

ShaderX2: Introductions &
Tutorials with DirectX 9

Edited by

Wolfgang F. Engel

ShaderX2: Introductions
& Tutorials with
DirectX 9

Edited by

Wolfgang F. Engel

Wordware Publishing, Inc.

Library of Congress Cataloging-in-Publication Data

ShaderX
2

: introductions and tutorials with DirectX 9 / edited by
Wolfgang Engel.

p. cm.
Includes bibliographical references and index.
ISBN 1-55622-902-X (paperback, companion CD-ROM)
1. Computer games--Programming. 2. Three-dimensional display systems.
3. DirectX. I. Engel, Wolfgang F.
QA76.76.C672S47 2003
794.8'16693--dc22 2003016311

CIP

© 2004, Wordware Publishing, Inc.

All Rights Reserved

2320 Los Rios Boulevard
Plano, Texas 75074

No part of this book may be reproduced in any form or by any means
without permission in writing from Wordware Publishing, Inc.

Printed in the United States of America

ISBN 1-55622-902-X

10 9 8 7 6 5 4 3 2 1

0307

Crystal Reports is a registered trademark of Crystal Decisions, Inc. in the United States and/or other countries.
Names of Crystal Decisions products referenced herein are trademarks or registered trademarks of Crystal Decisions or its
Screen shots used in this book remain the property of their respective companies.
All brand names and product names mentioned in this book are trademarks or service marks of their respective companies.
Any omission or misuse (of any kind) of service marks or trademarks should not be regarded as intent to infringe on the
property of others. The publisher recognizes and respects all marks used by companies, manufacturers, and developers as a
means to distinguish their products.
This book is sold as is, without warranty of any kind, either express or implied, respecting the contents of this book and any
disks or programs that may accompany it, including but not limited to implied warranties for the book’s quality, performance,
merchantability, or fitness for any particular purpose. Neither Wordware Publishing, Inc. nor its dealers or distributors shall
be liable to the purchaser or any other person or entity with respect to any liability, loss, or damage caused or alleged to have
been caused directly or indirectly by this book.

All inquiries for volume purchases of this book should be addressed to Wordware

Publishing, Inc., at the above address. Telephone inquiries may be made by calling:

(972) 423-0090

Articles

Introduction to the DirectX High Level Shading Language 1

Craig Peeper and Jason L. Mitchell

Introduction to the vs_3_0 and ps_3_0 Shader Models 63

Nicolas Thibieroz, Kristof Beets, and Aaron Burton

Advanced Lighting and Shading with Direct3D 9 83

Michal Valient

Introduction to Different Fog Effects 151

Markus Nuebel

Shadow Mapping with Direct3D 9 181

Michal Valient

The Theory of Stencil Shadow Volumes 197

Hun Yen Kwoon

Shader Development Using RenderMonkey 279

Natalya Tatarchuk

Tips for Creating Shader-Friendly 3D Models 339

Gim Guan Chua

v

Contents

Preface xiii

About the Authors xvii

Introduction xxi

Introduction to the DirectX High Level Shading Language 1

Craig Peeper and Jason L. Mitchell

Introduction . 1
A Simple Example . 2
Assembly Language and Compile Targets. 4

Hardware Realities . 6
Compilation Failure . 6
The Command-line Compiler — fxc 7

Language Basics . 8
Keywords . 8
Data Types . 9
Type Modifiers . 12
Storage Class Modifiers 13
Initializers . 14
Working with Vectors . 14
Constructors . 15
Type Casting . 15
Structures . 17
Samplers . 17

Intrinsics . 19
Math Intrinsics . 20
Texture Sampling Intrinsics 23

Shader Inputs. 25
Uniform Input . 25
Varying Input . 27

Shader Outputs. 29
An Example Shader. 31
Optimization . 39

Matrix Data Type Usage 40

vii

Integer Data Type Usage 41
Flow Control and Performance 42
Importance of Input Type Declarations 44
Precision Issues (logp, expp, lit) 45
Using the ps_1_x Compile Targets 46
Strategy for Targeting ps_1_x 51

Integration into an Engine Using D3DX Effects 51
Effect Files . 52
The Effect API . 57

Integration into an Engine without Using D3DX Effects 58
The Constant Table . 59

SDK Updates . 61
Conclusion . 61
Acknowledgments . 61

Introduction to the vs_3_0 and ps_3_0 Shader Models 63

Nicolas Thibieroz, Kristof Beets, and Aaron Burton

Introduction . 63
Features Common to vs_3_0 and ps_3_0 64

Flexible Input and Output Declarations 64
Predication . 65
Static and Dynamic Flow Control 66
Arbitrary Swizzle . 69
Destination Write Masks on Texture Instructions 70

vs_3_0 Features . 71
Registers . 71
Instructions . 73
Texture Sampling. 73
Vertex Stream Frequency 76

ps_3_0 Features . 78
Registers . 78
Instructions . 80
Unlimited Texture Samples and Dependent Reads 82

Conclusion . 82
References . 82

Advanced Lighting and Shading with Direct3D 9 83

Michal Valient

Introduction . 83
Per-Pixel Phong . 84

Phong’s Lighting Equation 84
Vertex and Pixel Shaders 2.0 85
Vertex and Pixel Shaders 3.0 97

Per-pixel Environment Bump Mapping with Fresnel Term . . . 108
Mathematical Background 109

viii

Contents

Vertex Shader. 112
Pixel Shader 1.4 . 115
Pixel Shader 2.0 . 117
HLSL Version . 119

Background for Advanced Models 122
Spherical Coordinates 122
Roughness of a Surface 123
Masking and Shadowing 124

The Oren-Nayar Model 125
Shaders . 127
HLSL Version . 131

Cook-Torrance Model . 134
Shaders 2.0 . 136
Shaders 1.4 . 140
HLSL Version . 143
Quality Comparison 147

Conclusion . 148
References . 149

Introduction to Different Fog Effects 151

Markus Nuebel

Introduction . 151
The Theory behind Fog Calculations 152
Technique One: Linear Fog 154

Fog Equation . 154
Implementation. 155

Technique Two: Exponential Fog 157
Fog Equation . 158
Implementation. 159

Technique Three: Exponential Squared Fog. 162
Fog Equation . 163
Implementation. 164

Technique Four: Layered Fog 166
Theory and Equations. 167
Implementation. 168

Technique Five: Animated Fog 174
Theory and Equations. 175
Implementation. 176

Conclusion . 178
References . 179

Shadow Mapping with Direct3D 9 181

Michal Valient

Introduction . 181
Shadow Algorithm. 182

ix

Contents

Depth Bias Problem . 183
Shadow Map Filtering . 185
Shaders for Shadow Map Creation. 187
Shaders for Final Rendering 188
Conclusion . 194
References . 195

The Theory of Stencil Shadow Volumes 197

Hun Yen Kwoon

Introduction . 197
Shadow Volume Concept 199

Depth-pass (z-pass). 201
Depth-fail (z-fail) . 205

Problems and Solutions 209
Finite Shadow Cover 209
Ghost Shadow . 210
View Frustum Clipping 212

Implementation on CPU 220
How It Is Done . 220
Silhouette Determination 221
Forming the Shadow Volume 225
Shadow Volume Capping 231
Depth-pass Stenciling Operations (DepthPassCPU). 233
Depth-fail Stenciling Operations (DepthFailCPU). 238
Rendering Shadow Volume Capping 241

Implementation on GPU (Shaders) 243
How It Is Done . 244
Preprocessing of Data 245
Forming Shadow Volume in Shaders 249
Vertex Shader Implementation (FiniteGPU). 250
Vertex Shader Implementation (InfiniteGPU) 256
Better with Shaders? 260

DirectX 9 HLSL Samples 262
Efficiency and Robustness 267

Use Less for More . 267
Cheat Whenever You Can 269
Fighting the Invisible 270
Scene Management Inside and Out 271
Always a Good Switch 275
Mix and Match . 275

The End. 275
References . 276

x

Contents

Shader Development Using RenderMonkey 279

Natalya Tatarchuk

Introduction . 279
Overview of the IDE . 281
Creation of Basic Illumination Effect 282
Run-Time Database Overview 283

Workspace View . 285
Variable Creation and Management 286
Predefined RenderMonkey Variables. 288
Stream Mapping Module 290
Model Management 293
Managing Effects . 294

Pixel and Vertex Shaders 295
Editing Shaders . 296
Vertex Shader Setup and Editing. 298
Compiling Your Shaders 302
Output Window . 302
Shader Assembly or Compilation Errors 302
Editing Assembly . 303
Pixel Shader Setup and Editing 306
Preview Window . 308
Editing Variables . 310

Render State Block Management. 314
Texturing in RenderMonkey 317

Texture Objects . 318
Using Textures with HLSL Shaders 322

Rendering to a Texture . 324
Render Passes . 324
Renderable Texture Support 325

Editing a Renderable Texture 331
Editing a Render Target 332

Artist Editor . 332
Editing Variables in the Artist Editor Module 334

Summary . 337

Tips for Creating Shader-Friendly 3D Models 339

Gim Guan Chua

Generating Suitable Texture Coordinates 340
The Influence of “Vertex Weight” 341
Problems with Non-Convex Surfaces 343
Conclusion . 345

Index 347

xi

Contents

Preface

After the tremendous success of Direct3D ShaderX: Vertex and Pixel

Shader Tips and Tricks, I planned to do another book with an entirely

new set of innovative ideas, techniques, and algorithms. The call for

authors led to many proposals from nearly 80 people who wanted to

contribute to the book. Some of these proposals featured introduc-

tory material and others featured much more advanced themes.

Because of the large amount of material, I decided to split the arti-

cles into introductory pieces that are much longer but explain a lot of

groundwork and articles that assume a certain degree of knowledge.

This idea led to two books:

ShaderX2: Introductions & Tutorials with DirectX 9

ShaderX2: Shader Programming Tips & Tricks with DirectX 9

The first book (this one) helps the reader get started with shader

programming, whereas the second book features tips and tricks that

an experienced shader programmer will benefit from.

As with Direct3D ShaderX, Javier Izquierdo Villagrán

(nurbs1@jazzfree.com) prepared the drafts for the cover design of

both books with in-game screen shots from Aquanox 2, which were

contributed by Ingo Frick, the technical director of Massive

Development.

A number of people have enthusiastically contributed to both

books:

Wessam Bahnassi

Andre Chen

Muhammad Haggag

Kenneth L. Hurley

Eran Kampf

xiii

Brian Peltonen

Mark Wang

Additionally, the following ShaderX2 authors proofread several arti-

cles each:

Dean Calver

Nicolas Capens

Tom Forsyth

Shawn Hargreaves

Jeffrey Kiel

Hun Yen Kwoon

Markus Nuebel

Michal Valient

Oliver Weichhold

These great people spent a lot of time proofreading articles, propos-

ing improvements, and exchanging e-mails with other authors and

myself. Their support was essential to the book development pro-

cess, and their work led to the high quality of the books. Thank you!

Another big thank you goes to the people in the Microsoft

Direct3D discussion group (http://DISCUSS.MICROSOFT.COM/

archives/DIRECTXDEV.html). They were very helpful in answering

my numerous questions.

As with Direct3D ShaderX, there were some driving spirits who

encouraged me to start this project and hold on through the seven

months it took to complete it:

Dean Calver (Eclipse)

Jason L. Mitchell (ATI Research)

Natasha Tatarchuk (ATI Research)

Nicolas Thibieroz (PowerVR)

Carsten Wenzel (Crytek)

Additionally, I have to thank Thomas Rued from DigitalArts for invit-

ing me to the Vision Days in Copenhagen, Denmark, and for the

great time I had there. I would like to thank Matthias Wloka and

Randima Fernando from nVidia for lunch at GDC 2003. I had a great

time.

xiv

Preface

As usual, the great team at Wordware made the whole project

happen: Jim Hill, Wes Beckwith, Heather Hill, Beth Kohler, and

Paula Price took over after I sent them hundreds of megabytes of

data.

There were other numerous people involved in this book project

that I have not mentioned. I would like to thank them here. It was a

pleasure working with so many talented people.

Special thanks goes to my wife, Katja, and our daughter, Anna,

who spent a lot of evenings and weekends during the last seven

months without me, and to my parents, who always helped me to

believe in my strength.

— Wolfgang F. Engel

P.S.: Plans for an upcoming project named ShaderX3 are already in

progress. Any comments, proposals, and suggestions are highly

welcome (wolf@shaderx.com).

xv

Preface

About the Authors

Kristof Beets (kristof.beets@powervr.com)

Kristof took his first steps in the 3D world by running a technical 3D

fan site, covering topics such as the differences between traditional

and tile-based rendering technologies. This influenced his electrical

engineering studies in such a way that he wrote his thesis about

wavelet compression for textures in Direct3D, a paper that won the

Belgian Barco Prize. He continued his studies, obtaining a master’s

degree in artificial intelligence. In the meantime he worked as a

technical editor for Beyond3D, writing various technical articles

about 3D hardware, effects, and technology. As a freelance writer he

wrote the “FSAA Explained” document for 3Dfx Interactive to

explain the differences between various types of full-screen

anti-aliasing. This document resulted in a full-time job offer at 3Dfx.

Currently he is working as a developer relations engineer for

PowerVR Technologies, which includes research into new graphical

algorithms and techniques.

Aaron Burton (aaron.burton@powervr.com)

Aaron has been a developer relations engineer at PowerVR Technol-

ogies since he received his Honours degree in information systems

engineering in 1998. His first computer was a VIC 20, though his fas-

cination for 3D graphics began with the Atari ST. At PowerVR he has

been able to indulge this interest by developing a variety of demos,

benchmarks, and debug/performance tools, and supporting develop-

ers in creating faster and better games. When he’s not climbing, he

works on projects such as ray-tracing and real-time 3D demos.

Gim Guan Chua (ggchua@mail.com)

Blackbox Technologies is an experimental platform for innovative

usage of interactive 3D. It uses OpenGL and a component-based

xvii

software architecture to add programmable behaviors (and proper-

ties) to generic 3D objects, and lets them exist without a 2D window

frame. Creator Gim Guan Chua is a freelance graphics programmer

based in Singapore. He has been developing 3D applications for more

than six years and likes to dabble in 3D modeling in his spare time.

His web site is http://toybox.150m.com.

Wolfgang F. Engel (wolfgang.engel@shaderx.com)

Wolfgang is the editor and co-author of Direct3D ShaderX: Vertex and

Pixel Shader Tips and Tricks, the author of Beginning Direct3D Game

Programming, and a co-author of OS/2 in Team, for which he contrib-

uted the introductory chapters on OpenGL and DIVE. Wolfgang has

written several articles in German journals on game programming

and many online tutorials that were published on www.gamedev.net

and his own web site, www.direct3d.net. During his career in the

game industry he built up two game development units with four and

five people that published six online games for the biggest European

TV show, Wetten das..?. As a member of the board or as a CEO of dif-

ferent companies, he was responsible for several game projects.

Hun Yen Kwoon (ykhun@PacketOfMilk.com)

Hun Yen Kwoon is an electrical engineering graduate from the

National University of Singapore. After spending 16 years in the edu-

cation system, he decided he wanted to be a programmer more than

an electrical engineer. He promptly joined an IT business solutions

company and developed an online debit system for a local bank

before realizing that Java is boring. He is now working as a software

engineer with Silicon Illusions in Singapore. His work involves 3D

visualization software engineering, SSE/SSE2, OpenGL, and

Direct3D. Recently he has also been fiddling with game networking

architecture and dead-reckoning techniques. What kind of work can

be more exciting?

Jason L. Mitchell (JasonM@ati.com)

Jason is the team lead of the 3D Application Research Group at ATI

Research, makers of the Radeon family of graphics processors.

Working on the Microsoft campus in Redmond, Jason has worked

with Microsoft for several years to define key new Direct3D

xviii

About the Authors

features. Prior to working at ATI, Jason did work in human eye

tracking for human interface applications at the University of

Cincinnati, where he received his master’s degree in electrical

engineering in 1996. He received a bachelor’s degree in computer

engineering from Case Western Reserve University in 1994. In addi-

tion to this book’s article on HLSL programming and an article on

advanced image processing for ShaderX2: Shader Programming Tips

& Tricks with DirectX 9, Jason has written for the Game Pro-

gramming Gems books, Game Developer magazine, Gamasutra.com,

and academic publications on graphics and image processing. He

regularly presents at graphics and game development conferences

around the world. His home page can be found at

http://www.pixelmaven.com/jason/.

Markus Nuebel (markus.nuebel@t-online.de)

Markus holds a master’s degree in computer science and has been

programming professionally for over eight years. Several years ago

he discovered his passion for graphics and game programming. He

has been into shader programming since nVidia launched cg and

spends every free minute expanding his knowledge of interesting

graphic programming algorithms.

Craig Peeper (CraigP@microsoft.com)

Craig Peeper is the lead developer for D3DX at Microsoft and has

been on the team since DirectX 7. D3DX provides user-mode func-

tionality for Direct3D, including mesh optimization, texture

processing, and the High Level Shading Language compiler/runtime.

Prior to his work on D3DX, Craig worked in Microsoft Graphics

Research.

Natasha Tatarchuk (Natasha@ati.com)

Natasha Tatarchuk is a software engineer working in the 3D

Application Research Group at ATI Research, where she is the pro-

gramming lead for the RenderMonkey IDE project. She has been in

the graphics industry for over six years, working on 3D modeling

applications and scientific visualization prior to joining ATI. Natasha

graduated from Boston University with a bachelor’s degree in

xix

About the Authors

computer science, a bachelor’s degree in mathematics, and a minor

in visual arts.

Nicolas Thibieroz (nicolas.thibieroz@powervr.com)

Like many kids of his generation, Nicolas Thibieroz discovered video

games on the Atari VCS 2600. He quickly became fascinated by the

mechanics behind those games, and started programming on the C64

and Amstrad CPC before moving on to the PC world. Nicolas real-

ized the potential of real-time 3D graphics while playing Ultima

Underworld. This game inspired him in such a way that both his

school placement and final year projects were based on 3D computer

graphics. After obtaining a bachelor’s degree in electronic engineer-

ing in 1996 he joined PowerVR Technologies where he is now

responsible for developer relations. His duties include supporting

game developers, writing test programs and demos, and generally

keeping up to date with the latest 3D technology.

Michal Valient (valiant@host.sk)

Michal received a degree in computer graphics at the Faculty of

Mathematics, Physics and Informatics, Comenius University,

Slovakia, in June 2003 after finishing his master’s thesis about spe-

cial effects for computer games. He is continuing with Ph.D. studies

at the university. Previously he worked as director of development

for a bigger company, but the call of real-time rendering was too

strong and now he is fully concentrated in this area. Michal

currently works for Caligari Corporation. His home page is at

http://www.dimension3.host.sk.

xx

About the Authors

Introduction

This book is a collection of articles that explain the foundations of

shader programming, from the High Level Shading Language and

version 3.0 shader models to shadow mapping and stencil shadow

volumes. The following provides a brief overview of these articles:

Jason L. Mitchell and Craig Peeper, one of the creators of HLSL

and the compiler, have written the best introduction to HLSL there

is in “Introduction to the DirectX High Level Shading Language.”

Because it comes from the official source, this article covers every-

thing that an HLSL programmer needs and a lot more.

The vs_3_0 and ps_3_0 shader models will be available in third-

generation shader graphics hardware. These shader versions are

much more flexible and powerful than the previous versions, offering

vertex texturing capabilities, predication, static and dynamic flow

control, vertex stream frequency, and much more. Nicolas Thibieroz,

Kristof Beets, and Aaron Burton from PowerVR have written an

introduction to this shader model that explains every new feature

and includes a source snippet.

Michal Valient’s article “Advanced Lighting and Shading with

Direct3D 9” covers some more advanced lighting models including

Phong, Oren-Nayar, and Cook-Torrance. He implements these algo-

rithms with ps_1_4, ps_2_0, ps_3_0, and HLSL. This is the most

extensive treatment of this topic available.

There are several different ways to use fog to produce a specific

mood in games. Markus Nuebel shows all possible ways to imple-

ment fog in a way that is easy to understand. The six example

programs make using fog as easy as possible.

Michal Valient’s second contribution is the article “Shadow

Mapping with Direct3D 9.” With the release of DirectX 9 and its

floating-point textures, using shadow maps for shadows leads to a

xxi

much better visual experience. Michal shows how to implement

shadow mapping in the most efficient and most flexible way and

gives tips on how to debug an application.

The most comprehensive treatment of shadow volumes available

is contained in the article “The Theory of Stencil Shadow Volumes”

by Hun Yen Kwoon. It covers every aspect of the various ways of

programming shadow volumes. Six example programs give you a

head start on implementing shadow volumes in minutes.

ATI’s RenderMonkey is a shader development tool that helps to

reduce the workload of programmers and artists. One of its creators,

Natalya Tatarchuk, explains how to use it and discusses its feature

set.

A topic that is seldom covered elsewhere is the necessity of cre-

ating geometric data in the art pipeline that is shader-friendly. Gim

Guan Chua has written an article describing this task and provides a

step-by-step explanation of how to do it.

xxii

Introduction

Introduction to the DirectX
High Level Shading

Language

Craig Peeper and Jason L. Mitchell

Introduction

One of the most empowering new components of DirectX 9 is the

High Level Shading Language (HLSL). Using this standard high-

level language, shader writers can think at the algorithm level

while implementing shaders rather than worry about meddlesome

hardware details, such as register allocation, register read-port

limits, instruction co-issuing, and so on. In addition to freeing the

developer from hardware details, the HLSL also has all of the

usual advantages of a high-level language, such as easy code

reuse, improved readability, and the presence of an optimizing

compiler. Many of the chapters in this book and in ShaderX2:

Shader Programming Tips & Tricks with DirectX 9 (also from

Wordware Publishing) utilize shaders that are written in HLSL.

As a result, it will be much easier for you to understand and work

with those shaders after reading this introductory chapter.

In this chapter, we outline the basic structure of the language

itself, as well as strategies for integrating HLSL shaders into your

application.

1

A Simple Example

Before presenting an exhaustive description of the HLSL, let’s

first have a look at one HLSL vertex shader and one HLSL pixel

shader taken from an application that renders simple procedural

wood. The first HLSL shader shown below is a simple vertex

shader:

float4x4 view_proj_matrix;

float4x4 texture_matrix0;

struct VS_OUTPUT

{

float4 Pos : POSITION;

float3 Pshade : TEXCOORD0;

};

VS_OUTPUT main (float4 vPosition : POSITION)

{

VS_OUTPUT Out = (VS_OUTPUT) 0;

// Transform position to clip space

Out.Pos = mul (view_proj_matrix, vPosition);

// Transform Pshade

Out.Pshade = mul (texture_matrix0, vPosition);

return Out;

}

The first two lines of this shader declare a pair of 4×4 matrices

called view_proj_matrix and texture_matrix0. Following these

global-scope matrices, a structure is declared. This VS_OUTPUT

structure has two members: a float4 called Pos and a float3

called Pshade.

The main function for this shader takes a single float4 input

parameter and returns a VS_OUTPUT structure. The float4 input

vPosition is the sole input to the shader, while the returned

VS_OUTPUT struct defines this vertex shader’s output. For now,

don’t worry about the POSITION and TEXCOORD0 keywords following

2 Introduction to the DirectX High Level Shading Language

these parameters and structure members. These are called

semantics, and their meaning is discussed later in this chapter.

Looking at the actual code body of the main function, you can

see that an intrinsic function called mul is used to multiply the

input vPosition vector by the view_proj_matrix matrix. This

intrinsic is commonly used in vertex shaders to perform vector-

matrix multiplication. In this case, vPosition is treated as a col-

umn vector, since it is the second parameter to mul. If the

vPosition vector were the first parameter to mul, it would be

treated as a row vector. (The mul intrinsic and other intrinsics are

discussed in more detail later in the chapter.) Following the trans-

formation of the input position vPosition to clip space, vPosition

is multiplied by another matrix called texture_matrix0 to generate

a 3D texture coordinate. The results of both of these transforma-

tions have been written to members of a VS_OUTPUT structure,

which is returned. A vertex shader must always output a clip-

space position at a minimum. Any additional values that are output

from the vertex shader are interpolated across the rasterized poly-

gon and available as inputs to the pixel shader. In this case, the 3D

Pshade is passed from the vertex to the pixel shader via an

interpolator.

Below, we see a simple HLSL procedural wood pixel shader.

This pixel shader, which is written to work with the vertex shader

that we just described, will be compiled for the ps_2_0 target.

float4 lightWood; // xyz == Light Wood Color

float4 darkWood; // xyz == Dark Wood Color

float ringFreq; // ring frequency

sampler PulseTrainSampler;

float4 hlsl_rings (float4 Pshade : TEXCOORD0) : COLOR

{

float scaledDistFromZAxis = sqrt(dot(Pshade.xy, Pshade.xy)) * ringFreq;

float blendFactor = tex1D (PulseTrainSampler, scaledDistFromZAxis);

return lerp (darkWood, lightWood, blendFactor);

}

Introduction to the DirectX High Level Shading Language 3

The first few lines of this shader are the declaration of a pair of

floating-point 4-tuples and one scalar float at global scope. Fol-

lowing these variables, a sampler called PulseTrainSampler is

declared. Samplers are discussed in more detail later in the chap-

ter, but for now you can just think of a sampler as a window into

video memory with an associated state defining things like filter-

ing and texture coordinate addressing modes. With variable and

sampler declarations out of the way, we can move on to the body

of the shader code. You can see that there is one input parameter

called Pshade, which is interpolated across the polygon. This is the

value that was computed at each vertex by the vertex shader

above. In the pixel shader, the Cartesian distance from the

shader-space z-axis is computed, scaled, and used as a 1D texture

coordinate to access the texture bound to the PulseTrainSampler.

The scalar color that is returned from the tex1D() sampling func-

tion is used as a blend factor to blend between the two constant

colors (lightWood and darkWood) declared at the global scope of the

shader. The 4D vector result of this blend is the final output of the

pixel shader. All pixel shaders must return a 4D RGBA color at a

minimum. We discuss additional optional pixel shader outputs

later in the chapter.

Assembly Language and Compile Targets

Now that we have seen a few HLSL shaders, we can discuss

briefly how the language relates to Direct3D, D3DX, assembly

shader models, and your application. Shaders were first added to

Direct3D in DirectX 8.0. At that time, several virtual shader

machines were defined — each roughly corresponding to a partic-

ular graphics processor produced by each of the top 3D graphics

hardware vendors. For each of these virtual shader machines, an

assembly language was designed. In DirectX 8.0 and DirectX 8.1,

programs written to these shader models (named vs_1_1 and

ps_1_1 through ps_1_4) were relatively short and generally writ-

ten by developers directly in the appropriate assembly language.

As shown on the left side of Figure 1, the application passes this

4 Introduction to the DirectX High Level Shading Language

human-readable assembly language code to the D3DX library via

D3DXAssembleShader() and gets back a binary representation of the

shader, which would in turn be passed to Direct3D via Create-

PixelShader() or CreateVertexShader(). For more on the details of

the legacy assembly shader models, please refer to the many

resources available online and offline, including Direct3D ShaderX:

Vertex and Pixel Shader Tips and Tricks and the DirectX SDK.

As shown on the right side of Figure 1, the situation in DirectX 9

is very similar in that the application passes an HLSL shader to

D3DX via the D3DXCompileShader() API and gets back a binary

representation of the compiled shader, which is in turn passed to

Direct3D via CreatePixelShader() or CreateVertexShader(). The

binary asm code that’s generated is only a function of the compile

target chosen, not the specific graphics device in the user’s or

developer’s system. That is, the binary asm that is generated is

vendor-neutral and will be the same no matter where you compile

or run it. In fact, the Direct3D runtime itself does not know any-

thing about HLSL — only the binary assembly shader models.

This is nice because it means that the HLSL compiler can be

updated independently of the Direct3D runtime. In fact, between

press time and the release of the first printing of this book in late

summer 2003, Microsoft plans to release a DirectX SDK update,

which will contain an updated HLSL compiler.

Introduction to the DirectX High Level Shading Language 5

Figure 1: Use of D3DX for assembly and compilation in DirectX 8 and DirectX 9

In addition to the development of the HLSL compiler in

D3DX, DirectX 9 also introduced additional assembly-level shader

models to expose the functionality of the latest generation of 3D

graphics hardware. Application developers can feel free to work

directly in the assembly languages for these new models (vs_2_0,

vs_3_0, ps_2_0, and ps_3_0), but we expect most developers to

move wholesale to HLSL for shader development.

Hardware Realities

Of course, just because you can write an HLSL program to

express a particular shading algorithm doesn’t mean that it will

run on a given piece of hardware. As we discussed earlier, an

application calls D3DX to compile an HLSL shader to binary asm

via the D3DXCompileShader() API. One of the parameters to this

API entrypoint is a parameter that defines which of the assembly

language models (or compile targets) the HLSL compiler should

use to express the final shader code. If an application is doing

HLSL shader compilation at run time (as opposed to offline), the

application could examine the capabilities of the Direct3D device

and select the compile target to match. If the algorithm expressed

in the HLSL shader is too complex to execute on the selected

compile target, compilation will fail. This means that while HLSL

is a huge benefit to shader development, it does not free develop-

ers from the realities of shipping games to a target audience that

owns graphics devices of varying capabilities. As a game devel-

oper, you still have to manage a tiered approach to your visuals,

writing better shaders for better graphics cards and more basic

versions for older cards. With well-written HLSL, however, this

burden can be eased significantly.

Compilation Failure

As mentioned above, failure of a given HLSL shader to compile for

a particular compile target is an indication that the shader is too

complex for the compile target. This can mean that the shader

either requires too many resources or it requires some capability,

6 Introduction to the DirectX High Level Shading Language

such as dynamic branching, that is not supported by the chosen

compile target. For example, an HLSL shader could be written to

access a given texture map six times in a shader. If this shader is

compiled for the ps_1_1 compile target, compilation will fail since

the ps_1_1 model supports only four textures. Another common

source of compilation failure is exceeding instruction count of the

chosen compile target. An algorithm expressed in HLSL may sim-

ply require too many instructions to be executed by a given

compile target.

It is important to note that the choice of compile target does

not restrict the HLSL syntax that a shader writer can use. For

example, a shader writer can use for loops, subroutines, if-else

statements, etc., and still compile for targets that don’t natively

support looping, branching, or if-else statements. In such cases,

the compiler will unroll loops, inline function calls, and execute

both branches of an if-else statement, selecting the proper result

based upon the original value used in the if-else statement. Of

course, if the resulting shader is too long or otherwise exceeds

the resources of the compile target, compilation will fail.

The Command-line Compiler — fxc

Rather than compile HLSL shaders using D3DX on the cus-

tomer’s machine at application load time or at first use, many

developers choose to compile their shaders from HLSL to binary

asm before they even ship. This keeps their HLSL source away

from prying eyes. It also ensures that all of the shaders their app

runs will have gone through their internal quality assurance pro-

cess. A convenient utility that allows developers to compile

shaders offline is the fxc command-line compiler, which is pro-

vided in the DirectX 9 SDK. This utility has a number of

convenient options that you can use to not only compile your

shaders on the command line but also generate disassembled code

for the specified compile target. Studying the disassembled output

can be very educational during development if you want to opti-

mize your shaders or just generally get to know the virtual shader

Introduction to the DirectX High Level Shading Language 7

machine’s capabilities at a more detailed level. These com-

mand-line options are summarized in the following table.

Command-line

Option

Description

-T target compile target (default: vs_2_0)

-E name entrypoint name (default: main)

-Od disable optimizations

-Vd disable validation

-Zi enable debugging information

-Zpr pack matrices in row-major order

-Zpc pack matrices in column-major order

-Fo file output object file

-Fc file output listing of generated code

-Fh file output header containing generated code

-D id = text define macro

-nologo suppress copyright message

Now that you understand the context in which the HLSL compiler

can be used for shader development, let’s discuss the actual

mechanics of the language. As we progress, it is important to keep

the notion of a compile target and the varying capabilities of the

underlying assembly shader models in mind.

Language Basics

Now that you have a sense of what HLSL vertex and pixel shaders

look like and how they interact with the low-level assembly

shaders, we can discuss some of the details of the language itself.

Keywords

Keywords are predefined identifiers that are reserved for the

HLSL language and cannot be used as identifiers in your program.

Keywords marked with an asterisk (*) are case insensitive.

asm* bool compile const

decl* do double else

8 Introduction to the DirectX High Level Shading Language

extern false float for

half if in inline

inout int matrix* out

pass* pixelshader* return sampler

shared static string* struct

technique* texture* true typedef

uniform vector* vertexshader* void

volatile while

The following keywords are currently unused but reserved for

potential future use:

auto break case catch

char class compile const

const_cast continue default delete

dynamic_cast enum explicit friend

goto long mutable namespace

new operator private protected

public register reinterpret_cast short

signed sizeof static_cast switch

template this throw try

typename union unsigned using

virtual

Data Types

The HLSL has support for a variety of data types, from simple

scalars to more complex types, such as vectors and matrices.

Scalar Types

The language supports the following scalar data types:

Data Type Representable Values

bool true or false

int 32-bit signed integer

half 16-bit floating-point value

float 32-bit floating-point value

double 64-bit floating-point value

Introduction to the DirectX High Level Shading Language 9

If you are already familiar with the assembly-level programming

models, you should know that graphics processors do not cur-

rently have native support for all of these data types. As a result,

integers may need to be emulated using floating-point hardware.

This means that integer operations that go outside the range of

integers that can be expressed as floats on these platforms are not

guaranteed to function as expected. Additionally, not all target

platforms have native support for half or double values. If the tar-

get platform does not, these will be emulated using float.

Vector Types

You will often find yourself declaring vector variables in your

HLSL shaders. There are a variety of ways that these vectors can

be declared, including the following:

Vector Declared as

vector A vector of dimension 4; each component is of type
float.

vector<type, size> A vector of dimension size; each component is of
scalar type type.

The most common way that you see shader authors declare vec-

tors, however, is by using the name of a type followed by an

integer from 2 to 4. To declare a 4-tuple of floats, for example,

you could use any of the following vector declarations:

float4 fVector0;

float fVector1[4];

vector fVector2;

vector <float, 4> fVector3;

To declare a 3-tuple of bools, for example, you could use any of the

following declarations:

bool3 bVector0;

bool bVector1[3];

vector <bool, 3> bVector2;

10 Introduction to the DirectX High Level Shading Language

Once you have defined a vector, you may access its individual

components by using the array access syntax or a swizzle. In the

swizzle case, the components must come from either the {x, y, z,

w} or {r, g, b, a} namespace (but not both). For example:

float4 pos = {3.0f, 5.0f, 2.0f, 1.0f};

float value0 = pos[0]; // value0 is 3.0f

float value1 = pos.x; // value1 is 3.0f

float value2 = pos.g; // value2 is 5.0f

float2 vec0 = pos.xy; // vec0 is {3.0f, 5.0f}

float2 vec1 = pos.ry; // INVALID because of bad swizzle

It should be noted that the ps_2_0 and lower pixel shader models

do not have native support for arbitrary swizzles. Hence, concise

high-level code that uses swizzles can result in fairly nasty binary

asm when compiling to these targets. You should familiarize your-

self with the native swizzles available in these assembly models.

Matrix Types

Another very common type of variable that you will find yourself

using in HLSL shaders is matrices, which are 2D arrays of data.

Like scalars and vectors, matrices may be composed of any of the

basic data types: bool, int, half, float, or double. Matrices may be

of any size, but you will typically find shader writers using matri-

ces with up to four rows and columns. Recall that the example

vertex shader shown at the beginning of the chapter declared two

4×4 float matrices at global scope:

float4x4 view_proj_matrix;

float4x4 texture_matrix0;

Naturally, other dimensions of matrices can be used. For example,

we could declare a floating-point matrix with three rows and four

columns in a variety of ways:

float3x4 mat0;

matrix<float, 3, 4> mat1;

Like vectors, the individual elements of matrices can be accessed

using array or structure/swizzle syntax. For example, the

Introduction to the DirectX High Level Shading Language 11

following array indexing syntax can be used to access the top-left

element of the matrix view_proj_matrix:

float fValue = view_proj_matrix[0][0];

There is also a structure syntax defined for access to and swiz-

zling of matrix elements. For zero-based row-column position, you

can use any of the following:

_m00, _m01, _m02, _m03

_m10, _m11, _m12, _m13

_m20, _m21, _m22, _m23

_m30, _m31, _m32, _m33

For one-based row-column position, you can use any of the

following:

_11, _12, _13, _14

_21, _22, _23, _24

_31, _32, _33, _34

_41, _42, _43, _44

Matrices can also be accessed using array notation. For example:

float2x2 fMat = {3.0f, 5.0f, // row 1

2.0f, 1.0f}; // row 2

float value0 = fMat[0]; // value0 is 3.0f

float value1 = fMat._m00; // value1 is 3.0f

float value2 = fMat._12 // value2 is 5.0f

float value3 = fMat[1][1] // value3 is 1.0f

float2 vec0 = fMat._21_22; // vec0 is {2.0f, 1.0f}

float2 vec1 = fMat[1]; // vec1 is {2.0f, 1.0f}

Type Modifiers

There are a couple of optional type modifiers in the HLSL that

you may want to use in your shaders. The familiar const type

modifier is used to specify a variable whose value cannot be

changed by the shader code. Using such a variable on the left side

of an assignment (i.e., as an lval) will result in a compilation error.

12 Introduction to the DirectX High Level Shading Language

The row_major and col_major type modifiers can be used to

specify the expected layout of a matrix within the hardware con-

stant store. The row_major type modifier indicates that each row of

the matrix will be stored in a single constant register. Likewise,

using col_major indicates that each column of the matrix will be

stored in a single constant register. Column major is the default.

Storage Class Modifiers

Storage class modifiers inform the compiler about the intended

scope and lifetime of a given variable. These modifiers are

optional and may appear in any order, as long as they appear

before the variable type.

As in C, a variable may be declared as static or extern.

(These two modifiers are mutually exclusive.) At global scope, the

static storage class modifier indicates that the variable is only to

be accessed by the shader and not by the application via the API.

Any non-static variable that is declared at global scope may be

modified by the application through the API. As with C, using the

static modifier at local scope indicates that the variable contains

data that is to persist between invocations of the declaring

function.

The extern modifier can be used on a global variable to indi-

cate that it can be modified from outside of the shader via the API.

This is redundant, however, as this is the default behavior for vari-

ables declared at global scope.

The shared modifier is used to specify that a given global vari-

able is to be shared between effects.

A variable that is uniform is assumed to have been set exter-

nally to the HLSL shader (i.e., via the Set*ShaderConstant*()

API). Global variables are treated as if they were declared uniform.

Such variables are not assumed to be const, however, as their val-

ues can be modified in the shader.

For example, say you declare the following variables at global

scope:

Introduction to the DirectX High Level Shading Language 13

extern float translucencyCoeff;

const float gloss_bias;

static float gloss_scale;

float diffuse;

The variables diffuse and translucencyCoeff are settable by the

Set*ShaderConstant*() API and can be modified by the shader

itself. The const variable gloss_bias is settable by the Set*Shader-

Constant*() API but cannot be modified in the shader code.

Finally, the static variable gloss_scale is not settable by the

Set*ShaderConstant*() API but can be modified within the shader

only.

Initializers

As we have shown in some of the preceding examples, it is possi-

ble to initialize variables at declaration time in the same manner

used in C. For example:

float2x2 fMat = {3.0f, 5.0f, // row 1

2.0f, 1.0f}; // row 2

float4 vPos = {3.0f, 5.0f, 2.0f, 1.0f};

float fFactor = 0.2f;

Working with Vectors

In HLSL, there are a few “gotchas” to look out for when perform-

ing math on vectors. Fortunately, most of them are quite intuitive,

given that we are writing shaders for 3D graphics. For example,

standard binary operators are defined to work per component:

float4 vTone = vBrightness * vExposure;

Assuming vBrightness and vExposure are both of type float4, this

is equivalent to:

float4 vTone;

vTone.x = vBrightness.x * vExposure.x;

vTone.y = vBrightness.y * vExposure.y;

vTone.z = vBrightness.z * vExposure.z;

vTone.w = vBrightness.w * vExposure.w;

14 Introduction to the DirectX High Level Shading Language

Note that this is not a dot product between the 4D vectors

vBrightness and vExposure. Additionally, multiplying matrix vari-

ables in this way does not result in a matrix multiply. Dot products

and matrix multiplies are applied via the intrinsic function mul(),

which we discuss later in the chapter.

Constructors

Another language feature that you often see in HLSL shaders is

the constructor, which is similar to C++ but has some enhance-

ments to deal with complex data types. Example uses of

constructors include:

float3 vPos = float3(4.0f, 1.0f, 2.0f);

float fDiffuse = dot(vNormal, float3(1.0f, 0.0f, 0.0f));

float4 vPack = float4(vPos, fDiffuse);

Constructors are commonly used when a shader writer wants to

temporarily define a quantity with literal values (as in

dot(vNormal, float3(1.0f, 0.0f, 0.0f)) above) or when a shader

writer wants to explicitly pack smaller data types together (as in

float4(vPos, fDiffuse) above). In this case, the float4 construc-

tor takes in a float3 and a float and returns a float4 with the data

packed together.

Type Casting

To aid in shader writing and the efficiency of the generated code,

it is a good idea to be familiar with HLSL’s type casting behavior.

Type casting often happens in order to promote or demote a given

variable to match a variable to which it is being assigned. For

example, in the following case, a literal float 0.0f is being cast to

a float4 {0.0f , 0.0f , 0.0f , 0.0f } to initialize vResult.

float4 vResult = 0.0f;

Similar casting can occur when assigning a higher dimensional

data type like a vector or matrix to a lower dimensional data type.

In these cases, the extra data is effectively omitted. For example,

we may write the following code:

Introduction to the DirectX High Level Shading Language 15

float3 vLight;

float fFinal, fColor;

fFinal = vLight * fColor;

In this case, vLight is cast to a float by using only the first com-

ponent in the multiply with the scalar float fColor. In this case,

fFinal is equal to vLight.x * fColor.

It is a good idea to be familiar with the following table of type

casting rules for HLSL:

Type of Cast Casting Behavior

Scalar-to-scalar Always valid. When casting from bool type to an integer or
floating-point type, false is considered to be zero and true is
considered to be one. When casting from an integer or
floating-point type to bool, a zero value is considered to be
false and a nonzero value is considered to be true. When
casting from a floating-point type to an integer type, the value
is rounded toward zero. This is the same truncation behavior
as in C.

Scalar-to-vector Always valid. This cast operates by replicating the scalar to fill
the vector.

Scalar-to-matrix Always valid. This cast operates by replicating the scalar to fill
the matrix.

Scalar-to-structure This cast operates by replicating the scalar to fill the structure.

Vector-to-scalar Always valid. This selects the first component of the vector.

Vector-to-vector The destination vector must not be larger than the source
vector. The cast operates by keeping the leftmost values and
truncating the rest. For the purposes of this cast, column
matrices, row matrices, and numeric structures are treated as
vectors.

Vector-to-matrix The size of the vector must be equal to the size of the matrix.

Vector-to-structure This is valid if the structure is not larger than the vector, and all
components of the structure are numeric.

Matrix-to-scalar Always valid. This selects the upper-left component of the
matrix.

Matrix-to-vector The size of the matrix must be equal to the size of the vector.

Matrix-to-matrix The destination matrix must not be larger than the source
matrix in both dimensions. The cast operates by keeping the
upper-left values and truncating the rest.

Matrix-to-structure The size of the structure must be equal to the size of the matrix,
and all components of the structure are numeric.

Structure-to-scalar The structure must contain at least one member.

16 Introduction to the DirectX High Level Shading Language

Type of Cast Casting Behavior

Structure-to-vector The structure must be at least the size of the vector. The first
components must be numeric, up to the size of the vector.

Structure-to-matrix The structure must be at least the size of the matrix. The first
components must be numeric, up to the size of the matrix.

Structure-to-object The structure must contain at least one member. The type of
this member must be identical to the type of the object.

Structure-to-structure The destination structure must not be larger than the source
structure. A valid cast must exist between all respective source
and destination components.

Structures

As we showed in the first example shader, it is often convenient to

be able to define structures in HLSL shaders. For example, many

shader writers will define an output structure in their vertex

shader code and use this structure as the return type from their

vertex shader’s main function. (It is less common to do this with a

pixel shader since most pixel shaders have only one float4 out-

put.) An example structure taken from the NPR Metallic shader

that we discuss later is shown below:

struct VS_OUTPUT

{

float4 Pos : POSITION;

float3 View : TEXCOORD0;

float3 Normal: TEXCOORD1;

float3 Light1: TEXCOORD2;

float3 Light2: TEXCOORD3;

float3 Light3: TEXCOORD4;

};

Structures may be declared for general use in an HLSL shader as

well. They follow the type casting rules outlined above.

Samplers

For each different texture map that you plan to sample in a pixel

shader, you must declare a sampler. Recall the hlsl_rings() shader

described earlier:

Introduction to the DirectX High Level Shading Language 17

float4 lightWood; // xyz == Light Wood Color

float4 darkWood; // xyz == Dark Wood Color

float ringFreq; // ring frequency

sampler PulseTrainSampler;

float4 hlsl_rings (float4 Pshade : TEXCOORD0) : COLOR

{

float scaledDistFromZAxis = sqrt(dot(Pshade.xy, Pshade.xy)) * ringFreq;

float blendFactor = tex1D (PulseTrainSampler, scaledDistFromZAxis);

return lerp (darkWood, lightWood, blendFactor);

}

In this shader, we declared a sampler called PulseTrainSampler at

global scope and passed it as the first parameter to the tex1D()

intrinsic function (we discuss intrinsics in the next section). An

HLSL sampler has a very direct mapping to the API concept of a

sampler and, in turn, to the actual silicon in the 3D graphics pro-

cessor, which is responsible for addressing and filtering textures.

A sampler must be defined for every texture map that you plan to

access in a given shader, but you may use a given sampler multi-

ple times in a shader. This usage is very common in image

processing applications, as discussed in ShaderX2: Shader Pro-

gramming Tips & Tricks with DirectX 9, since the input image is

often sampled multiple times with different texture coordinates to

provide data to a filter kernel expressed in shader code. For exam-

ple, the following shader uses the rasterizer to convert a height

map to a normal map with a pair of Sobel filters:

sampler InputImage;

float4 main(float2 topLeft : TEXCOORD0, float2 left : TEXCOORD1,

float2 bottomLeft : TEXCOORD2, float2 top : TEXCOORD3,

float2 bottom : TEXCOORD4, float2 topRight : TEXCOORD5,

float2 right : TEXCOORD6, float2 bottomRight : TEXCOORD7):

COLOR

{

// Take all eight taps

float4 tl = tex2D (InputImage, topLeft);

float4 l = tex2D (InputImage, left);

float4 bl = tex2D (InputImage, bottomLeft);

18 Introduction to the DirectX High Level Shading Language

float4 t = tex2D (InputImage, top);

float4 b = tex2D (InputImage, bottom);

float4 tr = tex2D (InputImage, topRight);

float4 r = tex2D (InputImage, right);

float4 br = tex2D (InputImage, bottomRight);

// Compute dx using Sobel operator:

//

// -1 0 1

// -2 0 2

// -1 0 1

float dX = -tl.a - 2.0f*l.a - bl.a + tr.a + 2.0f*r.a + br.a;

// Compute dy using Sobel operator:

//

// -1 -2 -1

// 0 0 0

// 1 2 1

float dY = -tl.a - 2.0f*t.a - tr.a + bl.a + 2.0f*b.a + br.a;

// Compute cross product and renormalize

float4 N = float4(normalize(float3(-dX, -dY, 1)), tl.a);

// Convert signed values from -1..1 to 0..1 range and return

return N * 0.5f + 0.5f;

}

This shader uses only one sampler, InputImage, but samples from

it eight times using the tex2D() intrinsic function.

Intrinsics

As mentioned in the preceding section, there are a number of

intrinsics built into the DirectX High Level Shading Language for

your convenience. Many intrinsics, such as mathematical func-

tions, are provided for convenience, while others, such as the

tex1D() and tex2D() functions mentioned above, are necessary for

accessing texture data via samplers.

Introduction to the DirectX High Level Shading Language 19

Math Intrinsics

The math intrinsics listed in the table below will be converted to

micro operations by the HLSL compiler. In some cases, such as

abs() and dot(), these intrinsics will map directly to single assem-

bly-level operations, while in other cases, such as refract() and

step(), they will map to multiple assembly instructions. There are

even a couple of cases, notably ddx(), ddy(), and fwidth(), that are

not supported for all compile targets. The math intrinsics are

shown below:

Intrinsic Description

abs(x) Absolute value (per component).

acos(x) Returns the arccosine of each component of x. Each
component should be in the range [–1, 1].

all(x) Tests if all components of x are nonzero.

any(x) Tests if any component of x is nonzero.

asin(x) Returns the arcsine of each component of x. Each

component should be in the range [–�/2, �/2].

atan(x) Returns the arctangent of x. The return values are in the

range [–�/2, �/2].

atan2(y, x) Returns the arctangent of y/x. The signs of y and x are used
to determine the quadrant of the return values in the range

[–�, �]. atan2 is well-defined for every point other than the
origin, even if x equals 0 and y does not equal 0.

ceil(x) Returns the smallest integer that is greater than or equal to
x.

clamp(x, min, max) Clamps x to the range [min, max].

clip(x) Discards the current pixel, if any component of x is less than
0. This can be used to simulate clip planes, if each
component of x represents the distance from a plane. This
is the intrinsic that you use when you want to generate an
asm texkill.

cos(x) Returns the cosine of x.

cosh(x) Returns the hyperbolic cosine of x.

cross(a, b) Returns the cross product of two 3D vectors a and b.

D3DCOLORtoUBYTE4(x) Swizzles and scales components of the 4D vector x to
compensate for the lack of UBYTE4 stream component
support in some hardware.

ddx(x) Returns the partial derivative of x with respect to the
screen-space x-coordinate.

20 Introduction to the DirectX High Level Shading Language

Intrinsic Description

ddy(x) Returns the partial derivative of x with respect to the
screen-space y-coordinate.

degrees(x) Converts x from radians to degrees.

determinant(m) Returns the determinant of the square matrix m.

distance(a, b) Returns the distance between two points a and b.

dot(a, b) Returns the dot product of two vectors a and b.

exp(x) Returns the base-e exponent e
x.

exp2(a) Base-2 exponent (per component).

faceforward(n, i, ng) Returns –n * sign(dot(i, ng)).

floor(x) Returns the greatest integer that is less than or equal to x.

fmod(a, b) Returns the floating-point remainder f of a / b such that a =
i * b + f, where i is an integer, f has the same sign as x,
and the absolute value of f is less than the absolute value
of b.

frac(x) Returns the fractional part f of x, such that f is a value
greater than or equal to 0 and less than 1.

frexp(x, out exp) Returns the mantissa and exponent of x. frexp returns the
mantissa, and the exponent is stored in the output
parameter exp. If x is 0, the function returns 0 for both the
mantissa and the exponent.

fwidth(x) Returns abs(ddx(x))+abs(ddy(x)).

isfinite(x) Returns true if x is finite; false otherwise.

isinf(x) Returns true if x is +INF or –INF; false otherwise.

isnan(x) Returns true if x is NAN or QNAN; false otherwise.

ldexp(x, exp) Returns x * 2exp.

len(v) Vector length.

length(v) Returns the length of the vector v.

lerp(a, b, s) Returns a + s(b – a). This linearly interpolates between a

and b, such that the return value is a when s is 0 and b

when s is 1.

log(x) Returns the base-e logarithm of x. If x is negative, the
function returns indefinite. If x is 0, the function returns
+INF.

log10(x) Returns the base-10 logarithm of x. If x is negative, the
function returns indefinite. If x is 0, the function returns
+INF.

log2(x) Returns the base-2 logarithm of x. If x is negative, the
function returns indefinite. If x is 0, the function returns
+INF.

max(a, b) Selects the greater of a and b.

Introduction to the DirectX High Level Shading Language 21

Intrinsic Description

min(a, b) Selects the lesser of a and b.

modf(x, out ip) Splits the value x into fractional and integer parts, each of
which has the same sign as x. The signed fractional portion
of x is returned. The integer portion is stored in the output
parameter ip.

mul(a, b) Performs matrix multiplication between a and b. If a is a
vector, it is treated as a row vector. If b is a vector, it is
treated as a column vector. The inner dimension a

columns

and b
rows

must be equal. The result has the dimension a
rows

× b
columns

.

normalize(v) Returns the normalized vector v / length(v). If the length of v

is 0, the result is indefinite.

pow(x, y) Returns x
y.

radians(x) Converts x from degrees to radians.

reflect(i, n) Returns the reflection vector v, given the entering ray
direction i and the surface normal n, such that v = i – 2 *
dot(i, n) * n.

refract(i, n, eta) Returns the refraction vector v, given the entering ray
direction i, the surface normal n, and the relative index of
refraction eta. If the angle between i and n is too great for
a given eta, refract returns (0,0,0).

round(x) Rounds x to the nearest integer.

rsqrt(x) Returns 1 / sqrt(x).

saturate(x) Clamps x to the range [0, 1].

sign(x) Computes the sign of x. Returns –1 if x is less than 0, 0 if x

equals 0, and 1 if x is greater than 0.

sin(x) Returns the sine of x.

sincos(x, out s, out c) Returns the sine and cosine of x. sin(x) is stored in the
output parameter s. cos(x) is stored in the output parameter
c.

sinh(x) Returns the hyperbolic sine of x.

smoothstep(min, max, x) Returns 0 if x < min. Returns 1 if x > max. Returns a
smooth Hermite interpolation between 0 and 1 if x is in the
range [min, max].

sqrt(x) Square root (per component).

step(a, x) Returns (x = a) ? 1 : 0.

tan(x) Returns the tangent of x.

tanh(x) Returns the hyperbolic tangent of x.

transpose(m) Returns the transpose of the matrix m. If the source is
dimension m

rows
× m

columns
, the result is dimension m

columns

× m
rows

.

22 Introduction to the DirectX High Level Shading Language

Texture Sampling Intrinsics

There are 16 texture sampling intrinsics used for sampling tex-

ture data into a shader. There are four types of textures (1D, 2D,

3D, and cube map) and four types of loads (regular, with deriva-

tives, projective, and biased) with an intrinsic for each of the 16

combinations:

Intrinsic Description

tex1D(s, t) 1D texture lookup. s is a sampler. t is a scalar.

tex1D(s, t, ddx, ddy) 1D texture lookup, with derivatives. s is a sampler. t, ddx,
and ddy are scalars.

tex1Dproj(s, t) 1D projective texture lookup. s is a sampler. t is a 4D
vector. t is divided by its last component before the lookup
takes place.

tex1Dbias(s, t) 1D biased texture lookup. s is a sampler. t is a 4D vector.
The mip level is biased by t.w before the lookup takes place.

tex2D(s, t) 2D texture lookup. s is a sampler. t is a 2D texture
coordinate.

tex2D(s, t, ddx, ddy) 2D texture lookup, with derivatives. s is a sampler. t, ddx,
and ddy are 2D vectors.

tex2Dproj(s, t) 2D projective texture lookup. s is a sampler. t is a 4D
vector. t is divided by its last component before the lookup
takes place.

tex2Dbias(s, t) 2D biased texture lookup. s is a sampler. t is a 4D vector.
The mip level is biased by t.w before the lookup takes place.

tex3D(s, t) 3D volume texture lookup. s is a sampler. t is a 3D texture
coordinate.

tex3D(s, t, ddx, ddy) 3D volume texture lookup, with derivatives. s is a sampler.
t, ddx, and ddy are 3D vectors.

tex3Dproj(s, t) 3D projective volume texture lookup. s is a sampler. t is a
4D vector. t is divided by its last component before the
lookup takes place.

tex3Dbias(s, t) 3D biased texture lookup. s is a sampler. t is a 4D vector.
The mip level is biased by t.w before the lookup takes place.

texCUBE(s, t) Cube map lookup. s is a sampler. t is a 3D texture
coordinate.

texCUBE(s, t, ddx, ddy) Cube map lookup, with derivatives. s is a sampler. t, ddx,
and ddy are 3D vectors.

texCUBEproj(s, t) Projective cube map lookup. s is a sampler. t is a 4D vector.
t is divided by its last component before the lookup takes
place.

Introduction to the DirectX High Level Shading Language 23

Intrinsic Description

texCUBEbias(s, t) Biased cube map lookup. s is a sampler. t is a 4D vector.
The mip level is biased by t.w before the lookup takes place.

The tex1D(), tex2D(), tex3D(), and texCUBE() intrinsics are the

most commonly used to sample textures. The texture loading

intrinsics that take ddx and ddy parameters compute texture LOD

using these explicit derivatives, which would typically have been

previously calculated with the ddx() and ddy() math intrinsics.

These are particularly important when writing procedural pixel

shaders, but they are not supported on ps_2_0 or lower compile

targets.

The tex*proj() intrinsics are used to do projective texture

reads, where the texture coordinates used to sample the texture

are divided by the last component prior to accessing the texture.

Of these, tex2Dproj() is the most commonly used, since it is nec-

essary for projective shadow maps and similar effects.

The tex*bias() intrinsics are used to perform biased texture

sampling, where the bias can be computed per pixel. This is typi-

cally done to induce some over-blurring of the texture for a

special effect. For example, as discussed in ShaderX2: Shader Pro-

gramming Tips & Tricks with DirectX 9, the pixel shader used on

the motion-blurred balls in the Radeon 9700 Animusic Pipe

Dream demo uses the texCUBEbias() intrinsic to access the cubic

environment map of the local scene:

...

// Blur reflection by extension amount.

float3 vCubeLookup = vReflection + i.Pos/fEnvMapRadius;

float4 cReflection = texCUBEbias(tCubeEnv, float4(vCubeLookup,

fBlur * fTextureBlur)) * vReflectionColor;

...

In this code snippet, fBlur * fTextureBlur is stored in the fourth

component of the texture coordinate used in the texCUBEbias()

call and determines the bias to be used when accessing the cube

map.

24 Introduction to the DirectX High Level Shading Language

Now that we have introduced some of the mechanics of the

language, we can discuss how data is input to and output from

HLSL shaders in DirectX 9.

Shader Inputs

Vertex and pixel shaders have two types of input data: varying and

uniform. The varying input is the data that is unique to each exe-

cution of a shader. For a vertex shader, the varying data (i.e.,

position, normals, etc.) comes from the vertex streams. The uni-

form data (i.e., material color, world transform, etc.) is constant for

multiple executions of a shader. If you are familiar with the assem-

bly models, uniform data is specified in constant registers and

varying data in the v/t registers in vertex and pixel shaders.

Uniform Input

Uniform data can be specified by two methods in HLSL. The most

common method is to declare global variables and use them within

the vertex or pixel shaders. Any use of a global variable within a

shader will result in the addition of the variable to a list of uniform

variables required by the shader. The second method is to mark an

input parameter of the top-level shader function as uniform. This

marking specifies that the given variable should be added to the

list of uniform variables used by the shader. Both of these meth-

ods are illustrated in the following code snippet:

// Declare a global uniform variable

// Appears in constant table under name 'UniformGlobal'

float4 UniformGlobal;

// Declare a uniform input parameter

// Appears in constant table under name '$UniformParam'

float4 main(uniform float4 UniformParam) : POSITION

{

return UniformGlobal * UniformParam;

}

Introduction to the DirectX High Level Shading Language 25

The uniform variables used by a shader are communicated back to

the application via the constant table. The constant table is a sym-

bol table that defines how the uniform variables used by a shader

must be loaded into the constant registers prior to shader

execution.

NOTE The uniform input function parameters appear in the

constant table with a $ prepended, unlike the global variables. The $

is required to avoid name collisions between “local” uniform inputs

and global variables of the same name.

The constant table contains the constant register locations of all

uniform variables used by the shader. The table also includes the

type information and the default value, if specified, for each con-

stant table entry. The following is an example of what a constant

table looks like when printed out. The constant table generated by

the compiler is stored in a compact binary form. The API to inter-

pret the table at run time will be discussed later in the section on

HLSL integration without the use of D3DX Effects.

Here is the textual printout of a constant table emitted by

fxc.exe for a sample shader:

//

// Generated by Microsoft (R) D3DX9 Shader Compiler

//

// Source: hemisphere.fx

// Flags: /E:VS /T:vs_1_1

//

// Registers:

//

// Name Reg Size

// ------------ ----- ----

// Projection c0 4

// WorldView c4 3

// DirFromLight c7 1

// DirFromSky c8 1

// $bHemi c18 1

// $bDiff c19 1

// $bSpec c20 1

//

26 Introduction to the DirectX High Level Shading Language

//

// Default values:

//

// DirFromLight

// c7 = { 0.577, -0.577, 0.577, 0 };

//

// DirFromSky

// c8 = { 0, -1, 0, 0 };

Varying Input

Varying data is specified by marking the input parameters of the

top-level shader function with an input semantic. All top-level

shader inputs must either be marked as varying by using seman-

tics or marked with the keyword “uniform” to indicate the value is

constant for the execution of the shader. If a top-level shader input

is not marked with a semantic or “uniform” keyword, the shader

will fail to compile.

The input semantic is a name used to link the given shader

input to an output of the previous stage of the graphics pipeline.

For example, the input semantic POSITION0 is used by vertex

shaders to specify where the position data from the vertex buffer

should be linked.

Pixel and vertex shaders have different sets of input seman-

tics due to the different parts of the graphics pipeline that feed

into each shader unit. Vertex shader input semantics describe the

per-vertex information to be loaded from a vertex buffer into a

form that can be consumed by the vertex shader (i.e., positions,

normals, texture coordinates, colors, tangents, binormals, etc.).

These input semantics directly map to the combination of the

D3DDECLUSAGE enum and UsageIndex that is used to describe vertex

data elements in a vertex buffer.

Pixel shader input semantics describe the information that is

provided per pixel by the rasterization unit. This data is generated

by interpolating between the outputs of the vertex shader for each

vertex of the current primitive. The basic pixel shader input

semantics link the input color and texture coordinate information

to input parameters.

Introduction to the DirectX High Level Shading Language 27

Input semantics can be assigned to shader input by two meth-

ods. The first method is by appending a colon (:) and the input

semantic name to the input parameter declaration. The second

method is to define an input structure with input semantics

assigned to each element of the input structure. Both of these

styles are used in the example shaders in this chapter and

throughout the ShaderX books.

Here is an input semantic example:

// Declare an input structure with a semantic binding

struct InStruct

{

float4 Pos1 : POSITION1

};

// Declare the Pos variable as containing position data

float4 main(float4 Pos : POSITION0, InStruct In) : POSITION

{

return Pos * In.Pos1;

}

// Declare the Col variable as containing the interpolated COLOR0 value

float4 mainPS(float4 Col : COLOR0) : COLOR

{

return Col;

}

Here are the vertex shader input semantics:

Semantic Description

POSITIONn Position

BLENDWEIGHTn Blend weights

BLENDINDICESn Blend indices

NORMALn Normal vector

PSIZEn Point size

COLORn Color

TEXCOORDn Texture coordinates

TANGENTn Tangent

BINORMALn Binormal

TESSFACTORn Tessellation factor

28 Introduction to the DirectX High Level Shading Language

Here are the pixel shader input semantics:

Semantic Description

COLORn Color

TEXCOORDn Texture coordinates

n is an optional integer (as an example: PSIZE0, DIFFUSE1, etc.).

Shader Outputs

Vertex and pixel shaders provide output data to the subsequent

graphics pipeline stage. Output semantics are used to specify how

data generated by the shader should be linked to the inputs of the

next stage. For example, the output semantics for a vertex shader

are used to link the outputs with the interpolators in the

rasterizer to generate the input data for the pixel shader. The

pixel shader outputs are the values provided to the alpha blending

unit for each of the render targets or the depth value to be written

to the depth buffer.

