


201 West 103rd Street, Indianapolis, Indiana 46290

André LaMothe 

Tricks of the 3D
Game Programming

Gurus
Advanced 3D Graphics and Rasterization

00 0672318350 fm  05•02•2003  2:31 PM  Page i



Tricks of the 3D Game Programming Gurus:
Advanced 3D Graphics and Rasterization
Copyright © 2003 by Sams Publishing

All rights reserved. No part of this book shall be reproduced, stored in
a retrieval system, or transmitted by any means, electronic, mechani-
cal, photocopying, recording, or otherwise, without written permission
from the publisher. No patent liability is assumed with respect to the
use of the information contained herein. Although every precaution
has been taken in the preparation of this book, the publisher and
author assume no responsibility for errors or omissions. Nor is any
liability assumed for damages resulting from the use of the informa-
tion contained herein.

International Standard Book Number: 0-672-31835-0

Library of Congress Catalog Card Number: 99-067392

Printed in the United States of America

First Printing: June 2003

06    05    04    03 4  3  2  1

Sams Publishing offers excellent discounts on this book when ordered
in quantity for bulk purchases or special sales. For more information,
please contact 

U.S. Corporate and Government Sales

1-800-382-3419

corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales

1-317-581-3793

international@pearsontechgroup.com

Trademarks
All terms mentioned in this book that are known to be trademarks or
service marks have been appropriately capitalized. Sams Publishing
cannot attest to the accuracy of this information. Use of a term in this
book should not be regarded as affecting the validity of any trademark
or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as
accurate as possible, but no warranty or fitness is implied. The infor-
mation provided is on an “as is” basis. The author and the publisher
shall have neither liability nor responsibility to any person or entity
with respect to any loss or damages arising from the information
contained in this book or from the use of the CD or programs accom-
panying it.

Associate Publisher

Michael Stephens

Acquisitions Editor

Kim Spilker

Development Editor

Mark Renfrow

Managing Editor

Charlotte Clapp

Project Editor

George E. Nedeff

Copy Editors

Seth Kerney

Mike Henry

Indexer

Erika Millen

Proofreaders

Kevin Ober

Suzanne Thomas

Technical Editor

David Franson

Team Coordinator

Cindy Teeters

Multimedia Developer

Dan Scherf

Graphic Designer

Gary Adair

Cover Illustrator

Alex Varanese

00 0672318350 fm  05•02•2003  2:31 PM  Page ii



Contents at a Glance

Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Part I Introduction to 3D Game Programming

1 Getting Started with 3D Game Programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 A Crash Course in Windows and DirectX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3 3D Game Programming with a Virtual Computer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Part II 3D Math and Transformation

4 It’s a Math, Math, Math World—Trigonometry, Vectors, Matrices, and

Quaternions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

5 Building a Math Engine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

6 Introduction to 3D Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493

7 Rendering Wireframe Worlds in 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621

Part III Basic 3D Rendering

8 Basic Lighting and Solid Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 743

9 Interpolative Shading Techniques and Affine Texture Mapping . . . . . . . . . . . . 869

10 Clipping in 3D++. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1005

11 Depth Buffering and Visibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1087

Part IV Advanced 3D Rendering

12 Advanced Texturing Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1147

13 Spatial Partitioning and Visible Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1307

14 Lighting, Shadows, and Secrets of the id . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1439

Part V Advanced Animation and Physics Modeling and Optimization

15 Character Animation, Motion, and Collision Detection. . . . . . . . . . . . . . . . . . . . . 1493

16 Optimization Technologies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1549

00 0672318350 fm  05•02•2003  2:31 PM  Page iii



Part VI CD-ROM Appendixes

A About The CD-ROM

B Installing DirectX and Using Visual C/C++

C Trigonometry and Vector Reference

D C++ Primer

E Game Programming Resources

F ASCII Tables

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 000

00 0672318350 fm  05•02•2003  2:31 PM  Page iv



Table of Contents

Introduction 1

Part I Introduction to 3D Game Programming

1 Getting Started with 3D Game Programming 9

A Brief Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
The Elements of a 2D/3D Game. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Section 1: Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Section 2: Enter Game Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Section 3: Retrieve Player Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Section 4: Perform AI and Game Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Section 5: Render Next Frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Section 6: Synchronize Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Section 7: Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Section 8: Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

General Game Programming Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Using Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3D Level Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Setting Up to Get Down—Using The Compiler. . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

A Sample 3D Game: Raiders 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
The Event Loop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
The Core 3D Game Logic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3D Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
The Star Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
The Laser Cannons and Collision Detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
The Explosions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Playing Raiders3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2 A Crash Course in Windows and DirectX 69

The Win32 Programming Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
The Bare Minimum for a Windows Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

It All Begins with WinMain(). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
A Basic Windows Application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

The Windows Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Registering the Windows Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Creating the Window. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

00 0672318350 fm  05•02•2003  2:31 PM  Page v



The Event Handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
The Main Event Loop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Making a Real-Time Event Loop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

DirectX and COM Crash Course . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
The HEL and HAL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
The DirectX Foundation Classes in Depth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Flash Introduction to COM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
What Exactly Is a COM Object? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Creating and Using DirectX COM Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Querying for Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

3 3D Game Programming with a Virtual Computer 115

Introduction to the Virtual Computer Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Building the Virtual Computer Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

The Frame Buffer and Video System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Working with Color . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Animating the Display. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
The Complete Virtual Graphics System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
I/O, Sound, and Music. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

The T3DLIB Game Console . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
T3DLIB System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
The Basic Game Console. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

The T3DLIB1 Library. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
The DirectX Graphics Engine Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Working Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Data Types and Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Function Prototypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Global Domination. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
The DirectDraw Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
2D Polygon Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Math and Error Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Bitmap Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
8-Bit Palette Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Utility Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
The BOB (Blitter Object) Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

The T3DLIB2 DirectX Input System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
The T3DLIB3 Sound and Music Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

The Header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
The Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

Tricks of the 3D Game Programming Gurus: Advanced 3D Graphics and Rasterizationvi

00 0672318350 fm  05•02•2003  2:31 PM  Page vi



Global Domination. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
The DirectSound API Wrapper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

The DirectMusic API Rapper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Building the Final T3D Game Console . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

Mapping the Real Graphics to the Unreal Graphics of the 
Virtual Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

The Final T3DLIB Game Console. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
Sample T3LIB Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

Windowed Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Full-Screen Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
Sound and Music. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
Working with Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

Part II 3D Math and Transformation

4 It’s a Math, Math, Math World—Trigonometry, Vectors, Matrices, and
Quaternions 241

Mathematical Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
2D Coordinate Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

2D Cartesian Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
2D Polar Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

3D Coordinate Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
3D Cartesian Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

3D Cylindrical Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
Converting Between 3D Cartesian and Polar Coordinates . . . . . . . . . . . . 253

3D Spherical Coordinates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
Trigonometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

The Right Triangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
Inverse Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
Trigonometric Identities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
Vector Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
Normalization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
Scalar Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
Vector Addition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
Vector Subtraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
The Inner Product, or the “Dot” Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
The Cross Product. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
The Zero Vector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

Contents vii

00 0672318350 fm  05•02•2003  2:31 PM  Page vii



Position and Displacement Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
Vectors as Linear Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

Matrices and Linear Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
The Identity Matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
Matrix Addition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
Transpose of a Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
Matrix Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
Laws for Matrix Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

Computing the Inverse and Solving Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
Cramer’s Rule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
Transformations Using Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
Homogeneous Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
Applied Matrix Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

Basic Geometric Entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

Lines in 3D Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
Planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

Using Parametric Equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
2D and 3D Parametric Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
Parametric Line Segments with Standard Direction Vector v. . . . . . . . . 308
Parametric Line Segments with Unit Direction Vector |v| = 1. . . . . . . . 309
Parametric Lines in 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

Introduction to Quaternions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
Complex Number Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
Hyper-Complex Numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
Applications of Quaternions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

Basic Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
The Concept of Infinity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
Summation and Finite Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
Infinite Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
Integrals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361

5 Building a Math Engine 363

Brief Overview of the Math Engine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
File Structure of the Math Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
Naming Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365

Tricks of the 3D Game Programming Gurus: Advanced 3D Graphics and Rasterizationviii

00 0672318350 fm  05•02•2003  2:31 PM  Page viii



Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
My Final Word on C++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366

Data Structures and Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
Vectors and Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
Parametric Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
3D Planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
Quaternions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
Angular Coordinate System Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
Polar 2D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378
Cylindrical 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
Spherical 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
Fixed-Point Numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381

Math Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
Macros and Inline Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384

General Utility and Conversion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390
Points and Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390
Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
Quaternions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
Fixed-Point Math. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395

Prototypes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
Globals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
Math Engine API Listing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401

Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
Coordinate System Support Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
Vector Support Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
Matrix Support Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
2D and 3D Parametric Line Support Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 434
3D Plane Support Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440
Quaternion Support Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446
Fixed-Point Math Support Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458
Equation Solving Support. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464

Floating-Point Unit Math Primer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468
The FPU Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469
The FPU Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470
The FPU Instruction Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472
Classical Instruction Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475
Memory Instruction Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475
Register Instruction Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476
Register Pop Instruction Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477
FPU Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477

Contents ix

00 0672318350 fm  05•02•2003  2:31 PM  Page ix



FLD Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478
FST Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479
FADD Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480
FSUB Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484
FMUL Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485
FDIV Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487

Notes on Using the Math Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488
The Game Console . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490

Comments on Math Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491

6 Introduction to 3D Graphics 493

3D Engine Philosophy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494
The Structure of a 3D Game Engine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494

3D Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495
Game Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495
Input System and Networking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496
Animation System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496
Collision Detection and Navigation System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503
Physics Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503
Artificial Intelligence System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505
3D Model and Imagery Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506

3D Coordinate Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508
Model Coordinates (Local Coordinates) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509
World Coordinates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513
Camera Coordinates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517
Final Word on Camera Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529
Hidden Object/Surface Removal and Clipping . . . . . . . . . . . . . . . . . . . . . . . . . . . 531
Perspective Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539
The End of the Pipeline: Screen Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554

Basic 3D Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565
Considerations of Representing Polygonal Data in 3D. . . . . . . . . . . . . . . . . 566
Defining Polygons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 568
Defining Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 576
Representing Worlds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581

3D Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583
Animation and Motion Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584

Loading Data from the Outside World . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 585
PLG Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 585
NFF Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589
3D Studio Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594

Tricks of the 3D Game Programming Gurus: Advanced 3D Graphics and Rasterizationx

00 0672318350 fm  05•02•2003  2:31 PM  Page x



Caligari COB Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603
Microsoft DirectX .X Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605
3D File Format Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 606

Basic Rigid Transformations and Animation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 606
3D Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 606
3D Rotation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 607
3D Morphing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 610

Review of the Viewing Pipeline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 612
Types of 3D Engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614

Space Engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614
Terrain Engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 615
FPS Indoor Engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 617
Ray Casters and Voxel Engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 618
Hybrid Engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 620

Integrating Everything into a Final Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 620
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 620

7 Rendering Wireframe Worlds in 3D 621

General Wireframe Engine Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 622
The Data Structures and 3D Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623
The Master Polygon List. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627
The New Software Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 630

Writing a 3D File Loader. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 631
The .PLG/X File Loader. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 634

Building the 3D Pipeline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 643
Generic Transformation Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 643
The Local-to-World Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 652
The Eulerian Camera Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 657
The UVN Camera Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 661
The World-to-Camera Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 678
Object Culling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 684
Back-face Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 689
The Camera-to-Perspective Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 694
The Perspective-to-Screen Viewport Transform. . . . . . . . . . . . . . . . . . . . . . . . . . . 700
Hybrid Perspective Screen Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 707

Rendering a 3D World. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 711
3D Demos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 716

Single 3D Triangle—DEMOII7_1.CPP|EXE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 717
3D Wireframe Cube—DEMOII7_2.CPP|EXE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 720
3D Wireframe Cube with Back-face Removal—
DEMOII7_3.CPP|EXE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 725

Contents xi

00 0672318350 fm  05•02•2003  2:31 PM  Page xi



3D Tank Demo—DEMOII7_4.CPP|EXE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 727
3D Tanks Demo with Flying Camera—DEMOII7_5.CPP|EXE. . . . . . . . . . . 731
Battle Zone Walkthrough Demo—DEMOII7_6.CPP|EXE . . . . . . . . . . . . . . . . . 732

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 739

Part III Basic 3D Rendering

8 Basic Lighting and Solid Modeling 743

Basic Lighting Models for Computer Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 744
Color Models and Materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 747
Types of Lights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 758

Lighting and Rasterizing Triangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 767
Getting Ready for Lighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 774
Defining Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 775
Defining Lights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 781

Shading in the Real World . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 788
16-Bit Shading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 788
8-Bit Shading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 789
A Robust RGB Model for 8-Bit Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 789
A Simplified Intensity Model for 8-Bit Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 795
Constant Shading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 801
Flat Shading. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 804
Flat Shading in 8-bit Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 825
Gouraud Shading Preview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 828
Phong Shading Preview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 831

Depth Sorting and the Painter’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 832
Working with New Model Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 839

The Parser Class. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 839
Parsing Helper Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 843
3D Studio MAX ASCII .ASC Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 847
trueSpace ASCII .COB Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 851
Quake II Binary .MD2 Format Preview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 863

3D Modeling Tools Review. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 864
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 868

9 Interpolative Shading Techniques and Affine Texture Mapping 869

The New T3D Engine Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 870
Upgrading the T3D Data Structures and Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 871

New #defines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 872
Added Math Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 875
Utility Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 877

Tricks of the 3D Game Programming Gurus: Advanced 3D Graphics and Rasterizationxii

00 0672318350 fm  05•02•2003  2:31 PM  Page xii



Adding Features to Represent 3D Mesh Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 878
Updating the Object Containers and Rendering List . . . . . . . . . . . . . . . . . . . 887
Functional Listing Review and Prototypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 892

Rewriting the Object Loaders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 901
Updating the Good Old .PLG/PLX Reader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 902
Updating the 3D Studio .ASC Reader. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 919
Updating the Caligari .COB Reader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 920

Polygon Rasterization Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 928
Triangle Rasterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 928
Fill Convention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 934
Clipping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 937
The New Triangle Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 939
Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 946

Implementing Gouraud Shading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 948
Gouraud Shading Without Lighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 949
Adding Vertex Lighting for the Gouraud Shader. . . . . . . . . . . . . . . . . . . . . . . . . 963

Basic Sampling Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 976
Sampling in One Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 976
Bilinear Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 980
Interpolating u and v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 981
Implementing Affine Texture Mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 985

Updating the Lighting/Rasterization Engine for Textures . . . . . . . . . . . . . . . . . . . . . 988
Adding Lighting to 16-Bit Texture Rendering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 989

Final Thoughts on Optimization Strategies for 8- and 16-Bit Modes . . . . . . 996
Lookup Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 996
Mesh Vertex Coherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 997
Mathematical Caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 997
SIMD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 998

Final Demos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 999
Raiders 3D II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1000

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1003

10 Clipping in 3D++ 1005

Introduction to Clipping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1005
Object Space Clipping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1005
Image Space Clipping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1010

Theoretical Coverage of Clipping Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1011
Clipping Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1012
Cohen-Sutherland Clipping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1019
Cyrus-Beck/Liang-Barsky Clipping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1020

Contents xiii

00 0672318350 fm  05•02•2003  2:31 PM  Page xiii



Weiler-Atherton Clipping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1025
Further Studies on Clipping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1028

Practical View Frustrum Clipping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1029
The Geometry Pipeline and Data Structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1031
Adding Clipping to the Engine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1032

A Little Fun with Terrain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1065
The Terrain Generating Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1067
Generating the Terrain Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1080
The Dune Buggy Demo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1080

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1086

11 Depth Buffering and Visibility 1087

Introduction to Depth Buffering and Visibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1087
Z-Buffering Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1091

Z-Buffer Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1093
Z-Buffer Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1093
The Plane Equation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1097
Z Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1099
Z-Buffering Problems and 1/z Buffering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1101
A Sample Interpolation of Both z and 1/z. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1103

Creating the Z-Buffer System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1106
Adding Z-Buffer Support to the Rasterizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1111

Possible Z-Buffer Optimizations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1129
Using Less Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1129
Clearing the Z-Buffer Less Often . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1129
Hybrid Z-Buffering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1131

Problems with the Z-Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1132
The Software and Z-Buffer Demos. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1132

Demo I: Z-Buffer Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1133
Demo II: Wave Raider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1135

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1143

Part IV Advanced 3D Rendering

12 Advanced Texturing Techniques 1147

Texturing—The Second Wave. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1147
The Header File Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1149

Building a New Rasterizer Base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1160
The Final Decision to Go with Fixed-Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1160
The New Non-Z-Buffered Rasterizers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1161
The New Z-Buffered Rasterizers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1165

Tricks of the 3D Game Programming Gurus: Advanced 3D Graphics and Rasterizationxiv

00 0672318350 fm  05•02•2003  2:31 PM  Page xiv



Gouraud-Shaded Texturing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1167
Transparency and Alpha Blending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1177

Using Lookup Tables for Alpha Blending. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1177
Supporting Alpha Blending at the Object Level . . . . . . . . . . . . . . . . . . . . . . . . 1194
Adding Alpha to the Terrain Generator for Fun . . . . . . . . . . . . . . . . . . . . . . . . 1203

Perspective-Correct Texturing and 1/z-Buffering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1207
Mathematical Foundations for Perspective Texture Mapping . . . . . . 1207
Adding 1/z-Buffering Support to the Rasterizers. . . . . . . . . . . . . . . . . . . . . . . . 1218
Implementing Perfect Perspective Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1227
Implementing Linear Piecewise Perspective Mapping . . . . . . . . . . . . . . . . 1233
Exploring Quadratic Approximations for Perspective Texturing. . . 1240
Optimizing Texturing with Hybrid Approaches . . . . . . . . . . . . . . . . . . . . . . . . 1248

Bilinear Texture Filtering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1250
Mip Mapping and Trilinear Texture Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1257

Introduction to Fourier Analysis and Aliasing . . . . . . . . . . . . . . . . . . . . . . . . . . 1258
Creating the Mip Map Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1264
Mip Map Selection and Setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1276
Trilinear Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1284

Multiple Pass Rendering and Texturing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1285
Wrapping Things Up with a Single Call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1286

The New Rendering Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1287
Setting Up the Rendering Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1290
Making the Call to Render the Rendering Context. . . . . . . . . . . . . . . . . . . . 1293

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1306

13 Spatial Partitioning and Visibility Algorithms 1307

The New Game Engine Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1307
Introduction to Spatial Partitioning and Visible Surface Determination1308
The Binary Space Partition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1313

Axis-Aligned Binary Space Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1314
Arbitrary Plane Space Partitioning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1315
Polygon-Aligned Space Partitioning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1316
Displaying/Visiting Each Node of a BSP Tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1321
The BSP Tree Functions and Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1325
Creating the BSP Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1327
Splitting Strategies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1332
Traversing and Displaying the BSP Tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1346
Integrating BSP Tree into the Graphics Pipeline. . . . . . . . . . . . . . . . . . . . . . . . 1360
The BSP Level Editor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1362
Limitations of the BSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1375
Zero Overdraw Strategies Using BSP Trees. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1376

Contents xv

00 0672318350 fm  05•02•2003  2:31 PM  Page xv



BSP Trees for Culling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1379
BSP Trees for Collision Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1391
Integrating BSP Trees and Standard Rendering . . . . . . . . . . . . . . . . . . . . . . . . . 1392

Potentially Visible Sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1399
Using the Potentially Visible Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1402
Other Encodings of the Potentially Visible Set . . . . . . . . . . . . . . . . . . . . . . . . . 1403
More Robust Computation of the PVS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1405

Portals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1408
Bounding Hierarchical Volumes and Octrees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1413

Using the BHV Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1415
Runtime Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1416
Selection Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1418
Implementing BHV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1421
Octrees. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1431

Occlusion Culling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1433
Occlusion Volumes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1433
Selection of Occluders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1436
Hybrid Occluder Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1436

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1437

14 Shadows, Lighting, and Secrets of the id 1439

The New Game Engine Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1439
Introduction and Game Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1440
The Simplified Physics of Shadows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1440

Ray Tracing Photons and Computing Intensity . . . . . . . . . . . . . . . . . . . . . . . . 1441
Simulating Shadows with Projective Images and Billboards . . . . . . . . . . . . . . . . 1445

Implementing Rasterizers with Transparency Support. . . . . . . . . . . . . . . . 1448
The New Software Library. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1452
Simple Shadows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1454
Shadows that Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1458
Tracking the Light Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1462
Final Thoughts on Simulated Shadows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1469

Planar Mesh Shadow Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1470
Computing the Vector Transformations for Projection. . . . . . . . . . . . . . . 1470
Optimizing Planar Shadows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1474

Introduction to Light Mapping and Surface Caching . . . . . . . . . . . . . . . . . . . . . . . . 1476
Surface Caching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1480
Generating the Light Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1481
Implementing the Light Mapper. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1482
Dark Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1486

Tricks of the 3D Game Programming Gurus: Advanced 3D Graphics and Rasterizationxvi

00 0672318350 fm  05•02•2003  2:31 PM  Page xvi



Special FX with Light Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1488
Optimizing the Light Mapping Code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1489

Putting Everything Together . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1489
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1489

Part V Advanced Animation, Physics Modeling, and Optimization

15 3D Character Animation, Motion, and Collision Detection 1493

The New Game Engine Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1493
Introduction to 3D Animation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1494
The Quake II .MD2 File Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1494

The .MD2 Header. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1498
Loading Quake II .MD2 Files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1509
Animating .MD2 Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1521

Simple Non-Character-Based Animation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1536
Rotational and Translational Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1536
Complex Parametric and Curved Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1539
Using Scripts for Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1540

3D Collision Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1543
Bounding Spheres and Cylinders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1544
Using Data Structures to Speed Collision Detection. . . . . . . . . . . . . . . . . . . 1545
Terrain-Following Techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1546

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1548

16 Optimization Technologies 1549

Introduction to Optimization Technologies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1550
Profiling Your Code with Microsoft Visual C++ and Intel VTune . . . . . . . . . 1551

Profiling with Visual C++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1551
Analyzing the Profile Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1554
Optimizing with VTune . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1556

Using the Intel C++ Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1564
Downloading Intel’s Optimizing Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1565
Using the Intel Compiler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1565
Taking Advantage of Compiler Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1566
Selecting Compiler Manually on a Source File Basis . . . . . . . . . . . . . . . . . . 1568
Optimization Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1568

Single Instruction Multiple Data (SIMD) Programming Primer with SSE1569
Basic SIMD Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1571
Working with SIMD in the Real World. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1571
A SIMD 3D Vector Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1586

Contents xvii

00 0672318350 fm  05•02•2003  2:31 PM  Page xvii



General Optimization Tricks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1595
Trick 1: Getting Rid of _ftol(). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1595
Trick 2: Setting the FPU Control Word. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1595
Trick 3: Fast Zeroing of Floating-Point Values. . . . . . . . . . . . . . . . . . . . . . . . . . . 1596
Trick 4: Fast Square Root . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1597
Trick 5: Piecewise Linear Arctangent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1597
Trick 6: Pointer Increment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1598
Trick 7: Take ifs Out of Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1599
Trick 8: Branching the Pipeline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1600
Trick 9: Data Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1600
Trick 10: Inline All Short Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1600
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1600

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1601

Part VI CD-ROM Appendixes

A About The CD-ROM

B Installing DirectX and Using Visual C/C++

C Trigonometry and Vector Reference

D C++ Primer

E Game Programming Resources

F ASCII Tables

Index xxx

00 0672318350 fm  05•02•2003  2:31 PM  Page xviii



Foreword

I am honored to be asked to write the foreword to this important work, teaching technical
programmers the skills necessary for the creation of next-generation 3D video games from
the ground up. There aren’t many books that show you how to create a real-time 3D
engine, starting with the plotting of a pixel. I reflect on how far the technology has come,
and how primitive our games at Atari were. We were really pushing the state of the art
then, but they really seem lame now.

To reminisce a bit, the early games were not even computer games in a technical sense.
They were really just very fancy signal generators and state machines using counters and
shift registers based on simple Boolean logic, built with nothing more than some slapped-
together MSI (medium-scale integration) gates. You may remember that my first game
(Computer Space) was created in 1970, four years before the Intel 4004, and six years before
the 8080. I wish I had had a microprocessor to do them! Even then, the typical clock
speed was much too slow for any significant real-time computing. The first game in which
we used a microprocessor was Asteroids, and even then there was a great deal of hardware
around it to augment the program, because the microprocessor couldn’t do everything we
needed in software.

Today, we march toward the capability to create images that are indistinguishable from a
photograph (if we aren’t already there). To create these images on the fly is truly a joy to
behold. The realism and ability to create any world, environment, or character that these
software and hardware tools give the game creator is a remarkable power. This palette of
capability can shrink time, expand richness, and in general make new projects possible.

André LaMothe not only understands this technology intimately, but he also has an
extraordinary game “sense.” I have found over the years that many technologists are great
practitioners of the art, but lack the sense of timing or tension that is necessary for a fun
game. Others have a sense of gameplay, but are mediocre programmers. In André’s case,
you have both a true gamer and a software guru, and it comes through in every book he
has written.

In a recent project that we did together, I was impressed not only with his knowledge of
the state of the art, but also his extensive knowledge of the history of and intimacy with
even some obscure games from the early days (ones that I thought only I remembered).
Not to mention he wrote an entire game in 19 days for me! It is easy to remember the
hits, but another thing to be knowledgeable about the stinkers (yes, Atari did a few that
were really bad). But we did a lot that were great, and classics, as you know.

I hope you enjoy this book and use it as a launching pad for some great games that will
keep me happily playing into the future.

Nolan Bushnell

Founder of Atari, Inc.
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Introduction

“Come get some…”

—Duke Nukem

Game Programming Principles and Practice
A long time ago, in a galaxy far, far, away, I wrote a book about game programming called
Tricks of the Windows Game Programming Gurus. For me, it was an opportunity to create
something that I had always wanted—a book that teaches readers how to make games.
Anyway, it’s been a few years, and I’m a little older, a little wiser, and I’ve definitely
learned a lot of TRICKS <VBG>. You can get along fine without ever reading the first
Tricks, but I warn you—this volume is definitely more advanced, focuses on 3D, and
assumes a lot.

With that in mind, this book is going to continue where the first Tricks left off, and
further continue 3D concepts. I’m going to cover every major topic in 3D game program-
ming that I can fit within the bounds of time and space.

Now, I’m not going to assume that you are a master programmer, or that you even know
how to make games. However, this book is for not for beginners, and is really targeted
toward intermediate to advanced game programmers, or intermediate to advanced
programmers in general. If you don’t know how to program in C/C++, you’re going to be
lost! So, newbies beware! There are many great books on C/C++, and I suggest anything by
Stephen Prata or Robert Lafore—they are the best C/C++ authors in the world as far as I
am concerned.

Today is probably the coolest time in history to be in the game business. We now have the
technology to create games that do look real! Imagine what will come next—and you
think the PlayStation 2, Xbox, and GameCube are cool! But all this technology isn’t easy
or trivial to understand—it takes really hard work and lots of Red Bull.

The difficulty level of game programming has definitely been cranked up these days in
relation to the skill set needed to make games. But if you’re reading this, you are probably
one of those people that likes a challenge, right? Well, you came to the right place,
because when you’re done with this book, you will be able to create a full 3D, texture-
mapped, fully-lit video game for the PC with a software rasterizer you write yourself.
Moreover, you will understand the underlying principles of 3D graphics and be able to
better understand and utilize 3D hardware today and in the future.
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What You’re Going to Learn
In this book, you’re going to learn about 10010 teraquads of information! I’m going to fill
your neural net so full of info, you’ll have synaptic leakage! Seriously though, this book
covers all the elements necessary to create a Windows 9x/2000-based game for the PC,
including such topics as:

• A basic understanding of the engine from the first Tricks

• Win32 programming and DirectX Foundation 7.0+

• Advanced mathematics, including quaternions

• 2D/3D graphics and algorithms

• 3D projections and camera manipulation

• Wireframe and solid rendering

• Lighting and texture mapping

• Advanced visibility algorithms

• 3D animation techniques

And a lot more…

The first thing that you might be wondering about is, does this book focus on using 3D
hardware, or does it show how to actually implement 3D software rasterizers with code?
Well, the answer is software, primarily (with a “but” that I will get to in a minute)! Only
wimps rely on 3D hardware. A real game programmer can write a 3D engine from scratch
with blood pouring out of his eyes, on fire, and with needles in his eardrums, as well as
use 3D hardware, if available. So, we’re going to focus on real 3D programming in this
book. With that knowledge, you can learn any 3D API in a couple of weeks.

My philosophy is: If you can understand how to write a texture mapper or a viewing
system, you will have that much more of an advantage in using hardware. Furthermore, it
will be some time before every computer has good 3D hardware, so you can’t assume it
exists, and it would be a bad thing to cut out all those computers from your target market
just because they don’t have 3D hardware (the Midwest and Europe are perfect examples
of geographic areas that don’t have the latest and greatest). Especially if you want to get
into the game market without millions of dollars—you will start in the value software
market, which is primarily non-3D accelerated. Finally, it’s just more fun!

Finally, I’m sure you are a little worried about this whole “Windows-DirectX” deal. Well,
with the right approach, Windows programming is actually very simple, fun, and takes
care of a lot of problems that we had with DOS32. Don’t think of Windows programming
as a problem—think of it as an opportunity to spend more time on game code, rather than
trivial details like GUI stuff, I/O, and graphics drivers. Believe me, you would spend 24
hours a day if you had to write graphics drivers for every 2D/3D accelerator that came on
the market. Then there are sound cards, joysticks, blah, blah, blah…

Tricks of the Game Programming Gurus2
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What You Absolutely Need to Know
This book assumes that you can program, and program pretty well. You’re going to be
fairly lost if you can’t write C code and don’t know how to use a compiler in your sleep.
However, the book uses some C++—enough to make a C coder just a little uneasy. I’ll
warn you if I’m doing anything weird. Also, there’s a decent C++ primer in Appendix D,
so check it out if you need a crash course. Basically, C++ is only needed here and there for
examples using DirectX.

Nevertheless, I’ve decided that I’m going to use C++ a little more on this book because
there are so many things in game programming that are object-oriented, and it’s sacrilege
to force them to be C-like structures. Bottom line: If you can program in C, you should be
fine. If you program in C/C++, you shouldn’t trip out at all.

Everyone knows that a computer program is nothing more than logic and math. Well, 3D
video games have the emphasis on the math part! 3D graphics is all math. However,
luckily for us, it’s cool math! Yes, math can be cool. About the only thing you need to
know is basic algebra and geometry. The vector, matrix, and calculus stuff I’ll teach you
along the way. Heck, if you can add, subtract, multiply, and divide, you will still be able to
understand 90% of what’s going on, even though you might not be able to re-derive it.
But as long as you can use the code, that’s all the matters in the end. And that Carmen
Electra is single again <GRIN>.

That’s really all you need to know. Of course, you’d better call all your friends and tell
them that they won’t see you for about two years because you’re going to be a little busy.
But just think of all the movies you’ll get to rent when you’re done with your training!

How This Book Is Organized
This book is separated into six major parts:

• Part I: Introduction to 3D Game Programming—This section introduces you to game
programming, Windows, and DirectX, and we build up the virtual computer inter-
face used to create all the demos.

• Part II: 3D Math and Transformation—This section introduces all the mathematical
concepts and builds up a complete mathematics library for use in the book. The
latter parts of the section cover 3D graphics, data structures, cameras, and wireframe
rendering.

• Part III: Basic 3D Rendering—This section covers lighting, basic shading, and hidden
surface removal. Full 3D clipping is also covered.

• Part IV: Advanced 3D Rendering—This section covers texture mapping, advanced
lighting, shadows, and spatial partitioning algorithms, such as BSP trees, portals, and
more.

Introduction 3
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• Part V: Advanced Animation, Physics Modeling, and Optimization—This section
covers animation, motion, collision detection, and simple physics modeling.
Hierarchical modeling is also covered, along with loading large worlds. We’ll also
cover numerous optimization techniques.

Installing the CD-ROM
The CD-ROM contains all the source, executables, sample programs, stock art, 3D model-
ers, sound effects, and bonus technical articles that make up the book. Here’s the directory
structure:

T3DIIGAME\

SOURCE\

T3DIICHAP01\

T3DIICHAP02\

.

.

T3DIICHAP16\

TOOLS\

GAMES\

MEDIA\

BITMAPS\

3DMODELS\

SOUND\

DIRECTX\

ARTICLES\

Each main directory contains specific data that you’ll need. Here’s a more detailed break-
down:

• T3DGAMEII—The root directory that contains all other directories. Be sure to read the
README.TXT within it for any last-minute changes.

• SOURCE—Contains all the source directories for the book in chapter order. Simply
drag the entire SOURCE\ directory to your hard drive and work from there.

• MEDIA—Contains stock 2D artwork,3D models, and sounds that you may use royalty-
free in your games.

• DIRECTX—Contains the latest version of the DirectX SDK.

Tricks of the Game Programming Gurus4
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• GAMES—Contains a number of 2D and 3D shareware games that I think are cool!

• ARTICLES—Contains articles written by various experts in the field of game program-
ming for your edification.

• TOOLS—Contains various applications and tools you might find useful. Most can be
downloaded from internet, but they are rather large, so these versions will save you
the download time.

There isn’t any general installation program for the CD because there are so many differ-
ent types of programs and data. I leave the installation to you. However, in most cases,
you’ll simply copy the SOURCE\ directory to your hard drive and work within it. As for the
other programs and data, you’ll probably install them as you need them.

Installing DirectX
About the only important part of the CD that you must install is the DirectX SDK and
runtime files. The installation program is located within the DIRECTX\ directory, along
with a README.TXT file explaining any last-minute changes.

NOTE

You must install the DirectX 8.1 SDK or better to work with demos and source from this book
(DirectX 9.0 is on the CD though), so if you’re not sure that you have the latest files on your
system, run the installation and it will tell you.

Compiling the Programs
I wrote the programs in this book with Microsoft Visual C++ 6.0. However, the programs
will work with any Win32-compliant compiler in most cases. Nevertheless, I suggest
Microsoft Visual C++ or .NET, because they work the best for this type of work.

If you are unfamiliar with your compiler’s IDE, you are going to be wildly lost when
compiling Windows programs. Please take the time to learn your way around the
compiler, and at least how to compile a “Hello World” console program or something
before you dive into compiling the programs.

To compile Windows Win32 .EXE programs, all you need to do is set the target of your
program project to Win32 .EXE and compile. However, to create DirectX programs, you
must include the DirectX import libraries in your project. You might think that you can
simply add the DirectX libraries to your include path, but this won’t work! Save yourself a
headache and include the DirectX .LIB files in your project or workspace manually. You
can find the .LIB files in the LIB\ directory, right under the main DirectX SDK directory
that you installed under. This way, there won’t be any linker confusion. In most cases,
you’ll need the following:

Introduction 5
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• DDRAW.LIB—DirectDraw import library

• DINPUT.LIB—DirectInput import library

• DINPUT8.LIB—DirectInput import library

• DSOUND.LIB—DirectSound import library

• WINMM.LIB—Windows Multimedia Extensions

I’ll go into more detail on these files when you actually start working with them, but at
least keep them in mind when you start getting “unresolved symbol” errors from your
linker. I don’t want any emails on this subject from rookies!

In addition to the DirectX .LIB files, you must include the DirectX .H header files in your
header search path, so keep that in mind. Also, make sure to make the DirectX SDK direc-
tories first in the search path list, because many C++ compilers have old versions of
DirectX within them, and the old headers might be found in the compiler’s own
INCLUDE\, which is wrong. The proper place is the DirectX SDK include directory, which is
located in the main installation directory of the DirectX SDK in INCLUDE\.

Finally, for those of you that use Borland products, make sure that you use the Borland
versions of the DirectX .LIB files. They can be found in the BORLAND\ directory of the
DirectX SDK installation.

Tricks of the Game Programming Gurus6
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PART I

Introduction to 3D
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IN THIS CHAPTER

• A Brief Introduction

• The Elements of a 2D/3D Game

• General Game Programming
Guidelines

• Using Tools

• A Sample 3D Game: Raiders 3D

CHAPTER 1

Getting Started with 3D
Game Programming

“1.21 Gigawatts!!!”

—Dr. Emmett Brown, Back to the Future

In this chapter we’re going to cover some general game
programming topics, like game loops and the differences
between 2D and 3D games, to get you warmed up. Then we’ll
finish off with a little 3D game to get you set up on the
compiler and DirectX correctly. If you have already read the
first book of my grand series, Tricks of the Windows Game
Programming Gurus, you can probably skim this chapter and
only focus on the content at the end. But if you haven’t, you
should definitely read it—even if you’re an intermediate or
advanced game programmer. Here’s what’s in store:

• A brief introduction

• The elements of a 2D/3D game

• General game programming guidelines

• Using tools

• A sample 16-bit/windowed game: Raiders 3D

A Brief Introduction
This book is really the second volume of a two- (possibly
three) volume series about 2D and 3D game programming.
The first volume, Tricks of the Windows Game Programming
Gurus, primarily covered the following:

• Windows programming

• The Win32 API
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10 CHAPTER 1 Getting Started with 3D Game Programming

• DirectX foundation

• Artificial intelligence

• Basic physics modeling

• Sound and music

• Algorithms

• Game programming

• 2D raster and vector graphics

This book is really just a continuation of the previous book. However, I’ve attempted to
write it so that if you haven’t read the first book, you can still get a lot out of it in relation
to real-time 3D graphics as it pertains to writing 3D games. Hence, the ideal reader of the
book is either someone that has read the first Tricks book and is interested in 3D, or
someone that is already a 2D game programmer and wants to learn 3D techniques from a
software and algorithmic point of view.

With that in mind, I’m going to focus on 3D math and graphics in this book, and move
very fast over anything related to game programming. I assume that you know it—if you
don’t, I suggest picking up Tricks of the Windows Game Programming Gurus (or any other
good game programming book) and sitting at the computer until you feel comfortable
with Windows, DirectX, and game programming in general.

On the other hand, even if you haven’t read the previous Tricks and know nothing of
game programming, you will still get something out of this book, because this is a graph-
ics book. We are going to build the 3D engine(s) for the book chapter by chapter, but to
save time (and about 1,500 pages), we’re going to start off with the basic DirectX engine
developed in the first book. (This will help with 2D, sound, music, input, and so forth.) Of
course, this engine is a DirectX 7–8 engine, and now DirectX has changed a bit in Version
8.0+ to make 2D harder, because DirectDraw has been merged with Direct3D. We are
going to stick with the DirectX 7 and 8 interfaces, but compile under the DirectX 9.0 SDK.

NOTE

This book is about software and algorithms, not DirectX, so I could write it in DOS and the mate-
rial would be applicable. We just need reasonably advanced graphics, I/O, and a sound layer, so
DirectX 8.0+ is fine. In other words, if you’re a fan of Linux, porting the engine to SDL will be a
snap!

Therefore, if you’ve already read the previous Tricks, the engine and functions will be very
familiar. If you haven’t, you’ll just have to think of it as a black box API (source included,
of course), because in this book we’ll be adding the 3D aspect to it as we go.
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Don’t worry—in the next chapter, we’ll cover the entire 2D engine API and structure, and
you’ll know what every function does; I’ll also throw you a number of demos to get you
warmed up using the basic DirectX engine created in the first book.

In this book, I want to try and take as much of a generic, or better yet, “virtual” point of
view of the graphics system. Although the code will be based on my previous engine from
the first Tricks, the point is that my previous engine does nothing more than set up a
double-buffered graphics system in a standard, linearly addressable manner.

Thus, if you want to port any of the code to a Mac or Linux box, it should literally take
anywhere from a few hours to a weekend. My goal here is to teach 3D graphics and math
in general. It just so happens that the Windows platform under DirectX is the most preva-
lent computing system in the world at this time, so that’s what I based the low-level stuff
on. It’s the high-level concepts that we are interested in here.

I have written about 20 or so 3D engines in my life, and I have them all here on my hard
drives. But when I write a book, I like to write a new engine as I (we) go, so that I write
the engine for the book, and not a book about that engine. The point of this book is not
to regurgitate a 3D engine, but to make one. Thus, I’m not sure what we will end up with!
In fact, I’m kind of excited to see what will happen. I’m shooting for a Quake-like 6DOF
(degree of freedom) engine, but who knows? You will learn everything necessary to make a
Quake engine, but I might get really focused on outdoor engines or something else—who
knows. The point is that it will be a learning experience, and not the typical code dump
with author annotations. I’m sure you know what I’m talking about!

Lastly, readers from the first book might notice that some of the material is the same here
and there. Truthfully, I can’t just jump into 3D graphics without some overlap with the
last book. I can’t assume someone has my other book, or force them to buy it (it’s not like
it makes me rich or anything, but maybe they don’t have access). Whatever the case, the
first few chapters will have a bit of overlap here and there in relation to DirectX, the
engine, and Windows.

The Elements of a 2D/3D Game
As a review, let’s take a look at what makes a video game program different from any other
kind of program. Video games are extremely complex pieces of software. In fact, they are
without a doubt the hardest programs to write. Sure, writing something like MS Word is
harder than writing an asteroids game, but writing something like Unreal, Quake Arena, or
Halo is harder than any program I can think of—including military weapons control soft-
ware!

This means that you have to learn a new way of programming that’s more conducive to
real-time applications and simulation, rather than single-line, event-driven, or sequential
logic programs that you might be used to. A video game is basically a continuous loop
that performs logic and draws an image on the screen—usually at a rate of 30–60 fps
(frames per second) or more. This is similar to how a movie is displayed, except that you
are making the movie as you go.

The Elements of a 2D/3D Game 11
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FIGURE 1.1 General game loop architecture.

Let’s begin by taking a look at a simplified game loop, as shown in Figure 1.1. The follow-
ing sections describe each section.

Section 1: Initialization
In this section, you perform the standard operations you would for any program, such as
memory allocation, resource acquisition, loading data from the disk, and so forth.

Section 2: Enter Game Loop
In this section, the code execution enters into the main game loop. This is where the
action begins and continues until the user exits out of the main loop.

Section 3: Retrieve Player Input
In this section, the player’s input is processed and/or buffered for later use in the AI and
logic section.

Section 4: Perform AI and Game Logic
This section contains the majority of the game code. The artificial intelligence, physics
systems, and general game logic are executed, and the results are used to draw the next
frame on the screen.
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Section 5: Render Next Frame
In this section, the results of the player’s input and the execution of the game AI and logic
are used to generate the next frame of animation for the game. This image is usually
drawn on an offscreen buffer area, so you can’t see it being rendered. Next the image is
very quickly copied to the visible display, creating the illusion of animation. In the case of
a 3D software-based engine, thousands (or millions in some cases) of polygons are
rendered that compose the world by a very complex 3D graphics pipeline. In the case of a
3D hardware-accelerated engine based on OpenGL or Direct3D, much of the work is
offloaded to the hardware.

Section 6: Synchronize Display
Many computers will speed up or slow down due to the level of complexity that the game
is currently exhibiting. For example, if there are 1,000 objects running around on the
screen, the CPU is going to have a higher load than if there are only 10 objects. Therefore,
the frame rate of the game will vary, which isn’t acceptable. Hence, you must synchronize
the game to some maximum frame rate and try and hold it there using timing and/or wait
functions. Usually, 30 fps is considered to be minimum frame rate these days, with 60 fps
being ideal. Frame rates over 60 fps are hardly an improvement, because your brain has
problems processing information any faster that 60 fps—this is a waste, unless you are a
Borg.

NOTE

Even though some games ideally update each frame 30–60 times a second, this frame rate might
drop as the complexity level of the 3D rendering increases. However, using time-based calcula-
tions in the game logic, physics, and AI sections of the code will at least attempt to keep the
display somewhat steady, as far as how much objects move in real time. That is, if time (t) is used
in each of the calculations for motion and animation control, the result is much more temporally
consistent animation.

Section 7: Loop
This section is fairly simple—just loop back to the beginning of the game loop and do it
all again.

Section 8: Shutdown
This is the end of the game, meaning that the user has exited the main body or game loop
and wants to return to the operating system. However, before doing this, you must release
all resources and clean up the system, as you would for any other piece of software.

Now you might be wondering about all the details of a real game loop. Granted, the
preceding explanation is a little oversimplified, but it captures the essence of what’s going
on. In reality, the game loop will in most cases be a FSM (finite state machine) that contains

The Elements of a 2D/3D Game 13

1

03 0672318350 CH01  05•02•2003  2:32 PM  Page 13



a number of states. For example, the following listing is a more detailed version of what a
C/C++ game loop might look like in real code.

LISTING 1.1 A Simple Game Event Loop

// defines for game loop states

#define GAME_INIT    // the game is initializing

#define GAME_MENU    // the game is in the menu mode

#define GAME_START   // the game is about to run

#define GAME_RUN    // the game is now running

#define GAME_RESTART  // the game is going to restart

#define GAME_EXIT    // the game is exiting

// game globals

int game_state = GAME_INIT; // start off in this state

int error   = 0;   // used to send errors back to OS

// main begins here

void main()

{

// implementation of main game-loop

while (game_state!=GAME_EXIT)

{

// what state is game loop in

switch(game_state)

{

case GAME_INIT: // the game is initializing

{

// allocate all memory and resources

Init();

// move to menu state

game_state = GAME_MENU;

} break;

case GAME_MENU: // the game is in the menu mode

{

// call the main menu function and let it switch states

game_state = Menu();
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// note: we could force a RUN state here

} break;

case GAME_START:  // the game is about to run

{

// this state is optional, but usually used to

// set things up right before the game is run

// you might do a little more housekeeping here

Setup_For_Run();

// switch to run state

game_state = GAME_RUN;

} break;

case GAME_RUN:  // the game is now running

{

// this section contains the entire game logic loop

// clear the display

Clear();

// get the input

Get_Input();

// perform logic and ai

Do_Logic();

// display the next frame of animation

// render 2D or 3D world

Render_Frame();

// synchronize the display to 30 fps+

Wait();

// the only way that state can be changed is

// thru user interaction in the

// input section or by maybe losing the game..

} break;

case GAME_RESTART: // the game is restarting

{

// this section is a cleanup state used to

The Elements of a 2D/3D Game 15
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// fix up any loose ends before

// running again

Fixup();

// switch states back to the menu

game_state = GAME_MENU;

} break;

case GAME_EXIT:  // the game is exiting

{

// if the game is in this state then

// it’s time to bail, kill everything

// and cross your fingers

Release_And_Cleanup();

// set the error word to whatever

error = 0;

// note: we don’t have to switch states

// since we are already in this state

// on the next loop iteration the code

// will fall out of the main while and

// exit back to the OS

} break;

default: break;

} // end switch

} // end while

// return error code to operating system

return(error);

} // end main

Although the code is nonfunctional, I think that you can get a good idea of the structure
of a real game loop by studying it. All game loops—2D, 3D, whatever—pretty much follow
this structure in one way or another. Take a look at Figure 1.2 to see the state transition
diagram for the game loop logic. As you can see, the state transitions are fairly sequential.
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FIGURE 1.2 State transition diagram for the game loop logic.

General Game Programming Guidelines
The next thing I want to talk about is general game programming techniques and philoso-
phies that you should think about and try to adopt (if you can) that will make game
programming much easier for you.

To begin with, video games are ultra-high performance computer programs. This means
that no longer can you use high-level APIs for time-critical or memory-critical code
sections. You must, for the most part, write everything that is related to the inner loop of
your game code yourself, or your game will suffer terrible speed and performance prob-
lems. Obviously, this doesn’t mean that you can’t trust APIs like DirectX, because DirectX
was written to be as high performance and “thin” as possible. But in general, avoid high-
level function calls based on the Win32 API. For example, you might think that memset()
is very fast, but it only fills using single BYTEs. A much better fill would use QUADs, so that
four BYTEs can be written at once. For example, here’s an inline assembly language func-
tion that I use to do QUAD-BYTE fills:

inline void Mem_Set_QUAD(void *dest, UINT data, int count)

{

// this function fills or sets unsigned 32-bit aligned memory

// count is number of quads

_asm

{
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mov edi, dest  ; edi points to destination memory

mov ecx, count ; number of 32-bit words to move

mov eax, data  ; 32-bit data

rep stosd    ; move data

} // end asm

} // end Mem_Set_QUAD

And here’s a WORD, or 2-BYTE version:

inline void Mem_Set_WORD(void *dest, USHORT data, int count)

{

// this function fills or sets unsigned 16-bit aligned memory

// count is number of words

_asm

{

mov edi, dest  ; edi points to destination memory

mov ecx, count ; number of 16-bit words to move

mov ax, data  ; 16-bit data

rep stosw    ; move data

} // end asm

} // end Mem_Set_WORD

These few lines of code can speed the frame rate of your game by two to four times in
some cases! So, you definitely need to know what’s inside of an API call if you are going to
use API calls.

NOTE

Additionally, the Pentium III, 4, and greater support SIMD (Single Instruction Multiple Data)
instructions that allow parallel processing of simple mathematical operations, so there’s a lot of
room to optimize basic math operations, like vector mathematics and matrix multiplications, but
we’ll get to that later.

Let’s take a look at a list of tricks to keep in mind as you’re programming.

TRICK

Back up your work all the time. When writing game code, you are going to lock the system up
fairly frequently. Redoing a sorting algorithm is one thing, but redoing the AI for a character and
the collision detection is another.
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TRICK

When you start on your game projects, be organized. Use reasonable filenames and directory
names, come up with a consistent variable naming convention, and try to use separate directo-
ries for graphics and sound data rather than dumping everything in one directory.

TRICK

Use inline functions. You can get rid of the function call completely by using the inline directive.
The inline directive instructs the compiler to make its best attempt to put the code for the func-
tion right where it’s called, rather than making the actual function call. Of course, this makes
bigger programs, but speed is more important. Here’s an example:

inline void Plot_I(int x, int y, int color)

{

// plots a pixel on the screen

video_buffer[x + y*MEMORY_PITCH] = color;

} // end Plot_I

Notice in this case I didn’t use globals, because the compiler will in effect perform the same type
of data aliasing. However, globals would come in handy if only one or two of the parameters
were changing between calls, because the old values can be used without reloading.

TRICK

Always use 32-bit variables rather than 8- or 16-bit when possible. The Pentium and later proces-
sors are totally 32-bit, and the Itanium is 64-bit. This means that they don’t like 8- or 16-bit data
words. In fact, smaller data can slow them down because of caching and other related memory
addressing anomalies. For example, you might create a structure that looks something like this:

struct CPOINT

{

short x,y;

unsigned char c;

} // end CPOINT

Although this might seem like a good idea, it’s not! First, the structure itself is now 5 bytes long
(2*sizeof(short) + sizeof(char)) = 5. This is really bad, and will wreak havoc on the
memory addressing. A better approach is the following structure:

struct CPOINT

{

int x,y;

int c;

} // end CPOINT
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NOTE

STRUCTs in C++ are just like CLASSes, except that they have default PUBLIC visibility.

This new structure is much better. For one thing, all the elements are the same size—that is,
sizeof(int) = 4 bytes. Therefore, a single pointer can be incremented on a DWORD boundary to
access any member. Of course, the new structure is now (3*sizeof(int)) = 12 bytes, but at
least it’s a multiple of 4 or on a DWORD boundary; this is definitely going to improve performance.

In fact, if you really want to make things rock, you can pad all structures to make them a multi-
ple of 32 bytes. This is the optimal length because of standard on-chip cache line sizes in the
Pentium class processors. Padding can be accomplished manually by adding dummy variables, or
with a compiler directive (the easy way). Of course, this might waste a lot of memory, but it
might be worth the speed.

TRICK

Don’t be afraid to use global variables. Many video games don’t use parameters for a lot of time-
critical functions, and simply use a global parameter-passing area instead. For example, if a func-
tion looks like this:

void Plot(int x, int y, int color)

{

// plots a pixel on the screen

video_buffer[x + y*MEMORY_PITCH] = color;

} // end Plot

The body of the function takes less time than the function call! This is because of the parameter
pushing and popping on the stack. In this case, a better method might be to first create a global
parameter-passing area, and then make assignments before a call:

int gx,gy,gz,gcolor; // define some globals

void Plot_G(void)

{

// plot a pixel using globals

video_buffer[gx + gy*MEMORY_PITCH] = gcolor;

} // end Plot_G

TRICK

Program in a RISC (Reduced Instruction Set Computer)-like manner. Make your code simple
rather than complex. Pentium processors especially like simple instructions rather than complex
ones. Also, making your code longer with simpler instructions makes it easier for the compiler.
For example, don’t do this:
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if (x+=(2*buffer[index++])>10)

{

// do work

} // end if

Do this:

x+=(2*buffer[index]);

index++;

if (x > 10)

{

// do work

} // end if

There are two reasons for coding like this. First, it allows a debugger to put break points in
between code sections, and second, it makes it easier for the compiler to send simplified code to
the PentiumX, which allows it to process more code in parallel using multiple execution units.
Complex code is bad!

TRICK

Use binary shifts for the simple multiplication of integers by powers of two. Because all data in a
computer is stored in binary form, shifting the bit pattern to the left or right is equivalent to
multiplication and division, respectively. For example:

int y_pos = 10;

// multiply y_pos by 64

y_pos = (y_pos << 6); // 2^6 = 64

Similarly,

// to divide y_pos by 8

y_pos = (y_pos >> 3); // 1/2^3 = 1/8

Of course, these days (especially on the Pentium 4), there are single-cycle multiplications, but
shifting is always a safe bet to multiply and divide by two really fast.

TRICK

Write efficient algorithms. All the assembly language in the world isn’t going to make an 
O(n2 ) algorithm go faster. It’s better to use clean, efficient algorithms rather than brute force.
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TRICK

Don’t optimize your code as you program. When writing game code, it’s tempting to optimize as
you go. This is usually a waste of time. Wait until you are done with a major code block or until
you’re done with the game before you start heavy optimization (Intel’s VTUNE is a great tool for
profiling). This will save you time in the end, because you won’t have to deal with cryptic code
or optimizations that aren’t necessary. When the game is done, that’s when you start profiling
and finding problem areas to optimize. On the other hand, don’t program sloppily.

TRICK

Use C++ sparingly. If you’re a seasoned professional, go ahead and do as you please, but don’t
go class crazy or overload everything to death. In the end, simple, straightforward code is the
best and easiest to debug. And I never want to see multiple inheritance! If C is good enough for
Doom and Quake, there’s no Earth-shattering reason to use C++. If it helps you, great; if not, 
stay away from it for game programming until you are comfortable with game programming
and C++.

TRICK

If you see that you’re going down a rocky road, stop, back up, and take a detour. I have seen
many game programmers start down a bad programming line and bury themselves. It’s better to
realize you’ve made a mistake and redo 500 lines of code than to have a generally undesirable
code structure. So, if you see a problem with what you’re doing, re-evaluate and make sure that
the time you’re saving is worth it.

TRICK

Don’t write a lot of complex data structures for simple objects. Just because linked lists are cool
doesn’t mean you should use them for a fixed array that you know will always be around 256
items. Just allocate it statically and be done with it. Video game programming is 90% data
manipulation. Keep your data as simple and visible as possible, so you can access it quickly, do
what you need to, and move on. Make sure the data structure fits the problem.

Using Tools
Writing video games used to be nothing more than a text editor and maybe homemade
paint and sound programs. However, today things are a little more complicated. To write a
3D game, at a minimum you need a C/C++ compiler, 2D paint program, sound processing
program, and some kind of minimal 3D modeler (unless you’re going to enter all the 3D
model data as ASCII data). Additionally, you’ll need a music sequencing program if you’re
going to use any MIDI, or at least make changes to presequenced MIDI.
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Let’s take a look at some of the more popular products and what they do.

• C/C++ compilers—For Windows 9x/Me/XP/2000/NT development, there simply is no
better compiler than MS VC++, shown in Figure 1.3. It does everything you need it
to do and more. The .EXEs generated are the fastest code available. The Borland
compiler will also work fine (and is a bit cheaper), but has a much smaller feature
set. In either case, you don’t need the full-blown version of either—a student version
that makes Win32 .EXEs is more than enough.

Using Tools 23
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FIGURE 1.3 The Microsoft VC++ environment.

• 2D bitmap art software—Here you have paint programs, drawing programs, and
image processing. Paint programs primarily allow you to draw images pixel by pixel
with primitives and to manipulate them. As far as I’m concerned, Paint Shop Pro by
JASC, shown in Figure 1.4, is the leader of the pack for price versus performance. But
the ultimate favorite of most artists is Adobe Photoshop—it has more firepower than
you’ll ever need.

• 2D vector art software—Drawing programs, on the other hand, allow you to create
images that are mostly constructed from curves, lines, and 2D geometrical primi-
tives. The types of programs aren’t as useful, but if you need one, Adobe Illustrator is
the way to go.

03 0672318350 CH01  05•02•2003  2:32 PM  Page 23



FIGURE 1.4 Paint Shop Pro by JASC Software.

• Post-production image processing—Image processors are the final class of 2D art
programs. These programs are more for post-production rather than art creation. In
this area, Adobe Photoshop is the favorite in most circles, but I think Corel Photo-
Paint is better—you decide.

• Sound processing software—Ninety percent of all sound FX used in games today are
digitized samples. To work with sound data of this type, you’re going to need a
digital sound processing program. One of the best programs in this genre is Sound
Forge, shown in Figure 1.5. It is by far one of the most complex sound processing
programs I have ever seen, and ironically the simplest to use as well. I’m still trying
to figure out all the cool features! Cool Edit Pro is also very powerful, but I have less
experience with it.

• 3D modelers—This is where things get financially challenging. 3D modelers can cost
in the tens of thousands of dollars, but recently a number of low-cost modelers have
shown up that have enough power to literally make a movie. The modeler that I
primarily use for simple to medium-scale 3D models and animation is Caligari
trueSpace, shown in Figure 1.6. This is the best 3D modeler for the price—it only
costs a few hundred dollars, and has the best interface there is, in my opinion.

If you want a little more firepower and absolute photo-realism, 3D Studio Max, shown in
Figure 1.7, is the way to go, but it costs around $2,500 or more, so that might be some-
thing to think about. However, because we are going to use these modelers just to create
3D meshes for the most part, and not for rendering, all the bells and whistles aren’t really
needed—trueSpace is the way to go, or  perhaps a freeware or shareware modeler.
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FIGURE 1.5 Sound Forge in action.
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FIGURE 1.6 Caligari’s trueSpace 3D modeler.
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FIGURE 1.7 3D Studio Max (Heavy Metal).

NOTE

The Internet is full of free or shareware 3D modelers that are in some cases as powerful as the
real thing. So, if cash is a problem, hunt around and see what you can find.

3D Level Editors
In this book, we are going to write a software-based 3D engine. However, we aren’t going
to write a complex tool to create 3D interior models. It’s possible to create a 3D world with
a 3D modeler, but there are much better programs to do this, such as WorldCraft, shown
in Figure 1.8. Hence, the best approach to use when writing a 3D game and engine is to
use a file format and data structure that is compatible with the types output by a
commonly available editor such as WorldCraft (or a similar editor), so you can use
someone else’s tool to create your worlds. Of course, the file format of most of these
editors is ultimately based on the work of id Software and the Quake engine, but whether
it’s based on the Quake file format or whatever, it’s a proven file format, and obviously
works well.
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FIGURE 1.8 The WorldCraft level editor.

• Music and MIDI sequencing programs—There are two kinds of music in today’s
games: pure digital (like a CD), and MIDI (Musical Instruments Digital Interface),
which is a synthesized performance based on note data. If you want to manipulate
MIDI information and songs, you’ll need a sequencing package. One of the best is
called CakeWalk, shown in Figure 1.9. CakeWalk is also reasonably priced, so I
suggest that you look into this program if you plan on recording and manipulating
any MIDI music. We’ll talk about MIDI data when covering DirectMusic.
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FIGURE 1.9 CakeWalk MIDI track sequencer.
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NOTE

And now for the cool part … A number of the manufacturers of the software listed previously
have allowed me to put shareware or evaluation versions on the CD, so make sure to check them
out!

Setting Up to Get Down—Using The Compiler
One of the most frustrating parts of learning 3D windows game programming is learning
how to use the compiler. In most cases, you’re so excited to get started that you dive into
the IDE and try to compile, and a million compiler and linker errors pop up! To help with
this problem, let’s cover a few basic compiler concepts here.

NOTE

The details listed here are Visual C++-specific, but the ideas are the same for any compiler.

1. Read the entire compiler manual—please, please, I beg you!

2. You must install the DirectX 9.0 SDK on your system. To do this, navigate into the
DirectX SDK directory on the CD, read the README.TXT, and do what it says, which
should be nothing more than click on the DirectX SDK installation programs. And
remember, we are using DirectX 9.0 for this book (but only using the interfaces from
7 and 8), so you need to use the DirectX SDK on the CD. However, you can compile
everything with DirectX 8.0, if you really want to.

3. We are going to make Win32 .EXE application programs, not .DLLs, ActiveX compo-
nents, CONSOLE applications, or anything else (unless I tell you to). So the first
thing you need to do with your compiler if you want to compile is create a new
project or workspace and set the target output file to Win32 .EXE. This step is shown
for the Visual C++ 6.0 compiler in Figure 1.10.

NOTE

There are two types of .EXEs that you can build when compiling: Release and Debug. Release is
faster code and optimized, whereas Debug is slower and has debugger hooks in it. I suggest that
while you are developing, you build the Debug version until it works, then go ahead and set the
compiler to Release mode.

4. Add the source files to the project using the Add Files command from the main
menu, or from the project node itself. This is shown for the Visual C++ 6.0 compiler
in Figure 1.11.
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FIGURE 1.10 Creating a Win32 .EXE with Visual C++ 6.0.
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FIGURE 1.11 Adding files to a project with Visual C++ 6.0.

5. When you compile anything that needs DirectX, you’re going to have to include in
the search path of the compiler the location of the DirectX header files, as well as
the location of the DirectX .LIB files. You can make these additions under the
Options, Directories menu item in the main menu of the IDE. Then make the appro-
priate additions to the Include Files and Library Files variables. This is shown in
Figure 1.12. (Of course, make sure you point them to your particular installation of
DirectX and the newest libraries and header files.)
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FIGURE 1.12 Setting up the search paths in Visual C++ 6.0.

NOTE

Make sure that the DirectX search nodes are FIRST in the list(s). You don’t want the compiler
finding old versions of DirectX that might have come with the compiler.

6. Additionally, you have to actually include the DirectX COM interface import
libraries, listed here and shown in Figure 1.13, to the link list of your project or to
the project resource list.
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Import Libraries
DDraw.Lib
DSound.Lib
DInput.Lib
 .
 .
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DirectX.H
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DInput.H
 .
 .
 .

Input

Path: DXSDR\Include

Vctt
Linker

Vctt.
Compiler

Runtime
DirectX
.DLLs

Game.cpp

.obj

Output

Game.EXE

Note: Borland users 
will find the Borland
version of the .Lib 
DirectX Import libraries
in DXSDR\Lib\Borland

FIGURE 1.13 The resources needed to create a Win32 DirectX application.

• DDRAW.LIB

• DSOUND.LIB

• DINPUT.LIB
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• DINPUT8.LIB

• Any others that I mention for a particular example

These DirectX .LIB files are located in the LIB\ directory wherever you installed the
DirectX SDK. You MUST add these .LIB files to your project or workspace. You
can’t just add the LIB\ directory to the search path alone—that simply indicates where to
search, but doesn’t tell the compiler/linker to actually link the DirectX .LIB files. I have
received thousands (that’s right, thousands) of emails from people that don’t do this and
have problems. Once again: You must manually include the DirectX .LIB files in
the compiler’s link list with the other libraries OR in the project along with
your .CPP files. You can do this in the Project, Settings submenu in the Link, General
dialog in the Object/Library-Modules list. This is shown in Figure 1.14.
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FIGURE 1.14 Adding the DirectX .LIB files to the link list in Visual C++ 6.0.

NOTE

While you’re at it, you might have to add the Windows Multimedia Extensions library WINMM.LIB

to your project if you’re using Visual C++. This file is located in the LIB\ directory of your Visual
C++ compiler installation. If it’s not there, just use the FIND command from the Start menu to
find it. Once found, add it to the link list.

7. You’re ready to compile your programs.

NOTE

If you’re a Borland user, there is a separate BORLAND\ library directory within the DirectX SDK, so
make sure to add the .LIB files found in there for DirectX and NOT the higher Visual C++ DirectX
.LIB files up higher in the directory tree, which are MS-Visual C++ compatible.
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If you still have questions about this, don’t worry—I will revisit the steps a number of
times throughout the book when compiling the programs. But if I get one email about
compiling and it’s something that is right here in the preceding paragraphs—I’m going to
explode!

NOTE

I’m sure you have heard of the new Visual .NET System. Technically, it’s the newest of Microsoft’s
compiler and development technologies, but it’s brand new. It only runs on Windows XP/2000
decently, and is overkill for our purposes, so we will stick with Visual C++ 6.0. However, every-
thing works with .NET just as well: Win32 is Win32!

A Sample 3D Game: Raiders 3D
Before we both lose our minds talking about math, 3D game programming, and graphics, I
would like to take a pause and show you a complete 3D space game—a simple one, but a
game nonetheless. This way you can see a real game loop, some graphics calls, and give a
shot at compilation. Sound good, my young Jedi?

The problem is we are only on Chapter 1, so it’s not like I can use stuff from later chap-
ters—that would be cheating, right? And I haven’t showed you the API engine from the
previous Tricks. So, I’ve decided to get you accustomed to using “black box” APIs for game
programming. Hence, this sample game will get you accustomed to the idea of using an
API such as DirectX and the engine from the first book.

NOTE

Although in the 70s, 80s, and early 90s you could get away with doing everything yourself, in
the 21st century, there are simply too many hardware and software subsystems in a computer—
it’s nearly impossible to write everything yourself. Alas, we finally have to give in as game
programmers and use a few APIs such as Win32, DirectX, and so forth.

Therefore, based on the “black box” requirement, I wondered what, at the absolute
minimum, would be needed to create a 16-bit 3D wireframe space game?

All we really need is the following functionality from an API:

• Change into any graphics mode using DirectX

• Draw colored lines and pixels on the screen

• Get the keyboard input

• Play a sound from a .WAV file on disk

• Play a MIDI file from a .MID file on disk
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• Synchronize the game loop using some timing functions

• Draw strings of colored text on the screen

• Copy the double buffer, or offscreen rendering page to the display

All this functionality is of course in the game library modules T3DLIB*, created in the
previous Tricks, which is composed of six files: T3DLIB1.CPP|H, T3DLIB2.CPP|H, and
T3DLIB3.CPP|H. Module 1 contains most of the DirectX stuff, Module 2 contains most of
the DirectInput and DirectSound, and Module 3 contains DirectMusic for the most part.

Based on using the absolute minimum set of functions from the T3DLIB* game library, I
wrote a game called Raiders 3D that demonstrates a number of the concepts that we have
discussed in the chapter. Additionally, since the game is wireframe 3D, there’s a lot of code
that might not make any sense to you—that’s good! Although I will briefly explain the 3D
math and algorithms, don’t take too much time trying to understand what’s going on;
this is just to give you some perspective.

Raiders 3D illustrates all the major components of a real 3D game, including a game loop,
scoring, AI (the intelligence of slugs), collision, sound, and music. Figure 1.15 is a screen-
shot of the game in action. Granted, it’s not Star Wars, but it’s not bad for a few hours of
work!
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FIGURE 1.15 A screenshot of Raiders 3D.

NOTE

You might notice a bit of a similarity to the ancient game Tail Gunner. Mike, if you’re reading
this, did you ever get that Tail Gunner in your living room working?
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FIGURE 1.16 The code structure of Raiders 3D.

Before I show you the source code for the game, I want you to take a look at how the
project and its various components fit together—refer to Figure 1.16. As you see from the
figure, the game is composed of the following files that must be part of the project:

• RAIDERS3D.CPP—The main game logic that uses the functionality of T3DLIB and
creates a minimum Win32 application.

• T3DLIB1.CPP—The T3DLIB game library source files.

• T3DLIB2.CPP

• T3DLIB3.CPP

• T3DLIB1.H—The header files for the game library.

• T3DLIB2.H

• T3DLIB3.H

• DDRAW.LIB—DirectDraw is the 2D graphics component of DirectX. The DDRAW.LIB
import library is needed to build the application. This doesn’t contain the real
DirectX code; it’s more of an intermediary library that you make calls to, which in
turn loads the DDRAW.DLL dynamic link library that does the real work. You can find
this in the DirectX SDK installation under LIB\.

• DINPUT.LIB/DINPUT8.LIB—DirectInput is the device input component of DirectX.
The DINPUT.LIB and DINPUT8.LIB import libraries are needed to build the applica-
tion. This doesn’t contain the real DirectX code; it’s more of an intermediary library
that you make calls to, which in turn loads the DINPUT.DLL/DINPUT8.DLL dynamic
link libraries that do the real work. You can find this in the DirectX SDK installation
under LIB\.
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• DSOUND.LIB—DirectSound is the digital sound component of DirectX. The
DSOUND.LIB import library is needed to build the application. This doesn’t contain
the real DirectX code; it’s more of an intermediary library that you make calls to,
which in turn loads the DSOUND.DLL dynamic link library that does the real work.
You can find this in the DirectX SDK installation under LIB\.

NOTE

Note that there isn’t a DMUSIC.LIB file, even though DirectMusic is used by T3DLIB. That’s
because DirectMusic is a pure COM (Component Object Model) object. In other words, there
isn’t an import library full of nice wrapper functions to make calls to DirectMusic—you have to
do all the work yourself. Luckily I did it for you!

These files aren’t needed by the compiler or linker, but are the actual DirectX runtime
DLLs that will be loaded when the game application starts up:

• DINPUT.DLL/DINPUT8.DLL—These are the runtime DirectDraw libraries that actually
contain the COM implementation of the DirectInput interface functions that are
called through the DINPUT.LIB import library. You don’t need to worry about this per
se, you just need to make sure that the DirectX runtime files are installed.

• DDRAW.DLL—This is the runtime DirectDraw library that actually contains the COM
implementation of the DirectDraw interface functions that are called through the
DDRAW.LIB import library. You don’t need to worry about this per se, you just need to
make sure that the DirectX runtime files are installed.

• DSOUND.DLL—This is the runtime DirectSound library that actually contains the COM
implementation of the DirectSound interface functions that are called through the
DSOUND.LIB import library. You don’t need to worry about this per se, you just need
to make sure that the DirectX runtime files are installed.

• DMUSIC.DLL—This is the runtime DirectMusic library that actually contains the COM
implementation of the DirectMusic interface functions that are called directly
through COM calls. You don’t need to worry about this per se, you just need to
make sure that the DirectX runtime files are installed.

Based on making a few calls to the library, I have created the game RAIDERS3D.CPP, which
is shown in the listing below. The game runs in windowed mode with 16-bit graphics, so
make sure that your desktop is in 16-bit color mode.

Anyway, take a good look at the code: especially the main game loop, 3D math, and the
calls to the game processing functions:

// Raiders3D - RAIDERS3D.CPP -- our first 3D game

// READ THIS!

// To compile make sure to include DDRAW.LIB, DSOUND.LIB,
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// DINPUT.LIB, WINMM.LIB in the project link list, and of course

// the C++ source modules T3DLIB1.CPP,T3DLIB2.CPP, and T3DLIB3.CPP

// in the project!!! And the T3DLIB1.H,T3DLIB2.H, and T3DLIB3.H

// header files in the working directory, so the compiler

// can find them

// to run the game make sure that your desktop is in 16bit

// color mode with a resolution of 640x480 or higher

// INCLUDES ///////////////////////////////////////////////

#define INITGUID    // make sure al the COM interfaces are available

// instead of this you can include the .LIB file

// DXGUID.LIB

#define WIN32_LEAN_AND_MEAN

#include <windows.h>  // include important windows stuff

#include <windowsx.h>

#include <mmsystem.h>

#include <iostream.h> // include important C/C++ stuff

#include <conio.h>

#include <stdlib.h>

#include <malloc.h>

#include <memory.h>

#include <string.h>

#include <stdarg.h>

#include <stdio.h>

#include <math.h>

#include <io.h>

#include <fcntl.h>

#include <ddraw.h> // directX includes

#include <dsound.h>

#include <dmksctrl.h>

#include <dmusici.h>

#include <dmusicc.h>

#include <dmusicf.h>

#include <dinput.h>

#include “T3DLIB1.h” // game library includes

#include “T3DLIB2.h”

#include “T3DLIB3.h”

// DEFINES ////////////////////////////////////////////////
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// defines for windows interface

#define WINDOW_CLASS_NAME “WIN3DCLASS” // class name

#define WINDOW_TITLE   “T3D Graphics Console Ver 2.0”

#define WINDOW_WIDTH   640  // size of window

#define WINDOW_HEIGHT   480

#define WINDOW_BPP    16  // bitdepth of window (8,16,24 etc.)

// note: if windowed and not

// fullscreen then bitdepth must

// be same as system bitdepth

// also if 8-bit the a pallete

// is created and attached

#define WINDOWED_APP   1   // 0 not windowed, 1 windowed

////////////////////////////////////////////////////////////

#define NUM_STARS  250 // number of stars in sim

#define NUM_TIES   10  // number of tie fighters in sim

// 3D engine constants

#define NEAR_Z     10  // the near clipping plane

#define FAR_Z      2000 // the far clipping plane

#define VIEW_DISTANCE  320 // viewing distance from viewpoint

// this gives a field of view of 90 degrees

// when projected on a window of 640 wide

// player constants

#define CROSS_VEL    8 // speed that the cross hair moves

#define PLAYER_Z_VEL  8 // virtual z velocity that player is moving

// to simulate motion without moving

// tie fighter model constants

#define NUM_TIE_VERTS   10

#define NUM_TIE_EDGES   8

// explosiond

#define NUM_EXPLOSIONS  (NUM_TIES) // total number of explosions

// game states

#define GAME_RUNNING   1

#define GAME_OVER     0

// TYPES ///////////////////////////////////////////////////
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// this a 3D point

typedef struct POINT3D_TYP

{

USHORT color;   // color of point 16-bit

float x,y,z;   // coordinates of point in 3D

} POINT3D, *POINT3D_PTR;

// this is a 3D line, nothing more than two indices into a vertex list

typedef struct LINE3D_TYP

{

USHORT color; // color of line 16-bit

int v1,v2;   // indices to endpoints of line in vertex list

} LINE3D, *LINE3D_PTR;

// a tie fighter

typedef struct TIE_TYP

{

int state;   // state of the tie, 0=dead, 1=alive

float x, y, z; // position of the tie

float xv,yv,zv; // velocity of the tie

} TIE, *TIE_PTR;

// a basic 3D vector used for velocity

typedef struct VEC3D_TYP

{

float x,y,z; // coords of vector

} VEC3D, *VEC3D_PTR;

// a wireframe explosion

typedef struct EXPL_TYP

{

int state;    // state of explosion

int counter;   // counter for explosion

USHORT color;  // color of explosion

// an explosion is a collection of edges/lines

// based on the 3D model of the tie that is exploding

POINT3D p1[NUM_TIE_EDGES]; // start point of edge n

POINT3D p2[NUM_TIE_EDGES]; // end point of edge n

VEC3D  vel[NUM_TIE_EDGES]; // velocity of shrapnel
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} EXPL, *EXPL_PTR;

// PROTOTYPES /////////////////////////////////////////////

// game console

int Game_Init(void *parms=NULL);

int Game_Shutdown(void *parms=NULL);

int Game_Main(void *parms=NULL);

// game functions

void Init_Tie(int index);

// GLOBALS ////////////////////////////////////////////////

HWND main_window_handle      = NULL; // save the window handle

HINSTANCE main_instance      = NULL; // save the instance

char buffer[256];             // used to print text

// the tie fighter is a collection of vertices connected by

// lines that make up the shape. only one tie fighter see if

// you can replicate it?

POINT3D tie_vlist[NUM_TIE_VERTS]; // vertex list for the tie fighter model

LINE3D tie_shape[NUM_TIE_EDGES]; // edge list for the tie fighter model

TIE   ties[NUM_TIES];      // tie fighters

POINT3D stars[NUM_STARS]; // the starfield

// some colors, note we can’t build them until we know the bit

// depth format 5.5.5 or 5.6.5, so we wait a minute and do it in the

// Game_Init() function

USHORT rgb_green,

rgb_white,

rgb_red,

rgb_blue;

// player vars

float cross_x = 0, // cross hairs

cross_y = 0;

int cross_x_screen = WINDOW_WIDTH/2,  // used for cross hair

cross_y_screen = WINDOW_HEIGHT/2,
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target_x_screen = WINDOW_WIDTH/2,  // used for targeter

target_y_screen = WINDOW_HEIGHT/2;

int player_z_vel = 4; // virtual speed of viewpoint/ship

int cannon_state = 0; // state of laser cannon

int cannon_count = 0; // laster cannon counter

EXPL explosions[NUM_EXPLOSIONS]; // the explosiions

int misses = 0; // tracks number of missed ships

int hits  = 0; // tracks number of hits

int score = 0; // take a guess :)

// music and sound stuff

int main_track_id = -1, // main music track id

laser_id   = -1, // sound of laser pulse

explosion_id = -1, // sound of explosion

flyby_id   = -1; // sound of tie fighter flying by

int game_state = GAME_RUNNING; // state of game

// FUNCTIONS //////////////////////////////////////////////

LRESULT CALLBACK WindowProc(HWND hwnd,

UINT msg,

WPARAM wparam,

LPARAM lparam)

{

// this is the main message handler of the system

PAINTSTRUCT  ps;      // used in WM_PAINT

HDC      hdc;    // handle to a device context

// what is the message

switch(msg)

{  

case WM_CREATE:

{

// do initialization stuff here

return(0);

} break;

case WM_PAINT:

{
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// start painting

hdc = BeginPaint(hwnd,&ps);

// end painting

EndPaint(hwnd,&ps);

return(0);

} break;

case WM_DESTROY:

{

// kill the application

PostQuitMessage(0);

return(0);

} break;

default:break;

} // end switch

// process any messages that we didn’t take care of

return (DefWindowProc(hwnd, msg, wparam, lparam));

} // end WinProc

// WINMAIN ////////////////////////////////////////////////

int WINAPI WinMain(  HINSTANCE hinstance,

HINSTANCE hprevinstance,

LPSTR lpcmdline,

int ncmdshow)

{

// this is the winmain function

WNDCLASS winclass;  // this will hold the class we create

HWND   hwnd;    // generic window handle

MSG   msg;    // generic message

HDC   hdc;    // generic dc

PAINTSTRUCT ps;   // generic paintstruct

// first fill in the window class stucture

winclass.style    = CS_DBLCLKS | CS_OWNDC |

CS_HREDRAW | CS_VREDRAW;

winclass.lpfnWndProc  = WindowProc;
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winclass.cbClsExtra  = 0;

winclass.cbWndExtra  = 0;

winclass.hInstance  = hinstance;

winclass.hIcon    = LoadIcon(NULL, IDI_APPLICATION);

winclass.hCursor  = LoadCursor(NULL, IDC_ARROW);

winclass.hbrBackground  = (HBRUSH)GetStockObject(BLACK_BRUSH);

winclass.lpszMenuName  = NULL;

winclass.lpszClassName  = WINDOW_CLASS_NAME;

// register the window class

if (!RegisterClass(&winclass))

return(0);

// create the window, note the test to see if WINDOWED_APP is

// true to select the appropriate window flags

if (!(hwnd = CreateWindow(WINDOW_CLASS_NAME, // class

WINDOW_TITLE,   // title

(WINDOWED_APP ? (WS_OVERLAPPED | WS_SYSMENU) : (WS_POPUP | WS_VISIBLE)),

0,0,    // x,y

WINDOW_WIDTH, // width

WINDOW_HEIGHT, // height

NULL,    // handle to parent

NULL,    // handle to menu

hinstance,// instance

NULL)))  // creation parms

return(0);

// save the window handle and instance in a global

main_window_handle = hwnd;

main_instance   = hinstance;

// resize the window so that client is really width x height

if (WINDOWED_APP)

{

// now resize the window, so the client area is the actual size requested

// since there may be borders and controls if this is going to be a windowed app

// if the app is not windowed then it won’t matter

RECT window_rect = {0,0,WINDOW_WIDTH,WINDOW_HEIGHT};

// make the call to adjust window_rect

AdjustWindowRectEx(&window_rect,

GetWindowStyle(main_window_handle),
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GetMenu(main_window_handle) != NULL,

GetWindowExStyle(main_window_handle));

// save the global client offsets, they are needed in DDraw_Flip()

window_client_x0 = -window_rect.left;

window_client_y0 = -window_rect.top;

// now resize the window with a call to MoveWindow()

MoveWindow(main_window_handle,

CW_USEDEFAULT, // x position

CW_USEDEFAULT, // y position

window_rect.right - window_rect.left, // width

window_rect.bottom - window_rect.top, // height

FALSE);

// show the window, so there’s no garbage on first render

ShowWindow(main_window_handle, SW_SHOW);

} // end if windowed

// perform all game console specific initialization

Game_Init();

// disable CTRL-ALT_DEL, ALT_TAB, comment this line out

// if it causes your system to crash

SystemParametersInfo(SPI_SCREENSAVERRUNNING, TRUE, NULL, 0);

// enter main event loop

while(1)

{

if (PeekMessage(&msg,NULL,0,0,PM_REMOVE))

{

// test if this is a quit

if (msg.message == WM_QUIT)

break;

// translate any accelerator keys

TranslateMessage(&msg);

// send the message to the window proc

DispatchMessage(&msg);

} // end if
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// main game processing goes here

Game_Main();

} // end while

// shutdown game and release all resources

Game_Shutdown();

// enable CTRL-ALT_DEL, ALT_TAB, comment this line out

// if it causes your system to crash

SystemParametersInfo(SPI_SCREENSAVERRUNNING, FALSE, NULL, 0);

// return to Windows like this

return(msg.wParam);

} // end WinMain

// T3D II GAME PROGRAMMING CONSOLE FUNCTIONS ////////////////

int Game_Init(void *parms)

{

// this function is where you do all the initialization

// for your game

int index; // used for looping

Open_Error_File(“error.txt”);

// start up DirectDraw (replace the parms as you desire)

DDraw_Init(WINDOW_WIDTH, WINDOW_HEIGHT, WINDOW_BPP, WINDOWED_APP);

// initialize directinput

DInput_Init();

// acquire the keyboard

DInput_Init_Keyboard();

// initialize directsound

DSound_Init();

// load in sound fx

explosion_id = DSound_Load_WAV(“exp1.wav”);

laser_id   = DSound_Load_WAV(“shocker.wav”);
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// initialize directmusic

DMusic_Init();

// load and start main music track

main_track_id = DMusic_Load_MIDI(“midifile2.mid”);

DMusic_Play(main_track_id);

// add calls to acquire other directinput devices here...

// hide the mouse

ShowCursor(FALSE);

// seed random number generator

srand(Start_Clock());

// all your initialization code goes here...

// create system colors

rgb_green = RGB16Bit(0,31,0);

rgb_white = RGB16Bit(31,31,31);

rgb_blue = RGB16Bit(0,0,31);

rgb_red  = RGB16Bit(31,0,0);

// create the starfield

for (index=0; index < NUM_STARS; index++)

{

// randomly position stars in an elongated cylinder stretching from

// the viewpoint 0,0,-d to the yon clipping plane 0,0,far_z

stars[index].x = -WINDOW_WIDTH/2 + rand()%WINDOW_WIDTH;

stars[index].y = -WINDOW_HEIGHT/2 + rand()%WINDOW_HEIGHT;

stars[index].z = NEAR_Z + rand()%(FAR_Z - NEAR_Z);

// set color of stars

stars[index].color = rgb_white;

} // end for index

// create the tie fighter model

// the vertex list for the tie fighter

POINT3D temp_tie_vlist[NUM_TIE_VERTS] =

// color, x,y,z

{ {rgb_white,-40,40,0},  // p0

{rgb_white,-40,0,0},  // p1
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{rgb_white,-40,-40,0},  // p2

{rgb_white,-10,0,0},  // p3

{rgb_white,0,20,0},   // p4

{rgb_white,10,0,0},   // p5

{rgb_white,0,-20,0},  // p6

{rgb_white,40,40,0},   // p7

{rgb_white,40,0,0},   // p8

{rgb_white,40,-40,0}};  // p9

// copy the model into the real global arrays

for (index=0; index<NUM_TIE_VERTS; index++)

tie_vlist[index] = temp_tie_vlist[index];

// the edge list for the tie fighter

LINE3D temp_tie_shape[NUM_TIE_EDGES] =

// color, vertex 1, vertex 2

{ {rgb_green,0,2   },  // l0

{rgb_green,1,3   },  // l1

{rgb_green,3,4   },  // l2

{rgb_green,4,5   },  // l3

{rgb_green,5,6   },  // l4

{rgb_green,6,3   },  // l5

{rgb_green,5,8   },  // l6

{rgb_green,7,9   } }; // l7

// copy the model into the real global arrays

for (index=0; index<NUM_TIE_EDGES; index++)

tie_shape[index] = temp_tie_shape[index];

// initialize the position of each tie fighter and its velocity

for (index=0; index<NUM_TIES; index++)

{

// initialize this tie fighter

Init_Tie(index);

} // end for index

// return success

return(1);

} // end Game_Init

///////////////////////////////////////////////////////////
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int Game_Shutdown(void *parms)

{

// this function is where you shutdown your game and

// release all resources that you allocated

// shut everything down

// release all your resources created for the game here....

// now directsound

DSound_Stop_All_Sounds();

DSound_Shutdown();

// directmusic

DMusic_Delete_All_MIDI();

DMusic_Shutdown();

// shut down directinput

DInput_Shutdown();

// shutdown directdraw last

DDraw_Shutdown();

// return success

return(1);

} // end Game_Shutdown

//////////////////////////////////////////////////////////

void Start_Explosion(int tie)

{

// this starts an explosion based on the sent tie fighter

// first hunt and see if an explosion is free

for (int index=0; index < NUM_EXPLOSIONS; index++)

{

if (explosions[index].state==0)

{

// start this explosion up using the properties

// if the tie figther index sent

explosions[index].state  = 1; // enable state of explosion

explosions[index].counter = 0; // reset counter for explosion
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// set color of explosion

explosions[index].color = rgb_green;

// make copy of of edge list, so we can blow it up

for (int edge=0; edge < NUM_TIE_EDGES; edge++)

{

// start point of edge

explosions[index].p1[edge].x = ties[tie].x+tie_vlist

➥[tie_shape[edge].v1].x;

explosions[index].p1[edge].y = ties[tie].y+tie_vlist

➥[tie_shape[edge].v1].y;

explosions[index].p1[edge].z = ties[tie].z+tie_vlist

➥[tie_shape[edge].v1].z;

// end point of edge

explosions[index].p2[edge].x = ties[tie].x+tie_vlist

➥[tie_shape[edge].v2].x;

explosions[index].p2[edge].y = ties[tie].y+tie_vlist

➥[tie_shape[edge].v2].y;

explosions[index].p2[edge].z = ties[tie].z+tie_vlist

➥[tie_shape[edge].v2].z;

// compute trajectory vector for edges

explosions[index].vel[edge].x = ties[tie].xv - 8+rand()%16;

explosions[index].vel[edge].y = ties[tie].yv - 8+rand()%16;

explosions[index].vel[edge].z = -3+rand()%4;

} // end for edge

// done, so return

return;

} // end if found

} // end for index

} // end Start_Explosion

///////////////////////////////////////////////////////////

void Process_Explosions(void)

{

// this processes all the explosions
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// loop thru all the explosions and render them

for (int index=0; index<NUM_EXPLOSIONS; index++)

{

// test if this explosion is active?

if (explosions[index].state==0)

continue;

for (int edge=0; edge<NUM_TIE_EDGES; edge++)

{

// must be exploding, update edges (shrapel)

explosions[index].p1[edge].x+=explosions[index].vel[edge].x;

explosions[index].p1[edge].y+=explosions[index].vel[edge].y;

explosions[index].p1[edge].z+=explosions[index].vel[edge].z;

explosions[index].p2[edge].x+=explosions[index].vel[edge].x;

explosions[index].p2[edge].y+=explosions[index].vel[edge].y;

explosions[index].p2[edge].z+=explosions[index].vel[edge].z;

} // end for edge

// test for termination of explosion?

if (++explosions[index].counter > 100)

explosions[index].state = explosions[index].counter = 0;

} // end for index

} // end Process_Explosions

///////////////////////////////////////////////////////////

void Draw_Explosions(void)

{

// this draws all the explosions

// loop thru all the explosions and render them

for (int index=0; index<NUM_EXPLOSIONS; index++)

{

// test if this explosion is active?

if (explosions[index].state==0)

continue;

// render this explosion

// each explosion is made of a number of edges

for (int edge=0; edge < NUM_TIE_EDGES; edge++)
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{

POINT3D p1_per, p2_per; // used to hold perspective endpoints

// test if edge if beyond near clipping plane

if (explosions[index].p1[edge].z < NEAR_Z &&

explosions[index].p2[edge].z < NEAR_Z)

continue;

// step 1: perspective transform each end point

p1_per.x = VIEW_DISTANCE*explosions[index].p1[edge].x/explosions

➥[index].p1[edge].z;

p1_per.y = VIEW_DISTANCE*explosions[index].p1[edge].y/explosions

➥[index].p1[edge].z;

p2_per.x = VIEW_DISTANCE*explosions[index].p2[edge].x/explosions

➥ [index].p2[edge].z;

p2_per.y = VIEW_DISTANCE*explosions[index].p2[edge].y/explosions

➥ [index].p2[edge].z;

// step 2: compute screen coords

int p1_screen_x = WINDOW_WIDTH/2 + p1_per.x;

int p1_screen_y = WINDOW_HEIGHT/2 - p1_per.y;

int p2_screen_x = WINDOW_WIDTH/2 + p2_per.x;

int p2_screen_y = WINDOW_HEIGHT/2 - p2_per.y;

// step 3: draw the edge

Draw_Clip_Line16(p1_screen_x, p1_screen_y, p2_screen_x, p2_screen_y,

explosions[index].color,back_buffer, back_lpitch);

} // end for edge

} // end for index

} // end Draw_Explosions

//////////////////////////////////////////////////////////

void Move_Starfield(void)

{

// move the stars

int index; // looping var
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// the stars are technically stationary,but we are going

// to move them to simulate motion of the viewpoint

for (index=0; index<NUM_STARS; index++)

{

// move the next star

stars[index].z-=player_z_vel;

// test for past near clipping plane

if (stars[index].z <= NEAR_Z)

stars[index].z = FAR_Z;

} // end for index

} // end Move_Starfield

/////////////////////////////////////////////////////////

void Draw_Starfield(void)

{

// draw the stars in 3D using perspective transform

int index; // looping var

for (index=0; index<NUM_STARS; index++)

{

// draw the next star

// step 1: perspective transform

float x_per = VIEW_DISTANCE*stars[index].x/stars[index].z;

float y_per = VIEW_DISTANCE*stars[index].y/stars[index].z;

// step 2: compute screen coords

int x_screen = WINDOW_WIDTH/2 + x_per;

int y_screen = WINDOW_HEIGHT/2 - y_per;

// clip to screen coords

if (x_screen>=WINDOW_WIDTH || x_screen < 0 ||

y_screen >= WINDOW_HEIGHT || y_screen < 0)

{

// continue to next star

continue;

} // end if

else

{
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// else render to buffer

((USHORT *)back_buffer)[x_screen + y_screen*(back_lpitch >> 1)]

= stars[index].color;

} // end else

} // end for index

} // Draw_Starfield

/////////////////////////////////////////////////////////

void Init_Tie(int index)

{

// this function starts a tie fighter up at the far end

// of the universe and sends it our way!

// position each tie in the viewing volume

ties[index].x = -WINDOW_WIDTH + rand()%(2*WINDOW_WIDTH);

ties[index].y = -WINDOW_HEIGHT + rand()%(2*WINDOW_HEIGHT);

ties[index].z = 4*FAR_Z;

// initialize velocity of tie fighter

ties[index].xv = -4+rand()%8;

ties[index].yv = -4+rand()%8;

ties[index].zv = -4-rand()%64;

// turn the tie fighter on

ties[index].state = 1;

} // end Init_Tie

/////////////////////////////////////////////////////////

void Process_Ties(void)

{

// process the tie fighters and do AI (what there is of it!)

int index; // looping var

// move each tie fighter toward the viewpoint

for (index=0; index<NUM_TIES; index++)

{

// is this one dead?

if (ties[index].state==0)

continue;
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// move the next star

ties[index].z+=ties[index].zv;

ties[index].x+=ties[index].xv;

ties[index].y+=ties[index].yv;

// test for past near clipping plane

if (ties[index].z <= NEAR_Z)

{

// reset this tie

Init_Tie(index);

// another got away

misses++;

} // reset tie

} // end for index

} // Process_Ties

//////////////////////////////////////////////////////////

void Draw_Ties(void)

{

// draw the tie fighters in 3D wireframe with perspective

int index; // looping var

// used to compute the bounding box of tie fighter

// for collision detection

int bmin_x, bmin_y, bmax_x, bmax_y;

// draw each tie fighter

for (index=0; index < NUM_TIES; index++)

{

// draw the next tie fighter

// is this one dead?

if (ties[index].state==0)

continue;

// reset the bounding box to impossible values

bmin_x = 100000;
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bmax_x = -100000;

bmin_y = 100000;

bmax_y = -100000;

// based on z-distance shade tie fighter

// normalize the distance from 0 to max_z then

// scale it to 31, so the closer the brighter

USHORT rgb_tie_color = RGB16Bit(0,(31-31*(ties[index].z/(4*FAR_Z))),0);

// each tie fighter is made of a number of edges

for (int edge=0; edge < NUM_TIE_EDGES; edge++)

{

POINT3D p1_per, p2_per; // used to hold perspective endpoints

// step 1: perspective transform each end point

// note the translation of each point to the position of the tie fighter

// that is the model is relative to the position of each tie 

➥fighter -- IMPORTANT

p1_per.x =

VIEW_DISTANCE*(ties[index].x+tie_vlist[tie_shape[edge].v1].x)/

(tie_vlist[tie_shape[edge].v1].z+ties[index].z);

p1_per.y = VIEW_DISTANCE*(ties[index].y+tie_vlist[tie_shape[edge].v1].y)/

(tie_vlist[tie_shape[edge].v1].z+ties[index].z);

p2_per.x = VIEW_DISTANCE*(ties[index].x+tie_vlist[tie_shape[edge].v2].x)/

(tie_vlist[tie_shape[edge].v2].z+ties[index].z);

p2_per.y = VIEW_DISTANCE*(ties[index].y+tie_vlist[tie_shape[edge].v2].y)/

(tie_vlist[tie_shape[edge].v2].z+ties[index].z);

// step 2: compute screen coords

int p1_screen_x = WINDOW_WIDTH/2 + p1_per.x;

int p1_screen_y = WINDOW_HEIGHT/2 - p1_per.y;

int p2_screen_x = WINDOW_WIDTH/2 + p2_per.x;

int p2_screen_y = WINDOW_HEIGHT/2 - p2_per.y;

// step 3: draw the edge

Draw_Clip_Line16(p1_screen_x, p1_screen_y, p2_screen_x, p2_screen_y,

rgb_tie_color,back_buffer, back_lpitch);
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// update bounding box with next edge

int min_x = min(p1_screen_x, p2_screen_x);

int max_x = max(p1_screen_x, p2_screen_x);

int min_y = min(p1_screen_y, p2_screen_y);

int max_y = max(p1_screen_y, p2_screen_y);

bmin_x = min(bmin_x, min_x);

bmin_y = min(bmin_y, min_y);

bmax_x = max(bmax_x, max_x);

bmax_y = max(bmax_y, max_y);

} // end for edge

// test if this guy has been hit by lasers???

if (cannon_state==1)

{

// simple test of screen coords of bounding box contain laser target

if (target_x_screen > bmin_x && target_x_screen < bmax_x &&

target_y_screen > bmin_y && target_y_screen < bmax_y)

{

// this tie is dead meat!

Start_Explosion(index);

// start sound

DSound_Play(explosion_id );

// increase score

score+=ties[index].z;

// add one more hit

hits++;

// finally reset this tie figher

Init_Tie(index);

} // end if

} // end if

} // end for index
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} // end Draw_Ties

//////////////////////////////////////////////////////////

int Game_Main(void *parms)

{

// this is the workhorse of your game it will be called

// continuously in real-time this is like main() in C

// all the calls for your game go here!

int    index;    // looping var

// start the timing clock

Start_Clock();

// clear the drawing surface

DDraw_Fill_Surface(lpddsback, 0);

// read keyboard and other devices here

DInput_Read_Keyboard();

// game logic here...

if (game_state==GAME_RUNNING)

{

// move players crosshair

if (keyboard_state[DIK_RIGHT])

{

// move cross hair to right

cross_x+=CROSS_VEL;

// test for wraparound

if (cross_x > WINDOW_WIDTH/2)

cross_x = -WINDOW_WIDTH/2;

} // end if

if (keyboard_state[DIK_LEFT])

{

// move cross hair to left

cross_x-=CROSS_VEL;

// test for wraparound

if (cross_x < -WINDOW_WIDTH/2)
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cross_x = WINDOW_WIDTH/2;

} // end if

if (keyboard_state[DIK_DOWN])

{

// move cross hair up

cross_y-=CROSS_VEL;

// test for wraparound

if (cross_y < -WINDOW_HEIGHT/2)

cross_y = WINDOW_HEIGHT/2;

} // end if

if (keyboard_state[DIK_UP])

{

// move cross hair up

cross_y+=CROSS_VEL;

// test for wraparound

if (cross_y > WINDOW_HEIGHT/2)

cross_y = -WINDOW_HEIGHT/2;

} // end if

// speed of ship controls

if (keyboard_state[DIK_A])

player_z_vel++;

else

if (keyboard_state[DIK_S])

player_z_vel--;

// test if player is firing laser cannon

if (keyboard_state[DIK_SPACE] && cannon_state==0)

{

// fire the cannon

cannon_state = 1;

cannon_count = 0;

// save last position of targeter

target_x_screen = cross_x_screen;

target_y_screen = cross_y_screen;

// make sound

DSound_Play(laser_id);

} // end if
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} // end if game running

// process cannon, simple FSM ready->firing->cool

// firing phase

if (cannon_state == 1)

if (++cannon_count > 15)

cannon_state = 2;

// cool down phase

if (cannon_state == 2)

if (++cannon_count > 20)

cannon_state = 0;

// move the starfield

Move_Starfield();

// move and perform ai for ties

Process_Ties();

// Process the explosions

Process_Explosions();

// lock the back buffer and obtain pointer and width

DDraw_Lock_Back_Surface();

// draw the starfield

Draw_Starfield();

// draw the tie fighters

Draw_Ties();

// draw the explosions

Draw_Explosions();

// draw the crosshairs

// first compute screen coords of crosshair

// note inversion of y-axis

cross_x_screen = WINDOW_WIDTH/2 + cross_x;

cross_y_screen = WINDOW_HEIGHT/2 - cross_y;
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// draw the crosshair in screen coords

Draw_Clip_Line16(cross_x_screen-16,cross_y_screen,

cross_x_screen+16,cross_y_screen,

rgb_red,back_buffer,back_lpitch);

Draw_Clip_Line16(cross_x_screen,cross_y_screen-16,

cross_x_screen,cross_y_screen+16,

rgb_red,back_buffer,back_lpitch);

Draw_Clip_Line16(cross_x_screen-16,cross_y_screen-4,

cross_x_screen-16,cross_y_screen+4,

rgb_red,back_buffer,back_lpitch);

Draw_Clip_Line16(cross_x_screen+16,cross_y_screen-4,

cross_x_screen+16,cross_y_screen+4,

rgb_red,back_buffer,back_lpitch);

// draw the laser beams

if (cannon_state == 1)

{

if ((rand()%2 == 1))

{

// right beam

Draw_Clip_Line16(WINDOW_WIDTH-1, WINDOW_HEIGHT-1,

-4+rand()%8+target_x_screen,-4+rand()%8+target_y_screen,

RGB16Bit(0,0,rand()),back_buffer,back_lpitch);

} // end if

else

{

// left beam

Draw_Clip_Line16(0, WINDOW_HEIGHT-1,

-4+rand()%8+target_x_screen,-4+rand()%8+target_y_screen,

RGB16Bit(0,0,rand()),back_buffer,back_lpitch);

} // end if

} // end if

// done rendering, unlock back buffer surface

DDraw_Unlock_Back_Surface();

// draw the informtion

sprintf(buffer, “Score %d   Kills %d   Escaped %d”, score, hits, misses);

Draw_Text_GDI(buffer, 0,0,RGB(0,255,0), lpddsback);
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if (game_state==GAME_OVER)

Draw_Text_GDI(“G A M E O V E R”, 320-8*10,240,RGB(255,255,255), lpddsback);

// check if the music has finished, if so restart

if (DMusic_Status_MIDI(main_track_id)==MIDI_STOPPED)

DMusic_Play(main_track_id);

// flip the surfaces

DDraw_Flip();

// sync to 30ish fps

Wait_Clock(30);

// check for game state switch

if (misses > 100)

game_state = GAME_OVER;

// check of user is trying to exit

if (KEY_DOWN(VK_ESCAPE) || keyboard_state[DIK_ESCAPE])

{

PostMessage(main_window_handle, WM_DESTROY,0,0);

} // end if

// return success

return(1);

} // end Game_Main

//////////////////////////////////////////////////////////

Pretty short for a 3D game, huh! That’s an entire 3D Win32/DirectX game. Well, almost—
there’s a few thousand lines of code in the T3DLIB modules, but we’ll just pretend that it’s
like DirectX and someone else wrote it.

Before we move on to analyzing the code, I want you to compile this bad boy yourself.
You are not allowed to move on until you get a successful compile! Fair enough? So,
follow the steps that we outlined as far as setting up the compiler to create a Win32 .EXE
application with all the search paths and link lists ready for DirectX. Then, once you have
your project ready, you must include the source files:

T3DLIB1.CPP, T3DLIB2.CPP, T3DLIB3.CPP, RAIDERS3D.CPP

Of course, the header files

T3DLIB1.H, T3DLIB2.H, T3DLIB3.H
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must be in the working directory of the compiler. And finally, you need to make
absolutely sure you have included the DirectX .LIB files in the project along with the .CPP
files OR in the link list. You will only need the following DirectX .LIB files:

DDRAW.LIB, DSOUND.LIB, DINPUT.LIB, DINPUT8.LIB

You can call the .EXE anything you like—maybe TEST.EXE or RAIDERS3D_TEST.EXE—but
don’t move on until you can compile.

The Event Loop
WinMain() is the main entry point for all Windows programs, just like main() is the entry
point for all DOS/Unix programs (please wash your mouth out if you said Unix out loud).
In any case, the WinMain() for Raiders3D creates a window and then enters right into the
event loop. If Windows needs to do something, it does it. In any case, WinMain() begins
by creating a Windows class and registering it. Next the game window is created, then a
call is made to our function Game_Init() that handles all the initialization of the game.
When all the initialization is complete, a standard Windows event loop is entered that
“peeks” for a message. If a message is found, the Windows procedure, or WinProc is called,
which handles it. Otherwise, a call to our main game programming function Game_Main()
is called. This is where the real action occurs for our game.

NOTE

Readers from the previous Tricks will notice that there is some extra code in WinMain()’s initializa-
tion to handle windowed graphics and the resizing of the window. This new feature, along with
16-bit support, is part of the revised T3DLIB game engine. However, the majority of the 3D for
this book will still support 8-bit graphics, because getting speed out of 16-bit software 3D is still
too slow in general.

If you want to, you could loop in Game_Main() forever, never releasing back to the main
event loop in WinMain(). This would be bad because Windows would never receive any
messages, and you would starve the system. What we need to do is perform one frame of
animation and logic and then return back to WinMain(). This way, Windows will continue
to function and process messages. This process is shown in Figure 1.17.

The Core 3D Game Logic
Once in Game_Main(), the logic for Raiders3D executes, and the 3D game image is rendered
into an offscreen workspace (the double buffer, or in DirectX lingo, “back buffer”). It is
finally displayed on the physical display at the end of the loop via the call to
DDraw_Flip(), which creates the illusion of animation. The game loop consists of the stan-
dard sections as defined previously in the elements of a 2D/3D game. The area that I want
to focus on is the 3D graphics.
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FIGURE 1.17 The entire message-processing system.

The game logic for the enemy AI is fairly simple. An alien ship is generated at a random
position in 3D space at a distance just beyond view. Figure 1.18 shows the 3D space of the
Raiders3D universe. As you can see, the camera or viewpoint is fixed along the negative z-
axis at a position (0,0,-zd), where –zd is the viewing distance from the virtual window that
the image is projected on. The 3D space is called a left-handed system because the positive
z-axis goes into the screen.

After an enemy ship is generated, it follows a trajectory vector along a fixed path that
intersects the player’s viewing position—thus it’s on a collision course, more or less. The
vector and initial position are generated in the function Init_Tie(). Your goal as the
player is to target the enemy and fire—that’s it.

So, the question is, how is the 3D display generated? The enemy ships are nothing more
than polygon objects (collections of lines) that outline the shape of the 3D object. That is,
they are 2D outlines, rather than full 3D objects. The key to all 3D is perspective. Figure
1.19 shows the difference between an orthographic-projected house and a perspective-
projected house. These are the two basic types of projections used in 3D graphics systems.
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FIGURE 1.18 The universe of Raiders3D.
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FIGURE 1.19 Orthographic versus perspective projections.

3D Projections
The orthographic projection is good for technical drawings and images where perspective
warping is not desired. The math for an orthographic projection is very simple—basically,
the z coordinates of each point are simply thrown away, as shown below:
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EQUATION 1.1 The Orthographic Projection

Given (x,y,z) in 3D space:

x
ortho

= x

y
ortho

= y

The perspective projection is a little complex, and at this point I don’t want to get too
much into its derivation. In general, we want to take the z coordinate into consideration
along with the viewing distance to arrive at a projected (x

per
, y

per
) in 2D that can be plotted

on the 2D screen. The mathematics are based on the image shown in Figure 1.20, which is
based on a similar triangles argument. It can be shown that the point (x

per
, y

per
) can be

calculated with the following equations.
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FIGURE 1.20 The derivation of the perspective transformation.

EQUATION 1.2 The Perspective Projection

Given (x,y,z) and the viewing distance zd in 3D space:

x
per

= zd*x/z

y
per

= zd*y/z

With that simple equation, we can move the polygon objects in 3D just like 2D objects,
use the perspective projection equations to warp the points before rendering, and then the
objects will look and move correctly in 3D. Of course, there are some details about
converting the final coordinates (x

per
, y

per
) to actual screen coordinates, but that’s not
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important right now. All you need to know is that 3D is nothing more than objects repre-
sented in 3D that move in 3D, and that they are projected from 3D onto a 2D viewing
surface (the screen) with mathematics that take perspective into consideration.
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FIGURE 1.21 The wireframe model of the TIE fighter.

Based on this knowledge, each enemy ship is transformed with the perspective projection
and rendered onto the screen. Figure 1.21 shows a wireframe model on graph paper of the
TIE fighter enemy. Basically, this model is used as the basis for the rendering. A table of
the actual positions of each TIE fighter is kept in an array of the following structures:

// a tie fighter

typedef struct TIE_TYP

{

int state;   // state of the tie, 0=dead, 1=alive

float x, y, z; // position of the tie

float xv,yv,zv; // velocity of the tie

} TIE, *TIE_PTR;
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When it’s time to draw the enemy fighters, the data in the form of a TIE structure and the
TIE 3D model are used along with the perspective projection. Presto—a moving 3D image!

You’ll also notice that the TIE fighters get brighter as they get closer. This is an easy effect
to implement. Basically, the z-axis distance is used as a scaling factor to control the bright-
ness of the TIE fighter as it’s drawn.

The Star Field
The star field is nothing more than a collection of single points generated from an emitter
out in space. Furthermore, they are recycled as they pass the viewpoint of the player and
go behind him. The points are rendered as full 3D objects with the perspective transform,
but have a size of 1×1×1 pixel, so they are true “points” and always look like single pixels.

The Laser Cannons and Collision Detection
The laser cannons that the player fires are nothing more than 2D lines projected from the
corners of the screen that converge on the crosshairs. The collision detection is accom-
plished by looking at the 2D projection of all the 3D ships on the viewing screen and
testing if the lasers are contained within the bounding box of each projection. This is
shown graphically in Figure 1.22.
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FIGURE 1.22 Using the 2D projected bounding box for collision detection.
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This algorithm works because lasers travel at the speed of light. It doesn’t matter if the
target is 10 meters or 10,000 km away—if you target it with a laser beam and the laser
beam intersects even the projection of the 3D image, there is a collision.

The Explosions
The explosions for this game are fairly impressive for the amount of code. When a TIE is
hit by a laser pulse, I copied the lines that make up the 3D model of the TIE into a
secondary data structure. The lines are then moved apart randomly in 3D, as if they were
pieces of the TIE. The pieces move for a couple of seconds, and then the explosion termi-
nates. The effect is very realistic, and is implemented in less than 100 lines of code.

Playing Raiders3D
To play the game, simply click on RAIDERS3D.EXE on the CD and the program will launch
immediately. The controls are as follows:

Arrow keys Move crosshair

Space bar Fire lasers

Esc Exits game

Note: If 100 enemies get by you, the game is over!

The game uses DirectDraw, DirectInput, DirectSound, and DirectMusic, so make sure that
your runtime DirectX system is operational.

NOTE

At the end of the book, just for fun we will rewrite Raiders3D with the fully lit, full 3D-modeled,
textured polygon engine, just to see the difference!

Summary
This chapter has been nothing more than a get-your-feet-wet introduction to 3D game
programming. The most important thing to get out of it is compiling DirectX programs, if
nothing else! However, we did cover game programming, game loops, general 3D perspec-
tive transforms, and using the compiler. You were also introduced to the T3DLIB game
engine from the previous Tricks that we will use to help get a DirectX system up and
running, so we can focus on 3D game programming and not on creating surfaces, query-
ing for interfaces, and loading sound FX! Now that you can compile, try messing with the
game—add more aliens, some asteroids, and whatever else—and meet me in the next
chapter …
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• Flash Introduction to COM

CHAPTER 2

A Crash Course in
Windows and DirectX

“No, Lieutenant, your men are already dead.”

—Agent Smith, The Matrix

In this chapter, we are basically going to take a crash course
in Windows and DirectX programming. This book mostly
assumes that you know Win32 and DirectX programming.
However, I tried to write the book so that if you don’t know
Win32/DirectX programming, you can simply use the APIs
that I create and focus on the 3D part. However, for those
that don’t have the pleasure of knowing Win32/DirectX
programming, let me indulge you just a bit. Here’s what we’ll
cover:

• Windows programming

• Event loops

• Writing a simple Windows shell

• DirectX fundamentals

• Component object model

The Win32 Programming Model
Windows is a multitasking/multithreaded O/S, but it’s also an
event-driven O/S. Unlike most DOS programs (all, actually),
most Windows programs sit and wait for the user to do some-
thing (which fires an event) and then Windows responds to
the event and takes action. Take a look at Figure 2.1 to see
this graphically. Figure 2.1 depicts a number of application
windows, each sending their events or messages to Windows
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70 CHAPTER 2 A Crash Course in Windows and DirectX

to be processed. Windows does some of the processing, but the majority of the messages
or events are passed through to your application program for processing.

– x
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WinMain()
{
}

WinProc()

Local
event
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WinMain()
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}

WinProc()

Local
event
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Messages are 
routed to each 
window app.

FIGURE 2.1 Windows event handling.

The good news is that for the most part you don’t need to concern yourself with other
applications that are running—Windows will handle them for you. All you have to worry
about is your own application and the processing of messages for your application’s
window(s). This wasn’t the entire truth in Windows 3.0/3.1. These versions of Windows
weren’t true multitasking O/Ss, and each application had to yield to the next. This made
for a rather rough or sluggish feel for applications running under these versions. If other
applications were hogging the system, there wasn’t anything that compliant applications
could do. However, with Windows 9x/Me/2000/XP/NT, this isn’t the case. The O/S will
pull the rug from under your application whenever it feels like it—of course, it pulls it so
quickly that you’ll never notice!

NOTE

At this point, you know all you need to about O/S concepts. Luckily, Windows is such a nice O/S
to write games for these days that you won’t have to worry about scheduling and so on. All you
need to worry about is the game code and pushing the machine to its limits.
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The Bare Minimum for a Windows Program
Now that you have a general overview of the Windows O/S and some of its properties and
underlying design, let’s begin our crash course into Windows programming with our first
Windows program.

It’s customary to write a “Hello World” program in any new language or O/S that you’re
learning, so we’ll do the same. The following listing is the standard DOS-based “Hello
World.”

// DEMOII2_1.CPP – hello world standard version

#include <stdio.h>

// main entry point for all standard DOS/console programs

void main(void)

{

printf(“\nTHERE CAN BE ONLY ONE!!!\n”);

} // end main

Now let’s see how it’s done with Windows.

NOTE

By the way, if you want to compile DEMOII2_1.CPP, you can actually create what’s called a
console application with the Visual C++ or Borland compilers. These are like DOS applications, but
32-bit. They only run in text mode, but are great for testing out ideas and algorithms.

It All Begins with WinMain()
All Windows programs begin execution at the function named WinMain(). This is equiva-
lent to main() in a straight DOS/Unix program. What you do in WinMain() is up to you. If
you want, you can create a window, start processing events, draw images on the screen
and so on. On the other hand, you can just make a call to one of the hundreds (or thou-
sands) of Win32 API functions. This is what we’re going to do next.

As an example, I just want to print something on the screen in a little message box. There
just so happens to be a Win32 API function that does just that—MessageBox(). The
following listing is a complete, compilable Windows program that creates and displays a
message box that you can move around and close if you want.

// DEMOII2_2.CPP - a simple message box

#define WIN32_LEAN_AND_MEAN // no MFC

#include <windows.h>    // the main windows headers

#include <windowsx.h>    // a lot of cool macros
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// main entry point for all windows programs

int WINAPI WinMain(HINSTANCE hinstance,

HINSTANCE hprevinstance,

LPSTR lpcmdline,

int ncmdshow)

{

// call message box api with NULL for parent window handle

MessageBox(NULL, “THERE CAN BE ONLY ONE!!!”,

“MY FIRST WINDOWS PROGRAM”,

MB_OK | MB_ICONEXCLAMATION);

// exit program

return(0);

} // end WinMain

To compile the program, follow these steps:

1. Create a new Win32 .EXE Application Project and include DEMOII2_2.CPP from
T3DIICHAP02\ on the CD-ROM.

2. Compile and link the program.

3. Run it! (Or, run the precompiled version DEMOII2_2.EXE on the CD.)

And you thought that a basic Windows program had hundreds of lines of code! Anyway,
when you compile and run the program, you should see something like what’s depicted in
Figure 2.2.
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FIGURE 2.2 Screenshot of DEMOII2_2.EXE running.

Now that you have a complete Windows program, let’s take it apart line by line and see
what’s going on.

The very first line of code is

#define WIN32_LEAN_AND_MEAN

This deserves a bit of explanation. There are two ways to write Windows programs: with
MFC (The Microsoft Foundation Classes), or with the SDK (Software Development Kit). MFC is

04 0672318350 CH02  05•02•2003  2:33 PM  Page 72



much more complex, based totally on C++ and classes, and it is 10 times more overkill
than you will ever need for games. The SDK, on the other hand, is manageable, can be
learned in a week or two (at least the rudiments of it), and uses straight C. Hence, the SDK
is what I’m going to use in this book.

Back to the explanation: WIN32_LEAN_AND_MEAN instructs the compiler (header file logic,
actually) to not include extraneous MFC overhead.

Next the following header files are included:

#include <windows.h>

#include <windowsx.h>

The first include of windows.h really includes all the Windows header files—and there are
a lot of them, so this is like an inclusion macro with nested includes to save you from
manually including dozens of explicit header files.

The second include windowsx.h is the macro and constant header that contains a number
of important macros and constants that make Windows programming easier.

And now for the important part—the main entry point of all Windows applications,
WinMain():

int WINAPI WinMain(HINSTANCE hinstance,

HINSTANCE hprevinstance,

LPSTR lpcmdline,

int ncmdshow);

First off, you should notice that weird WINAPI declarator. This is equivalent to the PASCAL
function declarator, which forces the parameters to be passed from left to right, rather
than the normal right-to-left order with the default CDECL. However, the PASCAL calling
convention declarator is now obsolete, and WINAPI has taken its place. You must use
WINAPI for the WinMain() function; otherwise, the startup code will end up passing the
parameters incorrectly to the function!

Next let’s look at each of the parameters in detail.

• hinstance—This parameter is the instance handle that Windows generates for your
application. Instances are pointers or numbers used to track resources. In this case,
hinstance is used to track your application, like a name or address. When your
application is executed, Windows will supply this parameter to your application.

• hprevinstance—This parameter is no longer used, but in previous versions of
Windows, it tracked the previous instance of the application. In other words, the
instance of the application that launched the current one. No wonder Microsoft got
rid of it! It’s like time travel—it gives me a headache thinking about it.
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• lpcmdline—A NULL-terminated string similar to the command-line parameters of the
standard C/C++ main(int argc, char **argv) function, except that there isn’t a
separate parameter analogous to argc indicating the number of command-line para-
meters. For example, if you create a Windows application called TEST.EXE and
launch it with the following parameters:

TEST.EXE one two three

then lpcmdline will contain the following data:

lpcmdline = “one two three”

Notice that the name of the .EXE itself is not part of the command line.

• ncmdshow—This final parameter is simply an integer that is passed to the application
during launching, indicating how the main application window is to be opened.
Thus, the user has a little control over how the application starts up. Of course, you
as the programmer can disregard this if you want, but it’s there if you want to use it
(you pass it to ShowWindow(), but we’re getting ahead of ourselves). Table 2.1
contains a list of the most common values ncmdshow can take on.

TABLE 2.1 Windows Codes for ncmdshow

Value Meaning

SW_SHOWNORMAL Activates and displays a window. If the window is minimized or maximized,

Windows restores it to its original size and position. An application should

specify this flag when displaying the window for the first time.

SW_SHOW Activates the window and displays it in its current size and position.

SW_HIDE Hides the window and activates another window.

SW_MAXIMIZE Maximizes the specified window.

SW_MINIMIZE Minimizes the specified window and activates the next top-level window in

the Z order.

SW_RESTORE Activates and displays the window. If the window is minimized or maximized,

Windows restores it to its original size and position. An application should

specify this flag when restoring a minimized window.

SW_SHOWMAXIMIZED Activates the window and displays it as a maximized window.

SW_SHOWMINIMIZED Activates the window and displays it as a minimized window.

SW_SHOWMINNOACTIVE Displays the window as a minimized window. The active window remains

active.

SW_SHOWNA Displays the window in its current state. The active window remains active.

SW_SHOWNOACTIVATE Displays a window in its most recent size and position. The active window

remains active.

As you can see from Table 2.1, there are a lot of settings for ncmdshow (many of which
make no sense at this point). In reality, the majority of them will never be sent in
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ncmdshow; you will use them with another function ShowWindow(), which actually displays
a window after it’s created. However, we will get to this a little later in the chapter.

The point I want to make is that Windows has a lot of options, flags, and so on that you
will never use, but they are still there. It’s like VCR programming options—more is always
better, as long as you don’t need to use them if you don’t want to. Windows is designed
this way. It has to make everybody happy, so that means a lot of options. In fact, we will
use SW_SHOW, SW_SHOWNORMAL, and SW_HIDE 99% of the time.

Finally, let’s talk about the actual function call to MessageBox() within WinMain(). This
does all the work for us. MessageBox() is a Win32 API function that does something useful
for us, so we don’t have to do it. In the case of MessageBox(), it is used to display
messages with various icons along with a button or two. You see, displaying simple
messages is so common in Windows applications that a function was written just to save
application programmers the half-hour or so needed to write one every time.

MessageBox() doesn’t do much, but it does enough to get a window up on the screen, ask
a question, and wait for the user’s input. The following is the prototype for MessageBox():

int MessageBox( HWND  hwnd,   // handle of owner window

LPCTSTR lptext,  // address of text in message box

LPCTSTR lpcaption,// address of title of message box

UINT  utype);  // style of message box

• hwnd—This is the handle of the window you want the message box attached to. At
this point, we haven’t covered window handles, so just think of it as the parent of
the message box. In the case of DEMOII2_2.CPP, we are setting it to NULL, which
means use the Windows Desktop as the parent window.

• lptext—This is a NULL-terminated string containing the text you want displayed.

• lpcaption—This is a NULL-terminated string containing the caption for the window
of the message box dialog.

• utype—This is about the only exciting parameter of the bunch. It controls what kind
of message box is displayed. Take a look at Table 2.2 to see a list (somewhat
abridged) of the various options.

TABLE 2.2 MessageBox() Options

Flag Meaning

The following settings group control the general style of message box.

MB_OK The message box contains one push button: OK. This is the default.

MB_OKCANCEL The message box contains two push buttons: OK and Cancel.

MB_RETRYCANCEL The message box contains two push buttons: Retry and Cancel.

MB_YESNO The message box contains two push buttons: Yes and No.
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MB_YESNOCANCEL The message box contains three push buttons: Yes, No, and Cancel.

MB_ABORTRETRYIGNORE The message box contains three push buttons: Abort, Retry, and Ignore.

This group controls the addition of a graphic icon to add a little poor man’s multimedia.

MB_ICONEXCLAMATION An exclamation point icon appears in the message box.

MB_ICONINFORMATION An icon consisting of a lowercase letter i in a circle appears in the

message box.

MB_ICONQUESTION A question mark icon appears in the message box.

MB_ICONSTOP A stop sign icon appears in the message box.

And finally, this flag group controls which button is highlighted by default.

MB_DEFBUTTONn Where n is a number (1…4) indicating which button is the default,

numbered from left to right.

(Note: There are additional advanced O/S level flags, but we aren’t concerned with them.
You can always look them up in the online compiler Win32 SDK Help if you want to
know more.)

You can logically OR the values together in Table 2.2 to create the desired message box.
Usually, you will only OR one flag from each group.

And of course, like all good Win32 API functions, MessageBox() returns a value to let you
know what happened. In our case, who cares, but in general, you might want to know the
return value if the message box was a yes/no question, and so forth. The possible return
values are listed in Table 2.3.

TABLE 2.3 Return Values for MessageBox()

Value Meaning

IDABORT Abort button was selected.

IDCANCEL Cancel button was selected.

IDIGNORE Ignore button was selected.

IDNO No button was selected.

IDOK OK button was selected.

IDRETRY Retry button was selected.

IDYES Yes button was selected.

Finally, a table where I can list all the values without defoliating an entire forest! Anyway,
this completes the line-by-line analysis of our first Windows program—click!

Now I want you to get comfortable making changes to the program and compiling it in
different ways. Try altering the various compiler options, like optimization, code
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Flag Meaning

The following settings group control the general style of message box.

04 0672318350 CH02  05•02•2003  2:33 PM  Page 76



generation, and so on. Then try running the program through the debugger and see
whether you can figure that out. When you’re done, come back. I’m going to get some-
thing to eat—I’m ready to pass out ….

If you want to hear some sound, a cheap trick is to use the MessageBeep() function. You
can look it up in the Win32 SDK. It’s similar to the MessageBox() function as far as
simplicity of use. Here it is:

BOOL MessageBeep(UINT utype); // the sound to play

where the different sounds can be one of the constants shown in Table 2.4.

TABLE 2.4 Sound Identifiers for MessageBeep()

Value Meaning

MB_ICONASTERISK System asterisk sound.

MB_ICONEXCLAMATION System exclamation sound.

MB_ICONHAND System hand sound.

MB_ICONQUESTION System question sound.

MB_OK System default sound.

0xFFFFFFFF Standard beep using the computer speaker—yuck!

(Note: if you have an MS-Plus theme installed, you’re sure to get some interesting results.)

See how cool the Win32 API is? There are literally hundreds of functions to play with.
Granted, they aren’t the fastest things in the world, but for general housekeeping, I/O, and
GUI stuff, the Win32 API is very convenient.

Let’s take a moment to summarize what we know at this point about Windows program-
ming. The first thing is that Windows is multitasking/multithreaded, so multiple applica-
tions can run at once. However, we don’t have to do anything to make this happen. What
does concern us is that Windows is event-driven. This means that we have to process
events (which we have no idea how to do at this point) and respond to them. Okay,
sounds good. Finally, all Windows programs start with the function WinMain(), which has
a few more parameters than the normal DOS main(), but is within the realm of logic and
reason.

With all that in mind, it’s time to write a very basic Windows application that will in fact
be the basis for the game engine template we will write later in the chapter.

A Basic Windows Application
Because the goal of this book is to write 3D games that run on Windows, we don’t need to
know much about Windows programming. Actually, all you need is a basic skeleton
Windows program that opens a window, processes messages, and calls the main game
loop—that’s it. My goal in this section is to first teach you how to create simple Windows
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programs, but at the same time to lay the groundwork for a game programming “shell”
application that looks like a 32-bit DOS/Unix machine. So let’s get started.

The main point of any Windows program is to open a window. A Window is nothing
more that a workspace that displays information such as text and graphics with which the
user can interact. To create a fully functional Windows program, you only have to follow
these steps:

• Create a Windows class.

• Create an event handler, or WinProc, as it’s called.

• Register the Windows class with Windows.

• Create a window with the previously created Windows Class.

• Create a main event loop that retrieves and dispatches Windows messages to the
event handler.

Let’s take a look at each step in detail.

The Windows Class
Windows is really an object-oriented O/S, and therefore there are a lot of concepts and
procedures in Windows that have their roots in C and C++—one of which is Window
Classes. Each window, control, list box, dialog box, gadget, and so forth in Windows is
actually a window. What makes them all different is the “Class” that defines them. A
Windows Class is a description of a window type that Windows can handle.

There are a number of predefined Window Classes, such as buttons, list boxes, file selec-
tors, and so on. However, you are free to create your own Window Classes. In fact, you
will create at least one Window Class for each application you write. Otherwise, your
program would be rather boring. So you can think of the Window Class as a template for
Windows to follow when drawing your window, as well as processing messages for it.

There are two data structures available to hold Windows Class information: WNDCLASS and
WNDCLASSEX. WNDCLASS is the older of the two, and will probably be obsolete soon, so we
will use the new extended version WNDCLASSEX. The structures are very similar, and if you
are interested, you can look up the old WNDCLASS in the Win32 Help. Anyway, let’s take a
look at WNDCLASSEX as defined in the Windows header files:

typedef struct _WNDCLASSEX

{

UINT  cbSize;    // size of this structure

UINT  style;     // style flags

WNDPROC lpfnWndProc;  // function pointer to handler

int   cbClsExtra;  // extra class info

int   cbWndExtra;  // extra window info

HANDLE hInstance;   // the instance of the application
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HICON  hIcon;     // the main icon

HCURSOR hCursor;    // the cursor for the window

HBRUSH hbrBackground; // the background brush to paint the window

LPCTSTR lpszMenuName; // the name of the menu to attach

LPCTSTR lpszClassName; // the name of the class itself

HICON  hIconSm;    // the handle of the small icon

} WNDCLASSEX;

So what you do is create one of these structures and then fill in all the fields.

WNDCLASSEX winclass; // a blank windows class

Let’s see how to fill in each field now.

The first field cbSize is very important. It is the size of the WNDCLASSEX structure itself. You
might be wondering why the structure needs to know how big it is. That’s a good ques-
tion. The reason is that if this structure is passed as a pointer, the receiver can always
check the first field (4 bytes) to decide how long the data chunk is at the very least, and
jump over it to get to the end. It’s like a precaution and a little helper info, so other func-
tions don’t have to compute the class size during runtime. Therefore, all you have to do is
set it up:

winclass.cbSize = sizeof(WNDCLASSEX);

The next field deals with the style information flags that describe the general properties of
the window. There are a lot of these flags, so I’m not going to show them all, but suffice it
to say that you can create any type of window with them. A good working subset of the
possible flags is shown in Table 2.5. You can logically OR these values together to derive
the type of window you want.

TABLE 2.5 Style Flags for Window Classes

Flag Meaning

CS_HREDRAW Redraws the entire window if a movement or size adjustment changes the width of

the window.

CS_VREDRAW Redraws the entire window if a movement or size adjustment changes the height of

the window.

CS_OWNDC Allocates a unique device context for each window in the class (more on this later).

CS_DBLCLKS Sends double-click messages to the window procedure when the user double-clicks

the mouse while the cursor is within a window belonging to the class.

CS_PARENTDC Sets the clipping region of the child window to that of the parent window so that

the child can draw on the parent.

CS_SAVEBITS Saves the client image in a window, so you don’t have to redraw it every time the

window is obscured, moved, and so on. However, this takes up more memory and

is slower than doing it yourself.

CS_NOCLOSE Disables the Close command on the System menu.

(Note: the most commonly used flags are highlighted.)
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There are a lot of flags in Table 2.5, and I can’t blame you if you’re confused. For now
though, we’ll just set the style flags to indicate that we want the window redrawn if it is
moved or resized, and we want a static device context along with the capability to handle
double-click events.

Device contexts are used for GDI graphics rendering into a window. Hence, if you want to
do graphics, you need to request a device context for the particular window you are inter-
ested in. If we set the Windows Class such that it has its own device context via CS_OWNDC,
we can save some time instead of requesting one all the time. Did that help at all, or did I
make it worse? Windows is like that—the more you know, the more you don’t. Anyway,
here’s how to set the style field to make a window that suits our needs:

winclass.style = CS_VREDRAW | CS_HREDRAW | CS_OWNDC | CS_DBLCLICKS;

The next field of the WNDCLASSEX structure lpfnWndProc is a function pointer to the event
handler. Basically, what we are setting here is a callback function for the class. Callback
functions are fairly common in Windows programming. A callback function works like
this: When something happens, instead of you randomly polling for it, Windows notifies
you by calling a callback function you supply. Then within the callback function, you take
whatever action needs to be taken.

This metaphor is how the basic Window event loop and event handler works. You supply
a callback function to the Windows Class (of course, with a specific prototype), and when
an event occurs, Windows calls it for you. This is shown graphically in Figure 2.3. Again,
we will cover this more in later sections. For now, let’s just set it to the event function that
we’ll write in a moment.

winclass.lpfnWndProc = WinProc; // this is our function

CHAPTER 2 A Crash Course in Windows and DirectX80

WinProc()

Windows

Winmain()

Windows
Application

Event Handler
supplied by you.

Calls it for youLoop

Do work

FIGURE 2.3 The Windows event handler callback in action.

04 0672318350 CH02  05•02•2003  2:33 PM  Page 80



NOTE

If you’re not familiar with function pointers, they are like virtual function in C++. If you’re not
familiar with virtual functions, I guess I have to explain it <BG>. Suppose you have two functions
that operate on two numbers:

int Add(int op1, int op2) {return(op1+op2);}

int Sub(int op1, int op2) {return(op1-op2);}

You want to be able to call either function with the same call—this can be done with a function
pointer:

// define a function pointer that takes two int and returns an int

int (Math*)(int, int);

Then you can assign the function pointer like this:

Math = Add;

int result = Math(1,2); // this really calls Add(1,2)

// result will be 3

Math = Sub;

int result = Math(1,2); // this really call Sub(1,2)

// result will be –1

Cool, huh?

The next two fields cbClsExtra and cbWndExtra were originally designed to instruct
Windows to save some extra space in the Windows Class to hold extra runtime informa-
tion. However, most people don’t use these fields, and simply set them to 0:

winclass.cbClsExtra = 0; // extra class info space

winclass.cbWndExtra = 0; // extra window info space

The next field is hInstance. This is simply the hinstance that is passed to the WinMain()
function on start-up, so just copy it in from WinMain():

winclass.hInstance = hinstance; // assign the application instance

The remaining fields relate to graphical aspects of the Window Class, but before I discuss
them, I want to take a quick moment to review handles.

You’re going to see handles again and again in Windows programs and types. Handles to
bitmaps, handles to cursors, handles to everything. Remember, handles are just identifiers
based on an internal Windows type. In fact, they are really integers, but Microsoft might
change this, so it’s a good idea to be safe and use the MS types. In any case, you are going
to see more and more “handles to blank,” so don’t trip out on me! And remember: Any
type prefixed by h is usually a handle. Okay, back to the white board.
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The next field sets the type of icon that will represent your application. You have the
power to load your own custom icon, but for now we are going to use a system icon—
which, as you guessed it—you need a handle for. To retrieve a handle to a common system
icon, you can use the LoadIcon() function:

winclass.hIcon = LoadIcon(NULL, IDI_APPLICATION);

This code loads the standard application icon; boring, but simple. If you’re interested in
the LoadIcon() function, take a look at the Win32 API—there are a number of premade
icon values that you can use.

Alright, we’re about half way through all the fields. Take another breath and let’s forge on
to the next field, hCursor. This is similar to hIcon in that it’s a handle to a graphics object.
However, it differs in that hCursor is the handle to the cursor that will be displayed that
represents the mouse pointer when the pointer enters the client region of the window.
LoadCursor() is used to obtain a handle to a cursor that’s a resource or a predefined
system cursor. Like I said, we will cover resources a bit later, but they are simply data-like
bitmaps, cursors, icons, sounds, and so on that are compiled into your application and
can be accessed at runtime. Anyway, here’s how we set the cursor to the standard arrow
for the Windows Class:

winclass.hCursor = LoadCursor(NULL, IDC_ARROW);

Again, if you’re interested in more cursor styles, check out the Win32 API.

Now we’re cooking! We’re almost done. The remaining fields are a little more interesting.
Let’s move on to hbrBackground.

Whenever a window is drawn or refreshed, at the very least Windows will repaint the
background of the window’s client area for you with a predefined color, or brush in
Window-speak. Hence, hbrbackground is a handle to the brush that you want to refresh
the window. Brushes, pens, colors, and graphics are all part of the Graphics Device Interface
(GDI), which we don’t need to worry about because we are primarily going to use DirectX.
For now, I’m going to show you how to request a basic system brush with which to paint
the window. This is accomplished with the GetStockObject() function, as shown in the
following line of code:

winclass.hbrBackground = (HBRUSH)GetStockObject(WHITE_BRUSH);

CAUTION

Note the cast to (HBRUSH). This is necessary for Visual C++ 6.0+ compilers! However, it won’t
hurt to add it with other compilers.

GetStockObject() is a general function that retrieves a handle to one of Windows’ “stock”
brushes, pens, palettes, or fonts. GetStockObject() takes a single parameter indicating
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which one of these resources to load. Table 2.6 contains a list of possible stock objects for
brushes and pens only.

TABLE 2.6 Stock Object Identifiers for GetStockObject()

Value Meaning

BLACK_BRUSH Black brush

WHITE_BRUSH White brush

GRAY_BRUSH Gray brush

LTGRAY_BRUSH Light gray brush

DKGRAY_BRUSH Dark gray brush

HOLLOW_BRUSH Hollow brush

NULL_BRUSH Null brush

BLACK_PEN Black pen

WHITE_PEN White pen

NULL_PEN Null pen

In most cases, the background brush of the window will be irrelevant, because after
DirectX takes over, it won’t matter. It’s still good to know.

The next field in the WNDCLASS structure is the menu field lpszMenuName. This is a NULL-
terminated ASCII string of the name of the menu resource to load and attach to the
window. Because we aren’t going to do much with menus, we’ll just set it to NULL:

winclass.lpszMenuName = NULL; // the name of the menu to attach

As I mentioned a while ago, each Window Class represents a different type of window that
your application can create. Classes are like templates in a manner of speaking; therefore,
Windows needs to track and identify them. Hence, the next field lpszClassName is for just
that. This field is filled with a NULL-terminated ASCII string that contains a text identifier
for your class. I personally like using identifiers like WINCLASS1, WINCLASS2, and so forth.
It’s up to you, but it’s better to keep it simple:

winclass.lpszClassName = “WINCLASS1”; // the name of the class itself

After this assignment, you can refer to the new Window Class by its class name, such as
WINCLASS1—kinda cool, huh?

Last but not least is the “small” application icon. This is a new addition to the Window
Class WNDCLASSEX structure and wasn’t available in the older WNDCLASS. Basically, this
handle points to the icon you want displayed on your window’s title bar and on the
Windows Desktop taskbar. Usually you would load a custom resource, but for now, let’s
just use one of the standard Windows icons via LoadIcon():
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That’s it—now let’s take a look at the whole class definition at once:

WNDCLASSEX winclass; // this will hold the class we create

// first fill in the window class structure

winclass.cbSize = sizeof(WNDCLASSEX);

winclass.style   = CS_DBLCLKS | CS_OWNDC | CS_HREDRAW | CS_VREDRAW;

winclass.lpfnWndProc = WindowProc;

winclass.cbClsExtra = 0;

winclass.cbWndExtra = 0;

winclass.hInstance  = hinstance;

winclass.hIcon    = LoadIcon(NULL, IDI_APPLICATION);

winclass.hCursor   = LoadCursor(NULL, IDC_ARROW);

winclass.hbrBackground  = (HBRUSH)GetStockObject(BLACK_BRUSH);

winclass.lpszMenuName  = NULL;

winclass.lpszClassName  = “WINCLASS1”;

winclass.hIconSm   = LoadIcon(NULL, IDI_APPLICATION);

And of course, if you want to save some typing, you could initialize the structure inline
like this:

WNDCLASSEX winclass = {

winclass.cbSize = sizeof(WNDCLASSEX),

CS_DBLCLKS | CS_OWNDC | CS_HREDRAW | CS_VREDRAW,

WindowProc,

0,

0,

hinstance,

LoadIcon(NULL, IDI_APPLICATION),

LoadCursor(NULL, IDC_ARROW),

(HBRUSH)GetStockObject(BLACK_BRUSH),

NULL,

“WINCLASS1”,

LoadIcon(NULL, IDI_APPLICATION)};

It saves typing!

Registering the Windows Class
Now that the Windows Class is defined and stored in winclass, you must let Windows
know about the new class by registering it. This is accomplished via the function
RegisterClassEx(), which simply takes a pointer to the new class definition:

RegisterClassEx(&winclass);
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CAUTION

Notice that I’m not yet using the class name (WINCLASS1 in the case of our example). For
RegisterClassEx(), you must use the actual structure holding the class, because at the point
before the call to the function, Windows does not yet know of the existence of the new class. So,
the name WINCLASS1 is not yet available for reference.

Also, to be complete, there is the old RegisterClass() function, which is used to register a
class based on the older structure WNDCLASS.

After the class is registered, we are free to create a window with it. Let’s see how to do
that, and then revisit the details of the event handler and main event loop to see what
kind of processing needs to be done for a Windows application to work.

Creating the Window
To create a window (or any window-like object, such as a control), you use the
CreateWindow() or CreateWindowEx() functions. The latter is a bit more recent and
supports an additional style parameter, so we’ll use it. This is where the Windows Class
that we took so long to dissect piece by piece comes in. When you create a window, you
must supply the text name of the window class—which in our case is WINCLASS1. This is
what identifies your window class and differentiates it from other classes, along with the
built-in types like buttons, text boxes, and so on.

Here’s the function prototype for CreateWindowEx():

HWND CreateWindowEx(

DWORD dwExStyle,   // extended window style

LPCTSTR lpClassName, // pointer to registered class name

LPCTSTR lpWindowName, // pointer to window name

DWORD dwStyle,    // window style

int x,        // horizontal position of window

int y,        // vertical position of window

int nWidth,     // window width

int nHeight,     // window height

HWND hWndParent,   // handle to parent or owner window

HMENU hMenu,     // handle to menu, or child-window identifier

HINSTANCE hInstance, // handle to application instance

LPVOID lpParam);   // pointer to window-creation data

If the function is successful, it will return a handle to the newly created window, or NULL
otherwise.
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Most of the parameters are self-explanatory, but let’s cover them anyway:

• dwExStyle—The extended styles flag is an advanced feature, and for most cases
you’ll set it to NULL. However, if you’re interested in all the possible values, take a
look at the Win32 SDK Help—there are a lot of them. About the only one I ever use
is WS_EX_TOPMOST, which makes the window stay on top.

• lpClassName—This is the name of the class you want to create a window based on,
such as WINCLASS1.

• lpWindowName—This is a NULL-terminated text string containing the title of the
window, for example, My First Window.

• dwStyle—These are the general window flags that describe what the window looks
and behaves like—very important! See Table 2.7 for a list of some of the more
popular values used for DirectX applications. Of course, you can logically OR these
values together to get the various features you want.

• x,y—Position of the upper left-hand corner of the window in pixel coordinates. If
you don’t care, use CW_USEDEFAULT and Windows will decide.

• nWidth, nHeight—Width and height of the window in pixels. If you don’t care, use
CW_USEDEFAULT and Windows will decide.

• hWndParent—Handle to the parent window if there is one. Use NULL if there isn’t a
parent; then the Desktop will be the parent.

• hMenu—Handle to the menu to attach to the window. More on this in the next
chapter. Use NULL for now.

• hInstance—The instance of the application. Use hinstance from WinMain() here.

• lpParam—Advanced. Set to NULL.

TABLE 2.7 General Style Values for dwStyle

Style Meaning

WS_POPUP Creates a pop-up window.

WS_OVERLAPPED Creates an overlapped window. An overlapped window has a title bar and a

border. Same as the WS_TILED style.

WS_OVERLAPPEDWINDOW Creates an overlapped window with the WS_OVERLAPPED, WS_CAPTION,

WS_SYSMENU, WS_THICKFRAME, WS_MINIMIZEBOX, and WS_MAXIMIZEBOX styles.

WS_VISIBLE Creates a window that is initially visible.

And here’s how you would create a basic overlapped window with the standard controls at
position (0,0) with a size of (400,400) pixels:
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HWND hwnd; // window handle

// create the window, bail if problem

if (!(hwnd = CreateWindowEx(NULL, // extended style

“WINCLASS1”,     // class

“Your Basic Window”, // title

WS_OVERLAPPEDWINDOW | WS_VISIBLE,

0,0,   // initial x,y

400,400, // initial width, height

NULL,   // handle to parent

NULL,   // handle to menu

hinstance,// instance of this application

NULL)))  // extra creation parms

return(0);

After the window has been created, it may or may not be visible. However, in this case, we
added the style flag WS_VISIBLE that does this automatically. If this flag isn’t added, use
the following function call to manually display the window:

// this shows the window

ShowWindow(hwnd, ncmdshow);

Remember the ncmdshow parameter of WinMain()? This is where it comes in handy.
Although we have overridden it by adding WS_VISIBLE, you would normally send it as the
parameter to ShowWindow(). The next thing that you might want to do is force Windows
to update your window’s contents and generate a WM_PAINT message. This is accomplished
with a call to UpdateWindow():

// this sends a WM_PAINT message to window and makes

// sure the contents are refreshed

UpdateWindow();

The Event Handler
I don’t know about you, but I’m starting to get the hang of this Windows stuff! It’s not
that bad—it’s like a mystery novel, except the mystery is figuring out what language the
novel is written in! Let’s tackle the main event handler, or at least take a first look at it.
Remember that the event handler is a callback function called by Windows from the main
event loop whenever an event occurs that your window must handle. Take a look at Figure
2.3 again to refresh your memory of the general data flow.

This event handler is written by you, and it handles as many (or as few) events that you
want to take care of. The rest you can pass on to Windows and let it deal with them. Of
course, the more events and messages your application handles, the more functionality it
will have, so keep that in mind.
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Before we get into some code, let’s talk about some of the details of the event handler and
exactly what it does and how it works. First, for each Windows Class that you create, you
can have a separate event handler that I will refer to as Windows Procedure, or simply
WinProc from now on. The WinProc is sent messages from the main event loop as messages
are received from the user and/or Windows and placed in the main event queue. That’s a
mental tongue twister, so I’ll say it in another way ….

As the user and Windows do stuff, events and messages are generated that are for your
window and/or other applications’ windows. All of these messages go into a queue, but
the ones for your window are sent to your window’s own private queue. Then the main
event loop retrieves these messages and sends them to your window’s WinProc to be
processed. This is shown in Figure 2.1.

There are literally hundreds of possible messages and variations, so we aren’t going to
cover them all, but luckily you only have to handle a very few to get a Windows applica-
tion up and running.

So, in a nutshell the main event loop feeds the WinProc with messages and events, and the
WinProc does something with them. Hence, not only do we have to worry about the
WinProc, but also the main event loop. However, we will get to this shortly. For now, let’s
assume that the WinProc is simply going to be fed messages. Now that you know what the
WinProc does, let’s take a look at its prototype:

LRESULT CALLBACK WindowProc(

HWND hwnd, // window handle of sender

UINT msg, // the message id

WPARAM wparam, // further defines message

LPARAM lparam); // further defines message

Of course, this is just a prototype for the callback. You can call the function anything you
want, because you are only going to assign the function’s address as a function pointer to
winclass.lpfnWndProc:

winclass.lpfnWndProc = WindowProc;

Remember? Anyway, the parameters are fairly self-explanatory.

• hwnd—This is the window handle. This is only important if you have multiple
windows open with the same Windows Class. hwnd is then the only way you can tell
which messages are coming from which window. Figure 2.4 shows this possibility
graphically.

• msg—This is the actual message ID that the WinProc should handle. This ID might be
one of dozens of main messages.

• wparam and lparam—These further qualify or subclass the message sent in the msg
parameter.

• And finally, the return type and declaration specifier are of interest — LRESULT
CALLBACK. These keywords are a must, so don’t forget them!
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FIGURE 2.4 Multiple windows based on the same class.

What most people do is switch() on the msg and then write code for each case. Based on
msg you will know whether you need to further evaluate wparam and/or lparam. Cool? Let’s
take a look at some of the possible messages that might come through the WinProc and
then we’ll see a bare bones WinProc. Take a look at Table 2.8 to see a short list of some
basic message IDs.

TABLE 2.8 A Short List of Message IDs

Value Meaning

WM_ACTIVATE Sent when a window is activated or becomes the focus.

WM_CLOSE Sent when a window is closed.

WM_CREATE Sent when a window is first created.

WM_DESTROY Sent when a window is about to be destroyed.

WM_MOVE Sent when a window has been moved.

WM_MOUSEMOVE Sent when the mouse has been moved.

WM_KEYUP Sent when a key is released.

WM_KEYDOWN Sent when a key is pressed.

WM_TIMER Sent when a timer event occurs.

WM_USER Enables you to send messages.

WM_PAINT Sent when a window needs repainting.

WM_QUIT Sent when a Windows application is finally terminating.

WM_SIZE Sent when a window has changed size.

(Note: I have highlighted the messages that we are going to make the most use of.)

Take a good look at Table 2.8. Basically, the WinProc is sent one or more of these messages
as the application runs. The message ID itself will be in msg, and any remaining info is
stored in wparam and lparam. Thus, it’s always a good idea to reference the online Win32
SDK Help and see what all the parameters of a particular message do.
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Fortunately, we are only interested in three messages right now:

• WM_CREATE—This message is sent when the window is first created, and gives you a
chance to do any setup, initialization, or resource allocation.

• WM_PAINT—This message is sent whenever your window’s contents need repainting.
This can occur for a number of reasons: the window was moved or resized by the
user, another application popped up and obscured yours, and so on.

• WM_DESTROY—This message is sent to your window when the window is about to be
destroyed. Usually, this is a direct result of the user clicking on the window’s close
icon or closing from the window’s system menu. Either way, this is where you
should de-allocate all the resources and tell Windows to terminate the application
completely by sending a WM_QUIT message yourself—more on this later.

So without further ado, let’s see a complete WinProc that handles all these messages. Take a
look at the following listing:

LRESULT CALLBACK WindowProc(HWND hwnd,

UINT msg,

WPARAM wparam,

LPARAM lparam)

{

// this is the main message handler of the system

PAINTSTRUCT  ps;  // used in WM_PAINT

HDC    hdc;  // handle to a device context

// what is the message

switch(msg)

{

case WM_CREATE:

{

// do initialization stuff here

// return success

return(0);

} break;

case WM_PAINT:

{

// simply validate the window

hdc = BeginPaint(hwnd,&ps);  

// you would do all your painting here

EndPaint(hwnd,&ps);
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// return success

return(0);

} break;

case WM_DESTROY:

{

// kill the application, this sends a WM_QUIT message

PostQuitMessage(0);

// return success

return(0);

} break;

default:break;

} // end switch

// process any messages that we didn’t take care of

return (DefWindowProc(hwnd, msg, wparam, lparam));

} // end WinProc

As you can see, the function is composed of empty space for the most part, which is a
good thing! While I’m on the subject of empty space, did you know that most solid
matter is composed mostly of empty space? And there’s a finite probability that you can
walk through a solid wall given enough attempts?

Let’s begin with the processing of WM_CREATE. Here all the function does is return(0). This
simply tells Windows that we handled it, so don’t take any more action. Of course, you
could do all kinds of initialization in the WM_CREATE message, but that’s up to you.

The next message WM_PAINT is very important. This message is sent whenever your window
needs repainting. This means that you have to do the repainting, for the most part. This
isn’t going to matter for DirectX games because we are going to redraw the screen 30—60
fps (frames per second), but for a normal Windows application, it does. Nevertheless, for
our DirectX applications, we don’t want Windows to think that we aren’t repainting the
screen, so we have to let it know we are processing the WM_PAINT messages.

To accomplish this feat, you must “validate the client rectangle of the window.” There are
a number of ways to do this, but the simplest is with a call to BeginPaint() and
EndPaint(). This calling pair validates the window and fills the background with the back-
ground brush previously stored in the Windows Class variable hbrBackground. Here’s the
code once again for the validation:
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// begin painting

hdc = BeginPaint(hwnd,&ps);

// you would do all your painting here

EndPaint(hwnd,&ps);

There are a couple of things going on here that I want to address. First, notice that the
first parameter to each call is the window handle hwnd. This is necessary because the
BeginPaint()/EndPaint() function can potentially paint in any window of your applica-
tion; so the window handle indicates which window you’re interested in painting in. The
second parameter is the address of a PAINTSTRUCT structure that contains the rectangle that
you must redraw. That is, it’s possible that only a small region needs repainting, so this
structure defines that region. Here’s what a PAINTSTRUCT looks like:

typedef struct tagPAINTSTRUCT

{

HDC hdc;

BOOL fErase;

RECT rcPaint;

BOOL fRestore;

BOOL fIncUpdate;

BYTE rgbReserved[32];

} PAINTSTRUCT;

CHAPTER 2 A Crash Course in Windows and DirectX92

– x
This area was invalidated,
possibly by another window

Only repaint
this region

PaintStruct
{
•
•
•
RECT rcPaint

}

BeginPaint(hwnd, &ps);

• Processed by WM_PAINT 

Title bar

Window

Client area

Client 
area

FIGURE 2.5 Repainting the invalid region only.

You mostly don’t need to worry about this until later, when we talk about the GDI, but
the most important field is rcPaint, which is a RECT structure that contains the minimum
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rectangle that needs to be repainted. Take a look at Figure 2.5 to see this graphically. You
see, Windows tries to do the least amount of work possible, so when the contents of a
window are mangled, Windows at least tries to tell you the smallest rectangle that you can
repaint to restore the contents. If you’re interested in the RECT structure, it’s nothing more
than the four corners of a rectangle, as shown in the following:

typedef struct tagRECT

{

LONG left;  // left x-edge of rect

LONG top;  // top y-edge of rect

LONG right; // right x-edge of rect

LONG bottom; // bottom y-edge of rect

} RECT;

The last thing you’ll notice about the call to BeginPaint() is that it returns a handle to a
graphics context, or hdc:

HDC hdc; // handle to graphics context

hdc = BeginPaint(hwnd,&ps);

A graphics context is a data structure that describes the video system and drawing surface.
It’s magic as far as we are concerned (but it wouldn’t hurt you to take a look at its data
structure in the header files); you just have to retrieve one if you want to do any graphics.
That’s about it for the WM_PAINT message—for now.

The WM_DESTROY message is actually quite interesting. WM_DESTROY is sent when the user
closes the window. However, this only closes the window, not the application. The appli-
cation will continue to run, but without a window. Therefore, you need to do something
about this. In most cases, when the user kills the main window, he intends for the applica-
tion to terminate. Thus, you must facilitate this by sending a quit message yourself! The
message is called WM_QUIT. Because it’s so common a message, there is a function to send it
for you called PostQuitMessage().

All you need to do in the WM_DESTROY handler is clean up everything and then tell
Windows to terminate your application with a call to PostQuitMessage(0). This in turn
puts a WM_QUIT into the message queue, which at some point causes the main event loop
to bail.

There are a couple of details you should be aware of in the WinProc handler we have been
analyzing. First, I’m sure you have noticed the return(0) after each handler’s body. This
serves two purposes: to exit the WinProc, and to tell Windows that we have handled the
message. The second important detail is the default message handler DefaultWindowProc().
This function is a pass through, which passes messages that you don’t process on to
Windows for default processing. Therefore, if you don’t handle the message, make sure to
always end all your event handler functions with a call like this:
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// process any messages that we didn’t take care of

return (DefWindowProc(hwnd, msg, wparam, lparam));

I know this might all seem like overkill and more trouble than it’s worth. Nevertheless,
after you have a basic Windows application skeleton, then you just copy it and add your
own code. In fact, after we have our virtual computer set up, we can use it and almost
forget that any Windows stuff is going on. Anyway, stay with me and let’s move on to the
last part: the main event loop.

The Main Event Loop
The hard part is over! The main event loop is so simple that I’m just going to blurt it out
and then talk about it, so here it is:

// enter main event loop

while(GetMessage(&msg,NULL,0,0))

{

// translate any accelerator keys

TranslateMessage(&msg);

// send the message to the window proc

DispatchMessage(&msg);

} // end while

That’s it? Yup! Let’s see what’s going on here, shall we? The main while() executes as long
as GetMessage() returns a nonzero value. GetMessage() is the workhorse of the main
event loop, and its sole purpose is to get the next message from the event queue and
process it. You’ll notice that there are four parameters to GetMessage(). The first one is
important to us, but the remaining are set to NULL and zeros. Here’s the prototype for
reference:

BOOL GetMessage(

LPMSG lpMsg,     // address of structure with message

HWND hWnd,      // handle of window

UINT wMsgFilterMin, // first message

UINT wMsgFilterMax); // last message

The msg parameter is (you guessed it) the storage where Windows will place the next
message. However, unlike the msg parameter for WinProc(), this msg is a complex data
structure, rather than just an integer ID. Remember, by the time a message gets to the
WinProc, it has been “cooked” and split into its constituent parts. Anyway, here is the MSG
structure:

typedef struct tagMSG

{

HWND hwnd;   // window where message occurred
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UINT message; // message id itself

WPARAM wParam; // sub qualifies message

LPARAM lParam; // sub qualifies message

DWORD time;  // time of message event

POINT pt;   // position of mouse

} MSG;

Starting to make sense? Notice that the parameters to WinProc() are all contained within
this structure, along with some others, like the time and position of the mouse when then
event occurred.

We know GetMessage() retrieves the next message from the event queue, but then what?
TranslateMessage() is called next. TranslateMessage() is a virtual accelerator key transla-
tor, or in other words, an input cooker. Just call it and don’t worry about what it does. The
final function DispatchMessage() is where all the action occurs. After the message is
retrieved with GetMessage() and potentially processed and translated a bit with
TranslateMessage(), the actual WinProc() is called by the call to DispatchMessage().

DispatchMessage() makes the call to the WinProc, sending the appropriate parameters
from the original MSG structure. Figure 2.6 shows the whole process in its final glory.
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FIGURE 2.6 The mechanics of event loop message processing.

That’s it—you’re a Windows expert! The rest is just details, but if you grasp the concepts
we just covered and the importance of the event loop, event handler, and so on, that’s
90% of the battle. With that in mind, take a look at the following listing—it’s a complete
Windows program that creates a single window and waits for you to close it.
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// DEMOII2_3.CPP - A complete windows program

// INCLUDES ///////////////////////////////////////////////

#define WIN32_LEAN_AND_MEAN // just say no to MFC

#include <windows.h>  // include all the windows headers

#include <windowsx.h> // include useful macros

#include <stdio.h>

#include <math.h>

// DEFINES ////////////////////////////////////////////////

// defines for windows

#define WINDOW_CLASS_NAME “WINCLASS1”

// GLOBALS ////////////////////////////////////////////////

// FUNCTIONS //////////////////////////////////////////////

LRESULT CALLBACK WindowProc(HWND hwnd,

UINT msg,

WPARAM wparam,

LPARAM lparam)

{

// this is the main message handler of the system

PAINTSTRUCT  ps;  // used in WM_PAINT

HDC    hdc;  // handle to a device context

// what is the message

switch(msg)

{  

case WM_CREATE:

{

// do initialization stuff here

// return success

return(0);

} break;

case WM_PAINT:

{

// simply validate the window

hdc = BeginPaint(hwnd,&ps);  
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// you would do all your painting here

EndPaint(hwnd,&ps);

// return success

return(0);

} break;

case WM_DESTROY:

{

// kill the application, this sends a WM_QUIT message

PostQuitMessage(0);

// return success

return(0);

} break;

default:break;

} // end switch

// process any messages that we didn’t take care of

return (DefWindowProc(hwnd, msg, wparam, lparam));

} // end WinProc

// WINMAIN ////////////////////////////////////////////////

int WINAPI WinMain(HINSTANCE hinstance,

HINSTANCE hprevinstance,

LPSTR lpcmdline,

int ncmdshow)

{

WNDCLASSEX winclass; // this will hold the class we create

HWND    hwnd;   // generic window handle

MSG    msg;     // generic message

// first fill in the window class stucture

winclass.cbSize = sizeof(WNDCLASSEX);

winclass.style   = CS_DBLCLKS | CS_OWNDC |

CS_HREDRAW | CS_VREDRAW;

winclass.lpfnWndProc  = WindowProc;

winclass.cbClsExtra  = 0;

winclass.cbWndExtra  = 0;
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winclass.hInstance  = hinstance;

winclass.hIcon    = LoadIcon(NULL, IDI_APPLICATION);

winclass.hCursor  = LoadCursor(NULL, IDC_ARROW);

winclass.hbrBackground  = (HBRUSH)GetStockObject(BLACK_BRUSH);

winclass.lpszMenuName  = NULL;

winclass.lpszClassName  = WINDOW_CLASS_NAME;

winclass.hIconSm   = LoadIcon(NULL, IDI_APPLICATION);

// register the window class

if (!RegisterClassEx(&winclass))

return(0);

// create the window

if (!(hwnd = CreateWindowEx(NULL, // extended style

WINDOW_CLASS_NAME,  // class

“Your Basic Window”, // title

WS_OVERLAPPEDWINDOW | WS_VISIBLE,

0,0,    // initial x,y

400,400,    // initial width, height

NULL,    // handle to parent

NULL,    // handle to menu

hinstance,   // instance of this application

NULL)))    // extra creation parms

return(0);

// enter main event loop

while(GetMessage(&msg,NULL,0,0))

{

// translate any accelerator keys

TranslateMessage(&msg);

// send the message to the window proc

DispatchMessage(&msg);

} // end while

// return to Windows like this

return(msg.wParam);

} // end WinMain

///////////////////////////////////////////////////////////
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To compile DEMOII2_3.CPP, simply create a Win32 .EXE application and add
DEMOII2_3.CPP to the project. Or if you like, you can run the precompiled program
DEMOII2_3.EXE from the CD-ROM. Figure 2.7 shows the program in action. It’s not much
to look at, but what do you want—this is a paperback book!
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FIGURE 2.7 Screenshot of DEMOII2_3.EXE in action.

There are a couple of issues that I want to hit you with before moving on. First, if you
take a closer look at the event loop, it doesn’t look like it works in real time—while the
program waits for a message via GetMessage(), the main event loop is basically blocked.
This is very true, and we must get around it somehow, because we need to perform our
game processing continuously and handle Windows events if and when they come.

Making a Real-Time Event Loop
A real-time non-waiting/blocking event loop is easy to make. All we need is a way to test
whether there is a message in the message queue. If there is, we can process it; otherwise,
we can continue processing other game logic and repeat. The function that performs just
this test is called PeekMessage(). Its prototype is almost identical to GetMessage()’s, as
shown here:

BOOL PeekMessage(

LPMSG lpMsg,    // pointer to structure for message

HWND hWnd,     // handle to window

UINT wMsgFilterMin, // first message

UINT wMsgFilterMax, // last message

UINT wRemoveMsg);  // removal flags

Returns nonzero if a message is available.
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The difference is in the last parameter. This controls how the messages should be retrieved
from the message queue. The valid flags for wRemoveMsg are the following:

• PM_NOREMOVE—Messages are not removed from the queue after processing by
PeekMessage().

• PM_REMOVE—Messages are removed from the queue after processing by
PeekMessage().

Taking these two possibilities into consideration, we can do one of two things: use
PeekMessage() with PM_NOREMOVE, and if there is a message, call GetMessage(); or use
PM_REMOVE and use PeekMessage() itself to retrieve messages. We’ll use the latter. Here’s the
core logic, changed to reflect this new technique in the main event loop:

while(TRUE)

{

// test if there is a message in queue, if so get it

if (PeekMessage(&msg,NULL,0,0,PM_REMOVE))

{

// test if this is a quit

if (msg.message == WM_QUIT)

break;

// translate any accelerator keys

TranslateMessage(&msg);

// send the message to the window proc

DispatchMessage(&msg);

} // end if

// main game processing goes here

Game_Main();

} // end while

I’ve highlighted important points in the code. The first section highlighted is shown here:

if (msg.message == WM_QUIT)

break;

This is how we must detect to bail out of the infinite while(TRUE) loop. Remember, when
a WM_DESTROY message is processed in the WinProc, it’s our job to send a WM_QUIT message
via the call to PostQuitMessage(). The WM_QUIT then trickles through the event queue,
and we can detect it to bail out of the loop.

The last section of highlighted code simply indicates where you would put the call to your
main game code loop. But remember, the call to Game_Main() (or whatever you call it)
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must return after one frame of animation or game logic; otherwise, messages won’t be
processed by the main windows event loop.

As an example of this new real-time structure that is more appropriate for game logic
processing, take a look at the source DEMOII2_4.CPP and the associated DEMOII2_4.EXE on
the CD-ROM. This structure will in fact be our model for the virtual computer used for the
remainder of the book. We will build on it in the next chapter.

Now that you have a handle on basic Windows programming, let’s talk about the graph-
ics, sound, and input interface that we’ll be using for our games: DirectX.

DirectX and COM Crash Course
DirectX might take one more bit of control from you as a programmer, but in truth it’s
worth its weight in Monolithic DIMMS (Dual Inline Memory Modules). DirectX is basi-
cally a system of software that abstracts graphics, audio, input, networking, installation,
and more, so no matter what the hardware configuration of a particular PC, you can use
the same code. In addition, DirectX technology is many times faster and more robust than
GDI and/or MCI (the Media Control Interface), which is native to Windows. Figure 2.8
illustrates how you would make a Windows game with and without DirectX. Notice how
clean and elegant the DirectX solution is.
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FIGURE 2.8 DirectX versus GDI/MCI.

So how does DirectX work? DirectX gives you almost hardware-level control of all devices.
This is possible through a technology called COM (Component Object Model) and sets of
drivers and libraries written by both Microsoft and the hardware vendors themselves.
Microsoft came up with a set of conventions, functions, variables, data structures, and so
on that must be used by the hardware vendors when implementing drivers to talk to the
hardware.
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As long as these conventions are followed, you don’t need to worry about the details of
the hardware—you just make calls to DirectX and DirectX handles the details for you. No
matter what kind of video card, sound card, input device, network card, or whatever, as
long as there is DirectX support, your program will be able to use it without you knowing
anything about it!
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Currently there are a number of DirectX components that make up the DirectX 8.0+ foun-
dation system. They are listed here and shown graphically in Figure 2.9.

• DirectDraw

• DirectSound

• DirectSound3D

• DirectMusic

• DirectInput

• DirectPlay

• DirectSetup
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• Direct3DRM

• Direct3DIM

In DirectX 8.0, DirectDraw was merged with Direct3D and renamed DirectGraphics, and
DirectSound and DirectMusic were merged and renamed DirectAudio. Thus, under DirectX
8.0+, there is no more DirectDraw. However, one of the rules of DirectX and COM is that
you can always request a previous interface. Thus, in this book we will use DirectDraw
under DirectX 7.0a for graphics, and the newer 8.0+ interfaces for sound and input. In any
case, we are going to abstract graphics, sound, and input into our virtual computer, so
truthfully even DirectX 3.0 would work! We will use the latest versions of DirectX (except
for DirectDraw) to be as up-to-date as possible.

The HEL and HAL
You might notice on Figure 2.9 that there are two layers under DirectX called the HEL
(Hardware Emulation Layer) and the HAL (Hardware Abstraction Layer). Here’s the deal—
DirectX is a very forward-looking design, so it assumes advanced features are implemented
by hardware. However, if the hardware doesn’t support some feature, what happens? This
is the basis of the dual-mode HAL and HEL design.

• HAL—The Hardware Abstraction Layer is the “to-the-metal layer.” It talks directly to
the hardware. This layer is usually the device driver from the vendor, and you
communicate to it directly through generic DirectX calls. HAL is used when the
feature you’re requesting is supported directly by the hardware, and is thus acceler-
ated.

• HEL—The Hardware Emulation Layer is used when the hardware doesn’t support the
feature that you are requesting. Let’s suppose that you ask the video card to rotate a
bitmap. If the hardware doesn’t support rotation, the HEL kicks in and software algo-
rithms take over. Obviously, this is slower, but the point is that it does NOT break
your program. It will still work—just slower. In addition, the switching between the
HAL and HEL is transparent to you. If you request DirectX to do something and the
HAL does it directly, hardware will do it; otherwise, a software emulation will be
called to get the job done with HEL.

You might be thinking that there are a lot of layers of software here. That’s a concern, but
the truth is that DirectX is so clean that the only penalty you take for using it is maybe an
extra function call or two. A small price to pay for 2D/3D graphics, network, and audio
acceleration. Can you imagine writing drivers to control all the video accelerators on the
market? Trust me, it would take literally thousands of man-years—it just can’t be done.
DirectX is really a massively distributed engineering effort by Microsoft and all the hard-
ware vendors to bring you an ultra-high performance standard.
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The DirectX Foundation Classes in Depth
Now let’s take a quick look at each of the DirectX components and what they do:

• DirectDraw (DirectX 7.0a only, not available in DirectX 8.0+)—This is the primary
rendering and 2D bitmap engine that controls the video display. It is the conduit
that all graphics must go through. This is probably the most important of all the
DirectX components. The DirectDraw object more or less represents the video card(s)
in your system.

• DirectSound—This is the sound component of DirectX. However, it only supports
digital sound—no MIDI. However, this component makes your life a hundred times
easier, because no longer do you have to license a third-party sound system to do
your sound. Sound programming is a black art, and in the past no one wanted to
keep up with writing all the drivers for all the sound cards. Hence, a couple of
vendors cornered the market on sound libraries: Miles Sound System and
DiamondWare Sound Toolkit. Both were very capable systems that enabled you to
simply load and play digital and MIDI sounds from your DOS or Win32 programs.
However, with the introduction of DirectSound, DirectSound3D, and the latest
DirectMusic components, third-party libraries are much less useful now.

• DirectSound3D—This is the 3D sound component of DirectSound. It enables you to
position 3D sounds in space and simulate 3D sound as if objects are floating around
the room! This technology is relatively new, but maturing quickly. Today most sound
cards support hardware-accelerated 3D effects, including Doppler shift, refraction,
reflection, and more. However, if software emulation is used, all of this stuff comes
to a halt!

• DirectMusic—DirectMusic is the missing MIDI technology that DirectSound didn’t
support. But more than that, DirectMusic has a new DLS system (Downloadable
Sounds) that enables you to create digital representations of instruments and then
play them back with MIDI control. This is much like a Wave Table synthesizer, but
in software. Also, DirectMusic has a new Performance Engine that is an artificial
intelligence system of sorts, and can make changes to your music in real time based
on templates you give it. In essence, the system can create new music on the fly.
Wild, huh?

• DirectAudio—In version 8.0+ of DirectX, DirectSound and DirectMusic were merged
into a unified interface. You can still use them separately if you like, but if you prefer
you can now use the new DirectAudio interface as well.

• DirectInput—This system handles all input devices, including the mouse, keyboard,
joystick, paddles, track balls, and so forth. Moreover, DirectInput now supports force
feedback devices. These are devices that have electro-mechanical actuators and force
sensors, enabling you to physically manifest forces that the user can feel. It’s going
to really put the cybersex industry into overdrive!
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• DirectPlay—This is the networking aspect of DirectX. It enables you to make abstract
“connections” using the Internet, modems, direct connection, or any other kind of
medium that might come up. The cool thing about DirectPlay is that it enables you
to make these connections without knowing anything about networking. You don’t
have to write drivers, use sockets, or anything like that. In addition, DirectPlay
supports the concepts of sessions, which are games in progress, and lobbies, which are
places for gamers to congregate to play. Also, DirectPlay doesn’t force you into any
kind of multiplayer network architecture—it’s up to you how you want to do things.
All DirectPlay does is send and receive packets for you. What they contain and if
they are reliable is up to you.

• Direct3DRM (DirectX 7.0a only, not available in DirectX 8.0+)—This is Direct3D
Retained Mode, which is a high-level object and frame-based 3D system that you can
use to create basic 3D programs. It takes advantage of 3D acceleration, but isn’t the
fastest thing in the world. It’s great for making walkthru programs, 3D model manip-
ulators, or extremely slow demos.

• Direct3DIM—This is Direct3D Immediate Mode, which is the low-level 3D support
for DirectX. Originally, this was incredibly hard to work with, and was the cause for
many flame wars with OpenGL. The old Immediate Mode used what are called
execute buffers—basically, arrays of data and instructions that you would create that
describe the scene to be drawn—very ugly. However, since DirectX 5.0, Immediate
Mode now supports a much more OpenGL-like interface through the
DrawPrimitive() and DrawIndexedPrimitive() functions. This enables you to send
triangle strips, fans, and so on to the rendering engine, and make state changes with
function calls rather than execute buffers. Although this book is a software-based 3D
game book, Direct3D Immediate Mode will be covered at the end of the book for
completion’s sake.

• DirectGraphics—In DirectX 8.0+, DirectDraw is no longer supported, but that’s not
entirely true—from a philosophical point of view, at least. What Microsoft did was
merge all the graphics software into a single interface called DirectGraphics that
handles everything. It doesn’t have any DirectDraw interfaces, but you can perform
2D with Direct3D interfaces if you want, or just use IDirectDraw7 and standard
DirectDraw—I know, it’s a mess, huh?

• DirectSetup/AutoPlay—These are quasi-DirectX components that enable you to
install DirectX from your application on the user’s machine and start the game up
directly when the CD is placed in the system. DirectSetup is a small set of functions
that basically loads the runtime DirectX files on a user’s machine and registers them
in the registry. AutoPlay is the standard CD subsystem that looks for the
AUTOPLAY.INF file on the CD root, and if found, executes the batch command func-
tions in the file.
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Finally, you might be wondering what the deal is with all the versions of DirectX—it
seems to be revised on a six-month basis. This is for the most part true. It’s a manifesta-
tion of the business we are in—graphics and game technology move very fast. However,
because DirectX is based on COM technology, programs that you write for, say, DirectX
version 3.0, are guaranteed to work on DirectX version 8.0, 9.0, and so on because of their
COM implementation. Let’s see how that works ….

Flash Introduction to COM
COM was originally invented many years back as a simple white paper on a new software
paradigm that was similar to how computer chips or LEGO blocks work—you simply plug
them together and they work. Both computer chips and LEGO blocks know how to be
computer chips and LEGO blocks, so everything works out automatically. To implement
this kind of technology with software, you need some kind of very generic interface that
can take on the form of any type of function set you can imagine. This is what COM does.

One of the cool things about computer chips is that when you add more computer chips
to a design, you don’t have to tell all the other chips that you changed something.
However, as you know, this is a little harder with software programs. You at least have to
recompile to make an executable. Fixing this problem is another goal of COM. You should
be able to add new features to a COM object without breaking software that uses the old
COM object. In addition, COM objects can be changed without recompiling the original
program, which is very cool.
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FIGURE 2.10 An overview of COM.
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Because you can upgrade COM objects without recompiling your program, you can also
upgrade your software without patches and new versions. For example, suppose that you
have a program that uses three COM objects: one that implements graphics, one for
sound, and one for networking, as shown in Figure 2.10. Now imagine that you sell
100,000 copies of your program that uses these COM objects, but you don’t want to send
out 100,000 upgrades! To update the graphics COM object, all you do is give users the new
COM object for graphics, and the program will automatically use it. No recompiling,
linking, or anything like that—easy. Of course, all this technology is very complex at the
low level, and writing your own COM objects is a bit challenging, but using them is easy.

