staff.

When we realized that
building our user inter-
face in Flash would sig-
nificantly ease our
localization efforts, we
decided to take the
plunge. Soon afterward
we hired a design firm
named Orange Design to
help us implement our
administrative interface
in Flash. Orange not
only had a ton of experi-
ence with Flash, but they
also brought a technical
perspective to the table.

We knew that this technical emphasis would be
critical for working with our programming team
on integration issues.

Integrating Flash into the Europa engine was
not a completely smooth process, however. Per-
formance in the first-generation Flash Player
was poor (current generations of the Player are
now much faster), and we had to spend a lot of
time integrating the user interface Flash movie
with the core game systems. That said, the five
months that a single half-time programmer
spent on this task ended up yielding a user inter-
face that was far beyond what we would have
been able to custom-code in the same period of
time.

5. Good debugging systems
Our programmers built several tools that greatly
helped our pursuit of high-quality code. One of
the most instrumental was a Windows-only

Early concept art for the mercenary Vana.

LucasArts’ STAR WARS™ STARFIGHTER 230

library that provided detailed stack-tracing
information. This library was largely based on
the code and concepts covered by John Robbins’
“Bugslayer” column published in the Microsoft
Systems Journal. As is standard practice on
many games, we built a custom memory man-
ager that could detect when the application was
leaking memory. However, unlike most imple-
mentations, when our memory manager
detected a leak it could provide a comprehensive
stack trace of arbitrary depth, leading directly to
the leaking code statement.

This capability represented a significant advan-
tage over other implementations that could only
provide the immediate location of the allocation
request. If the memory allocation were being

made by the Standard Template Library (STL)
or one of our widely used utility classes, it was
usually not enough to know what part of the
STL or which one of our utility classes was the
culprit. What we really needed to know was
what class called the STL method that caused
the leak. In fact, the leak was usually several
steps up the call chain. Our stack-tracing library
made finding these cases almost trivial.

We also incorporated stack tracing into our
exception- and assert-handling systems. When
the game encountered a hard crash, we trapped
the exception and generated a complete stack
trace; a similar process occurred when our code
asserted. This information was initially reported
back to the user in dialog form. However, we

also packaged up this same
data and had the game
send the programmers an
e-mail detailing exactly
where the problem
occurred. This ended up
being an invaluable tool
for us. As a matter of prac-
tice, the Europa program-
mers got into the habit of
checking the assert mail-
box regularly. In addition
to appraising the current
stability of the code, we
could also use this data to
spot trends and note when
people weren’t being dili-
gent about installing new
builds.

Several of the ship models developed for STAR WARS STARFIGHTER.

SECTION IV: BUILDING ON A LICENSE231231

In the end, we had an exceptionally smooth QA
process because the bugs we did have were gen-
erally easy to track down and fix. There were no
last-minute “heart attack” bugs that required us
to set up camp and track a single problem for
hours or days at a time. This made life easier on
the programmers, but it also made things easier
for the testing team and improved morale across
the entire project.

1. Staffing
As you can probably tell by now, staffing was
easily the biggest problem the project encoun-
tered. Try as we did to manage staff retention,
the team experienced an alarming amount of
turnover, both in the programming and art
departments. This invariably made life harder
for the people left behind, because the amount
of work remained constant, but team members
could not be replenished as quickly as they
were lost.

This also meant that many of the team’s junior
staff members missed out on valuable mentoring
or experienced spotty supervision by their leads.
On the programming team, senior programmers
were so busy that we had little time to train new
team members. This led to a stressful sink-or-
swim mentality which was difficult for new
hires. Even relatively simple quality-control pro-
cedures such as code reviews were never insti-
tuted, since every moment of every day was

dedicated to making forward progress on the
game.

The staffing issue continued to dog us through-
out the project. Even after we had regained
some momentum, we still ended up losing two
programmers and a handful of artists, all to the
same online gaming startup. Although nine pro-
grammers contributed to the main code base at
one point or another, the vast majority of code
was written by the core group of four program-
mers who stayed with the project to completion.

2. Initial lack of detailed design
Europa was always envisioned as having some
sort of Star Wars: Episode I tie-in. During much
of 1998, however, it was difficult to predict to
what degree Lucas Licensing would allow this
to happen. One of the barriers we encountered
was the intense veil of secrecy that surrounded
any Lucas-owned company involved with the
movie property. Some of us had access to the
script and the occasional rough-cut screening,
but particularly during the first half of 1998 it
was virtually impossible to learn the important
details about the film needed to build a solid
franchise title.

Initially we had assumed that the game should
stay as far away as possible from the events of
the film. Because we were going to be telling one
of the first original stories set in the time line of
the new film, we had no feeling for where the
boundaries were with respect to planets, charac-
ters, vehicles, and the like. We were intimidated
by the pervasive atmosphere of secrecy and gen-
eral sensitivity of the Episode I storylines; the

What Went Wrong

LucasArts’ STAR WARS™ STARFIGHTER 232

first game designs described a pirate war far
divorced from the events of the film. In fact, the
Naboo Starfighter was one of the only elements
that could be found in both the first design and
the film.

As this design started to circulate, however,
Licensing contacted the team and explained that
the design contained too many pirate elements;
they wanted the game to contain more elements
from the film. The “moving target” nature of
this exchange ended up being very disruptive
and effectively paralyzed the design effort for
weeks at a time as we wandered from idea to
idea, wondering what fit into continuity with
the film and what was straying into areas that
we should keep away from.

The Europa team also had some pretty big shoes
to fill. It didn’t take long for us to realize that
whatever we did was going to be directly com-

pared to Larry Holland’s previous X-WING

titles. The Totally Games guys had been making
games like for this for the better part of a
decade, and they had gotten very, very good at
it. Game players could rely on Larry to produce
large, sophisticated games with well-designed
features and compelling gameplay. This success
had, in turn, incubated a dedicated and enthusi-
astic fan base that we knew would mercilessly
scrutinize STAR WARS STARFIGHTER.

Frankly, we were in a no-win situation: if we
deviated too far from the Totally Games
designs, we risked disenfranchising some of our
most loyal fans, but we also didn’t want simply
to copy Larry’s last game either. Fortunately,
once we decided to ship on a console, the design
shackles fell away and we were free to chart our
own path. While we realized that the hardcore
X-WING players might not appreciate STAR

WARS STARFIGHTER as much as the Larry Hol-
land games, they were no longer our primary
audience.

3. Naïve approach to memory
usage
As quickly as we were able to get Europa up and
running on the PS2, it took the programming
team much longer to fully embrace the creed of
the console programmer. Since Europa was orig-
inally intended to be a PC title and our pro-
grammers only had PC experience, it’s not
surprising that most of the code suffered from a
bad case of “PC-itis.” I use this term to refer to
programming practices that, while potentially
portable to a console, are definitely not console-
friendly.

The Eve level design tool was a critical part of STAR
WARS STARFIGHTER’s success.

SECTION IV: BUILDING ON A LICENSE233233

Our approach to memory allocation is a perfect
case in point. For starters, we relied on the STL
for all of our container classes. On one hand we
benefited from a bug-free and robust set of stan-
dardized collection classes. As an integral part
of the C++ Standard Library,
the STL contains a powerful
toolset for general applica-
tion development. We’re big
fans of the STL, and for the
most part we can’t imagine
working on a project that
doesn’t use it. Unfortu-
nately, depending on what
containers you decide to use,
the STL is notorious for
making many small memory
allocations.

Our STL container usage
was paralleled by our use of an uncomfortably
large number of ANSI string objects. The ANSI
string class is a great little class that makes deal-
ing with character strings much easier than it
used to be when we were all writing code in C.
Like most STL containers, however, excessive
use of the string class also leads to large num-
bers of small memory allocations. By the time
we decided to port to the PS2, most of the dam-
age had already been done.

As I mentioned earlier, our global memory man-
ager’s original focus had been memory-leak
tracking, but now we needed it to help with our
STL problem. We accomplished this by intro-
ducing the concept of bins, which were really
just a hierarchy of fixed-length memory alloca-
tors. When the memory manager received a

small memory request, it could very quickly and
efficiently satisfy the allocation if the size of the
request fell into the range serviced by our bins.
We ultimately relied on the bins for both rapid
memory allocation services and fragmentation

management.

I should also note that we
had a pretty rough time with
memory fragmentation.
Going into the PS2 port we
suspected that fragmenta-
tion was going to be a prob-
lem. On the PC we had made
an effort to generally clean
up after ourselves in ways
that would help reduce frag-
mentation, but we never
made a concentrated effort
to eradicate it completely,

because we knew that in a pinch we could
always rely on the PC’s virtual memory system.

One of my jobs during the last six weeks of the
project was to build debugging systems that
would give us detailed memory maps and then
track down each fragmenting memory alloca-
tion one at a time. It was every bit as unpleasant
as it sounds, and I urge those PC developers
making the switch to consoles to take this lesson
to heart.

4. Not enough attention paid to
performance
There is little question that in the rush to imple-
ment features and ship the game on time, per-
formance suffered. Part of this was due to

An example of the statistics that
Daron tracked during the game’s
development.

LucasArts’ STAR WARS™ STARFIGHTER 234

having an inexperienced staff, and part of this
was due to the fact that we had ported a PC
code base to the PS2, but in truth most of us
were so preoccupied with one issue or another
that we had little time to revisit code with an eye
toward optimization. There was a pervasive
attitude among many of us that we could safely
ignore code problems until they showed up as
hotspots on a profiling run.

There is some merit to this
strategy, since premature
optimization efforts can be
more wasteful than not
fixing the code at all. But
since profiling can turn up
hidden problems in areas
of the code that the team
had previously thought
complete or issue-free, it’s
important to start profiling
much earlier than we did.
For example, we had
severe performance prob-
lems in our collision detection systems that we
would have identified immediately if we had
profiled sooner. As it happened, by the time we
realized that collision detection was working
poorly, the best we could do was apply spot
fixes instead of the large-scale reworking that
the problem actually demanded.

Even after we started a fairly regular regimen of
profiling late in the development cycle, we still
didn’t do enough of it. In the end, only one pro-
grammer did all of our profiling, and he was
responsible for making the rounds and pointing
out problems to other members of the program-

ming staff. This was a real shame, because the
Metrowerks PS2 profiler is a very nice tool, and
most members of the team had uninstalled
licenses. I should have made our developers
responsible for profiling their own code and
doing so at a much earlier stage.

5. Space-to-planet
If there was anything
about the original STAR

WARS STARFIGHTER pitch
that met with widespread
enthusiasm, it was the idea
of seamlessly transition-
ing from planetside envi-
ronments to the depths of
space and back again.
Dogfighting close to the
planet surface certainly
has its own appeal, but
there is something about
the promise of being able
to pull back on the stick

and blast off all the way into space that is sim-
ply very, very cool. This high concept was so
exciting to the team that the original game pitch
featured this idea predominantly. In fact, in
many ways this single feature was to define the
game.

Well, it’s a bit of a trick to actually pull off.
First, there were the technical considerations. A
planet is big. I mean really, really big. Even a
small planet would require dynamically creating
thousands of terrain tiles. Although most of
these tiles could be procedurally generated, they
would still need to be created and discarded on

An early version of the Naboo
Starfighter passing in front of a nebula
in deep space.

SECTION IV: BUILDING ON A LICENSE235235

the fly; depending on the player’s location, cus-
tom mission-area tiles would have to be
streamed in from the hard disk, all while main-
taining frame rate.

Of course, since we wanted to allow the player
to fly absolutely anywhere on the planet, order-
ing this data on the disk in a streaming-friendly
format was problematic. We exacerbated the sit-
uation by requiring even our lowest-resolution
terrain height maps to be much higher resolu-
tion than they really needed to be. This in turn
made higher theoretical demands on the stream-
ing and resource systems. This single feature
had introduced a tremendous amount of techni-
cal risk to the project, and yet we had blindly
charged ahead anyway because of the idea’s
inherent coolness factor.

The technical issues, however, did not describe
the full extent of our problems with this feature.
Quite quickly we also came to realize that there
were plenty of game design issues implied by the
space-to-planet concept.
For example, there was the
constant issue of player
craft speed. We felt pretty
sure that our ships should
have a top speed of about
450 miles per hour, because
dogfighting and bombing
ground targets becomes
extremely difficult if you
move much faster. However,

at that speed it would take the player 20 min-
utes to achieve a low-planet orbit. To circum-
navigate a small planet the size of the moon
could take as long as 16 hours.

Although we were able to brainstorm several
fanciful solutions to this problem, most were
time- or cost-prohibitive, and all of our solu-
tions threatened to shatter the illusion that you
were in a small fighter craft, engaged in small,
intimate battles.

Back to Ear th
STAR WARS STARFIGHTER finally shipped in Feb-
ruary 2001. While it was a little bit later than
we had initially hoped, we burned our first set
of master disks in mid-January, within three
days of the “realistic” schedule projection that
Daron had made a year earlier. While it cer-
tainly has its flaws, STAR WARS STARFIGHTER

represents the culmination of an effort that
involved almost 50 people, and it is a product

that we are all very proud
of. The lessons leaned over
the last few years, both pos-
itive and negative, are
already starting to be used
by other LucasArts teams,
ensuring that the project’s
legacy will be with us long
after the last copy of the
game has been sold.

Screenshot featuring the user
interface created with Macromedia
Flash.

LucasArts’ STAR WARS™ STARFIGHTER 236

This Page Intentionally Left Blank

237

Raven Software’s

STAR TREK™:
VOYAGER—ELITE FORCE
by brian pelletier, michael gummelt, and
james monroe

In the summer of 1998, Activision had acquired
licensing rights to make games using a number
of Star Trek franchises. Their goals from the
beginning were to create a broad selection of
games and show the gaming community that
Activision could take the Star Trek brand and
make high-quality games with it, better than
other publishers had in the past. The prelimi-
nary game slate was set with a first-person
shooter as one of the initial titles. Raven Soft-
ware had been an external studio of Activision
for a year, finishing up work on HERETIC 2 and
diving deep into the development of SOLDIER OF

FORTUNE.

HERETIC 2 was near completion, and we would
soon need another project to work on. With our
experience developing shooters and a reputation
for making quality games, Activision handed the
Star Trek first-person shooter project to us.

The game started out being based on an
unknown Star Trek crew within the Next Gen-
eration franchise. For two months work was

done on the plot and story line, with a test level
of a Defiant-class ship made using the QUAKE 2
engine. The main factor in designing the plot of
the game was that it had to be an action game,
despite the fact that Star Trek isn’t known for
action. To give meaning to the action, the idea
for a Special Forces team soon emerged to drive
the action for the game.

Ultimately, because Activision already had two
other games using the Next Generation license,
the setting for our game changed to the Voyager

Back-Story
VOYAGER—ELITE FORCE faces special challenges, adapt-

ing a traditionally combat-heavy form (first-person

shooters) to a license that privileged conversation and

character over action. They solved this issue by letting

players take command of a special-forces style unit

selected from a traditional Starfleet crew. These aren't

the only challenges—Raven also faced the problems of

convincingly portraying characters and settings familiar

to most players and giving players intelligent-seeming

crew to accompany them on their missions. The result-

ing game is an interesting fusion of the first-person

shooter into the familiar format and rhythm of a Star

Trek episode.

Raven Software’s STAR TREK™: VOYAGER—ELITE FORCE 238

franchise. Our excitement level was low at first,
with the team feeling that Voyager was the least
popular of all the Star Trek franchises. We soon
realized that Voyager’s plot allowed us not only
to make our game with much more creative
freedom, but also to create from something no
one else had used.

This inspired us to open the floodgates, continue
on, and eventually realize that Voyager was the
best setting for what we wanted to do. We
quickly adapted the plot we had at that point
into the Voyager setting. This was much easier
than we thought it would be, and the Elite
Force, or the Hazard Team, as we called them,
actually seemed to make more sense as a by-
product of Voyager’s situation.

In January 1999, full production on ELITE

FORCE began with a small team of 15 people
that would grow to about 25 core team mem-
bers, with additional support from the SOLDIER

OF FORTUNE team. Our main focus during pro-
duction was not to think about the game as a
Star Trek product per se, but rather an action
shooter that borrowed from the Star Trek uni-
verse. This helped us focus more on what would
be fun for players.

To our surprise, the Paramount approval pro-
cess was much easier than we anticipated. We
had heard many horror stories regarding Para-
mount’s strictness with their licenses, things like,
“You can’t do anything new,” and, “It’s hard to
get things approved because they’re so protec-
tive of the license.” What we experienced was
the exact opposite. Paramount was more than
accommodating in helping us create a fun game,
and we were able to bend the rules a little along
the way to help accomplish our goal. We created
new Starfleet weapons, a Voyager SWAT team,
used the Klingons, and even added “classic”
Star Trek to the Voyager setting. As long as an
element made sense to the story and its presence
could be explained, it was no problem.

Game Data
Release date: September 20, 2000

Genre: first-person shooter in science fiction setting

Publisher: Activision

Intended platforms: Windows 95/98/NT/2000,
Macintosh, Linux, Playstation 2

Number of full-time developers: 20

Number of contractors: 13

Length of development: six months of preproduction,
18 months of production

Project size: Single-player and Holomatch: 919,749
lines of code; 1,679 files. The single-player game was
largely controlled by scripting, totaling 112,056 lines
of code and 2,236 files.

Project budget: Multimillion-dollar budget

Critical development hardware: Average system:
Dell Pentium II 550 with 128MB RAM, 18GB hard
drive, GeForce 3D acceleration card, and 21-inch
monitor.

Critical development software: Microsoft Visual C++
6.0, Microsoft Visual SourceSafe 6.0, Borland JBuilder
3.5, 3D Studio Max 2, Softimage 3D, Photoshop.

Notable technologies: Licensed the QUAKE 3:
ARENA engine from id Software (using OpenGL);
Icarus scripting system, BehaveEd scripting tool,
Carcass skeletal system, Bink, and motion-capture
data from House of Moves.

SECTION IV: BUILDING ON A LICENSE239239

One of the biggest obstacles we had to over-
come was that we would be making an action
game that had to appeal to both the hardcore
FPS player as well as the average Star Trek
gamer and fan. This was no easy task, and we
spent a lot of time debating over the game style
being too much of an action game or more of a
Star Trek game. Balancing these two aims was a
constant battle during the course of production.
We knew we had to walk a fine line blending a
shooter and a Star Trek experience if we were
going to both make a successful game and over-
come people’s perceptions that Star Trek games
are not good games.

1. Improvements to the QUAKE 3
engine
Raven had worked with id Software’s engines
since 1992, but this was the first time we had to
add a single-player game to an id engine. Nor-
mally, we had the luxury of starting with a full
single-player code base and just adding things
such as breakable brushes, new AI, navigation
systems, and so on. But this time we had
licensed a multiplayer game and had to put in
many systems we took for granted. We needed
AI and navigation appropriate for single-player
enemies (not multiplayer bots), as well as team-
mate non-player characters (NPCs) and cine-
matics. We needed an expanded animation
system for all the different animations our cine-
matics would require, we needed to create a

load and save routine from scratch, and the list
went on.

One of the things that made this possible was
the decision early on to separate the multiplayer
and single-player executables. At this time,
QUAKE 3 was still about eight months from
completion, so we started on single-player and
would worry about multiplayer when we got
the final code base. We were able to make dras-
tic changes to the single-player game and short-
cut the networking, allowing us to get away
with a lot of things that would have just done
very bad things to networking. With this new
freedom, we revamped even more systems. In
the end, we actually surpassed our initial ambi-
tions as far as new systems and features were
concerned.

For example, our Icarus scripting system was
planned from the beginning and ended up work-
ing out very well. The initial setup was finished
relatively quickly and the remainder of the work
was mostly just tying the commands to the game
and AI. However, for the first seven or eight
months, only a couple of programmers were
doing any scripting, as they were still refining
the commands and there was no GUI for it yet.
It wasn’t until the fall of 1999 that we made a
GUI and the designers could finally start script-
ing. The system ended up contributing a huge
amount to the detail, uniqueness, and complex-
ity of the game, and without it ELITE FORCE

would have been a totally different game.

Another big technology decision we had to
make was with Carcass, our new skeletal model
format. It was a huge undertaking to switch

What Went Right

Raven Software’s STAR TREK™: VOYAGER—ELITE FORCE 240

over to the new format, but it really saved us in
the end. At first we were using the same model
format as QUAKE 3, but it quickly became
apparent that we were surpassing that format’s
capabilities, so we looked for a solution. id had
already laid the groundwork for a skeletal
model, which seemed like it would work for us.
Starting with that basis, we completed it and
developed it into the final format we called Car-
cass. With it, we reduced tenfold the amount of
memory a single model took up. Without the
Carcass format, we would have had to cut back
many animations, and we would have lost the
complex detail in our cinematics.

Another technology that was successful was our
lip-synch system, which really added realism to
the facial animations. We did some research,
looking into phoneme recognition, but finally
settled on a quick volume analysis. We planned
this system to make it very easy to use. Once the
mouth animation art was made for each charac-
ter, the system used the appropriate frame with-
out intervention. The code automatically
scanned for peak volume of sounds when
loaded, and compared against that whenever a
sound was played on the voice channel. Then
the animation system picked up that value to
choose the speaking frame. This setup required
no extra effort when adding sounds, and would
work automatically for any foreign languages
used.

Another system we revamped was the cinematic
system, which had to be powerful and flexible
enough to give our cinematics that Star Trek
“feel.” The camera system itself wasn’t that

hard to implement, and it worked out well.
First, the scripter/designer would set up the
blocking of the NPCs through Icarus. Then they
could go into the game and let the scripted event
play out, pausing it whenever they wanted to
save a camera position to a file that could be
imported into the map.

Using Icarus commands, they could make the
camera zoom in and out, change the field of
view to simulate close-ups and wide shots, move
along a track, dynamically follow a subject, fade
in and out, shake, and so on. This allowed us to
set up our insane amount of cinematics as
quickly as possible and still allow for some fine-
tuning and detail (such as the “walk and talk”
with Tuvok and Munro, and especially all the
gestures and expressions the NPCs themselves
would do to add to their characterization and
the believability of a scene).

Menu screen for choosing your player character in
Holomatch gameplay.

SECTION IV: BUILDING ON A LICENSE241241

2. Complete plot and story right
from the start
From the beginning of production, ELITE FORCE

had a detailed story line, and every level of the
game was written out in story form. We also
had standards we had to meet; after all, our
game was going to be compared to the Voyager
TV show, so there was even more emphasis on
storytelling. The story had to be engaging and
reminiscent of what a Voyager episode would
be, and we had to make sure our story had a lot
of depth and interest for the player, to give them

the feeling that they were partaking in
an episode of the show.

Since one of our main goals was to
have an away-team accompany the
player for the missions, it was even
more important that the story be solidi-
fied up front. A lot of story is conveyed
during the missions, so we had to make
sure the levels were paced out well and
the level designers knew up front what
story content their levels contained. We
were able to pace the story throughout
the game so that players would be con-
tinually rewarded with exposition. As
they completed more missions, the
overarching plot of the game would
slowly form in their minds.

With our tight schedule, we wouldn’t
have time to redo parts of the game if
they didn’t work out, so it was crucial
for all the people involved to work
together on the story line toward one
common goal. With a complete walk-

through of the levels written, the level designers
could concentrate on the looks of the level and
accommodate for where the cinematics and
story segments were going to take place.

Because our story line never changed during
production, we were able to proceed forward
uninterrupted, and never had to scrap any levels
due to plot restructure. This was key, as we had
a fairly small team charged with creating a lot of
content in a short period of time. The majority
of the dialogue was written after all the levels
were finished, but this too went smoothly

Storyboards were created as guides for the in-game
cinematics, helping to speed up production of more than 50
cinematic sequences.

Raven Software’s STAR TREK™: VOYAGER—ELITE FORCE 242

because the walkthroughs were updated from
the finalized levels, and then the dialogue was
written from them.