Vertex shader output semantics are used to link the shader to

both the pixel shader and the rasterizer stage. The POSITION out-

put is a required output from each vertex shader that is consumed

by the rasterizer and not exposed to the pixel shader. TEXCOORDn

and COLORn denote outputs that are made available to the pixel

shader post interpolation.

Pixel shader output semantics bind the output colors of a pixel

shader with the correct render target. The colors output from the

pixel shader are linked to the alpha blend stage, which determines

how the destination render targets are modified. The DEPTH output

semantics can be used to change the destination depth value at

the current raster location.

NOTE DEPTH and multiple render targets (also known as “MRT”)

are only supported with some shader models.

The syntax for output semantics is identical to the syntax for

specifying input semantics. The semantics can either be specified

Introduction to the DirectX High Level Shading Language 29

directly on parameters declared as out parameters or assigned

during the definition of a structure that is either returned as an

out parameter or the return value of the function.

Here are the vertex shader output semantics:

Semantic Description

POSITION Position

PSIZE Point size

FOG Vertex fog

COLORn Color (example: COLOR0)

TEXCOORDn Texture coordinates (example: TEXCOORD0)

Here are the pixel shader output semantics:

Semantic Description

COLORn Color for render target n

DEPTH Depth value

n is an optional integer (as an example: TEXCOORD3, COLOR0).

The following code snippets illustrate the variety of ways in

which data can be output from HLSL shaders:

// Declare an output structure with a semantic binding

struct OutStruct

{

float2 Tex2 : TEXCOORD2

};

// Declare the Tex0 out parameter as containing TEXCOORD0 data

float4 main(out float2 Tex0 : TEXCOORD0, out OutStruct Out) : POSITION

{

Tex0 = float2(1.0, 0.0);

Out.Tex2 = float2(0.1, 0.2);

return float4(0.5, 0.5, 0.5, 1);

}

// Declare the Col variable as containing the interpolated COLOR0 value

float4 mainPS(out float4 Col1 : COLOR1) : COLOR

{

// write out to render target 1 using out parameter

Col1 = float4(0.0, 0.0, 0.0, 0.0);

30 Introduction to the DirectX High Level Shading Language

// write to render target 0 using the declared return destination

return float4(1.0, 0.9722, 0.3333334, 0);

}

struct PS_OUT

{

float4 Color: COLOR;

float Depth: DEPTH;

};

//

// Three different ways to output from a pixel shader:

//

PS_OUT PSFunc1() { ... }

void PSFunc2(out float4 Color : COLOR,

out float Depth : DEPTH)

{

...

}

void PSFunc3(out PS_OUT Out)

{

...

}

An Example Shader

Now that we’ve discussed the language itself and how it connects

with the rest of the graphics pipeline via inputs and outputs, we

can discuss an example shader called NPR Metallic. We call it this

since it was designed to look like a metallic surface that would

exist in a world rendered in a cel-animation style (see Figure 2).

This effect ships with the RenderMonkey shader development

environment discussed in the “Shader Development Using

RenderMonkey” article in this book and is available on the ATI

Developer Relations web site (www.ati.com/developer).

Introduction to the DirectX High Level Shading Language 31

First, let’s look at the NPR Metallic vertex shader written in

HLSL:

float4x4 view_proj_matrix;

float4 view_position;

float4 light0;

float4 light1;

float4 light2;

struct VS_OUTPUT

{

float4 Pos : POSITION;

float3 View : TEXCOORD0;

float3 Normal: TEXCOORD1;

float3 Light1: TEXCOORD2;

float3 Light2: TEXCOORD3;

float3 Light3: TEXCOORD4;

};

VS_OUTPUT main(float4 inPos : POSITION,

float3 inNorm : NORMAL)

{

VS_OUTPUT Out = (VS_OUTPUT) 0;

32 Introduction to the DirectX High Level Shading Language

Figure 2: NPR Metallic

// Output transformed vertex position:

Out.Pos = mul(view_proj_matrix, inPos);

Out.Normal = inNorm;

// Compute the view vector:

Out.View = normalize(view_position - inPos);

// Compute vectors to three lights from the current vertex position:

Out.Light1 = normalize(light0 - inPos); // Light 1

Out.Light2 = normalize(light1 - inPos); // Light 2

Out.Light3 = normalize(light2 - inPos); // Light 3

return Out;

}

The first thing that we see in this vertex shader is the declaration

of a matrix and a set of floats at global scope: view_proj_matrix,

view_position, light0, light1, and light2. These are all implicitly

uniform variables that are externally settable by the API and mod-

ifiable in the shader itself.

Following these global variables, we see the definition of a

structure called VS_OUTPUT, which is also the return type of our

main function. This means that this vertex shader will output five

3D texture coordinates in addition to the required 4D position.

Looking at the main function, we can see that the vertex

shader takes a 4D vector as input position, a 3D vector as input

normal, and a 2D vector as a texture coordinate. The input posi-

tion, inPos, is transformed by the view_proj_matrix using the

mul() intrinsic, while the normal, inNorm, is passed through to the

output untouched.

Finally, 3D vectors from the object space vertex position to

the three lights and the view position are all computed. These 3D

vectors are passed to the normalize() intrinsic to guarantee that

they are of unit length. These normalized 3D vectors are all out-

put from the vertex shader as 3D texture coordinates that will be

interpolated across the polygon.

To reinforce the earlier discussion about compile targets and

assembly models, let’s compile this shader and have a look at the

assembly output. First, we write the above code into a file called

Introduction to the DirectX High Level Shading Language 33

NPRMetallic.vhl. Next, we can compile it on the command line

with fxc:

fxc -nologo -T vs_1_1 -Fc -Vd NPRMetallic.vhl

Because this vertex shader does not require flow control, we

select the vs_1_1 compile target. We also set the flags to generate

a code file and disable validation. A portion of the generated code

file is shown here:

// Parameters:

// float4 light0;

// float4 light1;

// float4 light2;

// float4 view_position;

// float4x4 view_proj_matrix;

//

// Registers:

// Name Reg Size

// ---------------- ----- ----

// view_proj_matrix c0 4

// view_position c4 1

// light1 c5 1

// light2 c6 1

// light0 c7 1

vs_1_1

dcl_position v0

dcl_normal v1

mul r0, v0.x, c0

mad r2, v0.y, c1, r0

mad r4, v0.z, c2, r2

mad oPos, v0.w, c3, r4

add r1, -v0, c4

dp4 r1.w, r1, r1

rsq r1.w, r1.w

mul oT0.xyz, r1, r1.w

add r8, -v0, c7

dp4 r8.w, r8, r8

rsq r8.w, r8.w

mul oT2.xyz, r8, r8.w

add r3, -v0, c5

add r10, -v0, c6

34 Introduction to the DirectX High Level Shading Language

dp4 r3.w, r3, r3

rsq r3.w, r3.w

mul oT3.xyz, r3, r3.w

dp4 r10.w, r10, r10

rsq r10.w, r10.w

mul oT4.xyz, r10, r10.w

mov oT1.xyz, v1

At the top of the code file, we see the parameters to this vertex

shader. That is, we see the global scope variables that will need to

be set from the API for this shader to work properly in a given

application. The next section shows the hardware registers to

which these parameters must be loaded by the application for the

assembly shader to work properly. Next, we have the shader code

itself, which was compiled to 21 assembly instructions. We don’t

go through all of the code, but you should take note of the

dcl_position and dcl_normal statements, which are a direct result

of the POSITION and NORMAL semantics on the inputs to the shader’s

main function. Additionally, note the storage of final results in the

oPos, oT0, oT1, oT2, oT3, and oT4 registers. This is caused by the

return type of the function being a structure whose members are

tagged with the corresponding semantics. While not strictly nec-

essary, knowing how to use fxc to generate assembly code from

HLSL and how to read through it can be beneficial at some stages

of development, particularly when trying to write more optimal

HLSL.

Now that we have used the vertex shader to transform the

geometry into clip space and define the values that will be interpo-

lated across the polygons, we can move on to the pixel shader,

which will make use of all of these interpolated quantities.

The following is the NPR Metallic pixel shader:

float4 Material;

sampler Outline;

float4 main(float3 View: TEXCOORD0,

float3 Normal: TEXCOORD1,

float3 Light1: TEXCOORD2,

float3 Light2: TEXCOORD3,

Introduction to the DirectX High Level Shading Language 35

float3 Light3: TEXCOORD4) : COLOR

{

// Normalize input normal vector:

float3 norm = normalize (Normal);

float4 outline = tex1D(Outline, 1 - dot (norm, normalize(View)));

float lighting = (dot (normalize (Light1), norm) * 0.5 + 0.5) +

(dot (normalize (Light2), norm) * 0.5 + 0.5) +

(dot (normalize (Light3), norm) * 0.5 + 0.5);

return outline * Material * lighting;

}

As before, we see that this shader has declared some variables at

global scope. In this case, we have a 4D vector Material, which

defines material values for the object to be rendered, and a single

sampler Outline, which we use to access a special texture used for

outlining the object. The five 3D texture coordinates computed in

the vertex shader are the inputs to the main function of this pixel

shader and define the view vector, the normal vector, and three

light vectors.

Since the texture coordinates are linearly interpolated across

the polygon, it is possible for them to contain non-normalized val-

ues at a given pixel. Thus, this shader first renormalizes the

interpolated normal vector using the normalize() intrinsic. Subse-

quently, the outline texture is sampled using the dot product of the

normalized normal and view vectors. The lighting is then com-

puted by summing a series of scaled and biased dot products of

the normal with normalized light vectors.

In the last line of this pixel shader, we return the product of

the variables outline, Material, and lighting. The first two of

these are 4D vectors, while the last is a scalar. If you recall from

our earlier discussion of type casting, the multiplication of the sca-

lar by a vector temporarily promotes the scalar to a vector whose

components are all equivalent to the original scalar. That is, the

following two expressions are equivalent:

return outline * Material * lighting;

return outline * Material * float4(lighting, lighting, lighting, lighting);

36 Introduction to the DirectX High Level Shading Language

Thus, the end result is that all of the channels are multiplied by

the scalar lighting, giving us the final result you see in Figure 2.

As we did with the NPR Metallic vertex shader, we generate a

code file for the pixel shader using fxc:

fxc -nologo -T ps_2_0 -Fc -Vd NPRMetallic.phl

This compilation uses the same flags as before but is compiled for

the ps_2_0 target. The resulting 29-instruction shader is shown

below:

// Parameters:

// float4 Material;

// sampler Outline;

//

// Registers:

// Name Reg Size

// ------------ ----- ----

// Material c0 1

// Outline s0 1

ps_2_0

def c1, 1, 0, 0, 0.5

dcl t0.xyz

dcl t1.xyz

dcl t2.xyz

dcl t3.xyz

dcl t4.xyz

dcl_2d s0

dp3 r0.w, t1, t1

rsq r2.w, r0.w

mul r9.xyz, r2.w, t1

dp3 r9.w, t0, t0

rsq r9.w, r9.w

mul r4.xyz, r9.w, t0

dp3 r9.w, r9, r4

add r11.xy, -r9.w, c1.x

texld r6, r11, s0

dp3 r9.w, t2, t2

rsq r9.w, r9.w

mul r1.xyz, r9.w, t2

dp3 r9.w, r1, r9

mad r9.w, r9.w, c1.w, c1.w

Introduction to the DirectX High Level Shading Language 37

dp3 r8.w, t3, t3

rsq r10.w, r8.w

mul r5.xyz, r10.w, t3

dp3 r0.w, r5, r9

mad r9.w, r0.w, c1.w, r9.w

add r9.w, r9.w, c1.w

dp3 r2.w, t4, t4

rsq r11.w, r2.w

mul r1.xyz, r11.w, t4

dp3 r8.w, r1, r9

mad r10.w, r8.w, c1.w, r9.w

add r5.w, r10.w, c1.w

mul r6, r6, r5.w

mul r0, r6, c0

mov oC0, r0

As before, the variables (in this case, the constant Material and

the sampler Outline) are listed at the top of the file. These must

be set properly by the application via the API in order for the

shader to function correctly.

After the ps_2_0 instruction, there is a def instruction of some

magic constants. This def instruction is a free instruction that

appears in the actual assembly instruction stream that defines

constants that will be used by the subsequent ALU operations.

This kind of constant definition is generally the result of literal

values appearing in the HLSL shader, as in the following state-

ments taken from the NPR Metallic pixel shader:

...

1 - dot (norm, normalize(View)

...

dot (normalize (Light1), norm) * 0.5 + 0.5

...

Following this constant definition, there are five 3D texture coor-

dinate declarations of the form dcl tn.xyz. As in the vertex

shader, these are a result of the semantics of the input parameters

to this HLSL shader’s main function. Following the texture coordi-

nate declarations, there is a sampler declaration — dcl_2d s0.

This indicates that a 2D texture must be bound to sampler zero.

This may seem odd since the tex1D() intrinsic was used in the

38 Introduction to the DirectX High Level Shading Language

HLSL shader. This discrepancy exists since there is no such thing

as a 1D texture in the Direct3D API or shader assembly language.

The tex1D() intrinsic is actually just a way for the HLSL shader

writer to indicate to the compiler that only one component of the

texture coordinate needs to be populated, shaving off an assembly

instruction in some cases.

Now that you are familiar with some of the correspondence

between HLSL and assembly code, we can discuss optimization

strategies so that you can be sure that you are writing the best

HLSL possible.

Optimization

While the DirectX HLSL compiler has an excellent optimizer built

in, there are things that you can do as an HLSL coder to help

shave off a few more cycles here and there. While this is probably

more of an academic exercise in the long term, it may or may not

make the difference between being able to target a legacy 1.x

shader model using HLSL.

The most important thing to remember about writing high-

performance shaders is that the compiler is required to do what

you ask it to. That is, if you write your shader to require a certain

number of math operations or a particular value in an output com-

ponent, it needs to perform those operations. The compiler is

smart about removing dead code, but it cannot know about values

that do not ultimately matter due to circumstances outside of a

given shader. For example, if the pixel shader is not using the sec-

ond texture coordinate, the vertex shader probably shouldn’t

compute it. The HLSL compiler, of course, has no way of knowing

this when you compile the vertex shader. Additionally, you may

know that you will always use an n×1 function lookup texture at a

given sampler, and hence it is not necessary to compute the sec-

ond texture coordinate for use in the sampling intrinsic. If you use

the tex2D() intrinsic, however, the HLSL compiler requires you to

compute the second texture coordinate even though it is ulti-

mately unnecessary. The compiler is designed to build an

Introduction to the DirectX High Level Shading Language 39

assembly program that does exactly what you asked without mak-

ing any visual quality versus performance trade-offs.

Another extremely important objective for high-performance

shaders is to make sure that a computation only runs at the

required frequency. If you can get away with doing a calculation

per vertex rather than per pixel, then do so. The biggest wins

often come from these types of operations. The same optimization

is true for operations on values that are uniform (i.e., operations

that do not change for the entire execution of the shader). An

example of this would be pre-multiplying the world ambient color

value by an object’s material ambient value and passing their prod-

uct to the shader instead of redundantly calculating the product

per vertex or per pixel.

The following sections go into some detail on how language

features are mapped into assembly constructs. While it is not nec-

essary to understand how to write vertex or pixel shader

assembly, it can be quite helpful to understand the basic limita-

tions and efficiencies of the assembly models. Understanding key

assembly features is essential to generating compact and efficient

shaders.

Matrix Data Type Usage

One of HLSL’s more obvious departures from the C standard is

the introduction of vector and matrix data types. The data types

were added to enable easier writing of code and enable intrinsic

functions to work properly, but correct usage of the data types

allows for better code generation as well. The usage of vector

types enables the compiler to more easily use all of the capabili-

ties of the vector instructions. The compiler will automatically

vectorize scalar operations when possible, but in general it is

better to write your HLSL code in a vector-friendly form for best

performance.

Although you can implement shaders with arrays of vectors

instead of matrices, the recommended way to store a matrix is

with a matrix data type. By using a matrix data type, the compiler

has the choice to store internal matrices in either column major or

40 Introduction to the DirectX High Level Shading Language

row major order, depending on how the matrix is used. This opti-

mization can be quite useful for situations in which a matrix is

generated in either a pixel or vertex shader. As mentioned earlier,

for input matrices, the compiler always uses either column major

or row major storage format based on a compiler flag, with column

major being the default method.

Integer Data Type Usage

It is important to understand the int data type and use it correctly

in HLSL. It is very easy to generate extra instructions by using

the int data type in places that it should not be used. The int data

type was added to HLSL to make relative addressing familiar as

well as efficient. A problem with using float data types for

addressing purposes without truncation rules is that incorrect

access to arrays can occur. For example, if the index variable is 2.5

and a float4x4 matrix is being accessed, half of matrix 2 and half of

matrix 3 will be used instead of truncating to access matrix 2

before accessing the matrix. In order to fix this, all floats that are

used for accessing arrays must be rounded before being multiplied

by the size of each element. This can be an expensive operation,

since correct C rounding rules are not easily accomplished using

the available instructions.

In order to avoid unwanted rounding or truncation, the int

data type was added to mark values as being integer values. In

order to properly avoid treating input data incorrectly as floating-

point data, all inputs that are going to be used as integers should

be defined as ints. For example, matrix palette indices read from a

vertex stream component should be marked as ints. Declaring an

input as int is a “free” operation in that no truncation is per-

formed and the value is assumed to be an integer value. If the

input is not declared as an int, the shader will not do what you

expect. If, on the other hand, you cast a float to int in your

shader or use a float for addressing purposes, a truncation will

happen. Casting non-int intermediate values to int will also result

in truncation overhead.

Introduction to the DirectX High Level Shading Language 41

The following is code generated with a float index versus an

int index:

OutPos = mul(Pos, WorldArray[Index]);

// Index declared as float // Index declared as int

frc r0.w, r1.w mul r0.w, c60.x, r1.w

add r2.w, -r0.w, r1.w mova a0.x, r0.w

mul r9.w, r2.w, c61.x m4x4 oPos, v0, c0[a0.x]

mova a0.x, r9.w

m4x4 oPos, v0, c0[a0.x]

Flow Control and Performance

The most current vertex and pixel shader hardware does not sup-

port flow control. The hardware is designed to run a shader

linearly, executing each instruction once. Newer hardware sup-

ports limited forms of flow control: static branching, predicated

instructions, static looping, dynamic branching, and dynamic loop-

ing. Since HLSL can be compiled down to any or all of the models

that support various degrees of flow control, it must be taken into

consideration when writing shaders designed to run on more

restricted models. As mentioned earlier, no restrictions are placed

on the syntax of HLSL based on the compile target, but compile-

time errors will occur if a shader is impossible to implement on

the compile target used.

Loops are a form of flow control that occur quite often in

shaders. Some hardware allows for either static or dynamic loop-

ing, but most require linear execution. On the models that do not

support looping, all loops must be unrolled. While this can be an

expensive operation, it can be used to generate excellent code

with minimal effort. A good example is the DepthOfField sample

from the DirectX 9 SDK that uses unrolled loops even for ps_1_1

shaders. In order to write high-performance shaders, you should

keep this in mind — either for using the compiler to do the unroll-

ing work for you or realizing when shaders will become

unbounded and perform poorly or exceed instruction limits.

Using if statements can have large performance implications

due to the lack of support for branching in most assembly-level

42 Introduction to the DirectX High Level Shading Language

shader models. In models that do not support any form of branch-

ing, both sides of an if must be executed and the output chosen

based on which side of the if would have been taken. Having come

from the CPU programming world, this form of execution is a bit

different than most HLSL shader writers would expect. Common

optimizations that you would use on a CPU to avoid expensive

operations will not work as expected on shader models that don’t

support branches, since both the expensive path and the cheap

path will be executed. Some shader models support different lev-

els of branching: predicated instructions, static if blocks, and

dynamic if blocks.

Example using if in vs_1_1:

if (Value > 0)

Position = Value1;

else

Position = Value2;

Assembly generated:

// calculate lerp value based on Value > 0

mov r1.w, c2.x

slt r0.w, c3.x, r1.w

// lerp between Value1 and Value2

mov r7, -c1

add r2, r7, c0

mad oPos, r0.w, r2, c1

The most common branching support in current hardware shading

models is static branching. Static branching is a capability in a

shader model that allows for blocks of code to be switched on or

off based on a Boolean shader constant. This is a very convenient

method for enabling/disabling potentially expensive code paths

based on the type of object currently being rendered. Between

draw calls, you can decide the various features that you want to

support with the current shader and then set the Boolean flags

required to get that behavior. The best part about this method is

that any instructions that are “disabled” by the Boolean constant

are completely skipped during execution. The disadvantage is that

you can only change the if blocks that are enabled/disabled at a

Introduction to the DirectX High Level Shading Language 43

low frequency (i.e., between draw calls). In contrast, using the

execute-both-sides approach, it is possible to dynamically choose

between the outputs of the two paths dynamically at a per-pixel or

per-vertex level.

The most familiar branching support is dynamic branching.

The dynamic branching support offered by some shader models is

very similar to that offered by a standard CPU. The performance

hit is the cost of the branch plus the cost of the instructions on the

side of the branch taken. This execution cost is comparable to

what most people are familiar with optimizing for in CPU-side

code. The problem with this form of branching is that it is not

available on most hardware and is currently only available for ver-

tex shaders. Optimizing shaders that work with these models is

very similar to optimizing code that runs on a CPU.

Importance of Input Type Declarations

The type of an input to a shader is used differently than you might

expect. The method in which data is loaded into the registers

either from a vertex buffer into a vertex shader or from the vertex

shader output to the pixel shader input registers is well-defined in

the Direct3D spec. That is, shader input values are always

expanded into a vector of four floats. This means that the data

type declaration is more of a hint than a specification of how the

data is loaded into the shader. Taking advantage of this provides a

couple of optimization opportunities.

A common optimization used by shader assembly writers is to

take advantage of the way in which data is expanded when loaded

into registers. For example, in vertex shaders, the w component

will be set to 1.0 if no w component is present in the vertex buffer.

The y and z components will be set to 0.0 if not present in the

vertex buffer. The most common place that this is useful is the

position in vertex shaders. It is very common to need the w com-

ponent to be set to 1.0 when multiplying by the world matrix, but

the vertex buffer typically only contains x, y, and z components. If

the position input parameter is declared as a float3, then an extra

instruction to copy a 1.0 into the w component would be required.

44 Introduction to the DirectX High Level Shading Language

If the parameter were declared as a float4, then the w component

would be set to 1.0f by the hardware loading the input registers.

The compiler cannot do this type of optimization automatically,

since this optimization requires knowledge of what data is in the

vertex buffer.

Another optimization is to make sure to declare all input

parameters with the appropriate type for their usage in the shader.

For example, if the incoming data is integer and the data is going

to be used for addressing purposes, then it is important to declare

the parameter as an int to avoid truncation. The subtle issue with

declaring inputs as ints is that the values in the input should truly

be integer values. Otherwise, the generated code might not run

correctly due to the optimizations that the compiler will make

based upon the assumption that the input data is truly integer

data.

Precision Issues (logp, expp, lit)

A good understanding of precision is necessary for writing

shaders that give correct results and reasonable performance.

With most shader compile targets, the internal precision is fixed

and needs to be taken into account for correct results. For exam-

ple, the ps_1_x models have relatively low-precision fixed-point

registers. Raising a number to even a low power for specular high-

lights can quickly generate banding.

In some other models, such as vs_1_1 and vs_2_0, there are

low-precision versions of some instructions. Specifically, logp,

expp, and lit can be used as low-precision versions of log, exp,

and pow. On some hardware, the performance difference between

the low- and high-precision variants is not significant. Since log

and exp count for ten instruction slots each and logp and expp only

count as one instruction each, it is possible to balloon the size of

the generated asm code and potentially run out of instructions,

particularly on the vs_1_1 compile target. Accessing these

low-precision instructions is accomplished by declaring the output

to be either cast to or stored into the low-precision data type

called half. A low-precision output from an operation informs the

Introduction to the DirectX High Level Shading Language 45

compiler that the operation should be performed with the lowest

precision possible. Some pixel shader hardware can take advan-

tage of performing other operations at a lower precision as well.

Here is an example of log versus logp:

float LogValue = log(Value); float LogValue = (half)log(Value)

// counts as 10 instructions // counts as 1 instruction on

// on vs_1_1 // vs_1_1

log r0, c0; logp r0, c0

Using the ps_1_x Compile Targets

The original pixel shader models (ps_1_1, ps_1_2, ps_1_3, and

ps_1_4) offer a large degree of programmability, but they have

some restrictions in what can be done. It is possible to efficiently

target the ps_1_x compile targets using HLSL, but it is imperative

for the shader writer to understand the underlying set of limita-

tions. This is important in order to write high-performance

shaders and, more importantly, to even get your shader to com-

pile. Instruction count is probably the first limitation that most

people hit, but this is usually due to ignoring other limitations of

the ps_1_x compile targets.

The first thing to remember about the ps_1_x compile targets

is that the target hardware does not have arbitrary swizzles. This

limitation means that the compiler must use extra instructions

anytime that a swizzle is required. The extra instructions gener-

ated can quickly cause programs to overrun the total instructions

possible in these compile targets. The ps_1_1 through ps_1_3 tar-

gets do not support arbitrary write masks or replicate swizzles

(i.e., .r, .g, .b, or .a) and can cause the same situation. The

ps_1_4 compile target does have support for replicate swizzles

and arbitrary write masks. Even with these limitations, it is quite

easy to write interesting and complex shaders. This is just some-

thing to keep in mind when writing HLSL code targeted at the

ps_1_x compile targets.

While the ps_1_x targets naturally have disadvantages relative

to the newer pixel shader models, one advantage that they do

46 Introduction to the DirectX High Level Shading Language

have is the existence of “free” source and dest modifiers (i.e., the

ability to clamp values to the 0 to 1 range, take the complement of

a source, negate a source, bias a source, etc.). These modifiers are

extremely handy when generating shaders that accomplish a lot in

a small number of instructions. The compiler automatically

matches all modifiers that it can, but it is helpful if the HLSL

shader writer thinks in terms of using these modifiers to accom-

plish certain operations. In fact, some intrinsics were added to

HLSL to make this type of shader writing easier. For example, it is

recommended that you use the saturate() intrinsic when trying

to generate a free _sat modifier in a pixel shader.

We now present a series of HLSL code sequences that gener-

ate free source modifiers when compiling to ps_1_x targets.

The _bx2 Modifier

There are a number of different HLSL code sequences that can be

used to cause the HLSL compiler to generate _bx2 modifiers. Any

of the following main functions will cause the compiler to generate

a _bx2 modifier:

float4 main(float3 Col : COLOR0, float3 Tex : TEXCOORD0) : COLOR0

{

return dot(Col, Tex*2 - 1);

}

float4 main(float3 Col : COLOR0, float3 Tex : TEXCOORD0) : COLOR0

{

float3 val = Tex*2;

val = val -1;

return dot(Col,val);

}

float4 main(float3 Col : COLOR0, float3 Tex : TEXCOORD0) : COLOR0

{

return dot(Col, (Tex -.5f)*2);

}

Introduction to the DirectX High Level Shading Language 47

All of these main functions generate the same asm shader:

ps_1_1

texcoord t0

dp3 r0, v0, t0_bx2

It is important to note that the Tex*2 -1 version is recommend

because it generates more optimal code in ps_2_0 targets and

beyond.

The _bias Modifier

The following code causes the HLSL compiler to generate a _bias

modifier:

float4 main(float3 Col : COLOR0, float3 Tex : TEXCOORD0) : COLOR0

{

return dot(Col, (Tex - .5f));

}

This main function generates the following assembly shader:

ps_1_1

texcoord t0

dp3 r0, v0, t0_bias

Note that _bias cannot be done in ps_1_1, ps_1_2, or ps_1_3

unless the source is known to be in the range of 0 to 1. That is, it

must have been previously saturated.

The _x2 Modifier (ps_1_4 only)

The following code causes the HLSL compiler to generate an _x2

source modifier:

float4 main(float3 Col : COLOR0, float3 Tex : TEXCOORD0) : COLOR0

{

return dot(Col, Tex*2);

}

This HLSL code results in the following asm shader code:

48 Introduction to the DirectX High Level Shading Language

ps_1_4

texcrd r0.xyz, t0

dp3 r0, v0, r0_x2

The _x2, _x4, _x8, _d2, _d4, and _d8
Destination Write Modifiers

A set of destination write modifiers exists in the ps_1_x models,

and it is possible to write HLSL code to cause the compiler to

generate them in the resulting asm. The modifiers to double (_x2),

quadruple (_x4), and halve (_d2) the result of the instruction are

supported on ps_1_1 through ps_1_3 models, while the ps_1_4

model supports all six of the modifiers — _x2, _x4, _x8, _d2, _d4,

and _d8. The following code will generate the corresponding modi-

fiers for N = 2, 4, 8, 0.5, 0.25, or 0.125:

static const float N = 2;

float4 main(float4 Col[2] : COLOR0) : COLOR0

{

return (Col[0] + Col[1])*N;

}

The above HLSL code results in the following asm output:

ps_1_1

add_x2 r0, v0, v1

The Complement Modifier

It is also possible to write HLSL code that allows the compiler to

generate a complement modifier when compiling to a ps_1_x tar-

get. Note that this only works if the quantity being complemented

is known to be in the 0 to 1 range (i.e., the quantity has previously

been saturated). The following HLSL code causes the compiler to

generate a free complement modifier:

float4 main(float4 Col[2] : COLOR0) : COLOR0

{

return (1-Col[0]) * (Col[1]);

}

Introduction to the DirectX High Level Shading Language 49

This HLSL code results in the following asm shader:

ps_1_1

mul r0, 1-v0, v1

The Saturate Modifier

The following two shaders generate a _sat modifier. Note that this

modifier is available on all pixel shader compile targets:

float4 main(float4 Col[2] : COLOR0) : COLOR0

{

return saturate(Col[0]);

}

float4 main(float4 Col[2] : COLOR0) : COLOR0

{

return clamp(Col[0],0,1);

}

Both of these HLSL shaders result in the following asm shader:

ps_1_1

mov_sat r0, v0

The Negate Modifier

The following shader generates a negate modifier, which is also

available on all shader targets.

NOTE On ps_1_x, constant registers cannot be directly negated

and hence will not result in a single free negation, since the constant

will have to be moved to a temp before it can be negated.

float4 main(float4 Col[2] : COLOR0) : COLOR0

{

return -Col[0];

}

This HLSL code will result in the following asm shader:

ps_1_1

mov r0, -v0

50 Introduction to the DirectX High Level Shading Language

Strategy for Targeting ps_1_x

The best strategy that we have found to optimize for ps_1_x com-

pile targets is to first write your shader on ps_2_0, since this

allows for quick and easy prototyping on ps_2_0 capable hardware.

Once the shader is working as desired, cross-compile it for the

desired ps_1_x model. Using the disable validation option, -Vd for

fxc.exe, you can see how many instructions the shader would

have if there were no instruction limits on the chosen ps_1_x

model. If the shader did not fit, you can at least see what you are

up against and begin paring away the least necessary pieces of

your shader to get an efficient ps_1_x fallback up and running.

Now that we have presented HLSL shaders in detail, we can

discuss the issues involved in integrating HLSL shader support

into an application. HLSL can be integrated into your engine with

or without the use of D3DX Effects, and we discuss both

approaches. It is also worth mentioning that it is possible to start

experimenting with HLSL without writing any application code by

using a shader development environment, such as RenderMonkey.

For more on RenderMonkey, please consult the “Shader Develop-

ment Using RenderMonkey” article in this book.

Integration into an Engine Using D3DX Effects

The D3DX Effects framework is a very useful component of the

D3DX library that is gaining more attention from professional

developers. Naturally, in DirectX 9, D3DX Effects was updated to

include support for HLSL. If you aren’t familiar with D3DX

Effects, it is an abstraction designed to conveniently encapsulate

rendering special effects in 3D applications. Effects can encapsu-

late rendering states as well as shaders written in asm or HLSL,

including fallback versions targeted at legacy hardware. A given

effect is generally stored in a single .fx or .fxl file, and the file itself

can contain multiple versions of the effect called techniques. For

example, you may want to create a more basic version of a given

effect that you can use on older hardware with legacy shader

Introduction to the DirectX High Level Shading Language 51

support or no shaders at all. An excellent example of this kind of

use of techniques is the Water sample in the DirectX SDK. This

sample uses several different techniques that are targeted at dif-

ferent generations of hardware. Of course, the more basic

techniques that require fewer textures and generally less sophisti-

cation don’t look as impressive, but that’s the point; D3DX Effects

let you manage this quality/speed trade-off very naturally.

Effect Files

We don’t go into all of the facets of effects here, but you should

understand the basic structure of an effect file in order to see how

it can be used with HLSL. A typical effect file might look some-

thing like this:

// Lighting constants

VECTOR g_Leye;

float4 GlobalAmbient = 0.5;

float Ka = 1;

float Kd = 0.8;

float Ks = 0.9;

float roughness = 0.1;

float noiseFrequency;

MATRIX matWorldViewProj;

MATRIX matWorldView;

MATRIX matITWorldView;

MATRIX matWorld;

MATRIX matTex0;

TEXTURE tVolumeNoise;

TEXTURE tMarbleSpline;

sampler NoiseSampler = sampler_state

{

Texture = (tVolumeNoise);

MinFilter = Linear;

MagFilter = Linear;

MipFilter = Linear;

AddressU = Wrap;

52 Introduction to the DirectX High Level Shading Language

AddressV = Wrap;

AddressW = Wrap;

MaxAnisotropy = 16;

};

sampler MarbleSplineSampler = sampler_state

{

Texture = (tMarbleSpline);

MinFilter = Linear;

MagFilter = Linear;

MipFilter = Linear;

AddressU = Clamp;

AddressV = Clamp;

MaxAnisotropy = 16;

};

float3 snoise (float3 x)

{

return 2.0f * tex3D (NoiseSampler, x) - 1.0f;

}

float4 ambient(void)

{

return GlobalAmbient;

}

float4 soft_diffuse(float3 Neye, float3 Peye)

{

// Compute normalized vector from vertex to light in eye space (Leye)

float3 Leye = (g_Leye - Peye) / length(g_Leye - Peye);

float NdotL = dot(Neye, Leye) * 0.5f + 0.5f;

// N.L

return float4(NdotL, NdotL, NdotL, NdotL);

}

float4 specular(float3 NNeye, float3 Peye, float k)

{

Introduction to the DirectX High Level Shading Language 53

// Compute normalized vector from vertex to light in eye space (Leye)

float3 Leye = (g_Leye - Peye) / length(g_Leye - Peye);

// Compute Veye

float3 Veye = -(Peye / length(Peye));

// Compute half-angle

float3 Heye = (Leye + Veye) / length(Leye + Veye);

// Compute N.H

float NdotH = clamp(dot(NNeye, Heye), 0.0f, 1.0f);

float NdotH_2 = NdotH * NdotH;

float NdotH_4 = NdotH_2 * NdotH_2;

float NdotH_8 = NdotH_4 * NdotH_4;

float NdotH_16 = NdotH_8 * NdotH_8;

float NdotH_32 = NdotH_16 * NdotH_16;

return NdotH_32 * NdotH_32;

}

float4 hlsl_bluemarble (float3 P : TEXCOORD0, float3 Peye : TEXCOORD1, float3

Neye : TEXCOORD2) : COLOR

{

float4 Ct;

float4 Ci;

float3 NNeye;

float marble;

float f;

// Divide down to nice frequency

P = P/16;

marble = -2.0f * snoise(P * noiseFrequency) + 0.75f;

NNeye = normalize(Neye);

// Cubic interpolation of f along color spline (gloss in alpha)

Ct = tex1D (MarbleSplineSampler, marble);

// Color from illumination

Ci = Ct * (Ka * ambient() + Kd * soft_diffuse(NNeye, Peye)) + Ct.w * Ks *

specular(NNeye, Peye, roughness);

54 Introduction to the DirectX High Level Shading Language

return Ci;

}

VERTEXSHADER asm_marble_vs =

decl {}

asm

{

vs.1.1

dcl_position v0

dcl_normal v3

m4x4 oPos, v0, c[0] // Transform position to clip space

m4x4 r0, v0, c[17] // Transformed Pshade (using texture matrix 0)

mov oT0, r0

m4x4 oT1, v0, c[4] // Transform position to eye space

m3x3 oT2.xyz, v3, c[8] // Transform normal to eye space

};

technique technique_hlsl_bluemarble

{

pass P0

{

// Only need to map variable names to hardware

// registers like this for asm shaders:

VertexShaderConstant[0] = <matWorldViewProj>;

VertexShaderConstant[4] = <matWorldView>;

VertexShaderConstant[8] = <matITWorldView>;

VertexShaderconstant[12] = <matWorld>;

VertexShaderConstant[17] = <matTex0>;

VertexShader = <asm_marble_vs>;

PixelShader = compile ps_2_0 hlsl_bluemarble();

CullMode = CCW;

}

}

We now explain this example effect file from the bottom up. The

very last block of code in this effect file defines a technique called

technique_hlsl_bluemarble, which has only one rendering pass.

Introduction to the DirectX High Level Shading Language 55

This single pass will use a vertex shader written in assembly lan-

guage and a pixel shader written in HLSL. The first several lines

in this pass declare five different matrices, which will be loaded

into specific hardware constant registers from high-level effect

variables when this pass is invoked. This explicit mapping is only

done in the effect file for asm shaders. There are no explicit

mappings done like this for the pixel shader, since it is written in

HLSL. The next line declares the vertex shader to be used in this

pass, an assembly shader called asm_marble_vs:

VertexShader = <asm_marble_vs>;

The following line defines the pixel shader, which will be compiled

for the ps_2_0 target using the hlsl_bluemarble() function as its

main entrypoint:

PixelShader = compile ps_2_0 hlsl_bluemarble();

The block of code preceding the technique definition is the vertex

shader written by hand in assembly language. Above this is

hlsl_bluemarble, the main entrypoint for our HLSL pixel shader.

If you take a look at this code, you can see that, in addition to the

tex1D() intrinsic, this function calls several other utility functions,

such as ambient() and soft_diffuse(). These utility functions are

defined earlier in this effect, and since we’re compiling for the

ps_2_0 target, they are inlined into the resulting assembly.

If you look above the utility functions, you can see the

declaration of a pair of samplers called NoiseSampler and Marble-

SplineSampler. These are declared just as before except that when

used in an effect file, they can also be followed by the bracketed

code defining the addressing and filtering sampler state to be

used. Textures may also be defined in effect files, as shown above

the sampler declarations. At the very top of the effect, we see the

declaration of a series of global variables, which are settable from

the application level.

56 Introduction to the DirectX High Level Shading Language

The Effect API

Now that we have written an effect and stored it in a file, we wish

to use it from our application code. Naturally, the first thing that

we do is create the effect using the D3DXCreateEffectFromFile()

API. Assuming this succeeds, we can use the effect API to set the

appropriate variables needed by our effect. For example, we can

set the matrices with the SetMatrix() entrypoint:

// Set all the matrices

m_pEffect->SetMatrix ("matWorldViewProj", &m_matWorldViewProj);

m_pEffect->SetMatrix ("matWorldView", &m_matWorldView);

m_pEffect->SetMatrix ("matITWorldView", &m_matITWorldView);

m_pEffect->SetMatrix ("matWorld", &m_matWorld);

m_pEffect->SetMatrix ("matTex0", &m_ObjectParameters.m_matTex0);

We could also set any floats and vectors similarly:

m_pEffect->SetFloat ("noiseFrequency ", &m_fNoiseFreq);

m_pEffect->SetVector("g_Leye", &g_Leye);

Likewise, with textures:

m_pEffect->SetTexture("tVolumeNoise", m_pVolumeNoiseTexture);

m_pEffect->SetTexture("tMarbleSpline", m_pMarbleColorSplineTexture);

With all of the proper constants set up, we can set the desired

technique and render all of its passes (in this case, just one):

m_pEffect->SetTechnique(m_pEffect->GetTechniqueByName("technique_hlsl_

bluemarble"));

m_pEffect->Begin(&cPasses, 0);

for (iPass = 0; iPass < cPasses; iPass++)

{

m_pEffect->Pass(iPass);

// Render geometry

}

m_pEffect->End();

As you can see, this is a straightforward process that hides several

unnecessary burdens from the application. For example, the

Introduction to the DirectX High Level Shading Language 57

application never needs to know into what hardware constant reg-

ister to load g_Leye or to which sampler the noise texture should

be bound. These details are all managed by the D3DX Effects

framework.

Integration into an Engine without

Using D3DX Effects

We have found that some ISVs prefer not to wed their code too

closely to D3DX because of cross-platform development or over-

head concerns. As a result, while the use of D3DX Effects for

HLSL shader management is very convenient, it is not required.

Of course, giving up the convenience of D3DX Effects means that

the application will have to take responsibility for tracking and set-

ting up the appropriate constants and samplers prior to rendering

with a given shader. Let’s discuss how this is done.

Since you won’t be creating D3DX Effects that trigger compi-

lation of HLSL code, you must invoke the HLSL compiler

explicitly in your application. In fact, this is very similar to the

application code that you would write for the use of assembly

shaders, except you call one of the D3DXCompileShader*() routines

instead of one of the D3DXAssembleShader*() routines. You then

pass the resulting asm code to the appropriate CreatePixel-

Shader() or CreateVertexShader() entrypoint, just as you would

for an assembly shader that was assembled rather than compiled.

An example of this usage is shown in the following code snippet:

if (FAILED (hr = D3DXCompileShaderFromFile (g_strVHLFile, NULL, NULL, "main",

"vs_1_1", NULL, &pCode, NULL, &m_VS_ConstantTable)))

{

return hr;

}

if (FAILED (hr = m_pd3dDevice->CreateVertexShader ((DWORD*)pCode->

GetBufferPointer(), &m_HLSLVertexShader)))

{

return hr;

}

58 Introduction to the DirectX High Level Shading Language

Notice in the above code that the D3DXCompileShader*() routines

have some additional parameters not found in the D3DXAssemble-

Shader*() routines. Specifically, it is necessary to specify the

name of the main entrypoint for the shader as well as the compile

target (“main” and “vs_1_1” above). You can also optionally specify

values of #defines, include files, and flags to control generation of

debug information, optimization, validation, and matrix data order-

ing. All of these inputs are passed to the D3DXCompileShader*()

routines via the first six parameters. The last three parameters

are pointers to buffers that get filled in by the compiler — the

binary assembly code, human-readable error messages (optional),

and the constant table. The binary assembly code gets passed to

CreatePixelShader() or CreateVertexShader(), while the constant

table must be used by the application to know how to load the

proper constant data prior to executing a given HLSL shader. We

devote the remainder of this discussion to the final parameter

returned from the D3DXCompileShader*() routine, as this is the

most critical piece to understand when integrating HLSL shaders

into an application without the use of effects. You can refer to the

documentation for discussion of the other parameters.

The Constant Table

The constant table returned from the D3DXCompileShader*() rou-

tine is used to map high-level constants and samplers to specific

hardware constants and samplers. Non-static variables declared at

global scope are considered input parameters to the compiled

shader and must be properly initialized in order for the shader to

execute correctly. The constant table provides this mapping.

Typically, it is most convenient for an application to use the

ID3DXConstantTable interface directly, as this does not require the

application to parse the actual data structures of the constant

table. The ID3DXConstantTable interface provides a number of con-

venient methods for looking up handles of known HLSL variables

based upon their ASCII names. The appropriate values for these

HLSL variables may then be set as shown in the following code

snippet:

Introduction to the DirectX High Level Shading Language 59

D3DXHANDLE handle;

if (handle = m_PS_ConstantTable->GetConstantByName(NULL, "ringFreq"))

{

m_PS_ConstantTable->SetFloat(m_pd3dDevice, handle, m_fRingFrequency);

}

if (handle = m_PS_ConstantTable->GetConstantByName(NULL, "lightWood"))

{

m_PS_ConstantTable->SetVector(m_pd3dDevice, handle, &lightWood);

}

Likewise, textures and sampler states must be set up correctly, as

shown in the following code snippet:

if (handle = m_PS_ConstantTable->GetConstantByName(NULL, "NoiseSampler"))

{

m_PS_ConstantTable->GetConstantDesc(handle, &constDesc, &count);

if (constDesc.RegisterSet == D3DXRS_SAMPLER)

{

m_pd3dDevice->SetTexture (constDesc.RegisterIndex,

m_pVolumeNoiseTexture);

// Set sampler states appropriate for the Noise Sampler

m_pd3dDevice->SetSamplerState (constDesc.RegisterIndex, …, …);

}

}

The implication of this, of course, is that render states, texture

stage states, and sampler states must be maintained by the appli-

cation and are in no way encapsulated in the HLSL shader code as

they would be using D3DX Effects.

Of course, particularly in any kind of shader-authoring tool,

there may be no a priori application knowledge of the names of

variables or samplers expected. In this case, it is necessary to use

the ID3DXConstantTable::GetDesc() method to determine the

number of constants in the constant table. Subsequently, the appli-

cation can use the ID3DXConstantTable::GetConstantElement()

method rather than the ID3DXConstantTable::GetConstantByName()

method used in the code snippets above. In general, it is a good

60 Introduction to the DirectX High Level Shading Language

idea to familiarize yourself with the ID3DXConstantTable interface

if you intend to integrate support for HLSL shaders into your

application without the use of D3DX Effects.

SDK Updates

Since the release of DirectX 9.0 and the subsequent DirectX 9.0a

patch, Microsoft has committed to releasing periodic SDK updates

for developers. These SDK updates do not contain Direct3D

run-time changes, but they do include upgrades to important

D3DX tools, including the HLSL compiler. It is highly recom-

mended that you keep up to date with the latest release of DirectX

SDK updates so that you are using the latest compiler revision

and generating the best possible asm from your HLSL source.

Conclusion

We have presented a detailed description of the Direct3D High

Level Shading Language (HLSL), which is one of the most signifi-

cant new features of DirectX 9.0. We have presented an

introduction to the mechanics of the language itself and reinforced

key concepts with sample shaders. We have also given some

insight into the compilation process and how you can best write

shaders for optimal performance. We hope this introduction has

provided you with a solid foundation so that you can understand

the HLSL shaders presented in later chapters and begin integrat-

ing HLSL shaders into your own projects.

Acknowledgments

Thanks goes to ATI’s 3D Application Research Group for provid-

ing the sample HLSL shaders. Thanks to Dan Baker and Loren

McQuade of Microsoft for their feedback and specifically their

contributions to the section on optimizations. Thanks also to Mark

Wang and Wolfgang Engel for valuable comments that resulted in

greater clarity.

Introduction to the DirectX High Level Shading Language 61

Introduction to the vs_3_0
and ps_3_0 Shader Models

Nicolas Thibieroz, Kristof Beets, and Aaron Burton

Introduction

DirectX 9 introduces the new shader model 2.0 whose capabilities

clearly exceed their DirectX 8 counterparts. However, the same

DirectX 9 release also includes the 3.0 shading model whose

advanced vertex and pixel processing features open the door to a

plethora of new techniques and effects previously not possible in

real-time 3D rendering. While the “extended” shader model 2.x

offers some functionality common to its 3.0 counterpart, its avail-

ability depends on a number of capabilities that may or may not be

exposed, depending on implementations. Vertex and pixel shaders

3.0 raise the bar and require a base feature set for 3D acceleration

hardware supporting this model, making it easier to determine

the capabilities of the rendering device. They also share the same

unified structure and syntax, making the writing of shaders an

intuitive and straightforward process. For this reason, a vs_3_0

program must always be associated with a ps_3_0 program and

vice versa. This article describes the new features of this shader

model in detail while giving practical examples of effects that can

be implemented with it.

63

Features Common to vs_3_0 and ps_3_0

Flexible Input and Output Declarations

New to the 3.0 shader model is the obligation to declare input (for

both vertex and pixel shaders) and output (vertex shader only)

registers prior to their utilization. However, declared registers

come with the added facility of being able to contain more than

one declaration type. This means that even if the number of inputs

to a shader program exceeds the limit of input registers allowed,

inputs can be packed together into registers during the declaration

phase of the shader. As an example, a vertex shader 3.0 declara-

tion could accept position, normal, tangent, binormal, two colors,

eight blending weights, eight blending indices, and 14 2D texture

coordinates by optimal use of input registers packing. With the 2.0

model, such a declaration would only be possible by prepacking all

this data in the vertex structure using 16 total inputs. Outputs are

declared the same way as the inputs. An example of a vs_3_0 dec-

laration is given below:

vs_3_0

; Declare inputs

dcl_position0 v0.xyzw

dcl_normal0 v1.xyz

dcl_tangent0 v2.xyz

dcl_binormal0 v3.xyz

dcl_blendweight0 v1.w

dcl_blendweight1 v2.w

dcl_blendweight2 v3.w

dcl_texcoord0 v4.xy

dcl_texcoord1 v4.wz

; Declare outputs

dcl_position o0.xyzw

dcl_texcoord0 o1.xy

dcl_texcoord1 o1.zw

dcl_texcoord2 o2.xyz

dcl_fog o2.w

dcl_psize o3

64 Introduction to the vs_3_0 and ps_3_0 Shader Models

As the number of vertex shader outputs and pixel shader inputs is

the same (12), this feature is not as useful in the pixel shader as it

is in the vertex shader. The preferred method of selecting pixel

shader inputs is arbitrary source swizzling, which is covered later

in this article.

Flexible input and output declarations also allow different

vertex and pixel shaders to be paired together without having to

ensure they all use exactly the same register assignment. This

can be a useful feature when dealing with a large number of vertex

and pixel shader programs.

Predication

The predicate register (p0) is a set of four Boolean flags (one per

x, y, z, and w channel) that is basically a “dynamic write mask.” It

enables shader instructions to be performed on a per-channel

basis based on the results of previous calculations. The flags in

the predicate register are set with the setp_comp p0, src1, src2

instruction, where comp is a comparison mode (greater than, less

than, etc.), p0 is the predicate register, and src1 and src2 are two

input registers. The comparison is performed four times on the

corresponding components of the source registers, and the results

are stored in the Boolean flags of the predicate register. For exam-

ple, the following code sets the predicate register components to

(false, true, false, false):

def c0, 0.0f, 2.0f, -4.0f, 1.0f

def c1, 4.0f, -8.0f, -2.0f, 1.0f

mov r0, c0

setp_gt p0, r0, c1

Once the predicate register is set, its contents can be used to

allow or prevent per-channel operations to be carried out. To

enable predication, (p0) is added in front of the corresponding

arithmetic or texture instruction. For example, based on the predi-

cate register contents defined above, only the .y component of the

destination register r0 is affected by the result of the following

instruction:

Introduction to the vs_3_0 and ps_3_0 Shader Models 65

(p0) mul r0, r1.x, c1

A negate modifier (!) and single-component replicate swizzle can

also be used with the predicate register. In the following example

(and using the same predicate contents as before), all the compo-

nents of r0 receive the multiplication results:

(!p0.z) mul r0, r1.x, c1

Using predication as a dynamic write mask has its uses; for very

short branching sequences, it should be preferred instead of the

dynamic branching instructions like if_comp. The predicate

register also uses fewer temporary registers compared to the

equivalent non-predicated sequence of instructions, which can

help compiler optimizations and may produce better code.

Static and dynamic flow control instructions like loop, if_comp,

etc., may not be used in predication mode, although the predicate

register can be used as a branching condition using the dedicated

flow control instructions if_pred, callnz_pred, and break_pred. A

replicate swizzle must be used with those instructions in order to

determine which component triggers the branch.

Static and Dynamic Flow Control

The vs_2_0 model supports static flow control (i.e., branching

instructions like loops and subroutines that are called based on

values in constant registers). Static flow control allows the com-

bining of different code paths into long shaders, reducing the

number of shader state changes in the process. Static loops can

also be useful when a fixed number of iterations are performed

(e.g., looping through a set number of lights). The only difference

in the 3.0 model with regard to static flow control is the nesting

level. While vs_2_0 does not support nesting (i.e., having loops

within loops), both vs_3_0 and ps_3_0 support static flow control

with a nesting depth of 4. However, the real power of the 3.0

model comes with the ability to support dynamic flow control.

Dynamic flow control is a way to specify different code paths

based on the comparison of registers whose contents are modified

dynamically within the shader program. There are two main

66 Introduction to the vs_3_0 and ps_3_0 Shader Models

advantages to this feature: flexibility and performance. Flexibility

because different branching instructions are now executed at the

vertex or pixel level, allowing complex code trees to be imple-

mented. Performance because code can now be run only for the

vertices or pixels that require it (although the performance gained

from unexecuted code may vary depending on hardware imple-

mentations). Dynamic branching instructions can be nested up to

24 levels deep; a description of the instructions follows:

� if_comp: Conditionally performs the next sequence of instruc-

tions based on a comparison. The else/endif instructions are

used to delimit the if blocks.

� if_pred: Conditionally performs the next sequence of instruc-

tions based on the value of the predicate register. The

else/endif instructions are used to delimit the if blocks.

� callnz_pred: Conditionally calls a subroutine based on the

value of the predicate register. The ret instruction is used to

return from the subroutine.

� break_pred: Conditionally breaks from a loop/endloop or

rep/endrep block based on the value of the predicate register.

� break_comp: Conditionally breaks from a loop/endloop or

rep/endrep block based on a comparison.

A typical application of dynamic branching is the common (N.L)

calculation (dot product of the normal and light vector). Depending

on the result of the dot product, the rest of the lighting equation

may or may not be calculated, improving performance in the pro-

cess. The following pixel shader illustrates this:

ps_3_0

; User-defined constants

def c0, 0.0f, 0.0f, 0.0f, 1.0f

; Declare samplers

dcl_2d s1 ; Normal map

; Declare inputs

dcl_texcoord0 v0.xy ; Texture coordinates

Introduction to the vs_3_0 and ps_3_0 Shader Models 67

dcl_texcoord1 v1.xyz ; Un-normalized light vector

texld r2, v0, s1 ; Retrieve pixel normal

nrm r1, v1 ; Normalize light vector

dp3 r0.w, r2, r1 ; Light calculation (N.L)

if_gt r0.w, c0.x ; if (N.L)>0

; Performs the rest of the lighting equation: specular,

; attenuation, light maps, etc. r3 contains the final pixel

; color

else

; Output black (or any other ambient color)

mov r3, c0

endif

mov oC0, r3 ; Output pixel color

The same principle can be applied to shadows (in or out of

shadow), light attenuation (distance from the light exceeds maxi-

mum range), etc. Many optimizations can be performed using

dynamic branching.

NOTE For small portions of conditional code, it is usually

preferable to use the predicate register or other comparison

instructions than to start a dynamic branch. There may be a setup

cost associated with dynamic branching, and so running a few

instructions for all conditions could be faster than running fewer

instructions in separate branches.

The break instructions are used to break from loops (using

loop/endloop or rep/endrep instructions), which can be useful for

iterative mathematical operations. By breaking when the right

result is found, the remaining loop iterations are not executed,

thus improving performance.

68 Introduction to the vs_3_0 and ps_3_0 Shader Models

Dynamic flow control allows numerous new effects to be

implemented in vertex or pixel shaders. Recursion, tree struc-

tures, ray tracing, etc., are all possible with dynamic flow control.

Arbitrary Swizzle

Arbitrary source swizzling is now supported for both vs_3_0 and

ps_3_0 (arbitrary source swizzling was not supported in ps_2_0).

This feature allows the selection of source components to be

specified in any order and eliminates the need to copy or modify

registers when their component arrangement does not match the

format required for the next instruction.

Arbitrary source swizzling is compatible with texture instruc-

tions (in both vertex and pixel shaders), thus, texture coordinates

can be selected in any order from a given set of coordinates. This

is very useful when filter kernels are involved, as several sample

points can be fetched simply by using source swizzles on the tex-

ture coordinates. The following example fetches five samples in

an x-shaped kernel from a single set of 2D texture coordinates:

;---

; Constants specified by the app

; c0 = -1/TextureWidth, 1/TextureHeight,

; 1/TextureWidth, -1/TextureHeight

;---

ps_3_0

; Declare samplers

dcl_2d s0 ; Texture to sample from

; Declare inputs

dcl_texcoord0 v0.xy ; Texture coordinates UV

; Prepare all possible texture coordinate values

add r0, v0.xyxy, c0 ; r0 = (U-texel, V+texel,

; U+texel, V-texel)

; Fetches all 5 samples ('X' shape)

texld r1, v0, s0 ; Texel at (U, V)

texld r2, r0.xw, s0 ; Texel at (U-texel, V-texel)

texld r3, r0.zw, s0 ; Texel at (U+texel, V-texel)

Introduction to the vs_3_0 and ps_3_0 Shader Models 69

texld r4, r0.xy, s0 ; Texel at (U-texel, V+texel)

texld r5, r0.zy, s0 ; Texel at (U+texel, V+texel)

Interestingly, arbitrary source swizzling also works on the sampler

registers. It is possible to swap or replicate color channels by

using the appropriate swizzle with the sampler register. For

instance, the following instruction changes the channel ordering

from the default RGBA to ABGR when sampling a texel:

texld r0, v0, s0.abgr

Arbitrary source swizzles not only improve performance by avoid-

ing copy or replicate instructions, but they also make shader code

more readable by doing so.

Destination Write Masks on Texture Instructions

Both vs_3_0 and ps_3_0 support destination write masks on tex-

ture instructions, and so only the selected color channels in the

destination register are updated with the results of the texture

sampling. This allows the contents of masked components to be

preserved during a texture instruction. The following example

combines destination write masks and arbitrary source swizzling

to sample two 32-bit textures of D3DFMT_R16G16F format con-

taining position data (XY in s0, ZW in s1) and directly store the

results into a destination register:

ps_3_0

; Declare samplers

dcl_2d s0 ; Contains XY data

dcl_2d s1 ; Contains ZW data

; Declare inputs

dcl_texcoord0 v0.xy ; Texture coordinates

; Retrieve position data

texld r0.xy, v0, s0 ; Sample RG data into r0.xy

texld r0.zw, v0, s0.abrg ; Sample RG data into r0.zw

; r0.xyzw now contains position data

70 Introduction to the vs_3_0 and ps_3_0 Shader Models

NOTE The predicate register can also be used to specify dynamic

write masks on a texture sampling instruction.

vs_3_0 Features

Registers

A total of 32 temporary registers (r0...r31) are available in the

vs_3_0 model, compared to a mere 12 for the vs_2_0 model. This

number of registers provides more storage for complex mathe-

matical functions as well as extra parameters for subroutines (see

the “Static and Dynamic Flow Control” section above).

To increase the flexibility of the shader, the 12 output regis-

ters have been renamed to oX (o0-o11) and can now contain any

float values that will be iterated and supplied to the pixel shader.

Of those, only ten are custom four-component output registers,

as one register must be declared as the output position and the

remaining one may only be used for point sprite size. For more

information on vertex shader declarations, see the “Flexible Input

and Output Declarations” section in this article.

The loop counter register aL, used in vs_2_0 to index con-

stants within a loop, can now also be used to relatively address

both input and output registers. This enables the same piece of

code to operate on a set of different inputs. This can be useful, for

instance, to apply the same transformations to a set of vertex

positions or output the results of per-vertex light vector calcula-

tions to texture coordinates. The following code gives an example

of output register indexing in a vs_3_0 program.

;---

; Constants specified by the app

; c0-c3 = Global transformation matrix (World*View*Projection)

; c12-c19 = Model space positions of light sources

;---

vs_3_0

; Declare constant integer for looping

Introduction to the vs_3_0 and ps_3_0 Shader Models 71

defi i0, 8, 2, 1, 0 ; Loop 8 times, starting from 2 and

; incrementing by 1 each iteration

def c4, 0, 0, 0, 1 ; Static constant

; Declare input registers

dcl_position0 v0 ; Input position

; Declare output registers

dcl_position0 o0.xyzw ; Output position

dcl_texcoord0 o2.xyzw

dcl_texcoord1 o3.xyzw

dcl_texcoord2 o4.xyzw

dcl_texcoord3 o5.xyzw

dcl_texcoord4 o6.xyzw

dcl_texcoord5 o7.xyzw

dcl_texcoord6 o8.xyzw

dcl_texcoord7 o9.xyzw ; Per-vertex light vector xyz and

; distance w for 8 lights

; Vertex transformation

m4x4 o0.xyzw, v0, c0 ; Transform vertices by WVP matrix

; Set r0.w to 1 (used in distance calculation later on)

mov r0.w, c4.w

; Lighting pre-processing

loop aL, i0 ; Start loop, aL will loop from 2 to 9

; Compute vertex-to-light vectors and distance

sub r0.xyz, c[aL+10], v0 ; Subtract model space light

; position from vertex position

nrm r1, r0 ; Normalize vector

rcp r1.w, r1.w ; 1/(1/distance) = dist(light, vertex)

mov o[aL], r1 ; Store result in corresponding texture

; coordinate output

endloop

Other registers (16 input registers, 256 constant float registers,

16 constant integer registers, 16 constant Boolean registers,

address register) remain unchanged compared to vs_2_0.

72 Introduction to the vs_3_0 and ps_3_0 Shader Models

Instructions

The new vs_3_0 model supports a minimum of 512 instructions in

a vertex shader program compared to 256 for the vs_2_0 model.

Note that the number of executed instructions can potentially be

made larger by the use of loops and subroutines within the vertex

shader. Supporting longer shaders not only enables more opera-

tions to be performed like advanced animation, complex vertex

lighting, etc., but also concatenating different shaders into a larger

one reduces or even eliminates vertex shader state changes,

improving performance.

The _abs source modifier is a new addition to vs_3_0. It forces

the absolute value of a source register to be used in an instruction.

Note that it takes precedence over the negate modifier (-) so that

a negative value can always be guaranteed. Here are a few

examples:

add r0, r8_abs.x, c10 ; Adds the absolute value of r8.x

; and c10 together

mad r0, r1, r2, -v_abs[2] ; Multiplies r1 and r2 and subtracts

; the absolute value of v2. Note

; that –v2_abs also works.

In an effort to unify the vertex and pixel shader models, the _sat

instruction modifier that was available in ps_2_0 has been includ-

ed in vs_3_0. Applying this modifier clamps the result to the [0,1]

range:

sub_sat r0, r0, r1 ; Subtracts r1 from r0 and clamps

; the result to the [0,1] range

New instructions in the vs_3_0 model that relate to dynamic

branching are discussed in the “Static and Dynamic Flow Control”

section.

Texture Sampling

The 2.0 model introduced basic texture sampler functionality to

the vertex shader unit. This access was limited to a single texture

with a fixed set of texture coordinates — either read directly from

Introduction to the vs_3_0 and ps_3_0 Shader Models 73

the vertex stream (which supports filtering) or derived from the

vertex index (which supports point sampling only) and only in

combination with n-patches.

The 3.0 model introduces true vertex texturing support,

which is texture access from the vertex shader at the same level

of functionality and flexibility existing in the pixel shader unit.

Using this new functionality is also very similar to using textures

in the pixel shader; textures (SetTexture) and sampler states

(SetSamplerState) simply have to be set for the four available ver-

tex texture sampler stages (D3DVERTEXTEXTURESAMPLER0,

D3DVERTEXTEXTURESAMPLER1, D3DVERTEXTEXTURE-

SAMPLER2, and D3DVERTEXTEXTURESAMPLER3) with the

same arguments used for regular textures. These samplers also

need to be declared as part of the shader program using the

dcl_textureType s# syntax, where the texture type can be 2d,

cube, or volume. The only difference with textures in the pixel

shader is that anisotropic filtering is not supported for vertex tex-

tures. Also, because the rate of change information is not

available, the shader or application has to compute the level of

detail (LOD) and provide that information as a parameter to the

actual texture sampling instruction. Hence, only the texldl

instruction is supported, for which the particular mipmap level

(LOD) to sample has to be specified as the fourth component of

the texture coordinate.