The next question is how are COM objects distributed or contained, given their plug-n-
play nature? The answer is that there are no rules on this. However, in most cases COM
objects are .DLLs (Dynamic Link Libraries), which can be downloaded or supplied with the
program that uses them. This way they can be easily upgraded and changed. The only
problem with this is that the program that uses the COM object must know how to load
the COM object from a .DLL—but we’ll get to that later.

What Exactly Is a COM Object?
A COM object is really a C++ class or a set of C++ classes that implement a number of
interfaces. These interfaces are used to communicate to the COM object. Basically, an inter-
face is a set of functions that perform a service. Take a look at Figure 2.11. Here we see a
single COM object that has three interfaces named IGRAPHICS, ISOUND, and IINPUT.

Each one of these interfaces has a number of functions that you can call (when you know
how) to do work. So, a single COM object can have one or more interfaces, and you may
have one or more COM objects. Moreover, the COM specification states that all interfaces
you create must be derived from a special base class interface called IUnknown. For you C
programmers, all this means is that IUnknown is like the starting point to build the inter-
face from.

Let’s take a look at the IUnknown class definition:

struct Iunknown

{

// this function is used to retrieve other interfaces

virtual HRESULT __stdcall QueryInterface(const IID &iid, (void **)ip) = 0;

// this is used to increment interfaces reference count

virtual ULONG __stdcall AddRef() = 0;

// this is used to decrement interfaces reference count

virtual ULONG __stdcall Release() = 0;

};
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FIGURE 2.11 The interfaces of a COM object.

NOTE

Notice that all methods are pure and virtual. In addition, the methods use __stdcall in defer-
ence to the standard C/C++ calling convention. Remember that __stdcall pushes the parame-
ters on the stack from right to left.

Even if you’re a C++ programmer, the preceding class definition might look a bit bizarre if
you’re rusty on virtual functions. Anyway, let’s dissect IUnknown and see what’s up. All
interfaces derived from IUnknown must implement at very minimum each of the methods
QueryInterface(), AddRef(), and Release().

QueryInterface() is the key to COM—it is used to request a pointer to the interface func-
tions that you desire. To make the request happen, you must have an interface ID. This
interface ID is a unique number 128 bits long that you assign to your interface. There are
2128 different possible interface IDs, and I guarantee that in a billion years, even if every-
body on this planet does nothing but make COM objects, we won’t run out! More on the
ID when we get to a real example a little later in the chapter. Furthermore, one of the rules
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of COM is that if you have an interface, you can always request any other interface from it
as long as it’s from the same COM object. This means that you can get anywhere from
anywhere else. Take a look at Figure 2.12 to see this graphically.
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FIGURE 2.12 Navigating the interfaces of a COM object.

AddRef() is a curious function. COM objects use a technique called reference counting to
track their life. This is because one of the specifications of COM is that it’s not language-
specific. Hence, AddRef() is called when a COM object is created and when interfaces are
created to track how many references there are to the objects. If COM objects were to use
malloc() or new[], that would be C/C++-specific. When the reference count drops to 0,
the object(s) are destroyed internally.

TIP

Usually you don’t have to call AddRef() yourself on interfaces or COM objects; it’s done inter-
nally by the QueryInterface() function. However, sometimes you might have to if you want to
up the reference count to trick the COM object into thinking that there are more references to it
than there really is.

This brings us to a problem—if COM objects are C++ classes, how can they be created or
used in Visual Basic, Java, Active X, and so on? It just so happens that the designers of
COM used virtual C++ classes to implement COM, but you don’t need to use C++ to
access them, or even to create them. As long as you create the same binary image that a
Microsoft C++ compiler would when creating a virtual C++ class, the COM object will be
COM-compliant. Of course, most compiler products have extras or tools to help make
COM objects, so that’s not too much of a problem. The cool thing about this is that you
can write a COM object in C++, Visual Basic, or Delphi, and then that COM object can be
used by any of those languages! A binary image in memory is a binary image in memory.
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Release() is used to decrement the reference count of a COM object or interface. In most
cases, you must call this function yourself when you’re done with an interface. However,
sometimes if you create an object and then from that object create another object, killing
the calling Release() on the parent will trickle down and Release() the child or derived
object, but either way, it’s a good idea to Release() in the opposite order that you
queried.

Creating and Using DirectX COM Interfaces
At this point, I think we all understand that COM objects are collections of interfaces that
are simply function pointers, and are more specifically, VTABLEs. Hence, all you need to do
to work with a DirectX COM object is create it, retrieve an interface pointer, and then
make calls to the interface using the proper syntax. Of course, this is all for your edifica-
tion, because we are going to use an API that builds on all this stuff. I doubt you will ever
make a COM call (maybe for DirectMusic and DirectInput), but it’s good to know. As an
example, I’ll use the main DirectDraw interface to show how this is done.

First off, to experiment with DirectDraw you need three things:

• The DirectDraw runtime COM object(s) and .DLLs must be loaded and registered.
This is what the DirectX installer does.

• You must include the DDRAW.LIB import library in your Win32 programs, so that the
wrapper functions you call are linked in.

• You need to include DDRAW.H in your program, so the compiler can “see” the header
information, prototypes, and data types for DirectDraw.

With that in mind, here’s the data type for a DirectDraw 1.0 interface pointer:

LPDIRECTDRAW lpdd = NULL;

To create a DirectDraw 1.0 COM object and retrieve an interface pointer to the DirectDraw
object (which represents the video card), all you need to do is use the wrapper function
DirectDrawCreate():

DirectDrawCreate(NULL, &lpdd, NULL);

Don’t worry about the parameters. If you’re interested, take a look at the DirectX SDK, but
99 out of a 100 times, the function will look as it does in the preceding. That is, only one
parameter is used, and that’s the address of the interface pointer to fill in with the
DirectDraw COM interface. So for now, just believe that this call creates a DirectDraw
object and assigns the interface pointer to lpdd.

NOTE

Of course, there is a lot going on in the function. It opens a .DLL, loads it, makes calls and does
about a million other things, but you don’t have to worry about it.
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Now we’re in business and can make calls to DirectDraw. But wait a minute! We don’t
know the methods or functions that are available—that’s why you’re reading this book
<BG>. However, as an example, here’s how you would set the video mode to 640×480 with
8-bit (256) color:

lpdd->SetVideoMode(640, 480, 8);

Is that simple or what? About the only extra work done is the pointer de-reference from
the DirectDraw interface pointer lpdd—that’s it. Of course, what’s really happening is a
lookup in the virtual table of the interface, but we aren’t concerned about that.

In essence, any call to DirectX takes the form

interface_pointer->method_name(parameter list);

Also, for any other interfaces that you might want to work with (for example, Direct3D),
you will get from the original DirectDraw interface by using QueryInterface(). Because
there are multiple versions of DirectX floating around, Microsoft stopped writing wrapper
functions a while ago to retrieve the latest interface. What this means is that you must
manually retrieve the latest DirectX interface yourself with QueryInterface(). Let’s take a
look at that.

Querying for Interfaces
The weird thing about DirectX is that all the version numbers are out of sync. This is a bit
of a problem, and definitely a cause for confusion. When the first version of DirectX came
out, DirectDraw interface was named like this:

IDIRECTDRAW

Then when DirectX 2.0 came out, DirectDraw was upgraded to version 2.0, so we had

IDIRECTDRAW

IDIRECTDRAW2

Now at version 7.0a, we have this:

IDIRECTDRAW

IDIRECTDRAW2

IDIRECTDRAW4

IDIRECTDRAW7
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And with version 8.0 and 9.0, there is no more IDIRECTDRAW upgrade because it was
merged with Direct3D, but the other interfaces are still there:

IDIRECTDRAW

IDIRECTDRAW2

IDIRECTDRAW4

IDIRECTDRAW7

I mention 8.0 and 9.0 in the same breath because they are almost identical—there were no
major changes, as there were from 7.0 to 8.0. The only differences in 9.0 are more
advanced 3D support for shader programming, some more DirectPlay software, and a
number of other enhancements. But more or less the major changes happened in the tran-
sition from 7.0 to 8.0—things will never be the same. Now you might be thinking “Wait a
minute—what happened to interfaces 3 and 5?” I have no idea, and this is the problem.
The idea is, even though you are using DirectX 8.0+, it doesn’t mean that the interfaces
are up to that version. Moreover, they can all be out of sync. DirectX 6.0 might have
DirectDraw interfaces up to IDIRECTDRAW4, but DirectSound is only up to 1.0, which is
simply called IDIRECTSOUND. You can see the mess we are in! The moral of the story is that
whenever you use a DirectX interface, make sure that you are using the latest version. If
you’re not sure, use the revision 1 interface pointer from the generic “create” function to
get the latest version. Here’s an example of what I’m talking about.

DirectDrawCreate() returns a revision 1.0 interface pointer, but DirectDraw is really up to
IDIRECTDRAW7, so how do we take advantage of this new functionality?

TIP

If you’re having a panic attack over this stuff, don’t feel alone. I was using the version 1.0 inter-
faces up until version 5.0 of DirectX because the DirectX docs are nebulous in this area—typical!

There are two ways to do this from the DirectDraw 1.0 interface: With low-level COM
functions, or with QueryInterface(); let’s use the latter. The process goes like this:

1. You create the DirectDraw COM interface with a call to DirectDrawCreate(). This
returns a boring IDIRECTDRAW interface pointer.

2. Using the pointer retrieved from step 1, you make a call to QueryInterface() using
the interface ID (GUID) for IDIRECTDRAW7, and you retrieve the new interface.
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Here’s an example of querying for the DirectDraw7 interface:

LPDIRECTDRAW lpdd;  // version 1.0

LPDIRECTDRAW7 lpdd7; // version 7.0

// create version 1.0 DirectDraw object interface

DirectDrawCreate(NULL, &lpdd, NULL);

// now look in DDRAW.H header, find IDIRECTDRAW7 interface

// ID and use it to query for the interface

lpdd->QueryInterface(IID_IDirectDraw7, &lpdd7);

At this point, you have two interface pointers, but you don’t need the pointer to IDIRECT-
DRAW, so you should release it:

// release, decrement reference count

lpdd->Release();

// set to NULL to be safe

lpdd = NULL;

Remember that you should release any interface when you are done with it—so when
your program terminates, you would also release the IDIRECTDRAW7 interface:

// release, decrement reference count

lpdd7->Release();

// set to NULL to be safe

lpdd7 = NULL;

You might wonder whether there’s a helper function to get a DirectDraw 7.0 interface.
Well, actually there is, but I needed a good example to show off QueryInterface(), so
don’t be mad at me for not telling until now! Anyway, here’s the easy way to get a
DirectDraw 7.0 interface:

LPDIRECTDRAW7 lpdd7; // version 7.0 interface

// request the interface

DirectDrawCreateEx(NULL, (void **)&lpdd, IID_IDirectDraw7, NULL);

The function almost looks identical to the DirectDraw 1.0 version, but it has slightly
different parameters, as shown in the following:

HRESULT WINAPI DirectDrawCreateEx(

GUID FAR *lpGUID, // the GUID of the driver, NULL for active display

LPVOID *lplpDD,  // receiver of the interface
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REFIID iid,    // the interface ID of the interface you are requesting

IUnknown FAR *pUnkOuter // advanced COM, NULL

);

That’s all there is to using DirectX and COM. Of course, you haven’t seen all the hundreds
of functions that DirectX components have and all the interfaces, but you will one way or
another <BG>.

Summary
At this point, you should have a handle on very basic Windows programming, and at least
what DirectX is and its relationship to Windows. The cool thing is that you really don’t
need to know too much about Windows or DirectX (or all the versions of it) to get a lot
out of this book, because in the next chapter we are going to build a virtual computer of
sorts to run our 3D experiments and write code on. This way, you are insulated from the
underlying mechanics of Win32/DirectX, and can focus on the 3D part. Win32/DirectX is
nice to know, so if you want more info, try Tricks of the Windows Game Programming Gurus,
along with any good Windows programming book.
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CHAPTER 3

3D Game Programming
with a Virtual Computer

“N O P E A C E…”

—Captured alien, Independence Day

In this chapter, we’re basically going to build up a virtual
computer system based on a software interface. It will support
a linear 8- or 16-bit frame buffer (double buffered) and input
devices, along with sound and music capabilities. With this
interface, we can focus the remainder of the book on 3D
math, graphics, and game programming. Here’s what’s in
store:

• The design of a virtual computer graphics interface

• Building a Windows game console

• The API listing of the enhanced T3DLIB library from
Tricks of the Windows Game Programming Gurus

• Implementing the virtual computer with T3DLIB

• The final game console

• Using the T3DLIB game library

Introduction to the Virtual Computer
Interface
The goal of this book is to teach 3D graphics and game
programming. However, my dilemma as an author is how to
focus the book on just that, without talking about all the low-
level details of Win32 programming, DirectX, and so on.
Even though you should have some idea of Win32 program-
ming and DirectX after reading the last chapter, it’s still a
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116 CHAPTER 3 3D Game Programming with a Virtual Computer

bummer. Alas, my solution is to create a “virtual computer” based on the engine I devel-
oped in Tricks of the Windows Game Programming Gurus that you will simply use as a black
box, so we can focus on the 3D graphics and game programming part. However, because
of the sheer size of the engine, we still have a lot to discuss.

NOTE

This is basically the approach that OpenGL takes. You use GL libraries and/or add-ons that handle
the low-level device-specific interfacing and housekeeping of whatever system you’re on, includ-
ing opening windows and getting input.

Ultimately, this really makes a lot of sense for a number of reasons. As long as you can
communicate with a double-buffered, linearly-addressable graphics system that has
support for input, sound, and music, who cares how it works? We are interested in the 3D
graphics programming, not the low-level setup. Because 99% of our work is going to be
related to rasterization, texture mapping, lighting, hidden surface removal, and so forth,
this approach is feasible. So, all we really need is a black screen, the capability to talk to
the joystick, keyboard, and mouse, and to maybe play some sound effects and music—
right?

Therefore, instead of trying to explain every single detail of Win32, the DirectX founda-
tion, and all that stuff (which I did in the first Tricks), we are simply going to use the API I
wrote for that book as a tool to create a generic virtual computer on which we can run our
3D graphics experiments and write our games. Sound like a planetoid?

Using this layer of indirection, most of the 3D code will be generic enough that you could
port it to Mac or Linux with very little work. All you would have to do is emulate the low-
level interfaces, such as the double-buffered graphics system, sound, music, and input
devices. The algorithms will stay the same for all the 3D code.

The only drawback to using the engine from the first Tricks is that a few of the data struc-
tures, and the design itself, were predicated on DirectX itself. I wanted the thinnest layer
to DirectX for performance reasons. Hence, we could write another layer of software on
top of my layer (which has some DirectX-centric parts to it) and totally be machine-inde-
pendent, but I don’t think it’s worth the time. Bottom line is, if you want to port the 3D
stuff, and as long as you can create a double-buffered display, everything will work. Sound,
music, and input can be completely thrown away, because my functions make nothing
more than a call to the DirectX functions anyway.

However, the thing to remember is that as long as you understand the API that I give you,
you really do not need to know anything about Win32 or DirectX, because everything we
do with 3D graphics simply consists of us, a frame buffer, and C/C++ code.

The fun part about this book is that we are only going to focus on 3D graphics and game
programming. We are going to literally forget about all the details of setting up DirectX,
getting input, and making sounds, and simply call API functions. We are going to
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accomplish this feat by creating a virtual, or abstract, graphics computer specification, and
then implement it with the function API from the first Tricks. However, the main point of
the virtual computer is to help us focus on 3D and not the details of the setup. With that
in mind, here’s the feature list you need to write a 3D game on any computer in the
world:

1. Be able to create a window or screen on the display with a desired bit depth that is
linearly addressable as a 2D matrix of pixels. Additionally, have support for an
offscreen page or double buffer, so that images can be rendered offscreen and then
copied or “flipped” to the primary display to create smooth animation.

2. Be able to get input from the system input devices such as the keyboard, mouse, and
joystick. The input should be fairly raw and in a simple format.

3. (Optional) Be able to load and play sounds and music in common formats such as
.WAV and .MID.
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FIGURE 3.1 Systems-level diagram of the virtual computer.

Figure 3.1 illustrates a systems-level diagram of the virtual computer we want to design
with software. I used to say, “If I can plot a pixel and read the keyboard, I can write
Doom.” It’s true, all you need is the capability to access the frame buffer, and then every-
thing else is simple. Moreover, because this book is about software 3D programming and
rasterization, none of our algorithms will use any form of 3D acceleration. We are going to
draw the polygons, compute the lighting, and everything else ourselves pixel-by-pixel in
the frame buffer(s).
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NOTE

You might be saying, why use software when hardware is available? The answer is threefold: First,
to be a great graphics programmer, you need to know how to do it yourself; second, knowing
how things work helps you better understand acceleration; and last but not least, who will write
the hardware code?

Building the Virtual Computer Interface
Building the virtual computer interface is rather easy if you have a functional library that
can implement features (1) through (3) from the preceding section—which of course we
do. That is, the library from the first Tricks. But before we get into really specific details,
let’s design a “model” of the functions and data structures that we would like to have in
the virtual computer interface. Of course, this is just an example, and is going to be very
high-level. Moreover, I’m just going to make the function names up as we go, so we have
something to refer to. Alas, the final version of the virtual computer will be different,
because when implementing it, we must take details into consideration. However, the
following exercise will give you an idea of the big picture.

The Frame Buffer and Video System
Before we get started, let’s assume that there is a way to initialize the video system and
open a window with a specific resolution and bit depth. Let’s call it Create_Window(), and
here’s what it might look like:

Create_Window(int width, int height, int bit_depth);

To create a 640×480 display with 8-bits per pixel, you would make the following call:

Create_Window(640, 480, 8);

And to create a 800×600 display with 16-bits per pixel, you would make the following call:

Create_Window(800, 600, 16);

Remember, this is all academic, and the real code to create a window and initialize the
system might be a set of functions, but you get the idea. In reality, the “window” might
actually be a Windows window, or it might be full screen. So we know that we aren’t
going to get away this easy. But let’s move on now assuming that we have a window.

As I said, we are interested in designing a system that is based on a primary display buffer
that is visible, and a secondary offscreen buffer that is not visible. Both buffers should be
linearly addressable, where one word, be it a BYTE, WORD, or QUAD represents a single pixel,
depending on the bit depth. Figure 3.2 represents our frame buffer system.
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FIGURE 3.2 The frame buffer system.

You will notice that there is a memory padding region in the frame buffer memory in each
of the primary and secondary display buffers. This models the fact that some video
systems might be linear per row, but jump addresses row to row. For example, in Figure
3.3, we see this up close. In the example, the video system is set to 640×480×8, therefore,
there is 1 byte per pixel, and there should be a total of 640 bytes per video line. But there’s
not! In this example, there are 1024 bytes per video line. This is a manifestation of the
video card memory addressing, and is very common for many video cards. Hence, we
need to model this discrepancy with what is commonly referred to as memory pitch.

Memory pitch models the fact that a video card might have extra memory per line
because of caches or hardware addressing. This isn’t a problem as long as we don’t assume
that memory pitch equals the video pitch (in the case of our example, 640 bytes = 640×1
byte per pixel). To locate a pixel on an 8-bit per pixel video system, we use the following
code:

UCHAR *video_buffer; // ptr to the video buffer

int x,y;       // coordinates to the pixel

int memory_pitch;  // number of bytes per line

video_buffer[x + y*memory_pitch] = pixel;

On a 16-bit system, we would use slightly different code:

USHORT *video_buffer; // ptr to the video buffer

int x,y;       // coordinates to the pixel

int memory_pitch;   // number of bytes per line

video_buffer[x + y*(memory_pitch >> 1)] = pixel;
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FIGURE 3.3 Close-up view of the hardware frame buffer.

Of course, if memory_pitch were the number of USHORTs per line, the bit shift operator >>
used to divide by 2 wouldn’t be needed.

With that in mind, let’s create a model of the primary and secondary buffers. Remember,
this is just a model, and the details will change when we actually implement the model
with the T3DLIB game engine. Anyway, it looks like we need a pointer to both the primary
and secondary buffers, along with variables to hold the memory pitch. For example, here’s
some globals that do the job:

UCHAR *primary_buffer; // the primary buffer

int  primary_pitch; // the memory pitch in bytes

UCHAR *secondary_buffer; // the secondary buffer

int  seconday_pitch;  // the memory pitch in bytes

Notice that both pointers are UCHAR*, and that the memory pitch is in terms of bytes?
That’s great if we are working with an 8-bit mode, but what about 16-bit modes, where
there are 2 bytes per pixel, and each word is a USHORT? The answer is that I want to keep
the data types simple and homogeneous. If you are working in a 16-bit mode, you can
simply cast the pointers to USHORT*, or whatever. The point is that keeping the pointers
UCHAR* is cleaner, along with always knowing memory pitch is in terms of bytes. This way,
all the functions we write will have the same pointer/pitch parameter footprint.
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Locking Memory
Alright, we are getting there, but there is one other feature that we should work in—
locking the memory. Many video cards have special memory that might be multi-ported,
cached, or whatever. What this means is that when you access the memory, and you’re
reading and writing to and from the frame buffer(s), you must let the system know that
you are accessing the memory, so that the system does not alter it during this time. When
you’re done, you unlock and release the memory and the system can go about its busi-
ness.

TIP

If you’re an old Windows programming guru from the 80s and early 90s, you should feel right at
home, because in the earlier versions of Windows (1.0, 2.0, and 3.0), you had to lock memory—
yuck!

All this means to us as programmers is that the pointers primary_buffer and
secondary_buffer are only valid during a locked period. Furthermore, you can’t assume
that the addresses will be the same in the next lock. That is, maybe during one lock-
unlock period the primary buffer was at

0x0FFFEFFC00000000

and during the next lock it’s at

0x0FFFFFFD00000000

This is a manifestation of the hardware. It might move the frame buffer(s), so watch out!
In any case, the locking procedure is as follows:

1. Lock the buffer of interest (either primary or secondary) and retrieve the starting
memory address, along with the memory pitch.

2. Manipulate the video memory.

3. Unlock the buffer.

And of course, in 99% of the cases you will only lock-Read/Write-unlock the secondary
buffer rather than the primary buffer, because you wouldn’t want the user to “see” you
altering the primary display buffer.

Based on this new feature, let’s create a few functions that perform the locking and
unlocking operations:

Lock_Primary(UCHAR **primary_buffer, int *primary_pitch);

Unlock_Primary(UCHAR *primary_buffer);

Lock_Secondary(UCHAR **secondary_buffer, int *secondary_pitch);

Unlock_Secondary(UCHAR *secondary buffer);
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Basically, to lock a buffer you call the function with the addresses of the storage for the
frame buffer and memory pitch. The function then locks the surface and alters the sent
variables (writes to them). Then you are free to use them. When you’re done, you unlock
the surface with a call to Unlock_*() with a pointer to the locked surface. Simple, huh?

As an example, let’s see how we would write a single pixel in 800×600 mode to the screen
of the secondary buffer in both 8-bit mode and 16-bit mode. First, here’s the 8-bit
example:

UCHAR *primary_buffer; // the primary buffer

int  primary_pitch; // the memory pitch in bytes

UCHAR *secondary_buffer; // the secondary buffer

int  seconday_pitch;  // the memory pitch in bytes

UCHAR pixel; // the pixel to write

int x,y;   // coordinates of pixel

// step 0:create the window

Create_Window(800, 600, 8);

// step 1: lock the secondary surface

Lock_Secondary(&secondary_buffer, &secondary_pitch);

// write the pixel to the center of the screen

secondary_buffer[x + y*secondary_pitch] = pixel;

// we are done, so unlock the secondary buffer

Unlock_Secondary(secondary_buffer);

That was easy! Now here’s the same code, assuming that the system is in 16-bit mode or 2
bytes per pixel.

UCHAR *primary_buffer; // the primary buffer

int  primary_pitch; // the memory pitch in bytes

UCHAR *secondary_buffer; // the secondary buffer

int  seconday_pitch;  // the memory pitch in bytes

USHORT pixel; // the pixel to write, 16-bits

int x,y;   // coordinates of pixel

// step 0:create the window

Create_Window(800, 600, 16);
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// step 1: lock the secondary surface

Lock_Secondary(&secondary_buffer, &secondary_pitch);

// at this point, we have to be careful since the

// locked pointer is a UCHAR * and not a USHORT *

// hence we need to cast it

USHORT *video_buffer = (USHORT *)secondary_buffer;

// write the pixel to the center of the screen

video_buffer[x + y*(secondary_pitch >> 1)] = pixel;

// we are done, so unlock the secondary buffer

Unlock_Secondary(secondary_buffer);

Note that we also had to divide the memory pitch by 2 (using the >> operator) because it’s
in terms of bytes, and if we want to use the built-in pointer arithmetic properly, we need
to convert the memory pitch to the number of USHORTs per line. Of course, there are a
hundred ways you can write this code, but you get the point. Get it—point? You could say
I have a one-dimensional sense of humor <GRIN>.

Finally, there is one detail that we have left out—the 8- or 16-bit pixel data format. Oops!

Working with Color
We are primarily going to work with 8-bit palettized video modes and 16-bit RGB modes
in our 3D game programming for speed reasons. In 8-bit mode, there is 1 byte per pixel,
and in 16-bit mode, there are 2 bytes per pixel. However, the encoding is completely
different.

8-Bit Color Mode
8-bit mode uses a standard 256-entry color lookup table (CLUT), as shown in Figure 3.4. 16-
bit mode uses a standard RGB encoding. When working with the 8-bit mode, we must fill
the color lookup table with RGB values for each color entry in the table for 0…255. We
assume that there is a function(s) to access this table and read/alter each entry, so let’s not
worry about it for now.

I just want you to know that there aren’t any surprises about 8-bit mode—it’s the standard
1 byte per pixel system, where each pixel value is an index into the color lookup table,
and each table entry is composed of a color triad with 8-bits for each channel, (red, green,
blue), for a total of 24-bits per entry.

TIP

Some cards only use 6 bits of each 8-bit channel entry, or in other words, there are only 26 = 64
shades of each primary—red, green, blue—rather than the standard 28 = 256 shades, with a full
8 bits per channel color lookup.
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FIGURE 3.4 Comparisons of various color depths and their implementations.

16-Bit Color Mode
Working with 16-bit color is a little simpler than 8-bit—sorta. In the case of 16-bit color,
there isn’t a lookup table anymore. In fact, each pixel is in the form of a concatenated bit
string word of RGB. In this form, the pixel format is either 5.5.5 (RGB) or 5.6.5 (RGB)
format; that is, 5 bits of red, 5 bits of green, 5 bits of blue, or 5 bits of red, 6 bits of green,
and 5 bits of blue, respectively. This is shown in Figure 3.5. This RGB pixel format concept
sometimes gives people a lot of trouble (I have thousands of emails asking about it). The
common question is how to build a pixel up? I think that the problem is that everyone
thinks it’s more complex than it really is. There is nothing to it really, just some bit
manipulations.

In 5.5.5 RGB mode, there are 5 bits for every pixel, or 25 = 32 intensities for each color
channel. Therefore, a single pixel’s RGB values each range from 0–31 (5 bits each), and
there are a total of 32*32*32 = 32,768 different colors possible. Hence, all you need to do
is write some code that takes a triad of three values. Suppose you have r,g, and b, each
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ranging from 0–31 (31 being the highest intensity) and you use bit manipulation opera-
tors to build the pixel up. Here’s one such macro for 5.5.5 mode:

// this builds a 16 bit color value in 5.5.5 format (1-bit alpha mode)

#define _RGB16BIT555(r,g,b) ((b & 31) + ((g & 31) << 5) + ((r & 31) << 10))
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FIGURE 3.5 16-bit color encodings for both the 5.5.5 and 5.6.5 formats.

Similarly, in 5.6.5 mode, there is an extra bit for green, so the range of RGB pixel values is
0–31 for red, 0–63 for green, and 0–31 for blue. This gives us a total of 32*64*32 = 65,536
possible colors. Once again, here’s a macro to build a pixel from a triad of values r,g,
and b:

// this builds a 16 bit color value in 5.6.5 format (green dominate mode)

#define _RGB16BIT565(r,g,b) ((b & 31) + ((g & 63) << 5) + ((r & 31) << 11))

This problem has given people so much trouble in the past that we are going to work
some logic into the system to take this into account. The graphics system, when selected
into 16-bit mode, will determine the pixel format (either 5.5.5 or 5.6.5) and set flags and
function pointers, so you can always use the same macro to build up a 16-bit color pixel.
However, this feature will be in the “real” library we make later. For now, just make note
of this detail, because I don’t want to hear about how everything “looks green” when
someone assumes a pixel format. Now, let’s talk about animating the display.

Animating the Display
The final bit of functionality we need to implement is a way to flip the display, or copy
the secondary buffer to the primary buffer, as shown in Figure 3.6. Of course, we could
simply lock both surfaces and do a line-by-line copy of memory. However, many cards
have special hardware to flip the display and copy them faster than we can with the
processor. Hence, we will allow for this option and use a black box approach to flipping
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the display via an API call. Let’s call the function Flip_Display(). It takes no parameters,
and simply copies the secondary buffer to the primary buffer (with software or hardware,
but we don’t know which).
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FIGURE 3.6 A page-flipped animation system.

CAUTION

You might wonder why I said to copy the secondary buffer line by line, rather than use a
memcpy() function. This is because the secondary buffer may or may not be contiguous from line
to line, and memcpy() has no way of knowing this. Alas, you must copy the buffers line by line,
and then address each row by the appropriate memory pitch if you want to do it yourself.

However, there is a rule we are going to follow—when you make a call to Flip_Display(),
you must make sure that both the primary and secondary buffers are unlocked. If they
aren’t, the flip won’t occur, and an error will be thrown—or you will get some exercise
with your index finger pressing the reset button on your computer. Therefore, before your
call to Flip_Display(), you should always make sure that both buffers are unlocked and
that the system has access to them.

Additionally, there are two more helper functions that come in handy when performing
animation: functions to clear the buffers. You could once again just lock the buffers and
use memset() or something to clear the buffer(s) line by line, but many cards have hard-
ware-fill capabilities to clear memory buffers. Let’s assume that where hardware filling is
available it will be used; otherwise, software will be used to fill the memory. In either case,
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we don’t care, because we will make up API functions to do this for both the secondary
and primary buffers:

Fill_Primary(int color);

Fill_Secondary(int color);

The functions assume that the buffers are unlocked and the color parameter would be
either 8- or 16-bit, depending on the mode. In most cases, you want to clear the buffer
with black, so you would use 0. This is because most palettes use index 0 as black, and the
USHORT value of 0 is equivalent to RGB (0,0,0), which is black, also.

Using the clear function is simple. At the top of your animation loop, you would make a
call to clear the screen out. However, because you are going to later copy the secondary
buffer to the primary buffer at the end of the animation cycle, there is no need to clear
the primary buffer, so all you need to do is clear the secondary buffer.

As an example, here’s how you would draw an animated display of randomly positioned
pixels in 800×600×8 mode, at 30 fps:

UCHAR *primary_buffer; // the primary buffer

int  primary_pitch; // the memory pitch in bytes

UCHAR *secondary_buffer; // the secondary buffer

int  seconday_pitch;  // the memory pitch in bytes

UCHAR pixel; // the pixel to write, 8-bits

int x,y;   // coordinates of pixel

// step 0:create the window

Create_Window(800, 600, 8);

// enter infinite loop

while(1)

{

// clear the secondary buffer

Fill_Secondary(0);

// step 1: lock the secondary surface

Lock_Secondary(&secondary_buffer, &secondary_pitch);

for (int num_dots=0; num_dots < 1000; num_dots++)

{

// get a random x,y,pixel

x = rand()%800;
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y = rand()%600;

pixel = rand()%256;

// write the pixel to the center of the screen

video_buffer[x + y*secondary_pitch)] = pixel;

} // end for num_dots

// we are done, so unlock the secondary buffer

Unlock_Secondary(secondary_buffer);

// flip the display

Flip_Display();

// wait a sec

Sleep(33);

} // end while

Of course, the loop is infinite, and in a real Windows application, we can’t be this greedy
and not release each frame back to the main event loop—but you get the idea.

The Complete Virtual Graphics System
At this point, we have enough functionality to implement the virtual graphics system, so
let’s briefly summarize what we have thus far to make sure we all have the same quantum
numbers:

• We assume that we can call functions that will set the graphics system up and open
a window (it could be full-screen) with any size and bit depth that we desire.
However, most of the time, we are only going to work with 8- and 16-bit modes for
speed.

• The system is composed of both a primary and secondary offscreen display buffer.
The buffers are linearly addressable, but have a memory pitch associated with them.
Moreover, to access the actual memory of either buffer, the buffer must be locked.
When the operation is complete, the buffer must be unlocked.

• To animate the display and “flip” one page to another, we assume there is a function
that takes advantage of hardware blitting (blocking image transfers) acceleration to
accomplish this. However, before making the call, we must make sure that both the
primary and secondary buffers are unlocked. Also, there are buffer-clearing functions
available that use hardware acceleration (if it’s available).

Hopefully, you can see that if we can implement this virtual software system, the 3D
graphics aspect of our programming is the only problem left. All we have to interface with
to get our image on the screen is the frame buffers and a few API calls here and there.
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I/O, Sound, and Music
Because the idea of this book is to make 3D games that are playable, we need to be able to
obtain input from the player, as well as play sounds and music. Otherwise, people are
going to think you are weird when you use mind control to play the game along with
your own sound effects <GRIN>.

Of course, all of this functionality is part of DirectX, and I have written wrappers around
all of it to make it as painless as possible. But the point I want to make here is that even if
you port the code from the book to another system that doesn’t support DirectX, you
have very little work. The engine from the first Tricks really only has the following funda-
mental capabilities (in order):

1. Initialize and detect all input devices: keyboard, mouse, and joystick.

2. Read the data or state of all input devices, and put the data in simple data structures.

3. Initialize the sound and music system.

4. Load a sound off disk in .WAV format and play it once or loop it. Load a MIDI song
off disk and play it once or loop it. Also be capable of testing the status of sounds
and music when playing.

5. Shut everything down.

The preceding list is the exact functionality that we will implement. However, if you need
to, you can simply “rip” all the I/O and sound code from any of the demos and port them
with just the graphics interface. Of course, you need some kind of input, even if it is
getch()!

As a sample API that looks something like what we will end up with, you might create
something like this:

// this initializes all the input devices

Init_Input_Devs();

// this shuts down the input system

Shutdown_Input_Devs();

// this reads the keyboard, where data is some structure that

// holds the keyboard state, maybe an array

Read_Keyboard(&data);

// this reads the mouse, where data is some structure that

// holds the mouse state, maybe the position and buttons

Read_Mouse(&data);
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// this reads the joystick, where data is some structure that

// holds the joystick state, maybe the position and buttons

Read_Joystick(&data);

// this initializes the sound and music system

Init_Sound_Music();

// this shuts down the sound and music system

Shutdown_Sound_Music();

// this loads a .WAV file and returns an id

int id = Load_WAV(char *filename);

// this plays a .WAV file based on an id

Play_WAV(int id);

// this loads a .MID file and returns an id

int id = Load_MID(char *filename);

// plays a .MID file based on an id

Play_MID(int id);

If we (you) can implement these functions, that’s all you need for the I/O and sound inter-
faces.

Well, that’s about it for the abstract design of the virtual computer interface. Remember,
this was just an exercise in software design. Now we need to bang out the details—that is,
the actual implementation of all the functions—I can’t wait!

TIP

What we just did is actually a very useful exercise in design. We basically designed a portable
graphics system. This is exactly how you would go about designing a game engine that you can
port to other platforms just by implementing the “insides” of a very small set of functions.

The T3DLIB Game Console
At this point, I have another dilemma brewing. I want to show you the generic Windows
Game Console prototype we are going to use to shell our games. However, within it are
calls to the API. Should I show you the library function API now, or should I wait? Well,
I’m in a top-down mood right now, and because you are an intermediate or advanced
game programmer, I think you can handle waiting. If there is anything that you can’t
follow, simply take a peek at the Library API listings and descriptions.
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T3DLIB System Overview
Based on our discussion of the virtual computer design, our goal is to abstract the
Win32/DirectX model into a very simple double-buffered graphics system that we can
access along with support for input and sound. Along the lines of this goal, I have created
what’s called the T3D Game Console. The Game Console is really the first step in creating
the virtual computer interface. Before we can get into DirectX, input, and sound, first we
have to remove Windows from the equation. How I’m going to do this is by creating a
template, or Game Console as I call it, around Windows, so that from our point of view, a
Windows application looks like a standard DOS/Unix application with a main() and 
that’s it.

What we’re going to do is build up the Game Console layer by layer until we have our
virtual computer. Let’s first start with removing Windows from the equation as best 
we can.

The Basic Game Console
The first iteration of the Game Console should perform the following tasks:

1. Open a window.

2. Call a user-defined initialization function: Game_Init().

3. Enter into the main Windows event loop, process any messages for you, and return.

4. Call a user-defined “main” work function Game_Main() that performs one cycle of
game logic and then returns.

5. Loop to step 3 until the user kills the application.

6. Call a user-defined shutdown function Game_Shutdown() that cleans up.

Figure 3.7 depicts the flow diagram of the Game Console. You will notice that I have
decided to call the initialization, runtime, and shutdown functions Game_Init(),
Game_Main(), and Game_Shutdown(), respectively.

If we can implement a shell program that performs the functionality of steps 1 through 6,
we can completely forget about Windows and focus on the functions Game_Init(),
Game_Main(), and Game_Shutdown() only. First, let’s prototype out the three functions with
some generic interfaces:

// game console

int Game_Init(void *parms=NULL);

int Game_Shutdown(void *parms=NULL);

int Game_Main(void *parms=NULL);
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FIGURE 3.7 The control flow of the Game Console.

Not much to them, huh? Basically, I have written them so you can (if you want) send a
structure to the functions, but I find I never use the feature. In any case, with that in
mind, we need to write a Windows program shell program that does the following:

1. Creates a Windows class and registers the class.

2. Creates a window.

3. Has an event loop and a WinProc() that handles the basic messages WM_CREATE,
WM_PAINT, and WM_DESTROY.

4. Before the event loop is called, a call to Game_Init() is called, so you can do your
initialization here.

5. During the event loop, Game_Main() is called each cycle, so your game can process
and run.

6. When the Window is terminated, a call to Game_Shutdown() is made, so you can
clean up.

The following is a T3DCONSOLEALPHA1.CPP from the CD, a complete Windows program that
does all of these steps. I have highlighted the function calls to our worker functions:
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// T3DCONSOLEALPHA1.CPP - First alpha iteration of game console

// INCLUDES ///////////////////////////////////////////////

#define WIN32_LEAN_AND_MEAN

#include <windows.h>  // include important windows stuff

#include <windowsx.h>

#include <mmsystem.h>

#include <iostream.h> // include important C/C++ stuff

#include <conio.h>

#include <stdlib.h>

#include <malloc.h>

#include <memory.h>

#include <string.h>

#include <stdarg.h>

#include <stdio.h>

#include <math.h>

#include <io.h>

#include <fcntl.h>

// DEFINES ////////////////////////////////////////////////

// defines for windows interface

#define WINDOW_CLASS_NAME “WIN3DCLASS” // class name

#define WINDOW_TITLE   “T3D Graphics Console Alpha 1.0”

#define WINDOW_WIDTH   320 // size of window

#define WINDOW_HEIGHT   240

// these read the keyboard asynchronously

#define KEY_DOWN(vk_code) ((GetAsyncKeyState(vk_code) & 0x8000) ? 1 : 0)

#define KEY_UP(vk_code)  ((GetAsyncKeyState(vk_code) & 0x8000) ? 0 : 1)

// PROTOTYPES /////////////////////////////////////////////

// game console

int Game_Init(void *parms=NULL);

int Game_Shutdown(void *parms=NULL);

int Game_Main(void *parms=NULL);

// GLOBALS ////////////////////////////////////////////////
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HWND main_window_handle  = NULL; // save the window handle

HINSTANCE main_instance  = NULL; // save the instance

char buffer[256];         // used to print text

// FUNCTIONS //////////////////////////////////////////////

LRESULT CALLBACK WindowProc(HWND hwnd,

UINT msg,

WPARAM wparam,

LPARAM lparam)

{

// this is the main message handler of the system

PAINTSTRUCT  ps;    // used in WM_PAINT

HDC    hdc;    // handle to a device context

// what is the message

switch(msg)

{  

case WM_CREATE:

{

// do initialization stuff here

return(0);

} break;

case WM_PAINT:

{

// start painting

hdc = BeginPaint(hwnd,&ps);

// end painting

EndPaint(hwnd,&ps);

return(0);

} break;

case WM_DESTROY:

{

// kill the application

PostQuitMessage(0);

return(0);

} break;

default:break;
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} // end switch

// process any messages that we didn’t take care of

return (DefWindowProc(hwnd, msg, wparam, lparam));

} // end WinProc

// WINMAIN ////////////////////////////////////////////////

int WINAPI WinMain(  HINSTANCE hinstance,

HINSTANCE hprevinstance,

LPSTR lpcmdline,

int ncmdshow)

{

// this is the winmain function

WNDCLASS winclass;  // this will hold the class we create

HWND   hwnd;    // generic window handle

MSG   msg;   // generic message

HDC   hdc;  // generic dc

PAINTSTRUCT ps; // generic paintstruct

// first fill in the window class stucture

winclass.style    = CS_DBLCLKS | CS_OWNDC |

CS_HREDRAW | CS_VREDRAW;

winclass.lpfnWndProc  = WindowProc;

winclass.cbClsExtra   = 0;

winclass.cbWndExtra   = 0;

winclass.hInstance   = hinstance;

winclass.hIcon     = LoadIcon(NULL, IDI_APPLICATION);

winclass.hCursor    = LoadCursor(NULL, IDC_ARROW);

winclass.hbrBackground  = (HBRUSH)GetStockObject(BLACK_BRUSH);

winclass.lpszMenuName  = NULL;

winclass.lpszClassName  = WINDOW_CLASS_NAME;

// register the window class

if (!RegisterClass(&winclass))

return(0);

// create the window, note the test to see if WINDOWED_APP is

// true to select the appropriate window flags

if (!(hwnd = CreateWindow(WINDOW_CLASS_NAME, // class

WINDOW_TITLE,   // title
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WS_OVERLAPPED | WS_SYSMENU | WS_CAPTION,

0,0,    // x,y

WINDOW_WIDTH, // width

WINDOW_HEIGHT, // height

NULL,    // handle to parent

NULL,    // handle to menu

hinstance,// instance

NULL)))  // creation parms

return(0);

// save the window handle and instance in a global

main_window_handle = hwnd;

main_instance   = hinstance;

// make sure window is visible

ShowWindow(main_window_handle, SW_SHOW);

// perform all game console specific initialization

Game_Init();

// enter main event loop

while(1)

{

if (PeekMessage(&msg,NULL,0,0,PM_REMOVE))

{

// test if this is a quit

if (msg.message == WM_QUIT)

break;

// translate any accelerator keys

TranslateMessage(&msg);

// send the message to the window proc

DispatchMessage(&msg);

} // end if

// main game processing goes here

Game_Main();

} // end while

// shutdown game and release all resources

Game_Shutdown();
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// return to Windows like this

return(msg.wParam);

} // end WinMain

// T3D II GAME PROGRAMMING CONSOLE FUNCTIONS ////////////////

int Game_Init(void *parms)

{

// this function is where you do all the initialization

// for your game

// return success

return(1);

} // end Game_Init

///////////////////////////////////////////////////////////

int Game_Shutdown(void *parms)

{

// this function is where you shutdown your game and

// release all resources that you allocated

// return success

return(1);

} // end Game_Shutdown

//////////////////////////////////////////////////////////

int Game_Main(void *parms)

{

// this is the workhorse of your game it will be called

// continuously in real-time this is like main() in C

// all the calls for your game go here!

// game logic here...

// check if user is trying to exit

if (KEY_DOWN(VK_ESCAPE))

{

PostMessage(main_window_handle, WM_DESTROY,0,0);

} // end if
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// return success

return(1);

} // end Game_Main

The name of the source code on the CD is T3DCONSOLEALPHA1.CPP, and the executable is,
of course, T3DCONSOLEALPHA1.EXE. If you run the .EXE, all you will see is the image in
Figure 3.8—basically a little window with nothing happening. However, behind the scenes
a lot is really going on: a window was created, Game_Init() was called, and Game_Main() is
being called over and over each event cycle. Finally, when you close the window,
Game_Shutdown() is called.
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FIGURE 3.8 Alpha game console T3DCONSOLEALPHA1.EXE in action.

So all you need to do is put your entire game functionality within those three functions.
That’s all there is to it—we have abstracted a Windows application to three function calls,
and everything else is done for us.

NOTE

It’s really too bad that most of the books on Windows programming make it so hard. It really
isn’t—and it’s kind of fun!

Based on this first version of the Game Console, we have all the Windows functionality
that we need. Now we need the DirectX interface that emulates our virtual computer for
us and gives us the basic double-buffered graphics system with sound and input capabili-
ties. At this point, we could dive right in and take a look at the final Game Console that
does all this, but I think it’s a better idea to take a look at the API that I am going to use to
build it up. Now remember, you don’t need to completely understand the API and all the
functions. Simply take a look at all of them and their associated explanations and
examples.
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After you have reviewed the tools that we will use to build the final Game Console, we
will take the T3DGAMECONSOLEALPHA1.CPP file and add to it in various areas, so that the
results are the final virtual computer interface that we need. Then we will use this
“template” as a starting point for all the demos and games in the book. Additionally,
before ending the chapter, I will give a number of examples that show how to use the
T3DLIB’s graphics, sound, and input abilities. Alrighty then, let’s move on to the three
subsystems that make up the T3DLIB game engine from the first Tricks.

The T3DLIB1 Library
At this point, we’re ready to take a look at all the #defines, macros, data structures, and
functions that compose the graphics module API of the T3DLIB game library—
T3DLIB1.CPP.

NOTE

If you have already read the first Tricks, you will notice that the engine is almost identical except
for the additional 16-bit support sprinkled throughout, along with windowed support. However,
the code is still compatible, so you can take the demos from the first Tricks and compile them
with this new version of T3DLIB1.CPP and they will still work! And of course, everything will
compile with DirectX 8.0 or 9.0+.

The module consists of two files: T3DLIB1.CPP|H. Hence, you simply link these into your
programs and then use the API.

The DirectX Graphics Engine Architecture
T3DLIB1 is a fairly simple 2D engine, as shown in Figure 3.9. Basically, it’s a 2D, 8–16-bit
color, doubled-buffered DirectX engine that has support for any resolution along with
clipping. The engine also supports both windowed and full-screen displays, and takes care
of all the setup. So, whether you’re in a windowed display or full-screen mode, you always
write to the offscreen or secondary buffer, and logic takes care of the detailed process of
copying or flipping the secondary buffer to the primary display. This is done regardless of
whether the primary display window is a window or full-screen.

To build an application using the library, you’ll need to include T3DLIB1.CPP|H, along with
DDRAW.LIB (DirectDraw Library) and WINMM.LIB (Win32 Multimedia Library).

NOTE

You only need WINMM.LIB if you are using Visual C++.
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FIGURE 3.9 The architecture of the graphics engine.

Basic Definitions
The engine has one header file, T3DLIB1.H, and within are a number of #defines that the
engine uses. Here they are for your reference:

// watch for multiple inclusions

#ifndef T3DLIB1

#define T3DLIB1

// DEFINES ////////////////////////////////////////////////

// default screen values, these are all overriden by the

// call to DDraw_Init() and are just here to have something

// to set the globals to instead of constant values

#define SCREEN_WIDTH    640 // size of screen

#define SCREEN_HEIGHT    480

#define SCREEN_BPP     8  // bits per pixel

#define MAX_COLORS_PALETTE 256

#define DEFAULT_PALETTE_FILE “PALDATA2.PAL”
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// used for selecting full screen/windowed mode

#define SCREEN_FULLSCREEN  0

#define SCREEN_WINDOWED   1

// bitmap defines

#define BITMAP_ID      0x4D42 // universal id for a bitmap

#define BITMAP_STATE_DEAD  0

#define BITMAP_STATE_ALIVE  1

#define BITMAP_STATE_DYING  2

#define BITMAP_ATTR_LOADED  128

#define BITMAP_EXTRACT_MODE_CELL 0

#define BITMAP_EXTRACT_MODE_ABS  1

// directdraw pixel format defines, used to help

// bitmap loader put data in proper format

#define DD_PIXEL_FORMAT8    8

#define DD_PIXEL_FORMAT555   15

#define DD_PIXEL_FORMAT565   16

#define DD_PIXEL_FORMAT888   24

#define DD_PIXEL_FORMATALPHA888 32

// defines for BOBs

#define BOB_STATE_DEAD     0  // this is a dead bob

#define BOB_STATE_ALIVE    1  // this is a live bob

#define BOB_STATE_DYING    2  // this bob is dying

#define BOB_STATE_ANIM_DONE  1  // done animation state

#define MAX_BOB_FRAMES     64  // maximum number of bob frames

#define MAX_BOB_ANIMATIONS   16  // maximum number of animation sequences

#define BOB_ATTR_SINGLE_FRAME  1  // bob has single frame

#define BOB_ATTR_MULTI_FRAME  2  // bob has multiple frames

#define BOB_ATTR_MULTI_ANIM   4  // bob has multiple animations

#define BOB_ATTR_ANIM_ONE_SHOT 8  // bob will perform the animation once

#define BOB_ATTR_VISIBLE    16 // bob is visible

#define BOB_ATTR_BOUNCE     32 // bob bounces off edges

#define BOB_ATTR_WRAPAROUND   64 // bob wraps around edges

#define BOB_ATTR_LOADED     128 // the bob has been loaded

#define BOB_ATTR_CLONE     256 // the bob is a clone

// screen transition commands (256 color modes only)

#define SCREEN_DARKNESS 0     // fade to black

#define SCREEN_WHITENESS 1     // fade to white
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#define SCREEN_SWIPE_X  2     // do a horizontal swipe

#define SCREEN_SWIPE_Y  3     // do a vertical swipe

#define SCREEN_DISOLVE  4     // a pixel disolve

#define SCREEN_SCRUNCH  5     // a square compression

#define SCREEN_BLUENESS 6     // fade to blue

#define SCREEN_REDNESS  7     // fade to red

#define SCREEN_GREENNESS 8     // fade to green

// defines for Blink_Colors

#define BLINKER_ADD      0  // add a light to database

#define BLINKER_DELETE    1  // delete a light from database

#define BLINKER_UPDATE    2  // update a light

#define BLINKER_RUN      3  // run normal

// pi defines

#define PI     ((float)3.141592654f)

#define PI2    ((float)6.283185307f)

#define PI_DIV_2  ((float)1.570796327f)

#define PI_DIV_4  ((float)0.785398163f)

#define PI_INV   ((float)0.318309886f)

// fixed point mathematics constants

#define FIXP16_SHIFT   16

#define FIXP16_MAG    65536

#define FIXP16_DP_MASK  0x0000ffff

#define FIXP16_WP_MASK  0xffff0000

#define FIXP16_ROUND_UP 0x00008000

Working Macros
Next are all the macros we’ve written thus far. Again, you’ve seen them all in one place or
another, but here they all are at once:

// these read the keyboard asynchronously

#define KEY_DOWN(vk_code) ((GetAsyncKeyState(vk_code) & 0x8000) ? 1 : 0)

#define KEY_UP(vk_code)  ((GetAsyncKeyState(vk_code) & 0x8000) ? 0 : 1)

// this builds a 16 bit color value in 5.5.5 format (1-bit alpha mode)

#define _RGB16BIT555(r,g,b) ((b & 31) + ((g & 31) << 5) + ((r & 31) << 10))

// this builds a 16 bit color value in 5.6.5 format (green dominate mode)

#define _RGB16BIT565(r,g,b) ((b & 31) + ((g & 63) << 5) + ((r & 31) << 11))
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// this builds a 24 bit color value in 8.8.8 format

#define _RGB24BIT(a,r,g,b) ((b) + ((g) << 8) + ((r) << 16) )

// this builds a 32 bit color value in A.8.8.8 format (8-bit alpha mode)

#define _RGB32BIT(a,r,g,b) ((b) + ((g) << 8) + ((r) << 16) + ((a) << 24))

// bit manipulation macros

#define SET_BIT(word,bit_flag)  ((word)=((word) | (bit_flag)))

#define RESET_BIT(word,bit_flag) ((word)=((word) & (~bit_flag)))

// initializes a direct draw struct,

// basically zeros it and sets the dwSize field

#define DDRAW_INIT_STRUCT(ddstruct) {

memset(&ddstruct,0,sizeof(ddstruct));ddstruct.dwSize=sizeof(ddstruct); }

// used to compute the min and max of two expresions

#define MIN(a, b) (((a) < (b)) ? (a) : (b))

#define MAX(a, b) (((a) > (b)) ? (b) : (a))

// used for swapping algorithm

#define SWAP(a,b,t) {t=a; a=b; b=t;}

// some math macros

#define DEG_TO_RAD(ang) ((ang)*PI/180)

#define RAD_TO_DEG(rads) ((rads)*180/PI)

#define RAND_RANGE(x,y) ( (x) + (rand()%((y)-(x)+1)))

Data Types and Structures
The next set of code elements are the types and data structures that the engine uses. Many
of them aren’t really of concern, because a lot of them are for the 2D aspect from the first
Tricks, but it doesn’t hurt to see all of it.

// basic unsigned types

typedef unsigned short USHORT;

typedef unsigned short WORD;

typedef unsigned char UCHAR;

typedef unsigned char BYTE;

typedef unsigned int  QUAD;

typedef unsigned int  UINT;
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// container structure for bitmaps .BMP file

typedef struct BITMAP_FILE_TAG

{

BITMAPFILEHEADER bitmapfileheader; // contains the bitmapfile 

➥header

BITMAPINFOHEADER bitmapinfoheader; //info including 

➥the palette

PALETTEENTRY   palette[256];   // palette 

➥stored here

UCHAR      *buffer;      // pointer to the data

} BITMAP_FILE, *BITMAP_FILE_PTR;

// the blitter object structure BOB

typedef struct BOB_TYP

{

int state;     // the state of the object (general)

int anim_state;   // an animation state variable, up to you

int attr;      // attributes pertaining to the object (general)

float x,y;     // position bitmap will be displayed at

float xv,yv;    // velocity of object

int width, height; // the width and height of the bob

int width_fill;   // internal, used to force 8*x wide surfaces

int bpp;      // bits per pixel

int counter_1;   // general counters

int counter_2;

int max_count_1;  // general threshold values;

int max_count_2;

int varsI[16];   // stack of 16 integers

float varsF[16];  // stack of 16 floats

int curr_frame;   // current animation frame

int num_frames;   // total number of animation frames

int curr_animation; // index of current animation

int anim_counter;  // used to time animation transitions

int anim_index;   // animation element index

int anim_count_max; // number of cycles before animation

int *animations[MAX_BOB_ANIMATIONS]; // animation sequences

// the bitmap images DD surfaces

LPDIRECTDRAWSURFACE7 images[MAX_BOB_FRAMES]; 

} BOB, *BOB_PTR;

// the simple bitmap image

typedef struct BITMAP_IMAGE_TYP
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{

int state;     // state of bitmap

int attr;      // attributes of bitmap

int x,y;      // position of bitmap

int width, height; // size of bitmap

int num_bytes;   // total bytes of bitmap

int bpp;      // bits per pixel

UCHAR *buffer;   // pixels of bitmap

} BITMAP_IMAGE, *BITMAP_IMAGE_PTR;

// blinking light structure

typedef struct BLINKER_TYP

{

// user sets these

int color_index;     // index of color to blink

PALETTEENTRY on_color;  // RGB value of “on” color

PALETTEENTRY off_color; // RGB value of “off” color

int on_time;       // number of frames to keep “on”

int off_time;      // number of frames to keep “off”

// internal member

int counter;       // counter for state transitions

int state;        // state of light, -1 off, 1 on, 0 dead

} BLINKER, *BLINKER_PTR;

// a 2D vertex

typedef struct VERTEX2DI_TYP

{

int x,y; // the vertex

} VERTEX2DI, *VERTEX2DI_PTR;

// a 2D vertex

typedef struct VERTEX2DF_TYP

{

float x,y; // the vertex

} VERTEX2DF, *VERTEX2DF_PTR;

// a 2D polygon

typedef struct POLYGON2D_TYP

{

int state;    // state of polygon

int num_verts;  // number of vertices
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int x0,y0;    // position of center of polygon

int xv,yv;    // initial velocity

DWORD color;   // could be index or PALETTENTRY

VERTEX2DF *vlist; // pointer to vertex list

} POLYGON2D, *POLYGON2D_PTR;

// matrix defines

typedef struct MATRIX3X3_TYP

{

union

{

float M[3][3]; // array indexed data storage

// storage in row major form with explicit names

struct

{

float M00, M01, M02;

float M10, M11, M12;

float M20, M21, M22;

}; // end explicit names

}; // end union

} MATRIX3X3, *MATRIX3X3_PTR;

typedef struct MATRIX1X3_TYP

{

union

{

float M[3]; // array indexed data storage

// storage in row major form with explicit names

struct

{

float M00, M01, M02;

}; // end explicit names

}; // end union

} MATRIX1X3, *MATRIX1X3_PTR;

typedef struct MATRIX3X2_TYP

{
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union

{

float M[3][2]; // array indexed data storage

// storage in row major form with explicit names

struct

{

float M00, M01;

float M10, M11;

float M20, M21;

}; // end explicit names

}; // end union

} MATRIX3X2, *MATRIX3X2_PTR;

typedef struct MATRIX1X2_TYP

{

union

{

float M[2]; // array indexed data storage

// storage in row major form with explicit names

struct

{

float M00, M01;

}; // end explicit names

}; // end union

} MATRIX1X2, *MATRIX1X2_PTR;

You’ll notice some math support at the end. This is from the 2D polygon transformation
support from the first Tricks. We are going to rewrite much of it when we create the new
3D math library.

Function Prototypes
Next I want you to take a look at the complete function prototype list, so you can see
everything at once. I’m not going to cover every single function in the function API in the
following sections because many functions are different versions of each other.

// DirectDraw functions

int DDraw_Init(int width, int height, int bpp, int windowed=0);

int DDraw_Shutdown(void);
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LPDIRECTDRAWCLIPPER DDraw_Attach_Clipper(LPDIRECTDRAWSURFACE7 lpdds,

int num_rects, LPRECT clip_list);

LPDIRECTDRAWSURFACE7 DDraw_Create_Surface(int width, int height,

int mem_flags=0, USHORT color_key_value=0);

int DDraw_Flip(void);

int DDraw_Wait_For_Vsync(void);

int DDraw_Fill_Surface(LPDIRECTDRAWSURFACE7 lpdds, USHORT color,

RECT *client=NULL);

UCHAR *DDraw_Lock_Surface(LPDIRECTDRAWSURFACE7 lpdds,int *lpitch);

int DDraw_Unlock_Surface(LPDIRECTDRAWSURFACE7 lpdds);

UCHAR *DDraw_Lock_Primary_Surface(void);

int DDraw_Unlock_Primary_Surface(void);

UCHAR *DDraw_Lock_Back_Surface(void);

int DDraw_Unlock_Back_Surface(void);

// BOB functions

int Create_BOB(BOB_PTR bob,int x, int y,int width, int height,

int num_frames,int attr,

int mem_flags=0, USHORT color_key_value=0, int bpp=8);

int Clone_BOB(BOB_PTR source, BOB_PTR dest);

int Destroy_BOB(BOB_PTR bob);

int Draw_BOB(BOB_PTR bob, LPDIRECTDRAWSURFACE7 dest);

int Draw_Scaled_BOB(BOB_PTR bob, int swidth, int sheight,

LPDIRECTDRAWSURFACE7 dest);

int Draw_BOB16(BOB_PTR bob, LPDIRECTDRAWSURFACE7 dest);

int Draw_Scaled_BOB16(BOB_PTR bob, int swidth, int sheight,

LPDIRECTDRAWSURFACE7 dest);

int Load_Frame_BOB(BOB_PTR bob, BITMAP_FILE_PTR bitmap,

int frame, int cx,int cy,int mode);

int Load_Frame_BOB16(BOB_PTR bob, BITMAP_FILE_PTR bitmap,

int frame, int cx,int cy,int mode);
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int Animate_BOB(BOB_PTR bob);

int Move_BOB(BOB_PTR bob);

int Load_Animation_BOB(BOB_PTR bob, int anim_index,

int num_frames, int *sequence);

int Set_Pos_BOB(BOB_PTR bob, int x, int y);

int Set_Vel_BOB(BOB_PTR bob,int xv, int yv);

int Set_Anim_Speed_BOB(BOB_PTR bob,int speed);

int Set_Animation_BOB(BOB_PTR bob, int anim_index);

int Hide_BOB(BOB_PTR bob);

int Show_BOB(BOB_PTR bob);

int Collision_BOBS(BOB_PTR bob1, BOB_PTR bob2);

// general utility functions

DWORD Get_Clock(void);

DWORD Start_Clock(void);

DWORD Wait_Clock(DWORD count);

int Collision_Test(int x1, int y1, int w1, int h1,

int x2, int y2, int w2, int h2);

int Color_Scan(int x1, int y1, int x2, int y2,

UCHAR scan_start, UCHAR scan_end,

UCHAR *scan_buffer, int scan_lpitch);

int Color_Scan16(int x1, int y1, int x2, int y2,

USHORT scan_start, USHORT scan_end,

UCHAR *scan_buffer, int scan_lpitch);

// graphics functions

int Draw_Clip_Line(int x0,int y0, int x1, int y1, int color,

UCHAR *dest_buffer, int lpitch);

int Draw_Clip_Line16(int x0,int y0, int x1, int y1, int color,

UCHAR *dest_buffer, int lpitch);

int Clip_Line(int &x1,int &y1,int &x2, int &y2);

int Draw_Line(int xo, int yo, int x1,int y1, int color,

UCHAR *vb_start,int lpitch);
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int Draw_Line16(int xo, int yo, int x1,int y1, int color,

UCHAR *vb_start,int lpitch);

int Draw_Pixel(int x, int y,int color,

UCHAR *video_buffer, int lpitch);

int Draw_Rectangle(int x1, int y1, int x2, int y2,

int color,LPDIRECTDRAWSURFACE7 lpdds);

void HLine(int x1,int x2,int y,int color, UCHAR *vbuffer, int lpitch);

void VLine(int y1,int y2,int x,int color, UCHAR *vbuffer, int lpitch);

void HLine16(int x1,int x2,int y,int color, UCHAR *vbuffer, int lpitch);

void VLine16(int y1,int y2,int x,int color, UCHAR *vbuffer, int lpitch);

void Screen_Transitions(int effect, UCHAR *vbuffer, int lpitch);

int Draw_Pixel(int x, int y,int color,UCHAR *video_buffer, int lpitch);

int Draw_Pixel16(int x, int y,int color,UCHAR *video_buffer, int lpitch);

// palette functions

int Set_Palette_Entry(int color_index, LPPALETTEENTRY color);

int Get_Palette_Entry(int color_index, LPPALETTEENTRY color);

int Load_Palette_From_File(char *filename, LPPALETTEENTRY palette);

int Save_Palette_To_File(char *filename, LPPALETTEENTRY palette);

int Save_Palette(LPPALETTEENTRY sav_palette);

int Set_Palette(LPPALETTEENTRY set_palette);

int Rotate_Colors(int start_index, int end_index);

int Blink_Colors(int command, BLINKER_PTR new_light, int id);

// simple bitmap image functions

int Create_Bitmap(BITMAP_IMAGE_PTR image, int x, int y,

int width, int height, int bpp=8);

int Destroy_Bitmap(BITMAP_IMAGE_PTR image);

int Draw_Bitmap(BITMAP_IMAGE_PTR source_bitmap,UCHAR *dest_buffer,

int lpitch, int transparent);

int Draw_Bitmap16(BITMAP_IMAGE_PTR source_bitmap,UCHAR *dest_buffer,

int lpitch, int transparent);

int Load_Image_Bitmap(BITMAP_IMAGE_PTR image,BITMAP_FILE_PTR bitmap,

int cx,int cy,int mode);
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int Load_Image_Bitmap16(BITMAP_IMAGE_PTR image,BITMAP_FILE_PTR bitmap,

int cx,int cy,int mode);

int Scroll_Bitmap(BITMAP_IMAGE_PTR image, int dx, int dy=0);

int Copy_Bitmap(BITMAP_IMAGE_PTR dest_bitmap, int dest_x, int dest_y,

BITMAP_IMAGE_PTR source_bitmap, int source_x, int source_y,

int width, int height);

int Flip_Bitmap(UCHAR *image, int bytes_per_line, int height);

// bitmap file functions

int Load_Bitmap_File(BITMAP_FILE_PTR bitmap, char *filename);

int Unload_Bitmap_File(BITMAP_FILE_PTR bitmap);

// gdi functions

int Draw_Text_GDI(char *text, int x,int y,

COLORREF color, LPDIRECTDRAWSURFACE7 lpdds);

int Draw_Text_GDI(char *text, int x,int y,

int color, LPDIRECTDRAWSURFACE7 lpdds);

// error functions

int Open_Error_File(char *filename, FILE *fp_override=NULL);

int Close_Error_File(void);

int Write_Error(char *string, ...);

// 2d 8-bit, 16-bit triangle rendering

void Draw_Top_Tri(int x1,int y1,int x2,int y2, int x3,int y3,

int color,UCHAR *dest_buffer, int mempitch);

void Draw_Bottom_Tri(int x1,int y1, int x2,int y2, int x3,int y3,

int color,UCHAR *dest_buffer, int mempitch);

void Draw_Top_Tri16(int x1,int y1,int x2,int y2, int x3,int y3,

int color,UCHAR *dest_buffer, int mempitch);

void Draw_Bottom_Tri16(int x1,int y1, int x2,int y2, int x3,int y3,

int color,UCHAR *dest_buffer, int mempitch);

void Draw_Top_TriFP(int x1,int y1,int x2,int y2, int x3,int y3,

int color,UCHAR *dest_buffer, int mempitch);
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void Draw_Bottom_TriFP(int x1,int y1, int x2,int y2, int x3,int y3,

int color,UCHAR *dest_buffer, int mempitch);

void Draw_Triangle_2D(int x1,int y1,int x2,int y2,int x3,int y3,

int color,UCHAR *dest_buffer, int mempitch);

void Draw_Triangle_2D16(int x1,int y1,int x2,int y2,int x3,int y3,

int color,UCHAR *dest_buffer, int mempitch);

void Draw_TriangleFP_2D(int x1,int y1,int x2,int y2,int x3,int y3,

int color,UCHAR *dest_buffer, int mempitch);

inline void Draw_QuadFP_2D(int x0,int y0,int x1,int y1,

int x2,int y2,int x3, int y3,

int color,UCHAR *dest_buffer, int mempitch);

// general 2D 8-bit, 16-bit polygon rendering and transforming functions

void Draw_Filled_Polygon2D(POLYGON2D_PTR poly, UCHAR *vbuffer, int mempitch);

void Draw_Filled_Polygon2D16(POLYGON2D_PTR poly, UCHAR *vbuffer, int mempitch);

int Translate_Polygon2D(POLYGON2D_PTR poly, int dx, int dy);

int Rotate_Polygon2D(POLYGON2D_PTR poly, int theta);

int Scale_Polygon2D(POLYGON2D_PTR poly, float sx, float sy);

void Build_Sin_Cos_Tables(void);

int Translate_Polygon2D_Mat(POLYGON2D_PTR poly, int dx, int dy);

int Rotate_Polygon2D_Mat(POLYGON2D_PTR poly, int theta);

int Scale_Polygon2D_Mat(POLYGON2D_PTR poly, float sx, float sy);

int Draw_Polygon2D(POLYGON2D_PTR poly, UCHAR *vbuffer, int lpitch);

int Draw_Polygon2D16(POLYGON2D_PTR poly, UCHAR *vbuffer, int lpitch);

// math functions

int Fast_Distance_2D(int x, int y);

float Fast_Distance_3D(float x, float y, float z);

// collision detection functions

int Find_Bounding_Box_Poly2D(POLYGON2D_PTR poly,

float &min_x, float &max_x,

float &min_y, float &max_y);

int Mat_Mul_1X2_3X2(MATRIX1X2_PTR ma,

MATRIX3X2_PTR mb,

MATRIX1X2_PTR mprod);
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int Mat_Mul_1X3_3X3(MATRIX1X3_PTR ma,

MATRIX3X3_PTR mb,

MATRIX1X3_PTR mprod);

int Mat_Mul_3X3(MATRIX3X3_PTR ma,

MATRIX3X3_PTR mb,

MATRIX3X3_PTR mprod);

inline int Mat_Init_3X2(MATRIX3X2_PTR ma,

float m00, float m01,

float m10, float m11,

float m20, float m21);

// memory manipulation functions

inline void Mem_Set_WORD(void *dest, USHORT data, int count);

inline void Mem_Set_QUAD(void *dest, UINT  data, int count);

You’ll notice that all the calls to any rasterization functions that take pointers to the frame
buffer always take a UCHAR*. Additionally, all memory pitch parameters are always in terms
of bytes. Remember, this was our convention. Also note that about 90% of the entire
library supports 16-bit graphics, but some things only work for 8-bit color. Finally, there’s
a lot of 2D polygon functions in there. These are all from the first Tricks, and although we
could just use them for this book, we are going to write all of them again from scratch.
This is because they are part of the rasterization process in 3D graphics, and I’m going to
have to think up new names for them!

Global Domination
You know that I like globals because they are so fast. Moreover, they are appropriate for a
lot of system-level variables (which any game engine has a lot of), so here are the globals
for the engine—again, I know this is hard to follow, but just try and get a feel for them. I
have commented them to help out.

FILE *fp_error;           // general error file

char error_filename[80];       // error file name

// notice that interface 7.0 is used on a number of interfaces

LPDIRECTDRAW7    lpdd;      // dd object

LPDIRECTDRAWSURFACE7 lpddsprimary;  // dd primary surface

LPDIRECTDRAWSURFACE7 lpddsback;   // dd back surface

LPDIRECTDRAWPALETTE lpddpal;    // a pointer to the created dd palette

LPDIRECTDRAWCLIPPER lpddclipper;  // dd clipper for back surface

LPDIRECTDRAWCLIPPER lpddclipperwin; // dd clipper for window
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PALETTEENTRY     palette[256];  // color palette

PALETTEENTRY     save_palette[256]; // used to save palettes

DDSURFACEDESC2    ddsd;   // a direct draw surface description struct

DDBLTFX       ddbltfx; // used to fill

DDSCAPS2       ddscaps; // a direct draw surface capabilities struct

HRESULT       ddrval;  // result back from dd calls

UCHAR        *primary_buffer; // primary video buffer

UCHAR        *back_buffer;  // secondary back buffer

int         primary_lpitch; // memory line pitch

int         back_lpitch;   // memory line pitch

BITMAP_FILE     bitmap8bit;   // a 8 bit bitmap file

BITMAP_FILE     bitmap16bit;   // a 16 bit bitmap file

BITMAP_FILE     bitmap24bit;   // a 24 bit bitmap file

DWORD start_clock_count;  // used for timing

int  windowed_mode;    // tracks if dd is windowed or not

// these defined the general clipping rectangle for software clipping

int min_clip_x, // clipping rectangle

max_clip_x,

min_clip_y,

max_clip_y;

// these are overwritten globally by DD_Init()

int screen_width,  // width of screen

screen_height,  // height of screen

screen_bpp,   // bits per pixel

screen_windowed; // is this a windowed app?

int dd_pixel_format; // default pixel format

int window_client_x0; // used to track the starting (x,y) client area for

int window_client_y0; // for windowed mode directdraw operations

// storage for our lookup tables

float cos_look[360];

float sin_look[360];

// function ptr to RGB16 builder that builds 5.5.5 or 5.6.5 data

// depending on mode

USHORT (*RGB16Bit)(int r, int g, int b);

Make note of all the global names of the DirectX interface. Also, take a look at the various
clipping and screen size globals.

CHAPTER 3 3D Game Programming with a Virtual Computer154

05 0672318350 CH03  05•02•2003  2:34 PM  Page 154



The DirectDraw Interface
Now that you’ve seen all the data support, let’s take a look at all the DirectDraw support
functions. The DirectDraw system from the first Tricks (with a little upgrading) has the
following features:

• Double-buffered, with both a primary and secondary (offscreen frame buffer)

• 8-bit color with palette

• 16-bit color with auto pixel format detection

• Windowed support for both 8- and 16-bit color modes

• 2D polygon and raster bitmap clipping

• Access to both the primary and secondary buffers

• Page flipping and buffer copying for windowed displays

NOTE

Note the last feature. DirectX does not allow Windowed applications to be double buffered, or in
DirectX speak, to be complex surfaces. Therefore, when a windowed display is requested, instead
of creating a standard full-screen complex surface with a primary buffer and a back buffer, only a
primary buffer (which is the entire screen), and an offscreen plain buffer that’s the size of the
client area of the window are created. Then when a flip is requested, the logic manually copies
the offscreen back buffer to the window’s client area. Of course, this is all transparent to you.

Now let’s take a look at each function, along with an example.

Function Prototype:

int DDraw_Init(int width, // width of display

int height, // height of display

int bpp,  // bits per pixel

int windowed=0); // 0 for full screen, 1 for windowed

Purpose:

DDraw_Init() starts up and initializes DirectDraw. You can send any resolution and color
depth. Also, if you want a windowed display, send a 1 for the last parameter; otherwise it
defaults to full-screen. Returns TRUE if successful.

Examples:

// put the system into full screen 800x600 with 256 colors

DDraw_Init(800,600,8);
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// put the system into windowed mode screen 400x400 with 16-bit color

// note that the desktop must be in 16-bit color

DDraw_Init(400,400,16,1);

Function Prototype:

int DDraw_Shutdown(void);

Purpose:

DDraw_Shutdown() shuts down DirectDraw and releases all interfaces.

Example:

// in your system shutdown code you might put

DDraw_Shutdown();

Function Prototype:

LPDIRECTDRAWCLIPPER

DDraw_Attach_Clipper(

LPDIRECTDRAWSURFACE7 lpdds, // surface to attach to

int num_rects,   // number of rects

LPRECT clip_list); // pointer to rects

Purpose:

DDraw_Attach_Clipper() attaches a clipper to the sent surface (the back buffer in most
cases). In addition, you must send the number of rectangles in the clipping list and a
pointer to the RECT list itself. Returns TRUE if successful.

Example:

// creates a clipping region the size of the screen

RECT clip_zone = {0,0,SCREEN_WIDTH-1, SCREEN_HEIGHT-1};

DDraw_Attach_Clipper(lpddsback, 1, &clip_zone);

Function Prototype:

LPDIRECTDRAWSURFACE7

DDraw_Create_Surface(int width, // width of surface

int height,     // height of surface

int mem_flags=0,   // control flags

USHORT color_key_value=0); // color key value

Purpose:

DDraw_Create_Surface() is used to create a generic offscreen DirectDraw surface in system
memory, VRAM, or AGP memory. The default is DDSCAPS_OFFSCREENPLAIN. Any additional
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control flags are logically ORed with the default. They are the standard DirectDraw DDSCAP*
flags, such as DDSCAPS_SYSTEMMEMORY and DDSCAPS_VIDEOMEMORY for system memory and
VRAM, respectively. The function has internal logic to create either an 8- or 16-bit surface
based on the previously set graphics mode. Additionally, the last parameter controls the
value of the color key, which defaults to (int)0. In 8-bit color mode, this equates to index
0; in 16-bit color mode, this equates to RGB 0.0.0. If you want another value to be used as
the transparent color key, send the value to override the default. If the function is success-
ful, it returns a pointer to the new surface; otherwise it returns NULL.

Examples:

// let’s create a 64x64 surface in VRAM

LPDIRECTDRAWSURFACE7 image = DDraw_Create_Surface(64,64, DDSCAPS_VIDEOMEMORY);

// let’s create a 128x128 surface in off screen memory with a color key of 16

// assuming this is a 256 color mode

LPDIRECTDRAWSURFACE7 image =

DDraw_Create_Surface(128,128, DDSCAPS_OFFSCREENPLAIN ,16);

Function Prototype:

int DDraw_Flip(void);

Purpose:

DDraw_Flip() simply flips the primary surface with the secondary surface in full-screen
mode; in windowed mode, it copies the virtual secondary or back buffer to the client area
of the windowed display. The call waits until the flip can take place, so it might not return
immediately. Returns TRUE if successful.

Example:

// flip em baby

DDraw_Flip();

Function Prototype:

int DDraw_Wait_For_Vsync(void);

Purpose:

DDraw_Wait_For_Vsync() waits until the next vertical blank period begins (when the raster
hits the bottom of the screen). Returns TRUE if successful, FALSE if something really bad
happened.

Example:

// wait 1/70th of sec

DDraw_Wait_For_Vsync();
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Function Prototype:

int DDraw_Fill_Surface(LPDIRECTDRAWSURFACE7 lpdds, // surface to fill

int color, // color to fill

// either 8-bit index or 16-bit RGB

RECT *client); // client area, null for whole surface

Purpose:

DDraw_Fill_Surface() is used to fill a surface with a color. The color must be in the color
depth format of the surface. For example, a single byte in 256-color mode or an RGB
descriptor in high-color modes. Also, if you want to fill a subregion of the entire surface,
you can send a RECT* that defines it; otherwise, the entire surface is filled. Returns TRUE if
successful.

Example:

// fill the primary surface with color 0

DDraw_Fill_Surface(lpddsprimary,0);

Function Prototype:

UCHAR *DDraw_Lock_Surface(LPDIRECTDRAWSURFACE7 lpdds,int *lpitch);

Purpose:

DDraw_Lock_Surface() locks the sent surface (if possible) and returns a UCHAR pointer to
the surface, along with updating the sent lpitch variable with the linear memory pitch of
the surface. While the surface is locked, you can manipulate it and write pixels to it, but
the blitter will be blocked, so remember to unlock the surface ASAP. In addition, after
unlocking the surface, the memory pointer and pitch are most likely invalid and should
not be used. Returns the non-NULL address of the surface memory if successful, NULL other-
wise.

Example:

// holds the memory pitch

int lpitch = 0;

// let’s lock the little 64x64 image we made

UCHAR *memory = DDraw_Lock_Surface(image, &lpitch);

Function Prototype:

int DDraw_Unlock_Surface(LPDIRECTDRAWSURFACE7 lpdds);
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Purpose:

DDraw_Unlock_Surface() unlocks a surface previously locked with DDraw_Lock_Surface().
You need only send the pointer to the surface. Returns TRUE if successful.

Example:

// unlock the image surface

DDraw_Unlock_Surface(image);

Function Prototype(s):

UCHAR *DDraw_Lock_Back_Surface(void);

UCHAR *DDraw_Lock_Primary_Surface(void);

Purpose:

These two functions are used to lock the primary and secondary rendering surfaces.
However, in most cases you’ll only be interested in locking the secondary surface, because
this is a double-buffered system, but the capability to lock the primary surface is there if
you need it. If you call DDraw_Lock_Primary_Surface(), the following globals will become
valid:

extern UCHAR *primary_buffer;   // primary video buffer

extern int   primary_lpitch;    // memory line pitch

Then you are free to manipulate the surface memory as you want; however, the blitter will
be blocked and all hardware acceleration is inhibited during a lock. Anyway, making the
call to DDraw_Lock_Back_Surface() will lock the back buffer surface and validate the
following globals:

extern UCHAR *back_buffer;     // secondary back buffer

extern int   back_lpitch;     // memory line pitch

NOTE

Do not change any of these globals yourself—they are used to track state changes in the locking
functions. Changing them yourself might make the engine go crazy.

Example:

// let lock the primary surface and write a pixel to the

// upper left hand corner assuming an 8-bit mode

DDraw_Lock_Primary();

primary_buffer[0] = 100;
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Function Prototype:

int DDraw_Unlock_Primary_Surface(void);

int DDraw_Unlock_Back_Surface(void);

Purpose:

These functions are used to unlock the primary or back buffer surfaces. If you try to
unlock a surface that wasn’t locked, there is no effect. Returns TRUE if successful.

Example:

// unlock the secondary back buffer

DDraw_Unlock_Back_Surface();

2D Polygon Functions
The next set of functions make up the 2D polygon system. This is by no means advanced,
fast, or cutting edge, but it’s great to build up demos. The functions work and do the job.
However, there are better ways to do all of this stuff, but that’s why you’re glued to the
book, right? 

Function Prototype(s):

void Draw_Triangle_2D(int x1,int y1, // triangle vertices

int x2,int y2,

int x3,int y3,

int color, // 8-bit color index

UCHAR *dest_buffer, // destination buffer

int mempitch); // memory pitch

// fixed point high speed version, slightly less accurate

void Draw_TriangleFP_2D(int x1,int y1,

int x2,int y2,

int x3,int y3,

int color,

UCHAR *dest_buffer,

int mempitch);

// 16-bit version

void Draw_Triangle_2D16(int x1,int y1, // triangle vertices

int x2,int y2,

int x3,int y3,

int color, // 16-bit RGB color

UCHAR *dest_buffer, // destination buffer

int mempitch); // memory pitch
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Purpose:

Draw_Triangle_2D*() draws a filled triangle in the given memory buffer with the sent
color. The triangle will be clipped to the current clipping region set in the globals, not by
the DirectDraw clipper, because the function uses software and not the blitter to draw
lines. Draw_TriangleFP_2D() does the exact same thing, but uses fixed-point math inter-
nally and is slightly faster, but with slightly less accuracy. All functions return nothing.

Examples:

// draw a triangle (100,10) (150,50) (50,60)

// with color index 50 in the back buffer surface

Draw_Triangle_2D(100,10,150,50,50,60,

50, // color index 50

back_buffer,

back_lpitch);

// do the same with 16 bit version

// with RGB color pure red

Draw_Triangle_2D16(100,10,150,50,50,60,

RGB16BIT565(31,0,0), // assume 5.6.5 format

back_buffer,

back_lpitch);

Function Prototype:

inline void Draw_QuadFP_2D(int x0,int y0, // vertices

int x1,int y1,

int x2,int y2,

int x3,int y3,

int color, // 8-bit color index

UCHAR *dest_buffer, // destination video buffer

int mempitch); // memory pitch of buffer

Purpose:

Draw_QuadFP_2D() draws the sent quadrilateral as a composition of two triangles in 8-bit
mode only. Notice there isn’t a 16-bit version. Returns nothing.

Example:

// draw a quadrilateral, note vertices must be ordered

// either in cw or ccw order

Draw_QuadFP_2D(0,0, 10,0, 15,20, 5,25,

100,

back_buffer, back_lpitch);
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Function Prototype:

void Draw_Filled_Polygon2D(

POLYGON2D_PTR poly, // poly to render

UCHAR *vbuffer, // video buffer

int mempitch); // memory pitch

// 16-bit version

void Draw_Filled_Polygon2D16(

POLYGON2D_PTR poly, // poly to render

UCHAR *vbuffer, // video buffer

int mempitch); // memory pitch

Purpose:

Draw_Filled_Polygon2D*() draws a general filled polygon with n sides in either 8- or 16-
bit color mode. The function simply takes the polygon to render, a pointer to the video
buffer along with pitch, and that’s it! Note that the function renders relative to the polys
(x0,y0), so make sure these are initialized. Returns nothing.

Examples:

// draw a polygon in the primary buffer

// in 8-bit mode

Draw_Filled_Polygon2D(&poly,

primary_buffer,

primary_lpitch);

// draw a polygon in the primary buffer

// in 16-bit mode

Draw_Filled_Polygon2D16(&poly,

primary_buffer,

primary_lpitch);

Function Prototype:

int Translate_Polygon2D(

POLYGON2D_PTR poly, // poly to translate

int dx, int dy); // translation factors

Purpose:

Translate_Polygon2D() translates the given polygon’s origin (x0,y0). Note that the func-
tion does not transform or modify the actual vertices making up the polygon. Returns
TRUE if successful.
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Example:

// translate polygon 10,-5

Translate_Polygon2D(&poly, 10, -5);

Function Prototype:

int Rotate_Polygon2D(

POLYGON2D_PTR poly, // poly to rotate

int theta); // angle 0-359

Purpose:

Rotate_Polygon2D() rotates the sent polygon in a counter-clockwise fashion about its
origin. The angle must be an integer from 0–359. Returns TRUE if successful.

Example:

// rotate polygon 10 degrees

Rotate_Polygon2D(&poly, 10);

Function Prototype:

int Scale_Polygon2D(POLYGON2D_PTR poly, // poly to scale

float sx, float sy); // scale factors

Purpose:

Scale_Polygon2D() scales the sent polygon by scale factors sx and sy in the x- and y-axes,
respectively. Returns nothing.

Example:

// scale the poly equally 2x

Scale_Polygon2D(&poly, 2,2);

2D Graphic Primitives
This set of functions contains a few of everything—kind of a potpourri of graphics primi-
tives. Nothing you haven’t seen, at least I don’t think so. Also, the 16-bit support is there,
but not completely orthogonal to the 8-bit support.

Function Prototype:

int Draw_Clip_Line(int x0,int y0, // starting point

int x1, int y1, // ending point

int color,   // 8-bit color

UCHAR *dest_buffer, // video buffer

int lpitch); // memory pitch
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// 16-bit version

int Draw_Clip_Line16(int x0,int y0, // starting point

int x1, int y1, // ending point

int color,   // 16-bit RGB color

UCHAR *dest_buffer, // video buffer

int lpitch); // memory pitch

Purpose:

Draw_Clip_Line*() clips the sent line to the current clipping rectangle and then draws a
line in the sent buffer (8- or 16-bit). Returns TRUE if successful.

Examples:

// draw a line in the back buffer from (10,10) to (100,200)

//assume an 8-bit system

Draw_Clip_Line(10,10,100,200,

5, // color index 5

back_buffer,

back_lpitch);

// draw a line in the back buffer from (10,10) to (100,200)

//assume an 16-bit system

Draw_Clip_Line16(10,10,100,200,

RGB16BIT565(0,31,0), // RGB green

back_buffer,

back_lpitch);

Function Prototype:

int Clip_Line(int &x1,int &y1,  // starting point

int &x2, int &y2); // ending point

Purpose:

Clip_Line() is for the most part internal, but you can call it to clip the sent line to the
current clipping rectangle. Note that the function modifies the sent endpoints, so save
them if you don’t want this side effect. Also, the function does NOT draw anything, it
only clips the endpoints mathematically, so bit depth is irrelevant. Returns TRUE if
successful.

Example:

// clip the line defined by x1,y1 to x2,y2

Clip_Line(x1,y1,x2,y2);
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Function Prototype:

int Draw_Line(int xo, int yo, // starting point

int x1,int y1,  // ending point

int color,    // 8-bit color index

UCHAR *vb_start, // video buffer

int lpitch);   // memory pitch

// 16-bit version

int Draw_Line16(int xo, int yo, // starting point

int x1,int y1,  // ending point

int color,    // 16-bit RGB color

UCHAR *vb_start, // video buffer

int lpitch);   // memory pitch

Purpose:

Draw_Line*() draws a line without any clipping, so make sure that the endpoints are
within the display surface’s valid coordinates. This function is slightly faster than the
clipped version, because the clipping operation is not needed. Returns TRUE if successful.

Example:

// draw a line in the back buffer from (10,10) to (100,200)

// 8-bit mode

Draw_Line(10,10,100,200,

5, // color 5

back_buffer,

back_lpitch);

// draw a line in the back buffer from (10,10) to (100,200)

// 16-bit mode

Draw_Line16(10,10,100,200,

RGB16BIT(31,31,31), // RGB white

back_buffer,

back_lpitch);

Function Prototype:

inline int Draw_Pixel(int x, int y, // position of pixel

int color, // 8-bit color

UCHAR *video_buffer, // gee hmm?

int lpitch); // memory pitch
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// 16-bit version

inline int Draw_Pixel16(int x, int y, // position of pixel

int color, // 16-bit RGB color

UCHAR *video_buffer, // gee hmm?

int lpitch); // memory pitch

Purpose:

Draw_Pixel*() draws a single pixel on the sent display surface memory buffer. In most
cases, you won’t create objects based on pixels, because the overhead of the call itself takes
more time than plotting the pixel. If speed isn’t your concern, the function does the job—
at least it’s inline! Returns TRUE if successful.

Example:

// draw pixel with color index 100 in the center of the 640x480x8 screen

Draw_Pixel(320,240, 100, back_buffer, back_lpitch);

// draw blue pixel in the center of the 640x480x16 screen

Draw_Pixel16(320,240, RGB16BIT(0,0,31), back_buffer, back_lpitch);

Function Prototype:

int Draw_Rectangle(int x1, int y1, // upper left corner

int x2, int y2, // lower right corner

int color, // 8-bit color index or

// 16-bit RGB word

LPDIRECTDRAWSURFACE7 lpdds); // dd surface

Purpose:

Draw_Rectangle() draws a rectangle on the sent DirectDraw surface. Note that the surface
must be unlocked for the call to work. Moreover, the function uses the blitter, so it’s very
fast, and it works in either 8- or 16-bit color mode. Returns TRUE if successful.

Example:

// fill the screen using the blitter

Draw_Rectangle(0,0,639,479,0,lpddsback);

Function Prototype:

void HLine(int x1,int x2, // start and end x points

int y,     // row to draw on

int color,   // 8-bit color

UCHAR *vbuffer, // video buffer

int lpitch); // memory pitch
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void HLine16(int x1,int x2, // start and end x points

int y,     // row to draw on

int color,   // 16-bit RGB color

UCHAR *vbuffer, // video buffer

int lpitch); // memory pitch

Purpose:

HLine*() draws a horizontal line very quickly compared to the general line drawing func-
tion. Returns nothing.

Example:

// draw a fast line in 8-bit mode from 10,100 to 100,100 with color index 20

HLine(10,100,100,

20, back_buffer, back_lpitch);

// draw a fast line in 16-bit mode from 10,100 to 100,100 with blue

HLine(10,100,100,

RGB16Bit(0,0,255), back_buffer, back_lpitch);

Function Prototype:

void VLine(int y1,int y2, // start and end row

int x,     // column to draw in

int color,   // 8-bit color

UCHAR *vbuffer,// video buffer

int lpitch);  // memory pitch

void VLine16(int y1,int y2, // start and end row

int x,     // column to draw in

int color,   // 16-bit RGB color

UCHAR *vbuffer,// video buffer

int lpitch);  // memory pitch

Purpose:

VLine() draws a fast vertical line. It’s not as fast as HLine(), but it is faster than
Draw_Line(), so use it if you know a line is going to be vertical in all cases. Returns
nothing.

Example:

// draw a 8-bit line from 320,0 to 320,479 with color index 54

VLine(0,479,320,54,

primary_buffer,

primary_lpitch);
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// draw a 16-bit line from 320,0 to 320,479 with green

VLine(0,479,320,RGB16Bit(0,255,0),

primary_buffer,

primary_lpitch);

Function Prototype:

void Screen_Transitions(int effect,  // screen transition

UCHAR *vbuffer,// video buffer

int lpitch);  // memory pitch

// screen transition commands

#define SCREEN_DARKNESS 0     // fade to black

#define SCREEN_WHITENESS 1     // fade to white

#define SCREEN_SWIPE_X  2     // do a horizontal swipe

#define SCREEN_SWIPE_Y  3     // do a vertical swipe

#define SCREEN_DISOLVE  4     // a pixel disolve

#define SCREEN_SCRUNCH  5     // a square compression

#define SCREEN_BLUENESS 6     // fade to blue

#define SCREEN_REDNESS  7     // fade to red

#define SCREEN_GREENNESS 8     // fade to green

Purpose:

Screen_Transition() performs various in-memory screen transitions as listed in the
preceding header information. Note that the transformations are destructive, so please
save the image and/or palette if you need them after the transition. Note that this only
works for 8-bit color modes. Returns nothing.

Example:

// fade the primary display screen to black

Screen_Transition(SCREEN_DARKNESS, NULL, 0);

Function Prototype(s):

int Draw_Text_GDI(char *text, // null terminated string

int x,int y, // position

COLORREF color, // general RGB color

LPDIRECTDRAWSURFACE7 lpdds); // dd surface

int Draw_Text_GDI(char *text, // null terminated string

int x,int y, // position

int color, // 8-bit color index

LPDIRECTDRAWSURFACE7 lpdds); // dd surface

CHAPTER 3 3D Game Programming with a Virtual Computer168

05 0672318350 CH03  05•02•2003  2:34 PM  Page 168



Purpose:

Draw_Text_GDI() draws GDI text on the sent surface with the desired color and position in
either 8- or 16-bit color modes. The function is overloaded to take both a COLORREF in the
form of the RGB() macro or a 256 (8-bit) color index. Note that the destination surface
must be unlocked for the function to operate, because it locks it momentarily to perform
the text blitting with GDI. Returns TRUE if successful.

Example:

// draw text with color RGB(100,100,0);

Draw_Text_GDI(“This is a test”,100,50,

RGB16Bit(100,100,0),lpddsprimary);

Math and Error Functions
We will rewrite the math library quite a bit, but we might as well take a look at what there
is to offer, because I might use it in some of the early demos. Additionally, there is some
error support that you can use to write errors or diagnostic text as the engine runs. This is
helpful, because debugging DirectX applications is so hard because of their resource
sharing, or lack thereof <GRIN>.

Function Prototype:

int Fast_Distance_2D(int x, int y);

Purpose:

Fast_Distance() computes the distance from (0,0) to (x,y) using a fast approximation.
Returns the distance within a 3.5% error truncated to an integer. It uses a Taylor series
approximation, if you’re interested.

Example:

int x1=100,y1=200; // object one

int x2=400,y2=150; // object two

// compute the distance between object one and two

int dist = Fast_Distance_2D(x1-x2, y1-y2);

Function Prototype:

float Fast_Distance_3D(float x, float y, float z);

Purpose:

Fast_Distance_3D() computes the distance from (0,0,0) to (x,y,z) using a fast approxima-
tion. The function returns the distance within an 11% margin of error.
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Example:

// compute the distance from (0,0,0) to (100,200,300)

float dist = Fast_Distance_3D(100,200,300);

Function Prototype:

int Find_Bounding_Box_Poly2D(

POLYGON2D_PTR poly, // the polygon

float &min_x, float &max_x, // bounding box

float &min_y, float &max_y);

Purpose:

Find_Bounding_Box_Poly2D() computes the smallest rectangle that contains the sent
polygon in poly. Returns TRUE if successful. Also, notice the function takes parameters by
reference.

Example:

POLYGON2D poly; // assume this is initialized

int min_x, max_x, min_y, max_y; // hold result

// find bounding box

Find_Bounding_Box_Poly2D(&poly,min_x,max_x,min_y,max_y);

Function Prototype:

int Open_Error_File(char *filename);

Purpose:

Open_Error_File() opens a disk file that receives error messages sent by you via the
Write_Error() function. Returns TRUE if successful.

Example:

// open a general error log

Open_Error_File(“errors.log”);

Function Prototype:

int Close_Error_File(void);

Purpose:

Close_Error_File() closes a previously opened error file. Basically, it shuts down the
stream. If you call this and an error file is not open, nothing will happen. Returns TRUE if
successful.
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Example:

// close the error system, note no parameter needed

Close_Error_File();

Function Prototype:

int Write_Error(char *string, ...); // error formatting string

Purpose:

Write_Error() writes an error out to the previously opened error file. If there is no file
open, the function returns a FALSE and there is no harm. Note that the function uses the
(…) variable parameter indicator, so you can use this function as you would printf().
Returns TRUE if successful.

Example:

// write out some stuff

Write_Error(“\nSystem Starting…”);

Write_Error(“\nx-vel = %d”, y-vel = %d”, xvel, yvel);

Bitmap Functions
The following function set makes up the BITMAP_IMAGE and BITMAP_FILE manipulation
routines. There are functions to load 8-, 16-, 24-, 32-bit bitmaps as well as to extract
images from them and create simple BITMAP_IMAGE objects (which are not DirectDraw
surfaces). In addition, functionality exists to draw these images in 8- and 16-bit modes
only, but there is no clipping support. Hence, you can modify the source yourself if you
need clipping support, or step up to the BOB (Blitter Object), which is described at the end
of the section. We will probably use these functions (or variants) to help load texture and
light maps for our 3D rendering, so it’s a good idea to take a close look at them.

Function Prototype:

int Load_Bitmap_File(BITMAP_FILE_PTR bitmap, // bitmap file

char *filename); // disk .BMP file to load

Purpose:

Load_Bitmap_File() loads a .BMP format bitmap file off disk into the sent BITMAP_FILE
structure, where you can manipulate it as you will. The function loads 8-, 16-, and 24-bit
bitmaps, as well as the palette information on 8-bit .BMP files. Returns TRUE if successful.

Example:

// let’s load “andre.bmp” off disk

BITMAP_FILE bitmap_file;

Load_Bitmap_File(&bitmap_file, “andre.bmp”);
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Function Prototype:

int Unload_Bitmap_File(BITMAP_FILE_PTR bitmap); // bitmap to close and unload

Purpose:

Unload_Bitmap_File() deallocates the memory associated with the image buffer of a
loaded BITMAP_FILE. Call this function when you have copied the image bits and/or are
done working with a particular bitmap. You can reuse the structure, but the memory must
be freed first. Returns TRUE if successful.

Example:

// close the file we just opened

Unload_Bitmap_File(&bitmap_file);

Function Prototype:

int Create_Bitmap(BITMAP_IMAGE_PTR image, // bitmap image

int x, int y, // starting position

int width, int height, // size of bitmap

int bpp=8); // the bit depth of bitmap

Purpose:

Create_Bitmap() creates an 8- or 16-bit system memory bitmap at the given position with
the given size. The bitmap is initially blank and stored in the BITMAP_IMAGE image. The
bitmap is not a DirectDraw surface, so there is no acceleration or clipping available. The
function defaults to 8-bit bitmaps unless you override the bpp parameter with 16 for 16-
bit. Returns TRUE if successful.

NOTE

There is a big difference between a BITMAP_FILE and a BITMAP_IMAGE. A BITMAP_FILE is a disk
.BMP file, whereas a BITMAP_IMAGE is a system memory object like a sprite that can be moved
and drawn.

Examples:

// let’s create a 64x64 8-bit bitmap image at (0,0)

BITMAP_IMAGE ship;

Create_Bitmap(&ship, 0,0, 64,64);

// and now a 16-bit 32x32 image at (100,100)

BITMAP_IMAGE ship2;

// note the addition of 16 to override the default 8-bit depth

Create_Bitmap(&ship, 0,0, 32,32,16);
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Function Prototype:

int Destroy_Bitmap(BITMAP_IMAGE_PTR image); // bitmap image to destroy

Purpose:

Destroy_Bitmap() is used to release the memory allocated during the creation of a
BITMAP_IMAGE object (either 8- or 16-bit). You should call this function on your object
when you’re all done working with it—usually during the shutdown of the game, or if it’s
been destroyed in a bloody battle. Returns TRUE if successful.

Example:

// destroy the previously created BITMAP_IMAGE

Destroy_Bitmap(&ship);

Function Prototype:

int Load_Image_Bitmap(

BITMAP_IMAGE_PTR image, // bitmap to store image in

BITMAP_FILE_PTR bitmap, // bitmap file object to load from

int cx,int cy, // coordinates where to scan (cell or abs)

int mode); // image scan mode: cell based or absolute

// 16-bit version

int Load_Image_Bitmap16(

BITMAP_IMAGE_PTR image, // bitmap to store image in

BITMAP_FILE_PTR bitmap, // bitmap file object to load from

int cx,int cy, // coordinates where to scan (cell or abs)

int mode); // image scan mode: cell based or absolute

#define BITMAP_EXTRACT_MODE_CELL 0

#define BITMAP_EXTRACT_MODE_ABS  1

Purpose:

Load_Image_Bitmap*() is used to scan an image from a previously loaded BITMAP_FILE
object into the sent BITMAP_IMAGE storage area—this is how you actually get objects and
image bits into a BITMAP_IMAGE. Of course, the bitmap file and the bitmap object must be
the same bit depth (8- or 16-bit), and you have to use the appropriate version of the func-
tion.

To use the function, you first must have a BITMAP_FILE loaded and have created the
BITMAP_IMAGE. Then you make the call to scan an image of the same size out of the
bitmap data stored in the BITMAP_FILE. There are two ways the function works: cell mode
or absolute mode.
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In cell mode (BITMAP_EXTRACT_MODE_CELL), the image is scanned, making the assumption
that all the images are in the .BMP file in a template that is some given size m×n, with a 1
pixel-thick border between each cell, which usually range from 8×8, 16×16, 32×32, 64×64,
and so on. Take a look at TEMPLATE*.BMP on the CD from this chapter—it contains a
number of templates. Cell numbers range from left to right, top to bottom, and start with
(0,0).

The second mode of operation is absolute coordinate mode (BITMAP_EXTRACT_MODE_ABS).
In this mode, the image is scanned at the exact coordinates, sent in cx, cy. This method is
good if you want to load your artwork with various sized images on the same .BMP.
Hence, you can’t template them.

Example:

8-bit example

// assume the source bitmap .BMP file is 640x480x8 and

// has a 8x8 matrix of cells that are each 32x32

// then to load the 3rd cell to the right on the 2nd

// row (cell 2,1), you would do this

// load in the .BMP file into memory

BITMAP_FILE bitmap_file;

Load_Bitmap_File(&bitmap_file,”images.bmp”);

// initialize the bitmap

BITMAP_IMAGE ship;

Create_Bitmap(&ship, 0,0, 32,32);

// now scan out the data

Load_Image_Bitmap(&ship, &bitmap_file, 2,1,

BITMAP_EXTRACT_MODE_CELL);

// the exact same example in 16-bit mode

// assume the source bitmap .BMP file is 640x480x16 and

// has a 8x8 matrix of cells that are each 32x32

// then to load the 3rd cell to the right on the 2nd

// row (cell 2,1), you would do this

// load in the .BMP file into memory

BITMAP_FILE bitmap_file;

Load_Bitmap_File(&bitmap_file,”images.bmp”);
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// initialize the bitmap

BITMAP_IMAGE ship2;

Create_Bitmap(&ship2, 0,0, 32,32,16);

************* 0,0,31,31,16? it’s ok:al

// now scan out the data

Load_Image_Bitmap16(&ship2, &bitmap_file, 2,1,

BITMAP_EXTRACT_MODE_CELL);

To load the exact same image assuming it’s still in the template, but using the absolute
mode, we have to figure out the coordinates—remember, there’s a 1 pixel-thick partition-
ing wall on each side of the image.

// 8-bit example

Load_Image_Bitmap(&ship, &bitmap_file,

2*(32+1)+1,1*(32+1)+1,

BITMAP_EXTRACT_MODE_ABS);

Function Prototype:

int Draw_Bitmap(BITMAP_IMAGE_PTR source_bitmap, // bitmap to draw

UCHAR *dest_buffer, // video buffer

int lpitch, // memory pitch

int transparent); // transparency?

// 16-bit version

int Draw_Bitmap16(BITMAP_IMAGE_PTR source_bitmap, // bitmap to draw

UCHAR *dest_buffer, // video buffer

int lpitch, // memory pitch

int transparent); // transparency?

Purpose:

Draw_Bitmap*() draws the sent bitmap on the destination memory surface in either 8- or
16-bit mode with or without transparency. If transparent is 1, transparency is enabled and
any pixel that is color index 0 or RGB word 0.0.0 in 16-bit mode will not be copied.
Function returns TRUE if successful.

Example:

// draw our little ship on the back buffer

// in 8-bit mode

Draw_Bitmap( &ship, back_buffer, back_lpitch, 1);

// and now in 16-bit mode

Draw_Bitmap16( &ship2, back_buffer, back_lpitch, 1);
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Function Prototype:

int Flip_Bitmap(UCHAR *image, // image bits to vertically flip

int bytes_per_line, // bytes per line

int height); // total rows or height

Purpose:

Flip_Bitmap() is usually called internally to flip upside down .BMP files during loading,
but you might want to use it to flip an image yourself (8- or 16-bit). The function does an
in-memory flip, and actually inverts the bitmap line by line, and your original sent data
will be inverted, so watch out! Returns TRUE if successful.

Example:

// for fun flip the image bits of our little ship

// assuming 1 byte per pixel in 8 bit mode

Flip_Bitmap(ship->buffer, ship->width, ship->height);

// and here’s the call for 16-bit mode, same call

// but we need to double the width since there are

// 2 bytes per pixel

Flip_Bitmap(ship2->buffer, 2*ship2->width, ship2->height);

Function Prototype:

int Copy_Bitmap(BITMAP_IMAGE_PTR dest_bitmap,

int dest_x, int dest_y,

BITMAP_IMAGE_PTR source_bitmap,

int source_x, int source_y,

int width, int height);

Purpose:

Copy_Bitmap() copies a rectangular region from one bitmap to another. The source and
destination can be the same bitmap; however, the regions must not overlap—otherwise,
undefined results might occur. Returns TRUE if successful.

Example:

// load in the .BMP file into memory

BITMAP_FILE bitmap_file;

Load_Bitmap_File(&bitmap_file,”playfield.bmp”);

// initialize a bitmap to hold playfield

BITMAP_IMAGE playfield;

Create_Bitmap(&playfield, 0,0, 400,400,16);
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// now scan out the data

Load_Image_Bitmap16(&playfield, &bitmap_file, 0,0,

BITMAP_EXTRACT_MODE_ABSOLUTE);

// now copy the top portion of the same bitmap to the bottom

// really chunky scrolling!

Copy_Bitmap(&playfield, 0,200,

&playfield, 0,0,

200,200);

Function Prototype:

int Scroll_Bitmap(BITMAP_IMAGE_PTR image, int dx, int dy=0);

Purpose:

Scroll_Bitmap() scrolls the sent bitmap horizontally and/or vertically an amount dx,dy in
the x- and y-axes, respectively. Positive numbers scroll right and down; negative numbers
scroll left and up. Returns TRUE if successful.

Example:

// scroll the playfield 2 pixels to the right

Scroll_Bitmap(&playfield, 2,0);

8-Bit Palette Functions
The following functions make up the 8-bit 256 color palette interface. These functions are
only relevant if you have the display set for a 256-color mode (8-bit color). However, in
windowed display modes, the first and last 10 colors are used by Windows, and you can’t
alter them. (Of course, in full-screen mode you can.)

Additionally, the basic data structure used to hold a color is a native Win32 structure
called PALETTEENTRY:

typedef struct tagPALETTEENTRY { // pe

BYTE peRed;  // red channel 8-bits

BYTE peGreen; // green channel 8-bits

BYTE peBlue;  // blue channel 8-bits

BYTE peFlags; // flags control, PC_EXPLICIT for windows colors

// PC_NOCOLLAPSE for all others

} PALETTEENTRY;

With that in mind, let’s look at the palette functions.

The T3DLIB1 Library 177

3

05 0672318350 CH03  05•02•2003  2:34 PM  Page 177



Function Prototype:

int Set_Palette_Entry(

int color_index, // color index to change

LPPALETTEENTRY color); // the color

Purpose:

Set_Palette_Entry() is used to change a single color in the color palette. You simply send
the color index 0..255 along with a pointer to PALETTEENTRY holding the color, and the
update will occur on the next frame. In addition, this function updates the shadow
palette. Note that this function is slow, so if you need to update the entire palette, use
Set_Palette(). Returns TRUE if successful, FALSE otherwise.

Example:

// set color 0 to black

PALETTEENTRY black = {0,0,0,PC_NOCOLLAPSE};

Set_Palette_Entry(0,&black);

Function Prototype:

int Get_Palette_Entry(

int color_index, // color index to retrieve

LPPALETTEENTRY color); // storage for color

Purpose:

Get_Palette_Entry() retrieves a palette entry from the current palette. However, the func-
tion is very fast because it retrieves the data from the RAM-based shadow palette. Hence,
you can call this as much as you like, and it doesn’t disturb the hardware at all. However,
if you make changes to the system palette with the use of Set_Palette_Entry() or
Set_Palette(), the shadow palette will not be updated and the data retrieved might not
be valid. Returns TRUE if successful, FALSE otherwise.

Example:

// let’s get palette entry 100

PALETTEENTRY color;

Get_Palette_Entry(100,&color);

Function Prototype:

int Save_Palette_To_File(

char *filename, // filename to save at

LPPALETTEENTRY palette); // palette to save
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Purpose:

Save_Palette_To_File() saves the sent palette data to an ASCII file on disk for later
retrieval or processing. This function is very handy if you generate a palette on the fly and
want to store it on disk. However, the function assumes that the pointer in the palette
points to a 256 entry palette—so watch out! Returns TRUE if successful, FALSE otherwise.

Example:

PALETTEENTRY my_palette[256]; // assume this is built

// save the palette we made

// note file name can be anything, but I like *.pal

Save_Palette_To_File(“/palettes/custom1.pal”,&my_palette);

Function Prototype:

int Load_Palette_From_File(

char *filename, // file to load from

LPPALETTEENTRY palette); // storage for palette

Purpose:

Load_Palette_From_File() is used to load a previously saved 256-color palette from disk
via Save_Palette_To_File(). You simply send the file name along with storage for all 256
entries and the palette is loaded off disk into the data structure. However, the function
does NOT load the entries into the hardware palette; you must do this yourself with
Set_Palette(). Returns TRUE if successful, FALSE otherwise.

Example:

// load the previously saved palette

Load_Palette_From_File(“/palettes/custom1.pal”,&my_palette);

NOTE

When you create a 256-color display mode via a call to DDRAW_INIT(), the function will load a
standard palette that has almost optimal color space coverage. The name of the palette file is
PALDATA2.DAT. It’s nothing more than an ASCII file with 256 line entries, each with a red, green,
and blue value in the range of 0..255.

Function Prototype:

int Set_Palette(LPPALETTEENTRY set_palette); // palette to load into hardware

Purpose:

Set_Palette() loads the sent palette data into the hardware and updates the shadow
palette, also. Returns TRUE if successful, FALSE otherwise.
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Example:

// lets load the palette into the hardware

Set_Palette(&my_palette);

Function Prototype:

int Save_Palette(LPPALETTEENTRY sav_palette); // storage for palette

Purpose:

Save_Palette() scans the hardware palette out into sav_palette so that you can save it to
disk or manipulate it. sav_palette must have enough storage for all 256 entries.

Example:

// retrieve the current DirectDraw hardware palette

PALETTEENTRY hardware_palette[256];

Save_Palette(&hardware_palette);

Function Prototype:

int Rotate_Colors(int start_index, // starting index 0..255

int end_index); // ending index 0..255

Purpose:

Rotate_Colors() rotates a bank of colors in a cyclic manner. It manipulates the color
palette hardware directly. Returns TRUE if successful, FALSE otherwise.

Example:

// rotate the entire palette

Rotate_Colors(0,255);

Function Prototype:

int Blink_Colors(int command, // blinker engine command

BLINKER_PTR new_light, // blinker data

int id); // id of blinker

Purpose:

Blink_Colors() is used to create asynchronous palette animation. The function is too
long to explain here, but please refer to the previous chapter for a more in-depth descrip-
tion.

Example:

N/A
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Utility Functions
Function Prototype:

DWORD Get_Clock(void);

Purpose:

Get_Clock() returns the current clock time in milliseconds since Windows was started.

Example:

// get the current tick count

DWORD start_time = Get_Clock();

Function Prototype:

DWORD Start_Clock(void);

Purpose:

Start_Clock() basically makes a call to Get_Clock() and stores the time in a global vari-
able for you. Then you can call Wait_Clock(), which will wait for some number of
milliseconds since your call to Start_Clock(). Returns the starting clock value at the time
of the call.

Example:

// start the clock and set the global

Start_Clock();

Function Prototype:

DWORD Wait_Clock(DWORD count); // number of milliseconds to wait

Purpose:

Wait_Clock() simply waits the sent number of milliseconds since the call was made to
Start_Clock(). Returns the current clock count at the time of call. However, the function
will NOT return until the time difference has elapsed.

Example:

// wait 30 milliseconds

Start_Clock();

// code…

Wait_Clock(30);
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NOTE

Later in the book, we will probably upgrade to using the high performance timers that Windows
supports for better resolution.

Function Prototype:

int Collision_Test(int x1, int y1, // upper lhs of obj1

int w1, int h1, // width, height of obj1

int x2, int y2, // upper lhs of obj2

int w2, int h2);// width, height of obj2

Purpose:

Collision_Test() basically performs an overlapping rectangle test on the two sent rectan-
gles. The rectangles can represent whatever you like. You must send the upper-left hand
corner coordinates of each rectangle, along with its width and height. Returns TRUE if
there is an overlap, FALSE otherwise.

Example:

// do these two BITMAP_IMAGE’s overlap?

if (Collision_Test(ship1->x,ship1->y,ship1->width,ship1->height,

ship2->x,ship2->y,ship2->width,ship2->height))

{ // hit

} // end if

Function Prototype:

int Color_Scan(int x1, int y1, // upper left of rect

int x2, int y2, // lower right of rect

UCHAR scan_start, // starting scan color

UCHAR scan_end, // ending scan color

UCHAR *scan_buffer, // memory to scan

int scan_lpitch); // linear memory pitch

Purpose:

Color_Scan() is another collision detection algorithm that scans a rectangle for a single 8-
bit value or sequence of values in some continuous range. You can use it to determine
whether a color index is present within some area. Of course, it only works with 8-bit
images, but the source is easily extensible to 16-bit or higher modes. Returns TRUE if the
color(s) is found.
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Example:

// scan for colors in range from 122-124 inclusive

Color_Scan(10,10, 50, 50, 122,124, back_buffer, back_lpitch);

The BOB (Blitter Object) Engine
Although with a bit of programming you can get the BITMAP_IMAGE type to do what you
want, it is lacking in a serious way—it doesn’t use DirectDraw surfaces, and hence there is
no support for acceleration. Therefore, I have created a type called a BOB, or blitter object,
that is very similar to a sprite. A sprite (for those of you that have been in a game program-
ming cave) is nothing more than an object you can move around the screen that usually
doesn’t disturb the background. In our case, this isn’t true; therefore, I called my anima-
tion object a BOB rather than a sprite, so there!

We will use the BOB engine very little in this book, but I still wanted you to see it, because
it’s a good example of using DirectDraw surfaces and full 2D acceleration. So let’s talk
briefly about what a BOB is. First here’s the data structure for a BOB:

// the blitter object structure BOB

typedef struct BOB_TYP

{

int state;     // the state of the object (general)

int anim_state;   // an animation state variable, up to you

int attr;      // attributes pertaining to the object (general)

float x,y;      // position bitmap will be displayed at

float xv,yv;     // velocity of object

int width, height; // the width and height of the bob

int width_fill;   // internal, used to force 8*x wide surfaces

int bpp;      // bits per pixel needed for 8/16 bit support

int counter_1;   // general counters

int counter_2;

int max_count_1;  // general threshold values;

int max_count_2;

int varsI[16];   // stack of 16 integers

float varsF[16];  // stack of 16 floats

int curr_frame;   // current animation frame

int num_frames;   // total number of animation frames

int curr_animation; // index of current animation

int anim_counter;  // used to time animation transitions

int anim_index;   // animation element index

int anim_count_max; // number of cycles before animation

int *animations[MAX_BOB_ANIMATIONS]; // animation sequences

// the bitmap images DD surfaces

LPDIRECTDRAWSURFACE7 images[MAX_BOB_FRAMES]; 

} BOB, *BOB_PTR;
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A BOB is basically a graphical object represented by one or more DirectDraw surfaces (up
to 64 as currently #defined). You can move a BOB, draw a BOB, animate a BOB, and set it
in motion. BOBs consider the current DirectDraw clipper, so they are clipped as well as
accelerated—which is a good thing! Figure 3.10 shows a BOB and it relationship to its
animation frames.
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Animation sequences contain frame numbers of bitmap to display

Animation [n] = (0, 0, 0, 10, 10)

Animation [1] = (1, 2, 4, 4, 3, 2, 1)

Animation [0] = (0, 1, 2, 3, 2, 1)

State
pos
.
.
.
Image array [  ]
Animations [  ]

Bob (Blitter object)

Frame 0 Frame 1 Frame 2 Frame 3 Frame n

FIGURE 3.10 The BOB animation system.

Also, the BOB engine supports 8- or 16-bit images and animation sequences, so you can
load in a set of frames and an animation sequence, and the sequence will play feeding
from the frames. This is a very cool feature. Additionally, BOBs work with both 8- and 16-
bit color, but most of the functions have internal logic that know what bit depth the
system is in, so you don’t have to worry it. The only functions that you need to explicitly
call a different version for 16-bit mode are Load_Frame_BOB*() (when you load) and
Draw_BOB*() (when you draw a BOB), but we will get to that, along with reviewing exam-
ples of both 8- and 16-bit demos, at the end of the chapter.

Finally, all the BOB functions return TRUE if successful and FALSE otherwise. So let’s take a
look at them all….

Function Prototype:

int Create_BOB(BOB_PTR bob, // ptr to bob to create

int x, int y,      // initial position of bob

int width, int height,  // size of bob
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int num_frames, // total number of frames for bob

int attr,    // attributes of bob

int mem_flags=0, // surface memory flags, 0 is VRAM

USHORT color_key_value=0, // color key value is interpreted as

// 8-bit index, or 16-bit RGB based

// on the bpp setting below

int bpp=8); // bits per pixel, default is 8

Purpose:

Create_BOB() creates a single BOB object and sets it all up. The function assigns all the
internal variables, in addition to creating a separate DirectDraw surface for each frame.
Most of the parameters are self-explanatory—the only value that needs a little explanation
is the attribute variable attr. Take a look at Table 3.1 to see a better description of each of
the attributes you can logically OR together and send in this field.

TABLE 3.1 Valid BOB Attributes

Value Meaning

BOB_ATTR_SINGLE_FRAME Create a BOB with a single frame.

BOB_ATTR_MULTI_FRAME Create a BOB with multiple frames, but the animation of the BOB will

be a linear sequence through the frames 0..n.

BOB_ATTR_MULTI_ANIM Create a multiple frame BOB that supports animation sequences.

BOB_ATTR_ANIM_ONE_SHOT If this is set then when an animation sequence plays, the animation

sequence will only play once and then stop. At this point, the internal

variable anim_state will be set. To play the animation again, reset this

variable.

BOB_ATTR_BOUNCE This flag tells the BOB to bounce off the screen boundaries like a ball.

This only works if you use Move_BOB().

BOB_ATTR_WRAPAROUND This flag tells the BOB to wrap around to the other side of the screen

as it moves. This only works if you use Move_BOB().

Example:

Here are some examples creating BOBs. First, a single frame 8-bit BOB at (50,100) with a
size of 96×64:

BOB car; // a car bob

// create the bob

if (!Create_BOB(&car, 50,100, // address of bob and initial position

96,64,    // size of bob

1,      // number of frames

BOB_ATTR_SINGLE_FRAME, // attribute

0, // memory flags
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0, // color key, for 8-bit this is the index

8)) // bits per pixel, 8 for 256 color modes

{ /* error */ }

And here’s a multiple frame 16-bit BOB with 8 frames and a size of 32×32:

BOB ship; // a space ship bob

// create the bob

if (!Create_BOB(&ship, 0,0, // address of bob and initial position

32,32, // size of bob

8,   // number of frames

BOB_ATTR_MULTI_FRAME, // attribute

0, // memory flags

0, // color key, for 16-bit mode this is the RGB word

16)) // bits per pixel, 16 for 16 bit modes

{ /* error */ }

Finally, a multiple frame 8-bit BOB that supports animation sequences:

BOB greeny; // a little green man bob

// create the bob

if (!Create_BOB(&greeny, 0,0,

32,32,32,BOB_ATTR_MULTI_ANIM,0,0,8))

{ /* error */ }

TIP

Note that the last three parameters to Create_BOB() all have default values. Therefore, you don’t
need to override them if you don’t want to. If 0,0,8 is okay with you, you don’t have to type
them.

Function Prototype:

int Destroy_BOB(BOB_PTR bob); // ptr to bob to destroy

Purpose:

Destroy_BOB() destroys a previously created BOB. It doesn’t matter if it’s 8- or 16-bit.

Example:

// destroy the BOB above, you would do this

Destroy_BOB(&greeny);
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Function Prototype:

int Draw_BOB(BOB_PTR bob, // ptr of bob to draw

LPDIRECTDRAWSURFACE7 dest); // dest surface to draw on

// and the 16-bit version

int Draw_BOB16(BOB_PTR bob, // ptr of bob to draw

LPDIRECTDRAWSURFACE7 dest); // dest surface to draw on

Purpose:

Draw_BOB*() is a very powerful function. It draws the sent BOB on the DirectDraw surface
you send it. The BOB is drawn in its current position and current frame (as defined by its
animation parameters). Also, make sure to use the correct version of the function depend-
ing on whether your BOB is 8- or 16-bit; otherwise, you might get half a BOB!

CAUTION

For this function to work, the destination surface must NOT be locked.

Example:

// this is how you would position a multiframe BOB at

// (50,50) and draw the first frame of it on the back

// surface:

BOB ship; // a space ship bob

// create the bob, 8-bit default

if (!Create_BOB(&ship, 0,0,

32,32,8,BOB_ATTR_MULTI_FRAME,0))

// load the bob images in..we’ll get to this in a bit

// set the position and frame of bob

ship.x = 50;

ship.y = 50;

ship.curr_frame = 0; // this contains the frame to draw

// draw bob

Draw_BOB(&ship, lpddsback);

Function Prototype:

int Draw_Scaled_BOB(BOB_PTR bob, // ptr of bob to draw

int swidth, int sheight, // new width and height of bob

LPDIRECTDRAWSURFACE7 dest); // dest surface to draw on
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// and the 16-bit version

int Draw_Scaled_BOB16(BOB_PTR bob, // ptr of bob to draw

int swidth, int sheight, // new width and height of bob

LPDIRECTDRAWSURFACE7 dest); // dest surface to draw on

Purpose:

Draw_Scaled_BOB*() works exactly like Draw_BOB(), except you can send any width and
height to draw the BOB and the BOB will be scaled appropriately. This is very cool, and if
you have acceleration, it’s a great way to scale a BOB to make it look 3D! In fact, we will
use a technique like this when we create billboards for our 3D applications.

NOTE

Billboards are simply 2D images that are drawn in 3D, but are always perpendicular to the view
direction. For example, in Doom, all the creatures are billboard sprites, while the world is
polygon-based.

Example:

// an example of drawing the ship 128x128 even though

// it was created as only 32x32 pixels

// 8-bit version

Draw_Scaled_BOB(&ship, 128,128,lpddsback);

Function Prototype:

int Load_Frame_BOB(

BOB_PTR bob, // ptr of bob to load frame into

BITMAP_FILE_PTR bitmap,// ptr of bitmap file to scan data

int frame,  // frame number to place image into 0,1,2...

int cx,int cy, // cell pos or abs pos to scan from

int mode);   // scan mode, same as Load_Frame_Bitmap()

// and the 16-bit version

int Load_Frame_BOB16(

BOB_PTR bob, // ptr of bob to load frame into

BITMAP_FILE_PTR bitmap,// ptr of bitmap file to scan data

int frame,  // frame number to place image into 0,1,2...

int cx,int cy, // cell pos or abs pos to scan from

int mode);   // scan mode, same as Load_Frame_Bitmap()

Purpose:

The Load_Frame_BOB*() function works identically to the Load_Frame_Bitmap() function,
so refer to it for details. The only addition is the control of the frame to load via frame. If
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you create a BOB that has four frames, you will load the frames one by one. Additionally,
you must call the correct version of the function (8- or 16-bit) based on the bit depth of
the data and screen.

Example:

// here’s an example of loading 4 frames into a 16-bit BOB from a

// bitmap file in cell mode

BOB ship; // the bob

// loads frames 0,1,2,3 from cell position (0,0), (1,0),

// (2,0), (3,0)

// from bitmap16bit bitmap file, assume it has been loaded

for (int index=0; index<4; index++)

Load_Frame_BOB16(&ship,&bitmap16bit,

index, index,0,

BITMAP_EXTRACT_MODE_CELL );

NOTE

The next set of BOB manipulation functions work on the data structure elements of the BOB, so
they work identically on both 8- and 16-bit BOBs.

Function Prototype:

int Load_Animation_BOB(

BOB_PTR bob,  // bob to load animation into

int anim_index, // which animation to load 0..15

int num_frames, // number of frames of animation

int *sequence); // ptr to array holding sequence

Purpose:

Load_Animation() takes a little explaining. The function is used to load one of 16 arrays
internal to the BOB that contain animation sequences. Each sequence contains an array of
indices or frame numbers to display in sequence. This is shown at the bottom of Figure
3.10.

Example:

You might have a BOB that has eight frames 0,1,…7, but you might have four animations
defined as follows:

int anim_walk[] = {0,1,2,1,0};

int anim_fire[] = {5,6,0};

int anim_die[]  = {3,4};

int anim_sleep[] = {0,0,7,0,0};
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Then to load the animations into the BOB, you would do this:

// create a mutli animation bob

// create the bob

if (!Create_BOB(&alien, 0,0, 32,32,8,BOB_ATTR_MULTI_ANIM,0))

{ /* error */ }

// load the bob frames in...

// load walk into animation 0

Load_Animation_BOB(&alien, 0,5,anim_walk);

// load fire into animation 1

Load_Animation_BOB(&alien, 1,3,anim_fire);

// load die into animation 2

Load_Animation_BOB(&alien, 2,2,anim_die);

// load sleep into animation 3

Load_Animation_BOB(&alien, 3,5,anim_sleep);

After loading the animations, you can set the active animation and play them with func-
tions you’ll see in a minute.

Function Prototype:

int Set_Pos_BOB(BOB_PTR bob, // ptr to bob to set position

int x, int y); // new position of bob

Purpose:

Set_Pos_BOB() is a simple way to set the position of the BOB. This does nothing more
than assign the internal (x,y) variables, but it’s nice to have a function.

Example:

// set the position of the alien BOB above

Set_Pos_BOB(&alien, player_x, player_y);

Function Prototype:

int Set_Vel_BOB(BOB_PTR bob, // ptr to bob to set velocity

int xv, int yv); // new x,y velocity

Purpose:

Each BOB has an internal velocity contained in (xv,yv). Set_Vel_BOB() simply assigns
these values the new values sent in the function. The velocity values in the BOB won’t do
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anything unless you use the function Move_BOB() to move your BOBs. However, even if
you don’t, you can use xv,yv to track the velocity of the BOB yourself.

Example:

// make the BOB move in a straight horizontal line

Set_Vel_BOB(&alien, 10,0);

Function Prototype:

int Set_Anim_Speed_BOB(BOB_PTR bob, // ptr to bob

int speed); // speed of animation

Purpose:

Set_Anim_Speed() sets the internal animation rate for a BOB anim_count_max. The higher
this number is, the slower the animation; the lower the number (0 is the lowest), the
faster the animation. However, this function only matters if you use the internal BOB
animation function Animate_BOB(). And of course, you must have created a BOB that has
multiple frames.

Example:

// set the rate to change frames every 30 frames

Set_Anim_Speed_BOB(&alien, 30);

Function Prototype:

int Set_Animation_BOB(

BOB_PTR bob, // ptr of bob to set animation

int anim_index); // index of animation to set

Purpose:

Set_Animation_BOB() sets the current animation that will be played by the BOB. In the
earlier example of Load_Animation_BOB(), we created four animations.

Example:

// make animation sequence number 2 active

Set_Animation_BOB(&alien, 2);

NOTE

This also resets the BOB animation to the first frame in the sequence.

Function Prototype:

int Animate_BOB(BOB_PTR bob); // ptr to bob to animate
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Purpose:

Animate_BOB() animates a BOB for you. Normally, you would call this function once a
frame to update the animation of the BOB.

Example:

// erase everything...

// move everything...

// animate everything

Animate_BOB(&alien);

Function Prototype:

int Move_BOB(BOB_PTR bob); // ptr of bob to move

Purpose:

Move_BOB() moves the BOB a delta of xv,yv (set with the Set_Vel_BOB() function), then,
depending on the attributes, will either bounce the BOB off the walls, wrap it around, or
do nothing. Similarly to the Animate_BOB() function, you would place this call once in
the main loop right after (or before) Animate_BOB().

Example:

// animate bob

Animate_BOB(&alien);

// move it

Move_BOB(&alien);

Function Prototype:

int Hide_BOB(BOB_PTR bob); // ptr to bob to hide

Purpose:

Hide_BOB() simply sets the BOB’s internal visibility flag to 0, after which Draw_BOB() won’t
display the BOB anymore.

Example:

// hide the bob

Hide_BOB(&alien);

Function Prototype:

int Show_BOB(BOB_PTR bob); // ptr to bob to show
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Purpose:

Show_BOB() sets the visibility flag to 1 on a BOB, so it will be drawn (it undoes a
Hide_BOB() call). Here’s an example of hiding and showing a BOB because you are display-
ing a GDI object or something, and don’t want the BOB to occlude it:

Example:

// Hide_BOB(&alien);

// make calls to Draw_BOB and GDI etc.

Show_BOB(&alien);

Function Prototype:

int Collision_BOBS(BOB_PTR bob1, // ptr to first bob

BOB_PTR bob2); // ptr to second bob

Purpose:

Collision_BOBS() detects whether the bounding rectangles of two BOBs are overlapping.
This can be used for collision detection in a game to see whether a player BOB hits a
missile BOB or whatever.

Example:

// check if a missile BOB hit a player BOB:

if (Collision_BOBS(&missile, &player))

{ /* make explosion sound */ }

That’s about it for the graphics module of the T3DLIB game library (T3DLIB1.CPP|H). Now
let’s move on to the sound module.

The T3DLIB2 DirectX Input System
Writing a simple set of wrapper functions around DirectInput is almost a no-brainer. Well,
it takes some brains, but for the most part it’s fairly easy. All we need to do is create an API
with a very simple interface and few parameters. The interface should support the follow-
ing minimal functionality:

• Initialize the DirectInput system

• Set up and acquire the keyboard, mouse, and joystick—or any subset

• Read data from any of the input devices

• Shut down, unacquire, and release everything

I have created such an API, and it’s available in T3DLIB2.CPP|H on the CD. The API does
everything you need to initialize DirectInput and read any device. Before reviewing the
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functions, take a look at Figure 3.11—it depicts the relationship between each device and
the data flow.
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FIGURE 3.11 The DirectInput software system.

Here are the globals for the library:

LPDIRECTINPUT8    lpdi;    // dinput object

LPDIRECTINPUTDEVICE8 lpdikey;  // dinput keyboard

LPDIRECTINPUTDEVICE8 lpdimouse; // dinput mouse

LPDIRECTINPUTDEVICE8 lpdijoy;  // dinput joystick

GUID  joystickGUID; // guid for main joystick

char  joyname[80]; // name of joystick

// all input is stored in these records

UCHAR keyboard_state[256]; // contains keyboard state table

DIMOUSESTATE mouse_state; // contains state of mouse

DIJOYSTATE joy_state;   // contains state of joystick

int joystick_found;    // tracks if stick is plugged in

Input from the keyboard is placed in keyboard_state[], the mouse data is stored in
mouse_state, and the joystick data is stored in joy_state by the input system. The
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structure of each of these records is the standard DirectInput device state structures
(except for the keyboard; it’s just a Boolean array of BYTES) as shown in the following:

// for the mouse data

typedef struct DIMOUSESTATE {

LONG lX; // x-axis

LONG lY; // y-axis

LONG lZ; // z-axis

BYTE rgbButtons[4]; // state of the buttons

} DIMOUSESTATE, *LPDIMOUSESTATE;

// for the joystick data

typedef struct DIJOYSTATE {

LONG  lX; // x-axis

LONG  lY; // y-axis

LONG  lZ; // z-axis

LONG  lRx; // rotation about x-axis

LONG  lRy; // rotation about y-axis

LONG  lRz; // rotation about z-axis

LONG  rglSlider[2]; // u,v slider positions

DWORD  rgdwPOV[4];  // point of view hat state

BYTE  rgbButtons[32]; // state of buttons 0..31

} DIJOYSTATE, *LPDIJOYSTATE;

In general, the mouse and joystick are roughly equivalent as far as the x,y position goes;
that is, you access them via the fields lX, lY, and the buttons are BOOLEANs in
rgbButtons[]. Let’s get to the functions. The variable joystick_found is a BOOLEAN that is
set when you request joystick access. If a joystick is found, it is TRUE, otherwise, it’s FALSE.
With it, you can conditional block out code that uses the joystick. So without further ado,
here is the new API:

Function Prototype:

int DInput_Init(void);

Purpose:

DInput_Init() initializes the DirectInput input system. It creates the main COM object
and returns TRUE if successful and FALSE otherwise. And of course, the global lpdi will be
valid. The function does not create any devices, though. Here’s an example of initializing
the input system:

Example:

if (!DInput_Init())

{ /* error */ }
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Function Prototype:

void DInput_Shutdown(void);

Purpose:

DInput_Shutdown() releases all the COM objects and any resources allocated during the
call to DInput_Init(). Normally, you would call DInput_Shutdown() at the very end of
your application after you have released all the input devices themselves—which we’ll get
to shortly. Anyway, here’s an example of shutting down the input system:

Example:

DInput_Shutdown();

Function Prototype:

DInput_Init_Keyboard(void);

Purpose:

DInput_Init_Keyboard() initializes and acquires the keyboard. This should always work
and return TRUE, unless another DirectX application has taken over in a really uncoopera-
tive way. Here’s an example:

Example:

if (!DInput_Init_Keyboard())

{ /* error */ }

Function Prototype:

int DInput_Init_Mouse(void);

Purpose:

DInput_Init_Mouse() initializes and acquires the mouse. The function takes no parameters
and returns TRUE if successful and FALSE otherwise. But it should always work, unless a
mouse isn’t plugged in or there’s another DirectX application that has totally taken over!
If everything goes well, lpdimouse becomes the valid interface pointer. Here’s an example:

Example:

if (!DInput_Init_Mouse()) { /* error */ }

Function Prototype:

int DInput_Init_Joystick(int min_x=-256, // min x range

int max_x=256, // max x range

int min_y=-256, // min y range

int max_y=256, // max y range

int dead_zone=10); // dead zone in percent
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Purpose:

DInput_Init_Joystick() initializes the joystick device for use. The function takes five
parameters that define the x-y range of motion of the data sent back from the joystick and
the dead zone with a percentage. If you want to use the defaults of -256 to 256 and 10%
dead zone for each axis, you don’t need to send parameters because they have default
values (C++ thing). If the call returns back a TRUE, a joystick was found and it has been set
up, initialized, and acquired. After the call, the interface pointer lpdijoy will be valid if
you need it for anything. In addition, the string joyname[] will contain the “friendly”
name of the joystick device, such as “Microsoft Sidewinder Pro,” and so on.

Here’s an example of initializing the joystick and setting its x-y ranges to -1024 to 1024
with a 5% dead zone:

Example:

if (!DInput_Init_Joystick(-1024, 1024, -1024, 1024, 5))

{ /* error */ }

Function Prototype(s):

void DInput_Release_Joystick(void);

void DInput_Release_Mouse(void);

void DInput_Release_Keyboard(void);

Purpose:

DInput_Release_Joystick(), DInput_Release_Mouse(), and DInput_Release_Keyboard()
release each of the respective input devices when you are done with them. The functions
can be called even if you haven’t initialized the respective device, so you can just call
them all at the end of your application if you want. Here’s a complete example of starting
up the DirectInput system, initializing all the devices and then releasing them and shut-
ting down:

Example:

// initialize the DirectInput system

DInput_Init();

// initialize all input devices and acquire them

DInput_Init_Joystick();

DInput_Init_Mouse();

DInput_Init_Keyboard();

// input loop ....do work here

// now done...
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// first release all devices, order is unimportant

DInput_Release_Joystick();

DInput_Release_Mouse();

DInput_Release_Keyboard();

// shutdown DirectInput

DInput_Shutdown();

Function Prototype:

int DInput_Read_Keyboard(void);

Purpose:

DInput_Read_Keyboard() scans the keyboard state and places the data in
keyboard_state[], which is an array of 256 BYTEs. This is the standard DirectInput
keyboard state array, so you must use the DirectInput key constants DIK_* if you want to
make sense of it. If a key is pressed, the array value will be 0x80. Here’s an example of
testing whether the right and left keys are down using the manifest constants in
DirectInput—which you can look up in the SDK or the abridged Table 3.2 following.

Example:

// read the keyboard

if (!DInput_Read_Keyboard())

{ /* error */ }

// now test the state data

if (keyboard_state[DIK_RIGHT])

{ /* move ship right */ }

else

if (keyboard_state[DIK_LEFT])

{ /* move ship left */ }

TABLE 3.2 The DirectInput Keyboard State Constants

Symbol Meaning

DIK_ESCAPE The Esc key

DIK_0-9 Main keyboard 0–9

DIK_MINUS Minus key

DIK_EQUALS Equals key

DIK_BACK Backspace key

DIK_TAB Tab key

DIK_A-Z Letters A–Z

DIK_LBRACKET Left bracket

DIK_RBRACKET Right bracket
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DIK_RETURN Return/Enter on main keyboard

DIK_LCONTROL Left control

DIK_LSHIFT Left shift

DIK_RSHIFT Right shift

DIK_LMENU Left Alt

DIK_SPACE Spacebar

DIK_F1-15 Function keys 1–15

DIK_NUMPAD0-9 Numeric keypad keys 0–9

DIK_ADD + on numeric keypad

DIK_NUMPADENTER Enter on numeric keypad

DIK_RCONTROL Right control

DIK_RMENU Right Alt

DIK_HOME Home on arrow keypad

DIK_UP UpArrow on arrow keypad

DIK_PRIOR PgUp on arrow keypad

DIK_LEFT LeftArrow on arrow keypad

DIK_RIGHT RightArrow on arrow keypad

DIK_END End on arrow keypad

DIK_DOWN DownArrow on arrow keypad

DIK_NEXT PgDn on arrow keypad

DIK_INSERT Insert on arrow keypad

DIK_DELETE Delete on arrow keypad

(Note: bolded entries simply mean to follow the sequence. For example, DIK_0-9 means that there are

constants DIK_0, DIK_1, DIK_2, and so forth.)

Function Prototype:

int DInput_Read_Mouse(void);

Purpose:

DInput_Read_Mouse() reads the relative mouse state and stores the result in mouse_state,
which is a DIMOUSESTATE structure. The data is in relative delta mode. In most cases, you’ll
only need to look at mouse_state.lX, mouse_state.lY, and rgbButtons[0..2], which are
BOOLEANs for the three mouse buttons. Here’s an example of reading the mouse and using
it to move a cursor around and draw:

Example:

// read the mouse

if (!DInput_Read_Mouse())

{ /* error */ }
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// move cursor

cx+=mouse_state.lX;

cy+=mouse_state.lY;

// test if left button is down

if (mouse_state.rgbButtons[0])

Draw_Pixel(cx,cy,col,buffer,pitch);

Function Prototype:

int DInput_Read_Joystick(void);

Purpose:

DInput_Read_Joystick() polls the joystick and then reads the data into joy_state, which
is a DIJOYSTATE structure. Of course, if there isn’t a joystick plugged in, the function
returns FALSE and joy_state will be invalid, but you get the idea. If successful, joy_state
contains the state information of the joystick. The data returned will be in the range you
previously set for each axis, and the button values are BOOLEANs in rgbButtons[]. As an
example, here’s how you would use the joystick to move a ship right and left and the first
button to fire:

Example:

// read the joystick data

if (!DInput_Read_Joystick())

{ /* error */ }

// move the ship

ship_x+=joy_state.lX;

ship_y+=joy_state.lY;

// test for trigger

if (joy_state.rgbButtons[0])

{ // fire weapon // }

Of course, your joystick might have a lot of buttons and multiple axes. In this case, you
can use the other fields of joy_state as defined in the DIJOYSTATE DirectInput structure.

NOTE

Even though we are using the IDIRECTINPUTDEVICE8 interface, we don’t need to use the
DIJOYSTATE2 structure. This is only for force feedback devices.
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At this point, we are ready to take a look at one of the subsystems that most game
programmers hate to deal with—sound and music! But under DirectX, along with my
wrapper functions, making sound effects and playing music is so easy it’s actually fun!

The T3DLIB3 Sound and Music Library
I have taken all the sound and music technology from the first Tricks and used it to create
the last component to our game engine T3DLIB3. It is composed of two main source files:

• T3DLIB3.CPP—The main C/C++ source

• T3DLIB3.H—The header file

However, you’ll also need to include the DirectSound import library DSOUND.LIB to make
anything link. However, DirectMusic does not have an import library because it’s a pure
COM object, so there isn’t a DMUSIC.LIB. On the other hand, you still need to point your
compiler to the DirectSound and DirectMusic .H header files, so it can find them during
compilation. Just to remind you, they are:

• DSOUND.H—The standard DirectSound header.

• DMKSCTRL.H—All of these are for DirectMusic.

• DMUSICI.H

• DMUSICC.H

• DMUSICF.H

With all that in mind, let’s take a look at the main elements of the T3DLIB3.H header file.

NOTE

With DirectX 8.0+, Microsoft integrated DirectSound and DirectMusic much more tightly and
called it DirectAudio. I see no point in changing to DirectAudio, so we will simply use each
component separately in this book.

The Header
The header file T3DLIB3.H contains the types, macros, and externals for T3DLIB3.CPP. Here
are the #defines you’ll find in the header:

#define DM_NUM_SEGMENTS 64 // number of midi segments that can be cached in memory

// midi object state defines

#define MIDI_NULL   0  // this midi object is not loaded

#define MIDI_LOADED  1  // this midi object is loaded
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#define MIDI_PLAYING 2  // this midi object is loaded and playing

#define MIDI_STOPPED 3  // this midi object is loaded, but stopped

#define MAX_SOUNDS   256 // max number of sounds in system at once

// digital sound object state defines

#define SOUND_NULL   0 // “ “

#define SOUND_LOADED  1

#define SOUND_PLAYING 2

#define SOUND_STOPPED 3

Not much for macros—this is just a macro to help convert from 0–100 to the Microsoft
decibels scale, and one to convert multibyte characters to wide characters:

#define DSVOLUME_TO_DB(volume) ((DWORD)(-30*(100 - volume)))

// Convert from multibyte format to Unicode using the following macro

#define MULTI_TO_WIDE( x,y )

MultiByteToWideChar( CP_ACP,MB_PRECOMPOSED, y,-1,x,_MAX_PATH)

CAUTION

The column width of this book might be too small to fit the whole macro, so the definition
might be on two lines. This is a no-no in real life. Macros must be on a single line!

Next up are the types for the sound engine. First, the DirectSound object.

The Types
There are only two types for the sound engine: one to hold a digital sample, and the other
to hold a MIDI segment:

// this holds a single sound

typedef struct pcm_sound_typ

{

LPDIRECTSOUNDBUFFER dsbuffer; // the directsound buffer

// containing the sound

int state;  // state of the sound

int rate;  // playback rate

int size;  // size of sound

int id;   // id number of the sound

} pcm_sound, *pcm_sound_ptr;
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And now the DirectMusic segment type:

// directmusic MIDI segment

typedef struct DMUSIC_MIDI_TYP

{

IDirectMusicSegment    *dm_segment; // the directmusic segment

IDirectMusicSegmentState  *dm_segstate; // the state of the segment

int            id;      // the id of this segment

int            state;    // state of midi song

} DMUSIC_MIDI, *DMUSIC_MIDI_PTR;

Both sounds and MIDI segments will be stored by the engine in the preceding two struc-
tures, respectively. Now let’s take a look at the globals.

Global Domination
T3DLIB3 contains a number of globals. Let’s take a look. First, here are the globals for the
DirectSound system:

LPDIRECTSOUND  lpds;  // directsound interface pointer

DSBUFFERDESC  dsbd;  // directsound description

DSCAPS    dscaps; // directsound caps

HRESULT    dsresult // general directsound result

DSBCAPS    dsbcaps; // directsound buffer caps

pcm_sound  sound_fx[MAX_SOUNDS]; // array of sound buffers

WAVEFORMATEX  pcmwf; // generic waveformat structure

And here are the globals for DirectMusic:

// direct music globals

IDirectMusicPerformance  *dm_perf ;  // the directmusic performance manager

IDirectMusicLoader     *dm_loader; // the directmusic loader

// this hold all the directmusic midi objects

DMUSIC_MIDI     dm_midi[DM_NUM_SEGMENTS];

int dm_active_id;  // currently active midi segment

NOTE

I have highlighted lines in the arrays that hold sounds and MIDI segments.
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You shouldn’t have to mess with any of these globals, except to access the interfaces
directly if you want. In general, the API will handle everything for you, but the globals are
there if you want to tear them up.

There are two parts to the library: DirectSound and DirectMusic. Let’s take a look at
DirectSound first.

The DirectSound API Wrapper
DirectSound can be complicated or simple, depending on how you use it. If you want a
“do it all” API, you’re going to end up simply using most of the DirectSound functions
themselves. But if you want a simpler API that enables you to initialize DirectSound and
load and play sounds of a specific format, that is a lot easier to wrap up in a few functions.

So, what I’ve done is take much of our work in setting up DirectSound and formalize it
into a set of functions for you. In addition, I’ve created an abstraction around the sound
system, so you refer to a sound with an ID (same for the DirectMusic part) that is given to
you during the loading process. Thus, you can use this ID to play the sound, check its
status, or to terminate it. This way, there aren’t any ugly interface pointers that you have
to mess with. The new API supports the following functionality:

• Initializing and shutting down DirectSound with single calls

• Loading .WAV files with 11KHz 8-bit mono format

• Playing a loaded sound file

• Stopping a sound

• Testing the play status of a sound

• Changing the volume, playback rate, or stereo panning of a sound

• Deleting sounds from memory

Let’s take a look at each function one by one.

NOTE

Unless otherwise stated, all functions return TRUE (1) if successful and FALSE (0) if not.

Function Prototype:

int DSound_Init(void);

Purpose:

DSound_Init() is used to initialize the entire DirectSound system. It creates the
DirectSound COM object, sets the priority level, and so forth. Just call the function at the
beginning of your application if you want to use sound. Here’s an example:
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Example:

if (!DSound_Init(void))

{ /* error */ }

Function Prototype:

int DSound_Shutdown(void);

Purpose:

DSound_Shutdown() is used to shut down and release all the COM interfaces created during
DSound_Init(). However, DSound_Shutdown() will not release all the memory allocated to
all the sound. You must do this yourself with another function. Anyway, here’s how you
would shut down DirectSound:

Example:

if (!DSound_Shutdown())

{ /* error */ }

Function Prototype(s):

int DSound_Load_WAV(char *filename);

Purpose:

DSound_Load_WAV() creates a DirectSound buffer, loads the sound data file into memory,
and prepares the sound to be played. The function takes the complete path and filename
of the sound file to be loaded (including the extension .WAV) and loads the file off disk. If
successful, the function returns a non-negative ID number. You must save this number,
because it is used as a handle to reference the sound. If the function can’t find the file, or
too many sounds are loaded, it will return -1. Here’s an example of loading a .WAV file
named FIRE.WAV:

Example:

int fire_id = DSound_Load_WAV(“FIRE.WAV”);

// test for error

if (fire_id==-1)

{ /* error */}

Of course, it’s up to you on how you want to save the IDs. You might want to use an array
or something else.

Finally, you might wonder where the sound data is, and how to mess with it. If you really
must, then you can access the data within the pcm_sound array sound_fx[] using the ID
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you get back from either load function as the index. For example, here’s how you would
access the DirectSound buffer for the sound with ID sound_id:

Example:

sound_fx[sound_id].dsbuffer

Function Prototype:

int DSound_Replicate_Sound(int source_id); // id of sound to copy

Purpose:

DSound_Replicate_Sound() is used to copy a sound without copying the memory used to
hold the sound. For example, suppose you have a gunshot sound, and you want to fire
three gunshots, each right after the other? The only way to do this right now would be to
load three copies of the gunshot sound into three different DirectSound memory buffers,
which would be a waste of memory.

Alas, there is a solution—it’s possible to create a duplicate or replicant (if you’re a Blade
Runner fan) of the sound buffer, except for the actual sound data. Instead of copying it, we
just point a pointer to it, and DirectSound is smart enough to use it as a “source” for
multiple sounds using the same data. The bottom line is, if you want to play a gunshot up
to eight times, for example, you should load the gunshot once, make seven copies of it,
and acquire a total of eight unique IDs. Replicated sounds work exactly the same as
normal sounds, but instead of using DSound_Load_WAV() to load and create them, you
copy them with DSound_Replicate_Sound(). Get it? Good! I’m starting to get dizzy! Here’s
an example of creating eight gunshots:

Example:

int gunshot_ids[8]; // this holds all the id’s

// load in the master sound

gunshot_ids[0] = Load_WAV(“GUNSHOT.WAV”);

// now make copies

for (int index=1; index<8; index++)

gunshot_ids[index] = DSound_Replicate_Sound(gunshot_ids[0]);

// use gunshot_ids[0..7] anyway you which they all go bang!

Function Prototype:

int DSound_Play_Sound(int id,    // id of sound to play

int flags=0, // 0 or DSBPLAY_LOOPING

int volume=0, // unused

int rate=0,  // unused

int pan=0);  // unused
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Purpose:

DSound_Play_Sound() plays a previously loaded sound. You simply send the ID of the
sound along with the play flags—0 for a single time, or DSBPLAY_LOOPING to loop it, and
the sound will start playing. If the sound is already playing, it will restart at the beginning.
Here’s an example of loading and playing a sound:

Example:

int fire_id = DSound_Load_WAV(“FIRE.WAV”);

DSound_Play_Sound(fire_id,0);

I could have also left out the 0 for flags entirely, because its default parameter is 0:

int fire_id = DSound_Load_WAV(“FIRE.WAV”);

DSound_Play_Sound(fire_id);

Either way, the FIRE.WAV sound will play once and then stop. To make it loop, you would
send DSBPLAY_LOOPING for the flags parameter.

Function Prototype(s):

int DSound_Stop_Sound(int id);

int DSound_Stop_All_Sounds(void);

Purpose:

DSound_Stop_Sound() is used to stop a single sound from playing (if it is playing). You
simply send the ID of the sound, and that’s it. DSound_Stop_All_Sounds() will stop all the
sounds currently playing. Here’s an example of stopping the fire_id sound:

Example:

DSound_Stop_Sound(fire_id);

At the end of your program, it’s a good idea to stop all the sounds from playing before
exiting. You could do this with separate calls to DSound_Stop_Sound() for each sound, or a
single call to DSound_Stop_All_Sounds():

//...system shutdown code

DSound_Stop_All_Sounds();

Function Prototype:

int DSound_Delete_Sound(int id); // id of sound to delete

int DSound_Delete_All_Sounds(void);
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Purpose:

DSound_Delete_Sound() deletes a sound from memory and releases the DirectSound buffer
associated with it. If the sound is playing, the function will stop it first.
DSound_Delete_All_Sounds() deletes all previously loaded sounds. Here’s an example of
deleting the fire_id sound:

Example:

DSound_Delete_Sound(fire_id);

Function Prototype:

int DSound_Status_Sound(int id);

Purpose:

DSound_Status_Sound() tests the status of a loaded sound based on its ID. All you do is
pass the function the ID number of the sound, and the function will return one of these
values:

• DSBSTATUS_LOOPING—The sound is currently playing and is in loop mode.

• DSBSTATUS_PLAYING—The sound is currently playing and is in single play mode.

If the value returned from DSound_Status_Sound() is neither of the preceding constants,
the sound is not playing. Here’s a complete example that waits until a sound has
completed playing and then deletes it.

Example:

// initialize DirectSound

DSound_DSound_Init();

// load a sound

int fire_id = DSound_Load_WAV(“FIRE.WAV”);

// play the sound in single mode

DSound_Play_Sound(fire_id);

// wait until the sound is done

while(DSound_Sound_Status(fire_id) &

(DSBSTATUS_LOOPING | DSBSTATUS_PLAYING));

// delete the sound

DSound_Delete_Sound(fire_id);

CHAPTER 3 3D Game Programming with a Virtual Computer208

05 0672318350 CH03  05•02•2003  2:34 PM  Page 208



// shutdown DirectSound

DSound_DSound_Shutdown();

Pretty cool, huh? A lot better than the couple hundred or so lines of code to do it manu-
ally with DirectSound!

Function Prototype:

int DSound_Set_Sound_Volume(int id,  // id of sound

int vol); // volume from 0-100

Purpose:

DSound_Set_Sound_Volume() changes the volume of a sound in real time. Send the ID of
the sound along with a value from 0–100 and the sound will change instantly. Here’s an
example of changing the volume of a sound to 50% of what it was loaded as:

Example:

DSound_Set_Sound_Volume(fire_id, 50);

You can always change the volume back to 100% like this:

DSound_Set_Sound_Volume(fire_id, 100);

Function Prototype:

int DSound_Set_Sound_Freq(

int id,  // sound id

int freq); // new playback rate from 0-100000

Purpose:

DSound_Set_Sound_Freq() changes the playback frequency of the sound. Because all
sounds must be loaded at 11KHz mono, here’s how you would double the perceived play-
back rate:

Example:

DSound_Set_Sound_Freq(fire_id, 22050);

And to make you sound like Darth Vader, do this:

DSound_Set_Sound_Freq(fire_id, 6000);

Function Prototype:

int DSound_Set_Sound_Pan(

int id,  // sound id

int pan); // panning value from -10000 to 10000
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Purpose:

DSound_Set_Sound_Pan() sets the relative intensity of the sound on the right and left
speakers. A value of -10,000 is hard left and 10,000 is hard right. If you want equal power,
set the pan to 0. Here’s how you would set the pan all the way to the right side:

Example:

DSound_Set_Sound_Pan(fire_id, 10000);

The DirectMusic API Rapper
Did you get my joke with the title? The DirectMusic API is even simpler than the
DirectSound API. I have created functions to initialize DirectMusic, create all the COM
objects for you, and enable you to focus on loading and playing MIDI files. Here’s the
basic functionality list:

• Initialize and shut down DirectMusic with single calls

• Load MIDI files off disk

• Play a MIDI file

• Stop a MIDI that is currently playing

• Test the play status of a MIDI segment

• Automatically connect to DirectSound if DirectSound has previously been initialized

• Delete MIDI segments from memory

Let’s take a look at each function one by one.

NOTE

Unless otherwise stated, all functions return TRUE (1) if successful, and FALSE (0) if not.

Function Prototype:

int DMusic_Init(void);

Purpose:

Dmusic_Init() initializes DirectMusic and creates all necessary COM objects. You make
this call before any other calls to the DirectMusic library. In addition, if you want to use
DirectSound, make sure to initialize DirectSound before calling DMusic_Init(). Here’s an
example of using the function:
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Example:

if (!DMusic_Init())

{ /* error */ }

Function Prototype:

int DMusic_Shutdown(void);

Purpose:

DMusic_Shutdown() shuts down the entire DirectMusic engine. It releases all COM objects,
in addition to unloading all loaded MIDI segments. Call this function at the end of your
application, but before the call to shutdown DirectSound—if you have DirectSound
support. Here’s an example:

Example:

if (!DMusic_Shutdown())

{ /* error */ }

// now shutdown DirectSound…

Function Prototype:

int DMusic_Load_MIDI(char *filename);

Purpose:

DMusic_Load_MIDI() loads a MIDI segment into memory and allocates a record in the
midi_ids[] array. The function returns the ID of the loaded MIDI segment, or –1 if not
successful. The returned ID is used as a reference for all other calls. Here’s an example of
loading a couple of MIDI files:

Example:

// load files

int explode_id = DMusic_Load_MIDI(“explosion.mid”);

int weapon_id = DMusic_Load_MIDI(“laser.mid”);

// test files

if (explode_id == -1 || weapon_id == -1)

{ /* there was a problem */ }

Function Prototype:

int DMusic_Delete_MIDI(int id);
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Purpose:

DMusic_Delete_MIDI() deletes a previously loaded MIDI segment from the system. Simply
supply the ID to delete. Here’s an example of deleting the previously loaded MIDI files in
the preceding example:

Example:

if (!DMusic_Delete_MIDI(explode_id) ||

!DMusic_Delete_MIDI(weapon_id) )

{ /* error */ }

Function Prototype:

int DMusic_Delete_All_MIDI(void);

Purpose:

DMusic_Delete_All_MIDI() simply deletes all MIDI segments from the system in one call.
Here’s an example:

Example:

// delete both of our segments

if (!DMusic_Delete_All_MIDI())

{ /* error */ }

Function Prototype:

int DMusic_Play(int id);

Purpose:

DMusic_Play() plays a MIDI segment from the beginning. Simply supply the ID of the
segment you want to play. Here’s an example:

Example:

// load file

int explode_id = DMusic_Load_MIDI(“explosion.mid”);

// play it

if (!DMusic_Play(explode_id))

{ /* error */ }

Function Prototype:

int DMusic_Stop(int id);

CHAPTER 3 3D Game Programming with a Virtual Computer212

05 0672318350 CH03  05•02•2003  2:34 PM  Page 212



Purpose:

DMusic_Stop() stops a currently playing segment. If the segment is already stopped, the
function has no effect. Here’s an example:

Example:

// stop the laser blast

if (!DMusic_Stop(weapon_id))

{ /* error */ }

Function Prototype:

int DMusic_Status_MIDI(int id);

Purpose:

DMusic_Status() tests the status of any MIDI segment based on its ID. The status codes
are as follows:

#define MIDI_NULL   0  // this midi object is not loaded

#define MIDI_LOADED  1  // this midi object is loaded

#define MIDI_PLAYING 2  // this midi object is loaded and playing

#define MIDI_STOPPED 3  // this midi object is loaded, but stopped

Here’s an example of changing state based on a MIDI segment completing:

Example:

// main game loop

while(1)

{

if (DMusic_Status(explode_id) == MIDI_STOPPED)

game_state = GAME_MUSIC_OVER;

} // end while

That’s it for the DirectSound and DirectMusic APIs. As I said, later in the chapter you will
see demo examples of both, but for now, let’s continue with putting together the final
T3D Game Console and bring our virtual computer interface all together in one glorious
…Whoooaaa! I’m getting a little carried away here. I’m mean, let’s finish up.

The T3DLIB Library at a Glance
At this point, we have three main .CPP|H modules that make up the T3D library:

• T3DLIB1.CPP|H—DirectDraw plus graphics algorithms

• T3DLIB2.CPP|H—DirectInput

• T3DLIB3.CPP|H—DirectSound & DirectMusic
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Keep this in mind when compiling programs. If you want to compile a demo program,
call it DEMOX_Y.CPP, and then look at its .H includes. If you see it include any of the
preceding related .H library modules, you’ll obviously need to include the .CPP files, too.

To compile any of the programs, make sure to include both the library source files, as well
as all the DirectX .LIB files—and please, for the sake of God, set your compiler to Win32
.EXE as the target!

Building the Final T3D Game Console
At this point, we have more than enough to implement our virtual graphics interface,
including support for sound and input. Moreover, the virtual interface model can almost
be implemented one-to-one with the data structures, globals, and functions you just
reviewed that make up the three T3DLIB library modules from the first Tricks. Remember,
our goal was to implement a double-buffered graphics system that supports 8- and 16-bit
windowed and full-screen graphics, and that models our virtual computer interfaces func-
tionality. We have exactly what we need to do that now.

The next step is to create a really solid Game Console “template” based on the alpha
version we made a few sections back. However, before we go there, let’s take a moment to
look at the functionality of the virtual graphics interface, and the exact mapping to the
real graphics interface in T3DLIB1.CPP. The sound and music stuff is much easier to grasp,
so I’m not going to show the mapping. Moreover, the demos that follow in the final
sections of this chapter have numerous examples of sound, music, and input, so you can
see the functions in real programs. Even so, taking a look at the graphics part is worth the
work, so let’s do it.

Mapping the Real Graphics to the Unreal Graphics of the Virtual
Interface
Earlier in this chapter, we went through a mental experiment and came up with the most
generic graphics interface that we could think of as the minimum necessary to perform
software-based 3D graphics on any computer. Now, with the tools of the libraries at hand,
let’s take a look at what the final mappings are from virtual to real.

Starting the System
In the virtual computer’s graphics interface, we assumed that there was a function called
Create_Window() with the prototype

Create_Window(int width, int height, int bit_depth);

that would take care of all the details of getting the graphics system ready, along with
opening a window of the desired size and bit depth. In our real implementation, this func-
tionality has to be split into two function calls, because we want to try and keep windows
and DirectX separate. The first function calls are standard Windows calls to create a stan-
dard Windows window.
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Now, listen up: If you are creating a full-screen application, you should use the window
flags of WM_POPUP, but if you want a windowed application, you should use something like
WM_OVERLAPPEDWINDOW. Hence, getting the graphics system ready is a two-step process:

1. Make a call to the Win32 API function Create_Window() with the appropriate para-
meters for either a full-screen window or a windowed application. With a full-screen
window, you don’t usually want any controls.

2. Call the DirectX wrapper function, along with the handle to the window (which is
global) and the appropriate parameters to finish the job.

All the action really happens during step 2. This is where DirectDraw is initialized, the
frame buffers are created, the palette for 8-bit modes is generated, and the clippers are
attached to the graphics window and back buffer.

Because we are going to use the Game Console template, the plan of attack is to let the
WinMain() function open the window up, and then in the call to Game_Init(), make a call
to the function DDraw_Init(), which does all the dirty work. If you recall, here’s its proto-
type:

int DDraw_Init(int width, int height, int bpp, int windowed=0);

Simple, huh? Well, just look inside the code to really appreciate all it does. Anyway, to
recap, the single call in our virtual computer interface to create a window (in fantasy land)
was Create_Window(). In real life, we need two calls to implement this functionality: one
to create a Windows window, and the second to initialize DirectDraw and connect it to
the window.

Global Mappings
The first things that we designed into our virtual graphics interface were two frame
buffers: one visible, and one offscreen. We called these the primary and secondary (back)
buffers, as shown in Figure 3.12.

Additionally, we agreed that for any given resolution and bit depth, these buffers would be
linearly addressable, with the one constraint that the memory pitch to jump from line to
line might not be the same as the pixel pitch, and that there would be variables to track
this. The names of the virtual frame buffer pointers and the pitch variables were as
follows:

UCHAR *primary_buffer; // the primary buffer

int  primary_pitch; // the memory pitch in bytes

UCHAR *secondary_buffer; // the secondary buffer

int  seconday_pitch;  // the memory pitch in bytes
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FIGURE 3.12 The frame buffers.

In the real graphics library under T3DLIB1.CPP, there is almost an identical mapping. The
variables that serve the same purpose are as follows:

LPDIRECTDRAWSURFACE7 lpddsprimary;   // dd primary surface

LPDIRECTDRAWSURFACE7 lpddsback;    // dd back surface

UCHAR        *primary_buffer; // primary video buffer

UCHAR        *back_buffer;   // secondary back buffer

int         primary_lpitch;  // memory line pitch

int         back_lpitch;   // memory line pitch

You’ll notice two extra DirectX-centric variables: lpddsprimary and lpddsback. These are
DirectDraw surface pointers to both the primary and secondary (back) surfaces. They are
needed for some calls, and hence you should know them. Additionally, the width and
height of the primary and secondary buffers are always the same. Although the primary
buffer’s client area might only be a window and not the entire desktop, the secondary
buffer will always be the same size as the client area. Bottom line—the visible primary
frame buffer and the invisible secondary frame buffer are always the same size and bit
depth.

256-Color Modes
Although you saw the 256-color palette manipulation functions in the graphics API listing
of T3DLIB1.CPP|H, I just wanted to reinforce them. The functions that enable you to
manipulate the palette are as follows:

int Set_Palette_Entry(int color_index, LPPALETTEENTRY color);

int Get_Palette_Entry(int color_index, LPPALETTEENTRY color);

int Load_Palette_From_File(char *filename, LPPALETTEENTRY palette);
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int Save_Palette_To_File(char *filename, LPPALETTEENTRY palette);

int Save_Palette(LPPALETTEENTRY sav_palette);

int Set_Palette(LPPALETTEENTRY set_palette);

I have highlighted the functions of most interest. They are used to alter a single palette
entry, or the entire palette at once. In most cases, it’s inefficient to change one palette
entry at a time. It’s better to make all the changes at once. The data structure you pass is
either a pointer to a single PALETTENTRY or to an array of them. Here’s the PALETTENTRY
data structure to refresh your memory:

typedef struct tagPALETTEENTRY { // pe

BYTE peRed;  // red channel 8-bits

BYTE peGreen; // green channel 8-bits

BYTE peBlue;  // blue channel 8-bits

BYTE peFlags; // flags control, PC_EXPLICIT for the first and last 10

// colors if windowed mode, else use PC_NOCOLLAPSE

} PALETTEENTRY;

Finally, if you do select a 256-color mode, the palette data in PALDATA2.PAL will be loaded.
This is a palette that I like to use, and it has good color space coverage. You can take a
look at it by opening PALDATA2.BMP. Of course, you can always load your own 256-color
palette off disk or from a bitmap’s attached palette.

Locking/Unlocking Function Mappings
Alright, everything is looking good. Now let’s take a look at the four functions we made
up to lock/unlock the primary and secondary surfaces. In the virtual computer interface,
they looked like this:

Lock_Primary(UCHAR **primary_buffer, int *primary_pitch);

Unlock_Primary(UCHAR *primary_buffer);

Lock_Secondary(UCHAR **secondary _buffer, int *secondary _pitch);

Unlock_Secondary(UCHAR *secondary _buffer);

In the real graphics library, we have these functions that implement that functionality:

UCHAR *DDraw_Lock_Primary_Surface(void);

int DDraw_Unlock_Primary_Surface(void);

UCHAR *DDraw_Lock_Back_Surface(void);

int DDraw_Unlock_Back_Surface(void);
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The only difference is that the real functions alter the globals

UCHAR *primary_buffer;   // primary video buffer

UCHAR *back_buffer;     // secondary back buffer

int  primary_lpitch;    // memory line pitch

int  back_lpitch;     // memory line pitch

directly, and hence don’t need any parameters.

Animation Function Mapping
The last function that I want to mention the mapping for is the animation function that
flips the secondary surface buffer to the primary (or copies it in some cases). If you
remember, we called it Flip_Display() in the virtual computer software interface model.
This function is what makes smooth animation possible. In the real library, the function
that does the job is

int DDraw_Flip(void);

Nothing more than a different name, really. The functionality of the desired virtual model
is exactly implemented in this function. DDraw_Flip() will work perfectly for both full-
screen and windowed applications.

Well, that’s it for the function mapping of the virtual computer model with our real func-
tions. I just wanted you to really understand what we are trying to do—create a generic
graphics system with an API that we have handy that abstracts the graphics rendering
enough that we only think in terms of two frame buffers and a few functions. I really hate
dumping an API on you, but my hands are tied (all eight of them), and I had to use some-
thing to implement the virtual computer interface for which we had the source.

The Final T3DLIB Game Console
Now we’re finally ready to see the complete Game Console that we are going to use to
create all of the demos and game programs from here on out. Of course, we might add to
it, but for the most part what you are about to see captures all the functionality we need.
The upgraded Game Console is named T3DCONSOLE2.CPP. Its source is shown in the
following.

NOTE

You might be wondering what happened to T3DCONSOLE.CPP|EXE. In the first Tricks, I created
T3DCONSOLE.CPP|EXE, so it only seems appropriate to append a “2” onto the new version,
because this book is really a continuation of the previous Tricks and we want to keep our naming
conventions consistent.

// T3DCONSOLE2.CPP - First template for Tricks 3D Vol II

// Use this as a template for your applications if you wish

// you may want to change things like the resolution of the
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// application, if it’s windowed, the directinput devices

// that are acquired and so forth...

// currently the app creates a 640x480x16 windowed display

// hence, you must be in 16 bit color before running the application

// if you want fullscreen mode then simple change the WINDOWED_APP

// value in the #defines below value to FALSE (0). Similarly, if

// you want another bitdepth, maybe 8-bit for 256 colors then

// change that in the call to DDraw_Init() in the function

// Game_Init() within this file.

// READ THIS!

// To compile make sure to include DDRAW.LIB, DSOUND.LIB, DINPUT.LIB,

// DINPUT8.LIB, WINMM.LIB in the project link list, and of course

// the C++ source modules T3DLIB1.CPP,T3DLIB2.CPP, and T3DLIB3.CPP

// and the headers T3DLIB1.H,T3DLIB2.H, and T3DLIB3.H must

// be in the working directory of the compiler

// INCLUDES ///////////////////////////////////////////////

#define INITGUID    // make sure al the COM interfaces are available

// instead of this you can include the .LIB file

// DXGUID.LIB

#define WIN32_LEAN_AND_MEAN

#include <windows.h>  // include important windows stuff

#include <windowsx.h>

#include <mmsystem.h>

#include <iostream.h> // include important C/C++ stuff

#include <conio.h>

#include <stdlib.h>

#include <malloc.h>

#include <memory.h>

#include <string.h>

#include <stdarg.h>

#include <stdio.h>

#include <math.h>

#include <io.h>

#include <fcntl.h>

#include <ddraw.h> // directX includes

#include <dsound.h>
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#include <dmksctrl.h>

#include <dmusici.h>

#include <dmusicc.h>

#include <dmusicf.h>

#include <dinput.h>

#include “T3DLIB1.h” // game library includes

#include “T3DLIB2.h”

#include “T3DLIB3.h”

// DEFINES ////////////////////////////////////////////////

// defines for windows interface

#define WINDOW_CLASS_NAME “WIN3DCLASS” // class name

#define WINDOW_TITLE   “T3D Graphics Console Ver 2.0”

#define WINDOW_WIDTH   640  // size of window

#define WINDOW_HEIGHT   480

#define WINDOW_BPP    16  // bitdepth of window (8,16,24 etc.)