3. The dialogue
The team was excited about the concept of play-
ing with a team of NPCs in an FPS. This led to
the definition of the different characters of the
Hazard Team early on. However, the actual
script for the game didn’t begin right away, since
that had to wait for the final game flow design
to be finished. Our writer (also one of our pro-
grammers) started in September 1999 and fin-
ished the first draft in
March 2000. While he was
writing the script, we were
making all the cinematics
and needed some tempo-
rary voices. We had
employees record the lines
and then dropped them into
the cinematics to give us a
feel for the pacing of each
scene. This allowed us to
tweak the dialogue while
saving us from having to
bring the expensive Voy-
ager cast back for pickup lines.

The script finally came together after many revi-
sions and, once it was approved by Paramount,
the actors were lined up very quickly and the
voice recording was done in about a month. We
were then able to put the final lines into each
scene, replacing our temporary dialogue with-
out having to adjust the timing or change the
scripts. This was due to the fact that Icarus

could pause execution of a script until a sound
file finished playing, so dropping in a new line of
dialogue automatically adjusted the timing of
each scene. This also meant that lines would
generally flow better in translation, since they
wouldn’t have to deliver the line too quickly or
slowly to match any hard-coded timing.

We also had a system for automatically reading
the dialogue script itself and turning it into .PRE
files that would let the game precache all the
dialogue for a level and simultaneously assign
the caption text to it. Included in this was auto-
matic localization and dialogue adjustment for

the player’s gender.

All of these things together
enabled our game to have
captioning, localization,
gender-specific dialogue,
precaching, lip-synching,
and almost no pickups. In
the end, the dialogue turned
out very well and our per-
formances were good (Para-
mount even let us make
final casting decisions on all
the ELITE FORCE–specific

characters). The story and dialogue added a
great deal to the game and contributed heavily
to the feeling of actually being in an episode of
Star Trek.

4. Re-creating the look of the
Star Trek universe
Raven has always tried to push graphics bound-
aries and painstakingly create beautiful settings

The Voyager 3D model used in
prerendered cinematics is the actual
one used for the TV show.

SECTION IV: BUILDING ON A LICENSE243243

for our game worlds. STAR TREK was no excep-
tion, and challenged us not only to create a
beautiful gaming environment but also to create
it in a likeness that is known worldwide. It’s one
thing to make arbitrary-looking levels in a
never-before-seen world, but when trying to re-
create the look of Voyager we came across many
difficulties that we hadn’t expected. For starters,
the QUAKE 3 level editor is made to create levels
at a fairly big scale. When we built the bridge of
Voyager, we were all astounded by the detail
that we achieved, but when we put a normal-
sized character on the bridge, he was incredibly
tiny. The bridge was huge, yet it was built like
you would build any normal QUAKE 3 level. We
realized that we had to build the levels on a
much smaller scale than what we were used to.
It took seven attempts at rebuilding Voyager’s
bridge until we attained the proper proportions
between the characters and the level. We
tweaked the scale until it looked perfect and the
player and other characters could move around

with ease. Once the scale of the levels was set as
a standard, we continued forward with the
other Voyager rooms with little rework needed.

The artists spent much time working on the tex-
tures for the environments, getting their refer-
ence from many sources to make sure
everything was exact. Having access to Para-
mount’s Star Trek reference library was key in
getting reference for carpets, chairs, upholstery,
computer panels, and more. We sometimes
scanned in the photo references themselves for
the textures. Watching episodes of the show on
tape was also instrumental in determining what
things looked like. We used a total of 1,033 tex-
tures to create the look of Voyager’s rooms and
hallways. Working together, the level designers
and artists created the best-looking Star Trek
environments in any game to date.

Just like the challenges we faced building the
environments, creating Voyager’s characters and
crew presented the challenge of re-creating
something that already existed. We used many
references from the Star Trek reference library
to help us re-create these real people. Each actor
had a series of photos of him or her as their
character, which we used to help get just the
right shape of the head, and we even used the
photos themselves (with Photoshop touchups)
as textures on the polygon heads to achieve the
likenesses.

There are limitations to any technology, and
working around the limitations is where we suc-
ceeded. The heads could only have 150 polygo-
nal faces and the textures for the skins could
only be 512×512 pixels. The fine craftsmanship

It was important to make highly detailed sketches,
since another company was making the models from
them.

Raven Software’s STAR TREK™: VOYAGER—ELITE FORCE 244

required to work with so little and still achieve
the right look for the characters is a testament
to our artists’ skills. For example, designing the
Hazard Suit in the Voyager style took many
attempts, but we finally got something everyone
was happy with and looked natural to Star
Trek.

5. Creating smart NPCs
To create a Voyager game that resembles what
you would see in a TV episode, we had to create
a working spaceship filled with its busy crew,
and make it believable enough so players would
feel like they are in a real place. We also had to
create an away-team to fight alongside the
player. After all, what is Star Trek without an
away-team?

We created our NPCs using a few different
things. The Icarus scripting system allowed us to
have precise control over specific actions. The

NPC Stats system allowed us to create many
characters with various looks. The Squadmate
system gave us the tools to enable the team-
mates to work with the player, and we used a
waypoint or pathfinding system to make our
NPCs navigate through a complex environment.
All of these systems together created the artifi-
cial intelligence for our NPCs.

We used scripting with the pathfinding to make
the crew of Voyager come to life, and we could
tell them exactly where to go and what to do
without too many unknowns to cause problems.
They did exactly what we as designers wanted
them to do. The teammates, on the other hand,
have to act according to what is happening with
the player. Since players can do anything they
want while playing the game, this means a lot of
unknowns for how the teammates should react.
The teammates could have easily been a hin-
drance to the gameplay, and now we know why
no other company has ever tried to make an FPS
game with up to five teammates working along-
side you throughout entire levels.

In the final stages of developing the teammates,
we weren’t sure if they were going to work out;
they had so many problems, and every time we
would fix something another problem would
crop up. Just getting them to follow you was no
easy task and was something we kept tweaking
right up to the final days. Sure, we could get
them to follow the player, but the game took
place in tight hallways and small rooms so play-
ers would bump into them. They wouldn’t get
out of the way and would constantly get stuck
on each other.

Voyager’s Hazard Team, created by Raven to help
accentuate the action for the game.

SECTION IV: BUILDING ON A LICENSE245245

Also, having them follow the player everywhere
made them seem less like intelligent characters,
so sometimes we had them stand their ground
or take up a position while the player went
exploring. Then we had the constant problem of
the team not following players at all, even
though they might need them later on. When we
did get it working, someone found a new way to
break a level with a teammate. Elevators and
teleporters added to the risk of teammates being
left behind. We were getting worried that we
wouldn’t even be able to get them to walk
through an entire level, and we would have to
resort to something drastic. Luckily, we did get
them to work in the levels. They may have run
funny or jumped down long elevator shafts to
catch up with the player, but at least they stayed
in formation through the whole level no matter
what the player was doing.

Of course, once there were enemies we had to
worry about friendly fire. We wanted the team
to react intelligently to being shot, but we didn’t
want to punish the player for shooting them
accidentally. After a lot of trial and error, we
decided that teammates would retaliate against
a player only if the player had shot them repeat-
edly outside combat. In combat, they’d still
react to friendly fire, but couldn’t be killed, and
would never turn on the player.

Then came the problem of trying to balance the
teammates’ involvement in combat. Once we
put enemies in the levels, we found that the
teammates were so good that they killed most of
them, leaving little for the player to do. To bal-
ance this, we had the teammates shoot less
often, but then they got attacked constantly by

enemies, turning the gameplay into “shoot the
aliens attacking your teammates.” Eventually
we made the enemies attack the player more, so
the player would feel threatened by them, and
the teammates helped but didn’t do all the
work.

It’s funny now to hear people say that the team-
mates were stupid because they hardly killed
any enemies, or that the enemies were dumb
because they attacked the player more than the
teammates. If they only knew how tiresome the
gameplay would have been had we not balanced
it the way we did.

1. Not enough programmers
For the first half of development, there was
mainly only one programmer working on script-
ing, enemy AI, teammate AI, pathfinding, and
the animation system. This programmer was
also writing all the dialogue, and it became nec-
essary for him to relinquish other programming

What Went Wrong

Save your teammate from the Borg, one of the
many multiple outcome events.

Raven Software’s STAR TREK™: VOYAGER—ELITE FORCE 246

duties in order to finish writing. Unfortunately,
we didn’t have any extra programmers to help.

Eventually we got a programmer from a differ-
ent project to start working on game code. He
completely rewrote the navigation system,
which took time away from creating the AI for
all the enemies, which didn’t end up being com-
pleted until the game itself was done. This cre-
ated a real lack of cooperation between level
design and enemy AI, and forced the designers
to rewrite their scripts
constantly to match
the changes in the
underlying game sys-
tems.

With more program-
mers working on AI
and navigation early
on in the develop-
ment, these kinds of
last-minute changes
and back-end design
could have (hopefully)
been avoided.

2. From Ghoul models to regular
models to skeletal models
It was a big decision to switch to the new skele-
tal models. In the beginning, we were using
what was to become SOLDIER OF FORTUNE’s
Ghoul system (see “Raven Software’s SOLDIER

OF FORTUNE,” Postmortem on page 259, for
more on Ghoul). When we received the
QUAKE 3 code, we tried to integrate Ghoul into
the new code, but found it to be too different. It

just didn’t fit in with the new optimized render-
ing pipeline QUAKE 3 provided. So we switched
over to regular QUAKE 3 models.

There was a lot of learning going on at this time.
When we get new code, it doesn’t come with
operating instructions, and it’s often not com-
plete. We went through a lot of growing pains
adopting the new format and figuring out its
requirements. When the option to go skeletal
came up, we had to weigh the benefits of the

new system versus
the risks and time
it would take to
switch over. While
we did the right
thing and
embraced the new
technology, we had
to write a new set
of tools to handle
the new formats
and learn new pro-
cedures to get our
animations out of
Softimage 3D and
into 3D Studio

Max. We had a lot of squashed creatures and
bizarrely stretched limbs along the way, but it
was well worth the trip.

Unfortunately, by the time we got it working
right, we were past our alpha date, and because
of all the different changes the models had gone
through by that time, we didn’t have enough
time to fully implement a good AI system for the
enemies, and had to settle with what we could
do in the time we had.

Other models were designed by Raven and made
by the company making the prerendered movies.

SECTION IV: BUILDING ON A LICENSE247247

3. Underestimating the amount
of scripting work needed
As we mentioned previously, our Icarus script-
ing system was a huge plus. But we also encoun-
tered a lot of problems with scripting. Not only
had no one ever used this system before, none of
the programmers behind it had ever written a
scripting system before. The designers didn’t
even get their hands on the scripting system
until about eight months
before the game was
done. They did pick it up
quickly, but not without
a lot of effort and time
involved.

One of the major prob-
lems designers had when
scripting was the con-
stant changes to the
underlying systems that
the Icarus commands
relied upon. They’d
script an NPC one way
and it would work fine. Then the following
week, something in the navigation, AI, or ani-
mation systems would change, and the script
would be broken. This was a source of major
frustration among the designers and definitely
impeded their productivity. Ideally, those sys-
tems would have been finalized before the
designers had to start scripting.

Within Icarus itself, there was one major flaw
that should be addressed. Icarus can start a
command and wait for completion, but it does
not have a built-in system for letting the com-

mand (or “task”) time-out and continue or take
another route. There was no failsafe if, some-
how, a command never completed. Given the
sheer complexity of our scripting, these kinds of
showstopper problems showed up constantly
and would completely stop the game in its
tracks. Up until the last minute, we were franti-
cally trying to find every case in which a script
would just stop execution. In the end, we did
manage to catch them all, except for two cases

that were caused by peo-
ple turning their detail
levels up too high and
causing the game to drop
to very low framerates,
which could in turn mess
up the scripted events.

It turned out pretty well
in the end, but all the
effort that went into con-
stantly revising the
scripts could have been
put to other, more pro-
ductive uses.

4. Adjusting to new QUAKE 3
technology
The biggest level design headache in working
with technology that is still being developed is
that it’s constantly changing. We started build-
ing our levels way before the QUAKE 3 engine
was near completion, and this caused scheduling
problems every time we got a new code build.
We built our levels one way with the tools and
knowledge we had at the time, and then when a
big change was made to the QUAKE 3 code, the

The Klingons’ AI allowed them to crouch
and run for cover.

Raven Software’s STAR TREK™: VOYAGER—ELITE FORCE 248

level designers had to spend a few days altering
each of their levels to keep up with the changes
in the code and how it handled surfaces, lights,
and architecture.

This happened numerous times during develop-
ment, and we often went months without new
code drops. The level designers would continue
to work on levels in order to
make progress, and then
when we finally received
new code, we had to go back
to all the levels that had
been done and spend a
month getting them up to
date. This month was not
accounted for in the sched-
ule, and therefore a month
of designer time was simply
lost. This happened more
than once and was a big fac-
tor in keeping us behind our
original schedule.

Another part of adjusting to the QUAKE 3 tech-
nology was realizing that our levels couldn’t be
as big as QUAKE 2 levels. When we started
building levels, we made them as we did using
QUAKE 1 and 2 technology. We had expansive
levels that looked awesome and showed off
what the QUAKE 3 engine could do. Then, some-
where near the middle of our development, we
realized that the file size of most of our levels
was huge, running 11 to 15MB each, when they
should have been about 6MB. This was a prob-
lem, since we’d planned for the file sizes to be
10MB or less out of a total memory budget of

64MB. The levels were the normal game-world
size of a QUAKE 2 level, so what was the prob-
lem?

It turned out to be the high polygon (or triangle)
count used to create a much more intricate and
detailed environment. We realized that although
QUAKE 3 can handle more polygons in the view

at one time, the file size for
the level had not increased
much from a QUAKE 2 level.
We had a dilemma; either
we could bring the file size
down by taking out all of
the detail that made the
QUAKE 3 engine superior
and keep the physical size,
or we could cut the size of
the level down, making it
smaller yet highly detailed.
Since we were making a
world that could readily be

compared to a TV show, we opted to keep the
detailed environments of the Star Trek universe
and cut the level size down.

We were able to cut most of the levels in half
and make two separate levels out of them, but
then all the level designers had twice as many
levels to work on, and this could have caused
some major scheduling problems. Unfortu-
nately, to keep up with the schedule, large parts
of the levels were deleted and redesigned, which
resulted in much smaller levels that could be tra-
versed quicker, and ultimately made for a
shorter game.

Fighting aliens in the stasis ship,
which was created with 90 percent
curved surfaces.

SECTION IV: BUILDING ON A LICENSE249249

5. Mission stats never got
finished
The only major thing that didn’t get into the
game that we originally planned for was our
end-mission statistics. The feature made it into
the game in the form of basic stats when you
died, but it was planned to be much more, and
would have really added to the game. The end-
mission stats would have improved the replay-
ability of the single-player game and given more
emphasis to the interactive and multiple-out-
come events.

The main goal with the stats was to grade play-
ers’ performance when they completed a mis-
sion; for example, giving a score of 100 percent
for a perfect mission. A number of medals
would also be awarded to players based on
what they did during the mission. At the end of
the game, all the scores and medals would be
added up for one final game score. The stats
would have made a significant gameplay fea-
ture, letting players know at the end of a mis-
sion whether they could have saved someone or
done something differently to get a better score.

This would have made the interactive events
mean something more, emphasizing the fact that
they are interactive; events that players didn’t
even know could be changed would have been
presented to them after the mission, making the
game world seem that much more alive. With
this feature not in the game, the multiple out-
come events didn’t mean anything more than
just a “cool” factor, instead of being intrinsic to
the gameplay and adding to replayability.

F ina l Thoughts
We started out with a lot of great ideas, and
almost all of those ideas were implemented in
the game with the exception of a couple. That’s
certainly an achievement in this industry. We
made the game we set out to make and are very
happy with the end result, so it was hard to
think of the things that went wrong. Even
though we had many problems, we worked
around them and ultimately finished the game,
which makes us feel like we did everything right.

Then we heard comments from fans and game
reviewers who didn’t like certain things about
the game, and all the memories of working
through all the obstacles came back, and we
thought, “If they only knew how many prob-
lems we had to work through to get the game to
its final state.” It’s working through those devel-
opment obstacles that makes a game successful.
It’s also gratifying to hear from fans and review-
ers that the game was successful both as a fun
game and as a Star Trek game. For us, that
means many more things went right than
wrong, and the team was talented enough to
work through the things that went wrong and
make a game that is being enjoyed by thousands
of people.

ELITE FORCE was a very difficult project cycle
with a really long crunch mode, but what game
is any different? Yet we had a lot of extra obsta-
cles to overcome, including the perception that
all Star Trek games suck and that meant ours
would too. It seemed like we were destined to
fail before we even started. Working with one of
the two biggest science-fiction franchises in the

Raven Software’s STAR TREK™: VOYAGER—ELITE FORCE 250

world added to the pressure. But Activision sup-
ported us all the way from upper management
to a top-notch marketing and PR staff. Para-
mount was surprisingly helpful and proved to us
that they care about the quality of the games

made and would do everything possible to
ensure that quality. With a dedicated and very
talented team of individuals, we met our chal-
lenges and succeeded in making what is being
called the best Star Trek game ever made.

251

Red Storm Entertainment’s

RAINBOW SIX
by brian upton

RAINBOW SIX and Red Storm Entertainment
both came into being during the same week.
When the company was formed in the fall of
1996, the first thing that we did was to spend a
weekend brainstorming game ideas. That initial
design session generated over a hundred possi-
bilities that we then winnowed down to a hand-
ful that we thought had star potential. The only
one that we unanimously agreed we had to
build was HRT—a game based on the FBI’s
Hostage Rescue Team.

The Concept
It was a long road from HRT to RAINBOW SIX,
but along the way, the basic outline of the title
changed very little. We knew from the start that
we wanted to capture the excitement of movies
such as Mission: Impossible and The Dirty
Dozen—the thrill of watching a team of skilled
specialists pull off an operation with clockwork
precision. We also knew that we wanted it to be
an action game with a strong strategic compo-
nent—a realistic shooter that would be fun to
play even without a QUAKE player’s twitch
reflexes. From that starting point, the title
seemed to design itself.

By the time we’d finished the first treatment a
few weeks later, all the central game-play fea-
tures were in place. We expanded the scope of
the game (rechristened BLACK OPS) beyond hos-
tage rescue to encompass a variety of covert
missions. Play would revolve around a planning
phase followed by an action phase, and players
would have to pick their teams from a pool of
operatives with different strengths and weak-
nesses. Combat would be quick and deadly, but
realistic. One shot would kill, but the targeting
model would favor cautious aiming over the
running-and-gunning that was typical of first-
person shooters.

Back-Story
In RAINBOW SIX, players lead a multinational team of

military operatives who intervene in sensitive crises in

the post-Cold War world. The game has both tactical and

action elements. Players go into battle, but they also

manage their squad, choosing equipment and creating a

tactical battle plan before going into action. The game

has a real-world feel—one shot can kill, and small mis-

takes can doom an entire mission. Typical missions

involve rescuing hostages and assassinating terrorists

and criminals, and over time, the missions cohere into a

Tom Clancy-style plot arc that takes players all over the

globe.

Red Storm Entertainment’s RAINBOW SIX 252

Ironically, the only major element that we
hadn’t developed during those first few weeks
was the tie-in to Tom Clancy’s book. Clancy
was part of the original brainstorming session
and had responded as enthusiastically as the rest
of us to the HRT concept, but he hadn’t yet
decided to make it the subject of his next novel.

Because we had moved away from doing a strict
hostage rescue game, we batted around a lot of
different BLACK OPS back stories in our design
meetings, ranging in time from the World War II
era to the near future. For a while, we consid-
ered setting the game in the 1960s at the height
of the Cold War, giving it a very Austin Pow-
ers/Avengers feel.

We eventually converged on the RAINBOW SIX

back story in early 1997, but we didn’t find out
that we would be paralleling Clancy’s novel
until almost April. Fortunately, we’d been shar-
ing information back and forth the whole time,
so bringing the game in line with the book
didn’t involve too much extra work. (If you
compare the game to the novel, however, you’ll

notice that they have different endings. Due to
scheduling constraints, we had to lock down the
final missions several months before Clancy fin-
ished writing. One of the pitfalls of parallel
development…).

The Product ion
Originally, the RAINBOW SIX team consisted of
me and one other programmer. Red Storm
started development on four titles straight out
of the gate, and all the teams were woefully
understaffed for the first few months. The first
RAINBOW SIX artist didn’t come on board until
the spring of 1997, with a full-time producer
following shortly after. With such a small group,
progress was slow. During that first winter and
spring, all that we had time to do was throw
together a rough framework for what was to
follow. This lack of resources up front would
come back to haunt us later. Because we were so
understaffed, we tried to fill the gaps in our
schedule by licensing several crucial pieces of
technology.

The first was the 3D renderer itself. Virtus
Corp., our parent company, was working on a
next-generation rendering library for use in its
own line of 3D tools. We decided to save our-
selves work by building on top of the Virtus ren-
derer, rather than developing our own. At first,
this seemed to be an ideal solution to our prob-
lem. Virtus had been doing 3D applications for
years, and the renderer that its engineers were
working on was a very general cross-platform
solution that ran well with lots of different types
of hardware acceleration.

Game Data
Release date: August 1998

Publisher: Ubi Soft

Genre: tactical team-based shooter

Intended platform: Windows 95/98

Team size: 16 full-time and 6 part-time developers

Critical development hardware: 400MHz Pentium II
w/64MB RAM and a 3D accelerator

Critical development software: Microsoft Visual
C++, SourceSafe, Hiprof, Boundschecker, and 3D
Studio Max.

SECTION IV: BUILDING ON A LICENSE253253

We also went out of house for our networking
technology. We had researched a variety of
third-party solutions, including Microsoft’s
DirectPlay, but we weren’t satisfied with any of
them. Just as we were on the verge of deciding
that we’d have to write our own library, a local
development group within IBM contacted us.

The group’s engineers were interested in finding
uses for their powerful new Java-based cli-
ent/server technology. The technology, called
Inverse, was designed to allow collaborative
computing between large numbers of Java
applets. The IBM engineers wanted to see how it
would perform in a number of different applica-
tion domains, including games. Inverse sup-
ported all of the features that we wanted in a
networking solution, such as network time syn-
chronization and reliable detection of discon-
nects, so after much deliberation we decided to
use it for RAINBOW SIX. Eventually, we would
come to regret both of these third-party technol-
ogy decisions, but not until months later in the
project.

Over the summer of 1997, we acquired most of
the motion capture data that was used for ani-
mating the characters in the game. One of the
advantages of working with Tom Clancy was
that he put us in touch with a wide variety of

consultants very quickly. Among the many
experts we spoke with to get background infor-
mation on counter-terrorism were two close-
quarters combat trainers who worked for the
arms manufacturer Heckler and Koch. When it
came time to do our motion capture, these train-
ers volunteered to be our actors. They spent a

couple of days at the
Biovision studios in
California being video-
taped running through
every motion in the
game. Using real com-
bat trainers for our
motion capture data
represented one of our
better decisions. While

a professional actor might have been tempted to
overdo the motions for effect, these guys played
it absolutely straight—the results are impressive.
The game’s characters come across as serious
and competent, and are twice as scary as a
result.

Our crisis came in October of 1997. We’d been
working hard all summer, but (although we
refused to admit it) we were slipping further
and further behind in our schedule. Partially,
the delays were the result of my being com-
pletely overloaded. Partially, they were the
result of the ambitious scale of the project:
because the plot of Clancy’s evolving novel was
driving our level design, we’d committed our-
selves to creating sixteen completely unique
spaces—a huge art load. And partially, they
were the result of the fact that the “time-sav-
ing” technology licenses that we’d set up were
proving to be anything but.

A 2D floor plan, created for the purpose of collision detection, also helped
players in both the planning and action interfaces.

Red Storm Entertainment’s RAINBOW SIX 254

Inverse was a great networking solution—for
Java. Unfortunately, we wrote RAINBOW SIX in
C++. Our initial research had suggested that
mixing the two would be trivial. However, in
practice the overhead involved in writing and
debugging an application using two different
languages at the same time was staggering. The
interface code that tied the two parts together
was larger than the entire networking library. It
became clear that we’d have to scrap Inverse
and write our own networking solution from
scratch if we were ever going to get the product
out the door. (As a side note, we did continue to
use Inverse for our Java-based products: last
year’s POLITIKA and this year’s RUTH-
LESS.COM. The problems we faced didn’t arise
from the code itself, but from mixing the two
development environments.)