Given that texture sampling is now implemented using an

instruction (unlike the 2.0 model, where the sampled data appears

in an input register), it is now possible to modify the texture coor-

dinates and LOD before sampling, meaning that procedural texture

coordinates are possible as well as dependent texture reads (using

the result of one texture read to read into another texture). The

number of reads and dependent reads is unlimited in the 3.0

model.

Vertex texturing allows the implementation of huge lookup

tables, effectively using the texture as a massive data storage area

that can be accessed freely from within the vertex shader. Up to

four variables can be fetched from the table per read (RGBA com-

ponents). Completely flexible displacement mapping (reading a

74 Introduction to the vs_3_0 and ps_3_0 Shader Models

value from a texture and using it to displace a vertex — e.g., along

its normal vector) is also possible. This functionality is no longer

limited to point sampling (pre-sampled displacement mapping in

vs_2_0) or geometry with n-patches enabled. The following is a

vertex shader example performing displacement mapping:

;---

; Constants specified by the app

; c0-c3 = Global transformation matrix

; c11.x = Scaling factor for displacement

;---

vs_3_0

; Samplers

dcl_2d s0 ; Declare sampler

; Input registers

dcl_position v0 ; Vertex position

dcl_normal v3 ; Normal vector

dcl_texcoord0 v4 ; Texture coordinate

; Output registers

dcl_position0 o0.xyzw ; Final vertex position

dcl_texcoord0 o1.xy ; Texture coordinate

; Sample texture

texldl r0, v4, s0 ; Sample displacement scalar from

; texture

; Displacement mapping

mul r2, v3, c11.x ; Create displacement vector

; (based on normal vector)

mul r2.xyz, r2, r0.x ; Multiply unit displacement vector

; by displacement scalar

add r0.xyz, v0, r2 ; Displace vertex position

; Vertex transformation

m4x4 o0, r0, c0 ; Transform vertices

mov o1.xy, v4 ; Output texture coordinate

A form of geometry loopback can also be implemented where a

complex vertex shader (e.g., very complex skinning and lighting

models) is executed once, and the resulting vertex information is

Introduction to the vs_3_0 and ps_3_0 Shader Models 75

stored out into several textures using a trivial pixel shader pro-

gram. It is then possible to read this vertex information back and

send it to the pixel shader multiple times to implement some

complex multipass effect. This same principle can also be used to

implement geometry images, as described by Xianfeng Gu, Steven

J. Gortler, and Hugues Hoppe [Gu], where impressive geometry

compression is achieved by using textures as data storage for a

model’s vertex positions and normals. Similarly, it is also possible

to generate procedurally animated geometry, where an object’s

vertex positions and normals are stored within a texture that is

then processed recursively by a complex pixel shader program to

create a procedurally animated object. This principle is explained

in detail in the article “Cloth Animation with Pixel and Vertex

Shader 3.0” in ShaderX2: Shader Programming Tips & Tricks with

DirectX 9.

Vertex Stream Frequency

Vertex stream frequency is a DirectX 9 feature requiring full sup-

port of the vs_3_0 model. Setting a vertex stream frequency

allows vertex data to be fetched at different rates so that the same

input data can be used for more than a single vertex in the vertex

shader. Setting a stream frequency is achieved by using the fol-

lowing function:

HRESULT IDirect3DDevice9::SetStreamSourceFreq(UINT StreamIndex,

UINT Frequency);

StreamIndex indicates which stream is to have its frequency set,

while Frequency is the frequency to which it will be set.

One practical usage of vertex stream frequencies is vertex

compression. A 3D model can be separated into “chunks” of verti-

ces; each chunk is composed of full-precision 3D coordinates,

indicating the chunk position, and a number of lower-precision

“offset” vertices. The vertex shader adds the base position to

each of the offset values to generate the untransformed vertex.

The first stream is given a frequency indicating how many offset

vertices are to use the same base position data, while the

76 Introduction to the vs_3_0 and ps_3_0 Shader Models

frequency of the second stream remains unchanged. Figure 1 illus-

trates this principle for a given set of 16 vertices.

Another typical usage of stream frequencies is to use a vertex

stream to control the animation of individual (or groups of) trian-

gles in a vertex buffer. For example, explosions can be controlled

at the triangle level by setting the desired animation data for

vertices in a control stream set to a frequency of 3 (one for each

triangle in the model vertex buffer). The vertex shader then

transforms each triangle vertex in the model using the animation

data in the control stream. The frequency can be set to higher

values so that blocks of triangles can be transformed together.

Any type of vertex data can be shared between groups of

vertices. For instance, a vertex stream containing triangle nor-

mals could be set up with a frequency of 3 to avoid duplicating the

normal vector across all three vertices defining a face in the

Introduction to the vs_3_0 and ps_3_0 Shader Models 77

Figure 1: Example of vertex compression with stream frequencies

associated triangle list. Hierarchical sub-mesh information could

also be stored using this feature by using several streams of vari-

ous frequencies.

Future versions of DirectX might implement vertex stream

stepping as well as frequency, enabling geometry instancing to be

performed by looping streams multiple times.

ps_3_0 Features

Registers

The ps_3_0 model supports 32 temporary registers and 256

constant registers (224 float, 16 integer, and 16 Boolean). This

increase enables more data to be manipulated or stored compared

to the ps_2_0 model, which only supports 12 temporary and 32

constant registers. While ps_2_0 supported eight float and two

integer input registers, all ten input registers of ps_3_0 are now

in float format. Thus, interpolated colors from the vertex shader

can be passed as float, increasing their precision in the process.

Predication and static/dynamic flow control are controlled by two

additional registers — p0 and aL. Note that input register indexing

can also be performed using the loop counter register aL.

A face register is now available in ps_3_0, which is used to

indicate whether the incoming pixel is part of a front- or back-fac-

ing triangle (front-facing triangles are defined by a clockwise

vertex ordering). Typical usages are two-sided lighting and vol-

ume algorithms. The sign of the vFace register determines

whether the pixel is front- or back-facing, and the if_cmp and setp

instructions are used to test for the sign of the face register. The

following example sets front-facing pixels to red and back-facing

pixels to green using predication (note that the vFace register

must be declared prior to being used in a pixel shader program):

ps_3_0

; Declare face register

dcl vFace

78 Introduction to the vs_3_0 and ps_3_0 Shader Models

; Declare constant

def c0, 0, 0, 0, 1

; Set predicate to true if front-facing, false otherwise

setp_gt p0.x, vFace, c0.x

; Set front faces to red and back faces to green

(p0.x) mov oC0, c0.wxx

(!p0.x) mov oC0, c0.xwx

Another useful register present in the ps_3_0 model is the

position register vPos. Once declared, this register contains the

current pixel position in screen coordinates. As such, only the x

and y components of vPos are valid. This facility is interesting for

all sorts of post-process effects operating on a surface containing a

rendered scene. For example, deferred shading algorithms can use

the vPos register to retrieve the current pixel position of a volume

and thus directly use it as texture coordinates to sample data in

screen-aligned textures. As a simple example, the following code

renders every second horizontal line with a different color:

ps_3_0

; Declare position register

dcl vPos.xy

; Declare constant

def c0, 1, 0, 0, 0.5

; Divide position by 2

mul r0.xy, vPos, c0.w

; Retrieve fractional part

frc r0.xy, r0

; Set predicate to true if fraction != 0

setp_ne p0.xy, r0, c0.y

; Output different colors based on predicate register

(p0.y) mov oC0, c0.xyyx ; Output red

(!p0.y) mov oC0, c0.yxyx ; Output green

Introduction to the vs_3_0 and ps_3_0 Shader Models 79

Instructions

As with the vs_3_0 model, ps_3_0 supports a minimum instruc-

tion count of 512. This is a considerable increase compared to the

ps_2_0 model that only supports a minimum of 96 instructions (64

arithmetic and 32 texture instructions). Indeed, complex shaders

like shadow mapping with percentage-closer filtering or large fil-

ter kernels could already exceed the ps_2_0 limit. Also, these 512

instructions could be arithmetic or texture instructions, as there

is no restriction on their type. Note that the number of executed

instructions can potentially be made larger by the use of loops and

subroutines within the pixel shader.

One obvious advantage to supporting that many instructions

is the reduction in pixel shader state changes. By using static flow

control, several pixel shaders can be combined into a longer one,

and the corresponding code path can be chosen based on a dynam-

ic constant. The increase in performance by reduction of shader

state changes is even more significant when the scene uses a

large number of different shaders.

The _abs source modifier present in vs_3_0 is also available in

ps_3_0. It forces the absolute value of a source register to be used

in an instruction. For a code example using this modifier, see the

“Instructions” paragraph of the “vs_3_0 Features” section.

Ps_3_0 contains new texture instructions. The selection of a

particular mipmap level can be forced by using the texldl instruc-

tion and setting the desired MIP level into the w component of the

source texture coordinates. A blend between MIP levels can be

achieved by setting a fractional value for w. This feature can be

useful for micro or detail texturing or to customize texture

filtering.

Gradient instructions are a new feature of the ps_3_0 model.

These new instructions are dsx, dsy, and texldd. Gradient instruc-

tions are used to detect the rate of change of a given register

across adjacent pixels in the horizontal (dsx) and vertical (dsy)

directions. The texldd instruction can then be used to sample a

pixel according to the horizontal and vertical rates of changes of

the texture coordinates passed to the function. Gradient

80 Introduction to the vs_3_0 and ps_3_0 Shader Models

instructions are generally used to determine the mipmap levels

applied to a sampled texel so that custom filtering can be applied.

As an example, the following shader determines the rates of

change in texture coordinates and feeds them to the texldd

instruction:

ps_3_0

; Samplers

dcl_2d s0 ; Scene contained in texture

; Input Registers

dcl_texcoord0 v0 ; Texture coordinate

; Compute the horizontal and vertical rates of change in

; adjacent texture coordinates

dsx r1, v0 ; Horizontal

dsy r2, v0 ; Vertical

; Sample pixel

texldd r0, v0, s0, r1, r2

Centroid is an instruction modifier used to adjust the texture sam-

pling location when multisampling is used. This is used to avoid

artifacts when a multisampled triangle edge does not cover the

center of a pixel but does cover the center of at least one sub-pixel

of the multisampled mask. Centroid is used by appending the

_centroid modifier to a texture instruction. The following is an

example of the pixel shader code that can be used on a scene with

multisampling enabled:

ps_3_0

; Samplers

dcl_2d s0 ; Texture

; Input registers

dcl_texcoord0 v0 ; Texture coordinate

; Sample texel at centroid

texld_centroid r0, v0, s0

Introduction to the vs_3_0 and ps_3_0 Shader Models 81

Unlimited Texture Samples and Dependent Reads

The ps_3_0 model completely removes any and all texture-read

limits. Shaders can now read from a texture any number of times

with coordinates calculated from any source and with unlimited

complexity. The previous 2.0 model only allowed 32 texture

instructions and four dependent reads to be performed within a

pixel shader program. These new abilities open the hardware to

iterative/recursive algorithms. For example, it is now possible to

write a pixel shader that performs ray-tracing operations through

a volume texture, enabling shadows or reflective surfaces to be

calculated. See the “Rendering Voxel Objects with ps_3_0”

article in ShaderX2: Shader Programming Tips & Tricks with

DirectX 9 for an example of ray tracing through a volume texture.

Other applications include single-pass blur filters or spatial convo-

lution, both with an unlimited kernel size, and many other

image-processing algorithms.

Conclusion

The 3.0 shader model is a huge step forward compared to the

previous 2.0 model. New features have been introduced while

register and instruction limits have been increased dramatically,

allowing for much more advanced effects to be implemented. Sim-

plicity has also been greatly enhanced by unifying the vertex and

pixel shader models and allowing more flexibility on instructions

and registers.

References

[Gu] Gu, X., S. Gortler, and H. Hoppe, “Geometry Images,” ACM

SIGGRAPH ’02, pp. 355-361, http://research.microsoft.com/

~hoppe/.

82 Introduction to the vs_3_0 and ps_3_0 Shader Models

Advanced Lighting and
Shading with Direct3D 9

Michal Valient

Introduction

As promised, DirectX 9 has a lot of new functionality, mainly in

the programmable pipeline. Floating-point support in pixel

shaders gives us what we missed in Direct3D 8 — precision in

this major part of rendering. Larger shaders and flow control allow

more effects. New types of textures (16-bit per component and

floating-point components) give us an extra bit of detail. Of

course, new hardware is on the market (or heading to the market)

— ATI Radeon 9700, nVidia GeForceFX, and cards from S3,

3DLabs, and other companies.

This article discusses the new possibilities of Direct3D 9. We

begin with classic per-pixel shading. First we improve it for ver-

sion 2.0 shaders — great quality and no more lookup textures.

Then we utilize 3.0 shaders to show how to do four spotlights in

one pass with dynamic flow control and relative addressing.

We continue with per-pixel environment bump mapping —

DirectX 8.1 is presented first (with pixel shader 1.4), and then the

new shaders 2.0 version is presented. The Fresnel term is added

for a more impressive and realistic effect.

83

The end of the article is reserved for two lighting models

that are not commonly used in real-time computer graphics. This

is mainly due to limitations of the hardware prior to the new

versions of DirectX. The Oren-Nayar generalization of the Lam-

bertian diffuse model is implemented with 2.0 shaders. It brings

more reality to materials like clay and porcelain. The specular part

of the Cook-Torrance model is presented with both pixel shader

1.4 and 2.0 for visual comparison. This model produces very good

results for metallic surfaces.

The following sections are organized similarly: The whole

shader is presented at the beginning of the section, and then it is

broken into pieces with necessary explanations. New shader con-

cepts (syntax) are explained in depth.

Per-Pixel Phong

This section covers the possibilities of Phong lighting with new

shader models. It is targeted mainly at people upgrading to

DirectX 9 from a previous version. Because of this, knowledge of

the Phong lighting equation (only a brief review is available here),

concepts of per-pixel shading, and DirectX 8 is expected. Most of

this can be found in [1] (this article is a direct extension). Other

sources of information are [2] and [3]. A shader reference is avail-

able on the MSDN DirectX web pages (http://msdn.microsoft.com/

directx).

Phong’s Lighting Equation

The equation that we use includes only a diffuse and specular

term. Both are attenuated with a spotlight cone.

L I m mPhong spotlight� � � � �(I Idiffuse diffuse specular specular

diffuse

specular

shininess

I

I

)

()

()

� �

� �

�

n

r v

r 2(n

1

� �1)n 1

84 Advanced Lighting and Shading with Direct3D 9

. . .where n is the surface normal vector, l is the vector from the

surface point to the light, and v is the vector from the surface

point to the viewer’s position. Every vector is assumed to be

normalized.

mdiffuse is the color of diffuse material at a given pixel while

mspecular is the color of specular material at a given pixel.

Ispotlight is used to simulate a spotlight. In our case, we use

additional texture, which is projected in the spotlight’s direction

on every object. Think of it as a projector.

Vertex and Pixel Shaders 2.0

Direct3D 9 introduced a new evolutionary step in shader architec-

ture — the 2.0 version.

Vertex shaders can be larger, and static flow control is now

possible. This includes support for if-then-else (with constant

Boolean registers), loop and repeat (with constant integer regis-

ters as loop counters), and subroutine support (also Boolean

register dependent calls). Of course, a couple of new instructions

and macros are available.

Pixel shaders are far more modified. A major improvement is

floating-point precision all over the pipeline. Version 2.0 is an

extension of version 1.4, so none of the instructions (like texm-

3x3pad, texm3x3tex, or texm3x3vspec) from versions prior to 1.4

survived. This is a good step because the version 1.3 style of cod-

ing was more CISC-like (powerful instructions), but with so little

space in the shader, we had less freedom. On the other hand, ver-

sion 1.4 and newer are comparable to RISC style (a small set of

simple instructions and a lot of freedom). Shaders can now contain

64 arithmetic and 32 texture instructions. The instruction set is

comparable to that in vertex shaders but without any flow control.

Of course, texture sampling instructions are available. The pixel

shader can now have four color outputs, so we can update four

independent render targets at one time. The depth buffer is

another possible output.

Advanced Lighting and Shading with Direct3D 9 85

Vertex Shader 2.0

As you can see, the new vertex shader differs only in minor ways

from version 1.1, which was commonly used to set up per-pixel

shading.

Here is a vertex shader for per-pixel Phong lighting:

vs_2_0

// Constant registers

//------------------------------

// c0-c3 - world space transposed

// c4-c7 - world * view * projection

// c8 - Light position (in world space)

// c9 - Eye position (in world space)

// c10-c13 - Spotlight projection matrix

// Input registers

//------------------------------

dcl_position v0

dcl_normal v1

dcl_texcoord v2

dcl_tangent v3

// Output

//------------------------------

// oT0 - texture coordinates

// oT1 - Light vector (in tangent space)

// oT2 - eye vector (in tangent space)

// oT3 - spotlight texture coordinates

//The following code outputs position and texture coordinates

//------------------------------

m4x4 oPos, v0, c4 //vertex clip position

mov oT0.xy, v2.xy //Texture coordinates for color texture

m4x4 r8, v0, c0 //Transform vertex into world position

//The following code generates tangent space base vectors

//------------------------------

m3x3 r11.xyz, v1, c0 //N to world space

mov r11.w, v1.w

m3x3 r9.xyz, v3, c0 //T to world space

mov r9.w, v3.w

86 Advanced Lighting and Shading with Direct3D 9

crs r10.xyz, r9, r11 //Cross product - binormal B=NxT

//Computes light and eye vectors and projector's texture coordinates

//------------------------------

add r0, c8, -r8 //Build the light

nrm r1, r0 //normalize vector

m3x3 oT1.xyz, r1, r9 //to tangent space

add r0, c9, -r8 //build the eye vector

nrm r1, r0 //normalize vector

m3x3 oT2.xyz, r1, r9 //to tangent space

m4x4 oT3.xyzw, v0, c10 //compute projector texture coordinates

Here is the first change that we can find in the declaration of input

registers:

dcl_position v0

dcl_normal v1

dcl_texcoord v2

dcl_tangent v3

In Direct3D 8, vertices were declared only at the time of shader

creation outside the shader. We specified which input register in

the shader would be loaded with which part of data. In Direct3D 9,

we have two declarations:

� Outside the shader with the SetVertexDeclaration

method. In this phase, we define for each input element the

stream from which it will be loaded — offset in bytes from the

start of the stream to the data element, type of data (i.e., float,

float3 for vector, etc.), and the semantic of the element (i.e.,

position, normal, tangent, binormal, etc. — this will be used

later in the shader).

� Inside the shader. Here we specify the target register for

data with the specified semantic (i.e., position, normal, tan-

gent, binormal, etc. — same as outside the shader).

This allows us to write shaders without expectations of a specific

input structure and specify a new vertex format for each model

still using the same shader. In the example above, we load one

position, texture coordinate, normal, and binormal to the first four

Advanced Lighting and Shading with Direct3D 9 87

input registers, but in the vertex stream, this data can be any-

where and even sorted in a different way (i.e., normal, texcoord,

position, and tangent).

Later in the tangent space base vectors computation, we use

the new crs macro instruction to do cross product instead of using

the mul r0,r9.zxyw,r11.yzxw; mad r10,r9.yzxw,r11.zxyw,-r0 pair

known from previous versions. This command takes two instruc-

tion slots and is most likely expanded to mul-mad internally. Also

note that we have to explicitly fill the w component of every base

vector because this version of the shader does not allow us to use

a component that was not filled previously, and crs uses all four

components of input registers.

The following is the creation of a tangent space base:

m3x3 r11.xyz, v1, c0 //N to world space

mov r11.w, v1.w

m3x3 r9.xyz, v3, c0 //T to world space

mov r9.w, v3.w

crs r10.xyz, r9, r11 //Cross product - binormal B=NxT

When light and eye vectors are computed, the nrm macro instruc-

tion is used to normalize the vector instead of the previously used

three instructions.

Here is the transformation of a normalized vector to tangent

space:

add r0, c8, -r8 //Build the light vector

nrm r1, r0 //normalize vector

m3x3 oT1.xyz, r1, r9 //to tangent space

The last shader instruction is used to compute the spotlight tex-

ture coordinates for this vertex. The matrix has the following

form:

M M *M *MSpotlight ObjectToWorld SpotView SpotProjectio� n *

.

.

. .

0 5 0 0 0

0 0 5 0 0

0 0 0 0

0 5 0 5 0 1

�
�

�

�
�
�
�

	

�
�
�
�

88 Advanced Lighting and Shading with Direct3D 9

MObjectToWorld is a matrix that transforms vertices from object to

world space. MSpotView is a spotlight’s view transformation matrix,

while MSpotProjection is a spotlight’s perspective transformation

matrix. Because of similarity with the camera, they can be easily

computed with the D3DXMatrixLookAtLH and D3DXMatrixPerspec-

tiveFovLH functions. The last matrix in the previous equation is

used to shift coordinates from range [–1...1] (output of clipping

matrix) to range [0...1]. Note that this matrix negates the y coordi-

nate because in texture space, y has a value of 0.0 on the top and

1.0 on the bottom and clipping space has –1.0 at the “top of the

space” and 1.0 at the bottom.

Usage of macro instructions all over the shader is preferred

over the usage of their inline versions. This is because they are

not expanded by the Direct3D runtime but by the driver. If the

hardware supports a specific macro, it is executed directly; if not,

it is safely replaced with supported instructions.

Pixel Shader 2.0

While the previous shader differs only in minor ways from version

1.1, pixel shader changes are much more notable.

The following is a pixel shader for per-pixel Phong lighting.

PS_2_0

// Constant registers

//------------------------------

// c0 - diffuse texture multiplier (multiplied with light color)

// c1 - specular texture multiplier (multiplied with light color)

// c2 - specular shininess (shi, shi, shi, 1.0f)

def c31, 2.0f, 1.0f, 0.0f, 4.0f //helper constant

// Used input registers

//------------------------------

dcl t0.xy //texture coordinates

dcl t1.xyz //light vector

dcl t2.xyz //eye vector

dcl t3.xyzw //projector texture coordinates

// Used input texture samplers

Advanced Lighting and Shading with Direct3D 9 89

//------------------------------

dcl_2d s0 //diffuse texture (gloss in alpha)

dcl_2d s1 //normal texture

dcl_2d s3 //spotlight texture

// Output

//------------------------------

// oC0 - output color

//

// Set up needed vectors - load and normalize

//------------------------------

texld r0, t0, s1 //load normal vector

mad r1, r0, c31.r, -c31.g //bias normal to range -1,1

nrm r11, r1 //r11 = normalized normal

mov r1.xyz, t1

nrm r10, r1 //r10 = normalized light vector

mov r1.xyz, t2

nrm r9, r1 //r9 = normalized eye vector

// Compute diffuse and specular intensities

//------------------------------

dp3 r0.r, r11, r10 //r0 = (n.l)

mul r1, r0.r, c31.r //r1 = 2*(n.l)

mad r1, r1, r11, -r10 //r1=2(n.l)n-l – reflectance vector

dp3_sat r1, r1, r9 //r1 = (r.v)

pow r0.g, r1.r, c2.r //r0.g = (r.v)^shi – specular term

cmp r0, r0.r, r0, c31.b //if (n.l)<0 do not light anything

// Modulate texture with computed intensities

//------------------------------

texld r1, t0, s0 //load diffuse texture (gloss is in alpha)

texldp r4, t3, s3 //load projector map (perspective correct)

mul r2, r1.a, r0.g //multiply specular intensity with gloss

mul r2, r2, c1 //… and with material's specular color

mul r3, r1, r0.r //multiply diffuse intensity with texture

mul r3, r3, c0 //… and with material's diffuse color

add r0, r2, r3 //combine it together

mul r0, r0, r4 //modulate it with spotlight texture

mov oC0, r0 //color output

90 Advanced Lighting and Shading with Direct3D 9

Changes start from the very beginning. We have to specify input

registers from the vertex shader. In the previous version, these

registers had to be loaded with special texcrd instructions into a

temporary register before they could be used in mathematical

instructions. Now we just declare them as used with the dcl

instruction. (With individual .xyzw components, if we fail to spec-

ify components, the compiler will assume .xyzw. If these are not

filled in the vertex shader, the run-time shader linker will fail.)

Then we can use them as read-only registers freely across the

shader.

The following is a declaration of input registers.

dcl t0.xy //texture coordinates

dcl t1.xyz //light vector

dcl t2.xyz //eye vector

dcl t3.xyzw //projector texture coordinates

Similarly, we have to declare used texture samplers (simply said,

texture stages that we want to use) with the type of used texture

(_2d, _3d, or _cube). Again, failing to specify correct input types

will generate linker errors at run time.

The following is a declaration of input texture samplers.

dcl_2d s0 //diffuse texture (gloss in alpha)

dcl_2d s1 //normal texture

dcl_2d s3 //spotlight texture

After setup, our first step is to load a normal vector. We are using

the texld instruction, but it differs from the pixel shader 1.4 ver-

sion. In fact, instead of specifying the output register/source

texture stage and texture coordinate (texld r0, t0 stands for

“load texel at coordinates t0 from texture stage 0 to register r0”),

we use three registers — output temporary register, texture coor-

dinates, and input sampler register (this follows the syntax of all

instructions in the shaders; the first parameter is an output regis-

ter, and then there are the inputs). Note that texture coordinates

can be specified by an input register from the vertex shader tn or

by a temporary register rn (dependent read), and texture sampling

can occur anywhere in the shader.

Advanced Lighting and Shading with Direct3D 9 91

As in the previous version, we need to expand the compo-

nents of a normal vector from range [0...1] to range [–1...1].

Because there is no longer a _bx2 instruction modifier, we need to

do this manually by multiplication with 2.0 and subtraction of 1.0

(mad r1, r0, 2.0, -1.0 in the shader after replacing constants

with values).

Now comes the big difference. Thanks to the power of pixel

shader 2.0 shaders, we can now normalize each input vector. Mark

Kilgard wrote in [4] that doing trilinear filtering of a normal tex-

ture denormalizes the resulting vector (which is correct), but the

result is acceptable because it “simulates” dimming of bumps with

increased distance from the viewer. When Kilgard saw images

done with shaders that were using normalization per pixel, I think

he changed his mind. Normalization is done with the nrm macro

instruction (the same syntax and behavior as in the vertex

shader). Note that we had to use mov r1.xyz, t1; nrm r0, r1

instead of the simple nrm r0, t1 because when D3DXAssemble-

Shader is used to load and compile the shader at run time, the

application crashes with an error inside the call (this should be

corrected in the next version of the SDK). The command-line

compiler psa.exe handles this correctly.

The following is a preparation of input vectors.

texld r0, t0, s1 //load normal vector

mad r1, r0, c31.r, -c31.g //bias normal to range -1,1

nrm r11, r1 //r11 = normalized normal

mov r1.xyz, t1

nrm r10, r1 //r10 = normalized light vector

mov r1.xyz, t2

nrm r9, r1 //r9 = normalized eye vector

The next part of the shader is easy to understand. First we com-

pute the reflection vector (because every input vector is

normalized, the reflection vector is normalized too). Then we can

do a power calculation in the shader with the pow macro instruc-

tion — no more lookup textures. If we use mul r0.a, r0.a,

100.0; pow r0.g, r1.r, r0.a instead of pow r0.g, r1.r, c2.r

found in the shader, we can have the per-pixel shininess

92 Advanced Lighting and Shading with Direct3D 9

parameter at virtually no additional cost (if we stored it in the

alpha component of a normal texture).

The last instruction in this block (cmp) is used to disable back

lighting of pixels that are not visible from the light source (the

angle between n and l is greater than �/2, and therefore the dot

product is less than zero). In this case we reset the entire register

r0 to zero. To make it clear, r0.r holds diffuse intensity, and r0.g

holds specular intensity.

The following is a computation of diffuse and specular

intensities.

dp3 r0.r, r11, r10 //r0 = (n.l)

mul r1, r0.r, c31.r //r1 = 2*(n.l)

mad r1, r1, r11, -r10 //r1=2(n.l)n-l – reflectance vector

dp3_sat r1, r1, r9 //r1 = (r.v)

pow r0.g, r1.r, c2.r //r0.g = (r.v)^shi – specular term

cmp r0, r0.r, r0, c31.b //if (n.l)<0 do not light anything

In the last section of the shader, we load the decal texture with the

texld instruction, and we load spotlight texture with perspective

correct division with the texldp instruction (this instruction is the

same as doing texld r3, t3_dw.xyw in pixel shader 1.4). In the

next few instructions, we modulate intensities with light con-

stants and textures.

Note that in pixel shader 2.0 the output register is oCn instead

of r0 from the previous version, and the pixel shader can have up

to four outputs.

The following is the final color output.

texld r1, t0, s0 //load diffuse texture (gloss is in alpha)

texldp r4, t3, s3 //load projector map (perspective correct)

mul r2, r1.a, r0.g //multiply specular intensity with gloss

mul r2, r2, c1 //… and with material's specular color

mul r3, r1, r0.r //multiply diffuse intensity with texture

mul r3, r3, c0 //… and with material's diffuse color

add r0, r2, r3 //combine it together

mul r0, r0, r4 //modulate it with spotlight texture

mov oC0, r0 //color output

Advanced Lighting and Shading with Direct3D 9 93

HLSL Version

Here we provide the High Level Shading Language version of the

above shaders to show the simplicity of such programming. The

vertex shader comes first and then the pixel shader.

The following is the HLSL vertex shader for Phong lighting.

// Used input structure

//------------------------------

struct VS_INPUT {

float4 vPosition : POSITION; //position in object space

float3 vNormal : NORMAL; //normal

float2 tcCoord : TEXCOORD; //texture coordinates

float3 vTangent : TANGENT; //tangent

};

// Used output structure

//------------------------------

struct VS_OUTPUT {

float4 vClipPos: POSITION; //Clipping space position

float2 tcCoord : TEXCOORD0; //texture coordinates

float3 vLight : TEXCOORD1; //light vector

float3 vEye : TEXCOORD2; //eye vector

float4 tcpSpot : TEXCOORD3; //perspective spotlight coordinates

};

// Constant registers

//------------------------------

float4x4 mToWorld : register(c0); //world space transposed

float4x4 mToClip : register(c4); //world * view * proj

float4 pLight : register(c8); //Light position (world space)

float4 pEye : register(c9); //Eye position (world space)

float4x4 mSpot : register(c10); //Spotlight projection matrix

// function : main

// description : vertex shader function

// return : VS_OUTPUT

// param:

// VS_INPUT input : vertex shader input

//------------------------------

VS_OUTPUT main(const VS_INPUT input) {

VS_OUTPUT output;

94 Advanced Lighting and Shading with Direct3D 9

//The following code outputs the position and texture coordinates

//------------------------------

output.vClipPos = mul(input.vPosition, mToClip);

output.tcCoord = input.tcCoord;

float4 pVertexWorld = mul(input.vPosition, mToWorld);

//The following code generates the tangent space base vectors

//------------------------------

float3x3 mToTangent;

mToTangent[0] = mul(input.vTangent, (float3x3)mToWorld);

mToTangent[2] = mul(input.vNormal, (float3x3)mToWorld);

mToTangent[1] = cross(mToTangent[0], mToTangent[2]);

//Compute light and eye vectors and the projector's texture coordinates

//------------------------------

float3 vToLight = normalize(pLight - pVertexWorld);

output.vLight = mul(mToTangent, vToLight);

float3 vToEye = normalize(pEye - pVertexWorld);

output.vEye = mul(mToTangent, vToEye);

output.tcpSpot = mul(input.vPosition, mSpot);

return output;

}

The following is the HLSL pixel shader for Phong lighting.

// Used input structure

//------------------------------

struct PS_INPUT {

float2 tcCoord : TEXCOORD0; //input texture coordinates

float3 vLight : TEXCOORD1; //light vector

float3 vEye : TEXCOORD2; //eye vector

float4 tcpSpot : TEXCOORD3; //perspective spotlight coordinates

};

// Used output structure

//------------------------------

struct PS_OUTPUT {

float4 vColor : COLOR0; //render target 0

};

// Used input texture samplers

//------------------------------

Advanced Lighting and Shading with Direct3D 9 95

sampler smplTexture : register(ps,s0); //decal texture

sampler smplNormal : register(ps,s1); //normal texture

sampler smplSpot : register(ps,s3); //spotlight texture

// function : main

// description : pixel shader function

// return : PS_OUTPUT

// param:

// PS_INPUT input : pixel shader input - output from VS

// float3 colDiff : c0 - diffuse texture multiplier

// float3 colSpec : c1 - specular texture multiplier

// float shininess: c2 - specular shininess

//------------------------------

PS_OUTPUT main(const PS_INPUT input,

uniform float3 colDiff : c0,

uniform float3 colSpec : c1,

uniform float shininess : c2) {

PS_OUTPUT output;

// Load and normalize input vectors

//------------------------------

float3 vNormal = tex2D(smplNormal, input.tcCoord).xyz;

vNormal = normalize(2.0 * vNormal - 1.0); //bias and normalize

float3 vLight = normalize(input.vLight);

float3 vEye = normalize(input.vEye);

// Compute diffuse and specular intensities

//------------------------------

float normalDotLight = dot(vNormal, vLight);

float3 vLightReflect = 2.0*normalDotLight*vNormal - vLight;

float eyeDotReflect = saturate(dot(vEye, vLightReflect));

float specularIntensity = pow(eyeDotReflect, shininess);

float4 tmpOutput = {0.0f, 0.0f, 0.0f, 1.0f};

if (normalDotLight>0.0f) {

float4 tDecal = tex2D(smplTexture, input.tcCoord);

float4 tSpot = tex2Dproj(smplSpot, input.tcpSpot);

float3 diffuse = normalDotLight * colDiff * tDecal;

float3 specular = specularIntensity * colSpec * tDecal.a;

tmpOutput.xyz = tSpot * (diffuse + specular);

}

output.vColor = tmpOutput;

96 Advanced Lighting and Shading with Direct3D 9

return output;

}

Quality Comparison

The possibility of normalization and higher precision in pixel

shaders gives us far better results than with previous versions.

We can compare the next images, but the difference is more visi-

ble in motion. Light intensity is more stable in motion in the pixel

shader 2.0 version.

Vertex and Pixel Shaders 3.0

To make the development of shaders under Direct3D 9 a bit more

adventurous, there is another version of shaders available — ver-

sion 3.0. It differs slightly from 2.0 in syntax (setup stage of

shaders and registers) and much more in shader possibilities. And

yes, there are also version 2.x (or 2.eXtended) shaders, but to put

it simply, it is somewhere between 2.0 and “3.0 in syntax of 2.0,”

and its features depend on device capabilities. We can tell that a

Advanced Lighting and Shading with Direct3D 9 97

Figure 1: This image shows a vase rendered with pixel shader 1.4 on the left and pixel

shader 2.0 on the right. In the small frames, you can see details of highlights.

device that is capable of accelerating version 3.0 can accelerate

full-featured shaders 2.x, and because of this, it is not very useful

for educational purposes.

Vertex shader 3.0 can be even larger than the previous ver-

sion. The shader has a minimum of 512 instructions, but due to

the flow control, the device has to be capable of executing a much

larger number of instructions (at least 65,536). Dynamic flow con-

trol is possible in shaders (loops can be exited depending on the

value of a temporary or special predicate register). Other features

include texture lookup in the vertex shader and extension of rela-

tive indexing from constants to inputs and outputs.

Pixel shader 3.0 follows the way of vertex shaders. Dynamic

and static flow control is possible, and the instruction count limits

are the same. There is no limit on the texture instruction count

and no limit on the dependent texture reads. New input registers

are introduced — the pixel position on the screen and face orien-

tation register. Also, the gradient instructions are new — the rate

of change of the input registers can be inspected.

In the following examples, the capabilities of the highest

shader version is used to compute four spotlights in a single pass,

all done in one loop. There is no visual change from version 2.0.

Vertex Shader 3.0

The following is a vertex shader for four spotlights in one pass.

vs_3_0

// Constants

//------------------------------

// i0 - light iteration loop data

// c0-c3 - world space transposed

// c4-c7 - world * view * proj

// c8 - Eye position (in world space)

// c9 >> - start of lighting data :

// VECTOR4 LightPos;

// MATRIX4x4 Projector;

// COLOR4 LightColor (r,g,b, multiplier);

// Colors are expected to be < 1.0f.

// c255=(size_of_light_struct, reset, increment, start_index)

98 Advanced Lighting and Shading with Direct3D 9

def c255, 6.0f, 0.0f, 1.0f, 9.0f //loop counter data

// Input

//------------------------------

dcl_position v0

dcl_normal v1

dcl_texcoord v2

dcl_tangent v3

// Output

//------------------------------

dcl_position0 o0 //clip space coordinates

dcl_texcoord0 o1.xy //texture coordinates

dcl_texcoord1 o2.xyz //eye vector

dcl_texcoord2 o3 //Light vector 1

dcl_texcoord3 o4 //Projector texture coordinates 1

dcl_texcoord4 o5 //Light vector 2

dcl_texcoord5 o6 //Projector texture coordinates 2

dcl_texcoord6 o7 //Light vector 3

dcl_texcoord7 o8 //Projector texture coordinates 3

dcl_texcoord8 o9 //Light vector 4

dcl_texcoord9 o10 //Projector texture coordinates 4

//The following code outputs position and texture coordinates

//------------------------------

m4x4 o0, v0, c4 //vertex clip position

mov o1.xy, v2.xy //Texture coordinates for color texture

m4x4 r8, v0, c0 //Transform vertex into world position

//The following code generates tangent space base vectors

//------------------------------

m3x3 r11.xyz, v1, c0 //N to world space

mov r11.w, v1.w

m3x3 r9.xyz, v3, c0 //T to world space

mov r9.w, v3.w

crs r10.xyz, r9, r11 //The cross product - binormal NxT

//Compute normalized eye vector and transform it to tangent space

//------------------------------

add r0, c8, -r8 //build the eye vector

nrm r6, r0 //normalize vector

m3x3 o2.xyz, r6, r9 //eye vector to tangent space

Advanced Lighting and Shading with Direct3D 9 99

//In the following loop we are computing normalized light vectors

//and transforming them to tangent space

//------------------------------

mov r0.y, c255.y //reset constant addressing counter

loop aL, i0 //Loop for lights

//Index = Counter * DataSize + DataStart

mad r0.x, r0.y, c255.x, c255.w //light data index

mova a0, r0.x //fill address register

add r1, c[a0.x], -r8 //Build the light vector

nrm r6, r1 //normalize vector

m3x3 o3[aL].xyz, r6, r9 //light vector to tangent space

m4x4 o3[aL+1], v0, c[a0.x+1] //transform vertex with light matrix

//(get projector texture coordinates)

add r0.y, r0.y, c255.z //Increment const addressing counter

endloop

In this shader version, there is only one set of output registers.

Previously, we had oD# for color, oFog, oPos for clip space position,

oPts for point size, and oT# for texture coordinates. Now only the

o# registers are available, but they can be used in any way. There-

fore, the semantics of every used output register has to be

declared at the beginning of the shader in the same way that it

was done for inputs. Exactly one dcl_position0 always has to be

declared to specify the clipping space vertex position.

The following is a declaration of outputs.

dcl_position0 o0 //clip space coordinates

dcl_texcoord0 o1.xy //texture coordinates

dcl_texcoord1 o2.xyz //eye vector

dcl_texcoord2 o3 //Light vector 1

dcl_texcoord3 o4 //Projector texture coordinates 1

dcl_texcoord4 o5 //Light vector 2

dcl_texcoord5 o6 //Projector texture coordinates 2

dcl_texcoord6 o7 //Light vector 3

dcl_texcoord7 o8 //Projector texture coordinates 3

dcl_texcoord8 o9 //Light vector 4

dcl_texcoord9 o10 //Projector texture coordinates 4

After the vertex transformation, the tangent space base creation

and eye vector computation (discussed earlier) result in new code.

100 Advanced Lighting and Shading with Direct3D 9

The following is the main loop.

mov r0.y, c255.y //reset constant addressing counter

loop aL, i0 //Loop for lights

//Index = Counter * DataSize + DataStart

mad r0.x, r0.y, c255.x, c255.w //light data index

mova a0, r0.x //fill address register

add r1, c[a0.x], -r8 //Build the light vector

nrm r6, r1 //normalize vector

m3x3 o3[aL].xyz, r6, r9 //light vector to tangent space

m4x4 o3[aL+1], v0, c[a0.x+1] //transform vertex with light matrix

//(get projector texture coordinates)

add r0.y, r0.y, c255.z //Increment const addressing counter

endloop

We used two relative addressing registers in this loop: aL for out-

put registers and a0 for input constant data.

First let’s discuss the loop execution schema and its prepara-

tion. We know that starting from register o3 we produce the

following output: o[3+2i], which is a vector of light i, and

o[3+2i+1], which is the projector texture coordinates for this light.

Outside the shader we set up the i0 integer constant register with

this information for the loop. The light count is stored in i0.x,

starting at the aL value in i0.y (= 0 because we use o3[aL], which

is the same as o[3+aL]) and the aL step in i0.z (= 2).

NOTE In the DirectX 9.0 SDK documentation, i0.x and i0.y

meanings are switched, but loop works as described here.

The execution of loop aL, i0 can be expressed with the following

pseudocode.

RemainingLoops = i0.x;

LoopCounter = i0.y;

LoopStep = i0.z

while (RemainingLoops > 0) {

aL = LoopCounter;

do_some_code();

Advanced Lighting and Shading with Direct3D 9 101

LoopCounter = LoopCounter + LoopStep;

RemainingLoops = RemainingLoops - 1;

}

Light data is stored in constant registers; c[i] is the light position

in world space, c[i+1]…c[i+4] is the 4x4 light projector matrix,

and c[i+5] holds light color data (unused here). The relative

address computation that was used for constants and the entire

lighting can be seen in the following pseudocode (the original

assembler lines are in the comments):

//c255.x - number of registers occupied by one light

LightStructureSize = 6;

//c255.w – c[9] is first constant register with light

LightDataStart = 9;

//mov r0.y, c255.y

LightDataCounter = 0;

while (...) {

//mad r0.x, r0.y, c255.x, c255.w

LightDataIndex=LightDataCounter*LightStructureSize+LightDataStart;

//mova a0, r0.x

a0 = LightDataIndex;

do_light_computation();

//add r0.y, r0.y, c255.z

LightDataCounter = LightDataCounter + 1;

}

After this preparation, we can see that the light vector and projec-

tor texture coordinates computation consists of the following four

instructions and is the same as in the previous versions, except

for the use of relative addressing:

add r1, c[a0.x], -r8 //Build the light vector

nrm r6, r1 //normalize vector

m3x3 o3[aL].xyz, r6, r9 //light vector to tangent space

m4x4 o3[aL+1], v0, c[a0.x+1] //transform vertex with light matrix

//(get projector texture coordinates)

102 Advanced Lighting and Shading with Direct3D 9

Pixel Shader 3.0

The following pixel shader might look complicated, but after an

explanation, it’s quite simple:

ps_3_0

// Constant registers

//------------------------------

// c0 - diffuse texture multiplier

// c1 - specular texture multiplier

// c2 - specular shininess (shi, shi, shi, 1.0f)

// c3 - special constants - see below

// c4 >> - light colors

def c3, 2.0f, 1.0f, 0.0f, 0.0f

def c223, 2.5f, 1.5f, 0.5f, 0.0f //light color comparison indexes

// Used input registers

//------------------------------

dcl_texcoord0 v0.xy //texture coordinates

dcl_texcoord1 v1.xyz //eye vector

dcl_texcoord2 v2 //Light vector 1

dcl_texcoord3 v3 //Projector texture coordinates 1

dcl_texcoord4 v4 //Light vector 2

dcl_texcoord5 v5 //Projector texture coordinates 2

dcl_texcoord6 v6 //Light vector 3

dcl_texcoord7 v7 //Projector texture coordinates 3

dcl_texcoord8 v8 //Light vector 4

dcl_texcoord9 v9 //Projector texture coordinates 4

// Used input texture samplers

//------------------------------

dcl_2d s0 //diffuse texture (gloss in alpha)

dcl_2d s1 //normal texture

dcl_2d s3 //spotlight texture

// Output

//------------------------------

// oC0 - output color

// Set up needed vectors - load and normalize

//------------------------------

texld r0, v0, s1 //load normal

Advanced Lighting and Shading with Direct3D 9 103

mad r1, r0, c3.r, -c3.g //bias normal to range -1,1

nrm r11, r1 //r11 = normalized normal

mov r1.xyz, v1 //load eye vector

nrm r9, r1 //r9 = normalized eye vector

//In the following loop, lighting contribution will be computed for lights

//------------------------------

mov r8, c3.b //reset overall diffuse output

mov r7, c3.b //reset overall specular output

mov r6, c3.b //reset iteration counter - used

//to get correct light color

loop aL, i0 //This is the light loop

mov r1.xyz, v2[aL] //load light vector

nrm r10, r1 //r10 = normalized light vector

dp3 r0, r11, r10 //r0 = (n.l)

if_gt r0.r, c3.b //Light only if (n.l)>0

mul r1, r0, c3.r //r1 = 2*(n.l)

mad r1, r1, r11, -r10 //reflection vector - r1=2(n.l)n-l

dp3_sat r1, r1, r9 //r1 = (r.v)

pow r0.g, r1.r, c2.r //r1 = (r.v)^shi

//We have to use the following code to get the correct light color.

//Pixel shader 3.0 cannot address constants relatively.

mov r3, c4

setp_gt p0, r6.r, c223

(p0.z) mov r3, c5

(p0.y) mov r3, c6

(p0.x) mov r3, c7

mov r4, v2[aL+1] //move coordinate to temp register

texldp r1, r4, s3 //load projector texture

mul r1, r1, r3 //modulate with light color

mul r1, r1, r3.a //modulate with light intensity

mad r8, r0.r, r1, r8 //modulate diffuse intensity with

//spotlight and add to overall

mad r7, r0.g, r1, r7 //modulate specular intensity with

//spotlight and add to overall

endif

add r6, r6, c3.g //increment iteration counter + 1

endloop

// Compute resulting color

104 Advanced Lighting and Shading with Direct3D 9

//------------------------------

texld r1, v0, s0 //load diffuse texture

mul r8, r8, c0 //multiply overall diffuse with

//material diffuse color

mul r8, r8, r1 //modulate it with texture

mul r7, r7, c1 //multiply overall specular with

//material specular color

mad r7, r7, r1.a, r8 //modulate it with gloss map and

//add computed diffuse color

mov oC0, r7 //output the color

First note the change in declaration of input registers; we have to

specify a semantic. To obtain the correct results, semantics used

in the pixel shader have to match the output semantic in the ver-

tex shader.

The following is a declaration of the input semantic.

dcl_texcoord0 v0.xy //texture coordinates

dcl_texcoord1 v1.xyz //eye vector

dcl_texcoord2 v2 //Light vector 1

dcl_texcoord3 v3 //Projector texture coordinates 1

dcl_texcoord4 v4 //Light vector 2

dcl_texcoord5 v5 //Projector texture coordinates 2

dcl_texcoord6 v6 //Light vector 3

dcl_texcoord7 v7 //Projector texture coordinates 3

dcl_texcoord8 v8 //Light vector 4

dcl_texcoord9 v9 //Projector texture coordinates 4

After this well-known vector setup (this time without the light

vector), we enter the main loop. We go step by step through it.

Just before the loop, we reset all registers used in the loop.

Register r8 is used to accumulate diffuse intensity while register

r7 is used to accumulate specular intensity. Register r6 is used to

indicate the loop index and is incremented by one with the last

instruction in the loop (add r6, r6, c3.g). The loop works the same

way described for the vertex shader, even with the same constant

values in our case. The first step in the loop is to load and normal-

ize the current light vector.

Advanced Lighting and Shading with Direct3D 9 105

The following is the main loop with a light vector setup.

mov r8, c3.b //reset overall diffuse output

mov r7, c3.b //reset overall specular output

mov r6, c3.b //reset iteration counter - used

//to get correct light color

loop aL, i0 //This is the light loop

mov r1.xyz, v2[aL] //load light vector

nrm r10, r1 //r10 = normalized light vector

.

.

.

add r6, r6, c3.g //increment iteration counter + 1

endloop

Later in the loop we compute diffuse intensity. With flow control

available, we can do if-then-else constructions, so why not use it

to ignore unlit pixels (those where the dot product of n and l is

less than 0) with the if_gt x, y instruction standing for if x>y?

Now any further computation is done only for lit pixels. In the first

four instructions after if_gt, we compute the reflection vector and

specular power the same way that we did in the previous version.

The following is a computation of light intensities only for lit

pixels.

dp3 r0, r11, r10 //r0 = (n.l)

if_gt r0.r, c3.b //Light only if (n.l)>0

mul r1, r0, c3.r //r1 = 2*(n.l)

mad r1, r1, r11, -r10 //reflectance vector - r1=2(n.l)n-l

dp3_sat r1, r1, r9 //r1 = (r.v)

pow r0.g, r1.r, c2.r //r1 = (r.v)^shi

.

.

.

endif

The next block of code uses predicates to obtain the correct light

color. We use the r6 register (the “loop counter”) to discover this.

This is due to the inability of relative addressing of the constants

in pixel shader 3.0.

106 Advanced Lighting and Shading with Direct3D 9

mov r3, c4

setp_gt p0, r6.r, c223

(p0.z) mov r3, c5

(p0.y) mov r3, c6

(p0.x) mov r3, c7

The following is a determination of the correct light color in

pseudocode.

LightColor = c4; //c4 - color of first light

//compute predicates (setp_gt p0, r6.r, c223)

bool IsSecondLight = (LightIndex > 0.5) ? true : false;

bool IsThirdLight = (LightIndex > 1.5) ? true : false;

bool IsFourthLight = (LightIndex > 2.5) ? true : false;

if (IsSecondLight) LightColor = c5; //c5 - color of second light

if (IsThirdLight) LightColor = c6; //c6 - color of third light

if (IsFourthLight) LightColor = c7; //c7 - color of fourth light

r3 = LightColor;

In the last section of the loop, we sample a projector texture for

this light. Intensities are then modulated with light color, light

intensity, and a spotlight texture sample, and then the result is

added to the overall intensity.

NOTE We had to use mov r4, v2[aL+1]; texldp r1, r4, s3 instead

of a simple texldp r1, v2[aL+1], s3 because it just did not work

correctly in the loop — it probably was not translated as a

dependent read and always returned the same value.

The following is a computation of one light combination.

mov r4, v2[aL+1] //move coordinate to temp register

texldp r1, r4, s3 //load projector texture

mul r1, r1, r3 //modulate with light color

mul r1, r1, r3.a //modulate with light intensity

mad r8, r0.r, r1, r8 //modulate diffuse intensity with

//spotlight and add to overall

mad r7, r0.g, r1, r7 //modulate specular intensity with

//spotlight and add to overall

Advanced Lighting and Shading with Direct3D 9 107

After the loop comes the standard stuff; we load a decal texture

and combine accumulated intensities to the final lighting for a

given pixel as shown below.

texld r1, v0, s0 //load diffuse texture

mul r8, r8, c0 //multiply overall diffuse with

//material diffuse color

mul r8, r8, r1 //modulate it with texture

mul r7, r7, c1 //multiply overall specular with

//material specular color

mad r7, r7, r1.a, r8 //modulate it with gloss map and

//and computed diffuse part

mov oC0, r7 //output the color

Per-pixel Environment Bump Mapping

with Fresnel Term

Environment mapping (EM) is widely used to simulate reflective

surfaces or give surfaces a metallic look. The main concept is to

use texture as a source of reflection data, compute the reflection

vector of the camera around the surface normal, and use a lookup

to this texture. There are three types of EM:

� Paraboloid EM: One texture is used (named sphere map

because the reflection is stored as seen on a completely

reflective sphere). This texture stores information from one

hemisphere around the object. Therefore, we can handle

reflections only from the hemisphere facing the camera to get

expected results. Without shaders, sphere maps are hard to

update interactively.

� Dual paraboloid EM: Two sphere maps are used, so a com-

plete sphere around the object can be covered.

� Cube map EM: Six textures (or one cube map) are used.

Each texture represents one side of a cube around an object. A

cube map is easy to update (even single sides of a cube can be

updated) and easy to use. It is a native format, and it can be

sampled with (x,y,z) coordinates representing vector (x,y,z)

from the center of the cube.

108 Advanced Lighting and Shading with Direct3D 9

Each type of EM can be done per vertex or per pixel; it depends

on where we compute the reflection vector — in the vertex or

pixel shader. In this text, we use cube maps and per-pixel compu-

tation of the reflection vector, and the resulting effect is enhanced

with the Fresnel term. Versions using pixel shader 1.4 and 2.0 are

shown.

Mathematical Background

We all know from Phong shading how to compute light’s reflection

vector r. Now we do the same, but for view vector v:

r 2(n v)n v� � �

Until now, all computations in the pixel shader were in tangent

space because normals were stored that way. Now we are using a

cube map, and it has its own space — cube map space. Every vec-

tor (x,y,z) in that space points to a texel in one of the cube sides.

We know that we need to do all of our computations in one space.

The simplest way here is a transfer to cube map space; the eye

vector can be transformed to this space in the vertex shader and

the normal vector in the pixel shader. To do this, we need to pre-

pare a transformation matrix from tangent space to cube space in

the vertex shader. In most cases, cube map space is the same as

world space (just pass the other matrix to the vertex shader and

use it instead of the cube transformation matrix where applicable).

Advanced Lighting and Shading with Direct3D 9 109

Figure 2: 2D visualization of paraboloid EM, dual paraboloid EM, and cube map EM

(left to right)

We have a matrix that transforms the vector from object space

into tangent space formed from tangent t, binormal b, and normal

n; let’s call it MO_to_T.

M

t b n

t b n

t b n

x x x

y y y

z z z

O to_ T_ �

�

�

�
�
�
�

�

�

�
�
�
�

0

0

0

0 0 0 1

We also have a matrix that transforms vectors from object space

into cube space; it is passed into the shader as a constant. Let’s

call it MO_to_C. With these we can compute tangent-to-cube space

transformation MT_to_C.

Our two matrices give us the following two equations (note

that the subscript part in a vector name indicates the space in

which the vector is defined):

v v *M

v v *M

tangent object O_ to_ T

cube object O_ to_ C

�

�

By multiplying the first one with MO_to_T
–1 from the right, we get:

v M = vtangent O_ to_ T

–1

object*

By simple replacement of vobject, we have:

v = v *M Mcube tangent O_ to_ T O_ to_ C

�1
*

. . .which means our searched matrix is:

M M *MT_ to_ C O_ to_ T

1

O_ to_ C� �

Unfortunately, to use this matrix easily in the pixel shader, we

need to transpose it (m4x4, or similar macro instructions, need

this). Because MO_to_T is orthogonal (it is a rotation matrix), its

transpose is equal to its inverse, and we use this to get the follow-

ing result:

110 Advanced Lighting and Shading with Direct3D 9

M (M *M) M *(M)T_ to_ C

T

O_ to_ T

1

O_ to_ C

T

O_ to_ C

T

O_ to_ T

1� �� � T

O_ to_ C

T

O_ to_ T

T T

O_ to_ C

T

O_ to_ T=M *(M) M *M�

Luckily, needed matrices are in the required form in the vertex

shader. MO_to_C is passed already transposed to the shader, and

MO_to_T is created inside the shader the same way that it was for

per-pixel Phong shading (even in the transposed form needed for

m3x3 macros).

We can enhance the resulting reflection with the Fresnel

term. It describes the amount of light reflected to the viewer and

the amount of light refracted when it strikes a material boundary.

The maximum amount of light is reflected when the angle

between the surface normal and the eye vector is near �/2, and

the minimum is reflected when it is near 0. A good explanation of

Fresnel reflection, its equation, and usable approximations is in

[5]. We use Schlick’s approximation:

R R R

R
n n

n n

() () (()) * (cos())

()
()

()

	 	�
 � �

�
�

0 1 0 1

0

5

1 2

2

1 2

2

In previous equations, 	 is the angle between the eye vector and

half vector (between eye and light source). The half vector

describes the normal of a surface, which reflects the light ray

directly to the eye. In our case, this vector is replaced with a sur-

face normal. R(0) is the Fresnel reflection for zero angle 	, n1 is

the index of the refraction of material from which light comes

(commonly air or vacuum), and n2 is the refraction index of the

surface material. For example, a vacuum has a refraction index ri

= 1.0, air is ri = 1.000293, water is ri = 1.333333, and diamond is

ri = 2.417.

Advanced Lighting and Shading with Direct3D 9 111

Vertex Shader

First we show a version for the DirectX 8 class of hardware, and

we begin with the vertex shader. For clearer code and a simpler

explanation, version 2.0 of the vertex shader is used (version 1.1

can be extracted by replacing the macro instructions nrm and crs

with respective code known from older shaders).

The following is a 2.0 vertex shader for environment mapping.

vs_2_0

// Constant registers

//------------------------------

// c0-c3 - cube map space transposed (might be world space)

// c4-c7 - cube * view * proj

// c8 - Eye position (in cube space)

// c9 - Adjustment factor for cube map

//

// Input registers

//------------------------------

dcl_position v0

dcl_normal v1

dcl_texcoord v2

dcl_tangent v3

// Output

//------------------------------

// oT0 - tex coord

// oT1 - eye vector in cube space

// oT2 - 1st row of tangent-to-cube matrix

// oT3 - 2nd row of tangent-to-cube matrix

// oT4 - 3rd row of tangent-to-cube matrix

// oT5 - vertex modifier

//------------------------------

//Output clip space position, texture coordinates

//Compute eye vector in cube space

//------------------------------

m4x4 oPos, v0, c4 //vertex clip position

mov oT0.xy, v2.xy //Texture coordinates for color texture

112 Advanced Lighting and Shading with Direct3D 9

m4x4 r8, v0, c0 //Transform vertex into cube map space

add r0, c8, -r8 //Eye vector

nrm r1.xyz, r0 //Normalize it

mov oT1.xyz, r1 //Output it

//Create tangent space basis and matrix from tangent to cube space

//------------------------------

mov r9, v3 //Copy tangent, then

crs r10.xyz, r9, v1 //do cross product to compute binormal and

mov r11, v1 //then copy normal - matrix is in r9,r10,r11

m3x3 oT2.xyz, c0, r9 //Create transformation matrix (transposed)

m3x3 oT3.xyz, c1, r9

m3x3 oT4.xyz, c2, r9

mul oT5, r8, c9.xxxx //reflection vector adjustment

The first notable thing is that the eye vector is computed in cube

space (eye position is passed to the vertex shader in that space,

and a vertex is transformed into it as well). We pass the vector

without any further transform to the pixel shader.

Later we can create an object-to-tangent space transformation

matrix in registers r9, r10, r11, but this time we do not transform

the normal and tangent to world space before computation of the

binormal. Also note that this matrix is created in transposed form,

which is needed for the m3x3 macro. With the last three m3x3

instructions, we are creating the transposed MT_to_C matrix, as

described in the previous section, and we output it to the pixel

shader.

The very last instruction requires a little bit of an explanation.

Because for cube map lookup we are using vector (x,y,z) from the

center of the cube, two points with the same vector (in our case,

the reflection vector) will produce the same lookup result. If we

have a group of points with the same normal (plane is a typical

example), reflection vectors will be almost the same and reflection

for the plane will be only one color. To prevent this, we have to

modify the reflection vector so it points to the correct place. Take

a look at the following figure:

Advanced Lighting and Shading with Direct3D 9 113

This figure shows that if we add a vector from the center to the

vertex position (all in cube space) to the reflection vector, it points

to the correct place and starts at the cube center. In real situa-

tions, the reflection vector is not guaranteed to end exactly at the

“cube boundary,” as shown above, and therefore the resulting vec-

tor will likely point to another place, but the results that are

produced are good and acceptable.

The last shader instruction prepares this correction vector

(remember that the vertex position in cube map space is also a

vector from the center to this point) by multiplying it with a scalar

constant. This is needed if the cube space transformation is

replaced with world space transformation (a very common situa-

tion) and (x,y,z) ranges in this space are greater than [–1…1]

(valid ranges in the cube map). We compute this tweak ratio

(which can be 1/greatest_coordinate_in_world_space) outside the

vertex shader to get the vertex into cube space range. Of course,

a simple mul can be replaced with the more sophisticated mad (for

additional center adjustments).

114 Advanced Lighting and Shading with Direct3D 9

Figure 3: This figure shows modification of a reflection vector.

Pixel Shader 1.4

Let’s take a look at the pixel shader. After the usual load of the

normal and eye vector (and also the transformation matrix —

transposed), we transform the normal into cube space (three suc-

cessive dot products have the functionality of m3x3 vector-matrix

multiplication). Note that in these instructions the _bx2 modifier is

used for the normal to bias it to the range [–1...1]. Next we com-

pute the eye reflection vector. The last instruction in the first

phase is an adjustment of the reflection vector that was already

mentioned. Further explanation continues after the shader.

The following is a 1.4 pixel shader for environment mapping.

ps_1_4

// Constant registers

//------------------------------

// c0 - R(0)

def c3, 1.0f, 1.0f, 1.0f, 1.0f

def c4, 0.0f, 0.0f, 0.0f, 1.0f

// Used input registers

//------------------------------

// t0 - color / bump coordinates

// t1 - eye vector in cube space

// t2,t3,t4 – tangent_to_cube matrix

// t5 - reflection vector shift

// Used input texture stages

//------------------------------

// stage0 - ambient texture

// stage1 - normal texture

// stage3 – fresnel lookup texture

// Output

//------------------------------

// r0 - output color

//

texld r1, t0 //normal vector (n)

texcrd r2.rgb, t1.xyz //eye vector (v)

Advanced Lighting and Shading with Direct3D 9 115

texcrd r3.rgb, t2 //1st row of tangent-to-cube matrix

texcrd r4.rgb, t3 //2st row of tangent-to-cube matrix

texcrd r5.rgb, t4 //3rd row of tangent-to-cube matrix

texcrd r0.rgb, t5 //vector shift

//multiply normal with transform matrix

dp3 r3.r, r3, r1_bx2 //transform normal to cube space

dp3 r3.g, r4, r1_bx2

dp3 r3.b, r5, r1_bx2

//compute eye reflection vector

dp3 r1.rgb, r3, r2 //r1 = dot(normal, eye)

mad r4.rgb, r1_x2, r3, -r2 //reflectance vector r2=2(n.e)n-e

add r4.rgb, r4, r0 //Shift it

phase

texld r0, t0 //diffuse texture(n)

texld r2, r4 //cube map lookup

texld r3, r1 //Fresnel lookup

mul r0.rgb, r0, r1.r //to simulate diffuse lighting

lrp_sat r4, c0.r, c0.g, r3 //prepare Fresnel value (with R(0))

//mul_sat r4, r4, r0.a //modulate with gloss ratio

lrp r0.rgb, r4.a, r2, r0 //compute final color

In the second phase, we read environment reflection from the

cube texture at coordinates specified with the reflection vector

computed before. Then we use the dot product of the normal and

eye vector (computed in the first phase) for lookup into the tex-

ture holding one part of the Fresnel reflection approximation —

(1–cos(�))5. We could compute it in the shader, but limited preci-

sion will produce even more errors, and lookup to 1D texture is

very fast. We use the computed dot product one more time to

simulate diffuse light, so the scene won’t look flat (this is not the

situation in a game, where the lighting is done in a separate pass).

116 Advanced Lighting and Shading with Direct3D 9

Figure 4: Part of Fresnel reflection intensity: (1–x)
5

where x is expected to be

cos(�)

The lrp_sat instruction (saturated linear interpolation, lrp dest,

src0, src1, src2 means dest = src0*src1 + (1-src0)*src2) is

used to finalize the Fresnel equation (after replacing constants,

we will get R = R(0)*1.0 + (1–R(0)) .LookupValue). Then comes

modulation with gloss ratio (disabled in this case) and final inter-

polation between diffuse color and reflection, depending on the

value of the Fresnel function.