// note: if windowed and not

// fullscreen then bitdepth must

// be same as system bitdepth

// also if 8-bit the a pallete

// is created and attached

#define WINDOWED_APP   1   // 0 not windowed, 1 windowed

// PROTOTYPES /////////////////////////////////////////////

// game console

int Game_Init(void *parms=NULL);

int Game_Shutdown(void *parms=NULL);

int Game_Main(void *parms=NULL);

// GLOBALS ////////////////////////////////////////////////

HWND main_window_handle      = NULL; // save the window handle

HINSTANCE main_instance      = NULL; // save the instance

char buffer[256];             // used to print text

// FUNCTIONS //////////////////////////////////////////////
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LRESULT CALLBACK WindowProc(HWND hwnd,

UINT msg,

WPARAM wparam,

LPARAM lparam)

{

// this is the main message handler of the system

PAINTSTRUCT  ps;    // used in WM_PAINT

HDC    hdc;    // handle to a device context

// what is the message

switch(msg)

{  

case WM_CREATE:

{

// do initialization stuff here

return(0);

} break;

case WM_PAINT:

{

// start painting

hdc = BeginPaint(hwnd,&ps);

// end painting

EndPaint(hwnd,&ps);

return(0);

} break;

case WM_DESTROY:

{

// kill the application

PostQuitMessage(0);

return(0);

} break;

default:break;

} // end switch

// process any messages that we didn’t take care of

return (DefWindowProc(hwnd, msg, wparam, lparam));

} // end WinProc
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// WINMAIN ////////////////////////////////////////////////

int WINAPI WinMain(  HINSTANCE hinstance,

HINSTANCE hprevinstance,

LPSTR lpcmdline,

int ncmdshow)

{

// this is the winmain function

WNDCLASS winclass; // this will hold the class we create

HWND   hwnd;     // generic window handle

MSG   msg;     // generic message

HDC   hdc;    // generic dc

PAINTSTRUCT ps;   // generic paintstruct

// first fill in the window class stucture

winclass.style  = CS_DBLCLKS | CS_OWNDC | CS_HREDRAW | CS_VREDRAW;

winclass.lpfnWndProc  = WindowProc;

winclass.cbClsExtra  = 0;

winclass.cbWndExtra  = 0;

winclass.hInstance  = hinstance;

winclass.hIcon    = LoadIcon(NULL, IDI_APPLICATION);

winclass.hCursor  = LoadCursor(NULL, IDC_ARROW);

winclass.hbrBackground  = (HBRUSH)GetStockObject(BLACK_BRUSH);

winclass.lpszMenuName  = NULL;

winclass.lpszClassName  = WINDOW_CLASS_NAME;

// register the window class

if (!RegisterClass(&winclass))

return(0);

// create the window, note the test to see if WINDOWED_APP is

// true to select the appropriate window flags

if (!(hwnd = CreateWindow(WINDOW_CLASS_NAME, // class

WINDOW_TITLE,   // title

(WINDOWED_APP ? (WS_OVERLAPPED | WS_SYSMENU | WS_CAPTION) :

(WS_POPUP | WS_VISIBLE)),

0,0,    // x,y

WINDOW_WIDTH, // width

WINDOW_HEIGHT, // height

NULL,    // handle to parent

NULL,    // handle to menu

hinstance,// instance
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NULL)))  // creation parms

return(0);

// save the window handle and instance in a global

main_window_handle = hwnd;

main_instance   = hinstance;

// resize the window so that client is really width x height

if (WINDOWED_APP)

{

// now resize the window, so the client area is the actual size requested

// since there may be borders

// alsocontrols if this is going to be a windowed app

// if the app is not windowed then it won’t matter

RECT window_rect = {0,0,WINDOW_WIDTH-1,WINDOW_HEIGHT-1};

// make the call to adjust window_rect

AdjustWindowRectEx(&window_rect,

GetWindowStyle(main_window_handle),

GetMenu(main_window_handle) != NULL,

GetWindowExStyle(main_window_handle));

// save the global client offsets, they are needed in DDraw_Flip()

window_client_x0 = -window_rect.left;

window_client_y0 = -window_rect.top;

// now resize the window with a call to MoveWindow()

MoveWindow(main_window_handle,

0, // x position

0, // y position

window_rect.right - window_rect.left, // width

window_rect.bottom - window_rect.top, // height

FALSE);

// show the window, so there’s no garbage on first render

ShowWindow(main_window_handle, SW_SHOW);

} // end if windowed

// perform all game console specific initialization

Game_Init();

// disable CTRL-ALT_DEL, ALT_TAB, comment this line out

// if it causes your system to crash

SystemParametersInfo(SPI_SCREENSAVERRUNNING, TRUE, NULL, 0);
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// enter main event loop

while(1)

{

if (PeekMessage(&msg,NULL,0,0,PM_REMOVE))

{

// test if this is a quit

if (msg.message == WM_QUIT)

break;

// translate any accelerator keys

TranslateMessage(&msg);

// send the message to the window proc

DispatchMessage(&msg);

} // end if

// main game processing goes here

Game_Main();

} // end while

// shutdown game and release all resources

Game_Shutdown();

// enable CTRL-ALT_DEL, ALT_TAB, comment this line out

// if it causes your system to crash

SystemParametersInfo(SPI_SCREENSAVERRUNNING, FALSE, NULL, 0);

// return to Windows like this

return(msg.wParam);

} // end WinMain

// T3D II GAME PROGRAMMING CONSOLE FUNCTIONS ////////////////

int Game_Init(void *parms)

{

// this function is where you do all the initialization

// for your game

// start up DirectDraw (replace the parms as you desire)

DDraw_Init(WINDOW_WIDTH, WINDOW_HEIGHT, WINDOW_BPP, WINDOWED_APP);
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// initialize directinput

DInput_Init();

// acquire the keyboard

DInput_Init_Keyboard();

// add calls to acquire other directinput devices here...

// initialize directsound and directmusic

DSound_Init();

DMusic_Init();

// hide the mouse

ShowCursor(FALSE);

// seed random number generator

srand(Start_Clock());

// all your initialization code goes here...

// return success

return(1);

} // end Game_Init

///////////////////////////////////////////////////////////

int Game_Shutdown(void *parms)

{

// this function is where you shutdown your game and

// release all resources that you allocated

// shut everything down

// release all your resources created for the game here....

// now directsound

DSound_Stop_All_Sounds();

DSound_Delete_All_Sounds();

DSound_Shutdown();
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// directmusic

DMusic_Delete_All_MIDI();

DMusic_Shutdown();

// release all input devices

DInput_Release_Keyboard();

// shut down directinput

DInput_Shutdown();

// shutdown directdraw last

DDraw_Shutdown();

// return success

return(1);

} // end Game_Shutdown

//////////////////////////////////////////////////////////

int Game_Main(void *parms)

{

// this is the workhorse of your game it will be called

// continuously in real-time this is like main() in C

// all the calls for you game go here!

int index; // looping var

// start the timing clock

Start_Clock();

// clear the drawing surface

DDraw_Fill_Surface(lpddsback, 0);

// read keyboard and other devices here

DInput_Read_Keyboard();

// game logic here...

// flip the surfaces

DDraw_Flip();
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// sync to 30ish fps

Wait_Clock(30);

// check of user is trying to exit

if (KEY_DOWN(VK_ESCAPE) || keyboard_state[DIK_ESCAPE])

{

PostMessage(main_window_handle, WM_DESTROY,0,0);

} // end if

// return success

return(1);

} // end Game_Main

Let’s take a look at some of the key points of the Game Console, and then we’ll move on
to using it. First, you’ll notice that some of the code is highlighted in bold to indicate
important code sections. Let’s take a look at what does what.

Opening the Game Console Window
The first lines of code that are highlighted are in the #defines section:

#define WINDOW_WIDTH   640  // size of window

#define WINDOW_HEIGHT   480

#define WINDOW_BPP    16  // bitdepth of window (8,16,24 etc.)

// note: if windowed and not

// fullscreen then bitdepth must

// be same as system bitdepth

// also if 8-bit the a palette

// is created and attached

#define WINDOWED_APP   1   // 0 not windowed, 1 windowed

These are very important because they control the size of the window (or full-screen size),
the bit depth, and whether you want a windowed display rather than full screen.
Currently, I have them set to 640×480 for the window size, 16-bits per pixel, and a
windowed display. These parameters are used in a number of places in the code. However,
the two most important are when the window is created in WinMain() along with the call
to DDraw_Init() in Game_Main(). Let’s talk about the call in WinMain() first.

If you take a look at the Create_Window() call in WinMain() (copied in the following frag-
ment for your convenience), you will notice that there is a ternary conditional operator
that tests whether the application is windowed.
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// create the window, note the test to see if WINDOWED_APP is

// true to select the appropriate window flags

if (!(hwnd = CreateWindow(WINDOW_CLASS_NAME, // class

WINDOW_TITLE,   // title

(WINDOWED_APP ? (WS_OVERLAPPED | WS_SYSMENU | WS_CAPTION) :

(WS_POPUP | WS_VISIBLE)),

0,0,    // x,y

WINDOW_WIDTH, // width

WINDOW_HEIGHT, // height

NULL,    // handle to parent

NULL,    // handle to menu

hinstance,// instance

NULL)))  // creation parms

return(0);

This is so the window is created with the proper Windows flag. If we want a windowed
display, we want to see the window borders and have a couple of controls such as a close
box, so the Window flags (WM_OVERLAPPED | WM_SYSMENU |WS_CAPTION) are used.

On the other hand, if the code selects a full-screen mode, the window is made the same
size as the DirectDraw surface, but with no controls; hence the window style WM_POPUP is
used. Additionally, once the window is created (either in preparation for a windowed
application or full-screen) the next section of code is rather tricky. It basically resizes the
window so that the client area is the size that we are requesting, rather than the size we
are requesting minus the size of the border and controls.

If you recall from Windows programming, when you create a window with size
WINDOW_WIDTH x WINDOW_HEIGHT, it doesn’t mean the client area will be WINDOW_WIDTH x
WINDOW_HEIGHT. It means the window’s entire area will be WINDOW_WIDTH x WINDOW_HEIGHT.
Therefore, if there are no controls or borders, the client area will be WINDOW_WIDTH x
WINDOW_HEIGHT, but if there are controls, we lose a little, as shown in Figure 3.13.

To solve this problem, we need to resize the window on the fly so that the size of the
client area is the exact size that we are requesting for the window. Here’s the code that
does this:

// resize the window so that client is really width x height

if (WINDOWED_APP)

{

// now resize the window, so the client area is the actual size requested

// since there may be borders and controls if this is going to be a windowed app

// if the app is not windowed then it won’t matter

RECT window_rect = {0,0,WINDOW_WIDTH-1,WINDOW_HEIGHT-1};

// make the call to adjust window_rect

AdjustWindowRectEx(&window_rect,
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GetWindowStyle(main_window_handle),

GetMenu(main_window_handle) != NULL,

GetWindowExStyle(main_window_handle));

// save the global client offsets, they are needed in DDraw_Flip()

window_client_x0 = -window_rect.left;

window_client_y0 = -window_rect.top;

// now resize the window with a call to MoveWindow()

MoveWindow(main_window_handle,

0, // x position

0, // y position

window_rect.right - window_rect.left, // width

window_rect.bottom - window_rect.top, // height

FALSE);

// show the window, so there’s no garbage on first render

ShowWindow(main_window_handle, SW_SHOW);

} // end if windowed
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make sure that if a windowed app is selected, the client area is exactly WINDOW_WIDTH x
WINDOW_HEIGHT.

NOTE

If you set WINDOWED_APP to 0, this logic isn’t executed, because a WM_POPUP window has no
controls and we don’t need to resize.

After the window is created and resized (if needed), at some point a call to Game_Init() is
made. Within it you will add all your logic and initialization in the future. However, at
this point, it has the bare minimum to get things going. In line with our discussion, a call
to DDraw_Init() is made:

// start up DirectDraw (replace the parms as you desire)

DDraw_Init(WINDOW_WIDTH, WINDOW_HEIGHT, WINDOW_BPP, WINDOWED_APP);

You will notice that you don’t have to do anything. Just make sure to set the #defines up
at the top of the file to what you want and whammo—you’re Kid Rock!

NOTE

You might notice those calls to SystemParametersInfo() around the main event loop. These
calls make Windows think that the screensaver is on, and to ignore ALT+TAB. DirectX applications
can get really mangled if you don’t handle ALT+TAB-ing correctly (which we don’t), so this way
you hopefully don’t have to worry about it. If you’re interested, take a look at the DirectX SDK,
but in general when your application loses focus, you have to restore all lost surfaces and reac-
quire all input devices and so on. It’s a real pain!

Using and Compiling the Game Console
Basically T3DCONSOLE2.CPP is just a “shell” or template that you will use to create applica-
tions. You can use it to handle all the Windows stuff, and then just drop your code into
the game functions Game_Init(), Game_Main(), and Game_Shutdown(). However, to
compile it, you still need to include the following files:

• T3DLIB1.CPP|H—The DirectDraw module

• T3DLIB2.CPP|H—The DirectInput module

• T3DLIB3.CPP|H—The DirectSound and DirectMusic module

These files must be in your root:

• PALDATA1|2.PAL—The default palettes for 256-color mode

And you must, of course, link with

• DDRAW.LIB, DSOUND.LIB, DINPUT.LIB, and DINPUT8.LIB
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Please set the compiler target to Win32 .EXE application. Don’t forget to add the DirectX
.LIB files to the link list, and to set the search paths for the compiler to find all the
headers.

Just for fun, I have compiled the Game Console without anything in it, creating the
T3DCONSOLE2.EXE. The application doesn’t do much, but creates a 640×480×16-bit
windowed display. However, to run it you must have your desktop in 16-bit mode.

CAUTION

Windowed applications based on the Game Console will not change the bit depth of the
desktop. You can alter it to do this if you want, but it can be catastrophic. Here’s why: If you
have other applications running and you then start up a DirectDraw application that changes the
bit depth of the screen, but creates a windowed display rather than a full-screen display, the
other application might function improperly and/or crash the system if you switch focus to it. As
a rule of thumb for full-screen applications, do what you will with resolution and bit depth. But
for windowed applications, you might want to test for the bit depth and see whether it meets
your target before starting your application and letting the user switch the desktop.

I could have just as easily made the application a full-screen 640×480×16 application with
a single change to the #defines:

#define WINDOWED_APP   0   // 0 not windowed, 1 windowed

However, windowed applications are more fun and a little easier to debug, so I am
supporting them heavily in this book. Nevertheless, when your game is finally ready to
run, I suggest dumping the system into full-screen mode.

Sample T3LIB Applications
We are almost done with this chapter—whoooweee! I’m getting sick of this stuff—I’m
dying to get to the 3D part! Anyway, just to be complete, what I want to do now is show
you a number of sample applications that use the Game Console T3DCONSOLE2.CPP as the
starting point for real demos that show off graphics, sound, music, and input. The demos
are going to actually do something, because I am hijacking them from the first Tricks.
However, they are all updated now. This way, you can see some real examples of using the
console template. However, note that the sound and music demos are less glamorous, and
don’t really need much.

Lastly, as we proceed through the book and build the T3DLIB game engine, we will add
modules T3DLIB4, 5, 6, and so forth each chapter or so.

Windowed Applications
As it stands, the T3DCONSOLE2.CPP is really a demonstration of windowed 16-bit applica-
tions, but I always like to see something with a little more girth to it—don’t you?
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Therefore, I converted one of the artificial intelligence demos from the first Tricks (pattern
systems demo) to 16-bit and put it in a window. The name of the program on the CD is
DEMOII3_1.CPP|EXE and a screenshot is shown in Figure 3.14. To run the program, make
sure the desktop is in 16-bit color mode. Also, if you want to compile it, make sure you
include all the library modules!
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FIGURE 3.14 A screenshot of a windowed application AI demo.

In any case, the demo not only shows off 16-bit windowed mode, but it shows how to
load bitmaps, use the BOB library, make sounds, and a lot more all in 16-bit graphics
mode. Lots to learn by studying the code.

Full-Screen Applications
Writing a full-screen application is no different with our library; in fact, it’s better because
there is less chance of resource sharing problems. Moreover, in 256-color modes, you have
full control over the entire palette, rather than losing access to the first and last ten
entries, as with windowed 256-color modes. Additionally, you can switch into any bit
depth and resolution with full-screen modes and not worry about the desktop.

As a demo of a full-screen application, I have taken one of the 256-color physics demos
from the first Tricks and worked it into our new Game Console template. The name of the
program is DEMOII3_2.CPP|EXE. Figure 3.15 shows a screenshot of the program in action.
This program again illustrates the use of bitmaps, BOBs, and palettized 256-color modes.
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FIGURE 3.15 A screenshot of a 256-color, full-screen physics demo.

Sound and Music
Working with sound and music under DirectSound and DirectMusic isn’t hard, but it’s not
easy, either. The systems are very complex, and have a lot of functionality. However, all we
want to be able to do is load sound and music off disk and play the darn things! The
T3DLIB2.CPP|H module handles all this in a very clean and simple way.

With that in mind, the sound and music demo is going to be rather plain graphically, so
you can focus on just the calls to make sound and music work. Therefore, I have taken a
demo from the first Tricks that basically works with both DirectSound and DirectMusic at
the same time. The demo is a simple Windows application that has a menu and enables
you to select a MIDI song to play, while at the same time you can “fire” off sound effects.
Also, the demo structure is based on a stripped down version of the Game Console to
minimize anything extraneous.

The name of the demo is DEMOII3_3.CPP|EXE, and Figure 3.16 features a screenshot of the
application in action (what there is of it). Additionally, this demo uses a couple of
resources such as a menu and cursor; thus, there are a few extra files that you need to add
to your project:

• DEMOII3_3.RC—The Windows resource file with the menu

• DEMOII3_3RES.H—The header with identifiers for the resources

• T3DX.ICO—The cursor icon used by the program
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FIGURE 3.16 A screenshot of the sound and music demo.

As usual, this is still a DirectX application, and you need to include the DirectX .LIB files.
Technically, you don’t need DDRAW.LIB, but you should always keep all of them in your
link list to be safe. Also, because there aren’t any graphics or input calls to T3DLIB1.CPP or
T3DLIB2.CPP, do not include the .CPP files in the build—you will get link errors if you do!

Working with Input
The last examples of using the library are input demos. As you know, there are three
primary input devices used in a game:

• Keyboard

• Mouse

• Joystick

Of course, these days a joystick means a lot of things, but usually we can classify all
devices that aren’t a mouse or keyboard as a joystick.

Using the input library is very simple. It’s contained in T3DLIB2.CPP|H and supports the
keyboard, mouse, and joystick devices. With just a few function calls, you can initialize
DirectInput, acquire an input device, and read from it in your main loop. What we are
going to do is review demos of each device: keyboard, mouse, and joystick. Of course, you
are more than free to use all input devices together, but the demos will keep them sepa-
rate, so you can better see what’s going on.

Keyboard Demo
As usual, the demo are based on code from the first Tricks. Let’s begin with the keyboard
demo DEMOII3_4.CPP|EXE. A screenshot is shown in Figure 3.17. Basically, this demo
enables you to move a BOB skeleton around the screen. If you look at the code that reads
the keyboard, you will notice that the data structure returned is nothing more than a 256
BYTE array of BOOLEANs, each representing one key. The table is shown here:

UCHAR keyboard_state[256]; // contains keyboard state table
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FIGURE 3.17 A screenshot of the keyboard demo.

To access the table, you use the DirectInput keyboard constants, which are all of the form
DK_*. Table 3.2 from a previous section lists some of the more common constants. All you
need to do to test whether a key is pressed. After you have retrieved the keyboard data
with a call to DInput_Read_Keyboard(), you can use the following simple test:

if (keyboard_state[DIK_UP])

{

// if the up arrow is pressed this will execute

} // end if

To compile the demo program, you will need all the DirectX .LIB files, along with
T3DLIB1.CPP|H, T3DLIB2.CPP|H, and T3DLIB3.CPP|H.

Mouse Demo
The mouse demo is again based on code from the first Tricks. It’s a little paint program, as
shown in Figure 3.18. The code is in the file DEMOII3_5.CPP|EXE. The program shows off a
number of interesting things about GUI programming, such as object picking, mouse
tracking, and so forth. So, make sure to check out the painting code in addition to the
mouse tracking code.

The mouse input device can operate in two modes: absolute or relative. I prefer relative
because I can always figure out where I am, so the API wrapper puts the system in that
mode. Hence, each time you read the mouse, you get deltas from the last call. The mouse
is read each time you call DInput_Read_Mouse() and is stored in the following global
mouse record:

DIMOUSESTATE mouse_state; // contains state of mouse
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FIGURE 3.18 A screenshot of the mouse-based painting program.

Once again, the structure of a DIMOUSESTATE object is as follows:

typedef struct DIMOUSESTATE {

LONG lX; // x-axis

LONG lY; // y-axis

LONG lZ; // z-axis

BYTE rgbButtons[4]; // state of the buttons

} DIMOUSESTATE, *LPDIMOUSESTATE;

To compile this program, you will need all the DirectX .LIB files, along with
T3DLIB1.CPP|H, T3DLIB2.CPP|H, and T3DLIB3.CPP|H.

Joystick Demo
The “joystick” device on computers these days can be almost anything from gamepads to
paddles. However, any joystick-like device is nothing more than a collection of two types
of input devices:

• Analog axes

• Buttons

For example, if you take a look at Figure 3.19, we see four different joystick-like devices: a
typical joystick, an advanced joystick, a game pad, and a steering wheel/paddle. You might
hesitate to call these all joysticks, but they really are. The joystick has two axes: the x and
y, along with two buttons. The gamepad is all buttons. And finally, the paddle consists of
a rotational axis along with a couple of buttons.

CHAPTER 3 3D Game Programming with a Virtual Computer236

05 0672318350 CH03  05•02•2003  2:34 PM  Page 236



FIGURE 3.19 Four basic joystick devices.

Of course, in DirectInput speak, there are constants to define some of the most prevalent
subtypes of joysticks, like plain joysticks, flight sticks, paddles, and gamepads, but in
general they are all used in the same way. That is, you retrieve either smoothly varying
data back from an analog slider or yoke, and a number of digital on/off signals represent-
ing the buttons. The data record returned the call to DInput_Read_Joystick() from the
DirectInput module of our library is stored in the global

DIJOYSTATE joy_state;   // contains state of joystick

which is of the form

typedef struct DIJOYSTATE {

LONG  lX; // x-axis

LONG  lY; // y-axis

LONG  lZ; // z-axis

LONG  lRx; // rotation about x-axis

LONG  lRy; // rotation about y-axis

LONG  lRz; // rotation about z-axis

LONG  rglSlider[2]; // u,v slider positions

DWORD  rgdwPOV[4];  // point of view hat state

BYTE  rgbButtons[32]; // state of buttons 0..31

} DIJOYSTATE, *LPDIJOYSTATE;

As a demo of using the joystick device, I have hijacked yet another program from the first
Tricks that is a little Centipede-like game (not much of a game, though). The program is
named DEMOII3_6.CPP|EXE on the CD. A screenshot is shown in Figure 3.20. As usual, you
will need all the DirectX .LIB files, along with T3DLIB1.CPP|H, T3DLIB2.CPP|H, and
T3DLIB3.CPP|H to compile.

NOTE

Make sure you check out some of the aspects of the demo relevant to game programming, such
as the primitive game logic, collision detection, and weapon systems.
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FIGURE 3.20 A screenshot of the joystick demo.

Summary
This chapter has really been a “transition” from the first Tricks to this book. You should
understand that 3D graphics isn’t about DirectX or Windows; it’s about math, math, and
more math. And all we need to experiment with 3D graphics is a platform that has a few
functions and a couple of frame buffers. Also, even if you haven’t read the first Tricks, you
should have a decent handle on the API that we are going to use throughout the book.
Either way, you should feel confident because we’re only going to use a few functions to
implement our virtual graphics computer needed for the rest of the text. For those of you
that have read the first Tricks, I bet that you are happy that the T3DLIB now has 16-bit
windowed support! Me too. It’s cool <GRIN>.
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CHAPTER 4

It’s a Math, Math, Math
World—Trigonometry,
Vectors, Matrices, and

Quaternions

“For the last time—It’s Bigboo-TAY’! Tay, Tay!!!” John Bigboote’!!!”

—John Bigboote’, Buckaroo Banzai

It used to be that you could write computer games with a
fleeting knowledge of trig and a bit of algebra. Things have
definitely changed these days. I remember trying to get the
editor of Game Developer Magazine to let me write an article
about vectors just a few years ago, and his reply was that the
math was too advanced. Now I routinely pick the magazine
up, and it’s full of advanced vector calculus! With that in
mind, this chapter is going to be a refresher course (for most)
on some of the basic mathematics you need for 3D computer
graphics. I can’t teach four years of college math in a single
chapter, but I can at least jar your memory, and you can
always pick up a real math book if you want more. Of course,
if you are a math whiz, just skip to the next chapter where we
start building the math library. Anyway, here’s what we’ll
cover:

• Mathematical notation

• Coordinate systems

• Trigonometry

• Vectors

• Matrices and linear algebra

• Basic geometric entities
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• Using parametric equations

• Introduction to quaternions

• Basic calculus

Mathematical Notation
Mathematics is like any language. It consists of a set of symbols that are used to represent
mathematical concepts, formulas, equations, and operations. The problem with higher
mathematics is that much of the symbology is literally Greek! So before we start, I want to
show you some tables of commonly used symbols and conventions that I am going to try
and stick to throughout the book when I am working with pure math. Although some of
the concepts might be meaningless at this point, at least you have a “map” of definitions
early on, rather than later in the chapter. Let’s begin with Table 4.1, which contains the
basic types of math objects we will work with.

TABLE 4.1 Mathematical Object Types

Type Notation Example

Scalar Lower-case a, b, x, y
1

Infinity ∞ +∞, -∞
Angle Lower-case Greek θ, φ, α, β
Vector Lower-case bold u, v, a

x
, a

y

Quaternion Lower-case bold p, q, r
x
, s

y

Elements of Vector <components> <ux, uy, uz>

Row Vector [components] [ux, uy, uz]

Point Lower-case bold a, p
1
, p

2

Matrix Upper-case bold A, B, M
2

Triangle ∆ followed by points ∆p
0
p

1
p

2, 
∆abc

Note: All types can be subscripted or superscripted.

Now that we have a “general” guideline for types (although I might get sloppy from time
to time based on context), let’s take a look at some standard mathematical operators, as
shown in Table 4.2.

TABLE 4.2 Mathematical Operators

Operation Notation Example

Scalar Multiplication x,* Lower-case 3x5, a*b

Matrix Multiplication x, Lower-case AxB

Dot Product . u . v

Summation ∑ expr

07 0672318350 CH04  05•02•2003  2:35 PM  Page 242



Absolute Value |expr| |-35|

Length |expr| |u|

Determinate det(expr) det(M)

Transpose Superscript T vT

Integration ∫ expr

Differentiation Prime Symbol ' x', x''

Note: “expr” stands for general expression.

Of course, we might make up some more notation as we go along, but Tables 4.1 and 4.2
are relatively decent conventions that most math books follow.

CAUTION

Generally, most mathematics books denote the determinate of matrix M by |M|, and length or
norm of vector v by ||v||. The double vertical bars are too hard to lay out for general trade books
like this, so we are going to use the symbology det(M) for determinate and |v| for the length and
norm of a vector to simplify things, so keep that in mind. I think I am stressing the editors out
enough with the Greek symbols!

2D Coordinate Systems
Just as we created some conventions for mathematical notation, we must make sure we are
on the same page geometrically. Let’s begin with describing and understanding the general
2D coordinate systems and then move on to the more complex 3D coordinate systems.

2D Cartesian Coordinates
The most common 2D coordinates that everyone has worked with are called Cartesian
coordinates. Cartesian coordinates are based on a pair of perpendicular axes labeled x and
y, as shown in Figure 4.1. The positive x-axis is to the right, and the negative x-axis is to
the left. Conversely, the positive y-axis is in the upward direction, and the negative y-axis
is in the downward direction. The point where both x = 0 and y = 0 is called the origin.
Also, if you want to get technical, the y-axis is also called the ordinate, and the x-axis is the
abscissa.

Additionally, there are four quadrants in the 2D x-y coordinate system labeled QI, QII,
QIII, and QIV. The quadrants separate the four spaces by the sign on the x-y axis in that
particular space. For example, Table 4.3 shows the signs of x-y in each quadrant.
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TABLE 4.2 Continued

Operation Notation Example
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FIGURE 4.1 The Cartesian coordinate system.

TABLE 4.3 Signs in Each Quadrant

Quadrant Sign (x) Sign (y)

I + +

II - +

III - -

IV + -

TIP

Many graphics algorithms are optimized by solving the problem only for QI and then reflecting
the solution based on symmetry to the other quadrants (or octants in a 3D system).

Finally, to locate any point in a 2D Cartesian coordinate system, you need both the x and
y components. For example, the point p(5,3) means that x = 5 and y = 3, as shown in
Figure 4.2. Easy enough? Okay, tough guy, let’s move on then.
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FIGURE 4.2 Locating points in the Cartesian coordinate system.
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FIGURE 4.3 The 2D polar coordinate system.
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FIGURE 4.4 Locating points in a 2D polar system.

2D Polar Coordinates
The next type of coordinate system that two degrees of freedom supports is called polar
coordinates. Polar coordinates are the entire basis of the game Wolfenstein and the tech-
nique of ray-casting. Polar coordinates are based on the desire to locate points in a 2D
plane based on a heading and a distance, rather than an explicit (x,y) pair. Figure 4.3
depicts the standard 2D polar coordinate system. As you see, there are two variables used
to locate a point: a distance r from the origin or pole, and a heading or angle θ (theta).
Thus, the notation p(r, θ) would mean that the point p is located an angle θ degrees (or
radians) relative to a reference ray (usually the x-axis) measured counter-clockwise and a
distance r on that directional heading. Figure 4.4 shows examples of the points p

1
(10,30°),

and p
2
(6,150°) using the x-y system as the reference.

Converting Between 2D Polar and Cartesian Coordinates
That’s all fine and dandy, but polar coordinates are usually converted at some point into
Cartesian coordinates to be useful. So how do we convert? Converting from Cartesian to
polar and vice versa is easy if we just use a little geometry and the right triangle. Take a
look at Figure 4.5—it shows a standard right triangle in quadrant I of a 2D Cartesian
system. If we think of the tip of the hypotenuse as the “locator,” or P, we can use the
following formulas to convert from polar to Cartesian.
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FIGURE 4.5 Geometrical interpretation of conversion between polar and Cartesian coordi-
nates.

EQUATION 4.1 Converting 2D Polar Coordinates p(r,θ) to Cartesian Coordinates p(x,y)

x = r*cos(θ)
y = r*sin(θ)

TIP

If you are rusty on trigonometry, we will cover it a little later in the chapter, so for now just use
the equations.

Converting from Cartesian to polar coordinates is a little more tricky. The problem is that
we need the angle that the hypotenuse of the triangle formed by the point p(x,y) makes
with the x-axis, along with its length. Again, trigonometry to the rescue. We can use the
tangent to solve for the angle θ and the Pythagorean theorem to solve for r.

EQUATION 4.2 Converting 2D Cartesian Coordinates p(x,y) to Polar Coordinates p(r,θ)

Given: x2 + y2 = r2

r = sqrt(x2 + y2)

θ = tan-1(y/x)
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FIGURE 4.6 An example of converting from Cartesian to polar coordinates.

Let’s give that a try for the point (3,4), which is located in QI and shown in Figure 4.6.

x = 3, y = 4, plugging into Equation 4.2:

r = sqrt(32 + 42) = 5

θ = tan-1(4/3) = 53.1°

Which, referring to Figure 4.6, looks about right.

TIP

If you are awake, you will notice that there is a problem with Equation 4.2—there is a pole (y
goes to infinity) at x = 0! Or in other words, at the angles θ = 90° and θ = 270°, tangent is unde-
fined (actually it’s infinity [∞]). So to use Equation 4.2, you must test for x = 0 beforehand. In
that case, you know the angle is 90°.

In conclusion, polar coordinates are very useful, and understanding them and how to
convert back and forth is very important in many problems with trajectory, targeting, and
navigation. If I had a dollar for every time I received an email about converting polar to
Cartesian or vice versa, I would be a billionaire, so remember the equations—please!
Otherwise, I’m going to start charging!
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3D Coordinate Systems
Now that you have a good grasp of 2D coordinates, let’s move on to 3D coordinates. If
you have been game programming for a while, you are probably already familiar with 3D
systems. But I want to cover the cylindrical and spherical systems as well, because they will
help us later on with texture mapping and other special effects. We will start off with the
standard Cartesian 3D systems and work our way into cylindrical and spherical systems.

3D Cartesian Coordinates
The 3D Cartesian coordinate system is identical to the 2D system with the addition of the
z-axis, for a total of three degrees of freedom based on three mutually orthogonal (perpen-
dicular) axes. Therefore, to locate a point p in 3D-space, you need three coordinates: x, y,
z, or in compact form, p(x,y,z). Additionally, the three axes form three planes: the x-y
plane, the x-z plane, and the y-z plane, as shown in Figure 4.7. These planes are very
important, and each divides space into two regions, or half spaces. This concept is impor-
tant, and we will revisit it in a number of algorithms. Now for a little work—there are
three planes; each plane divides space into two half spaces. How many unique sub-spaces
are there in a 3-axis system? The answer is eight! Therefore, in a 3-space system, there are
eight octants. This is shown in Figure 4.8.
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FIGURE 4.7 The 3D Cartesian coordinate system.
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FIGURE 4.8 The octants of the 3D system.

This is all fantastic; however, this new z-axis creates a slight problem, as we must decide
on two different orientations for the positive and negative half spaces for z, thus there are
two distinct 3D Cartesian coordinate systems: the left-handed system and the right-handed
system.

TIP

The names left-handed and right-handed come from the fact that if you wrap your right or left
hand around the z-axis from x to y then your thumb will point in the direction of positive z.

The Left-Handed System
The left-handed system (LHS) is shown in Figure 4.9. In the LHS, the positive z-axis runs
into the paper if we look straight down on it, or into the screen if we map x-y to the hori-
zontal and vertical axes of the screen.

The Right-Handed System
The right-handed system (RHS) is shown in Figure 4.10. In the RHS, the positive z-axis
runs out of the paper if we look straight down on it, and the negative z-axis runs into the
paper. Thus, if we map the x-y to the screen as before, the negative z-axis runs into the
screen and the positive z-axis out of the screen.
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FIGURE 4.9 The left-handed 3D system.
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FIGURE 4.10 The right-handed 3D system.
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NOTE

There isn’t any real difference between either system, but in this book we will primarily use the
LHS for the 3D engine. However, I might use the RHS to make 3D figures easier to understand.

We will generally use 3D Cartesian coordinates for everything in this book, but sometimes
it’s easier to think in terms of angles or directions when solving a particular problem—
working with 3D cameras, for example. Therefore, understanding the two other common
3D coordinate systems is a good idea, so let’s take a look.

3D Cylindrical Coordinates
Interestingly enough, there are polar coordinates in 2D, but in 3D there are both cylindri-
cal and spherical coordinates because we have one more degree of freedom. We are free to
interpret the other two as we wish, giving us two more distinct coordinate systems. Of
course, they are all mappable to each other, but each has its uses. The 3D cylindrical coordi-
nate system is the closest to the 2D polar system, because it is basically nothing more than
a 2D x-y polar system with z tacked onto it.
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FIGURE 4.11 The cylindrical coordinate system.
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Take a look at Figure 4.11 to see the standard cylindrical coordinate system. You will
notice that the x-y plane at z = 0 is the standard 2D polar system, and the cylindrical coor-
dinate locates a point by first locating the 2D point p(r, θ) in the x-y axis at z = 0 and then
“climbing” up the z-axis an amount z. Also, note that a right-handed system is used, and
it’s rotated on its side to make the illustration easier to see.

Converting Between 3D Cartesian and Polar Coordinates
Converting between 3D Cartesian coordinates and cylindrical coordinates is trivial. We
just use the 2D transform and then let z = z.

EQUATION 4.3 Converting 3D Polar Coordinates p(r,θ,z) to Cartesian Coordinates p(x,y,z)

x = r*cos(θ)
y = r*sin(θ)
z = z

In converting Cartesian coordinates to cylindrical, we again first use the 2D Cartesian-to-
polar transform and then once again let z = z.

EQUATION 4.4 Converting 3D Cartesian Coordinates p(x,y,z) to Polar Coordinates p(r,θ,z)

Given: x2 + y2 = r2

r = sqrt(x2 + y2)

θ = tan-1(y/x)

z = z

CAUTION

Again, the problem for the tangent still exists at the angles θ = 90° and θ = 270°.

Cylindrical coordinates are handy for a number of problems, such as controlling the
camera in a first-person shooter to environment mapping.

3D Spherical Coordinates
3D spherical coordinates are a little more complex than all the other coordinate systems.
In general, a point is located via two angles and a distance from the origin of the system
(usually x-y-z). Figure 4.12 shows a spherical coordinate system. To locate a point with
spherical coordinates, you need two angles and the distance from the origin.
Conventionally, this is written p(ρ,φ,θ); that is, “rho,” “phi,” and “theta,” where:
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• ρ is the distance from the origin to the point p.

• φ is the angle that the directed line segment from the origin (o) to p makes with the
positive z-axis (thus we will use a RHS system in this analysis).

• θ is the angle that the projection of the line from o to p makes on the x-y plane,
which is just the standard 2D polar θ. Also, 0 <= θ <= 2π; that is, θ must be in the
interval from 0 to 2π inclusive.

Hence, once again we see that we can derive spherical coordinates by using what we know
about 2D polar coordinates. Let’s see how to convert back and forth from 3D Cartesian
and spherical coordinates, shall we?
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FIGURE 4.12 Spherical coordinates and conversion.

First, pay close attention to Figure 4.12, because the text description of the conversion is
going to be confusing. To convert the spherical coordinates to 3D Cartesian coordinates
(x,y,z), we can use a two-step process. First, we can project the line segment o->p onto the
x-y plane and kill the z-axis. After we have done this, the problem becomes 2D and we
already have a solution to it. Then we can back up and find z in terms of (ρ,φ,θ). This is
the plan…
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EQUATION 4.5 Converting 3D Spherical Coordinates p(ρ,φ,θ) to Cartesian Coordinates
p(x,y,z)

From the projection of the line segment o->p onto the x-y plane, we see that:

r = ρ*sin(φ)
z = ρ*cos(φ)

and in the x-y plane, we know that:

x = r*cos(θ)
y = r*sin(θ)

Therefore, substituting r into x,y and collecting equations gives:

x = ρ*sin(φ)*cos(θ)
y = ρ*sin(φ)*sin(θ)
z = ρ*cos(φ)

EQUATION 4.6 Converting 3D Cartesian Coordinates p(x,y,z) to Spherical Coordinates
p(ρ,φ,θ)

Given: x2 + y2 + z2= ρ2

Similarly: x2 + y2 = r2

Therefore:

r = sqrt(x2 + y2)

ρ = sqrt(x2 + y2 + z2)

θ = tan-1(y/x)

And we can solve for φ after we have r and ρ from the relationship:

r = ρ*sin(φ)

Solving for φ gives:

φ = sin-1(r/ρ)

Also, we can use:

z = ρ*cos(φ)

Therefore:

φ = cos-1(z/ρ)
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Trigonometry
Trigonometry is the study of angles, shapes, and their relationships. Most trigonometry is
based on the analysis of a right triangle, as shown in Figure 4.13. The right triangle has
three interior angles and three sides. The angle opposite the 90 degree angle is usually
used as the reference point, and is sometimes referred to as the base angle. From it, we can
label the triangle. The side adjacent to the base angle is called the adjacent side. The side
opposite the base angle is called the opposite side, and the side connecting them is called
the hypotenuse. Don’t underestimate the power of the triangle and similar triangles. I have
seen few graphics algorithms that don’t use triangles or similar triangles in some manner,
so although it might seem trivial, expertise working with triangles is very important in
graphics programming.

The Right Triangle
With all that in mind, let’s just review some commonly known facts about triangles.
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FIGURE 4.13 The right triangle.

NOTE

I will use PI and the symbol π interchangeably throughout the book. However, PI will usually
mean the computer constant in the MATH.H header, whereas π means 3.14159….
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TABLE 4.4 Radians Versus Degrees

Angle in Degrees Angle in Radians

360 degrees 2*PI radians (approx. 6.28 radians)

180 degrees PI radians (approx. 3.14159 radians)

57.296 degrees 360 degrees/2*PI radians = 1 radian

1.0 degrees 2*PI radians/360 degrees = 0.0175 radians

Fact 1: There are 360 degrees in a complete circle, or 2*PI radians. Hence, there are PI
radians in 180 degrees. The computer functions sin() and cos() work in radians, NOT
degrees—remember that! Table 4.4 lists the values.

Fact 2: The sum of the interior angles θ
1

+ θ
2

+ θ
3

= 180 degrees, or PI radians.

Fact 3: Once again referring to the right triangle in Figure 4.13, the side opposite θ
1

is
called the opposite side, the side below it is called the adjacent side, and the long side is
called the hypotenuse.

Fact 4: The sum of the squares of the sides of a right triangle equals the square of the
hypotenuse. This is called the Pythagorean Theorem. Mathematically, we write it like this:

hypotenuse2 = adjacent2 + opposite2

or sometimes using a, b, and c for dummy variables:

c2 = a2 + b2

Therefore, if you have two sides of a right triangle, you can always find the third.

Fact 5: There are three main trigonometric ratios that mathematicians like to use. They
are called the sine, cosine, and tangent. They are defined as:

adjacent side       x

cos(θ) = --------------- = -------
hypotenuse         r

DOMAIN: 0 <= θ <= 2*PI

RANGE: -1 to 1

opposite side       y

sin(θ)  = --------------- = -------
hypotenuse        r

DOMAIN: 0 <= θ <= 2*PI

RANGE: -1 to 1
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sin(θ)        opposite/hypotenuse
tan(θ)  = ------------- = --------------------

cos(θ)        adjacent/hypotenuse

opposite         y

= ------------ = ----- = slope = M

adjacent         x

DOMAIN: -PI/2 <= θ <= PI/2

RANGE: -infinity to +infinity
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FIGURE 4.14 Graphs of basic trigonometric functions.
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Figure 4.14 shows graphs of all the functions. Notice that all the functions are periodic
(repeating) and that sin(θ) and cos(θ) have periodicity of 2*PI while tangent has periodicity
of PI. Also, notice that tan(θ) goes to + or -infinity whenever θ modulus PI is PI/2.

MATH

You might note the use of the terms DOMAIN and RANGE. These simply mean the input and the
output, respectively.

Inverse Trigonometric Functions
Many times when using trig functions like sine, cosine, and tangent, you create a formula
based on some geometry and need the initial angle back. That is, you want to use the
function in reverse to find the angle that some given ratio represents in terms of sine,
cosine, or tangent. This is called the inverse, and is written using a superscript -1:

θ = cos-1(x), where 0<= θ <=2*PI and –1 <= x <= 1

θ = sin-1(x), where 0<= θ <=2*PI and –1 <= x <= 1

θ = tan-1(x), where -PI/2 <= θ <= PI/2 and -∞ < x < +∞

NOTE

Of course, on a computer there usually isn’t a representation for infinity, but in this context we
mean numbers sufficiently large that for all intents and purposes they are many times larger than
any other number in the number space we are considering. For example, if your game is working
with a grid of 1000x1000, then 100,000,000 is close enough to infinity.

Using the preceding inverse functions is easy: Just plug in a number for x and solve for θ
(actually, let the computer do it). However, there is a catch. Although standard sine,
cosine, and tangent are slow (even on a computer), the inverse functions are 10 times
slower! So, make sure you really need to know the actual angle. Many times you can just
use the x itself in your algorithms. Of course, you can always use tricks like look-up tables
and interpolation if you really need angles back.

Trigonometric Identities
Now, there are about a gazillion trigonometric identities and tricks, and it would take a
math book to prove them all, so I’m just going to give you a table of the ones that a game
programmer should know. Table 4.5 lists some other trigonometric ratios, as well as some
neat identities.
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TABLE 4.5 Useful Trigonometric Identities

Reciprocal Functions

Cosecant: csc(θ) = 1/sin(θ)

Secant: sec(θ) = 1/cos(θ)

Cotangent: cot(θ) = 1/tan(θ)

Pythagorean Theorem in terms of trig functions:

sin(θ)2 + cos(θ)2 = 1

Conversion identity:

sin(θ) = cos(θ – PI/2)

Reflection identities:

sin(-θ) = -sin(θ)

cos(-θ) = cos(θ)

Angle Addition identities:

sin(θ
1

+ θ
2
) = sin(θ

1
)*cos(θ

2
) + cos(θ

1
)*sin(θ

2
)

cos(θ
1

+ θ
2
) = cos(θ

1
)*cos(θ

2
) - sin(θ

1
)*sin(θ

2
)

sin(θ
1

- θ
2
) = sin(θ

1
)*cos(θ

2
) - cos(θ

1
)*sin(θ

2
)

cos(θ
1

- θ
2
) = cos(θ

1
)*cos(θ

2
) + sin(θ

1
)*sin(θ

2
)

Of course, you could derive identities until you turn many shades of green. In general,
identities help you reduce complex trigonometric formulas into simpler ones, so you don’t
have to do the math. Hence, when you come up with an algorithm based on sine, cosine,
tangent, and so on, always take a look in a trigonometry book and see whether you can
simplify your math, so that fewer computations are needed to get to the result. Remember:
speed, speed, speed!!!

TRICK

When we get to matrix transformations, we might decide to concatenate a number of operations
together, like translation, rotation, and scaling. The rotation operation itself might be a concate-
nation of two or more rotation transformations, all in terms of sine and cosine. Hence, if we look
at the results of the matrix multiplications, we can simplify the matrix using trigonometric identi-
ties and write a specific function that performs the transformation, rather than using general
matrix multiplications blindly.
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FIGURE 4.15 Definition of a vector.

Vectors
Vectors are the basis for all 3D algorithms, and thus are very important to a game
programmer. Vectors are basically nothing more than a collection of two or more individ-
ual components that represent directed line segments in the 2- and 3-component case
(which we are interested in). They are defined by an initial point and a terminal point, as
shown in Figure 4.15. Referring to Figure 4.15, we see a vector u defined by the two points
p1 (the initial point) and p2 (the terminal point). The vector u = <u

x
,u

y
> is from p1(x1,y1)

to p2(x2,y2). To compute u, you simply subtract the initial point from the terminal point:

U = p2 – p1 = (x2-x1, y2-y1) = <u
x
, u

y
>

Another way to represent the vector from p1 to p2 is to use bar notation by placing the
two endpoints adjacent to each other and placing a bar over them, like this:

____

p1p2

which means the vector formed from point p1 to p2. Also, we usually represent vectors
by bolded lowercase (or uppercase) letters, like u, and the components are written within
angled brackets, like <u

x
,u

y
>.
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Okay, so a vector represents a directed line segment from one point to another, but that
segment can represent a lot of concepts, such as velocity, acceleration, or whatever.
However, be warned: Once defined, vectors are always relative to the origin. This means
that after you create a vector from point p1 to p2, the initial point in vector space is
always at (0,0), or (0,0,0) in 3D. This doesn’t matter because the math takes care of every-
thing, but if you think about it, it makes sense. A vector consists of two numbers in 2D
and three numbers in 3D space, so it really only defines an endpoint in 2D or 3D space.
Hence, the starting point is always thought of as the origin. This doesn’t mean that you
can’t translate vectors around and perform various geometrical operations with the vectors
themselves; it just means that you need to keep in mind what a vector really is.

The cool things about vectors are the operations that we can perform on them. Because
vectors are really sets of ordered numbers, we can perform many of the standard mathe-
matical operations on them by performing the mathematical operation on each compo-
nent independently.

NOTE

Vectors can have any number of components. Usually, in computer graphics we deal with 2D
and 3D vectors; that is, vectors of the form a = <x,y>, b = <x,y,z>. An n-dimensional vector has
the form

c = <c1, c2, c3, …, cn>

n dimensional vectors are used to represent sets of variables rather than geometrical space,
because after 3D we enter Hyperspace, as normal space only has three spatial dimensions. Right,
Mr. Mallory?

Vector Length
The first thing that will pop up time and time again when working with vectors is how to
compute the length of a vector or its magnitude. The length of a vector is called the norm
and is represented by two vertical bars on either side of the vector (at least in this book),
such as |u| and read as, “the length of u.” The length is computed as the distance from
the origin to the tip of the vector, or in general as the square root of the sum of the
squares of the components. Hence, we can use the standard Pythagorean Theorem to find
the length in the 2D and 3D case. Hence, |u| is equal to the following:

EQUATION 4.7 The Length of a 2D Vector u = <u
x, 

u
y
>

|u| = sqrt(u
x
2 + u

y
2)

And if u happened to be a 3D vector, the length would be:

EQUATION 4.8 The Length of a 3D Vector u = <u
x, 

u
y, 
u

z
>

|u| = sqrt(u
x
2 + u

y
2 + u

z
2)
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Normalization
After you have the length of a vector, you can do something interesting—normalize it, or
in other words, shrink the vector to make sure that its length is 1.0 while maintaining the
direction. Unit vectors have a lot of nice properties, just like the scalar 1.0. For example,
sometimes we might perform a number of operations and the resulting vector is of interest
to us, but we don’t care about its length; we just need a vector of length 1.0 in the direction
of the computed vector. Normalization can give us this. Given a vector n = <n

x
,n

y
>, the

normalized version of n is usually written as n with a “hat” over it, something like this:

∧
n

But, again that’s pressing my luck with the editors in layout, so we will use lowercase italic
(along with a superscript prime symbol sometimes for unit vectors) like this:

n or n'

In any case, the normalized version of a vector n is computed like this:

EQUATION 4.9 Normalizing a Vector

n’ = n/|n|

Very simple. The normalized version of a vector is simply the vector divided (multiplied
by the inverse) by the length of the vector.

Scalar Multiplication
The first operation that you might want to perform on a vector is scaling. For example,
suppose you have a vector representing speed and you want to go faster (or slower).
Scaling is performed by multiplying each component by a single scalar number. For
example:

Let u = <u
x
, u

y
> and k be a real constant

k*u = k*<u
x
, u

y
> = <k*u

x
, k*u

y
>

Figure 14.16 shows the scaling operation graphically. In addition, if you want to invert the
direction of a vector, you can multiply any vector by –1 and invert the vector as shown in
Figure 4.17, or mathematically:

Let

u = <u
x
, u

y
>

then the vector in the opposite direction of u is

-1*u = -1*<u
x
, u

y
> = <-u

x
, -u

y
>
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FIGURE 4.16 Vector scaling.
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Vector Addition
To add two (or more) vectors together, all you have to do is add the respective compo-
nents together. Figure 4.18 illustrates this graphically for the 2D case (3D would tax my
artistic abilities). Vector u is added to v, and the result is r. Notice how the addition was
performed geometrically: I took v and moved it to the terminal point of u and then drew
the other side of the triangle. Geometrically, this operation is equivalent to the following
mathematical operation:

u + v = <u
x
, u

y
> + <v

x
, v

y
> = <u

x
+v

x
, u

y
+v

y
>

Thus, to add any number of vectors together on graph paper, you can simply add them
“tip to tail,” and when you add them all up, the vector from the origin to the last tip is
the result.
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FIGURE 4.19 Vector subtraction.

Vector Subtraction
Vector subtraction is really vector addition with the opposite pointing vector; however, it
is sometimes illustrative to see subtraction graphically. Take a look at Figure 4.19 to see u –
v and v – u. Notice that u – v is computed by drawing a vector from v to u, and v – u is
computed by drawing a vector from u (as the initial point) to v (the terminal point).
Mathematically, we have:

u - v = <u
x
, u

y
> - <v

x
, v

y
> = <u

x
-v

x
, u

y
-v

y
>

which might be easier to remember, but a piece of graph paper can sometimes be a much
better “computer” than doing the math manually because you can visualize the data
quicker. Hence, it’s a good idea to know how to add and subtract vectors on graph paper
when you are working out rendering algorithms—trust me!
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The Inner Product, or the “Dot” Product
At this point you might be asking, “Can you multiply two vectors together?” The answer
is yes, but the straight component-wise multiplication represented by the symbol “⊗ “
isn’t very useful, it turns out:

u ⊗ v = <u
x
*v

x
, u

y
*v

y
>

However, another kind of multiplication known as the dot product is very useful. It’s
defined like this:

EQUATION 4.10 The Dot Product

u . v = u
x
*v

x
+ u

y
*v

y

The dot product, usually represented by a dot (.), is computed by summing the products of
the individual terms into a single scalar, rather than just multiplying the components and
keeping the result in vector form. You might ask, what does the dot product do for us? We
don’t even have vectors anymore! True, but the dot product is also equal to this expres-
sion:

EQUATION 4.11 The Dot Product Related to the Angle Between the Vectors

u . v = |u|*|v|*cos(θ)

This states that u dot v is equal to the length of u multiplied by the length of v multi-
plied by the cosine of the angle between the vectors. If we combine the two different
expressions, we get this:

u . v = u
x
*v

x
+ u

y
*v

y

u . v = |u|*|v|*cos(θ)
u
x
*v

x
+ u

y
*v

y
= |u|*|v|*cos θ
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This is a very interesting formula—it basically gives us a way to compute the angle
between two vectors, as shown in Figure 4.20, and that’s a really useful operation. If you
can’t see that, then take a look at the equation after rearranging and taking the inverse
cosine of both sides:

EQUATION 4.12 Computing the Angle Between Two Vectors

θ = cos–1 (u
x
*v

x
+ u

y
*v

y
/|u|*|v|)

or more compactly, we assume that (u.v) means (u
x
*v

x
+ u

y
*v

y
) and just write

θ = cos–1 (u.v/|u|*|v|)

This is a very powerful tool and the basis of many 3D graphics algorithms. The cool thing
is that if the u and v are already unit vectors—that is, the length of u and v are already
1.0—their product is 1.0 and the formula simplifies even more to

θ = cos–1 (u.v), for |u|=|v| = 1.0

And here are a couple interesting facts about the dot product:

Fact 1: If the angle between u and v is 90 (perpendicular), then u.v = 0.

Fact 2: If the angle between u and v is < 90 (acute), then u.v > 0.

Fact 3: If the angle between u and v is > 90 (obtuse), then u.v < 0.

Fact 4: If u and v are equal, then u.v = |u|2 = |v|2.

These facts are all shown graphically in Figure 4.21.
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u

v

v

v

u

u
ø

ø

ø

ø < 90, Acute
u • v > 0

ø = 90, Right angle
u • v = 0

ø > 90, Obtuse
u • v < 0

FIGURE 4.21 Angles and their relationship to the dot product.

07 0672318350 CH04  05•02•2003  2:35 PM  Page 267



Additionally, the dot product can be used for many other computations. One that is of
great use in computer graphics and game programming is computing the components of
one vector (or its projection) along a given test vector’s direction. Figure 4.22 shows this
graphically. For example, suppose you have a vector v that represents the trajectory of one
character in your game, and you have a vector u that represents the trajectory of another
character in your game. There are many cases when you want to know how much u is
pointing in the direction of v. In other words, you want the vector projection of u onto v,
which is called Projv u. We can compute this vector using the dot product.
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+y axis

–y axis

+x axis–x axis

u

Proj vu

v

FIGURE 4.22 The projection of u on v.

Referring to Figure 4.22, we have both u and v and we want the length of the parallel
projection of u onto v (we could just as well ask for the perpendicular length), then we
can multiply this by the unit vector in the direction of v if we need a vector quantity. To
compute this, we can use the dot product u.v. However, v must have length 1.0; that is,
be normalized. Hence, the final equation for the vector of the projection u onto v is:

EQUATION 4.13 The Length of the Parallel Projection of u onto v

(u . v) * v

Proj
v 
u = -------------

|v| * |v|
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Let’s see if we can understand what’s happening here. In the numerator, we have u.v,
which we know means

u . v = |u|*|v|*cos(θ)
u
x
*v

x
+ u

y
*v

y
= |u|*|v|*cos θ

Or in other words, u.v is equivalent to the length of u multiplied by the length of v times
the cosine of the angle between them. In the context of this problem, we know that we
are looking for the vector projection of u on v, but we need to convert v into a unit
vector—that’s what one of the |v| terms in the denominator does. You’ll notice that I have
deliberately aligned the v/|v| terms so you can see them. Thus, the |v| term is 1.0 and the
dot product can be rewritten like this:

u . v = |u|*1*cos(θ) = |u|* cos(θ)

This is key. It states that as the angle θ becomes 0° (that is, as the vector u becomes co-
linear with v), then |u|*cos(θ) becomes |u|, which is what we want. As the vectors align in
the direction of v, then we should expect to get the total length of u, and we do. Now
one last thing is up in the air—we need a vector, not just a magnitude! But this is easy. All
we do is multiply the magnitude term

u . v

-----

|v|

by the unit vector in the direction of v, and we are done. And the final result is exactly
what we started with:

(u . v) * v

Proj
v 
u = -------------

|v| * |v|

The point of this exercise is to show how the dot product works to solve for projections.
Basically, any time you want to find the amount that one vector is pointing in another
vector’s direction, you can use the dot product. However, remember that the test vector
must be converted to a unit vector; v in this case.

Multiplicative Laws for Dot Products
Under normal multiplication of scalars, the associative, distributive, and commutative
laws all work great. On the other hand, in vector space, sometimes these laws don’t all
work as you might think. Here’s a list that encompasses all the laws relating to the dot
product, so you don’t do anything weird with them:
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Given that u, v, and w are vectors and k is a scalar:

(a) u . v = v . u

(b) u . (v + w) = (u . v + u . w)

(c) k*(u . v)  = (k*u) . v = (u . (k*v))

Note: the dot product always has higher precedence than addition.

The Cross Product
The next type of multiplication that can be applied to vectors is called the cross product.
However, the cross product only makes sense on vectors with three or more components.
Therefore, in our case we will use 3D space vectors as an example. Given u = <u

x
, u

y
, u

z
>

and v = <v
x
, v

y
, v

z
>, the cross product written (u × v) is defined as:

EQUATION 4.14 The Cross Product in Terms of the Normal Vector and the Angle Between u
and v

u x v = |u|*|v|*sin(θ) * n

Alrighty then! Let’s take this apart piece by piece. |u| denotes the length of u, |v| denotes
the length of v, and sin(θ) is the sine of the angle between the vectors. Thus the product
(|u|*|v|*sin(θ)) is a scalar; that is, a number. Then we multiply it by n. But, what is n? n is
a unit normal vector, meaning that it’s perpendicular to both u and v and has length 1.0.
Figure 4.23 shows this graphically.
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u × v x – z

+y

–z
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if both u and v lie in the x – z plane
then u × v is parallel to the y axis

FIGURE 4.23 The cross product depicted graphically.

07 0672318350 CH04  05•02•2003  2:35 PM  Page 270



So the cross product tells us something about the angle between u and v, and the normal
vector to both u and v. But without another equation, we aren’t going to get anywhere.
The question is, how to compute the normal vector from u and v? The answer is with
another definition of the cross product.

The cross product is also defined as a very special vector product. However, it’s hard to
show without matrices, so bear with me. Assume that you want to compute the cross
product of u and v (u × v): You would build a matrix like this:

|i j k |

|u
x

u
y

u
z
|

|v
x

v
y

v
z
|

where i, j, and k are unit vectors parallel to the x-, y-, and z-axes, respectively.

Then to compute the cross product of u and v, you perform this multiplication:

EQUATION 4.15 Computing the Normal Vector Between Two Vectors u and v

n = (u
y
*v

z
-v

y
*u

z
)*i - (u

x
*v

z
-v

x
*u

z
)*j + (u

x
*v

y
-v

x
*u

y
)*k

n is just a linear combination of three scalars, each multiplied by mutually orthogonal
(perpendicular) unit vectors that are each parallel to the x-, y-, and z-axes respectively.
Thus we can forget i, j, and k and rewrite the equation as

n=<u
y
*v

z
-v

y
*u

z
, -u

x
*v

z
+v

x
*u

z
, u

x
*v

y
-v

x
*u

y
>

n is the normal vector to both u and v; however, it is not necessarily a unit vector (if u
and v were both unit vectors, n would be), so we must normalize it to find n. After this is
done, we can plug everything into our cross product equation and do what we will.

In practice however, few people ever use the u x v = |u|*|v|*sin(θ)*n formula; they simply
use the matrix form to find the normal vector because θ is usually unknown. Once again,
we see normalized vectors are very important in 3D graphics, and you will use them for
lighting, back-face culling, defining planes, to comparing the orientation of polygons, and
for collision detection, rendering, and so forth.

Multiplicative Laws for Cross Products
Here’s a list that encompasses all the laws relating to the cross product, so you don’t do
anything weird with them:

Given that u, v, and w are vectors and k is a scalar:

(a) u × v = -(v × u) (very important!)

(b) u × (v + w) = (u × v) + (u × w)

(c) (u + v) × w = (u × w) + (v × w)

(d) k*(u × v) = (k*u) × v = u × (k*v)
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The Zero Vector
Although you probably won’t use the zero vector much, it does exist. The zero vector has
zero length, no direction, and is simply a point, if you want to get technical. Thus in 2D,
the zero vector is <0,0>, and in 3D it’s <0,0,0>, and so on for higher dimensions.
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–y axis

+x axis–x axis

P1

P1 Displacement 
vector

Position vector

P2v̂
vd
^

P=P1+t.v̂

v=|vd|
^

P1=<P1x, P1y>

P2=<P2x, P2y>

P1+t • v̂

vd

FIGURE 4.24 Position and displacement vectors.

Position and Displacement Vectors
The next topic I want to talk about is position and displacement vectors. These are really
useful when tracing out geometrical entities like lines, segments, curves, and so on. Take a
look at Figure 4.24—it depicts a position vector that can be used to represent a line
segment. The line segment is from p1 to p2, vd is the displacement vector from p1 to p2,
and v is a unit vector in the direction of p1 to p2. We then construct the vector p to trace
out the segment. p looks like this mathematically:

p = p1 + t*v

where t is a parameter that varies from 0 to |vd|. If t = 0, then we have

p = p1 + 0*v = <p1> = <p1
x
, p1

y
>
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Thus at t = 0, p is pointing to the beginning of the segment. On the other hand, when 
t = |vd| we have

p = p1 + |v
d
|*v = p1 + v

d
= <p1+ v

d
>

= <p1
x
+v

x
, p1

y
+v

y
>

= p2 = <p2
x
, p2

y
>

Vectors as Linear Combinations
As you saw in the cross product, calculation vectors can also be written in the notation

U = u
x
*i + u

y
*j + u

z
*k

where i, j, and k are unit vectors parallel to the x-y-z axes. There is nothing magical about
this; it’s just another way to write vectors that you might need to know. All the operations
still work exactly the same. For example:

let u = 3i + 2j + 3k

let v = -3i – 5j + 12k

u + v = 3i + 2j + 3k – 3i – 5j + 12k

= 0i – 3j + 15k = <0, -3, 15>

Matrices and Linear Algebra
3D graphics involve nothing more than performing mathematical operations over and
over on lists of numbers; hence the use of matrices simplifies the process of transforming
and representing this type of data.

A matrix is a rectangular array of numbers with a given number of rows and columns. We
usually say that a matrix is m×n, meaning it has m rows and n columns. The size m×n is
also referred to as the dimension of the matrix. For example, here’s a matrix A that has
dimension 2×2:

A = |1 4 |

|9 –1|

Notice that I use uppercase bold to denote the matrix. In general, most texts use uppercase
bold to denote matrices, but I have seen uppercase italics, too. However, in this book we
will use uppercase bold. In the example preceding, the first row is <1 4>, and the second
row is <9 –1>. Here’s a 3×2 matrix:

|5  6  |

B = |2  3  |

|100 -7|
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And here’s a 2×3 matrix:

C = | 3 5 0  |

|-8 12 4 |

To locate the <i,j>th element in the matrix, you simply look at the ith row and the jth
column and look up the value. However, there is a gotcha—most math books start count-
ing off matrix elements using 1 as the starting point, rather than 0 as we do in computer
programs, so keep that in mind. We’re going to start counting with 0 because this will
make using C/C++ matrices work more naturally. For example, here’s the labeling of a 3×3
matrix:

|a
00

a
01

a
02
|

A = |a
10

a
11 
a
12 
|

|a
20

a
21 
a
22 
|

Easy enough. So that’s all there is to the actual matrix itself and the labeling conventions,
but you might ask, “Where do matrices come from?” Matrices are simply mathematical
tools to represent systems of equations. Basically, if you have a system of equations like

3*x + 2*y = 1

4*x – 9*y = 9

that’s a lot of work writing all the variables down. You know that the equation is in terms
of (x,y), so why keep writing them? Why not just create a compact format that contains
only the stuff you want to work with? This is how matrices came to be. In the preceding
example, there are three different sets of values that we can dump into matrices, and we
can work with them together or independently.

1. The coefficients of the variables:

3*x + 2*y = 1

4*x – 9*y = 9

A = |3  2|

|4 -9|

Note: Dimension of A is 2×2.

2. The variables themselves:

3*x + 2*y = 1

4*x – 9*y = 9

X = |x|

|y|

Note: Dimension of X is 2×1.
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3. And finally, the constants to the right:

3*x + 2*y = 1

4*x – 9*y = 9

B = |1|

|9|

Note: Dimension of B is 2×1.

With all these nice matrices, we can focus on the coefficient matrix A, for example,
without all the other stuff. Moreover, we can write matrix equations like

A*X = B

which, if you perform the math, (the multiplication), gives:

3*x + 2*y = 1

4*x – 9*y = 9

But how to perform the math? We learned that multiplication with vectors is non-intu-
itive, so what’s the operation with matrices? Let’s take a look by first understanding the
concept of “1” in the context of matrices.

The Identity Matrix
The first thing we need to define in any mathematical system is 1 and 0. In matrix mathe-
matics, there are analogs of both of these values. The analog of 1 is called the identity
matrix I, and is created by placing all ones in the main diagonal of the matrix and zeros
everywhere else. The identity matrix has the property:

A*I = I*A = A

Note: I and A must be the same size.

Furthermore, because matrices can be any size, there is obviously an infinite number of
identity matrices, but there is one constraint—all identity matrices must be square, or in
other words, m×m, where m >= 1. Here are a couple of examples:

I
2
=   |1 0|

|0 1|

Dimension 2×2

|1 0 0|

I
3
=   |0 1 0|

|0 0 1|

Dimension 3×3
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Technically, the identity matrix isn’t exactly the analog of 1, but is under matrix multipli-
cation (which we’ll get to in a moment).

The second type of fundamental matrix is called the zero matrix Z, and is 0 under both
addition and multiplication. It’s nothing more than a matrix of dimension m×n with all
entries 0. Other than that, there are no other special constraints.

|0 0 0|

Z
3x3

= |0 0 0|

|0 0 0|

Z
1x2

= |0 0|

The only interesting thing about the zero matrix is that it has the standard properties of
scalar 0 for both matrix addition and multiplication. Other than that, it’s pretty useless.

Matrix Addition
Addition and subtraction of matrices is performed by adding or subtracting each element
in two matrices to arrive at the result for each entry. The only rule to addition and
subtraction is that the matrices that the operation is being performed on must be the same
dimension. Here are two examples:

Let

A = |1 5 |   B = |13 7 |

|-2 0|       |5 –10|

then

A + B = |1 5 |  +  |13 7 | = |(1+13)   (5+7)| = |14 12|

|-2 0|     |5 –10|   |(-2+5)  (0-10)|   |3 -10|

and

A – B = |1 5 |  +  |13 7 | = |(1-13) (5-7)    | = |-12 –2|

|-2 0|     |5 –10|   |(-2-5) (0-(-10))|   |-7 10 |

Transpose of a Matrix
Sometimes it’s handy to be able to represent a matrix with its rows swapped with its
columns. For example, for the 1×3 row matrix M = [x y z], the transpose Mt (or [x y z]t)
really means a 3×1 column matrix that looks like this:

|x|

Mt =   |y|

|z|
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For the general case of an m×n matrix, the transpose is computed simply by exchanging
the rows with the columns. For example, for the 3×2 matrix A shown here:

|5  6  |

A =   |2  3  |

|100 -7|

The transpose is 2×3:

|5  2    100|

At =   |6   3  -7  |

That’s all there is to it. When computing inverses and performing general matrix multipli-
cations, the transpose of a matrix is sometimes employed.

Matrix Multiplication
There are two forms of matrix multiplication: scalar-matrix and matrix-matrix. Scalar matrix
multiplication is simply the multiplication of a matrix by a scalar number. You simply
multiply each element of the matrix by the number. The matrix can be any size m×n.
Here’s a general description for a 3×3 matrix:

Let k be any real constant.

|a
00

a
01

a
02
|

Let A = |a
10

a
11

a
12
|

|a
20

a
21

a
22
|

|a
00

a
01

a
02
|   |k*a

00
k*a

01
k*a

02
|

Then k*A = k*|a
10

a
11

a
12
| = |k*a

10
k*a

11
k*a

12
|

|a
20

a
21

a
22
|   |k*a

20
k*a

21
k*a

22
|

Here’s an example:

3*| 1 4| = |(3*1)  (3*4)| = |3 12|

|-2 6|  |(3*(-2)) (3*6)|  |-6 18|

MATH

Scalar multiplication is also valid for matrix equations, as long as you perform the multiplication
to both sides. This is true because you can always multiply the coefficients of any system of equa-
tions by a constant as long as you do so to both the right-hand side and the left-hand side of the
system.

The second form is true matrix multiplication. Its mathematical basis is a bit complex, but
more or less you can think of a matrix as an “operator” that operates on another matrix.
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Anyway, any two matrices A and B that you want to multiply must have the same inner
dimension, or in other words:

If A is m×n, then B must be n×r.

m and r may or may not be equal, but the inner dimension must. For example, you can
multiply a 2×2 by a 2×2, a 3×2 by a 2×3, and a 4×4 by a 4×5, but you can’t multiply a 3×3
by a 2×4 because the inner dimensions 3 and 2 are not equal. The resulting matrix of the
multiplication will have a size that is equal to the outer dimension of the multiplier and
multiplicand matrix. For example, a 2×3 multiplying a 3×4 would have dimension 2×4.

Matrix multiplication is one of those things that’s very hard to describe with words, so
take a look at Figure 4.25 while I give you the technical description of the multiplication
algorithm.
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a31 a32 a33

a21 a22 a23

a11 a12 a13

A3x3

Use ith row

b31 b32 b33

b21 b22 b23

b11 b12 b13

c31 c32 c33

c21 c22 c23

c11 c12 c13

B3x3 C3x3

Use Jth column

x = (a31 • b13 +a32 • b23 + a33 • b33) = C (3,3)

x = (a11 • b11 +a12 • b21 + a13 • b31) = C (i, J) = C (1, 1)
RowA • ColumnB

A • B = C

FIGURE 4.25 The mechanics of matrix multiplication.

Given a matrix A and B, to multiply them together (A × B = C) to compute each element
of the resulting matrix C, you must take a row of A and multiply it by a column in B. To
perform the multiplication, you will sum the products of each element or take the dot
product. Here’s an example for a 2×2 multiplying a 2×3—order counts!

Let A = |1 2|   B = |1 3 5|

|3 4|       |6 0 4|

C = A x B = |(1*1 + 2*6) (1*3 + 2*0) (1*5 +2*4)|

|(3*1 + 4*6) (3*3 + 4*0) (3*5 +4*4)|

= |13 3 13|

|27 9 31|
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TIP

As an aside, I want to bring to your attention the bolded sum of products (1*1 + 2*6). This, and
all the other elements of C, are really vector dot products of each row of A and each column of
B. Hence, the C

ij
th element can also be computed as the ith row of A dotted with the jth column

of B.

So that’s how you multiply matrices. Another way to think of it is, if you want to compute
the product of A × B, call it C. You can do this element by element. Hence, if you want
the c

ijth
element (where both i and j are zero-based), you can find it by taking the ith row

of A and dotting (summing the products) with the jth column of B.

Laws for Matrix Operations
Just as the dot product and cross product have specific laws relating to addition and multi-
plication in the context of the associative, commutative, and distributive laws, so do
matrices. Here they are:

(a) A + B = B + A (Commutative law for addition)

(b) A + (B + C) = (A + B) + C (Associative law for addition)

(c) A*(B*C) = (A*B)*C (Associative law for multiplication)

(d) A*(B+C) = A*B + A*C (Distributive law)

(e) k*(A + B) = k*A + k*B (Distributive law)

(f) (A+B)*C = A*C + B*C (Distributive law)

(g) A*I = I*A = A (Multiplicative property of identity)

Note: All the “+”s can be replaced with “-”s.

However, the following is not true in general:

(A*B) ≠ (B*A)

That is, the commutative law of multiplication does not hold for matrices. Thus, the order
in which matrices are multiplied is very important.

NOTE

One case in which (A*B) does equal (B*A) is if A or B is equal to the identity matrix.

Computing the Inverse and Solving Systems
At this point, you know how to create and manipulate matrices, but there is one more
mathematical object we need to learn to compute—the multiplicative inverse. In other
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words, if you have a scalar x and you want to find another number x-1 such that x*x-1 = 1,
then x-1 is the multiplicative inverse, or simply the inverse. In the case of scalars, it’s easy.
Given x is a real number, x-1 can be computed as follows:

x-1 = 1/x, for all x ≠ 0.

That’s pretty basic math. However, finding the multiplicative inverse for a matrix is rather
complex. For example, in the matrix equation, we want to solve for X:

A*X = B

If we had the inverse of A (A-1), we could multiply it by both sides:

(A-1*A)*X = A-1*B

And because we know that anything multiplied by its inverse is the identity matrix, we
have

(I)*X = A-1*B

And any matrix multiplied by the identity matrix is that matrix, thus we have the solution
for X:

X = A-1*B

Being able to solve systems of equations this way is very important in many areas of 3D
game programming, such as graphics, physics, and animation. We don’t really have time
to cover how to find the inverse of a matrix A in general, but I will give you some starting
places and show you how for the 2×2 case.

Given the matrix:

A =   |a b|

|c d|

The inverse exists, and there is a unique solution to the system if the determinate of the
matrix, that is, Det(A), is not zero. The determinate of an A (or any 2×2 matrix) can be
computed as the following:

EQUATION 4.16 Determinate of a 2×2 Matrix

Det(A) = (a*d – b*c)

If this result is not zero, the inverse of A, A-1 exists and can be computed as follows:
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EQUATION 4.17 Inverse of a 2×2 Matrix

1     |d –b|

A-1 = ------ * |-c a|

det(A)

Multiplying this all out, we get:

| d/(a*d – b*c) –b/(a*d – b*c)   |

A-1 =  |-c/(a*d – b*c) a/(a*d – b*c)|

Let’s put this to the test in a real system of equations. Assume you have the following two
linear equations:

3*x+5*y = 6

-2*x+2*y = 4

We want to solve for x,y using matrix techniques, so we first extract out the coefficient
matrix A, the variable matrix X, and the constant matrix B:

A =   |3  5| =   |a  b|

|-2 2|     |c  d|

X =  |x|

|y|

B =   |6|

|4|

Therefore, we want to solve for X in

A*X = B, X = A-1*B

Computing the inverse of A, we get:

A =   |3  5| =   |a  b|

|-2 2|     |c  d|

(a*d – b*c) = (3*2 – (-2)*5) = (6+10) = 16

| d/(a*d – b*c) –b/(a*d – b*c)     |

A-1 =  |-c/(a*d – b*c) a/(a*d – b*c)|

|2/16 –5/16      |

A-1 =  |2/16  3/16|
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Plugging into the matrix equation:

X = A-1*B

X =   |2/16 –5/16| * |6| = |(2/16)*6 +(4)*(-5)/16 |

|2/16  3/16|   |4|   |(2/16)*6 +  (4)*3/16  |

= |12/16 – 20/16 |

|12/16 + 12/16 |

= |-8/16| = |-0.5|

|24/16|   | 1.5|

Therefore, x = -0.5 and y = 1.5. Let’s plug these values into the original system and see
what’s up:

3*x  +   5*y     = 6

3*(-0.5)+   5*(1.5) = 6

-1.5   +   7.5     = 6

That’s correct. And just to make sure, let’s check the second equation:

-2*x      +   2*y     = 4

-2*(-0.5) +   2*(1.5) = 4

1.0    +        3  = 4

Check-check! Cool, huh?

Cramer’s Rule
The problem with solving a large system of equations that has three or more variables
using Cramer’s Rule is that the technique is bottlenecked by the computation needed to
find the inverse of the coefficient matrix. This can be rather complex, and usually must be
done iteratively for systems that have more than three variables by using techniques such
as Gaussian elimination.

NOTE

Gaussian elimination is a process whereby a coefficient matrix is transformed into a form such
that the solution to the system can literally be read off. The process is based on the fact that any
row of a matrix can be multiplied by a number, or a multiple of another row can be added to
any row as long as the same is done to the constant matrix. Using these basic rules, one can
slowly convert a matrix into a form where only one non-zero coefficient in a row exists, which
translates to a solved variable. Then the process can be continued, or you can employ back
substitution to solve the rest of the system.
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However, there is a closed form solution for a three-variable system based on Cramer’s Rule,
which you have probably heard of before. Cramer’s Rule for a three-variable system is as
follows:

Given a system:

a
00
*x + a

01
*y +a

02
*z = b

0

a
10
*x + a

11
*y +a

12
*z = b

1

a
20
*x + a

21
*y +a

22
*z = b

2

We can convert it to matrix form as follows:

|a
00

a
01

a
02
|

A =   |a
10

a
11 
a
12
|

|a
20

a
21 
a
22
|

|x|

X =   |y|

|z|

|b
0
|

B =   |b
1
|

|b
2
|

At this point, we must compute the determinate of A, or Det(A), which for a 3×3 matrix is
generally

|a
00

a
01

a
02
|

A =   |a
10

a
11 
a
12 
|

|a
20

a
21 
a
22 
|

EQUATION 4.18a Determinate of a 3×3 Matrix

Det(A) = a
00
*a

11
*a

22
+ a

01
*a

12
*a

20
+ a

02
*a

10
*a

21
-

a
02
*a

11
*a

20
– a

01
*a

10
*a

22
– a

00
*a

12
*a

21

Note: 12 multiplications and 5 additions.

There is also another method of computing the determinate of a matrix based on cofactor
expansion. This is rather advanced, so I will just give you the result:

EQUATION 4.18b Determinate of a 3×3 Matrix Using Cofactors

Det(A) = a
00
*(a

11
*a

22
– a

21
*a

12
) – a

01
*(a

10
*a

22
– a

20
*a

12
)

+ a
02
*(a

10
*a

21
– a

20
*a

11
)

Note: 9 multiplications and 5 additions.
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And just to be complete with the general notation, the determinate of a 2×2 matrix in
general form is

|a
00

a
01
|

A =   |a
10

a
11
|

Det(A) = a
00
*a

11
– a

01
*a

10

Now that we have the Det(A) for the 3×3 system, Cramer’s Rule can be written as a set of
quotients that solve for x,y, and z. There’s one quotient for each solution variable; x,y,z,
where the numerator is the determinate of the coefficient matrix A, with the first, second,
and third columns replaced with the column vector B to compute x,y, and z, respectively.
Then the denominator of each quotient is simply Det(A). Or more specifically, we have

|b
0
a
01

a
02
|

x = Det(|b
1
a
11 
a
12 
| )

|b
2
a
21 
a
22 
|

---------------------

Det(A)

Note: The first column of A was replaced with B to solve for x.

|a
00

b
0
a
02
|

y = Det (|a
10

b
1
a
12
| )

|a
20

b
2
a
22
|

---------------------

Det(A)

Note: The second column of A was replaced with B to solve for y.

|a
00

a
01 
b
0
|

z = Det(|a
10

a
11 
b
1
| )

|a
20

a
21 
b
2
|

---------------------

Det(A)

Note: The third column of A was replaced with B to solve for z.

And of course, you must use one of the forms of Equation 4.18 to compute the determi-
nate of each numerator, but you get the idea. Later we will write software to compute
determinates and solve for systems of two and three variables.
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Transformations Using Matrices
The whole point of learning all this stuff about matrices is to use them to perform 2D/3D
transformations. Basically, what we’re going to do is multiply the 2D/3D point p that we
want transformed against the desired transformation matrix. Or mathematically:

p' = p*M

where p' is the transformed point, p is the original point, and M is the transformation
matrix. Additionally, we can perform as many transformations as we want by multiplying
transformation matrices together. That is, we can concatenate any number of matrices
together by pre-multiplying them in a series, like this:

M = M
1
*M

2
*M

3
*…M

n

The following transforms are equivalent:

p’ = p*M = p*M
1
*M

2
*M

3
*…M

n

Whether you multiply p by M or the product M
1
*M

2
*M

3
*…M

n
, the results are the same.

For example, say that we have three transformations M1, M2, and M3 that we want to
apply to the point p in order to arrive at p'. These could represent a translation, rotation,
and projection, for example. We could perform this series of transforms in the normal
way, one at a time:

p1 = p*M
1

p2 = p1*M
2

p’ = p2*M
3

Note: p1 and p2 are just temporary variables.

The preceding series of transforms is completely acceptable. But, what if we have thou-
sands of p’s to transform, or even millions? It seems like those intermediate steps are a
waste—and they are! We can concatenate the transforms together like this, via substitu-
tion:

p1 = p*M
1

p2 = p*M
1
*M

2

p’ = p*(M
1
*M

2
*M

3
)
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Hence, the transform to p can be represented by the transform p *(M), where 
M123 = (M1*M2*M3). Therefore, we can compute M123 = (M1*M2*M3) once and then use it
instead of saving two matrix multiplies per point! Thus, the transform becomes

M
123

= (M
1
*M

2
*M

3
)

p’ = p * M
123

Of course, we have to compute M123, but this has to be done only once, and then we can
run as many points through the transform as we wish. The process of concatenating
matrices together is very useful in the 3D pipeline, especially when transforming 3D
vertices in object space into final points in screen space (but we’ll get to that).

NOTE

Because of the noncommutative nature of matrix multiplication in the general case, order is very
important, and M

1
*M

2
*M

3
≠ M

3
*M

2
*M

1
.

Homogeneous Coordinates
The next topic I want to cover briefly is homogeneous coordinates. In most cases, we’re
going represent our 3D objects as lists of vertices, each having three components: p(x,y,z),
or as a vector <x, y, z>, or as a row matrix [x y z]—note that all are equivalent and the
difference is really notational. I will use the latter when I want to multiply with a matrix
and/or I don’t want to use commas. However, to be able to use the full power of matrix
transformations, we are going to represent points in 2D and 3D using homogeneous coor-
dinates, so we can perform all possible transformations using matrices. To convert a 2D or
3D point to homogeneous coordinates, we add a “w” term to each, as follows:

The homogeneous coordinate for a 3D point [x y z]:

[x y z w]

and for a 2D point [x y]:

[x y w]

w homogenizes the coordinate, but it’s not artificial. To convert from homogenous coordi-
nates to normal coordinates, we must divide by w. For example, in the 3D case:

Given

[x y z w]

the normal coordinate can be computed as

[x/w y/w z/w]
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Therefore, if w = 1, the transform doesn’t change x, y, or z. So what’s the point of adding
w? Well, w allows us to represent the concept of infinity. For example, as w approaches 0,
then x/w approaches ∞. Or in other words, as the denominator of any fraction goes to 0,
the quotient goes to infinity. Additionally, homogenous coordinates come from homoge-
nous equations. For example, take a look at the following linear equation:

a*x + b*y + c = 0

This is a linear equation with degree 1, but two of the terms have degree 1 while the
constant term has degree 0. What if we want all the degrees to be the same (homoge-
nous)? We can convert the polynomial to a homogenous one by replacing x with x/w and
y with y/w:

a*x/w + b*y/w + c = 0

And then we want to clear the w’s in the denominator, so we multiply through by w, and
the result is

a*x + b*y + c*w = 0

Now all the terms have degree 1, and thus the polynomial is homogenous. The point of
all this is that if you represent geometric objects using homogenous coordinates, you can
guarantee that all transformations are possible, including perspective transforms and trans-
lations. I don’t want to belabor this anymore, but know that we are going to use a dummy
variable w = 1 in many cases just so we can represent all transforms via matrices. In reality,
we might not use any storage for w in our data structures because we are going to let 
w = 1 for most cases, and all homogenous coordinates [x y z w] with w = 1 are simply 
[x y z]. I just want you to know where this mathematical trick comes from.

Although we are going to cover the full gamut of 3D transformations in the next chapter
in great detail, I just want to briefly show some of the most basic 3D transformations
(translation, scaling, and rotation) and why we need homogeneous coordinates to support
all three.

Applied Matrix Transformations
The following section illustrates some of the basic matrix transformations that we will
perform to both 2D and 3D data. The examples are for 3D, but the 2D versions can easily
be derived by dropping the z component in most cases. Note that w = 1 for all the
examples.
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FIGURE 4.26 Translation depicted geometrically for the 2D case.

Translation
To perform translation in 3D, we want to translate the point p(x,y,z) to the new point
p'(x+dx, y+dy, z+dz). This is shown in Figure 4.26 for the simplified case where the point
is in the x-y plane. The following 4×4 matrix will do the job:

|1 0 0 0   |

M
t
=  |0 1 0 0   |

|0 0 1 0   |

|dx dy dz 1|

Given p = [x y z 1], we want to transform:

|1 0 0 0    |

p' = p*M
t
= [x y z 1]*|0 1 0 0    |

|0 0 1 0    |

|dx dy dz 1 |

= [(x+1*dx) (y+1*dy) (z+1*dz) (1*1)]

= [(x+dx) (y+dy) (z+dz) 1]

And dividing the first three components (which represent x, y, and z) by the w factor
(1.0), we get:

= [(x+dx)/1 (y+dy)/1 (z+dz)/1]

= p’((x+dx), (y+dy), (z+dz))

NOTE

In reality, when we write the math library, we obviously aren’t going to waste space and divide
by 1.0 all the time. We are going to use a 4×3 matrix for most transforms and assume w = 1, but
for now, let’s just pretend.
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And if we pull out the first three elements, we get

x’ = x+dx

y’ = y+dy

z’ = z+dz

which is exactly what we wanted.

Translation Inverse
Also, it’s interesting to note that the inverse of Mt is computed simply by changing the
sign of dx, dy, and dz in the matrix Mt:

|1  0  0  0   |

M
t
–1 =  |0  1  0  0   |

|0  0  1  0   |

|-dx -dy -dz 1|

Let’s check that by computing the product Mt*Mt
–1, which should be I4x4:

M
t
*M

t
–1 =

|1  0  0  0|   |1  0  0  0   |

=  |0  1  0  0| * |0  1  0  0   |

|0  0  1  0|   |0  0  1  0   |

|dx dy dz 1|   |-dx -dy -dz 1|

M
t

M
t
–1

|1 0 0 0|

=  |0 1 0 0| = I
4x4
.

|0 0 1 0|

|0 0 0 1|

NOTE

Computing the inverse efficiently for common transformation matrices is very important in 3D
graphics, especially in the camera transform.

Scaling
To scale a point relative to the origin, we want to multiply the point p(x,y,z) components
by scaling factors sx, sy, and sz for the x- ,y-, and z-axes, respectively. This is shown in
Figure 4.27 for the simplified case where all the points are in the x-y plane. In addition,
we want no translation during the scaling operation. Here’s the matrix we want:

|sx 0  0  0|

M
s
=|0  sy 0  0|

|0  0  sz 0|

|0  0  0  1|
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FIGURE 4.27 The scaling operation.

Given p = [x y z 1], we want to transform

|sx 0  0  0|

p’ = p* M
s
= [x y z 1] * |0  sy 0  0|

|0  0  sz 0|

|0  0  0  1|

= [(x*sx) (y*sy) (z*sz) (1*1)]

= [(x*sx) (y*sy) (z*sz) 1]

And dividing the first three components (which represent x, y, z) by the w factor, we get

= [(x*sx)/1 (y*sy)/1 (z*sz)/1]

= p’((x*sx), (y*sy), (z*sz))

which again is the desired result for scaling; that is

x’ = sx*x

y’ = sy*y

z’ = sz*z
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MATH

Note the 1 in the lower-right bottom of the transformation matrix. Technically, it’s not necessary
because we aren’t ever going to use the result from the fourth column for scaling. Hence, we are
wasting math cycles. Again, as noted in the translation example, using the four-component
representation to implement homogenous coordinates in our 3D points (or three-component for
2D points) forces us to use a 4×4 matrix to be mathematically correct. Later we will throw away
all that we don’t need.

Scaling Inverse
Although not as commonly used as the inverse of translation, computing the inverse of
the scaling matrix can come in handy. Can you think of what the inverse is? Give up? The
inverse of the scaling matrix Ms is computed simply by inverting each of the scaling
factors sx, sy, and sz in the matrix Ms:

|1/sx 0  0  0|

M
s
–1 =  |0  1/sy 0  0|

|0  0  1/sz 0|

|0  0  0  1  |

Let’s check that by computing the product Ms*Ms
–1, which should be I4x4:

M
s
*M

s
–1 =

|sx 0  0  0|   |1/sx 0  0  0|

=  |0  sy 0  0| * |0  1/sy 0  0|

|0  0  sz 0|   |0  0  1/sz 0|

|0  0  0  1|   |0  0  0  1|

M
s

M
s
–1

|1 0 0 0|

=  |0 1 0 0| = I
4x4
.

|0 0 1 0|

|0 0 0 1|

NOTE

Note that computing the inverse mathematically using Gaussian elimination or another method
is very complex and tedious, whereas here we simply thought about the problem in terms of its
geometrical properties to find the inverse. In general, when a transform represents a geometrical
transformation in 2D or 3D, computing its inverse is trivial, and can usually be done with a little
thought about simply inverting the geometrical transformation. Keep this in mind when we
compute the inverses for the rotation matrices and see whether you can figure them out before
getting to that section.
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Rotation
The rotation matrix is the most complex of all the transformations because it’s full of trig
functions. Basically, we want to rotate the input point by using the rotation equations. To
achieve this, we must look at the rotation equations and pick off the operators and then
push them into a matrix. In addition, we don’t want any translation, so the bottom row
in positions 0, 1, and 2 will always be 0.
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There is also one more technical detail—in a 3D system, there are three axes that we can
rotate in parallel to: the x, y, or z, as shown in Figure 4.28. With that in mind, we can
start with the z-axis rotation and then use it as a model to create the x- and y-axis rotation
matrices. The key is that during rotation around any axis, the axis component itself
remains unchanged.

CAUTION

The direction of rotation for positive values of θ depends on the “handedness” of the system. If
you are using a right-handed system, all rotations with positive θ will be counterclockwise. If you
are using a left-handed system, positive θ will result in clockwise rotations.
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Keeping all that in mind, here are the rotation equations for rotation parallel to the x-, y-,
and z-axes:

Rotation parallel to the z-axis:

|cosθ sinθ 0 0|

M
z
= |-sinθ cosθ 0 0|

|  0    0   1 0|

|  0    0   0 1|

NOTE

If you delete the last column and row, you’ll have the matrix for 2D rotation in a plane.

Rotation parallel to the x-axis:

|1  0   0    0    |

M
x
= |0  cos θ sin θ 0|

|0 -sin θ cos θ 0|

|0  0   0        1|

Rotation parallel to the y-axis:

| cos θ 0 -sin θ 0 |

M
y
= | 0   1  0   0     |

| sin θ 0  cos θ 0 |

| 0   0  0   1     |

Now, let’s look at an example for rotation around the z-axis and see whether the transform
works.

Given the point p = [x y z 1], we want to rotate an angle θ about the z-axis:

| cos θ sin θ 0 0|

p’ = p*M
z
= [x y z 1] * |-sin θ cos θ 0 0|

| 0   0    1 0   |

| 0   0    0 1   |

p’ = [(x*cos θ – y*sin θ) (x*sin θ + y*cos θ) z (1*1)]

And dividing the first three components (which represent x, y, and z) by the w factor, 
we get:

p’ = ((x*cos θ–y*sin θ), (x*sin θ + y*cos θ), z)

Note: z remained unchanged, as it should.
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Rotation Inverse
The rotation inverses for M

x
, M

y
, and M

z
are all computed in the same manner, so I’m

only going to show you the derivation of M
z
—the others will follow from there. To

compute the inverse of M
z

for a given θ, you can take two approaches: one based on
geometry, and the other based on linear algebra. Let’s begin with the geometric computa-
tion of the inverse. It makes sense that if we rotate an object parallel to the z-axis by θ,
then to rotate it back, we can simply rotate it by -θ. That’s it! So all you need to do is take
the rotation matrix and replace θ with -θ, and that’s the inverse. Therefore, the inverse 
M

z
-1 can be computed as follows:

|cos-θ sin-θ 0 0 |

M
z
-1 = |-sin-θ cos-θ 0 0|

|0   0    1 0    |

|0   0    0 1    |

Now, there’s another simplification we can make here to get rid of the -θ terms. Using the
reflection identities from Table 4.5, we have

sin(-θ) = -sin(θ)
cos(-θ) = cos(θ)

Using these formulas and rewriting Mz
-1 in terms of positive θ, we have

|cosθ -sinθ 0 0|

M
z
-1 = |sinθ cosθ 0 0 |

|0   0   1 0   |

|0   0   0 1   |

Let’s try the product Mz*Mz
-1 and see whether we get the identity matrix I4x4:

M
z
*M

z
-1 =

| cos θ sin θ 0 0|  |cos θ -sin θ 0 0|

= |-sin θ cos θ 0 0| *|sin θ cos θ 0 0|

|   0    0 1 0|  |  0  0  1 0|

|   0    0  0 1|  |  0     0 0 1|

M
z

M
z
-1

=

|(cos2θ+sin2θ)         (-sinθ*cosθ+cosθ*sinθ)  (0)  (0)|
|(-sinθ*cosθ+cosθ*sinθ)  (sin2θ+cos2θ)          (0)  (0)|

|(0)                   (0)                  (1)  (0)|

|(0)                  (0)                (0)  (1)|
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Which, using the identity cos2 θ+sin2 θ = 1, reduces to

|1 0 0 0|

=  |0 1 0 0| = I
4x4
.

|0 0 1 0|

|0 0 0 1|

See how powerful geometric interpretation is to compute inverses of geometry transform-
ing matrices? Very cool! Anyway, now let’s get a little mathematical. The rotation matrix
itself is a special matrix in the wide world of matrices. In fact, it’s part of a very unique
class of matrices that are called orthonormal.

Orthonormal Matrices
Orthonormal matrices are matrices where each row or column is orthogonal to the previous
for a given basis. A basis is a set of vectors that can represent all vectors in a space. In our
case, the basis for standard 2D space is <i+j>, and the basis for 3D is <i+j+k>—remember
this from a few sections ago? Remember, all vectors in a 3D space can be written as a
linear combination:

u = u
x
*i + u

y
*j + u

z
*k

Where i = <1,0,0>, j = <0,1,0>, and k = <0,0,1>. Therefore, i is orthogonal to j is orthogo-
nal to k because for the set s1 = (i,j,k) with k = 0,1,2, and s2 = (i,j,k) with t = 0,1,2 and 
k ≠ t, the dot product is 0; therefore, the vectors are perpendicular. For example, (i.j)
equals:

<1,0,0> . <0,1,0> = 1*0 + 0*1 + 0*0 = 0.

This will hold true for all pairs of (i,j,k). Now, the point is that if a matrix contains a set
of orthogonal vectors as its rows or columns, the matrix is said to be an orthogonal or
orthonormal matrix. Let’s take a look at Mz again:

|cosθ sinθ 0 0 |

M
z
= |-sinθ cosθ 0 0|

| 0   0   1 0  |

| 0   0   0 1  |

If we assume that the rows represent vectors in 3D, we have:

U1 = <cos θ, sin θ, 0, 0>
U2 = <-sin θ, cos θ, 0, 0>
U3 = <0, 0, 1, 0>

U4 = <0, 0, 0, 1>
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Now, technically we are in 4D space because these transforms are based on homogeneous
coordinates, but let’s not worry about that for a moment and see whether all these vectors
are orthogonal to one another.

• u1 is orthogonal to u4 because (u1 . u4) = 0.

• It’s easy to see that both u1 and u4 are orthogonal to both u1 and u2 because both
u1 and u2 have zeros in the last two components, thus the products with either u3
or u4 will always be zero, and so will the dot product.

The only big question left is whether u1 is orthogonal to u2. Let’s see:

u1 = <cos θ, sin θ, 0, 0>
u2 = <-sin θ, cos θ, 0, 0>

u1 . u2 = (cos θ)*(-sin θ) + (sin θ)*(cos θ) + 0 + 0
= 0.

Killer! The point is, we have shown what an orthogonal matrix is and how to check for it.
Wonderful, but how does this help us find the inverse? Well, if a matrix is orthogonal, its
transpose is its inverse. Therefore, if we compute Mz

t, it should be equivalent to the
inverse of Mz (that is, Mz

-1).

Given

|cosθ sinθ 0 0 |

M
z
= |-sinθ cosθ 0 0|

| 0   0   1 0  |

| 0   0   0 1  |

its transpose is computed by exchanging each column with each row:

|cosθ -sinθ 0 0|

M
z
t = |sinθ cosθ 0 0 |

|0   0   1 0   |

|0   0   0 1   |

which is indeed Mz
-1! Amazing, huh? I scare myself sometimes <BG>.

Basic Geometric Entities
The next topic I want to discuss is basic geometric entities such as points, lines, planes,
and surfaces, but with a focus on various mathematical representations and operations
that are of interest in the world of 3D graphics. For example, all polygons are really planes
with boundaries; therefore, being proficient at manipulating planes and plane equations is
very useful.
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FIGURE 4.29 A plain old point in 3D.

Points
There’s not much to say about a point. Figure 4.29 represents a point p1(x,y) in 2D and a
point p2(x,y,z) in 3D. Of course, the homogeneous coordinates for p1 and p2 are [x y w]
and [x y z w], respectively.

Lines
Lines are a bit more interesting, and a lot more complex to represent in 3D. Let’s begin by
looking at a line from p1(x1, y1) to p2(x2,y2) in 2D, as shown in Figure 4.30. Nothing
special about this line. We can represent it in a number of ways, such as the point-slope
form, the slope-intercept form, or the general form.

EQUATION 4.19 Slope-Intercept Form

y=m*x + b

where m is the slope of the line (dy/dx), and b is the y-axis intercept.

Basic Geometric Entities 297

4

�y axis

�z axis

�z axis

�x axis�x axis

�y axis

P1 �x1, y1, z1�

P2 �x2, y2, z2�

y

z

x

07 0672318350 CH04  05•02•2003  2:36 PM  Page 297



FIGURE 4.30 A line in 2D.

EQUATION 4.20 Point-Slope Form

(x-x0) = m*(y-y0)

where m is the slope and (x0,y0) is a point on the line.

EQUATION 4.21 General Form

a*x + b*y + c = 0

The general form, of course, is the most basic. Let’s see whether we can convert it into the
other forms. Converting to the slope-intercept form is trivial:

y = m*x + b

Rearranging, we get

m*x – 1*y + b = 0

We can now pick off a, b, and c in the general form:

a*x + b*y + c = 0

CHAPTER 4 It’s a Math, Math, Math World—Trigonometry, Vectors, Matrices, and Quaternions298

+y axis

–y axis

+x axis–x axis

dx

dy

u=P1P2=P2–P1=(x2–x1, y2–y1)

P1(x1, y1)

P2(x2, y2)

dy

dx
m= =

y2–y1

x2–x1

07 0672318350 CH04  05•02•2003  2:36 PM  Page 298



Therefore, a = m, b = -1, and c = b (the intercept). But what if you don’t have the inter-
cept? How can we find the values of (a,b,c) if we only have the coordinates (x0,y0) and
(x1,y1)? Well, let’s see whether the point-slope form can help out. Starting with the point-
slope equation:

(y – y0) = m*(x – x0)

multiplying through by m,

y – y0 = m*x – m*x0

Collecting x and y on the LHS,

-m*x + y = y0 - m*x0

Moving the constant terms on the RHS to the LHS:

(-m)*x + (1)*y + (-1)*y0 + (m)*x0 = 0

MATH

The (-1) and the associated multiplications aren’t necessary; they just make the extraction of
(a,b,c) easier to see.

So it looks like a = -m, b = 1, and c = (m*x0 – y0). In general, any one of the forms may be
appropriate for any particular application. However, if you have a problem where you
want to compute the intersection of two lines, the general form is usually the most appro-
priate because you can push them into a matrix and then solve as follows:

a1*x + b1*y = c1

a2*x + b2*y = c2

A =   |a1  b1|

|a2  b2|

X =  |x|

|y|

B =   |c1|

|c2|

We want to solve A*X = B. We can use the technique of multiplying each side by the
inverse of A, A-1.

X = A-1*B

We have done this exercise, so I leave it to you to find a closed form solution.
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MATH

If the determinate of A, Det(A), is zero, then no unique solution exists.
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FIGURE 4.31 A line in 3D space.

Lines in 3D Space
Lines in 3D space are a little more complex to represent. In fact, they are downright ugly!
In reality, we will use parametric representations of lines in many cases, but I want to talk
about parametric representations as a whole; so for now, let’s see whether we can figure
out a way to represent a 3D line. Take a look at Figure 4.31, which depicts a line in 3D.
Referring to the figure, we see a line that passes through points p0(x0,y0,z0) and
p1(x1,y1,z1) and the unit vector v' = <x1-x0, y1-y0, z1-z0> = <a,b,c> in the direction of p0
to p1. So we know two points on the line, and we have v’, which is analogous to the
“slope” of the line.

Now, before showing you the equation of the line, let’s take a quick look at the vector
parametric form just for kicks:

EQUATION 4.22 Parametric Vector Form of a 3D Line

p(x,y,z) = p0 + v’*t
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As t varies from zero to |v|, p traces out p0 -> p1. This should seem familiar, because we
covered it when discussing position and 2D displacement vectors a few sections back.
Anyway, we are looking for the explicit form of a line in 3D space, and here it is:

EQUATION 4.23 Explicit Symmetrical Form of a 3D Line

(x-x0)   (y-y0)   (z-z0)

------ = ------ = ------

a        b       c

Interesting, huh? Basically, there are three equations here, but you only need two because
they are coupled. Also, a,b,c are the (x,y,z) components of the unit vector v'. The problem
with this form is that it’s a bit clunky. For example, let’s compute it for the line from
p0(1,2,3) to p1(5,6,7).

Given

p0(1,2,3)

p1(5,6,7)

v = <p1-p0> = <5-1, 6-2, 7-3> = <4,4,4>

v’ = v/|v|  = <4,4,4>/|sqrt(42+42+42)|

= <.57, .57, .57>

= <a,  b,  c>

Plugging into Equation 4.23, we have

(x-1)     (y-2)   (z-3)

------ = ------ = ------

.57       .57     .57

Multiplying by .57 to clear the denominator and separating the equations, we have

(x-1) = (y-2)

and

(y-2) = (z-3)

Simplifying, we get

x – y = -1

y – z = -1

As you can see in Figure 4.32, lines are fairly ugly in 3D in explicit form. The parametric
form of lines is much cleaner.
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FIGURE 4.32 An infinite plane.

Planes
Planes are really the workhorse of 3D graphics. Technically, a plane is an infinite sheet
that extends in all directions infinitely, as shown in Figure 4.32. However, when dealing
with 3D graphics, we use the concept of a polygon many times, which is of course a
closed (usually coplanar) object that lies in a plane, but is constructed of a set of edges or
lines that make it up, as shown in Figure 4.33. However, because all polygons usually lie in
a specific plane, we can tell a lot about a polygon from the plane information. Conversely,
we can derive the information about a plane in which a polygon lies and use it for mathe-
matical operations as well. Hence, understanding planes is very important. So let’s first jot
down a couple of the general conceptual attributes of planes:

• All planes are infinite sheets in 3D.

• All planes divide space into two half-spaces (very important for various space parti-
tioning algorithms and collision detection).

A number of methods exist to generate an equation for a plane, but let’s take a look at the
problem geometrically and see whether we can come up with our own. This is a very
important exercise—being able to derive something yourself. It will help you immensely
in the future. Anyway, take a look at Figure 4.33, which depicts a plane that has the
normal n = <a,b,c> with the points p0(x0, y0, z0) and p(x,y,z) that lie in the plane itself.

CHAPTER 4 It’s a Math, Math, Math World—Trigonometry, Vectors, Matrices, and Quaternions302

+y axis

–y axis

+x axis

–z axis

+z axis

–x axis

n

07 0672318350 CH04  05•02•2003  2:36 PM  Page 302



We can see the plane we want to define, but what’s the equation? Let’s begin by noticing
that the vector p0->p lies within the plane, and should (must) be perpendicular (orthogo-
nal) to n because both p0 and p lie in the plane. Okay, now we have something to work
with—a constraint that we can exploit. We know that for any p(x,y,z) in the plane, the
vector <p0->p> dotted with n must be equal to zero, because the dot product of two
orthogonal vectors is always zero. Therefore, we can write

n . (p0->p) = 0
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FIGURE 4.33 A plane constructed around a polygon.

That is the equation for the plane! Let’s multiply it out now and see what it looks like:

EQUATION 4.24 Point-Normal Form of a Plane

<a,b,c> . <x-x0, y-y0, z-z0) = 0

a*(x-x0) + b*(y-y0) + c*(z-z0) = 0

This is called the point normal form of a plane. The reason is that (x0, y0, z0) is a point in
the plane, and <a,b,c> is the normal to the plane. Now, if we multiply the terms out and
collect the constants, we get the general form of a plane:
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EQUATION 4.25 General Form of a Plane

Given

a*(x-x0) + b*(y-y0) + c*(z-z0) = 0

a*x + b*y + c*z + (-a*x0 - b*y0 - c*z0) = 0

and letting d = (-a*x0 - b*y0 - c*z0), we have

a*x + b*y + c*z + d = 0

The general form comes in handy when you want to compute the intersection of two or
more planes. In that case, you have a system of two or more equations in terms of (x,y,z)
and you want to solve them. Of course, this is most easily done with the general form.

Computing the Half-Space In Which a Point Is Contained
There is a very important operation that you will use over and over in relation to planes:
computing whether a point is on one half-space or the other of a plane. For example, you
might want to know whether a projectile has pierced a plane, or something similar. The
plane equation can tell you this. Referring to Figure 4.34, we see a plane on its side, along
with a point p that we want to decide whether it is on the positive half-space or the nega-
tive half-space of the plane. The positive half-space is the space into which the normal is
pointing, and the negative is of course the other half-space.

To test for this, assuming that we have the equation of the plane in the form:

hs = a*(x-x0) + b*(y-y0) + c*(z-z0)

All you need to do is plug in the test point for (x,y,z) and test the result. Here are the
outcomes:

• If hs = 0, then the point lies in the plane.

• If (hs > 0), then the point lies in the positive half-space.

• If (hs < 0), then the point lies in the negative half-space.

This is one way of writing a polygon point containment test. As an example, let’s try a
couple of test points, with the x-z plane as the test plane. The normal is <0,1,0> and a
point on the plane is (0,0,0):

hs = 0*(x-0) + 1*(y-0) + 0*(z-0) = (y-0) = hs

First we see that the x-z coordinates are irrelevant, as they should be, because the plane in
question is the x-z plane. Therefore, we really only have to look at the y-component of
any point. For the point p(10,10,10), which is definitely in the positive half-space, we see
that (y-y0) = (10-0) = 10 > 0, hence in the positive half-space. So in this case, the problem
degenerated into a single component test. In general, it won’t, but you get the point.
That’s what I call a singular sense of humor.
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FIGURE 4.34 A plane and its half-spaces.

Intersection of a Plane and Line in 3D with Explicit Representations
As an example, let’s see how we would compute the intersection of a line and plane in 3D.
This is a very useful operation in a 3D game for a number of reasons: collision detection,
clipping, and so forth. We’ll use the plane and line shown in Figure 4.35. To make things
easy, I have selected the x-z plane as the plane; therefore, the point p0(0,0,0) is contained
within the plane, and the normal to the plane is n = <0,1,0>. The line we want to inter-
sect with the plane goes through the points p1(4,4,4) and p2(5,-5,-4). Now, let’s see
whether we can solve for the intersection point pi(x,y,z) in the figure.

The general point normal equation for the plane is

a*(x-x0) + b*(y-y0) + c*(z-z0) = 0

Plugging in the normal for <a,b,c> and the point p0 for (x0, y0, z0), we have

0*(x-0)+1*(y-0)+0*(z-0) = 0

y = 0
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FIGURE 4.35 An illustration of a plane and line intersection.

The general equation for a line in 3D is

(x-x0)  (y-y0)   (z-z0)

------ = ------ = ------

a        b        c

NOTE

The variables are just dummy variables, and represent a point on the line (x0, y0, z0) and a
vector parallel to the line <a,b,c>.

The variables <a,b,c> are the unit vector in the direction of the line p1->p2, which can be
computed as follows:

v = p2-p1  = (5,-5,-4) – (4,4,4) = <1, -9, -8>

v’ = v/|v| = <1, -9, -8>/<sqrt((1)2+(-9)2+(-8)2)

= <0.08, -0.74, -0.66>

Plugging p1 into (x0,y0,z0) and v into (a,b,c), we get

(x-4)     (y-4)    (z-4)

------ = ------ = ------

0.08     -0.74    -0.66

CHAPTER 4 It’s a Math, Math, Math World—Trigonometry, Vectors, Matrices, and Quaternions306

+y axis

–y axis

+x axis

+z axis

Pi(xi, yi, zi)

P1(4, 4, 4)

P2(51, –51, –4)–z axis

–x axis

07 0672318350 CH04  05•02•2003  2:36 PM  Page 306



Collecting both the line equation and plane equation:

1. (x-4)/.08 = -(y-4)/.74 = -(z-4)/.66 (equation of line)

2. y = 0 (plane equation)

We can now solve the system. The plane equation is y = 0, and at this value, the line takes
on values:

(x-4)/.08 = -(y-4)/.74

-(y-4)/.74 = -(z-4)/.66

At y = 0, we get

(x-4)/.08 = -(0-4)/.74

-(0-4)/.74 = -(z-4)/.66

x = 4+(.08)*4/.74 = 4.43

z = 4 -(0.66)*4/.74 = .43

Therefore, the line intersects at pi(4.43,0,.43), which looks right based on the figure. This
example was a bit tedious, but it’s important to see it at least once. Later we will derive
quicker ways to compute intersections of lines and planes based on a priori knowledge of
the geometry.

Using Parametric Equations
Parametric equations are infinitely more useful in computer graphics because they can be
used to represent lines or curves as a function of a single variable, rather than 2- or 3-space
variables. Moreover, they are a more natural method of representing motion and trajecto-
ries in computer games. Therefore, let’s take a look at them in detail.

2D and 3D Parametric Lines
Referring to Figure 4.36, we see two points in the x-y plane: p0(x0, y0) and p1(x1, y1). We
know that the vector is v = <vx, vy> = p0->p1 = (x1-x0, y1-y0). Thus if we were to add v
to p0, we would end up at p1. Now, the question is how can we write this parametrically,
so that we can vary a value t (for example) in some closed interval [a,b], and so that as we
vary the parameter t, a line is traced out from p0 to p1 along v? Of course, you have
already seen this in the vector discussion on position vectors. Once again, the set of points
(x,y) from p0 to p1 can be described by the following:

EQUATION 4.26 General Parametric Line

p = p0 + v*t, for t in the interval [a,b]

where v = <vx, vy> = p0->p1 = (x1-x0, y1-y0).
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FIGURE 4.36 Parametric line development.

However, the only problem with the formulation is that the interval of t is not really
known. We can compute it if we want, but there’s a very subtle point here. Equation 4.26
is really a general parametric line equation, so lines go from -∞ to +∞; hence, we don’t
really care about the form of v, because we are allowed to set it equal to all real values.
However, many times we want more control, with a parametric line segment rather than a
parametric line. Now here’s the cool part—parametric lines have the exact same form as
parametric lines, but we define the interval more precisely, and there are two common
ways to adjust the length of v. Let’s take a look at both.

Parametric Line Segments with Standard Direction Vector v
In the previous discussion, we let v = <vx, vy> = p0->p1 = (x1-x0, y1-y0). Therefore, the
length of v or |v| is exactly the length or distance from p0 to p1, as shown in Figure 4.36.
So, if we do a little thinking on what values of t define just the line segment from p0 to
p1, it’s fairly obvious that the interval is [0,1]. Let’s plug in the interval and look at the
results:

NOTE

The interval notation “[“ and “]” means inclusive, and “(“ and “)” mean non-inclusive. Thus,
[0,1] defines the interval of all real numbers from 0 to 1 including 0 and 1, and the interval (0,1]
means all real numbers from 0 to 1 including 1, but excluding 0.
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We have the following formula for the parametric line:

p = p0 + v*t, for t in the interval [0,1]

where

v = <vx, vy> = p0->p1 = (x1-x0, y1-y0)

At t = 0, we get the following result:

p = p0 + v*t = p0

which is correct.

And at t = 1, we get the following result:

p = p0+v*1 = p0+v = p0+<vx, vy> = p1

which is also correct.

Hence, the interval [0,1] exactly traces the line from p0 to p1 as t varies from 0 to 1.
Additionally, we see that it’s perfectly legal to plug values into t that are beyond the inter-
val, but these values are not on the desired segment. However, note that this is a very
important property when trying to solve parametric systems. If you design a line segment
interval from [0,1] and you get a parameter t outside of the interval for some calculation,
then you know that the point is outside of the segment—this is a very important detail.

Also, using the standard v and interval from [0,1] is nice because 0 and 1 are both fantas-
tic numbers! Now, let’s see the other representation of a parametric line using a normal-
ized v.

Parametric Line Segments with Unit Direction Vector |v| = 1
The next version of a parametric line is again the same as the previous, but with the one
change that we normalize the direction vector v, call it v' so that |v'| = 1. Okay, let’s see
the equations with the normalized v' replacing v:

p = p0 + v'*t, for t in the interval [a,b]

where v = <vx, vy> = p0->p1 = (x1-x0, y1-y0) and v' = v/|v|.

Now, here’s the problem: What is the interval that defines the line segment from p0 to
p1, as shown in Figure 4.37? If you’re keeping awake, you should immediately see that the
interval is [0, |v|]! Let’s see why.

When t = 0, we have

p = p0 + v'*0 = p0
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which is correct. When t = |v|, we have

p = p0 + v’*|v| = ?

which is equivalent to

v

= p0 + --- * |v|

|v|

The |v|’s cancel out, giving us

= p0 + v

Plugging in for v, we get

p = p0+v = p0+<vx, vy> = p1

which is what we wanted. Ultimately, there is no difference between the two representa-
tions. They are both constructed the same, but in different intervals, so that in one case
we vary t from [0,1], and in the other, we vary t from [0,|v|]. You could also construct a
parametric so that as you varied t from [-1, 1], you would get the line from p0 to p1. Try
and see whether you can come up with the formula for this parametric line yourself.
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Parametric Lines in 3D
3D parametric lines are absolutely identical to the 2D version: The points p0(x0, y0, z0)
and p1(x1, y1, z1) have three components, and of course so does v = <vx, vy, vz> = <x1-
x0, y1-y0, z1-z0>. The vector equation stays the same:

p = p0 + v*t, for t in the interval [a,b]

where

v = <vx, vy, vz> = p0->p1 = (x1-x0, y1-y0, z1-z0)

Other than the new parameter, everything stays the same. However, notice the simplicity
from moving from 2D to 3D. Remember how complex a 3D explicit line was in terms of x,
y, and z? It was ugly, but in parametrics, it’s very simple. That’s why working with lines in
parametric form in a 3D engine is almost necessary, because the explicit form is nearly
impossible to represent and do calculations on.
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FIGURE 4.38 A pair of ships on 2D trajectories.
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Computing the Intersection of Parametric Lines
Now, let’s say that you have two ships traveling in 2D, as shown in Figure 4.38. From the
figure, we see that:

• Ship 1 is traveling from p0(x0,y0) to p1(x1,y1).

• Ship 2 is traveling from p2(x2,y2) to p3(x3,y3).

We want to determine whether their trajectories will intersect. Now, we haven’t said
anything about whether the ships actually intersect because time hasn’t been included
into the problem. Remember, the objects not only have to collide in space, but at the
same time! For now, let’s just see whether their trajectories intersect. Your first attempt
might be to construct two explicit lines for each trajectory and then see whether the lines
intersect, but then you’re hosed, because how can you tell whether the intersection is on
the segments from p0->p1 and p2->p3? That’s why parametric lines are so useful. We can
perform the calculations and find the solution value t at the intersection. However, if t is
not in the interval that defines the lines, we know that their segments don’t intersect. This
case is shown in Figure 4.39.
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FIGURE 4.39 The point of intersection must lie on the lines’ segments.

Let’s begin by constructing the two parametric lines with intervals from [0,1] to make it
easier. Note that if the lines each had different intervals, we would be comparing apples to
oranges mathematically. Here are the definitions of the two lines parametrically:
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Given

• Ship 1 is traveling from p0(1,1) to p1(8,5).

• Ship 2 is traveling from p2(3,6) to p3(8,3).

Computing the direction vectors for each line:

v1 = p0->p1 = <x1-x0, y1-y0> = <8-1, 5-1> = <7,4>

v2 = p2->p3 = <x3-x2, y3-y2> = <8-3, 3-6> = <5,-3>

For the parametric line equations, we have

p01 = p0 + v1*t1, t1 ∈ [0,1]

p23 = p2 + v2*t2, t2 ∈ [0,1]

And with the real values:

p01(x,y) = (1,1) + <7,4>*t1

p23(x,y) = (3,6) + <5,-3>*t2

Notice that the parameter variable is different in each line. We have t1 and t2 rather than
t. This is because the parameters are different. It’s true that each parameter varies in the
interval from [0,1], but other than that, the t value on line one and the t value on line two
where the intersection occurs (if any) need not be the same. Hence, we must track this by
using two different parameters—this is very important, and forgetting to do it will cause
lots of math problems.

Let’s write all the equations in terms of their components:

x = 1 + 7*t1

y = 1 + 4*t1

and

x = 3 + 5*t2

y = 6 – 3*t2

We want to equate the x,y components together for each line and solve for t1 and t2, then
see whether t1 and t2 are both in the interval [0,1]. If so, we have an intersection, other-
wise we don’t. Equating terms, we have

x: 1 + 7*t1 = 3 + 5*t2

y: 1 + 4*t1 = 6 – 3*t2

Rearranging, we get

7*t1 – 5*t2 = 2

4*t1 + 3*t2 = 5
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We have two equations and two unknowns, so we can solve using whatever technique we
want: Gaussian elimination, Cramer’s Rule, substitution, voodoo magic, whatever. The
results are

t1 = .756

t2 = .658

We see that the lines intersect, because both t1 and t2 are in the interval of [0,1]. If we
want the actual intersection point, we can plug t1 or t2 into either line equation. Let’s
plug both t1 and t2 into each and make sure that both result in the same (x,y), just to be
safe:

For line 1:

x = 1 + 7*t1 = 1 + 7*(.756) = 6.29

y = 1 + 4*t1 = 1 + 4*(.756) = 4.02

And for line 2:

x = 3 + 5*t2 = 3 + 5*(.658) = 6.29

y = 6 – 3*t2 = 6 - 3*(.658) = 4.02

They check, thank Zeus! That should be enough to convince you that parametric represen-
tations are the best, and are simple to work with. Additionally, the same problem in 3D is
absolutely identical. There are no weird formulas, just another variable. Hence, in 3D you
would end up with something like this for each line:

p01(x,y,z) = (x0,y0,z0) + <vx1,vy1,vz1>*t1

p23(x,y,z) = (x2,y2,z2) + <vx2,vy2,vz2>*t2

And then you would break these into three equations and solve for t1 and t2:

For line 1:

x = x0 + vx1*t1

y = y0 + vy1*t1

z = z0 + vz1*t1

For line 2:

x = x2 + vx2*t2

y = y2 + vy2*t2

z = z2 + vz2*t2

The only difference is that you have three equations and two unknowns, so you can pick
any pair of the variables x,y,z and then solve for t1 and t2. After you have solved the
system, you must make sure that t1 and t2 result in the same point when plugged into the
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third equation variable that you didn’t use. However, in most cases, you will never need to
detect whether a 3D line intersects another 3D line segment because the probability of
this happening in any context is remote. Most of the time, you will want to detect
whether a 3D parametric line intersects with a plane. Let’s take a look at this problem.

Computing the Intersection of a 3D Parametric Line and a 3D Plane
Computing the intersection of a 3D line and a plane can be extremely simple or fairly
complex, depending on the plane. If the plane is x-y, x-z, y-z, or a plane parallel to them,
it’s trivial. However, for a general line plane intersection, we are going to have to work
harder.

Let’s start by writing down the formula for a parametric line and plane and solve the
trivial case first. Here’s the parametric line equation in 3D:

p = p0 + v*t, t ∈ [0,1]

Or more explicitly:

p(x,y,z) = p0(x0,y0,z0) + v<vx, vy, vz>*t

And here’s the 3D plane equation:

n . (p - p0) = 0

nx*(x-x0) + ny*(y-y0) + nz*(z-z0) = 0
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FIGURE 4.40 Intersections of lines and planes (trivial cases).

Referring to Figure 4.40, we see the three cases we are interested in:

• Case 1: Intersection of the line and the x-y plane when z = 0.

• Case 2: Intersection of the line and the x-z plane when y = 0.

• Case 3: Intersection of the line and the y-z plane when x = 0.

Solving all of these is trivial. Let’s solve the x-y plane case as an example. In this case, we
know that the z-coordinate must be 0, thus we can plug this into the parametric line
equation for the z-component and see what t we get:

p(x,y,z) = p0(x0,y0,z0) + v<vx, vy, vz>*t
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Component-wise:

x = x0 + vx*t

y = y0 + vy*t

z = z0 + vz*t 

Plugging z = 0 into the z equation, we get

z = z0 + vz*t = 0

or

t = -z0/vz

If t is in the interval [0,1], then we have an intersection and we can plug the t into the x
and y components of the parametric line and find those values, too:

x = x0 + vx*(-z0/vz)

y = y0 + vy*(-z0/vz)

Thus, intersecting lines with planes that are parallel to any of the standard planes in 3D is
trivial—the problem is intersecting a 3D line and an arbitrary plane. Hmmm, let’s take a
look at the line again:

p(x,y,z) = p0(x0,y0,z0) + v<vx, vy, vz>*t

Component-wise:

x = x0 + vx*t

y = y0 + vy*t

z = z0 + vz*t

And here’s an arbitrary plane:

n . (p - p0) = 0

nx*(x-x0) + ny*(y-y0) + nz*(z-z0) = 0

nx*x + ny*y + nz*z + (-nx*x0-ny*y0-nz*z0) = 0

Written in general form:

a*x + b*y +c*z + d = 0

where a = nx, b = ny, c = nz, and d = (-nx*x0-ny*y0-nz*z0).

CAUTION

Don’t confuse the x0, y0, z0 of the plane and the line—they are different! That’s why I keep d in
symbolic form, rather than long form.
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Is the solution jumping out at you yet? If we plug in the values of the right-hand sides of
x,y,z from the parametric line into the general form of the plane for x,y,z, we can solve for
t! Here’s the math:

EQUATION 4.27 Intersection of a Parametric Line and a Plane

a*(x0+vx*t) + b*(y0+vy*t) + c*(z0+vz*t) + d = 0

Solving for t:

t = -(a*x0 + b*y0 + c*z0 + d)/(a*vx + b*vy + c*vz)

where (x0,y0,z0, vx,vy,vz) are from the parametric line, and (a,b,c,d) are from the plane.

And of course, you just plug that back into the parametric equations to find the actual
(x,y,z):

x = x0 + vx*t

y = y0 + vy*t

z = z0 + vz*t

The cool thing is that this t will be the solution no matter what interval the t of the
segment is defined as. Thus, after you have t, just test whether it’s in your interval [0,1] or
whatever. The math will scale t to your interval no matter what, because the solution for t
has the direction vector in it. Of course, watch out for a zero denominator before the divi-
sion!

NOTE

Although I came up with the solution algebraically, it’s more than obvious that a more beautiful
geometric/vector solution is possible, because it’s not hard to see that both the numerator and
denominator are dot products—can you find one? If so, email it to me!

At this point, you are armed with enough math to handle 3D collision detection, wall
following, clipping, weapon projectiles, and a lot more. We are going to use this stuff a lot
later in the book, so make sure you understand it forward and backward.

Introduction to Quaternions
I remember talking to another game programmer in the early 80s about the mysterious
speed of Atari’s Space Duel. I couldn’t believe how fast the 3D was working. My friend had
some inside information that Atari was using “Matrix Multiplying.” I was pretty impressed
by that, because doing real math on 8-bit processors was quite a feat. These days, we have
BSP trees, portals, and A-buffers, but you can’t go anywhere without hearing the word
quaternion.
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Quaternions were invented in the 1800s by the mathematician William Rowan Hamilton
(if you study graph theory, you should be familiar with Hamiltonian paths). Quaternions
weren’t specially designed for 3D graphics (obviously), but they have found their applica-
tion in a couple of areas of 3D graphics for which they are well suited:

• 3D camera control

• Compact storage

• Smooth 3D interpolation

Quaternions are based on complex numbers, which are themselves a bit abstract to under-
stand. And of course, they don’t really mean anything in the real world—they only exist
mathematically. However, complex numbers are a tool that can be used to represent math-
ematical ideas for which real numbers just don’t work. With that in mind, first we are
going to take a look at basic complex number theory, and then move on to quaternions
and their mathematical properties. After that we’ll see how they are applied in computer
graphics and games.

Complex Number Theory
The set of real numbers R consists of all numbers in the interval [-∞, +∞]. Easy enough,
but take a look at these equations:

x = sqrt(4) = 2

x = sqrt(1) = 1

x = sqrt(-1) = ???

The third equation is the problem—we don’t have a number in the set of real numbers for
the square root of –1 because there is no number that when multiplied by itself is equal to
–1. You might say –1, but –1 * –1 = 1, so that’s not correct. We need a new number, which
we will call the imaginary number i (or j for electrical engineers). We are going to create the
following rule:

let i = sqrt(-1)

And then

i*i = -1

Now we can compute things like sqrt(-4), which would be

sqrt(-4) = 2*i

because

(2*i)*(2*i) = 4*i2 = 4*-1 = -4
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Now, the cool thing about the imaginary number i is that you can think of it as a variable
or coefficient; that is, all the rules of normal algebra still hold. You just pretend i is a vari-
able like x and do what you would normally do. Then whenever you see i2 terms, you can
convert them into –1 if you like to simplify. For example, look at the following sum:

3 + 5*i + 3*i2 – 10 + 6*i

Collecting terms, we get

= 3*i2 + 5*i + 6*i + 3 – 10

= 3*i2 + 11*i - 7

= 3*(-1) + 11*i – 7

= -3 + 11*i – 7

= -10 + 11*i

Nothing unordinary there. But, the imaginary number by itself is pretty boring, so mathe-
maticians came up with the concept of a complex number, which is the sum of a real
number and an imaginary one. Mathematically, a complex number looks like this:

z = (a + b*i)

a is called the real part (RP), and b is called the imaginary part (IM). Because a and b can
never be added together because of the imaginary coefficient of b, you can also think of
complex numbers as points in the complex plane, as shown in Figure 4.41.
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As a convention, most people call the x-axis the real part, and the y-axis the imaginary
axis. Thus, we have a geometrical interpretation of complex numbers based on the vector
basis:

z = a*(1,0) + b*(0,i)

I want to come back to this concept a little later, so keep that in mind. However, let’s look
at the operations on complex numbers and figure out how to add, subtract, multiply,
divide, and so on.

Complex Scalar Multiplication/Division
Multiplication of a scalar and a complex number is performed on a component-wise basis
as follows:

Given:

z
1

= (a+b*i)

k*z
1
= k*(a+b*i) = (k*a + (k*b)*i)

Example:

3*(2+5*i) = (6 + 15*i)

That is, the scalar simply distributes over the complex number. Division of course is
similar, because you can think of it as multiplication by the inverse.

Complex Addition and Subtraction
To add or subtract complex numbers, you simply add or subtract the real and the imagi-
nary parts separately, as follows:

Given:

z
1
= (a+b*i)

z
2
= (c+d*i)

z
1
+ z

2
= (a+b*i) + (c+d*i) = ( (a+c) + (b+d)*i)

Example:

(3 + 5*i) + (12 – 2*i) = (15 + 3*i)

Complex Additive Identity
Also, the additive identity (the complex number that, when added to any other complex
number, is that number) is (0+0*i), because:

(0+0*i) + (a+b*i) = (0+a + (0+b)*i) = (a+b*i)
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Complex Additive Inverse
The complex additive inverse (the number that, when added to any other complex number,
is the additive identity (0 + 0*i)) is z* = (-a - b*i) for any complex number z = (a + b*i)
because:

(a + b*i) + (-a – b*i) = (a-a) + (b-b)*i) = (0 + 0*i)

Complex Multiplication
Now for the fun part! Multiplying complex numbers is actually very easy. Let’s do it, and
pretend like i is a variable, as we have before.

z
1
= (a+b*i)

z
2
= (c+d*i)

z
1
*z

2
= (a+b*i) * (c+d*i)

= (a*c + a*d*i + b*c*i + b*d*i2)

Noting that i2 = -1 and collecting terms, we get

= (a*c + (a*d+b*c)*i + b*d*(-1))

Collecting terms once again, we have

= ((a*c-b*d) + (a*d+b*c)*i)

Therefore, we see that the real part equals (a*c - b*d), and the imaginary part equals (a*d +
b*c). Let’s do an example:

Example:

(1+2*i) * (-3 + 3*i) = ((-3-6) + (-6+3)*i) = (-9 - 3*i)

Complex Division
Division of complex numbers can be accomplished using brute force. For example, we can
compute the quotient of two complex numbers z1/z2 in the following way:

z
1
= (a+b*i)

z
2
= (c+d*i)

(a+b*i)

z
1
/z

2
= --------

(c+d*i)

If c = 0 or d = 0, then the division is trivial, but if neither c nor d is equal to 0, then we are
at a bit of an impasse. The question is how to perform the division so that the result is in
the form (a + b*i) once again. The trick is to clear the denominator first and turn it into a
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pure scalar. This way, we can simply divide the scalar into the real part and imaginary part
of the numerator. To turn the denominator into a pure scalar, we must multiply by the
complex conjugate, usually denoted by a superscript asterisk (*).

The complex conjugate of z = (a + b*i) is z* = (a - b*i). When we multiply a complex
number and its conjugate, the result is always a pure real number. Take a look:

Given:

z = (a+b*i)

then

z * z* =

(a+b*i) * (a-b*i) = (a2 + a*b*i – a*b*i – b2*i2)

= (a2 + b2)

Cool, huh? With this trick we can convert the quotient problem into a more palatable
form:

Given the quotient of two complex numbers

(a+b*i)

-------

(c+b*i)

We can always multiply by 1 and not change the results, so let’s multiply by the complex
conjugate of the denominator over itself:

(a+b*i)  (c-d*i)

------- * --------

(c+d*i)  (c-d*i)

Lots of steps go here…

(a*c+b*d)   ((b*c-a*d)*i)

=   --------- + ------------- 

(a2 + b2)       (a2 + b2)

Ugly as it might seem, rest assured it’s of the form (a+b*i).

Multiplicative Inverse
The last mathematical property—complex numbers need to be a closed set—is a multiplica-
tive inverse, which is a complex number that, when multiplied by another, results in “1”—
where “1” in complex numbers is equal to (1+0*i). If you think about it long enough, you
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will definitely see that we can use the complex conjugate in some way. Let’s just try the
obvious and write an equation and see what happens. We want the following:

(a+b*i) * (c+d*i) = (1+0*i)

Amazingly, the multiplicative inverse of z = (a+b*i) is just

1

1/z = ------

(a+b*i)

But the problem is that we no longer have something in the form (real_part +
imaginary_part*i); we have its inverse. We need to reform the preceding function so that
it’s of the form (a + b*i). We can multiply by the complex conjugate to find them, result-
ing in

1    (a-b*i)       a         b

------  ------- = -------- + -------- * i

(a+b*i) (a-b*i)   (a2 + b2)   (a2 + b2)

Gnarly, huh? What this means is that if you are given the complex number (a+b*i), its
inverse is 1/(a+b*i), but if you need the real part and imaginary part, you need to use the
preceding equation.

Complex Numbers as Vectors
Last but not least, I want to revisit the representation of complex numbers and show you
another way of thinking of them (if you haven’t already figured it out). Complex numbers
can also be thought of as vectors in a 2D plane. If you take a look at Figure 4.41, we’ve
plotted an imaginary number on a 2D Cartesian plane with the real part as the x-coordi-
nate and the imaginary part as the y-coordinate. So, there’s no reason why we can’t think
of imaginary numbers as vectors with the basis:

z = a*(1,0) + b*(0,i)

Or, more compactly:

z = <a,b>

where a is the real part, and b is the imaginary part. Figure 4.42 shows our new representa-
tion in vector form.

The cool thing about representing complex numbers as vectors is that we can then trans-
form them as vectors, and the results will all be perfectly valid. Moreover, representing
complex numbers as vectors allows us to better visualize an abstract mathematical notion
such as complex numbers, and to thus “see” relationships that might otherwise elude us
in their pure mathematical form.
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FIGURE 4.42 Complex numbers in a unit vector form.

Norm of a Complex Number
Many times we want to know the length of a complex number or the magnitude. Of
course, this doesn’t make much sense in a purely mathematical sense, but when we think
of complex numbers as vectors in space, it’s very natural and easy to understand. Anyway,
the norm of a complex number can be computed in the following ways:

EQUATION 4.28 Norm of a Complex Number

Given

z = a+b*i

then

|z| = sqrt(a2+b2)

Also, take a look at the product of any complex number and its conjugate:

Given

z = a+b*i, z* = a-b*i

then

z * z* = a2 + b*i - b*i + b2 = a2+b2

CHAPTER 4 It’s a Math, Math, Math World—Trigonometry, Vectors, Matrices, and Quaternions324

+y axis
Imaginary axis

–y axis

+x axis
Real axis

–x axis
a

z z=a.<1, 0>+b.<0, i>

b

<0, i>

07 0672318350 CH04  05•02•2003  2:36 PM  Page 324



Therefore, the norm is also equal to

|z| = sqrt(z * z*)

Hyper-Complex Numbers
Quaternions are nothing more than hyper-complex numbers. The term hyper-complex can
really mean anything mathematically, but usually it means a complex number that has
more than one imaginary component. In our case, we are going to refer to hyper-complex
numbers with one real part and three imaginary parts—otherwise known as quaternions.

A quaternion can be written many ways, but in general it’s of the form seen in Equation
4.29:

EQUATION 4.29 The Form of a Quaternion

q = q
0
+ q

1
*i + q

2
*j + q

3
*k

or

q = q
0
+ q

v
, where q

v
= q

1
*i + q

2
*j + q

3
*k

i = <1,0,0>, j = <0,1,0>, k = <0,0,1>, and <q
0
,q

1
,q

2
,q

3
> are all real numbers, and i, j, and k

are all imaginary numbers that form the vector basis of the quaternion q. Moreover, q
0

is
real, and has no imaginary coefficient.
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Also, the imaginary basis <i,j,k> has some interesting properties. It can be thought of as a
3D mutually perpendicular set of unit vectors in an imaginary coordinate system that
locates points in <i,j,k> space, as shown in Figure 4.43. But, the interesting thing about
<i,j,k> is the following relationship:

EQUATION 4.30 The Quaternion Basis Products

i2 = j2 = k2 = -1 = i*j*k

MATH

Note that I am bolding the imaginary basis i, j, k; thus, we would think they are vectors, and
they are, but they can also be thought of as variables. They have a dualistic nature, and some-
times it’s appropriate to think of them in their vector form, and sometimes it’s not. I might switch
back and forth, especially when I am using the i, j, or k alone or showing relationships among
them.

The “ = i*j*k” part takes a little getting used to, but it’s correct. And of course, you can
manipulate the relationship to arrive at the following:

Given

i2 = j2 = k2 = -1 = i*j*k

therefore

i = j*k = -k*j

j = k*i = -i*k

k = i*j = -j*i

which intuitively seems right, because the cross-product of any two perpendicular vectors
in an orthonormal basis should be perpendicular to the vectors themselves, or the third
vector in a 3D orthonormal basis. And if we invert the order of multiplication, we should
see an inversion or sign flip, and we do.

At this point, I want to establish some conventions about writing quaternions—otherwise,
we are going to get caught up in notation. Many people like to write quaternions using
lowercase letters to represent them, but they also break them up into a real and imaginary
part, where they represent the imaginary part as a vector like this:

q = q
0
+ q

v

where

q
v
= q

1
*i + q

2
*j + q

3
*k
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So q
0

is the real part, and qv is the imaginary part and is a vector <q
1
, q

2
, q

3
>. That’s cool,

but I don’t like the fact that q, the quaternion itself, is not bolded—it’s confusing because
it’s a 4-tuple itself. We are going to use a notation in which quaternions are represented in
lowercase bold, AND the vector part is also in lowercase bold. Here’s an example:

a = -1 + 3*i + 4*j + 5*k

which in pure vector form is

a = <-1, 3, 4, 5>

or in real-vector form is

a = q
0
+ q

v

where q
0

= -1, and qv = <3,4,5> = 3*i + 4*j + 5*j.

The point is that we are going to use arrays obviously to represent quaternions in real life,
and the first number will always be the real part, and the remaining three numbers will
always be the imaginary coefficients of <i,j,k>. Moreover, from now on I want to start
getting you into the habit of representing quaternions in this format:

q = q
0
+ x*i + y*j + z*k

Or in another way:

q = q
0
+ <x,y,z> . <i,j,k>

NOTE

Note that here we are taking advantage of the vector property of <i,j,k>.

That is, simply referring to the real part as q0 and the imaginary part as q
v

= <x,y,z> gives
us a little more to hold on to when relating quaternions to 3D space. However, depending
on what we are doing, we might flip from one representation to another, but I think you
get the point.

The cool thing about quaternions (or any hyper-complex number system) is that the
mathematics of addition, multiplication, inverses, and so on are all the same as in stan-
dard complex number theory, but with more elements. Hence, we really already know
how to do this stuff, but we just have to take into consideration that we now have three
imaginary components rather than one, as we did with basic complex numbers or
complex numbers of “rank 1.”

Now let’s take a look at the basic operations that we might need to perform on quater-
nions when doing calculations—I’m going to go fast because this should all be obvious at
this point.
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Quaternion Addition and Subtraction
Addition or subtraction of quaternions is accomplished by adding or subtracting the real
part and the imaginary part, just as with normal complex numbers.

Example:

q = q
0
+ q

v

p = p
0
+ p

v

q + p = (q
0
+p

0
) + (q

v
+p

v
)

Example:

q = 3 + 4*i + 5*j + 6*k = <3,4,5,6> in vector form.

p = -5 + 2*i + 2*j – 3*k = <-5,2,2,-3> in vector form.

q + p = (3+ -5) + ( (4+2)*i + (5+2)*j + (6+ -3)*k)

= -2 + 6*i + 7+j + 3*k

As you can see, the writing of the imaginary coefficients is getting rather tedious, and we
could have just written

<3,4,5,6> + <-5,2,2,-3> = <-2,6,7, 3>.

However, we have to be careful, because although it works for addition and subtraction,
for multiplication we need to recall that the last three components are complex. To avoid
oversimplification, we need to keep the quaternions in a form that at least keeps the real
and imaginary parts separate.

Additive Inverse and Identity
The additive inverse of any quaternion q is the number that, when added to q, results in
zero. This is surprisingly just –q:

Given:

q = q
0
+ q

v

The additive inverse is just

-q = -q
0
- q

v

because

q - q = (q
0
-q

0
)+ (q

v
- q

v
) = 0 + 0*i + 0*j + 0*j

The additive identity, or “0” in quaternion math, must be

q = 0 + 0*i + 0*j + 0*k = <0,0,0,0>.
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Quaternion Multiplication
Addition and subtraction is always easy, huh? It’s multiplication that ruins the party every
time! And this is no exception. Because quaternions are nothing more than hyper-
complex numbers based on real numbers with imaginary coefficients, we should be able to
just multiply them out, taking into consideration the imaginary coefficients in the prod-
ucts and keeping track of them. Let’s just try it and see what happens.

Given

p = p
0
+ p

1
*i + p

2
*j + p

3
*k = p

0
+ p

v

q = q
0
+ q

1
*i + q

2
*j + q

3
*k = q

0
+ q

v

then

p*q = (p
0
+ p

1
*i + p

2
*j + p

3
*k) * (q

0
+ q

1
*i + q

2
*j + q

3
*k)

= p
0
*q

0
+

p
0
*q

1
*i + p

1
*q

2
*j + p

2
*q

3
*k +

p
1
*i*q

0
+ p

1
*i*q

1
*i + p

1
*i*q

2
*j + p

1
*i*q

3
*k +

p
2
*j*q

0
+ p

2
*j*q

1
*i + p

2
*j*q

2
*j + p

2
*j*q

3
*k +

p
3
*k*q

0
+ p

3
*k*q

1
*i + p

3
*k*q

2
*j + p

3
*k*q

3
*k

If you have a good eye, you should see some structure to this product—maybe a cross-
product here and there, and a dot product? Keep that in mind while we collect terms and
use Equation 4.30 to simplify the imaginary product terms:

= p
0
*q

0
+

p
0
*q

1
*i + p

1
*q

2
*j + p

2
*q

3
*k +

p
1
*q

0
*i + p

1
*q

1
*i2 + p

1
*i*q

2
*j + p

1
*i*q

3
*k +

p
2
*j*q

0
+ p

2
*q

1
*j*i + p

2
*q

2
*j2 + p

2
*q

3
*j*k +

p
3
*q

0
*k + p

3
*q

1
*k*i + p

3
*q

2
*k*j + p

3
*q

3
*k2

At this point, there are a lot of ways to format these products, but I will stop here and
show you this equation.

EQUATION 4.31 Formula for Quaternion Products

Given

p = p
0
+ p

1
*i + p

2
*j + p

3
*k = p

0
+ p

v

q = q
0
+ q

1
*i + q

2
*j + q

3
*k = q

0
+ q

v

then

r = p*q = (p
0
*q

0
– (p

v
. q

v
)) + (p

0
*q

v
+ q

0
*p

v
+ p

v 
x q

v
)

= r
0
+ r

v
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NOTE

The x operator is the standard vector cross-product, and is calculated on the vector imaginary
part of the quaternion as if the imaginary part was a standard 3-tuple vector.

And because dot products always result in scalars and cross products result in vectors, the
first term (p

0
*q

0
– (p

v
. q

v
)) is the real part r

0
, and the term (p

0
*q

v
+ q

0
*p

v
+ p

v 
x q

v
) is the

vector or imaginary part rv. I have to admit that quaternion multiplication is a very ugly
thing in mathematics!

Also, note that the multiplicative identity (the analog of “1” in quaternion math) is

q
1
= 1 + 0*i + 0*j + 0*k

This is true because any q * q
1

= q = q
1

* q.

Quaternion Conjugate
Computing the conjugate of a quaternion q, q* is accomplished in the same manner as
with complex numbers: You simply invert the sign of the imaginary component q

v
.

EQUATION 4.32 Computation of Complex Conjugate

Given

q = q
0
+ q

1
*i + q

2
*j + q

3
*k = q

0
+ q

v

The complex conjugate is computed by inverting the sign of the imaginary part:

q* = q
0
- q

1
*i - q

2
*j - q

3
*k = q

0
- q

v

And take a look at the product of q and q*—it’s rather interesting (using Equation 4.31 to
perform the multiplication):

EQUATION 4.33 The Quaternion-Conjugate Product

q * q* = (q
0
+ q

v
) * (q

0
+ (-q

v
))

= q
0
*q

0
– (q

v
. (-q

v
)) +  q

0
*q

v
+ q

0
*(-q

v
) + (q

v
x (-q

v
))

= q
0
2 + q

1
2 + q

2
2 + q

3
2 +  (q

0
*q

v
– q

0
*q

v
) + (0)

= q
0
2 + q

1
2 + q

2
2 + q

3
2

Interestingly, the product is simply the square of each term. This property will come in
handy when we deal with computing the norm and inverse of a quaternion.

Norm of a Quaternion
The norm of a quaternion is computed in the same manner as a complex number:
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EQUATION 4.33 Norm of a Quaternion

Given

q = q
0
+ q

1
*i + q

2
*j + q

3
*k = q

0
+ q

v

then

|q| = sqrt(q
0
2+q

1
2+q

2
2+q

3
2) = sqrt(q * q*)

And of course,

|q|2 = (q
0
2 + q

1
2 + q

2
2 + q

3
2) = (q * q*)

MATH

Note that (q * q*) = (q* * q). The product of a quaternion and its conjugate is order-indepen-
dent, but in general is q*p ≠ p*q. Also, note that q + q* = 2*q0.

Multiplicative Inverse
The multiplicative inverse of a quaternion is of special importance to us, because it can be
used to simplify quaternion rotation. In fact, everything we have learned up until now is
going to come to the single focus of rotating a vector using quaternions, and the inverse is
needed for this operation. So put on your thinking cap and check it out…

Given a quaternion q, we want to find another quaternion q-1 such that the following
statement is true:

q*q-1 = 1 = q-1*q

Don’t blink and watch this…

Let’s multiply each side by the complex conjugate q*:

(q * q-1) * q*= 1 = (q-1 * q) * q* = q*

Because the products in parentheses are 1, we know that 1 multiplied by the conjugate
and the conjugate multiplied by 1 are both the conjugate, so we haven’t changed
anything or created a false statement. Alright, now’s the cool part—let’s stare at this a
minute and see whether we can figure out what the inverse is. Do you see it? Let’s look at
the right side alone:

(q-1 * q) * q* = q*

or

q-1 * (q * q*)= q*
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But

(q * q*) = |q|2

The final result is as seen in Equation 4.34a.

Equation 4.34a Inverse of a Quaternion

q-1 = q*/|q|2

Furthermore, if q is a unit quaternion, then |q|2 = 1 and we can further simplify the
inverse to Equation 4.34b.

Equation 4.34b Inverse of a Unit Quaternion

q-1 = q*

Pretty cool, huh? The preceding equation is the whole reason that makes using quater-
nions to perform rotations even possible. Thus, most of the time we will assume that all
quaternions are unit quaternions, so we can use the preceding equation without a
problem.
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Applications of Quaternions
After all that work learning about quaternions, they probably seem just like interesting
mathematical objects with little or no real use to us. However, the fact is that quaternions
are very useful for a couple of functions in 3D graphics—rotation and the interpolation of
rotations from one to another, as shown in Figure 4.44. In the figure you see two camera
directions defined by two sets of angles relative to the x-y-z axis camera

1
= (α

1
, φ

1
, θ

1
) and

camera
2

= (α
2
, φ

2
, θ

2
). How we point the camera in those directions is unimportant, but the

point is, what if we want to smoothly interpolate from the orientation of camera
1

to
camera

2
? We could linearly interpolate based on the angles, but a number of problems can

occur when you do this, such as jerky motion and the loss of a degree of freedom when
the camera happens to align on an axis.

The point is that quaternions, by their 4D nature, can handle this problem much more
elegantly than standard angles and rotation matrices; they are a bit slower, but worth it.
We aren’t going to use quaternions to perform standard 3D rotations and manipulations,
but we will use them for advanced camera work, as manipulating a 3D camera with
quaternions turns out to be more intuitive than using angles. I’m getting way ahead of
myself here, so let’s just learn how to perform a rotation of a vector with quaternions, and
then when we get to camera work, we will revisit them and learn more about using
quaternions to interpolate camera orientations and so forth. Right now, I just want you to
see the math.

Quaternion Rotation
At some point you (as a mathematician) might wonder what operators can be represented
by quaternion transformations—in other words, can they do anything interesting? The
answer is yes. One of those interesting and useful operations is the capability to rotate a
vector v. I would love to show you all the math to arrive at that result, but as usual, I am
under both time and page constraints, and it’s only interesting to a math maniac, so
you’re not missing anything. The end result is that given a vector v = <x,y,z>, which in
quaternion form we will call v

q
= <0,x,y,z> in 3D (we use a dummy 0 = q

0
, so that we can

use v as a quaternion), and a unit quaternion q, the following operations will rotate v
q
:

EQUATIONS 4.35 Quaternion Rotation

Right-handed system:

a. v
q
' = q* * v

q
* q, clockwise rotation

b. v
q

' = q * v
q

* q*, counter-clockwise rotation

Left-handed system:

c. v
q
' = q * v

q
* q*, clockwise rotation

d. v
q

' = q* * v
q

* q, counter-clockwise rotation
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MATH

We can use q* in this operator only for unit quaternions; otherwise, you must use the full inverse
of q.

So v
q

is a vector encoded in a quaternion with q
0

= 0, and q is a quaternion, but what
exactly does q represent? What’s its relationship to the x-y-z axis and v

q
? You’re going to

love this—q defines both the axis of rotation and the angle θ to rotate about the axis! Of
course, the result v

q
' is technically a 4D vector or a quaternion. However, the first compo-

nent, q
0
, will always be zero, so we just throw it away and think of the last three elements

as just a vector in 3D representing the original vector v after rotation.
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If you have ever tried to rotate a 3D object around an arbitrary axis, you know it’s not that
easy—but now it is. The axis that the quaternion q defines along with the angle isn’t that
obvious, but it’s not that bad. Referring to Figure 4.45, we see that for a given unit quater-
nion q = q

0
+ q

v
, the axis of rotation is just the line defined by the vector part q

v
, and the

angle of rotation θ is encoded in q
0

using the following transforms:
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EQUATION 4.36 Conversion of Axis and Angle to Quaternion

q = cos(θ/2) + sin(θ/2)*v
q

Thus,

q
0
= cos(θ/2) and q

v
= sin(θ/2)* v

q

NOTE

Of course, q
v

must be a unit vector itself, so that q remains a unit quaternion.

What if you don’t have a vector that you want to rotate around, but have the standard
Euler rotation angles? You can then create a quaternion from the angles by generating one
of the products:

q
final

= q
xθ*qyθ*qzθ

= q
xθ*qzθ*qyθ

= q
yθ*qxθ*qzθ

= q
yθ*qzθ*qxθ

= q
zθ*qxθ*qyθ

= q
zθ*qyθ*qxθ <-most common transform
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where xθ refers to the pitch (angle parallel to the x-axis), yθ refers to the yaw (angle parallel
to the y-axis), and zθ refers to the roll (angle parallel to the z-axis), as shown in Figure 4.46.
Most people use the last transform most commonly in 3D engines, but all are just as valid.
In any case, after you have the order of transforms, you can plug in the following formu-
las for the quaternions q

xθ, qyθ, qzθ and perform the multiplication to arrive at q
final

.

EQUATION 4.37 Euler Angles to Quaternion

q
xθ = cos(xθ/2) + sin(xθ/2)*i + 0*j + 0*k

q
0
= cos(xθ/2), qv

= <sin(xθ/2), 0, 0>

q
yθ = cos(yθ/2) + 0*i+ sin(yθ/2)*j + 0*k

q
0
= cos(yθ/2), qv

= <0, sin(yθ/2), 0>

q
zθ = cos(zθ/2) + 0*i + 0*j + sin(zθ/2)*k

q
0
= cos(zθ/2), qv

= <0,0,sin(zθ/2)>

So to rotate a vector v using the Euler form, you are really doing the following for the
example of roll, yaw, and pitch:

v
q
’(0,x’,y’,z’) =(q

zθ*qyθ*qxθ )* vq
* (q

zθ*qyθ*qxθ)
*

where v
q

= <0,x,y,z>, the initial vector or point we want to rotate cast into quaternion
form.

Of course, you only need to compute the product in parentheses once. And because each
of the factors q

xθ, qyθ, qzθ is of the form below:

q
(i,j,k)

= cos(θ/2) + sin(θ/2)*(i,j,k)

The product of terms of this form have a lot of cancellations—thus the product
q

zθ*qyθ*qxθ,for example, ends up looking like this:

q
0
= cos(

zθ/2)*cos(yθ/2)*cos(xθ/2) + sin(zθ/2)*sin(yθ/2)*sin(xθ/2)

q
1
= cos(

zθ/2)*cos(yθ/2)*sin(xθ/2) - sin(zθ/2)*sin(yθ/2)*cos(xθ/2)

q
2
= cos(

zθ/2)*sin(yθ/2)*cos(xθ/2) + sin(zθ/2)*cos(yθ/2)*sin(xθ/2)

q
3
= sin(

zθ/2)*cos(yθ/2)*cos(xθ/2) - cos(zθ/2)*sin(yθ/2)*sin(xθ/2)

NOTE

Note that each quaternion in the products can be thought of as an individual rotation operation,
but it takes much less work to multiply quaternions than matrices. Therefore, if you find yourself
doing a lot of matrix multiplications in a loop, you might be able to optimize it by converting to
quaternions—doing all the matrix operations in quaternion form and then converting back.

CHAPTER 4 It’s a Math, Math, Math World—Trigonometry, Vectors, Matrices, and Quaternions336

07 0672318350 CH04  05•02•2003  2:36 PM  Page 336



The conversions from matrix to quaternion and quaternion to matrix are much more
complex, and I don’t have time to derive them here. However, I will hold off on them
until we once again get to the camera stuff, so that it makes more sense to you within the
context of something tangible. Also, we will cover interpolation of quaternions later in the
camera animation coverage.

Basic Calculus
I never thought I would have to cover basic calculus in a game book, but these days you
need to be a damn mathematician to write games! Calculus is nothing more than a form
of mathematics invented independently by both Sir Isaac Newton and Baron Gottfried
Wilhelm Leibniz in the 17th century—brainiacs deluxe! “The Calculus” (as it’s referred to)
was invented as a tool to help solve problems in motion, change, and dynamic systems
that standard static algebra of the time couldn’t handle. Thus, calculus is the mathematics
of change, or systems in flux.

As far as we are concerned as game programmers, there is no way you can even think of
creating a state-of-the-art 3D game these days without avoiding calculus and differential
equations. 3D graphics used to be manageable with linear algebra and a good grasp of
matrix mathematics and trig, but now the engines are getting more and more complex,
and people want higher order surfaces, like spline and Bezier patches, and so forth.
However, that’s not the problem—we could all live without rendered curves in games, but
lots of camera problems need splines and curves as well, and the mathematics of these
objects sometimes take a little calculus to manipulate. However, the real problem that
makes calculus an absolute necessity is physics.

Physics is why calculus was invented! These days friction and a little collision detection
isn’t going to cut it—people want to see real physics, and that means real math and real
models. There is no way to avoid using calculus, so you might as well start learning it
right now.

Of course, I can’t hope to teach you four years of university math in 20 pages, but I am
going to at least show you a couple of concepts. When I use them, you might not under-
stand exactly what I am doing, but you won’t be completely lost. I realize that many
people reading this book will be in high school and many will be graduate students, but I
don’t want to leave anyone out in the cold (the biggest complaint I get about game
programming books is that people want more math). I’m going to give you a very brief,
very loose, and very abridged treatise on the most important things in calculus, and you
can pick up a calculus book on your own if you are interested in further reading. I suggest
Calculus by Howard Anton, or Calculus by Thomas & Finney—they rock.

The Concept of Infinity
The first topic I want to discuss might not change your whole life, but it’s real, it works,
and it’s a mathematical reality—infinity, represented by the symbol ∞. Infinity is one of
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those things that we’ve all heard about, but can’t really put our finger on. In calculus
however, we love infinity and have no problem with it. In fact, there are all kinds of
infinities; small, large, negative, and positive. These are all mathematical tools, and don’t
need to represent things that are physical, but many times they do.

In any case, I want you to be able to work with infinity because we might need it, and
later we might get results that are infinite, which is perfectly fine in higher mathematics.
We can start with infinity, or perform a mathematical operation that results in infinity. For
example, take a look at the following quotient:

1

q = ----

y

That’s a perfectly reasonable thing to do in a computer program, but what happens if y
becomes very small? Let’s see:

1/1 = 1, 1/.1 = 10, 1/.01 = 100, 1/.001 = 1000,…

As you can see, as we let y get smaller and smaller, the quotient of 1/y gets larger and
larger. You might say, I can make the numerator 100,000,000,000. And I say, so what? I
can make the denominator 10 times that and the result will be a small number. The point
is that as the denominator gets very small, the quotient gets larger and larger without
boundary. At some point, the denominator will become zero, but what will the quotient
become? The answer is plus infinity.

x/0 = +∞, +infinity

It’s irrelevant what x is. Also, interestingly enough, the following also holds true (sorta):

x

--- = 0

∞

Which makes sense, because if you look at the following sequence, you can see it:

1/1 = 1, 1/10 = .1, 1/100 = .01, 1/1000 = .001, …

As the denominator gets larger and larger, the quotient gets smaller and smaller, and in
the end the result will be zero.

The last question you might ask is what happens if both the numerator and the denomi-
nator go to infinity? Well, it depends on which one gets there faster. Let’s think about it
with common sense. Take a look at this:

500*x

y = ----------

x*x
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The question is, what happens when x approaches infinity? Well, in the numerator we
have 500*x, and in the denominator we have x*x. Here’s a short run of the numerator and
denominator for x ∈ (0,1,2,3,4,5,6,7,8,9,10):

TABLE 4.6 A Run of Numbers in the Quotient 500*x/x2

x Numerator (500*x) Denominator(x*x) Quotient

0 0 0 Indeterminate

1 500 1 500

2 1000 4 250

3 1500 9 166.66

4 2000 16 125

5 2500 25 100

6 3000 36 83.33

7 3500 49 71.42

8 4000 64 62.5

9 4500 81 55.55

10 5000 100 50
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FIGURE 4.47 A graph of the quotient 500*x/x2.

Also, take a look at the graph in Figure 4.47. Although it seems that the numerator is
moving very quickly, the denominator is quickly catching up, and thus the quotient is
getting smaller and smaller. In fact, the end result will be zero. So does common sense
seem right? Well, at first glance, if you didn’t run the sequence, you might say that the

07 0672318350 CH04  05•02•2003  2:36 PM  Page 339



numerator is much larger, and it is for small x. But as x gets large, the x*x is much larger
than 500*x, so the end result is that the rate of increase of the denominator is greater than
the numerator. Hence, the result will be zero in this case. We could have figured this out
using a little algebra, actually.

If we look at the original quotient and simplify it, we can see the result of zero much
easier.

500*x

y = ------- = 500/x

x*x

According to our first rule, we know that as x approaches infinity, anything divided by x
approaches zero. This whole discussion leads into my next topic—limits.

Limits
The subject of limits is very large, but basically they are a formalization of what we have
been doing in the previous section. In general, a limit is a mathematical statement that
helps us write down a concept that has a changing variable that approaches a fixed
constant. This is the very point of calculus—being able to write down in a consistent
manner changing mathematical concepts. In any case, here’s the general form of a limit
statement:

Lim  f(x) = L

x->a

This is read “The limit of f(x) as x approaches a is equal to L.” Computing limits are fairly
simple for the more straightforward ones, but of course, they can get very complex.
However, in our case, we will just stick to very simple ones. In essence, to compute a limit,
you simply let x (or whatever the variable is) approach the limiting value (a in this case)
and read off the result. This is best shown with examples:

Example 1: Simple limit

Lim 2*x = ?

x->3

As x approaches 3, nothing weird happens with f(x). Thus we can simply replace x with 3,
and the limit is equal to

Lim 2*x = 2*(3) = 6

x->3

Example 2: Indeterminate limit

Lim x*x/3*x

x->0
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Now this one is a bit tricky. If we let x approach 0, then we get

Lim 0*0/3*0 = ?

x->0

which is indeterminate (0/0 is not computable). We need to see whether we can simplify
the limit first, so we can get a better grasp on what’s happening:

Lim x*x/3*x

x->0

Canceling out the x terms in numerator and denominator gives us

Lim x/3 = 0

x->0

which clearly equals zero, because 0/3 = 0.

Example 3: Infinite limit

Lim 1/(5*x*x + 2*x) = ?

x->∞

We have seen this before, when we were talking about infinity. In this case, the bottom
line is that as x gets larger and approaches infinity, (5*x*x + 2*x) gets larger and
approaches infinity even faster. Thus the quotient goes to 1/∞, which is equal to zero.

NOTE

Limits can be useful, especially when you are trying to figure out what some expression will end
up being as some variable approaches another.

Summation and Finite Series
The next topic I want to discuss isn’t really hard-core calculus, but it’s a nice way to ease
into the subject of integrals, and has a real calculus feel to it. Many times when solving
problems that are iterative or recursive in nature, we see sequences of numbers or terms
that have patterns. For example, take a look at the following mathematical sequence or
summation:

1+2+3+4+..n

Before we try to compute this, let’s try and find a more compact way to write it using
sigma notation (using the ∑ symbol). The preceding sequence has a lower limit (1), an
upper limit (n), and a rule. In this case, the rule is at each step simply add the next
number in the sequence. It’s really just a for loop:
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for (int count = 1; sum =0; count <=100; count++)

sum+=count; // <-the rule

This C/C++ code is written mathematically like this:

1000

sum = ∑ n

n = 1

which is read something like “sum equals the rule n as n varies from 1 to 1000.” In
general, the sigma or summation notation looks like this:

b

∑ f(n)

n = a

where a <= b (but not necessarily), a is called the “lower limit,” and b is called the “upper
limit.”

Now, back to computing the answer. If n was equal to 1000, how long do you think it
would take to add the numbers 1 to 1,000 up? Well, there’s a formula for this (and many
other sums) discovered by the great mathematician Karl Gauss:

EQUATION 4.38a The Sum of the First n Integers

n

∑ k = 1+2+3+…+n = n*(n+1)/2

k = 1

Plugging in 1000, we get

1000*(1000+1)/2 = 500500

If you think that’s impressive, Gauss was five years old when he figured that one out! Of
course, throughout the years mathematicians have figured out many closed forms for
various sequences. Here are two more that come in handy:

EQUATION 4.38b The Sum of the First n Squares

n

∑ k2 = 12+22+32+…+n2 = n*(n+1)*(2*n+1)/6

k = 1

EQUATION 4.38c The Sum of the First n Cubes

n

∑ k3 = 13+23+33+…+n3 = (n*(n+1)/2)2

k = 1
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Being able to work with series and sums helps with asymptotic analysis (see Tricks of the Windows
Game Programming Gurus), which is the analysis of algorithms and deals with computing the
runtime of inner loops and so on. So this is good stuff for 3D graphics.

Now that you have a couple of formulas under your belt, let’s see whether we can figure
out some sums that are a little bit different. For example:

n

∑ 3*k = ?

k = 1

The first thing we do is write out a few terms to see the pattern, and find out whether we
can manipulate it into one of our formulas and solve it.

n

∑ 3*k = 3*1 + 3*2 + 3*3 +…+3*n

k = 1

Looks like 3 is always there, so let’s factor it out of the sigma sign like this:

n

∑ 3*k = 3*1 + 3*2 + 3*3 +…+3*n

k = 1

n

= 3*∑ k = 1 + 2 + 3 +…+n

k = 1

= 3*n*(n+1)/2

Or in general, for any scalar a:

n

∑ a*k = a*n*(n+1)/2

k = 1

We can do this stuff all day long and come up with all kinds of cool summation formu-
las—it’s good exercise for both your brain and your hands to tell you the truth! Now let’s
move on to infinite series that are more appropriate for some of the physics calculations
you might make in your 3D programming career.
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Infinite Series
Finite sums are things that are very tangible—they end somewhere. But there are mathe-
matical sequences that go on forever, but aren’t infinite! How can something go on
forever, but not be infinite? Well, look at this, for example:

0 + 0 + 0 + …

An infinite sum of zeros is definitely still zero. This is the theme of the next section.

There are many times when a complex system can run forever, but its height, energy,
level, and so on are changing each time. These systems are real, and arise in nature and
mathematics, so being able to come up with closed sums is very useful to us. Let’s begin
with some notation. A given series might look like this:

Domain: 0 1 2 3 … n

↓ ↓ ↓ ↓ ↓

Range: 0 5 10 15 5*n

In this case, the domain is the positive integers 0, 1, 2 … and the range is also the positive
integers. The rule is multiply the integer by 5.

The question is, what is the sum of this infinite series? Common sense tells us that the
series keeps getting larger and larger, and thus must grow unbounded, and hence the sum
is infinity. However, there are other series that do converge to a finite number. For
example, series of the following form can converge to a finite value, if the values of a and r
satisfy certain constraints:

∞
∑ a*r(n-1) = a + a*r + a*r2 + a*r3 +…+ a*rn+ …

n=1

where a and r are real numbers, and a ≠ 0. Infinite series of this kind are called geometric
series. Here’s an example:

Example:

a = 5, r = 1/2

∞
∑ a*r(n-1) = a + a*r + a*r2 + a*r3 +…+ a*rn+ …

n = 1

= 5 + 5*1/2 + 5*(1/2)2 + 5*(1/2)3 + …

= 5 + 5/2 + 5/4 + 5/8 + …
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FIGURE 4.48 A plot of the geometric series a = 5, r = 1/2.

We can definitely see that the series is getting smaller and smaller, and this is confirmed
by the plot of points in Figure 4.48. In fact, when n reaches infinity, the terms will
approach zero. So, there does seem to be good reason to believe there is a finite sum—and
of course there is!

EQUATION 4.39 Sum of a General Geometric Series

∞
∑ a*r(n-1) = a + a*r + a*r2 + a*r3 +…+ a*rn+…

n = 1

the sum   = a/(1-r), for |r|<1

That’s got to be one of the coolest formulas in the world. It tells us how to compute the
sum of an infinite collection of expressions in a closed form—math rocks! Using the
formula on our series from the previous example with a = 5, and r = 1/2, |r| is less than 1,
so it’s cool to use, and the sum is

a/(1-r) = 5/(1/2) = 10.

Of course, there are many kinds of infinite series, but I leave it to you to explore more …

Derivatives
Now we are finally ready to enter the twilight zone—real calculus. However, calculus is
really baby math in the scheme of things, as it’s the first course in college mathematics.
On the other hand, I have not known many engineers that need to use it on a daily basis,
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but game programming is turning out to be a field where I see the need for it in the near
future. This section and the next are going to be the briefest explanation of derivatives
and integrals in the world, but you will at least have an idea of what’s going on when I
use them later in the book. Furthermore, I am going to be very loose with definitions and
rigor.

For example, in high school they teach you that atoms are made of electrons, protons,
and neutrons, and that’s it. Of course, that’s not really true. Furthermore, electrons do
NOT orbit the nuclei of the atom. In general, they are a probability cloud. In the same
vein, my math here is going to oversimplify reality, but be correct enough for our usage,
or rather, detailed enough.

If you recall, the idea of calculus is to be able to discuss and manipulate mathematical
objects that change as a function of time (or another variable); that is, functions that are
not static. At the most basic level of this notion is the derivative function. The derivative of
a function is the instantaneous rate of change of that function. For example, suppose you
have an object in a game, and its position is described by the following formula, as shown
in Figure 4.49:

x = x0 + vel*t
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FIGURE 4.49 An object moving based on the motion model (x = x0 + vel*t).

This obviously means that the position x at any time is x0 plus the factor vel*t, where t
could be time, or some artificial variable, like the current frame. In either case, we might
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ask the question, given the formula for x, what is the instantaneous rate of change of x?
The answer to this is in the definition of x, because we know that with each increment of
t, x will change by vel*dt, or velocity*1. Thus, the instantaneous rate of change is the rate
factor vel itself. But what if we weren’t so darn smart? How could we mathematically
determine this without having seen this so many times that we just know? The answer is
that the derivative tells us.

If we differentiate x with respect to t, the result is the rate of change of x with respect to t.
Sounds pretty circular, huh? In other words, the derivative of the position is the velocity.
Here’s what taking the derivative looks like:

d/dt * x(t)

which means take the derivative of x with respect to t.

d/dt * x(t) = vel

Convenient, huh? Almost magical! At this point, if you are thinking “What the heck?”
that’s okay. Let’s see how all this works.

Definition of Derivative
Later I will show you a couple of different notations for derivatives, but for now let’s just
forget about that and focus on what it is. If you take look at Figure 4.50, you see a curve
that’s a function of x, f(x). Also, you see two points on the curve: one labeled a, which has
the value x0, and b, which has the value x0+h (h is just a number), and between the two
points you see a tangent line with a slope. The slope of this tangent line is shown in
Equation 4.40.

EQUATION 4.40 Definition of the Tangent Line

dy  f(x0+h) – f(x0)

slope = --- ----------------

dx          h

This slope is only an average or approximation, but what if we want the slope exactly at
x0? We can just make h smaller and smaller to find this. We see this in Figure 4.51. We
want to make it infinitely small (zero), so that we are dead on x0. Alas, there’s a problem
with this! Look at this limit:

lim     f(x0+h) – f(x0)

h->0    ---------------

h

As h approaches zero, this limit looks like it might approach infinity, and we are fragged!
However, this is the definition of the derivative:
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FIGURE 4.50 The definition of derivative.
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EQUATION 4.41 Definition of the Derivative

f’(x) =   lim     f(x0+h) – f(x0)

h->0    ---------------

h

Just a sec, I know, I know. First, the new notation f'(x), or “f primed," means “the deriva-
tive of f with respect to x,” so that’s just notation. Similarly, f’’(x) would mean “the second
derivative of f with respect to x,” or the derivative of the derivative. In general, these all
mean the same thing:

1. f'(x)—The derivative of f with respect to x. Both the function and the variable are
mentioned.

2. (d/dx)*f(x)—The derivative with respect to x of the function. Emphasizes that differ-
entiation is an operator.

3. df/dx—Very similar to number 1, but in another format. Emphasizes both the func-
tion f and the variable to differentiate.

The important part about differentiation is the definition. If this limit exists, it is exactly
the limit we need, and exactly the derivative. So how do we find the limit? Well, thank-
fully, a lot of really smart guys figured out hundreds (if not thousands) of general formulas
to compute derivatives for us, so we don’t have to (trust me, you don’t want to use the
definition!).

At this point, let’s take a look at some of the more common mathematical expressions that
we might have to differentiate in our domination of the universe and complete 3D simu-
lation a la matrix techniques.

Derivatives of Simple Polynomials
Computing the derivatives of polynomials is the simplest, so let’s start here. First, the
derivative of the sum of terms in a polynomial is simply the sum of each of the deriva-
tives:

f(x) = f
1
(x) + f

2
(x) + … + f

n
(x)

f’(x) = f
1
’(x) + f

2
’(x) + … f

n
’(x)

To compute the derivative of any polynomial term, here’s what you do:

Let f(x) = a*xn

f’(x) = n*a*x(n-1)

Example 1:

f(x)   = 5*x3

f’(x)   = 3*5*x(3-1) = 15*x2
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Example 2:

f(x)   = 3*x2 + 2*x + 5

or, writing out all the terms,

df/dx   = 3*x2 + 2*x1 + 5*x0

df/dx   = 2*3*x(2-1) + 1*2*x(1-1) + 0*5*x(0-1)

= 6*x1 + 2*x0 + 0

= 6*x + 2*1 = 6*x+2

NOTE

Note that the derivative of a constant is zero. Also, note that I switched notation for the fun of it,
but it means the same thing. Many times, one notation is more convenient than another, as you
will see.

Before moving on, let’s look at a couple of general rules for computing derivatives.

Derivatives of Products: The Product Rule
Forget for a moment that you don’t know how to differentiate everything, and just
imagine that you have a product of two expressions. You can compute the derivative by
thinking of each expression separately, rather than computing one big messy derivative.
This is called the product rule. It looks like this:

Given u(x) and v(x) are functions of x,

(d/dx)*(u * v) = u*(dv/dx) + v*(du/dx)

which reads “The derivative of the product u multiplied by v is u multiplied by the deriva-
tive of v with respect to x added to v multiplied by the derivative of u with respect to x.”

Example:

f(x) = (3*x2 + 3) * (5*x)

Let

u(x) = (3*x2 + 3), v(x) = (5*x)

then

f’(x)   = u(x)*v’(x) + v(x)*u’(x)

= (3*x2 + 3)*5 + (5*x)*(6*x)

Again, notice the change in notation, but it all means the same thing: d/dx, f'(x), df/dx.
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Derivatives of Quotients: The Quotient Rule
Computing the derivative of a quotient can be accomplished using the product rule and
inverses, but to make life easier, we usually just use what’s called the quotient rule and leave
the problem in its original form. Here it is again, in a slightly modified notation:

Given u(x) and v(x) are functions of x,

(d/dx) * (u/v) = [ v*(du/dx) – u*(dv/dx) ]

---------------------------------

v2

which reads “The derivative of the quotient u divided by v is equal to v multiplied by the
derivative of u with respect to x minus u multiplied by the derivative of v with respect to
x, quantity divided by v squared.”

Example:

Given

4*x3 – 3    

f(x) = ---------

-3*x2

Let

u(x) = (4*x3 – 3), v(x) = (-3*x2)

then

[v(x)*u’(x) – u(x)*v’(x)]

f’(x)   = -------------------------

v(x)2

= [(-3*x2)*(12*x2) - (4*x3 – 3)*(-6*x)]

----------------------------------------

(-3*x2)2

Again, note the change of notation. Also, we could simplify this if we wanted to.

The Chain Rule
I was hoping to leave this out, but after I wrote a few more pages, I decided I couldn’t. It’s
just so hard to write math notation with MS Word—I’m dying here! In any event, some-
times when computing derivatives, you might come upon functions that are compositions
of functions. For example, take a look at the following function:

f(x) = sqrt(x2+1) = (x2+1)1/2
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Taking the square root is the same as raising to the power of ?. I just can’t make the square root
symbol that easily!

We could attack this problem as it is and find the derivative of f(x) directly (if we can), or
we could think of f(x) as a composition of two or more functions. Composition means
nothing more than one function is the parameter to another. In this case, if we let g(x) =
(x2+1), and f(x) = sqrt(x), we can write this:

Given

f(x) = sqrt(x) = (x)1/2

and

g(x) = (x2+1)

If we replace the “x” in the definition of f(x) with the function for g(x), we have
composed g with f, or mathematically:

f(g(x)) = (f • g)(x) = (x2+1)1/2

NOTE

Note that the notation f(g(x)) and (f • g)(x) are equivalent.