We also had problems with the Virtus rendering
library. As we got deeper and deeper into RAIN-

BOW SIX, we realized that if the game was going
to run at an acceptable frame rate, we were
going to have to implement a number of differ-
ent renderer optimizations. Unfortunately, the
Virtus renderer was a black box. It was designed
to be a general-purpose solution for a wide vari-
ety of situations—a Swiss Army knife. With
frame rates on high-end systems hovering in the
single digits, we quickly realized that we would
need a special-purpose solution instead.

In early November 1997, we put together a cri-
sis plan. We pumped additional manpower into
the team. We brought in Erik Erikson, our top
graphics programmer, and Dave Weinstein, our
top networking programmer, as troubleshoot-
ers. I stepped down as lead engineer and pro-
ducer Carl Schnurr took over more of the game

design responsibilities. The original schedule,
which called for the product to ship in the
spring, was pushed back four months. The art-
ists went through several rounds of production
pipeline streamlining until they could finally
produce levels fast enough to meet the new ship
date.

Finally, we took immediate action to end our
reliance on third-party software. We wrote an
entire networking library from scratch and
swapped it with the ailing Java code. Virtus gra-
ciously handed over the source code for the ren-
derer and we totally overhauled it, pulling in
code we’d been using on DOMINANT SPECIES,
the other 3D title that Red Storm had in
progress at the time. All this took place over the
holiday season. It was a very hectic two months.
From that point on, our development effort was
a sprint to the finish line. The team was in
crunch mode from February to July 1998. A
variety of crises punctuated the final months of
the project. In March, I came back on board as
lead engineer when Peter McMurry, who’d been
running development in my place since Novem-
ber 1997, had to step down for health reasons.

As we added more and more code, builds grew
longer and longer, finally reaching several hours
in length, much to the frustration of the over-
worked engineers. The size of the executable
started breaking all our tools, making profiling
and bounds checking impossible. In order to
make our ship date, we had to cut deeply into
our testing time, raising the risk level even
higher. On the upside though, the closer we got
to the end of the project, the more the excite-
ment started to build. We showed a couple of
cautious early demos to the press in March

SECTION IV: BUILDING ON A LICENSE255255

1998 and were thrilled by the positive
responses. (At this point, we were so deep into
the product that we had no idea of what an out-
sider would think.)

The real unveiling came at the 1998 E3 in
Atlanta, Ga. Members of the development team
ran the demos on the show floor—for most us,
that was the longest stretch we’d had playing
the game before it shipped. Almost all of the
final gameplay tweaks came out of what we
learned over those three days.

1. A coherent vision
Throughout all of the ups and downs in the pro-
duction process, RAINBOW SIX’s core game play
never changed. We established early on a vision
of what the final game would be and we main-
tained that vision right through to the end. I
can’t overstate the importance of this consis-
tency. Simply sticking to the original concept
saw the team through some really rough parts of
the development cycle.

For one thing, this coherent vision meant that
we were able to squeak by without adequate
design documents. Many parts of the design
were never written down, but because the team
had a good idea of where we were headed, we
were able to fill in many of the details on our
own. Even when we had to perform massive
engineering overhauls in the middle of the

project, a lot of the existing art and code was
salvageable. Our vision also did a lot for
morale. Many times we wondered if we’d ever
finish the project, but we never doubted that the
result would be great if we did. It’s a lot easier to
justify crunch hours when you believe in where
the project is going.

2. An efficient art pipeline
The art team tried out four or five different pro-
duction pipelines before they finally found one
that would produce the levels that we wanted in
the time that we had available. The problem
was that we wanted to have sixteen unique
spaces in the game—there would be almost no
texture or geometry sharing from mission to
mission. Furthermore, instead of creating our
own level-building tool, we built everything
using 3D Studio Max. Thus, artists had more
freedom in the types of spaces that they could
create, but they didn’t have shortcuts to stamp
out generic parts such as corridors or stair-
wells—everything had to be modeled by hand.

Eventually, the art team settled on a process
designed to minimize the amount of wasted
effort. Before anyone did any modeling, an art-
ist would sketch out the entire level on paper
and submit it for approval by both the producer
and art lead. Then the modelers would build
and play test just the level’s geometry before it
was textured. Each artist had a second com-
puter on his desk running a lightweight version
of the game engine so he could easily experi-
ment with how the level would run in the game.

What Went Right

Red Storm Entertainment’s RAINBOW SIX 256

3. Tom Clancy’s visibility
A good license won’t help a bad game, but it can
give a good game the visibility it needs to be a
breakout title. When we first approached mem-
bers of the gaming press with demos of RAIN-

BOW SIX in the spring of 1998, they had no
reason to take us seriously—we had no track
record, no star developers, and no hype (OK,
not much hype…). We were showing a quirky
title with a less-than-state-of-the-art rendering
engine in a very competitive genre. With much-
anticipated heavyweights such as SIN, HALF-LIFE

and DAIKATANA on the way, having Clancy’s
name on the box was crucial to getting people

to take a first look at the title. Fortunately, the
game play was compelling enough to turn those
first looks into a groundswell of good press that
carried us through to the launch.

4. Reworking the physics
engine
In February 1998, we completely overhauled the
RAINBOW SIX physics engine, which turned out
to be a win on a variety of fronts. We’d retooled
the renderer during the previous month, but our
frame rate was still dragging. After running the

code through a profiler, we figured that most of
our time was going to collision checks—checks
for characters colliding with the world and line-
of-sight checks for the AI’s visibility routines.

The problem was that every time the physics
engine was asked to check for a collision, it cal-
culated a very general 3D solution. Except in
the cases of grenade bounces and bullet tracks,
a 3D collision check was complete overkill.
Over the next month, we reworked the engine
to do most of its collision detection in 2D using
a floor plan of the level. These collision floor
plans would be generated algorithmically from
the 3D level models.

The technique worked.
In addition to getting
the frame rate back up
to a playable level, it
also made collision
detection more reli-
able. The game engine
also used the floor
plans to drive the path-

finding routines for the AI team members. Play-
ers would view these same floor plans as level
maps in both the planning and action interfaces.
By figuring out how to fix our low frame rates,
we wound up with solutions to three or four
other major outstanding engineering issues.
Sometimes, the right thing to do is just throw
part of the code out and start over.

5. Team cohesion
Red Storm employs no rock stars and no slack-
ers. Everyone on the RAINBOW SIX team worked

The various mission levels called for the creation of sixteen completely unique
spaces.

SECTION IV: BUILDING ON A LICENSE257257

incredibly long hours under a tremendous
amount of pressure, but managed (mostly) to
keep their tempers and their professional focus.

1. Lack of up-front design
We never had a proper design document, which
meant that we generated a lot of code and art
that we later had to scrap. What’s worse,
because we didn’t have a detailed outline of
what we were trying to build, we had no way to
measure our progress (or lack thereof) accu-
rately. We only realized that we were in trouble
when it became glaringly obvious. If we’d been
about the design rigorous up front, we would
have known that we were slipping much sooner.

2. Understaffing at the start
This point is closely related to the previous
point. Because we didn’t have a firm design, it
was impossible to do accurate time estimates.
Red Storm was starved for manpower across the
board, and because we didn’t have a proper
schedule, it was hard to come to grips with just
how deep a hole we were digging for ourselves.
There were always plenty of other things to do
in getting a new company off the ground besides
recruiting, and we were trying to run as lean as
possible to make the most of our limited start-
up capital. Given the circumstances, it was easy
to rationalize understaffing the project and
delaying new hires.

Additionally, I badly overestimated my own
abilities. For Red Storm’s first year, I was work-
ing four jobs: VP of engineering, lead engineer
on RAINBOW SIX, designer on RAINBOW SIX,
and programmer. Any one of these could have
been a full-time position. In trying to cover all
four, I spent all my time racing from one crisis to
the next instead of actually getting real work
done. And because I was acting as my own man-
ager, there was no one to audit my performance.
If one of the other leads was shirking his sched-
uling duties or blowing his milestones, I’d call
him on it. But on my own project, I could
always explain away what should have been
clear warning signs of trouble.

3. Reliance on unproven
technology
Our external solutions for rendering and net-
working both fell through and had to be
replaced with internally developed code late in
the development cycle. In both cases, we were
relying on software that was still under develop-
ment. The core technology was sound, but we
were plagued with inadequate documentation,
changing programming interfaces, misunder-
stood performance requirements, and heavy
integration costs.

Because both packages were in flux, we failed to
do a thorough evaluation of their limitations
and capabilities. By the time it became obvious
that neither was completely suited to our needs,
it was too late to push for changes. In retro-
spect, we would have saved money and had a
much smoother development process if we’d bit-

What Went Wrong

Red Storm Entertainment’s RAINBOW SIX 258

ten the bullet early on and committed ourselves
to building our own technology base.

4. Loss of key personnel
Losing even a junior member of a development
team close to gold master can be devastating.
When our lead engineer took ill in February
1998, we were faced with a serious crisis. For a
few frantic weeks, we tried to recruit a lead from
outside the company, but eventually it became
obvious that there was no way we could bring
someone in and get them up to speed in time for
us to make our ship date in July 1998. Promoting
from inside the team wasn’t a possibility
either—everyone’s schedule was so tightly packed
that they were already pulling overtime just to get
their coding tasks done; no one had the band-
width to handle lead responsibilities too.

Ultimately, I wound up stepping back in as lead.
This time, however, we knew that for this
arrangement to work I’d have to let my VP
duties slide. The rest of management and the
other senior engineers took up a lot of the slack,
and Peter had set a strong direction for the
project, so the transition went very smoothly.
(After his health improved Peter returned to
work at the end of the project, putting in
reduced hours to finish off the RAINBOW SIX

sound code.)

5. Insufficient testing time
We got lucky. As a result of our early missteps,
the only way we could get the game done on

time was to cut deeply into our testing schedule.
We were still finding new crash bugs a week
before gold master; if any of these had required
major reengineering to fix, we would have been
in deep trouble. That the game shipped as clean
as it did is a testament to the incredible effort
put in at the end by the engineering team. As it
was, we still had to release several patches to
clean up stuff that slipped through the cracks.

In the End…
RAINBOW SIX’s development cycle was a 21-
month roller coaster ride. The project was too
ambitious from the start, particularly with the
undersized, inexperienced team with which we
began. We survived major overhauls of the
graphics, networking, and simulation software
late in the development cycle, as well as two
changes of engineering leads within six months.

By all rights, the final product should have been
a buggy, unplayable mess. The reason it’s not is
that lots of very talented people put in lots of
hard work. I’m not going to say that RAINBOW

SIX is the perfect game, but it is almost exactly
the game that we originally set out to make back
in 1996, both in look and game play. And the
lessons that we’ve learned from the RAINBOW

SIX production cycle have already been rolled
into the next round of Red Storm products. Our
current focus is on getting solid designs done up
front and solid testing done on the back
end—and on making great games, of course.

259

Raven Software’s

SOLDIER OF FORTUNE
by eric biessman & rick johnson

The development of SOLDIER OF FORTUNE was
rife with questions and uncertainties right from
the very beginning. Fresh from finishing up POR-

TAL OF PRAEVUS, the HEXEN 2 mission pack,
Raven was ready to dig in to a full-fledged
stand-alone product. Unfortunately, no one at
Raven had a solid idea for our next project and
we found ourselves floating in a sea of ideas
without a solid direction. With a full team ready
and willing to go, we needed a project and we
needed one fast. It was then that Activision
handed us the Soldier of Fortune license.

In the beginning, what was to become the SOF
team was focusing on several different story
lines and game ideas. One of these was a some-
what real-world, military-style shooter based in
a World War II setting. When we decided not to
pursue that game, we began looking for new
game ideas. We knew that we still wanted to do
a real-world military game, but beyond that we
didn’t have much of an idea. As soon as we got
the Soldier of Fortune license, though, the
groundwork for the game immediately began to
fall into place.

While the license name itself was met with
mixed reactions from the SOF team, at its core
was everything that we wanted from the game.

Action, intrigue, political turmoil, and firepower
were key elements of the design from the very
beginning. Now we needed to find a story that
would complement the license and turn it into a
great game.

The name SOLDIER OF FORTUNE evokes differ-
ent images for different people. One thing that
we could all agree on was that the title reflected
the mercenary life; making money at the risk of
death. This was something that we wanted to
highlight and focus on dramatically throughout
the game. However, focusing on this one aspect
tended to blind us to the bigger picture of what
we were trying to accomplish, and our first few

Back-Story
SOLDIER OF FORTUNE puts the player in the role of a con-

temporary mercenary, fighting in locations around the

globe for the highest bidder. The game puts a premium

on making real-world considerations a part of gameplay,

which distinguishes it from other first-person shooters.

For example, a noise meter warns players if they are

alerting opponents, and wound location and weapon

caliber matter in combat. An array of high-tech, but still

realistic, gadgetry rounds out inventory possibilities. The

game's graphic violence and the detailed anatomical

specificity in its damage system raised a few eyebrows

on its release, and a non-violent version was released in

tandem with the original.

Raven Software’s SOLDIER OF FORTUNE 260

story attempts failed miserably. We focused too
much of the gameplay on making money and
not enough on finding something that would
truly compel the player throughout the game.

Nevertheless, even without a story set in stone
we began the production of the game. This was

a decision that we would come to regret many
times throughout the rest of the development
cycle. The bright side to spending a large por-
tion of development time working on a game
without a solid story was that most of it was

spent on technology creation. The bad part was
that many of the levels that were originally
planned and created had to be reworked or
removed from the game entirely.

On top of that, Activision was getting a little
nervous that they had not seen any solid game-
play from us yet after almost a year of develop-
ment. This uneasiness itself caused major
turmoil in the development and it took a while
for us to settle into the game that we would
eventually create. Luckily, during this time, all
of the core technology was implemented and
functioning smoothly. Because of this, once we
nailed the story down, we were able to jump
head-first into the production and quickly create
a solid product.

In order to achieve a strong sense of realism, we
decided to talk to a published author about the
script and also to a real-life “military consult-
ant” about how a soldier of fortune truly lives
his life. This was one of the major turning
points in the development and we were finally
able to focus the game into its final product. As
we settled on an action-movie feel, SOF finally
began to take form. We were able to tie together
an appealing story line quickly with several
twists to keep the player enthralled.

Combining this with the extensive amount of
information that our military consultant pro-
vided us, everyone on the team was excited
about the project again and the true develop-
ment of the game got underway. In less than ten
months, the core of SOF was assembled into a

Game Data
Release date: March 2000

Publisher: Activision

Genre: First-person realistic shooter

Platforms: Windows 95/98/NT/2000, Linux

Full-time developers: 20 (on average)

Contractors: 2

Budget: Multimillion-dollar budget

Length of development: 23 months

Hardware used: Dell Pentium 550 with 128MB RAM,
18GB hard drive, and a TNT2

Software used: Microsoft Visual C++ 6.0, Microsoft
Visual SourceSafe 6.0, 3D Studio Max 2.x, Softimage
3D, Photoshop

Notable technologies: Licensed the QUAKE 2 engine
from id Software (using OpenGL), motion-capture data
from House of Moves, force feedback, A3D/EAX 3D
sound, World Opponent Network (WON) matchmaking
services

Project size: 406,044 lines of code, 602 files

SECTION IV: BUILDING ON A LICENSE261261

fun, viable product. After the game was released
this past March, the rest, as they say, is history.

1. Familiarity with technology
plus powerful tools and
enhancements
One of the most important pluses for SOF was
the team’s experience and familiarity with the
QUAKE technology. Raven has been using id

Software’s technology since its early days of
HERETIC and HEXEN. This familiarity allowed
us to experiment, create, and use tools that
vastly sped up the game’s development.

QuakeHelper. One of the first tools that we
developed was QuakeHelper. As SOF’s develop-
ment progressed, we realized that all of the
options associated with the individual textures
for the world were becoming too complex to
encode into a parsing file. QuakeHelper was
created to allow a visual way to assign all of
these properties. This included texture scaling,
detail texturing, damage texture (next texture to
be shown, and the amount of damage it should
take), material properties (sound and visual
effects for user interactions), and alternate tex-
tures (more detailed and unique textures would
be replaced by common textures on video cards
with lower texture memory). In the end, SOF
had more than 5,000 unique world textures.
QuakeHelper saved the artists a tremendous
amount of time in preparing the textures for the
game and in adjusting and tweaking their prop-
erties.

ArghRad. One of the benefits of working in the
QUAKE community is that the public has access
to most of the source code to the tools. In the
beginning of the project, we used QRAD, which
was the original tool id developed to calculate
the lighting information on the world. Our
designers learned of an enhanced version of
QRAD that had been developed by Tim Wright.
He called the new modified version ArghRad!,
which added a Phong-type shading model to the
light map calculation, a global sunlight casting
point, and several bug fixes. Raven contacted
him to arrange to get the source code. In the
end, this helped us create better-looking levels
by utilizing the wonderful QUAKE community.

What Went Right

Two views of Sergei
Dekker, the quintessential
bad guy.

Raven Software’s SOLDIER OF FORTUNE 262

DS. DS, or Designer Script, was developed
jointly for both HERETIC 2 and SOF. The goal
was to provide a simple language for designers
to help create more complex scenes and puzzles
in the game. Those who designed this language
rightfully kept in mind whom the language was
for. In other words, it was a language created by
programmers for designers. While this may
seem like a straightforward concept, often this
idea gets lost during the development phase of
tools or other items that are supposed to assist
the desired recipient. Even though this language
did have certain limitations (described under
“What Went Wrong,” beginning on page 265),
it did help meet our goals for both projects. The
following two tools helped extend the scripting
language in simple yet powerful ways.

ROFF. While one of SOF’s designers was play-
ing around with Lightwave to create a complex
motion path for an entity, he ended up writing
an exporter that created a DS script. The script
consisted of a series of move and rotate com-
mands to simulate the complex movement ani-
mated in Lightwave. While this accomplished
the ultimate goal of importing the entity’s ani-
mation into the game, it was not very efficient.
Exporting the movement into a file and adding a
command to the scripting language to play that
movement file corrected this. This format was
known as ROFF (Rotation Object File Format).
SOF used about 500 of these movement files,
from the simulation of helicopter movement and
exploding crates, to creating a flying bird
(although you’ll have to look really hard to see
that one).

Chimaera. Because of the large amount of ani-
mation needed for SOF and the fact that we
were going to be using a mix of traditional
hand-animated sequences and motion capture
sequences, we needed something that would
work well with both. All of our motion capture
data was taken by House of Moves, a wonderful
motion capture house, and sent to our anima-
tors. From there, we used Chimaera, a control
rig within Softimage that allowed us to tweak
both types of animation easily. It also allowed
the animators to utilize both inverse and for-
ward kinematics simultaneously, accomplishing

this ordinarily complex task with relative ease.
One of Chimaera’s most important features was
that it allowed the animators to apply every ani-
mation to any humanoid model, including mod-
els not local to SOF. This tool has also been put
to good use on our next release, STAR TREK:
VOYAGER—ELITE FORCE.

Every cinematic sequence was conceptualized with
storyboards first.

SECTION IV: BUILDING ON A LICENSE263263

SoFPath. We originally developed SoFPath to
create a pathfinding system based on the BSP of
a map. During the development of this tool,
however, we discovered that the world was bro-
ken up too much to provide an effective means
of pathfinding. Our early use of .ROFF files also
showed that animating entity movement or
rotation in a commercial package was difficult
without a good representation of the world.
Since the SoFPath utility had a good “under-
standing” of the BSP world, we changed it to
export .IFF Lightwave object files. The designers
would basically BSP their map (either the full
map or a partial region), create the Lightwave
file, and import it into Lightwave. They then
had a representation of the world, a rough out-
line of all entities, and could then animate things
accurately. Later in the project, we also added
the ability to edit these files in 3D Studio Max.

Audio tools. Both dynamic music and ambient
sound systems were designed internally to create
immersive environments in SOF, but they also
allowed the sound designer to add sound assets
into the game more easily. Instead of hard-cod-
ing the names of the sound files, the tools pro-
vided a quick and flexible method of tweaking
sonic properties in levels. This process not only
took the weight of sound placements off the
programmers’ shoulders, but also empowered
the sound designer with a powerful and creative
tool to create unique soundscapes.

2. Taking time to address
violence concerns
From its inception, we knew that SOF was
going to be a game for adults. Due to its large

amount of simulated violence, we wanted to
make sure that adults had every opportunity to
keep SOF out of the hands of minors while still
being able to play the game on their home com-
puters. In order to do this, we implemented sev-
eral different protective measures for
consumers.

First and foremost was creating the SOLDIER OF

FORTUNE: TACTICAL NON-VIOLENT VERSION. A
totally separate SKU from the regular version of
the game, the low-violence option removed all
of the gore, limited the number of death anima-
tions, and seriously toned down the game in
general. This version used the same box as the
regular version, but colored red instead of green
and stamped with a large advisory that stated
that it was different from the regular version.

For the regular version, we added a violence-
lock feature to allow users to password-protect
the game and change various options to their
liking. The consumer could lock out dismember-
ments, blood, death animations, adult textures,
and other adult content, essentially turning the
regular version into the low-violence version. To
further inform consumers of the violent subject
matter, a large warning was placed on the front
of the box and the ESRB rating was enlarged for
greater visibility. A “mature audiences” warning
was also added to the game’s bumper and imple-
mented into the menu system so that no one
would be surprised by the game’s content.

All of these features and functions helped exten-
sively in the end. We widened our sales plat-
form as stores realized they could order the
tactical version if they wanted to, and we

Raven Software’s SOLDIER OF FORTUNE 264

showed consumers that we listened to their
needs and concerns, giving them a broader
choice in their purchase.

3. Outside help
Although your team will most likely not be
using real-life mercenary John Mullins to help
design your game, outside individuals can be an
incredible help in product development. Talking
and working with a person who has an exhaus-
tive knowledge of your game’s subject matter
will help refine your project and add a truly
cohesive feel to the final prod-
uct. As a consultant helping
us with the military aspect of
the game, Mullins gave
instant feedback in areas
where our knowledge was
lacking and helped round out
the areas that needed it.

He described how trained sol-
diers would react to attacks.
He discussed what sounds
you would expect to hear in
battle. He advised us on how the weapons in the
game should “feel” to the player. In short, he
helped us to create the correct atmosphere in
which to immerse players. By drawing on the
insights and knowledge of someone with first-
hand experience of the action we were looking
for, we were able to focus the design of the
game.

4. “Commando” marketing and
buzz words
We knew that in order to keep the QUAKE 2
engine competitive in the FPS realm, we had to
add significant technology. Many of the technol-
ogy improvements we made were centered on
new modeling technology, which featured,
among other things, a completely new modeling
system, compression of animation data, attach-
ment of models (bolt-ons), multiple skin pages
per model, and advanced networking. Our lead
technology programmer dubbed this new mod-

eling system Ghoul (in keep-
ing with an earlier in-house
technology proposal called
Specter).

In the public’s eye, we associ-
ated all of these major
changes with the Ghoul
name. Without Ghoul, SOF
would have been a mere
shadow of the final product.
It allowed us to throw in all
the bells and whistles, includ-

ing the vast array of enemies and the high
degree of gore. As SOF’s development pro-
gressed, our continued references to Ghoul
caused the public to monitor the changes and
build up their expectations. Ghoul became an
important marketing word for SOF.

Besides normal marketing channels such as
magazines and print ads, we decided to try our
hand at “commando” marketing. By using our
.plan files, giving web interviews, supporting the
wonderful fan sites that were popping up, and

Breaking out the big guns.

SECTION IV: BUILDING ON A LICENSE265265

making ourselves available through
e–mail and online chats, we established a
strong presence in the Internet commu-
nity. This proved invaluable for con-
sumer feedback. With the release of the
demo and the early OEMs, players gave
us instant feedback on what they liked
and disliked and we were able to change
the game accordingly.