Pixel Shader 2.0

The power of pixel shader 2.0 gives us the ability to compute

everything in the shader and skip Fresnel texture lookup. Here

are the main changes: At the start, we normalize input vectors,

and Schlick’s approximation of Fresnel term is computed directly

in the shader. The rest of the shader is almost identical to the pre-

vious one.

The following is a 2.0 pixel shader for environment mapping.

ps_2_0

// Constant registers

//------------------------------

// c0 - refraction index

def c1, 2.0f, 1.0f, 5.0f, 0.0f

// Used input registers

//------------------------------

dcl t0.xy //texture coordinates

Advanced Lighting and Shading with Direct3D 9 117

Figure 5: This image shows a reflection of materials with various indexes of refraction

— water, flint glass, diamond, and full reflection. Note how the amount of reflection

increases with the angle.

dcl t1.xyz //eye vector (v)

dcl t2.xyz //1st row of tangent-to-cube matrix

dcl t3.xyz //2nd row of tangent-to-cube matrix

dcl t4.xyz //3rd row of tangent-to-cube matrix

dcl t5.xyz //reflection vector shift

// Used input texture samplers

//------------------------------

dcl_2d s0 //diffuse texture (gloss in alpha)

dcl_2d s1 //normal texture

dcl_cube s2 //cube map texture

// Output

//------------------------------

// oC0 - output color

//

// Set up needed vectors - load and normalize

//------------------------------

texld r0, t0, s1 //load normal

mad r1, r0, c1.r, -c1.g //bias normal to range -1,1

m3x3 r0.xyz, r1, t2 //transform to cube space

nrm r11, r0 //r11 = normalized normal

mov r1.xyz, t1

nrm r10, r1 //r10 = normalized eye vector

// Compute eye reflection vector

//------------------------------

dp3 r9.r, r11, r10 //r9 = dot(normal, eye)

mul r8.r, r9.r, c1.r //r1 = 2*(n.v)

mad r8.rgb, r8.r, r11, -r10 //reflectance vector - r1=2(n.v)n-v

add r8.rgb, r8, t5 //Shift it

// Compute Fresnel term (Schlick's approximation) F=IR+(1-IR)*(1-(n.l))^5

//------------------------------

sub r1.r, c1.g, r9.r //r1 = 1 - n.v

pow r0.r, r1.r, c1.b //r0 = (1 - n.v)^5

lrp r7.rgb, c0.r, c0.g, r0.r //final F = IR*1 + (1 - IR)*r0

// Texture lookups and final modulations

//------------------------------

texld r0, t0, s0 //diffuse texture

texld r1, r8, s2 //cube map lookup

118 Advanced Lighting and Shading with Direct3D 9

mul r0.rgb, r0, r9.r //to simulate diffuse lighting (n.v)

//mul r7.rgb, r7, r0.a //modulate Fresnel term with gloss

lrp r1.rgb, r7.r, r1, r0 //compute final color

mov oC0, r1 //output the color

The new pixel shader produces results almost identical to the

older one. With direct picture-to-picture comparison, very little

shift in position of reflection and slightly stronger reflection at

glancing angles can be seen. This is all due to normalization of

vectors per pixel, and none is notable in moving the environment

of a game.

HLSL Version

These programs are translations of pixel and vertex shaders 2.0

into HLSL. The following HLSL vertex shader is for environment

mapping.

// Used input structure

//------------------------------

struct VS_INPUT {

float4 vPosition : POSITION; //position in object space

float3 vNormal : NORMAL; //normal

float2 tcCoord : TEXCOORD; //texture coordinates

float3 vTangent : TANGENT; //tangent

};

// Used output structure

//------------------------------

struct VS_OUTPUT {

float4 vClipPos : POSITION; //Clipping space position

float2 tcCoord : TEXCOORD0; //texture coordinates

float3 vEye : TEXCOORD1; //eye vector

float3x3 mToWorld: TEXCOORD2; //from tangent to world space

float3 vAdjust : TEXCOORD5; //perspective spotlight coordinates

};

// Constant registers

//------------------------------

float4x4 mToCube : register(c0); //cube map space transposed

float4x4 mToClip : register(c4); //world * view * proj

float4 pEye : register(c8); //Eye position (cube space)

Advanced Lighting and Shading with Direct3D 9 119

float Adjustment : register(c9); //Adjustment factor for cube map

// function : main

// description : vertex shader function

// return : VS_OUTPUT

// param:

// VS_INPUT input : vertex shader input

//------------------------------

VS_OUTPUT main(const VS_INPUT input) {

VS_OUTPUT output;

//Following code outputs position and texture coordinates

//------------------------------

output.vClipPos = mul(input.vPosition, mToClip);

output.tcCoord = input.tcCoord;

float4 pVertexCube = mul(input.vPosition, mToCube); //To cube space

output.vEye = normalize(pEye - (float3)pVertexCube);

//Create tangent space basis and matrix from tangent to cube space

//------------------------------

float3x3 mToTangent;

mToTangent[0] = input.vTangent;

mToTangent[2] = input.vNormal;

mToTangent[1] = cross(mToTangent[0], mToTangent[2]); //binormal NxT

output.mToWorld = mul(mToTangent, mToCube);

output.vAdjust = pVertexCube * Adjustment; //vector adjustment

return output;

}

The following HLSL pixel shader is for environment mapping.

// Used input structure

//------------------------------

#pragma pack_matrix(col_major)

struct PS_INPUT {

float2 tcCoord : TEXCOORD0; //texture coordinates

float3 vEye : TEXCOORD1; //eye vector

float3x3 mToWorld: TEXCOORD2; //from tangent to world space 1

float3 vAdjust : TEXCOORD5; //perspective spotlight coordinates

};

// Used output structure

//------------------------------

struct PS_OUTPUT {

120 Advanced Lighting and Shading with Direct3D 9

float4 vColor : COLOR0; //render target 0

};

// Used input texture samplers

//------------------------------

sampler smplTexture : register(ps,s0); //decal texture

sampler smplNormal : register(ps,s1); //normal texture

sampler smplCube : register(ps,s2); //cube map texture

// function : main

// description : pixel shader function

// return : PS_OUTPUT

// param:

// PS_INPUT input : pixel shader input - output from VS

// float refindex: c0 - R(0) for Fresnel term

//------------------------------

PS_OUTPUT main(const PS_INPUT input,

uniform float refindex : register(c0)) {

PS_OUTPUT output;

//load and normalize

//------------------------------

float3 vNormal = tex2D(smplNormal, input.tcCoord).xyz;

vNormal = 2.0 * vNormal - 1.0; //bias to [-1...1]

vNormal = mul(vNormal, input.mToWorld); //to world space

vNormal = normalize(vNormal);

float3 vEye = normalize(input.vEye);

//compute adjusted eye reflection vector

//------------------------------

float eDotN = dot(vEye, vNormal);

float3 vEyeReflected = 2* eDotN * vNormal – vEye + input.vAdjust;

float4 cube = texCUBE(smplCube, vEyeReflected);

float4 color = tex2D(smplTexture, input.tcCoord);

float Fresnel = lerp(pow(1 - dot(vNormal, vEye), 5), 1, refindex);

Fresnel = Fresnel * color.a; //reflection only on shiny parts

float4 diffuse = color * dot(vNormal, vEye); //diffuse simulation

output.vColor = lerp(diffuse, cube, Fresnel);

return output;

}

Advanced Lighting and Shading with Direct3D 9 121

Background for Advanced Models

For the next two lighting models, we need to explain a few new

concepts; both models rely on spherical coordinates, roughness of

a surface, and masking or shadowing of light. These are explained

in the next few sections.

Spherical Coordinates

Since lighting equations are more about directions (light and view

vectors, normal vectors, etc.) than positions, it is often better to

describe a vector not in Cartesian coordinates v = (vx, vy, vz) but

with a pair of angles � (polar or elevation) and � (azimuth) and

length of vector. A polar angle is an angle between a vector and

one base vector, and an azimuth angle is an angle between a vec-

tor projected into a plane defined by the remaining two base

vectors and one of these vectors. This is good for a description of

the lighting equation vectors, since they are normalized, so we

can just ignore the length parameter. In the case of lighting, base

vectors will almost always be n, t, and b, polar angles will be com-

puted in respect to normal n, and azimuth angles are relative to

the tangent t. The following figure shows this situation.

122 Advanced Lighting and Shading with Direct3D 9

Figure 6: Spherical coordinates

The relationship between Cartesian (vx, vy, vz) and spherical (�v,

v) coordinates for normalized vector v is shown in the following

equation:

v

v

v

x v v

y v v

z v

v

�

�

�

�

cos() *sin()

sin() *sin()

cos()

a

 �

 �

�

 rctan

arctan arcc

v

v

v v

v

x

y

v

x y

z

�

�
�
�
	

�
�

�
��

�

�
��

	

�
��
��

2 2

os arccos()
v

v v v
vz

x y z

z
2 2 2� �

�

�

�
��

	

�
��
�

It is obvious that the dot product between the normal and light (or

eye) vector is nothing more than a cosine of a polar angle.

Roughness of a Surface

Both of the models presented use a micro-facet model to simulate

structure (roughness) of a surface — every piece of surface is

composed of tiny facets. The roughness model is called a v-cavi-

ties model because the structure of the surface is modeled with

cavities in the shape of a V. It was introduced by Torrance-Sparrow

in [6].

While facets in every model have other properties, there is

something in common. The resulting intensity of a surface piece

depends on the sum of the facet intensities. The importance of

this approach is shown in Figure 7 (taken from the later

Oren-Nayar model), which shows that the surface composed of

totally Lambertian micro-facets (independent of the position of a

viewer) is not Lambertian when viewed from a distance where

several micro-facets are covered by one pixel.

Advanced Lighting and Shading with Direct3D 9 123

Due to the complexity of the computation, actual rendering does

not use real facets. Instead, models use a probability distribution

function that predicts the approximate number of facets with a

specific normal (heading the specific way). These functions are

described later with a respective model.

Masking and Shadowing

With the introduction of a micro-facet model, masking and shad-

owing of individual facets should be taken into account. If a facet

blocks a portion of light reflected from another facet, it is masking.

If a facet blocks incoming light so another facet is shadowed by

this one, it is shadowing.

124 Advanced Lighting and Shading with Direct3D 9

Figure 7: The brightness of a pixel that covers a surface patch with Lambertian

micro-facets depends on the viewer’s position. On the left, the viewer “sees”

brighter facets and the resulting pixel is brighter. On the right, the pixel is

darker.

Figure 8: Facet masking and shadowing effects

The equation for computing the masking-shadowing term (or GAF

for geometric attenuation factor) is:

GAF �
� �
�

� �
�

�

�
�

	

�min ,

()()

()
,

()()

()
1

2 2n h n v

v h

n h n l

v h

The h vector has the same meaning that it had previously in the

Fresnel term equation. GAF is used as an attenuator for intensity

of a fully lit facet or surface patch.

The Oren-Nayar Model

Michael Oren and Shree K. Nayar published a lighting model in

1992 (also referred to as the O-N model, or just O-N, later in the

text) that enhances the standard Lambertian model (commonly

used to compute diffuse lighting). You can find a very detailed

description in [7] and [8]. We provide only a short introduction and

the math needed for future shader development here.

The Lambertian model depends only on the light position and

surface normal. While this can be correct for some smooth sur-

faces, it is false for rough surfaces, such as clay or concrete. This

is because a viewer’s position cannot be ignored in these cases.

The following figure shows why.

Advanced Lighting and Shading with Direct3D 9 125

Figure 9: Detail of a rough surface. On the left, the viewer “sees” more of the

brighter facets and the resulting pixel is brighter. On the right, the pixel will be

darker.

The O-N model assumes that the surface consists of tiny micro-

facets, each perfectly Lambertian. This model takes into account

masking and shadowing of facets and also adds an interreflection

factor — light bouncing between adjacent faces.

The model uses Gauss distribution function DGauss with zero

mean and standard deviation � to describe the roughness of the

surface. We use � as a roughness parameter. If it is zero, all facet

normals are aligned with a surface normal. The greater � is, the

deeper the cavities are. Here you can see the Gauss distribution

function equation, where C is the normalization constant and � is

the polar angle of the facet normal with respect to the surface

patch normal:

D C eGauss �
�

*

�

�

2

2

Overall brightness of a surface patch is integral to the intensities

of all its facets — some masked by others, some shadowed, and

some lit by the reflection from other ones. To compute this inte-

gral in real time, we have to wait for a new generation of

hardware. The authors of this model (knowing its complexity)

simplified it into a single equation (interested readers should look

into the original papers), which is unfortunately still far from

usability in game-oriented computer graphics applications. But

authors simplified it even more, ignoring the interreflection factor

and terms contributing only little to the final intensity. Now the

hardware is powerful enough, and we can use it in the pixel shader

for real-time lighting and shading. Here is a simplified O-N

equation:

IO N� � � �cos() *(* max(, cos()) *sin() * tan())�

 � �L V LA B 0

A

B

� �
�

�
�

�

�

1 0 5
0 33

0 45
0 09

2

2

2

2

.
.

.
.

min(,)

max(

�

�
�

�
� � �

� �
L V

L V,)�

126 Advanced Lighting and Shading with Direct3D 9

In the previous equation, �L means the polar angle for the light

view vector, and �V means the polor angle for the view angle

according to the surface normal.
L,
V are azimuth angles for the

light and view vector, respectively, according to the tangent.

Shaders

In this section we implement the Oren-Nayar lighting model with

shaders version 2.0. We show and describe only the pixel shader

because the vertex shader is identical to the one shown in the

Phong shading section at the beginning of this article.

The following is the pixel shader for Oren-Nayar lighting.

ps_2_0

// Constant registers

//------------------------------

// c0 - roughness (R) (should be redefined in material)

def c31, 1.0f, 2.0f, 0.5f, 0.33f //useful constants

def c30, 0.45f, 0.09f, 0.0f, 0.0f //useful constants

def c29, 0.0f, 1.0f, 2.0f, 3.0f //useful constants

// Used input registers

//------------------------------

dcl t0.xy //texture coordinates

dcl t1.xyz //light vector

dcl t2.xyz //eye vector

// Used input texture samplers

Advanced Lighting and Shading with Direct3D 9 127

Figure 10: Visualization of the Oren-Nayar equation

//------------------------------

dcl_2d s0 //diffuse texture (gloss in alpha)

dcl_2d s1 //normal texture

dcl_2d s2 //lookup

// Output

//------------------------------

// oC0 - output color

// Load and normalize input vectors

//------------------------------

texld r0, t0, s1 //load normal

mad r1, r0, c31.g, -c31.r //bias normal to range -1,1

nrm r11, r1 //r11 = normalized normal

mov r1.xyz, t1

nrm r10, r1 //r10 = normalized light vector

mov r1.xyz, t2

nrm r9, r1 //r9 = normalized eye vector

// A = 1 - 0.5 * R^2 / (R^2 + 0.33)

//------------------------------

mul r0, c0.r, c0.r //R^2

add r1, r0, c31.a //R^2 + 0.33

rcp r1, r1.r //1 / (R^2 + 0.33)

mul r0, r1.r, r0 //R^2 / (R^2 + 0.33)

mad r8, r0.r,-c31.b, c31.r //1 - 0.5 * R^2 / (R^2 + 0.33)

// B = 0.45 * R^2 / (R^2 + 0.09)

//------------------------------

mul r0, c0.r, c0.r //R^2

add r1, r0, c30.g //R^2 + 0.09

rcp r1, r1.r //1 / (R^2 + 0.09)

mul r0, r1.r, r0 //R^2 / (R^2 + 0.09)

mul r7, r0.r, c30.r //r8 = 0.45 * R^2 / (R^2 + 0.09)

// CX = Max(0, cos (l',v'))

//------------------------------

dp3 r1, r10, r11 //these four instructions are projecting the

mul r1, r11, r1 //light vector to the plane defined by T and B

sub r1, r10, r1 //equation is : l' = normalize(l - n * (n.l))

nrm r0, r1 //in our case r0 = normalize(r10 - r9 * r1)

dp3 r2, r9, r11 //these four instructions are projecting the

128 Advanced Lighting and Shading with Direct3D 9

mul r2, r11, r2 //eye vector to the plane defined by T and B

sub r2, r9, r2 //equation is : v' = normalize(v - n * (n.v))

nrm r1, r2 //in our case r1 = normalize(r11 - r9 * r2)

dp3 r6, r0, r1 //(l'.v') = (r0.r1)

max r6, r6, c29.r //only positive values

// DX = texture lookup for sin(a)*tan(b); a=max(O-r,O-i); b=min(O-r,O-i)

//------------------------------

dp3 r1.x, r10, r11 //n.l

dp3 r1.y, r9, r11 //n.v

texld r0, r1, s2 //look up

mov r5, r0.r

// complete it - A + B*CX*DX

//------------------------------

mul r0, r5, r6 //CX*DX

mul r0, r0, r7 //B*CX*DX

add r4, r0, r8 //A + B*CX*DX

// Load texture, compute diffuse part and combine it all to output

//------------------------------

dp3_sat r1, r11, r10 //n.l

texld r0, t0, s0 //load diffuse and specular texture

mul r0, r0, r1 //compute diffuse texture

mul r0, r0, r4 //modulate by A + B*CX*DX

mov oC0, r0

Right after setup and renormalization of vectors, we compute the

A and B parameters of the equation. Because these depend only

on the roughness parameter and are constant for the shader, they

should be computed outside it in a real game situation to gain

some speed.

Then we compute max(0, cos(
V –
L)). To do this, we project

eye and light vectors to the plane described by t and b using the

next equation:

Vprojected=v–n(n•v)

This can also be done by resetting their z component, but we will

lose the bump map in that case. After renormalization of both

modified vectors (v' and l'), we can replace cos(
V –
L) with

Advanced Lighting and Shading with Direct3D 9 129

cos(v' � l'). To see why this works, take a look at Figure 6 in the

section titled “Spherical Coordinates.”

After this, we compute the sin(�)*tan(�) part. We know that

we can easily compute cosines of polar angles (dot product with

normal). Sine or tangent is a bit more difficult to do with the con-

straints of shaders 2.0 because we would need to do arccos (we do

not have enough instruction slots), or we would need to replace

sin and tan with cosines. To solve this, we transfer the entire com-

putation to the 2D lookup function, where the x coordinate is the

cosine of �L (n � l) and y is the cosine of �V (n � v). Textures

accept only coordinates from range [0…1], but this is not a prob-

lem because �L and �V are both less than �/2 and positive. (�V is

always less than �/2 because we render only pixels facing toward

the camera. Cases where �L is greater than �/2 can be ignored, as

in this case the cos(�L) at the beginning of the equation will reset

the whole computation to zero.) So both dot products will be in

the range [0…1].

Here, the texture function can use arccos to restore angles

from inputs. Then the maximum and minimum are chosen and

sin(�)*tan(�) is computed. Because the result of this function

could not be in the range [0…1], we use a new floating-point

texture format — only one channel (red) with full 32-bit float

precision.

130 Advanced Lighting and Shading with Direct3D 9

Figure 11: Lookup texture for sin(�)*tan(�). The result is

divided by 9.0 to show greater range.

Later in the shader we complete these contributions and modulate

the result with the standard Lambertian diffuse and color texture.

Due to its complexity, it is hard to port this shader into the

pixel shader 1.4 version. However, this could be done if we

replaced azimuth angles with respective polar angles everywhere

in computation. Then we could use one 3D lookup texture with

three parameters (n�l, n�v, roughness) and compute all the light-

ing with one dependent texture lookup.

HLSL Version

The following HLSL vertex shader is for Oren-Nayar lighting.

// Used input structure

//------------------------------

struct VS_INPUT {

float4 vPosition : POSITION; //position in object space

float3 vNormal : NORMAL; //normal

float2 tcCoord : TEXCOORD; //texture coordinates

float3 vTangent : TANGENT; //tangent

};

// Used output structure

//------------------------------

struct VS_OUTPUT {

float4 vClipPos: POSITION; //Clipping space position

float2 tcCoord : TEXCOORD0; //texture coordinates

float3 vLight : TEXCOORD1; //light vector

Advanced Lighting and Shading with Direct3D 9 131

Figure 12: A vase with various roughness values 0.0, 0.3, 0.6, and 1.0 (left to right). If

roughness is 0, the model is identical to Lambertian. Note how the vase gets flatter with

increased roughness.

float3 vEye : TEXCOORD2; //eye vector

};

// Constant registers

//------------------------------

float4x4 mToWorld : register(c0); //world space transposed

float4x4 mToClip : register(c4); //world * view * proj

float4 pLight : register(c8); //Light position (world space)

float4 pEye : register(c9); //Eye position (world space)

// function : main

// description : vertex shader function

// return : VS_OUTPUT

// param:

// VS_INPUT input : vertex shader input

//------------------------------

VS_OUTPUT main(const VS_INPUT input) {

VS_OUTPUT output;

//The following code outputs position and texture coordinates

//------------------------------

output.vClipPos = mul(input.vPosition, mToClip);

output.tcCoord = input.tcCoord;

float4 pVertexWorld = mul(input.vPosition, mToWorld);

//The following code generates tangent space base vectors

//------------------------------

float3x3 mToTangent;

mToTangent[0] = mul(input.vTangent, (float3x3)mToWorld);

mToTangent[2] = mul(input.vNormal, (float3x3)mToWorld);

mToTangent[1] = cross(mToTangent[0], mToTangent[2]);

//Compute light and eye vectors

//------------------------------

float3 vToLight = normalize(pLight - pVertexWorld);

output.vLight = mul(mToTangent, vToLight);

float3 vToEye = normalize(pEye - pVertexWorld);

output.vEye = mul(mToTangent, vToEye);

}

132 Advanced Lighting and Shading with Direct3D 9

The following HLSL pixel shader is for Oren-Nayar lighting.

// Used input structure

//------------------------------

struct PS_INPUT {

float2 tcCoord : TEXCOORD0; //input texture coordinates

float3 vLight : TEXCOORD1; //light vectpor

float3 vEye : TEXCOORD2; //eye vector

};

// Used output structure

//------------------------------

struct PS_OUTPUT {

float4 vColor : COLOR0; //render target 0

};

// Used input texture samplers

//------------------------------

sampler smplTexture : register(ps,s0); //decal texture

sampler smplNormal : register(ps,s1); //normal texture

sampler smplLookUp : register(ps,s2); //lookup texture for sin.tan

// function : main

// description : pixel shader function

// return : PS_OUTPUT

// param:

// PS_INPUT input : pixel shader input - output from VS

// float roughness : c0 - roughness of a surface

//------------------------------

PS_OUTPUT main(const PS_INPUT input, uniform float roughness : c0) {

PS_OUTPUT output;

// Load and normalize input vectors

//------------------------------

float3 vNormal = tex2D(smplNormal, input.tcCoord).xyz;

vNormal = normalize(2.0*vNormal - 1.0); //bias

float3 vLight = normalize(input.vLight);

float3 vEye = normalize(input.vEye);

// A = 1 - 0.5 * R^2 / (R^2 + 0.33)

// B = 0.45 * R^2 / (R^2 + 0.09)

//------------------------------

float roughness2 = roughness*roughness;

Advanced Lighting and Shading with Direct3D 9 133

float A = 1.0f - 0.5f * roughness2 / (roughness2 + 0.33f);

float B = 0.45f * roughness2 / (roughness2 + 0.09f);

// CX = Max(0, cos (l',v'))

//------------------------------

float normalDotLight = dot(vNormal, vLight);

float3 vLightProjected = normalize(vLight - vNormal*normalDotLight);

float normalDotEye = dot(vNormal, vEye);

float3 vEyeProjected = normalize(vEye - vNormal*normalDotEye);

float CX = saturate(dot(vLightProjected, vEyeProjected));

// DX = texture lookup for sin*tan

//------------------------------

float2 tcLookup = {normalDotLight, normalDotEye};

float DX = tex2D(smplLookUp, tcLookup);

// completize it - (n.l)*texture*(A + B*CX*DX)

//------------------------------

output.vColor = saturate(normalDotLight)*

tex2D(smplTexture, input.tcCoord)*(A+B*CX*DX);

return output;

}

Cook-Torrance Model

This model was published in 1981 [9] and is based on the

Torrance-Sparrow model from 1967 [6]. The Cook-Torrance (C-T)

model is often used to evaluate specular highlights of metals and

plastics. It is a physically based method and surpasses Phong’s

model because it was developed using measured data from real

materials and uses physically measurable factors, such as energy

and wavelength.

The Cook-Torrance model uses:

� A micro-facet model for surface roughness

� Fresnel’s equation to compute the amount of reflection and

color shift of highlight

134 Advanced Lighting and Shading with Direct3D 9

� The geometric attenuation factor for micro-facet self shadow-

ing and masking

Some interesting conclusions about the model are:

� The specular highlight usually has the color of the material

and not the color of the light.

� The Fresnel equation predicts a color shift of the specular

component at glancing angles.

� Some types of materials (painted objects and plastics) have

specular and diffuse components that do not have the same

color.

We use Beckman’s distribution function DBeckman for surface

roughness. In the following equation, m stands for surface rough-

ness and � is the angle between the normal and half vector

(cos(�)=(n�h)).

D
m

eBeckman
m�

� �
�
� 	

�1

2 4

2

2

cos

tan

�

�

DBeckman can be changed into a more shader-friendly form with

well-known goniometric expressions:

tan sin

cos

cos

cos

()

()

2 1 12

2

2

2

2

2
� �

�
�
�

� � �� � �

�

n h

n h

The resulting equation then is:

D
m n h

eBeckman

n h

m n h�
�

� �
�
�

	

�

� �

�1
2 4

1 2

2 2

()

()

()

Because we are using Schlick’s approximation of Fresnel’s equa-

tion, which works for non-polarized lights, we have to ignore color

shifts in specular highlights. The following equation represents a

specular component of the Cook-Torrance lighting model. F stands

for Fresnel term, GAF for geometric attenuation factor, and D for

distribution function.

I
F GAF D

n l n v
C T� �

� �
* *

()()�

Advanced Lighting and Shading with Direct3D 9 135

Note that (n�l) is ignored in our shader because the previous

equation has a form used for BRDF, where computed intensity (of

every used lighting model) is multiplied with (n�l). In our case,

there is no need to multiply and divide by the same term.

We attempt to port this model to Direct3D first with 2.0 shaders

and then with 1.4 shaders.

Shaders 2.0

The vertex shader for Direct3D 9 is almost the same as the

shader for Phong shading, except we are also computing the half

vector with the last instructions.

The following is the vertex shader 2.0 for Cook-Torrance

lighting.

vs_2_0

// Constant registers

//------------------------------

// c0-c3 - world space transposed

// c4-c7 - world * view * proj

// c8 - Light position (in world space)

136 Advanced Lighting and Shading with Direct3D 9

Figure 13: An illustration of the Cook-Torrance equation. The intensity range is from 0

(black) to 3 (white) to show how D contributes to the final lighting.

// c9 - Eye position (in world space)

// Input registers

//------------------------------

dcl_position v0

dcl_normal v1

dcl_texcoord v2

dcl_tangent v3

// Fixed temporary registers

//------------------------------

// r9, r10, r11 - tangent space basis

// r8 - vertex world position

// Output

//------------------------------

// oT0 - texture coordinates

// oT1 - Light vector (in tangent space)

// oT2 - eye vector (in tangent space)

// oT3 - half vector (in tangent space)

//The following code will output position and texture coordinates

//------------------------------

m4x4 oPos, v0, c4 //vertex clip position

mov oT0.xy, v2.xy //Texture coordinates for color texture

m4x4 r8, v0, c0 //Transform vertex into world position

//The following code generates tangent space base vectors

//------------------------------

m3x3 r11.xyz, v1, c0 //transform normal N to world space

mov r11.w, v1.w

m3x3 r9.xyz, v3, c0 //transform tangent T to world space

mov r9.w, v3.w

crs r10.xyz, r9, r11 //The cross product to compute binormal NxT

//Computes light, eye, and half vectors

//------------------------------

add r0, c8, -r8 //Build the light vector

nrm r6, r0 //normalize vector

m3x3 oT1.xyz, r6, r9 //transform vector into tangent space

add r0, c9, -r8 //Build the eye vector

nrm r7, r0 //normalize vector

Advanced Lighting and Shading with Direct3D 9 137

m3x3 oT2.xyz, r7, r9 //transform vector into tangent space

add r0, r6, r7 //build the half vector between light and eye

nrm r1, r0 //normalize vector

m3x3 oT3.xyz, r1, r9 //transform vector into tangent space

All of the lighting is done with the pixel shader. The entire shader

is just a computation of previously specified equations. Everything

can be seen from the comments, and therefore no further explana-

tion is needed.

The following is the pixel shader for Cook-Torrance lighting.

ps_2_0

// Constant registers

//------------------------------

def c0, 2.71828182845904523536028747135266f, //e

3.14159265358979323846264338327950f, //pi

4.0f, //useful constants

1.0f //useful constants

def c1, 5.0f, 2.0f, 1.0f, 0.0f //useful constants

// c2 - roughness (should be redefined in material)

// c3 - refraction index (should be redefined in material)

// Used input registers

//------------------------------

dcl t0.xy //texture coordinates

dcl t1.xyz //light vector

dcl t2.xyz //eye vector

dcl t3.xyz //half vector between light and eye

// Used input texture samplers

//------------------------------

dcl_2d s0 //diffuse texture (gloss in alpha)

dcl_2d s1 //normal texture

// Output

//------------------------------

// oC0 - output color

// Load and normalize input vectors

//------------------------------

texld r0, t0, s1 //load normal

138 Advanced Lighting and Shading with Direct3D 9

mad r1, r0, c1.g, -c1.b //bias normal to range -1,1

nrm r11, r1 //r11 = normalized normal

mov r1.xyz, t1

nrm r10, r1 //r10 = normalized light vector

mov r1.xyz, t2

nrm r9, r1 //r9 = normalized eye vector

mov r1.xyz, t3

nrm r8, r1 //r8 = normalized half vector

// Compute Beckman's distribution function

// D = (1 / m^2*cos(A)^4) * e^(-tan(A) / m^2)

//------------------------------

dp3 r1, r11, r8 //n.h

mul r1, r1.r, r1.r //x = (n.h)^2

mul r2, c2.r, c2.r //y = m^2

mul r3, r2.r, r1.r //z = m^2 * (n.h)^2

sub r4, c0.a, r1.r //1-x

rcp r5, r3.r //1 / z

mul r4, r4.r, r5.r //(1-x) / z

pow r5, c0.r, -r4.r // pow(e, -(1-x) / z)

mul r3, r3.r, r1.r //z*x

rcp r4, r3.r //1/(z*x)

mul r1, r5.r, r4.r //r1 will hold final D

// Compute Fresnel term (Schlick's approximation)

// F = IR + (1-IR)*(1 - (n.l))^5

//------------------------------

dp3 r3, r11, r9 //n.v

sub r3, c0.a, r3.r //1 - n.v

pow r3, r3.r, c1.r //(1 - n.v)^5

lrp r2, c3.r, c3.g, r3.r //r2 will hold final F

// Compute self shadowing term

// G = min(1, X*(n.l), X*(n.v)); X = 2*(n.h) / (v.h)

//------------------------------

dp3 r3, r11, r8 //n.h

dp3 r4, r9, r8 //v.h

mul r3, r3.r, c1.g //2.(n.h)

rcp r5, r4.r //1 / (v.h)

mul r3, r3.r, r5.r //X = 2.(n.h) / (v.h)

Advanced Lighting and Shading with Direct3D 9 139

dp3 r4, r11, r10 //n.l

dp3 r5, r11, r9 //n.v

mul r4, r4.r, r3.r //second parameter of G : X*(n.l)

mul r5, r5.r, r3.r //third parameter of G : X*(n.v)

min r4, r4.r, r5.r //min of second and third parameters

min r3, r4.r, c0.a //min of previous and 1. We have final G

// Compute denominator part of lighting equation - 1 / (n.v)*pi

//------------------------------

dp3 r5, r11, r9 //n.v

mul r5, r5.r, c0.g //(n.v)*pi

rcp r4, r5.r //r4 = 1 / (n.v)*pi

// Compute final Cook-Torrance specular term - (1 / (n.v)*pi) * D*F*G

//------------------------------

mul r5, r1.r, r2.r //D.F

mul r5, r5.r, r3.r //D.F.G

mul r5, r5.r, r4.r //D.F.G / ((n.v)*pi)

// Load texture, compute diffuse part, and combine it all to output

//------------------------------

dp3_sat r1, r11, r10 //n.l

texld r0, t0, s0 //load diffuse and specular texture

mul r2, r0, r0.a //modulate texture with gloss map

mul r1, r0, r1 //compute diffuse texture

mad r0, r2, r5.r, r1 //compute specular + diffuse

mov oC0, r0

Shaders 1.4

Here we attempt to port the Cook-Torrance specular highlight to

the Direct3D 8.1 class of hardware. Only the pixel shader is

described because the vertex shader is very similar to version 2.0.

Due to the very low precision of the pixel shader and only

eight possible instructions per phase, we transferred the entire

calculation to lookup textures. The first 2D texture stores the

Fresnel part of the Cook-Torrance lighting equation divided by

(n�v):

F R
R R

(, ())
() (())()

n v
n v

n v
� �

� � � �
�

0
0 1 0 1 5

140 Advanced Lighting and Shading with Direct3D 9

The second 2D texture stores Beckman’s distribution function

divided by �:

D m
m

e m(,)
* ()

()

()n h
n h

n h

n h� �
�

� �
�
�

�
	

� �

�1

2 4

1 2

2 2

�

By multiplying the results from these functions, we get an almost

complete C-T specular equation, except for the geometric attenu-

ation term (we ignore it here). One problem is that these

functions are greater than 1 for some parameters, and so we have

to store as much of their range as possible. We do this by storing

[0…1] in the red channel and then subtracting by one and storing

the remainder (range [1…2]) in the green channel. We do some-

thing similar for the blue and alpha channels. In the pixel shader,

we are able to restore function to range [0…4].

Figure 14: The image on the left is a visualizization of the Fresnel texture; on

the right is the Beckman texture.

In the first phase of the shader, we prepare coordinates for lookup

textures. Additionally, we compute the diffuse part of shading

because in the second phase we do not have enough instructions

left.

In the second phase, we sample both functions and unpack

intensity from color channels by summing them in a red compo-

nent. After that, we compute the final color value. More clever

pack/unpack is also possible; the red channel will hold range

Advanced Lighting and Shading with Direct3D 9 141

[0…1], and the green will hold [1…2]. The blue channel range

[2…4] and the alpha range [4…6] will be stored. With the _x2 reg-

ister modifier, we can multiply the register value by two without

increasing the instruction count, and the range will then be

[0…6].

The following is pixel shader 1.4 for Cook-Torrance lighting.

ps_1_4

// Constant registers

//------------------------------

// c2 - vector in form (roughness, 1.0, 1.0, 1.0)

// c3 - vector in form (refraction_index, 1.0, 1.0, 1.0)

// Used input registers

//------------------------------

// t0 - texture and normal coordinates

// t1 - light vector

// t2 - eye vector

// t3 - half vector

// Used input texture stages

//------------------------------

// stage0 - diffuse texture

// stage1 - normal texture

// stage2 - f(n_dot_h,roughness) = Beckman(n_dot_h,roughness)/pi

// stage3 - f(n_dot_l,RI) = Fresnel(n_dot_v, RI)/n_dot_v

// Output

//------------------------------

// r0 - output color

// Sample normal texture and load vectors from input

//------------------------------

texld r0, t0 //load texture (gloss map in alpha)

texld r1, t0 //normal vector (n)

texcrd r2.rgb, t1.xyz //Light vector (l)

texcrd r3.rgb, t2.xyz //eye vector (v)

texcrd r4.rgb, t3.xyz //half vector (h)

// Compute lookup texture coordinates

142 Advanced Lighting and Shading with Direct3D 9

//------------------------------

dp3 r5.rgb, r1_bx2, r2 //n.l - for diffuse part

dp3_sat r2.rgb, r1_bx2, r4 //n.h - first parameter of Beckman lookup

mov r2.g, c2.r //roughness (M) - 2nd parameter of lookup

dp3_sat r3.rgb, r1_bx2, r3 //n.v - for Fresnel equation

mov r3.g, c3.r //index of refraction – 2nd lookup parameter

mul r1.rgb, r0, r5 //diffuse lighting

mul r4.rgb, r0, r0.a //modulate texture with gloss

// 2nd phase - Sample diffuse texture and lookup in texture functions

//------------------------------

phase

texld r0, t0 //load texture (gloss map in alpha)

texld r2, r2 //Beckman distribution (B)

texld r3, r3 //Fresnel lookup (F)

// Expand Beckman and Fresnel to range [0...4] from RGB channels

//------------------------------

add r2.r, r2.r, r2.g //unpack - R+G

add r2.g, r2.r, r2.b //R+G+B

add r2.r, r2.r, r2.g //R+G+B+A

add r3.r, r3.r, r3.g //unpack - R+G

add r3.r, r3.r, r3.b //R+G+B

add r3.r, r3.r, r3.a //R+G+B+A

mul r2.r, r2.r, r3.r //I(spec) = B * F

mad r0.rgb, r4, r2.r, r1 //spec_color * I(spec) + diffuse

HLSL Version

The following is the HLSL vertex shader for Cook-Torrance

lighting.

// Used input structure

//------------------------------

struct VS_INPUT {

float4 vPosition : POSITION; //position in object space

float3 vNormal : NORMAL; //normal

float2 tcCoord : TEXCOORD; //texture coordinates

Advanced Lighting and Shading with Direct3D 9 143

float3 vTangent : TANGENT; //tangent

};

// Used output structure

//------------------------------

struct VS_OUTPUT {

float4 vClipPos: POSITION; //Clipping space position

float2 tcCoord : TEXCOORD0; //texture coordinates

float3 vLight : TEXCOORD1; //light vector

float3 vEye : TEXCOORD2; //eye vector

float3 vHalf : TEXCOORD3; //half vector

};

// Constant registers

//------------------------------

float4x4 mToWorld : register(c0); //world space transposed

float4x4 mToClip : register(c4); //world * view * proj

float4 pLight : register(c8); //Light position (world space)

float4 pEye : register(c9); //Eye position (world space)

// function : main

// description : vertex shader function

// return : VS_OUTPUT

// param:

// VS_INPUT input : vertex shader input

//------------------------------

VS_OUTPUT main(const VS_INPUT input) {

VS_OUTPUT output;

//The following code outputs position and texture coordinates

//------------------------------

output.vClipPos = mul(input.vPosition, mToClip);

output.tcCoord = input.tcCoord;

float4 pVertexWorld = mul(input.vPosition, mToWorld);

//The following code generates tangent space base vectors

//------------------------------

float3x3 mToTangent;

mToTangent[0] = mul(input.vTangent, (float3x3)mToWorld);

mToTangent[2] = mul(input.vNormal, (float3x3)mToWorld);

mToTangent[1] = cross(mToTangent[0], mToTangent[2]);

//Compute light, eye, and half vectors

144 Advanced Lighting and Shading with Direct3D 9

//------------------------------

float3 vToLight = normalize(pLight - pVertexWorld);

vToLight = mul(mToTangent, vToLight);

output.vLight = vToLight;

float3 vToEye = normalize(pEye - pVertexWorld);

vToEye = mul(mToTangent, vToEye);

output.vEye = vToEye;

output.vHalf = normalize(vToLight + vToEye);

return output;

}

The following is the HLSL pixel shader for Cook-Torrance

lighting.

// Used input structure

//------------------------------

struct PS_INPUT {

float2 tcCoord : TEXCOORD0; //input texture coordinates

float3 vLight : TEXCOORD1; //light vector

float3 vEye : TEXCOORD2; //eye vector

float3 vHalf : TEXCOORD3; //eye vector

};

// Used output structure

//------------------------------

struct PS_OUTPUT {

float4 vColor : COLOR0; //render target 0

};

// Used input texture samplers

//------------------------------

sampler smplTexture : register(ps,s0); //decal texture

sampler smplNormal : register(ps,s1); //normal texture

// function : main

// description : pixel shader function

// return : PS_OUTPUT

// param:

// PS_INPUT input : pixel shader input - output from VS

// float3 roughness : c2 - roughness

// float3 refindex : c3 - R(0) for Fresnel term

//------------------------------

Advanced Lighting and Shading with Direct3D 9 145

PS_OUTPUT main(const PS_INPUT input,

uniform float roughness : register(c2),

uniform float refindex : register(c3)) {

PS_OUTPUT output;

// Load and normalize input vectors

//------------------------------

float3 vNormal = tex2D(smplNormal, input.tcCoord).xyz;

vNormal = normalize(2.0f * vNormal - 1.0f);

float3 vLight = normalize(input.vLight);

float3 vEye = normalize(input.vEye);

float3 vHalf = normalize(input.vHalf);

// Beckman's distribution function D

//------------------------------

float normalDotHalf = dot(vNormal, vHalf);

float normalDotHalf2 = normalDotHalf * normalDotHalf;

float roughness2 = roughness * roughness;

float exponent = -(1-normalDotHalf2) / (normalDotHalf2*roughness2);

float e = 2.71828182845904523536028747135f;

float D = pow(e,exponent) /

(roughness2*normalDotHalf2*normalDotHalf2);

// Compute Fresnel term F

//------------------------------

float normalDotEye = dot(vNormal, vEye);

float F = lerp(pow(1 - normalDotEye, 5), 1, refindex);

// Compute self shadowing term G

//------------------------------

float normalDotLight = dot(vNormal, vLight);

float X = 2.0f * normalDotHalf / dot(vEye, vHalf);

float G = min(1, min(X * normalDotLight, X * normalDotEye));

// Compute final Cook-Torrance specular term

// Load texture, compute diffuse part, and combine it all to output

//------------------------------

float pi = 3.1415926535897932384626433832f;

float CookTorrance = (D*F*G) / (normalDotEye * pi);

float4 color = tex2D(smplTexture, input.tcCoord);

float4 specular = color * max(0.0f, CookTorrance) * color.a;

146 Advanced Lighting and Shading with Direct3D 9

float4 diffuse = color * max(0.0f, normalDotLight);

output.vColor = diffuse + specular;

return output;

}

Quality Comparison

From the following figure it is clear that the older version cannot

compete with the newer one in terms of quality. On the other

hand, with low roughness and high refraction, index results are

much better than with the Phong shading version 1.4. Also note

that the lack of geometry attenuation factor in the pixel shader 1.4

version causes errors in the intensity computation for high rough-

ness — areas that are supposed to be dark are brighter. This can

be seen below.

Advanced Lighting and Shading with Direct3D 9 147

Figure 15: Rendering with various refraction index values with pixel shader 1.4 (top row)

and pixel shader 2.0 (bottom row). Roughness is constant at 0.15. The index of refrac-

tion is 0.15, 0.45, and 0.85 (left to right). Note the visibility of the face edges and error

(crack) in the middle of the large highlights in the 1.4 version. (See Color Plate 1.)

Conclusion

Previous examples showed that Direct3D 9 shaders are a great

step toward more reality in games. What was not possible to put

into a shader before (or was possible only with hacks and compro-

mises) can now be done in full quality and in a single pass. The

main advantage is floating-point precision in pixel shaders.

Vertex shaders 2.0 are great for games. With a huge instruc-

tion count and flow control, we can use one or two of them for a

whole scene with features like per-vertex lighting and mesh skin-

ning available via functions. Due to per-vertex lighting, there is no

longer a need to switch the shader and do multipass rendering.

Pixel shader 2.0 architecture makes it possible to perform

advanced lighting models per pixel. Sixty-four arithmetic and 32

texture instructions should be enough for most games to keep the

number of required passes to the minimum. With shadows added

into the scene, one light will still require at least one pass to ren-

der (the most common is two). The available instruction count can

be used to render shadows for one light and some other per-pixel

lights without shadows in one pass.

Shaders 3.0 are great in functionality, but to me the pixel

shader is a bit unfinished because it lacks relative addressing of

148 Advanced Lighting and Shading with Direct3D 9

Figure 16: Rendering with various roughness values with pixel shader 1.4 (top row) and

pixel shader 2.0 (bottom row). The refraction index is constantly 1.0 (full reflection).

Roughness is 0.1, 0.2, 0.4, 0.6, 0.8, and 1.0 (left to right).

constant registers. With this enabled, an arbitrary number of

lights could be computed per pixel (in world space, without

shadow) in one pass thanks to loops (this can be done now with

loop unrolling in design time, but it is not very handy). Also, a

clear border could be defined between pixel and vertex shaders —

vertex shaders for geometry transformation and pixel shaders for

visualization. Today, with flow control and a huge instruction

count, there can be one pixel shader for the whole scene with all

required features available when needed.

Support for the shaders 2.x model in games is questionable.

With capabilities changing from card to card, the game can use the

shader’s full potential only with some sort of run-time linker that

merges fragments of prepared code, according to current device

possibilities.

References

[1] Valient, M., “Project6 - Lighting,” November 2002,

http://www.dimension3.host.sk.

[2] Möller, T. and E. Haines, Real-Time Rendering, second edition,

A.K. Peters, Natick, Massachusetts, 2002, http://www.realtime-

rendering.com.

[3] Taylor, Philip, “Per-Pixel Lighting,” MSDN article, November

2001, http://msdn.microsoft.com/directx.

[4] Kilgard, Mark J., “A Practical and Robust Bump-mapping Tech-

nique for Today’s GPUs,” nVidia Corporation paper, March 2000,

http://developer.nvidia.com.

[5] Wloka, Matthias, “Fresnel Reflection Technical Report,”

nVidia Corporation paper, June 2002, http://developer.nvidia.com.

[6] Torrance, K. and E. Sparrow, “Theory for off-specular reflec-

tion from roughened surfaces,” Journal of the Optical Society of

America, September 1967, 57:1105-1114.

Advanced Lighting and Shading with Direct3D 9 149

[7] Oren, Michael and Shree K. Nayar, “Generalization of Lam-

bert’s Reflectance Model,” Computer Graphics (SIGGRAPH ’94

Proceedings) 1994, pp. 239-246, http://www.cs.columbia.edu/

~oren/.

[8] Oren, Michael and Shree K. Nayar, “Generalization of the

Lambertian Model and Implications for Machine Vision,” Interna-

tional Journal of Computer Vision, Vol. 14:3.

[9] Cook, Robert, L. Torrance, and E. Kenneth, “A reflectance

model for computer graphics,” Computer Graphics (SIGGRAPH

’81 Proceedings) July 1981, Vol. 15:3, pp. 307-316.

150 Advanced Lighting and Shading with Direct3D 9

Introduction to Different
Fog Effects

Markus Nuebel

Introduction

Environmental fog is an effect that has been used in numerous

games. Its popularity results from the fact that a great way to

increase the realism of a scene is by adding an additional layer of

ambience. This physical phenomenon itself is caused by dust and

other particles suspended in the atmosphere, thereby scattering

incoming light and emitting it back into the scene. Fog effects

have become essential for depth culling, especially for large out-

door scenes, as it reduces the amount of popping caused by distant

objects entering the scene at the far clipping plane.

Fog is a relatively cheap calculation, well supported by today’s

graphics hardware. It has become more and more a vital part of

the gameplay. It allows creating different areas of visibility that can

be easily incorporated into “line-of-sight” and “hiding” strategies.

In this article we start by taking a look at the standard fog

effects: linear, exponential, and exponential squared fog. We create

vertex and pixel shader equivalents for the fog calculations of the

fixed-function pipeline (FFP). Although the shader versions are

quite simple, they may help you develop your own variations and

modifications of fog, which could result in the creation of some

more interesting effects.

151

After dealing with these basic types, we take a look at layered

fog. Layered fog is used to simulate ground fog and effects like

smog, smoke, or clouds.

Finally we discuss a technique for real-time animated fog,

which can be used to create non-uniform fog density over scenes

and time.

All examples are based on DirectX but are applicable to other

APIs as well.

The Theory behind Fog Calculations

The fog calculations are built around three main parameters:

� Fog color (Cfog)

� Density (g)

� Distance (d)

Imagine a ray of light starting at a point in the scene and traveling

toward the virtual camera. In a scene where no fog is present, the

intensity of light along this ray is determined by the light intensity

at the starting point.

In a foggy scene, the light intensity that reaches the virtual

camera is influenced by absorption (light that is blocked by parti-

cles along the ray), out-scattering (light that is reflected toward

other directions), and in-scattering (lights from other directions

that are reflected along the ray). This influence is represented by

the density factor g in our calculations.

Rays starting at points farther away from the camera have a

far higher chance of getting influenced by fog particles than rays

starting closer to the camera. So we have to take the distance d to

the camera into account.

152 Introduction to Different Fog Effects

The final color, received at the camera and also written to the

frame buffer, is determined by blending between the color of a

scene point (Ccurrent) and the color of the fog (Cfog). The used

blend factor (f) has to be in the range [0.0, 1.0], meaning that a

blend factor of 1.0 results in no fog influence (e.g., for points near

to the camera), and a factor of 0.0 results in full fog influence (e.g.,

for points far in the distance).

Mathematically, this can be expressed by:

Cfinal = (f * Ccurrent) + ((1–f) * Cfog))

. . .where Cfinal represents the final color written to the frame

buffer.

Depending on the equation used to determine the factor f, var-

ious results can be achieved, both visually and with respect to

performance issues. These also apply to determining the fog color

Cfog. It can be constant for all rendered points or determined by

additional calculations.

There are two commonly used approaches for determining the

distance factor (d): plane-based and range-based.

� Plane-based: The camera space z-depth of a vertex/pixel is

used as the distance factor. It is very cheap.

� Range-based: The exact distance between a vertex/pixel and

the virtual camera is calculated. This can be done in either

world space or camera space. It is more expensive, since this

usually requires the evaluation of a square root.

Both ways of choosing d are used in the techniques described in

the following sections.

Introduction to Different Fog Effects 153

Technique One: Linear Fog

Figure 1 shows a screen shot of linear fog applied to a terrain

scene.

Fog Equation

f
Z Z

(Z Z)

FogEnd Depth

FogEnd FogStart

�
�

�

()

Linear fog is the simplest calculation of all discussed methods. It

assumes an equal distribution of fog particles throughout the

scene.

Generally, you specify a starting value (ZFogStart) and an ending

value (ZFogEnd), which control the way fog is applied to the scene.

For vertices/pixels that are between these boundaries, a blend

value is obtained by a linear interpolation. The amount of fog pres-

ent in the scene constantly increases with the distance to the

virtual camera.

154 Introduction to Different Fog Effects

Figure 1: Linear fog (See Color Plate 2.)

Implementation

Shader

For the implementation of linear fog, a vertex shader is used.

The shader calculates the fog value according to the formula men-

tioned above and puts the result into the FOG register of the

vertex shader ALU. This register is used by the FFP in the fog

blending that takes place after the pixel processing of the graphics

pipeline.

The complete vertex shader code follows:

VS_OUTPUT main(const VS_INPUT Input)

{

float4 clpPos, camPos;

// Init output

VS_OUTPUT Out = (VS_OUTPUT) 0;

// Retrieve fog parameters

float fFogEnd = fFog.x;

float fFogStart = fFog.y;

// Calculate the clip space position

Out.Position = mul(Input.Position, matWorldViewProj);

// Simply pass on the texture coords and the vertex color

Out.Tex0.xy = Input.Tex0.xy;

Out.Diffuse = Input.Diffuse;

// Calculate vertex position in camera space

camPos = mul(Input.Position, matWorldView);

// Calculate the linear fog factor

float fFogRange = fFogEnd-fFogStart;

float fVertexDist = fFogEnd - camPos.z;

float f = clamp((fVertexDist/fFogRange), 0.0f, 1.0f);

// Write the calculated factor to the FOG register

Out.Fog = f;

Introduction to Different Fog Effects 155

return Out;

}

Let’s have a look at the code parts that are relevant for fog

calculations.

The application supplies the shader with the settings for

ZFogStart and ZFogEnd by filling the first two components of the

shader constant fFog. For better readability, these values are

extracted and placed in variables.

float fFogEnd = fFog.x;

float fFogStart = fFog.y;

The linear fog interpolation is done by dividing the difference

between the far fog end and the camera space z coordinate of a

vertex (ZFogEnd – ZDepth) by the range over which fog is applied

(ZFogEnd – ZFogStart).

float fFogRange = fFogEnd-fFogStart;

float fVertexDist = fFogEnd - camPos.z;

float f = clamp((fVertexDist/fFogRange), 0.0f, 1.0f);

This calculation produces f values of 1.0 for vertices that are

closer to the camera than ZFogStart and values of 0.0 for vertices

with distance ZFogEnd or greater.

The result is clamped to the range [0.0, 1.0] to stick to the

conventions of the FOG register usage of the FFP. f is used in the

fog blending phase of the FFP to mix between fragment color and

fog color.

As you might have seen, the calculation above uses the

plane-based approach in determining the distance by simply

evaluating the camera space z coordinate of a scene point.

For a very obtuse field of view, this plane-based calculation

may produce some visual anomalies when using a rotating camera.

In this case, the problem is that distant objects may enter and

leave the fog range during minor camera movements. Normally,

this works quite well but depends on the special setting of an

application.

We see the more accurate distance calculation later on when

we discuss exponential squared fog.

156 Introduction to Different Fog Effects

Application Settings

There is indeed not much to say about the application that drives

this shader — besides the fact that the fog calculation of the FFP

has to be enabled prior to rendering the scene. This is necessary

because we want to make the FFP use the value calculated by our

vertex shader.

m_pd3dDevice->SetRenderState(D3DRS_FOGCOLOR, D3DCOLOR_XRGB(100,100,100));

m_pd3dDevice->SetRenderState(D3DRS_FOGENABLE,TRUE);

...

m_pd3dDevice->DrawPrimitive(D3DPT_TRIANGLELIST, 0, m_nPolyCount);

...

m_pd3dDevice->SetRenderState(D3DRS_FOGENABLE,FALSE);

In addition to these settings, the combined world-view-projection

matrix as well as a vector with fog parameters is provided to the

shader.

m_pd3dDevice->SetVertexShaderConstantF(0, (float*)&m_matWorldViewProj, 4);

m_pd3dDevice->SetVertexShaderConstantF(10, (float*)&fFog, 1);

Technique Two: Exponential Fog

Figure 2 shows a screen shot of exponential fog applied to terrain.

Introduction to Different Fog Effects 157

Figure 2: Exponential fog

Fog Equation

f e ed g dis ce density� � �� �1
(*)e d g

tan(*) (*)

e = base of natural logarithms (� 2.71828)

Exponential fog calculates the fog factor f based on the formula

above. As you can see in Figure 3, the effect is a more rapid

decrease in density than seen for linear fog.

When we recall the fact that fog is caused by a reduction of light

intensity along a ray from a point in the scene toward the virtual

camera, we can see that exponential fog very much corresponds

to the real-world phenomenon. In this simplified model, we

assume a constant fog density over the scene. Think of light from

a scene point traveling along a ray in multiple steps, where each

step has a predefined unit length. By the time the light has

crossed the first unit along this ray, its intensity is reduced by a

constant factor (determined by the chosen density). The next unit

starts with a reduced light intensity, which again is reduced by the

same constant reduction factor applied to the previous ray.

When choosing very small segments, we end up with an

exponential behavior that is well simulated by the use of the

e-function.

158 Introduction to Different Fog Effects

Figure 3: Exponential function for different densities

Implementation

This example no longer relies on the fog blending of the FFP but

uses a vertex shader to compute the fog factor and a pixel shader

to do the blending of fragment color with fog color.

As with the linear fog implementation, we use the camera

space z-depth as a distance factor. In contrast, the DirectX FFP

determines the distance factor by using either the Z or the W

value of a vertex. For more information on this implementation,

please refer to [Rogers].

Shader

The complete vertex shader code follows:

VS_OUTPUT main(const VS_INPUT Input)

{

float4 clpPos, camPos;

// Init output

VS_OUTPUT Out = (VS_OUTPUT) 0;

// Calculate the clip space position

clpPos = mul(Input.Position, matWorldViewProj);

Out.Position = clpPos;

// Simply pass on the texture coords and the vertex color

Out.Tex0.xy = Input.Tex0.xy;

Out.Diffuse = Input.Diffuse;

// Calculate vertex position in camera space

camPos = mul(Input.Position, matWorldView);

// Extract the fog parameters

float fDensity = fFog.x;

float fFogEnd = fFog.y;

// Calculate the distance.

// Camera space z coords scaled to have a value of 4 at distance: FogEnd

float fDist = camPos.z/fFogEnd*4;

// Exp calculation

float f = exp(-fDist*fDensity);

Introduction to Different Fog Effects 159

// Set the fog value

Out.FogVal.x = f; // Passed to pixel shader using color register

return Out;

}

The parameters of the shader are density g and fog end distance

ZFogEnd. A fog starting distance is not needed here, since fog

blending starts immediately at the virtual camera. Both parame-

ters are provided by the application in constant registers and

assigned to some temporary variables using the following

instructions:

float fDensity = fFog.x;

float fFogEnd = fFog.y;

When you take a look at Figure 3, you can see that the function

quickly decreases to 0 with increasing input values. For input val-

ues around 4.0, the function is already close to 0. We can use this

fact to scale the camera space z-depth in a way that results in a

value of 4.0 at distance ZFogEnd.

float fDist = camPos.z/fFogEnd*4;

To calculate the value of an exponential function, the exp() library

function is used on the product of scaled distance and density. The

way in which the distance scaling is chosen ensures a fog factor of

nearly 0.0 for vertices with distance ZFogEnd and of nearly 1.0 for

vertices near the camera.

float f = exp(-fDist*fDensity);

The last thing we have to do is store the result in an output regis-

ter so that it becomes accessible to a pixel shader.

Out.FogVal.x = f; // Passed to PixelShader using color register

The variable Out.Fog is bound to the COLOR1 register of the ver-

tex processing ALU, which is not used by any color value (e.g.,

specular) in this shader.

160 Introduction to Different Fog Effects

The pixel shader used in this example is very simple. It looks

up the base texture of the fragment and does the blending, accord-

ing to the fog value provided by the previous vertex program.

The complete fragment program follows:

PS_OUTPUT main(const PS_INPUT Input, uniform sampler2D baseTexture)

{

// Init output

PS_OUTPUT Out = (PS_OUTPUT) 0;

// Retrieve base texture

float4 colorBase = tex2D(baseTexture, Input.Tex0);

// Fog blending

float f = Input.FogVal.x;

Out.Color = lerp(colorFog, colorBase*Input.Diffuse.xyzz, f);

return Out;

}

The last two statements are the only ones of interest for our fog

examination:

float f = Input.FogVal.x;

Out.Color = lerp(colorFog, colorBase*Input.Diffuse.xyzz, f);

First, we extract the interpolated fog value from the COLOR1 reg-

ister, which was prepared by the vertex program.

Then a lerp is performed between the fog color and the base

color. Since we are no longer using the FFP for fog blending, the

fog color is provided as constant input to the shader. It is no longer

necessary to set the fog color as a renderstate. To enhance the

visual output, the base color, which has been looked up from a tex-

ture, is modulated by the diffuse color of a fragment before the

final blending takes place.

Introduction to Different Fog Effects 161

Application Settings

As we are not using the FFP for blending fog and fragment color,

this part of the pipeline can be disabled for the whole application.

m_pd3dDevice->SetRenderState(D3DRS_FOGENABLE,FALSE);

The vertex shader is provided with the combined world-view-

projection matrix and a vector containing fog parameters.

The pixel shader, on the other hand, needs the fog color that

is used during blending.

m_pd3dDevice->SetVertexShaderConstantF(0, (float*)&m_matWorldViewProj, 4);

m_pd3dDevice->SetVertexShaderConstantF(10, (float*)&fFog, 1);

m_pd3dDevice->SetPixelShaderConstantF(5, (float*)&colFog, 1);

Technique Three: Exponential Squared Fog

Figure 4 shows a screen shot of exponential squared fog applied to

a terrain scene.

162 Introduction to Different Fog Effects

Figure 4: Exponential squared fog (See Color Plate 3.)

Fog Equation

f e ed g dis ce density� � �� �1

(*)e d g

tan

2

2 2(*) (*)

e = base of natural logarithms (� 2.71828)

Exponential squared fog is similar to the exponential fog that we

discussed above. However, when looking at Figure 5, you can see

that, compared with the exponential function, the squared function

has a flatter slope for near distances followed by a steeper slope

later on.

Looking at an application, this leads to a wider range of totally

clear visibility surrounding the virtual camera, followed by an

intense density increase toward ZFogEnd.

On current generation graphics hardware, the slightly more com-

plex exponent calculation should not produce a big performance

hit, but you may want to keep this in mind when writing shaders

for older boards, where a difference may be noticeable.

Introduction to Different Fog Effects 163

Figure 5: Exponential squared functions for different densities

Implementation

Of course, the implementation is quite similar to the exponential

fog version, but there are two main differences to point out.

In the first place, we do not use the camera space z-depth of a

vertex as the distance factor. Secondly, the factor calculation is

changed to include the additional multiplication.

Using the camera space z-depth as the distance factor may

produce some artifacts because all vertices that are lying on the

same z-plane are getting assigned the same distance factor. This is

an approximation for the real distance and is in fact not correct.

Taking the z-depth as distance is only right for vertices directly in

front of the camera. As vertices move toward the outer screen

regions, the error of this computation increases more and more.

Depending on your application settings, this may not be notice-

able, but for extremely wide fields of view and areas with a fast

increasing slope of fog density (especially for exponential squared

fog), this could cause some problems.

To circumvent this behavior, the exact distance of every ver-

tex to the virtual camera should be calculated. This is what we

will do in the implementation of this section’s shader.

Shader

The complete vertex shader code follows:

VS_OUTPUT main(const VS_INPUT Input)

{

float4 clpPos, worldPos;

// Init output

VS_OUTPUT Out = (VS_OUTPUT) 0;

// Calculate the clip space position

clpPos = mul(Input.Position, matWorldViewProj);

Out.Position = clpPos;

// Simply pass on the texture coords and the vertex color

Out.Tex0.xy = Input.Tex0.xy;

Out.Diffuse = Input.Diffuse;

164 Introduction to Different Fog Effects

// Extract the fog parameters

float fDensity = fFog.x;

float fFogEnd = fFog.y;

// Calculate the vertex position in world space

worldPos = mul(Input.Position, matWorld);

// Calculate the distance to the viewer in world space

float fDistance = distance(worldPos, vCamera);

// The distance is scaled to have a value of 4 at distance: FogEnd

float fDist = fDistance/fFogEnd*4;

// Exp squared calculation

float fFog = exp(-(fDist*fDensity)*(fDist*fDensity));

// Set the fog value

Out.FogVal.x = fFog; // Passed to pixel shader using color register

return Out;

}

This time the distance factor is computed by calculating the exact

distance between a vertex and the camera in world space. To get

the world space position of a vertex, it is multiplied by the applica-

tion’s world matrix supplied in some of the constant registers.

This is similar to the one already performed to transform the ver-

tex into clip space, but the difference is that the world matrix is

used instead of the combined world view matrix.

camPos = mul(Input.Position, matWorldView);

Now, as we have computed the world space vertex position, we

simply use the standard library function distance() to determine

the exact distance between a vertex location and the camera. The

coordinates of the virtual camera are supplied to the shader within

the register bound to the vCamera variable.

float fDistance = distance(worldPos, vCamera);

float fDist = fDistance/fFogEnd*4;

As seen in the last section, the distance is scaled to reach a value

of 4.0 at the distance ZFogEnd.

Introduction to Different Fog Effects 165

The fragment program is identical to the one used in the last

section, so please refer back to the exponential fog implementa-

tion for details.