As another example, let f(x) = sin x, and g(x) = (2*x+3), then f composed with g is

(f • g)(x) = sin (2*x+3)

The cool thing about thinking of functions as compositions is that it allows us to simplify
them for a moment and work at a higher level. Now that you know what a composition
is, let’s get back to the chain rule for differentiation. The chain rule states that you can
compute the derivative of a function by first computing the derivative of the composition,
and then multiplying that by the derivative of the inside function. Then, if the inside
function needs to be further simplified as more compositions, you continue the process.
Mathematically, the chain rule can be stated as the following:

(d/dx)f(g(x)) = f’(g(x)) * g’(x)

Let’s take another look at the first example with f(x) =(x)1/2, g(x) = (x2+1), and apply the
rule.

f(g(x)) = (x2+1)1/2
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Then applying the chain rule, we have

f’(g(x)) = f’(g(x)) * g’(x)

= (d/dx)(g(x)1/2) * (d/dx) g(x)

= ?*((x2+1)-1/2 * (2*x)

= x/(x2+1)1/2

At this point, you can handle computing the derivative of just about anything you can
think of. However, many times your functions might have trigonometric terms in them.

Derivatives of Trigonometric Functions
Showing the mathematical derivation for trigonometric functions is far beyond the scope
of this book, so I am just going to give you a little table:

TABLE 4.7 Derivatives of Trigonometric Functions

Function Derivative

sin x cos x

cos x -sin x

tan x sec2 x

cot x -csc2 x

sec x = 1/cos x sec x * tan x

csc x = 1/sin x -csc x * cot x

Simple enough. Unfortunately, most trig functions don’t come in that pure of a flavor—
they have functions of x as the parameter, and coefficients, and they might even be to the
nth degree! However, these aren’t that hard to handle. For example, suppose we have this:

f(x) = cos2 x

Hmmmm. Let’s try the product rule with

f(x) = cos(x) * cos(x)

Let

u = cos(x), let v = cos(x)

then

f’(x)   = u*(dv/dx) + v*(du/dx)

= cos(x) * sin(x) + cos(x) * sin(x)

= 2*cos(x) * sin(x)
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Cool, huh? The point is, you can usually figure out something, and of course there are
billions of little plastic cheat sheets that have all kinds of trig derivatives. Let’s look at a
couple more. What about this

f(x) = a*transcendental(x)

meaning any constant a multiplied by a trig function. To compute the derivative, we can
again use the product rule like this:

f(x) = a*transcendental(x)

Let u = a, v = transcendental(x), where the trig function could be anything. Then we have:

f’(x)   = u*(dv/dx) + (du/dx)*v

= a * transcendental’(x) + 0

= a * transcendental’(x)

Note that the derivative of u is 0, so the product of the second term is also 0, thus leaving
us with the original constant multiplied by the derivative of the transcendental function.
Did you see that coming? Here’s an example:

Given

f(x) = 3*cos(x)

f’(x) = -3*sin(x)

Finally, let’s look at problems of this form:

f(x) = a*cos(b*x+c), a*sin(b*x+c), a*tan(b*x+c), etc.

That is, there’s a multiplier in the parameter part, along with a constant that models the
time multiplier and a shift. This is just a composition, so we can use the chain rule here,
letting the inside function be g(x) and the outside function be f(x). Let’s try figuring out
a*sin(b*x), as all the others are absolutely identical. The first thing to realize is that we can
forget about the leading multiplier a because we can pull it out of the derivative anyway
based on our previous results:

Given

f(x) = a*sin(b*x+c)

f’(x) = a*[(d/dx)sin(b*x+c)]

Thus, our problem really boils down to computing this:

f(x) = sin(b*x+c)
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Then we are done—we just multiply the answer by a. Let’s use compositions and the chain
rule for this baby. Here are the results:

Let

g(x) = (b*x+c)

f(x) = sin(x)

then

f(g(x)) = sin (b*x+c)

f’(g(x))   = f’(g(x)) * g’(x)

= (d/dx)sin(g(x)) * (d/dx)(b*x+c)

= cos (b*x+c) * b

And now, multiply by the constant a to finish the problem (recall that we made the
simplification f(x) = a*sin(b*x+c), f’(x) = a*[(d/dx)sin(b*x+c)]).

f(x)   = a*sin(b*x)

f’(x)   = a*(cos(b*x+c)* b)

= a*b*cos(b*x+c)

That’s the quick tour of differentiation. At this point, you should be able to differentiate
any polynomial or sum of polynomials that have transcendental terms that are themselves
products of functions or compositions of functions. Hopefully, we won’t need anything
more complex than this!

Integrals
The next topic of discussion is integration. Integration is the opposite of differentiation—
or antiderivative. If you were to differentiate f(x) to arrive at f'(x), what would you do to
f'(x) to get back to the original f(x)? This process is called integration. Now, there are a lot
of ways to mathematically define integration, along with ways to understand it geometri-
cally or physically, so I’m going to give you several different points of view on the subject.

The first and purest way to look at the antiderivative is with its definition: Given a func-
tion f(x) and its derivative f'(x), the antiderivative F(x) is a function such that if you differ-
entiate it, you get f(x):

F’(x) = f(x)

That seems fairly circular. It states that if you have a function f(x), and another function
capital F(x) that you want to be the antiderivative of f(x), the derivative of F'(x) will equal
the original function f(x). That’s not that useful, so let’s try an example like f(x) = 2*x.
Now, the antiderivative of (2*x) is a function F(x), such that when I take the derivative of
it, the result would be (2*x). Hmmmm. Let’s write that down:

F’(x) = 2*x
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What function, when we take the derivative, equals (2*x)? The answer is x2 because

(d/dx)x2 = 2*x(2-1) = 2*x.

So it looks like we have found it. If you’re astute, you should realize that we have found a
way to find the antiderivative of any term of the form a*xn. We just reverse the process of
differentiation, which states to multiply by the exponent and then decrease the exponent.
Reversing that, we get the process for integration, which must be to divide by the expo-
nent and then add one to the exponent. Mathematically, the antiderivative of a*xn is

a*xn = (a/(n+1))x*(n+1) + c

Don’t freak about the “c” term. I will get to it shortly.

Hold onto that thought for a moment, and let’s talk about integration as an operator, now
that we know what we want it to do.

Definition of Antiderivative
Integration is the process of computing the antiderivative of a function, and is written
using the ∫ symbol, like this:

∫ f(x)dx = F(x) + c

f(x) is the function we want to find the antiderivative of, F(x) is the antiderivative, and c is
the constant of integration. Let me show you what c represents. Let’s say you have the
function g(x) = 2*x+1 and you were to differentiate this:

g(x)   = 2*x1+1

g’(x)   = 1*2*x(1-1) + 0

= 2

The result is 2, which was just an example to show you that constants disappear when you
differentiate. Now if we wanted to compute the antiderivative of that 2, knowing that we
should end up back at (2*x+1), let’s see what happens using our antiderivative rule relating
functions of the form a*xn to the antiderivative (a/(n+1))x*(n+1):

F’(x) = 2*x0

F(x) = (2/1)*x(0+1) = 2*x

Now you see there’s a problem here. Basically, we took a function and found its derivative,
and then used it as the new starting point and found its antiderivative thinking we would
end up in the same place, but we didn’t! We lost some information—the constant 1.0 in
this case. This leads us back to the definition of an integral:

∫ f(x)dx = F(x) + c
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The c takes this factor into consideration; that is, we know we could potentially lose infor-
mation when we integrate to find the antiderivative. Only in cases where c = 0 can we
forget about it; otherwise, we must keep this in mind. Thus in the example, we just
computed that we need to add an arbitrary constant to the result, giving us (2*x+c).
Hence, we really have a family of functions, or we have generated a function that is capable
of generating all possible derivatives of the function 2. If this is confusing, don’t worry
about it too much. This is all theoretical, really; we just need to know how to integrate
polynomials and transcendentals.

Let’s recap now what we know. Integration is the opposite of differentiation, and the
result is called the antiderivative. We know that the antiderivative of functions of the form
a*xn is [(a/(n+1))x*(n+1) + c], where c is the constant of integration, and may be non-zero. In
a moment we will talk about integrals of trig functions, but now I want to give you some-
thing more tangible to think about in relation to integration.

A Geometric Interpretation of Integration
As I said, differentiation is like computing the instantaneous rate of change or slope of a
function. That is, when you differentiate a function f(x), you wind up with another func-
tion f'(x) that is the slope of f(x) for any x. Integration has a similar geometric interpreta-
tion in the opposite sense. Take a look at Figure 4.52. Here we see a common parabola
function f(x) = x2 in the interval of [0,5]. Additionally, I have shaded in the area under the
curve. Interestingly enough, integration computes the area under the curve! Let’s test that
out. Given the initial function f(x) = x2, let’s integrate it using the formula:

∫ f(x)dx = F(x) + c

and

f(x) = x2

∫ x2dx = F(x) + c

Using our antiderivative formula (a/(n+1))x*(n+1), we get

∫ x2dx = x3/3 + c

Now, that’s great, but what’s c? That’s where the interval comes into play ([0,5]). We need
this to lock into and compute c. The integrals we have been looking at thus far are called
indefinite integrals—they compute a family of functions for the antiderivative because we
don’t know c, but definite integrals compute the exact value for c, and hence a single anti-
derivative. The only difference is that we write the definite integral a little differently.
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FIGURE 4.52 A geometric interpretation of integration.

EQUATION 4.42 The Definite Integral

b

∫ f(x)dx

a

where [a,b] are the limits of integration. So, all you do is compute the integral as you
normally would, but instead of just putting a generic “+c,” we can compute it like this
with the following notation and steps:

Step 1: Compute the integral.

5

∫ x2dx = [x3/3 + c]

0

CHAPTER 4 It’s a Math, Math, Math World—Trigonometry, Vectors, Matrices, and Quaternions358

26

28

30

24

22

20

18

16

14

12

10

8

6

4

2

1 2 3 4 5 6

+y axis

–y axis

+x axis–x axis

y=f(x)=x2

07 0672318350 CH04  05•02•2003  2:36 PM  Page 358



Step 2: Plug in the limits of integration and evaluate the integral at the upper limit and
lower limit and subtract.

5

= [x3/3] = [(5)3/3 - (0)3/3]

0

= [125/3 – 0]

= 41.66

A lot is going on here, but basically you compute the integral as usual, then after you have
the general form of the integral, you plug the upper limit of integration into the result to
arrive at a number, then do the same with the lower limit, and then subtract. This gives
you an exact answer.
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FIGURE 4.53 A triangular approximation of the area under the curve f(x) = x2.

In this case, the answer should be the area under the curve f(x) = x2 in the interval of
[0,5]. We get 41.66 roughly; let’s see whether that’s in the ballpark. Because there are no
formulas for computing areas under curves, we can use a triangular approximation, as
shown in Figure 4.53. The height of the triangle is 25 and the width is 5, so the area is

A = ?*width*height = ?*5*25 = 62.5
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which tells us that we are in the ballpark, because the area under the curve is of course
less. In fact, take my word for it—the area is exactly 41.66.

Integration Formulas
Okay, so now we have mathematical definition for integral, a geometric interpretation,
and we know how to integrate both indefinite and definite integrals. Now let’s take a look
at some formulas for integration, as shown in Table 4.8.

TABLE 4.8 Integration Formulas

Integral Antiderivative

∫ a*un du (a/n+1)*u(n+1) + c

∫ sin u du -cos u + c

∫ cos u du sin u + c

∫ sec2 u du tan u +c

∫ csc2 u du -cot u + c

∫ sec u * tan u du sec u + c

∫ csc u * cot u du -csc u + c

Summing Up Integration with a Physics Interpretation
Actually, summing is exactly what integration does! It sums a function from one point to
another. That’s a very useful operation, and absolutely necessary when calculating physics
models. Why? Because most of the time, you will have a model like this:

Position: x(t) = x
0
+ v*t

Velocity: v(t) = v
0
+ a*t

where the acceleration a is constant. The point of my example is that we know that the
time derivative of the position x(t) is equal the velocity v(t), or (dx/dt)x(t) = v(t), or put
yet another way:

x’(t) = v(t)

That means if I have the formula for v(t), its antiderivative must be equal to x(t).
Mathematically, we have

x’(t) = v(t)

So, integrating both sides:

∫ x’(t) dt = ∫ v(t) dt

The left-hand side is just x(t), because the antiderivative of the derivative of a function
f'(x) must be f(x) again. Thus we have:

x(t) = ∫ v(t) dt
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And we already know the form of v(t) = v
0
+a*t; plugging it into the indefinite integral, 

we get

x(t) = ∫ v
0
+a*t dt = [v

0
*t + 1⁄2*a*t2 + c]

And now all we need is c. But, if we use the initial conditions t = 0, x = x
0
, and v = v

0
, 

we get

[0 + 0 + c] = x
0

therefore c = x
0
. Putting it all together, we get the final formula for motion as a function

of time, and the initial position and velocity with constant acceleration:

x(t) = ∫ v
0
+a*t dt = [v

0
*t + 1⁄2*a*t2 + x

0
]

The point of this is that we needed to integrate the velocity function to find the position!
This is exactly what physics modeling is all about. You run the model, compute collisions
and forces, and then you need to integrate numerically to find the new position of all the
objects in the game. So yes, we need to know this stuff. When we get to physics modeling,
I will show you how to integrate numerically instead of symbolically.

Summary
At this point, I don’t know what to say—I feel like I have barely scratched the surface
mathematically of what is needed in a video game these days. I never thought I would be
writing a math book—a Kama Sutra, yes, but math?—no. However, we just don’t have any
more time or pages, so we have to move on. On the other hand, I think that if your math
skills were indeed rusty (or nonexistent), you should feel pretty good at this point. You
covered a lot of complex material: vectors, matrices, parametrics, complex numbers,
quaternions, calculus, and more.

However, I strongly suggest you get a couple of good books on linear algebra, calculus, and
physics. They can only help. This game stuff is just going to get harder and harder these
days, as we are now breaching the barrier of “toy” and entering into “simulation.” There is
no doubt in my mind that in 3–5 years we will have computer games that run physics
models that are absolutely realistic in the Newtonian scale of things. And that means
math, math, math! So be warned: I’m not going to explain all the math behind everything
from now on. I’ll assume you know this level of math at least…

Summary 361

4

07 0672318350 CH04  05•02•2003  2:36 PM  Page 361



07 0672318350 CH04  05•02•2003  2:36 PM  Page 362



IN THIS CHAPTER
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• Floating-Point Unit Math
Primer
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Engine
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Optimization

CHAPTER 5

Building a Math Engine

“I memorized them…”

—Lazlo Hollyfeld, Real Genius

Well, I was hoping that the math engine and the last
chapter would fit together into one chapter, but as usual
there seems to be an exponentially growing number of pages
needed to explain everything as each day passes. Writing a
book on 3D is like trying to hit an F-22 Raptor by throwing a
rock at it! You have to throw the rock so far ahead of it to hit
the darn thing! Thus, instead of cutting things out, I decided
to make the math library a separate chapter. Basically, every-
thing covered in Chapter 4,” It’s a Math, Math, Math World—
Trigonometry, Vectors, Matrices, and Quaternions” is going to
be implemented in one way or another in code: vectors,
matrices, quaternions, and so forth. This chapter is a code
dump for the most part, because we’ve already covered how
the math works. Thus, I won’t show the internals of all the
functions, just some of the representative ones. In most cases,
the math functions are verbatim implementations of the
mathematics from Chapter 4 converted to C/C++. Here’s the
layout of this chapter:

• Brief overview of the math engine

• Math constants

• Data structures

• Macros and inline functions

• Prototypes

• Globals

• Coordinate system support

• Vector support
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364 CHAPTER 5 Building a Math Engine

• Matrix support

• 2D and 3D parametric line support

• 3D plane support

• Quaternion support

• Fixed-point math support

• Floating-point math primer

Brief Overview of the Math Engine
As I mentioned in the introduction paragraph, I was hoping to fit the math primer and
code in a single chapter, but this stuff is just too complicated and I don’t want to cut
corners. Alas, this chapter is going to continue where the last chapter ended and we’re
going to implement all of our mathematical findings in a math engine. This engine will
be the starting point for our 3D engine and we’ll continually add to it, modify it, and
improve it as need be. It’s not the most efficient math library because it’s not optimized
too aggressively at the low level. That’s so I can remember what the heck I did!

However, where possible, I’ve optimized it at the high level algorithmically. That is, for
example, when computing the determinate of a matrix, I use co-factor expansion rather
than the brute force method of computing determinates—this saves multiplications.
However, in a real production 3D engine, there are many shortcuts that can be taken once
you know what the engine needs to do during runtime. The point is, now we’ll have some
tools to work with, and we can worry about optimizing them later. Finally, 1GHz+ proces-
sors are common now, so it’s not like I’m that worried!

File Structure of the Math Engine
The math engine is relatively simple as far as the files are concerned. There are only two
new files:

T3DLIB4.CPP—The C++ source file

T3DLIB4.H—The header file

Figure 5.1 depicts the relationship of the new math engine to the rest of the files in our
system. Notice that the math library T3DLIB4.CPP relies on some structures in
T3DLIB1.CPP; thus, we always need to link to T3DLIB1.CPP|H (which you would always do
anyway). Moreover, T3DLIB1.CPP|H relies on DDRAW.H, hence, that’s #included in
T3DLIB4.CPP also. The point is that if you want to use this library module as a standalone
in something else, you’ll need to move a couple of functions from T3DLIB1.CPP, and the
defines from T3DLIB1.H into T3DLIB4.*, respectively—just a heads up.
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FIGURE 5.1 The relationship of the math engine to our game system.

The math engine itself is composed of numerous functions (and, believe me, it wasn’t easy
testing them all) that will help us work with points, vectors, lines, matrices, quaternions,
and so on. Of course, I’m sure I’ve left stuff out, but we have a good foundation to work
with.

Naming Conventions
As with the first Tricks, we’ll use the convention that if we update a function, we’ll append
a number to the function name if the function performs the same operation, but only
better or in a slightly different way. For example, a function named Multiply() might
evolve into Multiply2() later in the book. Furthermore, naming functions is always one
of those things everyone has a problem with because you want the function to have a
reasonably intelligent name, but at the same time you don’t want to type 80 billion char-
acters! Therefore, I’ve decided on the convention that, in most cases, I’ll use the
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class/structure name as part of the function name along with an almost-English descrip-
tion of what the function does and separate its data types by underscores (_). For example,
the function that multiplies a vector and a matrix looks like this:

void Mat_Mul_VECTOR3D_3X3(VECTOR3D_PTR va, 

MATRIX3X3_PTR mb,

VECTOR3D_PTR vprod);

The function declaration pretty much sums up what the function does. OpenGL has a
nice naming convention something like this, so what the heck? This is much better than
something like this:

MMV3D33(…)

Although you might want to use a more aggressive naming convention similar to the
above in a production engine, for us, that little extra typing will make things more clear.

NOTE

Additionally, classes and structures are always defined in all uppercase, as well as #defined
macros. However, some inline macros (short functions) are in mixed case like standard functions.

Error Handling
Error handling is simple—there is none! This book is for intermediate/advanced program-
mers; if you want error handling and exceptions thrown, add them yourself. In most
cases, each function checks for really stupid errors like divide by 0, but there are barely
any return codes for any of the functions. If there is a return code, usually 1 (TRUE) means
success and 0 (FALSE) means there was a problem.

My Final Word on C++
Throughout the years of developing games and game programming books, along with
writing the previous volume to this book, I think that I’ve finally arrived at this fact: C++
is a terrible teaching language! It’s great in production, and I use it for my own games, but
as for teaching, it’s very, very bad. I’m not going to get into why I think that, but it is. For
example, universities still teach many programming courses and data structure courses in
Pascal, Modula II, and Ada—why? Because they’re very structured languages, and you
know what each line of code does. C++ is too hard to figure out without prior knowledge
of the classes defined by the author. Meaning that when someone is trying to learn an
algorithm, why complicate matters with classes and constructors and overloaded opera-
tors?

Alas, the one library that I was really excited about making completely in C++ has found
its final state in what I call C+ (C with some function overloading and a bit of C++). My
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reasoning is that my C code version is as fast or faster than the C++ version, and it’s easier
to understand. On the other hand, please convert the math library or anything else you
like to C++ if it helps you.

Personally, it’s the coolest thing being able to do matrix and vector math with overloaded
operators, but it’s too hard to know what’s going on from a teaching point of view.
Moreover, every time I want to update a C++ class-based math library, I have to write a
new class and derive and overload the previous class—this is just too much work. I’d
much rather have a Multiply() function and call the new one Multiply2()—capice? And
that’s all I have to say about that.

Data Structures and Types
Let’s start by taking a look at the data structures and types the math engine uses. For the
most part, 90% of the types and structures are new, but there are some that we created
back in T3DLIB1.CPP|H to do some simple matrix math. However, instead of breaking
those up, I’m just going to make comments in the descriptions that they can be found in
T3DLIB1.H.

The math engine supports numerous data types, including points, vectors, matrices,
quaternions, parametric lines, 3D planes, polar coordinates, cylindrical coordinates, spher-
ical coordinates, and fixed-point numbers. Let’s take a look at each class of structures.

Vectors and Points
The math engine supports 2D, 3D, and 4D points and vectors, with 4D meaning homoge-
nous coordinates of the form (x,y,z,w). However, in most cases, we’ll never use w (because
it will always be 1), but it’s nice to have it. Anyway, because points and vectors are really
the same thing—data-wise at least—the same data structure is used to hold them.
Moreover, I’ve decided to use unions in the structures to allow multiple naming conven-
tions. For example, sometimes it’s nice to refer to a 3D point p as p.x, p.y, p.z, but other
times, I want to use an algorithm that accesses x,y,z as an array p.M[0], p.M[1], p.M[2] or
something like that. This is the theme throughout all the data structures. I want to give us
a lot of room to refer to the data so that we can write clear algorithms. Hence, without
further ado, here are the vector and point types:

// 2D vector, point without the w ////////////////////////

typedef struct VECTOR2D_TYP

{

union

{

float M[2]; // array indexed storage

// explicit names

struct

{
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float x,y;

}; // end struct

}; // end union

} VECTOR2D, POINT2D, *VECTOR2D_PTR, *POINT2D_PTR;

// 3D vector, point without the w ////////////////////////

typedef struct VECTOR3D_TYP

{

union

{

float M[3]; // array indexed storage

// explicit names

struct

{

float x,y,z;

}; // end struct

}; // end union

} VECTOR3D, POINT3D, *VECTOR3D_PTR, *POINT3D_PTR;

// 4D homogenous vector, point with w ////////////////////

typedef struct VECTOR4D_TYP

{

union

{

float M[4]; // array indexed storage

// explicit names

struct

{

float x,y,z,w;

}; // end struct

}; // end union

} VECTOR4D, POINT4D, *VECTOR4D_PTR, *POINT4D_PTR;

And here are a couple of old vertex defines from T3DLIB1.H:

// a 2D vertex

typedef struct VERTEX2DI_TYP

{
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int x,y; // the vertex

} VERTEX2DI, *VERTEX2DI_PTR;

// a 2D vertex

typedef struct VERTEX2DF_TYP

{

float x,y; // the vertex

} VERTEX2DF, *VERTEX2DF_PTR;

Later in the next chapter, when we start dealing with data structures to contain and repre-
sent 3D objects, we’ll undoubtedly create 3D vertex representations.

Parametric Lines
In most cases, algorithms that use parametric representations of lines usually create them
on the fly with points and variables that define the problem, but I thought that it might
be nice to have an actual set of functions to work with explicit parametric lines. Hence, I
created support for both 2D and 3D parametric lines. Here’s the data structure for a 2D
parametric line:

// 2D parametric line /////////////////////////////////////////

typedef struct PARMLINE2D_TYP

{

POINT2D p0; // start point of parametric line

POINT2D p1; // end point of parametric line

VECTOR2D v; // direction vector of line segment

// |v|=|p0->p1|

} PARMLINE2D, *PARMLINE2D_PTR;

As shown in Figure 5.2, p0 represents the starting or initial point, p1 represent the ending
or terminal point, and v is the vector from p0->p1. If we get a little more ambitious (and
we will), 3D parametric lines are just as easy to represent:

// 3D parametric line /////////////////////////////////////////

typedef struct PARMLINE3D_TYP

{

POINT3D p0; // start point of parametric line

POINT3D p1; // end point of parametric line

VECTOR3D v; // direction vector of line segment

// |v|=|p0->p1|

} PARMLINE3D, *PARMLINE3D_PTR;

Figure 5.3 represents a 3D parametric line. The values p0, p1, and v represent the same as
with the 2D parametric line. However, you’ll notice that I am using a left-handed system
for the figure. Does this matter? No! A line is a line, no matter what the system. As long as
you define the line and use the line in the same system, there won’t be a problem.
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FIGURE 5.2 The 2D parametric line model.
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3D Planes
Although most of the time we worry about 3D planes, it will be in the context of poly-
gons. I thought that it might be nice to have a 3D plane type for a few reasons: to be able
to perform partitioning algorithms, to ease writing clipping algorithms, and finally to help
with collision detection algorithms between parametric 3D lines and 3D planes. Anyway,
there are a number of ways to represent a plane in 3D, but ultimately they all represent
the same object. Thus, I used the point-normal form rather than the explicit form to hold
the representation. That doesn’t mean that we can’t store a plane in the form

a*x+b*y+c*z+d = 0

It just means that we need to write a function that converts it into the point normal form
for storage. Furthermore, the point normal form is more suited for a number of computa-
tions and not having to perform the conversion from explicit form is helpful. In any case,
here’s the data structure we’ll use for now:

// 3D plane ///////////////////////////////////////////////////

typedef struct PLANE3D_TYP

{

POINT3D p0; // point on the plane

VECTOR3D n; // normal to the plane (not necessarily a unit vector)

} PLANE3D, *PLANE3D_PTR;
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Figure 5.4 depicts a 3D plane (in an LHS), p0 is a point on the plane, and the vector n is
normal to the plane. Note: we don’t assume that n is a unit vector.

Matrices
The largest set of data structures in the math engine is the matrices. There is support for
1×2, 2×2, 1×3, 3×2, 3×3, 1×4, 4×4, and 4×3. The 1×n matrices are really data equivalent to
n-element vectors. For example, a 1×3 matrix has the same data footprint as a VECTOR3D,
which is good because we can cast data types and get functions written for one type to
work transparently with another. Anyway, here’s all the matrix types. Note that many of
the 2×2 and 3×3 are defined in T3DLIB1.H and all matrices are in row major form and
indexed [0..n][0..n] = [row_index][column_index].

// matrix defines

// 4x4 matrix /////////////////////////////////////////////

typedef struct MATRIX4X4_TYP

{

union

{

float M[4][4]; // array indexed data storage

// storage in row major form with explicit names

struct

{

float M00, M01, M02, M03;

float M10, M11, M12, M13;

float M20, M21, M22, M23;

float M30, M31, M32, M33;

}; // end explicit names

}; // end union

} MATRIX4X4, *MATRIX4X4_PTR;

// 4x3 matrix /////////////////////////////////////////////

typedef struct MATRIX4X3_TYP

{

union

{

float M[4][3]; // array indexed data storage

// storage in row major form with explicit names

struct

{
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float M00, M01, M02;

float M10, M11, M12;

float M20, M21, M22;

float M30, M31, M32;

}; // end explicit names

}; // end union

} MATRIX4X3, *MATRIX4X3_PTR;

// 1x4 matrix /////////////////////////////////////////////

typedef struct MATRIX1X4_TYP

{

union

{

float M[4]; // array indexed data storage

// storage in row major form with explicit names

struct

{

float M00, M01, M02, M03;

}; // end explicit names

}; // end union

} MATRIX1X4, *MATRIX1X4_PTR;

// 3x3 matrix /////////////////////////////////////////////

// from T3DLIB1.H

typedef struct MATRIX3X3_TYP

{

union

{

float M[3][3]; // array indexed data storage

// storage in row major form with explicit names

struct

{

float M00, M01, M02;

float M10, M11, M12;

float M20, M21, M22;

}; // end explicit names
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}; // end union

} MATRIX3X3, *MATRIX3X3_PTR;

// 1x3 matrix /////////////////////////////////////////////

// from T3DLIB1.H

typedef struct MATRIX1X3_TYP

{

union

{

float M[3]; // array indexed data storage

// storage in row major form with explicit names

struct

{

float M00, M01, M02;

}; // end explicit names

}; // end union

} MATRIX1X3, *MATRIX1X3_PTR;

// 3x2 matrix /////////////////////////////////////////////

// from T3DLIB1.H

typedef struct MATRIX3X2_TYP

{

union

{

float M[3][2]; // array indexed data storage

// storage in row major form with explicit names

struct

{

float M00, M01;

float M10, M11;

float M20, M21;

}; // end explicit names

}; // end union

} MATRIX3X2, *MATRIX3X2_PTR;

// 2x2 matrix /////////////////////////////////////////////

typedef struct MATRIX2X2_TYP

{
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union

{

float M[2][2]; // array indexed data storage

// storage in row major form with explicit names

struct

{

float M00, M01;

float M10, M11;

}; // end explicit names

}; // end union

} MATRIX2X2, *MATRIX2X2_PTR;

// 1x2 matrix /////////////////////////////////////////////

// from T3DLIB1.H

typedef struct MATRIX1X2_TYP

{

union

{

float M[2]; // array indexed data storage

// storage in row major form with explicit names

struct

{

float M00, M01;

}; // end explicit names

}; // end union

} MATRIX1X2, *MATRIX1X2_PTR;

Notice the naming conventions on all the matrices. For example, if we defined a 3×3
matrix like this:

MATRIX3X3 m = {0,1,2, 3,4,5, 6,7,8 };

Then the matrix would look like this in memory:

|0   1   2|

|3   4   5|

|6   7   8|
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which is in row major form. To access the lower-right hand element and assign a 100.0 to
it, both of the following statements are equivalent because of the union:

m.M22 = 100; // all elements are 0 indexed

m.M[2][2] = 100;

Quaternions
The next data type is the 4D hyper complex quaternion (I just love saying that). If you
recall, quaternions have the form

q = q0 + q1*i + q2*j + q3*k

or

q = q0 + <q1, q2, q3>

or

q = q0 + qv

Any way you look at it, a quaternion is nothing more than a 4-tuple, where the real part is
q0, and the vector part is imaginary. Moreover, because we’re going to use quaternions in
the context of rotation and camera work, it will be advantageous to be able to represent
them in the form of a single real q0 or w along with a vector part <x,y,z>. That way we
can use some of the other VECTOR3D functions to do work on quaternions—possibly
because the data footprints are similar? With that in mind, take a look at the definition of
a quaternion:

// 4d quaternion ////////////////////////////////////////////

// note the union gives us a number of ways to work with

// the components of the quaternion

typedef struct QUAT_TYP

{

union

{

float M[4]; // array indexed storage w,x,y,z order

// vector part, real part format

struct 

{

float  q0; // the real part

VECTOR3D qv; // the imaginary part xi+yj+zk

};
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struct

{

float w,x,y,z;

}; 

}; // end union

} QUAT, *QUAT_PTR;

Notice the union allows access to the quaternion in three different ways: as an array, as a
float vector pair, and explicitly as w,x,y,z, which is great depending on the algorithm the
quaternion is being processed with. For example, here’s a quaternion defined and then the
real part is altered:

QUAT q = {1, 1,2,3 };

q.w  = 5; // access with explicit name

q.q0  = 5; // access with real float/vector name

q.M[0] = 5; // access with array

NOTE

It was tempting to put quaternions into the form <x,y,z,w> so that their data footprint matched
that of a VECTOR4D. However, tempting as it was, I wanted to keep the convention of the data
type in the same format as used when writing them mathematically.

TIP

Later, we might create a new quaternion type if we find that a different data ordering speeds
calculations or access.

Angular Coordinate System Support
Although I doubt we’ll use coordinate systems other than Cartesian throughout the book,
there might be a time when we need it just to make a representation more natural to
model the problem. For example, if we were modeling a weapon turret (as shown in Figure
5.5), a polar coordinate system might be perfect because we need an angular direction
about the axis. Hence, the math engine supports all angular 2D- and 3D-coordinate
systems and transformation between systems. The systems supported are polar 2D, cylindri-
cal 3D, and spherical 3D. All angles are in radians, and all conversions are relative to a
right-handed system, so watch out if you’re using a left-handed system—you might get a
negative sign if you don’t take the right-handedness into consideration.
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FIGURE 5.5 A weapon turret modeled with polar coordinates.

CAUTION

Watch out! All the angular functions assume that angles are in terms of radians NOT degrees!

Polar 2D
The polar 2D system is shown in Figure 5.6. A point is represented by a distance r from
the origin or Pole, and a heading or angle θ (theta). Thus, the notation p(r, θ) means that
the point p is located an angle θ degrees (or radians) relative to a reference ray (usually the
x-axis) measured counter-clockwise, and a distance r out on that directional heading. The
data type is nothing more than this exact representation converted to C++:

// 2D polar coordinates ///////////////////////////////////////

typedef struct POLAR2D_TYP

{

float r;   // the radi of the point

float theta; // the angle in rads

} POLAR2D, *POLAR2D_PTR;
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FIGURE 5.6 The polar 2D coordinate system.

Cylindrical 3D
The cylindrical 3D system is similar to the polar 2D system with the addition of a z-axis
variable, as shown in Figure 5.7. Points are defined as a triple p(r,θ,z), meaning the point
p is located an angle θ degrees (or radians) relative to a reference ray (usually the x-axis)
measured counter-clockwise, and a distance r out on that directional heading. It’s then
raised or lowered an amount, z, on the z-axis. The data type contains exactly this informa-
tion as shown in the following snippet:

// 3D cylindrical coordinates ////////////////////////////////

typedef struct CYLINDRICAL3D_TYP

{

float r;   // the radi of the point

float theta; // the angle in degrees about the z axis

float z;   // the z-height of the point

} CYLINDRICAL3D, *CYLINDRICAL3D_PTR;
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FIGURE 5.7 The cylindrical 3D coordinate system.

Spherical 3D
Spherical 3D coordinates are the most complex of all the angular systems. A point p(ρ,φ,θ)
is defined by a distance and two angles as shown in Figure 5.8, where

ρ (rho) is the distance from the origin o to the point p.

φ (phi) is the angle that the directed line segment from the origin to p makes with the positive z-axis

(thus, we’ll use an RHS system in this analysis).

θ (theta) is the angle that projection of the line from o to p makes on the x-y plane, which is just

the standard 2D polar θ. Also, 0 <= θ <= π; that is, θ must be in the interval from 0 to π, inclusive.

Of course, you’ve seen this before in the last chapter, but it can’t hurt to show it again.
Anyway, as you guessed the data structure is (drum roll please…):

// 3D spherical coordinates //////////////////////////////////

typedef struct SPHERICAL3D_TYP

{

float p;   // rho, the distance to the point from the origin

float theta; // the angle from the z-axis and the line segment o->p

float phi;  // the angle from the projection if o->p onto the x-y 

// plane and the x-axis

} SPHERICAL3D, *SPHERICAL3D_PTR;
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FIGURE 5.8 The 3D spherical coordinate system.

Fixed-Point Numbers
The last types are hardly types, but we need them nevertheless. Fixed-point numbers, as
you know, are integers that are used to represent fractional or floating-point numbers with
limited accuracy without the need of floating-point processing. Today the need for them is
moot because Pentium+ and I64 processors can all perform floating-point math as quickly
as fixed-point math. However, fixed-point sometimes still makes sense in tight inner loops
where floating-point numbers can’t be used, or when you want to use only integers, or on
smaller handheld devices. In any case, for the majority of math in this book, we’ll use the
16.16 format as shown in Figure 5.9; that is, 16 bits to represent the whole part and 16
bits to represent the decimal part. With that in mind, here are the data types:

// fixed point types //////////////////////////////////////////

typedef int FIXP16;

typedef int *FIXP16_PTR;

Now, let’s take a look the constants and defines used in the engine. Normally, they would
come first, but I had some forward references to the data structures, so it was best to cover
those first and the defines later.
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FIGURE 5.9 Fixed-point number representations.

Math Constants
The math engine is based on a number of defined constants. These constants are found in
T3DLIB4.H, but there are a few legacy constants from T3DLIB1.H that are used. Here are the
math constants that you’ll find in T3DLIB1.H (just for review):

// math related constants from T3DLIB1.H

// pi defines

#define PI     ((float)3.141592654f)

#define PI2    ((float)6.283185307f)

#define PI_DIV_2  ((float)1.570796327f)

#define PI_DIV_4  ((float)0.785398163f) 

#define PI_INV   ((float)0.318309886f) 

// fixed point mathematics constants

#define FIXP16_SHIFT   16

#define FIXP16_MAG    65536

#define FIXP16_DP_MASK  0x0000ffff

#define FIXP16_WP_MASK  0xffff0000

#define FIXP16_ROUND_UP 0x00008000

CHAPTER 5 Building a Math Engine382

A.  A 16-Bit Fixed Point Format

B.  A 32-Bit Fixed Point Format

d15 d14 d13 d12 d11 d10 d9 d8 d7 d6 d5 d4 d3 d2 d1 d0

128 64 32 16 8 4 2 1

Whole Part d15�d8 Decimal part  d7�d0
“Fixed point”

d31 d30 d29 d28 d27 d26 d25 d24 d23 d22 d21 d20 d19 d18 d17 d16 d15 d14 d13 d12 d11 d10 d9 d8 d7 d6 d5 d4 d3 d2 d1 d0

216
216128 64 32 16 8 4 2 1••••••• •• •••••••

Whole Part d31�d16 Decimal part  d15�d0

1
2/

1
4/

1
8/

1
16/ 1

32/ 1
64/

1
2/

1
4/

1
8/

1
16/ 1

32/ 1
64/

1

1
128/ 1

256/

08 0672318350 CH05  05•02•2003  2:37 PM  Page 382



Nothing more than pi and some fixed-point stuff. Note that we’re using 16.16 fixed-point
format, but more on that when we get to the fixed-point routines. Anyway, here are the
constants from T3DLIB4.H broken down in sections with explanations where needed:

// defines for small numbers

#define EPSILON_E4 (float)(1E-4) 

#define EPSILON_E5 (float)(1E-5)

#define EPSILON_E6 (float)(1E-6)

The epsilon constants help when performing math comparisons on small floating-point
numbers. For example, it’s common when doing floating-point math to test whether a
number is equal to 0.0. However, 0.0 in floating-point is a rare thing once a few calcula-
tions have been performed and accuracy is lost, so a common strategy is to test for near
0.0 like this:

if (fabs(x) < 0.00001) 

{ 

// that’s close enough to 0

} // end if

The next set of constants help with the parametric line functions and their return values
(more on that when we get to the functions):

// defines for parametric line intersections

#define PARM_LINE_NO_INTERSECT     0

#define PARM_LINE_INTERSECT_IN_SEGMENT 1

#define PARM_LINE_INTERSECT_OUT_SEGMENT 2

#define PARM_LINE_INTERSECT_EVERYWHERE 3

And now for some identity matrices to make initializing matrices easier:

// identity matrices

// 4x4 identity matrix

const MATRIX4X4 IMAT_4X4 = {1,0,0,0, 

0,1,0,0, 

0,0,1,0, 

0,0,0,1};

// 4x3 identity matrix (note this is not correct mathematically)

// but later we may use 4x3 matrices with the assumption that 

// the last column is always [0 0 0 1]t

const MATRIX4X3 IMAT_4X3 = {1,0,0, 

0,1,0, 

Math Constants 383

5

08 0672318350 CH05  05•02•2003  2:37 PM  Page 383



0,0,1, 

0,0,0,};

// 3x3 identity matrix

const MATRIX3X3 IMAT_3X3 = {1,0,0, 

0,1,0, 

0,0,1};

// 2x2 identity matrix

const MATRIX2X2 IMAT_2X2 = {1,0, 

0,1};

NOTE

Although only nxn matrices can have identity matrices (that is; 2x2, 3x3, 4x4, and so on), there’s
a 4x3 identity matrix in the preceding definitions. This technically isn’t correct, but during many
math operations, we use 4x3 matrices and assume the last column is [0 0 0 1]t. Thus, we can
create a 4x3 identity as long as we remember that there’s an artificial extra column there when
doing the math.

Amazingly enough, that’s all there is to the math constants and defines!

Macros and Inline Functions
The problem with writing a math engine is that, in reality making function calls to
perform operations on math objects can take as much time as the math operations them-
selves! Hence, using macros and inline functions is definitely the way to go. However, the
problem with large inline functions is that inline functions MUST be available at compile
time rather than at link time. That is, when you compile a program and call a function
named func() in another module, the compiler doesn’t need the code for func(), only
the prototype:

int func(int x, int y);

With that, it can create a call in the compiled code and then later the linker can find
func() and resolve the call to an address. The problem with inline functions is that during
compile time the actual code needs to be available. Thus, the only way to cleanly imple-
ment large inline functions is with a header that defines the inline functions along with
another pseudo C/C++ module named *.inc that you manually include in the module
you’re including. This way, the compiler has access to the actual code of the function
you’re requesting the inlining of. Figure 5.10 shows this setup.

CHAPTER 5 Building a Math Engine384

08 0672318350 CH05  05•02•2003  2:37 PM  Page 384



FIGURE 5.10 The inlining process in relation to the compiler and linker.

The point I am trying to make is this: When writing a math engine, all the functions
should inline, for the most part, anything less than a few lines of code where the code
itself takes on the same order of magnitude to run as does setting up the stack frame,
making the call, and returning. For example, here’s an example of a horrific function to
call in an inner loop:

void Plot_Pixel(UCHAR *video_buffer, int mempitch, int x, int y, int color)

{

// plots a pixel

video_buffer[x+y*mempitch] = color;

} // end Plot_Pixel

If I make a call to this in my program, a function call will be generated. For example, take
a look at the following code:

void main()

{

UCHAR *video_buffer = (UCHAR *)malloc(SCREEN_WIDTH*SCREEN_HEIGHT);
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for (int y=0; y < SCREEN_HEIGHT; y++)

for (int x=0; x < SCREEN_WIDTH; x++)

Plot_Pixel(video_buffer, SCREEN_WIDTH, x,y,5); // slow call

} // end main

Although the function doesn’t look bad, let’s look at the disassembly of the code as gener-
ated by my Visual C++ 6.0 compiler:

_main PROC NEAR

; 52  : {

push  ebp

mov  ebp, esp

sub  esp, 12                ; 0000000cH

; 53  : UCHAR *video_buffer = (UCHAR *)malloc(SCREEN_WIDTH*SCREEN_HEIGHT);

push  307200                ; 0004b000H

call  _malloc

add  esp, 4

mov  DWORD PTR _video_buffer$[ebp], eax

; 54  : 

; 55  : for (int y=0; y < SCREEN_HEIGHT; y++)

mov  DWORD PTR _y$[ebp], 0

jmp  SHORT $L43914

$L43915:

mov  eax, DWORD PTR _y$[ebp]

add  eax, 1

mov  DWORD PTR _y$[ebp], eax

$L43914:

cmp  DWORD PTR _y$[ebp], 480       ; 000001e0H

jge  SHORT $L43916

; 56  :    for (int x=0; x < SCREEN_WIDTH; x++)

mov  DWORD PTR _x$43917[ebp], 0

jmp  SHORT $L43918

$L43919:

mov  ecx, DWORD PTR _x$43917[ebp]

add  ecx, 1

CHAPTER 5 Building a Math Engine386

08 0672318350 CH05  05•02•2003  2:37 PM  Page 386



mov  DWORD PTR _x$43917[ebp], ecx

$L43918:

cmp  DWORD PTR _x$43917[ebp], 640     ; 00000280H

jge  SHORT $L43920

; 57  :         Plot_Pixel(video_buffer, SCREEN_WIDTH, x,y,5);

push  5

mov   edx, DWORD PTR _y$[ebp]

push  edx

mov   eax, DWORD PTR _x$43917[ebp]

push  eax

push  640                  ; 00000280H

mov   ecx, DWORD PTR _video_buffer$[ebp]

push  ecx

call  ?Plot_Pixel@@YAXPAEHHHH@Z       ; Plot_Pixel

add   esp, 20                ; 00000014H

jmp   SHORT $L43919

$L43920:

jmp   SHORT $L43915

$L43916:

; 58  : 

; 59  : } // end main

mov   esp, ebp

pop   ebp

ret   0

_main  ENDP

I’ve highlighted all the code needed to make the call to Plot_Pixel() to set up the stack
frame, the call, and the fix up during the return. Now, compare that to the actual code for
the Plot_Pixel() function itself:

?Plot_Pixel@@YAXPAEHHHH@Z PROC NEAR         ; Plot_Pixel

; 45  : {

push  ebp

mov  ebp, esp

; 46  : // plots a pixel

; 47  : video_buffer[x+y*mempitch] = color;
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mov  eax, DWORD PTR _y$[ebp]

imul  eax, DWORD PTR _mempitch$[ebp]

mov  ecx, DWORD PTR _x$[ebp]

add  ecx, eax

mov  edx, DWORD PTR _video_buffer$[ebp]

mov  al, BYTE PTR _color$[ebp]

mov  BYTE PTR [edx+ecx], al

; 48  : } // end Plot_Pixel

pop  ebp

ret  0

?Plot_Pixel@@YAXPAEHHHH@Z ENDP           ; Plot_Pixel

As you can see, the call to Plot_Pixel() does almost as much work as the function does!
However, if we inline the function, all this call overhead goes away. Here’s the same
example, but this time I tell the compiler to inline the function:

_main  PROC NEAR

; 52  : {

push  ebp

mov  ebp, esp

sub  esp, 16                ; 00000010H

; 53  : UCHAR *video_buffer = (UCHAR *)malloc(SCREEN_WIDTH*SCREEN_HEIGHT);

push  307200                ; 0004b000H

call  _malloc

add  esp, 4

mov  DWORD PTR _video_buffer$[ebp], eax

; 54  :

; 55  : for (int y=0; y < SCREEN_HEIGHT; y++)

mov  DWORD PTR _y$[ebp], 0

jmp  SHORT $L43914

$L43915:

mov  eax, DWORD PTR _y$[ebp]

add  eax, 1

mov  DWORD PTR _y$[ebp], eax

$L43914:
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cmp  DWORD PTR _y$[ebp], 480        ; 000001e0H

jge  SHORT $L43916

; 56  :    for (int x=0; x < SCREEN_WIDTH; x++)

mov  DWORD PTR _x$43917[ebp], 0

jmp  SHORT $L43918

$L43919:

mov  ecx, DWORD PTR _x$43917[ebp]

add  ecx, 1

mov  DWORD PTR _x$43917[ebp], ecx

$L43918:

cmp  DWORD PTR _x$43917[ebp], 640     ; 00000280H

jge  SHORT $L43920

; 57  :       Plot_Pixel(video_buffer, SCREEN_WIDTH, x,y,5);

mov  DWORD PTR $T43941[ebp], 5

mov  edx, DWORD PTR _y$[ebp]

imul  edx, 640               ; 00000280H

mov  eax, DWORD PTR _x$43917[ebp]

add  eax, edx

mov  ecx, DWORD PTR _video_buffer$[ebp]

mov  dl, BYTE PTR $T43941[ebp]

mov  BYTE PTR [ecx+eax], dl

jmp  SHORT $L43919

$L43920:

jmp  SHORT $L43915

$L43916:

; 58  :

; 59  : } // end main

This time, I’ve highlighted the inlined call to Plot_Pixel() and as you can see, it’s much
better! More code, but 200% faster on average.

I think I’ve shown that inlining is something that we want to do when the function being
called has a small body, but it’s a pain to implement because there’s no good way to
manage the files. I like .H and .CPP files, but I hate putting all my inline function listings
along with code in the .H file, and I think adding a .INC file is asking for trouble. So, the
moral to the story is this: Where possible, use #define macros as long as you don’t foresee
problems with the macro parameters being called multiple times.
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Also, it’s okay to use short inline functions (macros) in the header files as long as they
aren’t too big because most programmers hunting for source code clues won’t go into the
.H files, but into the .CPP files. Additionally, by having large code bases in .H files, headers
take longer to compile (of course, using precompiled headers solves that). Bearing that in
mind, when you’re done with your engine, you might want to convert many functions to
inline that are short in nature. The problem is that you end up migrating all your .CPP
files into .H files, and that’s a management problem for your source.

I tried to find a common ground for all this drama and convert only simple functions to
inline macros and keep them in the .H file. All the real functions went into the .CPP file.
However, sometimes I probably should have decided to convert some of my real functions
to inline, and some of my inlines to non-inline and put them in the .CPP file, but I think
you get the point I’m trying to make. A math engine needs to be wickedly fast; thus, as
much as possible of it should be inlined.

Now that I’ve bored our optimization experts who are reading this, let’s move on to all the
macros. They’re once again classed into working groups for general utility: vectors, matri-
ces, lines, planes, quaternions, and so on. Hence, I’ll present them in these groups. And
finally, the macros and inline functions have comments describing what each group does
(it isn’t like you’re not going to figure out five lines of code, anyway) <BG>.

General Utility and Conversion
In general, the only generic macros are in T3DLIB1.H, so let’s get those out of the way:

// used to compute the min and max of two expressions

#define MIN(a, b) (((a) < (b)) ? (a) : (b)) 

#define MAX(a, b) (((a) > (b)) ? (b) : (a)) 

// used for swapping algorithm

#define SWAP(a,b,t) {t=a; a=b; b=t;}

// some math macros

#define DEG_TO_RAD(ang) ((ang)*PI/180.0)

#define RAD_TO_DEG(rads) ((rads)*180.0/PI)

#define RAND_RANGE(x,y) ( (x) + (rand()%((y)-(x)+1)))

All of these are straightforward. I find the RAND_RANGE() macro, along with MIN() and
MAX(), very useful.

Points and Vectors
As I mentioned earlier in the chapter, the data format of a point and vector in 2D, 3D, and
4D is identical. Hence, I’m going to group the point and vector macros together here.
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Also, some of the macros are written as inline functions to help with type checking. And
many of them were too long to write as #defined macros.

// vector macros, note the 4D vector sets w=1

// vector zeroing macros

inline void VECTOR2D_ZERO(VECTOR2D_PTR v) 

{(v)->x = (v)->y = 0.0;}

inline void VECTOR3D_ZERO(VECTOR3D_PTR v) 

{(v)->x = (v)->y = (v)->z = 0.0;}

inline void VECTOR4D_ZERO(VECTOR4D_PTR v) 

{(v)->x = (v)->y = (v)->z = 0.0; (v)->w = 1.0;}

// macros to initialize vectors with explicit components

inline void VECTOR2D_INITXY(VECTOR2D_PTR v, float x, float y) 

{(v)->x = (x); (v)->y = (y);}

inline void VECTOR3D_INITXYZ(VECTOR3D_PTR v, float x, float y, float z) 

{(v)->x = (x); (v)->y = (y); (v)->z = (z);}

inline void VECTOR4D_INITXYZ(VECTOR4D_PTR v, float x,float y,float z) 

{(v)->x = (x); (v)->y = (y); (v)->z = (z); (v)->w = 1.0;}

// vector intialization macros to initialize with other vectors

inline void VECTOR2D_INIT(VECTOR2D_PTR vdst, VECTOR2D_PTR vsrc) 

{(vdst)->x = (vsrc)->x; (vdst)->y = (vsrc)->y; }

inline void VECTOR3D_INIT(VECTOR3D_PTR vdst, VECTOR3D_PTR vsrc) 

{(vdst)->x = (vsrc)->x; (vdst)->y = (vsrc)->y; (vdst)->z = (vsrc)->z; }

inline void VECTOR4D_INIT(VECTOR4D_PTR vdst, VECTOR4D_PTR vsrc) 

{(vdst)->x = (vsrc)->x; (vdst)->y = (vsrc)->y; 

(vdst)->z = (vsrc)->z; (vdst)->w = (vsrc)->w; }

// vector copying macros

inline void VECTOR2D_COPY(VECTOR2D_PTR vdst, VECTOR2D_PTR vsrc) 

{(vdst)->x = (vsrc)->x; (vdst)->y = (vsrc)->y; }

inline void VECTOR3D_COPY(VECTOR3D_PTR vdst, VECTOR3D_PTR vsrc) 

{(vdst)->x = (vsrc)->x; (vdst)->y = (vsrc)->y; (vdst)->z = (vsrc)->z; }
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inline void VECTOR4D_COPY(VECTOR4D_PTR vdst, VECTOR4D_PTR vsrc) 

{(vdst)->x = (vsrc)->x; (vdst)->y = (vsrc)->y; 

(vdst)->z = (vsrc)->z; (vdst)->w = (vsrc)->w; }

// point initialization macros

inline void POINT2D_INIT(POINT2D_PTR vdst, POINT2D_PTR vsrc) 

{(vdst)->x = (vsrc)->x; (vdst)->y = (vsrc)->y; }

inline void POINT3D_INIT(POINT3D_PTR vdst, POINT3D_PTR vsrc) 

{(vdst)->x = (vsrc)->x; (vdst)->y = (vsrc)->y; (vdst)->z = (vsrc)->z; }

inline void POINT4D_INIT(POINT4D_PTR vdst, POINT4D_PTR vsrc) 

{(vdst)->x = (vsrc)->x; (vdst)->y = (vsrc)->y; 

(vdst)->z = (vsrc)->z; (vdst)->w = (vsrc)->w; }

// point copying macros

inline void POINT2D_COPY(POINT2D_PTR vdst, POINT2D_PTR vsrc) 

{(vdst)->x = (vsrc)->x; (vdst)->y = (vsrc)->y; }

inline void POINT3D_COPY(POINT3D_PTR vdst, POINT3D_PTR vsrc) 

{(vdst)->x = (vsrc)->x; (vdst)->y = (vsrc)->y; (vdst)->z = (vsrc)->z; }

inline void POINT4D_COPY(POINT4D_PTR vdst, POINT4D_PTR vsrc) 

{(vdst)->x = (vsrc)->x; (vdst)->y = (vsrc)->y; 

(vdst)->z = (vsrc)->z; (vdst)->w = (vsrc)->w; }

As you can see, there’s a macro for everything! Zeroing, initialization with different data
types, and copying. Lots of redundancy, but who cares?

Matrices
Next are the matrix macros. Note that some are #defined macros, whereas others are short
inline functions.

// matrix macros

// macros to clear out matrices

#define MAT_ZERO_2X2(m) {memset((void *)(m), 0, sizeof(MATRIX2X2));}

#define MAT_ZERO_3X3(m) {memset((void *)(m), 0, sizeof(MATRIX3X3));}

#define MAT_ZERO_4X4(m) {memset((void *)(m), 0, sizeof(MATRIX4X4));}

#define MAT_ZERO_4X3(m) {memset((void *)(m), 0, sizeof(MATRIX4X3));}
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NOTE

Many compilers use a byte-by-byte memory fill when calling the function memset(). We may be
able to get more speed by using a quad-byte clear to zero out the matrices. Also note that, in
general, integers do NOT equal their floating-point counterparts bit for bit for whole numbers;
that is, the representation of (float)5.0 is completely different from (int)5. However, the 32-bit
floating point representation of 0.0 is equal to the 32-bit integer representation of 0, thus we can
use this trick and the memory functions to clear out floating-point arrays quickly.

// macros to set the identity matrix

#define MAT_IDENTITY_2X2(m) {memcpy((void *)(m), /

(void *)&IMAT_2X2, sizeof(MATRIX2X2));}

#define MAT_IDENTITY_3X3(m) {memcpy((void *)(m), /

(void *)&IMAT_3X3, sizeof(MATRIX3X3));}

#define MAT_IDENTITY_4X4(m) {memcpy((void *)(m), /

(void *)&IMAT_4X4, sizeof(MATRIX4X4));}

#define MAT_IDENTITY_4X3(m) {memcpy((void *)(m), /

(void *)&IMAT_4X3, sizeof(MATRIX4X3));}

// matrix copying macros

#define MAT_COPY_2X2(src_mat, dest_mat) {memcpy((void *)(dest_mat), /

(void *)(src_mat), sizeof(MATRIX2X2) ); }

#define MAT_COPY_3X3(src_mat, dest_mat) {memcpy((void *)(dest_mat), /

(void *)(src_mat), sizeof(MATRIX3X3) ); }

#define MAT_COPY_4X4(src_mat, dest_mat) {memcpy((void *)(dest_mat), /

(void *)(src_mat), sizeof(MATRIX4X4) ); }

#define MAT_COPY_4X3(src_mat, dest_mat) {memcpy((void *)(dest_mat), /

(void *)(src_mat), sizeof(MATRIX4X3) ); }

// matrix transposing macros

inline void MAT_TRANSPOSE_3X3(MATRIX3X3_PTR m) 

{ MATRIX3X3 mt;

mt.M00 = m->M00; mt.M01 = m->M10; mt.M02 = m->M20;

mt.M10 = m->M01; mt.M11 = m->M11; mt.M12 = m->M21;

mt.M20 = m->M02; mt.M21 = m->M12; mt.M22 = m->M22;

memcpy((void *)m,(void *)&mt, sizeof(MATRIX3X3)); }

inline void MAT_TRANSPOSE_4X4(MATRIX4X4_PTR m) 

{ MATRIX4X4 mt;

mt.M00 = m->M00; mt.M01 = m->M10; mt.M02 = m->M20; mt.M03 = m->M30; 
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mt.M10 = m->M01; mt.M11 = m->M11; mt.M12 = m->M21; mt.M13 = m->M31; 

mt.M20 = m->M02; mt.M21 = m->M12; mt.M22 = m->M22; mt.M23 = m->M32; 

mt.M30 = m->M03; mt.M31 = m->M13; mt.M32 = m->M22; mt.M33 = m->M33; 

memcpy((void *)m,(void *)&mt, sizeof(MATRIX4X4)); }

inline void MAT_TRANSPOSE_3X3(MATRIX3X3_PTR m, MATRIX3X3_PTR mt) 

{ mt->M00 = m->M00; mt->M01 = m->M10; mt->M02 = m->M20;

mt->M10 = m->M01; mt->M11 = m->M11; mt->M12 = m->M21;

mt->M20 = m->M02; mt->M21 = m->M12; mt->M22 = m->M22; }

inline void MAT_TRANSPOSE_4X4(MATRIX4X4_PTR m, MATRIX4X4_PTR mt) 

{ mt->M00 = m->M00; mt->M01 = m->M10; mt->M02 = m->M20; mt->M03 = m->M30; 

mt->M10 = m->M01; mt->M11 = m->M11; mt->M12 = m->M21; mt->M13 = m->M31; 

mt->M20 = m->M02; mt->M21 = m->M12; mt->M22 = m->M22; mt->M23 = m->M32; 

mt->M30 = m->M03; mt->M31 = m->M13; mt->M32 = m->M22; mt->M33 = m->M33;}

// small inline functions that could be re-written as macros, but would

// be less robust

// matrix and vector column swaping macros

inline void MAT_COLUMN_SWAP_2X2(MATRIX2X2_PTR m, int c, MATRIX1X2_PTR v) 

{ m->M[0][c]=v->M[0]; m->M[1][c]=v->M[1]; } 

inline void MAT_COLUMN_SWAP_3X3(MATRIX3X3_PTR m, int c, MATRIX1X3_PTR v) 

{ m->M[0][c]=v->M[0]; m->M[1][c]=v->M[1]; m->M[2][c]=v->M[2]; } 

inline void MAT_COLUMN_SWAP_4X4(MATRIX4X4_PTR m, int c, MATRIX1X4_PTR v) 

{m->M[0][c]=v->M[0]; m->M[1][c]=v->M[1]; 

m->M[2][c]=v->M[2]; m->M[3][c]=v->M[3]; } 

inline void MAT_COLUMN_SWAP_4X3(MATRIX4X3_PTR m, int c, MATRIX1X4_PTR v) 

{m->M[0][c]=v->M[0]; m->M[1][c]=v->M[1]; 

m->M[2][c]=v->M[2]; m->M[3][c]=v->M[3]; }

Notice that all the matrix functions use pointers. This theme is used throughout the
majority of functions in the math library. Sometimes it’s nice to use the real objects, but
many times the stack pushing/popping and copying eat up too many cycles.

Quaternions
The next set of macros has to do with quaternions. Pretty much all the quaternion func-
tions (including the ones in the T3DLIB4.CPP) should be inline macros; that would have
made the code more complicated, but keep it in mind. Here they are:
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// quaternion macros

inline void QUAT_ZERO(QUAT_PTR q) 

{(q)->x = (q)->y = (q)->z = (q)->w = 0.0;}

inline void QUAT_INITWXYZ(QUAT_PTR q, float w, float x,float y,float z) 

{ (q)->w = (w); (q)->x = (x); (q)->y = (y); (q)->z = (z); }

inline void QUAT_INIT_VECTOR3D(QUAT_PTR q, VECTOR3D_PTR v) 

{ (q)->w = 0; (q)->x = (v->x); (q)->y = (v->y); (q)->z = (v->z); }

inline void QUAT_INIT(QUAT_PTR qdst, QUAT_PTR qsrc) 

{(qdst)->w = (qsrc)->w; (qdst)->x = (qsrc)->x; 

(qdst)->y = (qsrc)->y; (qdst)->z = (qsrc)->z; }

inline void QUAT_COPY(QUAT_PTR qdst, QUAT_PTR qsrc) 

{(qdst)->x = (qsrc)->x; (qdst)->y = (qsrc)->y; 

(qdst)->z = (qsrc)->z; (qdst)->w = (qsrc)->w; }

Mostly they’re macros to initialize a quaternion in whatever format you like.

Fixed-Point Math
Finally, here are the fixed-point math macros for conversion and extraction of fixed-point
numbers. The rest of the fixed-point functions are written as real functions. They’re defi-
nitely targets for inlining, but there’s a lot of inline assembly language for the multiplica-
tion and division functions that I didn’t want to hide in a header file.

// extract the whole part and decimal part from a fixed point 16.16

#define FIXP16_WP(fp) ((fp) >> FIXP16_SHIFT)

#define FIXP16_DP(fp) ((fp) && FIXP16_DP_MASK)

// convert integer and float to fixed point 16.16

#define INT_TO_FIXP16(i) ((i) << FIXP16_SHIFT)

#define FLOAT_TO_FIXP16(f) (((float)(f) * (float)FIXP16_MAG+0.5))

// convert fixed point to float

#define FIXP16_TO_FLOAT(fp) ( ((float)fp)/FIXP16_MAG)

Prototypes
At this point, let’s take a look at all the function prototypes. Of course, you won’t know
what many of them do yet, but you should get an idea, and then when we do the func-
tion listing later, everything will become clear. Also, note that I will mark math functions
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from T3DLIB1.CPP|H so that you can keep track of that. Again the functions are listed in
groups for vectors, matrices, and so forth. Here they are:

// trig and general math functions

float Fast_Sin(float theta);

float Fast_Cos(float theta);

// distance functions (from T3DLIB1.CPP|H)

int Fast_Distance_2D(int x, int y);

float Fast_Distance_3D(float x, float y, float z);

// polar, cylindrical, spherical functions

void POLAR2D_To_POINT2D(POLAR2D_PTR polar, POINT2D_PTR rect);

void POLAR2D_To_RectXY(POLAR2D_PTR polar, float *x, float *y);

void POINT2D_To_POLAR2D(POINT2D_PTR rect, POLAR2D_PTR polar);

void POINT2D_To_PolarRTh(POINT2D_PTR rect, float *r, float *theta);

void CYLINDRICAL3D_To_POINT3D(CYLINDRICAL3D_PTR cyl, POINT3D_PTR rect);

void CYLINDRICAL3D_To_RectXYZ(CYLINDRICAL3D_PTR cyl, 

float *x, float *y, float *z);

void POINT3D_To_CYLINDRICAL3D(POINT3D_PTR rect, CYLINDRICAL3D_PTR cyl);

void POINT3D_To_CylindricalRThZ(POINT3D_PTR rect, 

float *r, float *theta, float *z);

void SPHERICAL3D_To_POINT3D(SPHERICAL3D_PTR sph, POINT3D_PTR rect);

void SPHERICAL3D_To_RectXYZ(SPHERICAL3D_PTR sph, float *x, float *y, float *z);

void POINT3D_To_SPHERICAL3D(POINT3D_PTR rect, SPHERICAL3D_PTR sph);

void POINT3D_To_SphericalPThPh(POINT3D_PTR rect, 

float *p, float *theta, float *phi);

// 2d vector functions

void VECTOR2D_Add(VECTOR2D_PTR va, VECTOR2D_PTR vb, VECTOR2D_PTR vsum);

VECTOR2D VECTOR2D_Add(VECTOR2D_PTR va, VECTOR2D_PTR vb);

void VECTOR2D_Sub(VECTOR2D_PTR va, VECTOR2D_PTR vb, VECTOR2D_PTR vdiff);

VECTOR2D VECTOR2D_Sub(VECTOR2D_PTR va, VECTOR2D_PTR vb);

void VECTOR2D_Scale(float k, VECTOR2D_PTR va);

void VECTOR2D_Scale(float k, VECTOR2D_PTR va, VECTOR2D_PTR vscaled);

float VECTOR2D_Dot(VECTOR2D_PTR va, VECTOR2D_PTR vb);

float VECTOR2D_Length(VECTOR2D_PTR va);

float VECTOR2D_Length_Fast(VECTOR2D_PTR va);

void VECTOR2D_Normalize(VECTOR2D_PTR va);

void VECTOR2D_Normalize(VECTOR2D_PTR va, VECTOR2D_PTR vn);

void VECTOR2D_Build(VECTOR2D_PTR init, VECTOR2D_PTR term, 

VECTOR2D_PTR result);

float VECTOR2D_CosTh(VECTOR2D_PTR va, VECTOR2D_PTR vb);

void VECTOR2D_Print(VECTOR2D_PTR va, char *name);
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// 3d vector functions

void VECTOR3D_Add(VECTOR3D_PTR va, VECTOR3D_PTR vb, VECTOR3D_PTR vsum);

VECTOR3D VECTOR3D_Add(VECTOR3D_PTR va, VECTOR3D_PTR vb);

void VECTOR3D_Sub(VECTOR3D_PTR va, VECTOR3D_PTR vb, VECTOR3D_PTR vdiff);

VECTOR3D VECTOR3D_Sub(VECTOR3D_PTR va, VECTOR3D_PTR vb);

void VECTOR3D_Scale(float k, VECTOR3D_PTR va);

void VECTOR3D_Scale(float k, VECTOR3D_PTR va, VECTOR3D_PTR vscaled);

float VECTOR3D_Dot(VECTOR3D_PTR va, VECTOR3D_PTR vb);

void VECTOR3D_Cross(VECTOR3D_PTR va,VECTOR3D_PTR vb,VECTOR3D_PTR vn);

VECTOR3D VECTOR3D_Cross(VECTOR3D_PTR va, VECTOR3D_PTR vb);

float VECTOR3D_Length(VECTOR3D_PTR va);

float VECTOR3D_Length_Fast(VECTOR3D_PTR va);

void VECTOR3D_Normalize(VECTOR3D_PTR va);

void VECTOR3D_Normalize(VECTOR3D_PTR va, VECTOR3D_PTR vn);

void VECTOR3D_Build(VECTOR3D_PTR init, VECTOR3D_PTR term, 

VECTOR3D_PTR result);

float VECTOR3D_CosTh(VECTOR3D_PTR va, VECTOR3D_PTR vb);

void VECTOR3D_Print(VECTOR3D_PTR va, char *name);

// 4d vector functions

void VECTOR4D_Add(VECTOR4D_PTR va, VECTOR4D_PTR vb, VECTOR4D_PTR vsum);

VECTOR4D VECTOR4D_Add(VECTOR4D_PTR va, VECTOR4D_PTR vb);

void VECTOR4D_Sub(VECTOR4D_PTR va, VECTOR4D_PTR vb, VECTOR4D_PTR vdiff);

VECTOR4D VECTOR4D_Sub(VECTOR4D_PTR va, VECTOR4D_PTR vb);

void VECTOR4D_Scale(float k, VECTOR4D_PTR va);

void VECTOR4D_Scale(float k, VECTOR4D_PTR va, VECTOR4D_PTR vscaled);

float VECTOR4D_Dot(VECTOR4D_PTR va, VECTOR4D_PTR vb);

void VECTOR4D_Cross(VECTOR4D_PTR va,VECTOR4D_PTR vb,VECTOR4D_PTR vn);

VECTOR4D VECTOR4D_Cross(VECTOR4D_PTR va, VECTOR4D_PTR vb);

float VECTOR4D_Length(VECTOR4D_PTR va);

float VECTOR4D_Length_Fast(VECTOR4D_PTR va);

void VECTOR4D_Normalize(VECTOR4D_PTR va);

void VECTOR4D_Normalize(VECTOR4D_PTR va, VECTOR4D_PTR vn);

void VECTOR4D_Build(VECTOR4D_PTR init, VECTOR4D_PTR term, 

VECTOR4D_PTR result);

float VECTOR4D_CosTh(VECTOR4D_PTR va, VECTOR4D_PTR vb);

void VECTOR4D_Print(VECTOR4D_PTR va, char *name);

// 2x2 matrix functions (note there others in T3DLIB1.CPP|H)

void Mat_Init_2X2(MATRIX2X2_PTR ma, 

float m00, float m01, float m10, float m11);

void Print_Mat_2X2(MATRIX2X2_PTR ma, char *name);

float Mat_Det_2X2(MATRIX2X2_PTR m);
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void Mat_Add_2X2(MATRIX2X2_PTR ma, MATRIX2X2_PTR mb, MATRIX2X2_PTR msum);

void Mat_Mul_2X2(MATRIX2X2_PTR ma, MATRIX2X2_PTR mb, MATRIX2X2_PTR mprod);

int Mat_Inverse_2X2(MATRIX2X2_PTR m, MATRIX2X2_PTR mi);

int Solve_2X2_System(MATRIX2X2_PTR A, MATRIX1X2_PTR X, MATRIX1X2_PTR B);

// 3x3 matrix functions

// from T3DLIB1.CPP|H

int Mat_Mul_1X2_3X2(MATRIX1X2_PTR ma, 

MATRIX3X2_PTR mb,

MATRIX1X2_PTR mprod);

// from T3DLIB1.CPP|H

int Mat_Mul_1X3_3X3(MATRIX1X3_PTR ma, 

MATRIX3X3_PTR mb,

MATRIX1X3_PTR mprod);

// from T3DLIB1.CPP|H

int Mat_Mul_3X3(MATRIX3X3_PTR ma, 

MATRIX3X3_PTR mb,

MATRIX3X3_PTR mprod);

// from T3DLIB1.CPP|H

inline int Mat_Init_3X2(MATRIX3X2_PTR ma, 

float m00, float m01,

float m10, float m11,

float m20, float m21);

void Mat_Add_3X3(MATRIX3X3_PTR ma, MATRIX3X3_PTR mb, MATRIX3X3_PTR msum);

void Mat_Mul_VECTOR3D_3X3(VECTOR3D_PTR va, MATRIX3X3_PTR mb,

VECTOR3D_PTR vprod);

int Mat_Inverse_3X3(MATRIX3X3_PTR m, MATRIX3X3_PTR mi);

void Mat_Init_3X3(MATRIX3X3_PTR ma, 

float m00, float m01, float m02,

float m10, float m11, float m12,

float m20, float m21, float m22);

void Print_Mat_3X3(MATRIX3X3_PTR ma, char *name);

float Mat_Det_3X3(MATRIX3X3_PTR m);

int Solve_3X3_System(MATRIX3X3_PTR A, MATRIX1X3_PTR X, MATRIX1X3_PTR B);

// 4x4 matrix functions

void Mat_Add_4X4(MATRIX4X4_PTR ma, MATRIX4X4_PTR mb, MATRIX4X4_PTR msum);

void Mat_Mul_4X4(MATRIX4X4_PTR ma, MATRIX4X4_PTR mb, MATRIX4X4_PTR mprod);
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void Mat_Mul_1X4_4X4(MATRIX1X4_PTR ma, MATRIX4X4_PTR mb, 

MATRIX1X4_PTR mprod);

void Mat_Mul_VECTOR3D_4X4(VECTOR3D_PTR va, MATRIX4X4_PTR mb, 

VECTOR3D_PTR vprod);

void Mat_Mul_VECTOR3D_4X3(VECTOR3D_PTR va, MATRIX4X3_PTR mb, 

VECTOR3D_PTR vprod);

void Mat_Mul_VECTOR4D_4X4(VECTOR4D_PTR va, MATRIX4X4_PTR mb, 

VECTOR4D_PTR vprod);

void Mat_Mul_VECTOR4D_4X3(VECTOR4D_PTR va, MATRIX4X4_PTR mb, 

VECTOR4D_PTR vprod);

int Mat_Inverse_4X4(MATRIX4X4_PTR m, MATRIX4X4_PTR mi);

void Mat_Init_4X4(MATRIX4X4_PTR ma, 

float m00, float m01, float m02, float m03,

float m10, float m11, float m12, float m13,

float m20, float m21, float m22, float m23,

float m30, float m31, float m32, float m33);

void Print_Mat_4X4(MATRIX4X4_PTR ma, char *name);

// quaternion functions

void QUAT_Add(QUAT_PTR q1, QUAT_PTR q2, QUAT_PTR qsum);

void QUAT_Sub(QUAT_PTR q1, QUAT_PTR q2, QUAT_PTR qdiff);

void QUAT_Conjugate(QUAT_PTR q, QUAT_PTR qconj);

void QUAT_Scale(QUAT_PTR q, float scale, QUAT_PTR qs);

void QUAT_Scale(QUAT_PTR q, float scale);

float QUAT_Norm(QUAT_PTR q);

float QUAT_Norm2(QUAT_PTR q);

void QUAT_Normalize(QUAT_PTR q, QUAT_PTR qn);

void QUAT_Normalize(QUAT_PTR q);

void QUAT_Unit_Inverse(QUAT_PTR q, QUAT_PTR qi);

void QUAT_Unit_Inverse(QUAT_PTR q);

void QUAT_Inverse(QUAT_PTR q, QUAT_PTR qi);

void QUAT_Inverse(QUAT_PTR q);

void QUAT_Mul(QUAT_PTR q1, QUAT_PTR q2, QUAT_PTR qprod);

void QUAT_Triple_Product(QUAT_PTR q1, QUAT_PTR q2, QUAT_PTR q3, 

QUAT_PTR qprod);

void VECTOR3D_Theta_To_QUAT(QUAT_PTR q, VECTOR3D_PTR v, float theta);

void VECTOR4D_Theta_To_QUAT(QUAT_PTR q, VECTOR4D_PTR v, float theta);

void EulerZYX_To_QUAT(QUAT_PTR q, float theta_z, float theta_y, 

float theta_x);

void QUAT_To_VECTOR3D_Theta(QUAT_PTR q, VECTOR3D_PTR v, float *theta);

void QUAT_Print(QUAT_PTR q, char *name);

// 2d parametric line functions

void Init_Parm_Line2D(POINT2D_PTR p_init, POINT2D_PTR p_term, 
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PARMLINE2D_PTR p);

void Compute_Parm_Line2D(PARMLINE2D_PTR p, float t, POINT2D_PTR pt);

int Intersect_Parm_Lines2D(PARMLINE2D_PTR p1, PARMLINE2D_PTR p2, 

float *t1, float *t2);

int Intersect_Parm_Lines2D(PARMLINE2D_PTR p1, PARMLINE2D_PTR p2, 

POINT2D_PTR pt);

// 3d parametric line functions

void Init_Parm_Line3D(POINT3D_PTR p_init, POINT3D_PTR p_term, 

PARMLINE3D_PTR p);

void Compute_Parm_Line3D(PARMLINE3D_PTR p, float t, POINT3D_PTR pt);

// 3d plane functions

void PLANE3D_Init(PLANE3D_PTR plane, POINT3D_PTR p0, 

VECTOR3D_PTR normal, int normalize);

float Compute_Point_In_Plane3D(POINT3D_PTR pt, PLANE3D_PTR plane);

int Intersect_Parm_Line3D_Plane3D(PARMLINE3D_PTR pline, PLANE3D_PTR plane, 

float *t, POINT3D_PTR pt);

// fixed point functions

FIXP16 FIXP16_MUL(FIXP16 fp1, FIXP16 fp2);

FIXP16 FIXP16_DIV(FIXP16 fp1, FIXP16 fp2);

void FIXP16_Print(FIXP16 fp);

Lots of functions, huh? Like I said, this math engine has support for just about everything
we’ll need to write a 3D game, even with this early version. And if we need optimization,
we’ll optimize, but right now, we have a solid working set of math functions. I can’t wait
to show you how they work. Any volunteers?

Globals
There aren’t that many globals in the math engine. In fact, the only globals that exist are
from the original minimal math support in T3DLIB1.CPP|H. The globals were the sine and
cosine lookup tables, as shown here:

// storage for our lookup tables from T3DLIB1.CPP|H

extern float cos_look[361]; // 1 extra so we can store 0-360 inclusive

extern float sin_look[361]; // 1 extra so we can store 0-360 inclusive

Notice that these tables are in degrees not radians, and there are 361 entries that represent
[0..360] degrees, inclusive. Now, you might say that 360 degrees is exactly the same as 0
degrees. And yes, it is, but having that last entry makes some of the algorithms easier to
write and saves a single compare. The only thing you have to do to initialize the tables is
call Build_Sin_Cos_Tables() at the beginning of your application.
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MATH

In a more robust math engine, you might have a number of global state variables that track
states of the math engine, or more complex data structures such as matrix stacks (like those used
in APIs such as D3D and OpenGL).

Math Engine API Listing
Now for the fun part! What we’re going to do now is take a look at the entire math engine
API from T3DLIB4.CPP|H and see what each function does along, with a simple example
and demo program for some of the more complex math API functions. Additionally, I’ll
show you the inside of many of the functions that are representative of other similar func-
tions so that you can see how everything is written. Finally, for functions that aren’t part
of T3DLIB4.CPP|H but are part of T3DLIB1.CPP|H’s math support, descriptions can be found
in Chapter 3, “3D Game Programming with a Virtual Computer.”

COOL

The Texas Instruments TI-89 calculator has got to be the coolest thing on earth (besides the TI-92
and the newer models, of course). But these next-generation calculators with 3D graphing,
symbolic algebra, matrix mathematics, and calculus support are a must to check out your math.
Unless you’re a mathematical sadist and like doing page after page of multiplication and divi-
sion—yuck!

Trigonometric Functions
Function Prototype(s):

float Fast_Sin(float theta);

float Fast_Cos(float theta);

Function Listing Reference:

float Fast_Sin(float theta)

{

// this function uses the sin_look[] lookup table, but

// has logic to handle negative angles as well as fractional

// angles via interpolation, use this for a more robust

// sin computation that the blind lookup, but with with

// a slight hit in speed

// convert angle to 0-359

theta = fmodf(theta,360);
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// make angle positive

if (theta < 0) theta+=360.0;

// compute floor of theta and fractional part to interpolate

int theta_int  = (int)theta;

float theta_frac = theta - theta_int;

// now compute the value of sin(angle) using the lookup tables

// and interpolating the fractional part, note that if theta_int

// is equal to 359 then theta_int+1=360, but this is fine since the

// table was made with the entries 0-360 inclusive

return(sin_look[theta_int] + 

theta_frac*(sin_look[theta_int+1] - sin_look[theta_int]));

} // end Fast_Sin

Purpose:

float Fast_Cos() compute the sine and cosine of the sent parameter by using the
sin_look[] and cos_look[] lookup table along with linear interpolation to arrive at a
more accurate value than using the lookup table alone, while at the same time being faster
than using the intrinsic C/C++ math library’s sin() and cos() functions. The theta para-
meter must be in degrees. Figure 5.11 shows an illustration of the how the functions inter-
polate the value from the table.
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Example:

As an example, here’s how you would compute the sine and cosine values of 50.2 degrees.

// build look up tables first

Build_Sin_Cos_Tables();

float answer1 = Fast_Sin(50.2)

float answer2 = Fast_Cos(50.2)

Coordinate System Support Functions
The next section of the API deals with conversions to and from Cartesian coordinates—
polar, cylindrical, and spherical. Each of the functions is implemented identically to the
math from Chapter 4, so there’s no need to look at the innards of any of them unless you
want to see statements like

“x=r*sin(theta);” 

be converted to C/C++:

“x=r*sin(theta);”.

Also, all the functions have a return type void. So, without further ado, let’s take a look at
the functions.

Function Prototype:

void POLAR2D_To_POINT2D(POLAR2D_PTR polar, POINT2D_PTR rect);

Purpose:

void POLAR2D_To_POINT2D() converts a 2D polar point in terms of r and theta into an
(x,y) point and stores it in a POINT2D structure.

Example:

POLAR2D pp = {5, PI2};

POINT2D pr = {0,0};

// convert polar to rectangular

POLAR2D_To_POINT2D(&pp, &pr);

Function Prototype:

void POLAR2D_To_RectXY(POLAR2D_PTR polar, float *x, float *y);
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Purpose:

void POLAR2D_To_RectXY() converts a polar 2D point into explicit x,y coordinates.

Example:

POLAR2D pp = {5, PI2};

float x=0, y=0;

// convert polar point to x,y

POLAR2D_To_RectXY(&pp, &x, &y)

Function Prototype:

void POINT2D_To_POLAR2D(POINT2D_PTR rect, POLAR2D_PTR polar);

Purpose:

void POINT2D_To_POLAR2D() converts a point in rectangular format to 2D polar format.

Example:

POLAR2D pp = {0, 0};

POINT2D pr = {10,20};

// convert rectangular to polar

POINT2D_To_POLAR2D(&pr, &pp);

Function Prototype:

void POINT2D_To_PolarRTh(POINT2D_PTR rect, float *r, float *theta);

Purpose:

void POINT2D_To_PolarRTh() converts a polar 2D point into an explicit r and theta.

Example:

POLAR2D pp = {3, PI};

float r =0, theta = 0;

// convert polar to r, theta

POINT2D_To_PolarRTh(&pp, &r, &theta);

Function Prototype:

void CYLINDRICAL3D_To_POINT3D(CYLINDRICAL3D_PTR cyl, POINT3D_PTR rect);
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Purpose:

void CYLINDRICAL3D_To_POINT3D() converts a cylindrical 3D point into a rectangular 3D
point.

Example:

CYLINDRICAL3D pc = {10, PI/5, 20}; // r, theta, z

POINT3D pr = {0,0,0};

// convert cylindrical to rectangular

CYLINDRICAL3D_To_POINT3D(&pc, &pr);

Function Prototype:

void CYLINDRICAL3D_To_RectXYZ(CYLINDRICAL3D_PTR cyl, float *x, float *y, float *z);

Purpose:

void CYLINDRICAL3D_To_RectXYZ() converts a point from cylindrical 3D coordinates to
explicit x,y,z coordinates.

Example:

CYLINDRICAL3D pc = {10, PI/5, 20}; // r, theta, z

float x=0, y=0, z=0; 

// convert cylindrical to explicit x,y,z

CYLINDRICAL3D_To_RectXYZ(&pc, &x, &y, &z);

Function Prototype:

void POINT3D_To_CYLINDRICAL3D(POINT3D_PTR rect, CYLINDRICAL3D_PTR cyl);

Purpose:

void POINT3D_To_CYLINDRICAL3D() converts a rectangular 3D point into a cylindrical 3D
point.

Example:

CYLINDRICAL3D pc = {0,0,0}; // r, theta, z

POINT3D pr = {1,2,3};

// convert rectangular to cylindrical

POINT3D_To_CYLINDRICAL3D(&pr, &pc);

Math Engine API Listing 405

5

08 0672318350 CH05  05•02•2003  2:37 PM  Page 405



Function Prototype:

void POINT3D_To_CylindricalRThZ(POINT3D_PTR rect, float *r, 

float *theta, float *z);

Purpose:

void POINT3D_To_CylindricalRThZ() converts a 3D point into explicit cylindrical coordi-
nates r, theta, z.

Example:

POINT3D pr = {1,2,3};

float r=0, theta=0, z=0;

// convert 3D point into explicit cylindrical coords

POINT3D_To_CylindricalRThZ(&pr, &r, &theta, &z);

Function Prototype:

void SPHERICAL3D_To_POINT3D(SPHERICAL3D_PTR sph, POINT3D_PTR rect);

Purpose:

void SPHERICAL3D_To_POINT3D() converts a spherical 3D point into a rectangular 3D
point.

Example:

SPHERICAL3D ps = {1, PI/4, PI/2}; // p, theta, phi

POINT3D pr = {0,0,0};

// convert from spherical to rectangular

SPHERICAL3D_To_POINT3D(&ps, &pr);

Function Prototype:

void SPHERICAL3D_To_RectXYZ(SPHERICAL3D_PTR sph, 

float *x, float *y, float *z);

Purpose:

void SPHERICAL3D_To_RectXYZ() converts a spherical 3D point into explicit x,y,z coordi-
nates.

Example:

SPHERICAL3D ps = {1, PI/4, PI/2}; // p, theta, phi

float x=0, y=0, z=0;

// convert from spherical to rectangular

SPHERICAL3D_To_RectXYZ(&ps, &x, &y, &z);
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Function Prototype:

void POINT3D_To_SPHERICAL3D(POINT3D_PTR rect, SPHERICAL3D_PTR sph);

Purpose:

void POINT3D_To_SPHERICAL3D() converts a 3D point into spherical coordinates.

Example:

SPHERICAL3D ps = {1, PI/4, PI/2}; // p, theta, phi

POINT3D pr = {0,0,0};

// convert from rectangular to spherical

POINT3D_To_SPHERICAL3D(&pr, &ps);

Function Prototype:

void POINT3D_To_SphericalPThPh(POINT3D_PTR rect, float *p, 

float *theta, float *phi);

Purpose:

void POINT3D_To_SphericalPThPh() converts a 3D point into explicit spherical coordi-
nates rho, theta, phi.

Example:

POINT3D pr = {10,20,30};

float p=0, theta=0, phi=0;

// convert the 3D point to spherical coords

POINT3D_To_SphericalPThPh(&pr, &p, &theta, &phi);

Vector Support Functions
The vector support for the math engine comes in three flavors: 2D, 3D, and 4D. The 2D
and 3D support are easy enough to understand, but the 4D is worth a quickie. Remember
homogenous coordinates? For example, p = <x,y,z,w>, and if we want to convert p into a
real 3D coordinate p' then we perform the following transform:

p’ = p/w = <x/w, y/w, z/w, w/w>

And then we typically throw away the last component, giving

p’ = <x/w, y/w, z/w>
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MATH

Note that many operations on 4D vectors treat w as a dummy, and work with only the first
<x,y,z> components.

In any case, that’s our refresher course on 4D homogenous coordinates. With that in
mind, there are vector functions for all operations on 2D, 3D, and 4D vectors. Of course,
some operations don’t really make sense on each respective system. For example, taking
the cross product of 2D vectors isn’t defined. But, for the most part, there is a 2D, 3D, and
4D version of all vector functions, so I’m only going to show examples of one system.
Moreover, vector functions that make sense only for a certain dimension will be illustrated
separately, and vector functions that are similar will be grouped. Additionally, most of the
functions return values that are either floats or the vector type of the function; for
example, there are vector adding functions for 2D, 3D, and 4D vectors, and each returns a
2D, 3D, and 4D vector, respectively. Also, when referring to 2D, 3D, and 4D, I will use the
notation “*D” to mean all of them. Get it? If not, you will!

NOTE

The data types for points and vectors are the same. Therefore, anywhere you use a VECTOR3D (for
example), you can use a POINT3D. Of course, performing certain calculations on points doesn’t
really make sense. For example taking the cross product of two points. However, when building a
vector, it makes sense to use a pair of points or a pair of vectors, or a point and a vector, and so
forth.

Function Prototype(s):

void VECTOR2D_Add(VECTOR2D_PTR va, VECTOR2D_PTR vb, VECTOR2D_PTR vsum);

void VECTOR3D_Add(VECTOR3D_PTR va, VECTOR3D_PTR vb, VECTOR3D_PTR vsum);

void VECTOR4D_Add(VECTOR4D_PTR va, VECTOR4D_PTR vb, VECTOR4D_PTR vsum);

Purpose:

void VECTOR*D_Add() adds the sent vectors (va+vb) as shown in Figure 5.12, and stores the
results in vsum.

Example:

VECTOR3D v1 = {1,2,3};

VECTOR3D v2 = {5,6,7};

VECTOR3D vsum; // holds result

// add em

VECTOR3D_Add(&v1, &v2, &vsum);
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FIGURE 5.12 Vector addition setup.

Function Prototype(s):

VECTOR2D VECTOR2D_Add(VECTOR2D_PTR va, VECTOR2D_PTR vb);

VECTOR3D VECTOR3D_Add(VECTOR3D_PTR va, VECTOR3D_PTR vb);

VECTOR4D VECTOR3D_Add(VECTOR4D_PTR va, VECTOR4D_PTR vb);

Purpose:

VECTOR*D VECTOR*D_Add() is the stack version of the vector addition function that returns
the result on the stack.

Example:

VECTOR2D v1 = {1,2};

VECTOR2D v2 = {5,6};

// add them and store result

VECTOR2D vsum = VECTOR2D_Add(&v1, &v2);

Function Prototype(s):

void VECTOR2D_Sub(VECTOR2D_PTR va, VECTOR2D_PTR vb, VECTOR2D_PTR vdiff);

void VECTOR3D_Sub(VECTOR3D_PTR va, VECTOR3D_PTR vb, VECTOR3D_PTR vdiff);

void VECTOR4D_Sub(VECTOR4D_PTR va, VECTOR4D_PTR vb, VECTOR4D_PTR vdiff);
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Purpose:

void VECTOR*D_Sub() subtracts (vb-va) as shown in Figure 5.13, and stores the result in
vdiff.
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FIGURE 5.13 Vector subtraction setup.

Example:

VECTOR3D v1 = {1,2,3};

VECTOR3D v2 = {5,6,7};

VECTOR3D vdiff; // holds difference

// subtract em

VECTOR3D_Sub(&v1, &v2, &vdiff);

Function Prototype(s):

VECTOR2D VECTOR2D_Sub(VECTOR2D_PTR va, VECTOR2D_PTR vb);

VECTOR3D VECTOR3D_Sub(VECTOR3D_PTR va, VECTOR3D_PTR vb);

VECTOR4D VECTOR3D_Sub(VECTOR4D_PTR va, VECTOR4D_PTR vb);

Purpose:

VECTOR*D VECTOR*D_Sub() is the stack version of the vector subtraction function that
returns the result on the stack.
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Example:

VECTOR2D v1 = {1,2};

VECTOR2D v2 = {5,6};

// subtract them and store result

VECTOR2D vdiff = VECTOR2D_Sub(&v1, &v2);

Function Prototype(s):

void VECTOR2D_Scale(float k, VECTOR2D_PTR va, VECTOR2D_PTR vscaled);

void VECTOR3D_Scale(float k, VECTOR3D_PTR va, VECTOR3D_PTR vscaled);

void VECTOR4D_Scale(float k, VECTOR4D_PTR va, VECTOR4D_PTR vscaled);

Purpose:

void VECTOR*D_Scale() scales the sent vector va by k as shown in Figure 5.14, and stores
the result (k*va) into vscaled.
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Example:

VECTOR3D v1 = {1,1,1};

VECTOR3D vs;
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// scale v1 by 50

VECTOR3D_Scale(50, &v1, &vs);

// invert v1

VECTOR3D_Scale(-1, &v1, &vs);

Function Prototype(s):

float VECTOR2D_Dot(VECTOR2D_PTR va, VECTOR2D_PTR vb);

float VECTOR3D_Dot(VECTOR3D_PTR va, VECTOR3D_PTR vb);

float VECTOR4D_Dot(VECTOR4D_PTR va, VECTOR4D_PTR vb);

Purpose:

float VECTOR*D_Dot() computes the dot product (va.vb) and returns the scalar result.
Note that for the VECTOR4D version, the w coordinate is disregarded.

Example:

VECTOR4D v1={1,0,0,1}; // the unit x-axis

VECTOR4D v2={0,1,0,1}; // the unit y-axis

// dot them together, the result better be 0!

float dp=VECTOR4D_Dot(&v1, &v2);

Function Prototype(s):

void VECTOR3D_Cross(VECTOR3D_PTR va,VECTOR3D_PTR vb,VECTOR3D_PTR vn);

void VECTOR4D_Cross(VECTOR4D_PTR va,VECTOR4D_PTR vb,VECTOR4D_PTR vn);

Purpose:

void VECTOR*D_Cross() computes the cross product (va x vb) as shown in Figure 5.15;
that is, it computes the vector perpendicular to both va and vb and returns the result in
vn. In the VECTOR4D case, w is disregarded as usual.

Example:

VECTOR3D vx = {1,0,0};

VECTOR3D vy = {0,1,0};

VECTOR3D vcross;

// cross the x-axis with the y-axis, the result should be

// the z-axis

VECTOR3D_Cross(&vx, &vy, &vcross);
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FIGURE 5.15 Vector cross product.

Function Prototype(s):

VECTOR3D VECTOR3D_Cross(VECTOR3D_PTR va, VECTOR3D_PTR vb);

VECTOR4D VECTOR4D_Cross(VECTOR4D_PTR va, VECTOR4D_PTR vb);

Purpose:

VECTOR*D VECTOR*D_Cross() computes the cross product (va x vb); that is, it computes the
vector perpendicular to both va and vb and returns the result on the stack. In the
VECTOR4D case, w is disregarded as usual.

Example:

VECTOR3D vx = {1,0,0};

VECTOR3D vy = {0,1,0};

// cross the x-axis with the y-axis, the result should be

// the z-axis

VECTOR3D vcross = VECTOR3D_Cross(&vx, &vy);
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Function Prototype(s):

float VECTOR2D_Length(VECTOR2D_PTR va);

float VECTOR3D_Length(VECTOR3D_PTR va);

float VECTOR4D_Length(VECTOR4D_PTR va);

Purpose:

float VECTOR*D_Length() computes the length of the sent vector using the standard
square root of the sum of squares algorithm.

Example:

VECTOR2D v1={3,4};

// compute length, should be 5

float length = VECTOR3D_Length(&v1);

Function Prototype(s):

float VECTOR2D_Length_Fast(VECTOR2D_PTR va);

float VECTOR3D_Length_Fast(VECTOR3D_PTR va);

float VECTOR4D_Length_Fast(VECTOR4D_PTR va);

Purpose:

float VECTOR*D_Length_Fast() computes the length of the sent vector by using a Taylor
series approximation. Accurate to within a few percent, but 10 times faster than
VECTOR*D_Length() function.

Example:

VECTOR2D v1={3,4};

// compute length, should be 5

float length = VECTOR3D_Length_Fast(&v1);

Function Prototype(s):

void VECTOR2D_Normalize(VECTOR2D_PTR va);

void VECTOR3D_Normalize(VECTOR3D_PTR va);

void VECTOR4D_Normalize(VECTOR4D_PTR va);
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Purpose:

void VECTOR*D_Normalize() normalizes the vector va; that is, makes it a unit vector by
dividing each component by the length of va. Note that va is modified.

Example:

VECTOR2D v={5,6};

// normalize v, v = v/|v|

VECTOR2D_Normalize(&v);

Function Prototype(s):

void VECTOR2D_Normalize(VECTOR2D_PTR va, VECTOR2D_PTR vn);

void VECTOR3D_Normalize(VECTOR3D_PTR va, VECTOR3D_PTR vn);

void VECTOR4D_Normalize(VECTOR4D_PTR va, VECTOR4D_PTR vn);

Purpose:

void VECTOR2D_Normalize() normalizes the vector va and stores it in vn.

Example:

VECTOR3D v={1,2,3};

VECTOR3D vn;

// vn = v/|vn|

VECTOR3D_Normalize(&v, &vn);

Function Prototype(s):

void VECTOR2D_Build(VECTOR2D_PTR init, VECTOR2D_PTR term, VECTOR2D_PTR result);

void VECTOR3D_Build(VECTOR3D_PTR init, VECTOR3D_PTR term, VECTOR3D_PTR result);

void VECTOR4D_Build(VECTOR4D_PTR init, VECTOR4D_PTR term, VECTOR4D_PTR result);

Purpose:

void VECTOR*D_Build() builds a vector from init->term and stores it in result. This is a
good example of a function that works well using the data type alias POINT*D because in
most cases you’ll want to create a vector from two points.
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Example:

POINT3D p1={1,2,3}, p2={4,5,6};

VECTOR3D v12; // use to store the result

// create a vector from point p1 to p2

VECTOR3D_Build(&p1, &p2, &v);

Note that we don’t need to cast the types because points and vectors of the same dimen-
sion have the same types and data footprints. But, if you want to create a vector from two
other vectors, you can do so, of course.

Function Prototype(s):

float VECTOR2D_CosTh(VECTOR2D_PTR va, VECTOR2D_PTR vb);

float VECTOR3D_CosTh(VECTOR3D_PTR va, VECTOR3D_PTR vb);

float VECTOR4D_CosTh(VECTOR4D_PTR va, VECTOR4D_PTR vb);

Purpose:

float VECTOR*D_CosTh() computes the cosine of the angle between the two vectors va
and vb, respectively, as shown in Figure 5.16.
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In many 3D algorithms, the product formula

u.v = |u|*|v| * cos(θ)

is used to solve for θ; that is, the angle between the two vectors, u and v, using the follow-
ing simplification:

θ = cos-1[(u . v)/(|u|*|v|)]

However, many times we don’t need to go that far and the cos(θ) term will suffice:

cos(θ) = [(u . v)/(|u|*|v|)]

That’s what this function is all about.

TRICK

There are many opportunities in game programming to exploit math and speed things up as in
the preceding example. Another example is this: Say you have a number of objects, and when
the objects get within 100 units of the black hole, you want them to get sucked in. You might
blindly use the distance function and sqrt() function to compute the distance. If you’re a little
more clever though, you’ll realize there’s no need to use the exact distance—why not use the
square of the distance? That is, use d2 = (x2+y2+z2), and instead of 100 use (100*100) as the deci-
sion variable! This way, you lose the sqrt() function. The moral is that if |x| < |y|, |x2| < |y2|. But
watch out for overflow!

Example:

VECTOR3D u = {0,1,0}; // the y-axis

VECTOR3D v = {1,1,0}; // a vector with a slope of 45 degrees

// find the angle between u and v

VECTOR3D_CosTh(&u, &v);

NOTE

This function is very useful in hidden surface removal where we need to detect if the angle
between the view direction and the surface normal is acute or obtuse.

Function Prototype(s):

void VECTOR2D_Print(VECTOR2D_PTR va, char *name);

void VECTOR3D_Print(VECTOR3D_PTR va, char *name);

void VECTOR4D_Print(VECTOR4D_PTR va, char *name);
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Purpose:

void VECTOR*D_Print() prints out a vector in “pretty form” along with a sent character
name. This is used only as a debugging feature and writes the output to the error file
previously opened with a call to Open_Error_File().

Example:

// open the error file

Open_Error_File(“error.txt”);

VECTOR3D v={1,2,3};

// print the vector

VECTOR3D_Print(&v,”Velocity”);

// close the error file

Close_Error_File();

File dump of ERROR.TXT:

Opening Error Output File (error.txt) on Sat Jan 29 22:36:00.520, 2000

Velocity=[1.000000, 2.000000, 3.000000, ]

Closing Error Output File.

Matrix Support Functions
The next set of functions handles matrix mathematics and transformations. In general, a
3D engine uses 3×3 or 4×4 matrices depending on what you want to do, but sometimes we
cheat and use a 4×3 and make assumptions about the last column and other tricks like
that. Remember, we have both 3D and 4D homogenous points, so even though at some
point we’ll optimize the matrix math a lot, it doesn’t hurt to generalize at this early stage.
Moreover, although I’ve tried to think of all the cases of matrix multiplication and trans-
formations we might need, I’m sure I’ve left some out—but we can always add them later.
Finally, there is support for 2×2, 3×3, and 4×4 in general, but some of the older 2x2
support was in the T3DLIB1.CPP|H modules.

NOTE

Although the matrix library is very similar to the vector library inasmuch as there is support for
various dimensional data types, all with similar function names, there are enough differences that
I’ve decided to separate each functional set in the reference, because some functions on higher
dimensions sometimes work differently. Hence, we’ll cover 2×2, 3×3, and 4×4, in that order.
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Function Prototype:

void Mat_Init_2X2(MATRIX2X2_PTR ma, float m00, float m01, float m10, float m11);

Purpose:

void Mat_Init_2X2() initializes the matrix ma with the sent floating-point values in row
major form.

Example:

MATRIX2X2 ma;

// initialize matrix to identity

Mat_Init_2X2(&ma, 1, 0, 0, 1);

Function Prototype:

void Mat_Add_2X2(MATRIX2X2_PTR ma, MATRIX2X2_PTR mb, MATRIX2X2_PTR msum);

Purpose:

void Mat_Add_2X2() adds the matrices (ma+mb) and stores the result in msum.

Example:

MATRIX2X2 m1 = {1,2, 3,4};

MATRIX2X2 m2 = {4,9, 5,6};

MATRIX2X2 msum;

// add em

Mat_Add_2X2(&m1, &m2, &msum);

Function Prototype:

void Mat_Mul_2X2(MATRIX2X2_PTR ma, MATRIX2X2_PTR mb, MATRIX2X2_PTR mprod);

Function Listing Reference:

void Mat_Mul_2X2(MATRIX2X2_PTR ma, MATRIX2X2_PTR mb, MATRIX2X2_PTR mprod)

{

// this function multiplies two 2x2 matrices together and 

// and stores the result in mprod

mprod->M00 = ma->M00*mb->M00 + ma->M01*mb->M10;

mprod->M01 = ma->M00*mb->M01 + ma->M01*mb->M11;

mprod->M10 = ma->M10*mb->M00 + ma->M11*mb->M10;

mprod->M11 = ma->M10*mb->M01 + ma->M11*mb->M11;

} // end Mat_Mul_2X2
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Purpose:

void Mat_Mul_2X2() matrix multiplies (ma*mb) and stores the result in mprod. Also refer to
the earlier code listing and note that the matrices are explicitly multiplied out rather than
using loop operations. This is optimal.

Example:

MATRIX2X2 m1 = {1,2, 3,4};

MATRIX2X2 m2 = {1,0, 0,1};

MATRIX2X2 mprod;

// multiply them, note that m1*m2 = m1 since m2=I

Mat_Mul_2X2(&m1, &m2, &mprod);

Function Prototype (from T3DLIB1.CPP|H):

int Mat_Mul_1X2_3X2(MATRIX1X2_PTR ma, 

MATRIX3X2_PTR mb,

MATRIX1X2_PTR mprod);

Function Listing Reference:

int Mat_Mul_1X2_3X2(MATRIX1X2_PTR ma, 

MATRIX3X2_PTR mb,

MATRIX1X2_PTR mprod)

{

// this function multiplies a 1x2 matrix against a 

// 3x2 matrix - ma*mb and stores the result

// using a dummy element for the 3rd element of the 1x2 

// to make the matrix multiply valid i.e. 1x3 X 3x2

for (int col=0; col<2; col++)

{

// compute dot product from row of ma 

// and column of mb

float sum = 0; // used to hold result

for (int index=0; index<2; index++)

{

// add in next product pair

sum+=(ma->M[index]*mb->M[index][col]);

} // end for index
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// add in last element * 1 

sum+= mb->M[index][col];

// insert resulting col element

mprod->M[col] = sum;

} // end for col

return(1);

} // end Mat_Mul_1X2_3X2

Purpose:

int Mat_Mul_1X2_3X2() is a specialized function used to multiply a 1×2 matrix (basically a
2D point) against a 3×3 matrix that represents a rotation and a translation. The operation
is mathematically undefined because the inner dimensions don’t match. However, if we
assume that the 1×2 is really 1×3 with the last element equal to 1, the multiplication can
be carried out. Figure 5.17 illustrates what’s being multiplied. Additionally, take a look at
the code listing. This function is useful when transforming 2D points, but you want to
save space on their representation and still want to support translation and homogenous
coordinates.

Example:

MATRIX1X2 p1={5,5}, p2; // the point

// transformation rotation plus translation

MATRIX3X2 m = {cos(th), sin(th), 

-sin(th), cos(th), 

dx,   dy};

// perform matrix multiply

Mat_Mul_1X2_3X2(&p1, &m, &p2);

TIP

The function itself is rather slow. We could speed it up by unrolling the loops, but it’s much
clearer this way and you can see its iterative nature. Remember, never optimize until you need to,
and start with your algorithms before you start looking at the actual code itself. Then, once you
have optimal algorithms and code, if you really need the last step, inline assembly language is in
order.
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FIGURE 5.17 The methodology of undefined vector-matrix multiplication for the (1×2)*(3×2)
case.

Function Prototype:

float Mat_Det_2X2(MATRIX2X2_PTR m);

Purpose:

float Mat_Det_2X2() computes the determinate of the matrix m and returns it on the
stack.

Example:

MATRIX2x2 m = {1,2,4,8}; // this matrix is singular

// compute determinate

float det = Mat_Det_2X2(&m);

Function Prototype:

int Mat_Inverse_2X2(MATRIX2X2_PTR m, MATRIX2X2_PTR mi);
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Purpose:

int Mat_Inverse_2X2() computes the inverse of m if it exists and returns it in mi. If the
inverse exists, the function returns a 1; otherwise, it returns a 0 and mi is undefined.

Example:

MATRIX2X2 mA = {1,2, 4, -3};

MATRIX2X2 mI;

// compute the inverse of A

if (Mat_Inverse_2X2(&mA, &mI))

{

// inverse exists...

} // end if

else

{

// inverse doesn’t exist

} // end else

Function Prototype:

void Print_Mat_2X2(MATRIX2X2_PTR ma, char *name);

Purpose:

void Print_Mat_2X2() prints out the matrix in “pretty” format along with the sent string
in name as an identifier. All output, of course, goes to the error file previously opened with
Open_Error_File().

Example:

MATRIX2X2 m = {1,2,3,4};

// open the error file and write to the screen

Open_Error_File(“”, stdout);

Print_Mat_2X2(&m,”Matrix m”);

// close the error file

Close_Error_File();

Function Prototype:

void Mat_Init_3X3(MATRIX3X3_PTR ma, 

float m00, float m01, float m02,

float m10, float m11, float m12,

float m20, float m21, float m22);
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Purpose:

void Mat_Init_3X3() initializes the matrix ma with the sent floating-point values in row
major form.

Example:

MATRIX3X3 ma;

// initialize matrix to identity

Mat_Init_3X3(&ma, 1,0,0, 0,1,0, 0,0,1);

Function Prototype (from T3DLIB1.CPP|H):

inline int Mat_Init_3X2(MATRIX3X2_PTR ma, 

float m00, float m01,

float m10, float m11,

float m20, float m21);

Purpose:

void Mat_Init_3X2() initializes the matrix ma with the sent floating-point values in row
major form.

Example:

MATRIX3X2 ma;

// initialize minor upper left hand 2x2 

// matrix to identity matrix

Mat_Init_3X2(&ma, 1,0, 0,1, 0,0);

Function Prototype:

void Mat_Add_3X3(MATRIX3X3_PTR ma, MATRIX3X3_PTR mb, MATRIX3X3_PTR msum);

Purpose:

void Mat_Add_3X3() adds the matrices (ma+mb) and stores the result in msum.

Example:

MATRIX3X3 m1 = {1,2,3,4,5,6,7,8,9};

MATRIX3X3 m2 = {4,9,7, -1,5,6, 2,3,4};

MATRIX3X3 msum;

// add em

Mat_Add_3X3(&m1, &m2, &msum);
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Function Prototype:

void Mat_Mul_VECTOR3D_3X3(VECTOR3D_PTR va, MATRIX3X3_PTR mb,VECTOR3D_PTR vprod);

Purpose:

void Mat_Mul_VECTOR3D_3X3() multiplies the 1×3 row vector va against the 3×3 matrix mb,
and stores the result in the 1x3 row vector vprod. This is shown in Figure 5.18. Basically,
this function performs a point or vector matrix multiplication.
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FIGURE 5.18 3D vector multiplied with 3×3 matrix.

Example:

VECTOR3D v={x,y,1}, vt;

MATRIX3X3 m = {1,0,0, 0,1,0,xt,yt,1};

// multiply v*m

Mat_Mul_VECTOR3D_3X3(&v, &m, &vt);

Can you figure out what this transform does? If we pretend that the VECTOR3D is really a
2D homogenous point, the transformation translates the point to

vt.x = v.x+xt;

vt.y = v.y+yt;

vt.z = 1;

Neat, huh? But a new Dodge Viper would be neater <VBG>.
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Function Prototype (from T3DLIB1.CPP|H):

int (MATRIX1X3_PTR ma, 

MATRIX3X3_PTR mb,

MATRIX1X3_PTR mprod);

Purpose:

int Mat_Mul_1X3_3X3() multiplies a 1×3 matrix—basically a row vector—against a 3×3
matrix. This function is almost identical to Mat_Mul_VECTOR3D_3X3(). Only the types are
different.

Example:

MATRIX1X3 v={x,y,1}, vt;

MATRIX3X3 m = {1,0,0, 0,1,0,xt,yt,1};

// multiply v*m

Mat_Mul_1X3_3X3(&v, &m, &vt);

Function Prototype (from T3DLIB1.CPP|H):

int Mat_Mul_3X3(MATRIX3X3_PTR ma, 

MATRIX3X3_PTR mb,

MATRIX3X3_PTR mprod);

Purpose:

void Mat_Mul_3X3() matrix multiplies (ma*mb) and stores the result in mprod.

Example:

MATRIX3X3 m1 = {1,2,3, 4,5,6, 7,8,9};

MATRIX3X3 m2 = {1,0,0, 0,1,0, 0,0,1};

MATRIX3X3 mprod;

// multiply them, note that m1*m2 = m1 since m2=I

Mat_Mul_3X3(&m1, &m2, &mprod);

Function Prototype:

float Mat_Det_3X3(MATRIX3X3_PTR m);

Purpose:

float Mat_Det_3X3() computes the determinate of the matrix m and returns it on the
stack.
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Example:

MATRIX3x3 m = {1,2,0, 4,8,9, 2,5,7};

// compute determinate

float det = Mat_Det_3X3(&m);

Function Prototype:

int Mat_Inverse_3X3(MATRIX3X3_PTR m, MATRIX3X3_PTR mi);

Purpose:

int Mat_Inverse_3X3() computes the inverse of m if it exists and returns it in mi. If the
inverse exists, the function returns a 1; otherwise, it returns a 0 and mi is undefined.

Example:

MATRIX3X3 mA = {1,2,9, 4,-3,6, 1,0,5};

MATRIX3X3 mI;

// compute the inverse of A

if (Mat_Inverse_3X3(&mA, &mI))

{

// inverse exists…

} // end if

else

{

// inverse doesn’t exist

} // end else

Function Prototype:

void Print_Mat_3X3(MATRIX3X3_PTR ma, char *name);

Purpose:

void Print_Mat_3X3() prints out the matrix in “pretty” format along with the sent string
in name as an identifier. All output, of course, goes to the error file previously opened with
Open_Error_File().

Example:

MATRIX3X3 m = {1,2,3, 4,5,6, 7,8,9};

// open the error file and write to a file

Open_Error_File(“error.txt”);
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Print_Mat_3X3(&m,”Matrix m”);

// close the error file

Close_Error_File();

Function Prototype:

void Mat_Init_4X4(MATRIX4X4_PTR ma, 

float m00, float m01, float m02, float m03,

float m10, float m11, float m12, float m13,

float m20, float m21, float m22, float m23,

float m30, float m31, float m32, float m33);

Purpose:

void Mat_Init_4X4() initializes the matrix ma with the sent floating-point values in row
major form.

Example:

MATRIX4X4 ma;

// initialize matrix to identity

Mat_Init_4X4(&ma, 1,0,0,0, 0,1,0,0, 0,0,1,0, 0,0,0,1);

Function Prototype:

void Mat_Add_4X4(MATRIX4X4_PTR ma, MATRIX4X4_PTR mb, MATRIX4X4_PTR msum);

Purpose:

void Mat_Add_4X4() adds the matrices (ma+mb) and stores the result in msum.

Example:

MATRIX4X4 m1 = {1,2,3,4, 5,6,7,8, 9,10,11,12, 13,14,15,16};

MATRIX4X4 m2 = {4,9,7,3, -1,5,6,7, 2,3,4,5, 2,0,5,3};

MATRIX4X4 msum;

// add em

Mat_Add_4X4(&m1, &m2, &msum);

Function Prototype:

void Mat_Mul_4X4(MATRIX4X4_PTR ma, MATRIX4X4_PTR mb, MATRIX4X4_PTR mprod);

Purpose:

void Mat_Mul_4X4() matrix multiplies (ma*mb) and stores the result in mprod.
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Example:

MATRIX4X4 m1 = {1,2,3,4, 4,5,6,7, 7,8,9,10, 11,12,13,14};

MATRIX4X4 m2 = {1,0,0,0, 0,1,0,0, 0,0,1,0, 0,0,0,1};

MATRIX4X4 mprod;

// multiply them, note that m1*m2 = m1 since m2=I

Mat_Mul_4X4(&m1, &m2, &mprod);

Function Prototype:

void Mat_Mul_1X4_4X4(MATRIX1X4_PTR ma, MATRIX4X4_PTR mb, MATRIX1X4_PTR mprod);

Function Listing Reference:

void Mat_Mul_1X4_4X4(MATRIX1X4_PTR ma, 

MATRIX4X4_PTR mb,

MATRIX1X4_PTR mprod)

{

// this function multiplies a 1x4 matrix against a 

// 4x4 matrix - ma*mb and stores the result

// no tricks or assumptions here, just a straight multiply

for (int col=0; col<4; col++)

{

// compute dot product from row of ma 

// and column of mb

float sum = 0; // used to hold result

for (int row=0; row<4; row++)

{

// add in next product pair

sum+=(ma->M[row] * mb->M[row][col]);

} // end for index

// insert resulting col element

mprod->M[col] = sum;

} // end for col

} // end Mat_Mul_1X4_4X4
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Purpose:

void Mat_Mul_1X4_4X4() multiplies a 1×4 row matrix against a 4×4 matrix and computes
the product mprod = (ma*mb). The function makes no assumptions about homogenous
coordinates and so forth, so it’s a straight matrix multiply as shown in the code listing.
Also, note that we can speed this function up by explicitly performing all the math rather
than using loops.

Example:

MATRIX1X4 v={x,y,z,1}, vt;

MATRIX4X4 m = {1,0,0,0 0,1,0,0, 0,0,1,0, xt,yt,zt,1};

// multiply v*m, this translates the 3D point x,y,z

Mat_Mul_1X4_4X4(&v, &m, &vt);

Function Prototype:

void Mat_Mul_VECTOR3D_4X4(VECTOR3D_PTR va, MATRIX4X4_PTR mb, VECTOR3D_PTR vprod);

Purpose:

void Mat_Mul_VECTOR3D_4X4() multiplies a 3D vector against a 4×4 matrix. However, to
perform the multiplication, the function assumes that there’s a phantom fourth element
in va that’s equal to 1.0. Moreover, when the multiplication completes, the result is a 3D
vector, rather than a 4D vector. The bottom line is that this function is used to transform
3D points with 4×4 matrices that contain translation values and assume homogenous
coordinates. Because a 3D point with only three elements [x y z] doesn’t have enough
space for the homogenous component w, we assume it’s there and set it to 1.0. That was a
mouthful! Figure 5.19 might clear this up for you a bit.

Example:

VECTOR3D v={10,10,10}, vrt;

// rotate around the x-axis and translate (tx,ty,tz)

MATRIX4X4 m = {1, 0, 0, 0,

0, cos(th), sin(th),0,

0,-sin(th), cos(th),0,

tx, ty, tz, 1};

// do the transform

Mat_Mul_VECTOR3D_4X4(&v, &m, &vrt);
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FIGURE 5.19 3D vector multiplied against a 4×4 matrix.

Also, we could’ve defined the vectors as points made the same call because VECTOR3D and
POINT3D are aliases:

POINT3D p1={10,10,10}, p2;

// rotate around the x-axis and translate (tx,ty,tz)

MATRIX4X4 m = {1, 0, 0, 0,

0, cos(th), sin(th),0,

0,-sin(th), cos(th),0,

tx, ty, tz, 1};

// do the transform

Mat_Mul_VECTOR3D_4X4(&p1, &m, &p2);

Function Prototype:

void Mat_Mul_VECTOR3D_4X3(VECTOR3D_PTR va, MATRIX4X3_PTR mb, VECTOR3D_PTR vprod);

Purpose:

void Mat_Mul_VECTOR3D_4X3() is very similar to Mat_Mul_VECTOR3D_4X4(), but instead it
multiplies a 3D vector against a 4×3 matrix rather than a 4×4 matrix. However, it also
assumes that there’s a phantom fourth element in va that’s equal to 1.0 to carry out the
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multiplication. And because there are only three columns in the 4×3 matrix, the multipli-
cation stops naturally rather than being cut off artificially as in Mat_Mul_VECTOR3D_4X4().

Example:

POINT3D p1={10,10,10}, p2;

// rotate around the x-axis and translate (tx,ty,tz)

// note that we don’t have to muck with the last column

// which is always [0 0 0 1]t anyway

MATRIX4X3 m = {1, 0, 0, 

0, cos(th), sin(th),

0,-sin(th), cos(th),

tx, ty, tz};

// do the transform

Mat_Mul_VECTOR3D_4X3(&p1, &m, &p2);

Function Prototype:

void Mat_Mul_VECTOR4D_4X4(VECTOR4D_PTR va, MATRIX4X4_PTR mb, VECTOR4D_PTR vprod);

Purpose:

void Mat_Mul_VECTOR4D_4X4() multiplies the 1×4 row vector va against the 4×4 matrix mb,
and stores the result in the 1×4 row vector vprod. The function assumes nothing special
and simply does a 1×4 * 4×4 matrix multiplication.

Example:

VECTOR4D v={10,10,10,1}, vrt;

// rotate around the x-axis and translate (tx,ty,tz)

MATRIX4X4 m = {1, 0, 0, 0,

0, cos(th), sin(th),0,

0,-sin(th), cos(th),0,

tx, ty, tz, 1};

// do the transform

Mat_Mul_VECTOR4D_4X4(&v, &m, &vrt);

Note that the result is vrt = <x', y', z', 1>. That is, the w, or homogenous component, will
be equal to 1.0.

Function Prototype:

void Mat_Mul_VECTOR4D_4X3(VECTOR4D_PTR va, MATRIX4X4_PTR mb, VECTOR4D_PTR vprod);
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Purpose:

void Mat_Mul_VECTOR4D_4X3() is very similar to Mat_Mul_VECTOR3D_4X3(), but instead it
multiplies a 4D vector against a 4×3 matrix rather than a 3D vector. And because there are
only three columns in the 4×3 matrix, the multiplication stops naturally rather than being
cut off artificially, as in Mat_Mul_VECTOR3D_4X4(). Finally, the w component from va is
copied to vprod. Or, in other words, the last column of the 4×3 is assumed to be [0 0 0 1]t.

Example:

POINT4D p1={10,10,10,1}, p2;

// rotate around the x-axis and translate (tx,ty,tz)

// note that we don’t have to muck with the last column

// which is always [0 0 0 1]t anyway

MATRIX4X3 m = {1, 0, 0, 

0, cos(th), sin(th),

0,-sin(th), cos(th),

tx, ty, tz};

// do the transform

Mat_Mul_VECTOR4D_4X3(&p1, &m, &p2);

Function Prototype:

int Mat_Inverse_4X4(MATRIX4X4_PTR m, MATRIX4X4_PTR mi);

Purpose:

int Mat_Inverse_4X4() computes the inverse of m if it exists and returns it in mi. If the
inverse exists, the function returns a 1; otherwise, it returns a 0 and mi is undefined. Also,
this function works only on matrices where the last column is [0 0 0 1]t. 

Example:

// note the last column is [0 0 0 1]t

MATRIX4X4 mA = {1, 2,9,0, 

4,-3,6,0, 

1, 0,5,0, 

2, 3,4,1};

MATRIX4X4 mI;

// compute the inverse of A

if (Mat_Inverse_4X4(&mA, &mI))

{

// inverse exists…
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} // end if

else

{

// inverse doesn’t exist

} // end else

Function Prototype:

void Print_Mat_4X4(MATRIX4X4_PTR ma, char *name);

Purpose:

void Print_Mat_4X4() prints the matrix out in “pretty” format along with the sent string
in name as an identifier. All output, of course, goes to the error file previously opened with
Open_Error_File().

Example:

MATRIX4X4 m = {1,2,3,4, 

5,6,7,8, 

9,10,11,12, 

13,14,15,16};

// open the error file and write to a file

Open_Error_File(“error.txt”);

Print_Mat_4X4(&m,”Matrix m”);

// close the error file

Close_Error_File();

2D and 3D Parametric Line Support Functions
When I started writing the math engine, I didn’t think at all that I would add parametric
line support into the engine. Why? Because most of the time, you would just manually
code parametric lines in the algorithms where you need them with a vector and a parame-
ter t. However, 9 times out of 10, you would use a vector and a parameter t, so why not
encapsulate that in a structure (or class without methods) and then build on that for
common functions such as intersection, and so forth? Hence, the math engine has
support for both 2D and 3D parametric lines, along with a fairly complete set of functions
to work with them.

To refresh your memory, here’s the structure for a 2D parametric line:

typedef struct PARMLINE2D_TYP

{

POINT2D p0; // start point of parametric line
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POINT2D p1; // end point of parametric line

VECTOR2D v; // direction vector of line segment

// |v|=|p0->p1|

} PARMLINE2D, *PARMLINE2D_PTR;

The relationship of the values is shown in Figure 5.2. Note that the vector extends from
p0->p1; that is, it’s not normalized. And moving on, here’s the structure for a 3D para-
metric line:

typedef struct PARMLINE3D_TYP

{

POINT3D p0; // start point of parametric line

POINT3D p1; // end point of parametric line

VECTOR3D v; // direction vector of line segment

// |v|=|p0->p1|

} PARMLINE3D, *PARMLINE3D_PTR;

The only difference between the 2D version and the 3D version is the z-axis; other than
that, each structure holds the same info in the same form. So, let’s take a look at the func-
tions now.

Function Prototype:

void Init_Parm_Line2D(POINT2D_PTR p_init, POINT2D_PTR p_term, PARMLINE2D_PTR p);

Purpose:

void Init_Parm_Line2D() initializes a 2D parametric line structure based on the sent
points and computes the vector between them. Note that the vector is generated inter-
nally to the function.

Example:

POINT2D p1 = {1,2}, p2 = {10,20};

PARMLINE2D p;

// create a parametric line from p1 to p2

Init_Parm_Line2D(&p1, &p2, &p);

Function Prototype:

void Compute_Parm_Line2D(PARMLINE2D_PTR p, float t, POINT2D_PTR pt);
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Purpose:

void Compute_Parm_Line2D() evaluates a 2D parametric line at the value t and returns the
value in the sent point. Note that when parameter t = 0, the parametric line is equal to
the initial point p1; when parameter t = 1, the parametric line equals the terminal point
p2. That is, the line is traced from p1 to p2 as 0 <= t <= 1.

Example:

POINT2D p1 = {1,2}, p2 = {10,20}, pt;

PARMLINE2D p;

// create a parametric line from p1 to p2

Init_Parm_Line2D(&p1, &p2, &p);

// now evaluate the parametric line when t=.5 

// and store the resulting point in pt

Compute_Parm_Line2D(&p, 0.5, &pt);

Function Prototype:

int Intersect_Parm_Lines2D(PARMLINE2D_PTR p1, PARMLINE2D_PTR p2, 

float *t1, float *t2);

Functional Listing:

int Intersect_Parm_Lines2D(PARMLINE2D_PTR p1, PARMLINE2D_PTR p2, 

float *t1, float *t2)

{

// this function computes the intersection of the two parametric 

// line segments the function returns true if the segments 

// intersect and sets the values of t1 and t2 to the t values that 

// the intersection occurs on the lines p1 and p2 respectively, 

// however, the function may send back t value not in the range [0,1]

// this means that the segments don’t intersect, but the lines that 

// they represent do, thus a return of 0 means no intersection, a 

// 1 means intersection on the segments and a 2 means the lines 

// intersect, but not necessarily the segments and 3 means that 

// the lines are the same, thus they intersect everywhere

// basically we have a system of 2d linear equations, we need

// to solve for t1, t2 when x,y are both equal (if that’s possible)

// step 1: test for parallel lines, if the direction vectors are 

// scalar multiples then the lines are parallel and can’t possible

// intersect unless the lines overlap
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float det_p1p2 = (p1->v.x*p2->v.y - p1->v.y*p2->v.x);

if (fabs(det_p1p2) <= EPSILON_E5)

{

// at this point, the lines either don’t intersect at all

// or they are the same lines, in which case they may intersect

// at one or many points along the segments, at this point we 

// will assume that the lines don’t intersect at all, but later

// we may need to rewrite this function and take into 

// consideration the overlap and singular point exceptions

return(PARM_LINE_NO_INTERSECT);

} // end if

// step 2: now compute the t1, t2 values for intersection

// we have two lines of the form

// p  = p0  + v*t, specifically

// p1  = p10  + v1*t1

// p1.x = p10.x + v1.x*t1

// p1.y = p10.y + v1.y*t1

// p2 = p20 + v2*t2

// p2.x = p20.x + v2.x*t2

// p2.y = p20.y + v2.y*t2

// solve the system when x1 = x2 and y1 = y2

// explained in chapter 4

*t1 = (p2->v.x*(p1->p0.y - p2->p0.y) - p2->v.y*(p1->p0.x - p2->p0.x)) 

/det_p1p2;

*t2 = (p1->v.x*(p1->p0.y - p2->p0.y) - p1->v.y*(p1->p0.x - p2->p0.x))

/det_p1p2;

// test if the lines intersect on the segments

if ((*t1>=0) && (*t1<=1) && (*t2>=0) && (*t2<=1))

return(PARM_LINE_INTERSECT_IN_SEGMENT);

else

return(PARM_LINE_INTERSECT_OUT_SEGMENT);

} // end Intersect_Parm_Lines2D
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Purpose:

int Intersect_Parm_Lines2D() computes the intersection of two parametric lines, p1 and
p2, and sends back the parametric values t1 and t2 where the intersection takes place on
each line segment, respectively. The function has the following return values based on
whether there’s an intersection on the parametric segment on the lines projected from the
segments.

#define PARM_LINE_NO_INTERSECT     0

#define PARM_LINE_INTERSECT_IN_SEGMENT 1

#define PARM_LINE_INTERSECT_OUT_SEGMENT 2

Note that the function doesn’t test whether the lines are co-linear because it would slow it
down too much and there are too many cases (partial overlap, inclusion, point co-linear-
ity). Therefore, it’s up to you to check whether you need to know that. Or, you can add
the functionality to the function. The thing to remember is that these parametric line
segments are really finite segments, and all lines that aren’t parallel intersect at some
point, so the function determines the intersection regardless. However, if the t parameters
coming back aren’t in the range (0 <= t <= 1), you know that the intersection didn’t occur
on the original segment p1->p2 of each line, respectively. Check out DEMOII5_1.CPP|EXE
on the CD; it allows you to define parametric lines and test whether they intersect.

Example:

// these lines intersect 

POINT2D p1 = {1,1}, p2 = {9,8};

POINT2D p3 = {2,8}, p4 = {7,1};

PARMLINE2D pl1, pl2;

// create a parametric line from p1 to p2

Init_Parm_Line2D(&p1, &p2, &pl1);

// create a parametric line from p3 to p4

Init_Parm_Line2D(&p3, &p4, &pl2);

float t1=0, t2=0; // storage for parameters

// compute intersection

int intersection_type = Intersect_Parm_Lines2D(&pl1, &pl2, &t1, &t2);

Function Prototype:

int Intersect_Parm_Lines2D(PARMLINE2D_PTR p1, PARMLINE2D_PTR p2, POINT2D_PTR pt);
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Purpose:

int Intersect_Parm_Lines2D() computes the intersection of the parametric lines, but
rather then sending back the parameters t1 and t2, the function returns the actual point
of intersection. Of course, care needs to be taken and the return value reviewed to see the
type of intersection just as in the previous version.

Example:

// these lines intersect 

POINT2D p1 = {1,1}, p2 = {9,8};

POINT2D p3 = {2,8}, p4 = {7,1};

POINT2D pt; // storage for intersection

PARMLINE2D pl1, pl2;

// create a parametric line from p1 to p2

Init_Parm_Line2D(&p1, &p2, &pl1);

// create a parametric line from p3 to p4

Init_Parm_Line2D(&p3, &p4, &pl2);

// compute intersection 

int intersection_type = int Intersect_Parm_Lines2D(&pl1, &pl2, &pt);

C++

Pure C programmers might be a bit bewildered by two functions with the same name. This is a
C++ feature. Basically, the parameter footprint of each function is different; thus, as far as the
compiler is concerned, the functions are different. This is called function overloading, and is
accomplished with name mangling based on the parameter list to come up with two unique
names. This is covered in Appendix D, “C++ Primer.”

And now here are the 3D parametric line functions. Note there are fewer because I classed
some of them along with the 3D plane functions.

Function Prototype:

void Init_Parm_Line3D(POINT3D_PTR p_init, POINT3D_PTR p_term, PARMLINE3D_PTR p);

Purpose:

void Init_Parm_Line3D() initializes a 3D parametric line structure based on the sent
points and the vector between them. Note that the vector is generated internally to the
function.
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Example:

POINT3D p1 = {1,2,3}, p2 = {10,20,30};

PARMLINE3D p;

// create a parametric line from p1 to p2

Init_Parm_Line3D(&p1, &p2, &p);

Function Prototype:

void Compute_Parm_Line3D(PARMLINE3D_PTR p, float t, POINT3D_PTR pt);

Purpose:

void Compute_Parm_Line3D() evaluates a 3D parametric line at the value t and returns the
value in the sent point. Note that when parameter t = 0, the parametric line is equal to
p1; when parameter t = 1, the parametric line equals p2. That is, the line is traced from
p1 to p2 as 0 <= t <= 1.

Example:

POINT3D p1 = {1,2,3}, p2 = {10,20,30}, pt;

PARMLINE3D p;

// create a parametric line from p1 to p2

Init_Parm_Line3D(&p1, &p2, &p);

// now evaluate the parametric line when t=.5 

// and store the resulting point in pt

Compute_Parm_Line3D(&p, 0.5, &pt);

3D Plane Support Functions
Although this might be a little premature, I decided to add some support for the abstract
entity of 3D planes to the math engine. In reality, 99% of the time, we’ll deal with closed
polygons (that lie in planes), so these functions might need to be retrofitted later.
Nevertheless, it’s nice to be able to define planes and then work with them at least a little
bit at this early stage.

I decided to go with the point-normal representation of a plane, which is shown in Figure
5.20.

nx*(x-x0) + ny*(y-y0) + nz*(z-z0) = 0

where n = <nx,ny,nz>, and p0 = <x0,y0,z0>.
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FIGURE 5.20 The point-normal-defined 3D plane.

Basically, in this format, we store a plane by means of its normal and a single point that
lies on the plane. The normal need not be a unit normal. Once again, here’s the structure
for a 3D plane:

typedef struct PLANE3D_TYP

{

POINT3D p0; // point on the plane

VECTOR3D n; // normal to the plane (not necessarily a unit vector)

} PLANE3D, *PLANE3D_PTR;

Not much to it! Again, many of the functions in a math library just simplify repetitive
calculations that you find yourself doing all the time, or ease the representation of mathe-
matical or geometrical objects.

Function Prototype:

void PLANE3D_Init(PLANE3D_PTR plane, POINT3D_PTR p0, 

VECTOR3D_PTR normal, int normalize);

Purpose:

void PLANE3D_Init() initializes a 3D plane with the sent point and normal. Additionally,
the function can normalize the sent normal vector and make its length 1.0 for you. To do
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this, set the parameter normalize to TRUE; otherwise, make it FALSE. This helps in many
lighting and back face removal calculations to know that the normal to a polygon or
plane has length 1.0.

Example:

VECTOR3D n={1,1,1}; 

POINT3D p={0,0,0};

PLANE3D plane;

// create the plane

PLANE3D_Init(&plane, &p, &n, TRUE);

Function Prototype:

float Compute_Point_In_Plane3D(POINT3D_PTR pt, PLANE3D_PTR plane);

Functional Listing:

float Compute_Point_In_Plane3D(POINT3D_PTR pt, PLANE3D_PTR plane)

{

// test if the point in on the plane, in the positive halfspace

// or negative halfspace

float hs = plane->n.x*(pt->x - plane->p0.x) + 

plane->n.y*(pt->y - plane->p0.y) +

plane->n.z*(pt->z - plane->p0.z); 

// return half space value

return(hs);

} // end Compute_Point_In_Plane3D

Purpose:

float Compute_Point_In_Plane3D() is a rather interesting function. It computes the half
space that the test point lies in. In other words, many times we want to determine
whether something is on one side of a plane or the other (or in the plane). That’s what
this function does. Figure 5.21 illustrates the logic. The function returns 0.0 if the point
lies in the plane, a positive number if the point lies in the positive half space (that is, the
half space the normal points to), and the function returns a negative number if the point
lies in the negative half space. Check out DEMOII5_2.CPP|EXE; it allows you to define a
plane and then send test points to it to determine the half space.
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FIGURE 5.21 The half-space logic codes.

Example:

VECTOR3D n={1,1,1}; 

POINT3D p={0,0,0};

PLANE3D plane;

// create the plane

PLANE3D_Init(&plane, &p, &n, TRUE);

// this should be in the positive half space

POINT3D p_test = {50,50,50};

// test the point

float hs = Compute_Point_In_Plane3D(&p_test, &plane);

Function Prototype:

int Intersect_Parm_Line3D_Plane3D(PARMLINE3D_PTR pline, PLANE3D_PTR plane, 

float *t, POINT3D_PTR pt);
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Functional Listing:

int Intersect_Parm_Line3D_Plane3D(PARMLINE3D_PTR pline, 

PLANE3D_PTR plane, 

float *t, POINT3D_PTR pt)

{

// this function determines where the sent parametric line 

// intersects the plane the function will project the line 

// infinitely in both directions, to compute the intersection, 

// but the line segment defined by p intersected the plane iff t e [0,1]

// also the function returns 0 for no intersection, 1 for 

// intersection of the segment and the plane and 2 for intersection 

// of the line along the segment and the plane 3, the line lies 

// in the plane

// first test of the line and the plane are parallel, if so 

// then they can’t intersect unless the line lies in the plane!

float plane_dot_line = VECTOR3D_Dot(&pline->v, &plane->n);

if (fabs(plane_dot_line) <= EPSILON_E5)

{

// the line and plane are co-planer, does the line lie 

// in the plane?

if (fabs(Compute_Point_In_Plane3D(&pline->p0, plane)) <= EPSILON_E5)

return(PARM_LINE_INTERSECT_EVERYWHERE);

else

return(PARM_LINE_NO_INTERSECT);

} // end if

// from chapter 4 we know that we can solve for the t where 

// intersection occurs by

// a*(x0+vx*t) + b*(y0+vy*t) + c*(z0+vz*t) + d =0

// t = -(a*x0 + b*y0 + c*z0 + d)/(a*vx + b*vy + c*vz)

// x0,y0,z0, vx,vy,vz, define the line

// d = (-a*xp0 - b*yp0 - c*zp0), xp0, yp0, zp0, define the point on the plane 

*t = -(plane->n.x*pline->p0.x + 

plane->n.y*pline->p0.y + 

plane->n.z*pline->p0.z -

plane->n.x*plane->p0.x - 

plane->n.y*plane->p0.y - 

plane->n.z*plane->p0.z) / (plane_dot_line);
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// now plug t into the parametric line and solve for x,y,z

pt->x = pline->p0.x + pline->v.x*(*t);

pt->y = pline->p0.y + pline->v.y*(*t);

pt->z = pline->p0.z + pline->v.z*(*t);

// test interval of t

if (*t>=0.0 && *t<=1.0)

return(PARM_LINE_INTERSECT_IN_SEGMENT );

else

return(PARM_LINE_INTERSECT_OUT_SEGMENT);

} // end Intersect_Parm_Line3D_Plane3D

Purpose:

int Intersect_Parm_Line3D_Plane3D() computes the intersection of a 3D parametric line
and a 3D plane. The parametric value point of intersection is returned in t as well as the
actual point of intersection in pt. However, before these data are used, the return value of
Intersect_Parm_Line3D_Plane3D() can be tested to determine the details of the intersec-
tion. The values are the same as with the 2D intersection function, with the addition of a
flag that indicates that the line lies in the plane itself. Here are the flags again for refer-
ence:

#define PARM_LINE_NO_INTERSECT     0

#define PARM_LINE_INTERSECT_IN_SEGMENT 1

#define PARM_LINE_INTERSECT_OUT_SEGMENT 2

#define PARM_LINE_INTERSECT_EVERYWHERE 3

Also take a look at DEMOII5_3.CPP|EXE on the CD; it allows you to define a 3D plane and
parametric line and then computes their intersection.

Example:

POINT3D p1 = {5,5,-5}, p2 = {5,5,5},pt;

PARMLINE3D pl;

float t;

// create a parametric line from p1 to p2

// note this line is parallel to the z-axis

Init_Parm_Line3D(&p1, &p2, &pl);

VECTOR3D n={0,0,1}; 

POINT3D p={0,0,0};

PLANE3D plane;
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// create the plane, note this plane

// is the x-y plane

PLANE3D_Init(&plane, &p, &n, TRUE);

// compute the point of intersection

// note it should be (5,5,0)

int intersection_type = 

Intersect_Parm_Line3D_Plane3D(&pl, &plane, &t, &pt);

Quaternion Support Functions
I have to tell you—writing the quaternion functions wasn’t easy! The problem is making
sure that they all work. To double-check everything, you have to do it on paper, and
because quaternions don’t really have a whole lot of physical meaning, you can’t do those
nice graph paper sanity checks. However, I think I finally have them all working. The only
thing I left out is a couple matrix-quaternion conversion functions and spherical linear
interpolation (SLERP). We’ll add those when we need them, most probably in the camera
work and or animation sections of the book. Nonetheless, I really like quaternions because
they make many operations so simple. For example, rotation about an arbitrary line is
trivial with quaternions, whereas it’s a pain with Euler rotations. Anyway, to refresh your
memory, a quaternion is a hyper complex number with four components where one of
the components is the real part (usually referred to as q0 or w) and the other three compo-
nents are the imaginary part (usually referred to as q1, q2, q3). Moreover, quaternions are
usually written in one of the following ways:

q = q
0
+ q

1
*i + q

2
*j + q

3
*k

or

q = q
0
+ q

v
, where q

v
= q

1
*i + q

2
*j + q

3
*k

So, we basically need to keep track of four floating-point numbers, and we should be able
to access them in a number of ways. The data structure QUAT in the following code imple-
ments this functionality with a number of unions:

typedef struct QUAT_TYP

{

union

{

float M[4]; // array indexed storage w,x,y,z order

// vector part, real part format

struct 

{

float  q0; // the real part
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VECTOR3D qv; // the imaginary part xi+yj+zk

};

struct

{

float w,x,y,z;

}; 

}; // end union

} QUAT, *QUAT_PTR;

With this structure, we can access the quaternion as an array, as a real and a vector, and as
four unique identifiers. This makes writing various algorithms a snap! Anyway, here are
the quaternion functions:

Function Prototypes:

void VECTOR3D_Theta_To_QUAT(QUAT_PTR q, VECTOR3D_PTR v, float theta);

void VECTOR4D_Theta_To_QUAT(QUAT_PTR q, VECTOR4D_PTR v, float theta);

Functional Listing:

void VECTOR3D_Theta_To_QUAT(QUAT_PTR q, VECTOR3D_PTR v, float theta)

{

// initializes a quaternion based on a 3d direction vector and angle

// note the direction vector must be a unit vector

// and the angle is in rads

float theta_div_2 = (0.5)*theta; // compute theta/2

// compute the quaternion, note this is from chapter 4

// pre-compute to save time

float sinf_theta = sinf(theta_div_2);

q->x = sinf_theta * v->x;

q->y = sinf_theta * v->y;

q->z = sinf_theta * v->z;

q->w = cosf( theta_div_2 );

} // end VECTOR3D_Theta_To_QUAT

Purpose:

void VECTOR*D_Theta_To_QUAT() creates a rotation quaternion based on a direction
vector, v, and an angle, theta. Figure 5.22 illustrates the relationship. This function is
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primarily used to create quaternions for rotations of points. Note that the direction vector
v must be a unit vector. Also, the 4D vector version disregards the w component of the
vector.
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FIGURE 5.22 The rotation quaternion construction.

Example:

// create the vector to rotate about

// in this case the diagonal of the unit cube

// for octant 1

VECTOR3D v={1,1,1}; 

QUAT qr; 

// normalize v

VECTOR3D_Normalize(&v);

float theta = DEG_TO_RAD(100); // 100 degrees

// create a rotation quaternion about v 

// with angle theta

VECTOR3D_Theta_To_QUAT(&q, &v,theta);

Function Prototype:

void EulerZYX_To_QUAT(QUAT_PTR q, float theta_z, float 

theta_y, float theta_x);
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Functional Listing:

void EulerZYX_To_QUAT(QUAT_PTR q, float theta_z, float theta_y, float theta_x)

{

// this function initializes a quaternion based on the zyx

// multiplication order of the angles that are parallel to the

// zyx axis respectively, note there are 11 other possibilities

// this is just one, later we may make a general version of the

// the function

// precompute values

float cos_z_2 = 0.5*cosf(theta_z);

float cos_y_2 = 0.5*cosf(theta_y);

float cos_x_2 = 0.5*cosf(theta_x);

float sin_z_2 = 0.5*sinf(theta_z);

float sin_y_2 = 0.5*sinf(theta_y);

float sin_x_2 = 0.5*sinf(theta_x);

// and now compute quaternion

q->w = cos_z_2*cos_y_2*cos_x_2 + sin_z_2*sin_y_2*sin_x_2;

q->x = cos_z_2*cos_y_2*sin_x_2 - sin_z_2*sin_y_2*cos_x_2;

q->y = cos_z_2*sin_y_2*cos_x_2 + sin_z_2*cos_y_2*sin_x_2;

q->z = sin_z_2*cos_y_2*cos_x_2 - cos_z_2*sin_y_2*sin_x_2;

} // EulerZYX_To_QUAT

Purpose:

void EulerZYX_To_QUAT() creates a rotation quaternion based on the Euler angles parallel
to the z, y, and x axes, respectively. This is your basic camera transform. Of course, there
are a total of six ways (permutations = 3!) to multiply x*y*z together, but this is the most
common. Use this function to convert your Euler rotation angles to a quaternion.

Example:

QUAT qzyx;

// create rotation angles

float theta_x = DEG_TO_RAD(20);

float theta_y = DEG_TO_RAd(30);

float theta_z = DEG_TO_RAD(45);

// create rotation quaternion

EulerZYX_To_QUAT(&qzyx,theta_z,theta_y,theta_x);
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Function Prototype:

void QUAT_To_VECTOR3D_Theta(QUAT_PTR q, VECTOR3D_PTR v, float *theta);

Functional Listing:

void QUAT_To_VECTOR3D_Theta(QUAT_PTR q, VECTOR3D_PTR v, float *theta)

{

// this function converts a unit quaternion into a unit direction

// vector and rotation angle about that vector

// extract theta

*theta = acosf(q->w);

// pre-compute to save time

float sinf_theta_inv = 1.0/sinf(*theta);

// now the vector

v->x  = q->x*sinf_theta_inv;

v->y  = q->y*sinf_theta_inv;

v->z  = q->z*sinf_theta_inv;

// multiply by 2

*theta*=2;

} // end QUAT_To_VECTOR3D_Theta

Purpose:

void QUAT_To_VECTOR3D_Theta() converts a unit rotation quaternion into a unit 3D
vector and a rotation angle theta about that vector. This function is basically the opposite
of VECTOR*D_Theta_To_QUAT().

Example:

QUAT q; 

// assume q now has a unit rotation quaternion in it

// storage for the vector and angle

float theta;

VECTOR3D v;

// now convert the quat to a vector and an angle

QUAT_To_VECTOR3D_Theta(&q, &v, &theta);
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Function Prototype:

void QUAT_Add(QUAT_PTR q1, QUAT_PTR q2, QUAT_PTR qsum);

Purpose:

void QUAT_Add() adds the quaternions q1 and q2 and stores the sum in qsum.

Example:

QUAT q1 = {1,2,3,4}, q2 = {5,6,7,8}, qsum;

// add em

QUAT_Add(&q1, &q2, &qsum);

Function Prototype:

void QUAT_Sub(QUAT_PTR q1, QUAT_PTR q2, QUAT_PTR qdiff);

Purpose:

void QUAT_Sub() subtracts the quaternion q2 from q1 and stores the difference in qdiff.

Example:

QUAT q1 = {1,2,3,4}, q2 = {5,6,7,8}, qdiff;

// subtract em

QUAT_Sub(&q1, &q2, &qdiff);

Function Prototype:

void QUAT_Conjugate(QUAT_PTR q, QUAT_PTR qconj);

Purpose:

void QUAT_Conjugate() computes the conjugate of the quaternion q and returns in qconj.

Example:

QUAT q = {1,2,3,4}, qconj;

// compute conjugate

QUAT_Conjugate(&q, &qconj);

Function Prototype:

void QUAT_Scale(QUAT_PTR q, float scale, QUAT_PTR qs);
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Purpose:

void QUAT_Scale() scales the quaternion q by the factor scale and stores the result in qs.

Example:

QUAT q = {1,2,3,4}, qs;

// scale q by 2

QUAT_Scale(&q, 2, &qs);

Function Prototype:

void QUAT_Scale(QUAT_PTR q, float scale);

Purpose:

void QUAT_Scale() scales the quaternion q by the factor scale in place; that is, it modifies
q directly.

Example:

QUAT q = {1,2,3,4};

// scale q by 2

QUAT_Scale(&q, 2);

Function Prototype:

float QUAT_Norm(QUAT_PTR q);

Purpose:

float QUAT_Norm(QUAT_PTR q) returns the norm of the quaternion q; that is, its length.

Example:

QUAT q = {1,2,3,4};

// whats the length of q?

float qnorm = QUAT_Norm(&q);

Function Prototype:

float QUAT_Norm2(QUAT_PTR q);

Purpose:

float QUAT_Norm2(QUAT_PTR q) returns the norm squared of the quaternion q; that is, its
length squared. This function is useful because many times we need the norm of a
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quaternion squared. Thus, calling QUAT_Norm2() rather than calling QUAT_Norm() and then
squaring the return value saves us both a sqrt() call and a multiplication.

Example:

QUAT q = {1,2,3,4};

// whats the length of q*q?

float qnorm2 = QUAT_Norm2(&q);

Function Prototype:

void QUAT_Normalize(QUAT_PTR q, QUAT_PTR qn);

Purpose:

void QUAT_Normalize() normalizes the quaternion q and sends the result back in qn.

TIP

Remember, all rotation quaternions must be unit quaternions.

Example:

QUAT q = {1,2,3,4}, qn;

// normalize q

QUAT_Normalize(&q, &qn);

Function Prototype:

void QUAT_Normalize(QUAT_PTR q);

Purpose:

void QUAT_Normalize() normalizes the quaternion q in place; that is, it modifies q itself.

Example:

QUAT q = {1,2,3,4};

// normalize q in place

QUAT_Normalize(&q);

Function Prototype:

void QUAT_Unit_Inverse(QUAT_PTR q, QUAT_PTR qi);
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Purpose:

void QUAT_Unit_Inverse() computes the inverse of the quaternion q and returns the
result in qi. However, q must be a unit quaternion for the function to work because the
function is based on the fact that the inverse of a unit quaternion is its conjugate.

Example:

QUAT q = {1,2,3,4}, qi;

// normalize q first

QUAT_Normalize(&q);

// now compute inverse

QUAT_Unit_Inverse(&q, &qi);

Function Prototype:

void QUAT_Unit_Inverse(QUAT_PTR q);

Purpose:

void QUAT_Unit_Inverse() computes the inverse of the quaternion q in place, modifying
q. However, q must be a unit quaternion for the function to work because the function is
based on the fact that the inverse of a unit quaternion is its conjugate.

Example:

QUAT q = {1,2,3,4};

// normalize q first

QUAT_Normalize(&q);

// now compute inverse

QUAT_Unit_Inverse(&q);

Function Prototype:

void QUAT_Inverse(QUAT_PTR q, QUAT_PTR qi);

Purpose:

void QUAT_Inverse() computes the inverse of a general non-unit quaternion q and
returns the result in qi.

Example:

QUAT q = {1,2,3,4}, qi;

// now compute inverse

QUAT_Inverse(&q, &qi);
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Function Prototype:

void QUAT_Inverse(QUAT_PTR q);

Purpose:

void QUAT_Unit_Inverse() computes the inverse of a general non-unit quaternion q in
place, modifying q.

Example:

QUAT q = {1,2,3,4};

// now compute inverse

QUAT_Inverse(&q);

Function Prototype:

void QUAT_Mul(QUAT_PTR q1, QUAT_PTR q2, QUAT_PTR qprod);

Functional Listing:

void QUAT_Mul(QUAT_PTR q1, QUAT_PTR q2, QUAT_PTR qprod)

{

// this function multiplies two quaternions

// this is the brute force method

//qprod->w = q1->w*q2->w - q1->x*q2->x - q1->y*q2->y - q1->z*q2->z;

//qprod->x = q1->w*q2->x + q1->x*q2->w + q1->y*q2->z - q1->z*q2->y;

//qprod->y = q1->w*q2->y - q1->x*q2->z + q1->y*q2->w - q1->z*q2->x;

//qprod->z = q1->w*q2->z + q1->x*q2->y - q1->y*q2->x + q1->z*q2->w;

// this method was arrived at basically by trying to factor the above

// expression to reduce the # of multiplies

float prd_0 = (q1->z - q1->y) * (q2->y - q2->z);

float prd_1 = (q1->w + q1->x) * (q2->w + q2->x);

float prd_2 = (q1->w - q1->x) * (q2->y + q2->z);

float prd_3 = (q1->y + q1->z) * (q2->w - q2->x);

float prd_4 = (q1->z - q1->x) * (q2->x - q2->y);

float prd_5 = (q1->z + q1->x) * (q2->x + q2->y);

float prd_6 = (q1->w + q1->y) * (q2->w - q2->z);

float prd_7 = (q1->w - q1->y) * (q2->w + q2->z);

float prd_8 = prd_5 + prd_6 + prd_7;

float prd_9 = 0.5 * (prd_4 + prd_8);

// and finally build up the result with the temporary products
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qprod->w = prd_0 + prd_9 - prd_5;

qprod->x = prd_1 + prd_9 - prd_8;

qprod->y = prd_2 + prd_9 - prd_7;

qprod->z = prd_3 + prd_9 - prd_6;

} // end QUAT_Mul

Notice that at first I was using the brute-force method of multiplying the quaternions by
the definition of multiplication (16 multiplications, 12 additions); and then with some
algebra, I simplified the multiplication to 9 multiplications and 27 additions. Normally,
you might think this is better, but that might not be the case on floating-point processors.

Purpose:

void QUAT_Mul() multiplies the quaternion q1*q2 and stores the result in qprod.

Example:

QUAT q1={1,2,3,4}, q2={5,6,7,8}, qprod;

// multiply q1*q2

QUAT_Mul(&q1, &q2, qprod);

CAUTION 

The product q1*q2 is not equal to q2*q1 unless q1 or q2 is the multiplicative identity. Hence,
multiplication is non-commutative for quaternions in general.

Function Prototype:

void QUAT_Triple_Product(QUAT_PTR q1, QUAT_PTR q2, QUAT_PTR q3, QUAT_PTR qprod);

Purpose:

void QUAT_Triple_Product() multiplies the three quaternions q1*q2*q3 and stores the
result in qprod. This function is useful for rotating points because the transform
(q*)*(v)*(q) and (q)*(v)*(q*) are triple products that rotate vectors or points.

Example:

// let rotate the point (5,0,0) 

// around the z-axis 45 degrees

// Step 1: create the rotation quaternion

VECTOR3D vz = {0,0,1};
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QUAT qr, // this will hold the rotation quaternion 

qrc; // this will hold its conjugate

// create the rotation quaternion

VECTOR3D_Theta_To_QUAT(&qr, &vz, DEG_TO_RAD(45));

// now its conjugate

QUAT_Conjugate(&qr, &qrc);

// now create a the point to rotate with the q0

// element equal to 0 and the x,y,z as the point

QUAT qp={0,5,0,0};

// now we do the rotation which will rotate

// p about the z-axis 45 degrees, of course

// the rotation axis could have been anything

QUAT_Triple_Product(&qr, &qp, &qrc, &qprod);

// now the result will still have q0=0, 

// so we can just extract the point from the 

// x,y,z elements of the quaternion

Function Prototype:

void QUAT_Print(QUAT_PTR q, char *name); 

Purpose:

void QUAT_Print() prints out a quaternion with the given name to the error file.

Example:

// set error file to screen

Open_Error_File(“”, stdout);

QUAT q={1,2,3,4};

QUAT_Print(&q);

// close the error file

Close_Error_File();

As a demo of some of the quaternion functions, check out DEMOII5_4.CPP|EXE. It enables
you to enter a pair of quaternions and a point in 3D space, and then perform various
operations on them and see the results.
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Fixed-Point Math Support Functions
Although we didn’t cover fixed-point math in the previous chapter, I felt the desire to add
some functions to work with it just for the heck of it. If you’re rusty on the topic, I refer
you to the first Tricks for a more detailed discussion. Additionally, on Pentium+ processors,
the floating-point unit(s) is as fast or faster than the integer unit(s), thus using fixed-point
isn’t needed to perform 3D math anymore. However, there are many times that you can
write a really optimal algorithm that uses both the floating-point and integer units at the
same time, so knowing how to represent and work with fixed-point is still a good thing.

In general, fixed-point is an old trick used on slower processors to perform multiplication
and division using integers, but have decimal precision. The trick is using a “fixed point”
that’s artificially placed somewhere in the binary representation of a number, therefore
breaking a number into both a whole part and a decimal part. For the representation for
this iteration of the engine, I keep the format first created in the first Tricks of 16.16,
meaning 16 bits of whole part and 16 bits of decimal part. That means that numbers can
be represented that are signed in the magnitude range of +-32768, and a decimal accuracy
of 1/216.

Now the question is, how to represent a fixed-point number? The answer is just with a
standard int or long data type (if you needed 64 bits, you would use long). So, the types
in T3DLIB4.H define this for us:

typedef int FIXP16;

typedef int *FIXP16_PTR;

And in T3DLIB1.H, there are some legacy constants:

// fixed point mathematics constants

#define FIXP16_SHIFT   16

#define FIXP16_MAG    65536

#define FIXP16_DP_MASK  0x0000ffff

#define FIXP16_WP_MASK  0xffff0000

#define FIXP16_ROUND_UP 0x00008000

which just simplify working with fixed-point numbers.

Creating a Fixed-Point Number from an Integer
To create a fixed-point number from an integer, all you have do is shift the integer
FIXP16_SHIFT times to the left, which places the integer in the whole part section of the
fixed-point number. But remember not to overflow the fixed-point number. Here’s an
example:

FIXP16 fp1 = (100 << FIXP16);

And, of course, there’s a macro called INT_TO_FIXP16() for this in the header file that does
the same thing.
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Creating a Fixed Point Number From a Float
Creating a fixed-point number from a float is a little trickier because the binary representa-
tion of an integer and a float are fairly alien to each other. So, what we need to do is scale
the float by the equivalent magnitude that we shift the integers by. That is, we shift an
int by 16 places to convert it to a fixed-point number. What we’re really doing is multi-
plying the int by 216 = 65536. So, if we simply multiply the float we want to convert by
65536.0 and then convert it to an int, that will do the trick. Here’s an example:

FIXP16 fp1 = (int)(100.5*65536.0);

Notice that we don’t shift because the multiplication does that for us, in a manner of
speaking. Of course, there’s a macro for this called FLOAT_TO_FIXP16(), which is also in
the header and performs the same function. However, you might want to round the
number because part of it will be truncated during the conversion to an int. Hence, the
addition of 0.5 before the conversion helps with loss of data and the final macro does this,
which performs something like this:

FIXP16 fp1 = (int)(100.5*65536.0+0.5);

Converting Back to Floating-Point
If you do want to convert back to floating point, you simply need to extract the whole
part of the fixed-point number, which isn’t hard to do because it’s in the upper 16 bits and
it’s in normal binary integer format. However, getting the decimal part out is a bit tricky.
What you need to do is divide the decimal part by the magnitude it was scaled by origi-
nally, which is 65536. However, if you don’t want to extract both the whole part and
decimal part as separate entities, you can covert a fixed-point number to a float with the
following transform:

float ((float)fp)/65536.0;

which is coded in the macro FIXP16_TO_FLOAT().

Now, as a quick refresher, given two fixed-point numbers, here are the basic operations
and how they have to be carried out.

Addition/Subtraction To add or subtract two numbers that are already in fixed-point
format, you simply add or subtract them as you normally would. For example:

FIXP16 fp1 = FLOAT_TO_FIX(10.5);

FIXP16 fp2 = FLOAT_TO_FIX(20.7);

FIXP16 fpsum = fp1 + fp2;

FIXP16 fpdiff = fp1 – fp2;
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As a more illustrative example, look at this:

int x=50, y=23; 

// convert x,y to fixed point 16.16 format

FIXP16 fpx = x*65536;

FIXP16 fpy = y*65536;

FIXP16 fsum;

// now lets add them

fsum = fpx + fpy;

which simplifies to

fsum = x*65536 + y*65536 = (x+y)*65536;

Therefore, the result does indeed sum (x+y) and has the proper scale of 65536. The proof
for subtraction is similar.

Multiplication Multiplication of fixed-point numbers is a little tricky. The reason why is
that each number is scaled by a factor. In the case of 16.16 format, each fixed-point
number is scaled by 65536. Thus, if we multiply two fixed-point numbers, we need to
make sure that the result is scaled by only 65536 and not (65536)2! The following example
illustrates the problem by using a numeric example:

// numbers we are going to convert to fixed point

int x=50, y=23; 

// convert x,y to fixed point 16.16 format

FIXP16 fpx = x*65536;

FIXP16 fpy = y*65536;

Now, the problem occurs when we try to multiply (fpx*fpy). If we look at the numeric
results, we get this:

fpx*fpy = (x*65536) * (y*65536) = (x*y)*(65536*65536);

See the problem? The answer is scaled by 655362, rather than 65536. The solution is to
simply scale the result back. However, the problem with that is that the act of multiplying
the two fixed-point numbers (and then scaling after the fact) actually overflows a 32-bit
number. Therefore, our only options are to use 64-bit math (which we’ll see momentarily)
or to pre-scale down both the multiplier and the multiplicand before the multiplication so
that the resulting product is scaled by only 65536. Here’s one way of doing it:

= (fpx/256)*(fpy/256)

CHAPTER 5 Building a Math Engine460

08 0672318350 CH05  05•02•2003  2:37 PM  Page 460



Substituting x,y:

= ((x*65536)/256) * ((y*65536)/256)

= (x*256)*(y*256) = (x*y)*65536

This is correct, but the problem with this approach is that during the scale down, we lose
8 bits of accuracy of both the multiplier and multiplicand, which isn’t acceptable because
that’s the whole point of fixed-point math: to keep the decimal point accuracy. However,
we can save the day with 64-bit math using assembly language.

Division Division has the same problem as multiplication does, but it’s in reverse. The
problem is when one fixed-point number is divided by another, the decimal portion is
lost. That is, the scale of the result is 1.0, rather than 65536. Here’s an example to illus-
trate this:

// numbers we are going to convert to fixed point

int x=50, y=23; 

// convert x,y to fixed point 16.16 format

FIXP16 fpx = x*65536;

FIXP16 fpy = y*65536;

Now, let’s divide and see what happens:

fpx/fpy = (x*65536) / (y*65536) = (x/y);

That’s definitely not good. Again, we have a dilemma and there are two ways to solve it.
We can use 64-bit division in assembly language, or we can pre-scale the numerator and
denominator so that the results of the division are scaled by 65536. But again, we’re
trapped to the constraints of 32-bit math if we use the type int. Scaling the numerator up
means losing accuracy on the whole part, and scaling the denominator down means
losing accuracy on the decimal part, but that’s our only choice. So, we can scale up the
numerator by 256 (8-bits) and scale down the denominator by 256 (8-bits), and the result
will be properly scaled by 65536. However, during the scaling transform, we turn the
numerator from 16.16 into 8.16 and the denominator into 16.8, which means that if we
want to handle signed numbers, the numerator can’t be larger than 255 and the denomi-
nator can’t be smaller than 1/28 ≈ 0.0039.

Here’s our example fixed to work:

// numbers we are going to convert to fixed point

int x=50, y=23; 

// convert x,y to fixed point 16.16 format

FIXP16 fpx = x*65536;

FIXP16 fpy = y*65536;
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Now, let’s divide with the scaling factors and see what happens:

= (x*256*65536) / (y*65536/256) 

= (x*256*256/y)*65536/65536

= (x/y)*(256*256) = (x/y)*65536

TIP

These examples illustrate that there’s no rule that states all fixed-point numbers have to be 16.16;
some of your numbers may be 16.16, some 24.8, and still others 0.32. The point is that as long
as you keep track of the decimal and overflow and underflow, the math will work out.

With all that in mind, let’s take a look at the functions along with their assembly language
internals.

Function Prototype:

FIXP16 FIXP16_MUL(FIXP16 fp1, FIXP16 fp2);

Function Listing:

FIXP16 FIXP16_MUL(FIXP16 fp1, FIXP16 fp2)

{

// this function computes the product fp_prod = fp1*fp2

// using 64 bit math, so as not to loose precision

FIXP16 fp_prod; // return the product

_asm {

mov eax, fp1   // move into eax fp2

imul fp2     // multiply fp1*fp2

shrd eax, edx, 16 // result is in 32:32 format 

// residing at edx:eax

// shift it into eax alone 16:16

// result is sitting in eax

} // end asm

} // end FIXP16_MUL

The assembly language is pretty straightforward; the only interesting thing is that the Intel
32-bit processors have support for 64-bit math!

Purpose:

FIXP16 FIXP16_MUL() multiplies the two fixed-point numbers fp1*fp2 using 64-bit math
and returns the result. Note that there’s no loss of accuracy because 64-bit math is used.
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Example:

FIXP16 fp1 = FLOAT_TO_FIX(10.5);

FIXP16 fp2 = FLOAT_TO_FIX(20.7);

// do the multiply

FIXP16 fpprod = FIXP16_Mul(fp1,fp2);

Function Prototype:

FIXP16 FIXP16_DIV(FIXP16 fp1, FIXP16 fp2);

Function Listing:

FIXP16 FIXP16_DIV(FIXP16 fp1, FIXP16 fp2)

{

// this function computes the quotient fp1/fp2 using

// 64 bit math, so as not to loose precision

_asm {

mov eax, fp1   // move dividend into eax

cdq        // sign extend it to edx:eax

shld edx, eax, 16 // now shift 16:16 into position in edx

sal eax, 16    // and shift eax into position since the

// shld didn’t move it -- DUMB! uPC

idiv fp2     // do the divide

// result is sitting in eax   

} // end asm

} // end FIXP16_DIV

The division algorithm is a little tricky. The main point is that first the dividend must be
sign extended to 64 bits, and the 64-bit shifts to place the dividend properly are a little
contrived since the 64-bit double-shift instructions don’t shift the source register eax—it
stays in place. Thus, we need an extra shift to place it after the initial 64-bit shift. Refer to
any Intel assembly language manual for more details on these stupid 64-bit shifts that do
half a job!

Purpose:

FIXP16 FIXP16_DIV() divides fp1/fp2 and returns the result. Note that the function uses
64-bit math, so there’s no loss of accuracy.
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Example:

FIXP16 fp1 = FLOAT_TO_FIX(10.5);

FIXP16 fp2 = FLOAT_TO_FIX(20.7);

// do the divide

FIXP16 fpdiv = FIXP16_Mul(fp1,fp2);

NOTE

Although fixed-point math used to blow the doors off floating-point math, as you can see, there
are quite a few instructions involved to perform both the multiplication and division. The rule of
thumb is this. Fixed-point addition and subtraction are usually the same speed as floating-point;
floating-point multiplication and division are, amazingly enough, as fast or faster than fixed-
point.

Function Prototype:

void FIXP16_Print(FIXP16 fp);

Purpose:

void FIXP16_Print() prints out a fixed-point number as if it were a floating-point
number.

Example:

FIXP16 fp1 = FLOAT_TO_FIX(10.5);

FIXP16_Print(fp1);

Finally, make sure to check out DEMOII5_5.CPP|EXE on the CD. It enables you to enter two
floating-point values, converts them to fixed-point, performs all the operations on them,
and prints the results so that you can see the accuracy.

Equation Solving Support
This next pair of functions is really cool. They enable you to solve systems of equations of
the form A*X = B. All you need is the coefficient matrix A and the constant matrix B,
and if a solution exists, the functions will find it. For example, given the 3x3 system:

3*x + 2*y – 5*z = 6

x – 3*y + 7*z = -4

5*x + 9*y – 2*z = 5
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We deduce that

|3    2   -5|

A =  |1   -3    7|

|5    9   -2|

X = [x y z]t

B = [6 –4 6]t

And we can use the transform X = A-1*B. This is exactly what the solvers do, more or less.

Function Prototype:

int Solve_2X2_System(MATRIX2X2_PTR A, MATRIX1X2_PTR X, MATRIX1X2_PTR B);

Function Listing Reference:

int Solve_2X2_System(MATRIX2X2_PTR A, MATRIX1X2_PTR X, MATRIX1X2_PTR B)

{

// solves the system AX=B and computes X=A(-1)*B

// by using cramers rule and determinates

// step 1: compute determinate of A

float det_A = Mat_Det_2X2(A);

// test if det(a) is zero, if so then there is no solution

if (fabs(det_A) < EPSILON_E5)

return(0);

// step 2: create x,y numerator matrices by taking A and

// replacing each column of it with B(transpose) and solve

MATRIX2X2 work_mat; // working matrix

// solve for x /////////////////

// copy A into working matrix

MAT_COPY_2X2(A, &work_mat);

// swap out column 0 (x column)

MAT_COLUMN_SWAP_2X2(&work_mat, 0, B);

// compute determinate of A with B swapped into x column

float det_ABx = Mat_Det_2X2(&work_mat);
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// now solve for X00

X->M00 = det_ABx/det_A;

// solve for y /////////////////

// copy A into working matrix

MAT_COPY_2X2(A, &work_mat);

// swap out column 1 (y column)

MAT_COLUMN_SWAP_2X2(&work_mat, 1, B);

// compute determinate of A with B swapped into y column

float det_ABy = Mat_Det_2X2(&work_mat);

// now solve for X01

X->M01 = det_ABy/det_A;

// return success

return(1);

} // end Solve_2X2_System

Purpose:

int Solve_2X2_System() solves the system of equations A*X = B, where A is 2×2, X is
1×2, and B is 1×2. If the solution exists, it is returned in B and the function returns a 1;
otherwise, the function returns a 0 and B is undefined. Also, take a look at the function
listing to see what’s going on inside. Basically, Cramer’s rule is used to solve the system.
Solve_2X2_System() is a good example of many matrix functions being used, so pay close
attention. Also take a look at DEMOII5_6.CPP|EXE on the CD—it enables you to enter a
system of equations and solves it for you!

Example:

DEMOII5_6.CPP allows you to input the coefficient matrix A along with constant matrix B,
and then solves the system A*X = B with Cramer’s rule. The following is a code dump of
the main calls:

void main()

{

MATRIX2X2 mA;

MATRIX1X2 mB;

MATRIX1X2 mX; 

// open the error system, so we can see output
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// notice the last parameter “stdout” this tell the error

// system that we don’t want to write errors to a text file

// but straight out to the screen!

Open_Error_File(“”, stdout);

// get matrix A

printf(“\nEnter the values for the matrix A (2x2)”);

printf(“\nin row major form m00, m01, m10, m11?”);

scanf(“%f, %f, %f, %f”, &mA.M00, &mA.M01, &mA.M10, &mA.M11);

printf(“\nEnter the values for matrix B (2x1)”);

printf(“\nin column major form m00, m10?”);

scanf(“%f, %f”, &mB.M00, &mB.M01);

// technically you can’t multiply a 2x2 * 1x2, 

// but you can multiply is a 2x2 * (1x2)t

// that is the transpose of a 1x2 is a 2x1, 

// bottom line is the B matrix is just 2 numbers!

// now solve the system

if (Solve_2X2_System(&mA, &mX, &mB))

{

// now print results

VECTOR2D_Print((VECTOR2D_PTR)&mX, “Solution matrix mX”);

} // end if

else

printf(“\nNo Solution!”);

// close the error system

Close_Error_File();

} // end main

Function Prototype:

int Solve_3X3_System(MATRIX3X3_PTR A, MATRIX1X3_PTR X, MATRIX1X3_PTR B);

Purpose:

int Solve_3X3_System() solves the system if equations A*X = B where A is 3×3, X is 1×3,
and B is 1×3. If the solution exists, it’s returned in B and the function returns a 1; other-
wise, the function returns a 0 and B is undefined.
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Example:

MATRIX3X3 mA = {1,2,9, 4,-3,6, 1,0,5};

MATRIX1X3 mB = {1,2,3};

MATRIX1X3 mX; 

// solve the system

if(Solve_3X3_System(&mA, &mX, &mB))

{

// now print results

VECTOR3D_Print((VECTOR3D_PTR)&mX, “Solution matrix mX”);

} // end if

else

printf(“\nNo Solution!”);

Floating-Point Unit Math Primer
The old 80387 and internal math co-processor of PentiumX (FPU unit) are probably some
of the most mysterious components of the PC’s processing suite. To tell you the truth, it’s
next to impossible to find any good references on FPU programming other than a couple
hard-to-find books and the Intel Instruction set docs. However, that’s all going to change
right now.

NOTE

These days, new generations of Pentium processors may have more than one FPU, so I’m going
to generically refer to floating-point programming and floating-point co-processors as the FPU.

We’re going to delve into the FPU at least to the point that we understand what’s going on
and how to actually program it using its own instruction set. Of course, the C/C++
compiler you’re using generates FPU instructions when you compile code that uses float-
ing-point operations. However, this code can be optimized in many cases with assembly
language and full 64-bit instructions as our 64-bit multiply and divide illustrated using the
integer unit to do fixed-point math.

Now, there’s one other gotcha. On the Pentium models with MMX support, the FPU regis-
ters are aliased to the MMX registers, meaning that you can’t mix MMX code and FPU
code without doing a lot of context switching. Now, I’m not going to talk about MMX
programming since it’s its really added instructions to perform SIMD (single instruction
multiple data) processing and really is a topic unto itself and better explained in a opti-
mization book. If you’re interested, Intel has a nice MMX Programming Guide that you can
obtain from the developers section of Intel’s site.

So, how does the FPU work? First, from a programming point of view, it doesn’t matter
whether there’s one or more FPUs, whether they’re internal or external (high-performance
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FPUs), the instruction sets are roughly the same. At least the most common operations are,
which is what we’re interested in learning.

CAUTION

FPU programming must be done at the assembly language level. But we’re going to at least use
the inline assembler, so even if you aren’t an assembly language guru, learning FPU program-
ming is fairly easy because it’s like a little computer with a stack—nothing more.

The FPU Architecture
The FPU is a stack-based machine that has only one mission in life: to compute mathe-
matical floating-point calculations for the CPU core. Figure 5.23 shows the abstract model
of the FPU in relationship to the CPU core. Basically, all instructions that the CPU comes
across that are meant for the FPU are sent to the FPU where they are executed. Hence, FPU
instructions don’t directly affect the CPU or its internal registers. Many times the CPU’s
integer unit and FPU can’t work at the same time, but in most cases, the CPU and FPU can
work in parallel—especially with U-V pipe architectures like the Pentium. On more
advanced models of the Pentium, things get a little weird, so you might want to read up
on the Pentium I, II, III, Pro, and all the other flavors, since I gave up trying to keep up
with all the rules!