One example where this feedback came
in handy was with limited saves. Origi-
nally, players were limited in the number
of saves that they could make based on
their present difficulty level. Many peo-
ple who played the demo disliked this feature,
so we added the ability to customize the number
of saves that players could make, thus adapting
the game directly to consumers’ preferences.

5. Good planning and
scheduling
One of SOF’s saving graces was that it was
planned and scheduled well. The sheer volume
of animation, art, programming, and levels
forced us to update our schedules on a frequent
basis. With a concrete animation naming sys-
tem, an incredibly large and detailed database
for animations, storyboards for every cinematic
sequence, and a well-designed QA system, SOF
did not suffer much inefficiency. The only area
that endured some wasted time was the design
due to the various story and game changes.

Once the story was finalized and had the green
light, establishing and maintaining good plan-
ning and scheduling for the design process

helped finish the game in a timely manner. We
created total level walkthroughs, with each
room and encounter written out. Flowcharts
were used to draw the preliminary levels, and
concept art was used for key location elements.
Perhaps the most important lesson we learned
from SOF was that preplanning is the most
important aspect of game creation.

1. Unfocused design
The single most damaging problem during
SOF’s early development was that the original
game lacked a truly focused design. We knew
what the fundamentals of the game would be,
but we did not have the specifics that we needed
to create a solid, cohesive product. The game’s
overall story changed five times before it was
finalized—at one point we had even changed the

What Went Wrong

Raven Software’s SOLDIER OF FORTUNE 266

basic game concept to a team-based tactical
shooter, similar to RAINBOW SIX.

One reason for this indecisiveness was that, at
the time, our original marketing team was won-
dering what the “hook” would be for the game.
This was a major roadblock in creating the
game because we knew that if marketing wasn’t
behind the idea, SOF wouldn’t get the market-
ing money that it deserved. On top of that,

without the backing of the marketing division,
the senior management at Activision wouldn’t
get behind the title, either. We had to constantly
sell and resell the idea that a high-octane,
action-movie-like, real-world combat game
would be enough of a hook. At times, it went so
far that we were making design decisions not for

the fun or betterment of the game, but to find
the hook that we felt we were missing.

The last straw came when we found ourselves
working on a tactical team-based shooter, a
complete 180-degree shift from our original
design. We then decided to return to the game’s
roots and started banging out a new story. Even-
tually, a new marketing team came on board
that recognized exactly what we had been say-
ing all along. SOF had more than enough to
stand on its own, and they worked with us to
find the right angle for marketing the product.
This new team fit right in with the development
team and things started to roll.

On top of that, since we urgently needed to nail
a story down in a short amount of time, they
recommended that we meet with a hot-selling
writer (Gonzalo Lira, author of the spy novel
Counterparts) and John Mullins. Although the
full story that Gonzalo Lira wrote for us was
never used, some elements of it were, and the
process made us realize exactly what we wanted
from this game and how to get it. John Mullins
contributed an element of realism to the game
that we were missing at that time.

In short, working on everything at once was not
the way to go. For the projects that we currently
have lined up we are designing the entire game
from start to finish before we begin physically
developing it. The SOF team learned the hard
way that a day of preplanning saves a week of
rework. Also, getting a green light for every-
thing before starting development saves having
to backpedal later on. Both of these lessons will
be applied to our future projects.

Raven developed QuakeHelper to manage more than
5,000 unique world textures with a visual means to
assign properties to them.

SECTION IV: BUILDING ON A LICENSE267267

2. Technology creation took
longer than expected to visualize
gameplay
A sure way to sell your product is to have a
working prototype a tan early stage in its devel-
opment. Since we had decided to give the
QUAKE 2 engine an entire overhaul, we realized
that we would really have to come together and
work as a team to make sure things were com-
pleted on time. One of the major enhancements
for SOF was the Ghoul modeling system, which
replaced the entire
QUAKE 2 modeling sys-
tem, and turned out to
be quite the undertak-
ing. Throughout the
entire life of the
project, tweaks and
changes were made to
Ghoul to make it more
flexible and powerful.
Unfortunately, this also
meant that for a sub-
stantial part of the
early development, we
had no game to look at — only individual com-
ponents. It’s one thing to be able to look at a
model in a model viewer, or at a level with noth-
ing in it, but it’s essential to be able to see the
model in the world and interact with it.

Another problem was the huge number of ani-
mations planned for SOF. Since we had so many
animations (more than 600 sequences) we had
to limit which animations would appear on a
specific level due to memory constraints. Limit-
ing the animations on a per-level basis was a

nightmare in itself, not only for the animators
but also for the AI programmer (who had to
make the AI work within the animation con-
straints) and the designers, who had to create
scripted and cinematic sequences using only the
animations available for each level. As the game
drew nearer and nearer to completion it became
increasingly difficult to bring new animations
into the game without ruining someone else’s
work by removing an animation that was
already in use.

The final problematic technology was the AI.
Developed throughout
the entire course of the
project, the AI went
through many differ-
ent incarnations. We
decided early on that
the pace of the game
should be fast and furi-
ous with a large num-
ber of enemies
attacking at once. Ene-
mies were to be reac-
tive, but not too

intelligent. There were three major areas that
caused AI problems: developing the models,
developing the intelligence, and working with
the scripting language.

The main enemy model for the game was very
complex. Incorporating all of the animation
sequences and consisting of nearly 4,000 poly-
gons, the model contained every piece for vari-
ous body builds, coats, and other items that
differentiated the enemies. Because of this com-
plexity, we were forced to preprocess enemy sets

Raven Software’s SOLDIER OF FORTUNE 268

for each level. These individual enemy sets
looked at what enemy pieces and animation
frames were needed for the level because we did
not have a skeletal system in place. This directly
impacted the AI because not every move was
now available on every level. In turn, the AI
could only call animations that were generic
across the levels.

The second area that
caused AI problems was
the addition of multiple
skin pages, bolt-on
accessories, gore, and
death animations.
Although not directly
seen by most people as
AI, all of these were
important features for
SOF. One of our main
goals from the beginning
of the project was to
have lots of unique-
looking enemies. This
meant that our model
was composed of many
different skin pages into which we could swap
different faces or outfits. We also implemented
what we termed “bolt-ons”: any item or feature
that was not originally part of the model. These
included Mohawks, canteens, briefcases, and
side arms, which helped distinguish different
characters. Implementing the gore was also very
time consuming. We implemented gore zones
that required skin page overlays, bolt-on models
of viscera, the ability to remove limbs, and all of
the blood pools and spatters that litter the game.

Finally, implementing the various death
sequences also hampered the AI. In addition to
all of the gore that we created, we also had to
play one of several animations when an enemy
died. Animations had to be called based on cer-
tain circumstances, such as where on the body
the enemy was shot and what he was shot with.
On top of all of that, adding the violence-lock

system that would allow
players to lock out the game
violence meant that all of the
gore and animations had to
be able to be shut off if the
player wanted.

The third area that caused
problems for the AI was its
actual development. Along
with the problems created by
the per-level animation sys-
tem, the AI also had to work
with the game’s scripting
language. If the AI was
tweaked in certain ways, it
caused the scripting to
break. Many times in the

game, enemies had to be “frozen” in place while
their script waited to be activated. If a player
happened to see one of these suspended enemies
before they were triggered, it obviously made
the AI appear less intelligent. We had to come
up with ways around these problems, and
expended considerable time and energy to fix
them.

To make matters worse, the AI had a slight
unpredictability built into it that caused scripted
events to occur differently each time. Although

SECTION IV: BUILDING ON A LICENSE269269

unpredictability is good for gameplay, it had to
be removed from the scripting element. Finally,
a large amount of time was spent with the
designers to build in hints for the areas (such as
reactions of the enemies) and to specify which
areas the enemies could traverse. At the begin-
ning of the development we had “duck,”
“hide,” “flee,” and other commands that even-
tually were removed and taken over totally by
the AI. The AI was in development until nearly
the end of the project.

3. Too many OEMs and demos
Something that seemed like a great idea at the
time but turned out to hurt us in the end was the
decision to make specific OEM releases before
the game was truly finished. The main reason
for this was that we looked at the revenue that
would help the bottom line instead of consider-
ing how much it would set back the game.
Because there were both regular and low-vio-
lence versions of the game, we needed to make
several different builds for the different violence
levels and test each build accordingly.

In the end, we had roughly 75 QA submissions.
While each OEM and demo iteration helped
bring more of the game together, it also diverted
our attention from the final product. As we were
tweaking and fixing the OEM versions, full pro-
duction would come to a standstill as we
focused on getting the smaller versions out the
door.

4. No fixed deadlines
Originally, SOF was scheduled to ship in July
1999. Activision wanted to avoid releasing SOF
in the “blast zone” of competing FPS titles that
were shipping that year, so they extended the
deadlines on the game. As our competitors’
titles were pushed back, so was SOF. Although
within these deadlines we had schedules set up
and planned out, this caused a never-ending
uncertainty of how much time we had left in the
project and how much technology we could add
or change within that time.

In March 1999, we realized that with our com-
plex models and the amount of animation we
wanted, we needed to address memory con-
cerns. Because we thought that we only had
three or four months left of core development at
that stage, we concluded that switching to a
skeletal system would be too risky for the
project. Instead, we created a vertex compres-
sion system that mimicked the benefits of skele-
tal compression in a few ways. Unfortunately,
this meant that we were not able to provide all
of the animations at once, as we would still be
over memory budgets. If we had known that our
deadlines would be pushed back another six
months, we would have added the skeletal sys-
tem, saving everyone a large amount of head-
aches and work.

5. Miscommunication about
some technologies
Confusion over project scheduling aside, addi-
tional technologies were developed during the
course of the project that were never truly
planned out appropriately, such as the terrain

Raven Software’s SOLDIER OF FORTUNE 270

engine, the in-game effects editor, and the
scripting system that we used. All of these tech-
nologies served to improve the game substan-
tially, yet they could have worked better if they
had been properly discussed between the team
members.

The terrain engine, while flexible enough to do
various types of visual
effects, was never
properly coded into
the gaming logic. The
basic premise of the
terrain engine was
that the designers
would create architec-
ture that represented
the portions of the
world that the player
could interact with.
For example, on the
train level, the train
was created by the designers. The terrain engine
would then be responsible for the scrolling poly-
gons, in this case the train tracks and surround-
ing landscape. When we put this level in, we
soon realized that we needed a bunch of special
code to handle the various effects, such as when
a person falls off a train. We wanted to add
more unique kinds of levels like this, but we
didn’t have time to develop a generic physics
system for handling other types of terrain, such
as water where bodies might float or sink.

The effects editor was created by one of the pro-
grammers to help him create visuals for the
weapons. The interface, while functional, was
crude. Other people wanted to create visuals,

including designers, but were hampered by the
editor’s interface design since it was never
intended to go beyond the programmer who
created it. Although the in-game editor allowed
someone who knew the tool to create a special
effect quickly and efficiently, it had a long learn-
ing curve for those not familiar with it. This
reduced the amount of control that the artists

had over the effects.

SOF shared the same
scripting language
that HERETIC 2 had
used. It was originally
developed to give
designers more con-
trol over their levels,
but we soon learned
that we would need to
add more and more
power to the scripting
system. SOF’s com-

plex scripting soon overwhelmed the scripting
language and too much time was spent trying to
tweak out sequences. With the addition of in-
game cinematics (an unplanned feature not
included in the design document), we realized
that the way we were using the powerful script-
ing language was wrong. If we had planned bet-
ter from the beginning, the scripting would have
gone much easier. Unfortunately, since the story
was planned so late, we didn’t know at the time
what would be needed.

A D i rect H i t
Originally slated for an 18-month development
cycle, SOLDIER OF FORTUNE ended up taking

SECTION IV: BUILDING ON A LICENSE271271

nearly two years, a considerable undertaking
that in the end allowed a talented group of
developers to really shine. As with all projects,
SOF had its problems, but for the most part
things went well thanks to the efforts of an
incredible team of people, and SOLDIER OF FOR-

TUNE has quickly become one of Raven Soft-
ware’s best-accepted titles. With strong sales to
date and a solid Internet community, SOF has
exceeded many people’s expectations, including
our own.

We’ve been very happy for the large number of
good reviews, both in print magazines and on
the Internet, and we are helping to support the
online community as much as we can. From a
development viewpoint, SOF allowed the Raven
team to grow and mature, and many lessons
that we learned are now being put to use in our
next set of products. Of course, no project ever
runs smoothly, but with each new game we gain
more understanding of what it takes to make
the next one better.

Raven Software’s SOLDIER OF FORTUNE 272

This Page Intentionally Left Blank

273

SECTION V

The Online Frontier
Online gaming as a large-scale commercial
endeavour is clearly a big part of the future of
gaming. There is something uniquely thrilling
about the experience of sharing a virtual world
with other people. The emotional buzz and end-
less unpredictability of human interaction are
irreplaceable.

However, it’s still unexplored territory. We are
still exploring ways to crystallize that fascina-
tion in a mass-market game. Like the Internet,
we don’t quite know what to make of it or what
to do with it; we just know it’s huge and inter-
esting and it’s not going away. Like 3D graphics,
online multiplayer gaming has swept the indus-
try as a technology without providing a clear
blueprint for what kind of games should be
made using it.

It’s just clear there’s something fundamentally
powerful about it. Single-player games allow
players to immerse themselves in dreamlike fic-
tional worlds with the total absorption common
to films and novels, with the added experience
of interactivity. One downside is that they have
a solitary, even solipsistic quality that some find
to be lonely or sterile. By contrast, online games

are vibrant social worlds, challenging, unpre-
dictable, and occasionally moving. They blur
the line between art, game, and community in
ways we are still sorting out.

Online gaming—two or more people playing a
shared game through a computer—has been
with us almost since computer games were
invented. As researchers, hobbyists, and entre-
preneurs explored the beginnings of the com-
puter game phenomenon, many of those early
directions involved multiplayer worlds and net-
worked interactions. In 1978 Roy Trubshaw
and Richard Bartle coded the first MUD (Multi-
User Dungeon), an online virtual space that
players accessed through text interface. Work
like this continued through the 1980s and early
90s, largely out of the public eye, until in the
mid-90s a few games brought the idea to promi-
nence, showing how much fun and profitable it
could be. A few games like AIRWAR and MERID-

IAN 59 gained devoted followings, and DOOM

introduced the charming neologism “death-
match” into our collective vocabulary.

In 1997, though, online gaming entered the
mainstream with Richard Garriott’s ULTIMA

Section V: THE ONLINE FRONTIER 274

ONLINE, the first massively multiplayer online
game, a gigantic implementation of a fantasy
world derived from his earlier, genre-founding
role-playing series. UO had many supporters
and many critics, but over time it proved its
concept—its popularity demonstrated the feasi-
bility as well as the profitability of such an
enterprise. Large-scale fantasy role-playing is
currently the dominant paradigm for online
play, but it probably won’t remain so—there
are too many interesting modes of play waiting
to be explored.

As they continue to evolve, online games bring
up new questions and raise new challenges for
game production. Development teams aren’t
just creating a piece of software they can forget
about once it has been published—they’re plan-
ning a service that users will subscribe to and
keep interacting with, potentially for years.
There has to be a business model that will sus-
tain not just the production cycle, but the main-
tenance and administration of the game once it
goes “live” and stays active for as long as it can
turn a profit. How do players pay for such a ser-
vice—by the hour, the month or according to
some unit in the game, like territory or titles or
troops to control? The live game creates a whole
new phase of the production life-cycle, one
which probably lasts much longer than develop-
ment and is equally unpredictable. We are still
learning what it looks like, what kind of team
structures and roles and skills it involves.

Game design has been equally redefined by the
problems of the online space. Is the game’s vir-
tual space a place to explore, to conquer, or to
build? Do players meet to collaborate, compete,

trade, or fight? Do they clear out a given area
and move on, or stay in one space to interact?
What happens if players run out of things to do?
Is the game-world static, or does it change over
time? How do we avoid dangers like flash
crowds overloading servers, and players disrupt-
ing other players’ experiences?

The least predictable and least controllable fac-
tor in an online game is the players themselves.
An online game is partly composed of the peo-
ple that play it, the community that surrounds it
and the culture that forms in the process. But as
a developer, how do you influence the nature of
the community that comes about, both before
and after a game’s launch? You can’t control
what players do in your world, only try to cre-
ate a system that encourages play. At times, rule-
changes feel more like legislation than game
design. Community management has become an
essential development task. The whole nature of
the relationship between game developers and
players is changing from vendor-buyer to some
amalgam of host-guest, server-client, and gov-
ernment-citizen.

Little enough is known about how to make
online games, which makes the few postmor-
tems available in this section that much more
interesting. Here are a few tips that can be
abstracted from these developers’ accounts:

• Anticipate high demand.
Nearly everyone seems to underestimate the
number of users who want to play their
game.

Section V: THE ONLINE FRONTIER275275

• Tools.
World-building tools aren’t enough; adminis-
trators and customer service people need
tools to monitor the game and assist players
once the game goes live.

• Get full use out of your public beta.
In addition to reporting bugs, experienced
and committed players can be help educate
new players and set the overall tone and cul-
ture of your online community.

• Don’t trust the client.
A tried and true observation—players will
exploit, hack, or otherwise take advantage of
any weakness in the game to gain power or
just disrupt the game.

• Don’t rely on existing content to keep
players entertained.

Players are ravenous for things to do. They
will instantly strip bare as many dungeons
and hunt down as many monsters as you can
make. The lasting interest of your game will
always be in strength in players’ interaction
with one another, in community and competi-
tion.

Section V: THE ONLINE FRONTIER 276

This Page Intentionally Left Blank

277

Mythic Entertainment’s

DARK AGE OF CAMELOT
by matt firor

DARK AGE OF CAMELOT was the best-selling
computer game in the United States for the week
of October 7, 2001, and is still comfortably in
the top five as I write. This Postmortem is an
overview of how this successful title was con-
ceived and developed. My role on the project
was as the game’s producer. Mythic Entertain-
ment has been developing online games as a
company since 1995—forever in this field—but
the company’s founders had made online games
even before then. In fact, as a company, we
probably have more experience than any other
company in developing online games of all
types—over the years we have developed role-
playing games, first-person shooters, top-down
spaceship shooters, and strategy games.

When I last wrote a Postmortem in the pages of
Game Developer, it was back in May 1998 for
ALIENS ONLINE, our online first-person shooter
based on the well-known Alien movies. After
ALIENS ONLINE, a nonaccelerated game, we cre-
ated our first 3D-accelerated game, SPELL-

BINDER: THE NEXUS CONFLICT. During that
project, we developed a relationship with NDL,
makers of the NetImmerse 3D engine API tool-
kit. We learned a lot about 3D engine develop-
ment over the course of that project and became

very comfortable with software and art develop-
ment in this environment.

We finished SPELLBINDER, which went on to be a
mildly successful Internet shooter, and it still has
a small but loyal following. After completing
the SPELLBINDER project, we decided to create a
graphical online roleplaying game to compete
with the then new wave of online RPGs such as
ULTIMA ONLINE and EVERQUEST, which were
taking traditional text-based games and adding
a graphical front end, with very successful
results.

Over the years, we had developed several non-
graphical online role-playing games, including

Back-Story
DARK AGE OF CAMELOT is part of the second generation

of massively multiplayer online games to reach the pub-

lic. The game is set in a mythic British past in the chaos

following the death of King Arthur; accordingly, the

world is divided into three realms (respectively Celtic-,

Norse-, and Arthurian-themed) eternally at war with one

another, giving shape and purpose to interplayer con-

flict. At first glance, it appears cast in the same mold as

its predecessors—medieval fantasy adventure—but a

host of smaller changes, such as in interface and com-

munity-related features, reshape the gaming experi-

ence.

Mythic Entertainment’s DARK AGE OF CAMELOT 278

DRAGON’S GATE and DARKNESS FALLS: THE

CRUSADE. Because of our experience developing
RPGs, we knew that we had to have a slightly
different slant on our new title in order to dis-
tinguish it from the RPGs that were already on
the market. DARKNESS FALLS: THE CRUSADE

(DFC) featured a built-in player-versus-player

(PvP) conflict in which three different teams,
called Realms, fought each other for control of
magical artifacts, known as Idols. We really
liked this concept, which served to keep DFC
players hooked on the game—especially because
no other online game featured such team-based
conflict as a core part of the game design. So, in
late 1999, we decided to make a graphical ver-
sion of DFC.

The project was dubbed “Darkness Falls 3D,”
and we began preliminary work researching cli-
ent engine and server technology. Right off the
bat it was obvious that we had two major fac-
tors going in our favor. First, we determined we
could use a much-enhanced version of the
SPELLBINDER graphics engine as DFC3D’s client,
just as we were able to use DFC’s server code as
a platform for the new game’s back end. Having
such a solid client and server right at the
start—with associated client/server messag-
ing—alone saved us at least a year of develop-
ment.

Second, and even more advantageous, DFC’s
server came with that game’s database of
objects, monsters, and weapons. Indeed, we
went into the CAMELOT project with a huge
head start. We were proceeding along under the
DFC3D concept until our president, Mark
Jacobs, came up with the idea of basing the
game, at least partially, on the Arthurian leg-
ends. It was a great idea, since the stories of
King Arthur are in the public domain, which
meant we could use them with no fear of licens-
ing issues.

Of course, because the game was based on the
idea that three Realms were in conflict, we
quickly came up with the idea of basing the
other two Realms on Norse Viking myths and
Celtic Irish legends, respectively. Having the
myths and legends of three cultures gives CAM-

ELOT the feel of being three games in one, since
each Realm has different races, classes, guilds,
terrain, and monsters. Because everyone knows
what happened in Arthurian England, we based
the game after Arthur’s death and developed a

Game Data
Release date: October 9, 2001

Genre: Massively multiplayer, online fantasy role-
playing game

Publisher: Mythic Entertainment/Abandon
Entertainment/Vivendi Universal Interactive Publishing

Platforms: Windows 98/ME/2000/XP

Number of full-time developers: 25

Number of contractors: 5

Estimated budget: $2.5 million

Length of development: 18 months

Development hardware: 900MHz Pentium IIIs

Development software: 3DS Max, Photoshop, Visual
C++, Linux GNU C++, various proprietary in-house
tools

Notable technologies: NetImmerse, Linux open-
source server and database products

SECTION V: THE ONLINE FRONTIER279279

back story of conflict among the three Realms.
The game was rechristened DARK AGE OF CAM-

ELOT, and around January 2000 we began the
project in earnest. A year and a half and untold
numbers of Monty Python jokes later, we fin-
ished the game.

The initial versions of DARK AGE OF CAMELOT

used the rights for a tabletop role-playing game
called Rolemaster as a basis
for the class and spell sys-
tems. Not long into the
project, the company that
created Rolemaster, Iron
Crown Enterprises, filed for
bankruptcy, and we lost the
rights. This turned out to be
good for us, however,
because we were no longer
required to adhere to a set
of rules based on the
license—although we did
have to scramble for about a
week to rename and retune
spells and classes and other-
wise clear Rolemaster con-
tent out of the game.

As a company, Mythic had
never before been able to
devote all of its resources to any one
game—we’d never had a project big enough to
pay for it. Because of the sheer size and scope of
CAMELOT, we wanted to ensure that everyone at
Mythic devoted themselves fully to the project.
Doing so required an influx of money, and that’s
where New York’s Abandon Entertainment
stepped in. Abandon owns a couple of small

companies, each of which specializes in different
types of entertainment: a film studio, a web
company, and a couple of game content devel-
opment companies. Abandon wanted to become
more involved in game development, so it pur-
chased a minority stake in Mythic. This money
allowed us to devote everyone on staff to the
CAMELOT project, while also expanding and hir-
ing much-needed programmers and artists. Our

spreadsheets showed that
we had enough money to
support exactly 18 months
of development starting
from January 2000, giving
the project a hard end date
of September 2001.

By the summer of 2000, we
had nearly our entire team
in place. We had about 25
developers working full-
time on the project—quite a
small number compared to
other online RPGs, but our
existing technology allowed
us to reduce substantially
the amount of technical pro-
gramming staff required. We
had five programmers, ten
world developers, seven art-

ists, and several other people working on the
game. Rob Denton, Mythic’s vice president and
chief technical brain, was responsible for all cli-
ent and server programming, as well as the cli-
ent/server messaging that tied the two together.
His input was critical during design discussions,
as he could tell us whether an idea would work
or not. He immediately categorized features into

It all starts with a concept. The troll,
a playable race, changed the most
over the course of development
from a hulking, human-like creature
the more mythologically inspired
version seen here.