Application Settings

Application settings are also very similar to those used by the

exponential fog implementation in the last section. However,

because of the changed distance computation, we have to provide

the shader with the necessary world matrix and the position of the

virtual camera.

m_pd3dDevice->SetVertexShaderConstantF(8, (float*)&m_matWorld, 4);

m_pd3dDevice->SetVertexShaderConstantF(12, (float*)&fFog, 1);

m_pd3dDevice->SetVertexShaderConstantF(13, (float*)&vCamera, 1);

Technique Four: Layered Fog

Figure 6 shows a screen shot of layered fog applied to a terrain

scene.

166 Introduction to Different Fog Effects

Figure 6: Layered fog (See Color Plate 4.)

Theory and Equations

In this section we take a look at layered fog, a simple kind of volu-

metric fog effect. The theory behind our implementation is based

on a paper called “Fast Multi-Layer Fog.” Please refer to

[Legakis] for more details.

The idea behind layered fog is to extend the equations to

include not only a function of distance but also a function of height.

This leads us to four important variables: YC, the height of the

virtual camera, YP, the height of the scene point, XC, the x coordi-

nate of the camera, and XP, the x coordinate of the scene point.

See Figure 7.

The height difference �Y is computed by subtraction of the y

coordinates of the two points.

�Y abs Y YC P� �()

The distance �D along the x-z plane is computed by:

�D X X Z ZC P C S� � � �() ()2 2

Introduction to Different Fog Effects 167

Figure 7: Height and distance relation between virtual camera (a) and

scene point (c).

What is left for our layered fog model is the computation of the

fog density at various scene points. Modeling complex fog usu-

ally requires the integration of density along a line from

the virtual camera to a point in the scene (e.g., density(a,c)=�
a

c

density(t)dt, where density(a,c) is the total density used in

the computation of the fog factor for the line between the camera

(c) and a scene point (a) and where density(t) defines the density at

height t).

This is necessary because realistic fog normally does not have

a constant density distribution. However, to simplify things, our

implementation assumes a constant density increase for an

increasing height difference between points inside the fog area.

This assumption allows us to choose 0.5*�Y2 as the density

integral.

Now we have gathered all the information needed to define a

suitable density function:

density(a,c)= 1 1
2

2 2 2

��
�
�

	

� � ��

�
�

	

��

�
�

�
�

�D

Y
density t dt

D

Y

Y

a

c

()
()

for �Y�0
density(a,c) = 0 for �Y=0

Implementation

With all the theory in place, the implementation is a straightfor-

ward translation of the formulas described above into shader code.

As with the previous techniques, we use a vertex shader to output

the fog value at a vertex and a pixel shader that does the blending

with the base texture.

Shader

The complete vertex program follows:

VS_OUTPUT main(const VS_INPUT Input)

{

float4 clpPos, camPos, worldPos;

float fDistance;

168 Introduction to Different Fog Effects

// Init output

VS_OUTPUT Out = (VS_OUTPUT) 0;

// Calculate the clip space position

clpPos = mul(Input.Position, matWorldViewProj);

Out.Position = clpPos;

// Simply pass on the texture coords and the vertex color

Out.Tex0.xy = Input.Tex0.xy;

Out.Diffuse = Input.Diffuse;

// Get fog parameter

float fFogTop = fFog.x;

float fFogEnd = fFog.y;

float fFogRange = fFog.x;

// Calculate the world position

worldPos = mul(Input.Position, matWorld);

// Calculate the distance to the viewer

fDistance = distance(worldPos, vCamera);

// Project both points into the x-z plane

float4 vCameraProj, vWorldProj;

vCameraProj = vCamera;

vCameraProj.y = 0;

vWorldProj = worldPos;

vWorldProj.y = 0;

// Scaled distance calculation in x-z plane

float fDeltaD = distance(vCameraProj, vWorldProj)/fFogEnd*2.0f;

// Height-based calculations

float fDeltaY, fDensityIntegral ;

if(vCamera.y > fFogTop)

{

if (worldPos.y < fFogTop)

{

fDeltaY = (fFogTop - worldPos.y)/fFogRange*2;

fDensityIntegral = (fDeltaY * fDeltaY * 0.5f);

}

else

{

Introduction to Different Fog Effects 169

fDeltaY = 0.0f;

fDensityIntegral = 0.0f;

}

}

else

{

if (worldPos.y < fFogTop)

{

float fDeltaA = (fFogTop - vCamera.y)/fFogRange*2;

float fDeltaB = (fFogTop - worldPos.y)/fFogRange*2;

fDeltaY =abs(fDeltaA -fDeltaB);

fDensityIntegral = abs((fDeltaA * fDeltaA * 0.5f) - (fDeltaB *

fDeltaB * 0.5f));

}

else

{

fDeltaY = abs(fFogTop - vCamera.y)/fFogRange*2;

fDensityIntegral = abs(fDeltaY * fDeltaY * 0.5f);

}

}

float fDensity;

if (fDeltaY != 0.0f)

{

fDensity = (sqrt(1.0f + ((fDeltaD / fDeltaY) * (fDeltaD / fDeltaY))))

* fDensityIntegral;

}

else

{

fDensity = 0.0f;

}

float f= exp(-fDensity);

// Set the fog value

Out.FogVal.x = f; // Passed to PixelShader using color register

return Out;

}

Let’s revisit the fog-related stuff, step by step.

The application supplies the shader with the parameter set-

tings for the top of the fog, which is the height above the ground

170 Introduction to Different Fog Effects

up to where we want ground mist to last. The second parameter is

ZFogEnd, which is used to determine the distance where scene

points should be completely encompassed by the fog. We are also

using a temporary variable called FogRange, which in our case is

the same as the top of the fog because this section’s ground fog

implementation starts at height zero.

float fFogTop = fFog.x;

float fFogEnd = fFog.y;

float fFogRange = fFog.x;

To compute the distance between a point’s world space position

and the virtual camera in the x-z plane, both points are projected

onto this plane by setting their y coordinate to 0.

vCameraProj = vCamera;

vCameraProj.y = 0;

vWorldProj = worldPos;

vWorldProj.y = 0;

Getting the distance between the two points is a matter of calling

the library function distance(). As you have seen in the “Theory

and Equations” section above, the distance �D contributes to the

exponent of the exponential function. To get a desirable result,

this factor, along with other factors that influence the exponent

(e.g., �Y), have to undergo some application-specific scaling. The

scaling itself is influenced by the dimensions of the underlying

world coordinate system. In our case, �D is scaled to have a value

of 2.0 for points at distance ZFogEnd.

float fDeltaD = distance(vCameraProj, vWorldProj)/fFogEnd*2.0f;

Regarding the calculation of �Y and the density to use, we have to

distinguish several cases. Thanks to the latest addition of control

flow to shader languages, this is easily done using if-then-else

statements.

First of all, we have to distinguish if the virtual camera is

above or beneath the top of the fog. Let’s start with the case that

the camera is above the fog top.

Introduction to Different Fog Effects 171

Next we need to find out if the vertex that is currently being

processed is above or below the fog top. If it is above the fog top,

we do not want to apply fog to this vertex, and we simply set �Y

and density to 0.

If, on the other hand, the vertex is below the fog, we want to

apply fog. According to our theory, �Y is calculated as the differ-

ence between the top of the fog and the vertex height. This

should give us more fog for vertices that reside closer to the

ground and less fog for vertices that have just entered the fog

area. As with �D, we apply our application-defined scaling to get

proper results.

Afterward we are ready to determine the density with the for-

mula
�Y 2

2
.

if (worldPos.y < fFogTop)

{

fDeltaY = (fFogTop - worldPos.y)/fFogRange*2;

fDensityIntegral = (fDeltaY * fDeltaY * 0.5f);

}

else

{

fDeltaY = 0.0f;

fDensityIntegral = 0.0f;

}

With the second case, the virtual camera is located inside the fog,

which means its height is between the ground (height zero) and

the top of the fog.

For each processed vertex, we have to make the distinction of

whether the vertex is above or below the fog top. Being above

the fog top means that the camera is looking toward a point in a

non-foggy area. So �Y is computed as the difference between the

top of the fog and the camera height.

In case the processed vertex is underneath the fog top, we

have to calculate two densities. The first is computed for the line

between the eye and the top of the fog, and the second is com-

puted for the line between the vertex height and the top of the

172 Introduction to Different Fog Effects

fog. The final value results from the difference between these two

densities.

if (worldPos.y < fFogTop)

{

float fDeltaA = (fFogTop - vCamera.y)/fFogRange*2;

float fDeltaB = (fFogTop - worldPos.y)/fFogRange*2;

fDeltaY =abs(fDeltaA -fDeltaB);

fDensityIntegral = abs((fDeltaA * fDeltaA * 0.5f) - (fDeltaB *

fDeltaB * 0.5f));

}

else

{

fDeltaY = abs(fFogTop - vCamera.y)/fFogRange*2;

fDensityIntegral = abs(fDeltaY * fDeltaY * 0.5f);

}

Now all terms have been computed that contribute to the density

calculation. However, the case for �Y being zero has to be handled

separately, as we otherwise run into a division by zero error. The

solution is to set the density to 0 in this case:

if (fDeltaY != 0.0f)

fDensity = (sqrt(1.0f + ((fDeltaD / fDeltaY) * (fDeltaD / fDeltaY)))) *

fDensityIntegral;

else

fDensity = 0.0f;

With the last two lines, the fog value to be used by the pixel

shader is computed using the library function exp() and handed

over inside the COLOR1 register.

float f = exp(-fDensity);

Out.FogVal.x = f; // Passed to pixel shader using color register

Application Settings

As seen in the other sections, the application provides the shader

with the necessary settings for fFogTop, fFogEnd, fFogRange, and

CFog in addition to the usual matrices and camera information.

Introduction to Different Fog Effects 173

Technique Five: Animated Fog

Figure 8 shows three

screen shots of layered

fog applied to a terrain

scene. You should

notice that the density

of fog changes over the

scene and it changes

from screen shot to

screen shot, which

means that it varies

over time.

Figure 8: A series of screen

shots for animated fog

(See Color Plates 2, 3, and 4.)

174 Introduction to Different Fog Effects

Theory and Equations

The fog effect discussed in this section is based on the publication

“Real-Time Animation of Realistic Fog,” Biri, et al. Since the the-

ory behind this technique extends the scope of this article, we

only take a brief look at it and concentrate on the implementation.

For additional information, please refer to [Biri].

The main idea behind animated fog is to approximate the dif-

ferent terms of fog equations, like absorption, scattering, and

emission, by periodic function. Using a weighted sum of these

functions and applying them over the complete scene results in a

non-uniform fog distribution.

With the help of periodic functions, it is easy to add a kind of

animation that can simulate the influence of wind to the fog. Modi-

fication of the animation settings even allows simulating changes

in wind speed and direction.

To calculate the fog factor, we use the following formula:

f K x y z x y zi

i

N

� � � �

�
�

	

�

�

�
�exp((, ,)) exp (, ,)�

1

. . .where K(x,y,z) is the sum of all periodic functions applied over

the scene and �i represents a single periodic function. The input

to the exp() function has to be negative; otherwise the fog calcula-

tion will not work.

According to [Biri], K(x,y,z) is chosen as:

K(x,y,z)=

1
1

2
5

1

5
7 0 1

1

5
5 0 1

1
� � � � � � � � �cos() cos((.)) cos((.))y y x y x

10 2
cos() cos�

��
�
�

	

�x

z

Using world coordinates as input to this function gives us a very

nice varying fog distribution over the whole scene. This works

quite well for a static camera but results in some problems for a

moving one. The periodic distribution caused by the trigonometric

functions is very apparent and easy to notice.

Introduction to Different Fog Effects 175

To make this technique more applicable to a moving camera,

we use the calculated factor K(x,y,z) along with a normal exponen-

tial fog calculation.

This leads to the following fog calculation:

f=exp(–dg)+K(x,y,z)

Up until now, we have achieved a non-uniform fog density of the

scene, which seamlessly integrates with exponential fog. Points

near the camera are less foggy than distant ones, even when mov-

ing the camera.

Animating the fog is nothing more than simply adding a time

varying term to the density calculation. Depending on which term

of K(x,y,z) you choose to modify with a varying factor, you can con-

trol the direction of the fog animation and therefore the direction

of simulated wind.

Of course, you can control the turbulence of the fog by choos-

ing a constantly increasing animation term or by using a function

to compute such a “wind factor.”

Implementation

The implementation only uses a vertex shader to compensate for

the performance hit of making extensive use of trigonometric

functions. The achieved results are normally quite sufficient and

do not justify calculations for every fragment.

Shader

The complete vertex shader code follows:

VS_OUTPUT main(const VS_INPUT Input)

{

float4 clpPos;

// Init output

VS_OUTPUT Out = (VS_OUTPUT) 0;

// Calculate the clip space position

clpPos = mul(Input.Position, matWorldViewProj);

176 Introduction to Different Fog Effects

Out.Position = clpPos;

// Simply pass on the texture coords and the vertex color

Out.Tex0.xy = Input.Tex0.xy;

Out.Diffuse = Input.Diffuse;

// Get fog parameter

float fAnim = fFog.x;

float fFogEnd = fFog.y;

float fDensity = fFog.z;

// Calculate the distance. (Same as for exp-fog)

// Camera space z coords scaled to have a value of 4 at distance FogEnd

float4 camPos = mul(Input.Position, matWorldView);

float fDist = camPos.z/fFogEnd*4;

// Exp fog calculation

float fExpFog = exp(-fDist*fDensity);

// Animation is calculated based on world coordinates

float4 worldPos = mul(Input.Position, matWorld);

// Do the animation: -(1+0.5*cos(5*PI*z)+0.2*cos(7Pi*(z+0.1*x))+0.2*cos

//(5*PI*(z-0.05*x))+0.1*cos(PI+x)*cos(PI*y/2))

float k = -1-0.5*cos(5*3.14*worldPos.z+fAnim)-0.2*cos

(7*3.14*(worldPos.z+0.1*worldPos.x))-0.2*cos

(5*3.14*(worldPos.z-0.05*worldPos.x))-0.1*cos

(3.14*worldPos.x)*cos(3.14*worldPos.y/2);

// Final fog is addition of exp and animation

float f = fExpFog + (camPos.z/fFogEnd)/4.0f*k;

// Set the fog value

Out.Fog = f;

return Out;

}

Most of the shader code should be familiar by now, so let’s have a

look at the interesting parts.

The shader uses the normal settings for fog end and density in

its exponential fog calculation. The time varying term fAnim is

Introduction to Different Fog Effects 177

used to modify K(x,y,z) and therefore animates the fog density

over time.

float fAnim = fFog.x;

float fFogEnd = fFog.y;

float fDensity = fFog.z;

The K(x,y,z) calculation is a direct translation of the equation dis-

cussed above into code. Notice that the time varying term fAnim is

added to the first term, modifying the world space z coordinates.

This achieves the effect of wind blowing along the world z-axis.

float k = -1-0.5*cos(5*3.14*worldPos.z+fAnim)-0.2*cos

(7*3.14*(worldPos.z+0.1*worldPos.x))-0.2*cos

(5*3.14*(worldPos.z-0.05*worldPos.x))-0.1*cos

(3.14*worldPos.x)*cos(3.14*worldPos.y/2);

To make the fog applicable for a moving camera, it is combined

with an exponential fog factor. Notice that we again need to apply

some application-dependent scaling to K(x,y,z) in order to achieve

desirable results.

// Final fog is addition of exp and animation

float f = fExpFog + (camPos.z/fFogEnd)/4.0f*k;

Application Settings

Besides the usual parameters, the shader is provided with a value

for the fog density and fog end, used by the exp fog calculation.

Additionally, a single float value is passed to the shader that is

constantly increased from frame to frame in order to achieve the

discussed animation.

Conclusion

With our discussion of basic environmental fog, simple volumetric

fog, and more interesting animated fog, we have seen much of

what can be accomplished by adding fog to an application. For

sure, each application will have different requirements and limita-

tions regarding the usage of fog, but with the ground covered

178 Introduction to Different Fog Effects

above, it should be easy to adapt and combine effects to achieve

some unseen effects.

However, some closing notes must be mentioned here.

All of the pixel shaders used are very simple and do nothing

more than a blend operation. Moving the fog calculation from the

vertex shader to the pixel shader leads to more accurate results.

But it must be decided on a case-by-case basis whether the addi-

tional computing cost (caused by doing computation per fragment

instead of per vertex) is worth it. Generally, you will not notice a

big difference because fog mostly deals with uniform colors. As

mentioned, this is a decision to be made with your specific applica-

tion requirements in mind.

Another point is the usage of constant terms in the discussed

shaders. To have a direct connection to the equations that are

defining a fog technique, most of the shaders are calculating con-

stant terms inside the shader itself. For a real-world application,

this should (of course) not be the case. Precomputing constant

terms on the CPU and providing them to the GPU once per frame

is far more efficient than doing repetitive calculations for each

execution of the shader program.

The last point that needs to be mentioned is the handling of

fog color. All of our shaders use a constant fog color, but this is not

a requirement. Doing additional calculations to determine the fog

color for a vertex or fragment can result in some really interesting

and exciting effects that can give your application the final touch.

References

[Biri] Biri, V., S. Micheling, and D.Arqués, “Real-Time Animation

of Realistic Fog,” Thirteenth Eurographics Workshop on Render-

ing, 2002.

[Legakis] Legakis, J., “Fast Multi-Layer Fog,” ACM SIGGRAPH

’98 Conference Abstracts and Applications, p. 266.

[Rogers] Rogers, D., “Z-buffering, Interpolation and More W-buff-

ering,” nVidia Corp., www.nvidia.com/developer.

Introduction to Different Fog Effects 179

Shadow Mapping with
Direct3D 9

Michal Valient

Introduction

Because we are using monitors to display information, the whole

computer-generated world is turned into 2D before we see it.

Then, only our brain (with great help from our memory and past

experiences) can restore the feeling of three dimensions. Shadows

are one of the most important guidelines in this process because

they give us information about the position of objects in a scene.

This chapter covers the implementation of the shadow map

algorithm with Direct3D 9 and offers some improvements. First

we fight depth compare errors by using a back-faced shadow map;

we store depths only for pixels facing away from the light. We

improve standard percentage closer filtering (PCF) by additional

bilinear filtering performed in the pixel shader. The result is a

highly optimized pixel shader that uses 64 arithmetic instructions

to produce smooth shadows with reduced aliasing problems even

for low-resolution maps.

181

Figure 1: The importance of shadows

Shadow Algorithm

The implementation of shadows presented here uses a well-

known algorithm published in 1978 by Lance Williams in [1].

Here, we briefly describe each step of the original technique. In

the first step we render the image from the light’s position and

store the distance information for each pixel that is visible from

the light’s position into a texture called a shadow map. The origi-

nal technique uses z-buffer information for the shadow map. In the

second step we render the image from the camera’s position. We

project the shadow map texture onto the geometry just like we did

for the spotlight (see the “Advanced Lighting and Shading with

Direct3D 9” article). For each rendered pixel we compute its

actual distance from the light and compare this value with the

value stored in the texture. If the actual distance is greater, the

pixel is shadowed by something nearer and we skip lighting. Oth-

erwise, the pixel is not occluded and we can illuminate it. The

algorithm is usable for directional lights or spotlights, but an

extension for omnidirectional lights exists (see [3]). The advan-

tage of this algorithm is that it is an image space algorithm and no

knowledge of geometry is required. The main disadvantage is that

it produces aliasing effects due to texture resolution. Before

Direct3D 9, low precision of textures was one of the main prob-

lems in the implementation of this method in real time.

182 Shadow Mapping with Direct3D 9

The implementation presented here does not use the z-buffer

as the shadow map (although the z-buffer is still enabled while

creating the shadow map), but we render to a 32-bit floating-point

texture. The distance is computed in world space and everything

between the spotlight’s near and far clipping plane (in our case,

derived from the 3D Studio Max Spotlight properties called Atten-

uation Near - Start and Attenuation Far - End) is mapped linearly

into the range [0…1] with the following equation. This solution

does not provide better quality (compared to plain usage of the

z-buffer as the shadow map), but it is easier for prototyping, as we

can easily test how the precision of texture affects the algorithm.

Figure 2: Shadow mapping algorithm

Depth Bias Problem

Performing a depth comparison on a shadow map introduces vari-

ous errors that result in shadowing a pixel that is supposed to be

lit. This is due to the shadow map magnification or minification

during rendering. In the first case, one shadow map texel covers

several nearby rendered pixels, resulting in some of them being

incorrectly shadowed. In the second case, several texels cover

one pixel and a depth comparison is likely performed with the

wrong texel. The first image in Figure 3 shows this problem that

is caused by minification of the shadow map. To fight these issues,

the shadow map value is shifted slightly away from the light

source by adding a value (called a depth bias) to the calculated

Shadow Mapping with Direct3D 9 183

distance. This minimizes depth comparison errors but finding a

good bias for the whole scene is not a trivial task. The third image

in Figure 3 shows what happens if the depth bias is too large.

Figure 3: Depth bias issues

a) no depth bias b) just right depth bias c) too high bias

This implementation uses a different approach to fight depth test

issues. Instead of finding a bias value, a shadow map is rendered

with front-face culling enabled. Rendering only back faces (those

facing away from the light source) causes lit faces to always pass

the depth test. The depth bias issue can be ignored for back faces

because these are already shadowed by a lighting and shading

algorithm. Cases where the geometry is really supposed to be

shadowed by another one are handled correctly unless occluder

and occluded pixels are too close (but in this case, we cannot see a

shadowed pixel anyway). This is not the most robust solution, but

it works well for scenes with 2-manifold (or almost 2-manifold,

like the teapot in our case) objects where the distance between

front- and back-facing faces is not very small (with respect to the

precision of the shadow map). Game geometry in most cases sat-

isfies this need, and if not, it can be tuned during the authoring

process. The solution can be easily improved if we add depth bias

selectively only for objects that do not meet the criteria. Face cull-

ing is disabled, and the depth bias value is added for this geometry.

This does not interfere with our implementation. The second

image in Figure 4 shows that only 8-bit back-faced depth maps

produce very good results.

184 Shadow Mapping with Direct3D 9

Figure 4: Back-facing depth map

a) back-facing depth map b) scene rendered using back-faced depth maps that have

8-bit precision

Shadow Map Filtering

Since the quality of the algorithm depends on the resolution of the

shadow map used, aliasing and blocky shadows can occur if the

texture is small. We cannot fully eliminate this, but we can filter

the map to get smoother shadows. Direct filtering of z values pro-

duces the wrong results, so a special algorithm called percentage

closer filtering (PCF) was developed (see [2]). In the first step, we

do depth comparison in the entire filtering kernel. Each lit pixel

counts as one, and each shadowed pixel counts as zero. This

forms a binary texture, which is then filtered. A sampled value

gives us attenuation.

Until now, PCF was not possible in real time (or only in very lim-

ited form). With the power of Direct3D 9, we can perform it in the

pixel shader. We implement a slightly improved version of the

Shadow Mapping with Direct3D 9 185

Figure 5: Percentage closer filtering

PCF to gain even smoother results. After we obtain the binary

result in the second part of the PCF for the 3x3 region, we use

bilinear filtering on it to get four newly filtered values. For this,

we use shadow map coordinates relative to the nearest top-left

texel corner. First we perform a linear interpolation between col-

umns of the kernel, and we get a temporary 2x3 kernel. Then we

perform linear interpolation on rows and get four filtered values.

In the last step, we average filtered values to get the final attenua-

tion. Figure 6 illustrates the improved PCF, and Figure 7

illustrates bilinear filtering. Figure 8 shows the quality

comparison.

186 Shadow Mapping with Direct3D 9

Figure 6: Improved PCF

Figure 7: Bilinear filtering in the pixel shader

Figure 8: Standard and improved PCF comparison

Shaders for Shadow Map Creation

Shaders in this pass are very simple. The vertex shader just does

a transformation into the clipping space (of the light) and into

world space. Then we compute the distance from the light in

world space, normalize it, and perform (optional) depth bias and

output. The pixel shader just outputs this value.

The following is a vertex shader for shadow map generation.

vs_2_0

// Constant registers

//------------------------------

// c0-c3 - world * view * proj - this time for light

// c4-c7 - world space transposed

// c8 - Light position (In World Space)

// c9 - Z ranges – (ZNear, ZFar, 1/(ZFar-ZNear), DepthBias)

def c10, 0.5f, 0.0f, 0.0f, 0.0f

// Input registers

//------------------------------

dcl_position v0

dcl_normal v1

dcl_texcoord v2

dcl_tangent v3

//The following code outputs the position and texture coordinates

//------------------------------

m4x4 oPos, v0, c0 //vertex clip position

m4x4 r8, v0, c4 //Transform vertex into world position

//Compute distance from light and normalize it to [0...1]

//------------------------------

sub r0, c8, r8 //Build the light vector from light source to vertex

dp3 r1.x, r0, r0 //length of vector^2

pow r2.x, r1.x, c10.x //sqrt(length^2)

sub r3.x, r2.x, c9.x //Dst - ZNear

mul r4.x, r3.x, c9.z //(Dst - ZNear)/(ZFar - ZNear) - normalized position

add r4.x, r4.x, c9.w //add depth bias – c9.w = 0 for no bias

mov oT0, r4.x //Output it

Shadow Mapping with Direct3D 9 187

The following is a pixel shader for shadow map generation.

ps_2_0

// Used input registers

//------------------------------

dcl t0 //depth of pixel

// Output value

//------------------------------

mov r0, t0 //load floating point Z value

mov oC0, r0 //color output

Shaders for Final Rendering

The pixel shader is highly optimized to fit into the limit of 64

instructions without sacrificing quality. The vertex shader is the

same as the one used in the “Advanced Lighting and Shading with

Direct3D 9” article for Phong lighting with the addition of distance

computation (the same algorithm used in the previous section).

The following is a vertex shader 2.0 model for rendering

shadows.

vs_2_0

// Constant registers

//------------------------------

// c0-c3 - world space transposed

// c4-c7 - world * view * proj

// c8 - Light position (In World Space)

// c9 - Eye position (In World Space)

// c10-c13 - Spotlight projection matrix

// c14 - Light's Z ranges, c14.w = 0.5

// Input registers

//------------------------------

dcl_position v0

dcl_normal v1

dcl_texcoord v2

dcl_tangent v3

188 Shadow Mapping with Direct3D 9

// Output

//------------------------------

// oT0 - texture coordinates

// oT1 - Light vector (in tangent space)

// oT2 - eye vector (in tangent space)

// oT3 - projective spotlight texture coordinates

// oT4 - distance from light

//The following code outputs position and texture coordinates

//------------------------------

m4x4 oPos, v0, c4 //vertex clip position

mov oT0.xy, v2.xy //Texture coordinates for color texture

m4x4 r8, v0, c0 //Transform vertex into world position

//The following code generates tangent space base vectors

//------------------------------

m3x3 r11.xyz, v1, c0 //transform normal N to world space

mov r11.w, v1.w

m3x3 r9.xyz, v3, c0 //transform tangent T to world space

mov r9.w, v3.w

crs r10.xyz, r9, r11 //The cross product to compute binormal NxT

//Computes light and eye vectors and projector's texture coordinates

//------------------------------

sub r0, c8, r8 //Build the light vector from light source to vertex

nrm r1, r0 //normalize vector

m3x3 oT1.xyz, r1, r9 //transform vector with N, T, NxT into tangent space

sub r0, c9, r8 //build the eye vector from vertex to camera source

nrm r1, r0 //normalize vector

m3x3 oT2.xyz, r1, r9 //transform vector with N, T, NxT into tangent space

m4x4 oT3.xyzw, v0, c10 //compute projector texture coordinates

//Compute distance from light and normalize it to [0...1]

//------------------------------

sub r0, c8, r8 //Build the light vector from light source to vertex

dp3 r1.x, r0, r0 //length of vector^2

pow r2.x, r1.x, c14.w //sqrt(length^2)

sub r3.x, r2.x, c14.x //Dst - ZNear

mul r4.x, r3.x, c14.z //(Dst - ZNear)/(ZFar - ZNear) - normalized position

mov oT4, r4.x //Output it

Shadow Mapping with Direct3D 9 189

The following is a pixel shader 2.0 model for rendering shadows.

ps_2_0

// 1 - Constant registers

//------------------------------

// c0 - diffuse texture multiplier (premultiplied with light color)

// c1 - specular texture multiplier (premultiplied with light const)

// c2 - specular shininess (shi, shi, shi, 1.0f)

// c3 - shadow texel adjust (x,y) and texture width/height (z,w)

// c4 - c11 - 3x3 filtering kernel

// c29 - texture width/height (x,y)

// c30 - texel divider - 1 / texels_in_kernel (our case is 4)

def c31, 2.0f, 1.0f, 0.0f, 4.0f //helper constant

// 1 - Used input registers

//------------------------------

dcl t0.xy //texture coordinates

dcl t1.xyz //light vector

dcl t2.xyz //eye vector

dcl t3.xyzw //projector texture coordinates

dcl t4.xyzw //normalized distance from light

// 1 - Used input texture samplers

//------------------------------

dcl_2d s0 //diffuse texture (gloss in alpha)

dcl_2d s1 //normal texture

dcl_2d s2 //shadow map

dcl_2d s3 //spotlight texture

// 2 - Compute coordinates into shadow texture for actual pixel

//------------------------------

rcp r11, t3.w //1/w for projection divide

mad r0, t3, r11, c3 //get texture coordinates (with adjusted center)

texld r11, r0, s2 //sample shadow

// 3 - Compute coordinates for remaining of 3x3 filtering kernel

//------------------------------

add r10, c4, r0 //Left column

add r9, c5, r0

add r8, c6, r0

add r7, c7, r0 //Center column

190 Shadow Mapping with Direct3D 9

add r6, c8, r0

add r5, c9, r0 //Right column

add r4, c10, r0

add r3, c11, r0

// 4 - Fill 3x3 filtering kernel

//------------------------------

texld r10, r10, s2 //Left column

texld r9, r9, s2

texld r8, r8, s2

texld r7, r7, s2 //Center column

texld r6, r6, s2

texld r5, r5, s2 //Right column

texld r4, r4, s2

texld r3, r3, s2

// 5 - Distance comparison – we get 3x3 binary kernel

//------------------------------

sub r10.x, t4.x, r10.x //Left column

sub r10.y, t4.x, r9.x

sub r10.z, t4.x, r8.x

cmp r1.xyz, r10, c30.g, c30.r //distance comparison

sub r9.x, t4.x, r7.x //Center column

sub r9.y, t4.x, r11.x

sub r9.z, t4.x, r6.x

cmp r2.xyz, r9, c30.g, c30.r //distance comparison

sub r8.x, t4.x, r5.x //Right column

sub r8.y, t4.x, r4.x

sub r8.z, t4.x, r3.x

cmp r3.xyz, r8, c30.g, c30.r //distance comparison

// 6 - Bilinear filtering of 3x3 binary kernel

//------------------------------

mul r0, r0, c29 //get coordinate in texture

frc r0, r0 //get fractional part only

lrp r10.xyz, r0.x, r2, r1 //interpolate column 1 and 2

lrp r11.xyz, r0.x, r3, r2 //interpolate column 2 and 3

Shadow Mapping with Direct3D 9 191

lrp r3.x, r0.y, r10.y, r10.x //interpolate row 1, column1

lrp r3.y, r0.y, r10.z, r10.y //interpolate row 2, column1

lrp r3.z, r0.y, r11.y, r11.x //interpolate row 1, column2

lrp r3.w, r0.y, r11.z, r11.y //interpolate row 2, column2

dp4 r8.x, r3, c31.g //accumulate to get average

// 7 - Setup needed vectors - load and normalize

//------------------------------

texld r0, t0, s1 //load normal

mad r1, r0, c31.r, -c31.g //bias normal to range -1,1

nrm r11, r1 //r11 = normalized normal

mov r1.xyz, t1

nrm r10, r1 //r10 = normalized light vector

mov r1.xyz, t2

nrm r9, r1 //r9 = normalized eye vector

// 8 - Compute diffuse and specular intensities

//------------------------------

dp3 r0, r11, r10 //r0 = (n.l)

mul r1, r0, c31.r //r1.g = 2*(n.l)

mad r1, r1, r11, -r10 //compute reflectance vector - r1 =

// 2(n.l)n - l

dp3_sat r1, r1, r9 //r1 = (r.v)

pow r0.g, r1.r, c2.r //r1 = (r.v)^shi

cmp r0, r0.r, r0, c31.b //if (n.l)<0 do not lit anything

// 9 - Modulate texture with computed intensities

//------------------------------

texld r6, t0, s0 //load diffuse texture (gloss map is in alpha)

texldp r4, t3, s3 //load projector texture (perspective correct)

mul r2, r6.a, r0.g //modulate specular intensity with gloss map…

mul r2, r2, c1 //… and with material's specular and light color

mul r3, r6, r0.r //modulate diffuse intensity with texture…

mad r0, r3, c0, r2 //… and with material's diffuse and light color

//and add specular

mul r0, r0, r4 //modulate it with spotlight texture…

mul r0, r0, r8.x //… and with shadow

mov oC0, r0 //color output

192 Shadow Mapping with Direct3D 9

In the second part of the shader we compute the shadow map tex-

ture coordinates. These were computed in the vertex shader, and

here we have to perform a perspective-correct texture lookup. We

have to adjust coordinates to point exactly at the texel center to

have correct shadows, and we use these in the next section to get

the additional eight coordinates for a complete kernel. Because of

this, we do manual division by w and then use texld instead of

simple texldp. The mad instruction does this computation by mul-

tiplication with 1/w and addition of 0.5/shadow_map_size for texel

center adjustment.

We compute coordinates for the remaining filtering kernel in

the third part and load the distance information from the shadow

map in the next one. In the fifth section we perform a comparison

of distance stored in the texture and the actual one. We subtract

the stored depth value from the actual one and store the result for

each column into components of one register. Then we do a com-

parison of these values to 0 with one cmp instruction. If the value

is less than 0, the actual pixel is not shadowed, and we remember

a value of ¼. Otherwise, we store 0. Note that ¼ is stored here

because in the final step we perform an average of four values.

In the beginning of the sixth section, we find the coordinates

relative to the top-left corner of the shadow map texel. To do this,

we multiply the coordinates by the dimensions of the texture and

store only the fractional part. Then we perform bilinear interpola-

tion. With the first two lrp instructions, we can interpolate whole

columns with respect to the relative x coordinate. We interpolate

final values from individual rows of these columns. The last

instruction — dp4 — performs a four-component dot product.

Because we stored the interpolated values in one register and the

other register contains vector (1,1,1,1), this dot product actually

performs the sum of four values with one instruction. Since these

values were already divided by four, this sum is their average —

final light attenuation by shadow.

The rest of the shader performs the per-pixel Phong lighting

shown in the “Advanced Lighting and Shading with Direct3D 9”

article, and the only change is the modulation of the lighting result

with shadow.

Shadow Mapping with Direct3D 9 193

Conclusion

With the possibilities of Direct3D 9, we altered a classic shadow

map algorithm so that it produces soft-edged shadows and mini-

mizes depth bias issues. Bilinear filtering of the 3x3 binary kernel

from the percentage closer filtering results in very soft shadows

even for the low-resolution shadow map. Usage of the back-faced

shadow map minimizes the depth compare errors and allows us to

use lower-depth maps. This is vital for the Direct3D 8 class of

hardware, where two channels of 8-bit textures are used to

encode depth information.

194 Shadow Mapping with Direct3D 9

Figure 9: Shadow map results (See Color Plate 5.)

References

[1] Williams, L., “Casting Curved Shadows on Curved Surfaces,”

Computer Graphics (SIGGRAPH ’78 proceedings) August 1978,

Vol. 12:3, pp. 270-274.

[2] Reeves, W.T., D.H. Salesin, and R.L. Cook, “Rendering

Antialiased Shadows with Depth Maps,” Computer Graphics

(SIGGRAPH ’87 proceedings) July 1987, pp. 283-291.

[3] Brabec, S., T. Annen, and H.P. Seidel, “Shadow Mapping for

Hemispherical and Omnidirectional Light Sources,” Advances in

Modelling, Animation and Rendering, J. Vince, R. Earnshaw, eds.,

Springer: London, 2002, pp. 397-408.

Shadow Mapping with Direct3D 9 195

The Theory of Stencil
Shadow Volumes

Hun Yen Kwoon

Introduction

One of the best visual improvements that we can make to a ren-

dered scene is to add shadows. Shadows greatly enhance the

realism of a rendered scene and provide viewers with important

visual cues about object placement within the scene. Rendering

cost, memory constraints, or hardware limitations sometimes

make the generation of accurate shadows infeasible. However, it is

often better to have at least some form of shadow, albeit a rough

approximation. This is why some older games use patches of dark

circular textures projected onto the surface that the game charac-

ters stand on to approximate shadowing by the characters. These

types of hacks are no longer acceptable by today’s gamers who

have ever-increasing expectations.

Allan Watt [13] discussed four major approaches to shadow

generation that include polygon projection with scan line testing,

shadow polygon through visible surface, shadow volume, and

shadow z-buffer. Of the four, only the shadow volume and shadow

z-buffer approaches are still commonly employed today. This arti-

cle concerns the shadow volume approach, which is fast becoming

a fixture in newer games.

197

Although not a clear-cut winner, shadow volume implementa-

tion does provide several advantages over other shadowing

techniques. It provides accurate hard shadows, and occluder

self-shadowing is inherent in the technique. For a scene full of

shadow casting occluders, shadow volume also provides accurate

inter-occluder shadowing. Shadow volume is also fast gaining

popularity with professional game and graphics developers. The

extensive use of stencil shadow volumes in John Carmack’s new

Doom III engine and the impressive Power Render X game engine

[4] are most notable. With this rising popularity comes a wave of

enthusiastic hardware support from major graphics hardware

vendors. Industry powerhouse nVidia, for example, has specifi-

cally added new capabilities to provide hardware support for

shadow volume implementations in the GeForce family of con-

sumer graphics cards. ATI Technologies Inc. has also included

accelerated shadow volume rendering capabilities into its

SMARTSHADER 2.0 technology that comes with graphics cards,

such as the highly successful Radeon 9700. It is also possible to

combine shadow volume implementation with other rendering

techniques, such as projective texturing, volume texturing, or

shadow mapping, to achieve highly realistic soft shadows or dis-

tance attenuated shadowing.

This article covers both the theoretical and practical aspects

of stencil shadow volumes. For readers already well versed in the

theory, the “Implementation on CPU” and “Implementation on

GPU (Shaders)” sections provide details on implementation utiliz-

ing the CPU and GPU. For those unfamiliar with the shadow

volume methodology, the “Shadow Volume Concept” and “Prob-

lems and Solutions” sections provide detailed discussions on the

theories and algorithms.

198 The Theory of Stencil Shadow Volumes

Shadow Volume Concept

Frank Crow [1] first presented the idea of using shadow volumes

for rendering shadows in 1977. Tim Heidmann [2] subsequently

implemented Crow’s shadow volume on IRIX GL by cunningly

utilizing the stencil buffer commonly found in modern graphics

hardware. The stencil buffer is used for counting the number of

times that a ray from the eye enters and leaves the shadow vol-

ume. This is essentially a per-pixel test to determine whether an

on-screen pixel is in shadow or not. The shadows generated are

very accurate, albeit hard-edged. The use of the stencil buffer to

implement shadow volumes also gave rise to the name “stencil

shadow volumes.” For general instructions on the uses of the

stencil buffer, please refer to Mark Kilgard [3]. Let’s first look at

how shadow volume arises before we go into the details of its

implementation.

Figure 1 shows a light source, an occluder, and a shadow receiver.

The shaded region depicts the shadow volume generated by the

occluder. We work on the basis that our light sources are attenu-

ated omnidirectional point lights. This assumption is actually an

added advantage of the stencil shadow volume technique. This is

because generating shadows for omnidirectional light sources

using view-dependent techniques such as shadow mapping or pro-

jective texturing is tricky, if not inefficient, on modern hardware.

View-dependent techniques are very good for generating shadows

The Theory of Stencil Shadow Volumes 199

Figure 1: Occluder and shadow volume

created by directional light sources such as torchlight. However,

the stencil shadow volume is more flexible and can be trivially

altered to work for directional light sources. All the occluders that

we work with are also assumed to be solid polygonal objects with

no transparency or alpha that distorts the shadows generated.

There is an added requirement that the occluders be made up of

meshes that are closed volume; we discuss this requirement in

more detail in the “Silhouette Determination” section. Lastly, we

ignore the shadow volume projections and consequently the shad-

ows of the shadow receivers. You probably noticed that in Figure 1

the shadow volume is supposed to extend to infinity. This is how

the name “infinite shadow volumes” came about. Infinite shadow

volumes help to solve a problem known as finite shadow cover,

which we discuss in the “Finite Shadow Cover” section. The

implementation of infinite shadow volume is presented in the

“Vertex Shader Implementation (InfiniteGPU)” section.

Figure 2 shows the silhouette of a sphere with respect to the light

source. In essence, silhouettes are simply the outline of occluders

as seen from the position of light sources. The shadow volume of

200 The Theory of Stencil Shadow Volumes

Figure 2: Silhouette of occluders

an occluder is formed when we extrude the silhouette by a certain

distance, finite or infinite, into the direction of incidental light rays

originating from the light source. Using triangles as primitives in

our meshes, a silhouette is simply made up of a chain of edges

that consist of two vertices each. It should be noted at this point

that shadow volume extrusion differs for different light sources.

For point light sources (as depicted in Figure 2), the silhouette

edges extrude exactly point for point. For infinite directional light

sources, the silhouette edges extrude to a single point at infinity.

We go into the details of determining silhouette edges and the

creation of the shadow volumes in the “Implementation on CPU”

and “Implementation on GPU (Shaders)” sections. The magnitude

of the extrusion can be either finite or infinite.

There are two techniques for implementing stencil shadow

volumes. The original technique is known as depth-pass while the

other, a newer variant, is known as depth-fail. Let’s look at how

these two techniques differ in concept and implementation before

we go into the problems that plague both of them.

Depth-pass (z-pass)

The Theory of Stencil Shadow Volumes 201

Figure 3: Depth-pass stencil operation

Figure 3 shows the numerous possible viewing directions of a

player in the scene. The numbers at the end of the arrows are the

values left in the stencil buffer after rendering the shadow vol-

ume. Fragments with non-zero stencil values are considered to be

in shadow. The generation of the values in the stencil buffer is the

result of the following stencil operations:

1. Render front faces. Increment stencil value for depth-pass.

Do nothing for depth-fail. Disable draw to frame and depth

buffer.

2. Render back faces. Decrement stencil value for depth-

pass. Do nothing for depth-fail. Disable draw to frame and

depth buffer.

The above algorithm is known as the depth-pass stencil shadow

volume technique, since we manipulate the stencil values only

when the depth test passes. Depth-pass is also commonly known

as z-pass.

Let’s assume that we had already rendered the objects onto

the frame and depth buffer prior to the above stenciling opera-

tions. This means that the depth buffer would have been set with

the correct values for depth testing (or z-testing if you like). The

two leftmost rays originating from the eye position do not hit any

part of the shadow volume (in gray), hence the resultant stencil

values are 0, which means that the fragment represented by these

two rays are not in shadow. Now let’s trace the third ray from the

left. When we render the front face of the shadow volume, the

depth test would pass and the stencil value would be incremented

to 1. When we render the back face of the shadow volume, the

depth test would fail since the back face of the shadow volume is

behind the occluder. Thus, the stencil value for the fragment rep-

resented by this ray remains at 1. This means that the fragment is

in shadow since its stencil value is non-zero. To be convinced of

the viability of the technique, the reader should inspect the deri-

vation of the stencil values for the remaining two rays.

While going through the algorithm of the depth-pass tech-

nique, we are effectively doing per-pixel shadow volume counting

to determine the number of times a ray representing a pixel

202 The Theory of Stencil Shadow Volumes

enters and leaves the shadow volumes of the occluders. Not

surprisingly, it is the same concept employed in ray-tracing tech-

niques, whereby rays are projected to calculate the color values

that represent on-screen pixels. In the case of stencil shadow vol-

umes, we are only interested in whether a pixel is in shadow or

not. Does shadow volume counting work for multiple overlapping

shadow volumes?

Even when the shadow volumes are overlapping, as shown in Fig-

ure 4, shadow volume counting using the stencil buffer will still

work. Any point on a geometric surface in a scene can only exist

in three positions with respect to the shadow volumes. The point

can be in front of the shadow volumes, behind the shadow vol-

umes, or nested within the shadow volumes. For the first case

whereby the point is in front of the shadow volumes, shadow vol-

ume counting gives a result of 0, as all depth tests fail, indicating

that the point is not in shadow. The ray on the left in Figure 4

illustrates the second case, whereby the point is behind the

shadow volume and thus not in shadow with a stencil value of 0.

The Theory of Stencil Shadow Volumes 203

Figure 4: Multiple shadow volumes counting

The ray on the right illustrates the third case, whereby the point

is nested within the shadow volumes and thus in shadow with a

non-zero stencil value. The ingenuity of counting shadow volumes

is that self-shadowing and inter-occluder shadowing is totally

embedded into the algorithm!

John Carmack [5] and the team of Bill Bilodeau and Mike

Songy [6] independently presented an alternative technique that

is the direct reverse of the depth-pass stencil algorithm. Conse-

quently, this alternative technique was aptly named the depth-fail

technique. The depth-fail technique is also commonly known in

the developer community as Carmack’s Reverse. Why did John

Carmack, Bill Bilodeau, and Mike Songy even bother to come up

with an alternative stencil algorithm since the depth-pass tech-

nique seems to work great? Depth-pass works flawlessly, at least

most of the time. However, when the eye point enters the shadow

volume, the depth-pass algorithm fails utterly.

When the eye point is within the shadow volume, the front face of

the shadow volume does not get rendered at all. This disrupts the

shadow volume counting and results in erroneous values left in

204 The Theory of Stencil Shadow Volumes

Figure 5: Depth-pass stencil operations fail when the eye point is within the

shadow volume.

the stencil buffer. Figure 5 illustrates two cases in which the

wrong shadow volume count is provided by the depth-pass stencil

operations. The ray on the left should result in a non-zero stencil

value, while the ray on the right should result in a stencil value of

0. Let’s look into the mechanics of the depth-fail algorithm that

allow it to handle this situation properly.

Depth-fail (z-fail)

When the eye point enters a shadow volume, the front faces of the

shadow volume are clipped away by the near plane of the view

frustum. This clipping is the culprit that causes disruption to the

depth-pass shadow volume counting. To account for this clipping,

we can perform the following extended stencil operations, which

are derived from the depth-pass algorithm:

1. Render back faces. Increment stencil value for both

depth-pass and depth-fail (effectively disabling depth test).

2. Render front faces. Decrement stencil value for both

depth-pass and depth-fail (effectively disabling depth test).

3. Render back faces. Decrement stencil value for depth-

pass. Do nothing for depth-fail.

4. Render front faces. Increment stencil value for depth-pass.

Do nothing for depth-fail.

The purpose of the first two steps in the above stenciling opera-

tion is to leave positive values in the stencil buffer when the eye

point is inside the shadow volume, thus accounting for the clip-

ping of the front faces of the shadow volume. The third and fourth

steps are actually the original depth-pass algorithms with the

ordering reversed. Rearranging the steps, we get:

1. Render back faces. Increment stencil value for both

depth-pass and depth-fail (effectively disabling depth test).

2. Render back faces. Decrement stencil value for depth-

pass. Do nothing for depth-fail.

3. Render front faces. Decrement stencil value for both

depth-pass and depth-fail (effectively disabling depth test).

The Theory of Stencil Shadow Volumes 205

4. Render front faces. Increment stencil value for depth-pass.

Do nothing for depth-fail.

It is now obvious that some of the above steps actually cancel each

other out. Simplifying the above stenciling operations, we get:

1. Render back faces. Increment stencil value for depth-fail.

Do nothing for depth-pass. Disable draw to frame and

depth buffer.

2. Render front faces. Decrement stencil value for depth-fail.

Do nothing for depth-pass. Disable draw to frame and

depth buffer.

The two-step stenciling operation above is the complete depth-fail

algorithm. It is known as the depth-fail stencil shadow volume

technique since we manipulate the stencil values only when the

depth test fails. Depth-fail is also commonly known as z-fail. The

depth-fail algorithm is really just the opposite of the depth-pass

algorithm. The depth-fail stencil operations, however, do not falter

when the eye point is in the shadow volume:

206 The Theory of Stencil Shadow Volumes

Figure 6: Depth-fail works even when the eye point is within the shadow

volume.

Figure 6 again depicts the situation in which the eye point is

within a shadow volume. However, by implementing the depth-fail

stencil operations, the resultant values in the stencil buffer are

correct. Figure 7 shows that the depth-fail algorithm would work

for normal situations in which the eye point is outside the shadow

volumes. The reader should inspect other possible scenarios to

convince himself of the viability of the depth-fail algorithm.

To put non-zero values into the stencil buffer, the depth-fail tech-

nique depends on the failure to render the shadow volume’s back

faces with respect to the eye position. This means that the

shadow volume must be a closed volume; the shadow volume

must be capped at both the front and back ends (even if the back

end is at infinity). Without capping, the depth-fail technique would

produce erroneous results. Amazing as it may sound, you can

even cap the shadow volume at infinity.

The Theory of Stencil Shadow Volumes 207

Figure 7: Multiple shadow volumes counting using depth-fail

As shown in Figure 8, the front and back capping (bold lines) cre-

ate a closed shadow volume. Both the front and back capping are

considered back faces from the two eye positions. With depth-fail

stenciling operations, the capping will create correct non-zero

stencil values. There are a few ways to create the front and back

capping. Mark Kilgard [7] described a non-trivial method of creat-

ing the front capping. The method basically involves the

projection of the occluder’s back-facing geometries onto the near

clip plane and uses these geometries as the front capping. Alter-

natively, we can build the front capping by reusing the front-facing

triangles with respect to the light source. The geometries used in

the front capping can then be extruded, with their ordering

reversed, to create the back capping. Reversing the ordering

ensures that the back capping faces outward from the shadow vol-

ume. In fact, we must always ensure that the primitives (in our

case, triangles) that define the entire shadow volume are outward

facing, as shown in Figure 9. It must be noted that rendering

closed shadow volumes is somewhat more expensive than using

depth-pass without shadow volume capping. Besides a larger

primitive count for the shadow volume due to the capping geome-

tries, additional resources are needed to compute and store the

front and back capping. We go into the details of capping shadow

volumes, including some possible optimization techniques, in the

“Shadow Volume Capping” section.

208 The Theory of Stencil Shadow Volumes

Figure 8: Capping for shadow volume

Problems and Solutions

Before we go into the implementation details of stencil shadow

volumes, it is beneficial to take a look at the many problems and

limitations of both the depth-pass and depth-fail techniques in

order to avoid common pitfalls during implementation. Potential

solutions to these problems are discussed, while practical imple-

mentation is outlined in the following sections.

Finite Shadow Cover

The idea of an infinite shadow volume where the shadow volume

extends to infinity was presented in Figure 1. The need for an infi-

nite shadow volume may seem obscure at first, but it really helps

alleviate a common problem known as finite shadow cover as

shown in Figure 10.

The Theory of Stencil Shadow Volumes 209

Figure 9: The capped shadow volume must be outward facing.

Finite shadow volume affects both depth-pass and depth-fail

implementations, but let’s assume the case of a depth-fail imple-

mentation in Figure 10. With the light close to object A, a finite

shadow volume may not be extended far enough to cover object B

properly. The ray from the eye toward object B ends up with a

fragment stencil value of 0 when in fact it should be non-zero! An

infinite shadow volume would ensure that no matter how close the

object is to an occluder, the resultant shadow volume would cover

all the objects in the scene. We discuss how to create an infinite

shadow volume by extruding silhouette vertices to infinity using

homogenous coordinates in the “Forming the Shadow Volume”

and “Vertex Shader Implementation (InfiniteGPU)” sections.

Ghost Shadow

While extruding geometries by a huge distance or to infinity helps

avoid the problem of finite shadow volume cover, it also generates

another problem: Imagine two players in a dungeon first-person-

shooter (FPS) game, roaming in adjacent rooms separated by a

solid brick wall. A table lamp in one of the rooms causes one of the

players to cast a shadow onto the brick wall separating the rooms.

210 The Theory of Stencil Shadow Volumes

Figure 10: A finite shadow volume may fail to cover all objects adequately.

The player in the other room would see this shadow since the

shadow volume extrudes out to infinity. The solid brick wall sud-

denly feels like a thin piece of paper with a “ghost” shadow on it.

Fortunately, by utilizing occlusion information and other culling

techniques, we can restrict shadow volume rendering to individual

rooms and avoid this kind of situation. Figure 11 shows a more

awkward situation, whereby the camera sees both the occluder

and its shadow on one side and the ghost shadow on the other side

of the terrain. Handling such a situation is tricky because the

shadow volume must not be extruded beyond the terrain. Deter-

mination of the correct extrusion distance is not trivial, especially

if the light and occluder are free to move around the scene. This

scenario is very possible, especially for flight simulations or aerial

combat games.

The only feasible solution to avoid both the finite shadow volume

cover (Figure 10) and ghost shadow (Figure 11) is to impose limi-

tations on the placement of light sources and occluders in a scene.

If we can be sure that an occluder can never get closer than a cer-

tain distance to a shadow-casting light source, we can safely

estimate the largest distance we would need to extrude the

shadow volume in order to provide adequate shadow cover while

not causing ghost shadows. It is thus an added responsibility of

level designers to ensure that the occluder and light source

The Theory of Stencil Shadow Volumes 211

Figure 11: Ghost shadow effect due to large extrusion distance

placement in a scene do not compromise or break the underlying

stencil shadow volume implementation. We discuss the impor-

tance of scene management in more detail in the “Efficiency and

Robustness” section.

View Frustum Clipping

View frustum clipping is perhaps one of the most annoying prob-

lems that plague shadow volume implementations. Clipping is a

potential problem with any 3D rendering technique, since we rely

on perspective projection to view our 3D worlds. The view

frustum that provides this perspective projection requires a near

clip distance and a far clip distance for the creation of a near clip

plane and a far clip plane. The near and far clip planes define the

viewable limits of the perspective projection. Since shadow vol-

umes are made up of polygons, they run the risk of being clipped

by the near or far clip planes, just like any other polygons. How-

ever, the implication for shadow volumes is far more damaging, as

the clipping would disrupt the counting of the shadow volumes by

the stencil buffer and hence lead to erroneous shadows being ren-

dered. Both the depth-pass and depth-fail techniques suffer from

view frustum clipping in different ways. The depth-pass technique

suffers from errors when the shadow volume gets clipped after

intersecting the near clip plane, as shown in Figure 12. The ray

from the eye represents just one case where the stencil value for

the associated pixel will be wrong due to the clipping of the

shadow volume’s front face. The clipping of the front faces, which

the depth-pass algorithm depends on to increment the stencil val-

ues, means that the entire region with clipped front faces will

display incorrect shadows.

On the other hand, the depth-fail technique suffers from

errors arising due to the clipping of the shadow volume by the far

clip plane. Since the far clip plane is at a finite distance from the

eye position, there is a possibility of the shadow volume’s back

faces being clipped by the far plane. When this happens, the

shadow counting by the depth-fail technique is thrown off balance,

since depth-fail requires the rendering of the back faces with

212 The Theory of Stencil Shadow Volumes

proper depth testing. The ray from the eye in Figure 13 repre-

sents a case whereby the depth-fail technique generates errors

since the far plane had clipped the back face of the shadow vol-

ume. The clipping of the back faces destroys the chance for the

depth-fail algorithm to increment the stencil buffer and thus

results in incorrect shadowing.

The Theory of Stencil Shadow Volumes 213

Figure 12: Shadow volume clipped at near clip plane causing depth-pass

errors

Figure 13: Shadow volume clipped at far clip plane, causing depth-fail errors

A simple solution to these problems is to move the clipping planes

to avoid clipping the shadow volume. Adjusting the near plane to

avoid the depth-pass problem is not feasible because doing so will

greatly affect the depth precision range and may have negative

impacts on other operations that are dependent on the depth

buffer values. On the other hand, however, shifting the far plane

by an infinite distance will actually solve the far plane clipping

problems for depth-fail.

Let’s first take a look at attempts to solve the depth-pass near

clip plane problem, which happens to be one of the trickiest issues

that one could encounter in real-time graphics. Mark Kilgard [7]

presented interesting ideas on how to handle the two possible

scenarios when shadow volumes intersect the near clip plane. The

idea was to “cap” the shadow volume at the near clip plane so that

the previously clipped front-facing geometries could now be ren-

dered at the near clip plane instead. The first scenario is when all

the vertices of the occluder’s silhouette project to the near clip

plane. In this case, a quad strip loop is generated from all front-fac-

ing vertices within the silhouette of the occluder. The quad strip

loop is then projected onto the near clip plane, thus forming a cap-

ping for the shadow volume.

The second scenario occurs when only part of the shadow vol-

ume projects onto the near clip plane. This proved to be much

more difficult to handle than the previous scenario. To his credit,

Kilgard devised an elaborate system to filter out the vertices of

triangles (facing away from the light) that should be projected onto

the near clip plane in order to cap the shadow volume. The cap-

ping of shadow volumes at the near clip plane gave rise to another

problem: depth precision. Rendering geometries at the near clip

plane is analogous to rolling a coin; the coin can drop down both

sides easily and unpredictably. This means that the near plane may

still clip the vertices that were meant to cap the shadow volume.

To overcome this, Kilgard devised yet another method that builds

a depth range “ledge” from the eye point to the near plane. The

idea is to render the shadow volume from a depth range of

[0.0, 1.0], while normal scene rendering occurs within a depth

range of [0.1, 1.0]. The ledge could be built into the view frustum

214 The Theory of Stencil Shadow Volumes

by manipulating the perspective projection matrix. Once in place,

the near clip plane capping of shadow volumes is done at a depth

value of 0.05, which is half of the ledge. This idea is indeed origi-

nal, but it does not totally solve the problem. Cracks or “holes” in

the near plane shadow capping occur very frequently, resulting in

erroneous results. The conclusion with the near clip plane prob-

lem is that there are really no trivial solutions. At least, there is no

known foolproof solution to the problem at the time of publication.

This makes the depth-pass technique less robust and confines its

spectrum of application to those situations where near plane clip-

ping of the shadow volume is not possible (e.g., real-time strategy

(RTS) games).

Fortunately, there is an elegant solution to the far plane clip-

ping problem that plagues the depth-fail technique. The antidote

to the problem is simply an infinite perspective view projection or

simply an infinite view frustum. By projecting the far plane all the

way to infinity, there is no mathematical chance of the shadow vol-

ume being clipped by the far plane. Even if the shadow volume

were extruded to infinity, the far plane at infinity would still not

clip it after some projection matrix alteration. The derivation for a

left-handed Direct3D perspective projection matrix is presented

here. For the derivation of such a matrix applicable to OpenGL,

please refer to Eric Lengyel [8]. Let’s start by looking at a stan-

dard left-handed perspective projection matrix in Direct3D:

P

fov

fov

f

f n
fn

f

w

h

�

�

�
�

	

�

�

�
�

	

�

�
�
�

cot

cot

2
0 0 0

0
2

0 0

0 0 1

0 0
n

0

�

�

�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�

Variables: n: near plane distance

f: far plane distance

fovw: horizontal field of view in radians

fovh: vertical field of view in radians

The Theory of Stencil Shadow Volumes 215

A far plane at infinity means that the far plane distance needs to

approach �. Hence, we get the following perspective projection

matrix when the far plane distance goes toward the infinity limit:

P P

fov

fov

f

w

h
� �
� �

�

�
�

	

�

�

�
�

	

�lim

cot

cot

2
0 0 0

0
2

0 0

0 0 1 1

0 0 0�

�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

n

Equation (2) defines a perspective projection view that extends

from the near plane to a far plane at infinity. But, are we absolutely

sure that the vertices that we extruded to infinity using the 4D

homogeneous vector do not get clipped at infinity? Sadly, we can-

not be 100 percent sure of this due to limited hardware precision.

In reality, graphics hardware sometimes produces points with a

normalized z-coordinate marginally greater than 1.0, which hap-

pens to be the limit at the far plane. These values are then

converted into integers for use in the depth buffer. This is going to

wreak havoc, since our stencil operations depend wholly on the

depth value testing. (As a side note, the DirectX 9.0 Direct3D API

features floating-point z-buffer format, which may alleviate this

situation. However, it is applicable only to hardware that supports

depth buffer using floating-point.)

Fortunately, there is a workaround for this problem. The solu-

tion is to map the z-coordinate values of our normalized device

coordinates from a range of [0, 1] to [0, 1–!], where ! is a small

positive constant. This means that we are trying to map the

z-coordinate of a point at infinity to a value that is slightly less

than 1.0 in normalized device coordinates. (OpenGL has normal-

ized device coordinates of –1.0 to 1.0.) Let Dz be the original

z-coordinate value and D'z be the mapped z-coordinate. The map-

ping can be achieved using the equation shown below:

D Dz z' (� �1 !)

216 The Theory of Stencil Shadow Volumes

Now, let’s make use of equation (2) to transform a point A from

camera space (Acam) to clip space (Aclip). Note that camera space is

also commonly referred to as eye space.

A A P A A A A

fov

fov
clip cam x y z w

w

h� �

�

�
�

	

�

�
� []

cot

cot

2
0 0 0

0
2�

�
	

�

�

�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

0 0

0 0 1 1

0 0 0n

. . .which would give us:

A

A
fov

A
fov

A nA

A

clip

x
w

y
h

z w

z

�

�

�
�

	

�

�

�
�

	

�

�

�

�

�
�

cot

cot

2

2
�
�
�
�

�

�

�
�
�
�
�
�

Let’s factor the desired range mapping into equation (3) by replac-

ing Dz with
" #
" #

A

A

clip z

clip w

and D'z with
" #
" #

A

A

clip z

clip w

'
:

" #
" #

" #
" #

" #
A

A

A

A

clip z

clip w

clip z

clip w

'
� �1 !

Simplifying equation (5) by using the values given by equation (4),

we get:

" # " # " #A A nAclip z z w' � � � �1 1! !

Using equation (6), we can enforce our range mapping into the

projection matrix P� given by equation (2) to get the following:

The Theory of Stencil Shadow Volumes 217

" #
" #

P

fov

fov

n

w

h
'

cot

cot
� �

�

�
�

	

�

�

�
�

	

�

�

�

2
0 0 0

0
2

0 0

0 0 1 1

0 0 1

!

! 0

�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

Thus, we can use the perspective projection matrix given in equa-

tion (7) without fear of far plane clipping of shadow volumes

occurring at infinity! You might wonder whether stretching the

view frustum volume all the way to infinity would impact depth

buffer precision. The answer is yes, it does affect precision, but

the loss of precision is really negligible. The amount of numerical

range lost when extending the far plane out to infinity is only
n

f
.

Say our original near clip plane is at 0.1 meters, and the far clip

plane is at 100 meters. This range corresponds to a depth range of

[0, 1.0]. We then extend the far plane distance to infinity. The

range from 0.1 meters to 100 meters would now correspond to a

depth range of [0, 0.999]. The range from 100 meters to infinity

would correspond to a depth range of [0.999, 1.0]. The loss in

depth buffer precision is really not a big impact at all. The larger

the difference between the n and f values, the smaller the loss in

depth buffer precision. You can find the above derivations and

many other related mathematical derivations in Eric Lengyel’s

book [9]. It should be noted that using an infinite view frustum

means that we have to draw more geometries. This may pose a

potential performance problem.