Anyway, FPU can perform many common mathematical operations such as addition,
subtraction, multiplication, and division. However, it’s also equipped to handle logarith-
mic, transcendental, numerical conversions, and more. Furthermore, the FPU can actually
perform many operations faster than the equivalent integer unit with much higher accu-
racy. Even in the cases in which the FPU is slower than pure integer operations using the
integer unit, it might be worth the extra accuracy—especially in 3D graphics.

Programming the FPU is actually very simple. It has its own instruction set, which we’ll
cover shortly. Basically, whenever you want a FPU instruction to be executed, you simply
place it in your code right with the other assembly language instructions. This brings us to
a little problem, and that’s that most FPU programming must be done using assembly
language and, hence, either external assembly functions or inline (I prefer the inline).
However, when I want to write a function that uses the FPU directly, I usually code the
entire thing using inline assembly. But of course I do this for little functions that must run
very quickly, not 500-line-long, high-level functions.

NOTE

When you set the compiler to high optimization and inline FPU instructions, it does a very good
job at emitting FPU code that’s nearly optimal.
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FIGURE 5.23 The floating-point processor performs all floating-point math.

The FPU Stack
Let’s talk about the internal stack of the FPU since it’s the basis of how everything works.
Basically, there are eight stack elements in the FPU and a status word, as shown in Figure
5.24. Each stack element is 80 bits wide with 64 bits for the decimal part, 14 bits for the
exponent, and 1 bit for the sign bit. 
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However, each stack element can hold different data types, as shown in Figure 5.25. We
see that there are short, long, and 10-byte real numbers. The stack elements are used to
hold inputs and return outputs; thus, they are the working registers for the FPU, in a
sense. We can think of them as a register file, or we can think of them as a stack.
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In any case, the stack is referred to using the syntax ST(n), where n is the element. For
example, take a look at Figure 5.26. 
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FIGURE 5.26 The FPU stack ordering and access.

Some examples:

ST is equivalent to the top of stack (TOS).

ST(0) is equivalent to the top of stack.

ST(1) is equivalent to the second element of the stack.

ST(7) is equivalent to the last element of the stack or element 8.

When programming the FPU, many of the instructions take zero, one, or two operands.
This means that sometimes the operand(s) are implied. Also, the operands can either be
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constants, memory, or stack elements in most cases, so we have a bit of flexibility in defin-
ing what the data is for an operation. Furthermore, many of the instructions place the
result on the top of the stack at ST(0). This is a good thing to know if you’re expecting
some piece of data to remain valid after an operation and it gets obliterated.

Now that we have a bit of an idea of what the FPU does and how it does it, let’s take a
look at the instruction set and see how to use it.

NOTE

Because there are new Pentium processors popping up all the time, an exhaustive list of FPU
instructions is pointless. Instead, Table 5.1 lists the majority of commonly used instructions that
you’ll probably never use more than 10% of anyway.

The FPU Instruction Set
The FPU is a complete processor with a rather large instruction set. The instructions fall
into a few categories, they are

• Data Transfer—Used to move data between CPU and FPU

• Arithmetic—Used to perform standard arithmetic operations

• Transcendental—Used for non-linear operations, such as sin, cos, and so on

• Constants—Used to load commonly used constants such as 1, pi, and so on

• Comparison—Used to compare floating-point numbers

• Control—Used the control and set the state of the FPU

I don’t know about you, but I like to see an instruction set first before I learn about it just
to get a feel for what’s what! Therefore, Table 5.1 lists all the FPU instructions available
with a short description of what they do.

TABLE 5.1 The FPU Co-processor Instruction Set

Instruction Name Description

Data Transfer Instructions

FBLD Loads a BCD number

FBSTP Stores and pops a BCD number

FILD Loads an integer

FIST Stores an integer

FISTP Stores an integer and pops the stack

FLD Loads a real number

FSTP Stores a real number and pops the stack

FXCH Exchanges two stack elements
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Arithmetic Instructions

FABS Computes the absolute value

FADD Adds real numbers

FIADD Adds integers

FADDP Adds real numbers and pops the stack

FCHS Changes the sign of a number

FDIV Divides real numbers

FIDIV Divides integers

FDIVP Divides real numbers and pops the stack

FDIVR Divides real numbers, but reverses which operand is dividend and divisor

FIDIVR Divides integers, but reverses which operand is dividend and divisor

FDIVRP Divides real numbers and pops the stack, but reverses which operand is divi-

dend and divisor

FMUL Multiplies real numbers

FIMUL Multiplies integers

FMULP Multiples real numbers and pops the stack

FPREM Computes partial remainder

FPREM1 Computes partial remainder using IEEE format

FRNDINT Rounds the operand to an integer

FSCALE Scales by a power of two

FSUB Subtracts real numbers

FISUB Subtracts integers

FSUBP Subtracts real numbers and pops the stack

FSUBR Subtracts real numbers, but reverses which operand is subtractor and subtra-

hend

FISUBR Subtracts integers, but reverses which operand is subtractor and subtrahend

FSUBRP Subtracts real numbers and pops the stack, but reverses which operand is

subtractor and subtrahend

FSQRT Computes the square root

FXTRACT Extracts the exponents and signific and from real number

Transcendental Instructions (Note: all angles must be in radians)

F2XM1 Computes the value (2*x-1)

FCOS Computes the cosine

FPATAN Computes the partial arctangent

FPTAN Computes the partial tangent

FSIN Computes the sine

FSINCOS Computes both the sine and cosine

FYL2X Computes the expression y*log
2
x

FYL2XP1 Computes the expression y*log
2

(x+1)
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Constants

FLD1 Loads a 1.0

FLDL2E Loads log
2
e

FLDL2T Loads log
2
10

FLDLG2 Loads log
10

2

FLDPI Loads pi

FLDZ Loads zero

Comparison Operators

FCOM Compares reals

FCOMP Compares reals and pops the stack

FCOMPP Compares reals and pops the stack twice

FICOM Compares integers

FICOMP Compares integers and pops the stack

FTST Compares the top of stack to zero

FUCOM Performs unordered compare

FUCOMP Performs unordered compare along with a pop

FUCOMPP Performs an unordered compare along with two pops

FXAM Examine st(0) and place results in condition register

Control Instructions

FCLEX Clears all unmasked floating-point exceptions

FNCLEX Clears all exceptions

FDECSTP Decrements the stack pointer

FFREE Clears a stack element making it seem like it was popped

FINCSTP Increments stack pointer

FINIT Initializes FPU and checks for exceptions

FNINIT Initializes FPU without checking for exceptions

FLDCW Loads the control word

FLDENV Loads the FPU environment

FNOP Equivalent to NOP

FRSTOR Restores the state of the FPU with a given memory area

FSAVE Saves the state of the FPU into a memory area, but checks for exceptions

FNSAVE Saves the state of the FPU into a memory area without checking for excep-

tions

FSTCW Stores the control word and checks exceptions

FNSTCW Stores the control word without checking exceptions

FSTENV Stores the environment and checks exceptions

FNSTENV Stores the environment without checking exceptions

FSTSW Stores the status word and checks exceptions

FNSTSW Stores the status word without checking exceptions

FSTSW AX Stores the status word into AX and checks exceptions

FNSTSW AX Stores the status word into AX without checking exceptions

WAIT Suspends CPU until FPU is complete with operation
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Because there are so many instructions, listing an example of each of them would take up
too much time; instead, Table 5.2 lists the general format of most instructions. Using this
table, you should be able to deduce what the legal operands are for a particular instruc-
tion.

TABLE 5.2 The Operand Formats for the FPU

Instruction Format Syntax Operands Implied

Classical Finstruction ST,ST(1)

Memory Finstruction ST

memory_operand

Register Finstruction ST(n), ST None

Finstruction ST,ST(n) None

Register Pop FinstructionP ST(n),ST None

NOTE

Notice that all the FPU instructions start with a leading F and, in the case of register pop format,
the instructions end with a P. Now let’s discuss each of the instruction formats, so we know how
to use them in programs.

Classical Instruction Format
The classical format treats the FPU’s stack as if it were a classic stack. Meaning that all
operations refer to the top of stack ST(0) and the second element ST(1). For example, if
an addition is requested using the instruction:

FADD

then the operation that would be performed is ST(0) = ST(0) + ST(1). Therefore, the top
of the stack would be replaced by the sum of the topmost two items, as shown in Figure
5.27. In general, classical instructions use ST(0) and ST(1) if two operands are needed,
and ST(0) if only one is needed. If the instruction uses two operands, the source topmost
operand is typically popped off the stack and the result is placed at the top also.

Memory Instruction Format
The memory instruction format is similar to the classical format in that the stack is still
treated like a stack. However, memory format allows memory items to be pushed on the
stack and popped off the stack into memory. For example, we might want to load the top
of the stack with a memory operand like this:

FLD memory
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FIGURE 5.27 An example of a classical stack instruction.

And if we wanted to pop the top of stack into a memory location, we could write

FSTP memory

The results of both of these instructions are shown in Figure 5.28.
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FIGURE 5.28 Examples of memory instruction format.

Register Instruction Format
The register instruction format simply allows the stack elements (registers) to be explicitly
referred to. For example, say we want to add ST(0) and ST(4) together. We could write

FADD ST(0), ST(4)
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and the top of stack would hold the sum of ST(0) + ST(4), as is shown in Figure 5.29.
Also, when using register instruction format with two operand forms, one of the operands
must be the top of stack ST(0) or its abbreviation, ST.
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FIGURE 5.29 An example of register instruction format.

Register Pop Instruction Format
The register pop format is identical to the register instruction format except that after the
result has been placed into the stack, the stack is popped once.

FPU Examples
Even though we aren’t going to look at all the instructions the FPU has to offer, we’ll take
a look at some of the most representative instructions you’ll need. They are

• FLD—In all its forms

• FST—In all its forms

• FADD—In all its forms

• FSUB—In all its forms

• FMUL—In all its forms

• FDIV—In all its forms

Also, the format of each instruction will be

1. Description

2. Instruction syntax and operands (if any)
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FLD Examples
The FLD instruction and its various forms is used to load reals (FLD), integers (FILD), and
constants such as pi (FLDPI). The FLD instruction has the following formats:

Load a real number:

FLD op1

32-bit short real

64-bit long real

80-bit temporary real

ST(n)

Load an integer:

FILD op1

16-bit word integer

32-bit short integer

64-bit long integer

Load a constant:

FLDcon

where con is the suffix that determines the constant to load. Refer to the section on
constants in Table 5.1.

Let’s see some examples now. To load a real 32-bit number from memory, we could write

FLD memory32

After the execution of the instruction, the top of stack ST(0) would contain the value in
memory32. Figure 5.30a shows this.

To load a standard binary 16-bit integer in the FPU, we can write

FILD memory16

After the instruction executes the top of the stack would hold the 16-bit integer in IEEE
format as shown in Figure 5.30b.

NOTE

All integers are converted to reals when processed by the floating-point processor.
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FIGURE 5.30 Examples of the load instruction.

FST Examples
The FST instruction is used to store reals (FST) and integers (FIST). Also, a P can be
appended to both instructions, which instructs the FPU to pop the top of stack will after
the store is executed. In essence, the top of stack ST(0) is stored into the destination and
the stack pointer is adjusted when P is added to the instructions. The FST instruction has
the following formats:

Store a real number:

FST op1

32-bit short real

64-bit long real

ST(n)

Store a real number and pop the stack:

FSTP op1

32-bit short real

64-bit long real

ST(n)
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Round the top of stack and store it:

FIST op1

16-bit word integer

32-bit short integer

64-bit long integer

Round the top of stack, pop, and store it:

FISTP op1

16-bit word integer

32-bit short integer

64-bit long integer

Also, the top of the stack is always implied to be the source; hence op1 is the destination.
With that in mind, let’s see some examples. To store the top of the stack in a standard
floating-point location, we could write

FST memory32

The results of this are shown in Figure 5.31a; notice that the top of stack is not modified.
On the other hand, if we were to execute this instruction:

FSTP memory32

the top of the stack would be popped into memory32. Now let’s try some integer examples.
If we wanted to store the top of the stack into a 32-bit integer, we could write

FIST memory32

and the value in the top of the stack would be converted to an integer by rounding and
stored into memory32 as shown in Figure 5.31b. FISTP works in the same way except the
top of stack is popped as shown in Figure 5.31c.

FADD Examples
The FADD instruction adds two reals (FADD) or adds two integers (FIADD). Also, a P can be
appended to the real version (FADDP) that pops the stack after the addition. However, this
feature isn’t supported for the integer version. The FADD instruction has the following
forms:
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FIGURE 5.31 Examples of the store instructions.

Implied operands are ST(0) and ST(1). Also, the stack is popped after the addition.

FADD

The top of stack is implied as the destination and one memory32 of the operands.

FADD op1

memory64

ST(n)

One of the operands must still be the top of stack ST, but the destination need not be.

FADD op1, op2

ST(n), ST

ST, ST(n)
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The operands are added and the result is popped off the top of stack.

FADDP op1, op2

ST(n), ST

ST, ST(n)

The integer referred to by op1 is converted to a real and added to the top of stack.

FIADD op1

memory16

memory32

Alrighty then! Seems easy enough. Let’s try some examples. First, let’s add the two top
most elements of the stack. The following instructions are equivalent:

FADD ST(1)

FADD ST,ST(1)

Figure 5.32a shows the results of executing either of the preceding instructions. As you
can see, the top of the stack is obliterated with the sum.

However, if we were to use this instruction:

FADD ST(2), ST

the sum of ST(0) and ST(2) would be stored into ST(2) because it’s the destination and
ST(0) would be unscathed. This is shown in Figure 5.32b. Next, let’s try one of the integer
forms. Say we wanted to add a 32-bit integer number from memory with the top of the
stack ST(0). We could use the following instruction:

FIADD memory32

The value within memory32 would be converted to a real and then added to ST(0). The
result would be placed back into ST(0) as shown in Figure 5.32c. However, if we wanted to
pop the top of stack after the addition, we would have to use a real addition because
popping isn’t supported after integer addition. But we could pop the stack manually with
the instruction:

FINCSTP

Now let’s put together a little program that adds two reals and stores the result in a 32-bit
integer. Here’s the code:

float fvalue_1 = 100.2;

float fvalue_2 = 50.5;

int ivalue_1 = 0;
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_asm {

FLD fvalue_1  // load the first 4 byte real

FADD fvalue_2  // load and add second 4 byte real

FISTP ivalue_1 // store the top of stack into the 4  

// byte integer

} // end asm
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FIGURE 5.32 Examples of the add instructions.

Figure 5.33 shows the program executing step by step.
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FIGURE 5.33 Execution of a floating-point program and the stack.
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FSUB Examples
Implied operand and order are (ST(1) - ST(0)). Also, the stack is popped after the subtraction.

FSUB

The top of stack is implied as the destination and one of the operands; hence, the operation is
(ST(0) – op1).

FSUB op1

memory32

memory64

ST(n)

One of the operands must still be the top of stack ST, but the destination need not be.
Again, the operation performed is (op1 - op2).

FSUB op1, op2

ST, ST(n)

ST(n), ST

The expression (op1 - op2) is computed and the result is popped off the top of stack.

FSUBP op1, op2

ST, ST(n)

ST(n), ST

The integer referred to by op1 is converted to a real and subtracted from the top of stack. The
result is, of course, placed in ST(0).

FISUB op1

memory16

memory32

Subtraction works in the same way as addition, except that the source and destination
operands play a more important role because (a-b) is different from (b-a). That is, you need
to keep an eye on the order in which the subtraction takes place! For example, the follow-
ing instruction:

FSUB memory32

subtracts memory32 from the top of stack ST(0). That is, ST(0) = ST(0) - memory32, as is
shown in Figure 5.34a. As another example, imagine that we wanted to subtract an integer
from the top of the stack ST(0) (maybe to compute the decimal part). We could use this
instruction:

FISUB memory16
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and the top of stack would have the results ST(0) - (real)(memory16), as shown in Figure
5.34b. Again, we see that all integers are converted into reals before they are used in calcu-
lations.
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FIGURE 5.34 Examples of the subtract instructions.

FMUL Examples
The FMUL instruction is very similar to the FADD instruction. It can multiply two reals
(FMUL), an integer and a real (FIMUL), and as usual, a P can be appended to the real version
of the instruction (FMULP), which pops the stack after the multiplication. The FMUL instruc-
tion has the following forms:

Implied operand are ST(0) * ST(1). Also, the stack is popped after the multiplication.

FMUL

The top of stack is implied as the destination and one of the operands.

FMUL op1

memory32

memory64

ST(n)

One of the operands must still be the top of stack ST, but the destination need not be.

FMUL op1, op2

ST, ST(n)

ST(n), ST
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The operands are multiplied and the result is popped off the top of stack.

FMULP op1, op2

ST, ST(n)

ST(n), ST

The integer referred to by op1 is converted to a real and multiplied by the top of stack.

FIMUL op1

memory16

memory32

Hmmm … I’m running out of examples! Let’s say that we wanted to do something useful,
like compute 5!, which is read as “five factorial” and is equal to 5*4*3*2*1. This little
program would do the trick:

_asm {

FLD f_1 // load 1.0 into stack

FLD f_2 // load 2.0 into stack

FLD f_3 // load 3.0 into stack

FLD f_4 // load 4.0 into stack

FLD f_5 // load 5.0 into stack

FMUL   // 5*4

FMUL   // 5*4*3

FMUL   // 5*4*3*2

FMUL   // 5*4*3*2*1

// top of stack ST(0) has 5*4*3*2*1 in it.

} / /end asm

Figure 5.35 shows the factorial process and the stack, step-by-step, as the algorithm runs.
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FIGURE 5.35 The stack step-by-step during a factorial calculation.
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FDIV Examples
The final class of instruction we’re going to look at is the division instruction: FDIV. It’s
similar to the subtraction instruction in that the order of operands makes a difference;
that is, a/b, is different from b/a. As you would expect, the instruction has all the forms:
real, integer, and stack popping. Here are the formats for review:

Implied operands are ST(1)/ST(0); also the stack is popped after the division.

FDIV

The top of stack is implied as the destination and one of the operands.

FDIV op1

memory32

memory64

ST(n)

One of the operands must still be the top of stack ST, but the destination need not be.

FDIV op1, op2

ST, ST(n)

ST(n), ST

The operands op1/op2 are divided and the result is popped off the top of stack.

FDIVP op1, op2

ST, ST(n)

ST(n), ST

The integer referred to by op1 is converted to a real and divided into the top of stack.

FIDIV op1

memory16

memory32

As an example, let’s use the formula:

velocity = distance/time

Let’s see how long it takes to get to the moon with your average, run-of-the-mill rocket
engine:

// Distance to moon: 250,000 miles

float f_dist = 250000.0;
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// Velocity of Value Space Ship: 35,000 mph

float f_vel = 35000;

// the time?

float f_time;

_asm {

FLD f_dist   // load the distance 

FDIV f_vel    // divide by velocity

FSTP f_time   // store the result into f_time and pop 

// the stack

} // end asm

printf(“\ntime =%f”,f_time);

TRICK

Notice how easy it is to mix C/C++ with inline asm and FPU code—pretty cool, huh?

When the code exits, f_time will have roughly 7.14 hours in it. Totally unacceptable. I
much prefer space/time folding—that is, gravity drive—wherever you want to be, there
you are. This was the idea behind the movie Event Horizon. Anyway, that’s enough for
floating-point! We’d better stop before we end up with a book within a book.

Notes on Using the Math Engine
Using the math engine in your programs is just like any other library module. However,
there are a couple things to watch out for. First, the math engine is based on some legacy
code from T3DLIB1.CPP|H. Thus, you must make sure to include the header T3DLIB1.H in
your programs that use the math library along with the C++ file T3DLIB1.CPP. However,
you would do this anyway. Additionally, T3DLIB1.CPP|H is based on DirectX 8.0+, so it
needs DDRAW.H included for type info. The bottom line is that if you want to make a stand-
alone CONSOLE math application, you need the following:

Source Files

T3DLIB1.CPP

T3DLIB4.CPP

Header Files

T3DLIB1.H

T3DLIB4.H

DDRAW.H
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Library Files

N/A

Of course, you need to include the normal headers, too, if you want to make a standalone
application. Don’t forget to #define INITGUID; otherwise, the linker won’t be able to find
the DirectDraw stuff and bark at you even though you aren’t doing any DirectDraw stuff
with a standalone math application. Remember, T3DLIB1.CPP|H needs DirectDraw types,
and T3DLIB4.CPP|H needs T3DLIB1.CPP|H. For example, the test application I used to
develop the math engine was a CONSOLE application with this header:

#define WIN32_LEAN_AND_MEAN 

#ifndef INITGUID

#define INITGUID    // you need this or DXGUID.LIB

#endif

#include <windows.h>  // include important windows stuff

#include <windowsx.h> 

#include <mmsystem.h>

#include <objbase.h>

#include <iostream.h> // include important C/C++ stuff

#include <conio.h>

#include <stdlib.h>

#include <malloc.h>

#include <memory.h>

#include <string.h>

#include <stdarg.h>

#include <stdio.h>

#include <math.h>

#include <io.h>

#include <fcntl.h>

#include <direct.h>

#include <wchar.h>

#include <ddraw.h>   // needed for defs in T3DLIB1.H 

#include “T3DLIB1.H”  // T3DLIB4 is based on some defs in this 

#include “T3DLIB4.H”

But of course, most of your applications will use the entire game library, so you would
include the following:

Notes on Using the Math Engine 489

5

08 0672318350 CH05  05•02•2003  2:37 PM  Page 489



Source Files

T3DLIB1.CPP Graphics and utility support

T3DLIB2.CPP Input support

T3DLIB3.CPP Sound and music support

T3DLIB4.CPP Math engine

Header Files

T3DLIB1.H

T3DLIB2.H

T3DLIB3.H

T3DLIB4.H

Library Files

DDRAW.LIB DirectDraw

DSOUND.LIB DirectSound

DINPUT.H DirectInput

DINPUT8.H DirectInput

DMKSCTRL.H DirectMusic

DMUSICI.H DirectMusic

DMUSICC.H DirectMusic

DMUSICF.H DirectMusic

WINMM.LIB Windows multimedia extensions (Visual C++ users only)

I shouldn’t have to tell you how to compile, but if you need yet another refresher course,
take a look at Appendix B, “Installing DirectX Using the C/C++ Compiler,” on compiling
DirectX applications.

The Game Console
Because we have a new library module, we should update our game console template to
reflect the addition of the new header files (that’s about all there is to it). The new game
console is named T3DCONSOLE3.CPP and the only thing I did to the file was add this line to
the header section:

#include “T3DLIB4.h”

Other than that, the file is the same as version T3DCONSOLE2.CPP.
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Comments on Math Optimization
The code from this chapter is reasonable solid algorithm-wise; that is, we used Taylor series
for distance calculations, co-factor expansions to compute determinates, and so forth. The
only speed-ups we can get are really in the low-level implementations of the functions by
taking advantage of loop unrolling, using algebra to simplify calculations, collect terms,
and so forth. Also, you’ll notice in many algorithms I first compute the inverse of some-
thing and then multiply by it rather then dividing anywhere in the function.

TIP

Division will always suck on computers!

However, as I’ve mentioned, the best ways to optimize are at the algorithmic level or at
the level where you can trade prior knowledge to make assumptions and, hence, gain
speed. For example, we’re going to be doing a ton of matrix multiplying. It doesn’t take
too much to realize that we’re performing a lot of useless multiplies with most of the
transformation matrices since they are so sparse; that is, they have lots of zeros in them.
This is a common optimization. But, at some point, we can’t make the algorithms any
faster and inline assembly is the only way. Nevertheless, I’ll be quite surprised if we need
to go that far in the book to get the performance we need. I have high hopes for the
C/C++ compiler’s optimizer!

In closing, in terms of optimization, write clean code and strong algorithms, and then
low-level optimize at the end.

Summary
Well, after this chapter, you should have nightmares about vector and matrices forever!
That’s such a nice thought—in an Addams Family kind of way <BG>. In any case, we
covered a lot of ground, and you basically got a lot of code dumped on you. Normally, I
would feel bad about this much code, but this is a programming book, and everything in
this chapter is just the C/C++ version of what we talked about in the previous chapter. The
header file macros are the only thing that I didn’t cover line by line, but you shouldn’t
have any trouble figuring them out. Bottom line is, when you’re coding using the math
engine (if you want to use it), chances are I already wrote the function or macro you’re
looking for, so make sure to take a look before making it yourself.

The only problem I foresee in the near future is cornering ourselves with any particular
system of representation; that is, should we use 3D points or homogenous 4D points?
We’ll just have to see, but at least we know how to handle them both. In reality, we’re
going to use 4x3 and 4x4 matrices, so technically we’re going to work with homogenous
points with an assumed w = 1 or a real w as a 4-tuple. But, I can’t decide, so why try?
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Finally, I can’t overstate how helpful the TI-89/92 calculator was in writing this chapter,
because it helped me check my work. If you’re going to write any math functions, I highly
recommend that you buy a calculator that can perform matrix, vector, and symbolic calcu-
lations so you can check your algorithms with test data. When writing the quaternion
code, this was even more useful, because quaternions really have no visualization to speak
of; that is, they’re totally mathematical.

Boy, that was a long summary, huh? Weird…But then again, which way does a water
vortex around down a sink if you’re at the north pole, south pole, and equator? Think
about it….
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IN THIS CHAPTER

• 3D Engine Philosophy

• The Structure of a 3D Game
Engine

• 3D Engine

• Game Engine

• 3D Coordinate Systems

• Basic 3D Data Structures

• 3D Tools

• Loading Data from the
Outside World

• Basic Rigid Transformations
and Animation

• Review of the Viewing
Pipeline

• Types of 3D Engines

• Putting It All Together

CHAPTER 6

Introduction to 3D
Graphics

“You aren’t afraid of the dark, are you?”

—Pitch Black

In this chapter, we’re going to cover a lot of general ground
on 3D graphics, so think of it as an executive summary with
details. Then in the remaining chapters, we’re going to focus
on each of the main areas of expertise relative to 3D graphics.
This chapter is an introduction, so I’m not going to get too
freaky, but it’s also a crash course in 3D, so you can get a feel
for the whole process of 3D rather than having to read the
whole book before you get the big picture. With that in
mind, we’re going to cover a number of topics, some with
lots of detail, and some with very little detail. By the end of
the chapter, you will have a good idea of what the remainder
of the book is about. Here’s the hit list:

• 3D engine philosophy

• The structure of a 3D game engine

• 3D coordinate systems

• Basic 3D data structures

• Transformations and basic animation

• Introduction to the viewing pipeline

• Types of 3D engines

• 3D tools

• Loading data from the outside world

• Putting it all together
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494 CHAPTER 6 Introduction to 3D Graphics

3D Engine Philosophy
The primary goal of this book is to teach you 3D graphics—not how to use APIs and accel-
erators. Now, I want to be clear what that means. This book will give you the fundamental
knowledge to create your own 3D graphics engine. This means that by the end of the
book you will know every single step to creating a 3D engine from data representation, to
final rasterization. In essence, if you got a job at NVIDIA, ATI, and so on, you would be
able to create an entire engine API and underlying software algorithms that would then be
implemented by hardware state machines. On the other hand, this book is not going to
teach you how to use 3D APIs like Direct3D or OpenGL—they are cool, but if you really
want to understand 3D, you need to understand how to write Direct3D or OpenGL your-
self—and that’s what I’m after.  Bottom line is that I want you to be able to sit down on
any machine on the planet with nothing more than the address of the video buffer and be
able to write a software-based 3D engine. If you can do that, learning any 3D API will be
trivial.

The Structure of a 3D Game Engine
There’s a lot more to writing a 3D engine than writing a 3D engine! Because we are game
programmers, the point of writing a 3D engine is to use it to render a 3D game. What this
means is that the game engine, physics system, AI, and most of the game must all be inte-
grated with the 3D engine itself. Otherwise, there’s going to be lots of problems.
Therefore, when you write a production 3D engine, you need to think about the relation-
ship of the 3D engine and the game engine and how they are going to interact together,
or else you will end up with a mess in the end. Figure 6.1 depicts a structural chart of
some of the relationships a 3D game needs to have:

• 3D engine

• Game engine

• Input system and networking

• Animation system

• Collision detection and navigation system

• Physics engine

• Artificial intelligence system

• 3D model and imagery database

As you can see, there are a lot of things to think about! In a simple 2D game, collision
detection, artificial intelligence (AI), and database issues are all fairly straightforward, but
in a 3D game, you really have to think about these things. Of course, in this book we are
focusing on the 3D engine part, but the others are obviously of concern. Let’s talk about
each of these and some issues you have to keep in mind with each.
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FIGURE 6.1 Structure of a general 3D game engine.

3D Engine
The 3D engine itself is the software that processes the 3D world’s data structures, includ-
ing all the lights, actions, and general state information, and renders the world from the
viewpoint of the player or camera. This is relatively straightforward if the engine is
designed in a modular way, such that there aren’t lots of interrelationships with the 3D
engine and the other game subsystems. One of the biggest mistakes you can make when
writing a 3D engine is not making it solely responsible for 3D rendering. For example, it’s
tempting to do the physics modeling in the 3D engine code along with the 3D graphics—
this is a big mistake! Another example might be to put some networking hooks in the 3D
engine to help simplify your network—that’s another no-no.

TIP

The 3D engine does one thing—3D rendering of the data, that’s it.

Game Engine
The game engine in a 3D game can refer to a lot of things. Sometimes it doesn’t really
refer to anything. However, in most cases, the game engine is a system that processes
everything, and is the controlling module that sends commands to all the subsystems.
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Hence, the game engine needs to be designed so that it’s connected to each of the game
subsystems. A mistake that is sometimes made is to start on a 3D game with the 3D
engine, and then at some point turn a portion of the 3D engine into the main control of
the game—that’s also a bad idea. From the beginning, design a module that will control
everything—call it the “game engine,” or whatever. Think of it as the container that holds
all the other components and understands every part of the overall system.

Input System and Networking
The I/O and networking systems in a 3D game are notorious for being problems, and they
are. The problem is that there is potentially so much data that must be sent over the
network for a networked game that making any 3D networked game work is a miracle.
Figure 6.2 shows two examples of network gaming models. However, the rule with the
network portion of a 3D game is to think about the game first, and keep it separate from
the network portion. The networking should not be part of the 3D engine, the AI, or the
physics—it should be completely separate. Additionally, the network support for a 3D
game needs to be thought out way ahead of any other part of the game. You need to think
about what types of data and synchronization techniques you’ll use to keep your 3D simu-
lation in step, and then write the entire game with that in mind. Otherwise, you will defi-
nitely have a mess in the end.

TIP

If you are writing a 2D game, you can get away with adding networking at the end of develop-
ment maybe five out of ten times with a lot of ugly code; but in a 3D game, it just won’t
happen. Decide on network support in the beginning and then create models, simulations, and
test cases to test your system before implementing it.

Animation System
This is one of the first systems that may or may not be connected to another in a major
way. For example, there are a number of animations that happen in a 3D game:

• Simple motion

• Complex animation

• Physically-based animation
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FIGURE 6.2 Network gaming models.

Simple Motion
Simple motion usually consists of the basic translation and rotation of your game objects,
as shown in Figure 6.3. This motion can be controlled by data files, AI, patterns, simple
logic, state machines, whatever. Nothing magical here. Nonetheless, whatever is driving
the motion might be tied to others in a minor or major way. For example, say that you
have a game where the artificial intelligence is moving around game units. 
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FIGURE 6.3 Simple translation and rotation. 

These units move around in the map as shown in Figure 6.4. If the AI has a representation
of this map, it can determine the collisions and make sure the units don’t go through
walls. On the other hand, perhaps the AI could send commands to the physics system,
which also handles collision detection, and then it could determine whether the motion is
possible. As you can see, in this example at least, you might have the AI, motion, and
physics all within one tightly-knit system—and that’s okay.

Complex Animation
Complex animation in 3D means a number of things. But, usually it means that you have
articulated-hierarchical objects, with links that must move in relation to each other. An
example seen in Figure 6.5 is a robotic tank with an upper body turret. For simplicity’s
sake, let’s use the tank as the first example. It has a body and a single articulated link—the
turret. The turret can rotate around the up axis of the tank body (usually parallel to the
ground), but must stay connected to the top of the tank. Now, here’s the problem: Is
control of the turret going to be completely AI-based, or is it going to be data-based? In
other words, suppose we want to make the tank turret do something interesting. It might
be very difficult to do that with AI code, but very easy to do it with animation instruc-
tions or key framed data. Let’s talk about that for a moment.
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FIGURE 6.4 Artificial intelligence moving game units.
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FIGURE 6.5 Animated articulated 3D model. 
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There are two ways to animate a 3D object that has components or linked objects. The
first way is to animate them using a 3D modeling tool, import the meshes, and then
animate as a function of time—simply load mesh 1, then mesh 2, then mesh 3, and so on.
This technique is similar to standard 2D bitmap animation, except that the data is 3D data
representing a 3D model. This method is memory-intensive, but fairly easy to implement.
Figure 6.6 shows an example of this. Basically, we model the tank with its turret at one
angle, then another, then another, and then save the mesh data output. Then to animate
the tank, we load the meshes in and render them one at a time. This is the technique that
Quake and Quake II use.
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FIGURE 6.6 Using multiple frames to create an animation. 

The second way to animate a 3D object is with motion data. One popular motion format is
the BioVision .BVH format (a little sample is shown in the following code fragment). You
can find the specification for this format within the directory for this chapter under
BIOVISION.DOC. Basically, the data instructs the engine on what links to move relative to
others, and the engine then moves each of the subcomponents of the 3D object. This
technique is much more flexible, because once you create an animation engine that can
read BioVision data, then the data can be anything from a walk to a dance, and your char-
acter will do it. This is the technique used in Quake Arena, Doom III, Halo, and most fight-
ing games, like the Tekken series. If you’re interested in purchasing motion data, then
check BioVision out on the Web at http://www.biovision.com.
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Example Biped-supported BVH File

HIERARCHY

ROOT Hips

{

OFFSET    20    0.00    0.00

CHANNELS 6 Xposition Yposition Zposition Zrotation Xrotation Yrotation

JOINT LeftHip

{

OFFSET     3.430000     0.000000     0.000000

CHANNELS 3 Zrotation Xrotation Yrotation

JOINT LeftKnee

{

OFFSET     0.000000    -18.469999     0.000000

CHANNELS 3 Zrotation Xrotation Yrotation

JOINT LeftAnkle

{

OFFSET     0.000000    -17.950001     0.000000

CHANNELS 3 Zrotation Xrotation Yrotation

End Site

{

OFFSET     0.000000    -3.119996     0.000000

}

The problem with 3D animation is where to draw the line and put in a feedback loop, so
that the animations make sense in the physical world? For example, suppose in the tank
example that the tank is up against a wall, as shown in Figure 6.7, and a command is
executed to rotate the turret around counter-clockwise 90 degrees. Now, the animation
was probably initiated by the AI, because the tank wants to shoot an object behind it, but
maybe the AI doesn’t look ahead that far to see whether the turret will hit something as it
rotates. This is a common omission in 3D games—we have all seen objects pass through
others. The reason is that the designers didn’t really care if once in a while the wheels
went under the road, or the arms of the fighters went through the trees, or whatever.
However, if we don’t want these things to happen, somewhere we’ll have to test for it.

The test might happen in the animation system itself—that is, when the turret is
instructed to rotate, the animation system checks for possible collisions and then either
performs the animation or doesn’t. This brings us to yet another problem: Is it the job of
the animation system, AI system, or physics system to do this? Again, it really depends on
a lot of things. If your game has heavy physics modeling, then yes, the animation system
needs to pass this off to the physics system. However, if you have very little physics,
maybe it’s okay for the animation system to do the testing.
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FIGURE 6.7 Physically impossible situations based on nonphysical animation.

I hope that you’re seeing that there are a number of complex relationships that occur in a
3D engine!

Physically-Based Animation
This is the most complex of all animations. Physically-based animation means that the laws
of physics for the most part are controlling how something animates or moves. For
example, you might have a 3D fighting game where the fighting moves themselves are
pre-canned motion capture data. However, this data is fed into the physically-based
animation system, which basically controls physics-based models that perform the anima-
tion. They do this not blindly by rotating joints and translating objects, but by directing
the model to do these things. Then the physics system determines whether it’s possible.
This is the best way to perform the most realistic simulation.

Continuing with the fighting game example, let’s say that Fighter A throws a punch at
Fighter B. The punch is really a set of motion capture data, but instead of just being
“played” through the model, the data can be thought of as commands to the model’s
physics system. So, the physics system starts throwing the punch, then the hand of the
punch hits a wall! The physics system then reacts to this by sending a force back through
the motion controller and the hand stops dead in its tracks—this is what should happen.
As another example, say that Fighter B throws Fighter A. The initial motions of the throw
are motion captured, but after Fighter A hits the air, the physics system takes over
completely, and he will hit the ground or whatever objects are in the way as the physics
unfold based on the environment.
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The point is, in a physically-based animation system, the animation and physics are inti-
mately connected. However, once again they have nothing to do with the 3D rendering.
By the time the 3D engine renders, all it should know about is a polygon list.

Collision Detection and Navigation System
We have already made reference to the physics system more than once, thereby showing
that many systems in a 3D game can be connected. However, sometimes a full physics
system is overkill, and all the game really needs is a simpler collision detection and navi-
gation system to run right. We might call this a physics system, but unless it’s based on
forces, momentum, and other physical quantities, it’s really just a glorified collision detec-
tion system. As an example, suppose you’re creating a Doom-style first-person shooter
(FPS), and you have almost no physics: The characters are animated by AI along with pre-
canned mesh animations, and nothing slides (there’s no momentum transfer, and so
forth). The only thing you need to take into consideration is object-to-object and object-
to-world penetration, as shown in Figure 6.8.
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FIGURE 6.8 Object-to-object and object-to-world collision.

Thus, all you need is a simple collision detection system that feeds back the animation
system (and/or the AI system) with information about what’s happening as the animation
system commands the game objects to walk, run, move, or whatever. However, with a
system this simple, you might get objects penetrating each other, and creatures sliding on
the ground unrealistically, and so forth.

Physics Engine
The physics system in a game can be very simple, as in the collision-only system
mentioned previously, or very complex, based on real physics and closed-loop models.
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The physics in a game engine really have nothing to do with the visual representation of
3D graphics at all. All the physics engine does is control and respond to actions that the
objects in the game make or don’t make, and then based on the physics models you’ve
implemented, takes action. For example, a very simple physics model might have the
following capabilities:

• Frictional forces and acceleration

• Elastic collision detection and response

• Linear momentum transfer

A good example of this kind of modeling is a simple 3D racing game consisting of a flat
track and a number of cars, as shown in Figure 6.9. For each car, we might model the car
as a point mass (or maybe a 4-point mass, one point for each wheel). Then as the cars
drive around the track, either controlled by the player or the AI, the physics system keeps
the cars on the road based on frictional forces only. That is, if a car is moving at 100 mph
and then takes a turn at a certain angle, centripetal force (center seeking) is computed and
compared to the centrifugal force (outward), and then the forces are modified appropriately
and the acceleration of the car is altered. Furthermore, if a car hits another, they are
modeled as spheres, perhaps, a simple elastic collision takes place, and momentum is
transferred, but angular momentum is not computed—or it’s faked.
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The preceding level of physics modeling is usually robust enough for a large class of 2D
and 3D games, but if you want reality, you have to go farther. Farther means modeling
objects based on their actual geometry, along with using full physics where the physics
system is controlling the objects, rather than the AI system controlling the objects and
taking feedback from a simplified system of collisions and friction. In a full physics model,
each object is continually under simulation, and all the forces on the object are used in
the standard physics equations that describe acceleration, velocity, and motion. Along
with integration, these equations are used to arrive at the new position of any object,
expressed as a function of time based on the forces that are being applied to the object—
this is what dynamics does for us.

We will cover this in reasonable detail in the physics modeling part of the book. However,
keep in mind that a 3D game with this level of simulation must have the animation and
AI systems tied into the physics system, so that these other systems respond to the artifi-
cial reality imposed by the physics models, and don’t continue to send commands to the
game units that are impossible to execute because of the constraints of the game’s physics.

Artificial Intelligence System
The AI in a 3D game can be an order of magnitude more complex than that of a 2D
system or the same level, depending on the modeling of the game units. The problem
with AI in a 3D environment is, of course, that it’s 3D! Functions like navigation, path
finding, and animation all become much more complex. In a 2D game, moving a collec-
tion of space ships around isn’t that hard, but moving something in 3D is very hard. All
the algorithms used in 3D are the same as 2D—deterministic, patterns, planning systems,
finite state machines, fuzzy logic, neural nets, and so forth—it’s just that a lot more
thought has to be put into their implementation.

As an example, take a look at Figure 6.10a and Figure 6.10b. Here we see a 2D environ-
ment and a 3D environment from two different shooter games (Valkyrie and Quake III).
The 2D scroller’s AI is fairly straightforward because the environment is simple. The
objects are nothing more than 2D bitmap animations, most of the object motion is
controlled by patterns, tracking logic, and finite state machines. The 3D game works in a
similar way, but it’s about ten times harder to write! The problem is that everything is in
3D, and even moving the characters is now a large problem. When a 3D character
approaches you, it has to look intelligent. This means its motion, animation, and logic
have to take the 3D environment into consideration.

These constraints make programming AI for 3D game much harder. Operations like simply
moving a unit from one point to another in a 3D world can be overwhelming because of
the geometrical makeup of the world. It might be easy for us to “see” a simple path, but
for the AI to invent one is not at all easy. Anyway, these are the kinds of issues that are
going to come to light in 3D AI programming. Finally, the AI system in a 3D game is
usually tied to the animation and the physics system, because the AI must have sensory
input from the world, many times in response to its actions.
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FIGURE 6.10 Examples of 2D and 3D environments.

3D Model and Imagery Database
The last large part of a 3D game is the data. And there’s a lot of it! 3D games can have
enormous data footprints. This is because of the nature of 3D. For example, a typical 3D
game is going to have a number of the following data items:

• 3D meshes for objects

• 2D texture maps and light maps

• 3D worlds

• Motion and animation data

• Game map data

In most cases, the data that take up the most memory are the texture and light maps,
because there might be hundreds, if not thousands, of texture maps. And with current
texture maps possessing 24-bit color and up to 1024×1024 resolution, that’s three
megabytes per texture—wow! Of course, many games have user-selectable texture sizes and
quality, but even at the 256×256 color level, that’s still 65,536 bytes per texture—that’s a
lot of memory and memory management to go along with it. In this book, we will proba-
bly stick to textures in the range of 32×32 to 128×128 at most, just to keep things simple
(and fast, because we are using software algorithms), but I think you get an idea of the
massive amounts of memory needed for texture storage. Moreover, it’s not just memory
storage for the textures, but also for the meshes themselves.
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FIGURE 6.11 A low polygon model. 

For example, if you decide to go with pre-canned animated meshes rather than motion
data controlled animation, the amount of memory can quickly add up to hold an object’s
mesh animation. For example, suppose you have a character as shown in Figure 6.11 that
has around 200–300 polygons and 200 vertices. Let’s do the math to see what the storage
is on this by making up a simple data structure to hold a 3D vertex that supports both the
positional coordinates, along with texture and lighting information:

typedef VERTEX3Dptl_TYP

{

float x,y,z; // position

float u,v;   // texture coordinates

float l;     // light value

} VERTEX3Dptl, * VERTEX3Dptl_PTR;

That’s roughly 6*sizeof(float) = 24 bytes per vertex (on a 32-bit system, at least). Our
object has 200 vertices, so that’s:

24 bytes per vertex * 200 vertices = 480 bytes per mesh.

However, we haven’t factored in the higher-level stuff like the polygon mesh, color, and so
on. Let’s just forget about that for now, and continue with the example. Let’s say that we
want 32 frames of animation for each motion, and we need the following animation
meshes:

• Walk

• Run

• Jump
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• Duck

• Die

• Shoot

Okay, so that’s 6 motions each with 32 frames, for a total of

6 motions * 32 frames each = 192 frames of motion.

And each frame takes 480 bytes, so we have a grand total of

192 frames of animation * 480 bytes per frame = 92,160 bytes.

That’s a lot of freakin’ memory! Multiply that by 32 different creatures in the game, and
you have 32*92,160, or roughly three megs of vertices! So, you can see that this stuff adds
up. The moral of the story is, in a 3D game, you’re definitely going to need efficient data
structure, databases, and on-demand loading and unloading of data. Of course, the virtual
memory manager of Windows helps a lot with this, but you can’t just load everything and
then work with it—you will run out of memory.

TIP

You also have to think about bandwidth issues, too. When you are dealing with texture maps and
large meshes, just the act of moving things around is going to eat up a lot of memory band-
width on your system bus. That means that efficient data ordering is important, and that you use
something and then you’re done with it. You don’t want to load object A, use it, discard it and
use object B, then load A again. You want to try and order your data so that cache coherence is
high—meaning you use something as much as possible before loading something else.

In conclusion, a 3D game (or any game, for that matter) is nothing more than a stream of
bytes, but the representation of that stream of bytes is really important. Hence, good data
structures and a well-thought out plan are always good ideas before you even think about
coding. With that in mind, let’s get to the 3D part!

3D Coordinate Systems
Now that you’ve had an introduction to 3D game programming from a high-level point of
view, we’re going to actually start talking about some 3D stuff, starting with 3D coordinate
systems.

Although we’ve already covered Cartesian (2D/3D), cylindrical (3D), and spherical coordi-
nates (3D), these are more like methods of representing 3D systems themselves. What
we’re interested in now is how a 3D graphics engine represents actual 3D objects in the
various stages of processing.
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In general, there can be many different coordinate systems that an object is transformed
to as it makes its way to the video screen, through what’s referred to as the 3D viewing
pipeline:

• Model coordinates

• World coordinates

• Camera coordinates

• Perspective coordinates

• Screen coordinates

These are the main classes of coordinates, but depending on the 3D engine, you can get
pretty crazy with other types of transformations, such as normalizing or warping transfor-
mations. Nevertheless, the preceding list is what we’ll talk about for now.
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FIGURE 6.12 A basic cube in model/local coordinates for analysis.

Model Coordinates (Local Coordinates)
Model coordinates (also known as local coordinates, and I will use them interchangeably) are
the coordinates of a 3D entity in its own local coordinate system. That is, every time you
create a 3D object for a game, you usually create it with it’s own set of local axes, where
the center of the object is at (0,0,0) in 3D  (or wherever you want the center to be). In
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Figure 6.12, we see a cube defined in a left-handed coordinate system. The cube is 10 units
on each side, and it has a center (0,0,0). The vertices (points) that make up the cube are

Vertex 0: (10,10,10)

Vertex 1: (-10,10,10)

Vertex 2: (-10,10,-10)

Vertex 3: (10,10,-10)

Vertex 4: (10,-10,10)

Vertex 5: (-10,-10,10)

Vertex 6: (-10,-10,-10)

Vertex 7: (10,-10,-10)

The idea behind model coordinates is that at some time during the 3D pipeline, you can
translate your models to their real positions in the 3D world. This is how a 3D game
works. On the other hand, sometimes you might actually want the local origin (0,0,0) of
your 3D object not positioned at its geometric center. For example, suppose that you want
to create a robot arm model as shown in Figure 6.13. You could define each link as a mesh
of polygons, each with its local center at (0,0,0). Whenever the object is translated into
world coordinates, it would be centered, so that its center moves to whatever that point is
(if I’m losing you, just hold on). However, what if you want the links to rotate or move off
center? That is, so that maybe the first link is the shoulder, and the second link is the
forearm? There’s no rule that states that an object’s local coordinates must have (0,0,0) as
the center of the object. Therefore, maybe you want the origin (0,0,0) to be at the end of
the model’s in Figure 6.13. This is actually a more intelligent position to call the origin for
these types of objects, since a single point defines the rotation center and the rotating
linkage is just a 3D line segment.

Orientation Issues
Lastly, I want to talk about orientation issues with model coordinates. By orientation I
mean that you must have some kind of convention for defining or loading your 3D
models; otherwise, you won’t know what side is “up” or “forward.” For example, suppose
that you define two objects in a 3D game, as shown in Figure 6.14. The space ship has
model coordinates such that the front of the ship is pointing in the negative z-axis, and
the up direction, or top, is the positive y-axis. The mech, on the other hand, has its front
pointing at the positive z-axis. Do you see the problem?

There are two ways to handle this. The first method is to come up with a convention
during modeling that states that all models must have their “fronts” pointing in the posi-
tive z-axis, and their tops “pointing” in the positive y-axis (or whatever the convention is,
as long as you stick to it). The second method is to model your objects anyway you like,
but have software compute the major axis of each object (the axis that has the largest
length), and align it to the positive z-axis (or whatever axis you choose), along with
finding the second major axis and aligning that with the positive y-axis—or whatever, as
long as you are consistent. This way, no matter what orientation the object is loaded in
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with, you always know that it will be reasonably oriented. My advice is to use the model-
ing convention rather than letting software do it, because software can only look at the
geometry, and doesn’t understand what an object really “looks” like.
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FIGURE 6.14 Arriving at an orientation convention for model loading. 
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For example, if you load a model of some of the newer 2000+ cars, the fronts look like the
back, so you might be driving backwards! Especially that new Thunderbird—yuck!

TIP

Even with an orientation convention during modeling, you might want to rotate, scale, or trans-
late each object during loading. This is a great added feature. For example, you might have a
function Load_3D_Mesh() that loads an object, but also enables you to transform it during the
load. That transformed version becomes the model coordinates that are then passed to the
system.
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Scale Issues
There’s also the issue of the scale of your models. What if one model that represents a car
has a radius of 100, whereas another model that represents a light cycle also has the radius
of 100, as shown in Figure 6.15? This doesn’t make sense, because their 1:1 scales aren’t
correct. The solution to this problem is to again model all your objects at the same scale,
meaning that maybe one unit in the modeling program is always 1 cm in the game
engine. Or,  you can model everything in a local world of 1×1×1 (normalized coordinates),
and then scale the models as you load them. Personally, I just model all my objects using
the same scale, so that one unit is something like 1 cm, 1 meter, or 1 km, but I use that
same number for all my models as I create them. Again, your loader software function
might allow you to specify x-y-z scaling factors, along with x-y-z rotation factors to load
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the same model, but change it. This is useful for simple objects, like asteroids. You load in
the same model, but scale and rotate it on the fly, so that each loaded mesh seems
completely different, which simplifies your 3D modeling work.

A Word on LHS/RHS Coordinate Systems
In a 3D game, you can use either a left-handed (LHS) system or right-handed (RHS) system
to define each object with—it’s up to you. Of course, you need to be consistent. I prefer to
use left-handed coordinates, because all the other transformations are easier (along with
projection), and I like the +z axis to go into the screen rather than out. However, some-
times drawing figures on paper is easier with a RHS, because the positive z-axis is pointing
toward us. Even if you want to use a RHS for model coordinates and a LHS system for final
3D projection, you can do so with a simple reflection of the z-axis. But why make life
hard? I already feel like I’m in the Matrix!

World Coordinates
After you have all your 3D models, you’ll want to position them relative to the world. This
is where world coordinates come into play. They are the actual real coordinates in the
virtual universe in which objects move and are transformed. That is, if an object is at
(50,100,200), it’s at (50,100,200)—period! The first step in understanding world coordi-
nates is understanding what their ranges mean in terms of some reference point. That is,
how big should the world be? Should it be 1×1×1, 10×10×10, or
1,000,000×1,000,000×1,000,000?

Well, if you’re using the convention that one unit in local coordinates is 1 meter, and you
want to have a universe that’s 100×100×100 km (a good size for a tank or racing sim), that
means that your game grid has the following dimensions, given that there are 1,000
meters in a kilometer:

Example: World 100 km cubed with 1 meter/unit and origin (0,0,0):

x-axis: -50,000 <= x <= 50,000

y-axis: -50,000 <= y <= 50,000

z-axis: -50,000 <= z <= 50,000

That’s also a nice number that is easily handled in a float. On the other hand, if you want
each unit in model coordinates to represent 1 cm, and have a universe that’s 1,000,000
km cubed, you might get into some range issues, because that world would have the
following dimensions:

Example: World 1,000,000 km cubed with 1 cm/unit:

x-axis: -.5x1010 <= x <= .5x1010

y-axis: -.5x1010 <= y <= .5x1010

z-axis: -.5x1010 <= z <= .5x1010
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These numbers exceed an integer 32-bit representation, which is roughly +/- 2×109 and is
getting into the range limits of a standard 32-bit floating number that has any accuracy at
all. The bottom line is it’s too big. The rule of thumb is that you need to constrain your
universe so that you can represent the boundaries of the universe, along with having at
least 3-4 decimal places of accuracy.

NOTE

The final scaling and camera transformations come into play along with your models sizes, too,
so many times you end up resizing your universe to give it the right “feel” for the game objects,
velocities, and scales. For example, I once made a 3D shooter and had a rather small universe
(4096×4096×4096), but when the player ran from one end of the universe to the other at 30fps,
it took about 15 seconds, which felt about right. A space game, on the other hand, would have
to be ten times bigger because the relative velocities of the ships would be much faster. Of
course, in reality, they would be thousands of times faster, but in a virtual world, ten times faster
and larger would probably suffice.

Placing an Object in World Coordinates
Now that you have a handle on local and world coordinates, let’s work through how you
would actually transform an object from local coordinates to world coordinates.
Remember, the whole point of local or model coordinates is to define the object, but then
they must be placed in the world to arrive at the final world coordinates. As an example,
take another look at Figure 6.12. Here we see our simple 3D cube object defined in model
coordinates—it’s a simple cube in this case, with each side having a length of 10 units.
Thus, its local coordinates are as follows:

Vertex 0: (10,10,10)

Vertex 1: (-10,10,10)

Vertex 2: (-10,10,-10)

Vertex 3: (10,10,-10)

Vertex 4: (10,-10,10)

Vertex 5: (-10,-10,10)

Vertex 6: (-10,-10,-10)

Vertex 7: (10,-10,-10)

We could actually define this object using one of our data structures POINT3D, as follows:

POINT3D cube_model[8] = {

{10,10,10}, // vertex 0

{-10,10,10}, // vertex 1

{-10,10,-10}, // vertex 2

{10,10,-10}, // vertex 3
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{10,-10,10}, // vertex 4

{-10,-10,10}, // vertex 5

{-10,-10,-10}, // vertex 6

{10,-10,-10}, // vertex 7

};

And of course, we could define each face that is a polygon that makes up the 3D solid
representation as a set of four vertices as follows, if you want to get detailed:

Face 0: (0,1,2,3)

Face 1: (4,7,6,5)

Face 2: (0,3,7,4)

Face 3: (2,3,7,6)

Face 4: (1,5,6,2)

Face 5: (0,4,5,1)

However, the polygon definitions aren’t needed for the transformation from local/model
coordinates to world coordinates, so we don’t really need the face list.

We have a vertex list of an object in local/model coordinates and we want to transform it
into world coordinates. To do this, we simply need to know where in the game world we
want the center of the object, and then translate the local/model coordinates to this posi-
tion—simple. Assuming that our world is 1000×1000×1000 and we want to place the
object at (world_x, world_y, world_z) as shown in Figure 6.16, the following translation
algorithm will work nicely:

POINT3D cube_world[8]; // used to hold world coordinates

// translate each vertex by (x0, y0, z0)

for (int vertex = 0; vertex<8; vertex++)

{

cube_world[vertex].x=cube_model[vertex].x+world_x;

cube_world[vertex].y=cube_model[vertex].y+world_y;

cube_world[vertex].z=cube_model[vertex].z+world_z;

} // end for

Notice that we did not modify the local/model coordinates of the cube. This is very impor-
tant. If we did, we would lose our cube model. Rather we transformed them and stored the
results in a new vertex list. This might seem like a waste of space, but it can’t be avoided.
In fact, there might be a number of different versions of coordinates as they are processed
through the 3D pipeline. We will try to keep the number of copies to a minimum, but
usually there are at least two to three copies of them.
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FIGURE 6.16 Placing an object in world space.

In any case, the preceding algorithm is nothing more than a translation. Thus, the
local/model to world transformation can be represented with a standard matrix operation;
call it T

mw
for translation model to world. However, there’s a gotcha—remember that to

support translation in a matrix operation, we need 4D homogenous coordinates, so the
matrix would like this:

|1        0        0        0|

T
mw = 

|0        1        0        0|

|0        0        1        0|

|world_x  world_y  world_z  1|

NOTE

A word on matrix notation—many times I will name a matrix T with a subscript that further
defines the transformation, such as Tlw, which might stand for the “local to world transformation
matrix.” Thus T stands for a general transform. However, other times, if the matrix is a translation
or rotation matrix, T means translation and R means rotation. The point is, if you see a matrix
named T with a subscript, it’s either a general transformation or a translation matrix.

However, if you recall, we have a number of “smart” matrix multiply routines that know
how to multiply a 3D vector by a 4×3 matrix, and/or a 4D vector by a 4×3 and 4×4 matrix,
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and so on. The point is—to implement a translation via matrix multiplication, you need
that fourth row. With that in mind, here’s the general matrix operation that must be
performed to transform a point [x

m
y

m
z

m
1] in local/model coordinates to world coordi-

nates.

FORMULA 6.1 Local/Model Coordinates to World Coordinates

= [x
m
y
m
z
m
1] * T

mw

|1        0        0        0|

[x
m
y
m
z
m
1] *    |0        1        0        0|

|0        0        1        0|

|world_x  world_y  world_z  1|

= [x
m 
+ world_x, y

m 
+ world_y, z

m 
+ world_z, 1]

= [x
w
, y

w
, z

w
1].

Of course, in this example we used 4D homogenous coordinates to make the math simple,
but we could have used 3D coordinates as long as we assumed there’s a phantom fourth
element w equal to 1.0, so that the 4×3 or 4×4 matrix multiply makes some kind of sense.
And finally, we would divide (x

w
,y

w
,z

w
) by the last w factor to convert from homogeneous

4D to normal 3D coordinates, but because w = 1.0, there’s no point to divide.

Summing up, the transformation from local/model coordinates to world coordinates is
rather trivial; you simply translate each object’s center to the desired position in the
world: (world_x, world_y, world_z). This is in turn accomplished by translating all the
vertices in the model and storing the results in a secondary data structure.

As far as the relationship of local/model and world coordinates to the 3D pipeline and the
whole scheme of things, you basically transform the object’s local coordinates only when
you want to scale or rotate the object. Then you place the object in the world with the
local/model-to-world coordinate transformation. Figure 6.17 depicts the current 3D
pipeline we have up to world coordinates.

Camera Coordinates
Up until now, you’ve gotten off pretty easy. Now we’re going crank up the positron flow…
Both local and world coordinates are used to define 3D objects in space. Local/model coor-
dinates define a single entity or collection of entities in their own 3D space and coordi-
nate system relative to (0,0,0). World coordinates define the virtual 3D world in absolute
terms—objects are virtually placed in this world. Okay, easy enough, but the point of a 3D
game is playing it and moving around a 3D camera! Therefore, we need some way to view
3D objects. This is where camera coordinates and the world-to-camera coordinate transforma-
tion take place.
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FIGURE 6.17 3D pipeline with local-to-world transform.

The Viewing Frustrum
To view a scene in a 3D world, the most common method is to place a virtual camera at a
position in the world and then view the world with a specific field of view. This is shown
in Figure 6.18. As you can see, we have a 3D world coordinate system with a virtual
camera positioned at (cam_x, cam_y, cam_z) in a direction defined by (ang_x, ang_y,
ang_z), or more commonly referred to as (pitch, yaw, roll). Additionally, you see that there’s
a field of view, or frustrum, that the camera can “see in.” This can be defined by the field of
view (FOV) parameters in both the horizontal and vertical directions, which are usually in
the range of 60–130 degrees. Additionally, there are near and far clipping planes, which
represent the idea that objects beyond these regions are invisible. Only objects within the
region are visible. Finally, there’s a view plane, which is even more complicated, but ulti-
mately it’s the mathematical plane that we are going to project the 3D image on, so we
can finally render it on a 2D computer screen. Now, let’s talk a little more about the six
walls that make up the viewing frustrum before moving on.
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FIGURE 6.18 The 3D viewing frustrum.

Understanding the Near and Far Clipping Planes The near and far clipping planes are
located at near_z, and far_z. Their plane equations are simply z=near_z and z=far_z, or
more generally:

Near z-clip plane: 0*x + 0*y + 1*z  = near_z

Far z-clip plane:  0*x + 0*y + 1*z  = far_z

These planes are perpendicular to the viewing direction and represent the extents that
valid 3D geometry can be rendered into. In other words, objects that are located farther
than the far clipping plane will not be rendered, and objects that are nearer than the near
clipping plane won’t be rendered, either. Objects that are farther than the far clipping
plane would be so small when rendered and projected that they are pointless to consider,
because they would be little dots. Conversely, objects closer than the near clipping plane
would be so close to the “eye” of the virtual camera that it would be like mashing your
face up against a wall to look at it.

The Viewing Frustrum Walls The viewing frustrum is basically a truncated pyramid
defined by the near, far, and side planes. These side planes or walls define the viewing
volume of the frustrum. In our case, we are using a 90 degree viewing volume, so each of
these planes is at a 45 degree angle to the view direction, as shown in Figure 6.19. Thus,
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the plane equations are simply |x|=z, |y|=z. Again, just as the near and far clipping
planes, the side walls are used to clip objects, also. Objects that are not within these walls
are not visible, and must be clipped and/or removed from the pipeline. (More on this
later.)
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FIGURE 6.19 A simplified top-down view of the viewing frustrum.

The World-to-Camera Relationship The problem is this: We want to transform the
objects in the 3D world so that they are relative to the camera. In other words, we want to
be able to relate the world coordinates of the objects to the camera in as simple a manner
as possible. This is the idea behind the world-to-camera coordinate transformation.

Take a look at Figure 6.19, where we see a camera placed at world coordinate position
(0,0,0) looking straight down the positive z-axis with a horizontal and vertical field of
view of 90 degrees (it’s not necessary to have a FOV of 90, but makes the math easier
because the plane equations are trivial). If there’s an object in the viewing frustrum, it
should be rendered, otherwise it shouldn’t. Now, here’s the tricky part—99.99999% of the
time, the camera is not located at the origin looking straight down the positive z-axis
(unless of course, you are looking at a DirectX 3D retained mode application of a rotating
teapot), the camera is located at some position along with some orientation in the 3D
world, usually connected to the front of the player’s head.

The question then is this: If we were to artificially move the world so that the camera was
at (0,0,0), with its orientation looking straight down the positive z-axis, along with the
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“up” direction pointing in the positive y-axis direction (that is, view angles equal to
(0,0,0)), what transformation would we need to perform on all the world coordinates to
make this consistent? This is the magic that the world-to-camera transformation performs
and is actually really simple. Well, sorta!

TIP

If you decide to remove the rear end of your car, never under any circumstances take apart the
spline gears—you will never get them aligned properly.

The World-to-Camera Transformation
The world-to-camera transformation is a transformation where we move the world around
so that from the camera’s point of view, the camera is at (0,0,0) looking straight down the
positive z-axis, and the objects in the world move appropriately to make this happen. The
transformation is accomplished in two steps: translation, followed by rotation. Let’s start
with the translation step.

The Translation Step
Take a look at Figure 6.20a. It’s a simplified 3D world with a single object in it, along with
a camera at some position (cam_x, cam_y, cam_z). We’ll assume the camera angles are all
(0,0,0) to simplify the example. Now, if we move the camera to (0,0,0) in the world, what
would need to happen to the object located at (world_x, world_y, world_z) so that it has
the same relationship to the camera? Referring to Figure 6.20b, we see that the camera is
now at (0,0,0), but the object needs to be at (world_x, world_y, world_z)—(cam_x, cam_y,
cam_z) to keep the relationship between the camera and the object the same. That is, the
relative distance and angles have all been preserved. Or in other words, in the frame of the
camera, nothing has changed. Only in the frame of the universe has something changed.
Killer!

Now with the camera looking down the +z-axis, we can do some math to figure out
whether the cube is either contained inside or outside the viewing frustrum, and then
some more math to render the cube (with perspective) on the screen if it is. We’ll get to
that later—the point is, we have solved the translation half of the problem of the world-
to-camera transformation.

In other words, the first step of the world-to-camera translation is to translate all world
coordinates by an amount equal to the negative values of the camera’s position in world
space, or (-cam_x, -cam_y, -cam_z). The following code performs this step with our world
coordinates from the previous section:

POINT3D cube_camera[8]; // used to hold camera coordinates

// translate each vertex by (-cam_x, -cam_y, -cam_z)

for (int vertex = 0; vertex<8; vertex++)

{
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cube_camera[vertex].x=cube_model[vertex].x-cam_x;

cube_camera[vertex].y=cube_model[vertex].y-cam_y;

cube_camera[vertex].z=cube_model[vertex].z-cam_z;

} // end for
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FIGURE 6.20 The translation step of the camera transformation.

Again, we see that yet another set of vertices is needed to hold the camera coordinates.
Additionally, the first step of the camera transformation looks just like the local-to-world
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transform, so you might think of merging them into one transform. Although we are only
half done with the world-to-camera transformation, I will say that it is possible to merge
many of the 3D pipeline transformations together via matrix concatenation. However,
many times it’s better to do things in steps, because we might not transform all objects to
camera coordinates. During the 3D pipeline, many objects and/or polygons defined by the
vertices might get picked off because of clipping, hidden surface removal, or whatever.
However, depending on how the final 3D engine works, it might indeed be true that a
single matrix can transform a point from local coordinates all the way to screen coordi-
nates! We’ll get to that later, too.

Moving on, we can once again use a matrix transformation to perform the translation
step. Assuming that the camera position translation matrix is T

cam
, the inverse of the

matrix T
cam

-1 is formed by inverting each of the translation factors:

|1        0        0        0|

T
cam

-1 =     |0        1        0        0|

|0        0        1        0|

|-cam_x   -cam_y   -cam_z   1|

MATH

Remember, the inverse of any translation matrix is formed by taking the negative of the transla-
tion factors in the bottom row of the matrix. Additionally, the inverse of any rotation matrix is
formed by supplying the negative angles into each sine or cosine term of the matrix or by taking
the transpose of the matrix.

So if we were to multiply each vertex in world coordinates against the matrix T
cam

-1, each
vertex would be translated to the proper position to account for the camera being artifi-
cially repositioned at (0,0,0). Here’s the actual matrix multiply to translate a vertex [x

w
y

w

z
w

1] from world coordinates to camera coordinates (without taking into consideration the
orientation of the camera, of course):

FORMULA 6.2 Translation Step of World-to-Camera Coordinates Transformation

= [x
w
y
w
z
w
1] * T

cam
-1

|1        0        0        0|

=[x
w
y
w
z
w
1] *  |0        1        0        0|

|0        0        1        0|

|-cam_x   -cam_y   -cam_z   1|

= [x
w
-cam_x, y

w
-cam_y, z

w
-cam_z, 1]
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Of course, if you want to code this portion of the world-to-camera transformation with
matrices, you could do it with a simple matrix multiply, like this:

POINT3D cube_camera[8]; // used to hold camera coordinates

// define translation matrix

MATRIX4X4 Tcam_inv = { {1, 0, 0, 0},

{0, 1, 0, 0},

{0, 0, 1, 0},

{-cam_x, -cam_y, -cam_z, 1} };

// translate each vertex by (-cam_x, -cam_y, -cam_z)

// via a matrix multiply

for (int vertex = 0; vertex<8; vertex++)

{

// multiple the vector/point cube_world[]

// against the translation matrix, note

// that the matrix multiply assumes that there

// is a phantom w=1 to make the matrix op

// valid

Mat_Mul_VECTOR3D_4X4(cube_world[vertex],

&Tcam_inv,

cube_camera[vertex]);

} // end for

CAUTION

Now we have a partial transformation sitting in the cube_camera[] vertex array. When you
perform matrix multiplies, be sure that the source and destination vertices are different; other-
wise, partial values will be used, and the end results will be incorrect. Hence, always make sure
that you transform one vertex into another by a matrix—don’t transform a vertex by a matrix
back into itself!

Now that we have the first part of the camera transformation done, let’s work on the
second part. Knowing that we need to move the world to the camera, and that the posi-
tion part was nothing more than performing an inverse or negative translation operation
to the world coordinates of each object or vertex an amount (-cam_x, -cam_y, -cam_z), it’s
fairly reasonable to think that we can do the same thing with the camera orientation.

The Rotation Step
In Figure 6.21a we see almost the same example that we worked with in Figure 6.20.
However, in this case the camera is at location (cam_x, cam_y, cam_z), with view angles
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(0, ang_y, 0). In other words, the camera has a nonzero heading or yaw angle. Thus, it’s no
longer pointing in the +z-axis direction. If we can figure out how rotating the camera to
align it with the +z-axis affects the rest of the world (our little cube, in this case), we have
the problem solved. So let’s begin …
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FIGURE 6.21 The rotation step of the camera transformation.

The first thing we do is translate the world coordinates of all objects so that the camera is
at located at position (0,0,0) in world space. This is accomplished by translating all objects
by the negative position of the camera, or (-cam_x, -cam_y, -cam_z), which is nothing
more than multiplying each point in world coordinates against T

cam
-1. 
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At this point, we have the situation shown in Figure 6.21b. The camera is located at (0,0,0)
and the relative position of the cube is the same, but the camera is still pointing at the
location defined by the view angle (0, ang_y, 0). Now all we need to do to align the
camera to the +z-axis is rotate the camera about the +y-axis at an angle (0,–ang_y,0),
which is the inverse or negative angle that the camera is pointing (0, ang_y, 0). However,
if we do this, we need to do the same thing to every vertex in the world, which in this
case means the vertices that make up the cube. If we rotate the cube around the +y-axis at
an angle (0, -ang_y, 0), the results are shown in Figure 6.21c.

In the figure, we have indeed positioned the camera at (0,0,0) with a view angle of (0,0,0).
Nevertheless, the relative position and orientation of the object(s) in the world (the cube)
are the same. What has changed are the actual absolute vertex positions in world space,
but their relationship to the camera and each other has not. This is the complete world-to-
camera transformation for a simple viewing system defined by a camera location (cam_x,
cam_y, cam_z) and the Euler viewing angles (0, ang_y, 0).

But what about the general viewing angles (ang_x, ang_y, ang_z)? The transformation is
the same: You must transform the world coordinates first by the negative or inverse trans-
lation matrix T

cam
-1, followed by a series of rotational transforms that rotate the world coor-

dinates into place by the inverse of the camera orientation. Of course, as there are three
angles that make up the camera orientation (ang_x, ang_y, ang_z), there are 3!=3*2*1 = 6
different ways to perform the rotation sequence:

Sequence 1: xyz

Sequence 2: xzy

Sequence 3: yxz

Sequence 4: yzx

Sequence 5: zxy

Sequence 6: zyx

However, most people use either Sequence 3 or 6, because it’s more natural to first turn
your head (yaw) and then tilt it up and down (pitch). The twist (roll) part isn’t very
natural (unless you’re a dog). However, it’s really up to you. The sequence doesn’t really
mean anything, other than if there were a virtual camera, this is how you would perform
the rotation sequence. However, most of the time the camera is never seen in a game—
only what it “sees” is viewed; hence, the sequence is arbitrary. In any case, we will assume
Sequence 3 for the examples.

With that in mind, we need to perform three rotations: one parallel to the y-axis, which
we will call R

camy
-1; followed by one around the x-axis, which we will call R

camx
-1; followed

by a rotation around the z-axis, which we will call R
camz

-1. Additionally, the rotations must
be the inverse of the camera angles, because we are trying to invert the whole system.
Therefore, the entire rotation sequence that must be performed on every vertex to trans-
form it to camera coordinates is as follows:
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FORMULA 6.3 The Complete World-to-Camera Transformation for Arbitrary Camera Position
(cam_x, cam_y, cam_z) and Orientation (ang_x, ang_y, ang_z)

T
wc

= T
cam

-1 * R
camy

-1 * R
camx

-1 * R
camz

-1

Of course, you could concatenate all the matrices together into a single matrix and call it
T

wc
for the world-to-camera transformation, and then simply transform each point [x

w
y

w

z
w

1] by the single matrix T
wc

, as shown in the following to transform from world-to-
camera coordinates:

[x
w
y
w
z
w
1]* T

wc

Pretty cool, huh?

TIP

Note that we are using the inverse of the camera translation and rotation matrices. If we wanted
to think of the camera as an object, to orient and place it we would transform it into world coor-
dinates with the transformation sequence

R
camy

* R
camx

* R
camz

* T
cam

Note that the rotation and translation steps have been reversed, and the matrices are not
inverted. It’s interesting to also note that the camera is really nothing more than a unit vector
located at (cam_x, cam_y, cam_z), with orientation (ang_x, ang_y, ang_z).

In practice, you need to compute the matrix T
wc

, which equals (T
cam

-1 * R
camy

-1 * R
camx

-1 *
R

camz
-1). You can do this manually on paper and arrive at a single matrix that you can just

initialize, or you can define the independent matrices and then multiply them together
one by one and then use the result. Either way is fine, because you will only need to
compute the world-to-camera transformation once per frame, and a couple matrix multi-
plies isn’t going to kill you.

However, if you did want to manually compute T
wc

, it can be computed using algebra to
simplify the matrix multiplies, and the resulting matrix will have the inverse translation
along with the (R

camy
-1 * R

camx
-1 * R

camz
-1) rotations all in one matrix. However, I want to

hold off on this until later, because it’s really nothing more than an exercise in algebra.
For now, let’s just use our formulas for translation and rotation and let the computer do
the work:

// given the camera is at (cam_x, cam_y, cam_z) with

// view angle (ang_x, ang_y, ang_z) and a camera

// rotation sequence of y*x*z we have the following:

// here’s the translation matrix

MATRIX4X4 Tcam_inv = { {1, 0, 0, 0},

{0, 1, 0, 0},
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{0, 0, 1, 0},

{-cam_x, -cam_y, -cam_z, 1} };

// now we need the rotation matrices for x,y,z

// and remember the angles are ang_x, ang_y, ang_z

// here’s the inverse rotation matrix for the x-axis

// remember all you need to do is plug in negative theta

// into the matrix and you will get the inverse rotation

// relative to positive theta

MATRIX4X4 Rcamx_inv = {

{1,   0,           0,           0},

{0,   cos(-ang_x), sin(-ang_x), 0},

{0,  -sin(-ang_x), cos(-ang_x), 0},

{0,   0,           0,           1}};

// here’s the inverse rotation matrix for the y-axis

// remember all you need to do is plug in negative theta

// into the matrix and you will get the inverse rotation

// relative to positive theta

MATRIX4X4 Rcamy_inv = {

{cos(-ang_y), 0,  -sin(-ang_y), 0},

{0,           1,   0,           0},

{sin(-ang_y), 0,   cos(-ang_y), 0},

{0,           0,   0,           1}};

// finally, here’s the inverse rotation matrix for the z-axis

// remember all you need to do is plug in negative theta

// into the matrix and you will get the inverse rotation

// relative to positive theta

MATRIX4X4 Rcamz_inv = {

{cos(-ang_z), sin(-ang_z),  0, 0},

{-sin(-ang_z), cos(-ang_z), 0, 0},

{0,            0,           1, 0}

{0,            0,           0, 1}};

// now were ready to go, let’s multiply them all together

// Tcam_inv * Rcamy_inv * Rcamx_inv * Rcamz_inv

MATRIX4X4 Mtemp1, Mtemp2, Tcam;
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Mat_Mul_4X4(&Tcam_inv, &Rcamy_inv, &Mtemp1);

Mat_Mul_4X4(&Rcamx_inv, &Rcamz_inv, &Mtemp2);

// watch your order!

Mat_Mul_4X4(&Mtemp1, &Mtemp2, &Tcam);

// and now we are finally ready to transform the world

// coords to camera coords

for (int vertex = 0; vertex<8; vertex++)

{

// multiple the vector/point cube_world[]

// against the final camera matrix, note

// that the matrix multiply assumes that there

// is a phantom w=1 to make the matrix op

// valid

Mat_Mul_VECTOR3D_4X4(cube_world[vertex],

&Tcam,

cube_camera[vertex]);

} // end for

MATH

If you want, you can simplify the sin() and cos() terms in the matrix definitions using the iden-
tities sin(-x) = -sin(x) and cos(-x) = cos(x). However, I want you to see the negative signs
and see how easy it is to compute the inverse of any rotation matrix.

At this point, we can further annotate our 3D viewing pipeline to add the world-to-camera
transformation and arrive at the flow diagram shown in Figure 6.22. However, the diagram
isn’t really accurate. It’s missing some intermediate steps, like object removal and clipping,
but we will get to them shortly.

Final Word on Camera Coordinates
One last thing I want to bring to your attention is that the world-to-camera transforma-
tion depends on the representation of the virtual camera that you select. In this introduc-
tory chapter, we are using a fairly primitive camera system that has lots of problems, such
as gimbal lock.
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FIGURE 6.22 The 3D pipeline with the camera transformation added.
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Gimbal lock occurs when you rotate one axis to the point that it becomes aligned with
another, and further rotation on that axis results in no motion at all. For example, take a
look at Figure 6.23. In the figure, if we first rotate the camera around the y-axis 90 degrees
so that it aligns with the x-axis, trying to rotate around the x-axis does nothing—this is
gimbal lock.
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Alas, there are better camera systems, based on a more natural representation of a camera,
taking into account its position and orientation in terms of a focal point (or “look at”
point, as shown in Figure 6.24), but we will get into that in more detail in the next
chapter.

Hidden Object/Surface Removal and Clipping
Everything you have just learned is correct, but there are two topics I purposely left out
because they really don’t have anything to do with coordinates: hidden surface/object
removal and clipping. Both of these topics are going to take some time to explain, so right
now all I want to do is make you aware that we need to consider them in the 3D pipeline.
Therefore, let’s take a minute to talk about them, beginning with hidden object/surface
removal.

When you perform the world-to-camera transformation (or before you perform it), there
are a number of tests you can perform to determine what objects are visible to the camera.
These tests are generally classed as hidden surface removal. That is, we need to determine
what objects and/or geometry are visible to the camera, so that we don’t mistakenly try to
render them (or more importantly, not to push the objects through the camera transfor-
mation in the first place). With that in mind, two tests are generally performed: back-face
removal and the bounding spheres test.
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Back-Face Removal
In Figure 6.25, we see an object and we see the camera. However, right now the coordinate
system is still in world coordinates. The back-face removal test is performed before the
world-to-camera transformation in world-space. This test is used to limit the number of
polygons that are transformed from world-to-camera coordinates that would be impossible
to see because they are facing away from the viewpoint.
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The logic of the back-face test works in the following way: All polygons that make up each
object are labeled in a consistent way, either clockwise or counterclockwise (it doesn’t
matter). Then a surface normal n

s
is computed with that knowledge for each polygon, and

this normal is tested against the viewing vector v, as shown in Figure 6.25. If the angle
between the normal and the viewing vector is less than or equal to 90 degrees, the
polygon is visible to the viewer (of course, for two-sided polygons, this test doesn’t work).
Using this test, we can trivially reject half the geometry of each object.

The test itself is performed with the dot product, based on the fact that any pair of vectors
that are dotted together have the following properties:

• u.v = 0, if and only if the angle between u and v is 90 degrees or pi/2 radians.

• u.v > 0, if and only if the angle between u and v is less than 90 degrees or pi/2
radians.

• u.v < 0, if and only if the angle between u and v is greater than 90 degrees or pi/2
radians.
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Thus in our data structures that define objects as meshes of polygons (which we will get to
shortly), we have a flag that indicates that a polygon is one-sided, so we can apply this
test and filter out a great deal of the polygons from the expensive world-to-camera trans-
formation with the following pseudo-code:

if (n
s
. v) > 0)

{

// poly is visible

} // end if

NOTE

You might decide that polygons that are exactly 90 degrees relative to the view direction are
visible, too—that is, polygons that are on edge, or scathing. However, this can cause problems
with rendering, because these polygons will usually have a width of one pixel.

Bounding Spheres Test
After you perform the back-face removal step and filter out as many polygons in world
coordinates from the camera position as you can, you then transform all the objects from
world coordinates to camera coordinates. However, you can do one more test before you
perform the back-face removal step at an even higher level. In fact, you should probably
do this test before you perform the back-face removal, so you can throw entire objects
away. However, this test only works if you have objects that are partitioned in convex
areas. In other words, if you have a gameworld that takes place in space, for example, you
can locate each asteroid and ship and put bounding boxes (or spheres) around them. On
the other hand, with an indoor game composed of a single mesh, the world won’t work
with this type of test. However, you can surely partition rooms or areas and so forth. The
point is simply this: Try to prevent large areas of the game geometry from being processed
if they aren’t visible whenever possible.

The idea of the test is to create a bounding sphere around all the objects in world space, as
shown in Figure 6.26. Then you perform the world-to-camera transformation with only
the center of the spheres (a single point). Then you test to see whether the spheres are
contained within the viewing frustrum. If they aren’t, you can throw the entire object
away. If the spheres are partially contained in the frustrum, the test is inconclusive, and
further testing is needed.

Therefore, if you have a world that is composed of objects composed of polygons, your
first step might be to compute a bounding sphere around each object in world-space,
performing the world-to-camera transformation only on the spheres (which are defined by
a single point), and then testing whether the spheres are within the camera’s viewing frus-
trum. Objects that aren’t in the viewing frustrum at all would be thrown away. You must
continue on with the back-face removal and finally perform the world-to-camera trans-
form for the remaining polygon mesh geometry that is neither a back-face nor out of the
viewing frustrum.
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FIGURE 6.26 Placing a bounding sphere around objects to test for view frustrum culling.

Although I don’t want to get into the details of the bounding sphere algorithm until we
have a working wire-frame 3D engine, let’s take a quick look at the math. The problem is
very simple. Assume that we have an object O, which is a collection of vertices. We
compute a bounding sphere around the object by determining the farthest vertex from the
center of the object (this can be done ahead of time in a loading phase, rather than in real
time), which is in essence its maximum radius. A possible algorithm is shown in the
following, which you would run in local/model coordinates in most cases:

POINT3D cube_model[NUM_VERTICES]; // our 3D model

float max_radius = 0; // set to 0

float curr_radius;

// iterate thru the vertex list and keep updating

// the radius with the largest radius

for (int vertex=0; vertex < NUM_VERTICES; vertex++)

{

float x=cube_model[vertex].x;

float y=cube_model[vertex].y;

float z=cube_model[vertex].z;

// have we found a larger bounding sphere?

if (curr_radius = sqrt(x*x + y*y + z*z) > max_radius)

max_radius = curr_radius;

} // end for
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Of course, I’m being pretty brutal by using sqrt(), and I could get along with an approxi-
mation, or even by using the 1-norm. That is, simply find the vertex that has the largest
distance2, and then take the sqrt() to find the real distance:

POINT3D cube_model[NUM_VERTICES]; // our 3D model

float max_radius = 0; // set to 0

float curr_radius;

// iterate thru the vertex list and keep updating

// the radius with the largest radius

for (int vertex=0; vertex < NUM_VERTICES; vertex++)

{

float x=cube_model[vertex].x;

float y=cube_model[vertex].y;

float z=cube_model[vertex].z;

// have we found a larger bounding sphere?

if (curr_radius = (x*x + y*y + z*z) > max_radius)

max_radius = curr_radius;

} // end for

// compute real distance now

max_distance = sqrt(max_distance);

TIP

The preceding trick works because if |a| > |b|, then a2 > b2, and the similar argument |a| < |b|,
then a2 < b2.

Either way, it doesn’t really matter, because you would run this algorithm in an initializa-
tion phase. After we compute max_radius, then we can do some work to create the bound-
ing sphere: With the center of the object in world coordinates, calling it the point p0(x0,
y0, z0) and its radius max_radius, we perform the world-to-camera transformation on the
point p0 as follows:

p1 = p0 * T
wc

Now, p1 is the center of our object’s bounding sphere in camera coordinates, as shown in
Figure 6.27. Here’s the fun part: We define six other points relative to p1 parallel to the 
+-x, +-y, and +-z axes that are a distance max_radius from p1, which define the boundaries
of the bounding sphere S around p1. Then we are ready to determine whether the bound-
ing sphere is within the viewing frustrum with some simple tests.
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FIGURE 6.27 The details of the bounding sphere tests.

In Figure 6.27 we see a top view of the x-z plane. The tests for the y-z plane are identical,
so we need not belabor them. There are a number of cases we need to consider—we need
to compare the bounding sphere to the viewing frustrum and determine whether it’s
totally outside, totally inside, or partially inside. If the bounding sphere S is partially
inside or totally inside, we simply include the entire sphere’s mesh in the data stream and
then perform further tests. At this point, you can either try and determine whether the
bounding sphere is inside or partially inside the viewing frustrum or completely outside—
it’s up to you. However, sometimes using negative logic is cheaper, so that’s the approach I
will take in this example.

Okay, the problem can be stated as follows in 2D: We have a circle that is defined by a
center p1 (x1,z1), along with four points that define its boundaries in the x and z direc-
tions, which are nothing more than

Center: p1(x1,z1)

Exterior points:
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p2(x1, z1+max_radius)

p3(x1, z1-max_radius)

p4(x1+max_radius, z1)

p5(x1-max_radius, z1)

Theorem: If any of the points p1–p5 are in the viewing frustrum, then the bounding
circle/sphere must be in the viewing frustrum.

Corollary: If none of the points p1–p5 are in the viewing frustrum, then no portion of
the bounding circle/sphere can be in the viewing frustrum.

Take your pick, but I usually use the corollary and try to trivially reject the entire sphere.
With that in mind, we need to really look at the viewing frustrum and come up with some
equations so we can quickly plug in the vertex values p1-p5 and make decisions. Referring
to Figure 6.26, the near and far clipping planes are fairly easy to test against. If either of
the following conditions are true, the object can’t possibly be in the viewing frustrum:

Far clipping plane conditional:

If (p3.z > far_z)

{

// object is not in viewing frustrum

} // end if

Near clipping plane conditional:

If (p2.z < near_z)

{

// object is not in viewing frustrum

} // end if

We always hope for those! The problem is that the sides of the viewing frustrum (right,
left, top, bottom) are defined by general planes. But again, we can use similar triangles or
the plane equations along with a dot product to determine the relative position of the
bounding sphere to the planes. For now, let’s just stick to the 2D case and assume a 90
degree viewing volume. With those assumptions, the problem boils down to determining
whether a point p (x,z) (for the x-z top-down case) is within the triangle defined by the
left and right sides of the viewing frustrum. This can be solved with similar triangles.

However, if you’re paying attention, there’s an easier way. Remember that for a viewing
volume of 90 degrees, the plane equations for the right and left sides of the frustrum are

|x| = z

Therefore, for a point p (x,z) that we want to test against the right clipping plane, if x < z,
it means that the point p is on the left half space of the plane. If x > z, it means that the
point is on the right half space of the plane, and x = z means the point is right on the
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clipping boundary itself. A similar argument can be used for the left clipping plane, but
the sign of x is simply inverted. With that in mind, we can complete our rules for the left
and right clipping planes for 90 degree FOV:

Right clipping plane conditional:

if (p5.x > p5.z)

{

// object is not in viewing frustrum

} // end if

Left clipping plane conditional (note the sign and comparison inversion because the left
clipping plane has the equation –x = z):

if (-p4.x > p4.z)

{

// object is not in viewing frustrum

} // end if

The same argument can be made for the top and bottom clipping planes; thus the general
rules to test whether a point p (x,y,z) is outside the viewing frustrum are as follows:

if ((z > far_z)   || (z < near_z) || // z-axis

(fabs(x) < z) || // x-z plane

(fabs(y) < z))   // y-z plane

{

// point not in viewing frustrum

} // end if

Now all you have to do is pick the right points to test—in this case, p1–p5—with the
preceding rule.

NOTE

All this stuff sounds good, but remember one thing: So much depends on your data structures
and representations of your objects. It might be that your whole game is composed of free poly-
gons, and there’s no real containable “objects.” Perhaps it’s pointless to remove back-faces,
because meshes are based on vertex lists that must be transformed anyway, and there’s no real
“polygon” list that is a separate entity from the vertices that make up the object that the poly-
gons skin. Or maybe all your objects are semitransparent, and thus all polygons have two sides.
Alas, in many cases backface removal may not make sense. 

Limitations of Object Removal
Before moving on, I want to bring up one point about object removal, which is this rule:
If an object’s bounding sphere is not in the viewing frustrum, the object itself cannot
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possibly be in the viewing frustrum. However, the opposite is not true: If a portion of the
bounding sphere is inside the viewing frustrum, that does not necessarily mean the object
is! Why? Because the bounding sphere might not be a good representation of the object.
For example, take a look at Figure 6.28, where we see a very long object’s bounding sphere
and the viewing frustrum. Interestingly enough, the bounding sphere is in the viewing
frustrum, although the object is not! This doesn’t mean that the bounding sphere test
doesn’t work; it just means that it might not filter out all objects that are not in the
viewing frustrum. Hence, sometimes bounding geometries that are geometrically more
appropriate for the object are used, such as cubes or parallelepipeds.
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FIGURE 6.28 A bounding sphere might not be the best choice. 

That’s about it for the quick tour of object and back-face removal. Now take a look at
Figure 6.29 to see our updated 3D pipeline—notice we’re still a long way from the screen!

Perspective Coordinates
Now we’re getting somewhere! Let’s reiterate the major stages of the 3D pipeline:

Stage I: All 3D objects are usually defined in their own local space with their own local
coordinate system. This representation is called the local or model coordinates representa-
tion.

Stage II: After you have all the 3D models that you want to place in the virtual 3D
world, you place them by transforming the model coordinates to world coordinates. This
is achieved with the local-to-world transformation. Furthermore, this transformation is
nothing more than a translation of the vertices that make up each model to the desired
center position at which you want the object placed in the world. Be careful not to frag
your model coordinates in the process—you need another array to hold the results!
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FIGURE 6.29 The 3D pipeline with back-face and object removal added.

Stage III: After you have all your objects placed in the world and they are defined with
absolute world coordinates, you need to view the world through a virtual camera. There
are a number of ways to represent the camera, but a position and orientation will suffice.

Stage IV: You might have a hidden object/surface back-face removal step at this point
that minimizes the amount of geometry that is transformed to camera coordinates. You
might first try to remove entire objects, and then for objects that remain visible, remove
back-faces.

Stage V: There are a number of ways to compute how the objects would look through the
lens of a virtual camera, but the process is greatly simplified when the camera is looking
straight down the z-axis located at the origin. With this in mind, the world-to-camera
transformation transforms all the geometry in the world as if the camera was at the origin
looking down the z-axis. The transform is nothing more than a series of inverse trans-
forms based on the translation and rotation transforms used to place the virtual camera.

Stage VI: Finally, with the camera at the origin (or similarly convenient position) with
view angles all 0 (depending on convention), we have a viewing frustrum that represents
what the camera’s virtual lens can see. This frustrum usually has a near clipping plane and
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a far clipping plane, along with both a horizontal and vertical field of view. Objects within
this frustrum are projected and rendered to the screen. This projection phase is the next
part we are going to talk about.

Getting Ready for Projection
Before we talk about perspective coordinates, let’s talk briefly about the entire projection
process and the viewing frustrum once again. Assume that we have a 3D object made of a
collection of vertices v[] that we want to render, and we have already performed all the
transformations. The object is in the viewing frustrum as shown in Figure 6.18. The ques-
tion is how to project this image onto the screen?

The answer is it depends on what you want to see. The first step is to look at the virtual
camera system a little more so we can explain with the relationship between the camera,
the world, and screen a little better.

Referring again to Figure 6.18, and assuming a 90 degree field of view system aligned to
the z-axis and looking in the +z direction (a nice left handed system), this is the system we
will use for the following discussion.

The Projection/Viewing Plane
The projection plane is where the action happens. Of course, the viewing frustrum itself
determines what we process, but ultimately the viewing plane is used to form the virtual
image of the 3D world, which is then used to display on the raster 2D screen. With our
first camera system, we have decided that the camera will finally be positioned at location
(0,0,0) looking straight down the +z-axis. With this setup, we can select the near, far, and
view plane anywhere we like. However, the selection of the view plane will make some
things easier or harder down the line in the viewing pipeline.

For example, because we are already assuming a 90 degree field of view, we can look at the
3D system from a top view without loss of generality, as shown in Figure 6.30, to arrive at
some facts. These facts can then be generalized to full 3D. First, the distance that we place
the view plane from the viewpoint (0,0,0) is sometimes called the viewing distance d.
Now, the selection of d has a lot to do with the perspective transform and its relationship
to the screen coordinates.

Now here’s the clincher—after we define all these values and then place a 3D object in the
frustrum, to render it onto the view plane we simply project mathematical projectors from
each point that make up the object through the view plane that terminate at the view-
point. This is all there is to projection! The image formed on the virtual view plane is then
rendered on the screen of your computer.

Of course, there are some details we are missing here that have to do with scale, but we
will get to that in a minute. At this point, let’s take a closer look at the perspective trans-
formation.
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FIGURE 6.30 A simplified 2D top-down projection of the viewing frustrum in the x-z plane.

The Perspective Transformation
The perspective projection is nothing more than projecting an object’s vertices through an
arbitrary view plane, as shown in Figure 6.31. The formulation is as follows: Given that
the view plane is a distance d from the point of projection (the camera viewpoint), then
the math can easily be worked out to compute the intersection point in the view plane of
a ray from the viewpoint through the view plane to a point on the object, or vice versa.

This geometry problem can be worked out using the 2D case and then generalized to the
3D case, so let’s do that. In Figure 6.31, we see our 3D system on its side viewing the y-z
plane. We also see a point p(y0,z0) that we want projected on our view plane, which is
located a distance d from the origin at position z = d. The math is trivial, and nothing
more than similar triangles that can be stated as follows: The side d is as to z as the y

p
is to

y. Thus, we can write the relationship as

d/z0 = y
p
/y0
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FIGURE 6.31 The construction of the perspective transform.

Rearranging this, we get

y
p
= d*y0/z0

which means that the projected point y
p

on the projection plane z = d from the projection
point (0,0,0) (which is the camera, of course) is equal to the product of the distance from
the camera d multiplied by y0, then divided by z0. Additionally, if we were to do the same
analysis from the x-z plane, we would get the following relationship:

d/z0 = x
p
/x0

Rearranging here, we get

x
p
= d*x0/z0

Putting them together, we get the final perspective transformation for a view plane located
at z = d from the viewpoint located at (0,0,0):

FORMULA 6.4 The Perspective Transformation

x
per 

= d*x/z

y
per

= d*y/z
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First let’s talk a little about problems with this formula. There’s a pole at z = 0. That is, the
equations go to infinity when z = 0, which is a bad thing. Alas, you can’t project vertices
with z = 0. Furthermore, objects with negative z values will get inverted, but still
projected. That’s why we need a near clipping plane, so this stuff can’t happen.

NOTE

There’s also a parallel or orthographic projection that is sometimes used in 3D for mechanical
and CAD programs. In this projection, the z coordinates are simply thrown away. Of course,
there’s no perspective, but many times when designing parts and homes, you don’t want to see
any perspective. Thus, during the projection phase of a vertex (x0,y0,z0), the point is simply
projected at (x0,y0), and sometimes z0 is used as an intensity value to shade the near imagery
relative to z distance.

As always, let’s take a look at the perspective transformation in terms of a code and a
matrix formulation. The perspective transformation is very simple in terms of code. But
we have to use homogenous coordinates—period! The reason is that there’s no easy way to
get a division by z with a matrix that doesn’t contain z for each vertex, so hold that
thought and look at how we would do the transform with brute force:

POINT3D cube_camera[8]; // used to hold camera coordinates

POINT3D cube_per[8]; // used to hold perspective coordinates

// perform the perspective transform on the camera

// coordinates, assume viewing distance is d

for (int vertex = 0; vertex<8; vertex++)

{

float z = cube_model[vertex].z;

cube_per[vertex].x=d*cube_camera[vertex].x/z;

cube_per[vertex].y=d*cube_camera[vertex].y/z;

// we don’t need this, so just copy it

cube_per[vertex].z=cube_camera[vertex].z;

} // end for

Brute force is good sometimes, isn’t it? Hence, we can perform the perspective transform
as shown and be done, but if we want to create a completely matrix-based system, we
have to be able to represent everything with matrices. Therefore, here’s the matrix T

per 
that

performs the perspective transformation on 4D homogenous coordinates.

|1    0    0    0   |

T
per

=    |0    1    0    0   |

|0    0    1    1/d |

|0    0    0    0   |
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Let’s see whether it works with an example point in camera coordinates p = [x
c

y
c

z
c

1]:

p * T
per

=

|1    0    0    0   |

[x
c
y
c
z
c
1] *    |0    1    0    0   |

|0    0    1    1/d |

|0    0    0    0   |

= [x
c,

y
c,

z
c,

(z
c
/d)]

Then if we divide the components (x,y,z) by w = (z
c
/d) to convert from homogenous coor-

dinates back to normal coordinates, we get the final point:

= [x
c
*d/z

c,
y
c
*d/z

c,
z
c
*d/z

c
]

And of course, we don’t need to even look at the z coordinate, because after projection, we
are only interested in the (x,y) coordinates, which are

x = x
c
*d/z

c

y = y
c
*d/z

c

This performs the perspective transformation via a matrix. However, this is the first time
we’ve had to convert from 4D homogenous coordinates back to 3D. We might want to
rethink whether we really need to perform the perspective transform using a matrix. The
answer is that it depends on how we build the engine. That is, do we want a totally
matrix-based system, or are we going to use matrices for the majority of the transforma-
tions, but in the quest for speed use simple code for operations like the perspective trans-
formation and screen transformation? We won’t worry about that right now, but it is an
issue.

We’re just about to slay the projection dragon, but there’s still another detail we need to
consider—the viewing distance d. What value should we pick for d? This is a good ques-
tion, but you might not like the answer: anything! Yes, you can pick anything you like for
d. Changing d will artificially change the scale of imagery that is the amount of perspec-
tive. So then, what’s the best d? I usually pick d in one of two ways. First, if I want to
really simplify my math, I select d = 1, which turns the perspective projection into the
following:

FORMULA 6.5 Perspective Projection with d = 1 (Normalized Coordinates)

x
per 

= 1*x/z

y
per

= 1*y/z
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The matrix for this operation is obtained by setting d = 1:

|1    0    0    0 |

T
per1    

= |0    1    0    0 |

|0    0    1    1 |

|0    0    0    0 |

If you perform the preceding operation, you are going to end up with normalized view
plane coordinates. In other words, all the vertices that are projected will fall in the range of
–1 to +1 on both the x and y axes. Additionally, you need to map the view plane coordi-
nates to screen coordinates for viewing. That is, map –1 to 1 on both the x and y axes to
the screen resolution of width×height. There’s a problem with this, though, because we are
mapping a square view plane to the view port, and the view port must be square.
Otherwise, one of the axes will end up being distorted, so in cases where the final view
port or screen is nonsquare, we must take this into consideration and give the view plane
the same ratio of width to height as the view port, or perform a secondary scaling on one
of the axes at some point from the perspective-to-screen coordinates transformation. More
on this later, but keep it in mind.

The other way to find d is to compute it based on the final screen coordinates that you
want to generate. If you are going to project onto a screen that’s 640×480, you can pick d
such that the field of view is 90 on the x-axis, and all projections will lie in the range
640×480. However, there’s a little problem here, because the x and y sizes are different.
That means that you would think you would need a d for both the x-axis perspective
transform and the y-axis transform. But if you use a different d for each, you will end up
distorting the image on the screen. So in the case where you are projecting onto a screen
of width×height and computing the d that gives a specific FOV for the x-axis, you MUST
use that same d for both the x and y perspective transforms, and the end result will be
that the y-axis field of view will be slightly different.

When you have a nonsquare projection view plane or view port, you need to be aware
that the nice square projection won’t work anymore, and that there’s a factor that relates
the x and y-axes together. This is called the aspect ratio. The aspect ratio is usually defined
as width/height, so in the case of a 640×480 screen, the aspect is 4:3, or 1.33333. This
number comes in handy during the perspective-to-screen projection for nonsquare view
planes. In this case, you must multiple the aspect ratio times the focal distance during the
perspective calculations.

Take a look at Figure 6.32 to see the construction and solution to find d. Then we simply
use the same d for the vertical axis because we must use the same focal length.

NOTE

As a side effect, the vertical field of view will not in general be the same as the horizontal field of
view, because the ratio of width/height is not 1.0.
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FIGURE 6.32 Computing d as a function of screen size and field of view.

FORMULA 6.6 Computation of Distance Values for Perspective Projection onto View Plane
with Dimensions (Width×Height)

d = (0.5)*width*tan(θ
h
/2)

Stated in plain English: The distance is equal to one half the width (or height, if you want
that to be the major axis) of the projection plane times the tangent of the viewing angle
divided by two. If you don’t follow this, just look closely at the figure and remember that
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tan(θ) = opposite/adjacent = y/x, and in this case, y is the distance and x is related to the
width.

Now that we have our distance factors for the projection onto a virtual view plane of size
width×height, let’s plug them back into the equations:

FORMULA 6.7a The Perspective Transformation onto a Square View Plane

x
per 

= d*x/z

y
per

= d*y/z

To generalize this, we need to add in the aspect ratio factor ar. We can do this by multiply-
ing it against the y component in the calculation—this generalizes the perspective trans-
form:

FORMULA 6.7b The Perspective Transformation Generalized to Nonsquare View Planes

x
per 

= d*x/z

y
per

= d*y*ar/z

And if you want to put it into matrix form the following matrix would perform desired
transform:

|d    0     0    0|

T
perd

=     |0    d*ar  0    0|

|0    0     1    1|

|0    0     0    0|

NOTE

Notice the repositioning of the d terms.

Given a point p [x
c

y
c

z
c

1], let’s multiply it against the matrix and check the results:

p * Tperd    =

|d    0     0    0|

[xc yc zc 1]  *    |0    d*ar  0    0|

|0    0     1    1|

|0    0     0    0|

= [(d*x
c
) (d*ar*y

c
) z

c
z
c
]
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Dividing the x,y components by the w component w = z
c
, we get

= [(d*x
c
)/z

c
(d*ar*y

c
)/z

c
1]

or

x = (d*x
c
)/z

c

y = (d*ar*y
c
)/z

c

which is identical to Formula 6.7b, and is indeed the transformation we were looking for!

The point is that you can do this stuff with either matrix or manual methods. You might
ask, why use a matrix at all? The answer lies in the fact that matrices are much more
convenient, and you can concatenate many matrix operations together: that is, M =
M

1
*M

2
*…M

i
*…M

n
. Thus, it’s possible to concatenate local object transforms with the local-

to-world, then world-to-camera, then camera-to-perspective, all in one matrix! The point
being if you have to multiply any point by a matrix, the matrix multiplier doesn’t know
that you have 100 operations in the single matrix. That’s the power of matrix multiplica-
tion, if you set it up right. But let’s move on, keeping that in the back of your mind.

Perspective Projection and 3D Clipping
Simply stated, the perspective projection operates on the camera coordinates of the
vertices of geometry that you want to display (which is determined in a previous step).
The perspective projection T

per
(or various derivatives that we have explored) basically

transforms the points in camera coordinates within the viewing volume onto the view
plane, readying them for display in the final step to screen coordinates, which we will get
to in a moment. However, there is another use for the perspective transformation in the
context of clipping: turning the pyramid shaped viewing volume into a cuboid shape.

In Figure 6.33, we have a simple 2D projection of what I’m talking about. Suppose that we
have two points p1(x1,y1,z1) and p2(x2,y2,z2) that define a line. We haven’t yet talked
about 2D or 3D clipping, but let’s talk about it now. Imagine that we have a single line
defined by p1 and p2, and that the line as it’s shown in Figure 6.33 is partially in the
viewing frustrum. Further assume that we have a wireframe 3D engine, so we need to draw
this line. The line can’t be removed with object removal because it really doesn’t define an
object, and the line doesn’t have a back-face because it’s not a polygon.

Basically we have to clip the line to the viewing frustrum to actually draw it. This step is
very important, because all objects that are totally contained within the viewing frustrum
can trivially be projected and rendered. Similarly, all objects that are entirely out of the
viewing frustrum can be trivially rejected. However, geometry that is partially within the
viewing frustrum must be clipped somehow, just as you would clip lines or bitmaps in a
2D window. Of course, I’m simplifying all this, and in real life, we are going to have to
clip polygons to the viewing frustrum, but bear with me.
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FIGURE 6.33 Simple clipping example.

There are two ways we can handle the line clipping—with the first method, we can
blindly perform the perspective projection of the line (assuming that z > 0 on both end
points), wait until we get to the rasterization phase of the 3D pipeline, and then clip the
line in 2D against the window. This is called image space clipping. In other words, image
space clipping involves waiting until all the objects to be rendered are already transformed
into screen coordinates (although they might be out of range of the screen) and then clip-
ping them in screen space or to the view port, as shown in Figure 6.34.

Image space clipping works great and is easy to implement, but it means that every single
object gets clipped in 2D—even the objects that are entirely in the viewing window. This
can be a great load on the processor, especially if you are rasterizing polygons and testing
on a per pixel basis. But in the case of drawing lines, image space clipping in 2D is proba-
bly cheaper than clipping in 3D (which I’ll explain in a minute).

The second way to clip is in object space; that is, in the mathematical space that the
object(s) or geometry exist in. If you recall, we tried to remove entire objects from the
pipeline and/or back-faces, so we didn’t have to transform them to camera coordinates.
This was an object space operation. However, some of the objects and geometry will of
course be visible in a game (or you wouldn’t have a game). Some of those objects will not
be totally in the viewing volume, and hence must be clipped against it. Therefore, the
problem boils down to this: Before you perform the perspective transformation on your
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geometry, if you want to perform object space clipping, all geometry (lines or polygons)
that are only partially in the viewing frustrum must be clipped in 3D space to the viewing
frustrum. This is called 3D clipping, and it is not trivial unless you’re Chris Knight.
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FIGURE 6.34 The image space clipping pipeline.

In general, we have been dealing with a viewing frustrum that is fairly simple: There’s a
near and far clipping plane, the sides of the frustrum on the x and y axes are at 90 degrees
FOV, and assuming a square projection plane, the plane equations are |x| = z and |y| = z,
but still, clipping a 3D line to these six faces can be tedious. If the view plane isn’t square,
|x| = z, but |y| = z/ar.

Additionally, if the four side walls are not based on a 90 degree viewing angle, it’s much
harder, because the plane equations will be in general form.

The point is if you first clip all the geometry that is partially within the viewing frustrum
to the viewing frustrum in 3D space (object space clipping) as shown in Figure 6.33, you
are guaranteed that all the projected geometry will lie within the view plane. As I’ve
mentioned, performing 3D clipping is a bit tricky, and when we get to it, you will see that
not only do the polygon vertices have to be clipped, but the texture and lighting coordi-
nates do, too—but more on that later in the book.

However, clipping to a cube or cuboid is much easier in 3D, because it’s basically like clip-
ping to a rectangle in each plane. Okay, now I can finally get to my point about the rela-
tionship between the perspective transformation and clipping. If you’re willing to perform a
perspective transformation on everything that is potentially visible, the perspective trans-
form itself will warp the viewing volume into a cuboid, and the four sides that were at
angles (90 degrees in our examples) will become parallel to each other on the x and y
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axes, and you will end up with a cube to which you can then clip your perspective coordi-
nates. Amazing, huh? Let’s see an example of this and see whether it’s true.

Because anything we do to one plane works the same for the others, let’s look at the top
view of the x-z plane of the viewing frustrum, labeled as shown in Figure 6.35a, with a far
clipping plane at z = far_z, a near clipping plane at z = near_z, and a projection, or view
plane, at d = 1. The view angle is of course 90 degrees, and let’s assume a square projection
plan. What we want to do is perform the perspective projection on the corner points of
the viewing pyramid (in the 2D case) and see what they look like after the transform. That
is, what is the shape of the viewing frustrum itself if we were to perspective transform it?
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FIGURE 6.35 The perspective projection magically converts the viewing frustrum to a cuboid
shape.

With that in mind, the points that make up the 2D projection on the x-z plane of the
viewing volume are p1–p6, and they have the following actual coordinates in the form
p(x,0,z):
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p1(-far_z, 0, far_z)

p2(far_z, 0, far_z)

p3(near_z, 0, near_z)

p4(1,0,1) ß- note the x components are 1 since d=1

p5(-1,0,1)

p6(-near_z, 0, near_z)

TIP

You might be concerned that the x components of some of the points are in terms of z. This is
because we are using a 90 degree field of view with a square projection plane; thus |x| = z, and
|y| = z, so at any z value from the origin, {x,y} = z.

Now watch this baby! If we perform the perspective projection on these points with d = 1
(that is, multiply each component by d), and then divide by z, we get this:

p1’(-far_z/far_z, 0/far_z, far_z)     = (-1, 0, far_z)

p2’(far_z/far_z, 0/far_z, far_z)      = (1, 0, far_z)

p3’(near_z/near_z, 0/near_z, near_z)  = (1, 0, near_z)

p4’(1/1, 0/1, 1)                      = (1, 0, 1)

p5’(-1/1, 0/1, 1)                     = (-1, 0, 1)

p6’(-near_z/near_z, 0/near_z, near_z) = (-1, 0, near_z)

Of course, we can ignore the y components, because we know we are in the x-z plane.

Now, let’s re-plot p1'–p6' and take a look at Figure 6.35b. Look, it’s a rectangle. Aha! We
have transformed the ugly pyramid into a nice clean rectangle, which is trivial to clip
against, even in 3D. Of course, we can perform the same analysis on the y-z plane and
come up with the same results. Merging them together, we get the new cuboid viewing
volume shown in Figure 6.35b. The point of this exercise is to show you that the perspec-
tive transform can also be used to normalize all the geometry, so you can clip it trivially. Of
course, you will see this in action in the upcoming chapters.

In conclusion, our 3D pipeline has more than just a perspective transform added onto it.
The pipeline has a possible 3D clipping phase (if you don’t want to clip in image space),
so our new pipeline with 3D clipping up to the perspective transform is shown in Figure
6.36. Additionally, if we decide to transform all geometry from camera coordinates
through the perspective transform, we can clip in 3D after the perspective transform, also
shown in Figure 6.36—it’s up to you how you want to do this.

Finally, let’s get to the last step in the viewing pipeline—screen coordinates.
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FIGURE 6.36 The next iteration of the 3D pipeline with the perspective transform and clip-
ping.

The End of the Pipeline: Screen Coordinates
Before I describe the screen coordinate transform component of the pipeline, let it be
known that we are still leaving out the entire lighting and texturing phases of the 3D
pipeline. These are advanced topics and not appropriate for this chapter, but at least make
note that somewhere between the world and screen coordinates we must light and texture
our polygons. But for now, let’s keep it simple, because I’m trying to stick to coordinate
transforms.
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At this point in the pipeline, we have a set of points that represent what we want to see
on the screen. These points have already passed through the perspective transform, but
may or may not be clipped to the final screen dimensions. For now, let’s just assume that
we don’t care and come back to it. However, computing the final screen coordinates does
rely on the type of perspective transform that took place; that is, what was the size of the
view plane in virtual space? This matters because we need to map it to the screen. So let’s
look at some of the cases.

Field of View 90 Degrees with View Plane at d = 1
With a field of view of 90 degrees and the view plane at a distance d = 1 with a square
projection plane, the perspective transform transforms all geometry and projects it onto a
virtual view plane of width and height 2×2 (x:{-1 to 1} X y:{-1 to 1} ). In the case of a
nonsquare projection plane (the more common), the perspective projection projects every-
thing onto a virtual view plane of width and height 2×(2/ar) (x:{-1 to 1} X y:{-1/ar to 1/ar}
), where ar is of course the aspect ratio. The cool thing is when we get to the screen trans-
form, we don’t care about this anymore, because we assume that the perspective transform
handled the aspect ratio. However, it’s VERY important that somewhere the aspect ratio is
taken into consideration—otherwise, your imagery will be squished!

In any case, the projections can be verified for your sanity by viewing Figure 6.37. So, we
want to map coordinates from the view plane, which is 2×2 for square projections and
2×(2/ar) for nonsquare projections, to our view port or screen coordinates. Read that
sentence once more—we want to map the view plane coordinates onto the view port.
Remember that the view plane is in virtual camera space, and may or may not have the
same dimensions as the view port, which is the final raster window.

This transformation step can be interpreted in different ways, but the way we are going to
assume that things work for now is that we render into a view port buffer with origin (0,0)
at the upper left-hand corner with dimensions (SCREEN_WIDTH × SCREEN_HEIGHT), as shown
in Figure 6.38. In this case, the width and height are equal. This is the exact setup of the
virtual computer system we designed back in Chapters 2 and 3.

With this in mind, we merely have to come up with the following transform from view
plane coordinates to screen coordinates (which is our view port):

x
per
: (-1 to 1)       -> x

screen
: (0 to SCREEN_WIDTH-1)

y
per
: (-1/ar to 1/ar) -> y

screen
: (SCREEN_HEIGHT-1 to 0)

NOTE

The y-axis is inverted, and details count here, boys and girls—we can’t afford to be “off by one;”
we need to be perfect!
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FIGURE 6.37 Projection details for FOV = 90 and d = 1 onto 2×2 projection plane.
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There are a number of ways to derive the math here, but the easiest is to find the center of
the screen and transform from there. However, there is one thing to remember: The y-axis
is inverted, so we need to take that into consideration. With that in mind, to transform
the point p(x,y) to screen coordinates, we use the following transform:

FORMULA 6.7 Conversion to Screen Coordinates for d = 1 Case

x
screen

= (x
per

+1)*(0.5*SCREEN_WIDTH-0.5)

y
screen

= (SCREEN_HEIGHT-1) – (y
per

+1)*(0.5*SCREEN_HEIGHT-0.5)

Let’s test this with some boundary conditions, like the four points that make up the
bounding box of the view plane and transform them to screen coordinates. Performing
this operation with Formula 6.7 we get

p1(-1,1)     = p1’(0, 0)

p2(1,1) = p2’(SCREEN_WIDTH-1, 0)

p3(1,-1)    = p3’(SCREEN_WIDTH-1, SCREEN_HEIGHT-1)

p4(-1,-1)    = p4’(0, SCREEN_HEIGHT-1)

which is exactly the bounding box of the addressable screen with extents (SCREEN_WIDTH ×
SCREEN_HEIGHT). Of course, there are a number of ways that you can formulate the screen
transformation by multiplying out the terms and collecting them in different ways. For
example:

x
screen

= (x
per

+1)*(0.5*SCREEN_WIDTH-0.5)

= (x
per

)*(0.5*SCREEN_WIDTH-0.5) +

(0.5*SCREEN_WIDTH-0.5)

And if we let α = (0.5*SCREEN_WIDTH-0.5), we get

x
screen

= α + xper*α

y
screen

= (SCREEN_HEIGHT-1)–(yper+1)*(0.5*SCREEN_HEIGHT-0.5)

= -(y
per

)*(0.5*SCREEN_HEIGHT-0.5) –

(0.5*SCREEN_HEIGHT-0.5) + (SCREEN_HEIGHT-1)

= -(y
per

)* (0.5*SCREEN_HEIGHT-0.5) + (0.5*

SCREEN_HEIGHT-0.5)

If we let β = (0.5*SCREEN_HEIGHT-0.5), we get

y
screen

= β – yper*β
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Thus, we have the following final results:

x
screen

= α + x
per

*α
y
screen

= β – y
per

*β

where α = (0.5*SCREEN_WIDTH-0.5), and β = (0.5*SCREEN_HEIGHT-0.5).

What’s interesting is that (α,β) is the exact center of our view screen (SCREEN_WIDTH ×
SCREEN_HEIGHT), which makes sense because we are mapping (0,0) there. The cool thing
about the preceding formulation is that it’s much easier to put in matrix format. However,
we are at the point were we are really dealing with 2D screen coordinates, and using 4D
homogenous coordinates isn’t necessary. That is, if our perspective points are in the form
(x,y), there’s no point in using a 4×4 matrix. You could use a 3×3 matrix if you want.
Sometimes it’s nice to just keep everything in 3×3 or 4×4 matrices and disregard the z
component at some point—whatever you decide is up to you, but I will show you both
just to be complete.

With that in mind, let’s look at a 4×4 version of the transformation, assuming that the
view plane coordinates in perspective are in the form [x

per
, y

per
, z, 1], where z is irrelevant

and could be zero because it’s already served its usefulness. Because this is the perspective-
to-screen transform for viewing distance d = 1, we will call the matrix T

scr1
:

|α 0    0    0 |

T
scr1    

=    |0    -β 0    0 |

|0    0    1    0 |

|α β 0    1 |

And if we multiply a test point p = [x
per

y
per

0 1], we get

p* T
scr1     =

|α 0    0    0 |

[x
per

y
per

0 1]  *     |0    -β 0    0 |

|0    0    1    0 |

|α β 0    1 |

[x
per

*α + α, -y
per

*β + β, 0, 1]

And picking off the (x,y) components we get:

x = x
per

*α + α
y = -y

per
*β + β

which is correct! Of course, that was a lot of excess drama, because we could just use the
preceding formula and forget the matrix transform! Remember: the idea is that at some
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point, we might be able to do 50 different things in a single matrix by concatenation, so
that’s why we’re learning how to do everything in a matrix. Let’s move on to a second
example, assuming that we have a single 2D point (x

per
, y

per
) that represents the point that

we want to transform into screen coordinates with a matrix, as we did previously. The
problem is that we need to get a translation by (α,β), so we need homogenous coordinates.
What we’re going to do is use homogenous 2D coordinates—which will look like 3D coor-
dinates, but with an (x, y, w)—then we can use a 3×3 matrix to perform the screen trans-
form. With that in mind, let’s say we want to transform the point p (x

per
, y

per
, 1) to screen

coordinates, with d = 1 as usual. This matrix would do the trick:

|α 0    0 |

T
scr1    

=    |0    -β 0 |

|α β 1 |

And if we multiply a test point p = [x
per

y
per

1], we get

p * T
scr1    

|α 0  0 |

[x
per

y
per

1]  *     |0    β 0 |

|α β 1 |

[x
per

*α + α, -y
per

*β + β, 1]

Picking off the (x,y) components, we get

x = xper*α + α
y = -yper*β + β

which is again correct! My point is that you can do this stuff in a number of ways. Finally,
let’s look at some code to perform this operation, assuming that the perspective coordi-
nates are already in the array cube_per[8]:

POINT3D cube_per[8]; // used to hold perspective coordinates

POINT2D cube_screen[8]; used to hold screen coordinates

// perform the perspective to screen transform

// on the perspective coordinates, assume screen has

// dimensions SCREEN_WIDTH x SCREEN_HEIGHT and

// view plane is at d=1 so perspective coords are

// normalized to –1 to 1 on each axis

// pre-compute alpha and beta

alpha = (0.5*SCREEN_WIDTH-0.5);

beta  = (0.5*SCREEN_HEIGHT-0.5);
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// loop and transform

for (int vertex = 0; vertex<8; vertex++)

{

cube_screen[vertex].x=alpha+alpha*cube_per[vertex].x;

cube_screen[vertex].y=beta-beta*cube_per[vertex].y;

} // end for

As you can see, doing the transformation manually without matrices is a lot less complex.

NOTE

Although I am being cavalier with the definitions of view plane, viewport, and screen coordi-
nates, remember that the view plane is what we initially project on in virtual space, and the view-
port is the window that we map the view plane coordinates on (which in many cases is the exact
same as the screen window).

View Plane with Arbitrary Field of View and General Viewing Distance d
Now that you’ve seen the construction of the perspective-to-screen transformation where
d = 1, and the field of view is 90 degrees where the view plane coordinates in perspective
space are normalized to –1 to 1 (on each axis for square projections), let’s talk about the
more general case, where we compute the d’s like this:

d = (0.5)*viewplane_width*tan(θ
h
/2)

Remember, in this case we solve for d based on the major axis (usually the x) field of view
angle: θ

h 
(which would normally be 90 degrees for a square projection plane, but could be

anything in this case). Additionally, we need the view plane dimensions we want to
project the final image on, which would be (SCREEN_WIDTH × SCREEN_HEIGHT) in case we
want the view plane to be the same size as the screen or view port. However, we need to
be careful, because screen coordinates have the following ranges:

x: (0..SCREEN_WIDTH-1)

y: (0..SCREEN_HEIGHT-1)

So, in the previous formulas, we must replace viewplane_width and viewplane_height
with the slightly different ranges (SCREEN_WIDTH-1) and (SCREEN_HEIGHT-1), like this:

d = (0.5)*(SCREEN_WIDTH-1)*tan(θ
h
/2)

This calculation will give us the correct d value if we want to merge the perspective trans-
form and screen transform into one. However, the SCREEN_HEIGHT seems to have been left
out—NO! Normally, we first project the image onto the view plane with a focal distance d
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for both the x and y axes, with the view plane size {x:-1 to 1, y:-1/ar to +1/ar}. Then we
would map that onto the screen by multiplying by the SCREEN_WIDTH and SCREEN_HEIGHT
on the x and y axes. But, because the ratio of SCREEN_WIDTH/SCREEN_HEIGHT is exactly the
aspect ratio ar, the multiplication and division cancel out. Thus, when you map directly to
the screen without the intermediate step of first going to view plane coordinates and then
to viewport screen coordinates, the aspect ratio terms cancel out, and you are left with

x
per

= (d*x
c
)/z

c

y
per

= (d*y
c
)/z

c

The results will already be scaled to (SCREEN_WIDTH × SCREEN_HEIGHT), so you get the screen
transformation free during the perspective transformation! Well, almost. There are a
couple problems with this … Give up? First, the y-axis is inverted for raster display,
because 0 is at the top of a raster display and at the bottom of quadrant I (which is where
the projection is working). That’s no problem: We can simply invert the y coordinates:

y
per

= (SCREEN_HEIGHT – 1) – y
per

x
per

= x
per

The second problem is a bit more subtle, and much worse. Although the projection will
have a total range of (SCREEN_WIDTH-1) on the x-axis and (SCREEN_HEIGHT-1) on the 
y-axis, the actual coordinates pumped out will be in the range of

X-axis: -(SCREEN_WIDTH-1)/2 to (SCREEN_WIDTH-1)/2

Y-axis: -(SCREEN_HEIGHT-1)/2 to (SCREEN_HEIGHT-1)/2

Centered about (0,0), the range is split into a positive and negative half about zero on
each axis! Just as the normalized projection gave us coordinates –1 to 1 on each axis, we
now have similar, although scaled, coordinates. Alas, although we’ve gotten rid of our
post-perspective normalized-to-screen transform scaling operation, it looks like we are still
stuck with some translation of the origin. This is true, but we can fix it, along with the 
y-axis inversion, with this simple transform after the initial perspective transform:

x
screen

=  x
per

+ (0.5*SCREEN_WIDTH-0.5)

y
screen

= -y
per

+ (0.5*SCREEN_HEIGHT-0.5)

If you analyze the preceding operations, you will come to the conclusion that they are
almost identical to the normalized screen projection without the scaling operation. So, as
you can see, this projection stuff all ends up being the same thing in the end—it’s just
how you want to think about it. In fact, if we let a = (0.5*SCREEN_WIDTH-0.5) and b =
(0.5*SCREEN_HEIGHT-0.5) as before, we have Formula 6.8:
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FORMULA 6.8 Screen Projection from View Plane Scaled Coordinates to Viewport
Coordinates

x
screen

=  x
per

+ α
y
screen

= -y
per

+ β

And in matrix form, we have only to perform the translation to (x
per

, y
per

). Thus the trans-
form, called T

scr
, would be

|1    0    0    0 |

T
scr    

=    |0    -1 0    0 |

|0    0    1    0 |

|α β 0    1 |

The preceding transform only differs from our more complex normalized-to-screen coordi-
nate transform shown in the following by only the scaling factors (α,β) multiplied by x

per

and y
per

, respectively, which does nothing more than scale the view plane to a size (|2*α| ×
|2*β/ar|), because the actual coordinate range is from x: (-α to α) and y: (-β to β):

x
screen

= α + x
per

*α
y
screen

= β – y
per

*β

The point is that we can scale the view plane coordinates before the screen transform as
part of the perspective transform (but this gives us non-normalized coordinates), or we can
scale the normalized coordinates to screen (view port) coordinates during the perspective-
to-screen transformation.

Finally, we come to my last point—we have seen how to perform the perspective trans-
form in its two flavors: normalized and view plane scaled to viewport, along with the two
screen transforms that handle these previous types of perspective projections. But there’s
one little detail that I want to bring up—the conversion from homogenous 4D coordinates
to 3D in the middle of the process. We have assumed that we are breaking the perspective
transform and the screen transform up into two matrix multiplies with a quick homoge-
nous-to-3D conversion of each vertex between the two transforms, but what if we want to
perform the entire camera-to-screen transform all at once, both manually and with a
single matrix? Let’s look at it manually first.

Basically, we would perform the perspective transform along with scaling and translation
all at once, and the math would look like this:

x
screen

=  d*x
cam

/z
cam

+ (0.5*SCREEN_WIDTH-0.5)

y
screen 

= -d*ycam/z
cam

+ (0.5*SCREEN_HEIGHT-0.5)

Amazingly trivial, huh? Anyway, the simplicity of the preceding math is why many
engines (mostly software) don’t use matrix-based perspective and screen transforms. After
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vertices are in camera coordinates, the preceding two lines of code are used to transform
all the way from camera coordinates to screen coordinates. But if we want to use a single
matrix operation, it’s a bit tricky because we have to assume 4D homogeneous coordi-
nates, and that there will be a final conversion from homogenous to 3D (actually 2D) at
the end via the division by w. With that in mind, take a look at the following matrix,
which is a first attempt:

|d    0     0    0|

T
camscr

=     |0    -d    0    0|

|0     0    1    1|

|α β 0    0|

That looks about right. Let’s try it out with a vertex in camera coordinates p = [x
c

y
c

z
c

1]:

p*T
camscr

= [d*x
c
+ α, -d*y

c
+ β, z

c
, z

c
]

Although this looks right, when we convert from 4D homogenous coordinates to 3D, we
divide x,y by w = z

c
and get

x
screen

=  d*x
c
/z

c
+ [ α/z

c ] <- last terms are wrong
y
screen

= -d*y
c
/z

c
+ [ β/z

c ]

which is almost correct, but during the 4D to 3D conversion, we had to divide everything
by w = z

c
, resulting in the α and β terms being wrong (see the factor of z

c
in the denomi-

nator of each). So what we need to do is scale them by z
c

in the initial matrix, so that
during the final conversion from homogenous coordinates to 3D, we get what we want.
We can accomplish this by moving the α and β factors in the matrix up a row:

|d    0    0    0|

Tcamscr    =     |0    -d   0    0|

|α β 1    1|

|0    0    0    0|

If we perform the same multiplication of the camera vertex p = [x
c

y
c

z
c

1], we get

p*T
camscr

= [d*x
c
+ zc*α, -d*y

c
+ zc*β, z

c
, z

c
]

which, after dividing by w = z
c
, gives us our desired transformation:

x
screen

=  d*x
c
/z

c
+ α

y
screen

= -d*y
c
/z

c
+ β
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CAUTION

The two things to remember about using the matrix-based perspective and screen transforms are
that the resulting coordinates are homogenous out of the perspective transform and must be
converted to 3D, and there are a lot of matrix multiplications and additions that are a complete
waste of time.

Finally, you might ask, “Where did the aspect ratio factor go?” The answer is that is has
been canceled out by combining the perspective-to-view plane and view plane-to-viewport
(screen coordinate) transforms.

So, the question is, what methods should we use for both projection and the math itself?
Well, they all have their place: normalized or scaled to the view port perspective trans-
form, manual math, or matrix transformations, and so forth. In the exercises and demos
in the next chapter, we will experiment with all of them, but in the end I think we will
end up with the d = 1 with the FOV equal to 90 degrees on the x-axis formulation,
because I like the normalized coordinates. However, later on we might find that merging
the screen transform with the perspective transform is faster in real code.

Furthermore, as you can see we have 3–4 degrees of freedom with the view angle, focal
distance, and the width and height. However, in most cases we really want to stick to FOV
values that equal 90 degrees for the x-axis and let the math compute the FOV of the verti-
cal axis, but in any case, use the same focal distance for the projection on both axes.
However, for nonsquare projections, there must be a multiplication of the aspect ratio
somewhere in there.

In conclusion, you might think that I have really beat down the whole projection process,
but my goal is for you to really understand the relationship between camera coordinates,
perspective coordinates, the view plane, the view port, and screen coordinates, as well as
all the ways of arriving at them with various transformation sequences, both manual and
matrix-based. The bottom line is that in this book, in most cases we will use a horizontal
field of view of 90 degrees, and a focal distance of 1.0. That same focal distance will be
used on the y-axis as well, so for nonsquare projections we will get distortion, but if we
multiply the y component during the perspective calculation by the aspect ratio, it will
cancel out when we scale by the SCREEN_HEIGHT in the screen mapping.

Another Look at the Viewing Pipeline
Now we have a complete picture of the viewing pipeline as far as geometry is concerned.
Granted, we aren’t doing lighting, shading, or texturing, but that really is a different part
of 3D, under the topic of rendering, and we are only interested in the geometry transfor-
mations of the pipeline at this point. With that in mind, take a look at Figure 6.39, which
depicts our system thus far.
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FIGURE 6.39 The next iteration of the 3D pipeline with the screen projection step added.

Basic 3D Data Structures
At this point, we are ready to start talking about general methods to represent 3D data. I
think that you see there are a number of transformations that 3D data must go through,
and there are a number of different representations as the data flows. Hence, there is no
single correct way to do something—just the way that works in some specific context. For
example, the way you store your data for a space game will probably be much different
than that of an indoor game. Moreover, depending on how you clip your imagery, vertices
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might have to be inserted or deleted from your final rendered polygons, which takes some
forethought. My buddy John Amato found this out writing his first 3D engine “SOL.”

The bottom line is you need to really think out your engine, and many times you will end
up redoing all of it because you might find that there’s a better way to implement some-
thing. The approach I’m going to take in this book is a generic one. We will use some
rough data structures to begin, and then tweak them as necessary. Again, the proper selec-
tion of data structures only comes after you know everything about 3D, but that won’t
happen until the end of the book, so at this point, we are just going to start off with
something that works, along with some simplifications and assumptions.

My goal by the next chapter is to create a working wireframe 3D engine that enables you
to move a camera around a space or terrain-like environment. The engine will do minimal
clipping, and will probably be a hybrid of object space and image space algorithms. What
I want to do now is discuss a couple of basic data structures that will help us represent 3D
objects with a very simple generic 3D system in mind.

Considerations of Representing Polygonal Data in 3D
The first decision you have to make when designing a 3D engine is if you are going to
support triangles, quadrilaterals, or general n-sided polygons, as shown in Figure 6.40. The
majority of 3D engines (both software and hardware) only deal with triangles. The reasons
are many, but most importantly, triangles are easy to render—three points define a plane,
and many 3D algorithms work best with triangular meshes.
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FIGURE 6.40 Potential polygonal primitives for a 3D engine to use.
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Of course, your models in the modeling tool might have general n-sided polygons, but at
some point everything is triangulated. Because using triangles is the norm, we are going to
go along with this convention and have the rule that all models must be built of three-
sided polygons or converted to triangles before we render them. At this point, we’re not
sure where we are going to get the data for the objects. Is it algorithmically generated,
entered by hand, loaded from files, and so on? And we don’t care—we just know that we
are going to deal with triangular-based geometry.

Even with this constraint there’s a problem. Take a look at Figure 6.41, which shows a
number of triangles being clipped to a rectangular region. In essence, during the clipping
phase we can introduce more vertices into each polygon. For example, in the worst case,
we might insert (add) three new vertices to any triangle after it’s clipped. Hence, we have
to have data structures that can deal with this.
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FIGURE 6.41 Triangle clipping in object space introducing extra vertices.

Now, you could say that we aren’t going to clip at all in object space, but wait until the
rasterization phase. This is fine, but then you run into the problem of polygons that
pierce the near clipping plane, as shown in Figure 6.42, and worse yet, extend beyond the
z = 0 plane! The operation of projecting these polygons will cause problems, so that’s
something else to think about. Of course, if all the polygons are small and their longest
edge is smaller than the distance from the near clipping plane and the z = 0 plane, you
can simply trivially reject whole polygons that fall into that range and not clip them, and
then do pixel image space clipping during rasterization.
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FIGURE 6.42 Triangles piercing the near clipping plane and z = 0 plane.

The moral of the story is that we are going to have to think long and hard about data
structures, depending on the types of geometry we will envision and the clipping process
we want to use. These factors will play into the representation of polygons, and will be the
deciding factor if polygons can have more than three vertices.

You might say, “Let’s just have the rule that all models must be built triangles, and then if
a polygon ends up with more than three vertices during the 3D pipeline and clipping
phase, we can handle those as a special case, either via triangulation, or we can have a
special rasterizer for n-sided polygons.” Again, this is a reasonable approach, and I have
used it, too. So in conclusion, you need to think about all these factors at some point, but
for now let’s just keep things simple.

Defining Polygons
For our first shot at defining polygons, we are going to use the triangle rule and assume
that no clipping ever occurs in world space that would necessitate the addition of vertices.
That is, if we do any clipping in world space or camera space, we will throw the entire
polygon away or keep it and let the rasterizer clip the polygon to the screen during rasteri-
zation (this will be fairly easy in our first engine, because it will be wireframe). This simpli-
fication enables us to get through this chapter without knowing about 3D clipping
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algorithms, which we want to hold off on. Anyway, when we define a polygon, we first
have to decide a few things about our 3D worlds, such as what are we going to try and
model?
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FIGURE 6.43 Modeling a cube.

For example, suppose that you want to model the 3D cube in Figure 6.43. The cube has
six faces, which can each be modeled by two triangles (remember, no quadrilaterals
allowed). That’s a total of 12 polygons and 36 vertices. Or is it? Yes, there are 12 polygons,
but are there 36 vertices, or 8 vertices? The answer depends on how you want to store the
model. If we decide that every polygon is a unique entity, we would define it as a list of
three vertices:

struct typedef POLY_EX_TYP_1

{

POINT3D v[3]; // the vertex list

} POLY_EX_1, *POLY_EX_1_PTR;

And to define any polygon, we would use something like this:

POLY_EX_1 face_1 = { {x0, y0, z0},

{x1, y1, z1},

{x2, y2, z2}, };
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That’s fine, and works okay. But it’s a waste of space, because the cube only has eight total
vertices, and if we define a cube with this structure, we will end up with 12 polygons, each
containing three vertices. We should be able to reuse the vertex data better. Hence, we can
come up with a more indirect method to define a polygon based on a vertex list.
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FIGURE 6.44 Geometry can be defined by a vertex list.

A vertex list is nothing more than a list of vertices that we reference to construct geometry,
as shown in Figure 6.44. Therefore, we first define the vertices of the cube as a list or array,
and then define the polygons based on pointers or references to that array. For example,
here’s how we might define a vertex list:

POINT3D vertex_list[NUM_VERTICES]; // the vertex list

Then we would initialize each vertex with the proper data from the eight points of the
cube:

vertex_list[0] = {x0, y0, z0};

vertex_list[1] = {x1, y1, z1};

vertex_list[2] = {x2, y2, z2};

vertex_list[3] = {x3, y3, z3};

vertex_list[4] = {x4, y4, z4};
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vertex_list[5] = {x5, y5, z5};

vertex_list[6] = {x6, y6, z6};

vertex_list[7] = {x7, y7, z7};

Now we can define a new polygon type that uses a vertex list to generate the polygon:

struct typedef POLY_EX_TYP_2

{

POINT3D_PTR vlist; // the vertex list itself

int vertices[3];   // the indices into the vertex list

} POLY_EX_2, *POLY_EX_2_PTR;

Now you can see the indirection. Instead of wasting space in each polygon storing the
same vertices over and over, there is a single vertex list referenced by each polygon, so
now we can define a single polygon

POLY_EX_2 face_1 = {vertex_list, 0, 1, 2};

which states that face_1 is based on the vertex list vertex_list, and consists of the
vertices (0,1,2), which equal {x0, y0, z0}, {x1, y1, z1}, {x2, y2, z2}, respectively.

There’s a another little detail here that’s important when we get to solid modeling, and
that’s vertex ordering. That is, when we define polygons or triangles, we need to order them
in a specific way, so that we can determine what side is outward.

Referring to Figure 6.45, we see a triangle with its vertices ordered in clockwise order.
Remember when we talked about back-face removal? The only way to perform back-face
removal is to first decide what side is the front and back of a polygon, and then project a
normal from it (of course, if the polygon is visible from both sides, this is irrelevant). To
do this, we need to use a vertex ordering scheme, so we can compute the outward normal
in a uniform manner.

If we are using a left-handed system and a clockwise vertex ordering, we can use the left
hand rule by following the incremental vertex numbers, and our thumbs will point in the
outward direction. Or in other words, if we create a vector u = p0->p1 and v = p0->p2, and
then compute the cross product of u × v, this will be the normal n = <v

x
, v

y
, v

z
>, as shown

in the figure. This is, of course, the direction of the outward face. This vector n is exactly
what we will use during back-face removal (if there is any). Therefore, for this book, we
will always use a clockwise vertex ordering that will define the outward direction of any
polygon. However, this of course only works for a left-handed system. In a right-handed
system, we would have to invert the sign of the normal or use a right-handed rule. It’s all
in how you want to look at it.
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FIGURE 6.45 Vertex ordering.

TIP

Note that for any n-sided polygon, there are n different orderings that will keep the clockwise
ordering (or counterclockwise, for that matter) satisfied—meaning the orderings are not unique.
Many times though, if you can order the vertices so that lower numbers are accessed first, you
can get better data coherence. For example, suppose that the order (0,5,12) is a clockwise order-
ing of a polygon. That’s a good order to leave it in, even though (12,0,5) and (5,12,0) are also
valid because the sequence is the same. But in both cases, data is accessed out of order in the
vertex arrays, so the (0,5,12) order will end up having better access characteristics in most cases.
However, many times accessing the last element, forcing the cache to be updated, then accessing
the first elements, is faster.

Anyway, getting back to vertex lists—the vertex list representation is a nice representation,
and we get a lot of cool freebies from using it. For example, if we want to transform the
object, we don’t have to transform the polygons it’s made of; we only transform the vertex
list. Moreover, when you have vertex copies that represent the same vertex, then many
times you get numerical drift. That is, you have two polygons that share a common vertex,
but each has its own copy of the vertex. Then you transform each polygon and its own
copy of the vertex, but during the transform something happens and a slight error occurs
in one of the copies, so now the two vertices that are supposed to represent the same
vertex don’t! This can cause cracking in your geometry. Just take a look at Tomb Raider to
see what I’m talking about.
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Now let’s look at the dark side of the coin relating to using vertex lists. Many times as you
get farther down the pipeline, you want to separate polygons and vertex lists. The reasons
are many, but for example, imagine you have a mesh that has 1,000 vertices, and only one
polygon is visible. Because all transformations are done at the vertex list level, you still
end up transforming all that data for nothing—just for that single polygon! Of course,
there are tricks to get around this, but it’s an issue, so keep it in mind. Also, many times
it’s easier to write a rasterizer that just blasts polygons based on three vertices in a list, and
not a list of pointers to a vertex list. Again, this all depends on the final architecture.

Finally, during the clipping stage, it might be very hard to clip the geometry if it’s a vertex
list and you don’t really look at it as polygons. Then again, if you clip one vertex, all poly-
gons that share that vertex will be clipped, but I think you are starting to see that there
are a lot of things you have to think about.

With all that in mind, we are going to use a hybridized approach and define and trans-
form all our objects based on vertex lists. However, at some point we will convert them to
single polygons, even if they have common vertices. We will change this later, but for now
it will simplify things.

Alright—there’s yet another detail that I have glossed over that I want to take a look at
before we make our final first draft of the polygon structure: the decision to use 3D or 4D
homogenous coordinates. This is a tough question, but the right way to do it is to use
both. In the end, we will use 3D coordinates and make assumptions that there’s a
phantom w = 1 with all of them and use the special 4×3 matrix multiplier code that we
have written. For now I think we should use 4D points along with 4×4 matrices, so the
next couple of chapters will further illustrate the use of matrices to perform clipping,
perspective, and projection in a uniform manner. Although we all know that we don’t
need the extra w = 1 that the 4D homogenous coordinates give us and that we can assume
it with special code, I don’t want to make that assumption for now. Hence, we will assume
that all points and vertices are in 4D homogenous coordinates with w = 1 in most cases,
just to make the math and matrix operations uniform. With that in mind, let’s create a
more solid vertex list and polygon data structure based on these conventions.

Our First Polygon
We have left out a lot of details about the polygons, because at this point, we don’t know
enough about rendering to add them. However, for the next chapter, where we design a
working wireframe engine, we will need at least the following for each polygon:

• Color—General color of the polygon. This could be a color index for 8-bit color, or
an actual 16-bit or 24-bit RGB value for high-color modes. It could also be some-
thing else that you make up.

• State—State of the polygon. This will hold state information that changes dynami-
cally as the polygon is processed. For example, is the polygon active, is it clipped, is
it damaged?—things like that.
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• Attributes—Physical attributes of the polygon. This might hold a number of flags
that describe the polygon. For example, is it two-sided, does it reflect light, is it
made of steel, is it transparent, and so forth.

As stated in our conventions, we are always going to assume that all polygons never have
more than three vertices—just for now. With that in mind, here’s the first version of the
polygon structure:

typedef struct POLY4DV1_TYP

{

int state;    // state information

int attr;     // physical attributes of polygon

int color;    // color of polygon

POINT4D_PTR vlist; // the vertex list itself

int vert[3];       // the indices into the vertex list

} POLY4DV1, *POLY4DV1_PTR;

NOTE

The naming convention is [root][coordinate type][version]. POLY is the type of this object, 4D is the
coordinate type, and V1 is the version.

Of course, the vertex list that vlist points to is of the type POINT4D[]. We’re not going to
further define state, attr, or color, because we want to keep them abstract and don’t
want to lock ourselves down. Let’s continue on with another data structure that we might
need, which I’m going to call a face.

Remember that we might need a simple list of polygons not associated with objects or
general vertex lists during the rasterization phase. That is, we want a simple array or
linked list of polygon faces that are each self-contained that we can send to the rasterizer.
We might want to have this capability, so let’s just create a data structure right now called
POLYF4DV1 to hold this object. It should be identical to a POLY4DV1 structure, except that
it’s self-contained and doesn’t reference an external vertex list.

typedef struct POLYF4DV1_TYP

{

int state;    // state information

int attr;     // physical attributes of polygon

int color;    // color of polygon

POINT4D vlist[3];  // the vertices of this triangle

POINT4D tvlist[3]; // the vertices after transformations
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POLYF4DV1_TYP *next; // pointer to next polygon in list

POLYF4DV1_TYP *prev; // pointer to previous polygon in list

} POLYF4DV1, *POLYF4DV1_PTR;

Notice that there’s a next and prev pointer. These are to help form a linked list of poly-
gons like the one shown in Figure 6.46 that we can pass the rasterizer—we may or may
not need them, but just some forward thinking. Also, notice that there are two copies of
vertices vlist[] and tvlist[]. The second list tvlist[] is used to hold transformed
versions of the first list. That is storage, so we don’t have to overwrite the polygon as we
manipulate it—again, we may or may not need this. Later, we might have extra space for
world coordinates, camera coordinates, perspective coordinates, and screen coordinates!
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FIGURE 6.46 The POLYF4DV1 structure.

NOTE

Make a note that we cannot destroy the original 3D models’ local coordinates. We must either
copy them or transform them into another data structure at some point, because they are always
the source of everything. On the other hand, if you perform local transformations like rotation
and scaling, you usually want the model to stay that way, so it’s okay to overwrite the original
vertex data.

Alright, we have a vertex list, a polygon structure, and a face structure that we can use for
rendering, so we have just barely enough to work with. Now let’s increase the level of
hierarchy a bit and talk about objects.
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Defining Objects
An object in a 3D game is usually a collection of polygons that defines a single object, as
shown in Figure 6.47. However, in a more advanced 3D system, an object might be a
collection of objects interconnected with links, as shown in Figure 6.48. We will deal with
the second type later, but for now, let’s deal with the simple object that is composed of a
rigid mesh of polygons with no moving parts, as shown in Figure 6.47. In this case, we
have an object that is composed of a set of polygons that is itself based on a vertex list.
With this abstract model, we can very easily come up with a data structure to hold a
general object. However, it’s at this point that we have to make some decisions about data
storage in relation to the 3D pipeline.
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Remember that there are local coordinates, world coordinates, camera coordinates,
perspective coordinates, and screen coordinates. The question is, do we need storage for
each set of vertices as they propagate down the pipeline? The answer depends on a lot of
things, but at the very least, we need the local coordinates of every object. Then the deter-
mination of necessary secondary storage really depends on how the 3D pipeline works
internally. This means that if we pass a single object to the pipeline, do we put the respon-
sibility on the pipeline or on the object for secondary storage.

This is a hard question, and there’s no good answer. I have done it both ways—that is,
create objects that internally have storage for local, world, and camera coordinates. On the
other hand, I have also completely implemented it in the viewing pipeline.
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FIGURE 6.48 An interlinked object composed of many sub-objects.

For now, I think that I want to keep things relatively simple, so we are going to think of
an object as a container of everything—even the transformations of the pipeline. However,
we are only going to have storage for the local coordinates, along with the transformed
coordinates. The transformed coordinates could be world, camera, perspective, or screen;
we only know which by finding at which stage the data is in the pipeline. This minimizes
storage. Okay, so that takes care of that. Now, what else do we need to define an object?
Well, we need the number of vertices, maybe some attributes, state, and a name or id,
along with a bounding radius that we will use later. So, our first shot at an object will look
like this:

// an object based on a vertex list and list of polygons

typedef struct OBJECT4DV1_TYP

{

int  id;           // numeric id of this object

char name[64];     // ASCII name of object just for kicks

int  state;        // state of object

int  attr;         // attributes of object
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float avg_radius;  // average radius of object used for collision detection

float max_radius;  // maximum radius of object

POINT4D world_pos;  // position of object in world

VECTOR4D dir;       // rotation angles of object in local

// cords or unit direction vector user defined???

VECTOR4D ux,uy,uz;  // local axes to track full orientation

// this is updated automatically during

// rotation calls

int num_vertices;   // number of vertices of this object

POINT4D vlist_local[64]; // array of local vertices

POINT4D vlist_trans[64]; // array of transformed vertices

int num_polys;        // number of polygons in object mesh

POLY4DV1 plist[128];  // array of polygons

} OBJECT4DV1, *OBJECT4DV1_PTR;

The first thing that you will notice is the incredible waste of space that OBJECT4DV1
exhibits because of the static arrays. This is not an oversight, but on purpose, because I
want to avoid memory allocation/deallocation issues at the juncture. Obviously, later
versions will dynamically allocate the vertex and polygon lists. But for now, 64 vertices
and 128 polygons should be more than enough to model cubes, rocks, and sex toys? Also
notice that there are fields for the average and maximum radius of the object—these are to
help with object culling.

And of course, there’s a general position of the object world_pos, along with a general
orientation of the object in its local space, named dir. You see, when we transform the
object’s orientation in local coordinates, we will modify the local coordinates and lose
them, so we need some method to track these changes. Of course, we could use the
convention that each time an object is processed through the pipeline, we perform all the
local rotations to it on the fly and leave the original unscathed, but this might be a waste
of time if we have 1,000 rocks in a desert that never rotate. In many cases, 3D engines will
rotate objects in their local spaces and overwrite the local coordinates, but this rotation
needs to be tracked, and that’s what dir is for.

Moreover, we can store the angles there, or even a unit vector that’s aligned with the z-
axis initially (dir = <0,0,1>) and rotate each time along with the object, so we can keep
track of the object’s orientation relative to load time. Additionally, the basis vectors u

x
, u

y
,

u
z

are also to keep track of the object’s orientation. That is, every time the object is trans-
formed, so are u

x
, u

y
, u

z
, which tracks the orientation of the object. For example, suppose
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we want to define a basic cube (as you have seen about ten times now), based on the
following vertex list:

p0(10,10,10)

p3(-10,10,10)

p2(-10,10,-10)

p1(10,10,-10)

p4(10,-10,10)

p5(-10,-10,10)

p6(-10,-10,-10)

p7(10,-10,-10)

Here’s the code that does it:

// define the cube object manually (very tedious)

OBJECT3DV1 cube_1;

cube_1.id    = 0;         // unused for now

cube_1.state = 0;         // unused for now

cube_1.attr  = 0;         // unused for now

cube_1.avg_radius  = 17.3;  // average radius of object

cube_1.max_radius  = 17.3;  // maximum radius of object

// sqrt(10*10+10*10+10*10)

cube_1.world_pos.x = 0; // position of object in world

cube_1.world_pos.y = 0; // who cares right now

cube_1.world_pos.z = 0;

cube_1.local_ang.x = 0; // the current orientation of

cube_1.local_ang.y = 0; // the object since loading

cube_1.local_ang.z = 1; // this will be default for

// all objects

cube_1.num_vertices =  8; // number of vertices

// create a vertex list to simplify initialization

POINT3D temp_verts[8] = { {10,10,10},     // p0

{10,10,-10},    // p1

{-10,10,-10},   // p2

{-10,10,10},    // p3

{10,-10,10},    // p4

{-10,-10,10},   // p5

{-10,-10,-10},  // p6

{10,-10,-10}};  // p7
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// define the local vertices

for (int vertex=0; vertex < 8; vertex++)

{

cube_1.vlist_local[vertex].x = temp_verts[vertex].x;

cube_1.vlist_local[vertex].y = temp_verts[vertex].y;

cube_1.vlist_local[vertex].z = temp_verts[vertex].z;

cube_1.vlist_local[vertex].w = 1;

} // end for index

cube_1.num_polys = 12; // number of polygons

// define the polygons now, note that I am setting

// the state, attr, and color all to 0 for this exercise

// and the vertex pointer is pointing to the local coords

// but it doesn’t really matter what list we point it to

// since we know that all polygon defined in this object

// are based on ITS vertex list and not something external

// create a list of triads that define each polygon to

// simplify initialization, note all in clockwise

// order, so we have an outward direction

int temp_poly_indices[12*3] = {

0,1,2, 0,2,3,   // polygons 0 and 1

0,7,1, 0,4,7,   // polygons 2 and 3

1,7,6, 1,6,2,   // polygons 4 and 5

2,6,5, 2,3,5,   // polygons 6 and 7

0,5,4, 0,3,5,   // polygons 8 and 9

5,6,7, 4,5,7 }; // polygons 10 and 11

// now initialize each triangle

// triangle 0

for (int tri=0; tri < 12; tri++)

{

// all of these are unused as of yet

cube_1.plist[tri].state = 0;

cube_1.plist[tri].attr  = 0;

cube_1.plist[tri].color = 0;

// point the vertex list to local coords

cube_1.plist[tri].vlist = cube_1.vlist_local;

// now assign the vertex indices

cube_1.plist[tri].vert[0] = temp_poly_indices[tri*3+0];
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cube_1.plist[tri].vert[1] = temp_poly_indices[tri*3+1];

cube_1.plist[tri].vert[2] = temp_poly_indices[tri*3+2];

} // end for

Wow, that seems like a ton of code for something so simple as a cube—and it is! This is
one of the first problems with 3D graphics: the huge amounts of data. You would never
represent a bitmap as individual bytes of data in a game, and likewise you would never
represent an object or mesh as data in a real 3D game. Meshes and worlds are always
loaded in from files because they can be made of hundreds, thousands, or millions of
vertices. For now, we are going to use manual input along with some primitive ASCII-
based file formats to represent our 3D objects, until we get more sophisticated.

At this point we have the cube, and we would proceed to push it through the 3D pipeline
with a camera, viewing frustrum, and all the stuff we have been talking about. Then at the
end, we would render the object, maybe with shaded polygons or wireframe, but that’s for
the next chapter.

Representing Worlds
Right now, our view of a 3D world is a composition of 3D objects, in which each object is
a collection of polygons that are based on a vertex list (or maybe not). This is fine, but
what about if we want to make a game like Quake, or a tank simulation with a huge
amount of terrain? Sure, the objects in the game map nicely to our objects, but the indoor
environment of Quake or the huge terrain maps of an outdoor tank simulation might not
fit into our little object definition.

Indoor and outdoor worlds (or more generally, environments) are usually special cases of
objects, and more advanced data structures must be employed to represent them properly
because of their sheer size. For example, a typical game object of a tank or character might
have about 20–500 polygons. This is manageable with the object data structure that we
have designed. On the other hand, imagine a world that has tens of thousands, or even
tens of millions of polygons. We can’t just have a huge list of these polygons and throw
them at the pipeline. We need to be smarter about how we load the data in, because at
any time only a small fraction of the polygons in a world will be visible. Along those lines,
we’ve already talked about how we might represent a terrain world in some of the previ-
ous sections of this chapter, and one of our solutions was to arrange the world as a matrix
of sectors. Perhaps the sectors could be objects? On the other hand, some of our algo-
rithms fall apart (object-removal) because there’s no sense of objects when dealing with
terrain or an indoor environment. On the other hand, these concepts are replaced with
the concepts of rooms, areas, and portals, and we use analogous methods to cull them.

Additionally, most of the time terrain and indoor environments don’t change much, so we
can do lots of precalculations and optimizations on them and employ binary space parti-
tions, octrees, or portals to simplify and minimize the amount of data that we have to
process each frame. For instance, an environment can be defined completely in world
coordinates because it won’t move, thus saving us the local-to-world transformation.
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Therefore, in most cases after we decide on the parts of the environment that are visible,
we need only push them through the camera and projection matrices.

We will talk about all these concepts as the book progresses, but I want you to fully under-
stand that we can get away with simple wireframe and flat-shaded 3D games with what we
have so far. For more advanced games, we are going to have to think of much more robust
data structures and algorithms to cut down all the data processed with each frame.

With all that in mind, there’s no reason to even try to come up with a 3D data structure
right now for general worlds, because we don’t know enough about 3D, and truthfully, we
need to tailor the design to the world itself. However, we can imagine that for a game
similar to Quake, we might design the engine so that each room is a separate node in a
tree. For every room, there are links to all the other rooms that are visible from that room.
Thus, at any time we could refer to this data structure, and based on our position, cull out
all but a few rooms. This is shown in Figure 6.49.
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FIGURE 6.49 A possible level data structure.
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Of course, this falls apart if we can see outside, or there are lots of windows, and so on.
But if you write a game with rooms all connected with long hallways, you can have a
billion rooms and the engine would be able to instantly cull them. These are some of the
ideas behind BSP trees, octrees, and portals—more on this later, though. I’m getting ahead
of myself, or at least the entity that is currently inhabiting my body is …
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FIGURE 6.50 A screenshot of DoomEdit in action. 

3D Tools
Alrighty, then. Where to even begin? Well, making a 3D game these days is a lot of work,
mostly because of the 3D aspect of game and the amount of data needed. Alas, one of the
most vexing problems facing a game programmer/designer is how on Earth all the data for
the game will be generated and worked with. There are many solutions to this problem.
For simple 3D games, you might create tools yourself for 3D modeling and world genera-
tion. For example, Figure 6.50 shows an old screenshot of the Doom editor. As you can see,
the tool is bitmapped/line-drawn-based and features a top-down view. The tool reads in
various data files and then enables the level designer to place objects, geometry, switches,
creatures, lights, and so forth to create the world. DoomEdit and other “build engines”
were used to generate the entire 3D world for the games, and were all-in-one solutions. Of
course, other game assets like scripts, bitmaps, and sounds were created in other tools.
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These days things have become much more complex, because the worlds are totally 3D,
with arbitrary geometry. With this in mind, there are two routes to take: You can still write
your own 3D tool, but realize that you’re going to end up writing a 3D modeling package
in essence; or you can use an existing 3D modeler like Caligari trueSpace, Maya,
LightWave, 3D Studio Max, Blender, or Moray (coupled with the Persistence of Vision POV
ray-tracer), completely design your objects and worlds with these modelers, and then
interface the tools to your game engine via extra software and or plug-ins. This is probably
the best approach, because you leverage someone else’s work. On the other hand, 3D
modelers aren’t good at placing monsters, adding switches to doors, and so on, but they
are getting better, and many of the aforementioned modelers have lots of hooks and API
additions that enable you to modify the base functionality of the modeler to your needs.

Originally for this book I was going to use the Quake format for 3D worlds, and use some-
thing like WorldCraft to create the worlds. However, the developers of WorldCraft have
kind of gone out of business (transferred the program to Valve, Inc. now under the name
of the Hammer Editor), Quake is a proprietary format, and on second thought, I don’t
want to lock myself into it. Thus, we are going to use one or more of the standard file
formats, like Caligari .COB, 3D Studio Max .3DS or .MAX files, .DXF, .NFF (neutral file
format) and so on in this book, so you can use commonly available tools and well-docu-
mented formats. Moreover, this book is about 3D graphics and game programming, not
really writing level design tools, so I want to stick to the point. With that in mind, you
can use whatever 3D modeling tool you like, as long as it supports the file format(s) that I
am going to read in this book.

Along those lines, I have placed a number of 3D modeler demos on the CD, along with
some shareware modelers that are pretty good, too—Moray, for example, rocks. Even if the
shareware modelers don’t support the file format you like, I have also included a number
of 3D file format converters on the CD.

Animation and Motion Data
Additionally, at some point you’re going to want to create animated articulated creatures.
This gets really complex. If you recall, we learned that you can animate creatures by mesh
animations or by animated skeletal animation. In the first case, you’ll need to get the 3D
modeler to spit out the character mesh key frames and then you will need to read that
out. In the second case, you’ll need to be able to read in a mesh with articulation points
and then pump motion data (like BioVision motion files) through the mesh links to
animate the creature or object (if we go that far). This is again a very complex task, and
the tools will get you the object and even give you the motion data (or you can make it or
buy it), but you have to write the code that feeds the data into your engine. We will talk
more about this later. Tools like 3D Studio Max, Maya, and trueSpace all have good charac-
ter animation packages that will let you do both. However, in the end we may use a more
basic keyframe system like Quake’s .MD2 format — we will see.
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Loading Data from the Outside World
As I said, we are going to write code as we need it, but just to get you in the spirit of
things, I want to show you a couple of file formats that we can use and just let you see
what they look like. The whole point of a file format is to be able to represent 3D objects
with enough information for our engine. At this point, we don’t need to know anything
about textures, lighting, and so on—we just basically want a description of an object as a
vertex list and a polygon mesh.

However, as the book progresses, we are going to want to know a lot! For example, if we
use the 3D modeler to create a tank, for example, we are going to want to know the vertex
list, polygon mesh, texture coordinates, polygon attributes, and so on, so a more sophisti-
cated file format will be needed. Additionally, if we want to model entire worlds with a 3D
modeler, the modeler will have to support exported light sources or tagged information
that our engine can use, and so on.

Describing all the file formats in complete detail is beyond the scope of this book, and
beyond the scope of this chapter for that matter, but I just want to give you a taste for
some of the more popular formats.

PLG Files
The PLG file format was invented by the people who made REND386, one of whom is
Bernie Roehl (actually, I think he wrote the entire thing). The format is simple and to the
point, so it’s a good place to start. Unfortunately it lacks a bit in the texturing and two-
sided polygon area, but it will suffice with a bit of finesse as a quick way for us to hand-
edit models if we have to. The main reason to use it is that there are 3D modelers that
generate PLG files, and utilities that convert .DXF files to PLG files. But most of all, writing
a parser to read the files only takes an hour or two instead of a week, like it would for one
of the more advanced formats.

PLG Header Line
A PLG file starts off with the name of the object and the number of vertices and polygon
faces in the format:

object_name num_vertices num_polygons

For example,

pyramid 5 5

which says that the data to follow is for the object pyramid, which has five vertices and
five faces.
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PLG Vertex List
The next part of the data are the vertices in order of 0 to n. Each vertex should be sepa-
rated by whitespace and be in x-y-z order. For the pyramid shown in Figure 6.51, the
vertex data is

0   20  0

30 -10  30

30 -10 -30

-30 -10 -30

-30 -10  30
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FIGURE 6.51 Five-faced pyramid.

PLG Polygon List
The next part of the file is the polygon description which is a series of lines that describe
the color of the polygon, the number of vertices in the polygon, and the index number of
the vertices. The format is

surface_description n v1 v2 v3 … vn

where surface_description is a surface descriptor we will get to in a moment, n is the
number of vertices, and v1, v2, ... vn is the vertex list in counter-clockwise order. Note
that in the actual file, there are no commas. In our pyramid example, the polygon list
would look like this:
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10  3 0 2 1

10  3 0 3 2

10  3 0 4 3

10  3 0 1 4

10  4 1 2 3 4

which means that there are five polygon faces. The first number on each row is called the
surface descriptor and the next number is the number of vertices in that particular
polygon. For example, the polygon in the second row has three vertices (0,3,2) and the
polygon in the fifth row has four vertices (1,2,3,4). Remember, we are going to force all
our models to be triangulated, but this is for illustrative purposes, to show that the format
supports n-sided polys.

The only mystery at this point is the first number in each row, which is called the surface
descriptor (in the case of the pyramid, this is 10 for all faces). Let’s take a look at the
meaning of the surface color descriptor.

PLG Surface Descriptor
The first number in each of the polygon definitions is called the surface descriptor. The
surface descriptor can either be a decimal integer or in hex, with a 0x (or 0X) followed by
a hexadecimal integer value. The surface descriptor is a 16-bit value, which is interpreted
as bit fields in the following manner:

H
15 
R
14 
S
13
S
12 
C
11
C
10
C
9
C
8 
B
7
B
6
B
5
B
4
B
3
B
2
B
1
B
0

• The R bit is reserved, and should be set to zero.

• If the H bit is set, it indicates that this is a “mapped” surface descriptor, and the
lower 14 bits are taken to be an index into a surface map.

• If the H bit is zero, the SS bits are interpreted as shown in Table 6.1 following:

TABLE 6.1 Bit Definition for SS Bits of PLG Surface Descriptor

S13S12 Definition

00 This polygon is solid shaded; that is, it should be drawn in a fixed color with no special

effects. If the CCCC bits are zero, the BBBBBBBB bits directly specify one of the 256 avail-

able colors in 256 color modes. If the CCCC bits are nonzero, they specify one of sixteen

hues, and the top four bits of BBBBBBBB specify which shade of that hue to use.

01 This polygon is flat shaded; that is, it should be drawn with a constant shading that is

determined by the angle at which light is striking it. Thus, as the polygon moves around,

its apparent brightness will change. The CCCC bits specify one of sixteen hues, and the

bottom 8 bits BBBBBBBB represent the “brightness” of the color. This brightness value is

multiplied by the cosine of the angle between the polygon’s normal vector and the vector

from the polygon to the light source. The result is used to specify an offset into the given

color’s array of shades. Note that if the CCCC value is 0, the color will always be black.
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10 This polygon should be treated as being “metallic.” The CCCC bits (which should be

nonzero) specify one of the 16 hues, and the top five bits of the BBBBBBBB value are used

as an offset into a range of shades to cycle through to give the metallic effect; that is, a

starting offset into the color cycle.

11 This polygon should be treated as being “transparent.” It is just like surface type 10,

except that alternating rows of dots are used instead of solid colors, allowing you to “see

through” the polygon.

Note that Table 6.1 reflects the original definition of the PLG file format, and is a bit anti-
quated because it’s obviously designed for 4- and 8-bit color modes. Although the 8-bit
support will work for us here and there, we really need 16-bit colors. So what we will do is
slightly modify the format when we get to using it in the next chapter to support 16-bit
RGB colors. Of course, programs that export the files won’t know this, but at least we will
get hand-made support for our experiments.

Loading Objects with PLG Files
Loading in a PLG file isn’t too much trouble. Basically, PLGs are standard ASCII files with
one or more lines of text that describe the object. The only thing that makes reading PLG
files a bit complicated is that color descriptors can be in either hex or decimal format,
depending on a leading 0x, and the files can have comments within them that can be
started with the character #. Anyway, at this point we aren’t going to write a parser, but it
doesn’t look that hard to do: not much more than reading lines one at a time and parsing
out some numbers. Relatively speaking, this is a great format to hand-generate models for
experimental uses, and we will probably use this in the next chapter just to get going.
Here’s the final object though, so you can see it in its entirety:

pyramid 5 5

# vertex list

0   20  0

30 -10  30

30 -10 -30

-30 -10 -30

-30 -10  30

# polygon list

10  3 0 2 1

10  3 0 3 2
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10  3 0 4 3

10  3 0 1 4

10  4 1 2 3 4

That’s basically the entire PLG format description, so you can see why I like it. It’s simple,
down and dirty, gives you something to start with, and it’s easy to write a reader for it. Of
course, most modelers don’t support it directly because it’s so basic, but there are convert-
ers. The only issue is that PLG files refer to a right-handed system with vertices in counter-
clockwise order, so we must take that into consideration when loading objects exported
from a tool, because we are using a left-handed system.

NFF Files
The next file format that is fairly easy to work with is called neutral file format (NFF). I first
used this format many years ago on VR games and it seemed to work well, so I think we
might support it. It was originally developed by Eric Haines of Sense-8. Those were the
days … Anyway, the NFF file format is about up to version 3.1, so we will cover that.

The NFF format was designed to define simple worlds in addition to objects, in contrast to
the PLG format, which just defines objects. Entities like the camera, background color,
positions of lights, and so forth are supported in the NFF format. These features have very
minimal impact on the parsing complexity of NFF, so it’s a great format for what we want
to do, as well as testing algorithms and try things.

3D Entities Supported by NFF
NFF supports the following entities:

• A simple perspective frustum

• A background color description

• A positional (versus directional) light source description

• A surface properties description

• Polygon, polygonal patch, cylinder/cone, and sphere descriptions

NFF files are output as lines of text. For each entity, the first field defines its type. The
remainder of the line and possibly other lines contain further information about the
entity itself. Entities types include the following:

v—Viewing vectors and angles

b—Background color

l—Positional light location

f—Object material properties

c—Cone or cylinder primitive
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s—Sphere primitive

p—Polygon primitive

pp—Polygonal patch primitive

Let’s take a brief look at the more important entities that we will deal with. I’ll bold all the
keywords and leave the parameters alone, which are usually floating point values.

Viewpoint Location Format The viewpoint location defines the viewpoint, along with
some of the viewing frustrum parameters we have covered, but not all. Here it is:

v

from Fx Fy Fz

at Ax Ay Az

up Ux Uy Uz

angle angle

hither hither

resolution xres yres

Parameters:

from—The viewpoint location in world coordinates

at—A “look at” position to be at the center of the image, in world coordinates

up—A vector defining which direction is up relative to the at vector

Angle—Viewing angle in degrees, defined from the center of the top pixel row to the bottom pixel

row, and left column to right column.

hither—The distance to hither/near clipping plane (if any) from the viewpoint/eye.

resolution—The resolution of the view plane in pixels.

NOTE

Note that no assumptions are made about normalizing the data (for example, the from-at
distance does not have to be 1). Also, vectors are not required to be perpendicular to each other.
Also, the far clipping plane is at infinity by default, and the aspect ratio is 1.0.

By convention, a view entity must be defined before any objects are defined, so if the NFF
file is used to define the view point, the engine knows where to view from!

Background Color Format The background color is simply an RGB with values, with
each channel from 0 to 1:

b R G B
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If no background color is set, assume RGB = {0,0,0}.

Positional Light Format Lights are defined by their position and color as follows:

l X Y Z [R G B]

where X Y Z is the position of the light, and R G B is its color (which is optional). Also, all
light entities must be defined before any objects are defined. However, lights that aren’t
colored will be assigned a nonzero intensity, which is undefined.

Fill Color and Shading Parameters Format The fill color and shading specifies the light-
ing properties of all entities that follow until a new fill color and shading are specified.

f red green blue Kd Ks Shine T index_of_refraction

Parameters:

red, green, blue—RGB values from 0.0 to 1.0

Kd—The diffuse reflection component

Ks—The specular reflection component

Shine—The Phong cosine exponentiation power for highlights

T—The transmittance

Most of these parameters don’t mean much to you yet because we haven’t covered light-
ing, but in general there’s a simple formula that defines the reflection of light off a surface
in terms of its diffuse and specular (highlights) values, and that’s what most of the preced-
ing parameters are referring to.

Polygon Format A polygon is defined by a set of vertices that must be coplanar. In NFF
files, all polygons are one-sided by definition, with the order of the vertices counter-clock-
wise as you face the polygon in a right-handed system. Also, the first two edges must form
a nonzero convex angle, so that the normal and side visibility can be determined by using
just the first three vertices.

CAUTION

The NFF file format is based on a right-handed coordinate system. Watch out!

p num_vertices

v1.x v1.y v1.z

v2.x v2.y v2.z

.

.

vn.x vn.y vn.z
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where num_vertices is simply the number of vertices in the polygon, and v1 represents
each vertex.

Polygonal Patch Format A polygonal patch is defined by a set of vertices and their
normals. It’s almost identical to a polygon p, but with the added feature that each vertex
has a normal along with it.

pp num_vertices

v1.x v1.y v1.z n1.x n1.y n1.z

v2.x v2.y v2.z n2.x n2.y n2.z

.

.

vn.x vn.y vn.z nn.x nn.y nn.z

where num_vertices defines the number of vertices in the polygon patch, and v1 and n1
represent each vertex and its normal, respectively.

NOTE

The NFF format has a number of other features, such as allowing primitives like spheres and
cones to be defined, but for the most part, the preceding entities cover everything we will need,
except maybe the comment character #.

A Sample NFF File
To finish up our introductory discussion of NFF files, here’s an actual 2×2×2 cube in NFF
format:

v

from 0 2.0 2.0

at 0 0 0

up 0 1 0

angle 40

hither 1

resolution 512 512

l 0 5 0

l 0 2.0 2.0

f 0.000000 0.000000 0.000000 1 0 0 0 0

p 3

1.000000 -1.000000 -1.000000

-1.000000 -1.000000 -1.000000

-1.000000 -1.000000 1.000000

p 3

1.000000 -1.000000 -1.000000

-1.000000 -1.000000 1.000000
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1.000000 -1.000000 1.000000

p 3

-1.000000 1.000000 -1.000000

-1.000000 -1.000000 -1.000000

1.000000 -1.000000 -1.000000

p 3

-1.000000 1.000000 -1.000000

1.000000 -1.000000 -1.000000

1.000000 1.000000 -1.000000

p 3

1.000000 1.000000 -1.000000

1.000000 -1.000000 -1.000000

1.000000 -1.000000 1.000000

p 3

1.000000 1.000000 -1.000000

1.000000 -1.000000 1.000000

1.000000 1.000000 1.000000

p 3

1.000000 1.000000 1.000000

1.000000 -1.000000 1.000000

-1.000000 -1.000000 1.000000

p 3

1.000000 1.000000 1.000000

-1.000000 -1.000000 1.000000

-1.000000 1.000000 1.000000

p 3

-1.000000 1.000000 -1.000000

1.000000 1.000000 -1.000000

1.000000 1.000000 1.000000

p 3

-1.000000 1.000000 -1.000000

1.000000 1.000000 1.000000

-1.000000 1.000000 1.000000

p 3

-1.000000 -1.000000 -1.000000

-1.000000 1.000000 -1.000000

-1.000000 1.000000 1.000000

p 3

-1.000000 -1.000000 -1.000000

-1.000000 1.000000 1.000000

-1.000000 -1.000000 1.000000
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3D Studio Files
3D Studio and its newer offspring, 3D Studio Max (or just plain Max) are some of the most
widely used 3D modelers in the world for both games and the movie industry. The origi-
nal 3D Studio has been around for a long time, but it was actually an offspring of an even
older program called AutoCad, written by AutoDesk. It was AutoCad that originally
supported the DXF file format, and then later, when 3D Studio was developed, the 3DS file
format, and finally the new MAX file formats came to be that includes the entire scene
data as well as each mesh. The unfortunate thing about these formats is that they are way
complicated, and can come in either ASCII or binary flavors. So, I’m not going to get into
the details of either as I did with PLG or NFF, because we don’t have the room right here.
What I will do is give a brief description of each and a tiny sample. However, later we will
probably end up supporting DXF and/or 3DS.