Mythic Entertainment’s DARK AGE OF CAMELOT 280

“doable,” “not doable,” and the dreaded “on
the list,” which meant that it could be done, but
he wouldn’t commit to it.
Brian Axelson was in charge
of server programming as
well as design of the game’s
combat system—a critical
component in a PvP-centric
game. Jim Montgomery
provided CAMELOT’s client
interface coding and also
designed and coded the
game’s magical spell system.

CJ Grebb and Lance Rob-
ertson led the art team. CJ
was responsible for the
game’s look and feel, while
Lance handled figure model-
ing and animations and
managed the team’s dead-
lines. Their team used 3DS
Max and Character Studio to create CAMELOT’s
character and monster models and animations.
The character models were technically
advanced, as each in-game character has several
different parts buried in it that can be turned off
and on by the game. So, each model can have a
helmet head and a regular head (with hair) with-
out having to load in a new model. Mike
Crossmire created the game’s spells in 3D Stu-
dio, tweaking the NetImmerse system to display
animated spells with spectacular results.

The other major group in CAMELOT’s develop-
ment was the world team, led by Colin Hicks.
This group was responsible for quests, monster
placement, object placement, and just about

everything else having to do with creating the
world of DARK AGE OF CAMELOT. CAMELOT’s

economy was designed by
Dave Rickey. This economic
system ensures that players
must continue to spend
money as they rise in level,
which limits the amount of
money that stays in the
game. Dave and Mark
Jacobs designed CAMELOT’s
trade skill system, which
enables players to make
armor, weapons, and other
objects in the game—all tied
to the economic system.

Among the myriad tasks
that I did as a producer
(writing, designing, per-
suading, arguing, and such),
my job was to make sure all

the teams worked together. I hosted an almost-
daily morning meeting (at the wretched hour of
8:30 A.M.) where Colin, Rob, CJ, Lance, and I
got together to make sure that we were all on
the same page. I was also responsible for main-
taining the master game client—all files added
to the game had to be given to me, so I could
verify they worked and then integrate them with
the rest of the game.

For the game’s sound and music, we contracted
with Womb Music, based in Los Angeles, which
had provided music for some of our previous
titles. Rik Schaffer, the main guy at Womb, com-
posed a wonderful soundtrack that consisted of
several long main scores, as well as many

It was essential to provide players
with plenty of player-versus-
environment conflict, such as with
the forest giant seen here.

SECTION V: THE ONLINE FRONTIER281281

shorter pieces in the style of Celtic, Norse, and
old English folk songs, adding a sense of depth
and quality to the world.

1. Community management/beta
program
From the beginning of the project, we knew we
had precious few dollars available for market-
ing, and that our best chance to capture public
attention would be to have a big presence on the
various roleplaying fan sites around the Internet.

One, the Vault Network, provided us with some
message board space, a news page, and a couple
of moderators, and we were off and running.
We devoted a lot of time over the year and a half
that DARK AGE OF CAMELOT was in develop-
ment to interacting with the future fans of the
game. We hired a community relations manager
whose sole job was to read different message
boards and report back to us what was happen-
ing in the community. From the beginning, we
took our fans seriously and made many tweaks
and additions to the game based on their com-
mentary and ideas.

2. No bureaucracy
Since the founding of Mythic, we have striven to
have little bureaucracy. We have no levels, no
directors, and few managers. We have a presi-
dent, a vice president, and a producer. That’s it

for management, although for CAMELOT we did
have to assign a lead world developer and art
co-leads, just to streamline
the day-to-day processes of
the project. Because of this
simple command chain, we
experienced no power strug-
gles. We feel this is the best
way to make a solid, cohesive
game—a small group controls
what the game is and how it
is presented to the user.
Because of this approach,
decisions are made quickly,
and features can be imple-
mented without an endless
line of approvals and politics.

3. Smart business
decisions
Our close relationship with
Abandon Entertainment was
a critical factor in the success
of the game. Abandon’s pur-
chase of a minority interest in
Mythic ensured that we had
enough money to fund the
game from start to completion. Abandon’s man-
agement was smart enough to realize that we
knew more about game development than they,
so they largely left us to make game-related
decisions ourselves. They were involved in the
project, of course—some Abandon employees
even became avid beta players of the game, even
though most had never played an RPG before.

What Went Right

Creatures were
modeled and
mapped using
3DS Max and
animated with
Character
Studio. Rumors
that this zombie
is a portrait of
the producer
after too many
meetings are
totally
unfounded.

Mythic Entertainment’s DARK AGE OF CAMELOT 282

Abandon’s investment meant that we did not
have to rely on any outside influence in design-
ing or creating the game, which means that
CAMELOT is wholly ours.

With Abandon teaming with us, Mark Jacobs,
our president, decided to take a big chance and
wait until the game was almost complete before
looking for a distributor. In most cases, game
companies seek out publishers, which typically
have a hand in the design and production of the
game and then distribute the game to the retail
chain. With Mark’s gamble, we produced the
game ourselves (with critical financial help from
Abandon and business advice from our business
development person, Eugene Evans) and then
looked only for a retail distributor. This gamble
could have placed us at the end of the project
with a great game but no way to get it into the
hands of our customers. It all worked out in the
end, of course, with Vivendi Universal stepping
in and distributing—but on our terms.

4. Sweet serendipity
The CAMELOT project was helped immensely by
factors completely out of our control—in other
words, blind luck. Several high-profile online
RPGs that were slated to launch at about the
same time as CAMELOT were either pushed off
(SHADOWBANE) or canceled outright (DARK

ZION, FALLEN AGE). Also, the week we
launched was originally scheduled to be the
same week as the launch of WARCRAFT III,
which will almost certainly be a huge seller.
That project was also delayed, which ensured
that CAMELOT launched as the only large-scale
game, and the only online RPG, when it debuted

on October 9, 2001. This little bit of good for-
tune gave the game a big initial boost, as there
was little direct competition from other new
products.

5. The joys of open source
software and stability
Long ago, during the development of our early
titles, we decided to use Linux wherever possi-
ble as our server back-end OS, and we kept to
this same practice when creating DARK AGE OF

CAMELOT. We have extensive Linux experience
in-house, and it made sense for us to stay with a
platform that we knew could handle the task
and also was, well, free. Because running CAM-

ELOT would require a considerable amount of

In addition to designing CAMELOT’s many outdoor
areas, Mythic’s world development team had to
populate those areas with interesting encounters
and dynamic quests—no small task, considering
they had not one but three distinct Realms to
accommodate, as well as a finite amount of
creatures available to them. Work on this content
is ongoing, with new updates added to the game
on a regular basis.

SECTION V: THE ONLINE FRONTIER283283

data management, we initially planned on using
Oracle to store account and character informa-
tion. However, Oracle’s quoted license fee of
more than $900,000 quickly removed them
from contention.

Once we got over our shock and amusement at
Oracle’s pricing, we turned to a Linux-based
freeware solution, MySQL, to manage CAM-

ELOT’s data storage, which so far has worked
admirably. Everyone developing games should
at least investigate open source solutions for
their servers. It’s saved us a pile of money and
has been stable and reliable.

In fact, prior to CAMELOT’s launch, it was axi-
omatic that MMORPGs were unstable and
prone to crashing during their first month or so.
From the outset, we were determined to buck
this trend. We co-located our servers directly at
UUNET, on the network backbone, which
ensured a wide network pipe to the Internet.
With this Internet connection, we can increase
our bandwidth with just a few hours’ notice to
UUNET.

With the combination of reliable server code
and a stable Internet connection—all running on
open source software—CAMELOT went live on
October 9, 2001, with virtually no problems.
That first night, the game went down for about
an hour and a half due to a database configura-
tion problem, but since then, the game has been
remarkably solid and stable. As of this writing,
it hasn’t been down due to server error for more
than a few minutes ever since the first night.

1. Development of customer
service tools
We really tried to avoid the customer service
problems that are characteristic of some recently
launched online games. One of the most impor-
tant factors in keeping customer service reason-
ably effective was a smooth launch. Obviously,
giving players fewer problems results in fewer
calls to customer support. We did an excellent
job with the launch—it went very smoothly.

However, we could have better foreseen other
parts of our customer service plans. First, we
had a lot more players in the first week after
CAMELOT went live than we ever could have
forecast—1,000 boxes were sold in the first
four days alone. Our forecast numbers called
for a much smaller number, and we hired our
customer service staff based on this smaller
number.

Also, we put off creating customer service tools
until much too late in the development
cycle—some had yet to be developed when the
game went live. These missing tools really hurt
the customer service staff and added to the time
it took to help each player with in-game prob-
lems. Eventually, wait times became much too
long, and customer support as a whole suffered
because of it. As I write, we still are trying to
work ourselves out of this hole.

What Went Wrong

Mythic Entertainment’s DARK AGE OF CAMELOT 284

2. Lack of a cohesive marketing
plan
We went into the CAMELOT project with a lot of
experience in developing software, but no real
experience in creating a marketing plan. We got
a lot of help with advertising from Abandon
Entertainment, but there was no overall project
plan. Basically, we took out ads in magazines
that we thought were important and tried to
keep on top of the Internet community. We
didn’t regularly issue press releases nor attempt
to do a press tour or invite reporters to the
Mythic offices to show off the game.

It’s difficult to gauge just how much this hurt us.
Our focus on Internet marketing gave us strong

support among fans of the genre, but our lack of
commercial marketing kept our company profile
low, and we never received much mainstream
media coverage because of it. Fortunately, we
made up for our slow start, and then some, by
our successful presence at E3. Abandon funded,
designed, and staffed a large booth for us at the
show, complete with medieval motif and lots of
giveaways.

3. O Dungeons and Cities, where
art thou?
The first major update we made to CAMELOT’s
graphics engine to differentiate it from SPELL-

BINDER was to put in the rolling terrain system
that makes the world so lifelike. We spent a long

time making the outdoor areas of the
game beautiful and well stocked with
monster encounters. The ease with
which we did this gave us a false sense
of security when it came to developing
our dungeon/city technology.

These areas in the game required a large
number of models and characters in a
much smaller space than the outdoor
terrain, so creating dungeons and cities
proved to be a much more difficult job
than we thought. Because we put off
doing the technical designs for the inte-
rior spaces for so long, in the end we
simply didn’t get enough of them done.
The game launched with only three cap-
ital cities (one per Realm) and about 15
dungeons.

SECTION V: THE ONLINE FRONTIER285285

4. We have a great game but no
servers!
In a great “Why didn’t they tell us about this in
college?” situation, we went into the final
months of the project with no credit rating.
Mythic Entertainment has been around for a
long time, but we simply hadn’t ever borrowed
any money, and so we didn’t have a credit his-
tory. This turned out to be a problem when we
went out to lease our servers from Dell and were
flatly denied. We pointed out that we had plenty
of money in the bank, but to no avail. Dell sim-
ply wouldn’t lease us the computers until we
had a credit history.

In the end, we were forced to purchase the serv-
ers outright from Dell, which obviously had a
much greater impact on our bottom line.

5. Postrelease fan
communication
As good as our communication with CAMELOT’s
fan base was during the game’s design and beta
periods, it began to suffer soon after the game’s
release. The community simply grew too large
to communicate with in the manner we had dur-
ing beta, when we simply went out to Internet
message boards and posted our thoughts and
plans. With the game live, it was obvious we
needed a much more coherent way to communi-

cate with our fans, one that would not send
them to numerous different fan sites to sift
through literally thousands of messages. This
situation grew into a big problem when players
became extremely frustrated by what they per-
ceived as a lack of communication from us.

About six weeks after release, we realized that
we needed to create our own Web site to publish
information about the game: release notes, plan
files, server status, Realm War status, and many
other little things that we knew but our players
didn’t. This Web site, dubbed “Camelot Her-
ald,” launched the following week and so far
has been a great success. Fans of the game can
now go to one Web site to get all the informa-
tion about the game in one place and with no
interference.

For the Ages
It was a great pleasure to create DARK AGE OF

CAMELOT, as it is the first big title that Mythic
Entertainment has ever worked on. It was a
wonderful thrill to see our names on top of the
best-seller lists for those couple of weeks in
October 2001, and we hope to be working on
the game for a long time to come. As long as
players are interested in playing the game, we’ll
be there adding content and updating it.

Mythic Entertainment’s DARK AGE OF CAMELOT 286

This Page Intentionally Left Blank

287

Multitude’s

FIRETEAM
by art min

Our goal with FIRETEAM was to create a com-
plete online game experience. The Internet gives
game designers the ability to take multiplayer
gaming one step further by creating a commu-
nity, something that wasn’t possible before
online games came about. Multitude wanted to
take the next step in gaming evolution by mak-
ing the community a significant part of our
product. In other games, such as DIABLO or
QUAKE, the players were creating communities
themselves, mostly through their own Web sites.
Multitude, on the other hand, devoted signifi-
cant development time to creating tools that
would help the community. We spent as much
time on FIRETEAM’s lobby and community web
pages as on the game engine itself. Our goal was
to create a game that would make people say,
“Wow, this is what I’ve wanted from an Internet
game.”

FIRETEAM is an online-only gaming experience.
The actual game play is a squad-based tactical
combat. Players can communicate with other
members of their team using Multitude’s voice
technology. Each player controls one character
in the battlefield. The game uses an isometric,
three-quarter view 2D graphics engine. There

are four different FIRETEAM scenarios, and each
game session is ten minutes long. The scenarios
are very sports-like in their design to help pro-
mote team play.

Equally important to the FIRETEAM experience
is the lobby, where players can view other play-
ers’ statistics, chat between games, and find
squad mates and enemies for their games. The
last component of FIRETEAM is the community
web pages, which display players’ complete sta-
tistics and provide support for FIRETEAM Com-
panies (which are similar to QUAKE Clans). On
the community web pages, players can create
companies, add/kick members, and access pri-
vate Company bulletin boards.

Back-Story
FIRETEAM's approach to online play is distinctive, a

series of game modes that are half futuristic sport, half

squad-based tactical combat. Players sign on as part of

small teams rather than massive worlds and let team-

mates chat by voice rather than text to create camara-

derie and a more intimate social environment. Although

FIRETEAM hasn't persisted, it's an interesting case

study, contrasting with the dominant massively multi-

player approach to online play.

Multitude’s FIRETEAM 288

Br ie f H is tory
FIRETEAM evolved dramatically over its first
year of development. Multitude was originally
founded to create the “ultimate online game,”
which was to be a large persistent science fiction
world. We knew that there would be some com-

petition because ULTIMA ONLINE had already
been announced, although Origin hadn’t yet
performed any alpha or beta testing. We spent
months writing and planning for a massively
multiplayer online game set in a futuristic
world. The project was to have a server team of
around 10 people and a game team approxi-
mately double that size.

As we were designing around our original con-
cept for the game, our desire to make a persis-
tent-world game work as well as a single-player
game presented us with many hard technical
and design problems. On the good side, it was
during this process that we finalized the design
spec for our combat engine. The combat engine

was inspired by X-COM: UFO DEFENSE, empha-
sizing squad combat with features such as line-
of-sight.

We soon realized that our new company’s
financing was coming along very slowly and
that we needed a much more easily attainable
goal (due to lack of resources, both financial
and human) that would still showcase the
unique voice technology that we’d developed.
We looked at the combat engine specification,
our voice technology, and the Internet technol-
ogy that we were designing and realized that we
could make a great tactical team game. So at
that point, we decided to abandon the large per-
sistent world and make team play the essence of
the game.

Designing a multiplayer game is very different
from designing a single-player game. I’ve heard
that in many games, the multiplayer component
was added on only because marketing had
requested the feature; this approach can make
the multiplayer experience less than ideal. In a
single-player game, the player is the hero and
the focus of the game experience. The player
should be able to win 100 percent of the time
(with some effort). In a multiplayer game, a
player should win 50 percent of his or her
games against an equivalently skilled player. The
thrill of a multiplayer game shouldn’t be in the
winning, but more in the process and the actual
competition. Team play gives players a deep
gaming experience, even if they lose.

Our efforts to create engaging multiplayer game
play were made even more effective by our voice

Game Data
Release date: December 1998

Publisher: Cryo Interactive Entertainment

Genre: online tactical team-based sports game

Target platform: Windows 95/98

Team size: 14 full-time developers. Some number of
contractors.

Budget: Approximately $2.5 million

Time in development: Two and a half years

Tools: Microsoft Developer Studio 5.0, Microsoft SQL
Server, Microsoft IIS, 3D Studio Max, Microsoft
Interdev 6.0, Microsoft Chat Service, and Windows NT

SECTION V: THE ONLINE FRONTIER289289

technology, which allowed players to hear the
emotions of their fellow players.

FI R E T E A M ’s Components
FIRETEAM’s network architecture is client/server-
based. We chose a client/server architecture
because of the benefits that it offered us in the
areas of performance (especially with the voice
technology), cheat prevention, and centrally
located statistics. The clients all run on Win-
dows 95/98 and the servers run on Windows
NT boxes, where we use Microsoft Chat ser-
vices to do the intercommunication between our
server processes. We also have a Microsoft web
server running the community web pages, with
a Microsoft SQL server maintaining the data-
base. Our servers are at one location, our ISP,
Globalcenter, in Sunny-
vale, California.

FIRETEAM uses the Eleme-
dia SX2.0 Voice Codec to
do its voice compression
and decompression. Mul-
titude’s proprietary soft-
ware wraps around this
voice codec and interfaces
with the Windows sound
system for both input and
output. The game mixes multiple voices on the
client side rather than the server side. Clients
simply send voice packets to the server, the
server then routes them on to the appropriate
teammates.

In the future, spectators or enemies will be able
to listen in on the voice chatter. Our voice soft-

ware handles both DirectSound and non-
DirectSound drivers because some sound cards
work with DirectSound in full duplex. Full
duplex means recording from microphone and
playing sound at the same time.

Who Worked on
F I R E T E A M
Ned Lerner and I started Multitude and began
working on the original project in April 1996.
The development team grew gradually over the
course of the project. Jim Morris was brought
on during the summer of 1996 to be the chief
technical officer, and his first project was to
develop the voice technology. Alan Murphy was
brought on to provide art for the prototype and

eventually was named art
director. Conroy Lee,
Harvey Smith, and Harry
Schaffer were brought on
in early 1997 to help take
FIRETEAM from a proto-
type to the real game that
we showed off at E3
1996. Bill Money, James
Poelke, and David Reese
came on in late 1997.

The team has a very diverse group of products
to its collective credit. Lerner and Morris were
two of the first people to work on 3D in the
game industry. Murphy’s art credits include
GALAXIAN, PAC-MAN, DEFENDER, TAZ, and X-
MEN. The others have worked on games such as
SYSTEM SHOCK, TERRA NOVA, MAGIC SCHOOL

Multitude’s FIRETEAM 290

BUS, ULTIMA VIII, and FRONT PAGE SPORTS:
BASEBALL.

1. Combining team play and
voice together
FIRETEAM’s design focus was on team play. Just
as we’ve seen in team-oriented sports, the coop-
erative nature of playing as a
member of a team has proven
to be a very addicting and
powerful gaming design.
FIRETEAM’s cooperative
nature was a symbiosis of our
voice technology and team
play design. We needed to
give people a reason to talk to
strangers on the Internet.

Team play was that reason; it
gives people the ability to say
“Watch out behind you!” or
“Good job!” Teammates can
share the joys of victory or the agonies of defeat.
Because there is no button to push to transmit
your voice (it transmits automatically when you
talk), players can hear the spontaneity of team-
mates yelling and laughing. Emotion comes
across very clearly with voice and is definitely
preferable to typing in ALL CAPS or emoticons.
The ease of vocal interaction brings the team
together.

In a fast-paced tactical game such as FIRETEAM,
players don’t have time to coordinate move-
ments with the keyboard. Without voice, you
limit team communication to select macro keys
(or players who can type very fast). In
FIRETEAM’s Basetag scenario, for example,
teammates protecting the base can give instant
information on where the enemy is making its
attack. Over the course of their lives, people
have already learned how to talk; it’s an inter-
face they understand. Vocal communication
doesn’t require a key card list for communica-
tion hotkeys, just a microphone to talk into.

2. Designing the project around
constraints
Multitude was founded to do a game for the
Internet. The Internet offers many problems that
we had to solve in order to make a fun game.
The biggest technical problem was Internet
latency. Fundamentally, latency causes each
player to have something different on his or her
screen, so there is always a delay between a

What Went Right

Lobby Client

Statistics Service

Server SideClient Side

Utility Service

Redirector Service

Game State Service

Game
Statistics
Database

Combat daemon

Game Server

Community Web Pages

Game Client

Web Browser

Internet

Internet

Internet

FIRETEAM’s technical architecture.

SECTION V: THE ONLINE FRONTIER291291

player performing an action and the other play-
ers seeing that action carried out.

For example, we decided early on that we
wanted the game to respond as quickly as possi-
ble. When you shoot at something during a
FIRETEAM game, you’ll see instantly whether or
not you hit your target. The actual damage will
take a small amount of time to be applied to the
target. So it’s possible that you’ll see someone
get shot, walk a bit, and then die. The game can-
not provide a perfect view of the world to each
player; that’s not possible given the limitations
of the Internet. So we decided not to show play-
ers their opponents’ health. If you can see that
your opponent has only a sliver of health and
that one shot could kill him or her, then you
would expect that player to die instantly with

the next shot you made. By
hiding opponents’ health
from our players, we hide the
perception of lag.

A project’s constraints can
also be exploited to the
project’s benefits. Because the
constraint was that we
needed to be on the Internet,
we created the community
web pages to give players the
ability to look at their statis-
tics and create FIRETEAM

Companies. We wanted a
strong community for
FIRETEAM, and the commu-
nity web pages were an easy
way for people to have an
identity in this community

and to join a group of other players.

3. Spending sufficient time to
develop tools
We used several proprietary tools to create
FIRETEAM’s game environments. Early on, we
spent a lot of time building easy-to-use tools
that allowed us to create content rapidly. Our
internal testers used these tools to create new
arenas for FIRETEAM. And because FIRETEAM is
an online game, we were able to test new maps
very quickly with our beta testers.

With an online game, game balance is crucial.
Players will find any competitive edge and map
imbalance they can and exploit it. Especially in
an online game with a lobby, word of cheats or

A 3D Studio Max layout of one of the maps. Our artists take the game-
tested layout from Tile Edit to create backgrounds for each map.

Multitude’s FIRETEAM 292

advantages spreads very fast. Your tools must
allow you to tweak your maps, so you can
quickly fix any small problems. Many of our
maps changed during the course of testing as
our testers would point out weaknesses that
they found.

I can recall a particular contro-
versy over whether Gunball (a
FIRETEAM scenario similar to
combat football) was balanced
enough. Many of the advanced
players were complaining that
Gunball’s offense was too hard.
Using our Tile Edit tool, we
quickly created a few maps with
two endzones for each team
(Gunball maps normally only
have one endzone). Through
testing the new maps, we dis-
covered some of the problems
with Gunball were unrelated to
the maps themselves, but that
the offense simply had a disad-
vantage when trying to score. So
instead of redoing all of our
map designs, we tuned the Gun-
ball game by giving the Gunball carrier a protec-
tive drone.

An added bonus of easy-to-use tools is that you
can make them available to the public and let
your players customize the game and create
their own content. We haven’t yet taken that last
step, because we’re not sure how we want to
store the maps on our servers and present them
to the community.

4. Managing risk: voice
technology
The biggest risk in developing FIRETEAM has
been the voice technology. Many smart people
initially said it was impossible, but we knew

that the game’s design objective was a coopera-
tive team game, and voice was very important to
accomplishing the goal. So FIRETEAM’s first
technical project was to determine whether or
not voice on the Internet was even possible.
Once we had the technology running over the
Internet, we still faced the possibility that it
wouldn’t work with the wide spectrum of sound
cards in the market.