The infinite view frustum projection is really just a software

solution to the far plane clipping problem. Mark Kilgard and Cass

Everitt [10] presented a hardware solution to the problem instead

of using an infinite view frustum. Newer graphics hardware now

supports a rendering technique called depth clamping. In fact, the

depth-clamping extension, NV_depth_clamp, was specifically added

to nVidia’s GeForce3 and above graphics cards to solve the far

plane clipping problem for shadow volume implementations.

218 The Theory of Stencil Shadow Volumes

When active, depth clamping forces all the objects beyond the far

clip plane to be drawn at the far clip plane with the maximum

depth value. This means that we can project the closed shadow

volume to any arbitrary distance without fear of it being clipped by

the far plane, as the hardware will handle the drawing properly.

With such automatic support from graphics hardware, depth-fail

shadow volumes become easier to implement. We can extend the

shadow volume to infinity while rendering with our finite view

frustum and still get correct depth-fail stencil values! However,

the trade-off is hardware dependence, unless hardware vendors

and graphics APIs such as Direct3D and OpenGL commonly sup-

port depth clamping in the future. If we want the depth-fail

shadow volume to work for any graphics card (with stenciling sup-

port at least), we have to use the infinite view frustum projection

instead of the depth-clamping extension.

With a good background on the stencil shadow volume algo-

rithms and their associated problems, it is time to plunge into

their implementations. The following sections present two differ-

ent approaches to implementing stencil shadow volumes. The

first approach is the common way of determining the occluder’s

silhouette on the CPU and uploading the new shadow volume

vertices onto the hardware. The second approach makes use of

the programmable pipeline (vertex shader) to construct the

shadow volume on the hardware itself, thereby saving the cost

of uploading new geometries every frame. It should be noted here

that a one-off preprocessing of the occluder’s geometries is

necessary for the vertex shaders (GPU) implementation. The

preprocessing adds new vertices into the source data set in order

to facilitate the construction of the shadow volume on the hard-

ware. With optimization in place, preprocessed data sets typically

contain around two times more vertices.

The Theory of Stencil Shadow Volumes 219

Implementation on CPU

For this section on CPU implementation, the reader should refer

to both the DepthPassCPU and DepthFailCPU samples, which can

be found on the companion CD. Note that both samples are based

on DirectX 8.1. A list of general steps for implementing shadow

volumes on the CPU is presented shortly. The subsequent discus-

sion of the two CPU-based samples will closely follow these steps.

How It Is Done

Let’s collate what we have learned and try to come up with the

steps to do both depth-pass and depth-fail stencil shadow volumes

on the CPU. A general list of steps to implement stencil shadow

volumes is:

1. Render the scene to fill the depth buffer with the correct z

values.

2. Select a light source. Clear the stencil buffer if this is the

first light. Calculate the silhouette of all the occluders with

respect to the light source.

3. Extrude the silhouette away from the light source to a

finite or infinite distance to form the shadow volumes and

generate the capping if the depth-fail technique was used.

4. Set up the stencil operations and render the shadow vol-

umes using the depth-pass or depth-fail technique.

5. Repeat steps 2 to 4 for all selected lights in the scene.

6. Using the updated stencil buffer, do a lighting pass to

shade (or make it a tone darker) the pixels that correspond

to non-zero stencil values.

The above list of steps is just one way to achieve a shadowed

scene using the stencil buffer values. Many other workable

approaches to creating a shadowed scene exist. For example,

per-pixel attenuation techniques can be combined with the stencil

shadow volume algorithm so that instead of “darkening” the pixels

in shadows, the pixels are not drawn at all. We go through the

220 The Theory of Stencil Shadow Volumes

implementation issues of the steps described above in the follow-

ing sections.

Silhouette Determination

As described in step 2 of the previous section, once a light source

is selected, the first step to constructing a shadow volume is to

determine the silhouette of the occluder. The stencil shadow algo-

rithm requires that the occluders be made up of closed triangle

meshes. This means that every edge in the model must only be

shared by two triangles, thus disallowing any holes that would

expose the interior of the model.

The reasons for this requirement are obvious, as any seams or

holes (formed for example by t-junctions) would greatly compli-

cate the silhouette determination algorithm. In cases where the

original occluder’s geometries are used for forming the front cap-

ping, non-closed meshes will also throw the stencil counting

off-balance. However, there are ways to circumvent a few special

cases of non-closed triangle meshes for use in shadow volume

implementations, but these are beyond the scope of this article.

In silhouette calculations, we are only interested in the edges

shared by a triangle that faces the light source and another trian-

gle that faces away from the light source. Let’s assume that we

are working with an indexed triangle mesh.

The Theory of Stencil Shadow Volumes 221

Figure 14: Edge elimination for silhouette determination

Figure 14 shows one side of a box that is made up of four triangles

with consistent clockwise winding. The broken lines indicate the

redundant internal edges, since we are only interested in the solid

line that forms the outline of the box. The redundant internal

edges are indexed twice, as they are shared by two triangles. We

can take advantage of this property to come up with a simple

method to determine the silhouette edges.

1. Loop through all the model’s triangles.

2. If a triangle faces the light source (dot product of light’s

direction vector and triangle face normal is greater than

zero):

a. Insert the three edges (pair of vertices) of the triangle

into an edge stack.

b. Check for previous occurrence of each edge or its

reverse in the stack.

c. If an edge or its reverse is found in the stack, remove

both edges.

3. Edges left in the stack form the silhouette.

The above algorithm ensures that all the internal edges will even-

tually be removed from the stack, since they are indexed by more

than one triangle. This silhouette determination method is imple-

mented in both the DepthPassCPU and DepthFailCPU samples, as

the function InsertEdge() called from BuildShadowVolume(). The

following code snippet is taken from the BuildShadowVolume()

function in the DepthPassCPU sample.

01 MESHVERTEX* pVertices;

02 WORD* pIndices;

03

04 // Lock the geometry buffers

05 pMesh->LockVertexBuffer(0L, (BYTE**)&pVertices);

06 pMesh->LockIndexBuffer(0L, (BYTE**)&pIndices);

07 DWORD dwNumVertices = pMesh->GetNumVertices();

08 DWORD dwNumFaces = pMesh->GetNumFaces();

09

10 // Allocate a temporary edge list

11 WORD* pEdges = new WORD[dwNumFaces*6];

222 The Theory of Stencil Shadow Volumes

12 DWORD dwNumEdges = 0;

13

14 // For each face, check all 3 edges

15 for(DWORD i=0; i<dwNumFaces; i++)

16 {

17 WORD wIndex0 = pIndices[3*i+0];

18 WORD wIndex1 = pIndices[3*i+1];

19 WORD wIndex2 = pIndices[3*i+2];

20

21 D3DXVECTOR3 v0 = pVertices[wIndex0].p;

22 D3DXVECTOR3 v1 = pVertices[wIndex1].p;

23 D3DXVECTOR3 v2 = pVertices[wIndex2].p;

24

25 // Note that vLight has already been transformed to object space. This

saves some computation work

26 // Cosine value larger than 0.0 means light-facing since angle between

27 // light vector vLight and the face normal is within -90 to 90 degrees

28 // Face normal is computed in order to use welded models

29 D3DXVECTOR3 vCrossValue1(v2-v1);

30 D3DXVECTOR3 vCrossValue2(v1-v0);

31 D3DXVECTOR3 vFaceNormal;

32 D3DXVec3Cross(&vFaceNormal, &vCrossValue1, &vCrossValue2);

33

34 // Take note that we are doing a recalculation of vLightDir, or direction

35 // vector of incoming light ray by using the first vertex of a face

(3 vertices) to represent that face.

36 // The dot product test is also only done once per face.

37 D3DXVECTOR3 vLightDir = vLight - v0; // Direction vector of incoming

light rays

38 if(D3DXVec3Dot(&vFaceNormal, &vLightDir) >= 0.0f)

39 {

40 InsertEdge(pEdges, dwNumEdges, wIndex0, wIndex1);

41 InsertEdge(pEdges, dwNumEdges, wIndex1, wIndex2);

42 InsertEdge(pEdges, dwNumEdges, wIndex2, wIndex0);

43 }

44 }

45

Note that we have to compute the face normal for every face in

the code from line 29 through 32. The calculation of face normals

coupled with the use of indices instead of positions for comparison

later in the InsertEdge() function will allow us to make use of

welded models. Welded models result in better performance due

The Theory of Stencil Shadow Volumes 223

to reduced polygon counts for the shadow volume generated. We

discuss the advantages of welded models in the “Efficiency and

Robustness” section. The above code will also work for

non-welded models. Both the DepthPassCPU and DepthFailCPU

samples make use of welded models. On line 37, the vector

vLightDir is calculated from the light position and the first vertex

of the current face. Hence, we do only one dot product test for

each face, as we are using the face normal, which is the same for

all three vertices. The dot product at line 38 will insert all three

edges of the face into an edge stack through the InsertEdge()

function if it is light facing. The following is the code for the

InsertEdge() function:

01 VOID CShadow::InsertEdge(WORD* pEdges, DWORD& dwNumEdges, WORD v0,

WORD v1)

02 {

03 for (DWORD i=0; i < dwNumEdges; i++)

04 {

05 if((pEdges[2*i+0] == v0 && pEdges[2*i+1] == v1)||(pEdges[2*i+0]

== v1 && pEdges[2*i+1] == v0))

06 {

07 if(dwNumEdges > 1)

08 {

09 pEdges[2*i+0] = pEdges[2*(dwNumEdges-1)+0];

10 pEdges[2*i+1] = pEdges[2*(dwNumEdges-1)+1];

11 }

12 dwNumEdges--;

13 return;

14 }

15 }

16

17 pEdges[2*dwNumEdges+0] = v0;

18 pEdges[2*dwNumEdges+1] = v1;

19 dwNumEdges++;

20 }

The InsertEdge() function tests for recurrences of new edges and

eliminates those that are duplicated. After running through the

entire model, the edges left over in the stack represent the silhou-

ette edges that we need.

224 The Theory of Stencil Shadow Volumes

Eric Lengyel [8] presented another silhouette determination

algorithm that makes use of the consistent winding (counterclock-

wise for OpenGL) of vertices. The method requires two passes on

all the triangles of the model to filter in all the edges shared by

pairs of triangles. The resultant edge list then undergoes the dot

product operations to get the edges that are shared by a light-fac-

ing triangle and a non-light-facing triangle.

It is important to note that silhouette determination is one

of the two most expensive operations in stencil shadow volume

implementation. The other is the shadow volume rendering

passes to update the stencil buffer. These two areas are prime

candidates for aggressive optimizations, which we discuss in detail

in the concluding sections. Now let’s get on to the business of

forming the shadow volume using the silhouette edges that we

have obtained.

Forming the Shadow Volume

After we have determined the silhouette edges, it’s time to start

forming the shadow volume, as described in step 3 of the “How It

Is Done” section. There are three steps to forming the shadow

volume:

1. Extrusion of silhouette edges

2. Forming the sides of the shadow volume

3. Capping the shadow volume at both ends (only applicable

to depth-fail)

Note that for the depth-pass algorithm, capping at both ends is not

required.

The Theory of Stencil Shadow Volumes 225

As shown in Figure 15 above, the silhouette edge defined by verti-

ces v1 and v2 is used to create two more vertices, v3 and v4. The

four vertices are then used to create a quad to form the side of the

shadow volume. The arrows within the quad show the clockwise

ordering of the vertices that is needed to make the side face out-

ward. This is implemented in the function BuildShadowVolume() for

both the DepthPassCPU and DepthFailCPU samples. With regard

to distance needed to extrude vertices v1 and v2 to form v3 and

v4, both the DepthPassCPU and DepthFailCPU samples employ a

finite extrusion distance. We discuss infinite shadow volume

extrusion shortly.

In the “Finite Shadow Cover” and “Ghost Shadow” sections,

we discussed the two scenarios whereby infinite or finite shadow

volume extrusion might be desirable for different reasons. The

implementation for finite extrusion is trivial. Referring to Figure

15 again, a light vector is formed by making use of the light posi-

tion and the selected vertex. The light vector defines the direction

226 The Theory of Stencil Shadow Volumes

Figure 15: Extrusion and the forming of shadow volume for a point light source

vector of the incoming light ray at that vertex. The extruded ver-

tex can then be computed by extending the selected vertex by a

finite distance in the direction of the light vector. Take note that it

is not advisable to extrude the vertex by a multiple of the magni-

tude of the light vector. This is because the light vector is unique

for all vertices (assuming point light sources), and the magnitude

can differ wildly. If the magnitude of the light vector is too small

(e.g., the light is very close to the vertex), the vertex may not be

extruded far enough to provide adequate shadow cover. Hence,

extruding the vertices by an absolute distance is recommended.

This is easily done by normalizing the light vector and multiplying

individual components by the absolute distance to be extruded.

Lastly, we insert two triangles using the original and extruded

vertices to form the sides of the shadow volume. The following

code snippet from the BuildShadowVolume() function in the Depth-

PassCPU sample accomplishes what we have just discussed:

01 // For each silhouette edge, duplicate it,

02 for(i=0; i<dwNumEdges; i++)

03 {

04 D3DXVECTOR3 v1 = pVertices[pEdges[2*i+0]].p;

05 D3DXVECTOR3 v2 = pVertices[pEdges[2*i+1]].p;

06

07 D3DXVECTOR3 v3;

08 D3DXVECTOR3 v4;

09 D3DXVECTOR3 vExtrusionDir; // Direction vector from light to vertex,

or rather the direction to extrude

10

11 // Extrusion can be tricky. It is not advisable to extrude vertices by

a multiple of the magnitude of

12 // vExtrusionDir. This is because the magnitude may be so small that

even a large multiple would not extrude

13 // the vertices far enough. Results will be unpredictable if either

light source of occluders are dynamic

14 // objects. Hence, we normalize the vExtrusionDir vector before multiply

by the ABSOLUTE distance

15 // that we want to extrude the vertex to.

16

17 vExtrusionDir = v1 - vLight; // Compute a new extrusion direction for

new vertex

18 D3DXVec3Normalize(&vExtrusionDir, &vExtrusionDir);

The Theory of Stencil Shadow Volumes 227

19 v3.x = v1.x + vExtrusionDir.x * g_fExt;

20 v3.y = v1.y + vExtrusionDir.y * g_fExt;

21 v3.z = v1.z + vExtrusionDir.z * g_fExt;

22

23 vExtrusionDir = v2 - vLight; // Compute a new extrusion direction for

new vertex

24 D3DXVec3Normalize(&vExtrusionDir, &vExtrusionDir);

25 v4.x = v2.x + vExtrusionDir.x * g_fExt;

26 v4.y = v2.y + vExtrusionDir.y * g_fExt;

27 v4.z = v2.z + vExtrusionDir.z * g_fExt;

28

29 // Add a quad (two triangles) to the vertex list

30 m_pVertices[m_dwNumOfVertices++] = v1;

31 m_pVertices[m_dwNumOfVertices++] = v4;

32 m_pVertices[m_dwNumOfVertices++] = v2;

33

34 m_pVertices[m_dwNumOfVertices++] = v1;

35 m_pVertices[m_dwNumOfVertices++] = v3;

36 m_pVertices[m_dwNumOfVertices++] = v4;

37 }

As discussed previously, we may need to extrude the silhouette

edges to infinity to avoid the situation shown in Figure 10, where

a finite shadow volume extrusion fails to cover all the shadow

receivers in a scene. However, it is not compulsory to extrude the

silhouette edges to infinity if we can ensure that the situation in

Figure 10 will never happen in our scene. In practical cases, a

large value would normally be more than adequate.

Mark Kilgard [7] introduced the trick of using the w value of

homogenous coordinates to render semi-infinite vertices. In a

homogenous coordinates system, we represent a point or vector

as (x, y, z, w), with w being the fourth coordinate. For points, w is

equal to 1.0. For vectors, w is equal to 0.0. The homogeneous

notation is extremely useful for transforming both points and vec-

tors. Since translation is only meaningful to points and not

vectors, the value of w plays an important role in transforming

only points and not vectors. This can be easily deduced, since the

translation values of a transformation matrix are on either the

fourth column or the fourth row, depending on the matrix conven-

tion. By setting the w value of the infinity-bound vertices to 0.0,

228 The Theory of Stencil Shadow Volumes

we change the homogenous representation from that of a 3D point

to a 3D vector. The rendering of a vector (w = 0.0) in clip space

would be semi-infinite. It is important to note that we should only

set the w values to 0.0 before transformation to clip space. Tech-

nically, this implies that we want to render the vertex as a 3D

vector of the form (x, y, z, 0).

Rendering such a vertex is possible in Direct3D’s fixed-func-

tion pipeline by using the flexible vertex format D3DFVF_XYZRHW.

This is because when we set the flexible vertex format to

D3DFVF_XYZRHW, we are bypassing Direct3D’s transformation and

lighting pipeline. Our program becomes responsible for transform-

ing and lighting the vertices, as Direct3D would merely pass the

input to the hardware for rasterization. From the DirectX 8.1

documentation:

“If you include the D3DFVF_XYZRHW flag in your vertex

format description, you are telling the system that your

application is using transformed and lit vertices. This means

that Microsoft® Direct3D® doesn’t transform your vertices

with the world, view, or projection matrices, nor does it per-

form any lighting calculations. It assumes that your

application has taken care of these steps. This fact makes

transformed and lit vertices common when porting existing

3D applications to Direct3D. In short, Direct3D does not

modify transformed and lit vertices at all. It passes them

directly to the driver to be rasterized.

“The system requires that the vertex position that you

specify be already transformed. The x and y values must be

in-screen coordinates, and z must be the depth value of the

pixel to be used in the z-buffer. Z values can range from 0.0

to 1.0, where 0.0 is the closest possible position to the user

and 1.0 is the farthest position still visible within the viewing

area. Immediately following the position, transformed and

lit vertices must include a reciprocal of homogeneous W

(RHW) value. RHW is the reciprocal of the W coordinate

from the homogeneous point (x,y,z,w) at which the vertex

exists in projection space. This value often works out to be

the distance from the eyepoint to the vertex, taken along the

z-axis.”

The Theory of Stencil Shadow Volumes 229

From the above explanation, RHW means reciprocal homoge-

neous w value (1/w), which is the result of normalizing the w com-

ponent. However, we cannot explicitly represent our vertices as

infinite. We can get around this by setting the w component of the

vertex to 0.0 before applying the clip space transformation

(world*view*projection). Originally, the homogenization process

during perspective projection transformation would divide all

four components by the w component in order to normalize the

w component to 1.0 (Moller and Haines [11]). However, by using

the D3DFVF_XYZRHW vertex format, we must implement the homog-

enization process ourselves in order to complete the transforma-

tion to clip space. Next, we need to manually map the x and y

values from clip space to screen coordinates. A rectangular clip-

ping volume defines the clip space with an x-coordinate range of

[–1.0...1.0] and a y range of [–1.0...1.0]. We need to map to screen

coordinates that range from (0.0, 0.0) at the top-left corner to

(screen horizontal resolution, screen vertical resolution) at the

bottom right corner. The screen coordinates can finally be passed

on to Direct3D for rasterization.

As described above, rendering vectors (w=0) using the fixed-

function pipeline can be both error-prone and inefficient. A lot of

geometry transformation and mapping needs to be done, and the

computation load shifts toward the CPU while the graphics hard-

ware’s powerful arithmetic processors lay wasted. Ideally, the

infinite extrusion of geometries can be done more easily in a ver-

tex program, since we are already transforming the vertices in a

vertex shader. In fact, this is done in the InfiniteGPU sample using

a simple vertex program that is discussed in the “Implementation

on GPU (Shaders)” section. Note that we do not need to light the

vertices, since surface color values have no meaning for the

shadow volume polygons. The w-coordinate demo at nVidia [28] is

a simple program for visualizing the rendering of vertices with dif-

ferent w-coordinate values.

230 The Theory of Stencil Shadow Volumes

Shadow Volume Capping

Remember that shadow volume capping is only necessary for the

depth-fail technique, and hence the DepthFailCPU sample’s

BuildShadowVolume() function implements additional code to form

the capping. The purpose of doing shadow volume capping is to

ensure that our shadow volume is closed, and it must be closed

even at infinity. As discussed previously, the extrusion of geome-

tries for point light sources and infinite directional light sources is

different. Point light sources would extrude the silhouette edges

exactly point for point while infinite directional light sources

would extrude all silhouette edges to a single point at infinity. This

would mean that the shadow volume’s back capping would be

redundant for infinite directional light sources, as it is already

closed at the back by the point at infinity. We shall tackle the more

complicated case of point light sources, which require both front

and back capping, regardless of the distance of extrusion.

The ideal time to generate the front and back capping is dur-

ing silhouette generation, since we are already generating the

angles between the incident light ray vector and the face normal.

The creation of the capping is the main difference between the

BuildShadowVolume() functions in the DepthPassCPU and

DepthFailCPU samples. For the front capping, we just need to

make use of all the light-facing geometries as capping. For the

back capping, a straightforward method would be to extrude the

geometries facing away from the light and use these extruded

geometries to form the capping. We could also duplicate the front

capping, extrude it, and reverse the vertex ordering to form the

back capping. The BuildShadowVolume() function in DepthFailCPU

forms the back capping by creating a triangle-fan from the

extruded silhouette edges. This method results in less geometry

and helps improve the rendering of the shadow volume.

The Theory of Stencil Shadow Volumes 231

Figure 16 shows two sets of images employing different geome-

tries to close the shadow volume. The first row depicts a closed

shadow volume formed by a front and back capping that reuses the

occluder’s light-facing geometries. The second row shows a

closed shadow volume with a front capping that reuses light-facing

geometries of the occluder and a triangle-fan back capping con-

structed from extruded silhouette edges. The triangle-fan back

capping results in less geometry and hence requires less memory

and rendering resources.

While optimizing the back capping with a triangle-fan is trivial,

the same cannot be said for the front capping. This is due to the

fact that the occluder’s self-shadowing totally depends on the

accuracy of the front capping. To be precise, the most accurate

front capping is one that is created from the actual front-facing

geometries of the occluder. Such a front capping would ensure that

any grooves or knobs on the occluder’s surface would be correctly

232 The Theory of Stencil Shadow Volumes

Figure 16: Front and back capping to create closed shadow volumes

self-shadowed. When the occluder is too small for any self-shad-

owing to be noticeable (Diablo and RTS-style games) or when the

light-facing side of a static occluder is generally flat, we can make

use of triangle strips formed using the silhouette edges to cut

down on the amount of front-capping geometry.

Depth-pass Stenciling Operations (DepthPassCPU)

We discuss all the stenciling operations and the corresponding

sample code for the depth-pass technique in this section. The

reader should refer to the DepthPassCPU sample for the discus-

sion. Going back to step 4 of the “How It Is Done” section, we

have to set up the stencil operations before proceeding to render

the shadow volume in order to fill the stencil buffer with the cor-

rect shadow counts. Let’s examine the RenderShadowVolume()

function in the DepthPassCPU sample.

01 HRESULT CDepthPass::RenderShadowVolume()

02 {

03 // Disable z-buffer writes (note: z-testing still occurs) and enable

04 // stencil buffering

05 m_pd3dDevice->SetRenderState(D3DRS_ZWRITEENABLE, FALSE);

06 m_pd3dDevice->SetRenderState(D3DRS_STENCILENABLE, TRUE);

07

08 // Don't bother with interpolating color

09 m_pd3dDevice->SetRenderState(D3DRS_SHADEMODE, D3DSHADE_FLAT);

10

11 // Set up stencil compare fuction, reference value, and masks.

12 // Stencil test passes if ((ref & mask) cmpfn (stencil & mask)) is true.

13 // Note: since we set up the stencil test to always pass, the STENCILFAIL

14 // renderstate is really not needed.

15 m_pd3dDevice->SetRenderState(D3DRS_STENCILFUNC, D3DCMP_ALWAYS);

16 m_pd3dDevice->SetRenderState(D3DRS_STENCILZFAIL, D3DSTENCILOP_KEEP);

17 m_pd3dDevice->SetRenderState(D3DRS_STENCILFAIL, D3DSTENCILOP_KEEP);

18

19 // Sets up stencil reference value and stencil masks

20 m_pd3dDevice->SetRenderState(D3DRS_STENCILREF, 0x1);

21 m_pd3dDevice->SetRenderState(D3DRS_STENCILMASK, 0xffffffff);

22 m_pd3dDevice->SetRenderState(D3DRS_STENCILWRITEMASK, 0xffffffff);

23

24 // Increment stencil buffer value if depth test passes

The Theory of Stencil Shadow Volumes 233

25 m_pd3dDevice->SetRenderState(D3DRS_STENCILPASS, D3DSTENCILOP_INCR);

26

27 // Show shadow volume front faces?

28 if (m_bShowShadowVolFrontFace)

29 {

30 m_pd3dDevice->SetMaterial(&m_ShadowVolFrontFaceMaterial);

31 m_pd3dDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);

32 m_pd3dDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_SRCCOLOR);

33 m_pd3dDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_DESTALPHA);

34 }

35 else

36 m_pd3dDevice->SetRenderState(D3DRS_COLORWRITEENABLE, 0x00000000);

37

38 // Draw front side of shadow volume in stencil/z only

39 m_pd3dDevice->SetTransform(D3DTS_WORLD, &m_matObject);

40 m_pShadow->RenderShadowVolume(m_pd3dDevice);

41 m_pd3dDevice->SetTransform(D3DTS_WORLD, &m_matObject2);

42 m_pShadow2->RenderShadowVolume(m_pd3dDevice);

43

44 // Now reverse cull order so back sides of shadow volume are written.

45 m_pd3dDevice->SetRenderState(D3DRS_CULLMODE, D3DCULL_CW);

46

47 // Decrement stencil buffer value if depth test passes

48 m_pd3dDevice->SetRenderState(D3DRS_STENCILPASS, D3DSTENCILOP_DECR);

49

50 // Show shadow volume back faces?

51 if (m_bShowShadowVolBackFace)

52 {

53 m_pd3dDevice->SetMaterial(&m_ShadowVolBackFaceMaterial);

54 m_pd3dDevice->SetRenderState(D3DRS_COLORWRITEENABLE, 0x0000000F);

55 m_pd3dDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);

56 m_pd3dDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_SRCCOLOR);

57 m_pd3dDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_DESTALPHA);

58 }

59 else

60 m_pd3dDevice->SetRenderState(D3DRS_COLORWRITEENABLE, 0x00000000);

61

62 // Draw back side of shadow volume in stencil/z only

63 m_pd3dDevice->SetTransform(D3DTS_WORLD, &m_matObject);

64 m_pShadow->RenderShadowVolume(m_pd3dDevice);

65 m_pd3dDevice->SetTransform(D3DTS_WORLD, &m_matObject2);

66 m_pShadow2->RenderShadowVolume(m_pd3dDevice);

67

234 The Theory of Stencil Shadow Volumes

68 // Restore render states

69 m_pd3dDevice->SetRenderState(D3DRS_COLORWRITEENABLE, 0x0000000F);

70 m_pd3dDevice->SetRenderState(D3DRS_SHADEMODE, D3DSHADE_GOURAUD);

71 m_pd3dDevice->SetRenderState(D3DRS_CULLMODE, D3DCULL_CCW);

72 m_pd3dDevice->SetRenderState(D3DRS_ZWRITEENABLE, TRUE);

73 m_pd3dDevice->SetRenderState(D3DRS_STENCILENABLE, FALSE);

74 m_pd3dDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE);

75

76 return S_OK;

77 }

Note that prior to the calling of the RenderShadowVolume() function,

the depth buffer had already been filled with the appropriate depth

values during the rendering pass of step 1, as discussed in the

“How It Is Done” section.

Lines 5 and 6 disable writing to the depth buffer and enable

stencil testing. The code within lines 15 to 25 sets up the stencil

operations prior to rendering the shadow volume. Line 15 forces

the stencil test to always pass, while lines 16 and 17 instruct

Direct3D to retain the stencil values in case of depth fail or stencil

test fail. Line 20 sets the stencil reference value to 1. Lines 21 and

22 set the stencil comparison mask and write mask to include

every bit. The following is the complete test function employed by

the Direct3D API during stencil tests:

(StencilRef & StencilMask) CompFunc (StencilBufferValue & StencilMask)

For more information on the other uses of stencil buffers, please

refer to [3].

Line 25 tells Direct3D to increment the stencil value if both

stencil and depth tests pass. The stencil test has already been set

to always pass in line 15, so it is really only the depth test in ques-

tion here. Lines 28 to 36 either disable the color writes to frame

buffer or set up alpha blending to reveal the front faces of the

shadow volumes. Next, we proceed to render the shadow volumes

of our occluders in lines 39 through 42. This is in agreement with

the first step of the depth-pass algorithm presented in the

“Depth-pass (z-pass)” section.

Following the second step of the depth-pass algorithm, line 45

reverses the culling mode so that we can start drawing the back

The Theory of Stencil Shadow Volumes 235

faces of the shadow volume. Line 48 sets the stencil operation to

decrement the stencil values if the stenciling and depth tests pass.

Again, the stenciling test always passes, and it is only the depth

test that we are really testing against. Lines 51 to 60 either dis-

able the color writes to frame buffer or set up alpha blending to

reveal the back faces of the shadow volumes. Lines 63 to 66 draw

the shadow volumes again with the culling reversed. Lines 69

through 74 restore the render states to their original settings.

That completes the rendering of the shadow volumes for the

depth-pass algorithm in the DepthPassCPU sample.

We should note that the sequence of the depth-pass algorithm

that we are employing is really inconsequential. This is because at

lines 25 and 48, we set the stencil increment and decrement oper-

ation as wrapping, which has been available since DirectX 6. Thus,

we can start with either incrementing or decrementing the stencil

values. This is because the stencil buffer can only contain values

from 0 to 2n–1, where n is the stencil bit depth. When the maxi-

mum stencil value is reached, the stencil value is wrapped to 0

with the next increment operation. Similarly, when the minimum

stencil value of 0 is reached, the next decrement operation wraps

the stencil to 2n–1. This ensures that the shadow volume counting

will not be thrown off balance due to saturation at maximum or

minimum stencil value. This guarantees that we leave behind

non-zero stencil values for pixels with unbalanced shadow volume

entry and exit counts. It also means that the bit depth of the sten-

cil buffer is not important to us, as a 2-bit stencil buffer (if one

exists) will work as well as an 8-bit stencil buffer. If we opt for

stencil value clamping (e.g., setting D3DRS_STENCILPASS to

D3DSTENCILOP_INCRSAT to clamp to the maximum value), we will

lose track of the correct shadow volume count if the stencil value

gets saturated at 2n–1, and the stencil values will be incorrect.

Let’s move on to adding the shadows into the scene now!

The only thing we need to do now is make use of the stencil

values and shade the appropriate pixels in the scene, as described

by step 6 in the “How It Is Done” section. This is done with the

DrawShadow() function in the DepthPassCPU sample.

236 The Theory of Stencil Shadow Volumes

01 HRESULT CDepthPass::DrawShadow()

02 {

03 // Set renderstates: disable z-buffering, enable stencil, and turn on

04 // alpha blending

05 m_pd3dDevice->SetRenderState(D3DRS_ZENABLE, FALSE);

06 m_pd3dDevice->SetRenderState(D3DRS_STENCILENABLE, TRUE);

07 m_pd3dDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);

08 m_pd3dDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_SRCALPHA);

09 m_pd3dDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_INVSRCALPHA);

10

11 // Only write where stencil val >= 1

12 m_pd3dDevice->SetRenderState(D3DRS_STENCILREF, 0x1);

13 m_pd3dDevice->SetRenderState(D3DRS_STENCILFUNC, D3DCMP_LESSEQUAL);

14 m_pd3dDevice->SetRenderState(D3DRS_STENCILPASS, D3DSTENCILOP_KEEP);

15

16 // Draw a big, gray square

17 m_pd3dDevice->SetVertexShader(D3DFVF_BIGSQUAREVERTEX);

18 m_pd3dDevice->SetStreamSource(0, m_pBigSquareVB, sizeof(BIGSQUAREVERTEX));

19 m_pd3dDevice->DrawPrimitive(D3DPT_TRIANGLESTRIP, 0, 2);

20

21 // Restore render states

22 m_pd3dDevice->SetRenderState(D3DRS_ZENABLE, TRUE);

23 m_pd3dDevice->SetRenderState(D3DRS_STENCILENABLE, FALSE);

24 m_pd3dDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE);

25

26 return S_OK;

27 }

To shade the pixels with non-zero stencil values, we first disable

depth testing in line 5 and enable stencil testing in line 6. Alpha

blending with the blending parameters is set up in lines 7 through

9. Next comes the critical stenciling operations set up in lines 12

through 14. We use a reference stencil value of 1 and do a “less

than or equal” comparison with the value in the stencil buffer for

the pixel in question. This means that for the stencil test to pass,

the value from the stencil buffer must be at least equal to or

greater than the reference value of 1, which is in agreement with

the depth-pass algorithm.

Lines 17 through 19 draw the quad that covers the entire

screen, and the alpha blending will kick in to shade a pixel on-

screen that passes the stencil test. Lines 22 through 24 would

The Theory of Stencil Shadow Volumes 237

restore the original render states. This concludes the DepthPass-

CPU sample.

In the next section, we look at the stenciling operations of the

depth-fail technique, which are slightly different from that of the

depth-pass technique discussed here.

Depth-fail Stenciling Operations (DepthFailCPU)

The reader should refer to the DepthFailCPU sample for this sec-

tion. For a recap of the depth-fail algorithm, please refer to the

two-step depth-fail algorithm in the “Depth-fail (z-fail)” section.

Let’s look into the RenderShadowVolume() function in the Depth-

FailCPU sample to see how the stencil operations are set up.

01 HRESULT CDepthFail::RenderShadowVolume()

02 {

03 // Disable z-buffer writes, z-testing still occurs, enable stencil-buffer

04 m_pd3dDevice->SetRenderState(D3DRS_ZWRITEENABLE, FALSE);

05 m_pd3dDevice->SetRenderState(D3DRS_STENCILENABLE, TRUE);

06

07 // Don't bother with interpolating color

08 m_pd3dDevice->SetRenderState(D3DRS_SHADEMODE, D3DSHADE_FLAT);

09

10 // (StencilRef & StencilMask) CompFunc (StencilBufferValue & StencilMask)

11 m_pd3dDevice->SetRenderState(D3DRS_STENCILREF, 0x1);

12 m_pd3dDevice->SetRenderState(D3DRS_STENCILMASK, 0xffffffff);

13 m_pd3dDevice->SetRenderState(D3DRS_STENCILWRITEMASK, 0xffffffff);

14 m_pd3dDevice->SetRenderState(D3DRS_STENCILFUNC, D3DCMP_ALWAYS);

15 m_pd3dDevice->SetRenderState(D3DRS_STENCILPASS, D3DSTENCILOP_KEEP);

16 m_pd3dDevice->SetRenderState(D3DRS_STENCILFAIL, D3DSTENCILOP_KEEP);

17

18 // Back face depth test fail -> Incr

19 m_pd3dDevice->SetRenderState(D3DRS_STENCILZFAIL, D3DSTENCILOP_INCR);

20

21 // Set lower z-bias for shadow volumes

22 m_pd3dDevice->SetRenderState(D3DRS_ZBIAS, 0);

23

24 // Now reverse cull order so back sides of shadow volume are written.

25 m_pd3dDevice->SetRenderState(D3DRS_CULLMODE, D3DCULL_CW);

26

27 // Show shadow volume back faces?

28 if (m_bShowShadowVolBackFace)

238 The Theory of Stencil Shadow Volumes

29 {

30 m_pd3dDevice->SetMaterial(&m_ShadowVolBackFaceMaterial);

31 m_pd3dDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);

32 m_pd3dDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_SRCCOLOR);

33 m_pd3dDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_DESTALPHA);

34 }

35 else

36 m_pd3dDevice->SetRenderState(D3DRS_COLORWRITEENABLE, 0x00000000);

37

38 // Draw back side of shadow volume

39 m_pd3dDevice->SetTransform(D3DTS_WORLD, &m_matObject);

40 m_pShadow->RenderShadowVolume(m_pd3dDevice);

41 m_pd3dDevice->SetTransform(D3DTS_WORLD, &m_matObject2);

42 m_pShadow2->RenderShadowVolume(m_pd3dDevice);

43

44 // Now reverse cull order so front sides of shadow volume are written.

45 m_pd3dDevice->SetRenderState(D3DRS_CULLMODE, D3DCULL_CCW);

46 // Reverse the stencil op for back face

47 m_pd3dDevice->SetRenderState(D3DRS_STENCILZFAIL, D3DSTENCILOP_DECR);

48

49 // Show shadow volume front faces?

50 if (m_bShowShadowVolFrontFace)

51 {

52 m_pd3dDevice->SetMaterial(&m_ShadowVolFrontFaceMaterial);

53 m_pd3dDevice->SetRenderState(D3DRS_COLORWRITEENABLE, 0x0000000F);

54 m_pd3dDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);

55 m_pd3dDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_SRCCOLOR);

56 m_pd3dDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_DESTALPHA);

57 }

58 else

59 m_pd3dDevice->SetRenderState(D3DRS_COLORWRITEENABLE, 0x00000000);

60

61 // Draw front side of shadow volume

62 m_pd3dDevice->SetTransform(D3DTS_WORLD, &m_matObject);

63 m_pShadow->RenderShadowVolume(m_pd3dDevice);

64 m_pd3dDevice->SetTransform(D3DTS_WORLD, &m_matObject2);

65 m_pShadow2->RenderShadowVolume(m_pd3dDevice);

66

67 // Restore render states

68 m_pd3dDevice->SetRenderState(D3DRS_COLORWRITEENABLE, 0x0000000F);

69 m_pd3dDevice->SetRenderState(D3DRS_SHADEMODE, D3DSHADE_GOURAUD);

70 m_pd3dDevice->SetRenderState(D3DRS_ZWRITEENABLE, TRUE);

71 m_pd3dDevice->SetRenderState(D3DRS_STENCILENABLE, FALSE);

The Theory of Stencil Shadow Volumes 239

72 m_pd3dDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE);

73

74 return S_OK;

75 }

Lines 4 through 16 basically do the same setting up as the

RenderShadowVolume() function in the DepthPassCPU sample. Line

19 sets the stencil operation to increment the stencil count if the

stencil test passes while the depth test fails. Note that the stencil

test has been set to always pass in line 14, and hence only the

depth test matters here. Incrementing the stencil values with the

failure of the depth test is in agreement with the depth-fail algo-

rithm presented in the “Depth-fail (z-fail)” section.

Line 22 sets the z-bias level for the rendering of the shadow

volume to a level of 0 to force it to render behind the actual

occluder geometries. Let’s ignore this for the time being; we shall

return to the z-bias issue soon in the “Rendering Shadow Volume

Capping” section.

In accordance with the depth-fail algorithm, we reverse the

culling mode in line 25 to render the back faces of the shadow vol-

ume. The code from lines 28 through 36 either set up alpha

blending to expose the shadow volume or disable color writes,

depending on whether the program is showing the shadow vol-

ume. We then draw the back faces with the code from lines 39 to

42. The first step of the depth-fail algorithm is complete.

Next, we reverse the culling mode to draw the front faces at

line 45 and set the stencil operation to decrement the stencil val-

ues with depth test failure at line 47. Lines 50 through 59 do the

necessary settings, depending on whether the program is expos-

ing the front faces of the shadow volume to the viewer. Lines 62

through 65 draw the occluder’s front faces. The render states are

restored with the code from lines 68 through 72. Note that the

same logic of applying wrapping, instead of clamping, and stencil

incrementing and decrementing operations applies for the

depth-fail RenderShadowVolume() function described above. The

DrawShadow() function that shades the pixels in shadows are simi-

lar for both the DepthPassCPU and DepthFailCPU samples.

240 The Theory of Stencil Shadow Volumes

The stencil operations described in this section are one-sided

in nature and hence require two passes to render the shadow vol-

ume. Newer graphics cards that support DirectX 9 provide new

two-sided stencil operations that allow the rendering of shadow

volumes in a single pass. All the appropriate front- and back-face

stencil operations fill up the stencil buffers in a single rendering

pass. For more details on the two-sided stencil mode, please refer

to the section titled “DirectX 9 HLSL Samples.” We now continue

with the DepthFailCPU sample by tackling the last tricky issue of

rendering the shadow volume capping for the depth-fail technique

(remember the z-biasing at line 22?).

Rendering Shadow Volume Capping

In this section, we discuss the business of rendering the shadow

volume, which includes capping for the depth-fail technique. The

rendering of the shadow volume for depth-pass is trivial, and there

is no need for any special setup. However, the same cannot be

said for the depth-fail technique due to capping, which is often

coplanar to the occluder’s geometries. The reader should refer to

the DepthFailCPU sample for this section.

Referring back to the “Shadow Volume Capping” section,

when reusing the front-facing geometries of the occluder, we

should be extremely careful with regard to rendering the shadow

volume, since the shadow volume’s front-capping geometries are

actually coplanar with the occluder’s front-facing geometries.

More often than not, precision problems will cause the front-cap-

ping geometries of the shadow volume to be rendered in front of

the occluder’s front-facing geometries, causing the entire occluder

to be engulfed in its own shadow volume. We cannot reverse the

order of rendering, hoping that the shadow volume would render

behind the occluder’s geometries, as we need the depth buffer to

be filled with the correct depth values for testing, as presented by

the steps in the “How It Is Done” section.

To achieve our goal of rendering the front capping behind the

occluder, we can either tweak the projected depth values of the

front-capping geometry or make use of polygon offsetting support

The Theory of Stencil Shadow Volumes 241

from graphics APIs. Eric Lengyel [26] described how a separate

projection matrix could be computed to render polygons at differ-

ent depth values without altering its projected screen coordinates

of texture mapping perspective. Tweaking the projected depth val-

ues on a per-object basis can provide fine control and sometimes

better performance. But the implementation is also comparatively

more involved. Choosing the appropriate camera space offset can

also be messy due to the non-uniform nature of depth buffer preci-

sion for perspective viewing [11]. Depth precision can become

horrendously poor with increasing distance from the camera and

cause polygons that are close together, in terms of depth values,

to be rendered incorrectly. For example, a piece of tapestry on the

wall may get rendered behind the wall in several places due to

poor depth precision as the viewer moves farther away. Depth

precision errors are usually accompanied by the flickering of poly-

gons, which is a problem commonly known as z-fighting. The

camera space offset used for tweaking projected depth values

needs to be adjusted accordingly to account for this non-linear

behavior.

Alternatively, we can simply make use of Direct3D’s depth

bias capability to render the front capping properly without worry-

ing about anything else. In Direct3D, depth values of fragments

generated while rasterizing a primitive can be biased to help miti-

gate z-fighting issues when drawing coplanar polygons. The

D3DRS_ZBIAS flag in Direct3D’s D3DRENDERSTATETYPE can be used to

bias the occluder’s front-facing geometries so that they are more

likely to be rendered in front of its shadow volume front capping.

01 // Set higher z-bias for occluders

02 m_pd3dDevice->SetRenderState(D3DRS_ZBIAS, 1);

03 // Render occluder here

04 .

05 .

06 .

07 // Set lower z-bias for shadow volumes

08 m_pd3dDevice->SetRenderState(D3DRS_ZBIAS, 0);

09 // Render shadow volume here

242 The Theory of Stencil Shadow Volumes

Simply setting the D3DRS_ZBIAS values before rendering the two

groups of coplanar geometries, as shown in the code above, would

achieve the desired effect. We set the z-bias flag value to a higher

value for the occluder’s geometries and a lower value for its

shadow volume. This ensures that the front capping of the shadow

volume is rendered behind the occluder’s front-facing geometries.

This completes the entire depth-fail algorithm, and the stencil

buffer would now be filled with the correct stencil values that are

needed for comparison in order to shade the pixels in shadow. The

pixel shading is done by the DrawShadow() function, which is simi-

lar to the one used in the DepthPassCPU sample. With that, we

conclude the DepthFailCPU sample.

As a side note, DirectX 9 [12] is able to distinguish between

legacy devices that expose the D3DRS_ZBIAS and those that can

perform true slope-scale-based depth bias. Two new floating-

point values, D3DRS_DEPTHBIAS and D3DRS_SLOPESCALEDEPTHBIAS, are

used to compute the offset. The offset is added to the fragment’s

interpolated depth value to produce the final depth value that is

used for depth testing. The new caps for these two values are

D3DPRASTERCAPS_DEPTHBIAS and D3DPRASTERCAPS_SLOPESCALE-

DEPTHBIAS. D3DRS_DEPTHBIAS is used in the “DirectX 9 HLSL

Samples” section.

This ends our discussion of the implementation of both the

depth-pass (DepthPassCPU sample) and depth-fail (DepthFailCPU

sample) algorithms on the CPU. Next up, we dive straight into the

methodology and implementation of the depth-fail algorithm using

the programmable graphics pipeline!

Implementation on GPU (Shaders)

The programmable graphics pipeline (commonly known as

shaders) is fast becoming a standard capability of newer graphics

hardware. In fact, you would be hard-pressed to find a new graph-

ics card without minimal vertex and pixel shader support after the

introduction of the ATI Radeon 8000 series and the nVidia

GeForce3 series. The programmable graphics pipeline promises

The Theory of Stencil Shadow Volumes 243

great potential and flexibility for graphics programmers to achieve

effects at a level of realism never before dreamed possible. Differ-

ent lighting methods, texturing, and geometry manipulation are

now possible with the use of vertex and pixel shaders. Rendering

engines are no longer bound by the limitations imposed by fixed-

function pipelines.

With this explosion of graphics shaders, we need to look at the

effects that we have achieved with the fixed-function pipeline in

the past and see if it is possible to do it more efficiently and faster

with the programmable graphics pipeline. That is exactly what we

are going to do — by implementing the depth-fail stencil shadow

volume algorithm using vertex shaders. The reader should note

that implementing shadow volume in shaders may or may not

improve shadow volume performance. We discuss the pros and

cons of using shaders for shadow volumes in the “Better with

Shaders?” section after we have gone through its implementation.

How It Is Done

For stencil shadow volume implementation using shaders, the

general steps presented in the previous “How It Is Done” section

for implementation on the CPU still applies. The main difference

lies in the execution of the silhouette calculation. When we talk

about implementing stencil shadow volume using shaders, we are

actually referring mainly to the offloading of the silhouette compu-

tation from the CPU to the GPU. This means that we do not

compute the silhouette of the occluder in our program; instead,

this is done by a vertex program running on the GPU that is fed

with the appropriate preprocessed occluder geometry and vertex

shader constants. Let’s list the general steps for implementing

shadow volumes using vertex shaders:

1. Preprocessing of occluder geometry. Insert degenerate

quads into edges shared by exactly two triangles.

2. Render the scene to fill the depth buffer with the correct

z-values.

244 The Theory of Stencil Shadow Volumes

3. Select a light source. Clear the stencil buffer if this is the

first light.

4. Set up the stencil operations, update vertex shader con-

stants, and render the shadow volumes using the vertex

shader.

5. Repeat steps 3 to 4 for all the selected lights in the scene.

6. Using the stencil buffer, do a lighting pass (or make it a

tone darker) to shade the pixels that correspond to

non-zero stencil values.

As far as the scene rendering pass (step 2), stencil operations

(step 4), and lighting pass (step 6) are concerned, there is little

difference from the CPU implementations. The main difference

lies in the preprocessing of the occluder geometry in step 1 and

the setting of the vertex shader constants and rendering in step 4.

In a nutshell, we preprocess the occluder’s mesh in such a way

that when it is fed into the graphics pipeline, the vertex shader

deforms it into the shadow volume that we desire. In the following

sections, we go through the steps and peruse the code that comes

with the samples FiniteGPU and InfiniteGPU. As the name

implies, the FiniteGPU sample demonstrates finite shadow vol-

ume extrusion using vertex shaders, while the InfiniteGPU

sample implements infinite shadow volume extrusion through

homogenous coordinates discussed in the “Forming the Shadow

Volume” section. Both samples are based on DirectX 8.1. The

section titled “DirectX 9 HLSL Samples” discusses two similar

samples that are based on DirectX 9. Note that both the Finite-

GPU and InfiniteGPU samples implement the depth-fail stencil

shadow volume algorithm for good reasons, which we find out

about soon.

Preprocessing of Data

The very first step to implementing shadow volumes in shaders is

to preprocess the original geometry into a form usable by the ver-

tex shader. Remember that during the creation of the shadow

volume, we need to create new geometry data such as the

The Theory of Stencil Shadow Volumes 245

extruded vertices and the faces that form the sides and capping of

the volume. With vertex shaders, this is not possible, as the cur-

rent generation of programmable graphics pipeline does not allow

for the creation of new vertex data. It is strictly a one vertex in

and one vertex out pipeline. This limitation is probably not going

to go away in the foreseeable future. Hence, we need to overcome

it by preprocessing the source geometry data in such a way that

makes it possible to form a shadow volume in any direction with-

out creating new geometries. Note that both FiniteGPU and

InfiniteGPU use the same preprocessing function.

Figure 17 depicts the preprocessing of the source geometry that

forms a cube; it only shows the front faces for simplicity. The

shared edges of the faces are filtered out, and a degenerate quad is

inserted to replace each shared edge. Degenerate quads are

formed by triangles with zero area. The two edges that form the

opposing sides of each degenerate quad have the same positional

values (same x, y, and z coordinates) but different face normals. In

the FiniteGPU and InfiniteGPU sample, preprocessing is done by

the member function Create() of the CShadow class. Let’s briefly

run through the preprocessing algorithm:

1. Step through all the faces in the source mesh.

2. Compute face normal for each face.

3. Step through the three edges of each face.

a. Insert edge into a list for checking.

b. If edge already exists in the list (shared edge found):

246 The Theory of Stencil Shadow Volumes

Figure 17: Insertion of degenerate quads during preprocessing

i. If normals of faces sharing the edge are not paral-

lel, insert degenerate quad into the output list.

ii. Else, only insert the shared edge into the output

list.

c. Remove the current edge and any shared edge from

the checklist.

4. Create index and vertex buffers with only position and

normal information from the output list.

5. If there are any vertices left in the checklist, the source

mesh is not a closed volume since all edges should be

shared in a closed volume mesh.

Note that the above algorithm also requires the source mesh to

be a closed volume, which is the same requirement imposed in the

CPU determination of silhouette edges presented earlier. The

code in the Create() function follows the above steps in prepro-

cessing the source mesh data. The reader should study the code

to get a better understanding of the preprocessing algorithm. The

algorithm implemented emphasizes clarity over efficiency. The

general implementation in Create() does not handle welded

meshes and is similar to the preprocessing algorithm used in the

ATI demos [18, 19]. Many other more efficient algorithms do

exist.

A major problem with preprocessing geometries for shader

implementation of shader volume is the large number of vertices

that it generates. Typical final preprocessed meshes contain

around three times more vertices compared with the source

meshes. This is a major problem for shader implementations of

shadow volume, as we are stretching the vertex throughput of the

GPU during the rendering of the shadow volume. We discuss this

problem in more detail in the “Better with Shaders?” section. For

now, let’s implement a simple optimization to try to cut down the

number of vertices generated during preprocessing.

Notice that we do not indiscriminately insert degenerate

quads into every shared edge in the preprocessing algorithm.

Doing so would be very inefficient, and the final preprocessed

The Theory of Stencil Shadow Volumes 247

polygon count would explode. A simple optimization would be to

test whether a shared edge would have a good chance of becoming

a silhouette edge. If a shared edge has almost zero chances of

becoming a silhouette edge, then there is really no need for the

insertion of a degenerate quad to replace that edge. A simple way

to determine the chances of an edge forming part of a silhouette is

to test the parallelism of the normals of the faces that share it. If

the two faces have normals that are almost parallel in the same

direction, the shared edge lies in a flat surface and would have lit-

tle chance of becoming part of a silhouette. In fact, if the face

normals are exactly parallel, it is not possible for the shared edge

to be part of any silhouettes. Thus, a simple dot product of the two

face normals will suffice for such a test. If the dot product result is

1.0, the edge is left untouched, as it cannot possibly become a sil-

houette edge. In actual implementation, we can further cut down

the number of vertices generated by testing the dot product result

against values such as 0.9 or 0.8, which would then include sur-

faces that are quite flat. Figure 18 shows that this simple

optimization halves the number of degenerate triangles needed for

the front faces of our simple cube from 12 (Figure 17) to 6.

An obvious point to note here is that such preprocessing should

focus on minimizing the final geometry count instead of process-

ing speed. In fact, the preprocessing should be done entirely

offline. In the next section, we look at how these degenerate

quads help form shadow volumes on the hardware without the

need to create new vertices during silhouette computation.

248 The Theory of Stencil Shadow Volumes

Figure 18: Shared edges on flat surfaces need not be replaced by degenerate quads.

Forming Shadow Volume in Shaders

Once we have finished processing the source mesh into the

shadow volume mesh with degenerate quads inserted, we can

render the geometries as they are with our vertex shader code

running. The creation and rendering of the shadow volume are

actually merged into one step when the shadow volume is being

created as we render it! Let’s consider the simplified case of a sin-

gle edge shared by two faces in the following figure.

On the left side of Figure 19, we can see two faces with a common

shared edge that has been replaced by a degenerate quad. The two

opposing edges of the degenerate quad contain the face normal of

the face to which it belongs. Next, assume that the direction of a

light source is as shown on the right. Face 1 is back facing the

light source, while face 2 is front facing the light source. Hence,

the shared edge becomes part of the silhouette, as seen from the

position of the light source. Vertices that are facing away from the

light source would then be extruded in the direction of the light’s

ray, as shown on the right side of Figure 19. This means that the

opposing edges of the degenerate quad are stretched out to form a

normal quad with a non-zero area. This is exactly how the sides of

the shadow volume are formed!

Also note that the extruded face 1 now becomes the back cap-

ping, while the untouched face 2 automatically acts as the front

capping. Hence, for shader implementation in the FiniteGPU and

The Theory of Stencil Shadow Volumes 249

Figure 19: Sides of shadow volume formed using degenerate quads

InfiniteGPU samples, it only makes sense to implement the sten-

cil operations according to the depth-fail stencil algorithm, as the

shadow volume capping already exists!

From this point onward, we are going into the implementa-

tions of the FiniteGPU and InfiniteGPU samples. The two samples

are differentiated by the vertex shader constants setup and the

vertex shader code they execute. This means that of the six steps

presented in the last “How It Is Done” section, only step 4 is dif-

ferent between the two samples.

Vertex Shader Implementation (FiniteGPU)

After we have preprocessed our occluder’s meshes, rendered the

scene, and selected a light source as dictated by steps 1 through 3

presented earlier in the “How It Is Done” section, it is time to

render the shadow volume geometry (step 4). However, before we

can do that, we need to set up the vertex shader in Direct3D and

also update the vertex shader constants.

01 HRESULT CShadow::InitDeviceObjects(LPDIRECT3DDEVICE8 pd3dDevice)

02 {

03 // vertex shader declaration

04 DWORD dwDecl[] =

05 {

06 D3DVSD_STREAM(0),

07 D3DVSD_REG(0, D3DVSDT_FLOAT3), // Vertex position in input reg 0

08 D3DVSD_REG(1, D3DVSDT_FLOAT3), // Face normal in input reg 1

09 D3DVSD_END()

10 };

11

12 // loads a *.vso binary file, already compiled with NVASM and creates a

13 // vertex shader

14 if (FAILED(CreateVSFromCompiledFile(pd3dDevice, dwDecl,

15 "Shaders/VertexExtrusion.vso", &m_dwVertexShader)))

16 return E_FAIL;

17

18 return S_OK;

19 }

We declare the vertex shader with the vertex position and face

normal lined up as input registers 0 and 1. The VisualStudio.NET

250 The Theory of Stencil Shadow Volumes

project files for the FiniteGPU sample have been set to compile

the vertex shader code using nVidia’s NVASM [17] into the .vso

binary, which is fed into the CreateVSFromCompiledFile() function

taken from Wolfgang F. Engel [16]. Next, we shall take a look at

the RenderShadowVolume() function before going into the vertex

shader constants setting.

01 HRESULT CDepthFail::RenderShadowVolume()

02 {

03 // Disable z-buffer writes, z-testing still occurs, enable stencil buffer

04 m_pd3dDevice->SetRenderState(D3DRS_ZWRITEENABLE, FALSE);

05 m_pd3dDevice->SetRenderState(D3DRS_STENCILENABLE, TRUE);

06

07 // Don't bother with interpolating color

08 m_pd3dDevice->SetRenderState(D3DRS_SHADEMODE, D3DSHADE_FLAT);

09

10 // (StencilRef & StencilMask) CompFunc (StencilBufferValue & StencilMask)

11 m_pd3dDevice->SetRenderState(D3DRS_STENCILREF, 0x1);

12 m_pd3dDevice->SetRenderState(D3DRS_STENCILMASK, 0xffffffff);

13 m_pd3dDevice->SetRenderState(D3DRS_STENCILWRITEMASK, 0xffffffff);

14 m_pd3dDevice->SetRenderState(D3DRS_STENCILFUNC, D3DCMP_ALWAYS);

15 m_pd3dDevice->SetRenderState(D3DRS_STENCILPASS, D3DSTENCILOP_KEEP);

16 m_pd3dDevice->SetRenderState(D3DRS_STENCILFAIL, D3DSTENCILOP_KEEP);

17

18 // Back face depth test fail -> Incr

19 m_pd3dDevice->SetRenderState(D3DRS_STENCILZFAIL, D3DSTENCILOP_INCR);

20

21 // Set lower z-bias for shadow volumes

22 m_pd3dDevice->SetRenderState(D3DRS_ZBIAS, 0);

23

24 // Now reverse cull order so back sides of shadow volume are written.

25 m_pd3dDevice->SetRenderState(D3DRS_CULLMODE, D3DCULL_CW);

26

27 // Show shadow volume back faces?

28 if (m_bShowShadowVolBackFace)

29 {

30 m_pd3dDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);

31 m_pd3dDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_SRCCOLOR);

32 m_pd3dDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_DESTALPHA);

33 }

34 else

35 m_pd3dDevice->SetRenderState(D3DRS_COLORWRITEENABLE, 0x00000000);

The Theory of Stencil Shadow Volumes 251

36

37 // Set up shader constants and render the shadow for object 1

38 m_pShadow->SetShaderConstants(&m_pLight, &m_matObject, &m_matView,

39 &m_matProject);

40 m_pShadow->RenderShadow();

41

42 // Set up shader constants and render the shadow for object 2

43 m_pShadow2->SetShaderConstants(&m_pLight, &m_matObject2, &m_matView,

44 &m_matProject);

45 m_pShadow2->RenderShadow();

46

47 // Now reverse cull order so front sides of shadow volume are written.

48 m_pd3dDevice->SetRenderState(D3DRS_CULLMODE, D3DCULL_CCW);

49

50 // Reverse the stencil op for front face

51 m_pd3dDevice->SetRenderState(D3DRS_STENCILZFAIL, D3DSTENCILOP_DECR);

52

53 // Show shadow volume front faces?

54 if (m_bShowShadowVolFrontFace)

55 {

56 m_pd3dDevice->SetRenderState(D3DRS_COLORWRITEENABLE, 0x0000000F);

57 m_pd3dDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);

58 m_pd3dDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_SRCCOLOR);

59 m_pd3dDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_DESTALPHA);

60 }

61 else

62 m_pd3dDevice->SetRenderState(D3DRS_COLORWRITEENABLE, 0x00000000);

63

64 // Set up shader constants and render the shadow for object 1

65 m_pShadow->SetShaderConstants(&m_pLight, &m_matObject, &m_matView,

66 &m_matProject);

67 m_pShadow->RenderShadow();

68

69 // Set up shader constants and render the shadow for object 2

70 m_pShadow2->SetShaderConstants(&m_pLight, &m_matObject2, &m_matView,

71 &m_matProject);

72 m_pShadow2->RenderShadow();

73

74 m_pd3dDevice->SetRenderState(D3DRS_COLORWRITEENABLE, 0x0000000F);

75 m_pd3dDevice->SetRenderState(D3DRS_SHADEMODE, D3DSHADE_GOURAUD);

76 m_pd3dDevice->SetRenderState(D3DRS_ZWRITEENABLE, TRUE);

77 m_pd3dDevice->SetRenderState(D3DRS_STENCILENABLE, FALSE);

78 m_pd3dDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE);

252 The Theory of Stencil Shadow Volumes

79

80 return S_OK;

81 }

The setup code from lines 4 to 35 is similar to that in the

DepthFailCPU sample discussed earlier. The difference comes in

lines 38 through 45 where we are required to set the shader con-

stants prior to rendering the preprocessed shadow volume

geometry using our vertex program. The same goes for the sec-

ond shadow volume rendering pass in lines 65 through 72. Note

that two-sided stenciling, as presented in the “DirectX 9 HLSL

Samples” section, would work as well here to render the shadow

volume in a single pass. In fact, the DirectX 9 samples in that sec-

tion implement both stencil modes for comparison. Takashi

Imagire [14] presented a depth-pass shadow volume implementa-

tion that utilizes two-sided stenciling and vertex shaders. Let’s

take a look at the code of the SetShaderConstants() function

before going into the vertex shader code.

01 void CShadow::SetShaderConstants(const D3DLIGHT8* pLight,

02 const D3DXMATRIX* matWorld,

03 const D3DXMATRIX* matView,

04 const D3DXMATRIX* matProj)

05 {

06 D3DXMATRIX matClip, matInvWorld;

07 D3DXMatrixMultiply(&matClip, matWorld, matView);

08 D3DXMatrixMultiply(&matClip, &matClip, matProj);

09 D3DXMatrixInverse(&matInvWorld, NULL, matWorld);

10

11 D3DXVECTOR4 vConst(0.0f, 0.0f, 0.0f, m_fExtrusionLen);

12

13 // Yellowish-green hue for drawing shadow volume if needed

14 D3DXVECTOR4 vColor(0.3f, 0.4f, 0.2f, 0.0f);

15

16 // Light pos in world space

17 D3DXVECTOR4 objectLightPos = D3DXVECTOR4(pLight->Position.x,

18 pLight->Position.y, pLight->Position.z, 1.0f);

19

20 // Transform light pos to object space

21 D3DXVec4Transform(&objectLightPos, &objectLightPos, &matInvWorld);

22

The Theory of Stencil Shadow Volumes 253

23 // Set the shader constants

24 m_pd3dDevice->SetVertexShaderConstant(0, &vConst, 1);

25 m_pd3dDevice->SetVertexShaderConstant(1, &objectLightPos, 1);

26 m_pd3dDevice->SetVertexShaderConstant(2, &matClip, 4);

27 m_pd3dDevice->SetVertexShaderConstant(6, &vColor, 1);

28 }

The transformation matrix for clipping space is the first thing to

be computed in lines 7 and 8. At line 11, we set up a vector with

the w component as the member variable m_fExtrusionLen that

defines the absolute extrusion distance. We define a vector at line

14 to hold an RGBA color value in case the program needs to

expose the rendering of the shadow volume to the viewer.

The light source position is transformed from world space to

object space at line 21. The reason for doing this is to allow us to

compute the light ray vector in object space without the need to

transform the face normal. It is obviously far more efficient to

incur a one-time transformation cost for the light position, as

opposed to transforming every single face normal. The vectors

are lined up in the constants registers, as shown in lines 24

through 27. It is time to dive into the vertex shader code.