DXF Files
DXF (Data eXchange Format) files were originally supported by Autodesk’s AutoCAD
program. There is both a binary and ASCII version of the format, but both share the same
name. The format isn’t really that bad, but it was never really designed for high-end 3D
modeling of solid, lit, textured geometry like we are interested in; this is because the origi-
nal designers were more interested in modeling 3D mechanical and architectural objects,
not aesthetically pleasing imagery. Hence, there is 3D support, but the support isn’t
complete. Moreover, there’s a lot of overhead in DXF files for all the entities it supports,
and the sheer amount of technical details that have to be part of a technical drawing that
have nothing to do with the object itself. Therefore, we usually have to parse past all the
garbage to get to our models. After we get to our 3D model data, reading the file is rather
easy.

Format of a DXF File A standard ASCII DXF file has the following main sections:

• HEADER section—This contains general information about the model.

• TABLES section—This contains definitions of named items.

• BLOCKS section—This section contains block definition entities describing the entities
comprising each block in the drawing.

• ENTITIES section—This contains the actual entities that describe the model itself,
along with any block references.

• END OF FILE marker—Every DXF file ends with the string EOF.

And of course, there is going to be all kinds of data in each one of these possible sections.
This data is indicated and grouped into classes with what are called group codes. These
group codes help you write parsers, because if you just look at the group code, you can
quickly determine the context of the data. Table 6.3 lists the basic group codes.
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TABLE 6.3 DXF File Group Code Classes

Group Code Range Meaning

0–9 String value

10–59, 210–239 Floating point value

60–79 Integer value

999 A comment

Whenever there is anything in a DXF file, first there will be a group code to class the data.
Thus, for every single number or string in a DXF file, first you will see a group code—if
this seems like a lot of overhead and waste, it is—but it makes parsing easier. Going
further with group codes, they are subclassed in each range to further detail the data, but
keep in mind that 99% of the group codes are irrelevant to us. Table 6.4 lists the group
codes in greater detail.

TABLE 6.4 DXF File Group Codes in Detail

Group Code Meaning

0 Identifies the start of a file, entity or table

1 The primary text value for an entity

2 A name of some kind

3–4 Other textual or information

6 Line type

7 Line style

8 Layer name

9 Variable name identifier, used in the HEADER section

10 Primary x coordinate

11–18 Additional x coordinates

20 Primary y coordinate

21–28 Additional y coordinates

30 Primary z coordinate

31–37 Additional z coordinates

38 Elevation

39 Thickness

40–48 General floating point values

49 Repeat value

50–58 Angles

62 Color number

66 “Entities follow” flag

70–78 Integer values

210, 220, 230 X, Y, Z of an extrusion follow

999 Comments
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TIP

I am only going this far with DXF files because when I first learned them about 10 years ago, all
the numbers confused me, so I don’t want you to have that same feeling. Alas, you at least have
an idea of what all the numbers represent now, and why they are all over the place. There seems
to more overhead that 3D data!

The group code values always come first, then the “thing.” For example, at the start of
every DXF file, you will find a string value that indicates the beginning of a file. Referring
to Table 6.3 and Table 6.4, string values are 0–10, and the start of file is 0, so we would see
something like this at the beginning of every DXF file:

0

SECTION

Suppose you want to add a comment—you would use group code 999 and then put the
comment like this:

999

This is a comment, stupid huh!

Now let’s take a look at a generic, empty DXF file. Note that I have added comments using
the C++ //, but they are for illustrative purposes only, and do not exist in the DXF file
format:

0 // Begin HEADER section group code

SECTION

2 // group code

HEADER

// Header variable items go here

0 // group code

ENDSEC  // End HEADER section

0       // Begin TABLES section group code

SECTION

2       // TABLES group code

TABLES

0       // TABLE group code

TABLE

CHAPTER 6 Introduction to 3D Graphics596

09 0672318350 CH06  05•02•2003  2:40 PM  Page 596



2       // view port ENTITY group code

VPORT

70

// viewport table maximum item count)

// viewport table items go here>>>>

0      // end the TABLE group code

ENDTAB

0      // TABLE group code

TABLE

2     // group code allows any of these

LTYPE, LAYER, STYLE, VIEW, UCS, or DWGMGR

70

// Table maximum item count

// Table items go here

0      // end TABLE group code

ENDTAB

0

ENDSEC  // End TABLES section

0    // Begin BLOCKS section

SECTION

2    // BLOCKS group code

BLOCKS

// Block definition entities go here

0

ENDSEC //  End BLOCKS section

0      // Begin ENTITIES section

SECTION

2      // and here’s where the ENTITIES start

ENTITIES

// Drawing entities go here
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0     // end SECTION group code

ENDSEC // End ENTITIES section

0

EOF // End of file

As you can see, there’s a lot of stuff in an empty file, but luckily the only thing we are
interested in is the ENTITIES section, because this is where the 3D data will be. There are
many entities as shown in Table 6.5.

TABLE 6.5 Useful DXF File Entities

ENTITY Tag Description

LINE A line

POINT A point

CIRCLE A circle

ARC An arc

TRACE A trace in space

SOLID A solid object

TEXT A text string

SHAPE A shape

POLYLINE A connected collection of lines

VERTEX A single vertex

3DFACE A 3D face or polygon

We are only interested in the 3DFACE entity, which is what all the 3D geometry exported
using DXF files is stored in. Note however that there’s no lighting, texturing, or camera
information at all. DXF is very simple mesh data, and that’s it. Anyway, the 3DFACE entity
looks like this for a four-sided polygon (I’ll use // for comments again, but remember that
they are illegal; 999 is the real comment group code):

0 // this is the start of something,

// so 0 for the group code

3DFACE

10 // x component of vertex 0 of face

x0 // and here’s the value

20 // y component of vertex 0 of face

y0 // and here’s the value

30 // z component of vertex 0 of face

z0 // and here’s the value
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// now for the next vertex we increment the

// XYZ group codes by 1

11 // x component of vertex 1 of face

x1 // and here’s the value

21 // y component of vertex 1 of face

y1 // and here’s the value

31 // z component of vertex 1 of face

z1 // and here’s the value

// and for the next vertex we again increment

// the XYZ group codes by 1

12 // x component of vertex 2 of face

x2 // and here’s the value

22 // y component of vertex 2 of face

y2 // and here’s the value

33 // z component of vertex 2 of face

z2 // and here’s the value

// and for the next vertex we again increment

// the XYZ group codes by 1

13 // x component of vertex 3 of face

x3 // and here’s the value

23 // y component of vertex 3 of face

y3 // and here’s the value

33 // z component of vertex 3 of face

z3 // and here’s the value

NOTE

If you wanted to define a triangle, the last vertex v3 would have the same values as v2 (v0, v1,
v2, v2).

And here is our cube in DXF format (I am using columns and a really small font so you
can see the majority of the file at once, because DXF files are written out line by line):
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0 0 0 0

SECTION SECTION 3DFACE 3DFACE

2 2 8 8

HEADER HEADER CUBE CUBE

0 0 10 10

ENDSEC ENDSEC -1.000000 1.000000

0 0 20 20

SECTION SECTION 1.000000 1.000000

2 2 30 30

TABLES TABLES 0.000000 2.000000

0 0 11 11

TABLE TABLE -1.000000 1.000000

2 2 21 21

LAYER LAYER -1.000000 -1.000000

70 70 31 31

153 153 0.000000 2.000000

0 0 12 12

LAYER LAYER 1.000000 -1.000000

2 2 22 22

Cube Cube -1.000000 -1.000000

70 70 32 32

0 0 0.000000 2.000000

62 62 13 13

15 15 1.000000 -1.000000

6 6 23 23

CONTINUOUS CONTINUOUS 1.000000 1.000000

0 0 33 33

ENDTAB ENDTAB 0.000000 2.000000

0 0 62 62

ENDSEC ENDSEC 0 0

0 0 0 0

SECTION SECTION 3DFACE 3DFACE

2 2 8 8

ENTITIES ENTITIES CUBE CUBE

0 0 10 10

3DFACE 3DFACE 1.000000 -1.000000

8 8 20 20

CUBE CUBE 1.000000 1.000000

10 10 30 30

1.000000 1.000000 0.000000 0.000000

20 20 11 11

-1.000000 -1.000000 1.000000 1.000000

30 30 21 21
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0.000000 0.000000 -1.000000 1.000000

11 11 31 31

-1.000000 -1.000000 0.000000 0.000000

21 21 12 12

-1.000000 -1.000000 1.000000 1.000000

31 31 22 22

0.000000 0.000000 -1.000000 1.000000

12 12 32 32

-1.000000 -1.000000 2.000000 2.000000

22 22 13 13

-1.000000 -1.000000 1.000000 -1.000000

32 32 23 23

2.000000 2.000000 1.000000 1.000000

13 13 33 33

1.000000 1.000000 2.000000 2.000000

23 23 62 62

-1.000000 -1.000000 0 0

33 33

2.000000 2.000000

62 62

0 0

NOTE

Notice the 8 followed by CUBE before each 3DFACE is defined. This is totally acceptable and the
reason why there are group codes—you can just disregard it if you like. However, in this case the
8 is a layer name group code, and the CUBE string is the name of the layer. A layer in this case is
the name of the 3D object I exported, which was called CUBE.

As you can see, parsing this file isn’t as hard as you think. You simply find the ENTITIES
section and then start reading each 3DFACE. The only bummer is that DXF files do not use
vertex lists—they use independent vertices for each face.

3DS/ASCII Files
3D Studio Max supports a number of file formats, but its most native formats are 3DS and
ASCII. They are actually the same format, but 3DS is binary, and ASCII is human-readable.
The formats are extremely robust and you can do just about anything with them, so I’m
not going to try to explain them. Rather, I think that if you just look at a file dump of our
little 2×2×2 cube located at (0,0,0), you will be able to see how the format works:
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Ambient light color: Red=0.3 Green=0.3 Blue=0.3

Named object: “Cube”

Tri-mesh, Vertices: 8     Faces: 12

Vertex list:

Vertex 0:  X:-1.000000     Y:-1.000000     Z:-1.000000

Vertex 1:  X:-1.000000     Y:-1.000000     Z:1.000000

Vertex 2:  X:1.000000     Y:-1.000000     Z:-1.000000

Vertex 3:  X:1.000000     Y:-1.000000     Z:1.000000

Vertex 4:  X:-1.000000     Y:1.000000     Z:-1.000000

Vertex 5:  X:1.000000     Y:1.000000     Z:-1.000000

Vertex 6:  X:1.000000     Y:1.000000     Z:1.000000

Vertex 7:  X:-1.000000     Y:1.000000     Z:1.000000

Face list:

Face 0:    A:2 B:3 C:1 AB:1 BC:1 CA:1

Material:”r255g255b255a0”

Smoothing:  1

Face 1:    A:2 B:1 C:0 AB:1 BC:1 CA:1

Material:”r255g255b255a0”

Smoothing:  1

Face 2:    A:4 B:5 C:2 AB:1 BC:1 CA:1

Material:”r255g255b255a0”

Smoothing:  1

Face 3:    A:4 B:2 C:0 AB:1 BC:1 CA:1

Material:”r255g255b255a0”

Smoothing:  1

Face 4:    A:6 B:3 C:2 AB:1 BC:1 CA:1

Material:”r255g255b255a0”

Smoothing:  1

Face 5:    A:6 B:2 C:5 AB:1 BC:1 CA:1

Material:”r255g255b255a0”

Smoothing:  1

Face 6:    A:6 B:7 C:1 AB:1 BC:1 CA:1

Material:”r255g255b255a0”

Smoothing:  1

Face 7:    A:6 B:1 C:3 AB:1 BC:1 CA:1

Material:”r255g255b255a0”

Smoothing:  1

Face 8:    A:6 B:5 C:4 AB:1 BC:1 CA:1

Material:”r255g255b255a0”

Smoothing:  1

Face 9:    A:6 B:4 C:7 AB:1 BC:1 CA:1

Material:”r255g255b255a0”
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Smoothing:  1

Face 10:    A:1 B:7 C:4 AB:1 BC:1 CA:1

Material:”r255g255b255a0”

Smoothing:  1

Face 11:    A:1 B:4 C:0 AB:1 BC:1 CA:1

Material:”r255g255b255a0”

Smoothing:  1

Caligari COB Files
Over the years, I have really come to be a strong proponent of Caligari trueSpace. It’s a
very powerful 3D modeler, and I challenge anyone to argue that its interface isn’t the
simplest to use in the world. Anyway, the COB format is similar to 3DS format, in as much
as what’s in the file, and there are both binary and ASCII versions of this format, too.
Anyway, the format is much too complex to describe in detail, but once again a listing of
our venerable cube shows much more than I can describe in a few pages about the format,
so take a look at the following:

Caligari V00.01ALH

PolH V0.06 Id 16796788 Parent 0 Size 00000981

Name Cube

center 0 0 1

x axis 1 0 0

y axis 0 1 0

z axis 0 0 1

Transform

1 0 0 0

0 1 0 0

0 0 1 1

0 0 0 1

World Vertices 8

-1.000000 -1.000000 -1.000000

-1.000000 -1.000000 1.000000

1.000000 -1.000000 -1.000000

1.000000 -1.000000 1.000000

-1.000000 1.000000 -1.000000

1.000000 1.000000 -1.000000

1.000000 1.000000 1.000000

-1.000000 1.000000 1.000000

Texture Vertices 14

0.000000 0.333333

0.000000 0.666667

0.250000 0.333333

0.250000 0.666667
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0.500000 0.000000

0.500000 0.333333

0.500000 0.666667

0.500000 1.000000

0.250000 0.000000

0.250000 1.000000

0.750000 0.333333

0.750000 0.666667

1.000000 0.333333

1.000000 0.666667

Faces 6

Face verts 4 flags 0 mat 0

<2,2> <0,0> <1,1> <3,3>

Face verts 4 flags 0 mat 0

<4,4> <0,8> <2,2> <5,5>

Face verts 4 flags 0 mat 0

<5,5> <2,2> <3,3> <6,6>

Face verts 4 flags 0 mat 0

<6,6> <3,3> <1,9> <7,7>

Face verts 4 flags 0 mat 0

<4,10> <5,5> <6,6> <7,11>

Face verts 4 flags 0 mat 0

<0,12> <4,10> <7,11> <1,13>

DrawFlags 0

Radiosity Quality: 0

Unit V0.01 Id 16796789 Parent 16796788 Size 00000009

Units 2

Mat1 V0.06 Id 16799524 Parent 16796788 Size 00000090

mat# 0

shader: phong  facet: auto32

rgb 1,1,1

alpha 1  ka 0.23  ks 0.81  exp 0.91  ior 1

ShBx V0.00 Id 16799525 Parent 16799524 Size 00000627

Shader class: color

Shader name: “chrome” (chrome)

Number of parameters: 3

base colour: color (255, 255, 255)

vector: vector (0, 1, 0.5)

mix: float 0.5

Shader class: transparency

Shader name: “none” (none)

Number of parameters: 0

Shader class: reflectance
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Shader name: “caligari phong” (caligari phong)

Number of parameters: 8

ambient factor: float 0.23

diffuse factor: float 0.19

specular factor: float 0.81

exponent: float 43.8135

specular colour: color (61, 67, 255)

transmission factor: float 0

mirror factor: float 0.78084

refraction: float 1

Shader class: displacement

Shader name: “none” (none)

Number of parameters: 0

END  V1.00 Id 0 Parent 0 Size        0

As you can see, the beef is up at the top, but basically it’s once again a vertex-based format
with a nice face list. Also, it’s darn near in plain English, so you almost don’t even need to
read a DOC on the format—you can try mucking with an object a bit and figure out the
majority of the format in a couple hours, as far as orientation, lights, texture coordinates,
and so forth, go.

Additionally, trueSpace has what is called the .SCN format, or “Scene,” which supports
entire scenes and worlds. 3D Studio Max supports this too, with the .MAX format. Thus,
we can potentially use either modeler (or Maya or Lightwave for that matter) to not only
define objects, but also entire worlds with lights, and so on. So as I said before, when you
get ready to write a game, see whether you can leverage a 3D modeler along with some
custom plug-in code, and use it as your game editor. Most of the time this approach works
great, and 3D modeler developers are making it easier each day, with more and more
support for game designers and editors with each iteration of their tools.

Icon Cool

3D Studio Max has a scripting language called MaxScript. With MaxScript, you can pretty much
access anything you want in a 3D world. This way you can write scripts or macros that add func-
tionality to 3D Studio Max, and you can basically turn it into a game editor!

Microsoft DirectX .X Files
The light dims … Last but not least is Microsoft’s DirectX format. I am not an expert on
this format, and I haven’t used it for much, other than exporting it and letting Direct3D
import it for me. That is, I have never written a parser. But I can tell you one thing—this
format has everything but the kitchen sink. It’s very complex, but also very powerful—
definitely not something we are even going to think about writing a parser for. Therefore,
we aren’t going to touch .X files ourselves. But the 3D acceleration portion of the book
(on the CD) loads and uses them at the API level, if you’re interested.
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3D File Format Summary
As you can see, various 3D file formats each have different pros and cons, but definitely
anything that is human-readable (has an ASCII version) is a plus. For more information on
3D file formats, try 3D Graphics File Formats by Keith Rule (Addison-Wesley), or searching
on the Net is always a good thing. For example, here are two nice URLs for a list of file
format descriptions:

http://www.informatik.uni-frankfurt.de/~amueller/FF02.HTM

or

http://astronomy.swin.edu.au/~pbourke/3dformats/

However, we will write a parser for each format we need for the book.

NOTE

The majority of file formats we’ve reviewed export the coordinates in a right-handed system.
However, depending on the tool, this can be overridden. But I want to emphasize that it’s an
issue when we finally write parsers, and if for some reason down the road you load an object into
your game that supports some specific file format and everything is inside out, you simply need
to invert the order of vertices and flip the z-axis in most cases.

Basic Rigid Transformations and Animation
If you’re reading this book, you should have a fairly good grasp on 2D animation tech-
niques such as translation, bitmap scaling, and rotation. However, in 3D there’s a lot more
we can do with 3D objects, because we have a total of six degrees of freedom to move
objects around, and we can deform the meshes themselves.

We’ve already talked a little about key frame animation and motion data-based animation,
and we will actually implement these types of mesh animations later in the book when we
talk about character animation. Right now, I want to cover some of the basic animation
techniques to simply move your 3D objects around and change their orientation, so that
you can at least create games that have rigid objects that move around and do things. So,
let’s take a brief look at how to approach the basic animation techniques of motion, rota-
tion, and morphing.

3D Translation
Translation in 3D is trivial, and we have already covered both the manual and matrix
derivations for it, so I won’t belabor the mechanics of it. What I want to talk about is how
to translate an entire mesh, or better yet, the best way to translate a mesh in a 3D game.

Because each object has a set of local or model coordinates that are all relative to a local
origin of (0,0,0), we don’t really want to translate the local coordinates of an object to
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translate it. The better approach is to have the position of the object and then use it as the
reference point during the local-to-world transformation to translate the object—which we
have already done. In fact, our object already has a field to track the position of the object
that it represents, called world_pos. Thus, we leave the actual translation of every point in
the mesh to the local-to-world transform and we only have to deal with translating a
single point to move an entire object! Therefore, if you want to move an object by the
vector t = <tx, ty, tz>, all you need to do is this:

object.world_pos.x+=t.x;

object.world_pos.y+=t.y;

object.world_pos.z+=t.z;

Relatively simple. Okay, now that we know we can do everything with a single translation
to a single point, the next question is how to move objects in 3D? Well, this is really more
of a question that applies to AI. Your AI will generate a proper stream of motion or transla-
tion values. But just for fun, let’s try to make an object move around in a circle in 3D. All
we need to do is compute either absolute position values or relative position values from
the last position. To makes things simple, let’s use absolute values rather than relative.
Let’s say that we want to move an object on a elliptical path in a plane that is parallel to
the x-z plane. Here’s the code that would do it:

float x_pos = a*cos(angle);

float y_pos = altitude;

float z_pos = b*sin(angle);

You would just plug in values for a, b, angle, and the altitude, and the math would
outpost the positions of an elliptical path—too easy, huh? Okay, what about a spiral that
spirals up each cycle—that’s easy, too:

// initial conditions

float altitude = 0;

float rate     = .1;

// this code is iterated each cycle

float x_pos = a*cos(angle);

float y_pos = altitude+=rate;

float z_pos = b*sin(angle);

And that’s it—the point (x_pos, y_pos, z_pos) will spiral up from the ground plane 
y = 0. As you can see, writing motion code for 3D is just as simple as it is for 2D, and we
are even using curves here without any problem at all.

3D Rotation
Rotation is a bit trickier than translation. Math isn’t the hard part (although it’s much
more complex), but the tracking of the orientation is more difficult. For example, when
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you move an object to (x,y,z), you know it’s at (x,y,z), simple as that. On the other hand,
when you rotate an object (ang_x, ang_y, ang_z), the orientation isn’t necessarily (ang_x,
ang_y, ang_z) relative to the axis—remember all that stuff about gimbal lock? Additionally,
when you rotate an object, the order that you apply the rotation matters; that is, XYZ is
completely different from YXZ, and so forth. Of course, if you are rotating an asteroid
around and you create a rotation rate (rx, ry, rz) with which you rotate the asteroid each
frame, who cares? But if you are rotating a tank or ship around, you need to be able to
compute the orientation of the ship when you need it. Hold onto that thought for a
moment.

To rotate an object in 3D, you always want to rotate the local coordinates of the object.
You want to perform the rotation transformation in the local space with (0,0,0) being the
object’s local origin (and not in world space—otherwise your object will rotate off center).
Now it’s really up to you if you want to perform the rotation and then store the rotated
coordinates back into the local coordinate storage, or if you want to make the current
orientation of each object part of the viewing transform. That is, when an object is getting
ready to be rendered, some code says to rotate the objects a certain angle and then pass it
on in a temporary array. The pro of this technique is that your model never gets mangled,
and it can be used as a master copy and other objects can just link to it. The downside to
this technique is that for an object that isn’t animating or that is fairly stable, it will have
to go through a rotation transformation each cycle, even if it’s not animating—wasting
cycles.

Keeping that in mind, if you want to rotate an object, you would simply transform its
local coordinates in place and then store the results back. For example, let’s say that we
have a tank simulation, and a tank object called tank1 that we already have defined and
loaded in is sitting there oriented straight down the +z axis. As the player turns right or
left, we can rotate the model in local coordinates:

// initialization, assume tank drives around in

// x-z plane therefore rotation to turn is parallel

// to the y-axis, that is yaw

tank1.dir.x = 0;

tank1.dir.y = 0;

tank1.dir.z = 0;

// game code

if (turn_right)

{

for (int index=0; index<tank1.num_vertices; index++)

{

// rotate the point, assume the call does it

Rotate_Point_On_Y(&tank1.vlist_local[index], -5);
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// update the current orientation, so we know

// where the tank is pointing

tank1.dir.y-=5;

} // end for

} // end if

else

if (turn_left)

{

for (int index=0; index<tank1.num_vertices; index++)

{

// rotate the point, assume the call does it

Rotate_Point_On_Y(&tank1.vlist_local[index], 5);

// update the current orientation, so we know

// where the tank is pointing

tank1.dir.y+=5;

} // end for

} // end if

Not much is going on in the code; if the player turns left, the entire vertex list is rotated
parallel to the y-axis +5 degrees, and if the player turns right, the vertex list is rotated –5
degrees. However, here’s the clincher—after you rotate a 3D object, you have no idea what
its orientation is by just looking at the mesh.

Therefore, this information is exactly what is tracked in the direction field object.dir via
the updates to tank1.dir. At any time, we can look at tank1.dir and know that the tank
is pointing at that angle relative to the positive X-axis (which we assume is the 0-degree
direction for y-axis rotation).

This method works great, but when you start rotating all three axes at the same time, it
kind of falls apart. As I said, the actual orientation of an object might not be the sum of
the rotations to the individual axes taken one at a time. However, there’s a better way to
track this—using an orientation vector. That is, for every object in your 3D world, when
you load it and it’s oriented toward the +z axis, you initialize a unit 3D vector that is also
pointing down the 3D +z. Whenever you transform the 3D object, you transform the unit
direction, too. This is shown in Figure 6.52. After 1,000,000 rotations, if you review the
rotation vector, it will always reflect the current direction of the object. This is what the
dir field is also used for. Alas, there’s a catch. What if you rotate the object parallel to the
z-axis and flip it upside down? The direction vector is still correct, but you have lost infor-
mation because a vector has no “roll” tracking (but quaternions do!).
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FIGURE 6.52 Tracking the orientation of an object after loading and transformations.

The point is that if you want absolute orientation tracking via a vector, you need three
vectors inside your object structure/class, shown in Figure 6.53. You initialize these vectors
to be the x-y-z local axis of the object, and then when you rotate the object, you rotate all
three of the direction vectors. You will always be able to determine the absolute orienta-
tion of your object, because whenever you perform a rotation to the object, you perform
the same rotation to the local axis, and thus they always reflect the transformations.

3D Morphing
The final simplistic type of animation that you can perform to a 3D mesh is morphing. I
don’t mean morphing from one mesh to another, but more scaling and shearing the mesh
data in real time to make something look alive. For example, you could write the follow-
ing code to make something look like it’s breathing:

int up_down = 1; // -1 means get smaller

// 1 means get bigger

float scale = 1; // current scale

while(1)

{

// scale up or down?

if (up_down==1)
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{

Scale_Object(&object, 1.05);

scale*=1.05;

} // end scale

else

{

Scale_Object(&object, .95);

scale*=.95;

} // end else

// test if we are finishing cycle and changing

// directions

if (scale < .75 || scale > 1.25)

up_down=-up_down;

} // end while
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The preceding code will scale an object by 5% up or down each cycle, making it look like
it’s breathing, or whatever. Of course, we have to write the function Scale_Object(), but
that’s nothing more than iterating through the sent objects vertex list and multiplying by
the scale factor—easy. The point that I want to make is that we are assuming that we are
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modifying the local coordinates each cycle. This is fine, but slowly numerical errors will
creep into the model, and it will deform hundreds, thousands, or tens of thousands of
cycles, depending on the data. This is also true in the rotation animation.

CAUTION

Anytime you modify the local coordinates, there exists the possibility that after many modifica-
tions the original mesh data will be lost forever because of numeric errors, or drift.

The only real solution to this problem is to either keep a master copy of each mesh and
refresh all objects every so often, or to make the rotation and morphing operations on the
fly during the pipeline and apply them to the local coordinates of the object in question—
but the results are stored in a temporary area, rather than overwriting the original mesh
data.

Review of the Viewing Pipeline
We have covered so much ground once again. I’m cringing at this chapter’s  page count
on MS Word, but hey—we aren’t making grilled cheese sandwiches! Anyway, now that you
know a little about all the parts of the 3D pipeline, let’s recap the pipeline and try to fill in
as much as possible, annotating the pipeline in places where we know we have lots of
work to do.

In Figure 6.54, we see a fairly detailed view of the 3D pipeline, with all kinds of stuff
hanging from it. The major parts are the following:

• Local transformations and animation—This stage is where the local coordinates of
each object are transformed. There might be rotation, scaling, or other vertex opera-
tions that are performed in place.

• Local-to-world transformation—This stage is where the local coordinates are trans-
lated to world coordinates one at a time based on the position of the object, which
is tracked relative to its local center at world_pos (in our object definition).

• Hidden surface removal and lighting—This stage is where we remove back-faces from
the 3D models, as well as remove entire objects from the 3D pipeline. Additionally,
lighting calculations are usually performed in world coordinates.

• Object removal—This stage is performed separately sometimes, and can be unlinked
to the lighting phase. The only reason that lighting and hidden surface removal are
performed at the same time is that surface normal calculations are made for the
hidden surface removal that can be reused by the lighting models.

• World-to-camera transformation—This stage is where the final geometry that is
potentially visible is transformed relative to the camera position and view angles.

• 3D clipping—This stage is where polygons are clipped to the 3D viewing volume.
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• Perspective projection and clipping—This stage transforms the camera coordinates so
that the objects have perspective. Additionally, the perspective transformation can
normalize the viewing volume into a unit cube or cuboid shape, which makes 3D
clipping easier to perform. Hence, sometimes 3D clipping is performed after the
perspective transform.

• Screen projection—This is nearly the last stop in the pipeline. Here the view plane
coordinates are mapped to the screen and passed to the rasterizer for final rendering.

• Rasterization and clipping—This is the last stage in the 3D pipeline. Here a list of
polygons, vertex colors, texture maps, and so forth are passed to a rasterizer that just
blasts the polygons down on the screen. Additionally, some polygons might extend
past the edges of the screen (if they weren’t clipped in a previous stage), and will be
clipped at the pixel or scan line level.
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That’s not a bad first shot at the 3D pipeline. Granted, there are a lot of details involved in
making it work, but for the most part, that’s it. Although we haven’t talked much about
lighting, you can imagine what’s involved: lots of math, light sources, and the orientation
of the polygons—but we will get to that in the upcoming chapters.

Types of 3D Engines
Now I want to take a moment to talk about the types of 3D engines out there. I don’t
want to get too much into the technology, but I just want you to get a feel for them—why
they exist, and what they are each good at doing.

Space Engines
Figure 6.55 depicts a view of a good old space game: Star Wars: X-Wing. As you can see,
the majority of the game is made out of objects floating in space. Games of this type are
typically much simpler to write than first-person shooters for a number of reasons, includ-
ing animation, collision detection, and database issues. However, in the most basic terms,
space games are easier to write because the 3D engines aren’t as complex. In most cases,
3D space games are object-based, meaning that all entities are objects, and during render-
ing, many of them are discarded from the pipeline. Then during the rendering phase, a
simple painter’s algorithm or Z-buffer is used to sort the polygons that make up each
object. However, each object can be easily sorted against the other objects, because they
represent ships in space.
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Additionally, most space games these days are written with polygon engines. However,
some of the first 3D space games like Wing Commander were written using sprite engines,
with lots of prerendered views, along with fast bitmap reflection and scaling algorithms.
The positions of the ships and so forth were all represented by single points in 3D—so the
engines were 3D in a sense, but the models were not. Anyway, space games these days are
written with polygon engines for the most part, and lighting, animation, and so on are all
handled in the normal manner.

The hard thing about space games is the motion. In a first-person shooter, it’s very hard to
animate bipeds walking around, but many times you have prerecorded animation files and
you are usually walking on a 2D surface, like a floor. The problem with 3D space games is
not so much the rendering, but the motion and AI for space ships. This is a bit more chal-
lenging, because the ships have to be able to make smooth turns, rolls, and operate in 3D.
This means the use of 3D curves might have to be employed, along with other techniques.
But as a rule of thumb, your first 3D games should be ground-based (in a desert, or in
space) to simplify the rendering algorithms and database work.

Terrain Engines
Terrain engines are the next step up from space engines. A terrain engine can of course
have more than terrain, but the terrain is a major component of the world, and a proper
method of determining visible polygons is a must. Figure 6.56 is a screenshot from the
game Tread Marks by Longbow Digital Arts, which is a 3D game with a lot of terrain. Aside
from the terrain, the objects in a terrain (or any terrestrial) game are fairly easy to deal
with. They can move around over the terrain (maybe some fly over), and in most cases are
tanks or vehicles, so their animations aren’t that bad. Of course, if you are making a mech
warrior game, you have to deal with complex animation and biped terrain tracking. But
the major problem with terrain engines is how to represent the world database, which can
be quite large.

For example, suppose that you want to create a world that is a mesh of polygons
100,000×100,000 units in size, with each polygon no more than 200×200 units. That
means you have a polygon mesh that is of the order

(100000/200)*(100000/200) = 250,000 polygons!
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FIGURE 6.56 A screenshot of the most excellent game Tread Marks.

See what I mean?—that’s a lot of polygons to track. Therefore, you have to use some kind
of partitioning scheme to keep the number of active polygons that could potentially be
visible at any time down to a reasonable minimum. One such technique is a sectorizing of
the world. For example, take a look at Figure 6.57. Here I have sectorized our
100,000×100,000 game grid into an 8×8 matrix of sectors, each consisting of roughly
1,000 polygons per sector (250,000/256), which is manageable. And because I can only see
maybe 1,000 units in front of me, I am guaranteed to only have to look in four sectors at
once (worst case at a corner point), which means that at most I will have four sectors, or
4,000 polygons, to deal with at any one time. Not bad. Of course, that’s minus objects.

Again, terrain or land-based games are a little more complex than space games because of
the terrain and large database, but other than that, the rendering can be done using a
modified painter’s algorithm or binary space partition (if you want to get really big
worlds), or a plain old Z-buffer. But you can get away with very little. Of course, another
hard part about terrain engines is the motion of the objects and their tracking of the
terrain contour. This is terrain following, nothing more than keeping your game objects
oriented so their legs, feet, wheels, or whatever stay above ground, and that their center of
masses up vectors are parallel to the terrain they are moving on.

CHAPTER 6 Introduction to 3D Graphics616

09 0672318350 CH06  05•02•2003  2:40 PM  Page 616



FIGURE 6.57 Sectorizing a large world into smaller blocks.

FPS Indoor Engines
These are the bad boys. Figure 6.58 is a screenshot of one of the quintessential 3D first-
person shooter (FPS) games available: Unreal Tournament. First-person shooters are really
the hardest games to write, for a number of reasons. First, you are indoors many times,
and that means high detail and close quarters. Secondly, the worlds for FPS games are
getting huge, and hence so are the polygon databases. This means that there is simply no
way to just throw the whole world at the 3D pipeline—you have to sectorize your world
using visibility schemes to minimize the number of polygons taken into consideration.

This means you’ll need octrees, binary space partitions, portal engines, or whatever. In a
space or terrain outdoor game, you can get by with the 3D models not looking right, poly-
gons sorted incorrectly or missing, or whatever. But in a FPS game, you simply can’t do
that. Referring again to Figure 6.58, these games are solid as a rock, and really immerse the
player in the worlds. Players simply won’t accept an unstable, shaky, or ugly world. These
things have to look real!
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FIGURE 6.58 3D first-person shooter Unreal Tournament. 

Finally, the physics modeling and AI for a FPS are very complex, again because of the inti-
mate nature and close proximity of the games. The players “see” everything very well, and
know what to expect. When a space ship blows up in a space shooter, that’s not too hard
to simulate, but when you fire a pulse at a player and he falls in the water, players want to
see the water ripple and the box floating in it to bob up and down!

Ray Casters and Voxel Engines
So far we have talked about polygon-based engines, but there are other types of 3D
engines based on ray casting and voxels. Ray casting is the technique used in many of the
first 3D FPS games, like Wolfenstein 3D. These games are based on forward ray tracing,
which is tracing a ray from the viewpoint of the player through the view plane until it
hits a single object, as shown in Figure 6.59. Based on the geometry of the world and hints
about the object, a 3D scene can be generated very quickly using this technique.

NOTE

Actually, a programmer named Paul Edelstein created the first 3D ray caster I ever saw on an
Atari 800 game in the late 80s, but it was too ahead of its time for anyone to realize the power
of the technique.
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FIGURE 6.59 Ray casting mechanics.

The problem with ray casting is its limited capabilities. However, I believe that we will
once again revisit advanced ray casters that perform a kind of ray casting/ray tracing
hybrid in the next five years that will render in a more realistic way than with polygons—
my two cents. Anyway, the other ray casting type technique is called voxel graphics, or
volumetric rendering. One of the most notable games to use voxel graphics is Novalogic’s
Comanche. Technically, real voxel graphics are really not based on ray casting, but a tech-
nique called the marching cubes algorithm, which is used to render volumetric data. A 3D
data set is used to render a 3D image—hence, the data is one-to-one with the image we
desire to render. Medical imaging uses voxel systems. However, we have found that we can
take voxel data and use other tricks based on ray casting to render the images very quickly.
If you play with my voxel demo on the CD, you will see how fast it is.

The problem with ray casters and voxel engines is that you need a lot of data, and I mean
a lot, to represent anything with detail. Alas, they aren’t used that much in games these
days, because polygons with texture maps are more efficient and look better. But as I said,
I think we are going to see a comeback because ultimately all rendering will be based on
light and ray tracing, and ray casting and voxel engines work well in these areas.
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Hybrid Engines
The last type of engine I want to talk about is the hybrid. All this means is an engine that
is designed to simulate space, land, and FPS all at the same time. This can also mean a
single engine that uses different techniques in the same environment. For example,
Wolfenstein uses ray casting for the world and sprites for the objects. Doom uses polygons
for the world and sprites for the objects. Quake uses polygons for the world and some
polygon models for the objects, and some sprites for others, and everything in Quake III is
based on polygons.

The point is, many times you might want to create a game that has multiple environ-
ments, and it might behoove you to use a number of different engine types, so that each
is better suited for the task, rather than using one and trying to make it work for every-
thing. As another example, many 3D games these days have particle systems. Many times
the particle systems are based on polygons that are billboards; that is, polygons that always
face the viewer—hence, they are really like 3D sprites.

In conclusion, we are going to stick to full polygon 3D engines. If you’re interested in
some of the other techniques, maybe to make specific objects in your game easier to
implement or whatever, there are a lot of other books on the subjects of sprite engines, ray
casting, and other techniques.

Integrating Everything into a Final Engine
We have covered a lot of topics in this chapter, written a lot of pseudo-code, and reviewed
lots of examples. At this point, we are ready to actually start writing working code that
will enable us to create a crude 3D world, place objects in it, move the objects around, and
view the world from a camera. We will do all this in the next chapter, and then each
chapter thereafter will focus on specific topics (some that we have already discussed) and
add lots of detail to each. However, there is a teenie-weenie bit of code we wrote in this
chapter having to do with objects and data structures, and you can find it, along with all
the stuff from the next chapter, in T3DLIB5.CPP|H.

So that’s really it. No demos at all in this chapter, just a lot of high-level abstract ideas
with some examples. Now I’m going to assume you know this stuff and pick up the pace a
bit, so if you aren’t completely comfortable with everything, please review this chapter
again.

Summary
We have without a doubt covered a lot of ground in this chapter, and you probably have
more questions than when you started. As we continue on, all will hopefully become clear.
Our goal in this chapter was to learn coordinate systems in detail, because we are going to
build on it directly in the next chapter, and additionally to get a general overview of
everything 3D, just to give you something to think about as you learn each topic in detail.
Like I said, 3D is so complex that to learn it, you need to start at the beginning, middle,
and end all at the same time!
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IN THIS CHAPTER

• General Wireframe Engine
Architecture

• Writing a 3D File Loader

• Building a 3D Pipeline

• Rendering a 3D World

• 3D Demos

CHAPTER 7

Rendering Wireframe
Worlds in 3D

“Would you say I have a plethora of piñatas?”

—El Guapo, The Three Amigos

Finally, we’re ready to start writing 3D applications! You
now have all the fundamental mathematical knowledge and
at least a very general idea of all the parts of the 3D engine.
In this chapter, we’re going to write a simple wireframe 3D
engine. As the book progresses, we’ll upgrade to a flat-shaded
engine, add lighting, texture mapping, and finally end up
with something like a Quake software engine. Therefore, we’re
going to move in nice clean steps. Unlike the last chapter,
this one is going to be code heavy, and we’re going to explore
a couple different ways to do everything. Moreover, we’re
going to be doing some more camera work in this chapter
and discuss another camera model, called the UVN system, in
addition to the Eulerian model. Here’s the hit list:

• General wireframe engine architecture

• Writing a simple 3D file loader

• Building the 3D pipeline

• The local-to-world transform

• Camera models

• The world-to-camera transform

• The camera-to-perspective transform
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622 CHAPTER 7 Rendering Wireframe Worlds in 3D

• The perspective-to-screen view port transform

• Object removal

• Back-face removal

• Simple 2D/3D clipping

• Rendering the 3D imagery

General Wireframe Engine Architecture
Instead of just jumping into writing our first 3D engine, let’s first lay the foundation of
what we want to end up with. Remember, it’s pointless for me to just give you a Quake
engine and say, “here.” The point of this book is to iterate version after version and for
you to understand every single detail of building a 3D engine from the ground up. This
also means making mistakes or simplifications for the sake of doing it.

TIP

In reference to the preceding statements about making mistakes or oversimplifications to make
something understandable: One of the greatest simplifications in science is the model of an
atom. During high school and even lower-level courses in college, the model of an atom is a
nucleus composed of neutrons and protons along with a number of electrons orbiting in nice
circular or elliptical orbits. Of course, this isn’t true at all. Electrons hardly orbit; in fact, they’re
nothing more than a probability cloud and by their very nature, we can’t locate them with
certainty in both their momentum and position. But, for the purposes of many simple experi-
ments, the orbital model works. In that same vein, many of the 3D techniques we’ll learn can be
improved on, but if you just see the end result, you’re doomed to repeat history and make the
same kind of mistakes if you don’t learn why or when something is better than something else.

In the previous chapter, we covered a great deal of mathematical theory about 3D graph-
ics. The fact is that whether you realize it or not, you know everything you need to about
3D graphics to make a fairly good engine (except maybe some rasterization techniques).
So, what we’re going to do is take all the mathematical and algorithmic concepts that we
covered in relation to coordinate systems, projections, and data structures to build a
simple wireframe 3D engine. This engine will allow polygons to be defined either inde-
pendently or via higher-level objects loaded off disk and then rendered. Additionally, I’ve
written all kinds of transformation functions (a plethora in fact), so we can create a
number of different 3D pipelines to experiment with. For example, we might load an
object and use hard-coded transforms all the way down the pipeline and render the object
as a set of polygons. On the other hand, we might uses matrices to perform the various
pipeline transformations and “rip” each object into its constituent polygons, and then
render the polygons without caring about the original object(s) that they represented.
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The point is that we’re going to see more than one way to accomplish the same goal (and
if you’re an X Window System programmer, you’ll feel right at home!). Very quickly, you’ll
learn that some basic 3D axioms, such as matrices, are beautiful but completely ridiculous
when used to perform the local-to-world transform and so forth (with software engines, at
least). Finally, we’re going to explore two different camera models. The first is the simple
Euler (or Eulerian) camera, which is nothing more than a position coupled with a set of
rotation angles. The second camera (which we’ve covered descriptively, but didn’t imple-
ment) is the UVN system, which is more like what a conventional movie director thinks
in terms of; that is, a direction and focal point, along with an orientation relative to that
direction.

By the way, if you don’t own an advanced TI (or Casio) graphing calculator, buy one. I
can’t tell you how much it’s been helping with the mathematics of the book and testing.
Moreover, you can write games on them because many of them have 68000 32-bit proces-
sors in them!

The Data Structures and 3D Pipeline
There’s not much to our first 3D engine. We’re going to build it up as the chapter
progresses, but right now, I want to at least lay out a rough diagram of the data sources
and 3D pipeline. Figure 7.1 shows that the engine is based on three unique data struc-
tures:

• A structure for a general polygon based on a vertex list

• A structure for a general self-contained polygon

• A structure for objects that are composed of a number of polygons

These are implemented with the same data structures from the previous chapter. I’ve
copied them here so you can refresh your memory (and mine—I’m going nuts naming
things clearly):

// a polygon based on a vertex list

typedef struct POLY4DV1_TYP

{

int state;  // state information

int attr;   // physical attributes of polygon

int color;  // color of polygon

POINT4D_PTR vlist; // the vertex list itself

int vert[3];    // the indices into the vertex list

} POLY4DV1, *POLY4DV1_PTR;
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// a self contained polygon used for the render list

typedef struct POLYF4DV1_TYP

{

int state;  // state information

int attr;   // physical attributes of polygon

int color;  // color of polygon

POINT4D vlist[3]; // the vertices of this triangle

POINT4D tvlist[3]; // the vertices after transformation if needed

POLYF4DV1_TYP *next; // pointer to next polygon in list??

POLYF4DV1_TYP *prev; // pointer to previous polygon in list??

} POLYF4DV1, *POLYF4DV1_PTR;

CHAPTER 7 Rendering Wireframe Worlds in 3D624

typedef struct OBJECT4DV1_TYP
{
int id;
char name[64];
int state;
int attr;
float avg_radius;
float max_radius;
POINT4D world_pos;
VECTOR4D dir;
VECTOR4D ux,uy, us;
int num_vetices;
POINT4D vlist_local[OBJECT4DV1_MAX_VERTICES];
POINT4D vlist_trans[OBJECT4DV1_MAX_VERTICLES];
int num_polys;
POLY4DV1 plist[OBJECTIVE4DV1_MAX_POLYS];

} OBJECTIVE, "OBJECTIVEDV1_PTR;

typedef struct POLY4DV1_TYP
{
int state;
int attr;
int color;
POINT4D_PTR vlist;
int vert[3];

POLY4DV1, *POLY4DV1_PTR;

typedef struct POLY4DV1_TYP
{
int state;
int attr;
int color;
POINT4D_PTR vlist;
int vert[3];

POLY4DV1, *POLY4DV1_PTR;

typedef struct POLY4DV1_TYP
{
int state;
int attr;
int color;
POINT4D vlist[3];
POINT4D tvlist[3];

POLYF4DV1_TYP *next;
POLYF4DV1_TYP *prev;

} POLYF4DV1, *POLYF4DV1_PTR;

typedef struct POLY4DV1_TYP
{
int state;
int attr;
int color;
POINT4D_PTR vlist;
int vert[3];

POLY4DV1, *POLY4DV1_PTR;

object

object

polygons

polygons

Self contained polygon

Each represents 
a single polygon

vertices transforms rasterization screen

3D pipeline

�z

�z

�y

�x

• • •

FIGURE 7.1 Data structures of our 3D engine.
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Here are some of the #defines for the polygon structures to make life easier on us:

// defines for polygons and faces version 1

// attributes of polygons and polygon faces

#define POLY4DV1_ATTR_2SIDED       0x0001

#define POLY4DV1_ATTR_TRANSPARENT     0x0002

#define POLY4DV1_ATTR_8BITCOLOR      0x0004

#define POLY4DV1_ATTR_RGB16        0x0008

#define POLY4DV1_ATTR_RGB24        0x0010

#define POLY4DV1_ATTR_SHADE_MODE_PURE   0x0020

#define POLY4DV1_ATTR_SHADE_MODE_FLAT   0x0040

#define POLY4DV1_ATTR_SHADE_MODE_GOURAUD 0x0080

#define POLY4DV1_ATTR_SHADE_MODE_PHONG  0x0100

// states of polygons and faces

#define POLY4DV1_STATE_ACTIVE       0x0001

#define POLY4DV1_STATE_CLIPPED      0x0002

#define POLY4DV1_STATE_BACKFACE      0x0004

Some of the symbols may seem a bit alien, but they’ll make sense as we build up the
engine. Moving on, here’s the object data structure:

// an object based on a vertex list and list of polygons

typedef struct OBJECT4DV1_TYP

{

int id;      // numeric id of this object

char name[64];   // ASCII name of object just for kicks

int state;    // state of object

int attr;     // attributes of object

float avg_radius; // average radius of object used for collision detection

float max_radius; // maximum radius of object

POINT4D world_pos; // position of object in world

VECTOR4D dir;    // rotation angles of object in local

// cords or unit direction vector user defined???

VECTOR4D ux,uy,uz; // local axes to track full orientation

// this is updated automatically during

// rotation calls

int num_vertices;  // number of vertices of this object
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POINT4D vlist_local[OBJECT4DV1_MAX_VERTICES]; // array of local vertices

POINT4D vlist_trans[OBJECT4DV1_MAX_VERTICES]; // array of transformed vertices

int num_polys;    // number of polygons in object mesh

POLY4DV1 plist[OBJECT4DV1_MAX_POLYS]; // array of polygons

} OBJECT4DV1, *OBJECT4DV1_PTR;

Nothing new, but a couple #defines are used to size the arrays. I’ve set them to reasonable
values:

// change these if you need more

#define OBJECT4DV1_MAX_VERTICES      64

#define OBJECT4DV1_MAX_POLYS       128

NOTE

It would be more efficient to use arrays of pointers to polygons and vertices, but I’m not worried
about memory at this point. Using dynamic arrays increases the complexity of the algorithms.

Continuing with our analysis of Figure 7.1, we see that there’s a simplified 3D pipeline
that takes either an object or a polygon and transforms it from local coordinates all the
way to screen coordinates. Let’s stop here for a moment and talk about what exactly we’re
going to process with the 3D engine.

In most cases, a 3D engine will have a number of objects and or individual polygons that
represent the geometry. At some point, all these objects and polygons will be converted
into polygons and placed into a render or rasterization list. However, with simpler 3D
engines, it’s quite possible to keep all objects separate (and intact) and to process and
render them completely as individual entities. In most cases, you don’t want high-level
hierarchical objects to deal with at render time. Most 3D rasterizers like polygons, not
“objects,” but there’s nothing wrong with it if you can make it work. In fact, at first, you
may think that it might be impossible to deal with objects at raster time because you don’t
have a single list of polygons that represent all polygons that make up all geometry in the
scene. Thus, how would you sort the polygons or Z-buffer them for correct rendering order
(of course, I’m getting ahead of myself here).

Well, the key is that as long as you sort the objects themselves and then sort the polygons
in the objects, you could theoretically render each object itself without problems because
each object defines a convex space (roughly speaking, it can be thought of as a bounding
sphere or box for sorting purposes). Of course, if you have a Z-buffer (which we’ll discuss
later), it’s irrelevant if you have a polygon list or a list of objects made of polygons because
at some point you’re going to rasterize everything and use the Z-buffer for occlusion
testing on a pixel-by-pixel basis.

CHAPTER 7 Rendering Wireframe Worlds in 3D626

10 0672318350 CH07  05•02•2003  2:42 PM  Page 626



The idea of the preceding paragraph is to reaffirm that we’re going to do things in more
than one way so that you can see the pros and cons of different techniques. Thus, I’ve
written enough code to take a single polygon and rasterize it, or take a set of object(s) and
keep them as objects all the way to rasterization, or to break objects into polygons and
then add them to a master polygon list, which is what I want to talk about now.

The Master Polygon List
In most 3D engines (software or hardware), all the objects in the game are at some point
converted into polygons from their high-level representations. These polygons are inserted
into a master polygon list or stream, which is then pushed through the 3D pipeline (the
high-level representation could be 3D meshes, parametric descriptions, or algorithmically
generated on the fly). The list may be generated at the world-coordinate level or farther
down the pipeline—maybe all objects are converted into polygons after the camera trans-
formation? But, at some point, a single list of polygons will be thrown at the rasterizer. In
our 3D engine toolkit, we have such a list, of course, and it’s shown in Figure 7.2. If we
like, we can use this list to hold the polygons. The data structure we’re going to use for the
first version of the polygon list is nothing more than an array of pointers to a static array,
as shown in Figure 7.2 with the actual definitions following the figure.
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typedef struct RENDERLIST4DV1_TYP
{
int state:  // state of renderlist
int attr:  // attributes of renderlist

// the render list is an array of pointers each pointing to
// a self contained "renderable" polygon face POLYF4DV1
POLYF4DV1_PTR poly_ptrs [RENDERLIST4DV1_MAX_POLYS];

// actual polygon data
POLYF4DV1 poly_data[RENDERLIST4DV1_MAX_POLYS];

int num_polys;  // number of polys in render list

} RENDERLIST4DV1,  *RENDERLIST4DV1_PTR;

(nti)

Pointers index 
into storage area y

PolyF4DV1 Storage Array

�x

�y

•
•

•

FIGURE 7.2 The master polygon list.
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// object to hold the render list, this way we can have more

// than one render list at a time

typedef struct RENDERLIST4DV1_TYP

{

int state; // state of renderlist ???

int attr; // attributes of renderlist ???

// the render list is an array of pointers each pointing to 

// a self contained “renderable” polygon face POLYF4DV1

POLYF4DV1_PTR poly_ptrs[RENDERLIST4DV1_MAX_POLYS];

// additionally to cut down on allocatation, de-allocation

// of polygons each frame, here’s where the actual polygon

// faces will be stored

POLYF4DV1 poly_data[RENDERLIST4DV1_MAX_POLYS];

int num_polys; // number of polys in render list

} RENDERLIST4DV1, *RENDERLIST4DV1_PTR;

As you can see, the RENDERLIST4DV1 object has state and attr fields, which are used to
track the state and attributes of the list (whatever we make that mean), but the important
parts of the structure are the poly_ptrs[] and poly_data[] arrays. These arrays make up
what’s called an indirection list or an indexed list, meaning that the data is stored in the
poly_data[] array, but instead of traversing the poly_data[] array directly, we traverse the
poly_ptrs[] array, which has pointers (or it could as well have been indices into
poly_data[]).

NOTE

The preceding technique is what Direct3D calls indexed vertex buffers.

Although you may think this is weird, we need it for a number of reasons. First, if I want
to sort the polygons on some key—say, their z-values (for rendering order)—I can sort only
the poly_ptrs[] list and not have to move around the poly_data[]! Second, if I want to
disable a polygon node in the poly_data[] list, I would normally have to delete it and
then move all the other nodes, if that was the only list I had. But with the indirection
pointers in poly_ptrs[], I can simply kill the link (and move the list up one if I want) to
turn off a polygon node in the poly_data[] array. Finally, you might be thinking, “Why
all this drama? Just use a linked list or something.” I agree completely, but for now, a
static array is easier to deal with, and only when we know that the number of polygons
will vary from 2 to 2 million will using a linked list help us. For now, I know I’m going to
be dealing with a few hundred polygons per frame maximum, so I can statically allocate
the storage and not worry about it.
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Finally, because you might have multiple render lists with many cameras, I decided not to
use globals for the render list (or the camera, for that matter), so to define a render list you
would do something like this:

RENDERLIST4DV1 rend_list;

Then you would make a call to the reset function, which resets the list for the next frame
of animation:

void Reset_RENDERLIST4DV1(RENDERLIST4DV1_PTR rend_list)

{

// this function intializes and resets the sent render list and

// ready’s it for polygons/faces to be inserted into it

// note that the render list in this version is composed

// of an array FACE4DV1 pointer objects, you call this

// function each frame

// since we are tracking the number of polys in the

// list via num_polys we can set it to 0

// but later we will want a more robust scheme if

// we generalize the linked list more and disconnect

// it from the polygon pointer list

rend_list->num_polys = 0; // that was hard!

} // Reset_RENDERLIST4DV1

Later, when we create more dynamic render lists (if we need them), this function would of
course be more complex because it would probably deallocate memory and do cleanup of
the last frame’s polygon data.

NOTE

Data structures are so important in 3D graphics that I can’t emphasize enough knowing your
way around linked lists, double-linked lists, trees, graphs, and the various algorithms to search,
insert, delete, and work with them. In Tricks, I covered a number of these data structures, but for
a more complete treatise, try Algorithms in C++, by Sedgewick, or Programs and Data Structures in
C, by Leendert Ammeraal.

Now that you’re acquainted with the data structures, we’re ready to start building a 3D
wireframe engine. The funny thing is, there’s not much to it, really (just a lot of details
and connections, but nothing mind-boggling like filling out tax forms or anything). All
we need to do is create a polygon or load an object (we’ll need a function to do that) and
then follow these steps:

1. Perform the local-to-world transform

2. Object removal (optional)
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3. Perform back-face removal (optional)

4. Perform the world-to-camera transform

5. Perform 3D clipping  (optional)

6. Perform the camera-to-perspective transform; that is, projection

7. Perform the perspective-to-view port or screen transform

8. Rasterize polygons

NOTE

Steps 6 and 7 are sometimes merged.

Of course, some of the steps may be rearranged, and it also matters whether we’re dealing
with objects or converting them to polygons (we’ll have to perform the conversion at
some time during the pipeline). Finally, we can opt to perform the transformations using
matrices, manual methods, or a hybrid. For example, it’s a waste of multiplications to
perform a local-to-world transform with matrices because the same can be achieved with
literally three additions per point rather than a matrix multiplications with 16 multiplies
and 12 additions. On the other hand, the camera transform is almost always performed
with a matrix transform because the camera matrix is non-sparse. The point is that there’s
no correct way to do anything—if it works, and it’s fast, and it works for you, that’s the
correct way! But in this chapter, we’ll do everything in a couple of different ways to get a
good grip on the various methods to apply the pipeline and how ugly some can be—
especially because we’re using homogeneous coordinates, which can be a good and bad
thing at the same time!

The New Software Modules
The new library modules for this chapter that contain all the functional code for the 3D
wireframe engine are as follows:

• T3DLIB5.H—The header file

• T3DLIB5.CPP—The C/C++ source file

Of course, to compile any program in this chapter, you’ll need to include all the previous
T3DLIB*.CPP|H files along with all the DirectX libraries, and set the compiler to Win32
.EXE target, but you knew that, right? Additionally, I always put a comment or two at the
top of each demo program listing the requisite files to compile, so if you’re unsure about
the necessity of any particular library file, you can always refer to the comment.
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CAUTION

Today I received about 13 emails about linker error main() not found. Unless I tell you we’re
making a DOS console application for some special reason, ALL Windows Win32/DirectX applica-
tions are Win32 .EXE and have WinMain() as the entry point. Thus, the only way you can get a
linker error of _main() not found is if you’re linking a Windows application as a DOS CONSOLE
application and have the compiler set for CONSOLE application. I’m going to start a focus group
called CAGA—Compilers Abuse Group of America—for abusers of various compiler products. If
you’re interested, email me at compilerabuser@xgames3d.com <GRIN>.

Writing a 3D File Loader
In the previous chapter, we covered a number of 3D file formats and hopefully you tried
mucking with one of the 3D modelers on the CD or one you already own, can export a
simple object such as a cube, and review the data in an ASCII editor. Now, writing a 3D
file reader can be a simple task if you just finished a computer language course on
compiler and parser design (Dragon book). Otherwise, writing a language parser might not
be a nice experience for you because it’s really not something you can hack together. You
need to know what you’re doing! So, one thing to consider is that if you’re going to do a
lot of 3D work, you might want to get yourself a set of 3D file import/export/conversion
functions so that you don’t have to write them. Nevertheless, I like doing everything
myself, so I’m going to write every single format reader we use in this book rather than
use third-party stuff. I’ll try to make them short, clear, and to the point.

With that in mind, we’re probably going to use the .PLG file format and the .NFF formats
first in this book because they’re simple to understand, and I can write a parser for either
of them before Sci-Fi Channel’s First Wave comes on tonight, and that’s an important
consideration. Moreover, they’re both English-readable formats, and you can write the files
by hand, which is what we’re going to do for this chapter. Why? I want you to be able to
work with 3D coordinates in your head before you delegate it to a 3D modeler.

We’ll start with a .PLG parser, but I’m not going to go over the entire .PLG file format in
detail because it’s in the last chapter. I’m just going to give you a generic description of
what a file we are trying to read looks like. Remember that the format is basically a vertex
list–based format with a list of polygons referring to the vertex list as indices. Here’s what
a generic .PLG file looks like:

#this is a comment

#header line object name, number of vertices and polygons

object_name num_vertices num_polygons

# vertex list

# each vertex is in the form of x y z

x0 y0 z0
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x1 y1 z1

x2 y2 z2

x3 y3 z3

.

.

xn yn zn

# polygon list

# each polygon is in the form

surface_descriptor num_vertices v0 v1 . vn

surface_descriptor num_vertices v0 v1 . vn

surface_descriptor num_vertices v0 v1 . vn

surface_descriptor num_vertices v0 v1 . vn

.

.

surface_descriptor num_vertices v0 v1 . vn

#where v0 v1 . vn are the vertex numbers that make up each polygon

And here’s a simple cube object to give you something to look at for reference:

# begin plg/plx file

# simple cube, 8 vertices, 12 polygons

tri 8 12  

# vertex list in x y z format

5 5 5

-5 5 5

-5 5 -5

5 5 -5

5 -5 5

-5 -5 5

-5 -5 -5

5 -5 -5

# polygon list

# each poly has 3 vertices

0xd0f0 3 0 1 2 

0xd0f0 3 0 2 3

0xd0f0 3 0 7 4 

0xd0f0 3 0 3 7

0xd0f0 3 4 7 6 

0xd0f0 3 4 6 5

0xd0f0 3 1 6 2 
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0xd0f0 3 1 5 6

0xd0f0 3 3 6 7 

0xd0f0 3 3 2 6

0xd0f0 3 0 4 5 

0xd0f0 3 0 5 1

The only thing about PLG files is they are a bit “80s,” so I’ve altered them a bit by adding
some functionality; I call the new ones .PLX files. The point is that if you do actually find
a 3D modeler that exports .PLG files, the reader we’ll write will still read them, but the 16-
bit surface descriptor will be invalid. The new surface descriptor I’ve made up for the
modified .PLG files (which I sometimes refer to as .PLX files) is defined here:

Bit Number: d15          d0

Encoding: CSSD | RRRR| GGGG | BBBB

where

• C is the RGB/indexed color flag.

• SS are two bits that define the shading mode.

• D is the double-sided flag.

• RRRR, GGGG, BBBB are the red, green, and blue bits for RGB mode.

• GGGGBBBB is the 8-bit color index for 8-bit mode and interpreted as the color index.

The following #defines help discriminate and extract these bit fields:

// bit masks to simplify testing????

#define PLX_RGB_MASK    0x8000// mask extracts RGB/indexed color

#define PLX_SHADE_MODE_MASK 0x6000// mask extracts shading mode

#define PLX_2SIDED_MASK   0x1000// mask for double sided

#define PLX_COLOR_MASK   0x0fff// xxxxrrrrggggbbbb, 4-bits per channel RGB

// xxxxxxxxiiiiiiii, indexed mode 8-bit index

// these are the comparison flags after masking

// color mode of polygon

#define PLX_COLOR_MODE_RGB_FLAG   0x8000 // poly uses RGB color

#define PLX_COLOR_MODE_INDEXED_FLAG 0x0000 // poly uses indexed 8-bit color 

// double sided flag

#define PLX_2SIDED_FLAG      0x1000 // poly is double sided

#define PLX_1SIDED_FLAG      0x0000 // poly is single sided
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// shading mode of polygon

#define PLX_SHADE_MODE_PURE_FLAG  0x0000 // poly is a constant color

#define PLX_SHADE_MODE_FLAT_FLAG  0x2000 // poly uses flat shading

#define PLX_SHADE_MODE_GOURAUD_FLAG 0x4000 // poly used gouraud shading

#define PLX_SHADE_MODE_PHONG_FLAG  0x6000 // poly uses phong shading

For example, if you want to define a polygon that’s two-sided, 16-bit RGB color
(0x3,0x8,0xF), with Gouraud shading, you would build the following surface descriptor.

Given that the 16-bit surface descriptor is in the format:

CSSD | RRRR| GGGG | BBBB

and

C = 1 for 16-bit color

SS = 10 for Gouraud shading

D = Double-sided bit; 1 for double sided

The CCSD nibble would look like this:

1101

The RRRR | GGGG | BBBB nibbles would simple be 0x3, 0x8, and 0xf. Thus, the 
result is

1101 0011 1000 1111 = 0xD38F

And that’s all there is to it. The upper four bits of each descriptor describe the properties of
the polygon and the color model, and the remaining 12 bits describe the color in the RGB
model, or the index in the 8-bit model. All the file reader has to do is break these bits
apart and set the appropriate bits in the polygon definition of whatever data structure(s)
we load the object into. So, let’s see the functions that read in a .PLG file.

The .PLG/X File Loader
The good thing about .PLG files is that their format is fixed, meaning that you can’t put
the polygons and then the vertices; you must put the vertices and then the polygons
(.DXF files, for example, are a little more free form). Each data line in a .PLG must be in
the correct format, which is usually one or more numbers separated by whitespace. So, the
plan of attack is to write a simple parser that reads in each line along with a crude finite
state machine that knows that the .PLG format is broken up into three sections:

Section 1: Header info

Section 2: Vertex data info

Section 3: Polygon data info
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Each section has a particular format and is line-based data. Meaning we’re guaranteed that
each data line doesn’t continue on to multiple lines. Thus, we can write a parser that reads
single lines and then, depending on the state of the parser (what section we are in), we
can parse the lines and extract the data elements (which are separated by whitespace).
That’s all there is to it. Of course, as the parser is parsing the data, the results are inserted
into some data structure (which in this case will be an OBJECT4DV1 object).

To write the parser, I could use a single function, but it would be pretty ugly with all the
various cases and the line reader/tokenizer. So, I decided to break it up into two functions
which works pretty well.

TIP

If I did the parsing the right way, I would first write a suite of parsing functions and then leverage
them to write this reader using a language specification. Of course, there are commercial tools to
do this, including YACC and LEX, which are both Unix-based tools (but, of course, are available
on PC) to write compilers and interpreters.

The first support function, Get_Line_PLG(), reads a single line of the .PLG file (it’s based
on fgets()) and is shown here:

char *Get_Line_PLG(char *buffer, int maxlength, FILE *fp)

{

// this little helper function simply reads past comments 

// and blank lines in a PLG file and always returns full 

// lines with something on them on NULL if the file is empty

int index = 0; // general index

int length = 0; // general length

// enter into parsing loop

while(1)

{

// read the next line

if (!fgets(buffer, maxlength, fp))

return(NULL);

// kill the whitespace

for (length = strlen(buffer), index = 0; 

isspace(buffer[index]); index++);

// test if this was a blank line or a comment

if (index >= length || buffer[index]==’#’) 

continue;
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// at this point we have a good line

return(&buffer[index]);

} // end while

} // end Get_Line_PLG

There’s not much to it. It basically understands whitespace and comments delineated by
the # symbol. The function simply returns the next line in the file or NULL if the file is
empty, which would occur only in an error condition because the .PLG file will have an
exact deterministic number of data tokens based on the header information line. The
function that reads the actual .PLG file is called Load_OBJECT4DV1_PLG() (note the naming
convention) and is shown next:

int Load_OBJECT4DV1_PLG(OBJECT4DV1_PTR obj, // pointer to object

char *filename,   // filename of plg file

VECTOR4D_PTR scale,   // initial scaling factors

VECTOR4D_PTR pos,    // initial position

VECTOR4D_PTR rot)    // initial rotations

{

// this function loads a plg object in off disk, additionally

// it allows the caller to scale, position, and rotate the object

// to save extra calls later for non-dynamic objects

FILE *fp;     // file pointer

char buffer[256]; // working buffer

char *token_string; // pointer to actual token text, ready for parsing

// file format review, note types at end of each description

// # this is a comment

// # object descriptor

// object_name_string num_verts_int num_polys_int

// # vertex list

// x0_float y0_float z0_float

// x1_float y1_float z1_float

// x2_float y2_float z2_float

// .

// .

// xn_float yn_float zn_float

//

// # polygon list

// surface_description_ushort num_verts_int v0_index_int v1_index_int . 
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// vn_index_int

// .

// .

// surface_description_ushort num_verts_int v0_index_int v1_index_int . 

// vn_index_int

// lets keep it simple and assume one element per line

// hence we have to find the object descriptor, read it in, then the

// vertex list and read it in, and finally the polygon list -- simple :)

// Step 1: clear out the object and initialize it a bit

memset(obj, 0, sizeof(OBJECT4DV1));

// set state of object to active and visible

obj->state = OBJECT4DV1_STATE_ACTIVE | OBJECT4DV1_STATE_VISIBLE;

// set position of object

obj->world_pos.x = pos->x;

obj->world_pos.y = pos->y;

obj->world_pos.z = pos->z;

obj->world_pos.w = pos->w;

// Step 2: open the file for reading

if (!(fp = fopen(filename, “r”)))

{

printf(“Couldn’t open PLG file %s.”, filename);

return(0);

} // end if

// Step 3: get first token string which should be the object descriptor

if (!(token_string = Get_Line_PLG(buffer, 255, fp)))

{

Write_Error(“PLG file error with file %s (object descriptor invalid).”,

filename);

return(0);

} // end if

Write_Error(“Object Descriptor: %s”, token_string);

// parse out the info object

sscanf(token_string, “%s %d %d”, obj->name, 

&obj->num_vertices, 

&obj->num_polys);
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// Step 4: load the vertex list

for (int vertex = 0; vertex < obj->num_vertices; vertex++)

{

// get the next vertex

if (!(token_string = Get_Line_PLG(buffer, 255, fp)))

{

Write_Error(“PLG file error with file %s (vertex list invalid).”,

filename);

return(0);

} // end if

// parse out vertex

sscanf(token_string, “%f %f %f”, &obj->vlist_local[vertex].x, 

&obj->vlist_local[vertex].y, 

&obj->vlist_local[vertex].z);

obj->vlist_local[vertex].w = 1;  

// scale vertices

obj->vlist_local[vertex].x*=scale->x;

obj->vlist_local[vertex].y*=scale->y;

obj->vlist_local[vertex].z*=scale->z;

Write_Error(“\nVertex %d = %f, %f, %f, %f”, vertex,

obj->vlist_local[vertex].x, 

obj->vlist_local[vertex].y, 

obj->vlist_local[vertex].z,

obj->vlist_local[vertex].w);

} // end for vertex

// compute average and max radius

Compute_OBJECT4DV1_Radius(obj);

Write_Error(“\nObject average radius = %f, max radius = %f”, 

obj->avg_radius, obj->max_radius);

int poly_surface_desc = 0; // PLG/PLX surface descriptor

int poly_num_verts  = 0; // number of vertices for currpoly (always 3)

char tmp_string[8];    // string to hold surface descriptor in and

// test if it need to be converted from hex

// Step 5: load the polygon list

for (int poly=0; poly < obj->num_polys; poly++)

{
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// get the next polygon descriptor

if (!(token_string = Get_Line_PLG(buffer, 255, fp)))

{

Write_Error(“PLG file error with file %s (polygon descriptor invalid).”,

filename);

return(0);

} // end if

Write_Error(“\nPolygon %d:”, poly);

// each vertex list MUST have 3 vertices since we made this a rule

// that all models

// must be constructed of triangles

// read in surface descriptor, number of vertices, and vertex list

sscanf(token_string, “%s %d %d %d %d”, tmp_string,

&poly_num_verts, // should always be 3 

&obj->plist[poly].vert[0],

&obj->plist[poly].vert[1],

&obj->plist[poly].vert[2]);

// since we are allowing the surface descriptor to be in hex format

// with a leading “0x” we need to test for it

if (tmp_string[0] == ‘0’ && toupper(tmp_string[1]) == ‘X’)

sscanf(tmp_string,”%x”, &poly_surface_desc);

else

poly_surface_desc = atoi(tmp_string);

// point polygon vertex list to object’s vertex list

// note this is redundant since the polylist is contained

// within the object and its up to the user to select

// whether the local or transformed vertex list is used when building

// polygon geometry, might be better to set to NULL in the context

// of polygons that are part of an object

obj->plist[poly].vlist = obj->vlist_local; 

Write_Error(“\nSurface Desc = 0x%.4x, num_verts = %d, /

vert_indices [%d, %d, %d]”, 

poly_surface_desc, 

poly_num_verts, 

obj->plist[poly].vert[0],

obj->plist[poly].vert[1],

obj->plist[poly].vert[2]);
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// now we that we have the vertex list and we have entered the polygon

// vertex index data into the polygon itself, now let’s analyze the 

// surface descriptor and set the fields for the polygon based on 

// the description

// extract out each field of data from the surface descriptor

// first let’s get the single/double sided stuff out of the way

if ((poly_surface_desc & PLX_2SIDED_FLAG))

{

SET_BIT(obj->plist[poly].attr, POLY4DV1_ATTR_2SIDED);

Write_Error(“\n2 sided.”);

} // end if

else

{

// one sided

Write_Error(“\n1 sided.”);

} // end else

// now let’s set the color type and color

if ((poly_surface_desc & PLX_COLOR_MODE_RGB_FLAG)) 

{

// this is an RGB 4.4.4 surface, I know sucks!

SET_BIT(obj->plist[poly].attr,POLY4DV1_ATTR_RGB16);

// now extract color and copy into polygon color

// field in proper 16-bit format 

// 0x0RGB is the format, 4 bits per pixel 

int red  = ((poly_surface_desc & 0x0f00) >> 8);

int green = ((poly_surface_desc & 0x00f0) >> 4);

int blue = (poly_surface_desc & 0x000f);

// although the data is always in 4.4.4 format, the graphics card

// is 5.5.5 or 5.6.5, but our virtual color system translates

// 8.8.8 into 5.5.5 or 5.6.5 for us, but we have to first scale all

// these 4.4.4 values into 8.8.8

obj->plist[poly].color = RGB16Bit(red*16, green*16, blue*16);

Write_Error(“\nRGB color = [%d, %d, %d]”, red, green, blue);

} // end if

else

{

// this is an 8-bit color indexed surface

SET_BIT(obj->plist[poly].attr,POLY4DV1_ATTR_8BITCOLOR);
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// and simply extract the last 8 bits and that’s the color index

obj->plist[poly].color = (poly_surface_desc & 0x00ff);

Write_Error(“\n8-bit color index = %d”, obj->plist[poly].color);

} // end else

// handle shading mode

int shade_mode = (poly_surface_desc & PLX_SHADE_MODE_MASK);

// set polygon shading mode

switch(shade_mode)

{

case PLX_SHADE_MODE_PURE_FLAG: {

SET_BIT(obj->plist[poly].attr, POLY4DV1_ATTR_SHADE_MODE_PURE);

Write_Error(“\nShade mode = pure”);

} break;

case PLX_SHADE_MODE_FLAT_FLAG: {

SET_BIT(obj->plist[poly].attr, POLY4DV1_ATTR_SHADE_MODE_FLAT);

Write_Error(“\nShade mode = flat”);

} break;

case PLX_SHADE_MODE_GOURAUD_FLAG: {

SET_BIT(obj->plist[poly].attr, POLY4DV1_ATTR_SHADE_MODE_GOURAUD);

Write_Error(“\nShade mode = gouraud”);

} break;

case PLX_SHADE_MODE_PHONG_FLAG: {

SET_BIT(obj->plist[poly].attr, POLY4DV1_ATTR_SHADE_MODE_PHONG);

Write_Error(“\nShade mode = phong”);

} break;

default: break;

} // end switch

// finally set the polygon to active

obj->plist[poly].state = POLY4DV1_STATE_ACTIVE;  

} // end for poly

// close the file

fclose(fp);
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// return success

return(1);

} // end Load_OBJECT4DV1_PLG

The function has a bit of error checking, which I probably went overboard with, but I
wanted you to get in the habit of adding error handling to file loading functions because
they can really go awry and write into memory. (Mr. Xenon, if you just initialized your
variables, that wouldn’t happen to you!) As a rule, I never do error handling in game code
because if the code’s not perfect, I’ll make it perfect. But in a loader, you’re counting on an
external file to be correct, which might not be the case, depending the source of the file.
Thus, some nice error states are dumped out to the error file as the loader is loading the
data.

Moving on to how the function works, the function opens up the .PLG file requested by
the string in filename. Then the first line of the file is read in, which controls the number
of vertices and polygons that need to be read in. The function then methodically reads in
the vertex list, inserting the vertices into the sent OBJECT4DV1 in obj. It then moves on to
the polygons and inserts them along with determining their flags and color models via the
surface descriptor for each polygon, which are translated into POLY_ATTR_* flags and logi-
cally ORed. Additionally, you can send some parameters to the function to transform the
objects as it’s loaded: scale, pos, and rot are the initial scaling, position, and rotation
factors for the object (note that they’re vectors).

The only other interesting thing about the function is that it computes the average and
maximum radius of the object for collision detection and object removal later down the
line in the 3D pipeline. Anyway, to load an object off disk, all you do is this:

OBJECT4DV1 obj; // object storage

VECTOR4D scale = {1,1,1,1}, // no scaling basically

pos  = {0,0,0,1}, // pos (0,0,0) in world

rot  = {0,0,0,1}; // no rotation

// load the object

Load_OBJECT4DV1_PLG(&obj, “cube.plg”, &scale, &pos, &rot);

That’s it. If you use the debugger or something to read through the data structure obj,
you’ll see that the object data has been read into it and it’s all correct (I hope!). The act of
loading an external file into the OBJECT4DV1 initializes the object and sets up the state
and attr fields as well as setting the initial orientation basis defined by ux, uy, uz to ux =
<1,0,0,1>, uy = <0,1,0,1>, and uz = <0,0,1,1>, which is in alignment with the world coordi-
nate system axes for reference. Now, let’s recap where we are as far as geometry.
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At this point, we have three different data structures that we can work with:

• POLY4DV1—A single polygon, but needs an external vertex list.

• POLYF4DV1—A single polygon that has its own internal vertice storage. Also the basis
of the master polygon list.

• OBJECT4DV1—A single object that’s composed of a number of polygons. It has its own
vertex and polygon storage; that is, it’s self-contained.

We could write our engine to handle all of these types all the way down the pipeline, but
I’ve opted to handle only the POLYF4DV1 and the OBJECT4DV1 because the POLY4DV1 is just a
POLYF4DV1 without a vertex list. So, let’s start building an engine to move these guys
(yes…polygons are boys, but pixels are girls) through the pipeline!

Building the 3D Pipeline
We’re ready to start implementing the 3D pipeline. We have our data structures, and we
can load external objects in .PLG (enhanced .PLG, actually) format, so there’s not much to
do other than write the darn functions. Hold on one sec…let me write a couple thousand
lines…okay, done!

CAUTION

The only regret I have is that we’re going to have to write a lot of functions before we get to see
any demos that put anything on the screen because the functions are all interrelated. But what
I’ll do at that point is create a number of demos that show some of the techniques leading up to
the rendering stage of the pipeline.

Generic Transformation Functions
If you recall, anything that you can do in 3D, you can do via a 4x4 matrix transformation
along with a post 4D homogeneous to 3D conversion (division by w, basically). However,
this doesn’t always mean it’s the fastest way to do it! In general, any transformation that is
a concatenation of rotations, translations, and projections is better to perform with a
single 4x4 matrix because the matrix represents numerous transforms concantenated
together and is usually non-sparse. However, if you’re just trying to translate a single
point, p, using a matrix multiple is overkill because it requires (4*4) = 16 multiplications,
(4*3) = 12 additions to process the entire matrix multiple of p*M = p(1x4) * M(4x4). And
if you do the translation manually, you only need three additions:

x=x+xt;

y=y+yt;

z=z+zt;

w=w;
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The point is that in a production 3D engine, you might find a manual method faster and
simpler. However, you might also find that although doing it manually is faster, it’s not as
clean or doesn’t port well to hardware (which almost always uses 4x4 transforms for every-
thing). Hence, as much as possible, we’re going to allow both approaches in our engine
design.

To facilitate the general transformation of a polygon or object by a 4x4 matrix, we need a
function that takes as a parameter the polygon (POLYF4DV1) or the object (OBJECT4DV1) and
performs a matrix multiplications on each vertex that makes up the geometry with a
transformation matrix. Additionally, we have to take into consideration that both of these
data structures have both local and transformed vertex storage.

If you recall, once you transform an object’s vertex data, the transformation is lost. Thus,
you better make sure that you want to do it. In many cases you do, but in some cases, the
transformation is part of the pipeline, so you want to keep a copy of the original data
unscathed, but transform and store the new data as it moves through the pipeline in
secondary storage. Both the POLYF4DV1 and OBJECT4DV1 have such a secondary trans-
formed storage space.

In the case of POLYF4DV1, the vertex data in the structure is stored in

POINT4D vlist[3]; // the vertices of this triangle

POINT4D tvlist[3]; // the vertices after transformation if needed

where tvlist[] is used to hold the transformed data. Similarly, in the OJBECT4DV1 struc-
ture, vertex data is stored in these arrays:

POINT4D vlist_local[OBJECT4DV1_MAX_VERTICES]; // array of local vertices

POINT4D vlist_trans[OBJECT4DV1_MAX_VERTICES]; // array of transformed vertices

Hence, you can obliterate the secondary storage as much as you like because you always
have a copy of the original data in the local storage array. However, sometimes you want
to transform the local storage data (a scale or rotation operation, perhaps for animation)
and want the new local model to remember the transform. In that case, you would modify
the local data itself. Figure 7.3 shows a flowchart of the two operations we want to
perform on vertex data.
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FIGURE 7.3 Flowchart of destructive and non-destructive transformations on vertex data.

So, we need a function to transform a POLYF4DV1 by a transformation matrix. But, in most
cases, you wouldn’t want to transform a single polygon (it’s a waste). You would wait until
you had an entire list of them, so let’s think in terms of transforming a list of polygons,
such as the master polygon list object, which we called a RENDERLIST4DV1 and is nothing
more than an array of POLYF4DV1s. Here’s a function that performs the transform defined
by the matrix mt to a render list:

void Transform_RENDERLIST4DV1(RENDERLIST4DV1_PTR rend_list, 

MATRIX4X4_PTR mt,  // transformation matrix

int coord_select)  // selects coords to transform

{

// this function simply transforms all of the 

// polygons vertices in the local or trans

// array of the render list by the sent matrix

// what coordinates should be transformed?

switch(coord_select)

{
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case TRANSFORM_LOCAL_ONLY:

{

for (int poly = 0; poly < rend_list->num_polys; poly++)

{

// acquire current polygon

POLYF4DV1_PTR curr_poly = rend_list->poly_ptrs[poly];

// is this polygon valid?

// transform polygon if and only if it’s not clipped, not culled,

// active, and visible, note however the concept of “backface” is 

// irrelevant in a wire frame engine though

if ((curr_poly==NULL) || 

!(curr_poly->state & POLY4DV1_STATE_ACTIVE) ||

(curr_poly->state & POLY4DV1_STATE_CLIPPED ) ||

(curr_poly->state & POLY4DV1_STATE_BACKFACE) )

continue; // move onto next poly

// all good, let’s transform 

for (int vertex = 0; vertex < 3; vertex++)

{

// transform the vertex by mt

POINT4D presult; // hold result of each transformation

// transform point

Mat_Mul_VECTOR4D_4X4(&curr_poly->vlist[vertex], mt, &presult);

// store result back

VECTOR4D_COPY(&curr_poly->vlist[vertex], &presult); 

} // end for vertex

} // end for poly

} break;

case TRANSFORM_TRANS_ONLY:

{

// transform each “transformed” vertex of the render list

// remember, the idea of the tvlist[] array is to accumulate

// transformations

for (int poly = 0; poly < rend_list->num_polys; poly++)

{

// acquire current polygon

POLYF4DV1_PTR curr_poly = rend_list->poly_ptrs[poly];

// is this polygon valid?
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// transform this polygon if and only if it’s not clipped, not culled,

// active, and visible, note however the concept of “backface” is 

// irrelevant in a wire frame engine though

if ((curr_poly==NULL) || !(curr_poly->state & POLY4DV1_STATE_ACTIVE) ||

(curr_poly->state & POLY4DV1_STATE_CLIPPED ) ||

(curr_poly->state & POLY4DV1_STATE_BACKFACE) )

continue; // move onto next poly

// all good, let’s transform 

for (int vertex = 0; vertex < 3; vertex++)

{

// transform the vertex by mt

POINT4D presult; // hold result of each transformation

// transform point

Mat_Mul_VECTOR4D_4X4(&curr_poly->tvlist[vertex], mt, &presult);

// store result back

VECTOR4D_COPY(&curr_poly->tvlist[vertex], &presult); 

} // end for vertex

} // end for poly

} break;

case TRANSFORM_LOCAL_TO_TRANS:

{

// transform each local/model vertex of the render list and store result

// in “transformed” vertex list

for (int poly = 0; poly < rend_list->num_polys; poly++)

{

// acquire current polygon

POLYF4DV1_PTR curr_poly = rend_list->poly_ptrs[poly];

// is this polygon valid?

// transform polygon if and only if it’s not clipped, not culled,

// active, and visible, note however the concept of “backface” is 

// irrelevant in a wire frame engine though

if ((curr_poly==NULL) || 

!(curr_poly->state & POLY4DV1_STATE_ACTIVE) ||

(curr_poly->state & POLY4DV1_STATE_CLIPPED ) ||

(curr_poly->state & POLY4DV1_STATE_BACKFACE) )

continue; // move onto next poly
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// all good, let’s transform 

for (int vertex = 0; vertex < 3; vertex++)

{

// transform the vertex by mt

Mat_Mul_VECTOR4D_4X4(&curr_poly->vlist[vertex], mt, 

&curr_poly->tvlist[vertex]);

} // end for vertex

} // end for poly

} break;

default: break;

} // end switch

} // end Transform_RENDERLIST4DV1

The function is fairly straightforward. It simply applies the 4x4 transformation matrix mt
to rend_list based on the coordinate transformation selection flag coord_select. Then,
depending on the requested coordinates that should be transformed, the function starts
looping and making calls to the matrix multiply function. The coordinate transformation
selector is controlled by the parameter coord_select based on the following defines:

// transformation control flags

#define TRANSFORM_LOCAL_ONLY   0 // perform the transformation 

// in place on the

// local/world vertex list 

#define TRANSFORM_TRANS_ONLY   1 // perform the transformation 

// in place on the 

// “transformed” vertex list

#define TRANSFORM_LOCAL_TO_TRANS 2 // perform the transformation 

// to the local

// vertex list, but store the 

// results in the

// transformed vertex list

Thus, you can apply the transform to (1) the local storage, (2) the transformed storage, or
(3) perform the transform to the local storage and store the results in the transformed
storage. Did I leave anything out?

Using the function is trivial; assume that we have a render list named rend_list full of
polygons and we want to transform the local coordinates of each polygon within it with
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the matrix m_trans and store the results in the transformed storage. The following call
would do the job:

Transform_RENDERLIST4DV1(&rend_list, m_trans, TRANSFORM_LOCAL_TO_TRANS );

Wham, bam, the entire list is transformed with the 4x4 matrix. Cool, huh?

The second function we need is one to transform an object itself or the OBJECT4DV1.
Basically, the function will be identical, but a little simpler because there’s just a vertex list
rather than a collection of polygons, each with its own vertex list. Of course, we still want
the same coordinate transformation selection capability. With that in mind, here’s the
function:

void Transform_OBJECT4DV1(OBJECT4DV1_PTR obj, // object to transform

MATRIX4X4_PTR mt,  // transformation matrix

int coord_select,  // selects coords to transform

int transform_basis) // flags if vector orientation

// should be transformed to

{

// this function simply transforms all of the vertices 

// in the local or trans

// array by the sent matrix

// what coordinates should be transformed?

switch(coord_select)

{

case TRANSFORM_LOCAL_ONLY:

{

// transform each local/model vertex of the object mesh in place

for (int vertex=0; vertex < obj->num_vertices; vertex++)

{

POINT4D presult; // hold result of each transformation

// transform point

Mat_Mul_VECTOR4D_4X4(&obj->vlist_local[vertex], mt, &presult);

// store result back

VECTOR4D_COPY(&obj->vlist_local[vertex], &presult); 

} // end for index

} break;

case TRANSFORM_TRANS_ONLY:

{

// transform each “transformed” vertex of the object mesh in place

// remember, the idea of the vlist_trans[] array is to accumulate
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// transformations

for (int vertex=0; vertex < obj->num_vertices; vertex++)

{

POINT4D presult; // hold result of each transformation

// transform point

Mat_Mul_VECTOR4D_4X4(&obj->vlist_trans[vertex], mt, &presult);

// store result back

VECTOR4D_COPY(&obj->vlist_trans[vertex], &presult); 

} // end for index

} break;

case TRANSFORM_LOCAL_TO_TRANS:

{

// transform each local/model vertex of the object mesh

// and store result

// in “transformed” vertex list

for (int vertex=0; vertex < obj->num_vertices; vertex++)

{

POINT4D presult; // hold result of each transformation

// transform point

Mat_Mul_VECTOR4D_4X4(&obj->vlist_local[vertex], mt, 

&obj->vlist_trans[vertex]);

} // end for index

} break;

default: break;

} // end switch

// finally, test if transform should be applied to orientation basis

// hopefully this is a rotation, otherwise the basis will get corrupted

if (transform_basis)

{

// now rotate orientation basis for object

VECTOR4D vresult; // use to rotate each orientation vector axis

// rotate ux of basis

Mat_Mul_VECTOR4D_4X4(&obj->ux, mt, &vresult);

VECTOR4D_COPY(&obj->ux, &vresult); 
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// rotate uy of basis

Mat_Mul_VECTOR4D_4X4(&obj->uy, mt, &vresult);

VECTOR4D_COPY(&obj->uy, &vresult); 

// rotate uz of basis

Mat_Mul_VECTOR4D_4X4(&obj->uz, mt, &vresult);

VECTOR4D_COPY(&obj->uz, &vresult); 

} // end if

} // end Transform_OBJECT4DV1

Again, nothing more than the three different cases with the matrix multiplication math
invoked, but there’s something else here. Aha! There’s a transform_basis flag. This is
needed for the following reason: As shown in Figure 7.4, when you transform a 3D object,
you lose its original load time orientation. That is, if you know you load an object with
“up” pointing in the +Y direction and “forward” in the +Z direction, how will you track
the result orientation after transforming an object?
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The point is that you need to also transform the basis or local axes or the object, too.
Then you can always use the basis of the object to figure the orientation of the object by
comparing the basis to the world axes (a very common problem that I get billions of
emails on…okay, maybe only hundreds of millions of emails). Figure 7.5 shows the same
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object after transformation with the object’s local basis transformed in addition to the
vertex data. Thus, the transform_basis flag determines whether you want the function
also to transform the basis of the object itself. Remember that the basis of the object could
be anything to start with, but usually it’s [ux = <1,0,0,0>, uy = <0,1,0,0>, uz = <0,0,1,0>],
which is the world unit coordinate axes basis.
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As an example, say that we had previously loaded an object into the variable obj to trans-
form its local coordinates by the matrix m_trans along with its basis. Here’s the call:

Transform_OBJECTDV1(&obj, m_trans, TRANSFORM_LOCAL_TO_TRANS, 1 );

Easy as cheating on taxes! But of course, I would never do that.

Now that we have a general transformation function, we can implement any transforma-
tion as a 4x4 matrix and then call this function. But remember that many of the trans-
forms are faster if performed manually. In the following sections, we’ll see how to perform
the various steps of the pipeline using manual and matrix methods on each geometry
object: OBJECT4DV1 and RENDERLIST4DV1.

The Local-to-World Transform
The local-to-world transformation transforms an object’s (or polygon’s) local or model
coordinates into world coordinates (which are what defines the entire game universe), as
shown in Figure 7.6. Therefore, given a point or vertex defined by p = <x,y,z,1> and a
translation factor dt = <xt, yt, zt, 1>, the local-to-world transform is simply

p’ = p + dt

leaving the w = 1 component the same.
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FIGURE 7.6 Local-to-world transformation.

Local-to-World Transformation for Objects
The function that performs the local (model)-to-world transformation on an OBJECT4DV1
simply translates the vertices of the object stored in local_vlist[] by the amount
world_pos and stores the results in trans_vlist[]. Here’s the manual version:

void Model_To_World_OBJECT4DV1(OBJECT4DV1_PTR obj, 

int coord_select= TRANSFORM_LOCAL_TO_TRANS)

{

// NOTE: Not matrix based

// this function converts the local model coordinates of the

// sent object into world coordinates, the results are stored

// in the transformed vertex list (vlist_trans) within the object

// interate thru vertex list and transform all the model/local 

// coords to world coords by translating the vertex list by

// the amount world_pos and storing the results in vlist_trans[]

if (coord_select == TRANSFORM_LOCAL_TO_TRANS)

{

for (int vertex=0; vertex < obj->num_vertices; vertex++)

{

// translate vertex

VECTOR4D_Add(&obj->vlist_local[vertex], &obj->world_pos, 

&obj->vlist_trans[vertex]);

} // end for vertex
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} // end if local

else // TRANSFORM_TRANS_ONLY)

{

for (int vertex=0; vertex < obj->num_vertices; vertex++)

{

// translate vertex

VECTOR4D_Add(&obj->vlist_trans[vertex], &obj->world_pos, 

&obj->vlist_trans[vertex]);

} // end for vertex

} // end else trans

} // end Model_To_World_OBJECT4DV1

Given that you’ve already loaded a unit cube into the OBJECT4DV1 cube and then set its
world_pos to (100,200,400), you can translate the whole mesh with the call

Model_To_World_OBJECT4DV1(&cube);

Notice that there’s a coordinate select function. This is useful in the cases where you
perform another transformation to the model that’s already in the transformed coordi-
nates. In this case, the model to world transform should use the transformed coordinate
rather than the original model coordinates. To control this, use the coord_select variable
as usual.

Now, if you wanted to, you could perform this transformation with a matrix, but it would
really be a waste of cycles. However, we need to look at it, because hardware loves matrices,
and when you take advantage of it you will see this. The function that builds up transla-
tion matrix is called void Build_Model_To_World_MATRIX4X4() and is shown here:

void Build_Model_To_World_MATRIX4X4(VECTOR4D_PTR vpos, MATRIX4X4_PTR m)

{

// this function builds up a general local to world 

// transformation matrix that is really nothing more than a translation

// of the origin by the amount specified in vpos

Mat_Init_4X4(m, 1,    0,    0,    0, 

0,    1,    0,    0, 

0,    0,    1,    0,

vpos->x, vpos->y, vpos->z, 1 );

} // end Build_Model_To_World_MATRIX4X4

As you can see, the function takes the position to translate to and the matrix you want to
store the computed transform matrix. Of course, you can use the matrix for general trans-
lation and not just the local-to-world transform. Anyway, to perform the local-to-world
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transformation with a matrix, we can make a call to Build_Model_To_Model_MATRIX4X4()
to build up the matrix and then execute the transformation with Transform_OBJECT4DV1()
like this:

MATRIX4X4 mt; // storage

VECTOR4D pos = {100,200,300, 1};

Build_Model_To_World_MATRIX4X4(&pos, &mt);

Transform_OBJECT4DV1(&obj, m_trans, TRANSFORM_LOCAL_TO_TRANS,1 );

So, that’s all there is to performing the local-to-world transformation on OBJECT4DV1s.

NOTE

I know this is trivial stuff, but we’re getting into good habits here—trust me….

Local-to-World Transformation for Render Lists
In most cases, you’ll insert the polygons of an object into a render list after the object is
already transformed from local to world coordinates. Thus, you’ll probably never need to
perform the local-to-world transform on an entire render list. But in the case when you
don’t want to use OBJECT4DV1 and you load polygons directly into a RENDERLIST4DV1 that
happens to represent some large mesh (maybe a terrain, as Jonathan Blow, the world’s
expert on terrain rendering, would tell you), you’ll need this step if the mesh isn’t in
world coordinates. Here’s the function that manually performs the local to world transfor-
mation on a RENDERLIST4DV1 without a matrix:

void Model_To_World_RENDERLIST4DV1(RENDERLIST4DV1_PTR rend_list, 

POINT4D_PTR world_pos, int 

coord_select = TRANSFORM_LOCAL_TO_TRANS)

{

// NOTE: Not matrix based

// this function converts the local model coordinates of the

// sent render list into world coordinates, the results are stored

// in the transformed vertex list (tvlist) within the renderlist

// interate thru vertex list and transform all the model/local 

// coords to world coords by translating the vertex list by

// the amount world_pos and storing the results in tvlist[]

// is this polygon valid?

if (coord_select == TRANSFORM_LOCAL_TO_TRANS)

{

for (int poly = 0; poly < rend_list->num_polys; poly++)

{
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// acquire current polygon

POLYF4DV1_PTR curr_poly = rend_list->poly_ptrs[poly];

// transform this polygon if and only if it’s not clipped, 

// not culled,

// active, and visible, 

// note however the concept of “backface” is 

// irrelevant in a wire frame engine though

if ((curr_poly==NULL) || 

!(curr_poly->state & POLY4DV1_STATE_ACTIVE) ||

(curr_poly->state & POLY4DV1_STATE_CLIPPED ) ||

(curr_poly->state & POLY4DV1_STATE_BACKFACE) )

continue; // move onto next poly

// all good, let’s transform 

for (int vertex = 0; vertex < 3; vertex++)

{

// translate vertex

VECTOR4D_Add(&curr_poly->vlist[vertex], world_pos, 

&curr_poly->tvlist[vertex]);

} // end for vertex

} // end for poly

} // end if local

else // TRANSFORM_TRANS_ONLY

{

for (int poly = 0; poly < rend_list->num_polys; poly++)

{

// acquire current polygon

POLYF4DV1_PTR curr_poly = rend_list->poly_ptrs[poly];

// transform this polygon if and only if it’s 

// not clipped, not culled,

// active, and visible, note however the concept of “backface” is 

// irrelevant in a wire frame engine though

if ((curr_poly==NULL) || !(curr_poly->state & POLY4DV1_STATE_ACTIVE) ||

(curr_poly->state & POLY4DV1_STATE_CLIPPED ) ||

(curr_poly->state & POLY4DV1_STATE_BACKFACE) )

continue; // move onto next poly

for (int vertex = 0; vertex < 3; vertex++)

{

// translate vertex
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VECTOR4D_Add(&curr_poly->tvlist[vertex], world_pos, 

&curr_poly->tvlist[vertex]);

} // end for vertex

} // end for poly

} // end else

} // end Model_To_World_RENDERLIST4DV1

Thus, if you have a render list named rend_list and you want to perform the local-to-
world transform and move the geometry from its local position to the position world_pos,
here’s what you would do:

Model_To_World_RENDERLIST4DV1(&rend_list, &world_pos, TRANSFORM_LOCAL_TO_TRANS);

That would be very efficient. But, if you wanted to use a matrix, you could do so by creat-
ing the transform like this:

MATRIX4X4 mt; // storage

VECTOR4D pos = {100,200,300, 1};

Build_Model_To_World_MATRIX4X4(&pos, &mt);

And then use the generic RENDERLIST4DV1 function to transform the geometry like this:

Transform_RENDERLIST4DV1(&rend_list, &mt, TRANSFORM_LOCAL_TO_TRANS);

NOTE

But this method would be waste of cycles due to the overhead of a matrix multiply per each
vertex—ouch!

The Eulerian Camera Model
This isn’t really a step of the 3D pipeline, but this is a good time to talk about the camera
models we’re going to use, because the next steps in the pipeline rely on them. If you
recall, the camera that we’ve been using for our first system is called Eulerian, meaning
that it’s defined by a position and the rotation (or Euler angles) that make up its orienta-
tion. This is shown in Figure 7.7. Additionally, we’re going to support the UVN camera,
which needs only the addition of a look at target, and the u,v,n vectors themselves—more
on that later, though.
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FIGURE 7.7 Euler camera model.

Whichever camera we use, we still need the viewing distance, a field of view, the near and
far clipping planes, and a view plane of some width and height that represents the final
image we want to display on the screen at some point, along with a viewport that has
width and height and represents the actual raster window. All these aspects play into the
camera model and create a viewing frustrum that encloses the camera’s overall field of
view and defines its properties. Objects within this field of view will be transformed and
viewed.

Okay, so with all that in mind, I sat down and made up a structure to represent a simple
camera. Really, I probably could have gotten away with the angles, position, near and far
clipping planes, and a couple other things, but I wanted to start you off early thinking
about all the information that a camera needs, even if we don’t use it yet. Alas, there’s
some extra stuff that isn’t really needed yet in this chapter—especially in relation to clip-
ping. Anyway, here’s the camera structure:

// camera version 1

typedef struct CAM4DV1_TYP

{

int state;   // state of camera

int attr;    // camera attributes

POINT4D pos;  // world position of camera used by both camera models

VECTOR4D dir;  // euler angles or look at direction of camera for UVN 

// models

VECTOR4D u;   // extra vectors to track the camera orientation

VECTOR4D v;   // for more complex UVN camera model
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VECTOR4D n;    

POINT4D target; // target or “look at” position for UVN model

float view_dist_h; // horizontal and vertical viewing distances 

float view_dist_v; 

float fov;     // field of view for both horizontal and vertical axes

// 3d clipping planes

// if view volume is NOT 90 degree then general 3d clipping

// must be employed

float near_clip_z;   // near z=constant clipping plane

float far_clip_z;   // far z=constant clipping plane

PLANE3D rt_clip_plane; // the right clipping plane

PLANE3D lt_clip_plane; // the left clipping plane

PLANE3D tp_clip_plane; // the top clipping plane

PLANE3D bt_clip_plane; // the bottom clipping plane            

float viewplane_width; // width and height of view plane to project onto

float viewplane_height; // usually 2x2 for normalized projection or 

// the exact same size as the viewport or 

// screen window

// remember screen and viewport are synonomous 

float viewport_width;   // size of screen/viewport

float viewport_height;

float viewport_center_x; // center of view port (final image destination)

float viewport_center_y;

// aspect ratio

float aspect_ratio;   // screen aspect width/height

// these matrices are not necessarily needed based on the method of

// transformation, for example, a manual perspective or screen transform

// and or a concatenated perspective/screen, however, having these 

// matrices give us more flexibility     

MATRIX4X4 mcam; // storage for the world to camera transform matrix

MATRIX4X4 mper; // storage for the camera to perspective transform matrix

MATRIX4X4 mscr; // storage for the perspective to screen transform matrix

} CAM4DV1, *CAM4DV1_PTR;
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Although I commented the structure, let’s review every single element so that there’s no
confision, I mean confusion!

state—Tracks the state of the camera. Nothing weird about that.

attr—Defines the particular attributes of the camera. Currently, there are only two type
attributes: CAM_MODEL_EULER and CAM_MODEL_UVN.

pos—Defines the world position of the camera.

dir—Defines the axis angles for simple Eulerian camera model or, when using the UVN
model, the x-component is the “elevation” for the spherical system and the y-component
is the “heading.”

u,v,n—Define vectors to track the camera orientation for the more complex UVN camera
model we discuss later in the chapter.

target—Defines the target position that the UVN camera model looks at.

view_dist_h, view_dist_v—Define the horizontal and vertical viewing distances needed
in the perspective transformation step. 

fov—Defines the field of view for both horizontal and vertical axes.

near_clip_z, far_clip_z—Define the near and far constant z clipping planes.

rt_clip_plane, lt_clip_plane, tp_clip_plane, bt_clip_plane—Define the right, left,
top, and bottom 3D clipping planes. For a field of view at 90 degrees, these planes are
trivial at 45 degrees from the origin, but for arbitrary fields of view, these planes are no
longer x = z, y = z, and so on, and must be generalized during 3D clipping.

viewplane_width, viewplane_height—Define the size of the viewing plane or viewplane
that the perspective projection projects onto. This is 2x2 for normalized projection, or the
exact same size as the view port or screen window if you want to merge the perspective
transform and screen transform together (faster).

viewport_width, viewport_height—Define the size in pixel space of the final raster
surface that you’re rendering on.

viewport_center_x, viewport_center_y—Define the center of the viewport.

aspect_ratio—Simply the ratio of viewport_width/viewport_height.

mcam—Storage for the camera transformation only.

mper—Storage for the camera-to-perspective transformation.

mscr—Storage for the perspective-to-screen transformation.

Wow, a lot of stuff, huh? But remember, we aren’t going to use or need all of it right away.
The point of the structure is to hold all the camera information, but there’s a lot of
derived information in there that we don’t want to have to define or compute ourselves.
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Thus, we need a function that can take a set of simple inputs and build a camera. First,
let’s look at the prototype of such a function:

void Init_CAM4DV1(CAM4DV1_PTR cam,    // the camera object

int cam_attr,     // camera attributes

POINT4D_PTR cam_pos,  // initial camera position

VECTOR4D_PTR cam_dir, // initial camera angles

POINT4D_PTR cam_target, // initial target for UVN model

float near_clip_z,   // near and far clipping planes

float far_clip_z,

float fov,       // field of view in degrees

float viewport_width, // size of final screen viewport

float viewport_height);

With this function, we can send the type of camera, position, orientation, distance of the
clipping planes, the field of view, and viewport dimensions, and the function sets up the
whole camera for us! Now, the only problem is that many of these parameters are related,
and hence constrained by each other.

Therefore, I wrote the function so that, in all cases, it creates a viewplane such that the
width is {-1 to 1}, and the height will be {-1/aspect_ratio to +1/aspect_ratio}. This has
to be agreed upon, because during the perspective to screen projection or mapping, we
need to know what we’re mapping. Forcing this convention makes it easier.

In most cases, we’re going to use a 90-degree field of view, which in turn results in a focal
distance of 1.0, but I wanted to add the extra functionality to the camera setup function
just so you could experiment with FOVs that are different from 90 degrees. Lastly, I
decided that the camera function should NOT compute the camera matrix during initial-
ization. The camera matrix should be created at a later time via calls to either the Euler or
UVN camera helper function. So, let’s take a look at the UVN camera now.

The UVN Camera Model
The Eulerian camera is okay for many setups, but it’s fairly limited and doesn’t work
exactly the way you think it does when you supply the view angles. A more natural
camera model is the UVN camera. It’s much easier to work with, so what we’re going to do
now is come up with the derivation of the camera model and the camera transformation
matrix. Figure 7.8 shows the standard UVN system.

Basically, the only difference between a Euler camera and a UVN camera is how we define
the orientation of the camera; instead of using angles, we use vectors. These vectors
describe the orientation or the basis of the camera’s coordinate system:

UVN = { X:<ux, uy, uz>, Y:<vx, vy, vz>, Z:<nx, ny, nz>}

For example, a standard XYZ left-handed system would have the following basis, using the
preceding notation:

XYZ = { X:<1, 0, 0>, Y:<0, 1, 0>, Z:<0, 0, 1>}
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FIGURE 7.8 The UVN camera model.

The UVN system has the same properties as the XYZ system; it’s mutually perpendicular,
or orthonormal, and all the vectors are linearly independent and have unit length.

Additionally, the UVN system has what’s called a target or look at point, which is nothing
more than where the camera is looking. And, of course, the camera has a position in space
that’s called the view reference point (or VRP, in most cases).

Now let’s talk about the UVN vectors and what they mean, but let’s go a little out of order.

n—This vector is analogous to the z-axis of the UVN system and points toward the target
position from the camera position. In other words, n = <target—VRP>. Of course, n must
be a unit vector, so we would normalize this vector at some point.

v—This is called the “up” vector and begins life identical to the y-axis vector <0,1,0>.
However, this value of v is only temporary and needed only to compute the “right” vector
or u, and then a new v is computed.

u—This is called the “right” vector, and is computed from the cross product of v and n as
u = (v x n). Here’s where the temporary value of v comes in handy. Once u is computed,
a recalculation of v is performed such that v = (n x u). 

NOTE

Of course, all vectors must be normalized at some point.
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Assuming that we’ve now computed the u, v, and n vectors of the UVN system, all that’s
left is to understand what they do!

Well, it’s pretty simple, actually. UVN is basically the new orientation of the XYZ system
that we want to transform everything into; or, in other words, it’s the basis of the system.
Thus, we need to somehow create a transformation matrix that will perform the mapping.
That is, assuming that a UVN camera is out in space at some position looking at a target,
what matrix will perform this transform? First, let’s forget about the position of the
camera. I think we both know that’s a simple translation, so the hard part is the rotation
part….

Computing the UVN Matrix
It turns out that all we need to transform any point p(x,y,z) in the standard XYZ system
into a point in the UVN system is to take the dot product of p(x, y, z) with u, v, and n,
respectively. In other words, we need to multiply x by the amount that the u-axis is co-
linear with the x, y by the amount the v-axis is colinear with the y-axis, and finally multi-
ply z by the amount that the n-axis is colinear with the z-axis of the standard XYZ system.
This will transform the point p(x,y,z) into the UVN space. Here’s the matrix in 4x4 form:

|ux  vx  nx 0|

M
uvn

=|uy  vy  ny 0|

|uz  vz  nz 0|

|0  0  0  1  |

Pretty slick, huh? So, the column vectors are just u,v, and n, respectively. Assuming that
we take a point p(x,y,z,1) and transform it with this matrix to get p', we get

p’ = p * M
uvn

|ux vx nx 0|

=[x y z 1] * |uy vy ny 0|

|uz vz nz 0|

|0  0  0  1|

= p’( (x*ux + y*uy + z*uz), 

(x*vx + y*vy + z*vz), 

(x*nx + y*ny + z*nz),1 )
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which is indeed the dot product terms we were looking for:

p’ = (p . u, p . v, p . n)

The last part of the puzzle is the positioning of the camera, but that’s easy. We know that
any camera transformation looks something like a translation step followed by a rota-
tional transformation.

T
cam

-1 * R
cam

-1

where R
cam

-1 is a composition of one or more rotational transformations.

NOTE

The inverses are just to remind you that in the original derivation, we had the matrix that posi-
tioned the camera. To undo that, we needed the inverse of that matrix to bring the universe to
the camera, and similarly for the rotation matrices.

We already have the rotational transform that we called M
uvn

, so all we need is the transla-
tion matrix. Assuming that the camera is located at position cam_pos=(cam_x, cam_y,
cam_z) as usual, this is nothing more than

|1       0       0       0|

T
cam

-1 =|0       1       0       0|

|0       0       1       0|

|-cam_x  -cam_y  -cam_z  1|

Thus, we end up with the final transformation for the UVN camera of

T
uvn

= T
cam

-1 * M
uvn 

=

|1       0       0       0|   |ux vx nx 0|

|0       1       0       0|   |uy vy ny 0|

|0       0       1       0| * |uz vz nz 0|

|-cam_x  -cam_y  -cam_z  1|   |0  0  0  1|

=

|ux         vx         nx       0|

|uy         vy         ny       0|

|uz         vz         nz       0|

|-(cam_pos . u)   -(cam_pos . v)   -(cam_pos . n) 1|
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The terms in the last row are the translation factors; tx, ty, and tz, which are nothing
more than the negatives of the dot product of the camera position with each of the basis
vectors u, v, and n, respectively.

That’s all there is to the UVN camera system, so let’s briefly review and then move on to
how to actually compute and describe the UVN system.

The UVN system models the camera as usual via a camera position, but differs in that the
camera has a target. Additionally, instead of representing the camera as a series of concate-
nated rotations parallel to each of the axes in some order, XYZ, YZX, and so on, the
camera in a UVN system is made of a “look at” vector, n, an “up” vector, v, and finally a
“right” vector, u. These correlate to the standard XYZ axes with the following mapping:

U -> X

V -> Y

N -> Z

Here are the exact steps to find u, v, and n:

Step 1: n = <target position—view reference point>

Step 2: Let v = <0,1,0>

Step 3: u = (v x n)

Step 4: v = (n x u)

Step 5 (Optional): Normalize u,v,n by dividing each vector by its length (if you haven’t
done so in previous steps) 

Practical Implementations of the UVN System
As you can see, the UVN system is pretty cool and very natural to the way you might
expect to use a camera in the real world. That is, you position the camera and then target
a position (or subject) to view, as shown in Figure 7.8. The only problem is that many
times you don’t exactly know the coordinates of the position you’re looking at, but know
the general direction. Or, in other words, a more Eulerian model is appropriate, but as
we’ve previously discovered, the Euler camera model doesn’t always do what we want and
suffers from gimbal lock and other issues. Therefore, if you know where you want to look,
you can directly compute u, v, and n and be done with it. However, what about a more
natural camera system based on a spherical system, where you give the position of the
camera and then the “heading” and “elevation” (as shown in Figure 7.9), and the math
computes u, v, and n for you? This isn’t as hard as it seems. Take a look at Figure 7.9; it
illustrates the setup we need.
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FIGURE 7.9 The spherical setup for the UVN system.

First, we assume that the camera is sitting at the origin (enclosed in a unit sphere) to make
the derivation easier. Obviously, to move the camera anywhere, we just add in the transla-
tion step. Referring to the figure, the angular heading θ (theta) is the counter-clockwise
angle around the positive y-axis with the convention that the 0 degree angle occurs when
the heading is aligned with the positive z-axis. Next, the elevation φ (phi) is the angle
measured from the ground plane (the x-z plane) to the direction vector, as shown in the
figure. Now, based on our discussion of spherical coordinates, we usually refer to a point
in spherical coordinates as p(ρ,φ,θ). However, in the derivation in Chapter 4, I assumed a
right-handed system along with other conventions about the angles and so forth, so we
want to be careful not to use the exact same formulas from Chapter 4. They need to be
slightly modified as follows:

Given the spherical camera position p(ρ,φ,θ):

P = The target vector

ρ = The length of the target vector, which in this case is 1.0 because we’re in a unit sphere

θ = The heading angle

φ = The elevation angle

r = The length of the projection of the target vector on the x-z plane
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FORMULA 7.1 Computation of UVN Target Vector from Spherical Coordinates

then

r = ρ*sin(φ)

Therefore

x = -r*sin(θ)

y = ρ*cos(φ)

z = r*cos(θ)

If you look at the result from the function SPHERICAL3D_To_POINT3D(), the x,y,z it gener-
ates are based on a right-handed system. To map them to our system, we need the follow-
ing transformation:

x = -y

y = z

z = x

Based on the computed value of p(x,y,z), this is exactly the look-at target, and thus we can
completely define a UVN camera with just the heading, elevation, and position of the
camera because we can compute the rest.

Well, that’s it for the UVN system. With the Euler camera and the UVN system, you
should be able to create any kind of camera you like. Shortly, we’ll see the code that sets
up cameras and the different calls to create the camera matrices for both systems.

Initializing the Camera
As I mentioned, the camera function isn’t going to set up the actual camera transforma-
tion matrix (that will be handled by the helper functions), but is going to set up every-
thing else having to do with the viewplane, clipping planes, and so forth. Here’s the
function:

void Init_CAM4DV1(CAM4DV1_PTR cam,    // the camera object

int cam_attr,     // camera attributes

POINT4D_PTR cam_pos,  // initial camera position

VECTOR4D_PTR cam_dir, // initial camera angles

POINT4D_PTR cam_target, // initial target for UVN model

float near_clip_z,   // near and far clipping planes

float far_clip_z,

float fov,       // field of view in degrees

float viewport_width, // size of final screen viewport

float viewport_height)

{

Building the 3D Pipeline 667

7

10 0672318350 CH07  05•02•2003  2:42 PM  Page 667



// this function initializes the camera object cam, the function

// doesn’t do a lot of error checking or sanity checking since 

// I want to allow you to create projections as you wish, also 

// I tried to minimize the number of parameters the functions needs

// first set up parms that are no brainers

cam->attr = cam_attr;       // camera attributes

VECTOR4D_COPY(&cam->pos, cam_pos); // positions

VECTOR4D_COPY(&cam->dir, cam_dir); // direction vector or angles for

// euler camera

// for UVN camera

VECTOR4D_INITXYZ(&cam->u, 1,0,0); // set to +x

VECTOR4D_INITXYZ(&cam->v, 0,1,0); // set to +y

VECTOR4D_INITXYZ(&cam->n, 0,0,1); // set to +z    

if (cam_target!=NULL)

VECTOR4D_COPY(&cam->target, cam_target); // UVN target

else

VECTOR4D_ZERO(&cam->target);

cam->near_clip_z = near_clip_z;   // near z=constant clipping plane

cam->far_clip_z = far_clip_z;   // far z=constant clipping plane

cam->viewport_width = viewport_width;  // dimensions of viewport

cam->viewport_height = viewport_height;

cam->viewport_center_x = (viewport_width-1)/2; // center of viewport

cam->viewport_center_y = (viewport_height-1)/2;

cam->aspect_ratio = (float)viewport_width/(float)viewport_height;

// set all camera matrices to identity matrix

MAT_IDENTITY_4X4(&cam->mcam);

MAT_IDENTITY_4X4(&cam->mper);

MAT_IDENTITY_4X4(&cam->mscr);

// set independent vars

cam->fov       = fov;

// set the viewplane dimensions up, they will be 2 x (2/ar)

cam->viewplane_width = 2.0;

cam->viewplane_height = 2.0/cam->aspect_ratio;
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// now we know fov and we know the viewplane dimensions plug into formula and

// solve for view distance parameters

float tan_fov_div2 = tan(DEG_TO_RAD(fov/2));

cam->view_dist = (0.5)*(cam->viewplane_width)*tan_fov_div2;

// test for 90 fov first since it’s easy :)

if (fov == 90.0)

{

// set up the clipping planes -- easy for 90 degrees!

POINT3D pt_origin; // point on the plane

VECTOR3D_INITXYZ(&pt_origin,0,0,0);

VECTOR3D vn; // normal to plane

// right clipping plane 

VECTOR3D_INITXYZ(&vn,1,0,-1); // x=z plane

PLANE3D_Init(&cam->rt_clip_plane, &pt_origin, &vn, 1);

// left clipping plane

VECTOR3D_INITXYZ(&vn,-1,0,-1); // -x=z plane

PLANE3D_Init(&cam->lt_clip_plane, &pt_origin, &vn, 1);

// top clipping plane

VECTOR3D_INITXYZ(&vn,0,1,-1); // y=z plane

PLANE3D_Init(&cam->tp_clip_plane, &pt_origin, &vn, 1);

// bottom clipping plane

VECTOR3D_INITXYZ(&vn,0,-1,-1); // -y=z plane

PLANE3D_Init(&cam->bt_clip_plane, &pt_origin, &vn, 1);

} // end if d=1

else 

{

// now compute clipping planes yuck!

POINT3D pt_origin; // point on the plane

VECTOR3D_INITXYZ(&pt_origin,0,0,0);

VECTOR3D vn; // normal to plane

// since we don’t have a 90 fov, computing the normals

// are a bit tricky, there are a number of geometric constructions

// that solve the problem, but I’m going to solve for the

// vectors that represent the 2D projections of the frustrum planes

// on the x-z and y-z planes and then find perpendiculars to them
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// right clipping plane, check the math on graph paper 

VECTOR3D_INITXYZ(&vn,cam->view_dist,0,-cam->viewplane_width/2.0); 

PLANE3D_Init(&cam->rt_clip_plane, &pt_origin, &vn, 1);

// left clipping plane, we can simply reflect the right normal about

// the z axis since the planes are symmetric about the z axis

// thus invert x only

VECTOR3D_INITXYZ(&vn,-cam->view_dist,0,-cam->viewplane_width/2.0); 

PLANE3D_Init(&cam->lt_clip_plane, &pt_origin, &vn, 1);

// top clipping plane, same construction

VECTOR3D_INITXYZ(&vn,0,cam->view_dist,-cam->viewplane_width/2.0); 

PLANE3D_Init(&cam->tp_clip_plane, &pt_origin, &vn, 1);

// bottom clipping plane, same inversion

VECTOR3D_INITXYZ(&vn,0,-cam->view_dist,-cam->viewplane_width/2.0); 

PLANE3D_Init(&cam->bt_clip_plane, &pt_origin, &vn, 1);

} // end else

} // end Init_CAM4DV1

Please take some time to review the function. It’s not that complicated at all, but it’s a
good example of the problems with cameras and projections and working around
constraints.

Anyway, the function first determines what you’re specifying and then, based on the field
of view and the final viewport size, it computes everything based on that using the x-axis
as the primary axis that must be equal to the selected field of view. Note that the function
doesn’t really care much about the camera model that’s selected at this point. It just
remembers it and sets up a couple fields, but for the most part, the camera helper func-
tions build the actual camera matrix mcam. Now, let’s take a look at some quick examples.

Example 1: Parameterization for Euler camera with normalized coordinates camera setup
with FOV = 90, viewing distance 1.0, and screen dimension 400 × 400. The function
computes the viewplane size, which in this case would be 2x2. Figure 7.10 shows what
this camera model would look like.

// initialize the camera

Init_CAM4DV1(&cam,   // the camera object

CAM_MODEL_EULER, // the camera model

&cam_pos, // initial camera position

&cam_dir, // initial camera angles

NULL,   // not used in euler, send NULL

50.0,   // near and far clipping planes

500.0,
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90.0,   // field of view in degrees

400,  // size of final screen viewport

400);
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FIGURE 7.10 Camera setup with normalized coordinates, FOV of 90 with viewing 
distance 1.0.

Example 2: Parameterization for UVN camera with a FOV = 90 with the viewport
640x480, for a simplified screen projection. The function computes the viewing distance
for us. Figure 7.11 shows what this camera model would look like.

// initialize the camera

Init_CAM4DV1(&cam,   // the camera object

CAM_MODEL_UVN, // the camera type

&cam_pos, // initial camera position

&cam_dir, // initial camera angles

&cam_target, // initial target 

50.0,   // near and far clipping planes

500.0,

90.0,   // field of view in degrees

640,  // size of final screen viewport

480);
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FIGURE 7.11 Camera setup for FOV of 90 with viewport dimensions equal to viewplane.

In both cases, the viewplane, focal distance, and aspect ratio are computed internally. In
general, the setups from Examples 1 and 2 will suffice for all of our work. We always want
FOV = 90 (or maybe 60), and we want either a nice normalized projection onto a view-
plane of 2x2, or 2x2/aspect_ratio for non-square viewports.

Alright, we’re almost done with the camera stuff. The last thing we need is a way to posi-
tion the camera and compute the matrices in the camera object. So, here’s a function that
you can call with a position and the Euler angles that will take a camera object and
compute all the matrices and other elements for you:

void Build_CAM4DV1_Matrix_Euler(CAM4DV1_PTR cam, int cam_rot_seq)

{

// this creates a camera matrix based on Euler angles 

// and stores it in the sent camera object

// if you recall from chapter 6 to create the camera matrix

// we need to create a transformation matrix that looks like:

// Mcam = mt(-1) * my(-1) * mx(-1) * mz(-1)

// that is the inverse of the camera translation matrix mutilplied

// by the inverses of yxz, in that order, however, the order of

// the rotation matrices is really up to you, so we aren’t going

// to force any order, thus its programmable based on the value
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// of cam_rot_seq which can be any value CAM_ROT_SEQ_XYZ where 

// XYZ can be in any order, YXZ, ZXY, etc.

MATRIX4X4 mt_inv, // inverse camera translation matrix

mx_inv, // inverse camera x axis rotation matrix

my_inv, // inverse camera y axis rotation matrix

mz_inv, // inverse camera z axis rotation matrix

mrot,  // concatenated inverse rotation matrices

mtmp;  // temporary working matrix

// step 1: create the inverse translation matrix for the camera

// position

Mat_Init_4X4(&mt_inv, 1,  0,   0,   0,

0,  1,   0,   0,

0,  0,   1,   0,

-cam->pos.x, -cam->pos.y, -cam->pos.z, 1);

// step 2: create the inverse rotation sequence for the camera

// rember either the transpose of the normal rotation matrix or

// plugging negative values into each of the rotations will result

// in an inverse matrix

// first compute all 3 rotation matrices

// extract out euler angles

float theta_x = cam->dir.x;

float theta_y = cam->dir.y;

float theta_z = cam->dir.z;

// compute the sine and cosine of the angle x

float cos_theta = Fast_Cos(theta_x); // no change since cos(-x) = cos(x)

float sin_theta = -Fast_Sin(theta_x); // sin(-x) = -sin(x)

// set the matrix up 

Mat_Init_4X4(&mx_inv, 1,  0,     0,     0,

0,  cos_theta, sin_theta, 0,

0,  -sin_theta, cos_theta, 0,

0,  0,     0,     1);

// compute the sine and cosine of the angle y

cos_theta = Fast_Cos(theta_y); // no change since cos(-x) = cos(x)

sin_theta = -Fast_Sin(theta_y); // sin(-x) = -sin(x)
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// set the matrix up 

Mat_Init_4X4(&my_inv,cos_theta, 0, -sin_theta, 0, 

0,     1, 0,     0,

sin_theta, 0, cos_theta, 0,

0,     0, 0,     1);

// compute the sine and cosine of the angle z

cos_theta = Fast_Cos(theta_z); // no change since cos(-x) = cos(x)

sin_theta = -Fast_Sin(theta_z); // sin(-x) = -sin(x)

// set the matrix up 

Mat_Init_4X4(&mz_inv, cos_theta, sin_theta, 0, 0, 

-sin_theta, cos_theta, 0, 0,

0,     0,     1, 0,

0,     0,     0, 1);

// now compute inverse camera rotation sequence

switch(cam_rot_seq)

{

case CAM_ROT_SEQ_XYZ:

{

Mat_Mul_4X4(&mx_inv, &my_inv, &mtmp);

Mat_Mul_4X4(&mtmp, &mz_inv, &mrot);

} break;

case CAM_ROT_SEQ_YXZ:

{

Mat_Mul_4X4(&my_inv, &mx_inv, &mtmp);

Mat_Mul_4X4(&mtmp, &mz_inv, &mrot);

} break;

case CAM_ROT_SEQ_XZY:

{

Mat_Mul_4X4(&mx_inv, &mz_inv, &mtmp);

Mat_Mul_4X4(&mtmp, &my_inv, &mrot);

} break;

case CAM_ROT_SEQ_YZX:

{

Mat_Mul_4X4(&my_inv, &mz_inv, &mtmp);

Mat_Mul_4X4(&mtmp, &mx_inv, &mrot);

} break;
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case CAM_ROT_SEQ_ZYX:

{

Mat_Mul_4X4(&mz_inv, &my_inv, &mtmp);

Mat_Mul_4X4(&mtmp, &mx_inv, &mrot);

} break;

case CAM_ROT_SEQ_ZXY:

{

Mat_Mul_4X4(&mz_inv, &mx_inv, &mtmp);

Mat_Mul_4X4(&mtmp, &my_inv, &mrot);

} break;

default: break;

} // end switch

// now mrot holds the concatenated product of inverse rotation matrices

// multiply the inverse translation matrix against it and store in the 

// camera objects’ camera transform matrix we are done!

Mat_Mul_4X4(&mt_inv, &mrot, &cam->mcam);

} // end Build_CAM4DV1_Matrix_Euler

The function takes two parameters: the camera object itself and a flag that controls the
rotation sequence for the Euler angles. The angles themselves and the position of the
camera are internal to the camera, so you just set them in the camera object before
making this call. Anyway, the various settings for the rotation control sequence are

// defines for camera rotation sequences

#define CAM_ROT_SEQ_XYZ 0

#define CAM_ROT_SEQ_YXZ 1

#define CAM_ROT_SEQ_XZY 2

#define CAM_ROT_SEQ_YZX 3

#define CAM_ROT_SEQ_ZYX 4

#define CAM_ROT_SEQ_ZXY 5

Assume that you’ve already created a camera called cam and initialized it with a call to
Init_CAM4DV1(). To tell the camera to build up its matrices for a ZYX rotation sequence,
here’s the call:

// set position

cam.pos.x = 100;

cam.pos.y = 200;

cam.pos.z = 300;
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// set viewing angles (degrees)

cam.dir.x = -45;

cam.dir.y = 0;

cam.dir.z = 0;

// generate camera matrix

Build_CAM4DV1_Matrix_Euler(&cam, CAM_ROT_SEQ_ZYX);

After the call, the matrix cam.mcam would be valid and you could use it as the world-to-
camera transformation. Figure 7.12 shows the position and orientation of the virtual
camera with these settings. However, the matrices cam.mper and cam.mscr are still unde-
fined.
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FIGURE 7.12 The results of the camera setup call.

Next, here’s the camera function for the UVN model:

void Build_CAM4DV1_Matrix_UVN(CAM4DV1_PTR cam, int mode)

{

// this creates a camera matrix based on a look at vector n,

// look up vector v, and a look right (or left) u

// and stores it in the sent camera object, all values are
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// extracted out of the camera object itself

// mode selects how uvn is computed

// UVN_MODE_SIMPLE - low level simple model, 

// use the target and view reference point

// UVN_MODE_SPHERICAL - spherical mode, the x,y components will be used as the

//   heading and elevation of the view vector respectively

//   along with the view reference point as the position

//   as usual

MATRIX4X4 mt_inv, // inverse camera translation matrix

mt_uvn, // the final uvn matrix

mtmp;  // temporary working matrix

// step 1: create the inverse translation matrix for the camera

// position

Mat_Init_4X4(&mt_inv, 1,  0,   0,   0,

0,  1,   0,   0,

0,  0,   1,   0,

-cam->pos.x, -cam->pos.y, -cam->pos.z, 1);

// step 2: determine how the target point will be computed

if (mode == UVN_MODE_SPHERICAL)

{

// use spherical construction

// target needs to be recomputed

// extract elevation and heading 

float phi  = cam->dir.x; // elevation

float theta = cam->dir.y; // heading

// compute trig functions once

float sin_phi = Fast_Sin(phi);

float cos_phi = Fast_Cos(phi);

float sin_theta = Fast_Sin(theta);

float cos_theta = Fast_Cos(theta);

// now compute the target point on a unit sphere x,y,z

cam->target.x = -1*sin_phi*sin_theta;

cam->target.y = 1*cos_phi;

cam->target.z = 1*sin_phi*cos_theta;

} // end else
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// at this point, we have the view reference point, the target and that’s

// all we need to recompute u,v,n

// Step 1: n = <target position - view reference point>

VECTOR4D_Build(&cam->pos, &cam->target, &cam->n);

// Step 2: Let v = <0,1,0>

VECTOR4D_INITXYZ(&cam->v,0,1,0);

// Step 3: u = (v x n)

VECTOR4D_Cross(&cam->v,&cam->n,&cam->u);

// Step 4: v = (n x u)

VECTOR4D_Cross(&cam->n,&cam->u,&cam->v);

// Step 5: normalize all vectors

VECTOR4D_Normalize(&cam->u);

VECTOR4D_Normalize(&cam->v);

VECTOR4D_Normalize(&cam->n);

// build the UVN matrix by placing u,v,n as the columns of the matrix

Mat_Init_4X4(&mt_uvn, cam->u.x,  cam->v.x,   cam->n.x,   0,

cam->u.y,  cam->v.y,   cam->n.y,   0,

cam->u.z,  cam->v.z,   cam->n.z,   0,

0,      0,      0,      1);

// now multiply the translation matrix and the uvn matrix and store in the 

// final camera matrix mcam

Mat_Mul_4X4(&mt_inv, &mt_uvn, &cam->mcam);

} // end Build_CAM4DV1_Matrix_UVN

Alright, we can finally get back the 3D pipeline—that’s what we call a stall <BG>.

The World-to-Camera Transform
Now that we have the camera modeled and set up, we can perform the world-to-camera
transformation, but let’s quickly review why the camera building functions work. Both the
UVN and the Euler model do nothing more than take some representation of where the
camera is and what it’s orientation is and then build a matrix. This boils down to two
steps: a translation step and a rotational step.

Figure 7.13 illustrates the steps in the world-to-camera transformation. The 3D world is
viewed via a virtual camera positioned at some point with some orientation and with a
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given horizontal and vertical field of view. Through the lens of this virtual camera, we’re
interested in what the viewer would see if the camera and world were real. The trick is to
create a transformation matrix that position transforms all the objects in the world so that
we could artificially position the camera at the origin (0,0,0) looking straight down the +z
axis. This way the math would be simplified for the final perspective projection later in
the pipeline.
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FIGURE 7.13 The world-to-camera transformation “reloaded.”

We learned that this trick could be accomplished in the following way: If we assume that
the camera is located in world space at cam_pos = (cam_x, cam_y, cam_z) defined by the
transformation T

cam
, step one would be to translate all objects, vertices, polygons, or what-

ever in the world by the inverse of this matrix (value) or –cam_pos = (-cam_x, -cam_y, -
cam_z); that is, T

cam
-1. The matrix for it looks like this:

|1      0      0      0|

T
cam

-1 =|0      1      0      0|

|0      0      1      0|

|-cam_x -cam_y -cam_z 1|

Transforming each vertex by this matrix translates all the geometry relative to the camera
being at the origin. Now, the next step in the camera transformation is the rotation step.
Of course, this is a little trickier, and the model of the camera enters into the final 4x4
matrix that represents the camera orientation. With the Eulerian camera model we have
been using, three angles to represent the orientation of the camera: cam_ang = (ang_x,
ang_y, ang_z) as shown in Figure 7.14. Each angle represents the clockwise or counter-
clockwise (right-handed system) rotation around each positive axis. We call the separate
transformations R

camy
, R

camx
, R

camz
. However, if you recall, the order in which you apply
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these rotations is important; XYZ, YZX, and so forth. But we decided to use YXZ and ZYX
for most cases.
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So, to perform the rotation step of the camera transformation we need to apply the
inverse rotations or the sequence:

R
camy

-1 * R
camx

-1 * R
camz

-1

or maybe

R
camz

-1 * R
camy

-1 * R
camx

-1

Putting this all together, the camera transform is T
wc

:

T
wc

= T
cam

-1 * R
camy

-1 * R
camx

-1 * R
camz

-1

Or, if you want the ZYX rotation order:

T
wc

= T
cam

-1 * R
camz

-1 * R
camy

-1 * R
camz

-1

Whichever you desire, the point is that you need a translation followed by three rotations.
And, of course, these operations can be concatenated into a single matrix called T

wc
as

shown previously. All you do is multiply each vertex that you want to transform by the
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matrix, and that’s it. That’s what all the camera software does: It builds up this transform
for you. All you do is transform each vertex by the matrix T

wc
and you’re done with the

world-to-camera transformation! We already have a function to build the camera and
initialize it, and one to compute the world-to-camera transformation matrix
Build_CAM4DV1_Matrix_Euler(). And, of course, the Build_CAM4DV1_Matrix_UVN() func-
tion does the same thing, it just does it differently. That is, it uses the concept of the up,
right, and target vectors rather than angles, but in the end, both functions arrive at a
transformation that we need to apply to every vertex.

So, all we need is a function to apply the transform to an object and/or render list. Now,
the interesting thing is that we already have a pair of generic transformation functions
that take any matrix and can transform an object or render list: void
Transform_OBJECT4DV1() and void Transform_RENDERLIST4DV1(). We can use either of
those functions and walk away, but I like to write specific functions—sometimes for each
step in the pipeline—instead of using the generalized ones so that I can take advantage of
optimizations, so we’ll see both.

World-to-Camera Transformation for Objects
As mentioned, we have the ability to apply any 4x4 transform matrix to an OBJECT4DV1
with a call to Transform_OBJECT4DV1(), so let’s look at that approach first. Assuming that
we have an object obj, camera cam, and everything is initialized:

// generate camera matrix (use euler cam)

Build_CAM4DV1_Matrix_Euler(&cam, CAM_ROT_SEQ_ZYX);

// now apply the transform and make sure to use the 

// world coordinates and transform them in place

Transform_OBJECT4DV1(&obj, &cam.mcam, TRANSFORM_TRANS_ONLY, 1 );

That would do the trick. The object would be in camera space all ready for a perspective
projection and screen mapping. On the other hand, we can code the function a little more
manually instead of using the Transform_OBJECT4DV1() function. Here’s such a coding:

void World_To_Camera_OBJECT4DV1(CAM4DV1_PTR cam, OBJECT4DV1_PTR obj)

{

// NOTE: this is a matrix based function

// this function transforms the world coordinates of an object

// into camera coordinates, based on the sent camera matrix

// but it totally disregards the polygons themselves,

// it only works on the vertices in the vlist_trans[] list

// this is one way to do it, you might instead transform

// the global list of polygons in the render list since you 

// are guaranteed that those polys represent geometry that 

// has passed thru backfaces culling (if any)
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// transform each vertex in the object to camera coordinates

// assumes the object has already been transformed to world

// coordinates and the result is in vlist_trans[]

for (int vertex = 0; vertex < obj->num_vertices; vertex++)

{

// transform the vertex by the mcam matrix within the camera

// it better be valid!

POINT4D presult; // hold result of each transformation

// transform point

Mat_Mul_VECTOR4D_4X4(&obj->vlist_trans[vertex], &cam->mcam, &presult);

// store result back

VECTOR4D_COPY(&obj->vlist_trans[vertex], &presult); 

} // end for vertex

} // end World_To_Camera_OBJECT4DV1

This function is a little faster and a little tighter. It takes the object and the camera as para-
meters and that’s it. Here’s the call you would make given that you have the object and
camera already set up:

World_To_Camera_OBJECT4DV1(&cam, &obj);

NOTE

In a real 3D software engine, I might even hard-code the matrix and vector operations, but the
rule of thumb is that doing so everywhere in your entire engine may give you 5–10%. If you
need it, fine; otherwise, it’s not worth the clutter. Better to design clean algorithms rather than to
optimize code at that level during phase I design.

World-to-Camera Transformation for Render Lists
Performing the world-to-camera transform with the rendering is the same as with objects.
We can use the generic transform function or write a manual function to transform the
render list (call it rend_list). Again, let’s do both. Here’s the method using what we
already have:

// generate camera matrix

Build_CAM4DV1_Matrix_Euler(&cam, CAM_ROT_SEQ_ZYX);

// now apply the transform and make sure to use the 

// world coordinates and transform them in place

Transform_RENDERLIST4DV1(&rend_list, &cam.mcam, TRANSFORM_TRANS_ONLY);
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Note that the transform_basis flag is not part of the parameter list to
Transform_RENDERLIST4DV1(). This is because the polygon list represents many objects,
and thus the orientation of these objects is irrelevant once the polygons have been
extracted from each object and merged. Moving on, here’s a manual function that
performs the transformation. The only complexity is that each polygon of the list must be
traversed, whereas in the OBJECT4DV1 version of the manual function, only a single vertex
list had to be transformed. Here’s the function:

void World_To_Camera_RENDERLIST4DV1(RENDERLIST4DV1_PTR rend_list, 

CAM4DV1_PTR cam)

{

// NOTE: this is a matrix based function

// this function transforms each polygon in the global render list

// to camera coordinates based on the sent camera transform matrix

// you would use this function instead of the object based function

// if you decided earlier in the pipeline to turn each object into 

// a list of polygons and then add them to the global render list

// the conversion of an object into polygons probably would have

// happened after object culling, local transforms, local to world

// and backface culling, so the minimum number of polygons from

// each object are in the list, note that the function assumes

// that at LEAST the local to world transform has been called

// and the polygon data is in the transformed list tvlist of

// the POLYF4DV1 object

// transform each polygon in the render list into camera coordinates

// assumes the render list has already been transformed to world

// coordinates and the result is in tvlist[] of each polygon object

for (int poly = 0; poly < rend_list->num_polys; poly++)

{

// acquire current polygon

POLYF4DV1_PTR curr_poly = rend_list->poly_ptrs[poly];

// is this polygon valid?

// transform this polygon if and only if it’s not clipped, not culled,

// active, and visible, note however the concept of “backface” is 

// irrelevant in a wire frame engine though

if ((curr_poly==NULL) || !(curr_poly->state & POLY4DV1_STATE_ACTIVE) ||

(curr_poly->state & POLY4DV1_STATE_CLIPPED ) ||

(curr_poly->state & POLY4DV1_STATE_BACKFACE) )

continue; // move onto next poly
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// all good, let’s transform 

for (int vertex = 0; vertex < 3; vertex++)

{

// transform the vertex by the mcam matrix within the camera

// it better be valid!

POINT4D presult; // hold result of each transformation

// transform point

Mat_Mul_VECTOR4D_4X4(&curr_poly->tvlist[vertex], &cam->mcam, &presult);

// store result back

VECTOR4D_COPY(&curr_poly->tvlist[vertex], &presult); 

} // end for vertex

} // end for poly

} // end World_To_Camera_RENDERLIST4DV1

And here’s the call that would transform an entire render list rend_list, assuming that
cam is defined and initialized as before:

World_To_Camera_RENDERLIST4DV1(&cam, &rend_list);

Simplataco! Yes, that’s a word <BG>. At this point, we’re about half way down the
pipeline.

Now all we need is the perspective transformation projection and the screen projection,
and that’s it. However, there are a couple caveats…. First, we’ve said nothing about clip-
ping, and that’s a big issue. However, we did cover in the previous chapter that clipping
can be performed in 3D object space, or in 2D raster image space; alas, we’re going to have
to do something about it.

However, we definitely can’t wait all the way until rasterization because we surely can’t
project polygon vertices with negative or, worse yet, 0.0 z-values (divide by 0.0 error)! So,
keep that in mind. We have to deal with that somewhat, but right now, let’s talk about
removing whole objects from the viewing pipeline.

Object Culling
Object culling is just that: removing objects so that they don’t have to be processed
through the entire 3D pipeline, as shown in Figure 7.15. However, object culling can be
performed in world space or camera space. Nonetheless, I prefer to do it in camera space.
“But,” you might ask, “if you wait all the way until camera space to perform the culling of
an object, didn’t you already waste all those cycles transforming the object into camera
space to see if it’s invisible?” And the answer is, not necessarily.
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FIGURE 7.15 Removing objects from the 3D pipeline.

There’s a trick. If you use the center of the object and its maximum radius to create a
bounding sphere, you can perform the object culling test by transforming a single point
from world-to-camera coordinates that represents the center of the object being tested.
Then you basically test the bounding sphere for inclusion/exclusion in the viewing frus-
trum. This is detailed in the previous chapter, but if you recall, the math ended up being
nothing more than testing a few points against the right, left, top, bottom, near, and far
clipping planes. In any case, this is one of the most important steps in a 3D engine pipeline
because in most cases, only a few objects will be in the scene at a time; the rest will be out
of range or behind you, so there’s no reason to process them. Therefore, we definitely
want to add this functionality to our engine pipeline.

To accomplish the object culling step, we need a function that takes the object’s current
world position along with it’s average/maximum radius (you might use either). The func-
tion then culls the object based on the current camera transformation. This only works for
objects because the sense of “object” is lost once we convert an object into its constituent
polygons and insert them into the master rendering list. Anyway, here’s the object
removal function:

int Cull_OBJECT4DV1(OBJECT4DV1_PTR obj, // object to cull

CAM4DV1_PTR cam,   // camera to cull relative to

int cull_flags)   // clipping planes to consider

{
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// NOTE: is matrix based

// this function culls an entire object from the viewing

// frustrum by using the sent camera information and object

// the cull_flags determine what axes culling should take place

// x, y, z or all which is controlled by ORing the flags

// together

// if the object is culled its state is modified thats all

// this function assumes that both the camera and the object

// are valid!

// step 1: transform the center of the object’s bounding

// sphere into camera space

POINT4D sphere_pos; //hold result of transforming cntr of bounding sphere

// transform point

Mat_Mul_VECTOR4D_4X4(&obj->world_pos, &cam->mcam, &sphere_pos);

// step 2: based on culling flags remove the object

if (cull_flags & CULL_OBJECT_Z_PLANE)

{

// cull only based on z clipping planes

// test far plane

if ( ((sphere_pos.z - obj->max_radius) > cam->far_clip_z) ||

((sphere_pos.z + obj->max_radius) < cam->near_clip_z) )

{ 

SET_BIT(obj->state, OBJECT4DV1_STATE_CULLED);

return(1);

} // end if

} // end if

if (cull_flags & CULL_OBJECT_X_PLANE)

{

// cull only based on x clipping planes

// we could use plane equations, but simple similar triangles

// is easier since this is really a 2D problem

// if the view volume is 90 degrees the the problem is trivial

// buts lets assume its not

// test the right and left clipping planes 

// against the leftmost and rightmost
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// points of the bounding sphere

float z_test = (0.5)*cam->viewplane_width*sphere_pos.z/cam->view_dist;

if ( ((sphere_pos.x-obj->max_radius) > z_test) || // right side

((sphere_pos.x+obj->max_radius) < -z_test) ) // left side

{ 

SET_BIT(obj->state, OBJECT4DV1_STATE_CULLED);

return(1);

} // end if

} // end if

if (cull_flags & CULL_OBJECT_Y_PLANE)

{

// cull only based on y clipping planes

// we could use plane equations, but simple similar triangles

// is easier since this is really a 2D problem

// if the view volume is 90 degrees the the problem is trivial

// buts lets assume its not

// test the the top and bottom clipping planes 

// against the bottommost and topmost

// points of the bounding sphere

float z_test = (0.5)*cam->viewplane_height*sphere_pos.z/cam->view_dist;

if ( ((sphere_pos.y-obj->max_radius) > z_test) || // top side

((sphere_pos.y+obj->max_radius) < -z_test) ) // bottom side

{ 

SET_BIT(obj->state, OBJECT4DV1_STATE_CULLED);

return(1);

} // end if

} // end if

// return failure to cull

return(0);

} // end Cull_OBJECT4DV1

The function is a straightforward mathematical implementation of our findings on object
culling in the last chapter, so there’s no need to reiterate that. However, there are some
interesting additions to the function. Basically, the function takes the object to test for
culling, the current camera (you must make a call to initialize the mcam matrix before
using the function), and a flags parameter cull_flags that defines the suite of tests to
perform. Let’s look at that….
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The parameter cull_flags controls the axes that culling will be performed on. For
example, if you want culling only on the z-axis (near and far clip planes), an object might
still be invisible on the x and y axes, but at least you’re guaranteed not to project poly-
gons from an object that’s behind you. In general, you should perform culling on all six
faces of the 3D viewing frustrum because the tests are so cheap. Anyway, the flags that
control the culling are as follows:

// general culling flags

#define CULL_OBJECT_X_PLANE   0x0001 // cull on the x clipping planes

#define CULL_OBJECT_Y_PLANE   0x0002 // cull on the y clipping planes

#define CULL_OBJECT_Z_PLANE   0x0004 // cull on the z clipping planes

#define CULL_OBJECT_XYZ_PLANES  (CULL_OBJECT_X_PLANE | CULL_OBJECT_Y_PLANE /

| CULL_OBJECT_Z_PLANE)

You just logically OR them together for what you want. For example, here’s how you would
cull an object to the entire frustrum:

if (Cull_OBJECT4DV1(&obj, &cam, 

CULL_OBJECT_X_PLANE | 

CULL_OBJECT_Y_PLANE | 

CULL_OBJECT_Z_PLANE))

{ /* object culled */ }

After culling, the function will alter the object’s state flags and set a bit to indicate that the
object was culled. To facilitate this, I’ve defined some constants for OBJECT4DV1 states:

// states for objects

#define OBJECT4DV1_STATE_ACTIVE      0x0001

#define OBJECT4DV1_STATE_VISIBLE     0x0002 

#define OBJECT4DV1_STATE_CULLED      0x0004

We’ll undoubtedly add to this, but for now, by setting and then testing the
OBJECT4DV1_STATE_CULLED in rendering and transforming functions, we can disregard
objects that have been culled. Additionally, an object may or may not be culled each
frame. So, in each game frame, you need to reset your object’s flags so that all the tran-
sient flags (such as the culling flag, for instance) are cleared. Here’s a simple function that
does that:

void Reset_OBJECT4DV1(OBJECT4DV1_PTR obj)

{

// this function resets the sent object and readies it for 

// transformations, basically just resets the culled, clipped and

// backface flags, but here’s where you would add stuff

// to ready any object for the pipeline

// the object is valid, let’s rip it apart polygon by polygon

CHAPTER 7 Rendering Wireframe Worlds in 3D688

10 0672318350 CH07  05•02•2003  2:42 PM  Page 688



// reset object’s culled flag

RESET_BIT(obj->state, OBJECT4DV1_STATE_CULLED);

// now the clipped and backface flags for the polygons 

for (int poly = 0; poly < obj->num_polys; poly++)

{

// acquire polygon

POLY4DV1_PTR curr_poly = &obj->plist[poly];

// first is this polygon even visible?

if (!(curr_poly->state & POLY4DV1_STATE_ACTIVE))

continue; // move onto next poly

// reset clipped and backface flags

RESET_BIT(curr_poly->state, POLY4DV1_STATE_CLIPPED);

RESET_BIT(curr_poly->state, POLY4DV1_STATE_BACKFACE);

} // end for poly

} // end Reset_OBJECT4DV1

Making a call to the function resets the object’s culling flag as well as resetting the back-
face flag for each polygon that makes up the object’s polygon mesh—let’s talk about that
next.

Back-face Removal
Back-face removal is shown in Figure 7.16. It’s the process of removing polygons that are
facing away from the viewpoint. We covered the mathematics of this in the last chapter,
so I’m not going to go into detail. But in a nutshell, the test is performed on every single
polygon of the object or render list. A direction vector is computed from the polygon to
the viewpoint and the angle between this and the outward normal of the polygon is
computed. If the angle is greater than 90 degrees or n . l <= 0, the polygon is a back-face
and can’t possibly be visible.

Of course, the concept of back-face only makes sense for polygons that have one side. For
polygons that are visible from both sides (two-sided), this test doesn’t help us. Anyway,
the test is usually performed in world space (because all we need is the viewpoint), not
camera space, because we can usually kill a lot of polygons with back-face removal before
pushing them through the world-to-camera transform, so it’s a good way to remove
another 50% of your geometry!
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FIGURE 7.16 Backface removal in action.

Removing Back-faces in Objects
Here’s the function that removes back-faces for objects contained in the OBJECT4DV1 struc-
ture:

void Remove_Backfaces_OBJECT4DV1(OBJECT4DV1_PTR obj, CAM4DV1_PTR cam)

{

// NOTE: this is not a matrix based function

// this function removes the backfaces from an object’s

// polygon mesh, the function does this based on the vertex

// data in vlist_trans along with the camera position (only)

// note that only the backface state is set in each polygon

// test if the object is culled

if (obj->state & OBJECT4DV1_STATE_CULLED)

return;

// process each poly in mesh

for (int poly=0; poly < obj->num_polys; poly++)

{

// acquire polygon

POLY4DV1_PTR curr_poly = &obj->plist[poly];
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// is this polygon valid?

// test this polygon if and only if it’s not clipped, not culled,

// active, and visible and not 2 sided. 

// Note we test for backface in the event that

// a previous call might have already determined this, so why work

// harder!

if (!(curr_poly->state & POLY4DV1_STATE_ACTIVE) ||

(curr_poly->state & POLY4DV1_STATE_CLIPPED ) ||

(curr_poly->attr & POLY4DV1_ATTR_2SIDED)  ||

(curr_poly->state & POLY4DV1_STATE_BACKFACE) )

continue; // move onto next poly

// extract vertex indices into master list, remember the polygons are 

// NOT self contained, but based on the vertex list stored in the object

// itself

int vindex_0 = curr_poly->vert[0];

int vindex_1 = curr_poly->vert[1];

int vindex_2 = curr_poly->vert[2];

// we will use the transformed polygon vertex list since the backface removal

// only makes sense at the world coord stage further of the pipeline 

// we need to compute the normal of this polygon face, and recall

// that the vertices are in cw order, u = p0->p1, v=p0->p2, n=uxv

VECTOR4D u, v, n;

// build u, v

VECTOR4D_Build(&obj->vlist_trans[ vindex_0 ], 

&obj->vlist_trans[ vindex_1 ], &u);

VECTOR4D_Build(&obj->vlist_trans[ vindex_0 ], 

&obj->vlist_trans[ vindex_2 ], &v);

// compute cross product

VECTOR4D_Cross(&u, &v, &n);

// now create eye vector to viewpoint

VECTOR4D view;

VECTOR4D_Build(&obj->vlist_trans[ vindex_0 ], &cam->pos, &view); 

// and finally, compute the dot product

float dp = VECTOR4D_Dot(&n, &view);
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// if the sign is > 0 then visible, 0 = scathing, < 0 invisible

if (dp <= 0.0 )

SET_BIT(curr_poly->state, POLY4DV1_STATE_BACKFACE);

} // end for poly

} // end Remove_Backfaces_OBJECT4DV1

Aren’t you glad we wrote all those math and vector functions? I am! They made this func-
tion really easy to write. Anyway, take a few minutes to look at the function and see if it
makes sense. Basically, it takes the object, traverses the polygon list, and tests whether all
polygons that are active, visible, and one-sided are back-faces from the current viewpoint
as defined in the camera object. Note that you don’t need the mcam matrix defined for this
function because all it needs is the camera’s position. Here’s how you would use the func-
tion:

Remove_Backfaces_OBJECT4DV1(&obj,&cam);

Hard, huh? And whamo! the polygon list in the object would have its flags altered for all
back-faces. Specifically, each polygon that is a back-face gets its back-face bit set like this:

SET_BIT(curr_poly->state, POLY4DV1_STATE_BACKFACE);

TIP

Make sure that you perform back-face removal after object removal, but before the world-to-
camera transformation.

Removing Back-faces in Render Lists
Now, if you decided to keep your objects in one piece before back-face removal and/or you
just have a polygon list and no objects in your universe, you’ll want to perform back-face
removal on the render list. Of course, if you have objects and you performed this step
previously and then inserted them into the rendering list, there’s no point. Anyway, the
function that tests for back-faces in a RENDERLIST4DV1 object is almost identical to the
OBJECT4DV1 version, it’s just a little different data structure access. Here it is:

void Remove_Backfaces_RENDERLIST4DV1(RENDERLIST4DV1_PTR rend_list, CAM4DV1_PTR cam)

{

// NOTE: this is not a matrix based function

// this function removes the backfaces from polygon list

// the function does this based on the polygon list data

// tvlist along with the camera position (only)

// note that only the backface state is set in each polygon
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for (int poly = 0; poly < rend_list->num_polys; poly++)

{

// acquire current polygon

POLYF4DV1_PTR curr_poly = rend_list->poly_ptrs[poly];

// is this polygon valid?

// test this polygon if and only if it’s not clipped, not culled,

// active, and visible and not 2 sided. 

// Note we test for backface in the event that

// a previous call might have already determined this, so why work

// harder!

if ((curr_poly==NULL) || !(curr_poly->state & POLY4DV1_STATE_ACTIVE) ||

(curr_poly->state & POLY4DV1_STATE_CLIPPED ) || 

(curr_poly->attr & POLY4DV1_ATTR_2SIDED)  ||

(curr_poly->state & POLY4DV1_STATE_BACKFACE) )

continue; // move onto next poly

// we need to compute the normal of this polygon face, and recall

// that the vertices are in cw order, u = p0->p1, v=p0->p2, n=uxv

VECTOR4D u, v, n;

// build u, v

VECTOR4D_Build(&curr_poly->tvlist[0], &curr_poly->tvlist[1], &u);

VECTOR4D_Build(&curr_poly->tvlist[0], &curr_poly->tvlist[2], &v);

// compute cross product

VECTOR4D_Cross(&u, &v, &n);

// now create eye vector to viewpoint

VECTOR4D view;

VECTOR4D_Build(&curr_poly->tvlist[0], &cam->pos, &view); 

// and finally, compute the dot product

float dp = VECTOR4D_Dot(&n, &view);

// if the sign is > 0 then visible, 0 = scathing, < 0 invisible

if (dp <= 0.0 )

SET_BIT(curr_poly->state, POLY4DV1_STATE_BACKFACE);

} // end for poly

} // end Remove_Backfaces_RENDERLIST4DV1

Building the 3D Pipeline 693

7

10 0672318350 CH07  05•02•2003  2:42 PM  Page 693



Similar to the OBJECT4DV1 version, you want to remove back-faces before the world-to-
camera transform because the transform is a waste if the polygons are back-faces and
invisible! Finally, here’s a sample call:

Remove_Backfaces_RENDERLIST4DV1(&rend_list, &cam);

After the call, the POLY4DV1_STATE_BACKFACE bit would be set in all polygons that were
back-faces.

The Camera-to-Perspective Transform
The next stage in the 3D pipeline is the camera-to-perspective transformation. Figure 7.17
depicts the mathematics of the projection once again for your review. Basically, given a
point p = (x

world
, y

world
, z

world
, 1), the basic perspective transform is

x
per 

= viewing_distance*x_world/z_world

y
per

= viewing_distance*aspect_ratio*y_world/z_world
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You recall that if we set the viewing distance (or d, for short) to 1.0, we ended up with
normalized viewplane coordinates for the x and y axes in the range of
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x-axis—{x: –1 to 1} 

y-axis—{y: -1/ar to 1/ar}

where ar is the aspect ratio width/height of the raster screen.

Additionally, a viewing distance of 1.0 forms a 90-degree field of view for both the x and y
axes if the viewplane is square. Moving on, if we want to control the field of view or the
viewing distance more, and project onto a viewplane of any size, we realized that viewing
distance and field of view were dependent and we ended up with these formulas for the
perspective transform:

d = (0.5)*viewplane_width*tan(θ
h
/2)

xper = (d*x
world

)/z
world

yper = (d*y
world

*aspect_ratio)/z
world

Alright, enough review. The point of all this is to implement the transform with code and
we have two different approaches: (1) perform the math manually (faster), or (2) perform
the transform using matrices. But the problem with method 2 and using matrix trans-
forms, as you recall, is that there’s no way to perform a divide by z at the end via matrices.
Thus, we must use 4D homogeneous coordinates and then convert the results from the
matrix transform back to 3D non-homogeneous coordinates if we want to use a 4x4
matrix transform. The fact that the matrix multiplication is wasteful in addition to the
post-homogeneous conversion makes using a matrix for the perspective transform a bad
thing from a performance standpoint in software. But once again, many hardware imple-
mentations like only matrices. With all that in mind, let’s take a look at both methods for
the OBJECT4DV1 type along with the RENDERLIST4DV1 type.

The Perspective Transform for Objects
The camera object has all the information that we need to perform the perspective trans-
form, including the viewing distance, the viewplane width and height, and the field of
view (which is used to compute the viewing distance), so there’s not much to the trans-
form except performing the couple of lines of transformation math to each vertex. Here’s
the function that performs this on OBJECT4DV1:

void Camera_To_Perspective_OBJECT4DV1(OBJECT4DV1_PTR obj, CAM4DV1_PTR cam)

{

// NOTE: this is not a matrix based function

// this function transforms the camera coordinates of an object

// into perspective coordinates, based on the 

// sent camera object, but it totally disregards the polygons themselves,

// it only works on the vertices in the vlist_trans[] list

// this is one way to do it, you might instead transform

// the global list of polygons in the render list since you 

// are guaranteed that those polys represent geometry that 
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// has passed thru backfaces culling (if any)

// finally this function is really for experimental reasons only

// you would probably never let an object stay intact this far down

// the pipeline, since it’s probably that there’s only a single polygon

// that is visible! But this function has to transform the whole mesh!

// transform each vertex in the object to perspective coordinates

// assumes the object has already been transformed to camera

// coordinates and the result is in vlist_trans[]

for (int vertex = 0; vertex < obj->num_vertices; vertex++)

{

float z = obj->vlist_trans[vertex].z;

// transform the vertex by the view parameters in the camera

obj->vlist_trans[vertex].x = cam->view_dist_h * 

obj->vlist_trans[vertex].x/z;

obj->vlist_trans[vertex].y = cam->view_dist_v * 

obj->vlist_trans[vertex].y * 

cam->aspect_ratio/z;

// z = z, so no change

// note that we are NOT dividing by the homogenous w coordinate since

// we are not using a matrix op for this version of the function 

} // end for vertex

} // end Camera_To_Perspective_OBJECT4DV1

As you can see, the function is very short. Basically, it multiplies each vertex by the
viewing distance (on both the x and y axes, which technically will be the same, but the
aspect ratio takes the non-square viewplanes into consideration) and then divides by z.
Here’s a sample call:

Camera_To_Perspective_OBJECT4DV1(&obj, &cam);

NOTE

The function does not test for z values that are negative or 0.0. This is up to you to handle in a
previous culling or clipping step. But for now, assume that the vertices are all projectable.

Now, what if you want to use a matrix to perform the projection? No problem. We can use
our general Transform_OBJECT4DV1() function with a perspective matrix, which we can
build with the following function:
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void Build_Camera_To_Perspective_MATRIX4X4(CAM4DV1_PTR cam, 

MATRIX4X4_PTR m)

{

// this function builds up a camera to perspective transformation

// matrix, in most cases the camera would have a 2x2 normalized

// view plane with a 90 degree FOV, since the point of the having

// this matrix must be to also have a perspective to screen (viewport)

// matrix that scales the normalized coordinates, also the matrix

// assumes that you are working in 4D homogenous coordinates and at 

// some point there will be a 4D->3D conversion, it might be immediately

// after this transform is applied to vertices, or after the perspective

// to screen transform

Mat_Init_4X4(m, 

cam->view_dist_h, 0,                 0, 0, 

0,        cam->view_dist_v*cam->aspect_ratio, 0, 0, 

0,        0,                 1, 1,

0,        0,                 0,0);

} // end Build_Camera_To_Perspective_MATRIX4X4

Then we just apply the transform to the OBJECT4DV1 like this (assuming that there’s a
camera object, of course):

MATRIX4X4 mper;

Build_Camera_To_Perspective_MATRIX4X4(&cam, &mper);

Transform_OBJECT4DV1(&obj, &mper, TRANSFORM_TRANS_ONLY,1);

Of course, there’s one detail, right? After the transformation, the w factor in each vertex [x
y z w] is no longer 1.0; thus, the coordinates are now completely homogeneous and we
must convert them back to non-homogeneous before we use them. This is accomplished
with a simple division by the w component of each vertex. Here’s a function that performs
the function on OBJECT4DV1:

void Convert_From_Homogeneous4D_OBJECT4DV1(OBJECT4DV1_PTR obj)

{

// this function converts all vertices in the transformed

// vertex list from 4D homogeneous coordinates to normal 3D coordinates

// by dividing each x,y,z component by w

for (int vertex = 0; vertex < obj->num_vertices; vertex++)

{
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// convert to non-homogenous coords

VECTOR4D_DIV_BY_W(&obj->vlist_trans[vertex]);   

} // end for vertex

} // end Convert_From_Homogeneous4D_OBJECT4DV1

So, as the last step to get real 3D coordinates, you just make the call:

Convert_From_Homogeneous4D_OBJECT4DV1(&obj);

The Perspective Transform for Render Lists
The perspective transform for the RENDERLIST4DV1 type works identically to the one for
OBJECT4DV1. The functions more or less work the same, but must access the data structures
a little differently—that’s about it. Here’s the primary non-matrix camera to perspective
transform function:

void Camera_To_Perspective_RENDERLIST4DV1(RENDERLIST4DV1_PTR rend_list, 

CAM4DV1_PTR cam)

{

// NOTE: this is not a matrix based function

// this function transforms each polygon in the global render list

// into perspective coordinates, based on the 

// sent camera object, 

// you would use this function instead of the object based function

// if you decided earlier in the pipeline to turn each object into 

// a list of polygons and then add them to the global render list

// transform each polygon in the render list into camera coordinates

// assumes the render list has already been transformed to world

// coordinates and the result is in tvlist[] of each polygon object

for (int poly = 0; poly < rend_list->num_polys; poly++)

{

// acquire current polygon

POLYF4DV1_PTR curr_poly = rend_list->poly_ptrs[poly];

// is this polygon valid?

// transform this polygon if and only if it’s not clipped, not culled,

// active, and visible, note however the concept of “backface” is 

// irrelevant in a wire frame engine though

if ((curr_poly==NULL) || !(curr_poly->state & POLY4DV1_STATE_ACTIVE) ||

(curr_poly->state & POLY4DV1_STATE_CLIPPED ) ||

(curr_poly->state & POLY4DV1_STATE_BACKFACE) )

continue; // move onto next poly
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// all good, let’s transform 

for (int vertex = 0; vertex < 3; vertex++)

{

float z = curr_poly->tvlist[vertex].z;

// transform the vertex by the view parameters in the camera

curr_poly->tvlist[vertex].x = cam->view_dist_h * 

curr_poly->tvlist[vertex].x/z;

curr_poly->tvlist[vertex].y = cam->view_dist_v * 

curr_poly->tvlist[vertex].y * 

cam->aspect_ratio/z;

// z = z, so no change

// note that we are NOT dividing by the homogenous w coordinate since

// we are not using a matrix op for this version of the function 

} // end for vertex

} // end for poly

} // end Camera_To_Perspective_RENDERLIST4DV1

It’s used in the same as the OBJECT4DV1 version:

Camera_To_Perspective_RENDERLIST4DV1(&rend_list, &cam);

Next, to implement the matrix version, we once again build the matrix with a call to
Build_Camera_To_Perspective_MATRIX4X4() and then make a call to
Transform_RENDERLIST4DV1() like this:

MATRIX4X4 mper;

Build_Camera_To_Perspective_MATRIX4X4(&cam, &mper);

Transform_RENDERLIST4DV1(&rend_list, &mper, TRANSFORM_TRANS_ONLY);

You guessed it: We need to dehomogenize the coordinates because w is no longer 1.0
(actually w = z). Hence, here’s the call to convert the homogeneous 4D back to 3D:

void Convert_From_Homogeneous4D_RENDERLIST4DV1(RENDERLIST4DV1_PTR rend_list)

{

// this function convertes all valid polygons vertices in the transformed

// vertex list from 4D homogeneous coordinates to normal 3D coordinates

// by dividing each x,y,z component by w
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for (int poly = 0; poly < rend_list->num_polys; poly++)

{

// acquire current polygon

POLYF4DV1_PTR curr_poly = rend_list->poly_ptrs[poly];

// is this polygon valid?

// transform this polygon if and only if it’s not clipped, not culled,

// active, and visible, note however the concept of “backface” is 

// irrelevant in a wire frame engine though

if ((curr_poly==NULL) || !(curr_poly->state & POLY4DV1_STATE_ACTIVE) ||

(curr_poly->state & POLY4DV1_STATE_CLIPPED ) ||

(curr_poly->state & POLY4DV1_STATE_BACKFACE) )

continue; // move onto next poly

// all good, let’s transform 

for (int vertex = 0; vertex < 3; vertex++)

{

// convert to non-homogenous coords

VECTOR4D_DIV_BY_W(&curr_poly->tvlist[vertex]); 

} // end for vertex

} // end for poly

} // end Convert_From_Homogeneous4D_RENDERLIST4DV1

The final call sequence would of course look like this:

MATRIX4X4 mper;

Build_Camera_To_Perspective_MATRIX4X4(&cam, &mper);

Transform_RENDERLIST4DV1(&rend_list, &mper, TRANSFORM_TRANS_ONLY);

Convert_From_Homogeneous4D_RENDERLIST4DV1(&rend_list);

At this point, we have a virtual image sitting on the viewplane, so to speak. Now we need
to project it onto the viewscreen or viewport, and that’s the last step of the process (other
than the actual rasterization, of course).

The Perspective-to-Screen Viewport Transform
The perspective-to-screen transform is more or less the last stage of the 3D pipeline. It
basically takes the viewplane coordinates and scales them to screen coordinates, as shown
in Figure 7.18. The transform must take into consideration that most raster screens have
the origin (0,0) at the top-left corner, and the y-axis is inverted from the standard 2D
Cartesian coordinate system. Of course, if during the perspective transform itself the view-
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plane was made the same size as the viewport, a scaling operation will not be needed. But
a translation and inversion of the y-axis still will be needed in most cases, because during
projection we assume that the center of the viewplane is the origin at (0,0) and positive x
is to the right, whereas positive y is upward. Raster screens, of course, have their origin
(0,0) at the upper-left corner and the y-axis is inverted. Therefore, no matter what you do,
you’re going to need a viewport transform of some kind.
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FIGURE 7.18 Transforming from perspective coordinates to screen coordinates.

With that in mind, let’s take a look at a number of viewport transforms that I’ve written
for both objects and render lists. But keep in mind that these transforms assume that the
perspective transform was a normalizing one; that is, onto a viewplane of 2x2 for square
projections, or 2/ar x 2/ar for non-square projections, so a scaling operation must be
done. In the next section, we’ll see the entire perspective/screen transform performed in a
single step.

Viewport Transformation for Objects
First, we’ll look at a manual function that performs the perspective to screen/viewport
transformation. The function assumes that the perspective coordinates are in normalized
form. So, the function must scale the coordinates to the size of the screen/viewport, and
translate and invert the y-axis (of course, this is all in Chapter 6). Here’s the function:

void Perspective_To_Screen_OBJECT4DV1(OBJECT4DV1_PTR obj, CAM4DV1_PTR cam)

{

// NOTE: this is not a matrix based function

// this function transforms the perspective coordinates of an object

// into screen coordinates, based on the sent viewport info

// but it totally disregards the polygons themselves,

// it only works on the vertices in the vlist_trans[] list

// this is one way to do it, you might instead transform
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// the global list of polygons in the render list since you 

// are guaranteed that those polys represent geometry that 

// has passed thru backfaces culling (if any)

// finally this function is really for experimental reasons only

// you would probably never let an object stay intact this far down

// the pipeline, since it’s probably that there’s only a single polygon

// that is visible! But this function has to transform the whole mesh!

// this function would be called after a perspective

// projection was performed on the object

// transform each vertex in the object to screen coordinates

// assumes the object has already been transformed to perspective

// coordinates and the result is in vlist_trans[]

float alpha = (0.5*cam->viewport_width-0.5);

float beta = (0.5*cam->viewport_height-0.5);

for (int vertex = 0; vertex < obj->num_vertices; vertex++)

{

// assumes the vertex is in perspective normalized coords from -1 to 1

// on each axis,scale them to viewport and invert y axis and project

// to screen

// transform the vertex by the view parameters in the camera

obj->vlist_trans[vertex].x = alpha + alpha*obj->vlist_trans[vertex].x;

obj->vlist_trans[vertex].y = beta - beta *obj->vlist_trans[vertex].y;

} // end for vertex

} // end Perspective_To_Screen_OBJECT4DV1

The function really just maps the coordinates {x:–1 to 1} and {y:-1 to 1} (normalized view-
plane coordinates) to the raster screen. However, there’s one detail that we should
mention: the 4D homogeneous conversion is unnecessary, because during the camera-to-
perspective transform, there was a division by z. Thus, after this transform the (x,y)
component of each vertex is ready to go and represents the real position on the raster
screen to plot.

Now, it’s possible that during the perspective transform we did not divide by z; that is,
maybe we used a matrix formulation and left the coordinates in 4D homogeneous form
(where w is not equal to 1.0). We can still use this function, but at some point we must
divide each vertex by its w component to convert from homogeneous to non-homoge-
neous. However, in most cases, you don’t leave the coordinate data in 4D form all the way
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down to the viewport transform, but there’s no rule against doing it. Anyway, here’s how
you would use the function in the context of the perspective object transform:

// first camera to perspective transform

// after transform coordinates are already non-homogeneous

Camera_To_Perspective_OBJECT4DV1(&obj, &cam);

// now perform final viewport transform

Perspective_To_Screen_OBJECT4DV1(&obj, &cam);

Almost too easy!

Now let’s talk about the perspective-to-screen transform using matrices. Here’s the
clincher: The matrix will be different depending on whether the perspective coordinates
are still in 4D homogeneous form or if they’ve already been divided by w or z (depending
on the transform was performed) and are the real 3D perspective coordinates (technically
2D; the x,y is all we need, though). So, let’s take a look at both 4D and 3D versions.

Let’s assume that we performed the perspective transform with this code:

MATRIX4X4 mper;

Build_Camera_To_Perspective_MATRIX4X4(&cam, &mper);

Transform_OBJECT4DV1(&obj, &mper, TRANSFORM_TRANS_ONLY,1);

The results would be in 4D form. Thus, to find the final coordinates, we need to divide
each vertex by its w value. However, we can hold off on that and still perform the
perspective-to-screen viewport transform in 4D coordinates with this matrix-building
function:

void Build_Perspective_To_Screen_4D_MATRIX4X4(CAM4DV1_PTR cam, MATRIX4X4_PTR m)

{

// this function builds up a perspective to screen transformation

// matrix, the function assumes that you want to perform the

// transform in homogeneous coordinates and at raster time there will be 

// a 4D->3D homogenous conversion and of course only the x,y points

// will be considered for the 2D rendering, thus you would use this

// function’s matrix as if your perspective coordinates were still 

// in homogeneous form when this matrix was applied, additionally

// the point of this matrix to scale and translate the perspective

// coordinates to screen coordinates, thus the matrix is built up

// assuming that the perspective coordinates are in normalized form for

// a 2x2 viewplane, that is, x: -1 to 1, y:-1/ar to 1/ar

float alpha = (0.5*cam->viewport_width-0.5);

float beta = (0.5*cam->viewport_height-0.5);
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Mat_Init_4X4(m, alpha,  0,   0,  0, 

0,   -beta, 0,  0, 

alpha,  beta, 1,  0,

0,    0,   0,  1);

} // end Build_Perspective_To_Screen_4D_MATRIX4X4()

So now we make a call to build the matrix and then transform the object like this:

MATRIX4X4 mscr;

Build_Perspective_To_Screen_4D_MATRIX4X4 (&cam, &mscr);

Transform_OBJECT4DV1(&obj, &mscr, TRANSFORM_TRANS_ONLY,1);

We almost have screen coordinates, but need to de-homogenize them with a call to

Convert_From_Homogeneous4D_OBJECT4DV1(&obj);

TIP

I know this stuff can be confusing, but the bottom line to remember is that we CANNOT
perform division by z using a matrix, so we need to transfer z into the w component and then
divide by it to obtain perspective transformations or non-affine transforms. That’s the whole
problem with 4D components. They’re nice because you can use 4x4 matrices, but in most
cases, I like to force w = 1 at all times and perform the perspective transform manually and divide
by z myself, rather than having a separate de-homogenizing step where everything is divided 
by w.