This is Tile Edit, our basic world builder. We quickly prototype the
physical layout of the maps with this tool. It’s very easy to move
walls around to achieve the right game balance.

SECTION V: THE ONLINE FRONTIER293293

We tried to minimize the problems that voice
would cause by providing users with a tool that
would configure the sound card and micro-
phone during installation. Multitude was very
aware (almost scared) of the fact that FIRETEAM

would represent most users’ first use of voice
technology on their computers. So we had to
make sure that it worked on as many sound
cards as possible and that it was very easy to
use. We eventually released FIRETEAM as two
executables—one for systems with DirectSound
and one for systems without it. One feature that
we explicitly did not put into the game was the
ability for players to talk to their opponents. We
wanted players’ first experience with voice to be
a positive one. We didn’t think a 12-year old
telling you where to put your gun in his shriek-
ing voice would convince people that voice is a
wonderful addition to gaming. Similarly, people
asked for the ability to eavesdrop or steal
another team’s radio and listen to the other
team. This feature would impel team members
not to talk if they believed they were being mon-
itored. These types of behavior would weaken
the voice feature.

5. Promoting community
If you’re going to design an online game, you
cannot ignore the community. Any online game,
from FIRETEAM to Poker on AOL to ULTIMA

ONLINE, will have a community because the
players will be able to communicate with each
other.

Online game developers should take advantage
the fact that their product inherently has a com-
munity. Most online games go through alpha

and beta online tests mostly to test the software,
but few deliberately create or test the commu-
nity aspects of a product.

Players are not only a source of revenue for a
project, but they are a feature of your game. In
an online environment, the players’ game expe-
riences are dictated by their teammates and the
opponents against whom they play. You want
the players to follow guidelines and really care
about the game and the community. If your
population is full of a bunch of player killers,
then that’s the experience that the players will
get.

Multitude succeeded in developing community-
enabling tools. We spent significant time and
discussion on our lobby and community web
pages. Given FIRETEAM’s team nature, we
wanted players to feel a sense of belonging so
that they would want to save each other’s lives.
The FIRETEAM product is not just the game
itself. The game is an important piece of the
FIRETEAM experience, but it’s only a piece. The
community plays a large part of the whole expe-
rience.

1. Misjudging market conditions
When Multitude was founded in April 1996,
there was a lot of buzz in the online game
space. Mpath and Ten had big plans. ULTIMA

ONLINE was about to go through testing. We
believed that an online-only game, sold directly

What Went Wrong

Multitude’s FIRETEAM 294

to customers via the Internet, would be accept-
able to the market when we eventually shipped.
What we’ve discovered is that the online game
market has not matured to the level that we
expected. Very few online-only games have
been released, with ULTIMA ONLINE being the
only clear success.

We made two decisions early on that should
have been reexamined when it became clear that
customer acceptance of an online-only game
was not a foregone conclusion. FIRETEAM

would have been more willingly accepted by the
market if it contained some artificial intelligence
(AI). With such an implementation, players
could practice using the interface by themselves
and, more importantly, players could practice as
a team against AIs. With computer-controlled
opponents in place, players could play offline or
possibly on a LAN against computers oppo-

nents. Many users are intimidated by having to
learn a new game while playing against other
more experienced human players. AIs would
have helped ease players into the online-only
part of the game, providing a feature that many
players expect to find in games today.

FIRETEAM also should have had a demo avail-
able on day one. As an online game, providing a
demo presented an interesting problem because
of the server issues. With a traditional game,
developers can hand out a million demo disks
and never think about the problems their users
might experience. If we gave out a million demo
disks, then we would need to have enough serv-
ers to support all those people that actually play
the demo. We didn’t create an infrastructure to
support a demo mode of FIRETEAM. FIRETEAM is
a new type of game—people aren’t yet accus-
tomed to online tactical team games with voice

technology. We should have made some
extra promotional effort to get poten-
tial users to make that initial leap and
try out the game.

2. Managing contractors
FIRETEAM was a large and extremely
challenging project. We had to look
outside of our own company for help
with certain parts of the project. Our
mistake was in assuming that these
experts held the same priorities as the
rest of the development team. These
groups have their own objectives and
aren’t expected to understand the big
picture or know how to create funThe home page for the community web pages. Players can

access a wealth of information about their statistics or other
players’ statistics.

SECTION V: THE ONLINE FRONTIER295295

games. We realized that when working with
contractors, we needed to give those contractors
a very precise and clear specification. Because a
good game design evolves over the course of a
project, a project manager must constantly
make certain that the contractors are following
the latest version of the specification.

As we were developing FIRETEAM, our attention
was also focused on growing our new company.
We found that it was easy to forget what the
contractors were doing and how they fit into the
project. We made the naïve assumption that
they would be willing to work with an evolving
specification. However, when a project is fix-
bid, an external developer will only do so much
tuning and reworking of code before he or she
starts charging you for it. If you don’t manage
this relationship closely, these costs add up very
quickly.

For example, the cost for developing the com-
munity web pages doubled from the original
quote because the design evolved. The final ver-
sion of the community web pages was great, but
a more thoughtful initial design specification
and better management of the process would
have saved Multitude significant money and
time.

3. Internet technical issues
The Internet poses significant problems for
developers. Although we did our best in design-
ing the game around the limitations of the Inter-
net, we did have some technical problems. We
originally designed FIRETEAM around TCP/IP
because it’s a reliable transport protocol for net-

work traffic. However, the reliability comes at a
very high cost: retransmission times. If a packet
is lost on the Internet (which happens a lot), it
takes some time for the machines on both ends
to realize this and resend the data. TCP/IP guar-
antees that all packets are in order; therefore, all
of the packets after the lost packet will be
delayed until the lost packet is sent again. In a
fast-paced game such as FIRETEAM, lost packets
can really cause problems.

As soon as we started doing real Internet tests,
we realized that we needed to start sending
some packets unreliably via UDP. These packets
could get lost, be out of order, or even dupli-
cated, but they wouldn’t be delayed by other
packets. We learned that different packets
require different sets of reliability and timeli-
ness, and that developers should use all the tools
available to them, both TCP/IP and UDP. We
initially labored under the idea that only one

We take the output from 3D Studio Max (with our
plug-ins) and, with our proprietary ZHMPView tool,
convert the files to a format that FIRETEAM can read.

Multitude’s FIRETEAM 296

protocol should be used for the sake of simplic-
ity, but it’s best to use the appropriate tool for
each job.

Packet loss and high ping times are simply part
of the reality of dealing with the Internet. You
do your best to deal with these issues, but they’ll
still cause you endless headaches as routers over
which you have no control go down throughout
the country. Many online games come with a lit-
tle utility that does a trace on the route the
packets take between a player’s machine and the
servers. The information that the utility returns
can help the player and his or her ISP determine
where the bad connection is along that route.
Developers should be aware that while they can-
not fix the Internet infrastructure, it’s important
to understand its limitations and deal with them
as best they can.

4. Server spaghetti
FIRETEAM is a very complicated project with
many processes running on both the client and
the server. Add in the complication of the Inter-
net, and you can get one confusing mess (Figure
shows just how complicated the FIRETEAM

architecture is). We tried to break our server
components down into smaller, more manage-
able pieces, each with its own function. We
hired some experts in various disciplines to help
us better understand parts of the server technol-
ogy that were new to us. Our mistake was in
thinking that these experts could just come in
and solve our problems. As we busied ourselves
with other parts of the project, it was easy for us
to say to ourselves, “They know what they’re
doing.”

In the end, however, the development team
needs to understand the whole picture and how
the pieces really fit together. One of FIRETEAM’s
unique properties is that its server-side compo-
nents run remotely at an ISP’s facilities. In order
to debug something as complicated as our server
architecture remotely, our key program-
mers—not just the client/server experts—needed
to understand the whole system.

5. Coping with the community
As I mentioned previously, when you create an
online game, you need to embrace the commu-
nity. At the same time, a direct connection with
a community of testers who aren’t 100 percent
aware of your objectives is something that needs
to be managed very carefully. The testers will
always want something different. When is the
last time you played a game and said, “This is
perfect”? I’ve often said that even my favorite
game would be better if it had feature X.

Most beta testers are young people who have a
lot of time on their hands; that’s great for find-
ing bugs, but it can also be a problem because
some of them lack perspective. All players have
an equal voice in the FIRETEAM lobby, so we had
to watch over the lobby constantly because a
few testers could ruin the fun for others, even to
the point of instigating a mini-online-riot.

From what I can tell, some online game compa-
nies simply ignore their testers’ constant
demands. After the experience of developing
FIRETEAM, I must admit that this is a possible
solution, though not an optimal one. Many of
us on the development team spent many hours

SECTION V: THE ONLINE FRONTIER297297

justifying our design decisions in order to edu-
cate the testers on why we were doing things a
certain way. While this education does make
them better testers, it takes up a lot of time. And
it’s a dangerous black hole that you can be
sucked into if you’re not careful.

I believe that the true balance is to pay attention
to your community, but sometimes to sacrifice
the battle in order to win the war. You should
involve your intended community in the evolu-
tion of your game, but don’t let it take over your
design process or time.

Evo lv ing R ight A long
In building FIRETEAM, we as developers accom-
plished our goal of providing a complete online
gaming experience with true team play, innova-
tive voice technology, and extensive community
building tools. The Internet offers brand new
gaming experiences; game players can compete

in ladders such as battle.net or tournaments
such as the PGL. Also, an online game lets play-
ers meet new friends with whom they can share
true social gaming experiences.

However, the Internet introduces a lot of nega-
tives to the gaming experience. Instead of light-
ning-fast LAN connections, players must now
tolerate latency. Instead of a small group of
friends, a player’s opponents may be complete
strangers who aren’t polite and may even be
cheaters.

Because of the newness of this market,
FIRETEAM may be ahead of its time. Or it may
not have exactly hit the sweet spot that online
multiplayer gaming should be. But FIRETEAM

has helped online game evolution along by dem-
onstrating that voice technology does work and
that team play and community are compelling
elements that don’t have to be accidental.

Multitude’s FIRETEAM 298

This Page Intentionally Left Blank

299

Turbine’s

ASHERON’S CALL
by toby ragaini

ASHERON’S CALL is a statistical anomaly. In an
industry where cancelled games and dashed
hopes are the norm, this project seemed one day
away from certain failure for nearly its entire
history. And yet, thanks to the visionary fore-
sight of a handful of people, a healthy dose of
luck, and incredible conviction from both the
development team and publisher, it made it to
store shelves and has received a great deal of
critical acclaim.

In May 1995, I walked into a small suburban
home in southern Massachusetts and met my
new co-workers. Having left my previous job at
a genetics lab, I expected nothing more than an
interesting summer project as “A Game Writer.”
Little did I realize what was in store for me and
this start-up company called Turbine. Having
filled every nook of a residential home with PCs,
an enterprising group of about ten developers
was already busy working on the game that
would one day become ASHERON’S CALL.
Although not a single one of them had profes-
sional game development experience, I was
immediately impressed with their enthusiasm
and dedication. After introductions, I was told
to scrounge around for a desk. Upon securing
an end table and a plastic lawn chair, I sat down

and started meeting with various team members
to figure out just what this game was all about.

What was described to me was something that
nearly every computer game geek is by now
familiar with: a 3D graphical MUD. A persis-
tent fantasy environment where hundreds of
players could explore the land, defeat monsters,
form adventuring parties, delve into dungeons,
and complete quests. I’m not sure why anyone
thought it was possible. We had no office, no
technology to speak of, and no publisher. And I
was being paid $800 a month. Yet from these
humble beginnings, something truly wonderful
was created.

The development team was divided into func-
tional departments. Tim Brennen, a Brown Uni-
versity dropout who had helped develop

Back-Story
ASHERON'S CALL is the third massively multiplayer per-

sistent online world to reach the market, although it was

developed in parallel with ULTIMA ONLINE and EVER-

QUEST. Like its competitors, it is set in a heroic-fantasy

world, but with crucial differences. It offers a fealty sys-

tem that creates formal links and hierarchies between

players and rewards cooperative play. It also offers epi-

sodic narrative content, periodic new quests, and

events that visibly affect the entire world.

Turbine’s ASHERON’S CALL 300

Windows NT as a Microsoft intern, led the
engineering team and would go on to design the
server, networking, and character database.
Chris Dyl, a former physicist turned program-
mer, would develop the 3D graphics engine and
server-side physics. Andy Reiff, also a Brown
alumnus, would later round out the engineering

leads as the game systems programmer, respon-
sible for implementing all of the game rules sys-
tems and functional interactions in the game
world. All of the game’s code would be devel-
oped from scratch. At the time, this was a fairly
easy decision, since licensable game code was
pretty much nonexistent in 1995.

On the art team, Jason Booth, a music student
with experience using Lightwave, would take on
the title of lead technical artist. In this role,

Jason bridged the gap between the art and
graphics teams, ensuring that the art asset pipe-
line ran smoothly. Sean Huxter brought his sub-
stantial animation and modeling experience to
the team as the lead artist. My own contribu-
tions to the team were in the area of game
design. As the project grew in scope, my role
changed to become that of lead designer. Soon
realizing the amount of work required to design
a game with the scope of ASHERON’S CALL, I put
together a team of designers that envisioned and
documented the characters, monsters, history,
and timeline of a fantasy world called Dereth. In
addition, the design team spec’d all of the game
rules and systems necessary to RPGs.

Although the team had no professional game
development experience, one invaluable thing
that the team did have was experience playing
MUDs and similar text-based Internet games.
Although these games were comparatively sim-
ple, the game-play dynamics created in a mas-
sively-multiplayer environment are extremely
different from a single-player game. MUDs
proved to be a very useful model for multiplayer
gaming patterns.

ASHERON’S CALL was initially designed to sup-
port just 200 simultaneous players, each paying
an hourly fee. Turbine would host the servers,
which were originally going to be PCs running
Linux. Although in today’s market, this sounds
ludicrous, in 1995 this was in fact the standard
premium online game model. Games using simi-
lar models, like Genie’s CYBERSTRIKE and Amer-
ica Online’s NEVERWINTER NIGHTS, were quite
successful at the time. Based on this goal, the

Game Data
Release date: November 1999

Publisher: Microsoft

Genre: Massively multiplayer, online fantasy role-
playing game

Intended platform: Windows 95/98

Project budget: multimillion-dollar development
budget

Project length: 40 months plus 8 months of beta

Project size: approximately 2 million lines of code.

Team size: 30+ full-time developers, including 6
artists, 4 game designers, 15 software engineers, and
5 QA testers.

Critical development hardware: Intel Pentium PCs

Critical development software: Microsoft Visual C++
5.0, Visual SourceSafe 5.0, Lightwave 5.5, Photoshop
4.0, RAID

SECTION V: THE ONLINE FRONTIER301301

original schedule had ASHERON’S CALL shipping
in the fourth quarter of 1997.

1. Staying true to our original
vision of the game
ASHERON’S CALL was a ridiculously ambitious
project for an unproven team. Yet despite this
naïveté (or more likely because of it), the final
product is frighteningly close to the original
goal of the project. Of course during that time,
Turbine learned lessons in feature cutting,
scheduling risks, and compromise. But despite
all the missed deadlines, all-nighters, and other
disappointments, we are able look back on our
shared vision and take pride in that we achieved
what we set out to do.

Typically, there exists a master document that
describes the overall game concept and goal.
Although the documentation at the inception of
the game was in fact very sparse, what little that
did exist described the fundamental architecture
of the game, including its client/server model,
dynamic load balancing capabilities (described
later), and 3D graphics. In addition, gameplay
details such as the allegiance system, magic
economy, and the emphasis on social game play
are in my notes going as far back as 1995. The
team internalized these goals, and a form of oral
tradition maintained them in meetings.

Although we didn’t know it at the time, ASH-

ERON’S CALL would debut as the third massively-

multiplayer online RPG amidst two strong com-
petitors, ULTIMA ONLINE and EVERQUEST. We’re
often asked if we made any dramatic changes in
response to the release of these two titles. In all
honesty, the answer is no. If anything, these two
products proved to us that our initial technical
and game design decisions were correct. Clearly,
social game play helped drive the success of these
games. This made our game’s social systems such
as allegiance and fellowships all the more impor-
tant. It was also obvious that immersion was
critical. Instability and pauses were the bane of
massively-multiplayer games. In theory, the
dynamically load-balanced servers would pre-
vent many of these problems.

In an industry that can be driven by holiday
deadlines, marketing hype, and cutting corners,
it’s refreshing to know that ambitious goals can
still be rewarded. But it’s more than that. While
we certainly could have created a less ambitious
game, I believe it would have been a detriment
to Turbine’s competitiveness as an independent
development studio. ASHERON’S CALL might
have shipped earlier had it been a LAN game or
a series of connected arenas, but we would not
have the innovative technology and game design
experience that today puts Turbine in such a
desirable competitive position in the industry. In
this way, our team’s unwavering vision was
handsomely rewarded.

2. Securing a publishing
agreement with Microsoft
In mid-1996, representatives from the newly-
formed MSN Gaming Zone were booed by the
audience of the first Mpath Developer Confer-

What Went Right

Turbine’s ASHERON’S CALL 302

ence. Their crime was the prediction that
hourly fees were dead and that flat monthly
rates would become standard. Our business
plan at the time counted on an hourly model,
but we recognized the truth to the Zone team’s
statement. At that year’s E3, we relentlessly
pursued Jon Grande, product planner on the
Zone, in order to pitch him our game proposal
and show him our technology demo.

At that time, the demo consisted of two PCs
connected to each other. One was running the
client software, complete with 3D graphics. The
other was the server executable. The Zone team
was very impressed, and scheduled a visit
to our office (we’d since moved into an
actual office space south of Boston). Soon
after the visit, Microsoft agreed to enter
into a publishing agreement with Turbine,
secured initially with a letter of intent.
The actual contract arrived six months
later, but the letter of intent granted us an
initial milestone payment and enough cer-
tainty to schedule the milestone deliver-
ables.

This was the start of a long, sometimes
tumultuous, but ultimately fruitful alli-
ance. After we secured the contract, the
division of labor was discussed. As the devel-
oper, Turbine was to design the game, engineer
and implement all of the code, generate all art
assets, create a QA plan, and perform testing on
all game content. With its pre-existing Zone
platform, Microsoft was responsible for code
testing, billing, and ongoing server operations.
Fundamentally, this meant that while Turbine

would create the game, the day-to-day opera-
tions of the ASHERON’S CALL service would be
entrusted to Microsoft.

One thing that Turbine successfully negotiated
for was the rights to our source code. Besides
the team, we knew that our massively-multi-
player technology was going to be our single
most valuable asset. In addition, we agreed to a
one-title deal that gave us the flexibility to pur-
sue other development deals as opportunities
arose. In this way, we ensured that Turbine
would remain independent and effectively in
control of our own destiny.

In many respects, Microsoft proved to be an
ideal partner for Turbine. Like Turbine, the
Zone was a start-up organization, and was
eager to prove itself. The Zone was pioneering a
new type of business, with a business model new
to Microsoft, and this placed the managers of
the Zone in a position where they could afford
to take risks. And while ASHERON’S CALL ulti-

SECTION V: THE ONLINE FRONTIER303303

mately validated Microsoft’s belief in Turbine,
at that point Turbine was certainly a risk.

Besides the obvious funding issue, Turbine bene-
fited from its partnership with Microsoft in
other ways. We had free access to Microsoft
development tools like Visual C++, Visual
SourceSafe, and a bug-tracking database called
RAID. We learned a lot about professional soft-
ware development from Microsoft as well, such
how to create an efficient build process, manage
code source trees, and organize effective test
cycles on the daily builds.

Finally, we gained prestige by working with one
of the most respected software companies in the
world. Having Microsoft as a partner gave us a
lot of credibility and put us in a much better
position to pursue funding and make critical
hires, two incredibly important objectives for a
small startup company.

3. Reusable engine and tools
Massively-multiplayer games require a funda-
mentally different architecture from that of sin-
gle-player games, or even multiplayer LAN
games. Beyond the graphics engine, user inter-
face, and other elements of a typical game, per-
sistent massively-multiplayer games generally
require a centralized server, networking layer,
user authentication, game administration tools,
and a host of other technologies.

Early on, Turbine recognized that many of these
technologies would be required by any mas-
sively multiplayer game, and could perhaps be

generalized enough that they could be reused in
different massively-multiplayer titles. At the
time, this was an unusual premise for a game
developer; typically, source code was thrown
out at the end of a project, and the idea of
licensing a 3D engine like QUAKE was still a
long way off. From our perspective it just made
good business sense to leverage our R&D as
much as possible.

Since so much of our development budget was
devoted to creating these key technologies, we
made every effort to keep the technology modu-
lar and data-independent. This modular archi-
tecture has since proven to be a tremendous win
for Turbine. We’ve been able to prototype new
game concepts rapidly by changing data while
keeping the server executable nearly unchanged.
Not only has this helped us get new business, it
has also proven to be extremely useful for in-
house play testing and constructing proof-of-
concept demos.

Turbine’s ASHERON’S CALL 304

Currently we are investigating the potential of
licensing our technology. While we continue to
advance the code base, we have placed some
emphasis on productizing the Turbine engine.
From a business perspective, this is a very desir-
able source of revenue. We can leverage our
R&D efforts and develop-
ment costs, while advanc-
ing the engine that our
own future products will
use.

In addition to the ability
to reuse code, Turbine’s
modular emphasis
extended to the way con-
tent is created for the
game world. As develop-
ment on ASHERON’S CALL

progressed, we quickly came to realize that pop-
ulating a game world the size of Dereth was
going to be a monumental task. By this time, we
knew our competitors were hiring teams to
design individual levels and create content man-
ually. This seemed less than optimal to us, and
furthermore we didn’t have the resources to hire
a large content team.

Instead, we created a series of world-building
tools to maximize our efforts. The first kind of
tool allowed artists to create vast chunks of
game environment (represented as a grayscale
height map) with each stroke of their brush.
Random monster encounters and terrain fea-
tures such as trees and butterflies could also be
placed using this method.

We also developed a tool called Dungeon Maker
to create subterranean environments such as
dungeons and catacombs. Early on, Jason Booth
got sick of hand-modeling the complex level
designs he was getting from the design team, so
he and user-interface programmer Mike Ferrier

created a level-building
tool that used an intuitive
drag-and-drop interface.
This allowed nontechni-
cal designers the ability to
create and instantiate
dungeons quickly without
taking up the art team’s
valuable time.

An offshoot of Dungeon
Maker, World Builder,
became a much more

advanced tool by the time ASHERON’S CALL

shipped. Using World Builder, a content
designer could wander around the game world
placing houses, decorations, and monster
encounters, and even raise and lower the ter-
rain. This proved to be an incredible timesaver,
and the amount of landscape content we were
able to generate easily quadrupled. This kind of
tool modularity allowed us the ability to update
the game world easily with new content, such as
new monsters, quests, items, and adventure
locations.

Thanks to monthly content additions, ASH-

ERON’S CALL “events” can propel an overarch-
ing story forward and involves players in all
areas of the games. So far these events have
proved to be a huge success. Players feel like
they are part of a living, breathing world, and

SECTION V: THE ONLINE FRONTIER305305

are more likely to stay involved in the game for
longer periods of time.

4. Painless launch
When the first few thousand players began
pouring onto the production servers, we were
certain that there would be all sorts of catastro-
phes. We had watched our competitors suffer
similar calamities, and we had resigned our-
selves to accept this rite of passage. To our sur-
prise, nothing went wrong the first day. We were
delighted by just how stable and uneventful the
retail launch was. Everything went without a
hitch. This stability was due to effective beta
testing, intelligent project management, and
insightful data-center equipment deployment.

Here’s how it worked. During beta, both
Microsoft and Turbine testers submitted bugs
into RAID. In addition, user-submitted bugs
were tracked by the Microsoft team and were
added into RAID if they were deemed impor-
tant. Server performance metrics were one of
the key goals towards meeting our shipping
requirements. Each server had to maintain a
minimum level of performance, given a concur-
rent user base of 3,000 players. To meet this
metric, a few changes were in order. The server-
side physics was modified to use a more simpli-
fied collision model. In addition, a faster “clean-
up” cycle for objects dropped on the landscape
was implemented.