01 // c0 : 0, 0, 0, m_fExtrusionLen

02 // c1 : Light pos in object space

03 // c2-c5 : World*View*Proj matrix

04 // c6 : Color for exposing the shadow volume

05

06 vs.1.1

07 // Output diffuse color to expose shadow volume to viewer if needed

08 mov oD0, c6

09

10 // Ray from light to pt in object space

11 sub r1, v0, c1

12

13 // Normalize ray

14 dp3 r1.w, r1, r1

15 rsq r1.w, r1.w

16 mul r1, r1, r1.w

17

18 // Dot ray and normal

19 dp3 r10.w, v1, r1

254 The Theory of Stencil Shadow Volumes

20

21 // Normal faces away from light if dot result < 0.0

22 slt r10.x, r10.w, c0.x

23

24 // Extrude along ray

25 mul r10, r10.x, c0.w

26 mad r0, r1, r10.x, v0

27

28 // Transform to clip space and output pt

29 mul r4, r0.x, c[2]

30 mad r4, r0.y, c[3], r4

31 mad r4, r0.z, c[4], r4

32 add oPos, c[5], r4

We immediately output the diffuse color at line 8 using constant

register c6, which was set with the RGBA color values. This can

be skipped entirely if we do not want to expose the shadow vol-

ume to the viewer. Next, we compute the vector of the incident

light ray at line 11 and normalize the result. The dot product of

the light ray and the face normal is done at line 19, and the result

is stored in the w component of r10. At line 22, we compare the

result of the dot product with 0.0 and form a masking value using

the result of this comparison. If the dot product result is less than

0.0, this means that the angle between the vectors is larger than

90 degrees (or you can also say smaller than –90 degrees), and the

vertex has a face normal pointing away from the light source. For

this case, the masking value is stored as 1.0 in the x component of

r10. For the other case, whereby the dot product result is not less

than 0.0, the masking value is set as 0.0.

The extrusion (or rather, the displacement) of the vertex is

done in lines 25 and 26. We multiply the masking value with the

extrusion distance to compute the final extrusion distance. Since

the masking value can only be 0.0 or 1.0, the result of the multipli-

cation can be either a zero or non-zero extrusion distance. Line 26

multiplies the normalized light ray vector with the extrusion dis-

tance and adds it into the vertex’s position, effectively extruding

the vertex in the direction of the light ray. If the masking value is

0.0, then the extrusion distance will be 0.0 and the vertex stays

The Theory of Stencil Shadow Volumes 255

unchanged. Lines 29 to 32 simply transform the final vertex to clip

space and send the result to the vertex position output register.

This concludes the entire implementation of the FiniteGPU

sample. Next up, we look at the InfiniteGPU sample that makes

use of the homogeneous coordinate system, discussed previously

in the “Forming the Shadow Volume” section, to extrude shadow

volumes to infinity.

Vertex Shader Implementation (InfiniteGPU)

In this section, we look into the implementation of the Infinite-

GPU sample, which is very similar to the FiniteGPU sample

discussed in the previous section. The difference this time is that

InfiniteGPU extrudes the shadow volume to infinity. All rendering

steps and stenciling operations are similar to the FiniteGPU sam-

ple. Hence we only look at the vertex shader constants setup and

the vertex shader code.

As discussed in the “Forming the Shadow Volume” section,

we can make use of homogeneous coordinates to render vertices

at a semi-infinite distance by setting the w component of the ver-

tices to 0 before transforming to clip space. Remember that 3D

points with w=0 are effectively vectors or simply just directions.

Rendering a vector is thus analogous to rendering a vertex at the

position in infinity pointed to by the direction of the vector. There-

fore, to ensure the correct direction of vertex extrusion using

homogenous coordinates, we need to apply transformations to

reposition the vertices with respect to the light source (and at the

same time centering the light’s position at the origin). With the

light centered at the origin and the shadow volume vertices posi-

tioned accordingly, any vertex whose w component is set to 0 will

automatically represent the incident light ray vector. Rendering

this vector will hence be the same as extruding it, infinitely, in the

direction to which it points. The required transformation to center

the light source at the origin can be achieved by using the world

and inverse light matrices. We shall refer to the transformed space

as the WorldLight space. Let’s check out how the vertex shader

256 The Theory of Stencil Shadow Volumes

constants are going to be set in the SetShaderConstants()

function:

01 void CShadow::SetShaderConstants(const D3DLIGHT8* pLight,

02 const D3DXMATRIX* matWorld,

03 const D3DXMATRIX* matView,

04 const D3DXMATRIX* matProj)

05 {

06 D3DXMATRIX matInvWorld;

07 D3DXMATRIX matLight, matInvLight;

08 D3DXMATRIX matWorldInvLight;

09 D3DXMATRIX matLightClip;

10

11 // Considering only the point light source (hence orientation is not

needed),

12 // light space transformation matrix thus contains only translation

13 D3DXMatrixTranslation(&matLight, pLight->Position.x, pLight->Position.y,

14 pLight->Position.z);

15 D3DXMatrixIdentity(&matLightClip);

16 D3DXMatrixMultiply(&matLightClip, &matLight, matView);

17 D3DXMatrixMultiply(&matLightClip, &matLightClip, matProj);

18

19 D3DXMatrixInverse(&matInvWorld, NULL, matWorld);

20

21 D3DXMatrixTranslation(&matInvLight, -pLight->Position.x,

22 -pLight->Position.y, -pLight->Position.z);

23 D3DXMatrixMultiply(&matWorldInvLight, matWorld, &matInvLight);

24

25 D3DXVECTOR4 vConst(1.0f, 1.0f, 1.0f, 0.0f);

26

27 // Yellowish-green hue for drawing shadow volume if needed

28 D3DXVECTOR4 vColor(0.3f, 0.4f, 0.2f, 0.0f);

29

30 D3DXVECTOR4 vWorldLightPos, vObjectLightPos;

31 vWorldLightPos = D3DXVECTOR4(pLight->Position.x, pLight->Position.y,

32 pLight->Position.z, 1.0f);

33

34 // Transform light pos from world space to object space

35 // Light ray vector is computed in object space to avoid transforming the

36 // face normal

37 D3DXVec4Transform(&vObjectLightPos, &vWorldLightPos, &matInvWorld);

38

39 // Set the shader constants

The Theory of Stencil Shadow Volumes 257

40 m_pd3dDevice->SetVertexShaderConstant(0, &vObjectLightPos, 1);

41 m_pd3dDevice->SetVertexShaderConstant(1, &vConst, 1);

42 m_pd3dDevice->SetVertexShaderConstant(2, &matLightClip, 4);

43 m_pd3dDevice->SetVertexShaderConstant(6, matWorldInvLight, 4);

44 m_pd3dDevice->SetVertexShaderConstant(10, &vColor, 1);

45 }

Since we are considering an omnidirectional point light, the light

transformation matrix can be created solely by translation at line

13. We create the LightClip transformation matrix (light*view*

projection) at lines 15 to 17. The LightClip transformation goes

from WorldLight space to clip space, similar to the normal clip

space transformation matrix where we go from world space to clip

space. The transformation matrix to WorldLight space is com-

puted at lines 21 to 23.

At line 37, we transform the light position from its original

world space to the occluder’s object space to compute the light ray

vector in object space within the shader. This avoids the need to

transform the face normals to world space for every single vertex

and also results in shorter vertex shader code. Finally, lines 40

through 44 define how the values will be lined up in the constant

registers. Next up, let’s jump right into the vertex shader code:

01 // c0 : Light position in object space

02 // c1 : 1, 1, 1, 0

03 // c2-c5 : Light * View * Proj = LightClip?

04 // c6-c9 : WorldInvLight matrix

05 // c10 : Color for exposing the shadow volume

06

07 vs.1.1

08 // Output diffuse color to expose shadow volume to viewer if needed

09 mov oD0, c10

10

11 // Light to vertex ray in object space

12 sub r1, v0, c0

13

14 // Transform vertex from object space to WorldLight space

15 // where the light is centered on origin

16 mul r4, v0.x, c[6]

17 mad r4, v0.y, c[7], r4

18 mad r4, v0.z, c[8], r4

258 The Theory of Stencil Shadow Volumes

19 add r9, c[9], r4

20

21 // Normalize ray computed previously

22 dp3 r1.w, r1, r1

23 rsq r1.w, r1.w

24 mul r1, r1, r1.w

25

26 mov r10, c1

27

28 // Dot ray and normal

29 dp3 r10.w, v1, r1

30

31 // If dot result < 0.0 = face away from light

32 // Form mask 1,1,1,1 for light facing, OR mask 1,1,1,0 for non light facing

33 slt r10, c1.w, r10

34

35 // Set w value to 0.0 for infinite extrusion or 1.0 for no extrusion

36 mul r9, r9, r10

37

38 // Transform final vertex to LightClip space

39 mul r4, r9.x, c[2]

40 mad r4, r9.y, c[3], r4

41 mad r4, r9.z, c[4], r4

42 mad oPos, r9.w, c[5], r4

At line 12, we form the vector of the light ray in object space

(remember, we do not need to transform the face normals if we do

this in object space). Next, we proceed to transform the vertex to

WorldLight space (World*InvLight) at lines 16 to 19.

Next, we get back to object space and normalize our light ray

vector at lines 22 through 24. I hate to use mov but was forced to

do so at line 26 because we need the masking values (1,1,1,0) for

the slt command later on. At line 29, we use the light ray vector

to perform a dot product with the face normal.

Line 33 is the heart of this shader. It compares the dot product

result with the mask (1,1,1,0) that we loaded earlier on and cre-

ates either a mask (1,1,1,1) for light-facing vertices or (1,1,1,0) for

vertices that face away from the light. We are going to make good

use of this mask at line 36 to decide whether a vertex stays put or

packs up for the trip to infinity. Obviously, those that face the light

will be left unscathed, but those that face away from the light will

The Theory of Stencil Shadow Volumes 259

have their w component zeroed, and the homogenous representa-

tion of a point becomes a representation of a vector. Finally, we

perform the all-important transformation to clip space and pass

the result to the output register.

Note You can try moving toward the extruded geometries for this

sample (use wireframe mode; it is easier to see), but you will find

that it never gets any closer! The vertices at infinity are “fixed” at a

particular point on screen. Try the same thing with the other samples,

and you will fly past the extruded volume in no time.

With this, we conclude the InfiniteGPU sample. You are now

armed with a good working knowledge of not just one stencil

shadow volume method but four of the same things done in a

rather different fashion! You are probably confused and wondering

which one of these suits your needs. Read on about some effi-

ciency issues, possible optimizations, and high-level design

problems that can help you make an informed choice.

Better with Shaders?

Using degenerate quads in order to utilize the vertex shader for

shadow volume generation is not without its problems. From the

previous sections, we have seen that the shadow volume gener-

ated by the GPU will always be capped, and thus it is only logical

to employ the depth-fail algorithm for a more robust implementa-

tion. This also means that we cannot switch between the

depth-pass and depth-fail algorithms for speed-ups when the cam-

era is not intersecting the shadow volume. Implementing shadow

volumes on the CPU gives us a bit more flexibility to switch to the

cheaper depth-pass algorithm whenever possible.

Another major concern is the extra vertices generated due to

the insertion of degenerate quads during preprocessing. This can

sometimes become too large and adversely affect the vertex

throughput of graphics hardware. When that happens, the reduced

memory bandwidth savings that we have received by using

shaders would be completely wiped out. This is often true when

260 The Theory of Stencil Shadow Volumes

the source data sets for shadow volume creation are too large,

resulting in an even greater amount of wasted vertices.

We can tackle the problem by optimizing the degenerate quad

insertion algorithm and also reducing the source data sets needed

for shadow volume creation. Previously, in the “Preprocessing of

Data” section, we discussed a simple optimization to avoid insert-

ing degenerate quads into edges shared by faces forming a flat

plane. With good optimizations, the pre- and post-polygon count

ratio can usually be reduced to around 2.0 without severe visual

artifacts. Another possible optimization is to reduce the source

data sets used for inserting degenerate quads. This encompasses

the use of simplified models with a lower polygon count or the

removal of useless polygons. The gem presented by Alex Vlachos

and Drew Card [20] described two such optimizations in the form

of vertex removal and edge collapsing. In most general cases

where low to medium (MD2 or MD3) polygon count models are

used, implementations on both CPU and GPU are comparable.

Another key concern is the magnification of this inefficiency

when a scene contains a large number of shadow-casting light

sources. The iteration through the light sources to generate

shadow volumes would inevitably strain the graphics hardware

with more wasted vertices. But with the use of the shadow vol-

ume methodology for casting shadows, we have to be very careful

with the selection of light sources within a scene — even when it

is done on the CPU. We discuss light sources selection further in

the next section.

Finally, a small incentive for using shaders to implement the

shadow volume generation is that the memory requirement is

very constant, as opposed to the dynamic shadow volume size in

CPU implementations. This is because the silhouettes of

occluders can sometimes vary drastically at different angles of

view. This directly affects the total geometry count and can cause

further problems if the initial allocated memory is too small and

reallocation is needed. GPU implementation does not suffer from

this problem, as the preprocessed shadow volume geometry is

loaded up as a static vertex buffer that contains all the vertices

that will be needed for shadow volume generation from any angle.

The Theory of Stencil Shadow Volumes 261

Overall, in a normal game setting, where the CPU is required

for artificial intelligence, physics, network (encryption/decryp-

tion), input, scripting, and a whole host of other computations,

GPU implementation of shadow volume usually edges slightly

ahead in terms of performance. However, readers are encouraged

to evaluate and profile both approaches vigorously within their

setup in order to find the best way for implementing shadow vol-

umes. Greg James [15] showcased the use of degenerate quads for

a vertex shader-based shadow volume implementation. Similarly,

Chris Brennan’s article [18] regarding shadow volumes used in

the ATI island demo [19] also uses the same approach with vertex

shaders.

DirectX 9 HLSL Samples

The launching of Microsoft’s DirectX 9 API is a major milestone

for the graphics development community. DirectX 9 introduces

numerous additions and changes from DirectX 8.1, including the

High Level Shading Language (HLSL), which is similar to nVidia’s

cg language that makes writing shaders much more intuitive and

stress free.

Two HLSL samples have been included to keep the reader up

to date with the latest technology. These two samples are

FiniteHLSL and InfiniteHLSL. The former implements a finite

shadow volume extrusion similar to the FiniteGPU sample dis-

cussed previously. The latter implements an infinite shadow

volume extrusion that mirrors the InfiniteGPU sample. The

reader should note that the HLSL samples are based on the

updated DirectX 9 common files framework and use the effects

file (*.fx) for defining the HLSL code and render states. Two

important device caps are needed for the HLSL samples to run:

D3DPRASTERCAPS_DEPTHBIAS and D3DSTENCILCAPS_TWOSIDED. The

HLSL samples utilize the new two-sided stencil operations pro-

vided by DirectX 9. We will not go through the two HLSL samples

in detail, as they are very similar to their predecessors FiniteGPU

and InfiniteGPU, which are based on DirectX 8.1. The HLSL

262 The Theory of Stencil Shadow Volumes

samples are comparatively simpler than the previous samples that

had vertex shaders coded in assembly. Let’s take a look at how to

make use of the new two-sided stencil mode introduced in the

HLSL samples.

With DirectX 9, the Direct3D API now includes support for

two-sided stencil operations. For both the depth-pass and

depth-fail stenciling operations described earlier, we need to draw

the shadow volume in two passes, once for the front faces and

once for the back faces. This is due to the need to change the

stenciling operations before the start of each pass, since a differ-

ent set of stenciling operations is needed for drawing the front

faces and back faces of the shadow volume. The need for two

passes to render the shadow volume geometries places extra

strain on the vertex throughput of the GPU. With two-sided sten-

ciling in DirectX 9, we can specify different sets of stenciling

operations for both front faces and back faces before proceeding to

render the shadow volume geometries in a single stenciling pass.

Two-sided stenciling mode ensures that the stencil buffer values

are filled accordingly, as if we are rendering the front and back

faces separately with different stenciling operations.

Whenever two-sided stenciling mode is supported, we should

make use of it — and for good reason, too. First, we just need to

send the shadow volume geometries to the graphics pipeline once

instead of twice. With that comes the savings on transforming

primitives, memory bandwidth between transfers, and driver

overhead for sending the geometries to hardware. The graphics

hardware would probably also avoid inefficiencies that arise when

rendering multiple culled polygons, which causes the rasterizer to

go idle, since there is nothing to draw. For two-sided stenciling

mode, we need to render with no culling at all, and hardware

rasterizers can minimize the idling time. Note that this may not be

true for all hardware vendors since graphics hardware and driver

designs vary wildly from vendor to vendor. We should also note

that the number of pixels rasterized is exactly the same as doing

two passes to render the shadow volume. This means that fillrate

would be the same for both stenciling modes. Considering the

potential savings in other areas beside fillrate, two-sided

The Theory of Stencil Shadow Volumes 263

stenciling mode is a highly attractive new hardware support to

assimilate into any stencil shadow volume implementations.

A new render state, D3DRS_TWOSIDEDSTENCILMODE, can be set to

true to activate two-sided stenciling. It is disabled by default.

When two-sided stenciling is enabled, the following render states

will apply only to front-facing triangles:

Render States Operations

D3DRS_STENCILFAIL D3DSTENCILOP to do if stencil test fails.

D3DRS_STENCILZFAIL D3DSTENCILOP to do if stencil test passes
and z-test fails.

D3DRS_STENCILPASS D3DSTENCILOP to do if both stencil and
z-tests pass.

D3DRS_STENCILFUNC D3DCMPFUNC function. Stencil test passes if
((ref & mask) stencilfn (stencil & mask)) is true.

The following new render states will also apply only to back-facing

triangles:

Render States Operations

D3DRS_CCW_STENCILFAIL D3DSTENCILOP to do if stencil test fails.

D3DRS_CCW_STENCILZFAIL D3DSTENCILOP to do if stencil test
passes and z-test fails.

D3DRS_CCW_STENCILPASS D3DSTENCILOP to do if both stencil
and z-tests pass.

D3DRS_CCW_STENCILFUNC D3DCMPFUNC function. Stencil test
passes if ((ref & mask) stencilfn (stencil &
mask)) is true.

The remaining stencil render states not listed in the two tables

above will always apply to both front- and back-facing triangles. As

with normal stenciling operations, the two-sided stenciling render

states will be ignored for point sprites and lines. Let’s look at the

actual code needed to set up two-sided depth-fail stenciling opera-

tions in DirectX 9.

01 // Disable z write, color write, use flat shade, and set to cull none

02 m_pd3dDevice->SetRenderState(D3DRS_ZWRITEENABLE, FALSE);

03 m_pd3dDevice->SetRenderState(D3DRS_COLORWRITEENABLE, FALSE);

04 m_pd3dDevice->SetRenderState(D3DRS_SHADEMODE, D3DSHADE_FLAT);

05 m_pd3dDevice->SetRenderState(D3DRS_CULLMODE, D3DCULL_NONE);

264 The Theory of Stencil Shadow Volumes

06

07 // Enable stencil operations and two-sided stencil mode

08 m_pd3dDevice->SetRenderState(D3DRS_STENCILENABLE, TRUE);

09 m_pd3dDevice->SetRenderState(D3DRS_TWOSIDEDSTENCILMODE, TRUE);

10

11 // Set front-facing stencil function to always pass

12 m_pd3dDevice->SetRenderState(D3DRS_STENCILFUNC, D3DCMP_ALWAYS);

13

14 // Set back-facing stencil function to always pass

15 m_pd3dDevice->SetRenderState(D3DRS_CCW_STENCILFUNC, D3DCMP_ALWAYS);

16

17 // Set stencil ref. value to 1 with full mask

18 m_pd3dDevice->SetRenderState(D3DRS_STENCILREF, 0x1);

19 m_pd3dDevice->SetRenderState(D3DRS_STENCILMASK, 0xffffffff);

20 m_pd3dDevice->SetRenderState(D3DRS_STENCILWRITEMASK, 0xffffffff);

21

22 // Set up stencil operations for depth-fail algorithm

23 // Set up stencil to increment when z-fail occurs for back faces

24 m_pd3dDevice->SetRenderState(D3DRS_CCW_STENCILPASS, D3DSTENCILOP_KEEP);

25 m_pd3dDevice->SetRenderState(D3DRS_CCW_STENCILFAIL, D3DSTENCILOP_KEEP);

26 m_pd3dDevice->SetRenderState(D3DRS_CCW_STENCILZFAIL, D3DSTENCILOP_INCR);

27

28 // Set up stencil to decrement when z-fail occurs for front faces

29 m_pd3dDevice->SetRenderState(D3DRS_STENCILPASS, D3DSTENCILOP_KEEP);

30 m_pd3dDevice->SetRenderState(D3DRS_STENCILFAIL, D3DSTENCILOP_KEEP);

31 m_pd3dDevice->SetRenderState(D3DRS_STENCILZFAIL, D3DSTENCILOP_DECR);

The code above shows all the render state setup needed to make

use of two-sided stenciling operations for the depth-fail algorithm.

Most of the setup code is similar to that used in the DepthFail-

CPU sample, with the exception of a few that involve the new

render states. The HLSL samples implement the same set of ren-

der states within the effects file HLSL_ShadowVolume.fx using

the effects file syntax.

Note that line 5 sets the culling mode to none, since we would

want to render both front- and back-facing triangles at the same

time in a single pass. In fact, the ability to draw with no culling is a

requirement for graphics drivers before two-sided stenciling sup-

port is possible. Lines 8 and 9 separately enable stenciling

operations and two-sided stenciling mode. Note that two-sided

The Theory of Stencil Shadow Volumes 265

stenciling is disabled by default for compatibility with DirectX 8

behavior.

As before, the stenciling function is set to always pass at line

12. However, since we are now working in two-sided stenciling

mode, the render state in line 12 only affects the rendering of

front-facing triangles. The new render state D3DRS_CCW_STENCIL-

FUNC has to be set in line 15 to force the stenciling function for

back-facing triangles to always pass as well. Lines 18 through 20

set up the stencil reference value and the masks, which affects

both the front- and back-facing geometries.

Finally, the code at lines 24 through 31 set up the stenciling

operations for both front-facing and back-facing triangles, accord-

ing to the requirements of the depth-fail algorithm. Be aware

again that two different sets of render states are needed for both

front-facing and back-facing geometries. Once the stencil opera-

tions have been set up, as shown in the above code, we can start

rendering the shadow volume geometries, and the stencil buffers

will be filled with the correct stencil values needed for drawing

depth-fail shadows.

At the time of publication, only the Radeon 9700/9800 and

GeForceFX consumer graphics cards fully support DirectX 9.

Therefore the reader should note that two-sided stenciling is not

a standard capability of most graphics hardware (even for that

once-pricey GeForce4 Ti 4600 card). As such, implementations

utilizing two-sided stenciling should always be backed up with

hardware capability checks during program startup. A new capabil-

ity bit, D3DSTENCILCAPS_TWOSIDED, was introduced in DirectX 9 for

detecting devices that support this new stenciling mode. With this

in mind, the HLSL samples implement both the old one-sided

stencil mode and the new two-sided stencil mode, and on-the-fly

switching between the two modes is possible.

266 The Theory of Stencil Shadow Volumes

Efficiency and Robustness

Realistic and accurate shadows in games are fast becoming a

requirement as the complexity of games has skyrocketed over the

past ten years. We need to provide robust, yet efficient implemen-

tations of stencil shadow volumes to satisfy the increasing

expectations of the average consumer. In the case of robustness,

using the depth-fail technique should suffice for almost any situa-

tion imaginable. However, hardware limitations and poor frame

rates sometimes push the depth-fail technique beyond our compu-

tation budget. There are many ways to optimize shadow volume

implementation to create nice-looking shadows, yet hold the

frame rate at acceptable levels. Hence, to conclude the topic, let’s

look into some issues surrounding shadow volume implementa-

tions that are pertinent to achieving efficiency and robustness.

We also look briefly into other general considerations, such as

model design workflow and scene management, that are important

complements to a successful integration of shadow volumes capa-

bility into an existing work process that includes developers,

designers, and planners.

Due to the sheer scope of the related topics, only brief intro-

ductions are given here. Readers are strongly encouraged to do

more research using the references provided.

Use Less for More

From the discussions in the previous sections, it is clear that the

stencil shadow volume implementation suffers from two major

performance bottlenecks: heavy silhouette computation and a

costly invisible fillrate. Many performance-enhancing measures

strive to minimize the impact of these two bottlenecks.

Reducing the source data set used in calculating the shadow

volume is beneficial to both CPU and GPU implementations. In

most cases, it is sufficient to make use of a low-polygon model of

the occluder to compute the shadow volume. For Direct3D imple-

mentations, it is also advisable to use “welded” meshes as source

data sets. A welded mesh simply means that there are no

The Theory of Stencil Shadow Volumes 267

duplicated vertices representing exactly the same point. To see an

example of an “unwelded” mesh, open the mesh viewer tool that

is part of the DirectX utilities and create a cube. Look at the verti-

ces information of the cube, and you can see that there are 24

vertices instead of just eight. This is really unavoidable, since

Direct3D’s version of a vertex structure contains color and normal

information that cannot be shared by different faces referring to

the same point due to differing lighting properties. Hence, extra

vertices are generated for different faces with different color and

lighting properties. The extra vertices are redundant as far as

shadow volumes are concerned, but cannot be removed during

the silhouette calculation without a considerable amount of com-

parison work. It is, therefore, wiser to use welded meshes for

silhouette determination. The Direct3D mesh viewer utility

provides a nifty option to do just that. Click MeshOps, then click

Weld Vertices, and check Remove Back To Back Triangles,

Regenerate Adjacency, and Weld All Vertices before welding.

Alternatively, we can also make use of the mesh function

D3DXWeldVertices to weld the mesh ourselves during data

initialization.

Alex Vlachos and Drew Card [20] also described a method to

process complex source data sets into simpler, non-overlapping

shadow volume geometries for static light sources. The method

described involves computing a list of all the light-facing polygons,

which is the brute-force way that we have been doing it in the

“Implementation on CPU” and “Implementation on GPU

(Shaders)” sections. Next, the list is sorted in a back-to-front

order. Going through the list polygons, a small frustum is created

for each face by using the light position and the edges of the face.

The face itself is used as the fourth clip plane. This frustum is

used to test for obscuring polygons, which is discarded. Doing so

recursively creates an unobstructed front capping that eliminates

overlapping polygons. Collapsing edges and removing excessive

vertices could further optimize the front capping. This is indeed a

good way to speed up shadow volume implementations for static

light sources. Our shadow volumes implementation should have a

flexible computation path that changes according to different

268 The Theory of Stencil Shadow Volumes

situational requirements. Instead of the generic brute-force

method discussed in the samples, there are many other specific

derivative methods that speed up our shadow volume implemen-

tation for different situations. This active selection of different

methods is part of scene management in general, which we dis-

cuss shortly.

Cheat Whenever You Can

The next area to optimize is the algorithm used to compute the

silhouette in real time. For CPU-based implementations, this

means achieving a faster silhouette computation turnaround time

through improvement to the silhouette determination process and

algorithm used. For GPU-based implementations, this means

achieving a smaller preprocessed data set (after inserting degen-

erate quads) and a faster vertex shader algorithm. There are many

ways to achieve faster on-the-fly computations, with approxima-

tion undoubtedly the most preferred way. The many operations

that we can speed up through approximation include trigonometry

calculations, distance computation, possible silhouette interpola-

tion, and sorting algorithms.

Particularly interesting approximations are the silhouette

mapping [24] and the related silhouette clipping [25] techniques.

Although the subject matter of the two papers provides a visual

refinement to the coarse polygonal silhouette of low-polygon

models used in place of detailed models, the proposed silhouette

approximation techniques can be applied to shadow volume

implementations. In the first technique, a silhouette map is cre-

ated from a number of silhouettes sampled from a discrete set of

viewpoints about the object (occluder). The silhouette of any arbi-

trary viewpoint can then be approximated through interpolation

from three nearby viewpoints in the silhouette map. Apart from

the required precomputations and some limitations, this technique

is much faster than brute forcing our way through the occluder’s

triangles. The second technique, silhouette clipping, is an

improved concept of computing silhouettes that makes use of a

special n-ary tree hierarchy of a model’s edges. The technique

The Theory of Stencil Shadow Volumes 269

hinges on the use of open-ended anchored cones for fast hierarchi-

cal culling in order to extract the silhouette of the model from any

viewpoint.

When it comes to optimizations, we should always be wary of

optimizing the wrong areas that only have minute contributions to

the total overhead. As a rule of thumb, always go for the most

frequently called functions or calculation paths. Other ways to

improve computations include harnessing special capabilities of

the CPU, such as the SSE, SSE2, and 3DNow! technologies pro-

vided by Intel and AMD, respectively. SSE (Streaming SIMD

Extensions), for example, works on a quad float basis much like

shaders. Operations are done in parallel across the four operands,

giving a huge boost to any arithmetic-intensive computation.

Fighting the Invisible

Curbing the cost of the invisible fillrate needed to render the

passes for shadow volumes is another major issue. We can proba-

bly lessen the impact by setting the D3DRS_COLORWRITEENABLE

render state in Direct3D before rendering the shadow volume. We

can use it to turn off the red, green, blue, and alpha channel draw-

ing, since color information is irrelevant here and we are only

interested in filling the stencil buffer.

Another easy way to alleviate the problem is to reuse stencil

buffer data across consecutive frames. We still incur the fillrate to

shade pixels in the frame buffer, but the passes needed to fill the

stencil buffer are saved. Depending on implementations, we can

usually get away with reusing old stencil buffer data provided that

the viewer, occluder, and light source’s relative positions have not

changed drastically from the previous frame. Besides saving the

cost of the invisible fillrate, the cost of computing the shadow vol-

ume is also saved. Finally, another good way to cut down on the

shadow volume fillrate cost for attenuated point light sources is to

make sure that we draw only where it is necessary by using the

scissor rectangle test. Eric Lengyel [8] described utilizing the

OpenGL scissor rectangle support to cut down the fillrate penalty

for rendering the shadow volumes and the illuminated fragments.

270 The Theory of Stencil Shadow Volumes

Scissor rectangle support is finally available with the introduction

of DirectX 9. The DirectX 9 scissor test is implemented by the

functions SetScissorRect and GetScissorRect of the IDirect3D-

Device9 interface. A new render state, D3DRS_SCISSORTESTENABLE,

is also included to toggle the test.

Scene Management Inside and Out

Another area that we should take note of is the management of

shadow-casting lights in our 3D scene. Good management of light

sources invariably benefits the shadow volume generation pro-

cess. A rule of thumb is to keep the number of shadow-casting

light sources below a maximum of four at any one time. Future

hardware improvements or algorithm advancement would defi-

nitely nullify the previous statement, but for now it serves as a

good guideline and will probably remain so for the next few hard-

ware iteration cycles. The important aspect of light source

management is the method used for selecting which light sources

should be included in the shadow volume generation process. The

main parameters that should be taken into consideration could be

intensity, distance from viewer, relevance to current gameplay, and

(lastly) visual importance.

Let’s look at some cases to understand the complexity of light

source selection. Imagine your game character standing in the

middle of a stadium with four gigantic batteries of floodlights shin-

ing down the field. There should be at least four shadows of your

game character on the floor forming a cross due to the shadow

casting from four different directions. Selecting only one light

source here is going to make the scene look weird. Rule of thumb:

Always select the dominant light sources in the scene. Note that

using the viewing frustum to select light sources can be very

dangerous. This is because you may have a nice gigantic 1000-

megawatt photon-busting spotlight right behind the top of your

head. It’s not in your view frustum, but it’s going to be responsible

for the most distinct shadows you would see in the scene.

Additionally, performing occlusion culling on light sources is

also helpful, but it should be done from the occluder point of view,

The Theory of Stencil Shadow Volumes 271

not the viewer! The general rule is that if an occluder cannot see

a light source, it cannot cast shadows related to that light source.

We have to consider the occluder as a whole because it is non-

trivial to handle cases whereby the occluder is partially exposed to

the light source. Performing line-of-sight tests on a per-occluder

basis can, however, be a big hit on performance, but doing such

tests on a per-area basis would probably suffice for most situa-

tions. Distance and attenuated strength of light sources is also a

good gauge of whether a light source has a big contribution to the

scene makeup. Whenever the distance is beyond a certain prede-

fined limit or when the attenuated strength of the light source is

deemed too weak to create distinct shadows in an area, we should

have no qualms about dropping it, even if there is a perfect line of

sight between the light source and the occluders in the area.

The culling of occluders is just as important as the culling of

light sources. Once we have selected a list of light sources, we

should commence with occluder culling before computing the

shadow volumes. For each selected light source, we identify the

occluders whose shadow volumes would contribute to any visible

shadows within the view frustum. This test can be done easily by

using a bounding volume constructed from the light’s position and

the three opposing sides of the view frustum, as shown in the fol-

lowing figure:

272 The Theory of Stencil Shadow Volumes

Figure 20: Occluder culling through the light’s bounding volume when the light

source is outside the view frustum

As shown in Figure 20, only the shadow volumes of the shaded

cubes contribute to visible shadows within the view frustum. Any

occluders that fell completely outside the bounding volume could

be culled away (e.g., non-shaded cubes), since they would not con-

tribute to any visible shadows. In the other case, where the light

source is within the view frustum, we should use the view

frustum itself as the bounding volume to perform the occluder

culling as shown in Figure 21.

Occluder culling helps minimize the amount of work on silhouette

computations and shadow volume rasterization on a per-light

source basis, making each selected light pass more efficient and

lean.

The whole business of selecting light sources and culling

occluders boils down to good scene management. An important

component of scene management is the added responsibility of

level planners and designers to work out an arrangement in which

the light settings and positioning in a scene would not break or

compromise the underlying shadow volume implementation.

Therefore, it is often imperative that level planners and designers

have a thorough understanding of the underlying light source

The Theory of Stencil Shadow Volumes 273

Figure 21: Occluder culling uses the entire view frustum as the bounding

volume when the light source is within the frustum.

selection criteria made by the graphics engine before they set out

to build the first scene. Charles Bloom [22] discussed some useful

notes regarding the selection of light sources, while Cass Everitt

and Mark Kilgard [27] presented several optimizations for imple-

menting shadow volumes.

Another aspect of scene management is identifying the rela-

tionship between occluders and light sources and possibly

embedding this information somewhere with the scene hierarchy.

Tagging geometries according to their movement behavior and

relationship to a light source is a good way to branch into faster,

specific shadow volume implementation quickly. For example, let’s

say that we have a static light source in an oil lamp on a chandelier

hanging from the ceiling of a church. The spatial relationship

between the light source and the occluder (chandelier) is static

because the shadow volume of the occluder will never change,

even if it is swinging, since the light source would be swinging in

perfect synchronization as well. Hence, for the chandelier, which

can be a complicated model, we can precompute an optimized

front capping that can be reused every frame. Next, a player char-

acter walks into the church. The spatial relationship between the

light source and the occluder (player model) is dynamic. Hence,

for the player model, we should switch back to more elaborate

(slower) shadow volume estimation or calculation. Proper scene

management goes a long way in cutting the cost of shadow volume

implementations while retaining all the visual enhancements that

comes with it.

Next, remember that one of the important requirements of

shadow volumes is the need for closed volume meshes. As

described before, this is needed because any gaps or holes within

a mesh would potentially throw the stencil counting off-balance

and thus break the shadow volume implementation. Such a

requirement mandates the need for modelers and designers to

alter their workflow and modeling style in order to avoid compro-

mising the graphics engine. This is often the most daunting task

for any program manager to undertake if there is a decision to

turn toward stencil shadow volume support. As far as program-

mers are concerned, shadow volume implementations can be

274 The Theory of Stencil Shadow Volumes

made more robust by adding tests to detect unclosed volumes,

reduce vertices, and even remove unwanted t-junctions (Lengyel

[21]) during preprocessing.

Always a Good Switch

Switching between the efficient depth-pass and the robust

depth-fail algorithm on the fly can also help speed up shadow vol-

ume implementations. For a robust implementation, we usually go

for the depth-fail algorithm. However, we can actually switch to

the faster depth-pass technique whenever we are sure that the

camera is not within any shadow volumes. This can be done easily

by forming a near-clip volume and test for occluder intersection

against it. The light source’s position and the four sides of the

near plane are used to define a pyramid of four planes. The near

plane closes the pyramid and thus forms the near-clip volume. If

an occluder lies completely outside this volume, we can safely

employ the depth-pass technique, since the occluder’s shadow

volume has no chance of intersecting the near plane.

Mix and Match

Lastly, stencil shadow volume also forms a good foundation for

implementing hybrid shadows that blend, attenuate, or soften the

edges through a mixture of projected textures, shadow mapping,

volume textures, or even clusters of shadow volume casting light

sources. Even in its simplest form, shadow volume’s much-

maligned hard-edged shadows often stunned the average gamer.

Remember those dropped jaws when Doom III screen shots first

became available?

The End

This ends our discussion on stencil shadow volume implementa-

tion. I would like to take this opportunity to thank ShaderX2 editor

Wolfgang Engel and Andre Chen for reviewing this article. My

heartfelt gratitude also goes to Wordware Publishing, Inc. and my

The Theory of Stencil Shadow Volumes 275

company, Silicon Illusions (www.siliconillusions.com), for their

support and help. Many thanks also to James Paul Pilande who

provided the models used in all the samples.

A word about the samples: There are four samples built using

the common files framework provided by DirectX 8.1 (C++):

DepthPassCPU, DepthFailCPU, FiniteGPU, and InfiniteGPU.

There are two additional samples based on the common files

framework, effects file, and the HLSL support provided by

DirectX 9.0 (C++). These are FiniteHLSL and InfiniteHLSL. All

source data used are standard *.x file meshes re-authored in

MilkShape 3D [23] from their original *.3ds format.

Color Plates 6 and 7 provide examples of what can be done

with the sample files. Plate 6 shows a scene consisting of dynamic

shadow casters and light source. It showcases the increased real-

ism with the help of accurate shadowing using the stencil shadow

volume technique. This technique is fast becoming the preferred

choice of shadowing in newer 3D games. Plate 7 shows the same

scene re-rendered with the extruded shadow volume exposed.

The “stencil counting” approach used in the technique makes

accurate inter-occluders shadowing and self-shadowing possible.

References

[1] Crow, Frank, “Shadow Algorithms for Computer Graphics,”

Computer Graphics, Vol. 11:3, SIGGRAPH ’77, July 1977.

[2] Heidmann, Tim, http://developer.nvidia.com/docs/IO/2585/

ATT/RealShadowsRealTime.pdf.

[3] Kilgard, Mark, http://developer.nvidia.com/docs/IO/1348/

ATT/stencil.pdf.

[4] Power Render X game engine, http://www.powerrender.com/

prx/index.htm.

[5] Carmack, John, http://developer.nvidia.com/docs/IO/2585/

ATT/CarmackOnShadowVolumes.txt.

276 The Theory of Stencil Shadow Volumes

[6] Bilodeau, Bill and Mike Songy, “Real Time Shadows,” Creativ-

ity 1999, Creative Labs, Inc. Sponsored game developer

conferences, Los Angeles, California, and Surrey, England, May

1999.

[7] Kilgard, Mark, http://developer.nvidia.com/docs/IO/1451/

ATT/StencilShadows_CEDEC_E.pdf.

[8] Lengyel, Eric, http://www.gamasutra.com/features/20021011/

lengyel_01.htm.

[9] Lengyel, Eric, Mathematics for 3D Game Programming and

Computer Graphics, Charles River Media, 2002.

[10] Everitt, Cass, and Mark Kilgard, http://developer.nvidia.com/

docs/IO/2585/ATT/GDC2002_RobustShadowVolumes.pdf.

[11] Moller, Tomas, and Eric Haines, Real-time Rendering, Second

Edition, A K Peters Ltd., 2002, pp. 61-66, http://www.realtime-

rendering.com.

[12] Microsoft DirectX MSDN, http://msdn.microsoft.com/library/

default.asp?url=/library/en-us/directx9_c/directx/graphics/

programmingguide/programmingguide.asp.

[13] Watt, Alan, 3D Computer Graphics, Second Edition, Addison-

Wesley, 1993, pp. 229-237.

[14] Imagire, Takashi, http://if.dynsite.net/t-pot/program/75_

shadow2Vol/index.html.

[15] James, Greg, http://developer.nvidia.com/view.asp?

IO=vertexshader_shadowvolumes.

[16] Engel, Wolfgang F., Direct3D ShaderX: Vertex and Pixel Shader

Tips and Tricks, Wordware Publishing, Inc., 2002, pp. 51-52,

http://www.shaderx.com.

[17] nVidia, NVASM vertex and pixel shader macro assembler,

http://developer.nvidia.com/view.asp?IO=nvasm.

The Theory of Stencil Shadow Volumes 277

[18] Brennan, Chris, “Shadow Volume Extrusion Using a Vertex

Shader,” Direct3D ShaderX: Vertex and Pixel Shader Tips and

Tricks, pp. 188-194, http://www.shaderx.com.

[19] ATI, Treasure Chest and Island demos, http://www.ati.com/

developer/demos/r8000.html.

[20] Vlachos, Alex and Drew Card, “Computing Optimized

Shadow Volumes for Complex Data Sets,” Game Programming

Gems 3, Charles River Media, Inc., 2002, pp. 367-371.

[21] Lengyel, Eric, “T-Junction Elimination and Retriangulation,”

Game Programming Gems 3, pp. 338-343.

[22] Bloom, Charles, http://www.cbloom.com/3d/techdocs/

shadow_issues.txt.

[23] MilkShape 3D modeler, http://www.milkshape3d.com/.

[24] Harvard University, Xianfeng Gu, Steven J. Gortler, Hugues

Hoppe, Leonard McMillan, Benedict J. Brown, and Abraham D.

Stone, “Silhouette Mapping,” Computer Science Technical

Report: TR-1-99, http://research.microsoft.com/~hoppe/

silmap_tr_text.pdf.

[25] Sander, Pedro V., Xianfeng Gu, Steven J. Gortler, Hugues

Hoppe, and John Snyder, “Silhouette Clipping,” ACM SIGGRAPH

2000, pp. 327-334, http://people.deas.harvard.edu/~pvs/

research/silclip/.

[26] Lengyel, Eric, “Tweaking a Vertex’s Projected Depth Value,”

Game Programming Gems, Charles River Media, Inc., 2000, pp.

361-365.

[27] Everitt, Cass and Mark J. Kilgard, “Optimized Stencil Shadow

Volumes,” http://developer.nvidia.com/docs/IO/4449/SUPP/

GDC2003_ShadowVolumes.pdf.

[28] nVidia, “Understanding the w Coordinate,” http://devel-

oper.nvidia.com/view.asp?IO=understanding_w.

278 The Theory of Stencil Shadow Volumes

Shader Development Using
RenderMonkey

Natalya Tatarchuk

Introduction

Many of the current challenges facing 3D graphics application

developers are centered on creating and using programmable

graphics shaders. These programmable graphics shaders are at

the heart of all future graphics chips. With the introduction of the

Radeon 9000, shaders are now supported on the entry-level PC

and will soon trickle down to all other devices.

Developers with the ability to create and use these program-

mable shaders are able to take advantage of all that the hardware

offers and create applications that redefine the art of real-time

graphics. In order to help developers unlock the creative potential

of today’s graphics chips and improve the shader prototyping and

development process, ATI Technologies has developed the

RenderMonkey Integrated Development Environment (IDE).

Although writing assembly or High Level Shading Language

code is the heart of the shader development process, shaders are

more than just the code. Encapsulating shader-based effects can

be a complex task, since it involves capturing the entire state of

the system that is involved in rendering these effects. This leads

to a common problem that currently exists among shader develop-

ers — exchanging and sharing shaders is not a trivial task.

279

Another problem that many game developers face when start-

ing to develop shaders is the need to closely involve artists in the

process. Without tools that artists are comfortable with, it

becomes difficult to collaborate on effect creation. What’s needed

is an environment where not just the programmers but the artists

and game designers can work together to create mind-blowing

special effects using shaders. RenderMonkey is designed to solve

many of these problems and facilitate the shader prototyping pro-

cess for your game engines. With this tool, we provide a powerful

programmer’s development environment for creating shaders,

which can be used as a standard delivery mechanism to allow

sharing of shader-based effects in the developer community. We

also provide a flexible, extensible framework that supports easy

integration of custom components and provides a solid basis for

future tool development. RenderMonkey can be easily customized

and integrated into any developer’s regular workflow. The design

of the RenderMonkey IDE allows easy incorporation of current

and future rendering APIs. By the time this book is published, you

will be able to download version 1.0 of the program from ATI’s

web site (http://www.ati.com/developer). That version includes

support for DirectX 9 shader effects (using both assembly and

HLSL), as well as support for creating OpenGL-based effects

using the GL2 High Level Shading Language.

Although this chapter does not focus on the intricacies of writ-

ing shader code, there are some excellent chapters on that topic in

this book and its companion book, ShaderX2: Shader Programming

Tips & Tricks with DirectX 9. For those of you interested in learn-

ing the DirectX High Level Shading Language, you should read

the “Introduction to the DirectX High Level Shading Language”

article by Craig Peeper and Jason Mitchell, which appears in this

book. There are also several articles in ShaderX2: Shader Pro-

gramming Tips & Tricks with DirectX 9 that I coauthored with my

colleagues, which focus on the development of interesting

shaders. These articles all use RenderMonkey workspaces that

you can load into RenderMonkey and experiment with. Take a

look at “Simulation of Iridescence and Translucency on Thin Sur-

faces” (N. Tatarchuk, C. Brennan), “Motion Blur Using Geometry

280 Shader Development Using RenderMonkey

and Shading Distortion” (N. Tatarchuk, C. Brennan, and J.

Isidoro), “Layered Car Paint Shader” (C. Oat, N. Tatarchuk, and J.

Isidoro), and “Real-Time Depth of Field Simulation” (G. Riguer, N.

Tatarchuk, and J. Isidoro), as well as the “Advanced Image Pro-

cessing with DirectX 9 Pixel Shaders” article by J. Mitchell, M.

Ansari, and E. Hart. You will find a great deal of interesting mate-

rial on developing spectacular visual effects in these articles.

Overview of the IDE

The RenderMonkey application interface has been designed to be

intuitive for any developer who has used an IDE tool such as

Microsoft Visual Studio.

Figure 1 shows a snapshot of the interface rendering an ocean

effect.

Shader Development Using RenderMonkey 281

Figure 1: Main application interface

The main interface consists of several components:

� A workspace view, which shows the effect workspace being

edited

� An output window for compilation results and text messages

from the application

� A preview window used to preview effects being edited

� Other editor modules, such as editors for shader code and

GUI editors for shader parameters. Shader parameters can be

tagged as “artist-editable” and then edited in a coherent way

using the artist editor module.

Creation of Basic Illumination Effect

In this section we work on creating a simple classic illumination

effect; we write a shader-based effect for rendering a specular

material in RenderMonkey’s preview window. Although this

simplified method of calculating light intensities comes from

beginner’s graphics books, it works wonderfully for the purpose

of this tutorial to show how to quickly develop shaders using the

RenderMonkey IDE. It also shows the beauty of using Microsoft’s

High Level Shading Language for developing shaders, as we can

take these concepts for lighting equation and quickly translate

them into visual effects with a few lines of code.

For this effect we implement the Phong specular-reflection

lighting model. If we dig into any graphics textbook, we could find

that in order to compute the illumination for that rendering model,

we need to use the following equation:

I I I Iambient diffuse specular� � � (1)

. . .where each of the lighting contribution components can be

computed as follows:

I k Iambient a a� $ (2)

I k I N Ldiffuse d d� $ $ �()
� �

(3)

I k I V Rspecular s s

ns� $ $ �()
�

(4)

282 Shader Development Using RenderMonkey

. . .where ka, kd, ks are the coefficients for ambient, diffuse, and

specular light contributions, respectively. These parameters are

assigned a constant value in the range of 0 to 1, according to the

reflecting properties that we want the surface to exhibit. If we

want a highly reflective surface, we set the values for kd and ks to

be near 1. This produces a bright surface with the intensity of the

reflected light near that of the incident light. To simulate a surface

that absorbs most of the incident light, we set the reflectivity to a

value near 0. Id is the intensity of the diffuse contribution of the

point light source that we are simulating, and Is is the intensity of

the specular contribution of that light source. Ia is ambient light

intensity.
� � �

N V R, , are the normal, view, and reflection vectors,

respectively. ns is the specular-reflection parameter, proportional

to the angle � between the view and reflection vectors. Shiny sur-

faces have a narrow specular range (the angle between these two

vectors is smaller), and dull surfaces have a wider reflection

range. Thus, a very shiny model can be modeled with a large value

for ns (around 100, for example), and a dull surface can be modeled

using an ns value equal to 0.5.

We use the equations (2) to (4) in the pixel shader to compute

the resulting color for each pixel for this illumination model. But

first let’s start the application and start building the workspace for

the effect.

Run-Time Database Overview

Each set of visual effects in RenderMonkey is encapsulated in a

single XML workspace. All of the information necessary for recre-

ation of each effect, excluding the actual textures and model data,

is stored in this single file. It is user-readable, and any game

developer can create a converter from the RenderMonkey’s file

format into his game engine script format. We chose XML to store

effect workspaces for several reasons. Most importantly, XML is

an industry standard with parsers readily available (Render-

Monkey uses the Microsoft XML parser; there are other

alternatives freely available). It allows easy data representation,

Shader Development Using RenderMonkey 283

and it is user-extensible. Best of all, any user can open an XML

RenderMonkey file and read the file directly in Internet Explorer;

it’s just another ASCII file format.

To start working on a shader-based effect, we simply launch

the application, which automatically starts out with a new empty

workspace. All effect-related data is stored in the effect workspace

using RenderMonkey’s run-time data format. Each effect work-

space consists of these elements:

� Variable nodes

� Stream mapping

� Models

� Texture variables

� Effect group(s)

Each effect group is used to encapsulate a series of related effects.

For example, you may want to group all effects that use a noise

function to render perturbation-based effects, such as clouds or

fire or plasma, in one single effect group. Another good use for

this node is grouping various implementations of a single effect for

fallback rendering in your engine.

Each effect group consists of one or more effect nodes. Each

effect is used to draw a single, coherent visual effect in the viewer.

You may have a single pass effect, or you may want to use several

draw calls to generate the look that you want. But each draw call

(or pass, as RenderMonkey refers to it) may consist of the follow-

ing data:

� A render state block (optional)

� A vertex shader (required)

� A pixel shader (required)

� A geometry model reference (required)

� A stream mapping reference (required)

� One or more texture objects with valid texture references

(optional)

� Variable nodes (optional)

284 Shader Development Using RenderMonkey

All individual items in the RenderMonkey effect workspace are

referred to as nodes.

Workspace View

The main window into the effect workspace is the Workspace view

window. That’s the dockable window usually positioned on the left

of the main interface containing a tabbed tree control, which pro-

vides a high-level view of the effect database. Figure 2 shows the

Workspace view window:

The workspace view can be used to access all elements of the

effect workspace. The intention is that individual effects will be

grouped by their common attributes in an effect workspace.

There are two tabs in the workspace tree view: the Effect tab

and the Art tab. The Effect tab is used to view the entire work-

space — with all variables and passes visible. The Art tab is used

to view only the artist-editable variables that are present in the

workspace. Once an effect is developed by the programmer using

the Effect tab, it can be handed over to the artists, who may want

to just view the artist-editable data by simply selecting the Art tab

to view the workspace.

Let’s start working on our effect. If you right-click on the

workspace node, you can select the Add Effect Group menu option

Shader Development Using RenderMonkey 285

Figure 2: Workspace view window

from the context menu that appears. The context menu is shown

in Figure 3:

When you add a new effect group to the workspace, Render-

Monkey automatically populates the workspace with several

nodes. It automatically adds a sample effect with one pass. The

pass inside that effect contains sample vertex and pixel shaders

and a sample geometry model. If you have ATI Radeon 8500 or a

better type of hardware, you can see a red teapot in the preview

window. If not, then you need to change the target for the pixel

shader to ps_1_1 (I go over how to do that later in this article).

RenderMonkey also adds a matrix variable for storing the view

projection matrix called view_proj_matrix and a standard stream

mapping node called standard mapping. A sample model node is

added as well. This enables you to start right away with a fully

functioning effect that you can build upon to create something

more visually appealing than a red teapot.

Variable Creation and Management

Any shader-based effect that you are working on requires some

parameters for the actual rendering. These parameters are speci-

fied as variable nodes in RenderMonkey. You can add a variable at

any level of the workspace tree — to the effect workspace, effect

group node, or effect or pass nodes.

286 Shader Development Using RenderMonkey

Figure 3: Context menu for adding new effect groups

Since we already know that we need several variables as input

to our shaders, let’s add them to our new workspace. To add a

new variable, right-click on the node you want to add that variable

to and select Add Variable from the context menu that appears

(see Figure 4).

You can then see the dialog in Figure 5:

You can select one of the RenderMonkey-supported data types for

your variable nodes:

� Scalar (a simple float variable)

� Vector (4D float variable)

� Matrix (4x4 float matrix)

� Color (4D float variable, RGBA color representation)

Shader Development Using RenderMonkey 287

Figure 4: Example context menu for adding a new variable

Figure 5: The Add Variable dialog

� Texture variables:

� 2D texture map

� Cube map

� Volume texture

The icons on the left of each node in the Workspace view help

you quickly identify their node type. For example, vectors are

represented by , scalars are represented by , colors by ,

matrices by , etc.

By default, new scalar, vector, and matrix variables are created

as not artist-editable. Color, texture, cube map, and volume tex-

ture variables are created as artist-editable. You have an option to

make any new variable artist-editable by checking the Artist

Editable check box in the Add Variable dialog. This is necessary to

make a variable visible in the artist editor or on the Art tab in the

Workspace view. If you wish to make any variable artist-editable at

any point later on, you can also right-click on that variable and

select the Artist Variable menu option. To remove the artist-

editable property from a variable, right-click on the variable and

select the Artist Variable menu option again. A check mark on that

option indicates whether the variable is artist-editable or not. A

small yellow flag on the variable icon indicates that the variable is

artist-editable: .

Predefined RenderMonkey Variables

You probably noticed that when you added a new effect group,

RenderMonkey also added a matrix called view_proj_matrix that

showed up with a Predefined Variable tooltip if the mouse hovered

over that variable. Predefined variables are shader constants

whose values get filled in at run time by the viewer module

directly. You cannot modify the values directly through the same

user interface that you can use to edit other variables of similar

types. RenderMonkey provides this set of predefined variables for

your convenience:

� view_proj_matrix: A variable of type matrix, which contains

the view projection matrix

288 Shader Development Using RenderMonkey

� view_matrix: A variable of type matrix, which contains the

view matrix

� inv_view_matrix: A variable of type matrix, which contains

the inverse of the view projection matrix

� proj_matrix: A variable of type matrix, which contains the

projection matrix

� time: A variable of type vector, which provides current time

value cycled over the cycle that can be modified in the

RenderMonkey Preferences dialog. By default, it is set to 120.

� cos_time: A variable of type vector, which provides the cosine

of time

� sin_time: A variable of type vector, which provides the sine of

time

� tan_time: A variable of type vector, which provides the tan-

gent of time

The easiest way to add predefined variables to your workspace is

to select the appropriate type of predefined variable that you

would like to use and then choose the name from the combo box

that appears in the Name area of the Add Variable dialog (see Fig-

ure 6). Note that the combo box only appears if the selected type

has some predefined variables. If the user then chooses another

type for a given predefined variable name, it is not appropriately

initialized at run time, as RenderMonkey identifies predefined

variables by both name and type.

Shader Development Using RenderMonkey 289

Figure 6: Selecting predefined variables

Predefined variables are easy to identify in any RenderMonkey

workspace, as they will have a small green overlay on top of their

usual variable type icon. For example, this is what a vector prede-

fined variable icon would look like: .

Stream Mapping Module

Another node that was automatically added upon the new effect

group addition is the stream mapping node. A stream mapping

node can be created at any point in the workspace (directly under

the effect workspace, directly under an effect group, within an

effect group, or in an individual pass). This node is used to define

streams that bind data to input registers for use by shaders. The

streams get automatically generated in RenderMonkey using the

data available from the model directly or computed by the applica-

tion once you have defined the stream channels for that stream by

using the provided user interface.

The stream mapping module is used for stream setup for the

geometry model within a pass. To create a stream mapping node

from scratch, you can right-click on a parent node (an effect, an

effect workspace, or an effect group) and select the Add Stream

Mapping menu option from the context menu (the example here is

from the effect workspace context menu), as shown in Figure 7.

This creates an empty stream mapping node.

290 Shader Development Using RenderMonkey

Figure 7: Adding a stream mapping node

Once a stream mapping node is created, you can edit its contents

by double-clicking on the node or right-clicking on the stream

mapping node and selecting Edit, which brings up the stream

mapping editor module shown in the following figure.

We already know that to compute correct illumination results, we

need the vertex normals as well as vertex positions as inputs to

the vertex shader. Let’s add that channel to the stream defined in

our workspace. Double-click on the standard mapping node and

bring up the stream editor. To add new channels to the stream

setup, you can click on the Add Channel button in the stream map-

ping editor. Then you can select the desired input register and

name the usage for that stream, the usage index, and type. If you

want to delete a specific channel, you can click on the X button to

the right of the channel. In Figure 9 below, I have added a second

channel to bind the normals for vertices. Don’t forget to set the

data type for the normals channel to FLOAT3.

Shader Development Using RenderMonkey 291

Figure 8: Stream mapping editor

Figure 9: Adding the normals channel to the list of stream channels

To actually use the stream mapping for a specific draw call, you

need to add a stream map reference to the pass in which you

would like to use it. To do that, you need to first make sure that

you’ve created a stream mapping node (like standard mapping)

somewhere in the workspace tree. Then you can select the pass

to which you want to add the stream mapping reference (Pass 1 in

our case) and right-click on that node. Select Add Stream Mapping

Reference from that context menu (as you can see from Figure

10):

An empty stream mapping reference is then created. That refer-

ence is initially not linked to any stream mapping nodes. The red

line on the stream mapping reference icon ()

shows you that the reference isn’t correctly resolved. To link a

reference to a stream mapping node, you should right-click on the

stream mapping reference node and select the Reference Node

menu from where you can select the name of the actual stream

mapping node that you would like to reference in that pass (as

shown in Figure 11). You can also double-click on the stream

292 Shader Development Using RenderMonkey

Figure 10: Adding a stream mapping reference to a pass

mapping reference node and rename the node to the name of the

stream mapping node directly to link it.

To resolve scope for the stream mapping for a particular pass,

RenderMonkey first checks the pass tree for a stream mapping

instance. If neither a stream mapping instance nor a stream map-

ping reference is found, the application “walks” up the workspace

tree to find the first stream mapping node or reference. Note that

placing stream mapping nodes and references should be done with

consideration since incorrect use of stream mapping nodes results

in bad rendering results.

If the stream mapping node name is found and resolved cor-

rectly, the stream mapping reference node will have this icon:

. Note the small arrow in the icon that denotes that

it is a reference rather than the actual stream mapping node. That

convention is for all reference nodes in RenderMonkey, so you can

easily spot references in the workspace.

Model Management

An important aspect of every visual effect is the actual geometry

that gets rendered on the screen. RenderMonkey uses the model

and model reference nodes to allow you, the user, to specify which

geometry to render in each draw call. As you can already see by

Shader Development Using RenderMonkey 293

Figure 11: Linking a stream mapping reference to a stream mapping node

this point, the workspace contains a model node under the main

workspace node and a model reference node under the Pass 1

node. You can easily spot the model nodes by their red teapot

icon: . The model reference nodes follow the convention

described above for references and have a small arrow next to

them: . To load a new geometry model into a model node, you

double-click on that node and select a file containing your geome-

try object from the list of supported file formats that will be shown

in the file open dialog. To actually bind the data from streams to

the shaders, RenderMonkey uses the pairing of a stream map with

a model data node done by adding both references to each pass to

make sure that the necessary data is present at run time and then

binds it to stream sources.

Managing Effects

Although we won’t need to add any extra effects at this time, let’s

talk briefly about managing effects in RenderMonkey. As was said

earlier, each effect in the workspace is used to draw a single,

coherent visual effect in the viewer. It can consist of one or more

draw calls. To create a new effect, you can right-click on the effect

group to which you want to add the new effect. Select Add Effect

from the context menu that appears (see Figure 12) to create a

new effect at the bottom of this group:

You can change the effect name at any point by simply renaming

it. By default, when RenderMonkey adds a new effect, it adds a

294 Shader Development Using RenderMonkey

Figure 12: Adding new effects to the workspace from the context menu

single pass with HLSL vertex and pixel shaders in it. The main

thing you want to do with the effects is view them. To do that, you

should set the effect that you wish to render as an active effect.

That means that this is the effect that will be rendered by the

viewer module. To do that, you should right-click on the desired

effect and select the Set as Active Effect menu option. You can

easily check which effect is active in the workspace because it

will appear in bold typeface.

Pixel and Vertex Shaders

Now we are getting closer to the heart of the programmable pipe-

line — the shaders themselves. RenderMonkey supports both

assembly and the HLSL shader in its IDE. To create new pixel or

vertex shaders, you need to select an effect to which to add the

shader. Then you can right-click on the effect node and select Add

Vertex Shader or Add Pixel Shader, depending on which type of

shader you want to add (see Figure 13 for an example context

menu).

Shader Development Using RenderMonkey 295

Figure 13: Adding shaders from the pass context menu

At this point you need to select what type of shader you want to

add to that effect. You have a choice of adding an assembly or

HLSL shader to the pass. Figure 14 shows the dialog box that

appears for that purpose:

Clicking OK will add a new shader to the selected effect. You can

easily spot what type of shaders the effect has; DirectX assembly

shaders will have the icon for the vertex shaders and for

the pixel shader, and DirectX HLSL shaders will have the icon

for the vertex shaders and for the pixel shaders. Render-

Monkey will automatically choose the shader editor for each

shader, depending on its version. Note that you can only have one

of each vertex and pixel shader in an individual pass. If you wish

to change shader types (for example, replace an assembly shader

with an HLSL shader), you need to first delete the old shader and

add a new one in its place.

Editing Shaders

Since we already have a pass with a pair of shaders, let’s start

working on the actual shader code at this point. To edit each

shader, you should double-click on that shader node. Render-

Monkey will open the shader editor for your shader. There is a

single shader editor window for all the passes in a single effect.

Figure 15 shows the shader editor user interface containing the

HLSL vertex shader.

296 Shader Development Using RenderMonkey

Figure 14: Adding new shaders

As you can see from the UI above, the shader editor has two tabs

for a vertex and a pixel shader for each pass. The UI for the actual

shader editing is selected according to the shader type; see Figure

16 for a snapshot of the assembly shader editor UI.

Shader Development Using RenderMonkey 297

Figure 15: Shader Editor window (HLSL shader)

Figure 16: Shader Editor window (Assembly shader)

To edit shaders in a different pass, you simply need to select the

pass from the top-left combo box in the main Shader Editor win-

dow. The tabs for vertex and pixel shaders will be updated to show

the shaders in the new pass. You can use Ctrl+Tab to quickly

switch between the vertex and pixel shader tabs.

Vertex Shader Setup and Editing

Let’s add some code to the vertex shader in Pass 1. Below is the

code listing that we will be adding. It is a vertex shader for com-

puting Phong illumination.

float4x4 view_matrix;

float4x4 view_proj_matrix;

float4 lightDir;

struct VS_OUTPUT

{

float4 Pos : POSITION;

float3 Norm : TEXCOORD0;

float3 View : TEXCOORD1;

float3 Light : TEXCOORD2;

};

VS_OUTPUT main(

float4 inPos : POSITION,

float3 inNorm : NORMAL)

{

VS_OUTPUT Out = (VS_OUTPUT) 0;

// Output transformed position:

Out.Pos = mul(view_proj_matrix, inPos);

// Output light vector:

Out.Light = -lightDir;

// Compute position in view space:

float3 Pview = mul(view_matrix, inPos);

// Transform the input normal to view space:

Out.Norm = normalize(mul(view_matrix, inNorm));

298 Shader Development Using RenderMonkey

// Compute the view direction in view space:

Out.View = - normalize(Pview);

return Out;

}

This vertex shader transforms the vertex position and outputs it

from the vertex shader. Then it computes the light vector using a

shader parameter named lightDir (we will be adding all shader

constants after we’re done creating our shaders). It also computes

the vertex position in view space using another RenderMonkey

predefined variable, view_matrix, and computes the view vector

and the normal vector in view space and outputs those to the pixel

shader.