Alright, that’s the hard way. But let’s assume that the vertices that make up the object
have already been converted from 4D to 3D and are ready to go. So, all we need is a
matrix version of the viewport transform that does the same math as the functional
version we saw in Perspective_To_Screen_OBJECT4DV1(); that is, it assumes 3D coordi-
nates and w = 1 already. Here’s the matrix function that builds that matrix for us:

void Build_Perspective_To_Screen_MATRIX4X4(CAM4DV1_PTR cam, MATRIX4X4_PTR m)

{

// this function builds up a perspective to screen transformation

// matrix, the function assumes that you want to perform the

// transform in 2D/3D coordinates, that is, you have already converted

// the perspective coordinates from homogenous 4D to 3D before applying

// this matrix, additionally

// the point of this matrix is to scale and translate the perspective

// coordinates to screen coordinates, thus the matrix is built up

// assuming that the perspective coordinates are in normalized form for

// a 2x2 viewplane, that is, x: -1 to 1, y:-1/ar to 1/ar 

// the only difference between this function and the version that

// assumes the coordinates are still in homogenous format is the
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// last column doesn’t force w=z, in fact the z, and w results

// are irrelevent since we assume that BEFORE this matrix is applied

// all points are already converted from 4D->3D

float alpha = (0.5*cam->viewport_width-0.5);

float beta = (0.5*cam->viewport_height-0.5);

Mat_Init_4X4(m, alpha,  0,   0,  0, 

0,   -beta, 0,  0, 

alpha,  beta, 1,  0,

0,    0,   0,  1);

} // end Build_Perspective_To_Screen_MATRIX4X4()

With this function, we assume that the vertices are already in 3D form (technically 2D,
and in perspective normalized coordinates, to boot). To use it, you would do this:

MATRIX4X4 mscr;

Build_Perspective_To_Screen_MATRIX4X4(&cam, &mscr);

Transform_OBJECT4DV1(&obj, &mscr, TRANSFORM_TRANS_ONLY,1);

The point of all these examples is to show you that once you convert from 4D to 3D
(usually in the perspective transform), the pipeline math and matrices slightly change and
you have to have two branches. Personally, I prefer to transform from 4D to 3D perspec-
tive coordinates during the perspective transformation.

Viewport Transformation for Render Lists
The viewport transformation for render lists is identical to that of the objects, other than
the data structure access. First, let’s look at the functional version that assumes there was a
previous normalized perspective transform with a divide by z (or w, however it was done)
and the perspective coordinates just need to be scaled and translated to screen coordi-
nates. Here’s that function:

void Perspective_To_Screen_RENDERLIST4DV1(RENDERLIST4DV1_PTR rend_list, 

CAM4DV1_PTR cam)

{

// NOTE: this is not a matrix based function

// this function transforms the perspective coordinates of the render

// list into screen coordinates, based on the sent viewport in the camera

// assuming that the viewplane coordinates were normalized

// you would use this function instead of the object based function

// if you decided earlier in the pipeline to turn each object into 

// a list of polygons and then add them to the global render list

// you would only call this function if you previously performed

// a normalized perspective transform
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// transform each polygon in the render list from perspective to screen 

// coordinates assumes the render list has already been transformed 

// to normalized perspective coordinates and the result is in tvlist[]

for (int poly = 0; poly < rend_list->num_polys; poly++)

{

// acquire current polygon

POLYF4DV1_PTR curr_poly = rend_list->poly_ptrs[poly];

// is this polygon valid?

// transform this polygon if and only if it’s not clipped, not culled,

// active, and visible, note however the concept of “backface” is 

// irrelevant in a wire frame engine though

if ((curr_poly==NULL) || !(curr_poly->state & POLY4DV1_STATE_ACTIVE) ||

(curr_poly->state & POLY4DV1_STATE_CLIPPED ) ||

(curr_poly->state & POLY4DV1_STATE_BACKFACE) )

continue; // move onto next poly

float alpha = (0.5*cam->viewport_width-0.5);

float beta = (0.5*cam->viewport_height-0.5);

// all good, let’s transform 

for (int vertex = 0; vertex < 3; vertex++)

{

// the vertex is in perspective normalized coords from -1 to 1

// on each axis, simple scale them and invert y axis and project

// to screen

// transform the vertex by the view parameters in the camera

curr_poly->tvlist[vertex].x = alpha + alpha*curr_poly->tvlist[vertex].x;

curr_poly->tvlist[vertex].y = beta - beta *curr_poly->tvlist[vertex].y;

} // end for vertex

} // end for poly

} // end Perspective_To_Screen_RENDERLIST4DV1

Nothing more than a scale and y-axis inversion, as we would expect. Here’s an example of
the function being used after a call to perform the camera-to-perspective conversion that
results in non-homogeneous coordinates:

// do the camera to perspective and divide by z

Camera_To_Perspective_RENDERLIST4DV1(&rend_list, &cam);

// now map perspective cords to screen

Perspective_To_Screen_RENDERLIST4DV1(&rend_list, &cam);
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At this point, I think you get the idea of the difference between 4D and 3D, so just as we
did with objects, we can perform the transform with matrices. But we need to be careful to
take into consideration of whether the perspective coordinates are in 4D or 3D. Here’s the
example of the coordinates staying in 4D form all way down:

MATRIX4X4 mscr;

Build_Perspective_To_Screen_4D(&cam, &mscr);

Transform_RENDERLIST4DV1(&rend_list, &mscr, TRANSFORM_TRANS_ONLY);

We almost have screen coordinates, but need to de-homogenize them with a call to

Convert_From_Homogeneous4D_RENDERLIST4DV1(&rend_list);

And finally, if the coordinates were already in 3D form, we can forget about the de-
homogenizing phase and use the simpler perspective to screen transform that we’ve
already seen. It builds a matrix, assuming 3D coordinates already, as shown here:

MATRIX4X4 mscr;

Build_Perspective_To_Screen_MATRIX4X4(&cam, &mscr);

Transform_RENDERLIST4DV1(&rend_list, &mscr, TRANSFORM_TRANS_ONLY);

As you can see, the cool thing about matrices is that we can use them for anything. In this
case, the only difference between doing things with objects and render lists is the final call
to Transform_*(), which performs the transformation.

TIP

In real life, I would write the Transform_*() functions as virtual (and all this stuff as classes) so
that I could call a single function and it would transform whatever the underlying object was, but
I have to leave something for you to do later!

Hybrid Perspective Screen Transforms
Now it’s time to use some common sense and do a little optimizing. I want to show you
all the ways to do things, so you have no doubt about how things work. But unless you’re
completely asleep, you should realize by now that matrices are pretty, but definitely not
friendly to the perspective transform. Thus, performing the perspective transform is easier
to do manually. Moreover, having separate functions to perform the perspective and then
the screen mapping makes sense in a lot of cases. But if you just want to get the darn
image into a buffer, there’s no need for a second function call because all we’re really
doing is a second scale and translation after the perspective transform. Hence, it’s trivial to
put these two operations into a single function and create a single transform function that

Building the 3D Pipeline 707

7

10 0672318350 CH07  05•02•2003  2:42 PM  Page 707



does both the perspective to viewplane, and then the viewplane to viewport/screen trans-
form.

The Camera-to-Screen Transform for Objects
Basically, the fastest way to perform the camera-to-screen transform is with a function that
manually does it and divides by z itself. Here it is for objects:

void Camera_To_Perspective_Screen_OBJECT4DV1(OBJECT4DV1_PTR obj, CAM4DV1_PTR cam)

{

// NOTE: this is not a matrix based function

// this function transforms the camera coordinates of an object

// into Screen scaled perspective coordinates, based on the 

// sent camera object, that is, view_dist_h and view_dist_v 

// should be set to cause the desired (width X height)

// projection of the vertices, but the function totally 

// disregards the polygons themselves,

// it only works on the vertices in the vlist_trans[] list

// this is one way to do it, you might instead transform

// the global list of polygons in the render list since you 

// are guaranteed that those polys represent geometry that 

// has passed thru backfaces culling (if any)

// finally this function is really for experimental reasons only

// you would probably never let an object stay intact this far down

// the pipeline, since it’s probably that there’s only a single polygon

// that is visible! But this function has to transform the whole mesh!

// finally, the function also inverts the y axis, so the coordinates

// generated from this function ARE screen coordinates and ready for

// rendering

float alpha = (0.5*cam->viewport_width-0.5);

float beta = (0.5*cam->viewport_height-0.5);

// transform each vertex in the object to perspective screen coordinates

// assumes the object has already been transformed to camera

// coordinates and the result is in vlist_trans[]

for (int vertex = 0; vertex < obj->num_vertices; vertex++)

{

float z = obj->vlist_trans[vertex].z;

// transform the vertex by the view parameters in the camera

obj->vlist_trans[vertex].x = cam->view_dist_h * 

obj->vlist_trans[vertex].x/z;

obj->vlist_trans[vertex].y = cam->view_dist_v * 
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obj->vlist_trans[vertex].y * 

cam->aspect_ratio/z;

// z = z, so no change

// not that we are NOT dividing by the homogenous w coordinate since

// we are not using a matrix operation for this version of the function 

// now the coordinates are in the range 

// x:(-viewport_width/2 to viewport_width/2)

// and y:(-viewport_height/2 to viewport_height/2), 

// thus we need a translation and

// since the Y-axis is inverted, we need to invert y 

// to complete the screen transform:

obj->vlist_trans[vertex].x = obj->vlist_trans[vertex].x + alpha;

obj->vlist_trans[vertex].y = -obj->vlist_trans[vertex].y + beta;

} // end for vertex

} // end Camera_To_Perspective_Screen_OBJECT4DV1

Notice that we save even more math in the function. We don’t have to scale the view-
plane coordinates to the viewport because in the transform itself we project them onto a
viewplane that’s viewport_width × viewport_height, which saves a little more. Anyway,
after this function, the coordinates in vlist_trans[] are totally ready to be drawn. Here’s
a sample call:

Camera_To_Perspective_Screen_OBJECT4DV1(&obj,&cam);

I have no idea why I keep giving examples of these incredibly trivial function calls, but it
can’t hurt! In any case, that’s all there is to it! Of course, before the call, the coordinates
better be in camera coordinates, but other than that, you’re good to go.

The Camera-to-Screen Transform for Render Lists
There’s nothing magic about performing the camera-to-screen transform at once for render
lists either. It’s just a slightly different data structure access. Here’s the function:

void Camera_To_Perspective_Screen_RENDERLIST4DV1(RENDERLIST4DV1_PTR rend_list, 

CAM4DV1_PTR cam)

{

// NOTE: this is not a matrix based function

// this function transforms the camera coordinates of an object

// into Screen scaled perspective coordinates, based on the 

// sent camera object, that is, view_dist_h and view_dist_v 

// should be set to cause the desired (viewport_width X viewport_height)
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// it only works on the vertices in the tvlist[] list

// finally, the function also inverts the y axis, so the coordinates

// generated from this function ARE screen coordinates and ready for

// rendering

// transform each polygon in the render list to perspective screen 

// coordinates assumes the render list has already been transformed 

// to camera coordinates and the result is in tvlist[]

for (int poly = 0; poly < rend_list->num_polys; poly++)

{

// acquire current polygon

POLYF4DV1_PTR curr_poly = rend_list->poly_ptrs[poly];

// is this polygon valid?

// transform this polygon if and only if it’s not clipped, not culled,

// active, and visible, note however the concept of “backface” is 

// irrelevant in a wire frame engine though

if ((curr_poly==NULL) || !(curr_poly->state & POLY4DV1_STATE_ACTIVE) ||

(curr_poly->state & POLY4DV1_STATE_CLIPPED ) ||

(curr_poly->state & POLY4DV1_STATE_BACKFACE) )

continue; // move onto next poly

float alpha = (0.5*cam->viewport_width-0.5);

float beta = (0.5*cam->viewport_height-0.5);

// all good, let’s transform 

for (int vertex = 0; vertex < 3; vertex++)

{

float z = curr_poly->tvlist[vertex].z;

// transform the vertex by the view parameters in the camera

curr_poly->tvlist[vertex].x = cam->view_dist_h * 

curr_poly->tvlist[vertex].x/z;

curr_poly->tvlist[vertex].y = cam->view_dist_v * 

curr_poly->tvlist[vertex].y * 

cam->aspect_ratio/z;

// z = z, so no change

// not that we are NOT dividing by the homogenous w coordinate since

// we are not using a matrix operation for this version of the function 

// now the coordinates are in the range

// x:(-viewport_width/2 to viewport_width/2)
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// and y:(-viewport_height/2 to viewport_height/2), 

// thus we need a translation and

// since the Y-axis is inverted, we need to invert y to complete the screen 

// transform:

curr_poly->tvlist[vertex].x = curr_poly->tvlist[vertex].x + alpha; 

curr_poly->tvlist[vertex].y = -curr_poly->tvlist[vertex].y + beta;

} // end for vertex

} // end for poly

} // end Camera_To_Perspective_Screen_RENDERLIST4DV1

And here’s a call to it:

Camera_To_Perspective_Screen_RENDERLIST4DV1(&rend_list,

&cam);

Wow! That’s it. We’re done with the major parts of the 3D pipeline! Probably the only
confusing part is that when we get to the perspective transform, we have to decide
whether to do it manually or with a matrix, and then whether we want to hold on to the
4D coordinates. On the other hand, we can perform the perspective and screen transform
all at once and save a lot of time and drama. We’ll end up using this method most of the
time, or at least using manual functions for the perspective and screen transform that
converts to 3D coordinates (that is, de-homogenizes) because we don’t want to be
converted 4D to 3D late in the pipeline. However, as I said when using hardware, we may
not have this option, and matrices and 4D coordinates may be what the hardware likes.

Rendering a 3D World
I never thought we would get here—thank char s[] = {71, 79, 68, 0}! Of course, my
dilemma was that for the previous zillion pages of this chapter, I couldn’t show you a
single demo because we have to first understand and code each step of the pipeline. But
now we’re done and we can write all the demos we want—and we will! But first, let’s take
yet another look at the 3D pipeline and then we’ll write some simple graphics functions
that draw wireframe meshes that feed from either OBJECT4DV1s or RENDERLIST4DV1s.

The 3D Pipeline As It Stands
Currently, we have all the code we need to load 3D objects off disk and store them in an
OBJECT4DV1 structure and then push one or more objects all the way through the 3D
pipeline. Or we can push one or more OBJECT4DV1s down the 3D pipeline as far as we
wish, rip it apart into its constituent polygons, and then insert them into a master
polygon list via the data structure RENDERLIST4DV1. How you want to do it is really up to
you; both methods have strengths and weaknesses. But in general, most 3D engines use a

Rendering a 3D World 711

7

10 0672318350 CH07  05•02•2003  2:42 PM  Page 711



hybrid of both. They work with objects for the things that move around, but the environ-
ment might be a giant mesh that’s sectorized and simply inserted into the render list
along with the objects at some point. But for now, we’re keeping things simple and assum-
ing that our games are made from objects, and that there’s no interior or exterior environ-
ments we need to deal with.

With that in mind, Figure 7.19 shows the different path ways geometry can take, but in
general, the following steps must take place:

Stage 0: Load objects and position them

Stage 1: Local-to-world transform

Stage 2: Object and back-face removal

Stage 3: World-to-camera transform

Stage 4: Camera-to-perspective transform

Stage 5: Perspective-to-screen transform

Stage 6: Render the geometry
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polygons, you lose their structure and can’t think of them as objects anymore. We’ve
completely left out 3D clipping, but as long as we remove objects, we’re somewhat safe at
this point because we clip the objects to the near z-plane. For the most part, we won’t get
any geometry that has z = negative or z = 0 vertices, but we need to deal with this, and we
will in the next chapter when we perform full 3D clipping. For now, we assume that all
the projected vertices are reasonably safe, and if they do extend beyond the 2D viewport,
they’ll be clipped by the 2D drawing functions.

Okay, so no matter how you sequence our geometry down the 3D pipeline, at some point
we’re going to have one of two things: a list of OBJECT4DV1s that need to be rendered or a
single RENDERLIST4DV1 that represents all the polygons and needs to be rendered. Of
course, you could have more than one render list, but for now, let’s assume one that basi-
cally would contain all the objects. So, what we need are two functions: one that can draw
all the polygons in an OBJECT4DV1, and one that can draw all the polygons in a
RENDERLIST4DV1.

Drawing an OBJECT4DV1 Before we begin, let’s remember that we’re going to use wire-
frame graphics without any hidden line removal or sorting. That means that you’ll be able
to see through the objects. Moreover, the objects may be drawn in the wrong order
because we aren’t taking into consideration their z-depth to sort them or use any other
type of proper ordering, but who cares? They are hollow! Therefore, all we need to do is
write a function that basically assumes that the vertex list in the transformed object’s
vertice list is valid and in screen coordinates, and just run through the geometry and draw
each triangle. Here’s the function that does the job. Note that the function tests to see if
each polygon is visible, two-sided, can be clipped, or is a back-face.

void Draw_OBJECT4DV1_Wire16(OBJECT4DV1_PTR obj, 

UCHAR *video_buffer, int lpitch)

{

// this function renders an object to the screen in wireframe, 

// 16 bit mode, it has no regard at all about hidden surface removal, 

// etc. the function only exists as an easy way to render an object 

// without converting it into polygons, the function assumes all 

// coordinates are screen coordinates, but will perform 2D clipping

// iterate thru the poly list of the object and simply draw

// each polygon

for (int poly=0; poly < obj->num_polys; poly++)

{

// render this polygon if and only if it’s not clipped, not culled,

// active, and visible, note however the concecpt of “backface” is 

// irrelevant in a wire frame engine though

if (!(obj->plist[poly].state & POLY4DV1_STATE_ACTIVE) ||

(obj->plist[poly].state & POLY4DV1_STATE_CLIPPED ) ||
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(obj->plist[poly].state & POLY4DV1_STATE_BACKFACE) )

continue; // move onto next poly

// extract vertex indices into master list, rember the polygons are 

// NOT self contained, but based on the vertex list stored in the object

// itself

int vindex_0 = obj->plist[poly].vert[0];

int vindex_1 = obj->plist[poly].vert[1];

int vindex_2 = obj->plist[poly].vert[2];

// draw the lines now

Draw_Clip_Line16(obj->vlist_trans[ vindex_0 ].x, 

obj->vlist_trans[ vindex_0 ].y, 

obj->vlist_trans[ vindex_1 ].x, 

obj->vlist_trans[ vindex_1 ].y, 

obj->plist[poly].color,

video_buffer, lpitch);

Draw_Clip_Line16(obj->vlist_trans[ vindex_1 ].x, 

obj->vlist_trans[ vindex_1 ].y, 

obj->vlist_trans[ vindex_2 ].x, 

obj->vlist_trans[ vindex_2 ].y, 

obj->plist[poly].color,

video_buffer, lpitch);

Draw_Clip_Line16(obj->vlist_trans[ vindex_2 ].x, 

obj->vlist_trans[ vindex_2 ].y, 

obj->vlist_trans[ vindex_0 ].x, 

obj->vlist_trans[ vindex_0 ].y, 

obj->plist[poly].color,

video_buffer, lpitch);

} // end for poly

} // end Draw_OBJECT4DV1_Wire

The function is beautiful, huh? With our virtual computer system and graphics buffer, we
can write 3D functions all day and not know a thing about the hardware—all we need is
the address of the video buffer and the memory pitch. Anyway, the function makes use of
a couple of the 2D functions for drawing clipped lines and does nothing more than
traverse the polygon list and draw all the triangles that make up the 3D object. Here’s a
sample call where you would have already set up the graphics system, performed the 3D
pipeline, and obj was ready to go:

Draw_OBJECT4DV1_Wire16(&obj, video_buffer,lpitch);
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Drawing a RENDERLIST4DV1 The drawing function for the render lists is identical to the
objects, but with different data structure access. Here it is:

void Draw_RENDERLIST4DV1_Wire16(RENDERLIST4DV1_PTR rend_list, 

UCHAR *video_buffer, int lpitch)

{

// this function “executes” the render list or in other words

// draws all the faces in the list in wire frame 16bit mode

// note there is no need to sort wire frame polygons, but 

// later we will need to, so hidden surfaces stay hidden

// also, we leave it to the function to determine the bitdepth

// and call the correct rasterizer

// at this point, all we have is a list of polygons and it’s time

// to draw them

for (int poly=0; poly < rend_list->num_polys; poly++)

{

// render this polygon if and only if it’s not clipped, not culled,

// active, and visible, note however the concecpt of “backface” is 

// irrelevant in a wire frame engine though

if (!(rend_list->poly_ptrs[poly]->state & POLY4DV1_STATE_ACTIVE) ||

(rend_list->poly_ptrs[poly]->state & POLY4DV1_STATE_CLIPPED ) ||

(rend_list->poly_ptrs[poly]->state & POLY4DV1_STATE_BACKFACE) )

continue; // move onto next poly

// draw the triangle edge one, note that clipping was already set up

// by 2D initialization, so line clipper will clip all polys out

// of the 2D screen/window boundary

Draw_Clip_Line16(rend_list->poly_ptrs[poly]->tvlist[0].x, 

rend_list->poly_ptrs[poly]->tvlist[0].y,

rend_list->poly_ptrs[poly]->tvlist[1].x, 

rend_list->poly_ptrs[poly]->tvlist[1].y,

rend_list->poly_ptrs[poly]->color,

video_buffer, lpitch);

Draw_Clip_Line16(rend_list->poly_ptrs[poly]->tvlist[1].x, 

rend_list->poly_ptrs[poly]->tvlist[1].y,

rend_list->poly_ptrs[poly]->tvlist[2].x, 

rend_list->poly_ptrs[poly]->tvlist[2].y,

rend_list->poly_ptrs[poly]->color,

video_buffer, lpitch);
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Draw_Clip_Line16(rend_list->poly_ptrs[poly]->tvlist[2].x, 

rend_list->poly_ptrs[poly]->tvlist[2].y,

rend_list->poly_ptrs[poly]->tvlist[0].x, 

rend_list->poly_ptrs[poly]->tvlist[0].y,

rend_list->poly_ptrs[poly]->color,

video_buffer, lpitch);

} // end for poly

} // end Draw_RENDERLIST4DV1_Wire

Calling it is no different, we just need a render list rather than an object:

Draw_RENDERLIST4DV1_Wire16(&rend_list, video_buffer,lpitch);

That’s it, my large-brained friend! Now we’re ready to see some demos. Now that we have
the pipeline and rendering algorithms all done, I would like to write a number of demos
to review all the different techniques we covered in the previous sections. So, the next
section is going to run through a number of examples to give you a good idea how to do
everything.

3D Demos
Finally, some full demos. It’s been torture, hasn’t it? Now, don’t get too built up, we’re not
going to do anything other than basic wireframe examples based on all the functions
we’ve built. But as I said, after this chapter, you could easily write Battle Zone, or some-
thing of that nature. Each demo will have a title and set of specifications that generally
describe what’s going on, so you can jump around this section of the chapter if you want
and find something you’re interested in. Additionally, I’m not going to show you the
entire program for each demo because you’ve already seen all the functions themselves.
Rather, just the important stuff in the main loop will be listed. To compile any of these
demos, you’ll need the following files in addition to the main .CPP file of the demo:

T3DLIB1.CPP|H

T3DLIB2.CPP|H

T3DLIB3.CPP|H

T3DLIB4.CPP|H

T3DLIB5.CPP|H

DDRAW.LIB

DSOUND.LIB
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DINPUT.LIB

DINPUT8.LIB

And all the .PLG files that are located in this chapter’s directory, of course.

Single 3D Triangle—DEMOII7_1.CPP|EXE
Object(s) Loaded: None; manual creation of single polygon

Type of Camera: Euler, fixed position, 90 degree FOV normalized viewplane

Type of Projection: Perspective followed by viewport mapping

Math Used for 3D Pipeline: All manual function calls, no transforms based on individ-
ual matrices

Back-face Removal: None

Object Removal: None

Type of Rendering Geometry: Render list with single polygon

DEMOII7_1.CPP|EXE is as basic as it gets. The program creates a single polygon, rotates it
around the +y-axis, and that’s it! Here are the important globals for the demo:

// initialize camera position and direction

POINT4D cam_pos = {0,0,-100,1};

VECTOR4D cam_dir = {0,0,0,1};

// all your initialization code goes here...

VECTOR4D vscale={.5,.5,.5,1}, vpos = {0,0,0,1}, vrot = {0,0,0,1};

CAM4DV1    cam;           // the single camera

RENDERLIST4DV1 rend_list;        // the single renderlist

POLYF4DV1   poly1;          // our lonely polygon

POINT4D    poly1_pos = {0,0,100,1}; // world position of polygon

And here’s the 3D code in the Game_Init() function:

// initialize math engine

Build_Sin_Cos_Tables();

// initialize a single polygon

poly1.state = POLY4DV1_STATE_ACTIVE;

poly1.attr  = 0; 

poly1.color = RGB16Bit(0,255,0);

poly1.vlist[0].x = 0;

poly1.vlist[0].y = 50;
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poly1.vlist[0].z = 0;

poly1.vlist[0].w = 1;

poly1.vlist[1].x = 50;

poly1.vlist[1].y = -50;

poly1.vlist[1].z = 0;

poly1.vlist[1].w = 1;

poly1.vlist[2].x = -50;

poly1.vlist[2].y = -50;

poly1.vlist[2].z = 0;

poly1.vlist[2].w = 1;

poly1.next = poly1.prev = NULL;

// initialize the camera with 90 FOV, normalized coordinates

Init_CAM4DV1(&cam,   // the camera object

&cam_pos, // initial camera position

&cam_dir, // initial camera angles

50.0,   // near and far clipping planes

500.0,

90.0,   // field of view in degrees

1.0,    // viewing distance

0,     // size of viewplane-1

0,

WINDOW_WIDTH,  // size of final screen viewport

WINDOW_HEIGHT);

Finally, here’s the main core of the Game_Main() function that performs the entire 3D
pipeline and rendering of the triangle:

int Game_Main(void *parms)

{

// this is the workhorse of your game it will be called

// continuously in real-time this is like main() in C

// all the calls for you game go here!

static MATRIX4X4 mrot; // general rotation matrix

static float ang_y = 0;   // rotation angle

int index; // looping var

// start the timing clock

Start_Clock();
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// clear the drawing surface 

DDraw_Fill_Surface(lpddsback, 0);

// read keyboard and other devices here

DInput_Read_Keyboard();

// game logic here...

// initialize the renderlist

Reset_RENDERLIST4DV1(&rend_list);

// insert polygon into the renderlist

Insert_POLYF4DV1_RENDERLIST4DV1(&rend_list, &poly1);

// generate rotation matrix around y axis

Build_XYZ_Rotation_MATRIX4X4(0, ang_y, 0, &mrot);

// rotate polygon slowly

if (++ang_y >= 360.0) ang_y = 0;

// rotate the local coords of single polygon in renderlist

Transform_RENDERLIST4DV1(&rend_list, &mrot, TRANSFORM_LOCAL_ONLY);

// perform local/model to world transform

Model_To_World_RENDERLIST4DV1(&rend_list, &poly1_pos);

// generate camera matrix

Build_CAM4DV1_Matrix_Euler(&cam, CAM_ROT_SEQ_ZYX);

// apply world to camera transform

World_To_Camera_RENDERLIST4DV1(&rend_list, &cam);

// apply camera to perspective transformation

Camera_To_Perspective_RENDERLIST4DV1(&rend_list, &cam);

// apply screen transform

Perspective_To_Screen_RENDERLIST4DV1(&rend_list, &cam);

// lock the back buffer

DDraw_Lock_Back_Surface();

// render the polygon list

Draw_RENDERLIST4DV1_Wire16(&rend_list, back_buffer, back_lpitch);
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// unlock the back buffer

DDraw_Unlock_Back_Surface();

// flip the surfaces

DDraw_Flip();

// sync to 30ish fps

Wait_Clock(30);

// check of user is trying to exit

if (KEY_DOWN(VK_ESCAPE) || keyboard_state[DIK_ESCAPE])

{

PostMessage(main_window_handle, WM_DESTROY,0,0);

} // end if

// return success

return(1);

} // end Game_Main

Figure 7.20 is a screenshot of DEMOII7_1.EXE in action. Very exciting, as you can see! The
main point of this demo is to show that with a dozen or so calls, we can create a full 3D
wireframe display—that’s nothing to laugh at.
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FIGURE 7.20 Screenshot of DEMOII7_1.EXE. 

3D Wireframe Cube—DEMOII7_2.CPP|EXE
Object(s) Loaded: Simple Cube (CUBE1.PLG)

Type of Camera: Euler, fixed position, 90 degree FOV normalized viewplane of 2x2 with
viewport of 400x400
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Type of Projection: Perspective followed by viewport mapping

Math Used for 3D Pipeline: All manual function calls; no transforms based on individ-
ual matrices

Back-face Removal: None

Object Removal: None

Type of Rendering Geometry: Object rendering, no render list

Now that you’ve see a single polygon rotating, let’s do something a little more exciting,
shall we? DEMOII7_2.CPP|EXE is similar to the previous demo, but this time we’re going to
use our mesh-loading software to load in the cube mesh CUBE1.PLG shown here:

# begin plg/plx file

# simple cube

tri 8 12  

# vertex list 

5 5 5

-5 5 5

-5 5 -5

5 5 -5

5 -5 5

-5 -5 5

-5 -5 -5

5 -5 -5

# polygon list

0xd0f0 3 2 1 0 

0xd0f0 3 3 2 0

0xd0f0 3 4 7 0 

0xd0f0 3 7 3 0

0xd0f0 3 6 7 4 

0xd0f0 3 5 6 4

0xd0f0 3 2 6 1 

0xd0f0 3 6 5 1

0xd0f0 3 7 6 3 

0xd0f0 3 6 2 3

0xd0f0 3 5 4 0 

0xd0f0 3 1 5 0
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Basically, it’s a 10x10x10 cube. After the mesh is loaded as an OBJECT4DV1, it’s slowly
rotated in the main loop and transformed down the 3D pipeline. However, we will NOT
convert the cube into polygons and insert them into a render list; we’ll leave the cube as
an object so that you can see that it’s possible to keep an object intact all the way down
the pipeline.

Here are the important globals for the demo:

// initialize camera position and direction

POINT4D cam_pos = {0,0,0,1};

VECTOR4D cam_dir = {0,0,0,1};

// all your initialization code goes here...

VECTOR4D vscale={5.0,5.0,5.0,1}, vpos = {0,0,0,1}, vrot = {0,0,0,1};

CAM4DV1  cam;   // the single camera

OBJECT4DV1 obj;   // used to hold our cube mesh   

Notice the value of vscale. Remember that this vector scales the mesh during loading;
hence, the 10x10x10 cube will be scaled during loading to 50x50x50. Of course, we could
have just changed the model itself, but that’s the point of the flexibility in the loading
function: to use the same model and transform it during loading to allow slight morphing
of the mesh.

Now, let’s look at the 3D part of the initialization code in Game_Init(). It’s the same as
before, but you’ll see the object loaded:

// initialize the camera with 90 FOV, normalized coordinates

Init_CAM4DV1(&cam,   // the camera object

&cam_pos, // initial camera position

&cam_dir, // initial camera angles

50.0,   // near and far clipping planes

500.0,

90.0,   // field of view in degrees

WINDOW_WIDTH,  // size of final screen viewport

WINDOW_HEIGHT);

// load the cube

Load_OBJECT4DV1_PLG(&obj, “cube1.plg”,&vscale, &vpos, &vrot);

// set the position of the cube in the world

obj.world_pos.x = 0;

obj.world_pos.y = 0;

obj.world_pos.z = 100;
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Note that the object is positioned 100 units from the origin of the world. This is so it
looks really big and we get a lot of perspective. Finally, here’s the Game_Main() so that you
can see the pipeline calls:

int Game_Main(void *parms)

{

// this is the workhorse of your game it will be called

// continuously in real-time this is like main() in C

// all the calls for you game go here!

static MATRIX4X4 mrot; // general rotation matrix

int index; // looping var

// start the timing clock

Start_Clock();

// clear the drawing surface 

DDraw_Fill_Surface(lpddsback, 0);

// read keyboard and other devices here

DInput_Read_Keyboard();

// game logic here...

// reset the object (this only matters for backface and object removal)

Reset_OBJECT4DV1(&obj);

// generate rotation matrix around y axis

Build_XYZ_Rotation_MATRIX4X4(0, 5, 0, &mrot);

// rotate the local coords of single polygon in renderlist

Transform_OBJECT4DV1(&obj, &mrot, TRANSFORM_LOCAL_ONLY,1);

// perform local/model to world transform

Model_To_World_OBJECT4DV1(&obj);

// generate camera matrix

Build_CAM4DV1_Matrix_Euler(&cam, CAM_ROT_SEQ_ZYX);
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// apply world to camera transform

World_To_Camera_OBJECT4DV1(&obj, &cam);

// apply camera to perspective transformation

Camera_To_Perspective_OBJECT4DV1(&obj, &cam);

// apply screen transform

Perspective_To_Screen_OBJECT4DV1(&obj, &cam);

// lock the back buffer

DDraw_Lock_Back_Surface();

// render the object

Draw_OBJECT4DV1_Wire16(&obj, back_buffer, back_lpitch);

// unlock the back buffer

DDraw_Unlock_Back_Surface();

// flip the surfaces

DDraw_Flip();

// sync to 30ish fps

Wait_Clock(30);

// check of user is trying to exit

if (KEY_DOWN(VK_ESCAPE) || keyboard_state[DIK_ESCAPE])

{

PostMessage(main_window_handle, WM_DESTROY,0,0);

} // end if

// return success

return(1);

} // end Game_Main

Again, only a dozen or so important calls and we have an entire 3D demo up and
running! Figure 7.21 is a screenshot of DEMOII7_2.EXE in action. Notice the amount of
perspective. This is due to the field of view and the proximity of the object to the view-
point.
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FIGURE 7.21 Screenshot of DEMOII7_2.EXE.

3D Wireframe Cube with Back-face Removal—DEMOII7_3.CPP|EXE
Object(s) Loaded: Simple cube (CUBE2.PLG)

Type of Camera: Euler, fixed position, 90 degree FOV normalized viewplane of -1/ar to
+1/ar with viewport of 640x480

Type of Projection: Perspective followed by viewport mapping

Math Used for 3D Pipeline: All manual function calls; no transforms based on individ-
ual matrices

Back-face Removal: Enabled

Object Removal: None

Type of Rendering Geometry: Object rendering; no render list

DEMOII7_3.CPP|EXE is identical to DEMOII7_2.CPP|EXE except that back-face removal has
been enabled along with a larger viewport. Additionally, to make back-face removal work,
we need to take a couple things into consideration. The first is in the model mesh itself.
Remember that when loading a mesh, a polygon can be one- or two-sided. If it’s one-
sided, back-face removal makes sense. But if it’s two-sided, it doesn’t make sense because
we can see the polygon from both sides. Now, in wireframe mode, it’s obviously less
important to have back-face removal, but we can still enable it in the mesh data if we like.
The second thing we have to do is, of course, test for a back-face during the 3D pipeline
somewhere after the world transform, but before the camera transform.

First, let’s check to see whether back-faces were enabled in the CUBE1.PLG mesh data.
Here’s one of the polygon descriptor lines from the file:

# polygon list

0xd0f0 3 2 1 0 # polygon 0
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The first number is the polygon descriptor, and if you recall from the code in the previous
section on loading .PLG/.PLX files, the D bit in the 16-bit surface descriptor defines
whether the polygon is two-sided or not:

CSSD | RRRR| GGGG | BBBB

In other words, the D bit is the lower bit of the leftmost hex digit. In the case of this
surface descriptor, the digit is hex 0xD, which is 1101b in binary; therefore, the two-sided
flag is on! We must disable it. To do so, we’ll need another .PLG file, so I’ve created one
and called it CUBE2.PLG. It’s on the CD and has this bit reset, so the descriptor looks like
1100b, or 0xC in hex. The analogous polygon descriptor in the preceding example would
now be

# polygon list

0xc0f0 3 2 1 0 # polygon 0

To remove the back-faces, a call is made to

// remove backfaces

Remove_Backfaces_OBJECT4DV1(&obj, &cam);

This call is made after the camera matrix is created for the viewing angles, but before the
general world-to-camera transformation takes place. The call is placed at this particular
point so that polygons that are not visible aren’t transformed during the world-to-camera
transformation.

Figure 7.22 is a screenshot of DEMOII7_3.EXE in action. Try pressing the up and down
arrow keys and watch the cube rotate around the x-axis.
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3D Tank Demo—DEMOII7_4.CPP|EXE
Object(s) Loaded: Simple tank (TANK1.PLG)

Type of Camera: Euler, rotatable, 90 degree FOV normalized viewplane of -1/ar to +1/ar
with viewport of 400x400

Type of Projection: Perspective followed by viewport mapping

Math Used for 3D Pipeline: All manual function calls; no transforms based on individ-
ual matrices

Back-face Removal: Disabled

Object Removal: Yes

Type of Rendering Geometry: Render list with multiple objects inserted

Figure 7.23 depicts the hard-hitting 3D gaming action of DEMOII7_4.CPP! Well, at least
there’s some tanks in there <BG>. Anyway, this is a fairly complex demo. The camera is set
up as usual, the tank object is loaded, and the demo proceeds into the main loop.
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FIGURE 7.23 Screenshot of DEMOII7_4.EXE.

The interesting thing about this demo is how I created multiple copies of the tank: Instead
of loading multiple tanks, I simply changed the position of the master tank and then
inserted it into the master rendering list multiple times. Hence, the tank’s polygons at a
particular world position are transformed and then inserted into the rendering list,
making it seem like there are multiple tanks. When the world-to-camera and perspective
transformations are performed on the rendering list, we have multiple tanks! Here’s an
excerpt from the program that demonstrates the important parts of the main loop; I’ve
bolded the copy/insertion code:

int Game_Main(void *parms)

{

// this is the workhorse of your game it will be called
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// continuously in real-time this is like main() in C

// all the calls for you game go here!

static MATRIX4X4 mrot; // general rotation matrix

static float x_ang = 0, y_ang = 5, z_ang = 0;

char work_string[256];

int index; // looping var

// start the timing clock

Start_Clock();

// clear the drawing surface 

DDraw_Fill_Surface(lpddsback, 0);

// read keyboard and other devices here

DInput_Read_Keyboard();

// game logic here...

// reset the render list

Reset_RENDERLIST4DV1(&rend_list);

// reset angles

x_ang = 0;

y_ang = 1;

z_ang = 0;

// is user trying to rotate camera

if (KEY_DOWN(VK_DOWN))

cam.dir.x+=1;

else

if (KEY_DOWN(VK_UP))

cam.dir.x-=1;

// is user trying to rotate camera

if (KEY_DOWN(VK_RIGHT))

cam.dir.y-=1;

else

if (KEY_DOWN(VK_LEFT))

cam.dir.y+=1;

// generate rotation matrix around y axis

Build_XYZ_Rotation_MATRIX4X4(x_ang, y_ang, z_ang, &mrot);
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// rotate the local coords of the object

Transform_OBJECT4DV1(&obj, &mrot, TRANSFORM_LOCAL_ONLY,1);

// now cull the current object

strcpy(buffer,”Objects Culled: “);

for (int x=-NUM_OBJECTS/2; x < NUM_OBJECTS/2; x++)

for (int z=-NUM_OBJECTS/2; z < NUM_OBJECTS/2; z++)

{

// reset the object (this only matters for backface and object removal)

Reset_OBJECT4DV1(&obj);

// set position of object

obj.world_pos.x = x*OBJECT_SPACING+OBJECT_SPACING/2;

obj.world_pos.y = 0;

obj.world_pos.z = 500+z*OBJECT_SPACING+OBJECT_SPACING/2;

// attempt to cull object  

if (!Cull_OBJECT4DV1(&obj, &cam, CULL_OBJECT_XYZ_PLANES))

{

// if we get here then the object is visible at this world position

// so we can insert it into the rendering list

// perform local/model to world transform

Model_To_World_OBJECT4DV1(&obj);

// insert the object into render list

Insert_OBJECT4DV1_RENDERLIST4DV1(&rend_list, &obj);

} // end if

else

{

sprintf(work_string, “[%d, %d] “, x,z);

strcat(buffer, work_string);

}

} // end for

Draw_Text_GDI(buffer, 0, WINDOW_HEIGHT-20, RGB(0,255,0), lpddsback);

// generate camera matrix

Build_CAM4DV1_Matrix_Euler(&cam, CAM_ROT_SEQ_ZYX);

// remove backfaces

Remove_Backfaces_RENDERLIST4DV1(&rend_list, &cam);
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// apply world to camera transform

World_To_Camera_RENDERLIST4DV1(&rend_list, &cam);

// apply camera to perspective transformation

Camera_To_Perspective_RENDERLIST4DV1(&rend_list, &cam);

// apply screen transform

Perspective_To_Screen_RENDERLIST4DV1(&rend_list, &cam);

// draw instructions

Draw_Text_GDI(“Press ESC to exit. Use ARROW keys to rotate camera.”, 

0, 0, RGB(0,255,0), lpddsback);

// lock the back buffer

DDraw_Lock_Back_Surface();

// render the object

Draw_RENDERLIST4DV1_Wire16(&rend_list, back_buffer, back_lpitch);

// unlock the back buffer

DDraw_Unlock_Back_Surface();

// flip the surfaces

DDraw_Flip();

// sync to 30ish fps

Wait_Clock(30);

// check of user is trying to exit

if (KEY_DOWN(VK_ESCAPE) || keyboard_state[DIK_ESCAPE])

{

PostMessage(main_window_handle, WM_DESTROY,0,0);

} // end if

// return success

return(1);

} // end Game_Main

Now you see why having a rendering list is so important, and is a better way to approach
rendering than rendering separate objects themselves. Having objects is fine for transfor-
mations, animation, AI, logic, and so on, but once the rendering phase starts, it’s better to
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simply decompose objects into polygons (after object culling) and then insert the poly-
gons into a master list.

3D Tanks Demo with Flying Camera—DEMOII7_5.CPP|EXE
Object(s) Loaded: Simple tank (TANK1.PLG)

Type of Camera: UVN, rotatable, 90 degree FOV normalized viewplane of -1/ar to +1/ar
with viewport of 800x600, full-screen

Type of Projection: Perspective followed by viewport mapping

Math Used for 3D Pipeline: All manual function calls; no transforms based on individ-
ual matrices

Back-face Removal: Disabled

Object Removal: Yes

Type of Rendering Geometry: Render list with multiple objects inserted
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FIGURE 7.24 Screenshot of DEMOII7_5.EXE. 

Figure 7.24 is a screenshot of the most complex demo yet. I was shooting for a clone-wars-
attack kind of thing! Anyway, this demo uses the UVN camera model, so the only thing
that’s really different from the other demos is the call to Build_CAM4DV1_Matrix_UVN()
rather than the Euler function call. Moreover, the UVN_MODE_SIMPLE parameter is used,
which tells the camera function that we’re supplying only the target position manually.
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Thus the function blindly computes the u,v,n vectors without further ado. The
Game_Main() is very similar to the previous demo, but has a couple of interesting points:
the computation of the camera position and, of course, the UVN camera model. Here’s the
code that positions the camera:

// compute new camera position, rides on a circular path 

// with a sinuoid modulation

cam.pos.x = camera_distance*Fast_Cos(view_angle);

cam.pos.y = camera_distance*Fast_Sin(view_angle);

cam.pos.z = 2*camera_distance*Fast_Sin(view_angle);

// advance angle to circle around

if ((view_angle+=1)>=360)

view_angle = 0;

// generate camera matrix

Build_CAM4DV1_Matrix_UVN(&cam, UVN_MODE_SIMPLE);

As you can see, there’s not much to it! Figure 7.25 depicts the world setup and what’s
happening. This is a good example of very simple math creating a very interesting camera
motion. In this case, I have a circular path for the camera (or elliptical, depending on the
multiplication factors), along with bouncing the height of the camera above the x-z plane
along a sine wave. The effect is a very nice camera motion. However, realize that this kind
of camera control is possible only because we’re using the UVN model. The UVN model
gives the control we need in this case because it’s well suited for the case in which you
have a point of interest you want to “look at” and a camera position, which is the case in
this demo. I position the camera on the circular ring surrounding the target, which is the
center of the tank army, and that’s it!

The interesting thing about this camera model is that it’s great for viewing the action from
a third-person perspective. That is, using the camera position and a target works when you
want to look at some point of interest, and you want the math to figure out the UVN
vectors, which in turn compute the rotation matrix. However, the second construction we
developed for the UVN model (that is, where we give the camera position, but instead of a
target we select the elevation and heading), works much better for a first-person game
where you want to see through the character’s eyes. Let’s do a final demo using that tech-
nique and the spherical camera system plugged into the UVN model.

Battle Zone Walkthrough Demo—DEMOII7_6.CPP|EXE
Object(s) Loaded: Tank (TANK1.PLG), Tower (TOWER1.PLG)

Type of Camera: Euler with heading, rotatable, 120 degree FOV normalized viewplane of
-1/ar to +1/ar with viewport of 800x600, full-screen

Type of Projection: Perspective followed by viewport mapping
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FIGURE 7.25 World setup for the demo.

Math Used for 3D Pipeline: All manual function calls; no transforms based on individ-
ual matrices

Back-face Removal: Disabled

Object Removal: Yes

Type of Rendering Geometry: Render list with multiple objects inserted

This is the coolest demo yet! Basically, the demo puts everything we have seen together
and has a few game programming tricks thrown in. The demo consists of three object
types: towers, tanks, and ground markers. Because we’re still using wireframe rendering,
it’s difficult to create a feeling for depth, so I added a large number of regularly placed
small pyramids all over the game arena to create a sense of a ground plane. Additionally,
there’s a sky and ground created with two blitter-filled rectangles. See Figure 7.26.
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FIGURE 7.26 Screenshot of DEMOII7_6.EXE. 

The important parts of the demo to review are how multiple objects are once again easily
created by transforming a master object, and then inserting the transformed version into
the rendering list without destroying the original. Of course, you need to keep track of the
copies’ positions and orientations, but that’s nothing more than a couple of arrays of
vectors. Now what I would like to do is describe the various elements of the demo and
how they work. I’m going to excerpt code from the various parts of the demo because it’s
too long to list.

Loading and Initializing the Objects
As I said, there are three different types of objects: tanks, towers, and markers. All of them
have what I call a master object that holds the original. I have secondary data structures to
hold the unique information of the copies (which in this case is nothing more that posi-
tion, because nothing is really moving). Here’s the code that loads in and sets up the
objects. Notice the scaling I performed to each mesh; sometimes it’s necessary to tweak
things like this.

// load the master tank object

VECTOR4D_INITXYZ(&vscale,0.75,0.75,0.75);

Load_OBJECT4DV1_PLG(&obj_tank, “tank2.plg”,&vscale, &vpos, &vrot);

// load player object for 3rd person view

VECTOR4D_INITXYZ(&vscale,0.75,0.75,0.75);

Load_OBJECT4DV1_PLG(&obj_player, “tank3.plg”,&vscale, &vpos, &vrot);
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// load the master tower object

VECTOR4D_INITXYZ(&vscale,1.0, 2.0, 1.0);

Load_OBJECT4DV1_PLG(&obj_tower, “tower1.plg”,&vscale, &vpos, &vrot);

// load the master ground marker

VECTOR4D_INITXYZ(&vscale,3.0,3.0,3.0);

Load_OBJECT4DV1_PLG(&obj_marker, “marker1.plg”,&vscale, &vpos, &vrot);

// position the tanks

for (index = 0; index < NUM_TANKS; index++)

{

// randomly position the tanks

tanks[index].x = RAND_RANGE(-UNIVERSE_RADIUS, UNIVERSE_RADIUS);

tanks[index].y = 0; // obj_tank.max_radius;

tanks[index].z = RAND_RANGE(-UNIVERSE_RADIUS, UNIVERSE_RADIUS);

tanks[index].w = RAND_RANGE(0,360);

} // end for

// position the towers

for (index = 0; index < NUM_TOWERS; index++)

{

// randomly position the tower

towers[index].x = RAND_RANGE(-UNIVERSE_RADIUS, UNIVERSE_RADIUS);

towers[index].y = 0; // obj_tower.max_radius;

towers[index].z = RAND_RANGE(-UNIVERSE_RADIUS, UNIVERSE_RADIUS);

} // end for

The Camera System
The camera is fairly simple. It’s a Euler model that does nothing more than move around
the game field, along with rotating parallel to the y axis. I also could have changed the
angle relative to the x axis or the elevation, but the horizon is artificial and I would have
had to compute where the artificial horizon rectangles would change when the elevation
in 3D changed—too much of a pain! Anyway, here’s the code that moves the camera
around. Pay attention to the variable turning; it’s used for an effect.

// allow user to move camera

// turbo

if (keyboard_state[DIK_SPACE])

tank_speed = 5*TANK_SPEED;
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else

tank_speed = TANK_SPEED;

// forward/backward

if (keyboard_state[DIK_UP])

{

// move forward

cam.pos.x += tank_speed*Fast_Sin(cam.dir.y);

cam.pos.z += tank_speed*Fast_Cos(cam.dir.y);

} // end if

if (keyboard_state[DIK_DOWN])

{

// move backward

cam.pos.x -= tank_speed*Fast_Sin(cam.dir.y);

cam.pos.z -= tank_speed*Fast_Cos(cam.dir.y);

} // end if

// rotate

if (keyboard_state[DIK_RIGHT])

{

cam.dir.y+=3;

// add a little turn to object

if ((turning+=2) > 15)

turning=15;

} // end if

if (keyboard_state[DIK_LEFT])

{

cam.dir.y-=3;

// add a little turn to object

if ((turning-=2) < -15)

turning=-15;

} // end if

else // center heading again

{

if (turning > 0)

turning-=1;

else
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if (turning < 0)

turning+=1;

} // end else

// generate camera matrix

Build_CAM4DV1_Matrix_Euler(&cam, CAM_ROT_SEQ_ZYX);

That’s basically the entire camera code. It’s pretty straightforward. Depending on the keys
being pressed, the camera position is moved along a vector based on its current heading or
y-axis angle, and remember we are in the x-z, so that’s why you see this code to move the
camera:

cam.pos.x += tank_speed*Fast_Sin(cam.dir.y);

cam.pos.z += tank_speed*Fast_Cos(cam.dir.y);

Additionally, rotation of the camera is nothing more than updating the cam.dir.y variable
because it’s used by the camera construction call at the end of the code listing. Now the
interesting thing is the variable turning and how it’s used. If you play with the demo,
you’ll see a tank copy in front of the view screen. This of course represents you, but when
you turn right or left, the tank model slowly turns and then turns back to straight when
you let off the arrow keys. This is achieved by using the variable turning to track the state
of the turn in a sense. When the player turns, I let the angle accumulate in the direction
of the turn up to some value (15 degrees, in this case) and then it tops out. When the
player stops turning, the tank centers itself again. This is a very cool effect used in many
racing-type games with a third-person perspective and it takes only a few lines of code. Of
course, in a real physics-based simulation, the physics model would do this, but for our
purposes, it works fine at this point.

Generating the Game Arena
The game arena is composed of a number of static objects. These objects are copied from
master objects and placed at static positions in the game arena. The code for each object
basically performs a simple repositioning of the master object and then transforms the
master and inserts it into the master polygon rendering list (a cull operation is attempted).
The beauty of the system is that the originals are not destroyed. Because only the trans-
formed vertices are used, the original models stay intact. I have two copies of vertices in
the object for just such occasions. Here’s the code that for example inserts all the tower
models into the world:

// insert the towers in the world

for (index = 0; index < NUM_TOWERS; index++)

{

// reset the object (this only matters for backface and object removal)

Reset_OBJECT4DV1(&obj_tower);
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// set position of tower

obj_tower.world_pos.x = towers[index].x;

obj_tower.world_pos.y = towers[index].y;

obj_tower.world_pos.z = towers[index].z;

// attempt to cull object  

if (!Cull_OBJECT4DV1(&obj_tower, &cam, CULL_OBJECT_XYZ_PLANES))

{

// if we get here then the object is visible at this world position

// so we can insert it into the rendering list

// perform local/model to world transform

Model_To_World_OBJECT4DV1(&obj_tower);

// insert the object into render list

Insert_OBJECT4DV1_RENDERLIST4DV1(&rend_list, &obj_tower);

} // end if

} // end for

Almost too easy, huh? Lastly, let’s look at the player insertion model.

Rendering the Player’s Tank Model
The engine we have so far isn’t very advanced. Although we have a camera, it’s not like we
can attach the camera to an object and have it tag along. We must do this manually. Alas,
in this demo, the position of the camera is known, so what I do is based on the heading of
the camera. I draw a vector and then move the tank model out ahead a good distance (400
units approximately) and drop it down from the camera height a little. Then I rotate the
tank model (which is a separate model from the one used by the object placer) based on
the current viewing angle, transform the tank based on this information, place it in world
coordinates and presto—we have a tank that looks like it’s us!

The code that does all this magic is rather short:

// insert the player into the world

// reset the object (this only matters for backface and object removal)

Reset_OBJECT4DV1(&obj_player);

// set position of tank

obj_player.world_pos.x = cam.pos.x+400*Fast_Sin(cam.dir.y);

obj_player.world_pos.y = cam.pos.y-50;

obj_player.world_pos.z = cam.pos.z+400*Fast_Cos(cam.dir.y);

// generate rotation matrix around y axis

Build_XYZ_Rotation_MATRIX4X4(0, cam.dir.y+turning, 0, &mrot);
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// rotate the local coords of the object

Transform_OBJECT4DV1(&obj_player, &mrot, TRANSFORM_LOCAL_TO_TRANS,1);

// perform world transform

Model_To_World_OBJECT4DV1(&obj_player, TRANSFORM_TRANS_ONLY);

// insert the object into render list

Insert_OBJECT4DV1_RENDERLIST4DV1(&rend_list, &obj_player);

Notice the bolded code. That’s where I’ve added in the slight turning angle along with the
current heading to create the effect of a turn.

NOTE

Although I’ve been using 16-bit graphics for most of the demos, the sad truth is that when we
do more serious shaded and textured graphics, it’s going to be very hard to keep a decent fill
rate with software rasterization and 16-bit graphics. So, we’ll do a lot of work with 8-bit modes
to get more speed and to see the types of optimizations that can be used with paletted color
modes.

Summary
Once again, I think I have worn the fingerprints off my fingers, but it’s worth it, baby!
There’s so much to learn. Sure, you can learn just what you need to make a 3D engine, but
I like knowing all the details and all the different ways to do things—I hope you agree.
Anyway, we covered a lot of ground in this chapter, such as 3D data structures, loading
objects off disk, the local-to-world transform, the world-to-camera transform, the camera-
to-perspective transform, the screen transform, object culling, back-face removal, when to
use 4D coordinates, why matrices aren’t always the best way to perform transforms,
rendering objects in wireframe, and finally the UVN camera model and a whole lot of
demos! Now, it’s time to make our 3D object a little more realistic with shading and light-
ing. Also, we need to handle 3D clipping because we can’t avoid it too much longer. And
we definitely need a better model loader!
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IN THIS CHAPTER

• Basic Lighting Models for
Computer Graphics

• Lighting and Rasterizing
Triangles

• Shading in the Real World

• Depth Sorting and the
Painter’s Algorithm

• Working with New Model
Formats

• 3D Modeling Tools Review

CHAPTER 8

Basic Lighting and Solid
Modeling

“How’s about now?”

—Tom Cruise, Minority Report

In this chapter, we are going to increase the amount of
realism in a 3D scene by rendering objects as solids rather
than wireframe. This means we have to cover shading and
lighting. Additionally, the concept of back-face culling comes
into play much more than in the wireframe case because we
can no longer see through objects. In this chapter, we’re
going to discuss general lighting and shading and implement
both 8-bit and 16-bit versions of everything. We’re also going
to revamp our little PLG/PLX file loader and support other
formats so that we don’t have to create models ourselves
manually. Finally, this chapter will mix both the theoretical
and the practical, but we won’t leverage much of the theoreti-
cal until later chapters. Nevertheless, it’s nice to start thinking
about it now. Anyhow, here’s the hit list:

• Basic lighting models

• Ambient light

• Diffuse light

• Specular lighting

• Directional lights

• Point lights

• Spotlights
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• Rasterizing triangles

• Bit depth considerations for lighting

• Constant shading

• Flat shading

• Gouraud shading

• Phong shading

• Depth sorting

• Loading models

Basic Lighting Models for Computer Graphics
Lighting is a huge topic in computer graphics; it’s the study of photons and the interac-
tion with matter, more or less. Photons are, of course, pure energy that have both a wave
and particle nature to them. Photons can have position and velocity (the particle aspect),
as well as frequency (the wave aspect). Figure 8.1 depicts a chart of light and the various
frequencies ranges of infrared, visible light, ultraviolet, X-rays, and so forth. Of course, all
light travels at the speed of light (that’s a bit redundant), which is referred to as c and is,
more or less equal to

186,300 miles/sec or 3.0 x 108 meters/sec

And the relationship between frequency (measured in hertz) of light F, and the wave
length ? (measured in meters) is

FORMULA 8.1 The Relationship Between Frequency and Wave Length

F = c / ?

For example, bright red, which is about 700 nm (nanometers 10-9 meters), has a 
frequency of

F = 3.0x108 m/s / 700 x 10-9 m = 4.286 x 1014 Hz

You might think that light speed is fast, but it’s terribly slow if you’re trying to get some-
where in space. However, it is possible to go faster than the speed of light; one simply
cannot accelerate to the speed of light because it would take infinite energy, but that’s
another story…
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FIGURE 8.1 The electromagnetic light spectrum.

So, the color of light has to do with the frequency or wavelength. That’s reasonable, but
what about the intensity of light? Well, intensity has to do with the photons per second.
Brightness is just the number of photons per second striking a surface, so the total energy
per second a surface S absorbs is

Energy/sec = e
photon

(?) * photons/sec

Where the energy per photon is a function of the photon’s frequency.

Of course, most 3D graphics engines don’t rely on the use of real photons or real matter,
but the models we use are getting there. Nearly all 3D rendering packages ray trace, which
is the process of tracing single rays of light or photons from the view point through a
scene, determining where they intersect the geometry of the scene, and then, based on
this, coloring the pixel on the screen. Figure 8.2 illustrates this process with a couple of
simple objects, and Figure 8.3 shows a ray-traced environment (notice the shadows, reflec-
tions, and shiny spots).
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FIGURE 8.2 The physics of ray tracing.
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FIGURE 8.3 A ray-traced scene. 

Additionally, there are techniques that I’m sure you have heard of, such as photon
mapping, radiosity, and others that simulate and model the interactions of energy or
photons in a scene in a more complex manner. The point of these techniques is to create
a scene where the lighting is as close to reality as possible.

Although we’re interested in photo-realistic rendering as much as possible, there are limits
depending on the hardware and software constraints you’re working with. In our case,
because we’re creating a software-based engine, our lighting models can’t be as complex as
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engines that are hardware based. However, that’s the fun: to see how far we can push the
software engine to perform real-time lighting. Based on this, our understanding of lighting
becomes much deeper, which enables us to push hardware much more with techniques
such as pixel and vertex shaders because we know what’s what. So, let’s get down to
details, shall we?

Color Models and Materials
The material that an object is made of determines the way that light will interact with it
when photons strike it. For example, say that white light (composed of all visible frequen-
cies) strikes a surface. The surface will, in general, have a number of properties that deter-
mine the interactions that the light has. Some of the light is reflected from the surface; the
color that’s reflected defines the color of the object; the light that isn’t reflected is
absorbed by the surface. Also, it’s possible that the object isn’t completely opaque and that
some of the light will be transmitted through the object or refracted. Finally, the act of the
photons striking the material may cause it to emit light via fluorescence or phosphores-
cence. Moreover, all of these properties might be wavelength or intensity related. Thus,
modeling the interaction a material has with light can be a big job. Usually, we model
materials with a few parameters such as its reflectance, dispersion, specularity, and emis-
sivity, and so forth.

Moving on to more practical concepts, you know that colors on the screen of a computer
are usually represented in RGB or an indexed format for 8-bit colors. But, for this discus-
sion, let’s focus on RGB formats where each channel is represented by some value such as
0 to 1, or maybe 0 to 255, and so forth. For example, in a 24-bit RGB format, there would
be 8 bits per channel, so pure red would be (255,0,0).

Conversely, in a floating-point format where each channel is represented by values from
0...1, pure red would be (1.0, 0.0, 0.0). Both are the same color. However, the floating-
point format might be easier to work with than the byte-valued format for mathematical
operations. But, on the other hand, the byte-valued format might be faster because the
values can be directly written to the video buffer without conversion from floating point.
In either case, let’s look at a couple of operations we can perform to colors: addition and
modulation.

Color Addition
Given RGB colors C1(r1, g1, b1) and C2(r2, g2, b2), we can add them together like this:

C
sum 

= C1 + C2 = (r1 + r2, g1 + g2, b1 + b2)

However, there’s a problem with this, and that’s overflow. No matter what representation
we use for the colors, if we add two components, where their sum is larger than the
maximum value per channel, we must clamp the results. Alas, if we’re using a (0..255) 8-
bit representation and we added colors C1 and C2, we would need to clamp the output of
each channel as shown here:

Basic Lighting Models for Computer Graphics 747
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C
sum

= C1 + C2 = ( MAX(r1 + r2, 255),

MAX(g1 + g2, 255),

MAX(b1 + b2, 255) )

where MAX(x,y) simply returns the maximum of x,y.

This way we’re guaranteed that the values never exceed 255, which could be disastrous
because the values would overflow and wrap around in most cases, giving completely erro-
neous results.

Color Modulation
The next interesting process is color modulation, which is basically multiplication. Let’s
start with a simple example of scalar multiplication of our first color C1 by the value s:

C
modulated

= s*C1 = (s*r1, s*g1, s*b1)

In this case, s can be any number from 0 to infinity. A scale of 1.0 will leave the color
unchanged, whereas a scale of 2.0 will brighten the color two times. A scale of .1 will
make the color 1/10th as bright and so on. However, we must again be careful of overflow
and clamp the results to 1.0, or 255, or whatever, depending on our final color representa-
tion. As an example of this color scaling by a uniform factor, try DEMOII8_1.CPP|EXE. By
pressing the up and down arrow keys, you’ll scale the brightness of the displayed texture
by modulating the texture pixels. Also, you can change the texture with the right and left
arrow keys. Notice how if you modulate the brightness too much, the texture will saturate
various RGB channels and thus will distort. There’s a way to fix this. During the modula-
tion phase test, if any channel is already at maximum value (255, for example), leave the
pixel alone. Increasing the other channels in this particular pixel will change the color
because the channels will change and their ratios will not remain as they were.

This first form of modulation is really just brightness scaling; the second form of modula-
tion I want to cover is straight RGB multiplication. In this case, we simply multiply two
colors together; that is, color C1 modulates color C2 as shown here:

C
modulated

= C1*C2 = (r1*r2, g1*g2, b1*b2)

Now, color multiplication is a bit tricky. We have to agree on what we mean by multiplica-
tion. For example, if C1 is RGB format (0..1, 0..1, 0..1), of the format that C2 is in is irrele-
vant; the results will not overflow and C1 will basically intensity modulate C2. This is
exactly how light mapping works. A given light texture named LIGHT_TEXTURE[x][y] is
interpreted as light values from (0..1) for each pixel, which is then multiplied against a
color texture COLOR_TEXTURE[x][y]. The results of this are shown in Figure 8.4. There we
see a spotlight texture that represents the light texture we want to modulate the color
texture with (notice that the light texture is monochrome). The results of the modulation
are also shown. The only problem with modulation like this is that the results aren’t
always what you expect, so a more complex modulation pipeline might be needed. For
example, we might want to do something like this:
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FIGURE 8.4 Light modulation in action.

FORMULA 8.2a Pixel Shading with Additive Component as Well as Modulation

Pixel_dest[x,y]
rgb

= pixel_source[x,y]
rgb

* ambient + 

pixel_source[x,y]
rgb

* light_map[x,y]
rgb

FORMULA 8.2b Pixel Shading with Simpler Additive Modulation (looks better and is faster)

Pixel_dest[x,y]
rgb

= pixel_source[x,y]
rgb

+ ambient * 

light_map[x,y]
rgb

NOTE

The notation [x][y] simply means for all x,y of the image, and the subscript rgb means that the
process must be done separately for each channel—red, green, and blue.

The earlier formula basically says that for each pixel in the texture map, we take a percent-
age of it and add that to the texture map modulated by the lighting texture. Figure 8.5
illustrates this process. As you can see, the results are a little brighter than straight modu-
lation. Basically we’re adding in the base texture as well as modulating it. The ambient
term is simply a scalar that controls how much of the texture is added to the results, or in
other words, how much of the texture we see in the output. Also, it turns out that
Formula 8.2b looks a lot better in real life; that is, simply adding the light map (with a
scaling factor) to the source map.
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FIGURE 8.5 Additive and multiplicative modulation.

As an example of using light mapping and modulation, try DEMOII8_2.CPP|EXE (it uses the
first) and DEMOII8_2b.CPP|EXE (it uses the second formula). The demos enable you to
modulate a spotlight texture onto a wall texture using each formula. Notice the difference
in the first and second demo. The second demo uses additive colors, so you can see the
green lights, but the first uses modulation. Thus, only if there is green (in this case) in the
base texture are you able to see the colored light. Both of these methods are useful; it just
depends on if you want reality or what looks good. Anyway, use the arrow keys to control
the demos.

Now, because this book is all about speed, we’re already starting to see some of the prob-
lems associated with lighting. Even with simple lighting where we’re taking one texture
and applying a light map (which I’ll explain in much better detail later), there are numer-
ous multiplications, additions, and potential conditional logic to test for overflows, so we
have our work cut out for us. Thus, we need to be aware that we have to use the best
numerical model possible, along with the minimum number of conversions and steps in
the model before we obtain the final pixel value. Moreover, if we’re using an 8-bit mode
that’s palettized, the tricks become ever more complex, but 8-bit modes are faster for
many processes because look up tables can be used.

Alpha Blending
The last thing I want to talk about is alpha blending because it leverages both the additive
and modulation concepts. Alpha blending is the process of adding two or more pixel colors
together to arrive at a destination pixel. The blending part comes into play because
percentages of each source are used to arrive at the final pixel. Figure 8.6 show two source
bitmaps and the alpha-blended results. Alpha blending is used to simulate transparency as
well as other effects such as shadows. The math is rather simple, and works as follows: two
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(or more) sources are blended together by a blending factor (usually referred to as alpha),
and the sum result is written as the destination color value. For example, here’s how you
would alpha blend two sources:
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FIGURE 8.6 Alpha blending in action.

FORMULA 8.3 Basic Two-Source Alpha Blending

Pixel_dest[x][y]
rgb

= alpha    * pixel_source1[x][y]
rgb

+ 

(1-alpha)* pixel_source2[x][y]
rgb

So, if we let alpha = 1, the destination pixels will be an exact copy of pixel_source1[][].
However, if we let alpha = .9, 90% of the destination pixel’s color value will be from
pixel_source1[][], but 10% will be from pixel_source2[][]. It goes without saying that
this process must be performed for each pixel and for each color channel, but the algo-
rithm is quite simple. DEMOII8_3.CPP|EXE illustrates alpha blending; use the right and left
arrow keys to change alpha from 0..1 and see the results of blending the two source
textures together.

Now that you have a little idea about working with colors, let’s talk about types of light.

Ambient Light
Ambient light is the light that’s all around us. It has no source per se, but is the result of all
the sources bouncing off all the objects, which results in an ambient light level. The
ambient lighting term can be modeled simply by an additive ambient term, which is the
product of an ambient reflectivity color of the surface Cs

ambient
and an ambient light inten-

sity I
ambient

. (Note that many texts like to use k for reflectivity, but when we get to model-
ing lights themselves, it’s easier to think of both the surface material reflectivity and the
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light color as colors; thus, the use of C). This term can again be in RGB format or a general
scalar that represents the general monochromatic brightness of the scene at a point, p.
The point is that all polygons in the scene will have this light added to them, regardless of
light sources. Thus, the total light hitting a surface S at a point p with ambient light is

I
totala = Cs

ambient
* I

ambient
.

NOTE

To make the mathematics work out more easily, we’ll assume that reflectivities are in floating-
point RGB format (0..1, 0..1, 0..1) and intensity values are floating-point scalars. Also, notice the
subscript under the intensity I has a bolded letter. It simply represents the type of light we’re
computing the final intensity for; “a” for ambient, in this case.

Diffuse Light
Diffuse light is the light that is scattered off an object due to a light source and the inher-
ent roughness of the surface itself. Diffuse lighting is irrelevant of position of the viewer
and scatters equally in all directions. Figure 8.7 shows a beam of light that hits a surface,
S; the surface will scatter light in all directions, but the amount of light scattered depends
on the angle of the surface relative to the light source. The final light intensity is propor-
tional to the angle of the light vector with the normal to the surface.
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FIGURE 8.7 The geometry of diffuse reflection. 
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FORMULA 8.4 Intensity of Diffuse Lighting as a Function of the Angle ? Between the Surface
Normal and the Incident Light Vector

I ˜ (n . l) = Cos ?

Note: n and l must be unit vectors.

This is true because as the surface becomes parallel to the light source, the amount of
surface area decreases (as ? approaches 90 degrees), so the amount of energy reflected per
square unit is minimized. Conversely, as the surface becomes perpendicular to the direc-
tion of the light (as  ? approaches 0 degrees), the amount of surface area gets larger, light
scattering increases, and the amount of light per square unit increases. Finally, the
maximum occurs when the normal vector n and the light source vector l are perpen-
dicular.

Diffuse reflection is also called Lambertian reflection, and is based on the concept that
surfaces are made of materials that interact with light in different ways. One of those ways
is to scatter some component of the light in all directions due to randomly oriented
microscopic surface detail. In reality, the physics is much more complex. Light may be
scattered more or less depending on frequency, and the angle of scattering may change for
different frequencies. However, for our model, we’ll assume that each surface material has
some diffuse reflectivity color Rs

diffuse
that determines the amount of light that diffusely

scatters from the surface material. Note that Rs
diffuse

is an RGB color, not a scalar, meaning
that it’s quite possible that a surface may only scatter a specific frequency of light. For
example, blue light if Rs

diffuse
= (0,0,1.0), or maybe the surface scatters all colors equally

well and there is no other type of light scattering (specular, for example); thus Rs
diffuse 

=
(1.0, 1.0, 1.0). So, taking the diffuse reflectivity coefficient color C

diffuse
along with the light

intensity I
diffuse

, our final diffuse lighting equation for a single light source is Formula 8.5
Single-source diffuse lighting model

I
totald =   Rs

diffuse
*I

diffuse
* (n . l)

Now taking into consideration the new diffuse term, our lighting model for a single light
source with intensity I

diffuse
looks like this:

FORMULA 8.6 Single-Source Ambient and Diffuse Lighting Model

I
totalad

= Rs
ambient

*I
ambient

+ [Rs
diffuse 

* I
diffuse

* (n . l)]

And for multiple light sources, we need only sum up the contributions of each diffuse
term because the ambient term is the same:

FORMULA 8.7 Ambient and Diffuse Lighting Model for Multiple Sources

n

I
totalad

=  Rs
ambient

*I
ambient 

+ Rs
diffuse 

* ∑ [I(i)
diffuse 

* (n
i
. l

i
)]]

i=1
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NOTE

You might notice that some of this notation is redundant. For example, there’s no need to have
both intensities and reflectivities (especially in the ambient terms); we could just as well multiply
them together and have single constants. However, the previous constructions are designed to
show the independent components rather than optimal representations.

Specular Lighting
The next properties of light we see when looking at objects are the shiny reflections of the
light sources themselves. This type of lighting is called specular. Specular reflections are
caused, for the most part, by large numbers of microfacets on the surface having the same
orientation in a regular way. Specular lighting models try to model this effect, which is
related to the light source, the surface normal, and the position of the viewer in this case.
(Remember that in diffuse lighting the position of the viewer didn’t come into play.)
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FIGURE 8.8 Specular lighting setup.

Figure 8.8 illustrates the setup for specular lighting. In this setup, we have the surface S,
the normal n, the viewer vector v, and the reflection vector r (which is always symmetri-
cal about the normal of the surface). As an experiment, try this: take a shiny object,
maybe a plate or something plastic, and then hold it in front of you and slowly rotate the
object around or move your head until you see the light sources in the room—that’s spec-
ular reflection.

As the light source’s reflection vector, r, and your viewing vector, v, align, you’re basically
seeing a reflection of the light source because the object surface acts like a mirror. The
better the object’s specular reflection coefficient, the sharper the highlights. And as the
angle alpha between the reflection vector r and the viewing vector v tend toward zero,
the reflection increases very rapidly. Similarly, as the angle alpha increases, the specular
reflection decreases rapidly.
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TIP

This model is usually referred to as the Phong illumination model (although most people refer to
Phong shading as a technique that uses the interpolated normals during shading). Thus, the two
different concepts are sometimes confused because they’re related, but different. I think I’m
confused now, too.

Thus, to model this, we need to take into consideration the viewing vector and the reflec-
tion vector, along with a constant that defines the shinyness—that is, the specularity—of
the object’s material we’re trying to model. Common sense tells us that the specular reflec-
tion should increase as the angle between the viewing vector and light reflection vector
decreases, while at the same time, if the normal and the light vector become negative, we
know that the light source can’t possibly light the surface anymore.

So, as usual, we’ll need a reflectivity coefficient, which we’ll call Rs
specular

. Next, we need a
light intensity, I

specular
. Finally, one more variable, which is sometimes referred to as the

specular power or specular exponent, which determines the concentration of the highlights.
We’ll call this variable sp. With all that in mind, here’s a formula that models these prop-
erties for a single light source:

FORMULA 8.8 Specular Lighting Formula for a Single Source

I
totals

= Rs
specular 

* I
specular

* MAX(r . v, 0)sp

Note: The use of the MAX() operator just prevents the value from being less than 0.

TIP

Although I’ve been using the dot product format to write these equations, we can also use the
definition of dot product, which is (u.v) = |u|*|v|*cos a. Then the previous equation can be
written as Rs

specular
*I

specular
*cossp a. Assuming, of course, that r and v are both unit vectors.

As I said, the angle between the light and the normal must be less than 90, so (n.l) > 90.
So, if you like, you can add a Boolean operator [(n.l) > 0 ? 1: 0] to the equation to disable
the specular computation for points on the surface S that face away from the light source:

FORMULA 8.9 Specular Lighting Formula for a Single Source with Test for Light Source

I
totals

= Rs
specular

*I
specular

*MAX(r.v, 0)sp * [(n.l) > 0 ? 1: 0]

Next, let’s see the multiple-source version. As usual, it’s nothing more than iterating
through the light sources:
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FORMULA 8.10 Specular Lighting Formula for Multiple Sources with Test for Light Source

n

I
totals

= Rs
specular

*∑ [I(i)
specular 

*MAX(r
i
.v

i
,0)sp *[(n

i
.l

i
)>0?1:0]

i = 1

Now let’s put together the ambient, diffuse, and specular terms into one big lighting
model:

I
totalads

= I
totala

+ I
totald

+ I
totals

= 

Rs
ambient

*I
ambient 

+ 

n

Rs
diffuse 

* ∑ [I(i)
diffuse 

* (ni . li)] + 

i = 1

n

Rs
specular 

* ∑ [I(i)
specular 

* MAX(ri.vi,0)sp *[(ni.li)>0?1:0]]

i = 1

Emissive Lighting
Emissive lighting is the easiest to implement of all the lighting models, depending on how
you implement it. When you set the emissivity of a surface, you’re dictating how much
light the surface gives off; that is, its self-illumination. Now, if this illumination were
“real” light, you would consider it a light source and add it to the lighting calculations
along with your other light sources through the diffuse and specular equations. But if you
don’t care that it doesn’t emit light for the lighting calculations, you can just use the emis-
sivity of a surface to self-illuminate a surface.

For example, say you have an object such as a beacon in a game world. The beacon might
be made of a material that has only slight ambient and diffuse reflectivity coefficients. So,
you can see the beacon’s general shape as lights move around, but when you turn the
beacon on, it lights up. However, because it’s not really a light, it doesn’t cast light—but it
looks like a light. Figure 8.9 illustrates this: You see a beacon and an object by the beacon,
but even though the beacon is on, notice that the object has no illumination from the
beacon. Implementing emission is trivial:

FORMULA 8.11 Basic Emission

I
totale

= Rs
emission

That is, the color of a pixel due to its own emission is simply Rs
emission

—no need for a light
source. Thus, our final lighting equation with all the bells and whistles is

CHAPTER 8 Basic Lighting and Solid Modeling756

12 0672318350 CH08  05•02•2003  2:45 PM  Page 756



FIGURE 8.9 Emissive/constant lighting that doesn’t cast light.

FORMULA 8.12 The Total Lighting Equation for a Single Pixel Due to Multiple Light Sources

I
totalaeds

= R
sambient

* I
ambient

+ Rs
emission

+ 

n

R
sdiffuse

* ∑ [I(i)
diffuse

* (n
i
. l

i
)] + 

i = 1

n

R
sspecular

* ∑ [I(i)
specular

* MAX(r
i
.v

i
,0)sp *[(n

i
.l

i
)>0?1:0]]

i = 1

One last thing I want to mention is that the light intensities I
ambient

, I
diffuse

, and I
specular

may all
be the same or different. That means you may have some lights that you want to affect
only the diffuse component of the lighting model, some lights you want to affect the
specular, and so forth. Hence, I’ve left the intensities the same. However, in many cases,
the light intensity for the ith light I

i
is the same and used in all the equations; thus, the

equations would simplify to
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I
totalaeds

= Rs
ambient 

* I
ambient 

+ Rs
emission

+ 

n

Rs
diffuse 

* ∑ [I(i) * (n
i
. l

i
)] + 

i = 1

n

Rs
specular 

* ∑ [I(i) * MAX(r
i
.v

i
,0)sp *[(n

i
.l

i
) > 0 ? 1:0]]

i = 1

Ugly, huh? And we have to do that for every pixel and for every light in the scene. That’s
a lot of work, and what’s sad is that we haven’t even talked about lights yet! We’ve talked
about lighting, but not lights. Now we need to talk about the lights themselves, and how
we arrive at the intensity values for each light. Here’s another nightmare.

Types of Lights
Even with the oversimplified lighting models we are using and the low count polygon
meshes the final results are reasonable and can look quite striking. On the other hand,
you have to remember that lighting is usually a per-pixel operation, and even with these
crude lighting models, we still need to perform many, many, many operations per pixel to
light the pixels correctly. And with software, this results in the use of a lot of tricks, so
keep that in mind.

The next things we’re going to talk about are lights themselves. Although you may think
of lights as things in your office or living room shaped like little pears, the mathematical
models are quite different. In most cases, computer models use only three types of lights:

• Directional

• Point

• Spot

Amazingly, the mathematics of each light that I’m about to describe are loosely based on
real physics, so that’s a comfort.

Directional Lights
Directional lights are lights that for all intents and purposes have no position because
they’re so far away (infinitely far away, in fact), and all the light that strikes any surface
from them is parallel (see Figure 8.10). Hence, they’re also referred to as infinite lights.
Directional lights also have the property that the intensity of the light doesn’t diminish as
a function of distance from the light (because the light is already infinitely far away).
However, directional lights can still have intensity and color. In any case, to define a direc-
tional light, all that’s needed is its initial color and intensity. Now, we need to be careful
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with notation here. If you recall, we had a number of reflectivities for the ambient,
diffuse, and specular properties of the surface materials and the lighting models. But,
remember those were the reflectivities of the surface materials themselves—now we’re
talking about the color of the actual lights! So not to confuse anyone, let’s use the nota-
tion that light colors are Cl

xxx
where xxx is the type of light. And the initial intensity of

light is I0
xxx

read as “I zero, sub xxx.” Thus, for a directional light, the intensity is always
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FIGURE 8.10 The properties of infinite lights.

FORMULA 8.13 Intensity of a Directional Light as a Function of Distance (it’s the same!)

I(d)
dir

= I0
dir

* Cl
dir

Notice that as the distance changes, the light intensity doesn’t—that’s why it’s not in the
equation <BG>.

Point Lights
Point lights are modeled as single points in 3D space, as shown in Figure 8.11. Point lights
actually are modeled after real point lights, and thus have falloff based on distance from
the surface, S. The falloff, or attenuation, is usually modeled using three constants: a
constant attenuation factor (k

c
), a linear attenuation factor (k

l
), and a quadratic attenua-

tion factor (k
q
). Taking these attenuation factors into consideration and assuming that the

distance from the light source positioned at point p to a point s on the surface S called d,
the intensity as a function of distance d is
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FIGURE 8.11 The properties of a point light.

FORMULA 8.14 Intensity of a Point Light as a Function of Distance with Constant, Linear,
and Quadratic Attenuation Factors

I0
point

* Cl
point

I(d)
point

= ___________________

k
c
+  k

l
*d + k

q
*d2 

Where d = |p – s|

Now, it might be interesting to see what this function looks like, so let’s run some
numbers through it. The first thing to remember is that all of our lighting equations are
always in terms of RGB. That means each equation is really three equations: one for red,
one for green, and one for blue. However, because the math is the same, we just write one
equation and know what we are talking about. Therefore, without loss of generality (I love
saying that), we can run the math for a single channel or, in other words, for a monochro-
matic system, and see what the curves look like to get an idea of the RGB response. Let’s
do that. First, let’s set I0

point
= 1.0 and Cl

point
= 1.0 so that their product is 1.0, thereby

normalizing our results. Now that we have that, let’s run three different series:
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Series 1: k
c

= 1, k
l
= 0, and k

q
= 0

Series 2: k
c

= 0, k
l
= 1, and k

q
= 0

Series 3: k
c

= 0, k
l
= 0, and k

q
= 1

Figure 8.12 illustrates all the different curves for the various series. As you can see, the
intensity of the light falls off fairly quickly for both the cases where the linear attenuation
factor k

l
= 1, and where the quadratic attenuation factor k

q
= 1. In fact, for the quadratic

case, by a distance of 10 and k
q

= 1, the results are on the order of .01—basically nothing.
Therefore, be careful when setting the attenuation factors. They have a strong effect on
the attenuation. In fact, I suggest simply using the linear factor and setting it to 
(.001 - .0005).
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FIGURE 8.12 Attenuation curves.

Of course, when all the attenuation factors are nonzero, the intensity falls off even more
rapidly. However, in practical usage, I find that the more simplified point light model
works just as well without the quadratic term of
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I0
point

* Cl
point

I(d)
point

= _________________

k
c
+  k

l
*d

Where d = |p – s|

Spotlights
The last type of light source I want to discuss is the spotlight, as shown in Figure 8.13.
Spotlights are extremely computationally expensive (even for hardware), and we’ll defi-
nitely need tricks and simplifications to even begin simulating them in software, but that
aside, let’s take a look at the math. Figure 8.14 depicts the standard spotlight configura-
tion. We see a spotlight at position p, with direction l, striking a surface S at a point s.
Also, note we have a cone that the spotlight is to affect. This cone has two regions: the
inner and the outer. The inner region, defined by ? alpha, is usually referred to as the
umbra, and the outer region (or soft shadow part) defined by ? (phi) is called the 
penumbra.
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FIGURE 8.13 A spotlight illuminating objects.

The intensity of the spotlight is reasonably constant in the umbra, but falls off very
quickly in the transition to the penumbra. Now, to model the falloff based on the umbra
and penumbra, most engines simply use the following algorithm:

Case 1: If the angle between the light source and the surface point s is greater than the
outer cone (that is, the penumbra), don’t light the point.

Case 2: If the angle between the light source and the surface point s is within the inner
cone (the umbra), use 100% intensity for the spotlight, only attenuating based on
distance.
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Case 3: If the angle between the light source and the surface point s is within the outer
(penumbra) and inner (umbra) cones, use a falloff formula in addition to the attenuation
based on distance.
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FIGURE 8.14 The setup for spotlight calculations.

Now, that sounds like a lot of work for a spotlight. The question is, do we really need it?
Can we use a simpler model and get the same effect? The answer is probably, and I’ll show
you one in a moment. But for now, let’s trek through this more complex model, which is
the way Direct3D does it, so it’s good practice.

So, to define our spotlight, we need a position (p), a direction vector (l), and two angles (?
and ?) to define the inner and outer cones, respectively. Also, to make the math easier for
angle comparisons, let’s create two half-angles: ? *= ? /2 and ? *= ? /2. And ,of course, we
need the color of the light Cl

spotlight
and its intensity I0

spotlight
. What a disaster, huh?

Referring to Figure 8.15, we see the geometrical relationship of all the constituent players
for the spotlight model. So, here’s the deal: If the angle theta(?) is ever greater than the
spotlight angle alpha(?), there’s no spotlight at all. However, if theta is within alpha, we
need a spotlight—but the spotlight should be constant in the inner cone, and in the tran-
sition from the inner cone to the outer cone, the light should diminish.
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FIGURE 8.15 A detailed analysis of the math behind the spotlight.

Finally, we need a power factor, concentration, or falloff factor that controls the overall
intensity of the spotlight—let’s call it pf. And last, but not least, because the spotlight is
still a point type light source, we need to take attenuation into consideration over
distance, so we need the attenuation factors Kc, Kl, and Kq once again. Considering that,
here’s the spotlight intensity formula:

Formula 8.15 Intensity of a Spotlight with Umbra Angle Alpha, Power Factor pf, as a Function
of Distance with Constant, Linear, and Quadratic Attenuation Factors for all the Different Cases

Case 1: ? > ? * (outside penumbra, don’t light at all):

I(d)
spotlight

= 0

Case 2: ? < ? * (inside umbra):

I0
spotlight

* Cl
spotlight

I(d)
spotlight

= ___________________

k
c
+  k

l
*d + k

q
*d2 

Where d = |p – s|
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Case 3: ? * < ? < ? * (outside umbra, inside penumbra):

I0
spotlight

* Cl
spotlight

(cos ? – cos ? *)pf

I(d)
spotlight

= ___________________    *  _________________ 

k
c
+  k

l
*d + k

q
*d2 (cos ? * – cos ? *)

Where d = |p – s|, and pf = power factor

If you’re like me, you’re probably saying, “That’s a bit mysterious. The dot product thing I
can understand, but the ratio of cosines (in bold) seems a bit shady,” and I agree. Let’s take
a look at the math and see if it makes sense. As an example, let’s assume that the umbra
angle ? is 40 degrees, the penumbra angle ? is 60 degrees, and that the angle ? is between
the umbra and penumbra in the range of 40/2 < ? < 60/2 or 20 < ? < 30 (remember we
need to use half-angles because ? is a half-angle itself). So, plugging all that into the right-
most side of the lighting formula, we get

(cos ? – cos 30)1.0

I =  _________________

(cos 20 – cos 30)

As you see, I’ve set the power factor to 1.0 to make things easy. Now, here’s the thought
process: The cosine of an angle approaches 1.0 as the angle approaches 0, and the cosine
of an angle approaches 0 as the angle approaches 90 degrees. So, we want this ratio to
approach 1.0 as the angle ? tends toward the inner cone (constant brightness area), and
we want the ratio to approach 0.0 as the angle  ? approaches the outer cone angle. Let’s
take a look at the ratio and see what it does. If we let  ? = the inner cone angle of 20
degrees, we get

(cos 20 – cos 30)1.0

I =  _________________    = 1.0

(cos 20 – cos 30)

Amazingly, that’s exactly what we want! Now, let’s have  ? equal the outer cone angle,
which is where the ratio should immediately turn to 0.0:

(cos 30 – cos 30)1.0

I =  _________________    = 0.0

(cos 20 – cos 30)

Again, it’s correct, so the question is, what does this falloff curve look like in-between?
Take a look at Figure 8.16, which depicts the different response curves for pf = .2, 1.0, and
5.0, with and inner angle of 30 degrees, outer angle of 40 degrees, and theta varying from
30–40 (technically 15–20 because theta is the half angle from the direction vector). In
most cases, a falloff based on a power factor of 1.0 works fine. Table 8.1 illustrates the data
shown in Figure 8.16.
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TABLE 8.1 Response Curve Data for Spotlight Falloff

Power Factor Theta(?) Falloff

0.200000

15 1.000000

16 0.961604

17 0.912672

18 0.845931

19 0.740122

20 0

1.000000

15 1.000000

16 0.822205

17 0.633248

18 0.433187

19 0.222083

20 0.000000

5.000000

15 1.000000

16 0.375752

17 0.101829

18 0.015254

19 0.000540

20 0.000000

Now, the question is, do we need all this? Well, it depends. If you’re rendering offline 3D
environments, yes, you need this. If you’re rendering 3D games in real-time, probably not.
Any model that even remotely models the spotlight will look good enough in a real-time
game. In fact, we have all we need to model a poor man’s spotlight right now. Let’s do
this: Instead of having a constant intensity region in the umbra, and then a falloff in the
penumbra, let’s just start from the middle and falloff. And let’s make the falloff propor-
tional to the angle  ? without any kind of Boolean tests, but with the added feature that
we exponentiate the falloff with our power factor, which in this case is more of a concen-
tration. In any case, here’s the simplified model:

I0
spotlight

* Cl
spotlight

* MAX( (l . s), 0)pf 

I(d)
spotlight

= __________________________________________      

k
c
+ k

l
*d + k

q
*d2 

Where d = |p – s|, and pf = power factor
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FIGURE 8.16 Response curves for intensity modulation term in spotlight calculations.

Lighting Summary
As you can see, there’s a lot to lighting. The thing to remember is that lighting is about
determining the pixel color of each pixel that makes up a polygon. To that end, we derive
models that enable us to define virtual materials with properties such as reflection coeffi-
cients for ambient, diffuse, and specular light. Along with that, we then need virtual lights
that generate the light for our virtual materials to interact with. These lights may be as
simple as ambient lights that are everywhere, or as complex as spotlights.

At this point, our engine has absolutely no support for materials or lights, so that’s some-
thing we need to add, and we will, but first things first. Now that you have an idea about
materials and lighting, I want you to think about it, and while you’re doing that, let’s fill
in our wireframe polygons with solid ones because we’re going to need to do that anyway
when we light them properly.

NOTE

All the software, structures, and so forth from this chapter can be found in T3DLIB6.CPP|H.

Lighting and Rasterizing Triangles
In Chapter 8, “Vector Rasterization and 2D Transformations” of Tricks of the Windows
Game Programming Gurus, I covered how to rasterize triangles and polygons with a solid
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color. At this point, I’m not going to cover that material again because I’m going to re-
derive it in a much deeper way in this book when we get to texture mapping in Chapter 9,
“Interpolative Shading Techniques and Affine Texture Mapping.” For now, I just want to
give you a brief overview of the problem if you haven’t read the first Tricks. First, we’ve
already agreed that this 3D engine works with triangles. Thus, we don’t need to worry
about quadrilaterals or other more complex polygons. Taking that into consideration,
Figure 8.17 shows a general triangle that we want to rasterize.
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FIGURE 8.17 Triangle setup for rasterization.

Drawing a triangle is much like drawing a line: You must trace out the pixels of the left
and right edges to be drawn and then fill the triangle line by line. This is shown in Figure
8.17. As you can see, after the slope of each edge is computed, you can simply move down
each scan line, adjust the x-endpoints (xs and xe) based on the slope (or, more accurately,
1/slope), and then draw a connecting line.

You don’t need to use Bresenham’s algorithm because you aren’t interested in drawing a
line. You’re only interested in seeing where the line intersects the pixel centers at each
vertical integer interval. Here’s the algorithm assuming that the bottom of the triangle is
flat:

Step 1: First, compute the ratio dx/dy for the left side and the right side. Basically, this is
1/slope. You need it because you’re going to use a vertically oriented approach. Thus, you
want to know the change in x for each y, which is simply dx/dy or 1/M. Call these values
dxy_left and dxy_right for the left and right side, respectively.

Step 2: Starting at the topmost vertex (x0,y0), set xs = xe = x0 and y = y0.

Step 3: Add dxy_left to xs and dxy_right to xe. This will trace the endpoints to fill.

Step 4: Draw a line from (xs,y) to (xe,y).

Step 5: Go back to step 3 until the height of the triangle from the top to the bottom has
been rasterized.
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Of course, the initial conditions and boundary conditions for the algorithm take a little
thought to get right, but that’s all there is to it, more or less—fairly simple.

Let’s implement the flat-bottom triangle rasterizer based on floating-point because at this
point in the game (Pentium 4+), computers are fast enough for the most part. First, let’s
label the triangle as shown in Figure 8.17. Here’s the algorithm:

// compute deltas

float dxy_left  = (x2-x0)/(y2-y0);

float dxy_right = (x1-x0)/(y1-y0);

// set starting and ending points for edge trace

float xs = x0;

float xe = x0;

// draw each scanline

for (int y=y0; y <= y1; y++)

{

// draw a line from xs to xe at y in color c

Draw_Line((int)xs, (int)xe, y, c);

// move down one scanline

xs+=dxy_left;

xe+=dxy_right;

} // end for y

Now, let’s talk about some of the details of the algorithm and what’s missing. First off, the
algorithm truncates the endpoints of each scanline. This is probably a bad thing because
we’re throwing away information. A better approach is to round the value of each
endpoint by adding 0.5 before converting to integers. Another problem has to do with the
initial conditions. On the first iteration, the algorithm draws a line that’s a single pixel
wide. This works, but it’s definitely a place for optimization.

Now, let’s see if you can write the algorithm for a flat-top triangle based on what you
know. All you need to do is relabel the vertices so that p0 and p1 are the top-most
vertices and p2 is the bottom, and then change the algorithm’s initial conditions slightly
so that the left and right interpolants are correctly computed. Here are the changes:

// compute deltas

float dxy_left  = (x2-x0)/(y2-y0);

float dxy_right = (x2-x1)/(y2-y1);

// set starting and ending points for edge trace

float xs = x0;

float xe = x1;
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// draw each scanline

for (int y=y0; y <= y2; y++)

{

// draw a line from xs to xe at y in color c

Draw_Line((int)(xs+0.5), (int)(xe+0.5), y, c);

// move down one scanline

xs+=dxy_left;

xe+=dxy_right;

} // end for y
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Any triangle can be broken up into one of four types.
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FIGURE 8.18 The various triangle rasterization cases.

At this point, you have a triangle rasterizer that can draw both flat-top and flat-bottom
triangles. With this, you write a general rasterizer that decomposes triangles not in this
format into two triangles and then makes calls to each individual triangle rasterization
case, as shown in Figure 8.18. This simple triangle rasterizing function is already in our
library in a number of forms, and the various prototypes are shown in the following code:

// 8-bit version of rasterizer

void Draw_Triangle_2D(int x1,int y1, // vertex 1

int x2,int y2, // vertex 2

int x3,int y3, // vertex 3

int color,     // color index of poly

UCHAR *dest_buffer, // dest buffer

int mempitch); // pitch of buffer
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// 8-bit version of rasterizer based on fixed point math

void Draw_TriangleFP_2D(int x1,int y1, // vertex 1

int x2,int y2, // vertex 2

int x3,int y3, // vertex 3

int color,     // color index of poly

UCHAR *dest_buffer, // dest buffer

int mempitch); // pitch of buffer

// 16-bit version of rasterizer

void Draw_Triangle_2D16(int x1,int y1, // vertex 1

int x2,int y2, // vertex 2

int x3,int y3, // vertex 3

int color,   // RGB color of poly

UCHAR *dest_buffer, // dest buffer

int mempitch); // pitch of buffer

These can all be found in T3DLIB1.CPP|H. Now, in this chapter, we’re working on
T3DLIB6.CPP|H, so anything we add, we’ll do there. For example, we could add a fixed-
point 16-bit version of the rasterizer, but I doubt we will because we don’t need to break
any speed limits yet, not that fixed-point is any faster than floating-point these days (but
you never know).

Anyway, now that we have a tool to draw triangles that are solid, let’s add this functional-
ity to our 3D engine. All we need to do is take the functions that draw wireframe objects
and render lists, change the code to make the call to the triangle render functions, and
we’re done! Let’s do exactly that. First, here’s a complete list of all the new functions I’ve
written to draw solid objects and render lists (you should be familiar with the parameters):

// draw a solid 8-bit object

void Draw_OBJECT4DV1_Solid(OBJECT4DV1_PTR obj, 

UCHAR *video_buffer, int lpitch);

// draw a solid 16-bit object

void Draw_OBJECT4DV1_Solid16(OBJECT4DV1_PTR obj, 

UCHAR *video_buffer, int lpitch);

// draw a solid 8-bit render list

void Draw_RENDERLIST4DV1_Solid(RENDERLIST4DV1_PTR rend_list, 

UCHAR *video_buffer, int lpitch);

// draw a solid 16-bit render list

void Draw_RENDERLIST4DV1_Solid16(RENDERLIST4DV1_PTR rend_list, 

UCHAR *video_buffer, int lpitch);
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Let’s start with function that draws an OBJECT4DV1 in 8-bit color. Here’s the code that does
that:

void Draw_OBJECT4DV1_Solid(OBJECT4DV1_PTR obj, 

UCHAR *video_buffer, int lpitch)

{

// this function renders an object to the screen in solid, 

// 8 bit mode, it has no regard at all about hidden surface removal, 

// etc. the function only exists as an easy way to render an object 

// without converting it into polygons, the function assumes all 

// coordinates are screen coordinates, but will perform 2D clipping

// iterate thru the poly list of the object and simply draw

// each polygon

for (int poly=0; poly < obj->num_polys; poly++)

{

// render this polygon if and only if it’s not clipped, not culled,

// active, and visible, note however the concecpt of “backface” is 

// irrelevant in a wire frame engine though

if (!(obj->plist[poly].state & POLY4DV1_STATE_ACTIVE) ||

(obj->plist[poly].state & POLY4DV1_STATE_CLIPPED ) ||

(obj->plist[poly].state & POLY4DV1_STATE_BACKFACE) )

continue; // move onto next poly

// extract vertex indices into master list, remember the polygons are 

// NOT self contained, but based on the vertex list stored in the object

// itself

int vindex_0 = obj->plist[poly].vert[0];

int vindex_1 = obj->plist[poly].vert[1];

int vindex_2 = obj->plist[poly].vert[2];

// draw the triangle

Draw_Triangle_2D(obj->vlist_trans[ vindex_0 ].x, obj->vlist_trans[ vindex_0 ].y,

obj->vlist_trans[ vindex_1 ].x, obj->vlist_trans[ vindex_1 ].y,

obj->vlist_trans[ vindex_2 ].x, obj->vlist_trans[ vindex_2 ].y,

obj->plist[poly].color, video_buffer, lpitch);

} // end for poly

} // end Draw_OBJECT4DV1_Solid

Rather short, huh? As you see, all we needed to do was extract the vertices and use them
to send the actual x,y screen space coordinates for the three vertices that make up the
triangle we want rendered.
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TIP

You might be asking, “What about clipping?” Clipping is still performed in screen space at this
point, other than 3D object culling. Hence, when we send polys down the rendering pipeline,
the screen rasterization function is doing the clipping on a pixel-by-pixel basis, which is fine 
for now.

Next, let’s take a look at version that draws a 16-bit solid render list:

void Draw_RENDERLIST4DV1_Solid16(RENDERLIST4DV1_PTR rend_list, 

UCHAR *video_buffer, int lpitch)

{

// this function “executes” the render list or in other words

// draws all the faces in the list in wire frame 16bit mode

// note there is no need to sort wire frame polygons, but 

// later we will need to, so hidden surfaces stay hidden

// also, we leave it to the function to determine the bitdepth

// and call the correct rasterizer

// at this point, all we have is a list of polygons and it’s time

// to draw them

for (int poly=0; poly < rend_list->num_polys; poly++)

{

// render this polygon if and only if it’s not clipped, not culled,

// active, and visible, note however the concecpt of “backface” is 

// irrelevant in a wire frame engine though

if (!(rend_list->poly_ptrs[poly]->state & POLY4DV1_STATE_ACTIVE) ||

(rend_list->poly_ptrs[poly]->state & POLY4DV1_STATE_CLIPPED ) ||

(rend_list->poly_ptrs[poly]->state & POLY4DV1_STATE_BACKFACE) )

continue; // move onto next poly

// draw the triangle

Draw_Triangle_2D16(rend_list->poly_ptrs[poly]->tvlist[0].x, 

rend_list->poly_ptrs[poly]->tvlist[0].y,

rend_list->poly_ptrs[poly]->tvlist[1].x, 

rend_list->poly_ptrs[poly]->tvlist[1].y,

rend_list->poly_ptrs[poly]->tvlist[2].x, 

rend_list->poly_ptrs[poly]->tvlist[2].y,

rend_list->poly_ptrs[poly]->color, video_buffer, lpitch);

} // end for poly

} // end Draw_RENDERLIST4DV1_Solid16

As you can see, these functions are literally a few lines of code. Now, what we need to do
next is make the connection between lighting and rendering, so that the polygons are
drawn based on the lights and materials in the system.
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Getting Ready for Lighting
Alright, now that we have materials, lights, and the mathematical models for them, let’s
take a look at the new 3D pipeline and see where everything fits (at least in an abstract
way, because we’re going to implement very little in this chapter). Referring to Figure 8.19,
the new pipeline has an added lighting stage. The lighting stage is shown after the back-
face and object removal steps, and thus is performed in world space. However, lighting
can be performed in camera space just as well. The only place lighting can’t be performed
in is perspective or screen space because at this point we’ve lost 3D information and
flattened the universe.
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FIGURE 8.19 The new 3D pipeline with lighting.

The reason I want to direct your attention to the position of the lighting step in the 3D
pipeline is that now it’s really going to start to matter where and when we do things. For
example, the lighting calculations are based on a lot of surface normals, right? Therefore,
it behooves us to perform the lighting calculations on precomputed normals, or to at least
perform lighting when we perform the back-face removal step, or to at least store the
normals during the back-face removal step and then use them during the following light-
ing step.

As you can see, there’s a lot to think about. The bottom line is that we want to write
reasonably optimal code, but do so without losing too much generality or structure; other-
wise, we might as well just program in assembly language!

Before we can actually light the polygons in the system, we need to talk about materials
and lights themselves. There are a number of problems with this. First, the model format
we’re using right now. PLG/PLX format doesn’t have a whole lot of material support (none
in fact). It does have flags for constant, flat, Gouraud, and Phong shading, but there’s
nothing that even remotely describes all the reflectivity constants of materials and so
forth. Additionally, we don’t even have lights in the system, so we need some kind of
support for those, too. Consistent with my philosophy of “keep it simple,” I have no idea
what I’ll be thinking by next chapter, but I do know that the light models we use in
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reality and our materials will be very simplified; otherwise, we’ll all be waiting for the
Pentium 10 to come out! With that in mind, here’s a rough first draft of a possible mater-
ial definition that we can use to apply to surfaces of polygons. Although we may use very
little of it, at least it’s reasonably complete.

Defining Materials
As discussed earlier, materials have a number of properties, such as their reflectivities and
colors. Additionally, we need to abstract materials to take into consideration things such
as the type of shading we want applied, texture maps, and more. Currently, we have flags
in the version 1.0 polygon attribute field that track a number of things:

// attributes of polygons and polygon faces

#define POLY4DV1_ATTR_2SIDED              0x0001

#define POLY4DV1_ATTR_TRANSPARENT         0x0002

#define POLY4DV1_ATTR_8BITCOLOR           0x0004

#define POLY4DV1_ATTR_RGB16               0x0008

#define POLY4DV1_ATTR_RGB24               0x0010

#define POLY4DV1_ATTR_SHADE_MODE_PURE       0x0020

#define POLY4DV1_ATTR_SHADE_MODE_CONSTANT   0x0020 // (alias)

#define POLY4DV1_ATTR_SHADE_MODE_FLAT       0x0040

#define POLY4DV1_ATTR_SHADE_MODE_GOURAUD    0x0080

#define POLY4DV1_ATTR_SHADE_MODE_PHONG      0x0100

#define POLY4DV1_ATTR_SHADE_MODE_FASTPHONG  0x0100 // (alias)

#define POLY4DV1_ATTR_SHADE_MODE_TEXTURE    0x0200 

// states of polygons and faces

#define POLY4DV1_STATE_ACTIVE             0x0001

#define POLY4DV1_STATE_CLIPPED            0x0002

#define POLY4DV1_STATE_BACKFACE           0x0004

Remember those? Well, those are the kinds of things we now want to hand off a bit to
materials. Rather than have this data stored in each separate polygon, we’ll instead have a
number of materials in a system that should be applied to various polygons during render-
ing. Figure 8.20 shows the relationship between materials and polygons with this new
definition. With this model of solids, we can paint an object with a number of different
materials. Then, during rendering, the engine looks up the material based on an ID or
pointer, and uses that material rather than internal information of the polygon—cool,
huh?
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FIGURE 8.20 The relationship between materials and polygons.

So, here’s what I came up with for a first-generation material structure. Of course, we may
change this, and in this chapter we’ll use it minimally, but let’s start thinking along these
lines. Anyway, here are the material definitions:

// defines for materials, follow our polygon attributes as much as possible

#define MATV1_ATTR_2SIDED                 0x0001

#define MATV1_ATTR_TRANSPARENT            0x0002

#define MATV1_ATTR_8BITCOLOR              0x0004

#define MATV1_ATTR_RGB16                  0x0008

#define MATV1_ATTR_RGB24                  0x0010

#define MATV1_ATTR_SHADE_MODE_CONSTANT    0x0020

#define MATV1_ATTR_SHADE_MODE_EMMISIVE    0x0020 // alias

#define MATV1_ATTR_SHADE_MODE_FLAT        0x0040

#define MATV1_ATTR_SHADE_MODE_GOURAUD     0x0080
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#define MATV1_ATTR_SHADE_MODE_FASTPHONG   0x0100

#define MATV1_ATTR_SHADE_MODE_TEXTURE     0x0200

// states of materials

#define MATV1_STATE_ACTIVE                0x0001

// defines for material system

#define MAX_MATERIALS                     256

Now the material struct itself:

// a first version of a “material”

typedef struct MATV1_TYP

{

int state;        // state of material

int id;           // id of this material, index into material array

char name[64];    // name of material

int  attr;        // attributes, the modes for shading, constant, flat, 

// gouraud, fast phong, environment, textured etc.

// and other special flags...

RGBAV1 color;            // color of material

float ka, kd, ks, power; // ambient, diffuse, specular, 

// coefficients, note they are 

// separate and scalars since many 

// modelers use this format

// along with specular power

RGBAV1 ra, rd, rs;       // the reflectivities/colors pre-

// multiplied, to more match our 

// definitions, each is basically

// computed by multiplying the 

// color by the k’s, eg:

// rd = color*kd etc.

char texture_file[80];   // file location of texture

BITMAP texture;          // actual texture map (if any)

} MATV1, *MATV1_PTR;

Nothing too strange there; I usually like to put state, id, name, and attr fields every-
where. But focus your attention on the rest of the fields—notice the color entry. Actually,

Lighting and Rasterizing Triangles 777

8

12 0672318350 CH08  05•02•2003  2:45 PM  Page 777



it’s a union that holds r, g, b, and alpha entries, along with a couple of convenient union
access names/methods:

// RGB+alpha color

typedef struct RGBAV1_TYPE

{

union 

{

int rgba;                    // compressed format

UCHAR rgba_M[4];             // array format

struct {  UCHAR a,b,g,r;  }; // explicit name format

}; // end union

} RGBV1, *RGBV1_PTR;

Also, here’s a helper macro to create an RGBA 32-bit word:

// this builds a 32 bit color value in 8.8.8.a format (8-bit alpha mode)

#define _RGBA32BIT(r,g,b,a) ((a) + ((b) << 8) + ((g) << 16) + (r << 24))

NOTE

We already had a macro _RGB32BIT(a,r,g,b) that creates DirectX-compatible 32-bit words, but
I don’t like alpha up top. I can see some places where having alpha in the lower byte might help,
so we’ll use the format RGBA.

Additionally, the structure contains the reflectivities ka, kd, ks, and power coefficients.
This is due to the fact that many modelers like calling the reflectivities K’s, so I used that
convention. But, in my lighting model derivations, I used R’s because those are easier to
follow mathematically. Moreover, in our derivation, we basically merged the color and
reflectivities together, but in the data structure, they’re separate. But there are copies of
them in ra, rd, and rs, which are pre-multiplied reflectivities more in line with our
model. Bottom line: We may need one, the other, or both, so it’s not going to kill us to
store them in both formats. Here’s an example using the scalars ka, kd, and ks and the
ARGB color to compute our version of ra, rd, and rs (this is from the Caligari trueSpace
object loader, which we’ll see later in the chapter):

// compute material reflectivities in pre-multiplied format to help engine

for (int rgb_index=0; rgb_index < 3; rgb_index++)

{

// ambient reflectivity

materials[material_index+num_materials].ra.rgba_M[rgb_index] = 

( (UCHAR)(materials[material_index + num_materials].ka * 

(float)materials[material_index +        

num_materials].color.rgba_M[rgb_index] + 0.5) );
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// diffuse reflectivity

materials[material_index+num_materials].rd.rgba_M[rgb_index] = 

( (UCHAR)(materials[material_index + num_materials].kd * 

(float)materials[material_index +        

num_materials].color.rgba_M[rgb_index] + 0.5) );

// specular reflectivity

materials[material_index+num_materials].rs.rgba_M[rgb_index] = 

( (UCHAR)(materials[material_index + num_materials].ks * 

(float)materials[material_index +        

num_materials].color.rgba_M[rgb_index] + 0.5) );

} // end for rgb_index

Finally, there’s support for a texture map and its name. That should about do it.

Okay, now that we have a material data structure, we need a global material library to
store them in. So, here it is:

MATV1 materials[MAX_MATERIALS]; // materials in system

int num_materials;              // current number of materials

Very simple: just create a new material, insert it in the library, and then apply it to poly-
gons! Of course, the problem is making the polygons and the engine do something with
the material, but we’ll get to that later. But let’s at least write a function that initializes the
material library to a known state:

int Reset_Materials_MATV1(void)

{

// this function resets all the materials

static int first_time = 1;

// if this is the first time then zero EVERYTHING out

if (first_time)

{

memset(materials, 0, MAX_MATERIALS*sizeof(MATV1));

first_time = 0;

} // end if

// scan thru materials and release all textures, if any?

for (int curr_matt = 0; curr_matt < MAX_MATERIALS; curr_matt++)

{

// regardless if the material is active check to see if there is a 

// dangling texture map
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Destroy_Bitmap(&materials[curr_matt].texture);

// now it’s safe to zero memory out

memset(&materials[curr_matt], 0, sizeof(MATV1));

} // end if

return(1);

} // end Reset_Materials_MATV1

To reset the material library array, simply call the function:

Reset_Materials_MATV1();

and you’re all good. Next, let’s look at an example of manually setting up a material
because I’m still not sure if we’re even going to think about a helper function until we
really put materials to use and have a model format that supports them. In any case, say
we want a material that reflects 100% of both ambient and diffuse light, has a color of
pure blue, uses flat shading only, and no texture:

// load material into slot 0

MATV1_PTR m = &Materials[0];

// clear out structure

memset(m, sizeof(MATV1);

m->state = MATV1_ACTIVE;   // state of material

m->id = 0;                 // id of this material

strcpy(m->name, “blue mat 1”); // name

m->attr = MATV1_ATTR_2SIDED | MATV1_ATTR_16BIT |            

MATV1_ATTR_FLAT;   // attributes

m->color.rgba = _RGBA32BIT(0,0,255, 255); // set to blue

m->ka    = 1.0;  // set ambient reflectivity to 1.0

m->kd    = 1.0;  // set diffuse reflectivity to 1.0

m->ks    = 1.0;  // set specular reflectivity to 1.0

m->power = 0.0;  // not used, set to 

// these are actual colors in RGBA format, so we need

// to scale the “blue” by the reflectivities and store

// we can do this without code, but let’s do it the long 

// way to see how, but only for the blue channel

m->ra.b = (UCHAR)(m->ka * (float)m->color.b +0.5);      

m->rd.b = (UCHAR)(m->ka * (float)m->color.b +0.5);      

m->rs.rgba = 0; // no specular reflectivity
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Obviously, we’re going to want a helper function(s) to do this, but because we aren’t sure
how we’re going to define materials—that is, manually or by loading objects—let’s hold
off on that a bit. Now it’s time to look at some lights.

Defining Lights
The practical implementation of lights is more or less like getting a root canal without
Novocaine—it’s nasty. Everything seems all rosy until you actually try to do it, and realize
that you don’t have billions of processor cycles to perform trillions of dot products, and
quadrillions of trig functions….

I might be exaggerating a bit, but you get the point. In general, a good lighting engine
would support infinite lights of any type, and the lighting calculations would be
performed on a pixel-by-pixel basis for all the different material properties—that isn’t
going to happen. Even the most advanced 3D accelerators support only a handful of lights
(8–16, in most cases). However, there are ways around this, such as light mapping, and
we’ll get to that. For now, keep in mind that we’re NOT going to be able to do pixel-
perfect lighting, and for the most part we’re going to support only infinite and point
lights. Moreover, all lighting calculations will be performed at triangle vertices only and
then interpolation will be used to smooth lighting over surfaces (Gouraud/Phong
shading).

Now that your dreams of writing a pixel shader in software have been crushed, let’s define
a basic light source structure that can handle the three types of lights we’ve discussed thus
far (even though the spotlight has a photon’s chance in hell of ever seeing the light of
day) <BG>.

Here are the defines for the software lights (version 1.0). Notice that there are two
subtypes for spotlights, so that later we might be able to use a standard and simplified
model:

// defines for light types

#define LIGHTV1_ATTR_AMBIENT      0x0001  // basic ambient light

#define LIGHTV1_ATTR_INFINITE     0x0002  // infinite light source

#define LIGHTV1_ATTR_POINT        0x0004  // point light source

#define LIGHTV1_ATTR_SPOTLIGHT1   0x0008  // spotlight type 1 (simple)

#define LIGHTV1_ATTR_SPOTLIGHT2   0x0010  // spotlight type 2 (complex)

#define LIGHTV1_STATE_ON          1       // light on

#define LIGHTV1_STATE_OFF         0       // light off

#define MAX_LIGHTS                8       // good luck with 1!

Basically, we need to select the type of light and be able to set its state to on or off. Next,
here’s the data structure to store a light:
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// version 1.0 light structure

typedef struct LIGHTV1_TYP

{

int state;          // state of light

int id;             // id of light

int attr;           // type of light, and extra qualifiers

RGBAV1 c_ambient;   // ambient light intensity

RGBAV1 c_diffuse;   // diffuse light intensity

RGBAV1 c_specular;  // specular light intensity

POINT4D  pos;       // position of light

VECTOR4D dir;       // direction of light

float kc, kl, kq;   // attenuation factors

float spot_inner;   // inner angle for spot light

float spot_outer;   // outer angle for spot light

float pf;           // power factor/falloff for spot lights

} LIGHTV1, *LIGHTV1_PTR;

Next is the global light array, which is much like the material array:

LIGHTV1 lights[MAX_LIGHTS];  // lights in system

int num_lights;              // current number of lights

And remember, we may use the materials, the lights, both, neither, or whatever, during
the actual rendering, depending on what we’re doing with the engine. At this early stage,
we’re just trying to create models of things that we’re going to need in the future so that
we don’t do something stupid when we need them. Early planning in 3D engine design is
important because as you’re writing the engine, you can think about how something will
work into it. If you wait until you’re forced to add something, you pay. The best example
of this I can think of is network support. Don’t even think about thinking about adding
network support after the engine is done!

Enough philosophy. Let’s create some lights. Now, unlike materials, lights are something
that I don’t think there’s much to think about. They’re either there or they’re not, and the
engine can decide how much to use them and how far to go, but we can surely make a
helper function to create lights that will work without many modifications. Basically, we
just need to send the type of light, position, direction, and other values, based on what
type of light we’re creating. Also, because we’re going to have so few lights (4–8), I’m
going with the philosophy that we can turn on a particular light in the array, and then
when the lighting stage runs, it simply runs through the (4–8) lights and lights that are on
will be processed. Cool? Coool! First, let’s start with a housekeeping function that initial-
izes all the lights and turns them off:
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int Reset_Lights_LIGHTV1(void)

{

// this function simply resets all lights in the system

static int first_time = 1;

memset(lights, 0, MAX_LIGHTS*sizeof(LIGHTV1));

// reset number of lights

num_lights = 0;

// reset first time

first_time = 0;

// return success

return(1);

} // end Reset_Lights_LIGHTV1

So, we would just make a call to Reset_Lights_LIGHTV1() in the initialization section of
the engine/game. Moving on, here’s the helper function to create a light:

int Init_Light_LIGHTV1(

int           index,      // index of light to create (0..MAX_LIGHTS-1)

int          _state,      // state of light

int          _attr,       // type of light, and extra qualifiers

RGBAV1       _c_ambient,  // ambient light intensity

RGBAV1       _c_diffuse,  // diffuse light intensity

RGBAV1       _c_specular, // specular light intensity

POINT4D_PTR  _pos,        // position of light

VECTOR4D_PTR _dir,        // direction of light

float kc, kl, kq,         // attenuation factors

float        _spot_inner, // inner angle for spot light

float        _spot_outer, // outer angle for spot light

float        _pf)         // power factor/falloff for spot lights

{

// this function initializes a light based on the flags sent in _attr, values that

// aren’t needed are set to 0 by caller

// make sure light is in range 

if (index < 0 || index >= MAX_LIGHTS)

return(0);

// all good, initialize the light (many fields may be dead)

lights[index].state       = _state;      // state of light

lights[index].id          = index;       // id of light

lights[index].attr        = _attr;       // type of light, and extra qualifiers
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lights[index].c_ambient   = _c_ambient;  // ambient light intensity

lights[index].c_diffuse   = _c_diffuse;  // diffuse light intensity

lights[index].c_specular  = _c_specular; // specular light intensity

lights[index].kc  = _kc;         // constant, linear, and quadratic attenuation fac-

tors

lights[index].kl  = _kl;   

lights[index].kq  = _kq;   

if (pos)

VECTOR4D_COPY(&lights[index].pos, _pos;  // position of light

if (dir)

{

VECTOR4D_COPY(&lights[index].dir, _dir;  // direction of light

// normalize it

VECTOR4D_Normalize(&lights[index].dir);

} // end if

lights[index].spot_inner  = _spot_inner; // inner angle for spot light

lights[index].spot_outer  = _spot_outer; // outer angle for spot light

lights[index].pf          = _pf;         // power factor/falloff for spot lights

// return light index as success

return(index);

} // end Create_Light_LIGHTV1

For the most part, the function simply copies the sent parameters into the light structure
after performing a little error checking. After the function completes, it returns the index
of the light it just created (of course, you sent this in, but what the heck). Referring to the
function, let’s create some lights….

Creating an Ambient Light
Every scene is (probably) going to have an ambient light; in fact, our first solid engine is
going to have nothing but ambient light. In any case, here’s how to set up an ambient
light:

ambient_light = Init_Light_LIGHTV1(0,  // use index 0 for ambient lights

LIGHTV1_STATE_ON,                  // turn the light on

LIGHTV1_ATTR_AMBIENT,              // ambient light type

_RGBA32BIT(255,255,255,0), 0, 0,    // pure white light for ambient term only

NULL, NULL,                        // no need for pos or dir

0,0,0,                             // no need for attenuation

0,0,0);                            // spotlight info NA
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Very cool, huh? Once a light is turned on, we can manually toggle it by accessing the state
variable as follows:

Lights[ambient_light].state = LIGHTV1_STATE_OFF;

TIP

We could write helper functions all day long, but I just want to keep things simple; otherwise, I
would program in Java <BG>.

Creating an Infinite Light (Directional Light)
Next, let’s create an infinite diffuse light source similar to the sun. Hence, let’s color it
yellow and point it straight up (technically you might feel more comfortable with the
direction being down, but it’s just a vector and pointing toward the light source makes the
math easier) from the positive y-axis as shown in Figure 8.21 (note that all directions must
be unit vectors).
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FIGURE 8.21 The infinite light setup for the example.
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VECTOR4D sun_dir = {0, -1, 0, 0};

sun_light = Init_Light_LIGHTV1(1,       // use index 1 for sun light

LIGHTV1_STATE_ON,           // turn the light on

LIGHTV1_ATTR_INFINITE,      //  light type

0, RGBA32BIT(255,255,0,0), 0, // pure yellow light for diffuse term only

NULL, &sun_dir, // no need for pos, but dir is (0,-1,0)

0,0,0,          // no need for attenuation

0,0,0);         // spotlight info NA

Creating a Point Light
For a point light, let’s use the sun model, but position it 10,000 units above on the posi-
tive y-axis (because point lights have position). Figure 8.22 illustrates this.

VECTOR4D sun_pos = {0, 10000, 0, 0};

sun_light = Init_Light_LIGHTV1(1,        // use index 1 for sun light

LIGHTV1_STATE_ON,            // turn the light on

LIGHTV1_ATTR_POINT,          //  light type

0, RGBA32BIT(255,255,0,0), 0,// pure yellow light for diffuse term only

&sun_pos, NULL,    // position above on y-axis, no need for direction

0,1,0,             // linear attenuation = 1

0,0,0);            // spotlight info NA

Creating a Spotlight
Finally, let’s create a spotlight, if for nothing else than to help memorize the function call!
Seriously though, as you can see from the math, real-time spotlights based on the full
model are really out of the question. Moreover, we would be able to compute the spotlight
only at vertices because doing it for each pixel would be insane. Thus, to even see the
spotlight, we would need a lot of polygons on the object. That’s not to say we can’t make
a demo of it, but in gameplay, it’s not going to happen—it’s just too slow. But, on the
other hand, there are tricks such as light mapping to create spotlights, and we will cover
them later in the book, so don’t despair.
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FIGURE 8.22 The point light setup for the example.

At any rate, let’s define a spotlight at position p = (1000, 1000, -1000), directed toward the
origin o(0,0,0), v = <-1, -1, 1>, with a 50% intensity of white light RGB = (128,128,128). It
affects both diffuse and specular materials with an inner angle umbra of 30 degrees and an
out angle penumbra of 60 degrees, with a falloff/power factor of 1.0. That’s a mouthful!
Referring to Figure 8.23, here’s the code:

VECTOR4D spot_pos = {1000,1000,-1000, 0};

VECTOR4D spot_dir = {-1, -1, 1,0};

float umbra = 30, penumbra = 60, falloff = 1.0;

int spot_light = Init_Light_LIGHTV1(5, // use index 5 for this light

LIGHTV1_STATE_ON,    // turn the light on

LIGHTV1_SPOTLIGHT1,  //  light type (spotlight 1)

_0, RGBA32BIT(128,128,128,0), 0, // 50% white light for diffuse

term only

&spot_pos, &spot_dir,         // position of spot light

umbra,penumbra,falloff);      // spotlight info
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FIGURE 8.23 The spotlight setup for the example.

Shading in the Real World
We’re almost ready to actually draw something! The funny part is that 50% of everything
we learned in this chapter won’t be utilized until later. But, as I said, materials and light-
ing are the kinds of things you need to know about before you learn them…if that makes
any sense. In any event, I would like to take a moment to discuss practical implementa-
tions and optimizations as they relate to 8/16-bit graphics modes. I’m doing so because 8-
bit modes are going to be three times faster than the 16-bit modes because we don’t have
to deal with the three RGB channels—we deal with only a single brightness or luminance
value. So, let’s talk a little about that.

16-Bit Shading
Shading begins with materials and lights. For the most part, the models that we’ve built
are based upon RGB space. For example, our materials have RGB values for reflectivities,
our lights have RGB colors, and so forth. Thus, in most cases, we can perform the lighting
calculations just as we have outlined in the mathematical descriptions at the beginning of
this chapter. Of course, the final implementation may cheat or use assumptions.

For example, we may decide that all lights are white to speed things up. We might also
decide that all objects are only affected by ambient, diffuse, and emissive properties and
leave it at that. However, whatever we do, at some point, we’re going to have to compute
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the final color of a polygon, vertex, or pixel, and that means some math will have to be
performed. But remember: we want to keep the math to a minimum. I can tell you that
doing something on a per-polygon or per-vertex basis isn’t going to kill you, but anything
on a per-pixel basis will.

Next, the question may arise, what format should we use for the math? Why? Well, we’re
using 16-bit RGB mode. That means at some point we need to convert our calculations
into 16-bit RGB mode. Alas, should we perform our lighting calculations knowing this or
perform them in a more general way and simply “eat” the conversion? These are the kinds
of things I want you thinking about. There are no good answers except this one:
whichever method is fastest, use it.

8-Bit Shading
16-bit shading is mathematically easier to track than 8-bit shading. The reason, of course,
is that there’s a reasonable 1:1 mapping of intensities in RGB space to the actual pixels on
the screen. For example, say we have a polygon that has diffuse reflection and ambient
reflection and is pure blue RGB(0,0,255). Now assume that the light intensity turns out to
be 50% or .5 for the active lights, and 20% or .2 for the ambient light level.

There are a couple of ways to think about this. First, let’s talk about the ambient light. If a
material has color blue and the ambient light has color red, you won’t see anything if
we’re working totally in RGB space. The following is the reason why:

Final_pixelrgb = materialrgb*ambientrgb

= (0,0,255)*(1.0,0,0) = (0,0,0)

However, if we use the simplification that all lights are just intensities of pure white, it
simplifies our math a bit. In that case, you would see something.

Final_pixelrgb = materialrgb*ambientrgb

= (0,0,255)*(1.0,1.0,1.0) = (0,0,255)

NOTE

Notice that the ambient light levels have been converted to floats in the range of (0..1) so that
modulation calculations have the same range as the color space. We can easily use (0..255), but
we’ll have to scale after the calculations.

A Robust RGB Model for 8-Bit Modes
Keep that in your head, because our final engine is, for the most part, going to use white
lights to ease calculations. Now, here’s the problem: In either of the brief RGB examples
you saw earlier, the resulting final pixels are in RGB 24-bit format or maybe even in (0..1,
0..1, 0..1) format, which can quickly be converted to RGB 24-bit format. The point is that
we then take the RGB 24-bit value and convert it to 16-bit and write it to the screen.
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However, in 8-bit mode, this means nothing! The screen is not in RGB format, but indexes
into colors—therein lies the problem. So, what’s the solution? How do we perform lighting
in an indexed mode?

The answer is simple. We just need an intermediate step that converts RGB values into
color indices and then writes those values to the screen. But the problem, of course, is that
there can be only 256 colors at once, so when an RGB color is computed, we have to
perform a closest-match scan in the color palette and use that color index as the final
color; this process is shown in Figure 8.24. Basically, say you have a color RGB(10,45,34).
The closest thing to that in the palette might be color index 45, which has the value
(14,48,40)—that’s the value that would be returned. But that would mean a “least-squares”
computation and scan of the entire color palette each time a pixel had to be written—
ouch! Therefore, we need to use lookup tables to perform the math ahead of time. What
we need to do is the following: decide on an RGB space and then create a lookup table
that maps the input RGB vector into an index. The RGB vector itself is used as an index
into the table.
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FIGURE 8.24 Searching for a closest match in the color table.

TIP

When using 8-bit color modes with real-time shading, you must use a color palette that covers a
lot of RGB space and has lots of shades. If you use a palette that leans toward a portion of the
color space, you’re going to get woefully ugly lighting. The palettes I supply in the bitmap files
PALDATAxx.BMP|PAL are good choices and have worked well for me. Of course, all your graphics
must use these colors because there’s only one palette in 8-bit modes.
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Whether we perform our lighting calculations in RGB 8.8.8 mode or in a 16-bit mode
itself (5.5.5 or 5.6.5 format), we surely can’t create a lookup table that maps all 8.8.8 RGB
values into indices—that would take 4 gigabytes, which is a bit excessive <BG>. However,
what we can do is this: create a 16-bit RGB lookup table that maps any RGB value that’s in
16-bit format into an 8-bit index. That will take only 64KB of memory—that I can deal
with! Also, because we may have a 5.6.5 or 5.5.5 format, we need to be able to generate
two possible tables, one for each input format. Now, make sure that you understand this:
Given any 24-bit input RGB value, we’re going to first convert it to 16-bit 5.5.5 or 5.6.5
format. That value is then going to be used as a single binary word as an index into a
color table that’s composed of single-byte entries that are each index values pointing in
the 256-color palette that that has the closest RGB value. This is shown in Figure 8.25.
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FIGURE 8.25 The structure of the indexed RGB color translation lookup table.

With that in mind, what we need is a function that works as follows: We supply it with
the 16-bit format that we want it to generate a color translation table for, an 8-bit source
palette for the translation, and a pointer to the data table it should fill. (We might want to
have multiple palettes and lookups for different regions on the world; otherwise, I would
use a global table in the function.) Here’s the function that just does that:

int RGB_16_8_IndexedRGB_Table_Builder(

int rgb_format,  // format we want to build table for

// 99/100 565

LPPALETTEENTRY src_palette, // source palette

UCHAR *rgblookup)           // lookup table

{

// this function takes as input the rgb format 

// that it should generate the lookup table

// for;  dd_pixel_format = DD_PIXEL_FORMAT565, or DD_PIXEL_FORMAT555
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// notice in 5.5.5 format the input has only 32K possible colors 

// and the high most bit will be disregarded

//thus the look up table will only need to be 32K

// in either case, it’s up to the caller 

// to send in the rgblookup table pre-allocated

// the function doesn’t allocate memory for the caller

// the function uses a simple least squares scan for all possible 

// RGB colors in the 16-bit color space that map to the discrete RGB space

// in the 8-bit palette 

// first check the pointers

if (!src_palette || !rgblookup)

return(-1);

// what is the color depth we are building a table for?

if (rgb_format==DD_PIXEL_FORMAT565)

{

// there are a total of 64k entries, 

// perform a loop and look them up, do the least 

// amount of work, even with a pentium, 

// there are 65536*256 iterations here!

for (int rgbindex = 0; rgbindex < 65536; rgbindex++)

{

int  curr_index  = -1;       // current color index of best match

long curr_error  = INT_MAX;  // distance in color space to 

// nearest match or “error”

for (int color_index = 0; color_index < 256; color_index++)

{

// extract r,g,b from rgbindex

// assuming an encoding of 5.6.5, then scale to 8.8.8 since 

// palette is in that format always

int r = (rgbindex >> 11) << 3;;

int g = ((rgbindex >> 5) & 0x3f) << 2;

int b = (rgbindex & 0x1f) << 3;

// compute distance to color from target

long delta_red   = abs(src_palette[color_index].peRed   - r);

long delta_green = abs(src_palette[color_index].peGreen - g);

long delta_blue  = abs(src_palette[color_index].peBlue  - b);

long error = (delta_red*delta_red) + (delta_green*delta_green) + 

(delta_blue*delta_blue);
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// is this color a better match?

if (error < curr_error)

{ 

curr_index = color_index;

curr_error = error;   

} // end if

} // end for color_index

// best match has been found, enter it into table

rgblookup[rgbindex] = curr_index;             

} // end for rgbindex

} // end if

else 

if (rgb_format==DD_PIXEL_FORMAT555)

{

// there are a total of 32k entries, 

// perform a loop and look them up, do the least 

// amount of work, even with a pentium, 

// there are 32768*256 iterations here!

for (int rgbindex = 0; rgbindex < 32768; rgbindex++)

{

int  curr_index  = -1;      // current color index of best match

long curr_error  = INT_MAX; // distance in color space to 

// nearest match or 

for (int color_index = 0; color_index < 256; color_index++)

{

// extract r,g,b from rgbindex, assuming an encoding of 5.6.5

// then scale to 8.8.8 since 

// palette is in that format always

int r =  (rgbindex >> 10) << 3;;

int g = ((rgbindex >> 5) & 0x1f) << 3;

int b =  (rgbindex & 0x1f) << 3;

// compute distance to color from target

long delta_red   = abs(src_palette[color_index].peRed   - r);

long delta_green = abs(src_palette[color_index].peGreen - g);

long delta_blue  = abs(src_palette[color_index].peBlue  - b);

long error = (delta_red*delta_red) + (delta_green*delta_green) +          

(delta_blue*delta_blue);

Shading in the Real World 793

8

12 0672318350 CH08  05•02•2003  2:45 PM  Page 793



// is this color a better match?

if (error < curr_error)

{ 

curr_index = color_index;

curr_error = error;   

} // end if

} // end for color_index

// best match has been found, enter it into table

rgblookup[rgbindex] = curr_index;             

} // end for rgbindex

} // end if

else

return(-1); // serious problem! unsupported format, 

// what are you doing to me!!!!

// return success

return(1);

} // end RGB_16_8_IndexedRGB_Table_Builder

The function operates just as we outlined. That is, we know that with a 16-bit color, the
possible input range varies from 0–65535. Thus, we simply create a lookup table that
computes the nearest match for all these possibilities. To use the function, you call it after
initializing DirectDraw and loading your 8-bit game palette as follows:

// create storage for look up table

UCHAR rgblookup = (UCHAR *)malloc(65536);  

// use the global bit depth and palette in call

RGB_16_8_IndexedRGB Table_Builder(dd_pixel_format, palette, rgblookuptable);

On return from the function, rgblookup[] would contain the 16-bit to 8-bit translation
table for either 5.6.5 or 5.5.5 mode. So, to use it, we simply perform our lighting calcula-
tions as usual. When they’re complete, we convert the final pixel to 16-bit, and then write
the pixel to the screen as follows:

final_pixel_index = rgblookup[final_pixelrgb16];

And that’s it! Wheewww… Lots of details, huh? Now, let’s take a look at what we gained
here. By using a preprocessing step, we completely turned all the translations into a single
lookup, which is great, but there’s still a single lookup per pixel for 8-bit mode. The ques-
tion is, do we need this? Well, the answer is as follows: You’re never going to get rid of
this step, no matter what. Whenever you perform lighting in 8-bit mode, the results are
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always going to have to be translated to 8-bit indices one way or another. Sure, you can
use tricks. For example, you can create a color palette that has shades of each color and
then the intensity can be used as an index from the base color into the table; but again,
you’re still using an index, in essence. The moral of the story is that if lighting is
performed in RGB space, you’re going to get hit no matter what because the calculations
themselves must be carried out and then translated into an 8-bit index.

The question is; can we create a color model that is more 8-bit oriented in the first place,
and minimize the 16-bit RGB intermediate steps? Of course, let’s take a look at that.

A Simplified Intensity Model for 8-Bit Modes
The part of shading that will kill us in any mode is the calculation of the final RGB value.
However, if we simplify the lighting model so that we aren’t concerned with color in the
lights or the materials, we can use an extremely simplified 8-bit shading model. Here’s
how it works: All polygons have a color in RGB space that’s defined by the palette. Now,
because we know we’re dealing with 8-bit indices and 8.8.8 format in the palette, let’s
forget all the RGB stuff, think out of the box for a moment, and perform the lighting in
the opposite direction. That is, based on the palette we have, compute all 256 possible
intensity values for that color. Then create a table that has 256 rows, one row for each
color in the real palette; each row contains 256 entries each that are the palette entries of
that row’s best matches to 256 intensity values. Figure 8.26 illustrates this.
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The point is, why compute general intensity values? Let’s compute the intensity values
around the colors that we know exist, and then when we perform the lighting step, we’ll
use the color as the index into the row and the intensity as an index in the column of the
table. Again, we’re using a lookup table, but we’ve completely cut out all the intermediate
16-bit RGB steps by forcing an 8-bit model and assuming that intensity values are in the
range of (0..255), which is simple because even if they aren’t, we can always scale them.

Now, if you’re a little confused, listen to this. The first, more robust model uses RGB space
throughout, meaning that the light calculations are performed in RGB space and then a
16-bit RGB desired color is sent to the lookup table for translation. However, we already
know that we aren’t in 16-bit mode, so why the drama? The reason, of course, is that it’s
more generalized. However, if we think of things from the point of view of “what colors
are there in the palette to shade in the first place?” we can simply create a shader transla-
tion table that, for each color in the palette, contains 256 values that represent the inten-
sity modulated versions of that particular color. The reason this works is that we know
that the models in the 8-bit simulation will always be one of the colors in the palette! Of
course, because we’re synthetically searching for 256 shades of each color with a least-
squares match, colors that don’t have a lot of shades are going to look bad, but what the
heck!

I’m going to show you a function shortly that performs the lookup, but the thing to
remember is that we need to write two different shader front ends for 8-bit modes if we
want to use both of these techniques, because one shader will perform all calculations in
RGB space and then, at the last minute, translate to 8-bit indices via a call to rgblookup[]
with the RGB color compressed into an index. However, the new model will use a 2D
lookup table where the first index is the color and the second is the intensity, as follows
rgbintensitylookup[color][intensity].

To write the function that generates the table, we basically need to loop through all the
colors in the palette and then compute all RGB-valued 256 shades of each color. And
here’s the gotcha: When we’re computing the 256 shades of a color, do we assume that
the color is at 100% intensity and then downscale from there? That is, say we’re trying to
compute all intensities of color index 5, which happens to have RGB values (100,40,30).
The problem is that the RGB model isn’t the greatest thing in the world to do this, and
the reason why is that we really need the hue of a color and then create all 256 intensities
of it.

As another example, and to put a finer point on it, say we have the color (100,0,0). That’s
a mid-intensity red, so do we create 256 shades of red assuming that (100,0,0) is the 100%
version of red? Or do we do some math so that we compute a virtual color of (255,0,0)
and then create all the shades of it because that’s what’s more intended by the user and
gives better results for the lighting engine?

These questions are definitely issues, but at this point, I say we use the following conven-
tion: For any color index, we look at the RGB values of this color and then brighten the
color so that we max out one or more of the channels without overflowing the channel.
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We use that color as our “color,” compute the 256 intensities for that color, and then look
those up. This will have the effect of darkening models, but giving them a more uniform
color space. Here’s an example of taking a source color, c, and computing a maximized
intensity color, c*.

Intensity Modulation Algorithm:
Given:

polygon color  c  = RGB(red,green,blue) = RGB(50,20,100)

c* = RGB(red*,green*,blue*)

Step 1 - Compute largest component:

Largest component = blue = 100

Step 2 - Set maximum component to 255, compute ratio:

blue = 100, blue* = 255, ratio = 255/100 = 2.55

Step 3 - Scale all other channels by ratio:

red* = red * ratio = 50 * 2.55 =  127.5

green* = green * ratio = 20 * 2.55 =  51.0

blue = 255

Rounding off, c* = RGB(128, 51, 255), which is the same “color,” but a higher intensity;
that is, the ratios of R:G:B are the same. Now, we can assume that this is the 100% inten-
sity value for the color index we were working with and compute 256 intensity values,
which is very similar to the previous function we wrote. But instead of searching for
general RGB values, we’re going to mathematically generate them and then search for
them. The algorithm works as follows: For each color (after the intensity modulation
phase), we assume that it’s at 100% intensity, and then compute 256 intensity values from
the color down to total 0 intensity for all channels. With each RGB value, we perform the
standard least-squares search in the real color palette, find the nearest match, and write it
to the row of the color index we’re working with. For example, if we had the color 25 =
RGB(255,0,0), we would scan for colors:

ROW25 = [RGB(0,0,0)i
1
, RGB(1,0,0)i

2
, RGB(2,0,0)i

3
, …, RGB(255,0,0)i

256
)]

where each RGB(x,x,x)i means the color index that closely matches RGB(x,x,x).

I hope I didn’t belabor all this 8-bit stuff too much. But it’s subtle and very useful in soft-
ware engines and nonaccelerated handhelds, so I want you to really get a handle on all
the sick and twisted tricks that are used to format the input domain and output range of
the color translations that are performed in a game.

Okay, as promised, here’s the function that creates an intensity table from a given palette.
Note that the bit depth is irrelevant because all calculation are performed in RGB 8.8.8
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space and the results are 8-bit palette indices. Therefore, we need only the input palette
and the storage for the table (which is 64KB—256 rows of 256 intensities, 1 byte per
entry):

int RGB_16_8_Indexed_Intensity_Table_Builder(LPPALETTEENTRY src_palette, 

UCHAR rgbilookup[256][256],  // lookup table

int intensity_normalization=1)

{

// this function takes the source palette to compute 

// the intensity shading table with

// the table will be formatted such that 

// each row is a color index, and each column

// is the shade 0..255 desired, the output is a single byte index

// in either case, it’s up to the caller to send in the 

// rgbilookup table pre-allocated

// 64k buffer byte [256][256]the function doesn’t 

// allocate memory for the caller

// the function builds the table by looping thru each color 

// in the color palette and then

// for each color, it scales the color to maximum intensity 

// without overflow the RGB channels

// and then uses this as the 100% intensity value of the color, 

// then the algorithm computes

// the 256 shades of the color, and then uses the 

// standard least squares scan the find the 

// colors in the palette and stores them in the row of the 

// current color under intensity 

// translation, sounds diabolical huh? 

// Note: if you set intensity normalization to 0

// the maximization step isn’t performed.

int ri,gi,bi;        // initial color 

int rw,gw,bw;        // current working color

float ratio;         // scaling ratio

float dl,dr,db,dg;   // intensity gradients for 256 shades

// first check the pointers

if (!src_palette || !rgbilookup)

return(-1);

// for each color in the palette, compute maximum intensity value then scan

// for 256 shades of it

for (int col_index = 0; col_index < 256; col_index++)

{
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// extract color from palette

ri = src_palette[col_index].peRed;

gi = src_palette[col_index].peGreen;

bi = src_palette[col_index].peBlue;

// find largest channel then max it out and scale other

// channels based on ratio

if (intensity_normalization==1)

{

// red largest?

if (ri >= gi && ri >= bi)

{

// compute scaling ratio

ratio = (float)255/(float)ri;

// max colors out

ri = 255;

gi = (int)((float)gi * ratio + 0.5);

bi = (int)((float)bi * ratio + 0.5);

} // end if

else // green largest?

if (gi >= ri && gi >= bi)

{

// compute scaling ratio

ratio = (float)255/(float)gi;

// max colors out

gi = 255;

ri = (int)((float)ri * ratio + 0.5);

bi = (int)((float)bi * ratio + 0.5);

} // end if

else // blue is largest

{

// compute scaling ratio

ratio = (float)255/(float)bi;

// max colors out

bi = 255;

ri = (int)((float)ri * ratio + 0.5);

gi = (int)((float)gi * ratio + 0.5);

} // end if

} // end if
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// at this point, we need to compute the intensity gradients for this color,

// so we can compute the RGB values for 256 shades of the current color

dl = sqrt(ri*ri + gi*gi + bi*bi)/(float)256;

dr = ri/dl,

db = gi/dl,

dg = bi/dl;

// initialize working color

rw = 0;

gw = 0;

bw = 0;

// at this point rw,gw,bw, is the color that we need to compute 

// the 256 intensities for to 

// enter into the col_index (th) row of the table

for (int intensity_index = 0; intensity_index < 256; intensity_index++)

{

int  curr_index  = -1;        // current color index of best match

long curr_error  = INT_MAX;   // distance in color space to 

// nearest match or “error”

for (int color_index = 0; color_index < 256; color_index++)

{

// compute distance to color from target

long delta_red   = abs(src_palette[color_index].peRed   - rw);

long delta_green = abs(src_palette[color_index].peGreen - gw);

long delta_blue  = abs(src_palette[color_index].peBlue  - bw);

long error = (delta_red*delta_red) + 

(delta_green*delta_green) + 

(delta_blue*delta_blue);

// is this color a better match?

if (error < curr_error)

{ 

curr_index = color_index;

curr_error = error;   

} // end if

} // end for color_index

// best match has been found, enter it into table

rgbilookup[col_index][intensity_index] = curr_index;             

// compute next intensity level 

// (test for overflow, shouldn’t happen, but never know)
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if (rw+=dr > 255) rw=255;

if (gw+=dg > 255) gw=255;

if (bw+=db > 255) bw=255;

} // end for intensity_index

} // end for c_index

// return success

return(1);

} // end RGB_16_8_Indexed_Intensity_Table_Builder

To create the table, you call it in much the same way as the RGB version:

UCHAR rgbilookup[256][256];

RGB_16_8_Indexed_Intensity_Table_Builder(palette, rgbilookup, 1);

To use the table, say that you have a polygon with color index 12. You could care less
what the actual color is, but you want the final color to be color 12 with an intensity of
150 (255 max, of course):

Final_pixel = rgbilookup[12][15];

Simple as that!

NOTE

Setting the last parameter of the function intensity_normalization to 0 simply disables the
maximization step. It takes a color RGB(100,0,0) and computes the 256 shades based on
RGB(100,10,10), rather than our heuristic convention of maxing out the largest channel and
then converting that value to 256 shades—which in this case would be the value RGB(255,25,25)
into 256 shades.

Constant Shading
I don’t know about you, but I’m really tired of talking about shading—I want to do it!
Therefore, we’re going to create both 8- and 16-bit versions of everything to give you the
tools to use 8-bit on slower machines if you need to, and 16-bit on those Pentium 4+s.
Anyway, the first kind of shading we’re going to look at is constant shading. This is the
absolute simplest model and doesn’t take anything into consideration—no ambient light,
no diffuse light, nothing. We just want the polygons to be solid and have a color. Hence,
constant shading doesn’t care about the lighting model whatsoever. We literally just take
the index or RGB value for the color of the polygon and draw it. This is exactly how we’re
going to implement emissive polygons; that is, polygons that give off light. We’re just
going to draw them in whatever color they are defined. Of course, as I previously
described, emissive polygons don’t actually generate light, but they look like they do. If
you really want them to generate light, you’ll have to attach a real light to them.
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In any event, we have everything we need for a constant-shaded demo right now. I’m
going to take the tank demo from Chapter 7 and simply replace the call that draws the
polygons from the wireframe version with the solid version we discussed earlier. Here’s the
old code (16-bit call):

// render the object

Draw_RENDERLIST4DV1_Wire16(&rend_list, back_buffer, back_lpitch);

And now here’s the new call:

// render the object

Draw_RENDERLIST4DV1_Solid16(&rend_list, back_buffer, back_lpitch);

CAUTION

I had to generate new .PLG files for each of the objects in the demo (tank, marker, tower) to
make certain that we have the winding order correct for each polygon and have the one-sided or
two-sided flags correct. This is a must because we’re drawing things solid now, and we want to
make sure that the back-facing polygons are removed and not rendered.
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The results of switching this single call are shown in Figure 8.27. The source and
executable are DEMOII8_4.CPP|EXE (DEMOII8_4_8b.CPP|EXE). Now let’s take a quick look at
the shading support in the PLX/PLG format:

// double sided flag

#define PLX_2SIDED_FLAG              0x1000   // this poly is double sided

#define PLX_1SIDED_FLAG              0x0000   // this poly is single sided

// shading mode of polygon

#define PLX_SHADE_MODE_PURE_FLAG      0x0000  // this poly is a constant color

#define PLX_SHADE_MODE_CONSTANT_FLAG  0x0000  // alias

#define PLX_SHADE_MODE_FLAT_FLAG      0x2000  // this poly uses flat shading

#define PLX_SHADE_MODE_GOURAUD_FLAG   0x4000  // this poly used gouraud shading

#define PLX_SHADE_MODE_PHONG_FLAG     0x6000  // this poly uses phong shading

#define PLX_SHADE_MODE_FASTPHONG_FLAG 0x6000  // this poly uses phong shading

(alias)

The Draw_RENDERLIST4DV1*() functions at this point don’t take the shading model into
consideration. This makes sense because when we wrote them, there wasn’t a model to
model! However, at least the PLG/PLX format does have support to select the different
kinds of shading you desire. In this case, that would be the
PLX_SHADE_MODE_CONSTANT_FLAG flag, but the function doesn’t even look at it, so it’s moot.
However, the code we write in the next chapter will look at it because we’re going to fully
support all these concepts in the lighting model and functions. However, at this point, I
don’t want to rewrite the entire engine because we don’t have time in this chapter, and
we’ve covered so many new ideas that I just want to implement them with what we have
now, and clean it up next chapter.

With that in mind, play around with the demo for a minute and then come back here. I
want to see if you notice something…. If you play with the demo or have been paying
close attention to the book, there is a serious flaw in the renderer at this point: It’s
drawing polygons out of order! In other words, we need to implement some sort of depth
sorting so that polygons are rendered back to front. One such method to fix this is called
the painter’s algorithm. It’s a simple algorithm to implement, and for simple geometry, it
can sort our polygons for us and render them in the correct way. I don’t want to write an
algorithm for it yet because this is an issue of visibility, but we’ll write one by the end of
this chapter just to hold you over before we get into more complex visibility and depth
buffering algorithms. Briefly, the main idea is simple. Given a render list, we simply sort
the polygons on their average z-values from back to front and then render, in that order.
That takes care of most of the visual problems you’re seeing in the demo. The process is
shown in Figure 8.28, but we’ll get to that later. Let’s move on to more advanced lighting.
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FIGURE 8.28 The painter’s algorithm and z-sorting.

Flat Shading
Alright, here’s where we finally get to some real lighting. Flat shading means shading an
entire polygon based on the light that hits a single pixel of it. In other words, we assume
that a polygon is composed of a single material, and because all polys in our engine are
triangles, we know each polygon has the same surface normal. Therefore, we can perform
lighting calculations on a single vertex of each polygon and then shade the polygon based
on those results—this is flat shading or faceted shading. It looks okay for objects that are
by nature made of flat surfaces, but for objects that are curved by nature and approxi-
mated by polygons, it makes them look like objects made of polygons <BG>. Figure 8.29
illustrates this. However, if we use smooth shading such as Gouraud or Phong, then the
shading model makes the flat polygons look as if they are smooth, but more on that later.
For now, let’s figure out a way to implement flat shading.

Let’s see what we have to work with. We have a PLG/PLX file loader, so we can import
simple models in which we can define the type of shading and the color properties (RGB
or color index) of a surface. That’s good, but we really don’t have any functions that
perform lighting, so we need to think about that. Secondly, we need to determine where
in the pipeline we’re going to perform the lighting. As I’ve said, as long as lighting is

CHAPTER 8 Basic Lighting and Solid Modeling804

Polygon 
List

•
•

0

Render
order

1

2

n

z�50

z�10

z�5

A. Before sorting

Polygon 
List

•
•

Render
order

z�50

z�30

z�10

z�30

z�5

B. After sorting

�z

�z

�x

�x
Viewpoint

Viewpoint

Screen display

Totally covered

12 0672318350 CH08  05•02•2003  2:45 PM  Page 804



performed in world or camera coordinates, you’re good to go. Furthermore, the question
arises: Should we have lighting support at the object level, the rendering list level, or
both?
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FIGURE 8.29 Approximating objects with polygons make objects look like they’re made
from polygons!

The first thing we need to look at is the general pipeline and see where we might perform
lighting. As an example, here’s the pipeline from the previous demo more or less with
extraneous code deleted and generalized a bit to see the main flow:

// reset the render list

Reset_RENDERLIST4DV1(&rend_list);

// generate camera matrix

Build_CAM4DV1_Matrix_Euler(&cam, CAM_ROT_SEQ_ZYX);

// reset the object

Reset_OBJECT4DV1(&obj);

// perform world transform

Model_To_World_OBJECT4DV1(&obj, TRANSFORM_TRANS_ONLY);

// attempt to cull object   

Cull_OBJECT4DV1(&obj, &cam, CULL_OBJECT_XYZ_PLANES))
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// insert the object into render list

Insert_OBJECT4DV1_RENDERLIST4DV1(&rend_list, &obj);

// remove backfaces

Remove_Backfaces_RENDERLIST4DV1(&rend_list, &cam);

// apply world to camera transform

World_To_Camera_RENDERLIST4DV1(&rend_list, &cam);

// apply camera to perspective transformation

Camera_To_Perspective_RENDERLIST4DV1(&rend_list, &cam);

// apply screen transform

Perspective_To_Screen_RENDERLIST4DV1(&rend_list, &cam);

// render the object

Draw_RENDERLIST4DV1_Solid16(&rend_list, back_buffer, back_lpitch); 

In this example, a single object, obj, is inserted in the rendering list and that’s it. Along
the way, there are a lot of stops though. First, the engine tries to cull the object
completely; if it passes that test, the object is inserted in the rendering list. Once in the
rendering list, the back-faces are removed, and the world-to-camera, and camera-to-
perspective, and finally the perspective-to-screen transforms are performed. The final
results are rendered with the call to Draw_RENDERLIST4DV1_Solid16().

We can technically perform the lighting step anywhere after the
Model_To_World_OBJECT4DV1() call, but before the
Camera_To_Perspective_RENDERLIST4DV1() call. This is the dilemma. There are a couple
good places to put the lighting code. We can add it as part of the object functions,
meaning that we could create a separate function that lights an object itself and we could
make the call after the object has been culled (so we don’t waste time lighting objects that
aren’t visible). On the other hand, we could add lighting code right into the back-face
removal function. The reason being that we’re already dealing with polygon normals
during back-face removal and those normals are key to performing lighting. However,
merging back-face removal and lighting into one function might be a little ugly to you.
However, we could let the back-face removal save the normal for the next step, which
would be a lighting phase. That’s a possibility. Lots to think about, huh?

There are no correct answers here, only answers that work for your particular situation.
Because this is a teaching guide, let’s write two lighting functions: one that performs light-
ing on objects themselves, and one that performs lighting after back-face removal (on
rendering lists).

For now, we’ll leave out merging back-face removal and lighting because, in the scheme of
things, lighting has so many calculations that one extra normal calculation savings isn’t
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worth the coding until we get into serious optimization. Later, when we cover optimiza-
tion, we will probably do this. For now, though, let’s light only objects and rendering lists
and keep things nice and separate.

NOTE

You might notice that I always prefer to lean toward rendering list operations rather than on
objects themselves. The reason, of course, is that a rendering list is a complete list of geometry to
work on, which seems cleaner than performing lighting on objects one by one.

Now we need to think about details. For example, when we write a lighting module that
lights objects, we need to change the color of each polygon, so do we have space for that?
The same thing goes for rendering lists. Finally, if we were to perform lighting in the back-
face removal function, do we have a place to store the normal to a polygon?

So, let’s begin with the first problem. Assuming that we perform the lighting to an object
that’s already in world space (or we perform the transform ourselves to do this), where are
we going to store the final polygon color? We can’t overwrite the initial color of the
polygon because during the next pass, we would lose the initial state of the polygon. With
that in mind, let’s take a look at the OBJECT4DV1 structure:

// an object based on a vertex list and list of polygons

typedef struct OBJECT4DV1_TYP

{

int  id;           // numeric id of this object

char name[64];     // ASCII name of object just for kicks

int  state;        // state of object

int  attr;         // attributes of object

float avg_radius;  // average radius of object used for collision detection

float max_radius;  // maximum radius of object

POINT4D world_pos;  // position of object in world

VECTOR4D dir;       // rotation angles of object in local

// cords or unit direction vector user defined???

VECTOR4D ux,uy,uz;  // local axes to track full orientation

// this is updated automatically during

// rotation calls

int num_vertices;   // number of vertices of this object

POINT4D vlist_local[OBJECT4DV1_MAX_VERTICES]; // local vertices

POINT4D vlist_trans[OBJECT4DV1_MAX_VERTICES]; // transformed vertices

int num_polys;        // number of polygons in object mesh

POLY4DV1 plist[OBJECT4DV1_MAX_POLYS];  // array of polygons

} OBJECT4DV1, *OBJECT4DV1_PTR;
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The actual polygons are stored in plist[], which is an array of the following structures:

// a polygon based on a vertex list

typedef struct POLY4DV1_TYP

{

int state;    // state information

int attr;     // physical attributes of polygon

int color;    // color of polygon

POINT4D_PTR vlist; // the vertex list itself

int vert[3];       // the indices into the vertex list

} POLY4DV1, *POLY4DV1_PTR;

Sad to say, we’re out of luck! There is nowhere to store the shaded post-lighting version of
the color. I don’t want to rewrite our engine just yet. I want to go through the exercise of
working the engine and data structures, so in the next chapter, we can create new
versions, based on this information. So, let’s get creative <VBG>.

The color is stored as a 32-bit integer, but only the lower 16-bits contain color information
because the only color models we support are 16/8 bit. Thus, we can store the shaded
color in the upper 16 bits. However, this is a problem because the rendering function itself
uses the lower 16 bits to shade. So what we need to do is slightly change the object inser-
tion code (or rewrite the rendering functions) so that the function assumes we’ve lit the
polygon, stored the lit polygon color in the upper 16 bits, and then used the upper 16 bits
as the color when it’s ripping the polygons from the object and inserting them into the
rendering list. Thus, we’re going to have to (at the very least) write a new insertion func-
tion, which follows:

int Insert_OBJECT4DV1_RENDERLIST4DV2(RENDERLIST4DV1_PTR rend_list, 

OBJECT4DV1_PTR obj,

int insert_local=0,

int lighting_on=0) 

{

// converts the entire object into a face list and then inserts

// the visible, active, non-clipped, non-culled polygons into

// the render list, also note the flag insert_local control 

// whether or not the vlist_local or vlist_trans vertex list

// is used, thus you can insert an object “raw” totally untransformed

// if you set insert_local to 1, default is 0, that is you would

// only insert an object after at least the local to world transform

// the last parameter is used to control if their has been

// a lighting step that has generated a light value stored

// in the upper 16-bits of color, if lighting_on = 1 then

// this value is used to overwrite the base color of the 

// polygon when its sent to the rendering list
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// is this objective inactive or culled or invisible?

if (!(obj->state & OBJECT4DV1_STATE_ACTIVE) ||

(obj->state & OBJECT4DV1_STATE_CULLED) ||

!(obj->state & OBJECT4DV1_STATE_VISIBLE))

return(0); 

// the object is valid, let’s rip it apart polygon by polygon

for (int poly = 0; poly < obj->num_polys; poly++)

{

// acquire polygon

POLY4DV1_PTR curr_poly = &obj->plist[poly];

// first is this polygon even visible?

if (!(curr_poly->state & POLY4DV1_STATE_ACTIVE) ||

(curr_poly->state & POLY4DV1_STATE_CLIPPED ) ||

(curr_poly->state & POLY4DV1_STATE_BACKFACE) )

continue; // move onto next poly

// override vertex list polygon refers to

// the case that you want the local coords used

// first save old pointer

POINT4D_PTR vlist_old = curr_poly->vlist;

if (insert_local)

curr_poly->vlist = obj->vlist_local;

else

curr_poly->vlist = obj->vlist_trans;

// test if we should overwrite color with upper 16-bits

if (lighting_on)

{

// save color for a sec

unsigned int base_color = (unsigned int)curr_poly->color;

curr_poly->color = (int)(base_color >> 16);

} // end if

// now insert this polygon

if (!Insert_POLY4DV1_RENDERLIST4DV1(rend_list, curr_poly))

{

// fix vertex list pointer

curr_poly->vlist = vlist_old;

// the whole object didn’t fit!

return(0);

} // end if
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// test if we should overwrite color with upper 16-bits

if (lighting_on)

{

// fix color upc

curr_poly->color = (int)base_color;

} // end if

// fix vertex list pointer

curr_poly->vlist = vlist_old;

} // end for

// return success

return(1);

} // end Insert_OBJECT4DV1_RENDERLIST4DV2

I’ve bolded the code that performs the save of the base color and shift of the upper 16 bits
into the lower 16 bits. Remember, this will work for both 8/16 bit modes because we could
care less what the value is in the lower 16 bits. We just need to restore it when we’re
inserting the object. If lighting has been performed, we must assume that the upper 16
bits have the lit RGB value or index. In either case, we just shift the upper 16 bits to the
lower 16 bits and we’re done.

Great, so now we’ve dealt with the ability to insert a lit object into the rendering list one
object at a time (we still need the lighting function itself), but we need to address the
other two cases where we potentially perform lighting during back-face removal and after
back-face removal on the rendering list. Well, we have some luck here. First, because we’re
already dealing with a rendering list, we can obliterate the color of each polygon because
the original is always in the objects themselves, so that’s a nice side effect. Therefore, we
can write lighting functions and not worry about the color-overwriting problem.

As an aside, we were thinking about trying to merge the back-face removal and lighting
steps into one function with a new function that does both, but we decided not to do so
at this point to keep the code clean. The question is, can we perform lighting as a separate
step and take advantage of the normal calculated in the back-face removal step? That is, in
the rendering list, is there any place that the normal can be stored for retrieval by a sepa-
rate function? Figure 8.30 illustrates the two pipelines I’m talking about. So, let’s take a
quick look at the version 1.0 of rendering lists:

typedef struct RENDERLIST4DV1_TYP

{

int state; // state of renderlist ???

int attr;  // attributes of renderlist ???

CHAPTER 8 Basic Lighting and Solid Modeling810

12 0672318350 CH08  05•02•2003  2:45 PM  Page 810



// the render list is an array of pointers each pointing to 

// a self contained “renderable” polygon face POLYF4DV1

POLYF4DV1_PTR poly_ptrs[RENDERLIST4DV1_MAX_POLYS];

// additionally to cut down on allocation, de-allocation

// of polygons each frame, here’s where the actual polygon

// faces will be stored

POLYF4DV1 poly_data[RENDERLIST4DV1_MAX_POLYS];

int num_polys; // number of polys in render list

} RENDERLIST4DV1, *RENDERLIST4DV1_PTR;
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FIGURE 8.30 Various lighting integration pipelines.

You’ll notice that the rendering list is composed of polygon faces POLYF4DV1 rather than
simple polygons, and they look like this:

typedef struct POLYF4DV1_TYP

{

int state;    // state information

int attr;     // physical attributes of polygon

int color;    // color of polygon

POINT4D vlist[3];  // the vertices of this triangle

POINT4D tvlist[3]; // the vertices after transformation if needed

POLYF4DV1_TYP *next; // pointer to next polygon in list??

POLYF4DV1_TYP *prev; // pointer to previous polygon in list??

} POLYF4DV1, *POLYF4DV1_PTR;

Unfortunately, this has no place to store a normal; each polygon has storage for the
untransformed and transformed vertices, but that’s about it. So, we’re out of luck! Hence,
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we’ve determined that although it sounded like a good idea to save the normal informa-
tion in the back-face removal function (at the very least, rather than merging back-face
and lighting in the same function), we simply don’t have room unless we get really tricky
and store the normal in the pointers to next and prev, but that’s too much work.

The point I want to make here is that we’ve found that our initial data structures are a
little bit lacking. Of course they are, we didn’t know where we were going!

Flat Shading in 16-bit Mode
Now that we know we’re going to write only an object and rendering list lighting system,
we can begin outlining what kind of lighting we’re going to support. We’ve described a
number of light types, from infinite light sources to spotlights. Additionally, we’ve defined
how to create the lights and the materials. We need the code for both the 16-bit and 8-bit
cases. Let’s start with the 16-bit case. For our first functional lighting model, we’re going
to support only the following lighting model:

• Polygons with the constant/pure shading bit set will pass through the lighting model
without any changes.

• Polygons with the flat shading bit set will be affected by ambient, infinite, point
lights, and spotlights in the light list.

The lighting will work the same whether we’re talking about the object or rendering list
version, so without loss of generality, I’ll talk in generic terms for a moment. (The render-
ing list version doesn’t have to deal with saving the color; it can just overwrite the color
because after the rendering list is rendered, it’s discarded.)

Okay, for each polygon, we need to test the attributes of the polygon. If the polygon has
the POLY4DV1_ATTR_SHADE_MODE_CONSTANT flag set, no lighting will be performed. However,
if the polygon has the POLY4DV1_ATTR_SHADE_MODE_FLAT flag set, we’ll perform lighting on
the polygon. Referring to Figure 8.31, our pseudo code for the lighting engine version 1.0
will look something like this:

Step 1: Compute normal to surface.

Step 2: For each light source in the light list, compute light intensity.

Step 3: Sum results.

Step 4: Write results out to polygon color upper 16 bits.

Of course, the calculations must be performed based on the light models described in the
first part of the chapter. Additionally, this first version of lighting has no concept of mate-
rials, so we’re going to use a default material for all objects such that the color’s them-
selves are the reflectivities. Finally, objects will only reflect ambient and diffuse light.
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FIGURE 8.31 The lighting algorithm.

With all that in mind, here’s a function that performs lighting on an object (it assumes
the object is in world coordinates) based on the lights sent to the function:

int Light_OBJECT4DV1_World16(OBJECT4DV1_PTR obj,  // object to process

CAM4DV1_PTR cam,     // camera position

LIGHTV1_PTR lights,  // light list (might have more than one)

int max_lights)      // maximum lights in list

{

// 16-bit version of function

// function lights an object based on the sent lights and camera. 

// the function supports

// constant/pure shading (emissive), flat shading with ambient, 

// infinite, point lights, and spot lights

// note that this lighting function is rather brute force 

// and simply follows the math, however

// there are some clever integer operations that are used in scale 256 

// rather than going to floating

// point, but why? floating point and ints are the same speed. 

// HOWEVER, the conversion to and from floating

// point can be cycle intensive, so if you can keep your calcs in ints 
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// then you can gain some speed

// also note, type 1 spot lights are simply point lights with direction, 

// the “cone” is more of a function

// of the falloff due to attenuation, but they still look like spot lights

// type 2 spot lights are implemented with the intensity having 

// a dot product relationship with the

// angle from the surface point to the light direction 

// just like in the optimized model, but the pf term

// that is used for a concentration control must be 1,2,3,.... 

// integral and non-fractional

unsigned int r_base, g_base, b_base,  // base color being lit

r_sum,  g_sum,  b_sum,   // sum of lighting process over all lights

shaded_color;            // final color

float dp,     // dot product 

dist,   // distance from light to surface

i,      // general intensities

nl,     // length of normal

atten;  // attenuation computations

// test if the object is culled

if (!(obj->state & OBJECT4DV1_STATE_ACTIVE) ||

(obj->state & OBJECT4DV1_STATE_CULLED) ||

!(obj->state & OBJECT4DV1_STATE_VISIBLE))

return(0); 

// process each poly in mesh

for (int poly=0; poly < obj->num_polys; poly++)

{

// acquire polygon

POLY4DV1_PTR curr_poly = &obj->plist[poly];

// is this polygon valid?

// test this polygon if and only if it’s not clipped, not culled,

// active, and visible. Note we test for backface in the event that

// a previous call might have already determined this, so why work

// harder!

if (!(curr_poly->state & POLY4DV1_STATE_ACTIVE) ||

(curr_poly->state & POLY4DV1_STATE_CLIPPED ) ||

(curr_poly->state & POLY4DV1_STATE_BACKFACE) )

continue; // move onto next poly
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// extract vertex indices into master list, remember the polygons are 

// NOT self contained, but based on the vertex list stored in the object

// itself

int vindex_0 = curr_poly->vert[0];

int vindex_1 = curr_poly->vert[1];

int vindex_2 = curr_poly->vert[2];

// we will use the transformed polygon 

// vertex list since the backface removal

// only makes sense at the world coord stage further of the pipeline 

// test the lighting mode of the polygon (use flat for flat, gouraud))

if (curr_poly->attr & POLY4DV1_ATTR_SHADE_MODE_FLAT || 

curr_poly->attr & POLY4DV1_ATTR_SHADE_MODE_GOURAUD)

{

// step 1: extract the base color out in RGB mode

if (dd_pixel_format == DD_PIXEL_FORMAT565)

{

_RGB565FROM16BIT(curr_poly->color, &r_base, &g_base, &b_base);

// scale to 8 bit 

r_base <<= 3;

g_base <<= 2;

b_base <<= 3;

} // end if

else

{

RGB555FROM16BIT(curr_poly->color, &r_base, &g_base, &b_base);

// scale to 8 bit 

r_base <<= 3;

g_base <<= 3;

b_base <<= 3;

} // end if

// initialize color sum

r_sum  = 0;

g_sum  = 0;

b_sum  = 0;

// loop thru lights

for (int curr_light = 0; curr_light < max_lights; curr_light++)

{

// is this light active

if (!lights[curr_light].state)

continue;

// what kind of light are we dealing with
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if (lights[curr_light].attr & LIGHTV1_ATTR_AMBIENT)

{

// simply multiply each channel against the color of the 

// polygon then divide by 256 to scale back to 0..255

// use a shift in real life!!! >> 8

r_sum+= ((lights[curr_light].c_ambient.r * r_base) / 256);

g_sum+= ((lights[curr_light].c_ambient.g * g_base) / 256);

b_sum+= ((lights[curr_light].c_ambient.b * b_base) / 256);

// there better only be one ambient light!

} // end if 

else if (lights[curr_light].attr & LIGHTV1_ATTR_INFINITE)

{

// infinite lighting, we need the surface normal, 

// and the direction of the light source

// we need to compute the normal of this polygon face, and recall

// that the vertices are in cw order, u=p0->p1, v=p0->p2, n=uxv

VECTOR4D u, v, n;

// build u, v

VECTOR4D_Build(&obj->vlist_trans[ vindex_0 ], 

&obj->vlist_trans[ vindex_1 ], &u);

VECTOR4D_Build(&obj->vlist_trans[ vindex_0 ], 

&obj->vlist_trans[ vindex_2 ], &v);

// compute cross product

VECTOR4D_Cross(&u, &v, &n);

// at this point, we are almost ready, 

// but we have to normalize the normal vector!

// this is a key optimization we can make later

// we can pre-compute the length of all polygon

// normals, so this step can be optimized

// compute length of normal

nl = VECTOR4D_Length_Fast(&n);

// ok, recalling the lighting model for infinite lights

// I(d)dir = I0dir * Cldir

// and for the diffuse model

// Itotald =   Rsdiffuse*Idiffuse * (n . l)

// so we basically need to multiple it all together

// notice the scaling by 128, 

// I want to avoid floating point calculations, not because they 
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// are slower, but the conversion to and from cost cycles

dp = VECTOR4D_Dot(&n, &lights[curr_light].dir);

// only add light if dp > 0

if (dp > 0)

{ 

i = 128*dp/nl; 

r_sum+= (lights[curr_light].c_diffuse.r * r_base * i) / 

(256*128);

g_sum+= (lights[curr_light].c_diffuse.g * g_base * i) / 

(256*128);

b_sum+= (lights[curr_light].c_diffuse.b * b_base * i) / 

(256*128);

} // end if

} // end if infinite light 

else if (lights[curr_light].attr & LIGHTV1_ATTR_POINT)

{

// perform point light computations

// light model for point light is once again:

//              I0point * Clpoint

//  I(d)point = ___________________

//              kc +  kl*d + kq*d2              

//

//  Where d = |p - s|

// thus it’s almost identical to the infinite light, 

// but attenuates as a function

// of distance from the point source to the surface point being lit

// we need to compute the normal of this polygon face, and recall

// that the vertices are in cw order, u=p0->p1, v=p0->p2, n=uxv

VECTOR4D u, v, n, l;

// build u, v

VECTOR4D_Build(&obj->vlist_trans[ vindex_0 ], 

&obj->vlist_trans[ vindex_1 ], &u);

VECTOR4D_Build(&obj->vlist_trans[ vindex_0 ], 

&obj->vlist_trans[ vindex_2 ], &v);

// compute cross product

VECTOR4D_Cross(&u, &v, &n);

// at this point, we are almost ready, 

// but we have to normalize the normal vector!

// this is a key optimization we can make later, 

// we can pre-compute the length of all polygon
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// normals, so this step can be optimized

// compute length of normal

nl = VECTOR4D_Length_Fast(&n);

// compute vector from surface to light

VECTOR4D_Build(&obj->vlist_trans[ vindex_0 ], 

&lights[curr_light].pos, &l);

// compute distance and attenuation

dist = VECTOR4D_Length_Fast(&l);  

// and for the diffuse model

// Itotald =   Rsdiffuse*Idiffuse * (n . l)

// so we basically need to multiple it all together

// notice the scaling by 128

// I want to avoid floating point calculations, 

// not because they are slower

// but the conversion to and from cost cycles

dp = VECTOR4D_Dot(&n, &l);

// only add light if dp > 0

if (dp > 0)

{ 

atten =  (lights[curr_light].kc + lights[curr_light].kl*dist + 

lights[curr_light].kq*dist*dist);    

i = 128*dp / (nl * dist * atten ); 

r_sum += (lights[curr_light].c_diffuse.r * r_base * i) / 

(256*128);

g_sum += (lights[curr_light].c_diffuse.g * g_base * i) / 

(256*128);

b_sum += (lights[curr_light].c_diffuse.b * b_base * i) / 

(256*128);

} // end if

} // end if point

else

if (lights[curr_light].attr & LIGHTV1_ATTR_SPOTLIGHT1)

{

// perform spotlight/point computations simplified model that uses

// point light WITH a direction to simulate a spotlight

// light model for point light is once again:

//              I0point * Clpoint

//  I(d)point = ___________________

CHAPTER 8 Basic Lighting and Solid Modeling818

12 0672318350 CH08  05•02•2003  2:45 PM  Page 818



//              kc +  kl*d + kq*d2              

//

//  Where d = |p - s|

// thus it’s almost identical to the infinite light, 

// but attenuates as a function

// of distance from the point source to the surface point being lit

// we need to compute the normal of this polygon face, and recall

// that the vertices are in cw order, u=p0->p1, v=p0->p2, n=uxv

VECTOR4D u, v, n, l;

// build u, v

VECTOR4D_Build(&obj->vlist_trans[ vindex_0 ], 

&obj->vlist_trans[ vindex_1 ], &u);

VECTOR4D_Build(&obj->vlist_trans[ vindex_0 ], 

&obj->vlist_trans[ vindex_2 ], &v);

// compute cross product (we need -n, so do vxu)

VECTOR4D_Cross(&v, &u, &n);

// at this point, we are almost ready, 

// but we have to normalize the normal vector!