Having made these changes, we were able to
meet the aggressive server metrics and our
server software has since proved to be nearly
bulletproof. In fact, for the first several weeks,

the server software did not crash once, which
was a major accomplishment, considering the
technical problems evident in other massively-
multiplayer games.

Our retail launch was a staggered affair. Ini-
tially, only two “enthusiast-oriented” retail
chains received shipments of ASHERON’S CALL

boxes. This allowed our die-hard fans from the
beta testing program to get copies, but pre-
vented the deluge that would have occurred had
we been in the larger, more mainstream retail
stores. While it would have been exciting to see
massive sales on day one, I believe that this
gradual approach was a smart move.

5. Seamless environment using
dynamically load-balancing
servers
One the most impressive features of the Turbine
engine is the continuous outdoor environment.
This is made possible thanks to dynamic load
balancing, which is a scalable server-side archi-
tecture. The easiest way to appreciate the need
for dynamic load balancing is to consider the
following scenario. Imagine a hypothetical game
world that is divided into four servers, each of
which corresponds to a geographic area in the
game world. With a static server architecture, if
everyone in the game world decides to go to the
same area, that one server’s performance would
be dramatically impaired, while the three
remaining servers would effectively be idle,
completely unaware of their overtaxed brother.

Dynamic load balancing solves this overloaded
server problem. Instead of assigning a static geo-

Turbine’s ASHERON’S CALL 306

graphic area to each server, the individual serv-
ers can divide up the game world based on the
relative processor load of each server. In the pre-
vious example, instead of remaining idle, all
four servers would divide the load equally
among themselves, ensuring the most efficient
use of the hardware’s processing capacity.
Dynamic load balancing allows a very free-form
environment where players can travel wherever
they want with very few hard-coded limits.

But in order for the graphics engine to accom-
modate the seamless nature of the server, we
couldn’t allow the “level loading” pause typical
in many 3D games to interrupt the game play.
To avoid level-loading, the geometry team
headed by Chris Dyl engineered a unique ren-
dering engine that constantly loads data in the
background, and draws objects at far enough
distances so as to minimize obvious “popping”
effects and without having to rely on a fogging
effect to hide the clipping plane.

1. Poor scheduling and
communication
For most of its early history, ASHERON’S CALL

was the victim of poor project management.
During the last year of development, a manage-
ment reorganization took place that salvaged
the project. Depending on how far back you
look at the schedules, ASHERON’S CALL was
either one to two years late. This is attributable

to a number of reasons, some of which I will
explain momentarily.

When Microsoft and Turbine entered into the
development agreement, neither side had any
idea of the scope of the project. An initial list of
milestones was drawn up by the Microsoft
product manager and our development leads.
Unfortunately, after the second milestone, dead-
lines were consistently missed. A lot of this was
due simply to underestimating the time required
for development tasks. This created a domino
effect as we continually played catch-up, trying
desperately to make up for lost time.

This schedule free-fall continued into 1997 and
forced us to re-evaluate the feature set. Unfortu-
nately, feature cuts were made without consider-
ing the impact on the playability of the game.
Ultimately, most of these features were added
back into the game anyway, which took addi-
tional time due to the reallocation of team
resources. The lesson here concerns the value of
effective scheduling. Identify the risky areas in
your schedule early, figure out the dependencies,
and make sure you pad the time estimates for
tasks.

Communication between Microsoft and Tur-
bine was also a major factor. The teams were
separated by about 3,000 miles and three time
zones. Although weekly conference calls were
scheduled, they lacked the collaborative mental-
ity necessary for maintaining a successful rela-
tionship. E-mail threads were either ignored or
else escalated into tense phone calls, and in
some cases the bug-tracking database (RAID)
was not used effectively. Clearly, everyone

What Went Wrong

SECTION V: THE ONLINE FRONTIER307307

would have benefited from more
face-to-face time. E-mail—and even
conference calls—are poor media for
managing new and sensitive corpo-
rate relationships, especially ones
between companies with such differ-
ent corporate cultures.

From a developer’s perspective, it’s
always easy to blame the publisher
for unrealistic expectations and
bureaucracy. What’s important to
realize is that it is everyone’s obliga-
tion to communicate expectations
and problems before they escalate to
the point of being a crisis.

2. Inexperienced development
team
None of the senior developers at Turbine
(including me) had ever shipped a retail PC
game. None. Many of the employees were stu-
dents immediately out of college, or even college
students completing a work-study program.
This obviously was the source of several severe
problems in the development of ASHERON’S
CALL. It was nearly impossible for team leads to
give realistic schedule estimates for tasks, since
few of us had experience in professional soft-
ware development. It was also initially difficult
to get different teams from the programming,
art, and design departments to communicate
regularly with each other.

The collegiate atmosphere made it very difficult
for decisions to be made; meetings would hap-
pen and resolutions would seemingly be agreed

upon, only to have those same questions asked
in a subsequent meeting. No one likes unneces-
sary bureaucracy and giving up creative free-
dom, but ultimately one person needs to be
given the authority to make a decision and hold
people to it. A good supervisor takes into
account the opinions of everyone involved;
design by committee simply does not work.

Obviously, having a seasoned and experienced
development team has innumerable advantages.
While it’s not critical that everyone on the devel-
opment team have professional experience, at
the very least team leads should have some form
of professional experience. As it was, Turbine
had to get by with raw talent, unabashed enthu-
siasm, and simply not knowing any better.

3. No feature iteration during
development
Many weaknesses of ASHERON’S CALL at launch
stemmed from the methodology we followed for

Turbine’s ASHERON’S CALL 308

feature completion. Features were scheduled by
milestone and were expected to be completed in
their entirety before other features were worked
on. While this approach may work for more
typical software applications, PC games rely on
a host of interrelating systems that cannot be
implemented in a vacuum.

An example of this involved our melee combat
system. This game feature was completely
spec’d and implemented long before magic
spells worked within the game, under the mis-
guided assumption that it saves developer and
test resources not to have to revisit completed
features. Clearly, these two game systems
needed to be tested and balanced in stages
alongside each other, not independently.

Another example of this problem occurred dur-
ing beta testing. A massively-multiplayer game
cannot be considered adequately tested until
thousands of players have participated in the
game world for at least a few months. The first
time ASHERON’S CALL was exposed to this many
users was when it went into beta testing.
Unfortunately, we were placed in a code
freeze situation during the beta test, and
only the most serious bugs were fixed.

Both Microsoft and Turbine recognized
many serious game balancing problems
during beta, but at that point it was
extremely difficult to make changes. This
can be attributed to our tight schedule,
but earlier beta tests would have acceler-
ated the bug-finding process and resulted
in a better balanced game. On future

projects, Turbine is deploying a more iterative
implementation process where rapid prototyp-
ing and early play-testing is encouraged.

4. An ambitious project lacking
fundamental underlying
technologies
As one of the first massively multiplayer 3D
games, ASHERON’S CALL was a bold undertak-
ing. Several core components were still theoreti-
cal when the project was planned. Things like
dynamically load-balanced servers and continu-
ous, uninterrupted outdoor environments were
still unproven concepts when we committed to
them for ASHERON’S CALL. Furthermore, we
had to create our own 3D graphics engine, a
latency-friendly network layer, and physics and
game rule systems that would all work within a
client/server model.

We learned very quickly why there hadn’t been a
game like ASHERON’S CALL before us: It was
damned hard to develop such a game. I don’t

SECTION V: THE ONLINE FRONTIER309309

think committing to a less aggressive feature set
was the right solution, though. Instead, we
should have acknowledged up front that R&D
efforts are fundamentally hard to schedule, and
been more flexible with our development sched-
ule. With this in mind, we could have created
more realistic estimates and done a better job
managing expectations within and outside Tur-
bine.

5. No documented high-level
feature statement
Because ASHERON’S CALL had such a long and
evolving development cycle, it was difficult to
keep all the documentation up-to-date. To com-
pound the matter, the project never had an offi-
cial feature set as part of the development
contract with Microsoft. The technical design
document process and high-level feature over-
views were basically skipped. This created
severe problems when it came to prioritizing
which features were important. We constantly
had to justify features, and we had no documen-
tation to fall back on to resolve our discussions.

Without a high-level vision statement it was also
very difficult to educate new employees about
the game. There was a sort of oral tradition to
initiate new employees that had been passed
down for so long that it just became part of our
company’s culture. This was partially possible
because the concept of a 3D graphical MUD

intuitively made sense to a lot of people. Unfor-
tunately, it was very difficult to explain what
ASHERON’S CALL was about to people who
didn’t understand this concept or had their own
ideas about how things should be done. Having
a documented vision statement and a descrip-
tion of the high-level feature set is absolutely
essential for any title.

A Un ique Company
Résumé
ASHERON’S CALL was a tremendous learning
opportunity for Turbine and Microsoft. Despite
all the problems and setbacks, ASHERON’S CALL

is a success story. The game has been well
received by PC game enthusiasts as well as the
majority of the game industry press. The fan
support for ASHERON’S CALL is overwhelming,
and players routinely spend more than six hours
a day logged into the game world. In addition,
Turbine is now in a very desirable position,
being one of only a handful of developers (and
the only independent studio) that has success-
fully created a massively-multiplayer title.
Industry analysts predict that online games will
be the fastest growing segment of entertainment
software. With its reusable architecture, robust
toolset, and (now) experienced developers, Tur-
bine intends to remain at the forefront of mas-
sively-multiplayer gaming.

310

AFTERWORD

Independent Game
Development
By now it’s a commonplace observation that
the game industry has become more conserva-
tive, that games have become less interesting,
more stereotyped, less original, less willing to
take risks. This development coincides with a
trend towards consolidation: large publishing
conglomerates have bought out many of the
small independent developers. These conglom-
erates make money by cranking out sequels and
copycat products rather than truly interesting
and innovative creations. As a result, each year
E3 is crammed with the same old games with
new names and the latest graphical bells and
whistles.

One response has been to look for freshness and
inspiration outside the corporate environment,
from independent game developers, hobbyists,
students, and mavericks who can try out new
ideas without focus groups or corporate bureau-
cracy. A clear analogy exists to the resurgence of
independent filmmaking in the 90s that popular-
ized the Sundance Festival and created a sense of

an independent movement, a rough, edgy, origi-
nal style to counteract the big-budget slickness
and comfortable predictability of mainstream
Hollywood productions. This style then filtered
back into mainstream moviemaking and helped
revitalize the medium. It’s one of the venerable
Romantic myths of art—Outsiders vs. The Man,
creative renewal from the margins—and addi-
tionally it’s often true. We’ve seen it in music
(think of the punk, DIY, and grunge move-
ments) to painting (salon des refusés) to litera-
ture (the Beats).

Can independent game development do the
same? No reason why not—the video games
industry is still in pretty close touch with its
hobbyist roots. Independent game development
is proceeding on any number of fronts. Indie
game development happens all the time,
although it doesn’t always get the attention it
deserves. Alone or in groups, students, hobby-
ists, and coders crank out shareware and free-
ware games, either for money or in response to

Afterword: Independent Game Development311

some burning interior impetus. Some games,
such as NETHACK (http://www.nethack.org),
have existed for decades. NETHACK was born in
the age of university-based mainframes and has
grown by accretion over the years, as people
add new features to this sprawling, rich dun-
geon game. Most exist virtually unknown or
with underground fan bases. A few games, such
as PONTIFEX (http://www.chroniclogic.com), have
won cult followings, even within the game
industry itself, but cannot be said to have had a
widespread influence.

One problem for the indie scene is that with ris-
ing standards in production values, indie games
can’t match the lavish graphics and sound and
programming finesse of mainstream games.
Even when they have solid, original game
mechanics, they can look clunky next to the lat-
est multimillion-dollar fantasy epic. Tools such
game editors, Shockwave, and Director have
made it possible to produce professional-level
work on a relatively independent basis, but it
remains to be seen whether digital gaming will
become a medium too expensive to support an
indie sector.

A prominent sector of indie game development
that has undoubtedly influenced the mainstream
is the mod community—game fans who tinker
with existing games, creating new levels,
objects, characters, and rules, downloading edit-
ing tools or writing their own. This phenome-
non began in the first days of computer gaming
and took root in the fertile soil of the Internet,
especially for games such as DOOM where the
multiplayer component encouraged community
and peer-to-peer exchange rather than solitary

play. Industry powerhouses, such as id Soft-
ware, led the way in providing tools for the mod
community to change and expand the games
they wrote, while websites, such as Blue’s News
and Planet Quake, became gathering places for
fans to trade tools and new game levels. Plenty
of ideas, such as Capture the Flag and other
team-based games, have made their way from
mod community web sites into shipping prod-
ucts. Likewise, fans who began by making their
own levels for their favorite games have ended
up with game-industry jobs.

The Interactive Fiction movement has taken the
text-adventure, which is now extinct commer-
cially, and made it a thriving amateur concern.
Text adventures aren’t competitive in the market
because they don’t display any pretty moving
pictures, but this doesn’t mean they aren’t artis-
tically powerful or outmoded. Dozens of new
text adventures appear every year. The medium
has numerous advantages for indie develop-
ment—it’s a stable technology, costs little to
produce, and new works can be written, revised,
and released in relatively little time by a single
author. As a result, the IF movement has a thriv-
ing avant-garde that puts the mainstream indus-
try to shame.

The game industry has begun to reach out
actively to the independents. The annual Game
Developers Conference now showcases the
finalists of the Independent Games Festival
(http://www.igf.com), an annual Sundance-like
event for games developed outside the ranks of
the major publishers, with a separate category
for student work. The results are typically low-
budget affairs but based around a solid original

Afterword: Independent Game Development 312

conception, and the event is getting bigger every
year. Another sign of interest is the Indie Game
Jam (http://www.indiegamejam.com), an annual
event begun in 2002 that brought 14 profes-
sional developers together for four days to hack
together as many different games as possible
based on a single piece of technology, the idea
being to encourage originality and brainstorm-
ing outside the usual corporate production pro-
cess. The first Jam was a success—12 wildly
different games resulted and were displayed the
following week at GDC as part of the Experi-
mental Games Workshop. As a movement and
an ethos, independent game development is
beginning to exist.

That having been said, it would be premature to
abandon hope for mainstream game produc-
tion—to point to an independent scene as the
only source of creative renewal is too simple an
idea. The line between indie and corporate is
blurrier than the romantic myth would make it.
Like a shape-shifting alien on Star Trek, the
game industry has two sets of cultural DNA,
partly corporate, partly devoted amateur, which
is one of our great strengths. Our medium had
its genesis among amateurs and entrepreneurs,
and that generation is still part our industry,
making it hard to tell who is definitively indie
and who isn’t. The industry has only very
recently become big and static enough to make
people worried—until a few years ago, there

wasn’t enough of a mainstream to warrant an
idea of an independent scene.

The medium is still changing too rapidly to
declare the death of all originality. We’re con-
stantly adjusting to a dozen new ideas at once.
The Internet, the trend toward licensed middle-
ware, massively multiplayer gaming, and the
overall breakneck pace of technological change
are still transforming gaming faster than we can
follow. We can’t tell if we’re in a downward spi-
ral or just a temporary retrenching.

The independent scene is a place from which to
draw inspiration and ideas to reform our work
and our production processes, a source of ideas
rather than a magic bullet. It’s important to
remember that great work can come from any-
where—we have only to look at classic Warner
Brothers cartoons and Golden-Age Hollywood
film (to say nothing of Shigeru Miyamoto’s oeu-
vre) to find examples of brilliant work that came
from the mainstream. They came from people
who loved their work and also understood their
art form and how to work together to produce
it. Like them, we’re in the incredibly fortunate
position of being part of the next great enter-
tainment medium. By learning from one
another, examining our successes and failures,
and never being satisfied with the status quo, we
have the opportunity to do as well.

313

APPENDIX A

GAME DEVELOPMENT TEAM
ROLES
The age of the single-author game is more or
less over, and game production has been split
into discrete jobs. As an industry, we have
invented terminology to describe the different
members of a development team. This has
turned out to be a devil’s bargain—job titles are
great because they tell you who’s responsible for
what kinds of tasks, but they also tend to give
people the misconception that everything out-
side their job description is none of their busi-
ness. One of the lessons that repeat throughout
the postmortems is how important it is for the
entire team to understand what the game is and
be able to contribute ideas on any subject. Oth-
erwise, the abilities of the team aren’t really
being put into play.

Every one of these descriptions is an oversimpli-
fication. In practice, game development jobs
shape themselves to the needs of the project and
the skills of the person doing them. The sharp
lines within art, programming, design, audio,
writing, and management that seem to exist on

a spreadsheet, don’t exist at all—every one of
these jobs has technical, artistic, and game-
design areas. That said, here is a rundown of
current industry job titles and what they, basi-
cally, mean:

Ar t i s t
This is the broad category of workers who cre-
ate the graphical content for a game. It can
include anything from a concept artist to a 3D
animator to an architectural consultant; from
artists make cut-scenes, walking animations,
3D furniture, wall-textures, landscape geome-
try, fake newsreel footage, and a thousand
other things. Although technical expertise is
always a plus, the actual requirements vary. A
concept artist might work only with paper and
pencils, whereas a technical artist might spend
90% of their time hacking file formats and
writing custom plug-ins for a commercial
graphics package.

Appendix A: GAME DEVELOPMENT TEAM ROLES 314

As with all game industry jobs, this one blurs
into the others. Designing natural-looking ter-
rain geometry and realistic architecture blurs
into level design; creating interface buttons blurs
into interface design; writing 3D Studio plug-ins
blurs into tools-programming; crafting textures
to look correct in a 3D world requires under-
standing rendering algorithms; and so on.

Aud io
Long neglected, audio is now one of the fastest-
growing areas in game production. Two reasons
are that exciting new audio technologies are
emerging and people are paying attention to
games as complete entertainment experiences
rather than just graphical displays. Sound and
music are tools for giving virtual worlds rich-
ness, character, and emotion—tools we’re just
starting to take advantage of.

Audio departments divide roughly into sound
engineers and composers. Sound engineers
design the audible world of a game—the voice
of a character, the chunky click of a weapon
reloading, the tread of a shoe on dry leaves or
cold marble, much as a foley engineer in the film
world. They supervise recording sessions and
engage with emerging audio technologies, such
as 3D sound and voice synthesis. Composers
score the game, working inside the technical
constraints of the computer and the formal con-
straints of interactive media. If emotion is a
problem area for computer games, music might
be one of the most powerful solutions.

Des igner
This job is the hardest to pin down and the most
variable between different projects, companies,
and designers. It is perhaps most correct to say
broadly that game designers craft the player’s
interactive experience using tools that artists
and programmers make—they make the fun.
Typical design tasks include laying out the game
interface, building the level maps, designing
puzzles, balancing units’ abilities to create a
game that is both fair and challenging. Design-
ers often double as the game’s writer for story
and in-game dialogue and text, although
increasingly this profession is becoming sepa-
rate.

In some teams, the lead designer is like an
auteur film director. They have the initial vision
for the game; they write the overall design docu-
ment and the story. Later in the development
process, this initial game concept is a touchstone
for determining priorities. Other designers work
as a kind of caretaker for a group vision of the
game—they hear all the suggestions, record
them, and turn them into a full design document
for the game. They make the final decision on
some issues, but the design doesn’t start with
them. The design starts from a company’s over-
all strategy decision, an existing game engine, or
a team vote.

Designers often have specialized skills in a
related field, such as writing, graphic design, or
programming, and this issue shapes how they
mesh with the rest of the team. Some technical
knowledge is always necessary, so that the

Appendix A: GAME DEVELOPMENT TEAM ROLES315

designer understands the tools of their trade and
what a computer can and can’t do.

Producer
Producers are the ones who manage project
teams as a whole. They are in charge of project
management issues, such as schedules, budget,
morale, and coordinating different sections of a
project team. They host meetings, facilitate
communication, resolve problems, and accept
responsibility for the product as a whole.

Leadership styles vary. Some producers view
themselves purely as administrators—they make
sure the schedule and budget work correctly,
and coordinate the team’s efforts, but leave the
creative vision to a project leader or the design,
art, or programming lead. Other producers are
the keepers of the product’s overall concept and
serve as creative director and final decision-
maker on the product’s feel.

Producers also serve as a liaison to company
management and publisher concerns. They
make sure a given product meshes with overall
company strategy and integrate marketing and
localization efforts into the project team’s work.
Likewise, they represent the team’s progress and
needs to upper management—if the project is
late or there’s a problem with working condi-
tions, the producer brings the news up the chain
of command.

Programmer
Programmers write the software that comprises
the game engine and the tools the team uses to
produce the product. Game programmers often
specialize in a game subsystem, such as graphics,
networking, audio, or AI, or on tools program-
ming, creating things, such as game editors and
exporters.

It’s easy to see programmers as pure technicians,
but as much artistry exists on the programming
side as anywhere else—any truly great game is a
marriage of creative vision with technical deci-
sion-making. An AI programmer creates one of
the core elements of the game experiences—the
opponent or ally who shares the world with
players, who competes or fights or bonds with
them. Likewise, coding a good game editor
means understanding designers’ needs and pri-
orities, as well as the designers themselves. Pro-
grammers have to make decisions daily that
require an overall understanding of the game
vision.

The earliest games were entirely programmer-
written, and some programmers see this time as
the golden age—games created by people who
thoroughly understood the limitations and
strengths of the machine and the programs that
ran it. That era is past, but programmers now
are still the team members who can convey that
understanding to the team as a whole.

Qual i ty Assurance
The quality assurance (QA), or playtest depart-
ment, tests the finished product (or work-in-

Appendix A: GAME DEVELOPMENT TEAM ROLES 316

progress) to see that it works the way it’s
intended to. Sadly, this job frequently puts the
team members in the position of bearers of bad
news—“don’t shoot the messenger” might be
the unofficial motto of every QA department in
existence.

The official QA mandate is to make sure the
product does what it’s supposed to do. They
check, in excruciating detail, every feature and
every level of the game, in every combination
imaginable. This process includes checking in
every language the game ships in and on every
reasonable configuration of hardware and oper-
ating system, in PC products.

The unofficial QA role is that they tend to know
the game better than anyone else on the
team—no one else is in contact with the actual
product, 40 or 60 or 80 hours a week. QA often
has the best view of what’s actually happening
to a product and is best qualified to comment on
intangibles: is the game fun and does it corre-
spond to the initial vision. In the best case, QA
can become creative collaborators rather than
just bug-reporters, reporting on how the game
feels and plays, rather than just working from a
checklist.

317

Glossary
cut-scene a non-interactive animated presen-
tation, played back from prepared data rather
than generated dynamically; usually used as
introduction and conclusion for a game, also for
providing narrative exposition and, as a graphic
spectacle, rewards for accomplishment.

data game content, such as terrain geometry
or spoken dialogue, as distinct from the soft-
ware used to manipulate and display it; contrast
engine.

DDA Dynamic Difficulty Adjustment; a game’s
ability to react to player performance by
increasing or decreasing the level of challenge.

deathmatch a charming neologism coined for
player-versus-player modes in first-person
shooter games; later broadened for use in other
genres, such as real-time strategy games.

E3 Electronic Entertainment Expo; the annual
trade show for the game industry, held in late
June; games often get their first public showing
at E3, hence the importance of the E3 demo in
marketing a game.

engine core systems that, taken as a group,
display the game environment and enact its
basic functions; as distinct from data.

exploit particularly in online games, a flaw in
the game that players can use to gain dispropor-
tionate advantages and rewards.

first-person shooter popular genre of game, in
which players navigate a 3D world full of ene-
mies; players view the world through a camera
set at head height (hence the name), which also
serves as a gunsight. Id Software’s CASTLE

WOLFENSTEIN 3D is perhaps the first example.

first-person sneaker term coined to designate
games in first-person perspective, where stealth
is more important than combat in achieving
player goals. Looking Glass Studios’ THIEF

series is perhaps the prime example.

gameplay vague word denoting what players
do in a game, the activities and challenges, as
distinct from the technology and artwork that
support these.

Glossary 318

GDC Game Developers Conference; an annual
meeting of game developers to present and dis-
cuss their experiences in game creation.

level a unit of game data usually correspond-
ing to one stage of a game, or a virtual location
(e.g., a floor of a building); also, a game charac-
ter's rank in a graded scale of power.