Before we add this code to the shader itself, let’s go over the

user interface for editing HLSL shaders in RenderMonkey first.

The High Level Shading Language (HLSL) editor consists of

three sections. The UI widgets at the top of the editor are used to

manage shader parameters for HLSL shaders. The text editor

control in the middle portion of the editor is used to view the

declaration block of an HLSL shader that contains parameter dec-

larations. This editor pane is not editable; the declaration block is

solely controlled through the UI widgets in the top portion of the

editor. This is necessary to ensure that the RenderMonkey vari-

able nodes and texture objects get properly mapped to HLSL

parameters. The bottom pane is the editor widget to edit the

actual shader text (take a look at Figure 15 again). Note that once

you’re done mapping your constants and samplers, you can simply

minimize the Constant Editor block by selecting the check box on

top of it: .

To map a RenderMonkey variable node (a vector, a color, a

matrix, or a scalar node), you can left-click on the arrow button

next to the variable’s Name label: . This action

opens up a pop-up menu containing a list of all variable nodes

within the scope of the shader being edited. You can then select a

variable node from that pop-up menu:

Shader Development Using RenderMonkey 299

At that point, the label under the Name column will change to the

name of the node that you selected. Next you should click on the

Add button to add that variable node to the declaration block and

map it internally as a shader constant. You will then see the actual

text declaring that variable appears in the declaration block of the

shader.

Let’s add the light direction vector to our workspace and map

it to a constant in the vertex shader that we are writing. Right-

click on the effect workspace node and select Add Variable. Then

select Vector as the variable type and type lightDir in the name

field. You can leave the Artist Editable check box empty if you

wish. Clicking OK will add a new light direction vector to the

workspace tree, and you’ll see a node like this in it: .

Go to the vertex shader editor that we already opened, and follow

the steps for mapping the light direction vector to a constant in

the shader editor. After you click Add, you will see the text float4

lightDir; appear in the shader’s declaration block. We’ve

just added our first constant to the shader!

The next parameter that this shader uses is a view matrix.

Since it’s a predefined RenderMonkey variable, you won’t be able

to modify its values explicitly. Let’s add it to the workspace first.

Right-click on the effect workspace node and select Add Variable.

Select Matrix as the variable type. You will see that the Name edit

field changed to a combo box. Expand that combo box and select

view_matrix from the list of variables that appear. After clicking

OK, you will add the predefined view matrix to your workspace.

You should see this node appear in the workspace tree now:

. The little green “p” icon at the bottom-left corner

always lets you know that it is a RenderMonkey predefined

300 Shader Development Using RenderMonkey

Figure 17: Adding variables to HLSL shaders

variable. Follow the same steps described above to add it to the

vertex shader declaration block; you will now see the full declara-

tion block appear (though not necessarily in that order):

float4x4 view_proj_matrix: register(c0);

float4 lightDir;

float4x4 view_matrix;

Now you can simply type the rest of the shader code (the actual

main function and vertex shader output structure declaration) into

the shader text editor window.

Readers should note that for High Level Shading Language

parameter definitions, the RenderMonkey nodes they desire to

map must be named within the constraints of the High Level

Shading Language; otherwise, improper naming will result in

compilation errors. Please refer to the HLSL language manual for

more information on naming conventions.

By default, an HLSL shader entry point is set to main, which

is actually what we want for both shaders. If you wish to change

the entry point for your shader, you can do that by typing a differ-

ent name in the entry point edit field: .

Since every HLSL shader must provide a compilation target,

we need to specify that as well. By default, RenderMonkey’s

HLSL added shaders have vs_1_1 and ps_1_4 shader targets. To

change the version of the shader to which you are compiling, you

should select from a list of available targets from the Target combo

box: . The target sets are separate for pixel and

vertex shaders — please refer to High Level Shading Language

documentation for an explanation of each target value.

The bottom pane is used to enter the actual text of the shader.

The shader text must contain at least one function with the same

name as the specified entry point for the shader to compile. The

shader text editor has High Level Shading Language customizable

syntax coloring.

Shader Development Using RenderMonkey 301

Compiling Your Shaders

Now that we have entered our vertex shader, the very next thing

that any shader developer wants to do is compile it and make sure

that the shader is actually correct. To do that, you should click on

the Commit Changes button (with this icon:) on the main

toolbar. You can also use the accelerator key (F7) to start shader

compilation. Commit Changes compiles all modified shaders in the

workspace and outputs the compilation results into the Output

window.

Output Window

The Output module is a docked window typically located on the

bottom of the main application interface (see Figure 18). That win-

dow is used to output the results of shader compilation and other

application text messages. The Output window is linked with the

shader editor for compilation error highlighting.

Shader Assembly or Compilation Errors

Once you press the Commit Changes button, any errors in your

shader will appear in the Output window. You will see all errors

appear grouped by the full shader name using its path in the effect

workspace that you are editing. Pressing that button not only

compiles the current shader, but it also internally saves the

changes to the code of the shader. The Commit Changes action

applies to all open shaders that were modified. If you have errors

in multiple files, you will see errors linking to correct files. Dou-

ble-clicking on shader errors will open the correct window for the

302 Shader Development Using RenderMonkey

Figure 18: Output window

shader and highlight the line containing an error (see an example

in Figure 19). If you modified the shader text and then closed the

editor without committing the changes, RenderMonkey will ask

whether you would like to commit the changes first.

Editing Assembly

Although we do not edit assembly shaders in this particular exam-

ple, this section describes how to edit assembly shaders. The

assembly Shader Editor window consists of two panes; the

top pane is used to bind RenderMonkey variable nodes to shader

constant registers, and the bottom pane is used to edit the shader

Shader Development Using RenderMonkey 303

Figure 19: Compilation error for an HLSL shader

text. You can see a snapshot of the assembly Shader Editor win-

dow in Figure 20.

The constant store editor is a list view with three columns. Each

row represents values for one particular register. The first column

(Constant) can be used to specify the index of the register for that

constant. The second column (Name) shows the name of the node

that is linked to that register (or “…” if there isn’t a variable

linked to that register). The third column shows the initial value

of the variable node linked to the register.

Binding a RenderMonkey variable node to a constant store

register means that the software will actually bind the internal

values of the nodes directly to the register values. Within the

RenderMonkey IDE, vector and color nodes are represented by

four different floats, scalars are mapped to four floats having the

same value, and matrices are represented by 16 floats.

304 Shader Development Using RenderMonkey

Figure 20: Assembly Shader Editor window

To bind a RenderMonkey node to a register, you should

right-click on the field in the Name column for the constant and

select a variable node from the pop-up menu (see Figure 21). The

pop-up menu contains all variables that are within the scope of the

shader being edited. Once a node is selected, its name will appear

in the Name column for the selected register, and the current val-

ues of the node will be displayed in the Initial Value column.

To clear a constant store register, you can select the Clear menu

option from the pop-up menu for the register. The name of the

variable previously linked to that node is replaced by “…”, and the

Initial Value column will be cleared.

Please note that if you bind a matrix to a particular constant,

the three constants below that constant are overwritten with the

rows of that matrix.

The source editor has support for customizable syntax color-

ing for pixel and vertex shader assembly code. There is also full

clipboard support for standard editing operations.

Shader Development Using RenderMonkey 305

Figure 21: Mapping a RenderMonkey node to an assembly shader

constant register

Pixel Shader Setup and Editing

Now that we have a full vertex shader in place, let’s fill in the

pixel shader. To start editing the pixel shader, select the Pixel

Shader tab in the Shader Editor window. But before we can start

editing the text of the shader, we need to go back to our lighting

equation and figure out what parameters we need to use. If we

look at the equations (2) to (4) we can see that they use these

parameters for illumination result:

� ka, kd, ks: The coefficients for ambient, diffuse, and specular

light contributions, respectively

� Ia: The ambient light intensity

� Id: The intensity of the diffuse contribution of the point light

source that we are simulating

� Is: The intensity of the specular contribution of the point light

source that we are simulating

� ns: The specular-reflection parameter, proportional to the

angle � between the view and reflection vectors

All of the parameters above need to be added as constants to the

pixel shader, where we will be directly computing the result of the

illumination equation. ka, kd, ks, and ns can be added as scalar vari-

ables to the workspace, and Ia, Id, and Is can be added as colors.

You should add variable nodes with the following names and types

to the main effect workspace node:

� ka: Scalar variable named Ka

� kd: Scalar variable named Kd

� ks: Scalar variable named Ks

� ns: Scalar variable named Ns

� Ia: Color variable named Ia

� Id: Color variable named Id

� Is: Color variable named Is

Here’s a snapshot of the workspace tree view that you will have

once you’ve completed this operation:

306 Shader Development Using RenderMonkey

Let’s add these parameters to the pixel shader’s declaration

block. Go through each node that we just added to the workspace

(Ka, Kd, Ks, Ns, Ia, Id, and Is) and add them to the pixel shader

declaration using the steps described in the vertex shader editing

section. Once you’ve finished adding the last node, you should see

the following pixel shader declaration block appear:

float Ka;

float Kd;

float Ks;

float Ns;

float4 Ia;

float4 Id;

float4 Is;

At this point we are ready to start writing the code for our pixel

shader. This is where we can really appreciate the simplicity and

elegance of writing shaders using a High Level Shading Language

(the Microsoft DirectX 9.0 HLSL in our example). If you have

ever tried to write assembly shaders, you can certainly appreciate

the difference. The code for the complete pixel shader (without

the previous declaration block) follows:

Shader Development Using RenderMonkey 307

Figure 22: Workspace with all parameters

for Phong specular illumination model

float4 main(float4 Diff : COLOR0,

float3 Normal : TEXCOORD0,

float3 View : TEXCOORD1,

float3 Light : TEXCOORD2) : COLOR

{

// Compute the reflection vector:

float3 vReflect =

normalize(2 * dot(Normal, Light) * Normal - Light);

// Compute ambient term:

float4 AmbientColor = Ia * Ka;

// Compute diffuse term:

float4 DiffuseColor = Id * Kd * max(0, dot(Normal, Light));

// Compute specular term:

float4 SpecularColor =

Is * Ks * pow(max(0, dot(vReflect, View)), Ns);

float4 FinalColor = AmbientColor + DiffuseColor + SpecularColor;

return FinalColor;

}

You can simply type that code into the pixel shader text editor and

hit Commit Changes. Remember to set the target field for this

pixel shader to ps_2_0 since we are using the pow instruction.

Preview Window

At this point we are done editing our shaders. But to actually see

the effect of the code, we need to see the results in some sort of a

viewer. In RenderMonkey, the preview window is used to interac-

tively preview effects. All changes to a shader or its parameters

update the rendered image in real time, thus truly enabling inter-

active shader development. Figure 23 shows the DirectX 9.0

preview window for an ocean water effect.

Simple trackball navigation is provided in the standard

RenderMonkey preview module:

� To pan across the window, use the up/down/left/right arrow

keys.

308 Shader Development Using RenderMonkey

� To move the camera forward and backward, use the Z and X

keys.

� To rotate the scene, use the mouse.

Note that the model is rotated about the z-axis in the preview

window.

The output of each render pass can be displayed in an arrayed

viewport by the use of the P key (as shown in Figure 24 below):

Shader Development Using RenderMonkey 309

Figure 23: Preview window

Figure 24: Multipass viewports in the preview window

You can also select from a set of predefined views for your model.

To access that, right-click in the preview window and select a

view from the list that will appear in that menu (Front/Back/Top/

Bottom/Left/Right). You can also modify the properties of the

standard preview module by selecting Properties from the right-

click menu in the preview window. That action brings up a dialog

that allows you to:

� Modify the clear color of the preview window

� Modify the clear color used for the pass array

� Modify the field of view

� Modify the near and far clip plane values

For the currently selected effect, the preview module has the

ability to display each pass within a multipass effect in arrayed

viewports.

Editing Variables

At this point, the preview window shows a white teapot in con-

stant color. The reason for this look lies in the values for your

variables. We need to set meaningful values for all of the parame-

ters to our shaders. But before that, let’s talk about how to edit

variable nodes in RenderMonkey. To edit a variable, you can either

double-click on the variable node or select Edit from the right-

click menu for that node. That action will bring up an automati-

cally selected editor for that node type.

Scalar Variables

Each scalar can be edited via the scalar editor module shown in

the following figure. Note that you can modify the values in any

way, but if you aren’t happy with them at the end, you can simply

click Cancel and the value set prior to opening the scalar editor

will be restored. Note that at any point, the preview window will

interactively show the changes.

310 Shader Development Using RenderMonkey

The scalar can be edited by either directly typing the value in the

main edit box or interactively using a pop-up slider, which is in the

same range as the clamping bounds (regardless of whether or not

the user chooses to clamp the vector).

Let’s set the values for the scalars in our workspace to the

following values:

� Ka = 0.8

� Kd = 0.8

� Ks = 1.0

� Ns = 100.0

Note that right after you do that, you see a white teapot in the

preview window. We’ve turned on our illumination!

Vector Variables

Each vector can be edited via the vector editor module:

Each vector component can be edited by either directly typing the

value in the component edit box or interactively using a pop-up

slider for each component. The sliders’ ranges will be the same as

Shader Development Using RenderMonkey 311

Figure 25: Scalar editor

Figure 26: Vector editor

the clamping bounds for the vector (regardless of whether or not

the user chooses to clamp the vector). The user may also select to

keep the vector normalized by selecting the Keep (x, y, z) compo-

nents normalized check box. You can revert your changes in the

same way as you could in the scalar editor by pressing the Cancel

button.

Let’s set the values for the light direction vector for our ver-

tex shader. Double-click on the lightDir variable and enter the

following values as its components:

� X = –0.4

� Y = 0.3

� Z = 0.8

� W = 0.0

Matrix Variables

Although we aren’t going to modify any matrix variables in this

example, to edit a matrix variable you can use the matrix editor

module shown below:

Each matrix component can be edited by either directly typing the

value in the component edit box or interactively using a pop-up

slider for each component. The slider range is preset to be in the

range [–100.0, 100.0]; however, typing a value outside of that

range expands the range to that value. The user can also set the

matrix to an identity matrix by clicking the appropriately named

312 Shader Development Using RenderMonkey

Figure 27: Matrix editor

button. You can revert your changes in the same way as you could

in the scalar editor by pressing the Cancel button.

Color Variables

Each color variable can be edited via the color picker module:

The user can edit color using either RGB or HSV mode by

directly typing the values in the appropriate edit boxes for each

component (R, G, B, A or H, S, V, A), interactively selecting color

from the color wheel or color sliders for each component, or modi-

fying the intensity of the color being edited by using the vertical

intensity slider. The value of the color is shown in the color

swatch at the top-left corner of the color picker. You can also

choose to edit color values directly in floating-point format by

checking the Floating Point check box and typing the values in the

range [–1.0, 1.0] directly into the Red, Green, Blue, and Alpha edit

fields. The negative values can be used in the shaders to subtract

Shader Development Using RenderMonkey 313

Figure 28: Color editor

colors. You can also revert your changes the same way you could

in the scalar editor by pressing the Cancel button.

If we set the values for the Ia parameter to R = 0, G = 112,

B = 0, and A = 255, we can see the image in Figure 29: our

Phong-shaded teapot!

Render State Block Management

Although we’ve completed our first visual effect in Render-

Monkey, we should also explore how to modify render states for

each draw call. Each pass may have a number of render states that

it wants to either inherit from a higher-level pass or set directly.

To create a render state node, you can right-click on a pass to

which you would like to add the block, and select Add Render

State Block from the pass context menu in Figure 30.

If no render state block is defined within a pass, the applica-

tion traverses the workspace tree upward from the current pass to

find a render state node and inherits the render states from the

first render state block found. When you create a render state

node in a pass, it inherits the values from the first higher-level

314 Shader Development Using RenderMonkey

Figure 29: Phong specular illumination effect

render state block found in the workspace tree. If there are no

other render state blocks found prior to the one created, it does

not inherit any values. Changing the render state values in the

created render state node overrides inherited values. Note that

for upward traversal, the application only looks in the passes

within the current effect and the default effect. The render state

blocks in other effects don’t propagate their values. To edit any of

the render states in a render state block, you can double-click on

the render state node or right-click on the node and select Edit

from the node context menu. The render state editor window will

appear, as shown in Figure 31 on the following page.

To edit a particular render state, click in the Value column for

that render state and either select from a set of predefined values

or type a value directly if none were supplied (see the above

example for the blending op).

Shader Development Using RenderMonkey 315

Figure 30: Adding the render state block

from the pass context menu

Let’s display our celadon teapot in wireframe. That’s very simple

to do — find the Fillmode render state in the editor and set its

value to WIREFRAME by right-clicking in the Value column and

selecting that option from the menu. You will instantly see the tea-

pot displayed in the preview window in wireframe:

316 Shader Development Using RenderMonkey

Figure 31: Render state editor

Figure 32: Wireframe display

Texturing in RenderMonkey

All games these days use various texture maps for their visual

effects. Let’s learn how to use texture maps in RenderMonkey. As

you have learned previously, RenderMonkey has special variable

types for 2D textures, cube maps, and volume textures. Let’s add

a 2D texture map variable to our workspace. Right-click on the

effect workspace node and select Add Variable from the menu.

Select Texture as type, and type baseMap into the name field. By

default, all textures are added as artist-editable variables. You will

see a texture variable appear in your workspace.

Next, in order to use texturing for our effect, we need to have

texture coordinates stream into the vertex shader. Double-click on

the stream map node named standard mapping and add the third

channel for texture coordinates: Reg = v2, Usage = TexCoord,

UsageIndex = 0, Type = Float2. That creates a new stream chan-

nel to feed to the vertex shader.

The next step is to add texture coordinate propagation to the

vertex shader. That’s very simple — open the shader editor for

the vertex shader, and type the following code. The lines shown in

bold are the lines that are different from the previous example’s

vertex shader:

struct VS_OUTPUT

{

float4 Pos : POSITION;

float3 Norm : TEXCOORD0;

float3 View : TEXCOORD1;

float3 Light : TEXCOORD2;

float2 Tex : TEXCOORD3;

};

VS_OUTPUT main(

float4 inPos : POSITION,

float3 inNorm : NORMAL,

float2 inTex : TEXCOORD0)

{

VS_OUTPUT Out = (VS_OUTPUT) 0;

Shader Development Using RenderMonkey 317

// Output transformed position:

Out.Pos = mul(view_proj_matrix, inPos);

// Output light vector:

Out.Light = -lightDir;

// Compute position in view space:

float3 Pview = mul(view_matrix, inPos);

// Transform the input normal to view space:

Out.Norm = normalize(mul(view_matrix, inNorm));

// Compute the view direction in view space:

Out.View = - normalize(Pview);

// Propagate texture coordinate to the pixel shader:

Out.Tex = inTex;

return Out;

}

This forces the vertex shader to propagate texture coordinates to

the pixel shader. But to actually sample textures in the pixel

shader, we need to bind our texture variable to a texture object.

Texture Objects

To use texture-based variables, you have to first create a texture

variable using the Add Variable dialog in the desired location of the

workspace. Once that texture variable is created, you need to

select a file from which to load the texture. To actually use a tex-

ture within a pass, you need to select the desired pass and select

the Add Texture Object menu option, as shown in Figure 33 on the

following page:

318 Shader Development Using RenderMonkey

This creates an empty texture object. The texture object that

doesn’t have a valid texture reference appears with a red line

through it: . Texture objects map to texture stages

used in your shaders, and they are also used to store texture stage

and sampler states associated with that texture stage or a sampler.

To actually use a texture object in the shader, we need to add a

texture reference to it. To do that, right-click on the Pass 1 node

and select the Add Texture Reference menu option from the con-

text menu that appears (shown in Figure 34):

Shader Development Using RenderMonkey 319

Figure 33: Adding a texture object to a pass

This creates an empty texture reference. To actually bind the ref-

erence to a texture variable, the user should type the name of the

variable that he wants to reference. If a valid texture variable is

found successfully, then the red line through the texture reference

is removed. A red line across the texture reference icon denotes

that the texture variable wasn’t successfully referenced. By

default, RenderMonkey binds the texture reference to the base-

Map texture variable if one is found in the workspace, so we don’t

need to do anything to bind our texture reference.

If we want to specify some sampler states for our texture map,

we need to specify these state values (filtering, clamping, etc.) for

a particular texture reference node using the texture editor, which

can be launched by double-clicking on a texture reference node.

Figure 35 shows the texture editor for three texture objects:

320 Shader Development Using RenderMonkey

Figure 34: Adding a texture reference to a texture object

The texture editor has tabs for each individual pass within an

effect. The top of the texture editor contains a list of texture refer-

ences within the selected pass. By clicking on a texture icon, you

can select to view and set texture states for that texture. To set a

particular state, you should click on the Value field next to the

state you are trying to edit and either select a value from the pre-

defined set of values for that state or type a value if none was

provided. Note that the texture editor displays thumbnails for all

texture variables that have a valid file associated with them, and

you can see a small icon in the bottom-left corner of each thumb-

nail showing what type of texture reference it is.

Also note that only the texture objects with valid texture

references have the icon or a thumbnail image. If the texture

object’s texture reference isn’t correctly linked, then that object is

displayed with the icon. The texture editor creates thumbnails

for all texture variables; however, for cube maps or volume tex-

tures, only the first image is displayed.

Shader Development Using RenderMonkey 321

Figure 35: Texture editor

Using Textures with HLSL Shaders

To actually use the texture map in our pixel shader, we need to

first add a sampler for it to our pixel shader. This is very simple

and follows steps similar to adding a constant to the shader in

HLSL. You must have a valid texture object with a texture refer-

ence to add a sampler. Once you do, you should click on the arrow

next to the Sampler label (), which opens a list of

available texture objects that can be mapped as HLSL sampler

objects. The name of the texture reference is used as the name for

the sampler. Then you can either add or remove that sampler

object in the same manner as above. The same restrictions apply,

as far as managing nodes that are mapped to sampler objects.

If you wish to bind a parameter to a particular register, you

should select the register by clicking on the Register combo box

and selecting from the list of registers available: .

Separate register sets exist for variables and sampler mapping.

Let’s map our texture object to a sampler. Click on the arrow

and select baseMap from the list. Then click Add. You will see the

following declaration block for the pixel shader with sampling in

the declaration window:

float4 Ia;

float Ka;

float4 Is;

float Kd;

float4 Id;

float Ns;

float Ks;

sampler baseMap;

Below is the text of the pixel shader modified to use texturing

(the lines in bold are updated from the previous example):

float4 main(float4 Diff : COLOR0,

float3 Normal : TEXCOORD0,

float3 View : TEXCOORD1,

float3 Light : TEXCOORD2,

float2 Tex : TEXCOORD3) : COLOR

{

322 Shader Development Using RenderMonkey

// Compute the reflection vector:

float3 vReflect =

normalize(2 * dot(Normal, Light) * Normal - Light);

// Compute ambient term:

float4 AmbientColor = Ia * Ka;

// Compute diffuse term:

float4 DiffuseColor = Id * Kd * max(0, dot(Normal, Light));

// Compute specular term:

float4 SpecularColor = Is * Ks * pow(max(0, dot(vReflect, View)), Ns);

float4 FinalColor =

(AmbientColor + DiffuseColor) * tex2D(baseMap, Tex) + SpecularColor;

return FinalColor;

}

Once you compile this shader, you will see a nicely textured tea-

pot appear in the preview window:

Shader Development Using RenderMonkey 323

Figure 36: Textured teapot effect

Rendering to a Texture

Let’s complicate our effect a little bit. Let’s use the output of the

first pass (the one that we just created) and funnel it as the input

into the second pass. That technique is called rendering to a tex-

ture, and it can be used for a variety of interesting post-processing

effects. (Take a look at the “Real-Time Depth of Field Simulation”

(G. Riguer, N. Tatarchuk, J. Isidoro) article in ShaderX2: Shader

Programming Tips & Tricks with DirectX 9 for an example of depth

of field effects using that technique.)

Render Passes

To start working on creating the simplest rendering to a texture-

based effect, we need at least two passes. Let’s add a new pass to

our workspace. To do that, right-click on the effect node and

select Add Pass from the menu. By default, each pass is created

with a sample HLSL vertex and pixel shader and geometry and

stream map reference nodes; you can modify those at any time.

Once you add a new pass, you can see a red teapot appear in the

preview window again. That’s because the passes are drawn in the

order in which they are defined within their parent effect. To move

a pass up or down, you can right-click on the desired pass and

select Move Up or Move Down from the pass context menu

shown in Figure 37. You may also use Ctrl+up arrow to move a

pass up or Ctrl+down arrow to move the pass down. Try that with

the two passes that we have; if you move Pass 2 to be above Pass

1, you will see the textured teapot again. Then if you move it

back, the red teapot appears again.

You can also disable a particular pass to aid you in your shader

debugging. To do that, you can select Enable/Disable Pass from

the pass context menu (accessible by right-clicking on the desired

pass). A disabled pass will have this icon on the left of its name to

denote that it is disabled: . To enable the pass, just click on

the same menu option again.

324 Shader Development Using RenderMonkey

The following is an example of a workspace view with a disabled

pass:

Restore the order of passes (Pass 1 before Pass 2) before

continuing.

Renderable Texture Support

The RenderMonkey IDE supports the ability to render output of

any given pass to a texture and then sample the contents of that

texture in a subsequent pass. To add that functionality to your

workspace, here is the step sequence you must follow:

Shader Development Using RenderMonkey 325

Figure 37: Modifying the pass order from the context menu

Figure 38: Disabling a pass

1. Create a renderable texture at any point in the workspace.

Only one pass can render output to that texture at a time.

To add a renderable texture, click on any node that you

would like to add it to and select Add Renderable Texture

from the context menu that appears at that point:

2. You will see a new node appear in the tree with this icon:

. This node is the renderable texture node that you

will link later to a render target and a texture object to

sample from this renderable texture.

3. Next you need to add a render target to the pass that is

going to output to the renderable texture. Select the pass

node and right-click on it to select the context menu for

that pass; choose Add Render Target to add a new render

target (the node will have this icon next to it once it’s

created: .).

326 Shader Development Using RenderMonkey

Figure 39: Adding renderable texture

4. Next you must link the render target node to the

renderable texture that you’ve created. You can either

rename the render target node to exactly the same name as

the renderable texture node to which you want to link it,

or you can right-click on the render target node and select

a node to reference from a context menu that will appear:

Shader Development Using RenderMonkey 327

Figure 40: Adding a render target to a pass

Figure 41: Linking the render target node

to a renderable texture variable

5. At this point, the output of the pass that owns the render

target node is drawn to the renderable texture.

6. Next, let’s link the renderable texture to a pass that is

going to sample from it. To do that, you must first create a

texture object and a texture reference within that pass

(see the section on managing textures above). Once a tex-

ture reference exists, you must link it to the renderable

texture by either renaming the texture reference node to

exactly the same name as the renderable texture or by

right-clicking on the texture reference node and selecting

the renderable texture you want to link it to from the Ref-

erence Node menu:

7. At this point, you can use the texture object as you would

normally use it in your shader (assembly or HLSL).

328 Shader Development Using RenderMonkey

Figure 42: Linking a texture object to a

renderable texture variable for sampling

Let’s add a renderable texture to our workspace. Right-click on

the effect workspace node and select Add Renderable Texture

from the context menu. Then we need to add a render target to

Pass 1 — right-click on that pass and select Add Render Target.

Link this render target to the renderable texture that we have

created by right-clicking on the render target and selecting

renderTexture from the Reference Node menu that appears. You

will see that the red line across the render target node disappears

and the name of the render target is now renderTexture. At this

point, the output of Pass 1 is diverted to the renderable texture

variable.

Next we want to add the ability to sample from that texture

in our second pass. First we need to make sure that the vertex

shader propagates the texture coordinates correctly. Type this

text into the vertex shader:

struct VS_OUTPUT

{

float4 Pos: POSITION;

float2 Tex: TEXCOORD0;

};

VS_OUTPUT main(float4 Pos: POSITION, float2 Tex: TEXCOORD0)

{

VS_OUTPUT Out = (VS_OUTPUT) 0;

Out.Pos = mul(view_proj_matrix, Pos);

Out.Tex = Tex;

return Out;

}

This ensures that we will be interpolating texture coordinates

into the pixel shader. Next, let’s add a texture object with a tex-

ture reference to Pass 2, following the same steps as in the earlier

example. However, instead of linking the texture variable, let’s

link it to the renderTexture renderable texture variable. This

directs the output of Pass 1 to Pass 2. Open the pixel shader for

Pass 2 and add renderTexture as a sampler to that pass. Then type

this text as the pixel shader code:

Shader Development Using RenderMonkey 329

float4 main(float4 Diff : COLOR0,

float2 Tex : TEXCOORD0) : COLOR

{

return tex2D(renderTexture, Tex);

}

At this point the preview window shows a green textured teapot

(take a look at Figure 43). Set these sampler states for the texture

objects in both passes for a nicer rendering result: Minfilter =

LINEAR and Magfilter = LINEAR. (The picture below has the

preview window’s clear color set to a dark gray value.)

330 Shader Development Using RenderMonkey

Figure 43: Render-to-texture effect

Editing a Renderable Texture

To edit a renderable texture node, double-click on the node itself

() to open the renderable texture editor module (see Figure

44).

In the renderable texture editor you can change the dimensions of

the renderable texture. To change either the width or height of the

texture, type the integer dimension into the appropriate edit box

and press Enter to propagate the changes and create a new

renderable texture. You may also bind the texture to use the

dimensions of the current viewport by checking the Use viewport

dimensions box. To change the format of the renderable texture,

the user can select from a list of predefined formats by selecting

them from the Format combo box control.

Shader Development Using RenderMonkey 331

Figure 44: Renderable texture editor

Editing a Render Target

To edit a render target node, the user should double-click on the

node itself () to open the render target editor window:

From this editor, the user can select whether to clear the render-

able texture by checking or unchecking the Enable color clear

box. If the user chooses to clear the texture, he can select the

color he wishes to clear it to by clicking on the Clear Color button

and selecting the color from the dialog that appears. The user can

also select whether to enable depth clearing by checking or un-

checking the Enable depth clear box. If depth clearing is enabled,

the user can select the value used.

Artist Editor

One of the problems that shader developers face in production is

how to present the shaders to the 3D artists to allow the artists to

experiment with the shader parameters in order to achieve

desired effects. RenderMonkey’s solution for this problem is the

artist editor module combined with the Art tab in the workspace

view.

332 Shader Development Using RenderMonkey

Figure 45: Render target editor

A shader developer can select certain variables in the shader

effect workspace to be flagged as “artist-editable” variables. To do

that, you can select Artist Editable from the right-click menu for

the desired variable node, and a small yellow flag icon will be

overlaid over the icon for that variable. Then you can give the

Effect Workspace with your shaders to the artists you work with.

The artists can select the Art tab from the workspace view to only

view artist variables present in the workspace. For added conve-

nience, artists can edit artist variables of supported types in the

artist editor module. Currently, the supported types for the artist

editor are vectors, scalars, and colors; however, any variable can

be flagged as an artist variable and accessed from the Art

workspace tab.

To open the artist editor, you can either click the button

on the application toolbar or select Artist Editor from the View

menu in the main application menu bar.

Shader Development Using RenderMonkey 333

Figure 46: Artist editor interface

The Artist Editor window has tabs for each effect workspace,

effect group, effect, or pass that contains artist-editable variables.

If the node contains no artist-editable variables of supported

types, it won’t appear as a tab in the artist editor.

Artist-editable variables are arranged by their types in groups

(color, vector, and scalar). Each group can be expanded or col-

lapsed by clicking on the button within the group.

Editing Variables in the Artist Editor Module

Colors

Each color variable has three related controls — a color swatch

button for opening the full color picker module, a hue slider, and

an intensity slider:

334 Shader Development Using RenderMonkey

Figure 47: Artist Editor window

If you click on the button, you will get an expanded set of

controls for editing color with more precision, as shown in Figure

49.

Vectors

Each vector variable has five related controls — a label button

that opens up the full vector editor and four component edit boxes

with pop-up slider buttons for editing each vector component

interactively:

Shader Development Using RenderMonkey 335

Figure 48: Individual set of controls for editing color in the artist editor

Figure 49: Expanded set of controls for editing color variables in the Artist

Editor window

Figure 50: Editing vectors in the artist editor

If the user clicks on the button for a particular vector (),

he will see an expanded set of controls for editing vectors with

more precision and control:

Scalars

Each scalar has two related controls — a label button that opens

up the full scalar editor and an edit box with a pop-up slider button

for editing the slider value directly.

If the user clicks on the button, he can see an expanded

set of controls for editing scalar variables in the artist editor:

336 Shader Development Using RenderMonkey

Figure 51: Expanded set of controls for editing vectors in the artist editor

Figure 52: Editing scalars in the artist editor

Figure 53: Expanded set of controls for editing scalars in the artist editor

Summary

I hope that this article was helpful in showing you the ease of use

and convenience of developing shaders with the RenderMonkey

IDE. As with all the tools and samples provided by ATI, we wel-

come feedback from the developers who spend every day “in the

trenches” solving real problems. ATI is committed to providing

you with the tools that you need to make your job easier. In order

to do this, we need you to tell us what works and what doesn’t.

What additions or enhancements would you like to see? What

additional problem areas exist that we’re not currently helping

with? Please help us to help you by providing as much feedback

as possible to devrel@ati.com.

Shader Development Using RenderMonkey 337

Tips for Creating
Shader-Friendly 3D Models

Gim Guan Chua

Certain shaders, such as bump-mapping shaders, require the use

of tangent space. (For more information on tangent basis and its

use in bump-mapping, please refer to nVidia’s “The CG Tutorial.”)

Since 3D model data typically comes with only vertices,

normals, and texture coordinates, a common method is to “auto-

magically” deduce the corresponding tangents and binormals (the

tangent basis consists of the normal, binormal, and tangent) based

on normals and texture coordinates. This method is convenient

and effective, but sometimes it can produce undesirable artifacts.

This is due to the following factors:

� It requires suitable texture coordinates.

� It is influenced by “vertex weight,” or the number of triangles

sharing the same vertex.

� It is ideal for models with convex surfaces but presents prob-

lems for models with indentations or protrusions.

339

Generating Suitable Texture Coordinates

The easiest way to generate texture coordinates is to do a planar

projection of the model onto a 2D plane. However, this results in

some adjacent vertices having the same texture coordinates;

imagine projecting a cube onto the z=0 plane. To remedy that, off-

set one of the texture coordinates slightly. Figure 1 shows a bevel

button having the wrong specular highlight, and Figure 2 shows an

“adjusted” bevel button with the correct specular highlight.

340 Tips for Creating Shader-Friendly 3D Models

Figure 1: Wrong lighting due to similar texture coordinates

The Influence of “Vertex Weight”

The components of the tangent basis — vertex normal, tangent,

and binormal — are averages of triangles that share the vertex.

Therefore, if a vertex is shared by more triangles, its tangent

basis is influenced by more triangles. An ideal mesh would be

where the vertices are evenly shared, like a strip of triangles.

However, meshes are often “auto-tesselated” from higher-order

polygons (quads, pentagons, etc.) into triangles with no regard to

evenly distributing the sharing of vertices. A way to overcome

this is to selectively re-tesselate problem areas, as shown in Fig-

ures 3 and 4.

Tips for Creating Shader-Friendly 3D Models 341

Figure 2: “Adjusted” button showing correct lighting

342 Tips for Creating Shader-Friendly 3D Models

Figure 3: A rendering artifact in the left face

Figure 4: Remedied by changing the way the quad is tesselated

Problems with Non-Convex Surfaces

The tangent basis calculation method is ideal for smooth models

with convex surfaces, such as spheres and donuts. However, com-

plex models with indentations and extrusions often mess up the

tangent basis. This is again due to the effect of vertex weights.

Figure 5 shows the messiness that an indentation did to a plane.

There are three ways to solve this problem:

� Use a modeling tool that allows for tweaking of normals, tan-

gents, and binormals. Some tools support normal tweaking,

but tangent and binormal adjustment is rare.

� Break the model apart. Figure 6 shows such a case. The result

is a total discontinuity between the two meshes.

� Additional tesselation to buffer or soften the effects of the dis-

continuity. Figure 7 shows the result. This actually preserves

a little continuity, as seen by the highlights around the inden-

tation compared to Figure 6.

Tips for Creating Shader-Friendly 3D Models 343

Figure 5: The tesselation has a great effect on bump-mapping and specular

highlights.

344 Tips for Creating Shader-Friendly 3D Models

Figure 6: Breaking the mesh into two

Figure 7: Buffered tesselation, with the plane before triangulation

Conclusion

The combination of the three methods (generating suitable tex-

ture coordinates, re-tesselating to distribute vertex weights more

evenly, and buffered tesselation to soften the effect of discontinu-

ity) is effective in creating complex models that would render

bump maps, specular highlights, and other tangent basis-depend-

ent effects correctly. It does not need changes to modeling tools or

shaders. Instead, it only requires a little more work on the part of

the modeler to tweak the model to become shader-friendly.

Tips for Creating Shader-Friendly 3D Models 345

Figure 8: A complex shader-friendly model (See Color Plate 8.)

C
o
l
o
r

P
l
a
t
e

1
.

(
C

o
o
k
-
T
o
r
r
a
n
c
e

l
i
g
h
t
i
n
g
)

R
e
n
d
e
r
i
n
g

w
i
t
h

v
a
r
i
o
u
s

r
e
f
r
a
c
t
i
o
n

i
n
d
e
x

v
a
l
u
e
s

w
i
t
h

p
i
x
e
l
s
h
a
d
e
r

1
.
4

(
t
o
p

r
o
w

)
a
n
d

p
i
x
e
l
s
h
a
d
e
r

2
.
0

(
b
o
t
t
o
m

r
o
w

)
.

R
o
u
g
h
n
e
s
s

i
s

c
o
n
s
t
a
n
t
a
t
0
.
1
5
.
T
h
e

i
n
d
e
x

o
f

r
e
f
r
a
c
t
i
o
n

i
s

0
.
1
5
,
0
.
4
5
,
a
n
d

0
.
8
5

(
l
e
f
t
t
o

r
i
g
h
t
)
.
N

o
t
e

t
h
e

v
i
s
i
b
i
l
i
t
y

o
f

t
h
e

f
a
c
e

e
d
g
e
s

a
n
d

e
r
r
o
r

(
c
r
a
c
k
)

i
n

t
h
e

m
i
d
d
l
e

o
f

t
h
e

l
a
r
g
e

h
i
g
h
l
i
g
h
t
s

i
n

t
h
e

1
.
4

v
e
r
s
i
o
n
.
(
S
e
e

p
a
g
e

1
4
7
.
)

C
o
l
o
r

P
l
a
t
e

2
.
L
i
n
e
a
r

f
o
g

(
S
e
e

p
a
g
e

1
5
4
.
)

C
o
l
o
r

P
l
a
t
e

3
.
E
x
p
o
n
e
n
t
i
a
l
s
q
u
a
r
e
d

f
o
g

(
S
e
e

p
a
g
e

1
6
2
.
)

C
o
l
o
r

P
l
a
t
e

4
.
L
a
y
e
r
e
d

f
o
g

(
S
e
e

p
a
g
e

1
6
6
.
)

C
o
l
o
r

P
l
a
t
e

5
.

S
h
a
d
o
w

m
a
p

r
e
s
u
l
t
s

(
S
e
e

p
a
g
e

1
9
4
.
)

C
o
l
o
r

P
l
a
t
e

6
.
S
h
a
d
o
w

e
d

s
c
e
n
e

(
S
e
e

p
a
g
e

2
7
6
.
)

C
o
l
o
r

P
l
a
t
e

7
.
S
h
a
d
o
w

e
d

s
c
e
n
e

w
i
t
h

s
h
a
d
o
w

v
o
l
u
m

e
e
x
p
o
s
e
d

(
S
e
e

p
a
g
e

2
7
6
.
)

C
o
l
o
r

P
l
a
t
e

8
.

A
c
o
m

p
l
e
x

s
h
a
d
e
r
-
f
r
i
e
n
d
l
y

m
o
d
e
l

(
S
e
e

p
a
g
e

3
4
5
.
)

Index

A

animated fog, 174-176

implementing, 176-178

approximations, using for optimization,

269-270

arbitrary source swizzling, 69-70

using with destination write masks,

70

artist editor module,

in RenderMonkey, 332-336

using to edit variables, 334-336

assembly language and DirectX, 4-6

assembly-level shader models, 4-6

assembly shaders, editing in

RenderMonkey, 303-305

B

back capping, 231-232

_bias modifier, 48

bilinear filtering, 186

branching,

dynamic, 44

static, 43-44

_bx2 modifier, 47-48

C

_centroid modifier, 81

clipping, 205

problems with, 212-219

col_major modifier, 13

color variables, editing in RenderMonkey,

313-314, 334-335

command-line options, 8

compile target, 6

modifiers, 46-50

compile targets, using ps_1_x, 46-47

complement modifier, 49-50

const modifier, 12

constant table, 26, 59-61

example of, 26-27

constructors, working with in HLSL, 15

Cook-Torrance lighting model, 134-136

HLSL pixel shader example, 145-147

HLSL vertex shader example,

143-145

pixel shader 1.4 example, 142-143

pixel shader 2.0 example, 138-140

vertex shader 2.0 example, 136-138

cube map environment mapping, 108-109

cube map space, 109

D

_d2 destination write modifier, 49

_d4 destination write modifier, 49

_d8 destination write modifier, 49

D3DX Effects, 51

using with HLSL, 51-58

data, preprocessing, 245-248

data input, 25

uniform, 25-27

varying, 27-29

data output, 29-31

data set, processing, 267-269

data type declarations, 44-45

data types,

in HLSL, 9-12

matrix, 11-12

scalar, 9-10

vector, 10-11

degenerate quads, 246

drawbacks to using, 260-262

using, 247-249

depth bias, 183-185

depth clamping, 218-219

depth comparison, 183-185

depth-fail, 205-209, 275

347

and view frustum clipping, 212-215

drawbacks of, 209-219

example, 238-241

two-sided, 264-266

depth-pass, 201-205, 275

and view frustum clipping, 212-214

drawbacks of, 204-205, 209-219

example, 233-238

destination write masks,

using with arbitrary source swizzling,

70

using with texture instructions, 70-71

DirectX and assembly language, 4-6

draw call, 284

dual paraboloid environment mapping,

108-109

dynamic branching, 44

dynamic flow control, 66-69

E

edge elimination, 221-222

effect, 51

group, 284

nodes, 284

workspace, 284

effect API, 57-58

effect file example, 52-57

effects, managing in RenderMonkey,

294-295

environment mapping, 108-109

HLSL pixel shader example, 120-121

HLSL vertex shader example,

119-120

pixel shader 1.4 example, 115-117

pixel shader 2.0 example, 117-119

vertex shader 2.0 example, 112-114

environmental fog, 151

errors, checking in RenderMonkey,

302-303

exponential fog, 157-158

implementing, 159-161

exponential squared fog, 162-163

implementing, 164-166

expp instruction, 45

extern modifier, 13

F

face register, 78-79

finite shadow volume, 209-210

implementing, 250-256

flow control, 66-69

dynamic, 66-69

static, 66

using to optimize shader, 42-44

fog, 151

animated, see animated fog

calculating, 152-153

exponential, see exponential fog

exponential squared, see exponential

squared fog

layered, see layered fog

linear, see linear fog

fog effects, adding, 151

Fresnel term, using, 111

front capping, 231-232

rendering, 241-243

fxc command-line compiler, 7-8

G

geometries, preprocessing, 245-248

ghost shadows, 210-212

gradient instructions in ps_3_0, 80-81

H

High Level Shading Language, see HLSL

HLSL, 1

constructors in, 15

initializing variables in, 14

invoking compiler, 58-61

keywords, 8-9

modifiers, 46-50

optimizing, 39-51

storage class modifiers, 13-14

structures in, 17

type casting in, 15-17

type modifiers, 12-13

using to implement shadow volumes,

262

using with D3DX Effects, 51-58

vectors in, 14-15

HLSL data types, 9-12

matrix, 11-12

scalar, 9-10

348 Index

vector, 10-11

HLSL pixel shader, 3-4

Cook-Torrance lighting example,

145-147

environment mapping example,

120-121

example, 35-39

Oren-Nayar lighting example,

133-134

Phong lighting example, 95-97

HLSL shader, 2-4

drawbacks to using, 6-7

using textures with, 322-323

HLSL vertex shader, 2-3

Cook-Torrance lighting example,

143-145

environment mapping example,

119-120

example, 32-35

Oren-Nayar lighting example,

131-132

Phong lighting example, 94-95

I

infinite shadow volume, 200

implementing, 256-260

input, declaring, 64-65

input type declarations, 44-45

instruction count limitations, 46-47

instructions,

in ps_3_0, 80-81

in vs_3_0, 73

integer data type, using to optimize

shader, 41-42

intrinsics, 19

math, 20-22

sampling, 23-25

invisible fillrate, minimizing, 270-271

L

Lambertian model, 125

layered fog, 166-168

implementing, 168-173

light source management, 271

light sources, culling, 271-272

lighting model concepts, 122-125

lighting models,

Cook-Torrance, 134-136

Oren-Nayar, 125-127

Phong, 84-85

linear fog, 154

implementing, 155-156

lit instruction, 45

log instruction, 45-46

logp instruction, 45-46

loops, using for optimization, 42

M

masking, 124-125

math intrinsics, 20-22

matrix data type, using for optimization,

40-41

matrix variables, editing in

RenderMonkey, 312-313

model node, 293-294

model reference node, 293-294

modifiers in HLSL, 12-14

N

negate modifier, 50

nodes, 285

normalization, 92

NPR Metallic example, 31-39

HLSL pixel shader, 35-39

HLSL vertex shader, 32-35

O

occluder, 199-200

culling, 272-273

optimization,

data type declaration, 44-45

HLSL, 39-51

precision, 45-46

ps_1_x, 51

shadow volumes, 267-275

using flow control, 42-44

using integer data type, 41-42

using loops, 42

using matrix data type, 40-41

Oren-Nayar lighting model, 125-127

HLSL pixel shader example, 133-134

HLSL vertex shader example,

131-132

Index 349

pixel shader 2.0 example, 127-131

output, declaring, 64-65

P

paraboloid environment mapping,

108-109

pass, 284

PCF, see percentage closer filtering

percentage closer filtering, 185-186

per-pixel Phong lighting, 84-85 see also

Phong lighting

pixel shader 2.0 example, 89-93

vertex shader 2.0 example, 86-89

Phong lighting, 84-85 see also per-pixel

Phong lighting

HLSL pixel shader example, 95-97

HLSL vertex shader example, 94-95

using, 282-283

vertex shader example, 298-301

pixel shader,

editing in RenderMonkey, 306-308

input semantics, 29

output semantics, 30

pixel shader 1.4,

Cook-Torrance lighting example,

142-143

environment mapping example,

115-117

using, 140-142

vs. pixel shader 2.0, 97, 147-148

pixel shader 2.0,

Cook-Torrance lighting example,

138-140

environment mapping example,

117-119

Oren-Nayar lighting example,

127-131

per-pixel Phong lighting example,

89-93

shadow map generation example, 188

shadow rendering example, 190-194

vs. pixel shader 1.4, 97, 147-148

pixel shader 3.0, 97-98

four-spotlight example, 103-108

position register, 79

precision, optimization issues with, 45-46

predefined variables in RenderMonkey,

288-290

predicate register, 65-66

predication, 65-66

procedural wood example,

pixel shader, 3-4

vertex shader, 2-3

ps_1_x compile target modifiers, 46-50

ps_1_x compile targets, using, 46-47

ps_1_x optimization, 51

ps_3_0 features, 64-71, 78-82

R

reflection vector, calculating, 109-111

registers,

in ps_3_0, 78-79

in vs_3_0, 71-72

render passes, 324-325

render states, managing in

RenderMonkey, 314-316

render target, editing, 332-336

renderable texture, editing, 331

RenderMonkey,

adding shaders with, 295

artist editor module, 332-336

checking errors in, 302-303

compiling shaders in, 302

editing assembly shaders in, 303-305

editing pixel shaders in, 306-308

editing render targets in, 332-336

editing renderable textures in, 331

editing shaders with, 296-298

editing variables in, 310-314, 334-336

IDE, 281-282

managing effects in, 294-295

managing render states in, 314-316

rendering to texture with, 324-330

texturing in, 317-323

using, 279-280

using to render a specular material,

282-283

using variables with, 286-290

re-tesselation, 341-344

roughness, 123-124

row_major modifier, 13

350 Index

S

samplers, 4, 17-19

examples of, 17-19

_sat modifier, 50

saturate modifier, 50

scalar variables, editing in

RenderMonkey, 310-311, 336

scene management, 271-274

semantics, 2-3

shader 3.0 model, 63

shader input, 25

uniform, 25-27

varying, 27-29

shader output, 29-31

shaders, see also vertex shader, pixel

shader, HLSL shader

adding with RenderMonkey, 295

advantages to using, 260-262

compiling in RenderMonkey, 302

drawbacks to using, 260-262

editing in RenderMonkey, 296-298

NPR Metallic, 31-39

procedural wood, 2-4

shadow map, 182

filtering, 185-186

shadow map generation,

pixel shader 2.0 example, 188

vertex shader 2.0 example, 187

shadow mapping algorithm, 182-183

shadow rendering,

pixel shader 2.0 example, 190-194

vertex shader 2.0 example, 188-189

shadow volume capping, 207-209,

231-233

rendering, 241-243

shadow volumes, 197-201

advantages of, 198

forming, 225-230, 249-250

implementing, 201

implementing on CPU, 220-243

implementing on GPU, 243-262

implementing with HLSL, 262

infinite, 200

multiple, 207-208

optimizing, 267-275

overlapping, 203-204

rendering, 241-243

steps for implementing, 220, 244-245

techniques, 201

shadowing, 124-125

shadows, importance of, 181-182, 197

shared modifier, 13

silhouette clipping, 269-270

silhouette determination, 221-225

silhouette mapping, 269

spherical coordinates, 122-123

standard mapping node, 286

static branching, 43-44

static flow control, 66

static modifier, 13

stencil buffer, 199

stencil shadow volumes, see shadow

volumes

storage class modifiers in HLSL, 13-14

stream mapping node, 290

using, 290-293

structures, working with in HLSL, 17

surface roughness, 123-124

swizzling, 69-70

T

tangent space, drawbacks to using, 339

technique, 51-52

texture,

editing renderable, 331

rendering to, 324-330

using with HLSL shaders, 322-323

texture coordinates, generating, 340-341

texture editor, 320-321

texture instructions, using with destina-

tion write masks, 70-71

texture object, creating, 318-319

texture reference, creating, 319-320

texture sampling, 325-330

in ps_3_0, 82

in vs_3_0, 73-76

intrinsics, 23-25

texturing in RenderMonkey, 317-323

two-sided depth-fail, 264-266

two-sided stenciling, 263-264

render states, 264

type casting in HLSL, 15-17

type modifiers in HLSL, 12-13

Index 351

U

uniform data input, 25-27

uniform modifier, 13

V

variables,

creating in RenderMonkey, 286-288

editing in RenderMonkey, 310-314,

334-336

initializing in HLSL, 14

predefined in RenderMonkey, 288-290

varying data input, 27-29

v-cavities model, 123

vector variables, editing in

RenderMonkey, 311-312, 335-336

vectors, working with in HLSL, 14-15

vertex shader,

animated fog example, 176-178

exponential fog example, 159-161

exponential squared fog example,

164-166

finite shadow volume example,

250-256

infinite shadow volume example,

256-260

input semantics, 28

layered fog example, 168-173

linear fog example, 155-156

output semantics, 30

Phong illumination example, 298-301

vertex shader 2.0,

Cook-Torrance lighting example,

136-138

environment mapping example,

112-114

per-pixel Phong lighting example,

86-89

shadow map generation example, 187

shadow rendering example, 188-189

vertex shader 3.0, 97-98

four-spotlight example, 98-102

vertex stream frequency, in vs_3_0,

76-78

vertex weight, 341-344

view frustum clipping, 212-219

and depth-fail, 212-215

and depth-pass, 212-214

vs_3_0 features, 64-71, 71-78

W

welded meshes, using, 267-268

workspace view, 285-286

X

_x2 destination write modifier, 49

_x2 modifier, 48-49

_x4 destination write modifier, 49

_x8 destination write modifier, 49

Z

z-fail, see depth-fail

z-pass, see depth-pass

352 Index

Looking

Check out Wordware’s market-

featuring the following new

Visit us online at www.wordware.com for more information.

Official Butterfly.net Game
Developer’s Guide
1-55622-044-8 • $59.95
6 x 9 • 500 pp.

Strategy Game Programming
with DirectX 9.0
1-55622-922-4 • $59.95
6 x 9 • 560 pp.

Introduction to 3D Game Programming
with DirectX 9.0
1-55622-913-5 • $49.95
6 x 9 • 424 pp.

Essential LightWave 3D 7.5
1-55622-226-2 • $44.95
6 x 9 • 424 pp.

LightWave 3D 7.5 Lighting
1-55622-354-4 • $69.95
6 x 9 • 496 pp.

ShaderX2: Shader Programming
Tips & Tricks with DirectX 9
1-55622-988-7 • $59.95
6 x 9 • 700 pp.

Learn FileMaker Pro 6
1-55622-974-7 • $39.95
6 x 9 • 504 pp.

FileMaker Pro 6 Developer’s Guide
to XML/XSL
1-55622-043-X • $49.95
6 x 9 • 416 pp.

Advanced FileMaker Pro 6 Web
Development
1-55622-860-0 • $59.95
6 x 9 • 464 pp.

Advanced 3D Game Programming
with DirectX 9.0
1-55622-968-2 • $59.95
6 x 9 • 552 pp.

Game Development and Production
1-55622-951-8 • $49.95
6 x 9 • 432 pp.

Games That Sell!
1-55622-950-X • $34.95
6 x 9 • 336 pp.

for more?

leading Game Developer ’s Library

releases and backlist titles.

Use the following coupon code for online specials: Shader902X

Direct3D ShaderX: Vertex and Pixel
Shader Tips and Tricks
1-55622-041-3 • $59.95
7½ x 9¼ • 520 pp.

Modeling a Character in 3DS Max
1-55622-815-5 • $44.95
7½ x 9¼ • 544 pp.

Game Design: Theory and Practice
1-55622-735-3 • $49.95
7½ x 9¼ • 608 pp.

Advanced Linux 3D Graphics
Programming
1-55622-853-8 • $59.95
7½ x 9¼ • 640 pp.

Vector Game Math Processors
1-55622-921-6 • $59.95
6 x 9 • 528 pp.

Game Design Foundations
1-55622-973-9 • $39.95
6 x 9 • 400 pp.

Java 1.4 Game Programming
1-55622-963-1 • $59.95
6 x 9 • 672 pp.

DirectX 9 Audio Exposed: Interactive
Audio Development
1-55622-288-2 • $59.95
6 x 9 • 568 pp.

About the CD

The companion CD contains examples and source code discussed

in the articles. The files are organized into folders named for each

article, although there may not be an example for every article.

Each folder and/or subfolder includes a readme.txt document that

explains the examples, contains instructions, and lists hardware

requirements.

Simply place the CD in your CD drive and select the folder for

the example you would like to see.

� Warning: By opening the CD package, you accept the terms

and conditions of the CD/Source Code Usage License Agreement on

the following page.

Additionally, opening the CD package makes this book

nonreturnable.

CD/Source Code Usage License Agreement
Please read the following CD/Source Code usage license agreement before opening the CD and
using the contents therein:

1. By opening the accompanying software package, you are indicating that you have read and
agree to be bound by all terms and conditions of this CD/Source Code usage license
agreement.

2. The compilation of code and utilities contained on the CD and in the book are copyrighted
and protected by both U.S. copyright law and international copyright treaties, and is owned
by Wordware Publishing, Inc. Individual source code, example programs, help files,
freeware, shareware, utilities, and evaluation packages, including their copyrights, are
owned by the respective authors.

3. No part of the enclosed CD or this book, including all source code, help files, shareware,
freeware, utilities, example programs, or evaluation programs, may be made available on a
public forum (such as a World Wide Web page, FTP site, bulletin board, or Internet news
group) without the express written permission of Wordware Publishing, Inc. or the author
of the respective source code, help files, shareware, freeware, utilities, example programs,
or evaluation programs.

4. You may not decompile, reverse engineer, disassemble, create a derivative work, or other-
wise use the enclosed programs, help files, freeware, shareware, utilities, or evaluation
programs except as stated in this agreement.

5. The software, contained on the CD and/or as source code in this book, is sold without war-
ranty of any kind. Wordware Publishing, Inc. and the authors specifically disclaim all other
warranties, express or implied, including but not limited to implied warranties of merchant-
ability and fitness for a particular purpose with respect to defects in the disk, the program,
source code, sample files, help files, freeware, shareware, utilities, and evaluation programs
contained therein, and/or the techniques described in the book and implemented in the
example programs. In no event shall Wordware Publishing, Inc., its dealers, its distributors,
or the authors be liable or held responsible for any loss of profit or any other alleged or
actual private or commercial damage, including but not limited to special, incidental, conse-
quential, or other damages.

6. One (1) copy of the CD or any source code therein may be created for backup purposes.
The CD and all accompanying source code, sample files, help files, freeware, shareware,
utilities, and evaluation programs may be copied to your hard drive. With the exception of
freeware and shareware programs, at no time can any part of the contents of this CD reside
on more than one computer at one time. The contents of the CD can be copied to another
computer, as long as the contents of the CD contained on the original computer are deleted.

7. You may not include any part of the CD contents, including all source code, example pro-
grams, shareware, freeware, help files, utilities, or evaluation programs in any compilation
of source code, utilities, help files, example programs, freeware, shareware, or evaluation
programs on any media, including but not limited to CD, disk, or Internet distribution, with-
out the express written permission of Wordware Publishing, Inc. or the owner of the
individual source code, utilities, help files, example programs, freeware, shareware, or eval-
uation programs.

8. You may use the source code, techniques, and example programs in your own commercial
or private applications unless otherwise noted by additional usage agreements as found on
the CD.

� Warning: By opening the CD package, you accept the terms and

conditions of the CD/Source Code Usage License Agreement.

Additionally, opening the CD package makes this book nonreturnable.

	ShaderX2 Introductions & Tutorials With DirectX 9
	Cover

	Articles
	Contents
	Preface
	About the Authors
	Introduction
	Introduction to the DirectX High Level Shading Language
	Introduction
	A Simple Example
	Assembly Language and Compile Targets
	Hardware Realities
	Compilation Failure
	The Command-line Compiler - fxc

	Language Basics
	Keywords
	Data Types
	Type Modifiers
	Storage Class Modifiers
	Initializers
	Working with Vectors
	Constructors
	Type Casting
	Structures
	Samplers

	Intrinsics
	Math Intrinsics
	Texture Sampling Intrinsics

	Shader Inputs
	Uniform Input
	Varying Input

	Shader Outputs
	An Example Shader
	Optimization
	Matrix Data Type Usage

	Integer Data Type Usage
	Flow Control and Performance
	Importance of Input Type Declarations
	Precision Issues (logp, expp, lit)
	Using the ps_1_x Compile Targets
	Strategy for Targeting ps_1_x
	Integration into an Engine Using D3DX Effects
	Effect Files
	The Effect API

	Integration into an Engine without Using D3DX Effects
	The Constant Table

	SDK Updates
	Conclusion
	Acknowledgments

	Introduction to the vs_3_0 and ps_3_0 Shader Models
	Introduction
	Features Common to vs_3_0 and ps_3_0
	Flexible Input and Output Declarations
	Predication
	Static and Dynamic Flow Control
	Arbitrary Swizzle
	Destination Write Masks on Texture Instructions

	vs_3_0 Features
	Registers
	Instructions
	Texture Sampling
	Vertex Stream Frequency

	ps_3_0 Features
	Registers
	Instructions
	Unlimited Texture Samples and Dependent Reads

	Conclusion
	References

	Advanced Lighting and Shading with Direct3D 9
	Introduction
	Per-Pixel Phong
	Phong's Lighting Equation
	Vertex and Pixel Shaders 2.0
	Vertex and Pixel Shaders 3.0

	Per-pixel Environment Bump Mapping with Fresnel Term
	Mathematical Background
	Vertex Shader
	Pixel Shader 1.4
	Pixel Shader 2.0
	HLSL Version

	Background for Advanced Models
	Spherical Coordinates
	Roughness of a Surface
	Masking and Shadowing

	The Oren-Nayar Model
	Shaders
	HLSL Version

	Cook-Torrance Model
	Shaders 2.0
	Shaders 1.4
	HLSL Version
	Quality Comparison

	Conclusion
	References

	Introduction to Different Fog Effects
	Introduction
	The Theory behind Fog Calculations
	Technique One: Linear Fog
	Fog Equation
	Implementation

	Technique Two: Exponential Fog
	Fog Equation
	Implementation

	Technique Three: Exponential Squared Fog
	Fog Equation
	Implementation

	Technique Four: Layered Fog
	Theory and Equations
	Implementation

	Technique Five: Animated Fog
	Theory and Equations
	Implementation

	Conclusion
	References

	Shadow Mapping with Direct3D 9
	Introduction
	Shadow Algorithm
	Depth Bias Problem
	Shadow Map Filtering
	Shaders for Shadow Map Creation
	Shaders for Final Rendering
	Conclusion
	References

	The Theory of Stencil Shadow Volumes
	Introduction
	Shadow Volume Concept
	Depth-pass (z-pass)
	Depth-fail (z-fail)

	Problems and Solutions
	Finite Shadow Cover
	Ghost Shadow
	View Frustum Clipping

	Implementation on CPU
	How It Is Done
	Silhouette Determination
	Forming the Shadow Volume
	Shadow Volume Capping
	Depth-pass Stenciling Operations (DepthPassCPU)
	Depth-fail Stenciling Operations (DepthFailCPU)
	Rendering Shadow Volume Capping

	Implementation on GPU (Shaders)
	How It Is Done
	Preprocessing of Data
	Forming Shadow Volume in Shaders
	Vertex Shader Implementation (FiniteGPU)
	Vertex Shader Implementation (InfiniteGPU)
	Better with Shaders?

	DirectX 9 HLSL Samples
	Efficiency and Robustness
	Use Less for More
	Cheat Whenever You Can
	Fighting the Invisible
	Scene Management Inside and Out
	Always a Good Switch
	Mix and Match

	The End
	References

	Shader Development Using RenderMonkey
	Introduction
	Overview of the IDE
	Creation of Basic Illumination Effect
	Run-Time Database Overview
	Workspace View
	Variable Creation and Management
	Predefined RenderMonkey Variables
	Stream Mapping Module
	Model Management
	Managing Effects

	Pixel and Vertex Shaders
	Editing Shaders
	Vertex Shader Setup and Editing
	Compiling Your Shaders
	Output Window
	Shader Assembly or Compilation Errors
	Editing Assembly
	Pixel Shader Setup and Editing
	Preview Window
	Editing Variables

	Render State Block Management
	Texturing in RenderMonkey
	Texture Objects
	Using Textures with HLSL Shaders

	Rendering to a Texture
	Render Passes

	Renderable Texture Support
	Editing a Renderable Texture
	Editing a Render Target
	Artist Editor
	Editing Variables in the Artist Editor Module

	Summary

	Tips for Creating Shader-Friendly 3D Models
	Generating Suitable Texture Coordinates
	The Influence of "Vertex Weight"
	Problems with Non-Convex Surfaces
	Conclusion

	Index
	Team DDU