MMPOG Massively Multiplayer Persistent
Online Games; multiplayer games involving
thousands of players, whose characters are
recorded and change over time.

motion capture a technique of recording ani-
mation from a real-life source.

patch a piece of software that fixes problems
in a product that has already been shipped, cor-
recting bugs and adding missing features.

renderer software that draws a scene proce-
durally from a set of data, rather than replaying
frames of animation.

RPG Role-Playing Game; an early term for
paper-and-dice-based fantasy games, later trans-
lated into a genre of computer games retaining
the conventions of the original; as exemplified
in, for example, the ULTIMA and WIZARD series
of games. Alternately an acronym for rocket-
propelled grenade.

RTS Real-Time Strategy; a genre of game that
depicts large-scale military conflicts in continu-
ous-running action, as contrasted with turn-
based games; Westwood’s DUNE II was the
founding example.

sandbox a game whose interest derives from
the amusement value of a complex, dynamic
simulation, which relies on player creativity
rather than pre-set goals or narrative.

texture a 2D piece of artwork, applied to the
surface of a rendered polygon to give it added
detail and color; often called a skin when
applied to a character model.

turn-based divided into discrete rounds that
advance when certain conditions have been met
(for example, all players have moved their
pieces).

waterfall development model a software pro-
duction process that works by first assessing the
required functions, then breaking them into
modular subsystems, writing them, integrating
them, testing that they fulfill the specified func-
tions, and shipping. Generally held to be good
for large, well-understood systems but less effec-
tive for projects requiring high efficiency and
functional innovation.

Index of Game Titles & Developers 319319

Index of Game Titles & Developers

A
Abandon Entertainment

DARK AGE OF CAMELOT 278–285
AGE OF EMPIRES 63–73, 103, 115

RISE OF ROME EXPANSION PACK 115
AGE OF EMPIRES II: THE AGE OF KINGS

115–125
ALIENS ONLINE 277
America Online

NEVERWINTER NIGHTS 300
ANACHRONOX 207
ASHERON’S CALL 299–309

B
BARBIE FASHION DESIGNER 149
BLACK & WHITE 151–160
Blizzard Entertainment

DIABLO 287
DIABLO II 61, 79–90

Bohemia Interactive Studios
OPERATION FLASHPOINT 19–28

BRITISH OPEN CHAMPIONSHIP GOLF 6, 173
Bungie Software

MYTH: THE FALLEN LORDS 161–169

C
CARTOON MAYHEM

SEE CEL DAMAGE

CEL DAMAGE 41–50
CIVILIZATION 63
COMMAND & CONQUER 103–104, 106–108
COMMANDOS 172
CRASH BANDICOOT 209, 211
CRASH TEAM RACING 212
CYBERSTRIKE 300

D
DAIKATANA 207, 256
DARK AGE OF CAMELOT 277–285
DARK FORCES 54
DARK ZION 282
DARKNESS FALLS: THE CRUSADE 278
DAWN OF MAN

See Age of Empires
DEFENDER 289
DEUS EX 180, 195–207
DEUS EX 2 202
DIABLO 287
DIABLO II 61, 79–90
DOMINANT SPECIES 254
DOOM 30, 169
DRAGON’S GATE 278
DRAKAN: ORDER OF THE FLAME ??–40
DUNE 2 103, 105–106, 221
DUNE 2000 110
DUNGEON KEEPER 151, 156

E
Eidos Interactive

COMMANDOS 172
DEUS EX 180, 196–207
DEUS EX 2 202

Electronic Arts
SYSTEM SHOCK 2 6–17

Ensemble Studios
AGE OF EMPIRES 63–73, 103, 115

RISE OF ROME EXPANSION PACK 115
AGE OF EMPIRES II: THE AGE OF KINGS

115–125
Epic Games

UNREAL TOURNAMENT 91–102, 201–202,
205

EVERQUEST 277, 301

INDEX OF GAME TITLES & DEVELOPERS 320

F
FALLEN AGE 282
FIRETEAM 287–297
FLIGHT COMBAT 181
FLIGHT SIMULATOR 154
FLIGHT UNLIMITED 5, 173
FRONT PAGE SPORTS: BASEBALL 290

G
GALAXIAN 289
Genie’s

CYBERSTRIKE 300
GOLDENEYE 176, 220
GRIM FANDANGO 57

H
HALF-LIFE 9, 15, 172, 256
HERETIC 261
HERETIC 2 237, 262
HEXEN 261

I
INDIANA JONES AND THE INFERNAL MACHINE

224
Ion Storm

ANACHRONOX 207
DAIKATANA 207, 256
DEUS EX 180, 195–207

Irrational Games
SYSTEM SHOCK 2 5–17, 175, 181

J
JAK & DAXTER: THE PRECURSOR LEGACY

209–217
JEDI KNIGHT 51, 57
THE JOURNEYMAN PROJECT 127
JUNCTION POINT 197
JUSTICE LEAGUE TASK FORCE 80

L
Lionhead Studios

BLACK & WHITE 151–160
Looking Glass

BRITISH OPEN CHAMPIONSHIP GOLF 6, 173
THIEF: THE DARK PROJECT 5, 7, 10, 13,

171–181
LucasArts

DARK FORCES 54
STAR WARS STARFIGHTER 223–235

M
MAGIC SCHOOL BUS 289
MARATHON 161
Mattle Media

BARBIE FASHION DESIGNER 149
METAL GEAR SOLID 172
MicroProse

CIVILIZATION 63
Microsoft

ASHERON’S CALL 299–309
Multitude

FIRETEAM 287
MYST 127–128, 149
MYST III: EXILE 127–135
MYTH: THE FALLEN LORDS 161–169
Mythic Entertainment

DARK AGE OF CAMELOT 277–285
DARKNESS FALLS: THE CRUSADE 278

N
Naughty Dog

CRASH BANDICOOT 209, 211
CRASH TEAM RACING 212
JAK & DAXTER: THE PRECURSOR LEGACY

209–217
NEVERWINTER NIGHTS 300
Nihilistic Software

JEDI KNIGHT 51, 57
VAMPIRE: THE MASQUERADE—REDEMPTION

51–62

Index of Game Titles & Developers 321321

O
Operation Flashpoint 19–28

P
PAC-MAN 289
POLITIKA 254
Poptop Software

TROPICO 137–146
POPULOUS 151
Presto Studios

THE JOURNEYMAN PROJECT 127
MYST 127–128, 149
MYST III: EXILE 127–135

Pseudo Interactive
CEL DAMAGE 41–50

Q
QUAKE 7, 14, 53, 93, 96, 176, 180, 251, 287
QUAKE 3: ARENA 96–97, 99–100
QUARTERBACK CLUB 80

R
RAILROAD TYCOON 137
RAILROAD TYCOON II 137, 141

THE SECOND CENTURY expansion pack 137
RAINBOW SIX 251–258, 266
RED ALERT 103, 106, 108–110
RED ALERT RETALIATION 110
Red Storm Entertainment

DOMINANT SPECIES 254
RAINBOW SIX 251–258, 266

REDEMPTION

SEE VAMPIRE: THE MASQUERADE—
REDEMPTION

RIVEN 127–128, 130–133, 135
ROGUE SQUADRON 223–224, 228
ROLLERCOASTER TYCOON 142

S
7 Studios

DEFENDER 289
SHADOWBANE 282
SIN 256
SOLDIER OF FORTUNE 237, 246, 259–271

Tactical Non-violent Version 263–264
Sony Computer Entertainment

JAK & DAXTER: THE PRECURSOR LEGACY

210–217
SPELLBINDER: THE NEXUS CONFLICT 277, 284
STAR TREK: VOYAGER 173
STAR TREK: VOYAGER—ELITE FORCE 237–250
STAR WARS STARFIGHTER 223–235
STARCRAFT 53
Surreal Software

DRAKAN: ORDER OF THE FLAME 29–40
SYNDICATE WARS 156
SYSTEM SHOCK 173, 289
SYSTEM SHOCK 2 5–17, 175, 181

T
TAZ 289
TERRA NOVA 5–6, 173, 193, 289
THEME HOSPITAL 156
THIEF 3 202
THIEF: THE DARK PROJECT 5–7, 10, 13,

171–181
TIBERIAN SUN 103

FIRESTORM expansion pack 108
TOMB RAIDER 29, 32, 35
TOTAL ANNIHILATION 103
TRESPASSER 183–194
TROPICO 137–146
Troubleshooter 197
TROUBLESHOOTER 197
Turbine

ASHERON’S CALL 299–309

INDEX OF GAME TITLES & DEVELOPERS 322

U
ULTIMA 5, 198
ULTIMA ONLINE 277, 288, 293–294, 301
ULTIMA VIII 290
UNDERWORLD 5, 173
UNDERWORLD 2 197
UNREAL 14, 180
UNREAL TOURNAMENT 91–102, 201–202, 205

V
VAMPIRE: THE MASQUERADE—REDEMPTION

51–62
Vivendi Universal

DARK AGE OF CAMELOT 278–285
VOYAGER 6

W
WARCRAFT 63–64
WARCRAFT II 64, 103
WARCRAFT III 282
Westwood Studios

COMMAND & CONQUER 103–104, 106–107
TIBERIAN SUN 103–114

FIRESTORM expansion pack 108
WARCRAFT 63–64
WARCRAFT II 64, 103
WARCRAFT III 282

WOLFENSTEIN 184
Wombat Games

DARK ZION 282

X
X-COM: UFO DEFENSE 288
X-MEN 289
X-Wing 220, 223–224, 228, 232

Index 323323

Index
Be sure to also use the Index of Game Titles & Developers beginning on page 319.

Symbols
.AVI 88
.DLL 177

Numerics
3D Studio 66, 280
3D Studio Max 6, 30, 80, 92, 104, 116, 172,

184, 238, 246, 252, 255, 260, 263, 288,
291

3Dfx 164, 168

A
Abandon Entertainment 279, 281–282
Adaptive Optics 6, 172
Adobe

After Effects 104, 172
Illustrator 42, 104
Photoshop 6, 20, 30, 42, 52, 80, 104, 128,

138, 162, 172, 184, 210, 238, 260, 278,
300

AGE OF EMPIRES 63–73
AGE OF EMPIRES II: THE AGE OF KINGS

115–125
AI 176, 178, 191, 200, 202, 294

problems 178, 191
Alias|Wavefront

Maya 52
Power Animator 6, 162, 172
StudioPaint 162

Allegro Common Lisp 210
ANSI string object 233
AntimatorPro 172
API 59, 124
Apple

Final Cut Pro 128
QuickTime 128
QuickTime VR 131

AppleTalk 163
ArghRad 261
Arthurian legend 278
artificial intelligence

See AI
ASHERON’S CALL 299–309
Autodesk Animator 66
automated testing 72
Avid 111

Media Composer 104

B
Battle.net 81, 86–87
beta testing

See testing, beta
Bink 132, 138, 152, 238
BLACK & WHITE 151–160
Black Ops 252
Blackley, Seamus 183
BlueICE accelerator 104
Borland

JBuilder 238
budget xi, 2–3, 31, 49, 53, 58, 144

large 204
limitations 13, 303
marketing 204
memory 248, 269
physics 192
problems xii
small 5, 52
underestimating 133, 181

bureaucracy 281

C
C 233

vs. C++ 33
C++ 33, 177, 213, 223, 233

INDEX 324

CEL DAMAGE 41–50
Character Studio 138, 280–281
Chey, Jonathan 5
Clancy, Tom 252, 256
co-development 101
color palette 66
compositing

problems 110
CRASH BANDICOOT 216
customer service 283
cut-scene 317

D
DARK AGE OF CAMELOT 277–285
data 317
database

developing with 68
DDA 317
deathmatch 273, 317
DeBabelizer 6, 172
debugging 229, 231
Deluxe Paint 104
Denman, Stuart 29
design 34, 232
Designer Script 262
DEUS EX 195–207
DIABLO II 79–90
Digidesign

Pro Tools 128
Direct X 20, 65–66, 72
Direct3D 59, 80, 202
DirectPlay 39, 65–66, 72, 124, 253
DirectShow 124
discreet

3DS Max 20, 42, 128, 130–131, 138, 152,
278, 280–281

Combustion 128
Flint 104

DOS 180
DRAKAN: ORDER OF THE FLAME 29–40
DreamWorks Interactive

TRESPASSER 183–194
Dromed 180

DS 262

E
E3 284, 289, 302, 317
editor

map 162
problems 180

Elemedia
SX2.0 Voice Codec 289

Emagic
Logic Audio 30

engine 317
exploit 317

F
feature creep 35–36, 47, 62, 109
Filemaker Pro 6, 104
FIRETEAM 287–297
first-person shooter 317
first-person sneaker 317
Foley 216

G
Game Object Assembly Lisp

See GOAL
gameplay 317
Gaming Zone 124
GDC 311–312, 318
Ghoul 246, 264, 267
Glide 59, 80
GNU C++ 210, 278
GOAL 213–216
Gresko, Ray 51
Grossman, Austin 183

H
HDTV 133
Holland, Larry 223
Huebner, Robert 51

Index 325325

I
Intel

VTune 30
Internet

performance problems 295
IPX 66
ISP 65

J
JAK & DAXTER: THE PRECURSOR LEGACY

209–217
Java 55, 99, 166

K
Klingon 238

L
launch 9, 134–135, 283, 305

retail 305
timing 100, 224, 282
weaknesses 307

LECgl 228
Leonard, Tom 171
level 318
license 219, 221
Lightwave 3D

See NewTek, Lightwave 3D
Linux 216, 278, 282

port 98
Lisp 213–215
localization 69, 141, 211

M
Macromedia

Flash 224, 229, 235
Marathon 163, 169
MaxScript 190
Maya 210
memory

budget 248, 269
usage 232

Metrowerks
CodeWarrior 128, 162
for Play Station 2 224, 234

MFC 140
Microsoft

Chat Service 288–289
Developer Studio 80, 152, 288
Direct X

See Direct X
Direct3D

See Direct3D
DirectPlay

See DirectPlay
DirectShow

See DirectShow
DirectSound 289, 293
DirectSound3D 80
IIS 288–289
Interdev 288
MFC 140
SQL Server 288–289
Visual Basic

See Visual Basic
Visual C++ 6, 20, 30, 52, 104, 116, 128,

138, 172, 184, 210, 238, 252, 260, 278,
300, 303

Visual C/C++ 162
Visual SourceSafe 238
Visual Studio 42, 80, 92, 196
Xbox

See Xbox
Microsoft Systems Journal 230
Miles Sound System 128, 138, 224
milestones 2, 59, 200–201, 210, 226, 302, 306,

308
missing xii
planning 226
testable 200
video 133

Min, Art 287
MMORPG 283
MMPOG 318
Molyneux, Peter 151
motion capture 318
MSN Gaming Zone 301

INDEX 326

MUD 273, 299–300, 309
multiplayer 65–66, 71
multi-user dungeon (MUD) 56
music 186
MySQL 283
MYST 133, 135
MYST III: EXILE 127–135
MYTH: THE FALLEN LORDS 161–169

N
NDL

NetImmerse 278, 280
NetImmerse 3D 277

NewTek
Lightwave 3D 104, 196, 262–263, 300

Nintendo 64 228
NTSC 133, 211

O
object-oriented design 68, 98
ObjectSpace STL 224
Ogg Vorbis 20
OpenGL 59, 224
OPERATION FLASHPOINT 19–28
Opus

Make 6, 172
Oracle 283
oriented bounding box (OBB) 38

P
PAL 211
Paramount

and licensing 238
patch 318
pathfinding 167–168, 202
Patmore, Alan 29
performance

optimizing code 67–68
personnel

loss 258
Photoshop 210

physics 183, 187–190, 192, 305, 308
budget 192
calculations 211
engine 41, 256
problems 192
realistic 187

pitaSim 42
Planet Blue

Tulip 224
Play Station 2 227–229, 232–234
Playstation 110
Playstation 2 209, 224, 234
post-production 111
processing 216
proto-mission 200

Q
QERadiant 52–53
QUAKE

engine 261, 303
QUAKE 2

engine 237, 248, 264, 267
QUAKE 3

engine 239, 246–247
level editor 243

QuakeHelper 261
QuickTime VR 131

R
RAD Game Tools

Bink 80, 128, 132
Ragaini, Toby 299
RAINBOW SIX 251–258
Raven Software

SOLIDER OF FORTUNE 259–271
STAR TREK: VOYAGER—ELITE FORCE

237–250
RCS 6
real-time strategy

See RTS
REDEMPTION

SEE VAMPIRE: THE MASQUERADE—
REDEMPTION

Index 327327

renderer 179, 318
software-oriented 188

Rendition 164
ROFF 262–263
Rotation Object File Format

See ROFF
RPG 318
RTS 105–107, 113, 318

S
sandbox 318
Schaefer, Erich 79
schedule 210

problems 36, 112, 306
scripting 166, 177–178
sequel 75–77, 105
SGI

02 workstation 104
Indigo 6
Indigo 2 162

skeletal compression 269
SoFPath 263
Softimage 30, 238, 260
Softimage 3D 246
SOLDIER OF FORTUNE 259–271

Tactical Non-violent Version 263–264
Sonic Foundry

Soundforge 30
Sony

Playstation
See Playstation

Playstation 2
See Playstation 2

sound 57
design 175
foley 49
propagation 202

sound effects 49, 57, 88, 90, 162
death 82

Spanel, Marek 19
Spanel, Ondrej 19
staffing

contractors 294
problems 165, 231, 257

Standard Template Library
See STL

Star Trek 237–250
STAR TREK: VOYAGER—ELITE FORCE 237–250
STAR WARS STARFIGHTER 223–235
Star Wars: Episode I 231
startup 1–3
Stinnet, Daron 223
STL 230, 233
Stojsavljevic, Rade 103
storyboard 110
SYSTEM SHOCK 2 5–17

T
TCP/IP 39, 124, 163, 295
testing 15, 25–26, 37, 45, 71, 76, 84, 87, 123,

168, 254, 292
audio 216
automated 72, 120
beta 70, 83, 87, 164, 288, 305, 308
code 302
compatibility 59
focus 45
inadequate 37, 258
play 123, 303
team 26
tools 66

texture 318
THIEF: THE DARK PROJECT 171–181
TIBERIAN SUN 103–114
TOMB RAIDER 29
tool development 291
TRESPASSER 183–194
TROPICO 137–146
turn-based 318

U
UDP 295
UNREAL TOURNAMENT 91–102
UnrealEd 92, 99, 102, 196
UnrealScript 99, 204
Upton, Brian 251
user community 296
UUNET 283

INDEX 328

V
VAMPIRE: THE MASQUERADE—REDEMPTION

51–62
vertex compression 269
Vicon 8 20
Visual Basic 102
Visual SourceSafe 300, 303
Vivendi Universal

DARK AGE OF CAMELOT 277–285
voice technology 292
Vtune 42

W
WARCRAFT II 63

Warner Brothers 41
waterfall development model 318
Winamp 42
Winsock 65
Womb Music 280
Wyckoff, Richard 183
WYSIWYG 34

X
Xbox 41–42

Z
Zone software 124

This Page Intentionally Left Blank

This Page Intentionally Left Blank

This Page Intentionally Left Blank

This Page Intentionally Left Blank

This Page Intentionally Left Blank

This Page Intentionally Left Blank

This Page Intentionally Left Blank

This Page Intentionally Left Blank

This Page Intentionally Left Blank

This Page Intentionally Left Blank

This Page Intentionally Left Blank

Order direct 800-500-6875
fax 408-848-5784

e-mail: cmp@rushorder.com
www.cmpbooks.com

The Complete Guide
to Game Audio

EXPERT SERIES

Find in your local bookstore.

by Aaron Marks

Turn your musical passion

into a career with this

guide to the technical and

business skills needed to

succeed in the multi-billion

dollar games industry.

Learn how to create game

audio from the ground up, as well as how to successfully

market your business. CD-ROM included, 353pp,

ISBN 1-57820-083-0, $34.95

	My Bookmark

	1578202140
	Copyright Page

	Table of Contents
	Introduction: Tales from the Front Line
	Section I: Startups
	Chapter 1. Irrational Games' System Shock 2
	It's the Engine, Stupid
	What Went Right
	What Went Wrong

	Chapter 2. Bohemia Interactive Studios' Operation Flashpoint
	What Went Right
	What Went Wrong
	Future Dreaming

	Chapter 3. Surreal Software's Drakan: Order of the Flame
	Origins of the Team
	Origins of the Beast
	What Went Right
	What Went Wrong
	Onward to the Next Project

	Chapter 4. Pseudo Interactive's Cel Damage
	What Went Right
	What Went Wrong
	Damage Control

	Chapter 5. Nihilistic Software's Vampire: The Masquerade„Redemption
	What Went Right
	What Went Wrong
	At Last, Redemption

	Chapter 6. Ensemble's Age of Empires
	Designing the Past Perfect
	Blazing the Multiplayer Path
	Painting the Scene
	Going for Speed
	Things That Worked Out (S)well
	Things That Went Wrong Or We Could Have Done Better
	Patching It All Up

	Section II: Sequels and Sophomore Outings
	Chapter 7. Blizzard Entertainment's Diablo II
	What Went Right
	What Went Wrong
	The Final Word

	Chapter 8. Epic Games' Unreal Tournament
	Early Development
	A Game Takes Shape
	New Code, New Features
	In the End, It All Worked Out
	What Went Right
	What Went Wrong
	Where We Go from Here

	Chapter 9. Westwood Studios' Tiberian Sun
	What Went Right
	What Went Wrong
	Overall Tips

	Chapter 10. Ensemble Studios' Age of Empires II: The Age of Kings
	Catching Up
	Designing a Sequel
	What Went Right
	What Went Wrong
	The Show Goes On

	Chapter 11. Presto Studios' Myst III: Exile
	What Went Right
	What Went Wrong
	Closing Thoughts

	Chapter 12. Poptop Software's Tropico
	What Went Right
	What Went Wrong
	In Hindsight

	Section III: Managing Innovation
	Chapter 13. Lionhead Studios' Black & White
	What Went Right
	What Went Wrong
	"Just More

	Chapter 14. Bungie Software's Myth: The Fallen Lords
	The Making of a Legend, er, Myth
	What Went Right
	What Went Wrong
	Post-Release Reactions

	Chapter 15. Looking Glass's Thief: The Dark Project
	The Concept
	What Went Right
	What Went Wrong
	Stepping Back from the Project

	Chapter 16. DreamWorks Interactive's Trespasser
	An Ambitious Project
	The Concept
	What Went Right
	What Went Wrong
	Lessons Learned

	Chapter 17. Ion Storm's Deus Ex
	What Went Right
	What Went Wrong
	The Bottom Line

	Chapter 18. Naughty Dog's JAK & Daxter: The Precursor Legacy
	What Went Right
	What Went Wrong
	The Legacy

	Section IV: Building on a License
	Chapter 19. LucasArts' Star Wars™ Starfighter
	What Went Right
	What Went Wrong
	Back to Earth

	Chapter 20. Raven Software's Star Trek™: Voyager—Elite Force
	What Went Right
	Final Thoughts

	Chapter 21. Red Storm Entertainment's Rainbow Six
	The Concept
	The Production
	What Went Right
	What Went Wrong
	In the End

	Chapter 22. Raven Software's Soldier of Fortune
	What Went Right
	What Went Wrong
	A Direct Hit

	Section V: The Online Frontier
	Chapter 23. Mythic Entertainment's Dark Age of Camelot
	What Went Right
	What Went Wrong
	For the Ages

	Chapter 24. Multitude's Fireteam
	Brief History
	Fireteam's Components
	Who Worked on Fireteam
	What Went Right
	What Went Wrong
	Evolving Right Along

	Chapter 25. Turbine's Asheron's Call
	What Went Right
	What Went Wrong
	A Unique Company Résumé

	Afterword Independent Game Development
	Appendix A Game Development Team Roles
	Artist
	Audio
	Designer
	Producer
	Programmer
	Quality Assurance

	Glossary
	Index of Game Titles & Developers
	Index
	Onwards