// this is a key optimization we can make later, 

// we can pre-compute the length of all polygon

// normals, so this step can be optimized

// compute length of normal

nl = VECTOR4D_Length_Fast(&n);

// compute vector from surface to light

VECTOR4D_Build(&obj->vlist_trans[ vindex_0 ], 

&lights[curr_light].pos, &l);

// compute distance and attenuation

dist = VECTOR4D_Length_Fast(&l);  

// and for the diffuse model

// Itotald =   Rsdiffuse*Idiffuse * (n . l)

// so we basically need to multiple it all together

// notice the scaling by 128, 

// I want to avoid floating point calculations, not because they 

// are slower, but the conversion to and from cost cycles

// note that I use the direction of the light here 

// rather than a the vector to the light

// thus we are taking orientation into account 
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// which is similar to the spotlight model

dp = VECTOR4D_Dot(&n, &lights[curr_light].dir);

// only add light if dp > 0

if (dp > 0)

{ 

atten =  (lights[curr_light].kc + 

lights[curr_light].kl*dist + 

lights[curr_light].kq*dist*dist);    

i = 128*dp / (nl * atten ); 

r_sum += (lights[curr_light].c_diffuse.r * r_base * i) / 

(256*128);

g_sum += (lights[curr_light].c_diffuse.g * g_base * i) / 

(256*128);

b_sum += (lights[curr_light].c_diffuse.b * b_base * i) / 

(256*128);

} // end if

} // end if spotlight1

else

if (lights[curr_light].attr & LIGHTV1_ATTR_SPOTLIGHT2) 

// simple/complex version

{

// perform spot light computations

// light model for spot light simple version is once again:

//              I0spotlight * Clspotlight * MAX( (l . s), 0)^pf          

// I(d)spotlight = __________________________________________      

//                        kc + kl*d + kq*d2        

// Where d = |p - s|, and pf = power factor

// thus it’s almost identical to the point, 

// but has the extra term in the numerator

// relating the angle between the light source and the point on the 

➥surface

// we need to compute the normal of this polygon face, and recall

// that the vertices are in cw order, u=p0->p1, v=p0->p2, n=uxv

VECTOR4D u, v, n, d, s;

// build u, v

VECTOR4D_Build(&obj->vlist_trans[ vindex_0 ], 

&obj->vlist_trans[ vindex_1 ], &u);

VECTOR4D_Build(&obj->vlist_trans[ vindex_0 ], 

&obj->vlist_trans[ vindex_2 ], &v);
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// compute cross product (v x u, to invert n)

VECTOR4D_Cross(&v, &u, &n);

// at this point, we are almost ready, 

// but we have to normalize the normal vector!

// this is a key optimization we can make later

// we can pre-compute the length of all polygon

// normals, so this step can be optimized

// compute length of normal

nl = VECTOR4D_Length_Fast(&n);

// and for the diffuse model

// Itotald =   Rsdiffuse*Idiffuse * (n . l)

// so we basically need to multiple it all together

// notice the scaling by 128, I want to avoid 

// floating point calculations, not because they 

// are slower, but the conversion to and from cost cycles

dp = VECTOR4D_Dot(&n, &lights[curr_light].dir);

// only add light if dp > 0

if (dp > 0)

{ 

// compute vector from light to surface 

// (different from l which IS the light dir)

VECTOR4D_Build( &lights[curr_light].pos, 

&obj->vlist_trans[ vindex_0 ], &s);

// compute length of s (distance to light source) 

// to normalize s for lighting calc

dist = VECTOR4D_Length_Fast(&s);  

// compute spot light term (s . l)

float dpsl = VECTOR4D_Dot(&s, &lights[curr_light].dir)/dist;

// proceed only if term is positive

if (dpsl > 0) 

{

// compute attenuation

atten = (lights[curr_light].kc + 

lights[curr_light].kl*dist + 

lights[curr_light].kq*dist*dist);    

// for speed reasons, pf exponents that are 

// less that 1.0 are out of the question, and exponents
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// must be integral

float dpsl_exp = dpsl;

// exponentiate for positive integral powers

for (int e_index = 1; 

e_index < (int)lights[curr_light].pf; e_index++)

dpsl_exp*=dpsl;

// now dpsl_exp holds (dpsl)^pf power 

// which is of course (s . l)^pf 

i = 128*dp * dpsl_exp / (nl * atten ); 

r_sum += (lights[curr_light].c_diffuse.r * r_base * i) / 

(256*128);

g_sum += (lights[curr_light].c_diffuse.g * g_base * i) / 

(256*128);

b_sum += (lights[curr_light].c_diffuse.b * b_base * i) / 

(256*128);

} // end if

} // end if

} // end if spot light

} // end for light

// make sure colors aren’t out of range

if (r_sum  > 255) r_sum = 255;

if (g_sum  > 255) g_sum = 255;

if (b_sum  > 255) b_sum = 255;

// write the color

shaded_color = RGB16Bit(r_sum, g_sum, b_sum);

curr_poly->color = (int)((shaded_color << 16) | curr_poly->color);

} // end if

else // assume POLY4DV1_ATTR_SHADE_MODE_CONSTANT

{

// emmisive shading only, copy base color into upper 16-bits

// without any change

curr_poly->color = (int)((curr_poly->color << 16) | curr_poly->color);

} // end else

} // end for poly
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// return success

return(1);

} // end Light_OBJECT4DV1_World16

The lighting function is a straightforward implementation of what we discussed in the
beginning of the chapter. Basically, it begins by determining the pixel format and then
extracts the RGB components of the polygon’s color and converts them to 8-bit each.
Then the lighting loop is entered. If a polygon is constant shaded, the function continues
to the next polygon; otherwise, the lights are used to light the polygon. The algorithm
sums up the contributions of each light source that’s currently active in the light list—
ambient, point, infinite, and it even supports spotlights, but highly optimized/simplified
versions. You’ll notice that, in the constants for lights, we had a few different spotlight
constants. This was to support different spotlight models that were simplified models. In
any case, two spotlight models are supported in the lighting system:

• LIGHTV1_ATTR_SPOTLIGHT1—This spotlight is similar to the point light, except that it
uses the direction vector. That’s all. So, basically, set this up like you would a point
light, but send in a direction vector for the direction of the spotlight. Interestingly,
the attenuation effects seem to simulate the cone falloff well.

• LIGHTV1_ATTR_SPOTLIGHT2—This spotlight is basically the full spotlight model
without an umbra and penumbra defined explicitly. If you recall, we covered two
spotlight models, and one of them used a power factor or concentration factor that
exponentiated the dot product term. This had the effect of controlling the radius of
the spotlight. So, in this case, set the spotlight up as a real spotlight, except that the
umbra and penumbra angles, alpha and phi, are not used—only the pf factor is used.
Additionally, pf must be an integer greater than 1.0. I use an iterative multiplication
for exponentiation because calling exp() is asking for an eternity.

Moving on, whatever light sources there may be in the light database are simply summed
up, and then final RGB values are converted back to 5.6.5 or 5.5.5, depending on the pixel
format. This value is copied into the upper 16 bits of the color field of the polygon where
it’s safe and won’t destroy the real color of the polygon. That’s it!

CAUTION

When performing lighting calculations, many times it’s possible to overflow your RGB channels.
Therefore, make sure that you test for overflows and don’t allow any channel to exceed 255 or
your maximum intensity. Use an inline function to test for this, of course.

Sadly, the function’s so simple, there’s not much to calling it. You just call it with the
object you want lit, the camera (unused, but you might need later), the lights you want
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referenced, and the number of lights in the list. Here’s a typical call. This assumes that the
lights are in a global array called lights, and that three lights are active:

// perform lighting

Light_OBJECT4DV1_World(&obj_marker, &cam, lights, 3);  

After this call, the object will be lit and the colors of the lit polygons will be in the upper
16 bits of each polygon color, which, when inserted via our new
Insert_OBJECT4DV1_RENDERLIST4DV2() function, will work out perfectly.

The function that performs nearly the same logic, but on a rendering list, has the follow-
ing prototype:

int Light_RENDERLIST4DV1_World16(

RENDERLIST4DV1_PTR rend_list,  // rendering list to process

CAM4DV1_PTR cam,     // camera position

LIGHTV1_PTR lights,  // light list (might have more than one)

int max_lights);     // maximum lights in list

Use it the same way as you would the object lighting function, but call it after back-face
removal and while the rendering list is still in world or camera coordinates.

Now for a demonstration of lighting. Figure 8.32 is a screenshot of DEMOII8_5.CPP|EXE in
action. Basically this demo creates an ambient light, point light, infinite light, and spot-
light type 1, and places them in the world. When the demo starts, all the lights will be
enabled and you’ll see the results of all of them as you run the simulation. Additionally,
I’ve set the vertical stabilizers on the tanks to emissive colors (in other words, constant
shading), so they’re like lights that don’t emit light. Refer to Table 8.2 for the demo
controls.

TABLE 8.2 Controls for DEMOII8_5.CPP|EXE

Key Function

A Toggles ambient light source

I Toggles infinite light source

P Toggles point light source

S Toggles spotlight source

W Toggles wireframe/solid mode

B Toggles back-face removal

L Toggles lighting engine

Right arrow Rotates player right

Left arrow Rotates player left

Up arrow Moves player forward

Down arrow Moves player backward

Space bar Turbo

H Toggles Help menu

Esc Exits demo
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FIGURE 8.32 A screenshot of our fully lit engine in action.

TIP

As usual, to compile, just include all the T3DLIB.CPP|H files up to T3DLIB6.CPP|H and, of course,
DEMOII8_5.CPP itself.

The demo is pretty cool. I like watching the lights move around in the world—especially
the point and spotlight sources (they’re colored)! Anyway, have fun, and experiment with
the lights, change their colors, and so forth. Amazingly, this is a software demo of real-
time colored lights in 16-bit mode—not bad!

Flat Shading in 8-bit Mode
Shading in 8-bit mode is challenging for a number of reasons. The first problem being that
there are only 8 bits of color! But the main problem is that, no matter what, we have only
a single palette. No matter what we do to light a surface, in the end, everything will be 8-
bit and from the original palette. With that in mind, there are a couple ways to approach
writing the 8-bit shader. We can approach it generically (as I’ve done) or with more
constraints and simplifications, knowing we’re in 8-bit mode. For example, forcing white
lights and simplifying lights to have only intensities rather than color and so forth. Recall
that we built two color lookup tables (refer back to Figures 8.24–8.26). We would definitely
use the second table that was a collection of colors in rows where each row represented
256 shades of that color. Thus, for very fast color translation, an indexing scheme can be
used of this form:

shaded_color = rgbilookup[color][shade];
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Of course, the color and shade are both 0..255 and the resulting 8-bit index the table
outputs is the nearest match in the REAL color palette, but at least it’s sound.

However, I don’t want to dumb down our lighting system at this point. I have high hopes
that 16-bit lighting will continue to be fast enough, so we aren’t going to optimize for 8-
bit just yet; we’re going to support it, but not natively. The good news is that writing an 8-
bit lighting module takes little more than adding and deleting a few lines of code from
our 16-bit version. The plan of attack is as follows: We don’t need to worry about pixel
formats anymore; we simply look at the color index of the polygon. Based on that index,
we look up the real RGB values of the color from the system palette and then use those
(which are already in 8-bit/channel form) for the lighting calculations. When the lighting
is complete, we simply convert the final RGB values into a 5.6.5 encoded index and use
that index to index into the table created with the call to
RGB_16_8_IndexedRGB_Table_Builder(). If you recall,
RGB_16_8_IndexedRGB_Table_Builder() takes any RGB value as an encoded 16-bit value,
uses it as an actual index, and outputs the nearest 8-bit index match in the table, which
then is used as an input into the real color palette. Very slick, huh? The entire process is
shown in Figure 8.33.
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FIGURE 8.33 The complete 8-bit RGB lighting process.
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I don’t have room to show the function (plus it’s nearly identical), but here’s the proto-
type:

int Light_OBJECT4DV1_World(OBJECT4DV1_PTR obj,  // object to process

CAM4DV1_PTR cam,     // camera position

LIGHTV1_PTR lights,  // light list (might have more than one)

int max_lights);      // maximum lights in list

NOTE

Remember that for 8/16-bit functions, we agreed on the convention that the 16-bit versions
would have a 16 appended to the end of the function name. The function looks the same and
works the same, but has a slightly different name. And, of course, I could have merged the two
functions, but I wanted to keep them separate so that they would be a little faster and smaller.

Here’s the rendering list version of the function. Once again, it works identically to the 16-
bit version:

int Light_RENDERLIST4DV1_World(RENDERLIST4DV1_PTR rend_list,  // rendering list to

process

CAM4DV1_PTR cam,     // camera position

LIGHTV1_PTR lights,  // light list (might have more than one)

int max_lights);      // maximum lights in list

For a demo of the 8-bit lighting system, check out DEMOII8_5_8b.CPP|EXE. It’s identical to
16-bit demo (it uses the same controls) except that it’s 8-bit! Notice that the lighting
doesn’t look too bad compared to the 16-bit version. Figure 8.34 is a screenshot of the
demo running.

However, palettes count here, boys and girls. For this demo, the system uses the default 8-
bit palette from the first Tricks, which is PALDATA2.PAL. PALDATA2.BMP is a blank bitmap
with that bitmap, so you can load and look at the colors for the palette. Amazingly, you
may say, “That looks like a good palette,” but it’s only good for colors that are in the
palette. When you try to find a shade of fuchsia that’s not in the palette, the nearest
neighbor algorithm ends up with light brown or something else horrific, and the lighting
looks bad.

To remedy this, you must use a palette that has a very small color space but a large inten-
sity space. For example, if you’re making a Doom clone, you would pick a palette with a
lot of grays, browns, and such colors, and nothing more, and 8–16 shades of each. That
way, all possible shades of each color are in the palette, so the lookup table doesn’t have
ridiculous entries in it.

Well, that’s it for your first look at solid models and shading. Let’s now see how to
improve the flat shaded models with other shading models for the rasterization phase.
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FIGURE 8.34 A screenshot of the 8-bit version of the lighting demo.

Gouraud Shading Preview
If you’ve been paying attention, we’re thus far supporting only what is called flat shading.
That means we select a single color for an entire polygon, and then shade the polygon
with that same color. However, this makes objects look very faceted.

TIP

Gouraud is the name of a person, so technically, we should always capitalize it. Additionally, it’s
pronounced “gu-row.”

Of course, for objects that are faceted, this is fine. For example, our lighting model works
great on a cube, but bad on the sphere see Figure 8.35. What we need is a way to smooth
the colors over the surface so that surfaces intended to be smooth look that way. Take a
look at Figure 8.36. Here we see the same sphere, but this time it’s Gouraud shaded. Notice
the smoothness. However, a Gouraud-shaded cube is also shown in Figure 8.36. It looks
bad due to the smooth. Therefore, objects that are supposed to be faceted should not be
smoothed with Gouraud shading.

So, how does Gouraud shading work? Referring to Figure 8.37, we compute the color and
intensity at each vertex of each polygon. For polygons that share more than one vertex,
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we average together the normals of the polygons that share that vertex. Then we perform
the lighting calculations as usual and assign the final color to each vertex. Next comes the
interesting part: Instead of using a single color to color the entire polygon in question, we
use the colors at each vertex and interpolate the colors across and down the polygon. This
process is shown in Figure 8.38. The polygon will look pixel-shaded, even though we did
no such thing! Cool, huh?
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FIGURE 8.35 Flat-shaded objects.

FIGURE 8.36 Smooth-shaded objects.

Of course, there’s a downside to this. The shading phase occurs when we rasterize each
polygon. Thus, it’s performed in screen space, so there will be perspective distortion.
Luckily, your eyes can’t see it that well (not like textures at least), so it’s not bad. The
second problem is that we need to perform an interpolation algorithm and that can be
costly during rasterization. However, the interpolation is exactly what we need to do when
we texture map, so we can do all this at the same time.
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FIGURE 8.37 The setup for Gouraud shading.
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FIGURE 8.38 The Gouraud shading interpolation step.

Finally, no one ever said you have to compute the color intensities at each vertex. If you
wish, you can manually assign them, too; that is, manual or preprocessed static lighting—
just a thought. Anyway, before moving on, let’s take a quick look at the math to
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interpolate the shades down a polygon and rasterize it. Referring to Figure 8.38, you see a
flat-bottom triangle with various values marked off. Interpolating the colors is simple: We
simply initialize two colors, one for the left side and one for the right side, and as the
polygon rasterizer is drawing, we consult the current (x,y) position on each edge of the
polygon. Based on that, we compute the intensity of the current scan line based on the
gradient of the intensity as a function of y at both the left and right sides of the triangle.
We then draw the scan line interpolating that value across the scan line and move on.

This should sound very familiar to you—it’s the standard interpolation algorithm for
everything from color to texture maps. Were going to use it extensively in this book. In
the next chapter, we’re going to study this in depth when we study affine texture
mapping, so if you don’t quite get it—you will….

Phong Shading Preview
Gouraud shading is the de facto standard for something like 99% of all graphics accelera-
tors on the market, and it looks great, but it does have the shortcoming of not taking
perspective into consideration. However, Phong shading addresses these issues (sort of)
because it operates by computing the shading at every single pixel. Instead of interpolat-
ing the color values across a polygon in screen space, it interpolates the normal vectors
across the polygon in screen space, and then lights the pixel based on the interpolated
normal. This is shown in Figure 8.39. Phong shading looks slightly more realistic than
Gouraud shading. It really picks up specular effects much better. It’s impossible to have
sharp specular regions with Gouraud shading because the line interpolator can simply
increase or decrease a value from one value to another along a scan line, but a Phong
shaded is pixel shading, so every pixel can change.
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The downside, of course, is that Phong shading can hardly be done in hardware, let alone
in software, so we won’t be implementing it at all in this book. But we will use some tricks
to get Phong-like highlights (that’s the main reason for Phong shading) when we get to
advanced lighting.

Depth Sorting and the Painter’s Algorithm
At this point in the game, your knowledge of 3D is fairly detailed, but one thing we
haven’t discussed very much is visibility and rendering order. The term visibility is thrown
around quite a bit in 3D, but for the most part, it means “can you see the polygon?” But it
also means “did you draw the polygons in the correct order?” The point is that even
though we’re culling objects and removing back-faces, we’re generating a generic list of
polygons and throwing them at the renderer in whatever order they come in. The
renderer has no idea of what order to draw the polygons in! This is definitely an issue, and
we’re going to spend chapters discussing complex algorithms to determine the order, and
figure out ways to cull even more geometry, and so forth. You can see why order is impor-
tant if you play with the demos for more than a couple seconds; you’ll notice objects that
should be drawn behind things are being drawn in front and vice versa—it’s a mess, to say
the least <BG>. Things look fine in wireframe mode, but once you turn the shader
on…yuck!

TIP

Remember, 3D graphics is about not drawing what you can’t see!

What we’re going to do is implement the simplest of rendering algorithms, called the
painter’s algorithm, and then we’ll have something that works, at least for now. We can
continue working with texturing and lighting and not be disturbed by the visual artifact
caused by out-of-order rendering.

Alright, so let’s talk about the painter’s algorithm. It’s basically modeled after how a
painter paints: He paints the background, and then paints the foreground over it as shown
in Figure 8.40. Thus, objects that are closer to the viewpoint automatically occlude the
background.

Therefore, this algorithm is all we need to implement our polygon rendering. We know
the z-values of every single polygon in the rendering list, so we can simply sort the poly-
gons from back to front on their z-values and draw them as shown in Figure 8.28. This
works for the most part until the anomalies shown in Figure 8.41 occur. Long polygons,
overlapping polygons, and so forth won’t be rendered properly sometimes. However, this
isn’t an issue because right now we’re primarily interested in simply getting our displays to
look more correct. Additionally, as long as polygons are kept small and there are no
concave polyhedrons (shown in Figure 8.42), the painter’s algorithm works fine. In fact,
many 3D games that you’ve played use nothing more than a painter’s algorithm or variant
because it’s simple.
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FIGURE 8.40 A painter painting.
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FIGURE 8.42 A concave polyhedron causes numerous rendering anomalies with the painter’s
algorithm.

NOTE

In fact, the z-buffer algorithm we’ll discuss later in the book is in fact a painter’s algorithm imple-
mented on a pixel-by-pixel basis.

So, now comes the fun part: how to implement the algorithm with our current system and
data structures. Well, there are two ways to do this. In method one, we sort the polygons
in the rendering list and move them in place. In method two, we create a secondary
index/pointer list into the rendering list, and then sort that! Method one might seem
easier, but it’s much too inefficient to move actual data around.

Additionally, there might be polygons in the rendering list that are disabled, and there’s
no need to sort them. Hence, we’re going to create a secondary array of pointers, each of
which points to a polygon in the rendering list. Then we’ll sort the pointers, and render
the pointer list rather than the rendering list itself. Figure 8.43 illustrates this.

Now, if you take a look at the original rendering list data structure, it’s actually imple-
mented in just this way!

// this is the indirection array used for 

typedef struct RENDERLIST4DV1_TYP

{

int state; // state of renderlist ???

int attr;  // attributes of renderlist ???
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// the render list is an array of pointers each pointing to 

// a self contained “renderable” polygon face POLYF4DV1

POLYF4DV1_PTR poly_ptrs[RENDERLIST4DV1_MAX_POLYS];

// additionally to cut down on allocation, de-allocation 

// of polygons each frame, here’s where the actual polygon 

// faces will be stored POLYF4DV1 poly_data[RENDERLIST4DV1_MAX_POLYS];

int num_polys; // number of polys in render list

} RENDERLIST4DV1, *RENDERLIST4DV1_PTR;
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FIGURE 8.43 Rendering from an indexed array rather than the polygon data itself.

See the bolded code? That’s the actual indirection array, so we’re good to go. We just need
the sorting algorithm. We’ll use the built-in quicksort algorithm, the prototype for which
is shown next:

void qsort(void *base, // Start of target array

size_t num,    // array size in elements

size_t width,  // element size in bytes

int (cdecl *compare )(const void *elem1, // compare function and

const void *elem2 ) );  // ptrs to the array elements to be compared with the

key

TIP

If you recall, quicksort sorts in O(n*log n), and is based on a recursive sort algorithm in which the
list is split into pieces, the pieces are sorted, and then reassembled.

Although the function looks easy to use, it can be a bit harrowing when dealing with
pointers. If you look closely at the prototype for the comparison function, it sends in a
pointer to the key and the comparison item. But in our case, each key and comparison
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item are themselves pointers! Ouch! So, this means that in our comparison functions, we
have to dereference the const void * pointers as if they were ** pointers to polygon
faces. This is just a bit tricky, and you have to get it right.

Also, the comparison function itself is worth discussing for a moment. We know that we’re
going to compare one polygon’s z-value to another, but which z-value? We could use the
largest, the smallest, or the average of the three vertices that make up each triangle. With
this in mind, we’ll support all three methods via a flag because some of your scenes may
sort better depending on which sort key you use. Therefore, the sorting algorithm should
case on a flag that determines this. With all this in mind, here’s the sorting algorithm:

void Sort_RENDERLIST4DV1(RENDERLIST4DV1_PTR rend_list, int sort_method)

{

// this function sorts the rendering list based on the polygon z-values 

// the specific sorting method is controlled by sending in control flags

switch(sort_method)

{

case SORT_POLYLIST_AVGZ:  //  - sorts on average of all vertices

{

qsort((void *)rend_list->poly_ptrs, 

rend_list->num_polys, sizeof(POLYF4DV1_PTR), 

Compare_AvgZ_POLYF4DV1);

} break;

case SORT_POLYLIST_NEARZ: // - sorts on closest z vertex of each poly

{

qsort((void *)rend_list->poly_ptrs, 

rend_list->num_polys, sizeof(POLYF4DV1_PTR), 

Compare_NearZ_POLYF4DV1);

} break;

case SORT_POLYLIST_FARZ:  //  - sorts on farthest z vertex of each poly

{

qsort((void *)rend_list->poly_ptrs, 

rend_list->num_polys, sizeof(POLYF4DV1_PTR), Compare_FarZ_POLYF4DV1);

} break;

default: break;

} // end switch

} // end Sort_RENDERLIST4DV1

I bet you thought it would be big! And here are the sorting flags:

#define SORT_POLYLIST_AVGZ  0 - sorts on average of all vertices

#define SORT_POLYLIST_NEARZ 1 - sorts on closest z vertex of each poly

#define SORT_POLYLIST_FARZ  2 - sorts on farthest z vertex of each poly
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And finally, here’s a sample comparison function (average z compare, in this case):

int Compare_AvgZ_POLYF4DV1(const void *arg1, const void *arg2)

{

// this function compares the average z’s of two polygons and is used by the

// depth sort surface ordering algorithm

float z1, z2;

POLYF4DV1_PTR poly_1, poly_2;

// dereference the poly pointers

poly_1 = *((POLYF4DV1_PTR *)(arg1));

poly_2 = *((POLYF4DV1_PTR *)(arg2));

// compute z average of each polygon

z1 = (float)0.33333*(poly_1->tvlist[0].z + poly_1->tvlist[1].z + poly_1-

>tvlist[2].z);

// now polygon 2

z2 = (float)0.33333*(poly_2->tvlist[0].z + poly_2->tvlist[1].z + poly_2-

>tvlist[2].z);

// compare z1 and z2, such that polys’ will be sorted in descending Z order

if (z1 > z2)

return(-1);

else

if (z1 < z2)

return(1);

else

return(0);

} // end Compare_AvgZ_POLYF4DV1

Now, the last question of the day is where to make the call to perform the sorting algo-
rithm? This is very important—the sort must be performed in camera coordinates so that
all the polygons are in the final positions before projection. Thus, we need to call it right
after the world-to-camera transform, but before the camera-to-perspective transform,
something like this:

// remove backfaces

Remove_Backfaces_RENDERLIST4DV1(&rend_list, &cam);

// light scene all at once 

Light_RENDERLIST4DV1_World16(&rend_list, &cam, lights, 3);

// apply world to camera transform

World_To_Camera_RENDERLIST4DV1(&rend_list, &cam);
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// sort the polygon list (hurry up!)

Sort_RENDERLIST4DV1(&rend_list,  SORT_POLYLIST_AVGZ);

// apply camera to perspective transformation 

Camera_To_Perspective_RENDERLIST4DV1(&rend_list, &cam);

// apply screen transform

Perspective_To_Screen_RENDERLIST4DV1(&rend_list, &cam);

As an example of the code in action, take a look at Figure 8.44. It’s a screenshot of
DEMOII8_6.CPP|EXE (DEMOII8_6_8b.CPP|EXE is the 8-bit version) running. As you can see,
the polygons are now properly sorted, and the world looks correct (for the most part).
However, try running around in the world (it has the same controls as the previous
demos), and see if you can mess up the painter’s algorithm. Also, try experimenting by
changing the sorting algorithm from average z, to near z, and far z.
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TIP

We’re sorting the polygons in the rendering list to make things easy, but this isn’t necessarily the
fastest way to create the proper rendering order, depending on the data set. It’s also possible to
sort all the objects themselves and then, based on their bounding spheres, sort the objects and
insert them in order as complete polygon sets. In other words, sort the objects, and then as long
as objects are convex for the most part and there are no inter-object intersections, you can then
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do an insertion sort on the center of each object and get the proper rendering order, thus greatly
decreasing your sort times. Of course, this works only for fast games that are outdoor, space
games, and the like, where a few misplaced polys aren’t going to kill you.

Working with New Model Formats
Although this hasn’t been much of an issue until now, it’s time to support more advanced
model formats. I can tell that you creating cubes by hand is one thing, but creating mech
warriors by hand is entirely another, and not going to happen! So, what we need to do is
support some file formats in addition to the .PLG/PLX format we’ve used until now. That
format is great because it’s easy to read, easy to manipulate, and easy to parse, but there’s
nothing on the market that supports the format, and it’s really limited anyway. Thus, let’s
write a couple more parsers for some current file formats.

To do this, though, I had to make a decision. Again, I’m torn between efficiency and
education, and education usually wins. The point here is to learn, and writing a gnarly
binary parser isn’t that illustrative; I would rather work with ASCII file formats so that you
can see the data and manually change it. Then, at a later time, you can always write a
binary version loader yourself. With that in mind, I just wrote a couple new loaders: one
that supports the 3D Studio Max .ASC ASCII format and one that supports the Caligari
trueSpace .COB (version 4.0+) format. Articles on both of these formats can be found on
the CD.

Both these formats have their pros and cons, but they give us the flexibility we need to
create 3D models with real tools (or use premade models) and then export to these
formats. Of course, even if you don’t have Max or trueSpace, you can surely find a
converter to switch from the format your particular tool saves in. Now, before I show you
the file loaders themselves, we need to take a look at a C++ class (more of a C class) and
helper functions that I wrote to facilitate parsing text files.

The Parser Class
Writing file loaders in any format, whether it be ASCII or binary, is an exercise in file I/O
for the most part. So, it really pays to take the time to write a suite of functions that
enable you to load a file, look for tokens, strip characters—whatever it is you need. Now
because we’re dealing with ASCII-formatted files, I wanted to write a parser that had the
following capabilities:

• Open/close a file

• Read in a line of text

• Strip characters from the line

• Get tokens that are separated by whitespace

• Ignore anything after a comment character
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• Count the lines and so forth

• Pattern matching

Figure 8.45 depicts a block diagram of the parser system. As you can see from the figure
and outline, a parser with this functionality will seriously help us out. Let’s talk about the
pattern matching; it’s the only interesting aspect of the parser.
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Open(…)

Text file

GetLine(…)

Close(…)

buffer �…	 � "vertex           0        10         20         30" 

Gets the next line from
the file, stores in buffer

Pattern_match(…)

Matches pattern and 
stores data in arrays

" �'vertex'	  �i	     �f	      �f	      �f	"

PInts �…	 � �0, …	 
PFloats  �…	 � �10, 20, 30	 

Close the file

Loop until done

FIGURE 8.45 A block diagram of the parser system.

I wanted a pattern-matching system that allows me to scan for simple regular expressions
when given a single line. For example, say we had the following line in a text buffer:

static char *buffer = “Polys: 10 Vertices: 20”;

We can easily see that following Polys: is the number of polygons (integer). Following
that is Vertices: and the number of vertices (integer). However, none of the scanf() class
functions can really parse this line due to the commas and other extraneous characters.
Thus, we need to write a pattern matcher to help parsing. That additional functionality
has also been implemented in my parser class. Thus, I can write something like this:

Pattern_Match(buffer, “[‘Polys:’] [i] [‘Vertices:’] [i]”));
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So, the pattern matcher looks for the string “Polys:”, consumes it, looks for an integer,
consumes that, looks for the string “Vertices:”, consumes that, and finally consumes the
last integer. I’ll shortly show you the entire pattern matching language after we see the
class.

Okay, so far so good, but we also need functions that can do things like strip characters,
replace characters, and so forth. Basically, we need a more robust set of string operations
that C/C++ comes with. Of course, there are a million classes out there, but if you wanted
to use engines and classes, you could just create MODs all day and be done—you’re
reading this because you want to know how yourself!

With that in mind, here’s the parser class definition itself:

// parser class ///////////////////////////////////////////////

class CPARSERV1

{

public:

// constructor /////////////////////////////////////////////////

CPARSERV1();

// destructor ///////////////////////////////////////////////////

~CPARSERV1() ;

// reset file system ////////////////////////////////////////////

int Reset();

// open file /////////////////////////////////////////////////////

int Open(char *filename);

// close file ////////////////////////////////////////////////////

int Close();

// get line //////////////////////////////////////////////////////

char *Getline(int mode);

// sets the comment string ///////////////////////////////////////

int SetComment(char *string);

// find pattern in line //////////////////////////////////////////

int Pattern_Match(char *string, char *pattern, ...);

// VARIABLE DECLARATIONS /////////////////////////////////////////

public: 

FILE *fstream;                    // file pointer

char buffer[PARSER_BUFFER_SIZE];  // line buffer

int  length;                      // length of current line

int  num_lines;                   // number of lines processed

char comment[PARSER_MAX_COMMENT]; // single line comment string

// pattern matching parameter storage, easier that variable arguments

// anything matched will be stored here on exit from the call to pattern()

char  pstrings[PATTERN_MAX_ARGS][PATTERN_BUFFER_SIZE]; // any strings

int   num_pstrings;
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float pfloats[PATTERN_MAX_ARGS];     // any floats

int   num_pfloats;

int   pints[PATTERN_MAX_ARGS];       // any ints

int   num_pints;

}; // end CLASS CPARSERV1 //////////////////////////////////////////////

typedef CPARSERV1 *CPARSERV1_PTR;

As I mentioned, it’s a very basic C++ class. I hate C++ for teaching. You can look at code
and have no idea what it means, so if I do use it, I use it sparingly. In any case, take a look
at all the methods for a moment and then return here….

The system is incredibly simple, as you can see. The class has the following functions:

int Open(char *filename)—Opens the sent file path. Returns 1 if successful; 0 otherwise.

int Reset()—Resets the entire parser, closes all files, and resets all variables.

int Close()—Calls Reset().

char *Getline(int mode)—Once a file has been opened for parsing, this gets the next
line from the file. If there’s another line, it returns the line; otherwise it returns NULL. The
call has the following modes of operation:

#define PARSER_STRIP_EMPTY_LINES        1   // strips all blank lines

#define PARSER_LEAVE_EMPTY_LINES        2   // leaves empty lines

#define PARSER_STRIP_WS_ENDS            4   // strips ws space at ends of line

#define PARSER_LEAVE_WS_ENDS            8   // leaves it

#define PARSER_STRIP_COMMENTS           16  // strips comments out

#define PARSER_LEAVE_COMMENTS           32  // leaves comments in

When Getline() returns, the current line will be stored in the class variable buffer as well
as returned as a pointer.

int SetComment(char *string)—This function enables you to set the comment string
that will be used as a sentinel to begin a comment line. Use anything you wish, up to 16
characters, but it must not contain whitespace. In most cases, the strings #, ;, and // make
good comment sentinels; the default is #.

int Pattern_Match(char *string, char *pattern, ...) —This is the most complex
function of them all. It enables you to pass a pattern that must be matched by the sent
string. Notice that although Pattern_Match() is a method of the parser class, it allows you
to send any string for pattern matching. The pattern-matching language is shown in 
Table 8.3.
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TABLE 8.3 Pattern-Matching Language

Pattern Meaning

[i] Matches an integer

[f] Matches a floating-point number

[s=d] Matches any string that is exactly d characters long

[s<d] Matches any string that is less than d characters long

[s>d] Matches any string that is greater than d characters long

[‘ssss...s’] Matches the string between the single quotes exactly

For example, if you wanted to match the following schema:

“Vertex 3 34.56 23.67 10.90”

The pattern “[‘Vertex’] [f] [f] [f]” would be used. But where do the pattern-matched
strings go? Inside the parser class object are some variables and arrays at the bottom of the
class that are bolded—go take a look. For example, if you try to match floats, the floats
themselves and the number of floats will be stored in

int   pfloats[PATTERN_MAX_ARGS];

int   num_pfloats;

So, in the preceding example match, num_pfloats=3 and pfloats[]={34.56, 23.67,
10.90}.

NOTE

You may see the variable parameter list at the end of Pattern_Match(). I was going to export
the found variables in these arrays, but didn’t completely finish it because the output arrays
seemed to work better, but later you may find this a cool feature and finish it.

Now, there are a couple limitations to the pattern matcher. It works only on tokens sepa-
rated by whitespace, so if you had a string like this

“Vertex 3: 20.9, 90.8, 100.3”

it wouldn’t work! But helper functions to the rescue. Let’s take a look at all the cool string
helper functions to make things like this easy.

Parsing Helper Functions
The following is a small library of string processing helper functions also in the
T3DLIB6.CPP|H library. They’re designed to be used standalone or with the parser—it’s up
to you. Here’s a list of the functions:

char buffer[64]; // used for output
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First let’s start with the character-stripping function:

// strips characters from a string

int StripChars(char *string_in, char *string_out, char *strip_chars, int case_on=1);

You send StripChars() the string you want stripped, the string you want the stripped
version saved in, and the characters you want stripped along with a case-sensitivity flag.
Here’s an example of stripping all : and , from a string:

StripChars(“Vertex 3: 20.9, 90.8, 100.3”, buffer, “:,”, 1);

The result in the buffer will be “Vertex 3 20.9 90.8 100.3”.

Now, let’s take a look at something that will replace characters rather than just stripping
them:

// replaces characters from a string

int ReplaceChars(char *string_in, char *string_out, 

char *replace_chars, char rep_char, int case_on=1);

Sometimes stripping a character isn’t exactly what you want; sometimes you just need to
replace it with a blank or whatever. ReplaceChars() serves this purpose. It’s similar to
StripChars(), but you send in an additional char parameter, which is the replacement
character. So, as another example, imagine we had something like this:

“Vertex #3: 20.9,90.8,100.3”

If we ran StripChars() on this, stripping “#,:”, the result would be

“Vertex 320.990.8100.3”

Ouch! The problem is that we wanted to strip those, but then they weren’t replaced and
we lost the whitespace, mashing the string together. But with ReplaceChars(), we can
make it do what we need:

ReplaceChars(“Vertex #3: 20.9,90.8,100.3”,

buffer, “#:,”, ‘ ‘, 1);

The result in the buffer will be

“Vertex  3  20.9 90.8 100.3”

which is exactly what we want. Then we can make a call to Pattern_Match(buffer,”[i]
[f] [f] [f]”) and it will match the first integer and three floats.

Next, here are some whitespace-trimming functions:

// trims all whitespace from the left side of a string

char *StringLtrim(char *string);

// trims all white space from the right side of a string

char *StringRtrim(char *string);
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These next two functions determine whether a string is a float or an int and, if so, return
the value. They don’t try to force the issue; thus, they do pattern-matching themselves. If
the string sent in is not a float or an int, the functions return FLT_MIN and INT_MIN,
respectively. These are defined in limits.h as an error.

// a robust function that converts a string to a float

float IsFloat(char *fstring);

// a robust function that converts an string to a float

int   IsInt(char *istring);

Take a look at the following code for IsFloat(). It’s interesting, with lots of parsing tech-
niques there:

float IsFloat(char *fstring)

{

// validates the sent string as a float and converts it, if it’s not valid

// the function sends back FLT_MIN, the chances of this being the number

// validated is slim

// [whitespace] [sign] [digits] [.digits] [ {d | D | e | E }[sign]digits]

char *string = fstring;

// must be of the form

// [whitespace] 

while(isspace(*string)) string++;

// [sign] 

if (*string==’+’ || *string==’-’) string++;

// [digits] 

while(isdigit(*string)) string++;

// [.digits] 

if (*string ==’.’) 

{

string++;

while(isdigit(*string)) string++;

}

// [ {d | D | e | E }[sign]digits]

if (*string ==’e’ || *string == ‘E’ || *string ==’d’ || *string == ‘D’)

{

string++;

// [sign] 

if (*string==’+’ || *string==’-’) string++;
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// [digits] 

while(isdigit(*string)) string++;

} 

// the string better be the same size as the other one

if (strlen(fstring) == (int)(string - fstring))

return(atof(fstring));

else

return(FLT_MIN);

} // end IsFloat

////////////////////////////////////////////////////////////////////////////

Alright, it wasn’t my intent to get into parsing at all. I really hate it, and wanted to avoid
it, but I didn’t want to just dump a black box parser on you and then write magical func-
tions that load the new model formats. So, you have now at least seen the functions and
have an idea of what they do. Moreover, the helper functions are really useful! Anyway, as
an example, DEMOII8_7.CPP|EXE (screen shown in Figure 8.46) enables you to load a text
file, run it through the parser, and then search for patterns.
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FIGURE 8.46 The parser testing bed running.

I’ve included a couple of text files in the directory for this chapter: TEST1.TXT and
TEST2.TXT, as shown here:

# test 1

object name: tank

num vertices: 4

vertex list:

0 10 20

5 90 10

3 4 3

1 2 3

end object # this is a comment!
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And the second file:

# test 2

This is a line...

# I am commented out!

And this a 3rd...

Basically, run the program, load the filename, and then try printing it out with the various
parsing functions. Try looking for patterns such as “[i] [i] [i]” in TEST1.TXT and so on.
Review the program; it shows you how to use the parser and helper functions a bit.

3D Studio MAX ASCII .ASC Format
The 3D Studio Max .ASC ASCII version format is a fairly simple format that contains
vertex and polygon information in addition to the material for each polygon.
Unfortunately, there’s no texture information or reflectivity information, so the .ASC
format isn’t going to be robust enough for full-textured objects. However, it’s ten times
better than the .PLG format, and .ASC can actually be exported from 99% of all 3D model-
ers, so it’s going to make my life and yours easier. On the other hand, there’s no way to
select shading models for the polygons in the .ASC format because it’s so limited. Please
refer back to Chapter 6 on file formats for more details, but for reference, I’ve listed a stan-
dard cube output in .ASC format:

Ambient light color: Red=0.3 Green=0.3 Blue=0.3

Named object: “Cube”

Tri-mesh, Vertices: 8     Faces: 12

Vertex list:

Vertex 0:  X:-1.000000     Y:-1.000000     Z:-1.000000

Vertex 1:  X:-1.000000     Y:-1.000000     Z:1.000000

Vertex 2:  X:1.000000     Y:-1.000000     Z:-1.000000

Vertex 3:  X:1.000000     Y:-1.000000     Z:1.000000

Vertex 4:  X:-1.000000     Y:1.000000     Z:-1.000000

Vertex 5:  X:1.000000     Y:1.000000     Z:-1.000000

Vertex 6:  X:1.000000     Y:1.000000     Z:1.000000

Vertex 7:  X:-1.000000     Y:1.000000     Z:1.000000

Face list:

Face 0:    A:2 B:3 C:1 AB:1 BC:1 CA:1

Material:”r255g255b255a0”

Smoothing:  1

Face 1:    A:2 B:1 C:0 AB:1 BC:1 CA:1

Material:”r255g255b255a0”

Smoothing:  1

Face 2:    A:4 B:5 C:2 AB:1 BC:1 CA:1

Material:”r255g255b255a0”

Smoothing:  1

Face 3:    A:4 B:2 C:0 AB:1 BC:1 CA:1
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Material:”r255g255b255a0”

Smoothing:  1

Face 4:    A:6 B:3 C:2 AB:1 BC:1 CA:1

Material:”r255g255b255a0”

Smoothing:  1

Face 5:    A:6 B:2 C:5 AB:1 BC:1 CA:1

Material:”r255g255b255a0”

Smoothing:  1

Face 6:    A:6 B:7 C:1 AB:1 BC:1 CA:1

Material:”r255g255b255a0”

Smoothing:  1

Face 7:    A:6 B:1 C:3 AB:1 BC:1 CA:1

Material:”r255g255b255a0”

Smoothing:  1

Face 8:    A:6 B:5 C:4 AB:1 BC:1 CA:1

Material:”r255g255b255a0”

Smoothing:  1

Face 9:    A:6 B:4 C:7 AB:1 BC:1 CA:1

Material:”r255g255b255a0”

Smoothing:  1

Face 10:    A:1 B:7 C:4 AB:1 BC:1 CA:1

Material:”r255g255b255a0”

Smoothing:  1

Face 11:    A:1 B:4 C:0 AB:1 BC:1 CA:1

Material:”r255g255b255a0”

Smoothing:  1

To read in this file format, we need to write a parser that performs the following steps:

Step 1: Read the name of the object, number of vertices, and polygons.

Step 2: Read in the vertex list.

Step 3: Read in each polygon definition along with the RGB material color information.

If you review the file format, there’s not much to it. Our parser routines will chew through
this format easily. The only downside is that there’s no way to set one or two sided poly-
gons, texturing, light model, and so on. For the most part, we just get a color for each
polygon and that’s it. Alas, the reader we write must assume things, such as the lighting
model. For now, I just wanted something that would load a .ASC file in either 8/16-bit
graphics modes, and then fill in the proper data structures, set the lighting and so forth to
default values. Before we see that, I want to review a single polygon definition to make
sure that you get it:

Face 10:    A:1 B:7 C:4 AB:1 BC:1 CA:1

Material:”r255g255b255a0”

Smoothing:  1
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This is face (10). It’s composed of three polygons with vertices A, B, and C, which are actu-
ally vertex numbers 1,7, and 4, respectively. The AB, BC, and CA text describes the
winding order of the polygon (unused by us), and the smoothing element has to do with
whether polygon normals be averaged (unused also). For a more complete description of
this format, please look on the CD in the directory 3D_DOCS\File Formats\.

Alright, that’s about all there is to the file format, so let’s see the function prototype:

int Load_OBJECT4DV1_3DSASC(OBJECT4DV1_PTR obj,   // pointer to object

char *filename,       // filename of ASC file

VECTOR4D_PTR scale,   // initial scaling factors

VECTOR4D_PTR pos,     // initial position

VECTOR4D_PTR rot,     // initial rotations

int vertex_flags)     // flags to re-order vertices

The function has almost an identical prototype as the .PLG loader except for the added
vertex_flags parameter. This is to give you a little control when loading objects. The
reason being that when you create objects using modelers, many times coordinates will be
inverted or swapped, winding orders will be backward, and so forth. This parameter gives
you the ability to change these things during loading. For example, our engine uses a left-
handed system, but your modeler might be right-handed, so you would have to invert the
z-axis—these are the kinds of things I’m talking about. Here are the vertex_flags you can
logically OR together:

#define VERTEX_FLAGS_INVERT_X          1 // inverts the Z-coordinates

#define VERTEX_FLAGS_INVERT_Y          2 // inverts the Z-coordinates

#define VERTEX_FLAGS_INVERT_Z          4 // inverts the Z-coordinates

#define VERTEX_FLAGS_SWAP_YZ           8 // transforms a RHS model to LHS

#define VERTEX_FLAGS_SWAP_XZ           16 // ???

#define VERTEX_FLAGS_SWAP_XY           32

#define VERTEX_FLAGS_INVERT_WINDING_ORDER 64 // invert winding order 

// from cw to ccw or ccw to cc

Here’s how you would load the object CUBE.ASC with a reversed winding order:

int Load_OBJECT4DV1_3DSASC(&obj, “CUBE.ASC”,  

NULL, NULL, NULL, 

VERTEX_FLAGS_INVERT_WINDING_ORDER);

CAUTION

The reader reads ASCII .ASC files only! Don’t try to read a binary file; you’ll crash the reader.

The code is way too long to list, so please review it in T3DLIB6.CPP on the CD. Its length is
due to going overboard on error handling (purposely, so you can see it) even though
errors will never occur if the files it loads are correct. The error handling is mostly illustra-
tional, and also to help you if you decide to manually type in an object off the top of your
head.
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As an example of using the function, check out DEMOII8_8.CPP|EXE. A screenshot is shown
in Figure 8.47. It allows you to load any .ASC object off disk via a menu. You must give
the full path to the object. Here are a few objects I made that are in the directory
CHAPTER8\:

SPHERE01.ASC (swap YZ and invert winding order)

CAR01.ASC (Swap YZ and invert winding order)

HAMMER02.ASC
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FIGURE 8.47 The 3D Studio .ASC loader up and running.

CAUTION

You can’t load an object with more vertices or polygons than the engine can handle. Right now
both vertices and polygons are set to a max of:

// defines for objects version 1 

#define OBJECT4DV1_MAX_VERTICES   1024  

#define OBJECT4DV1_MAX_POLYS      1024 

These defines are, of course, in the previous library module T3DLIB5.H.

Additionally, the load file dialog has check boxes that enable you to swap the y- and z-coordi-
nates and invert the winding order. You might have to play with these to get your object to load
correctly.
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trueSpace ASCII .COB Format
“Never underestimate the power of the Magic Ring.” That’s an inside joke if you like using
trueSpace 5+. Otherwise, completely disregard it <BG>. Anyway, after much thought and
compromise, I think that the best static file format on the market, other than Microsoft .X
files, is the Caligari .COB format. It’s very robust and supports everything we would ever
need along with the concept of materials. Hence, we can select the type of shading model
to apply to polygons by literally applying appropriate materials to the objects themselves.
Moreover, .COB format has texture support and lots more. Of course, if you don’t use
trueSpace, you need to export to .COB to use the reader or use a converter such as
Polytrans. I simply refuse to write a .3DS reader. The format is a disaster, and I hate cryptic
aged formats. So, if you want .3DS format, you’re more than welcome to write a reader. In
truth, it’s not that bad, but it’s a binary format and harder to visualize.

In Chapter 6, we discussed the .COB format (full detailed analysis is on the CD in
3D_DOCS\File Formats\, so check that out). But let’s take a look at an ASCII file dump of a
simple .COB object once again. The file is CALIGARI_COB_FORMAT_EXAMPLE01.COB and
Figure 8.49 is a screenshot of it.
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FIGURE 8.48 The cube model with multiple surface types.

Basically, it’s a cube in trueSpace with a texture on a single face. The following is the ASCII
file data itself. I’ve added some vertical whitespace, so imagine that it’s not there, plus I’ve
bolded areas of interest and removed a few advanced sections such as the thumbnail and
radiosity stuff, so please refer to the original file for everything, but it’s too long to list
here. Anyway, go ahead and take a look at it for a moment to recall the format:

Caligari V00.01ALH  

PolH V0.08 Id 18661892 Parent 0 Size 00001060

Name Cube,1
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center 0 0 0

x axis 1 0 0

y axis 0 1 0

z axis 0 0 1

Transform

1 0 0 1.19209e-007

0 1 0 0

0 0 1 -1

0 0 0 1

World Vertices 8

1.000000 -1.000000 0.000000

1.000000 -1.000000 2.000000

1.000000 -1.000000 0.000000

1.000000 -1.000000 2.000000

1.000000 1.000000 0.000000

1.000000 1.000000 0.000000

1.000000 1.000000 2.000000

1.000000 1.000000 2.000000

Texture Vertices 6

0.000000 0.000000

0.000000 1.000000

0.000000 0.000000

0.000000 1.000000

1.000000 0.000000

1.000000 1.000000

Faces 12

Face verts 3 flags 0 mat 4

<0,0> <1,1> <3,5> 

Face verts 3 flags 0 mat 4

<0,0> <3,5> <2,4> 

Face verts 3 flags 0 mat 0

<0,1> <2,5> <5,4> 

Face verts 3 flags 0 mat 0

<0,1> <5,4> <4,0> 

Face verts 3 flags 0 mat 1

<2,2> <3,3> <6,5> 

Face verts 3 flags 0 mat 1

<2,2> <6,5> <5,4> 

Face verts 3 flags 0 mat 0

<1,0> <7,1> <6,5> 
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Face verts 3 flags 0 mat 0

<1,0> <6,5> <3,4> 

Face verts 3 flags 0 mat 2

<4,4> <5,0> <6,1> 

Face verts 3 flags 0 mat 2

<4,4> <6,1> <7,5> 

Face verts 3 flags 0 mat 3

<0,4> <4,2> <7,3> 

Face verts 3 flags 0 mat 3

<0,4> <7,3> <1,5> 

Mat1 V0.06 Id 18659348 Parent 18661892 Size 00000102

mat# 1

shader: phong  facet: auto32

rgb 0.00784314,1,0.0352941

alpha 1  ka 0.1  ks 0.1  exp 0  ior 1

ShBx V0.03 Id 18659349 Parent 18659348 Size 00000383

Shader class: color

Shader name: “plain color” (plain) ß- this is an example of a non-textured material

Number of parameters: 1

colour: color (2, 255, 9)

Flags: 3

Shader class: transparency

Shader name: “none” (none)

Number of parameters: 0

Flags: 3

Shader class: reflectance

Shader name: “constant” (constant) ß this material is constant shaded, or emmisive

to us

Number of parameters: 0

Flags: 3

Shader class: displacement

Shader name: “none” (none)

Number of parameters: 0

Flags: 3

Mat1 V0.06 Id 18658628 Parent 18661892 Size 00000085

mat# 2

shader: phong  facet: auto32

rgb 1,0,0

alpha 1  ka 0.1  ks 0.1  exp 0  ior 1

ShBx V0.03 Id 18658629 Parent 18658628 Size 00000427

Shader class: color

Shader name: “plain color” (plain) ß again a plain colored material

Number of parameters: 1
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colour: color (255, 0, 0)

Flags: 3

Shader class: transparency

Shader name: “none” (none)

Number of parameters: 0

Flags: 3

Shader class: reflectance

Shader name: “matte” (matte) ß this material is flat shaded in our engine

Number of parameters: 2

ambient factor: float 0.1

diffuse factor: float 1

Flags: 3

Shader class: displacement

Shader name: “none” (none)

Number of parameters: 0

Flags: 3

Mat1 V0.06 Id 18657844 Parent 18661892 Size 00000101

mat# 3

shader: phong  facet: auto32

rgb 0.0392157,0.0117647,1

alpha 1  ka 0.1  ks 0.5  exp 0  ior 1

ShBx V0.03 Id 18657845 Parent 18657844 Size 00000522

Shader class: color

Shader name: “plain color” (plain) ß again a colored material

Number of parameters: 1

colour: color (10, 3, 255)

Flags: 3

Shader class: transparency

Shader name: “none” (none)

Number of parameters: 0

Flags: 3

Shader class: reflectance

Shader name: “plastic” (plastic) ß this means use gouraud shading

Number of parameters: 5

ambient factor: float 0.1

diffuse factor: float 0.75

specular factor: float 0.5

roughness: float 0.1

specular colour: color (255, 255, 255)

Flags: 3

Shader class: displacement

Shader name: “none” (none)
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Number of parameters: 0

Flags: 3

Mat1 V0.06 Id 18614788 Parent 18661892 Size 00000100

mat# 4

shader: phong  facet: auto32

rgb 1,0.952941,0.0235294

alpha 1  ka 0.1  ks 0.1  exp 0  ior 1

ShBx V0.03 Id 18614789 Parent 18614788 Size 00000515

Shader class: color

Shader name: “plain color” (plain) ß a plain colored material

Number of parameters: 1

colour: color (255, 243, 6)

Flags: 3

Shader class: transparency

Shader name: “none” (none)

Number of parameters: 0

Flags: 3

Shader class: reflectance

Shader name: “phong” (phong) ß actually use a phong shader in our engine

Number of parameters: 5

ambient factor: float 0.1

diffuse factor: float 0.9

specular factor: float 0.1

exponent: float 3

specular colour: color (255, 255, 255)

Flags: 3

Shader class: displacement

Shader name: “none” (none)

Number of parameters: 0

Flags: 3

Mat1 V0.06 Id 18613860 Parent 18661892 Size 00000182

mat# 0

shader: phong  facet: auto32

rgb 1,0.952941,0.0235294

alpha 1  ka 0.1  ks 0.1  exp 0  ior 1

texture: 36D:\Source\models\textures\wall01.bmp 

offset 0,0  repeats 1,1  flags 2

ShBx V0.03 Id 18613861 Parent 18613860 Size 00000658

Shader class: color

Shader name: “texture map” (caligari texture) ß this means this material is a tex-

ture map

Number of parameters: 7
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file name: string “D:\Source\models\textures\wall01.bmp” ß here the texture

S repeat: float 1

T repeat: float 1

S offset: float 0

T offset: float 0

animate: bool 0

filter: bool 0

Flags: 3

Shader class: transparency

Shader name: “none” (none)

Number of parameters: 0

Flags: 3

Shader class: reflectance

Shader name: “phong” (phong) ß the shader for this material should be phong

Number of parameters: 5

ambient factor: float 0.1

diffuse factor: float 0.9

specular factor: float 0.1

exponent: float 3

specular colour: color (255, 255, 255)

Flags: 3

Shader class: displacement

Shader name: “none” (none)

Number of parameters: 0

Flags: 3

END  V1.00 Id 0 Parent 0 Size        0

The format is fairly human-readable and makes sense for the most part. Let’s gloss over the
details so that you have some idea of how I coded the reader. Here are the general steps to
read a .COB file:

Step 1: Read the header line at the top of the file.

Step 2: Read in the name line and then the center, x-axis, y-axis, and z-axis lines. These
make up the local transform for the object. This transform must be applied to the object’s
vertices because all trueSpace objects are exported without transformations to the vertices
for reasons of accuracy. In other words, when you rotate or move a cube in trueSpace, the
modeler records the transform and renders it, but leaves the unit cube alone—this way
you don’t lose accuracy.

Step 3: Read in the transform line and following matrix. This matrix transforms the local
space to world space; in most cases, it will be the identity matrix, but we’ll support apply-
ing the transform as well as the previous to make sure that we get the model where the
modeler intended it and in the proper orientation.

Step 4: Read in the World vertices line and then read the vertex list in (x, y, z) order.
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Step 5: Read in the Texture vertices line and the <u,v> texture coordinates for each
texture coordinate. There’s a bit of compression here in the texture coordinates; that is,
you would normally expect three texture coordinates per triangle. However, the .COB
format seems to reuse common (u,v) values, so even though you have a mesh with 100
triangles and you would expect 300 texture coordinates, there will be fewer in most cases;
also there can be duplicates even though they aren’t needed. Whatever the logic is, I
haven’t figured it out. But it’s irrelevant; you simply read them into an array and then
store the values into the final texture coordinate array (which we don’t have yet, so don’t
worry about it).

NOTE

If you aren’t familiar with texture coordinates, they’re the sample points in a texture that should
be pinned to a polygon’s surface. In most cases, textures have the coordinate system shown in
Figure 8.49. u is the x-axis, v denotes the y-axis, and 99% of all textures are square. So, to map
the texture shown in the figure to a pair of triangles, you would use the coordinates as shown in
the figure. We’ll cover this in heavy detail later.
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Step 6: Read in the Face line and then read each polygon face. Faces can have many
vertices, but we’ll make sure that all exported meshes have three vertices, so our Face lines
should look like this:

Face verts 3 flags ff mat mm

where ff and mm are the flags and material number, respectively. The flags are irrelevant,
so disregard them, but the material number is important. This is a zero-based number that
indicates the material that should be applied to the face. As we parse, we need to remem-
ber this material so that when we read in materials later in the file, we can fix this up.

Next is the polygon face itself, which is a set of vertex indices in the format <v1,t1> <v2,
t2> …. The first element is the vertex index of the vertex that makes up the triangle and
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the second is the texture coordinate. So, <1,2> <9,5> <3,8> would mean that this triangle
is composed of the three vertices: 1,9,3 and the texture coordinates for these vertices are 2,
5, 8 with a one to one and onto mapping.

Step 7: Here’s where things get nasty. We have to read in the materials (and they can be
out of order). Now, our engine isn’t like a hardware HALO engine, so we don’t support
every single material option. We need to encode the following properties somehow:

#define MATV1_ATTR_2SIDED                 0x0001

#define MATV1_ATTR_TRANSPARENT            0x0002

#define MATV1_ATTR_8BITCOLOR              0x0004

#define MATV1_ATTR_RGB16                  0x0008

#define MATV1_ATTR_RGB24                  0x0010

#define MATV1_ATTR_SHADE_MODE_CONSTANT    0x0020

#define MATV1_ATTR_SHADE_MODE_EMMISIVE    0x0020 // alias

#define MATV1_ATTR_SHADE_MODE_FLAT        0x0040

#define MATV1_ATTR_SHADE_MODE_GOURAUD     0x0080

#define MATV1_ATTR_SHADE_MODE_FASTPHONG   0x0100

#define MATV1_ATTR_SHADE_MODE_TEXTURE     0x0200

We’re going to have no luck with the two-sided thing. Very few modelers have the
concept of two-sided encoded in the polygon list or materials, so that’s moot.
Additionally, all materials from all modelers are always in RGB space, so the color depth
stuff is artificial and computed at load time based on the mode the models are loaded
from. The only stuff we have any control over are the highlighted properties. We’re lucky
that the material support in the .COB format allows exporting of a number of different
things that we can use to signal that we want to use a particular lighting model for the
polygon.

For example, say we model a ship and want to make the engines constant-shaded, and the
rest Gouraud-shaded. We need to apply material so we can extract this information. If the
modeler doesn’t support some way to export the information, we have to get really clever.
For example, we might say that anything that’s colored gray is an emissive polygon, and
the color is 0–15 based on the shade of gray—crazy stuff like that.

Anyway, we don’t have to do that because we can encode the material properties naturally
using the modeler. However, there’s not an exact 1:1 correspondence between the mater-
ial’s shading mode in the modeler and the one we want, for example, but I’ll get to that in
a minute. Now, let’s talk about the actual encoding. What modeler we use is irrelevant as
long as you export the object as a trueSpace 4.0+ .COB object, we should be fine. The
encoding is performed as outlined here.

First, we find the material. They all start with something that looks like this (the second
line is the material number):

Mat1 V0.06 Id 142522724 Parent 18646020 Size 00000182

mat# 0
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Thus, this would be the definition for material 0, so any polygon that previously used
material 0—this is the material for it. Moving on, the next lines of interest are of the form

rgb 0.0392157,0.0117647,1

alpha 1  ka 0.1  ks 0.5  exp 0  ior 1

The RGB is the color of the polygon (this is redundant and in more than one place). The
next line, starting with alpha, determines the alpha, reflectivities, and a couple of other
things, as outlined in Table 8.4.

TABLE 8.4 Alpha Line Encoding for .COB Materials

Variable Meaning Range

alpha Transparency 0 - 1

ka Ambient coefficient 0 - 1

ks Specular coefficient 0 - 1

exp Highlight power exponent 0 - 1

ior Index of refraction (Unused by us)

Cool, so now here’s how I extract out the shading model. If you look at the each material
definition in the listing, you’ll see I’ve bolded a couple lines in each material as shown
here:

Shader class: color

Shader name: “plain color” (plain)

.

.

.

.

Shader class: reflectance

Shader name: “phong” (phong)

.

.

We need to pay attention to these lines very carefully. The Shader class: color and the
Shader Class: reflectance are going to be our key to encoding stuff. Here’s the logic to
figure out whether we have a plain color polygon (in which case the polygon is emissive,
flat, Gouraud, or Phong) or a textured polygon.

First, we need to know the shading model. It’s a bit tricky, but we need to look for the
lines like this:

Shader class: color

After that, we need to look for this:

Shader name: “xxxxxx” (xxxxxx)
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where the xxxxx part will be “plain color” and “plain” for colored polys. respectively or
“texture map” and “caligari texture” for textures (I know this sucks). Then based on
that, we hunt for

Shader class: reflectance

which is where the type of shading is encoded. We look for the line

Shader name: “xxxxxx” (xxxxxx)

Based on its value, we map it to our shading system, as shown in Table 8.5.

TABLE 8.5 Shader Mapping from .COB to our Engine

.COB Shader Model Our Shader Model

“constant” MATV1_ATTR_SHADE_MODE_CONSTANT

“matte” MATV1_ATTR_SHADE_MODE_FLAT

“plastic” MATV1_ATTR_SHADE_MODE_GOURAUD

“phong” MATV1_ATTR_SHADE_MODE_FASTPHONG

And in the case that in the “color” class, we find “texture map”, the “shading mode” is

“texture map” MATV1_ATTR_SHADE_MODE_TEXTURE

NOTE

Texture mapping must be logically ORed with the other previous modes so that the texture is
shaded.

What a nightmare, huh? The problem is simple, though. Modelers don’t have ways to
export information about the models. For example, if you want to use Max to make a
game world, great, but how are you going to indicate that a door is a door? See the
problem? This is a similar situation—not as bad, granted—but still an issue. We have to
find ways to encode information in the file format about our model.

Well, now that you’re completely confused, let’s briefly reiterate how you model some-
thing in trueSpace that our .COB reader can read. First, model your object as usual, and
then you must apply materials to the object. If you want a polygon to be a plain color,
leave the material’s color as a “plain color” rather than texture. Then, in the reflectance
part of the model, select the reflectance model of constant, matte, plastic, or Phong,
depending on what you want our engine to do. Right now, of course, we support only
constant (emissive) and flat shading. Now, if you want a texture on a surface, just texture
it as you normally would; the modeler will set the color to “texture” and apply the
texture. Then, once again, you need to set the reflectance model to how you want the
texture lit. And, of course, our engine doesn’t support textures yet, so don’t try it!

Okay, now that all this drama about the .COB file format has been discussed, what are we
doing with the materials? Well, in fact, they’re actually being loaded into the material
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library when a .COB object is loaded, as shown in Figure 8.50. However, there are a couple
of problems with this. First, our engine doesn’t use materials yet, only lights. Second, the
material that one object loads may be reusable by another object; hence, if you load 10
objects with their own materials and you use the same exact materials for the 5 objects,
you’re going to get 25 materials loaded into the material library! It’s not going to kill you,
but it’s something to think about. Therefore, we might have to do something about this.
But as I said, we aren’t even supporting materials yet because we didn’t have a 3D format
that supported them until now.
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FIGURE 8.50 The .COB reader loading materials into the global material library.

CAUTION

It’s imperative that you export all .COB objects as triangles only. Thus, triangulate all objects
before exporting. I left the earlier example in quad format to save space, but our engine under-
stands only triangles.

Okay, now that you have some idea of what’s under the hood of the .COB format, take a
look at the following prototype of the file loader. It’s almost identical to the .ASC reader,
except for a couple more features:

int Load_OBJECT4DV1_COB(OBJECT4DV1_PTR obj,   // pointer to object

char *filename,       // filename of Caligari COB file

VECTOR4D_PTR scale,   // initial scaling factors

VECTOR4D_PTR pos,     // initial position
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VECTOR4D_PTR rot,     // initial rotations

int vertex_flags)     // flags to re-order vertices 

// and perform transforms

The only differences are a couple of added vertex_flags that you can logical OR to enable
the local or world transforms that we discussed for this format:

#define VERTEX_FLAGS_TRANSFORM_LOCAL         512  // if file format has 

// local transform 

// then do it!

#define VERTEX_FLAGS_TRANSFORM_LOCAL_WORLD  1024  // if file format has 

// local to world 

// then do it!

Here’s an example of loading a typical .COB object with the flags set as most modelers
export:

Load_OBJECT4DV1_COB(&obj_tank,”D:/Source/models/cobs/hammer03.cob”,  

&vscale, &vpos, &vrot, 

VERTEX_FLAGS_SWAP_YZ | VERTEX_FLAGS_TRANSFORM_LOCAL );

You can see here that scaling, position, and rotation vectors have been sent in; these are
optional, of course.

Well, that’s it for the .COB file format. As I said, take a look at the complete spec on the
CD in 3D_DOCS\File Formats\ and, of course, review the code on the CD in the
T3DLIB6.CPP|H files. As an example of using the loader, give DEMOII8_9.CPP|EXE a try; it’s
identical to the .ASC loader, but loads .COB files instead.

Additionally, the File, Load dialog has check boxes that enable you to swap the y-z coordi-
nates, invert the winding order, and enable the local and world transforms. You might
have to play with these to get your object to load correctly. Finally, remember we have
room for only 1,024 vertices and 1,024 polys per object! Here are some .COB objects you
can load:

SPHERE01.COB (Swap YZ and invert winding order)

CAR01.COB (Swap YZ, local, and world transforms)

HAMMER03.COB (Swap YZ, local, and world transforms)

CAUTION

When creating .COB files, remember that you MUST triangulate all meshes and that the reader
reads only single objects. Also, make sure that you set the color of each polygon to “plain
color” and the reflectance to “matte” for flat shading (which is all we support now).
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Quake II Binary .MD2 Format Preview
The Quake II .MD2 format is one of the most popular formats for 3D animation. Of course,
the format is designed for Quake II and thus for games, so the support in modelers like
Max and trueSpace is nonexistent. There are tools to create and view these models, but I’ll
get to that. For now, I just want you to have a feel for what the format supports. Basically,
an .MD2 file is a set of vertices, animation frames, skins, and a couple other things for a
Quake II in-game model. Each file is a complete animation set for a Quake II character and
contains all the animation sequences for each of the various animations a Quake character
might have (384 frames total): walk, die, fire, turn, and so on.

The skins are basically square texture maps, usually 256×256 in .PCX file format, that are
used as textures for the models. All the textures are in a single skin, and by using texture
coordinates, you can cut out textures that you wish. Figures 8.51 and 8.52 show a skin to
apply onto an .MD2 mesh. 
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FIGURE 8.51 A Quake II .MD2 format skin.

And Figure 8.52 shows the actual mesh (as viewed in Milkshape 3D) from a .MD2 model
that I downloaded from http://www.planetquake.com/polycount—a great place to get
models. Of course, if you want to use this or any other model in a commercial game, you
may need permission.

The format also supports simple compression schemes, such as offset bias, delta encoding
of floats, and more. So all in all, it’s a simple format to parse and a simple format to
understand. Of course, it’s completely binary, but oh well! We’ll definitely use this format
later when we get to animation. The only downside is that the format has no sense of
materials, so when we load an object, we’ll apply a default material so that our more
advanced lighting engine knows what to do with the model.
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FIGURE 8.52 A single frame from a Quake II .MD2 mesh.

3D Modeling Tools Review
Well, this is it! We’re almost done with this chapter, but before I go, I want to give you a
rundown of some tools that I found useful for modeling and conversions for this chapter
(some of them are on the CD in evaluation form):

• Caligari trueSpace 4.0+ (Modeler primarily)—Shown in Figure 8.53. This is one of
my favorite modelers. It’s fast, easy, and reasonably priced. It also exports in a
number of file formats. Find out more at http://www.caligari.com.

• 3D Studio Max 3.0+ (modeler primarily)—Shown in Figure 8.54. I don’t need to
say much here; Max is the #$@$%, period. It’s used to make games, movies, you
name it. Of course, the $2,500—$5,000 price tag might be a little prohibitive to you.
Find out more at http://www.discreet.com/products/3dsmax/.

• Gmax—Similar to 3D Studio Max shown in Figure 8.54. This is an interesting
product. Apparently it’s a free, but slightly crippled version of 3D Studio Max. I have
to read more, but it’s definitely something to check out. Basically, you can license it
as a game developer. Anyway, it’s also on the Discreet site at
http://www.discreet.com/products/gmax/.
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FIGURE 8.53 trueSpace in action.
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FIGURE 8.54 Gmax Game Studio in action. 
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• Blender (Modeler primarily)—Shown in Figure 8.55. This is a free modeler, but the
company NaN has temporarily gone out of business, so I guess the “free-and-charge-
for-tech-support idea” isn’t really working in the real world. Anyway, the modeler is
amazing. I really hope the designer can license it to someone or simply repackage it
as a real product and sell it. Anyway, you can find out more at
http://www.blender.nl.
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• Milkshape 3D (Modeler, viewer, and exporter)—Shown in Figure 8.52 previously.
This is an awesome tool, completely designed for game file formats. However, it’s
one of those open source, floating-around tools, so different people play with it and
upgrade it, which is good and bad. It’s good because it’s almost free, and bad because
there isn’t a single Web site for it. However, this one seems to be stable:
http://www.swissquake.ch/chumbalum-soft/index.html.

• Deep Exploration (Viewer, exporter, and modeler)—Shown in Figure 8.56. This is
one of the most advanced tools I have seen. It has a wicked interface, and allows you
to view your data in all kinds of cool modes:

http://www.righthemisphere.com.
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FIGURE 8.56 Deep Exploration in action.

• Polytrans (Viewer and exporter)—This product has one of the most complete
import/export systems in existence. Pretty much every single 3D format is
supported, but it has weak support for game file formats. Check it out at
http://www.okino.com/conv/conv.htm.

• WorldCraft Editor (Level editor)—Shown in Figure 8.57. This is the tool behind
about a trillion mods and many games such as Half-Life. This tool can be used to
create gameworlds that can then be imported into your engine. At this point, we
don’t need something like this, but when we get to indoor stuff, this will be some-
thing to check out. There are lots of places working on WorldCraft, so you may have
to look around, but this site is pretty stable: http://www.valve-erc.com/.

And here are some cool links to 3D Web sites and model resources:

• http://www.planetquake.com/polycount/

• http://www.web3d.org/vrml/vft.htm

• http://www.gmi.edu/~jsinger/free3dmodels.htm

In general, I use trueSpace and Max to model, and perform conversions and manipula-
tions with Deep Exploration. However, I think that Milkshape 3D is a lot more powerful
than it looks at first glance and I would like to play with it a little more.
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FIGURE 8.57 WorldCraft Editor in action.

Summary
This chapter has been nasty! It was both a theoretical download and a practical implemen-
tation. We covered a lot of material: basic light theory, materials, lights themselves, a lot
of math, shading, depth sorting, new model formats, and a lot more. Your brain is proba-
bly swimming with ideas now—I know mine is. But there will be time for that later. Let’s
move right into Chapter 9, which will be much shorter (I am sure you are glad about that)
and finish off with more advanced pixel-level shading, texturing, and talk in detail about
triangle rasterization again. By the end of the next chapter, you’ll have a complete texture-
mapped, lit 3D engine (outdoor, of course).
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IN THIS CHAPTER

• The New T3D Engine
Features

• Upgrading the T3D Data
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Shading

• Basic Sampling Theory

• Updating the
Lighting/Rasterization Engine
for Textures

• Final Thoughts on
Optimization Strategies for 8-
and 16-Bit Modes

CHAPTER 9

Interpolative Shading
Techniques and Affine

Texture Mapping

“The things I’m going to do for my country.”

—Triple X

I just finished writing all the software for this chapter! More
than 15,000 lines of code had to be changed, written, and
reworked just for the core engine, plus another 5,000 or so for
the demos, but I think it’s going to work for us. My goal has
never been to give you a working 3D engine and say, “Here,
have fun!” but rather to iteratively create multiple 3D engines
step-by-step, purposely showing you the thinking process that
one needs when undertaking such an endeavor. Or, in my
case, the road to insanity <BG>.

In any event, I’m really excited about the performance I’m
seeing from the 16-bit core of the engine. In fact, I’m so
excited that this chapter may be the last of the 8-bit material
because there’s really no need for it anymore. However, I’ll
tell you why when we cross that bridge. For now, let’s get
started! Here’s what we’re going to be doing:

• Discussing the new engine

• Upgrading the 3D data structures

• Rewriting the object loaders

• Polygon rasterization review

• Implementing Gouraud shading

• Basic sampling theory

• Implementing affine texture mapping
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• Adding lighting to textures

• Functional listing review

• Optimization strategies for 8- and 16-bit modes

The New T3D Engine Features
In the last chapter, we left our engine with the capability to render solid objects with a
full-colored lighting system that supported ambient, infinite, point, and spotlights for a
flat-shaded lighting model. In addition, we started on a material system and wrote a
number of file loaders and support software to load 3D Studio .ASC and Caligari .COB
files. The only remaining things to cover were Gouraud shading and basic texture
mapping, which we put off until this chapter.

Although you may not think those are big subjects, you would be wrong. The reason is
that writing a texture mapper or a Gouraud shader in itself is not that hard; the real
problem is integrating it into the engine in a useable form. Anyone can write a program
that spins a 3D cube in front of a camera with lights and a texture, but the hard thing is
to write a generalized system that allows arbitrary cameras, lights, models, textures, resolu-
tions, bit depths, file formats, and so forth. This is what we’ve been doing. Along those
lines, I can tell you that integrating Gouraud shading and texture mapping have been
quite a challenge. The entire engine needed rewriting to add the subtle details that we
needed in the data structures, lighting modules, model loaders, and more. Also, I made
optimization such as pre-computing the length of normals for polygon flat shading and
other optimizations in the lighting modules to cache mathematical operations on a per-
light basis to speed things up—lots of cool stuff, needless to say!

Although we took quite some time discussing the concept of materials and a material
database, I’m still not ready to integrate a complete material system into the engine. Thus,
to support textures, texture coordinates, and full Gouraud shading, I had to alter the data
structures and come up with version 2.0 of many of them (which we’ll discuss shortly).
However, as a side effect, all the functions had to be rewritten—at least the ones that dealt
with 3D.

Of course, in many cases, this simply meant changing prototypes and copying code. But
in other cases, the new elements of the data structures had to be taken into consideration.
Moreover, some design changes had to be made to the lighting system and the color infor-
mation flow; that is, where post-lighting colors are stored for any polygon.

Then there are the speed issues that are really starting to crop up. I’m getting to the point
where optimizing code is a necessity and I can no longer get away with writing under-
standable code. In other words, I’ve had to resort to using low-level tricks to get perfor-
mance in some areas—the texture mapper, for example. Nonetheless, I haven’t had to use
assembly language, but I’m dying to use SIMD (single instruction multiple data) instruc-
tions to perform parallel processing, which could speed our code up at least four times.
But I’ll cover that in the optimization chapter.
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Summing up, this new version of the engine supports both 8/16 modes with full Gouraud
shading and lighting for single-colored polygons, and flat shading for texture mapped
polygons—and did I mention it’s all still in full RGB color? With that in mind, let’s talk
about the some of the new engine software. I promise to keep it reasonably short because I
don’t like code dumps without lots of theory behind them. But on the other hand, theory
isn’t very helpful without having an idea of where you’re going—so let’s see what we can
learn about the new engine.

CAUTION

I did make one assumption in version 2.0 of the engine and that is that 16-bit mode is in 5.6.5
format. This had to be done because asking the question on the fly would kill performance. I
could use conditional compilation and have the best of both worlds, but frankly I can’t find any
5.5.5 cards anymore, so I think this is moot at this point.

Upgrading the T3D Data Structures and Design
First off, the name of the new library module is

T3DLIB7.CPP—The core C/C++ functions

T3DLIB7.H—The header

As usual, you must compile and link it with all the other library modules to create any of
the programs from this chapter—that means T3DLIB1.CPP through T3DLIB7.CPP. Alright,
as I mentioned in the introduction earlier, the entire point of this chapter is simply to add
Gouraud shading and affine texture mapping (remember that affine texture mapping
simply means linear and not perspective correct). However, my dilemma with this new
material is that although it seems simple on the surface, a deeper analysis uncovers that
many changes must be made to our data structures to support the new lighting and
texturing features. Of course, this causes the side effect that all new functions must be
created.

TIP

All the C++ people are probably gloating and saying with C++ this wouldn’t be an issue! But, it’s
still an issue; true, we can just derive another class and then implement the changes, but the fact
is that we must derive another class. However, in the end, I don’t want a class hierarchy, I want a
single data structure and single set of functions that work. So, the way we’re developing this
engine is the most efficient in that sense.

The bright side to all this is that, in most cases, the same functions can be used from the
previous version of the engine with a few key code lines changed and, of course, a new
prototype. Although we’re going to cover everything new in this chapter, I always like to
give you a preview of what you’re looking at so that you don’t have to skip to the end
every time you see something new. So, let’s take a look at the new T3DLIB7.H header file
key elements and their significance to the engine.
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CAUTION

Although this warning is out of context, if you try any of the 8-bit demos, there may be a delay
of up to 1 minute while lookup tables are computed. You’ll see a black screen during this period,
so don’t be alarmed.

New #defines
The following are the #defines for the new library module T3DLIB7.CPP. Of course, they’re
all contained in the T3DLIB7.H header file. Let’s take a look at them one section at a time.
Here are some constants to help the texture mapper function draw triangles:

// defines for texture mapper triangular analysis

#define TRI_TYPE_NONE      0

#define TRI_TYPE_FLAT_TOP    1 

#define TRI_TYPE_FLAT_BOTTOM   2

#define TRI_TYPE_FLAT_MASK   3

#define TRI_TYPE_GENERAL    4

#define INTERP_LHS       0

#define INTERP_RHS       1

#define MAX_VERTICES_PER_POLY  6

Basically, the preceding constants are used internally by the state machine of the texture
mapper to help it draw. You probably won’t ever need to concern yourself with them, but
one interesting thing is how I decided to make the texture mapping function render
general triangles rather than breaking up triangles into two special case triangles with a
flat top and bottom—these constants help that happen.

The next #defines are for the new POLY4DV2 polygon structure, which we’ll get to shortly,
but for now ,review these to see if they look at all familiar:

// defines for polygons and faces version 2

// attributes of polygons and polygon faces

#define POLY4DV2_ATTR_2SIDED        0x0001

#define POLY4DV2_ATTR_TRANSPARENT      0x0002

#define POLY4DV2_ATTR_8BITCOLOR       0x0004

#define POLY4DV2_ATTR_RGB16         0x0008

#define POLY4DV2_ATTR_RGB24         0x0010

#define POLY4DV2_ATTR_SHADE_MODE_PURE    0x0020

#define POLY4DV2_ATTR_SHADE_MODE_CONSTANT  0x0020 // (alias)

#define POLY4DV2_ATTR_SHADE_MODE_EMISSIVE  0x0020 // (alias)
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#define POLY4DV2_ATTR_SHADE_MODE_FLAT    0x0040

#define POLY4DV2_ATTR_SHADE_MODE_GOURAUD  0x0080

#define POLY4DV2_ATTR_SHADE_MODE_PHONG   0x0100

#define POLY4DV2_ATTR_SHADE_MODE_FASTPHONG 0x0100 // (alias)

#define POLY4DV2_ATTR_SHADE_MODE_TEXTURE  0x0200 

// new

#define POLY4DV2_ATTR_ENABLE_MATERIAL 0x0800 // use material for lighting

#define POLY4DV2_ATTR_DISABLE_MATERIAL 0x1000 // use basic color only 

// for lighting (emulate ver 1.0)

// states of polygons and faces

#define POLY4DV2_STATE_NULL        0x0000

#define POLY4DV2_STATE_ACTIVE       0x0001 

#define POLY4DV2_STATE_CLIPPED      0x0002 

#define POLY4DV2_STATE_BACKFACE      0x0004 

#define POLY4DV2_STATE_LIT        0x0008

If you’ve been experimenting with the engine at all, you should realize that nearly all the
POLY4DV2_* #defines are identical to the previous POLY4DV1_*—only a few new #defines
have been added, and I’ve highlighted them in bold. The new #defines again help us put
some structure in place for the future addition of materials, and also to tag polygons that
have been lit. This is needed because we have multiple pipeline paths now for lighting (or
we will, by the end of the chapter), so once a polygon is lit, we don’t want to light it
again—ouch!

The next #defines are vertex control flags that are sent in when objects are loaded by the
object loading functions. These flags help override certain properties such as shading
models, and help straighten out things such as inverted texture coordinates and so forth.

// (new) used for simple model formats to override/control the lighting

#define VERTEX_FLAGS_OVERRIDE_MASK   0xf000 // this masks bits to 

// extract them

#define VERTEX_FLAGS_OVERRIDE_CONSTANT 0x1000

#define VERTEX_FLAGS_OVERRIDE_EMISSIVE 0x1000 //(alias)

#define VERTEX_FLAGS_OVERRIDE_PURE   0x1000

#define VERTEX_FLAGS_OVERRIDE_FLAT   0x2000

#define VERTEX_FLAGS_OVERRIDE_GOURAUD 0x4000

#define VERTEX_FLAGS_OVERRIDE_TEXTURE 0x8000

#define VERTEX_FLAGS_INVERT_TEXTURE_U 0x0080  // invert u texture coord 

#define VERTEX_FLAGS_INVERT_TEXTURE_V 0x0100  // invert v texture coord

#define VERTEX_FLAGS_INVERT_SWAP_UV  0x0800  // swap u,v texture coords
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We’ll clear up all the vertex overrides when we discuss the object loader functions. Moving
on, the next #defines relate to the version 2.0 of the object container OBJECT4DV2 struc-
ture. Once again, most are duplicates with the same values simply renamed with the new
OBJECT4DV2_* tag, but there are a couple interesting added defines that I’ve highlighted
with bold:

// defines for objects version 2

// objects use dynamic allocation now, but keep as max values

#define OBJECT4DV2_MAX_VERTICES   1024 

#define OBJECT4DV2_MAX_POLYS     2048 

// states for objects

#define OBJECT4DV2_STATE_NULL    0x0000

#define OBJECT4DV2_STATE_ACTIVE   0x0001

#define OBJECT4DV2_STATE_VISIBLE   0x0002 

#define OBJECT4DV2_STATE_CULLED   0x0004

// new

#define OBJECT4DV2_ATTR_SINGLE_FRAME 0x0001 // single frame object 

// (emulates ver 1.0)

#define OBJECT4DV2_ATTR_MULTI_FRAME 0x0002 // multi frame object for 

// .md2 support etc.

#define OBJECT4DV2_ATTR_TEXTURES   0x0004 // flags if object contains 

// textured polys?

Only the last three #defines are of interest. The OBJECT4DV2_ATTR_SINGLE_FRAME and
OBJECT4DV2_ATTR_MULTI_FRAME #defines help us with supporting objects that have multi-
ple frames. Remember, we want to have “mesh animations” something like the Quake II
.MD2 format. To support this, we need to somehow tag an object to indicate that it’s
holding multiple frames in its vertex lists. When the “current” frame is selected, only
those specific vertices for that particular frame should be used, although the same poly-
gons, colors, and so forth will be mapped to those vertices—more on this later. Finally, the
OBJECT4DV2_ATTR_TEXTURES attribute simply flags an object as having textures on it some-
where; this helps us with certain optimizations.

Next we have the new rendering list maximum polygon setting. This is completely arbi-
trary, so feel free to change it. But I doubt we can render more than 10,000 polygons per
frame at more than 15–30 fps, so 32,768 polygons should be more than enough:

// render list defines ver 2.0

#define RENDERLIST4DV2_MAX_POLYS     32768

The next set of #defines are rather interesting—read the inline comments to see why—but
basically when we define a vertex from now on, we’re going to use a much more robust
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vertex definition that supports not only the vertex, but also the normal, texture coordi-
nates, and attribute flags:

// defines for vertices, these are “hints” to the transform and

// lighting systems to help determine if a particular vertex has

// a valid normal that must be rotated, or a texture coordinate

// that must be clipped etc., this helps us minimize load during lighting

// and rendering since we can determine exactly what kind of vertex we

// are dealing with, something like a (direct3d) flexible vertex format in 

// as much as it can hold:

// point

// point + normal

// point + normal + texture coordinates

#define VERTEX4DTV1_ATTR_NULL       0x0000 // this vertex is empty

#define VERTEX4DTV1_ATTR_POINT      0x0001

#define VERTEX4DTV1_ATTR_NORMAL      0x0002

#define VERTEX4DTV1_ATTR_TEXTURE     0x0004

I’m very excited about the new vertex VERTEX4DTV1 because it’s going to make a lot of our
work easier, but let’s hold off on its definition until we get to the data structures in a few
pages.

Amazingly, that’s all there are to the added #defines. I told you there wasn’t much.
Keeping incremental is the key; that way you learn a lot and get a lot of experience at the
same time. Remember, learning what not to do is just as important as learning what to do!

Added Math Structures
Have you looked at the math library we made lately? There’s a lot of stuff in there! We
went a little nuts I think, and I find myself needing very little additional math functional-
ity each chapter. About the only thing that’s ever required are some new data structures
with cleaner names. In any event, almost the only thing I found myself needing in this
chapter were some pure integer vector types, so here they are

// integer 2D vector, point without the w ////////////////////////

typedef struct VECTOR2DI_TYP

{

union

{

int M[2]; // array indexed storage

// explicit names

struct

{
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int x,y;

}; // end struct

}; // end union

} VECTOR2DI, POINT2DI, *VECTOR2DI_PTR, *POINT2DI_PTR;

// integer 3D vector, point without the w ////////////////////////

typedef struct VECTOR3DI_TYP

{

union

{

int M[3]; // array indexed storage

// explicit names

struct

{

int x,y,z;

}; // end struct

}; // end union

} VECTOR3DI, POINT3DI, *VECTOR3DI_PTR, *POINT3DI_PTR;

// integer 4D homogenous vector, point with w ////////////////////

typedef struct VECTOR4DI_TYP

{

union

{

int M[4]; // array indexed storage

// explicit names

struct

{

int x,y,z,w;

}; // end struct

}; // end union

} VECTOR4DI, POINT4DI, *VECTOR4DI_PTR, *POINT4DI_PTR;

Basically these are 2D, 3D, and 4D integral vectors—nothing more. They simply help
when doing texture mapping, or storing data in vector form (but integral) that I don’t feel
like converting to floats.
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Utility Macros
Here’s a nice floating-point comparison function:

// floating point comparison

#define FCMP(a,b) ( (fabs(a-b) < EPSILON_E3) ? 1 : 0)

As you may or may not know, when working with floating-point numbers, it’s a bad idea
to use the following code:

float f1, f2;

//..f1, f2 are set to some value

if (f1==f2) 

{

// perform logic

}

The problem lies within the “if” conditional. Even though f1 and f2 may be identical as
far as you’re concerned, f1 and f2 might have picked up some numeric “noise” along the
way due to rounding and lack of accuracy. Alas, although they should be mathematically
equal, they may not be as far as the comparison goes. Thus, it’s a better idea to compute
their absolute difference and compare it to some small value epsilon that’s nearly 0 such
as .001 or .0001. For all intents and purposes, both of those numbers are 0.0 because float-
ing-point numbers are only accurate to 4–5 decimal places at best. In any case, that’s why
I needed that FCMP() macro.

The next inline macros are just copy functions used to copy the new VERTEX4DTV1 objects
into one another. Technically, we don’t need copy operators for them, but until I optimize
everything, I like to spell things out:

inline void VERTEX4DTV1_COPY(VERTEX4DTV1_PTR vdst, VERTEX4DTV1_PTR vsrc)

{ *vdst = *vsrc; }

inline void VERTEX4DTV1_INIT(VERTEX4DTV1_PTR vdst, VERTEX4DTV1_PTR vsrc)

{ *vdst = *vsrc; }

This last inline function is a slightly faster version of our previous length computation
function. The only difference is that old VECTOR4D_Length_Fast() made a function call to
the generic 3D distance calculation, and I didn’t like that extra function call. So, here’s a
slightly better one:

inline float VECTOR4D_Length_Fast2(VECTOR4D_PTR va)

{

// this function computes the distance from the origin to x,y,z
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int temp; // used for swaping

int x,y,z; // used for algorithm

// make sure values are all positive

x = fabs(va->x) * 1024;

y = fabs(va->y) * 1024;

z = fabs(va->z) * 1024;

// sort values

if (y < x) SWAP(x,y,temp)

if (z < y) SWAP(y,z,temp)

if (y < x) SWAP(x,y,temp)

int dist = (z + 11 * (y >> 5) + (x >> 2) );

// compute distance with 8% error

return((float)(dist >> 10));

} // end VECTOR4D_Length_Fast2

Adding Features to Represent 3D Mesh Data
Updating the 3D data structures was probably the most painful of all. The “thing of thing”
is that it’s pointless just to skip to the end and read the last page (if you get what I mean),
so I want to smoothly iterate from version to version, adding just what we need to get the
job done. But that’s a lot of work!

Anyway, refreshing your memory from last chapter, we implemented a full-colored light-
ing system that supported both emissive and flat shaded illumination on a per-polygon
basis. Both the PLG/PLX and .COB file formats enabled us to create models that could
define which polygons had which properties (.ASC format just supports vertices, polygons,
and colors). The PLG/PLX format allowed us to manually set the polygon shading type via
these flags:

// defines for enhanced PLG file format -> PLX

// the surface descriptor is still 16-bit now in the following format

// d15           d0

//  CSSD | RRRR| GGGG | BBBB

// C is the RGB/indexed color flag

// SS are two bits that define the shading mode

// D is the double sided flag

// and RRRR, GGGG, BBBB are the red, green, blue bits for RGB mode

// or GGGGBBBB is the 8-bit color index for 8-bit mode
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// bit masks to simplify testing????

#define PLX_RGB_MASK    0x8000 // mask to extract RGB or indexed color

#define PLX_SHADE_MODE_MASK 0x6000 // mask to extract shading mode

#define PLX_2SIDED_MASK   0x1000 // mask for double sided

#define PLX_COLOR_MASK 0x0fff // xxxxrrrrggggbbbb, 4-bits per channel RGB

// xxxxxxxxiiiiiiii, indexed 8-bit index

// these are the comparision flags after masking

// color mode of polygon

#define PLX_COLOR_MODE_RGB_FLAG   0x8000  // poly uses RGB color

#define PLX_COLOR_MODE_INDEXED_FLAG 0x0000  // poly uses an indexed 8-bit color

// double sided flag

#define PLX_2SIDED_FLAG       0x1000  // poly is double sided

#define PLX_1SIDED_FLAG       0x0000  // poly is single sided

// shading mode of polygon

#define PLX_SHADE_MODE_PURE_FLAG   0x0000 // poly is a constant color

#define PLX_SHADE_MODE_CONSTANT_FLAG 0x0000 // alias

#define PLX_SHADE_MODE_FLAT_FLAG   0x2000 // poly uses flat shading

#define PLX_SHADE_MODE_GOURAUD_FLAG  0x4000 // poly used gouraud shading

#define PLX_SHADE_MODE_PHONG_FLAG   0x6000 // poly uses phong shading

#define PLX_SHADE_MODE_FASTPHONG_FLAG 0x6000 // poly uses phong shading

For the .COB models, we decided that we would use the “color” shader to define
colored/textured polygons, and the “reflectance” shader to define the type of lighting
based on the conventions outlined in the comments of the .COB loader:

// now we need to know the shading model, it’s a bit tricky, 

// we need to look for the lines

// “Shader class: color” first, then after this line is:

// “Shader name: “xxxxxx” (xxxxxx) “

// where the xxxxx part will be “plain color” and 

// “plain” for colored polys 

// or “texture map” and “caligari texture” for textures

// THEN based on that we hunt for “Shader class: reflectance” 

// which is where the type

// of shading is encoded, we look for the 

// “Shader name: “xxxxxx” (xxxxxx) “ again, 

// and based on it’s value we map it to our shading system as follows:

// “constant” -> MATV1_ATTR_SHADE_MODE_CONSTANT 

// “matte”  -> MATV1_ATTR_SHADE_MODE_FLAT

// “plastic” -> MATV1_ATTR_SHADE_MODE_GOURAUD
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However, we had a little problem with the lighting calculations. If you recall, we didn’t
really think far enough ahead in the polygon structures to have any storage for a
polygon’s final color after lighting. In other words, a polygon’s color was stored in 8/16 bit
format in the color field of the polygon structures. That data was then used in the light-
ing calculations and a final color was computed based on the lights. Now, if lighting was
performed at the rendering list stage, this wasn’t too much of an issue because any
polygon in the rendering list can be altered or destroyed because it’s on its way to the
screen. However, the problem is if we made a call to light an object while it was still intact
as an object and not inserted into the rendering list, we walked into trouble.

The reason for the trouble is that we cannot destroy the color of any polygon with the
lighting engine’s final color. Thus, our strategy was to copy the lit color data into the
upper 16 bits of the polygon’s color as a hack. Figure 9.1 illustrates this.
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FIGURE 9.1 Using the upper 16 bits of the polygon color field to store the lit color.

This hack worked great, and in fact, we can pat ourselves on the back and say, “Wow,
that’s a great idea.” But this technique won’t work anymore when we’re lighting polygons
for full Gouraud shading. Hence, one of the major additions to the polygon data was
added data field support for final color storage that doesn’t disturb the base color.

The next thing we have to concern ourselves with is the Gouraud shading algorithm itself.
Referring to Figure 9.2, we need a normal for each vertex (that’s the point of Gouraud
shading: to find the intensity at each vertex and interpolate). So, this is another thing we
need to concern ourselves with in addition to the final color for each vertex, once again
causing us to rethink our lit color storage for each polygon/vertex.

Finally, the last major things we need to add support for are animated meshes, such as
those in Quake II .MD2 format. Figure 9.3 illustrates the concept, but in essence mesh
animation is similar to standard bitmap animation—a series of frames is animated and
rendered. Mesh animation works in just this way. Say you have a cube composed of 8
vertices and 12 polygons. Each polygon has a specific color and shading model, and is
defined by three vertices in the master vertex list of the eight vertices. Now the trick is to
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add a frame. We create eight new vertices with the same ordering, but slightly changed
positions, and then replace the original eight vertices with these new vertices. Therefore,
the polygons are still defined, the colors are correct, and so are the textures, but the object
is now animated!
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FIGURE 9.3 Supporting multiple mesh frames in our objects.

Quake II .MD2 uses this exact technique. The only rules are that each mesh animation
must be composed of the same number of vertices and polygons. The positions of the
vertices can change, but not their relationship to the polygons; that is, if polygon 22 is
composed of vertices (12,90,200), it’s always composed of those vertices.

In any case, we aren’t going to add a .MD2 reader to this chapter because the chapter’s
material is way too large already. But we’re going to add animation support for this file
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type soon, and having multiple frame support is important, thus I’ve added this function-
ality to the OBJECT4DV2 structure and taken it into consideration in most of the new
rewritten functions.

With all that in mind, let’s take a look at the new vertex and polygon data structures one
by one.

Our First Real Vertex
Up to this point, we really haven’t had a “vertex” type in the 3D graphics sense of the
word; we’ve had vertex type data such as a point in 3D space and so on, but at this point,
we need to start creating some more robust data structures that can handle our needs for a
little while. Additionally, I tried to add a bit of control to allow a somewhat flexible vertex
format by means of tag fields (defined earlier with the VERTEX4DTV1_ATTR_* #defines).
This way, we can create various types of vertices that contain different types of informa-
tion, but the structure and layout must always stay the same. Anyway, here’s the new
VERTEX4DTV1 structure.

NOTE

If you’re a Direct3D programmer, you’ll appreciate the flexible vertex formats and why they’re so
important. Before them, programmers had to use pre-defined vertex formats and that made
programming more difficult.

// 4D homogeneous vertex with 2 texture coordinates

// and vertex normal, normal can be interpreted 

// as vector or point

typedef struct VERTEX4DTV1_TYP

{

union

{

float M[12];      // array indexed storage

// explicit names

struct

{

float x,y,z,w;   // point

float nx,ny,nz,nw; // normal (vector or point)

float u0,v0;    // texture coordinates 

float i;      // final vertex intensity after lighting

int  attr;    // attributes/ extra texture coordinates

};         // end struct

// high level types

struct 
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{

POINT4D v;    // the vertex

VECTOR4D n;    // the normal

POINT2D t;    // texture coordinates

};

}; // end union

} VERTEX4DTV1, *VERTEX4DTV1_PTR;

Looks a little large, huh? Well, maybe, but I’m not trying to save space here. Referring to
the structure, it’s a union of a number of different types for ease of access, depending on
the way you want to write your algorithms. For example, if you want to think of the
vertex data as a stream of data (like Direct3D does), you might like accessing the data as
an array—that’s what the M[] part of the union is for. Similarly, you might like using
slightly higher-level names; thus, there are explicit names for each part of the vertex:

x,y,z,w—The point locating the vertex

nx,ny,nz,nw—The vertex normal (more on this later)

u0,v0—The 2D texture coordinates

i—The intensity or color of the vertex (future expansion)

attr—The vertex tags that specify the type of vertex and what it contains

Additionally, there are structured names via another unnamed union: v, n, and t; they’re
the vertex, normal, and texture coordinates, respectively. However, there’s nothing high
level for the attribute and intensity because they aren’t really components. Now, to use
the union is automatic because it’s unnamed. For example, to access the address of the 3D
point, you would use the following code:

VERTEX4DTV1 p1;

&p1.v

And to access only the x component of the 3D point:

&p1.x

Or using the v union:

&p1.v.x

Cool, huh?
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So, what’s nice is that we can pass the entire vertex, normal, or texture coordinates as
structures or we can drill down to the components themselves. Finally, when a vertex is
created, we now have the ability to add a normal (important for lighting) and texture
coordinates, but only if they’re needed. This is accomplished via the attr field of the
vertex type. For example, if we want to enable a vertex to support a 3D point and a
normal, but no texture coordinates, we would use the following setup:

VERTEX4DTV1 p1;

p1.attr = VERTEX4DTV1_ATTR_POINT | VERTEX4DTV1_ATTR_NORMAL;

Of course, there’s no magical force stopping you from accessing the point, normal, or
texture coordinates at any time, but this attribute field is used as a message to let you and
your functions know what is valid.

The New Internal POLY4DV2 Structures
The next big change to the engine data structures are the polygon structures. If you recall,
we have two structures: one that refers to external vertex lists in another structure, such as
an object, and another that’s totally self-contained for entry into the rendering list. Refer
to Figure 9.4, and let’s take a look at the new POLY4DV2, structure which needs external
vertex data:

// a polygon ver 2.0 based on an external vertex list 

typedef struct POLY4DV2_TYP

{

int state;      // state information

int attr;      // physical attributes of polygon

int color;      // color of polygon

int lit_color[3];  // holds colors after lighting, 0 for flat shading

// 0,1,2 for vertex colors after vertex lighting

BITMAP_IMAGE_PTR texture; // pointer to the texture 

// information for simple texture mapping

int mati;       // material index (-1) no material (new)

VERTEX4DTV1_PTR vlist; // the vertex list itself

POINT2D_PTR   tlist; // the texture list itself (new)

int vert[3];    // the indices into the vertex list

int text[3];    // the indices into the texture coordinate list (new)

float nlength;   // length of normal (new)

} POLY4DV2, *POLY4DV2_PTR;
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FIGURE 9.4 A graphical representation of the new POLY4DV2 structure.

I’ve highlighted with bold all the new and changed fields—pretty much all of them! Let’s
discuss the motivation for each.

• lit_color[3]—The new lighting system needs support not only for a single color for
the entire polygon, but also for three colors for each vertex when Gouraud shading
is requested. Hence, lit_colors[3] supports this feature. When lighting calculations
are performed for a flat-shaded polygon, the results do not overwrite the upper 16
bits of the color field, but are instead stored in lit_colors[0]. This is similar to
when Gouraud shading calculations are performed; a final color for each vertex is
computed and stored in lit_colors[0,1,2], respectively.

• texture—To keep things as simple as possible, I’m still shying away from full mater-
ial support, but we still need storage for each polygon’s texture map for textured
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polys. This field is a pointer to the texture map, if there is one for the polygon in
question.

• mati—This is a material index into the material database for future planning of
material support. I’m still not sure if we’ll use it, but I decided to add it in this itera-
tion of the data structure to save us some trouble.

• tlist—This is newly added support for texture mapping. As shown in Figure 9.4,
when a texture map is textured onto a polygon, we need to specify “texture coordi-
nates.” Thus the new OBJECT4DV2 structure has an array of texture coordinates that
are indexed by tlist, just as the vertex array is indexed by vlist. These texture
coordinates are then used during the texture mapping stage.

• text[3]—These are the actual texture indices into the texture coordinate list.

• nlength—This field contains the length of the polygon normal vector to speed up
lighting calculations. This is a small optimization, but one that was bothering me. If
you look at the math in the lighting engine, we’re computing normals of polygons
by taking the cross product of ( v0->v1 X v0->v2 ) and then normalizing the vector
to length 1.0 or at least computing it’s length.

The cross product doesn’t worry me as much as the computation of length. Not only did
we use an approximate value, but there’s absolutely no need to perform the length calcula-
tion because it does not change when the polygon is rotated or translated. Thus we can
precompute the normal length of all polygon normals as long as we always use the same
two vectors (which we do) for the computation. Additionally, we get the second-order
effect of having better accuracy because the normal length calculation is performed during
offline load time, so we don’t have to call the real-time (faster) length approximation
function. In short, we save a lot of cycles with this optimization.

TIP

You might be asking, “Why not also pre-compute the normal vector to the polygon?” We could
do this also, and then normalize it, but then we would have to rotate the vector when we trans-
formed the mesh, so it’s a wash. The rotation by a 4×4 matrix turns out to be an equal or greater
amount of math than the cross product calculation, so although it seems like a good idea,
precomputing the polygon normal doesn’t help us, because we lose the gains due to the need to
transform the normal by a 4×4 matrix.

The New External Self Contained POLYF4DV2 Structures
The next newly updated polygon structure is the totally self-contained POLYF4DV2 struc-
ture, which is used to store final polygon information in the rendering list. Take a look at
the new structure definition:

// a self contained polygon used for the render list version 2 

typedef struct POLYF4DV2_TYP

{
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int state;      // state information

int attr;      // physical attributes of polygon

int color;      // color of polygon

int lit_color[3];  // holds colors after lighting, 0 for flat shading

// 0,1,2 for vertex colors after vertex lighting

BITMAP_IMAGE_PTR texture; // pointer to the texture information for simple 

// texture mapping

int   mati;  // material index (-1) for no material (new)

float  nlength; // length of the polygon normal if not normalized (new)

VECTOR4D normal; // the general polygon normal (new)

float  avg_z;  // average z of vertices, used for simple sorting (new)

VERTEX4DTV1 vlist[3]; // the vertices of this triangle 

VERTEX4DTV1 tvlist[3]; // the vertices after transformation if needed 

POLYF4DV2_TYP *next;  // pointer to next polygon in list??

POLYF4DV2_TYP *prev;  // pointer to previous polygon in list??

} POLYF4DV2, *POLYF4DV2_PTR;

POLYF4DV2 is nearly identical to the POLY4DV2 structure. The only difference is that the
storage for vertices are internal rather than external via a link. Additionally, the actual
VERTEX4DTV1 representing each vertex now contains the texture coordinates as well, so the
all the information we need for every vertex is contained within vlist[] and tvlist[].
Other than those differences, all the fields with the same names as contained in POLY4DV2
have the seem meaning.

Updating the Object Containers and Rendering List
Now for the big daddy! In our original design, we decided to contain “objects” in a
general object structure that contained both vertex and polygon information for the
object. This seems to work great for objects that move around in the game, but will it
work for other higher-level data such as game levels and so forth? The answer is yes, for
the most part. In fact, we may decide to compose a level by merging a list of objects, each
representing a floor, or maybe even a room, so we are on the right track. Of course, when
we get to spatial partitioning and so forth, we’ll see what transformations and changes
need to be made to objects to support the concept of level geometry. But for now these are
working as good containers, so we’ll stick with them.

The new version object container OBJECT4DV2 is roughly the same as the old one, but of
course it has texture coordinate support, new attributes, and a global texture (which I’ll
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get to in a moment). But the big change is that the new OBJECT4DV2 structure supports
multi-mesh animation or frames. However, I haven’t written anything to take advantage
of it (an .MD2 reader would do the trick), but I’m placing the infrastructure for the
support. Take a look back at Figure 9.3 to see a graphic illustration of the new OBJECT4DV2
structure and to see how each frame is stored. The structure follows; focus your attention
on the bolded fields:

// an object ver 2.0 based on a vertex list and list of polygons

// new object has a lot more flexibility and supports “framed” animation

// that is this object can hold hundreds of meshes as lon as

// the mesh has the same polygons and geometry, but with changing 

// vertex positions similar to the Quake II .md2 format

typedef struct OBJECT4DV2_TYP

{

int  id;     // numeric id of this object

char name[64];  // ASCII name of object just for kicks

int  state;    // state of object

int  attr;    // attributes of object

int  mati;    // material index overide (-1) - no material (new)

float *avg_radius; // [OBJECT4DV2_MAX_FRAMES]; // average radius of object 

// used for collision detection

float *max_radius; // [OBJECT4DV2_MAX_FRAMES]; // maximum radius of object

POINT4D world_pos; // position of object in world

VECTOR4D dir;    // rotation angles of object in local

// cords or unit direction vector user defined???

VECTOR4D ux,uy,uz; // local axes to track full orientation

// this is updated automatically during

// rotation calls

int num_vertices;  // number of vertices per frame of this object

int num_frames;   // number of frames (new) 

int total_vertices; // total vertices

int curr_frame;   // current animation frame (0) if single frame (new)

VERTEX4DTV1_PTR vlist_local; // array of local vertices

VERTEX4DTV1_PTR vlist_trans; // array of transformed vertices

// these are needed to track the “head” of the vertex list for 

// multi-frame objects

VERTEX4DTV1_PTR head_vlist_local;

VERTEX4DTV1_PTR head_vlist_trans;
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// texture coordinates list (new)

POINT2D_PTR tlist;    // 3*num polys at max

BITMAP_IMAGE_PTR texture; // pointer to the texture information for 

// simple texture mapping (new)

int num_polys;      // number of polygons in object mesh

POLY4DV2_PTR plist;   // ptr to polygons (new)

// METHODS //////////////////////////////////////////////////

// setting the frame is so important that it should be a member function

// calling functions without doing this can wreak havok!

int Set_Frame(int frame);

} OBJECT4DV2, *OBJECT4DV2_PTR;

Most of the new fields should make sense from their names and the previous polygon
definitions. About the only interesting changes/additions are in relation to the vertex and
texture coordinate lists and support for multi-frame objects, so let’s look at those:

• *avg_radius, *max_radius—Because objects can now contain multiple frames, each
mesh frame will have different vertex values. Hence the average and maximum radii
will change from frame to frame. Therefore, these average and max radius values
now need to be arrays to support this possibility.

• num_frames—Number of animation frames.

• curr_frame—Current active frame mesh.

• vlist_local—Pointer to the active frame’s vertex mesh.

• vlist_trans—Pointer to the active frame’s vertex mesh (transformed versions).

• head_vlist_local—Head of the entire vertex list.

• head_vlist_trans—Head of the entire vertex list (transformed versions).

• tlist—Pointer to the head of the texture coordinate list; we need only one list for
all animation frames. Also, take a moment to make sure that you understand what
this list contains. Even though, we haven’t covered texture mapping yet, the point
of this list is to hold the actual texture coordinates for the entire mesh.
Geometrically, there are up to 3*num_vertices texture coordinates; in other words,
you might have a mesh such as a cube that only has texture coordinates (0,0), (0,1),
(1,0), and (1,1). Therefore, there would be a total of four possible texture coordi-
nates; thus, each polygon vertex has an index into this array indicating which
texture coordinate to use. However, in the worst case scenario, each vertex may need
a specific texture coordinate for each polygon; in this case, 3*num_vertices texture
coordinates would be needed.
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So, let’s talk a little more about mesh animations and the meanings of the fields discussed
earlier. As I outlined, our first attempt at animation will be static multiple-frame anima-
tions whereby we load a number of meshes and then flip through the meshes just as we
would bitmaps in a 2D animation. However, we’re going to force a couple constraints on
mesh animations: First, the number of vertices must be the same mesh to mesh; second,
the polygon information of the vertices that make up each polygon must not change. The
only things that we allow to change are the positions of the vertices for each mesh. These
conventions are to support the Quake II .MD2 format for the most part. We aren’t imple-
menting any of the animation functionality in this chapter, but we’re nonetheless getting
ready for it later.

TIP

More advanced animation systems use forward or inverse kinematics that are based on physical
models rather than static mesh information. A mathematical model runs on the mesh information
that transforms the joints based on the external forces or animation data that’s used to transform
joints. Thus, an object is composed of a hierarchy of subobjects that animate individually to
create a full-bodied animation.

Let’s talk a moment about the multiple-frame support. When a frame is selected into
“context,” the head pointers are used along with the number of vertices and the current
frame to find the address of the frame in question. Then the pointers vlist_local and
vlist_trans are vectored to the frame and anything that’s performed on vlist_local and
vlist_trans is transparently performed on the correct frame. This is shown in Figure 9.5.
Other than this, the only housekeeping is to be aware that when a frame changes, the
average and maximum radius arrays must be accessed at the current frame element as
well. Very few other changes need to be made because changing from static array to point-
ers to reference vlist_local and vlist_trans make all this multiple frame stuff trivial—
just a pointer manipulation really.
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Next, we’re using dynamically allocated arrays for more efficient memory consumption
and to help implement the multiple frames support. The only problem with this is that
not all file formats start with something like this:

“number of polygons, number of vertices, number of texture coordinates”

That would be nice! Therefore, a little legerdemain must be used when allocating the
arrays (and re-allocating in a couple cases once the real values have been read out of the
files). For example, I need to create the OBJECT4DV2 object first and then load the vertices
and polygons into it, but when reading the .COB file format, for example, not until later
do I know the real number of texture coordinates, so I have to approximate the worst case.
Just as an aside, if you don’t know how many of some object to allocate, just allocate the
worst case, and later perform a new memory allocation, copy, and delete the old one.

Finally, I added a single method to the OBJECT4DV2 structure to help set a frame because
calling functions if the frame isn’t set up and copied correctly can cause a crash. The name
of the method is Set_Frame(); to use it, you would simply do this:

object.Set_Frame(0);

That would set the frame to 0, which is how everything in this chapter works. Also, it
might be good to take a look at the code for Set_Frame() just to drive home the simplicity
of the pointer manipulation, so here it is

// setting the frame is so important that it should be a member function

int OBJECT4DV2::Set_Frame(int frame)

{

// this functions sets the current frame in a multi frame object

// if the object is not multiframed then the function has no effect

// test if object is valid?

if (!this)

return(0);

// test if its multiframe?

if (!(this->attr & OBJECT4DV2_ATTR_MULTI_FRAME))

return(0);

// we have a valid object and its multiframe, vector pointers to frame data

// check bounds on frame

if (frame < 0 )

frame = 0;

else
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if (frame >= this->num_frames)

frame = this->num_frames - 1;

// set frame

this->curr_frame = frame;

// update ptrs to point to “block” of vertices that represent this frame

// the vertices from each frame are 1-1 and onto relative to the polys that

// make up the object, they are simply shifted, we need this to re-vector

// the pointers based on the head pointers

this->vlist_local = &(this->head_vlist_local[frame*this->num_vertices]);

this->vlist_trans = &(this->head_vlist_trans[frame*this->num_vertices]);

// return success

return(1);

} // end Set_Frame

NOTE

There’s also an external version of the function Set_OBJECT4DV2_Frame(OBJECT4DV2_PTR obj,
int frame). It’s identical, but can be called as a normal function rather than an object method
call.

Lastly, each object has a root texture that’s applied to the entire object, meaning that
although the polygon structures support a different texture pointer for each polygon,
objects support only one texture. We might change this later, but when texturing objects,
it’s easier to think of a texture as a “skin.” Thus, when an object is loaded, the (single)
texture map is loaded into the texture object of the OBJECT4DV2. Then as polygons are
loaded, their internal texture pointer is pointed to the OBJECT4DV2’s internal texture. This
is where it would be nice to have a material library because we could easily have multiple
textures, but we’ll see later.

Functional Listing Review and Prototypes
Because we’ve added so much new software for this chapter, I want to take a few moments
to briefly review all the new functions. Remember, you have seen all the functions for the
most part, but now we have version 2.0 of everything. So, I just want to cover each func-
tion, and give brief explanation of its use. I won’t go into details about parameters or
examples because as I said, these are not new, they’re just new versions, so you know how
to use them for the most part—I just want to show you what’s available.

I know that most of the following prototypes might be a little confusing because you
don’t know what some of the new functions do, but I still want you to read each one of
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them so that when I’m discussing the theoretical material, you have at least an idea of
what’s available in the pipeline and the final functional support. Also, there are some
added functions for testing and support that aren’t really part of the final engine—they’re
for OBJECT4DV1 and RENDERLIST4DV1 support and for testing only. You don’t need to use
them at all for this chapter, but I wrote them as I was transitioning to the new version 2.0
data structures to help test things. You won’t see them here, but they’re in the .CPP and
.H files, just to let you know. Anyway, here are the useful prototypes from this chapter and
the T3DLIB7.CPP|H module of the engine. I’ve grouped similar functions together along
with their purpose:

Function:

char *Extract_Filename_From_Path(char *filepath, char *filename);

Purpose: Extracts the filename from a complete filepath.

Function:

int Set_OBJECT4DV2_Frame(OBJECT4DV2_PTR obj, int frame);

Purpose: Sets the current frame in a multimesh animation.

Function:

int Destroy_OBJECT4DV2(OBJECT4DV2_PTR obj);

Purpose: Destroys the object and frees all memory.

Function:

int Init_OBJECT4DV2(OBJECT4DV2_PTR obj,  // object to allocate

int _num_vertices, 

int _num_polys, 

int _num_frames,

int destroy=0);

Purpose: Initializes and allocated memory for the object.

Function:

void Translate_OBJECT4DV2(OBJECT4DV2_PTR obj, VECTOR4D_PTR vt);

Purpose: Translates the object in 3D space.

Function:

void Scale_OBJECT4DV2(OBJECT4DV2_PTR obj, VECTOR4D_PTR vs, int all_frames=0);

Purpose: Scales one or all the frames of an object.

Upgrading the T3D Data Structures and Design 893

9

13 0672318350 CH09  05•02•2003  2:48 PM  Page 893



Function:

void Transform_OBJECT4DV2(OBJECT4DV2_PTR obj, MATRIX4X4_PTR mt,  

int coord_select, 

int transform_basis, 

int all_frames=0);

Purpose: Applies the sent transformation matrix to the current frame or all frames of the
object.

Function:

void Rotate_XYZ_OBJECT4DV2(OBJECT4DV2_PTR obj, 

float theta_x,   

float theta_y, 

float theta_z,

int all_frames);

Purpose: Rotates an object parallel to the x,y,z axes by the sent amounts.

Function:

void Model_To_World_OBJECT4DV2(OBJECT4DV2_PTR obj, 

int coord_select = TRANSFORM_LOCAL_TO_TRANS, int all_frames=0);

Purpose: Performs the model to world transform on the sent object.

Function:

int Cull_OBJECT4DV2(OBJECT4DV2_PTR obj, CAM4DV1_PTR cam, int cull_flags);

Purpose: Culls the object from the viewing pipeline, or more specifically, the viewing
frustrum.

Function:

void Remove_Backfaces_OBJECT4DV2(OBJECT4DV2_PTR obj, CAM4DV1_PTR cam);

Purpose: Removes back-faces from the sent object relative to the sent camera.

Function:

void Remove_Backfaces_RENDERLIST4DV2(RENDERLIST4DV2_PTR rend_list, CAM4DV1_PTR cam);

Purpose: Removes back-faces from the sent rendering list relative to the sent camera.

Function:

void Camera_To_Perspective_OBJECT4DV2(OBJECT4DV2_PTR obj, CAM4DV1_PTR cam);
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Purpose: Performs the camera-to-perspective transformation on the sent object using the
sent camera.

Function:

void Perspective_To_Screen_RENDERLIST4DV2(RENDERLIST4DV2_PTR rend_list, 

CAM4DV1_PTR cam);

Purpose: Performs the perspective-to-screen transformation on a rendering list using the
sent camera.

Function:

void Camera_To_Perspective_Screen_RENDERLIST4DV2(RENDERLIST4DV2_PTR rend_list, 

CAM4DV1_PTR cam);

Purpose: Performs the entire camera-to-screen transformation from the sent rendering list
using the sent camera, in essence merging the -perspective and perspective-to-screen trans-
forms.

Function:

void Camera_To_Perspective_RENDERLIST4DV2(RENDERLIST4DV2_PTR rend_list, 

CAM4DV1_PTR cam);

Purpose: Performs the camera-to-perspective transform on the sent rendering list using
the sent camera.

Function:

void World_To_Camera_OBJECT4DV2(OBJECT4DV2_PTR obj, CAM4DV1_PTR cam);

Purpose: Performs the world-to-camera space transformation on the sent object using the
sent camera.

Function:

void World_To_Camera_RENDERLIST4DV2(RENDERLIST4DV2_PTR rend_list, 

CAM4DV1_PTR cam);

Purpose: Performs the world-to-camera transformation on the sent rendering list using
the sent camera.

Function:

void Camera_To_Perspective_Screen_OBJECT4DV2(OBJECT4DV2_PTR obj, CAM4DV1_PTR cam);

Purpose: Performs the camera-to-screen transform on the sent object using the sent
camera, in essence merging the camera-to-perspective and perspective-to-screen trans-
forms.
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Function:

void Perspective_To_Screen_OBJECT4DV2(OBJECT4DV2_PTR obj, CAM4DV1_PTR cam);

Purpose: Performs the perspective-to-screen transform on the sent object using the sent
camera.

Functions:

int Insert_POLY4DV2_RENDERLIST4DV2(RENDERLIST4DV2_PTR rend_list, 

POLY4DV2_PTR poly);

int Insert_POLYF4DV2_RENDERLIST4DV2(RENDERLIST4DV2_PTR rend_list, 

POLYF4DV2_PTR poly);

Purpose: Inserts the sent polygon into the rendering list.

Function:

int Insert_OBJECT4DV2_RENDERLIST4DV2(RENDERLIST4DV2_PTR rend_list, 

OBJECT4DV2_PTR obj,

int insert_local);

Purpose: Inserts the sent object into the render list by breaking the object up into poly-
gons.

Function:

void Reset_OBJECT4DV2(OBJECT4DV2_PTR obj);

Purpose: Resets the state values of an object.

Function:

int Compute_OBJECT4DV2_Poly_Normals(OBJECT4DV2_PTR obj);

Purpose: Computes the polygon normals for the sent object’s mesh; primarily needed for
lighting functions.

Functions:

void Draw_OBJECT4DV2_Wire(OBJECT4DV2_PTR obj, 

UCHAR *video_buffer, int lpitch);

void Draw_OBJECT4DV2_Wire16(OBJECT4DV2_PTR obj, 

UCHAR *video_buffer, int lpitch);

Purpose: Renders the sent object in wireframe mode on the screen.
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Functions:

void Draw_RENDERLIST4DV2_Wire(RENDERLIST4DV2_PTR rend_list, 

UCHAR *video_buffer, int lpitch);

Function:

void Draw_RENDERLIST4DV2_Wire16(RENDERLIST4DV2_PTR rend_list, 

UCHAR *video_buffer, int lpitch);

Purpose: Renders the sent render list to the screen in wireframe mode.

Functions:

void Draw_RENDERLIST4DV2_Solid16(RENDERLIST4DV2_PTR rend_list, 

UCHAR *video_buffer, int lpitch);

void Draw_RENDERLIST4DV2_Solid(RENDERLIST4DV2_PTR rend_list, 

UCHAR *video_buffer, int lpitch);

Purpose: Renders the sent rendering list to the screen; supports emissive, flat-shaded, and
textured polygons.

Function:

float Compute_OBJECT4DV2_Radius(OBJECT4DV2_PTR obj);

Purpose: Computes the average and maximum radius of an object and all its frames.

Function:

int Compute_OBJECT4DV2_Vertex_Normals(OBJECT4DV2_PTR obj);

Purpose: Computes the vertex normals of an object.

Function:

int Load_OBJECT4DV2_PLG(OBJECT4DV2_PTR obj, // pointer to object

char *filename,     // filename of plg file

VECTOR4D_PTR scale,   // initial scaling factors

VECTOR4D_PTR pos,    // initial position

VECTOR4D_PTR rot,    // initial rotations

int vertex_flags=0);  // flags to re-order vertices

Purpose: Loads a .PLG/PLX format 3D mesh file from disk.

Function:

int Load_OBJECT4DV2_3DSASC(OBJECT4DV2_PTR obj, // pointer to object

char *filename,   // filename of ASC file

VECTOR4D_PTR scale, // initial scaling factors
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VECTOR4D_PTR pos,  // initial position

VECTOR4D_PTR rot,  // initial rotations

int vertex_flags=0); // flags to re-order vertices

Purpose: Loads a 3D Studio Max .ASC mesh file from disk; supports shading overrides via
the vertex_flags parameter.

Function:

int Load_OBJECT4DV2_COB(OBJECT4DV2_PTR obj, // ptr to object

char *filename,   // filename of Caligari COB file

VECTOR4D_PTR scale, // initial scaling factors

VECTOR4D_PTR pos,  // initial position

VECTOR4D_PTR rot,  // initial rotations

int vertex_flags=0);// flags to re-order vertices 

// and perform transforms

Purpose: Loads a Caligari trueSpace 3D .COB mesh file from disk; supports objects with
constant, flat-, Gouraud-, and texture-mapped polygons.

Function:

void Reset_RENDERLIST4DV2(RENDERLIST4DV2_PTR rend_list);

Purpose: Resets the sent rendering list for another pass through the pipeline.

Functions:

int Light_OBJECT4DV2_World16(OBJECT4DV2_PTR obj, // object to process

CAM4DV1_PTR cam,  // camera position

LIGHTV1_PTR lights, // light list (one or more lights)

int max_lights);  // maximum lights in list

int Light_OBJECT4DV2_World(OBJECT4DV2_PTR obj, // object to process

CAM4DV1_PTR cam,   // camera position

LIGHTV1_PTR lights, // light list (one or more lights)

int max_lights);   // maximum lights in list

Purpose: Lights the sent object using the sent camera and lights; both 8- and 16-bit
versions.

Functions:

int Light_RENDERLIST4DV2_World16(RENDERLIST4DV2_PTR rend_list, // list

CAM4DV1_PTR cam,   // camera position

LIGHTV1_PTR lights, // light list (one or more)

int max_lights);   // maximum lights in list
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int Light_RENDERLIST4DV2_World(RENDERLIST4DV2_PTR rend_list, // list

CAM4DV1_PTR cam,   // camera position

LIGHTV1_PTR lights, // light list (might have more than one)

int max_lights);   // maximum lights in list

Purpose: Lights the sent rendering list using the sent camera and light; both 8- and 16-
bit versions.

Function:

void Sort_RENDERLIST4DV2(RENDERLIST4DV2_PTR rend_list, int sort_method);

Purpose: Performs a z-sort on the rendering list based on the sent sorting method key.

Functions:

int Compare_AvgZ_POLYF4DV2(const void *arg1, const void *arg2);

int Compare_NearZ_POLYF4DV2(const void *arg1, const void *arg2);

int Compare_FarZ_POLYF4DV2(const void *arg1, const void *arg2);

Purpose: Sorting methods for the sorting algorithm; called internally by
Sort_RENDERLIST4DV2().

Functions:

Drawvoid Draw_Textured_Triangle16(POLYF4DV2_PTR face, 

UCHAR *dest_buffer, int mem_pitch);

void Draw_Textured_Triangle(POLYF4DV2_PTR face, 

UCHAR *dest_buffer, int mem_pitch);

Purpose: Low-level affine texture rendering functions to draw triangles; both 8- and 
16-bit versions.

Functions:

void Draw_Textured_TriangleFS16(POLYF4DV2_PTR face, // ptr to face

UCHAR *_dest_buffer, // ptr to video buffer

int mem_pitch);    // bytes per line, 320, 640 etc.

void Draw_Textured_TriangleFS(POLYF4DV2_PTR face, // ptr to face

UCHAR *_dest_buffer, // pntr to video buffer

int mem_pitch);   // bytes per line, 320, 640 etc.

Purpose: Low-level texture rendering functions with flat-shading lighting support to draw
triangles; both 8- and 16-bit versions.
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Functions:

void Draw_Gouraud_Triangle16(POLYF4DV2_PTR face, // ptr to face

UCHAR *_dest_buffer, // pntr to video buffer

int mem_pitch);   // bytes per line, 320, 640 etc.

void Draw_Gouraud_Triangle(POLYF4DV2_PTR face, // ptr to face

UCHAR *dest_buffer, // pointer to video buffer

int mem_pitch);   // bytes per line, 320, 640 etc.

Purpose: Low-level Gouraud shading rasterizer rendering functions to draw triangles;
both 8- and 16-bit versions.

Functions:

void Draw_Top_Tri2_16(float x1, float y1, 

float x2, float y2, 

float x3, float y3,

int color, 

UCHAR *_dest_buffer, int mempitch);

void Draw_Bottom_Tri2_16(float x1, float y1, 

float x2, float y2, 

float x3, float y3,

int color,

UCHAR *_dest_buffer, int mempitch);

void Draw_Top_Tri2(float x1, float y1, 

float x2, float y2, 

float x3, float y3,

int color, 

UCHAR *_dest_buffer, int mempitch);

void Draw_Bottom_Tri2(float x1, float y1, 

float x2, float y2, 

float x3, float y3,

int color,

UCHAR *_dest_buffer, int mempitch);

Purpose: Low-level functions to draw flat-top and -bottom triangles; both 8- and 16-bit
versions.
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Functions:

void Draw_Triangle_2D2_16(float x1, float y1,

float x2, float y2,

float x3, float y3,

int color,

UCHAR *dest_buffer, int mempitch);

void Draw_Triangle_2D2(float x1, float y1,

float x2, float y2,

float x3, float y3,

int color,

UCHAR *dest_buffer, int mempitch);

Purpose: Low-level functions to draw general triangles; both 8- and 16-bit versions.

Function:

int Load_Bitmap_File2(BITMAP_FILE_PTR bitmap, char *filename);

Purpose: Bitmap loading function that supports both .BMP and .PCX file formats and
loads it into a bitmap file object.

Function:

int Load_Bitmap_PCX_File(BITMAP_FILE_PTR bitmap, char *filename);

Purpose: Loads a .PCX file into a bitmap file object.

Rewriting the Object Loaders
I’m going insane constantly rewriting these loaders; it’s getting to be a major pain! I’m
glad though that we’re getting them to a level of sophistication when we’ve topped out
the file formats themselves. This is the case with the .PLG/PLX and .ASC formats; that is,
they don’t support all the new features that the engine does, so there’s not much more
work to do to them. I keep them around only because they’re easy to work with by hand.
The Caligari .COB format, on the other hand, has more than enough support for anything
we can throw at it.

In any case, the .PLG/PLX format supports different shading modes (but not texture
mapping), plus the format is very primitive and mostly for quick-and-dirty hand modeling
of objects to test things out. Finally, the .PLG format’s hard coded 8/16-bit support is a
pain and making me nuts, but it’s a good format to start any 3D engine off with, so I’ve
been keeping it around.
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Next, the .ASC format is nearly useless for anything other than mesh data and color. It
doesn’t support texture mapping, lighting models—nothing. Therefore, to support these
features (lighting at least), I’ve added overrides to the object loader to force a lighting
model. But there’s still no texture support in .ASC or .PLG/PLX format because we have no
way to define the texture coordinates. Finally, there’s the .COB format, which has support
for everything, so it’s the only format that, with the modeler itself, can natively export 3D
models with texture and lighting information that our engine can use. Therefore, my intu-
ition tells me that as we proceed in the book, we’ll be focusing more and more on the
.COB format and less on the .PLG/PLX and .ASC formats, but we’ll see. With that all in
mind, let’s take a look at the new loaders and what they support.

Updating the Good Old .PLG/PLX Reader
The .PLG/PLX reader has the fewest number of changes, but it’s the only function that I
can even think of listing in the text because it’s not that large. In any event, the main
changes to the function are in the support of the new OBJECT4DV2 structure along with
data element access and setting some of the new vertex flags. Remember, the new
VERTEX4DTV1 structure has attribute flags that control whether each vertex needs a point,
normal, and texture coordinates. Hence, I think it will be illustrative to take a look at the
.PLG/PLX file reader to see some of these modifications so that you can review the code
for the other readers on the CD and not be lost. Here’s the function for review with key
elements highlighted:

int Load_OBJECT4DV2_PLG(OBJECT4DV2_PTR obj, // pointer to object

char *filename,   // filename of plg file

VECTOR4D_PTR scale, // initial scaling factors

VECTOR4D_PTR pos,  // initial position

VECTOR4D_PTR rot,  // initial rotations

int vertex_flags)  // vertex flags, used to override

{

// this function loads a plg object in off disk, additionally

// it allows the caller to scale, position, and rotate the object

// to save extra calls later for non-dynamic objects

// there is only one frame, so load the object and set the fields

// appropriately for a single frame OBJECT4DV2

FILE *fp;     // file pointer

char buffer[256]; // working buffer

char *token_string; // pointer to actual token text, ready for parsing

// file format review, note types at end of each description

// # this is a comment
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// # object descriptor

// object_name_string num_verts_int num_polys_int

// # vertex list

// x0_float y0_float z0_float

// x1_float y1_float z1_float

// x2_float y2_float z2_float

// .

// .

// xn_float yn_float zn_float

//

// # polygon list

// surface_description_ushort num_verts_int v0_index_int v1_index_int ..

// .

// .

// surface_description_ushort num_verts_int v0_index_int v1_index_int ..

// lets keep it simple and assume one element per line

// hence we have to find the object descriptor, read it in, then the

// vertex list and read it in, and finally the polygon list -- simple :)

// Step 1: clear out the object and initialize it a bit

memset(obj, 0, sizeof(OBJECT4DV2));

// set state of object to active and visible

obj->state = OBJECT4DV2_STATE_ACTIVE | OBJECT4DV2_STATE_VISIBLE;

// set position of object

obj->world_pos.x = pos->x;

obj->world_pos.y = pos->y;

obj->world_pos.z = pos->z;

obj->world_pos.w = pos->w;

// set number of frames

obj->num_frames = 1;

obj->curr_frame = 0;

obj->attr = OBJECT4DV2_ATTR_SINGLE_FRAME;

// Step 2: open the file for reading

if (!(fp = fopen(filename, “r”)))

{

Write_Error(“Couldn’t open PLG file %s.”, filename);

return(0);

} // end if
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// Step 3: get the first token string which should be the object descriptor

if (!(token_string = Get_Line_PLG(buffer, 255, fp)))

{

Write_Error(“PLG file error with file %s (object descriptor invalid).”,

filename);

return(0);

} // end if

Write_Error(“Object Descriptor: %s”, token_string);

// parse out the info object

sscanf(token_string, “%s %d %d”, 

obj->name, &obj->num_vertices, &obj->num_polys);

// allocate the memory for the vertices and number of polys

// the call parameters are redundant in this case, but who cares

if (!Init_OBJECT4DV2(obj,  // object to allocate

obj->num_vertices, 

obj->num_polys, 

obj->num_frames))

{

Write_Error(“\nPLG file error with file %s (can’t allocate memory).”,

filename);

} // end if

// Step 4: load the vertex list

for (int vertex = 0; vertex < obj->num_vertices; vertex++)

{

// get the next vertex

if (!(token_string = Get_Line_PLG(buffer, 255, fp)))

{

Write_Error(“PLG file error with file %s (vertex list invalid).”,

filename);

return(0);

} // end if

// parse out vertex

sscanf(token_string, “%f %f %f”, &obj->vlist_local[vertex].x, 

&obj->vlist_local[vertex].y, 

&obj->vlist_local[vertex].z);

obj->vlist_local[vertex].w = 1;  

// scale vertices

obj->vlist_local[vertex].x*=scale->x;
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obj->vlist_local[vertex].y*=scale->y;

obj->vlist_local[vertex].z*=scale->z;

Write_Error(“\nVertex %d = %f, %f, %f, %f”, vertex,

obj->vlist_local[vertex].x, 

obj->vlist_local[vertex].y, 

obj->vlist_local[vertex].z,

obj->vlist_local[vertex].w);

// every vertex has a point at least, set that in the flags attribute

SET_BIT(obj->vlist_local[vertex].attr, VERTEX4DTV1_ATTR_POINT);

} // end for vertex

// compute average and max radius

Compute_OBJECT4DV2_Radius(obj);

Write_Error(“\nObject average radius = %f, max radius = %f”, 

obj->avg_radius, obj->max_radius);

int poly_surface_desc = 0; // PLG/PLX surface descriptor

int poly_num_verts  = 0; // num of vertices for current poly (always 3)

char tmp_string[8];   // tmp string to hold surface descriptor in and

// test if it need to be converted from hex

// Step 5: load the polygon list

for (int poly=0; poly < obj->num_polys; poly++)

{

// get the next polygon descriptor

if (!(token_string = Get_Line_PLG(buffer, 255, fp)))

{

Write_Error(“PLG file error with file %s \

(polygon descriptor invalid).”,filename);

return(0);

} // end if

Write_Error(“\nPolygon %d:”, poly);

// each vertex list MUST have 3 vertices 

// since we made this a rule that all models

// must be constructed of triangles

// read in surface descriptor, number of vertices, and vertex list

sscanf(token_string, “%s %d %d %d %d”, tmp_string,

&poly_num_verts, // should always be 3 
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&obj->plist[poly].vert[0],

&obj->plist[poly].vert[1],

&obj->plist[poly].vert[2]);

// since we are allowing the surface descriptor to be in hex format

// with a leading “0x” we need to test for it

if (tmp_string[0] == ‘0’ && toupper(tmp_string[1]) == ‘X’)

sscanf(tmp_string,”%x”, &poly_surface_desc);

else

poly_surface_desc = atoi(tmp_string);

// point polygon vertex list to object’s vertex list

// note that this is redundant since the polylist is contained

// within the object in this case and its up to the user to select

// whether the local or transformed vertex 

// list is used when building up

// polygon geometry, might be a better to set to NULL in the context

// of polygons that are part of an object

obj->plist[poly].vlist = obj->vlist_local; 

Write_Error(“\nSurface Desc = 0x%.4x, num_verts = %d, \ 

vert_indices [%d, %d, %d]”, 

poly_surface_desc, 

poly_num_verts, 

obj->plist[poly].vert[0],

obj->plist[poly].vert[1],

obj->plist[poly].vert[2]);

// now we that we have the vertex list and we have entered the polygon

// vertex index data into the polygon itself, 

// now let’s analyze the surface

// descriptor and set fields for the polygon based on the description

// extract out each field of data from the surface descriptor

// first let’s get the single/double sided stuff out of the way

if ((poly_surface_desc & PLX_2SIDED_FLAG))

{

SET_BIT(obj->plist[poly].attr, POLY4DV2_ATTR_2SIDED);

Write_Error(“\n2 sided.”);

} // end if

else

{

// one sided
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Write_Error(“\n1 sided.”);

} // end else

// now let’s set the color type and color

if ((poly_surface_desc & PLX_COLOR_MODE_RGB_FLAG)) 

{

// this is an RGB 4.4.4 surface

SET_BIT(obj->plist[poly].attr,POLY4DV2_ATTR_RGB16);

// now extract color and copy into polygon color

// field in proper 16-bit format 

// 0x0RGB is the format, 4 bits per pixel 

int red  = ((poly_surface_desc & 0x0f00) >> 8);

int green = ((poly_surface_desc & 0x00f0) >> 4);

int blue = (poly_surface_desc & 0x000f);

// although the data is always in 4.4.4 format, the graphics card

// is either 5.5.5 or 5.6.5, 

// but our virtual color system translates

// 8.8.8 into 5.5.5 or 5.6.5 for us, 

// however we have to first scale all

// these 4.4.4 values into 8.8.8

obj->plist[poly].color = RGB16Bit(red*16, green*16, blue*16);

Write_Error(“\nRGB color = [%d, %d, %d]”, red, green, blue);

} // end if

else

{

// this is an 8-bit color indexed surface

SET_BIT(obj->plist[poly].attr,POLY4DV2_ATTR_8BITCOLOR);

// and simple extract the last 8 bits and that’s the color index

obj->plist[poly].color = (poly_surface_desc & 0x00ff);

Write_Error(“\n8-bit color index = %d”, obj->plist[poly].color);

} // end else

// handle shading mode

int shade_mode = (poly_surface_desc & PLX_SHADE_MODE_MASK);

// set polygon shading mode

switch(shade_mode)

{
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case PLX_SHADE_MODE_PURE_FLAG: {

SET_BIT(obj->plist[poly].attr, POLY4DV2_ATTR_SHADE_MODE_PURE);

Write_Error(“\nShade mode = pure”);

} break;

case PLX_SHADE_MODE_FLAT_FLAG: {

SET_BIT(obj->plist[poly].attr, POLY4DV2_ATTR_SHADE_MODE_FLAT);

Write_Error(“\nShade mode = flat”);

} break;

case PLX_SHADE_MODE_GOURAUD_FLAG: {

SET_BIT(obj->plist[poly].attr, POLY4DV2_ATTR_SHADE_MODE_GOURAUD);

// the vertices from this polygon all need normals, 

// set that in the flags attribute

SET_BIT(obj->vlist_local[ obj->plist[poly].vert[0] ].attr, 

VERTEX4DTV1_ATTR_NORMAL); 

SET_BIT(obj->vlist_local[ obj->plist[poly].vert[1] ].attr, 

VERTEX4DTV1_ATTR_NORMAL); 

SET_BIT(obj->vlist_local[ obj->plist[poly].vert[2] ].attr, 

VERTEX4DTV1_ATTR_NORMAL); 

Write_Error(“\nShade mode = gouraud”);

} break;

case PLX_SHADE_MODE_PHONG_FLAG: {

SET_BIT(obj->plist[poly].attr, POLY4DV2_ATTR_SHADE_MODE_PHONG);

// the vertices from this polygon all need normals, 

// set that in the flags attribute

SET_BIT(obj->vlist_local[ obj->plist[poly].vert[0] ].attr, 

VERTEX4DTV1_ATTR_NORMAL); 

SET_BIT(obj->vlist_local[ obj->plist[poly].vert[1] ].attr, 

VERTEX4DTV1_ATTR_NORMAL); 

SET_BIT(obj->vlist_local[ obj->plist[poly].vert[2] ].attr, 

VERTEX4DTV1_ATTR_NORMAL); 

Write_Error(“\nShade mode = phong”);

} break;

default: break;

} // end switch
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// set the material mode to ver. 1.0 emulation

SET_BIT(obj->plist[poly].attr, POLY4DV2_ATTR_DISABLE_MATERIAL);

// finally set the polygon to active

obj->plist[poly].state = POLY4DV2_STATE_ACTIVE;  

// point polygon vertex list to object’s vertex list

// note that this is redundant since the polylist is contained

// within the object in this case and its up to the user to select

// whether the local or transformed 

// vertex list is used when building up

// polygon geometry, might be a better idea to set 

// to NULL in the context

// of polygons that are part of an object

obj->plist[poly].vlist = obj->vlist_local; 

// set texture coordinate list, this is needed

obj->plist[poly].tlist = obj->tlist;

} // end for poly

// compute the polygon normal lengths

Compute_OBJECT4DV2_Poly_Normals(obj);

// compute vertex normals for any gouraud shaded polys

Compute_OBJECT4DV2_Vertex_Normals(obj);

// close the file

fclose(fp);

// return success

return(1);

} // end Load_OBJECT4DV2_PLG

Okay, let’s discuss each highlighted section of code because they each reflect the new
changes. Starting from the top of the function, the first section you’ll see highlighted is
this:

// set number of frames

obj->num_frames = 1;

obj->curr_frame = 0;

obj->attr = OBJECT4DV2_ATTR_SINGLE_FRAME;
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This is for the multiple frames support, and sets the frame to 0. These steps must be
performed even for single-frame objects. Next we have the call that allocates the memory
for the OBJECT4DV2:

if (!Init_OBJECT4DV2(obj,  // object to allocate

obj->num_vertices, 

obj->num_polys, 

obj->num_frames))

{

Write_Error(“\nPLG file error with file %s (can’t allocate memory).”,

filename);

} // end if

This function does nothing more than allocate memory and release any memory that’s
already there. Here’s the functional listing of the actual Init_OBJECT4DV2():

int Init_OBJECT4DV2(OBJECT4DV2_PTR obj,  // object to allocate

int _num_vertices, 

int _num_polys, 

int _num_frames,

int destroy)

{

// function does nothing more than allocate the memory for an OBJECT4DV2

// based on the sent data, later we may want to create more robust version

// but the problem is that we don’t want to tie the initializer to anything 

// yet, in 99% of cases this all will be done by the call to load object

// we just might need this function if we manually want to build an object???

// first destroy the object if it exists

if (destroy)

Destroy_OBJECT4DV2(obj);

// allocate memory for vertex lists

if (!(obj->vlist_local = (VERTEX4DTV1_PTR)malloc(sizeof(VERTEX4DTV1)*_

num_vertices*_num_frames)))

return(0);

// clear data

memset((void *)obj->vlist_local,0,sizeof(VERTEX4DTV1)*_

num_vertices*_num_frames);

if (!(obj->vlist_trans = (VERTEX4DTV1_PTR)malloc(sizeof(VERTEX4DTV1)*_

num_vertices*_num_frames)))

return(0);
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// clear data

memset((void *)obj->vlist_trans,0,sizeof(VERTEX4DTV1)*_

num_vertices*_num_frames);

// number of texture coordinates always 3*number of polys

if (!(obj->tlist = (POINT2D_PTR)malloc(sizeof(POINT2D)*_num_polys*3)))

return(0);

// clear data

memset((void *)obj->tlist,0,sizeof(POINT2D)*_num_polys*3);

// allocate memory for radii arrays

if (!(obj->avg_radius = (float *)malloc(sizeof(float)*_num_frames)))

return(0);

// clear data

memset((void *)obj->avg_radius,0,sizeof(float)*_num_frames);

if (!(obj->max_radius = (float *)malloc(sizeof(float)*_num_frames)))

return(0);

// clear data

memset((void *)obj->max_radius,0,sizeof(float)*_num_frames);

// allocate memory for polygon list

if (!(obj->plist = (POLY4DV2_PTR)malloc(sizeof(POLY4DV2)*_num_polys)))

return(0);

// clear data

memset((void *)obj->plist,0,sizeof(POLY4DV2)*_num_polys);

// alias head pointers

obj->head_vlist_local = obj->vlist_local;

obj->head_vlist_trans = obj->vlist_trans;

// set some internal variables

obj->num_frames   = _num_frames;

obj->num_polys   = _num_polys;

obj->num_vertices  = _num_vertices;

obj->total_vertices = _num_vertices*_num_frames;
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// return success

return(1);

} // end Init_OBJECT4DV2

You might notice the function makes a call to Destroy_OBJECT4DV2(), which is listed here:

int Destroy_OBJECT4DV2(OBJECT4DV2_PTR obj)  // object to destroy

{

// this function destroys the sent object, basically frees the memory

// if any that has been allocated

// local vertex list

if (obj->head_vlist_local)

free(obj->head_vlist_local);

// transformed vertex list

if (obj->head_vlist_trans)

free(obj->head_vlist_trans);

// texture coordinate list

if (obj->tlist)

free(obj->tlist);

// polygon list

if (obj->plist)

free(obj->plist);

// object radii arrays

if (obj->avg_radius)

free(obj->avg_radius);

if (obj->max_radius)

free(obj->max_radius);

// now clear out object completely

memset((void *)obj, 0, sizeof(OBJECT4DV2));

// return success

return(1);

} // end Destroy_OBJECT4DV2
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As usual, I’m probably being overzealous with error detection, but what the heck. Moving
on with the .PLG loader, the next important section occurs for every vertex and sets the
appropriate vertex point field:

// every vertex has a point at least, set that in the flags attribute

SET_BIT(obj->vlist_local[vertex].attr, VERTEX4DTV1_ATTR_POINT);

This must be done for every vertex that contains a point (which is pretty much all of
them), but this is part of our new flexible vertex format system that allows points, normals,
and texture coordinates. Along the same lines, if you move down the code some more,
you’ll see in the Gouraud and Phong shading sections the following code to enable the
normal for each vertex making up the polygon:

// the vertices from this polygon all need normals, 

// set that in the flags attribute

SET_BIT(obj->vlist_local[ obj->plist[poly].vert[0] ].attr, 

VERTEX4DTV1_ATTR_NORMAL); 

SET_BIT(obj->vlist_local[ obj->plist[poly].vert[1] ].attr, 

VERTEX4DTV1_ATTR_NORMAL); 

SET_BIT(obj->vlist_local[ obj->plist[poly].vert[2] ].attr, 

VERTEX4DTV1_ATTR_NORMAL); 

The surface normal will be needed for each vertex for Gouraud shading and Phong
shading (which we probably won’t implement), so we set the attribute here to enable that
part of the vertex. Finally, we have the two calls to calculate both the polygon normals
and the vertex normals. You’ve seen the polygon normal calculation before:

// compute the polygon normal lengths

Compute_OBJECT4DV2_Poly_Normals(obj);

But the new function calculates the vertex normals for each polygon:

// compute vertex normals for any gouraud shaded polys

Compute_OBJECT4DV2_Vertex_Normals(obj);

Let’s discuss this new function in detail.

Vertex Normal Calculation for Lighting
I’m going to cover the lighting and Gouraud shading algorithm in the next section, but at
this point, let’s forget about that and focus on the mechanics of computing vertex
normals. The problem is as follows: Given a model mesh composed of p polygons and v
vertices, for each vertex v

i
, compute the normal to that vertex. Okay, sounds reasonable,

but what normal are we talking about exactly? Well, for lighting purposes, we’re going to
need the average normal for each vertex. Referring to Figure 9.6, we see a simple mesh and
the polygon normals for each polygon. To compute the vertex normals, we need to find

Rewriting the Object Loaders 913

9

13 0672318350 CH09  05•02•2003  2:48 PM  Page 913



each polygon that touches any given vertex and then average in the normal of that
polygon. Moreover, we need to take into consideration the area of the polygon that’s
contributing to the vertex in question.
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FIGURE 9.6 Calculating vertex normals using polygon contribution testing.

For example, say we have two polygons that share a single vertex, as shown in Figure 9.7.
The normal from polygon 1 should have much more of a contribution to the vertex
normal than polygon 2 because the area of polygon 1 is much greater than the area of
polygon 2. In fact, this is trivial to code. We can use the trick that if we take the cross
product of any two vectors of a triangle to compute the normal, the length of that cross
product is actually proportional to the area of the triangle. In fact, based on the following
equation, it’s equal to the area of the parallelogram, as shown in Figure 9.8.

|u x v| = (base)(altitude) = Area of parallelogram

|u x v|/2 is the area of the triangle created by u,v. Thus, our algorithm to compute the
vertex normals is as follows:

for each vertex v
i
in mesh begin

let v_sum_normal = <0,0,0>

for each polygon p
i
that touches vertex v

i

begin
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v_sum_normal+=p
i
’s normal

end 

normalize v
n

next vertex
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FIGURE 9.8 The absolute value of the signed cross product is equal to the area of the paral-
lelogram defined by u and v.

Now, here’s the tricky part. After the calculations are complete, we have a problem: We
have a vertex normal vector, but as we transform the model mesh, we must also transform
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the vertex normal vector to keep it in sync with the model! This is key; otherwise, the
normal will be useless. Alas, we’ve incurred an extra transformation operation per vertex;
that is, we must also transform the normal vector, thereby doubling the number of
vertices per polygon for Gouraud-shaded polygons. However, this is only for polygons that
have Gouraud lighting and need them; hence, the overhead is minimized when the
models have few or no Gouraud-shaded polygons.

Taking all that in, here’s the function that computes vertex normals offline during
loading:

int Compute_OBJECT4DV2_Vertex_Normals(OBJECT4DV2_PTR obj)

{

// the vertex normals of each polygon are commonly needed in a number 

// functions, most importantly lighting calculations for gouraud shading

// however, we only need to compute vertex normals for polygons that are

// gouraud shader, so for every vertex we must determine the polygons that

// share the vertex then compute the average normal, 

// to determine if a polygon contributes we look at the 

// shading flags for the polygon

// is this object valid

if (!obj)

return(0); 

// algorithm: we are going to scan the polygon list and for 

// every polygon that needs normals we are going to “accumulate” 

// the surface normal into all vertices that the polygon touches, 

// and increment a counter to track how many polys contribute 

// to vertex, then when the scan is done the counts will be used

// to average the accumulated values, so instead of an O(n^2) algorithm, 

// we get a O(c*n)

// this tracks the polygon indices that touch a particular vertex

// the array is used to count the number of contributors to the vertex

// so at the end of the process we can divide each “accumulated” normal

// and average

int polys_touch_vertex[OBJECT4DV2_MAX_VERTICES];

memset((void *)polys_touch_vertex,0,sizeof(int)*OBJECT4DV2_MAX_VERTICES);

// iterate thru the poly list of the object, compute its normal, then add

// each vertice that composes it to the “touching” vertex array

// while accumulating the normal in the vertex normal array
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for (int poly=0; poly < obj->num_polys; poly++)

{

Write_Error(“\nprocessing poly %d”, poly);

// test if this polygon needs vertex normals

if (obj->plist[poly].attr & POLY4DV2_ATTR_SHADE_MODE_GOURAUD)

{

// extract vertex indices into master list, rember the polygons are 

// NOT self contained, but based on the vertex list 

// stored in the object itself

int vindex_0 = obj->plist[poly].vert[0];

int vindex_1 = obj->plist[poly].vert[1];

int vindex_2 = obj->plist[poly].vert[2];

Write_Error(“\nTouches vertices: %d, %d, %d”, 

vindex_0, vindex_1, vindex_2);

// we need to compute the normal of this polygon face, and recall

// that the vertices are in cw order, u=p0->p1, v=p0->p2, n=uxv

VECTOR4D u, v, n;

// build u, v

VECTOR4D_Build(&obj->vlist_local[ vindex_0 ].v, 

&obj->vlist_local[ vindex_1 ].v, &u);

VECTOR4D_Build(&obj->vlist_local[ vindex_0 ].v, 

&obj->vlist_local[ vindex_2 ].v, &v);

// compute cross product

VECTOR4D_Cross(&u, &v, &n);

// update vertex array to flag this polygon as a contributor

polys_touch_vertex[vindex_0]++;

polys_touch_vertex[vindex_1]++;

polys_touch_vertex[vindex_2]++;

Write_Error(“\nPoly touch array v[%d] = %d, v[%d] = %d, v[%d] = %d”, 

vindex_0, 

polys_touch_vertex[vindex_0],

vindex_1, polys_touch_vertex[vindex_1],

vindex_2, polys_touch_vertex[vindex_2]);

// now accumulate the normal into the vertex normal itself

// note, we do NOT normalize at this point since we want 
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// the length of the normal

// to weight on the average, and since the length is in fact 

// the area of the parallelogram constructed by uxv, 

// so we are taking the “influence” of the area into consideration

VECTOR4D_Add(&obj->vlist_local[vindex_0].n, &n, 

&obj->vlist_local[vindex_0].n);

VECTOR4D_Add(&obj->vlist_local[vindex_1].n, &n, 

&obj->vlist_local[vindex_1].n);

VECTOR4D_Add(&obj->vlist_local[vindex_2].n, &n, 

&obj->vlist_local[vindex_2].n);

} // end for poly

} // end if needs vertex normals

// now we are almost done, we have accumulated all the vertex normals, 

// but need to average them

for (int vertex = 0; vertex < obj->num_vertices; vertex++)

{

// if this vertex has any contributors then it must need averaging, 

// OR we could check the shading hints flags, they should be one to one

Write_Error(“\nProcessing vertex:%d, attr:%d, contributors:%d”, vertex, 

obj->vlist_local[vertex].attr, 

polys_touch_vertex[vertex]);

// test if this vertex has a normal and needs averaging

if (polys_touch_vertex[vertex] >= 1)

{

obj->vlist_local[vertex].nx/=polys_touch_vertex[vertex];

obj->vlist_local[vertex].ny/=polys_touch_vertex[vertex];

obj->vlist_local[vertex].nz/=polys_touch_vertex[vertex];

// now normalize the normal

VECTOR4D_Normalize(&obj->vlist_local[vertex].n);

Write_Error(“\nAvg Vertex normal: [%f, %f, %f]”, 

obj->vlist_local[vertex].nx,

obj->vlist_local[vertex].ny,

obj->vlist_local[vertex].nz);

} // end if

} // end for
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// return success

return(1);

} // end Compute_OBJECT4DV2_Vertex_Normals

When you run any of the demos, some of the analysis is always printed to the file
ERROR.TXT. You might want to look at the file and review the vertex analysis phase—it’s
interesting to see the algorithm work.

Updating the 3D Studio .ASC Reader
The .ASC reader hasn’t changed much since the previous version because it has no support
for textures, lighting, and so forth. The only additions to the function are the support for
the OBJECT4DV2 functionality as outlined in the .PLG/PLX loader. However, to give the
format some oomph, I’ve decided to allow what I call vertex overrides to force or select the
lighting model at least on an objectwide basis. Maybe next we’ll add a global texturing
with some generic texture coordinates that will work for rocks or simple geometrical prim-
itives. The function is too large to list, but as I said, it performs the same additional logic
as the .PLG/PLX loader function in relation to the object initialization and vertex type
setting. Here’s the prototype for the .ASC reader:

int Load_OBJECT4DV2_3DSASC(OBJECT4DV2_PTR obj, // pointer to object

char *filename,   // filename of ASC file

VECTOR4D_PTR scale, // initial scaling factors

VECTOR4D_PTR pos,  // initial position

VECTOR4D_PTR rot,  // initial rotations

int vertex_flags)  // flags to re-order vertices 

// and shading overrides

All the new functionality is basically in the vertex lighting overrides, which are shown
here:

// (new) used for simple model formats to override/control the lighting

#define VERTEX_FLAGS_OVERRIDE_MASK   0xf000 // mask to extract overrides

#define VERTEX_FLAGS_OVERRIDE_CONSTANT 0x1000

#define VERTEX_FLAGS_OVERRIDE_EMISSIVE 0x1000 //(alias)

#define VERTEX_FLAGS_OVERRIDE_PURE   0x1000

#define VERTEX_FLAGS_OVERRIDE_FLAT   0x2000

#define VERTEX_FLAGS_OVERRIDE_GOURAUD 0x4000

#define VERTEX_FLAGS_OVERRIDE_TEXTURE 0x8000 

As you can see, I’ve created an override for pretty much everything. At this point, only the
pure, flat, and Gouraud overrides are working, as shown in the following code fragment
from the function:
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// first test to see if there is an override at all 

int vertex_overrides = (vertex_flags & VERTEX_FLAGS_OVERRIDE_MASK);

if (vertex_overrides)

{

// which override?

if (vertex_overrides & VERTEX_FLAGS_OVERRIDE_PURE)

SET_BIT(obj->plist[poly].attr, POLY4DV2_ATTR_SHADE_MODE_PURE);

if (vertex_overrides & VERTEX_FLAGS_OVERRIDE_FLAT)

SET_BIT(obj->plist[poly].attr, POLY4DV2_ATTR_SHADE_MODE_FLAT);

if (vertex_overrides & VERTEX_FLAGS_OVERRIDE_GOURAUD)

{

SET_BIT(obj->plist[poly].attr, POLY4DV2_ATTR_SHADE_MODE_GOURAUD);

// going to need vertex normals!

SET_BIT(obj->vlist_local[ obj->plist[poly].vert[0] ].attr, 

VERTEX4DTV1_ATTR_NORMAL); 

SET_BIT(obj->vlist_local[ obj->plist[poly].vert[1] ].attr, 

VERTEX4DTV1_ATTR_NORMAL); 

SET_BIT(obj->vlist_local[ obj->plist[poly].vert[2] ].attr, 

VERTEX4DTV1_ATTR_NORMAL); 

} // end if

if (vertex_overrides & VERTEX_FLAGS_OVERRIDE_TEXTURE)

SET_BIT(obj->plist[poly].attr,POLY4DV2_ATTR_SHADE_MODE_TEXTURE);

} // end if

Notice that the Gouraud shading override causes the vertex attribute flag
VERTEX4DTV1_ATTR_NORMAL to be set, which is correct because we need normals. As an
example from one of the demos, here’s how you would load an object and override the
lighting to Gouraud mode:

Load_OBJECT4DV2_3DSASC(&obj_player,”tie01.asc”,

&vscale, &vpos, &vrot,

VERTEX_FLAGS_OVERRIDE_GOURAUD);

Updating the Caligari .COB Reader
Last but not least is the new .COB object reader. This function is huge if you’ve looked at
it, but for the most part, the basic changes are to support the new OBJECT4DV2 structure.
However, .COB files do have texture coordinate and texture support, so I’ve added full
support for them.
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Now, before getting into it, let’s review how we process .COB files. We use the plain color
shader to indicate pure color or texture mapped. Then we use the reflectance shader to
select either emissive, flat, or Gouraud shading. The interesting thing is that when using
textures, we still need a lighting model. In this version of the engine, I support both emis-
sive and flat shading for textures; Gouraud interpolation would slow texturing down too
much. But it means that when you create a model in .COB format, you must set the color
of the polygon you want texture mapped to “color: texture map”, but also set the
reflectance of the polygon to either emissive (“constant” model in trueSpace) or flat
(“matte” in trueSpace) shading.

CAUTION

Objects for our engine can have only a single texture! They must be m×m, where m is a power
of 2, and nothing larger than 256×256.

Pay attention to that warning, but the cool thing is that although each object must use
the same texture, it doesn’t mean that you can’t texture map it in a cool way. You just
need to use a large skin, say 128×128 or 256×256, to texture map the object and then map
the texture coordinates onto the object. Figure 8.52 in the last chapter shows a nice skin
from a Quake II model. As you saw, there are a lot of little pieces in the same texture map,
so if we use that same texture map, all we need to do is use the correct texture coordi-
nates.

Alright, so the new .COB loader does pretty much the same thing as the previous model,
but it has the new capability to load and understand textures. It reads the texture informa-
tion from the .COB file, which looks like this for a basic cube:

Texture Vertices 6

0.000000 0.000000

0.000000 1.000000

0.000000 0.000000

0.000000 1.000000

1.000000 0.000000

1.000000 1.000000

When the face list is read, the second component of each face vertex that defines a
polygon is the texture coordinate (bolded):

Faces 12

Face verts 3 flags 0 mat 4

<0,0> <1,1> <3,5> 

Face verts 3 flags 0 mat 4

<0,0> <3,5> <2,4> 

Face verts 3 flags 0 mat 0

<0,1> <2,5> <5,4> 
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Face verts 3 flags 0 mat 0

<0,1> <5,4> <4,0> 

Face verts 3 flags 0 mat 1

<2,2> <3,3> <6,5> 

Face verts 3 flags 0 mat 1

<2,2> <6,5> <5,4> 

Face verts 3 flags 0 mat 0

<1,0> <7,1> <6,5> 

Face verts 3 flags 0 mat 0

<1,0> <6,5> <3,4> 

Face verts 3 flags 0 mat 2

<4,4> <5,0> <6,1> 

Face verts 3 flags 0 mat 2

<4,4> <6,1> <7,5> 

Face verts 3 flags 0 mat 3

<0,4> <4,2> <7,3> 

Face verts 3 flags 0 mat 3 ß face #11

<0,4> <7,3> <1,5>

For example, the very last polygon in the cube mesh, face 11, is a polygon with three
vertices constructed from the vertices (0,7,1), but the texture vertices are (4,3,5). If we look
up the texture coordinates for these vertices, they translate to the following:

(4,3,5) texture indices maps to:

( (1.000000, 0.000000), 

(0.000000, 1.000000), 

(1.000000, 1.000000) )

where each pair is in (u,v) format or the x,y axis of the texture map. We’ll cover more of
these mapping details when we cover texture mapping, but for now just understand the
mechanics of it. Okay, cool, so we load in the texture coordinates, but then we need to
load in the actual texture map. This is semi-tricky, but as long as we take care of details,
we’re all right. The first detail is that for every object, only one texture can be loaded.
Hence, when a material is scanned in with a texture map, only the very first texture map
is loaded—the rest are disregarded (if they exist). The code in the .COB reader that loads
the textures is shown here:

// the OBJECT4DV2 is only allowed a single texture, 

// although we are loading in all

// the materials, if this is the first texture map, load it, 

// and set a flag disallowing

// any more texture loads for the object

if (!obj->texture)
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{

// step 1: allocate memory for bitmap

obj->texture = (BITMAP_IMAGE_PTR)malloc(sizeof(BITMAP_IMAGE));

// load the texture, just use the final 

// file name and the absolute global texture path

char filename[80];

char path_filename[80];

// get the filename           

Extract_Filename_From_Path(materials[material_index + 

num_materials].texture_file, filename);

// build the filename with root path

strcpy(path_filename, texture_path);

strcat(path_filename, filename);

// buffer now holds final texture path and file name

// load the bitmap(8/16 bit)

Load_Bitmap_File(&bitmap16bit, path_filename);

// create a proper size and bitdepth bitmap

Create_Bitmap(obj->texture,0,0,

bitmap16bit.bitmapinfoheader.biWidth,

bitmap16bit.bitmapinfoheader.biHeight,

bitmap16bit.bitmapinfoheader.biBitCount);

// load the bitmap image (later make this 8/16 bit)

if (obj->texture->bpp == 16)

Load_Image_Bitmap16(obj->texture, 

&bitmap16bit,0,0,BITMAP_EXTRACT_MODE_ABS);

else

{

Load_Image_Bitmap(obj->texture, &bitmap16bit,0,0,

BITMAP_EXTRACT_MODE_ABS);

} // end else 8 bit

// done, so unload the bitmap

Unload_Bitmap_File(&bitmap16bit);

// flag object as having textures

SET_BIT(obj->attr, OBJECT4DV2_ATTR_TEXTURES);

} // end if
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The preceding section of code is important because it performs some housekeeping that I
want you to be thinking about. First, this code is contained in the section after all the
polygons have been loaded and the materials have been applied to each polygon.
Remember that the .COB format uses a material index for each polygon, but the materials
don’t come until after the entire mesh is loaded. So, we have to wait until we’re done
loading the mesh, and then load the materials, and then fix up the material references. In
our case, we aren’t really using materials yet, but the information about textures are
contained in them, so we do have to wait. In any case, once a material is loaded that’s
determined to have a texture applied to it, the preceding code executes.

The first step that the code takes is to determine whether a texture has already been
loaded. If so, nothing happens. Otherwise, the code block is entered. Upon entry, the code
first extracts only the filename portion of the texture map with a call to the new function
Extract_Filename_From_Path() shown here:

char *Extract_Filename_From_Path(char *filepath, char *filename)

{

// this function extracts the filename from a complete path and file

// “../folder/.../filname.ext”

// the function operates by scanning backward and looking for the first 

// occurance of “\” or “/” then copies the filename from there to the end

// test of filepath is valid

if (!filepath || strlen(filepath)==0) 

return(NULL);

int index_end = strlen(filepath)-1;

// find filename

while( (filepath[index_end]!=’\\’) && 

(filepath[index_end]!=’/’) && 

(filepath[index_end] > 0) ) 

index_end--; 

// copy file name out into filename var

memcpy(filename, &filepath[index_end+1], 

strlen(filepath) - index_end);

// return result

return(filename);

} // end Extract_Filename_From_Path

The necessity for this function is twofold: The ANSI string support in C/C++ sucks, and
there simply isn’t an easy way to get the darn filename from a complete path like this:

d:\path\...\filename.ext
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so, I had to write one. Basically, the function works backward from the end and returns
the string up to the last \ or / character. Therefore, calling the function with a file path of
“d:\files\atari\object.cob” like this:

char filename[80];

Extract_Filename_From_Path(“d:\files\atari\object.cob”, filename);

Results in filename=”object.cob”, which is exactly what we need. That’s all fine and
dandy, but has all the path information been completely lost? What if we want to place
textures somewhere? Well, to provide that functionality, I decided to create a texture root
path, meaning that all textures must be located in the root path. The root path is defined
in T3DLIB7.CPP as

char texture_path[80] = “./”; // root path to ALL textures

In other words, the working directory of the .EXE that’s executed is where textures will be
searched for. Remember that “./” means current directory. So, for now, all demos must
have all the media in the same working directory as the demo itself. When you create
your own games later, you might want to create a directory MEDIA\ with the following
subdirectories:

TEXTURES\

MODELS\

SOUNDS\

..

etc.

and place all your textures there.

In any case, the second reason we’re doing all this work with the filename is much more
important. If you review Caligari .COB object with texturing, you’ll see something quite
disturbing. Take a look at the following sample texture material:

Mat1 V0.06 Id 18623892 Parent 18629556 Size 00000182

mat# 0

shader: phong facet: auto32

rgb 1,0.952941,0.0235294

alpha 1 ka 0.1 ks 0.1 exp 0 ior 1

texture: 36D:\Source\models\textures\wall01.bmp 

offset 0,0 repeats 1,1 flags 2

ShBx V0.03 Id 18623893 Parent 18623892 Size 00000658

Shader class: color

Shader name: “texture map” (caligari texture)

Number of parameters: 7
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file name: string “D:\Source\models\textures\wall01.bmp”

S repeat: float 1

T repeat: float 1

S offset: float 0

T offset: float 0

animate: bool 0

filter: bool 0

Flags: 3

Shader class: transparency

Shader name: “none” (none)

Number of parameters: 0

Flags: 3

Shader class: reflectance

Shader name: “phong” (phong)

Number of parameters: 5

ambient factor: float 0.1

diffuse factor: float 0.9

specular factor: float 0.1

exponent: float 3

specular colour: color (255, 255, 255)

Flags: 3

Shader class: displacement

Shader name: “none” (none)

Number of parameters: 0

Flags: 3

END V1.00 Id 0 Parent 0 Size    0

You’ll notice that the texture paths are absolute—ouch! That means a demo from my
computer won’t work on yours unless we have the exact same paths. So, I think using the
root filename plus a generic texture path is the best of both worlds.

NOTE

There’s probably a setting in trueSpace to disable absolute paths, but after fighting with the
“magic ring,” I’ve given up <BG>.

To finalize our discussion of the new .COB reader: After the final texture path and name
are derived, the actual texture is loaded. Nothing unusual here; a call to load the bitmap is
made, and the texture bitmap is created and copied from the bitmap file into the bitmap
image holding the texture. Of course, the bit depth is determined (8- or 16-bit) and the
appropriate call is made based on that.

This leads me into a brief discussion about bit depth. At some point, we might want to
hide the 8/16-bit functions with higher-level wrapper functions because it’s kind of a pain
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to test and make the calls. Of course, the reason why I shy away from this is that if we’re
using 8- or 16-bit mode, we “know” we are, so why make the extra call? Of course, with
function pointers or virtual functions, we can override this overhead and get it for free.
Something to think about….

The next subject I want to talk about are vertex overrides for the .COB reader. It’s pointless
to override the lighting model (although you may want to), but something that we might
need to muck with are the texture coordinates. The output of any modeler’s .COB files
might not have texture coordinates exactly how we like them. For example, u and v might
be swapped, or inverted, and so forth. To add this functionality to the reader, I’ve intro-
duced the following vertex flags:

// invert u texture coordinate 

#define VERTEX_FLAGS_INVERT_TEXTURE_U    0x0080

// invert v texture coordinate

#define VERTEX_FLAGS_INVERT_TEXTURE_V    0x0100

// swap u and v texture coordinates

#define VERTEX_FLAGS_INVERT_SWAP_UV     0x0800

You simply logically OR them together with any other flags you might want for the .COB
to take into consideration, such as the VERTEX_FLAGS_TRANSFORM_LOCAL_WORLD flag and so on.

Also, while we’re talking about texture coordinates, I have an aside I want to discuss.
Texture coordinates from most modelers use coordinates in the range: (0..1, 0..1). In other
words, they’re normalized to 1.0. Our rasterization functions do not (or will not) like this,
so when texture coordinates are finally written to the texture array cache and the reader
exits, we have to make sure that we scale the coordinates to the size of the texture. For
example, if a texture that’s loaded is 64 × 64 and a texture coordinate is (.2, .34), the final
texture coordinate should be scaled by (64-1) = 63 on both axes:

(63*.2, 63*.34) = (12.6, 21.42)

NOTE

Texture coordinates are left in floating-point format, so we can have sub-pixel accuracy in the
texture mapping, or at least plan for it.

Well, that about sums it up for the new .COB reader. The function works in the same way
as before, as far as calling it. For example, here’s an example from one of the later demos
that loads a TIE fighter–looking model with textures, taking into consideration inverted-v
texture coordinates as well as the right-handed modeling system of Caligari trueSpace:

Load_OBJECT4DV2_COB(&obj_player,”tie02.cob”, 

&vscale, &vpos, &vrot, 

VERTEX_FLAGS_INVERT_TEXTURE_V | 

VERTEX_FLAGS_SWAP_YZ | 

VERTEX_FLAGS_TRANSFORM_LOCAL_WORLD );
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Polygon Rasterization Review
Wow! It took a long time to discuss the basic changes to the engine, even if given only
cursory coverage. The point is this stuff is getting complicated and big. However, anything
I talk about, I want to try to implement and show you, but the setup for this material is
getting rather large, so please bear with me. Before getting into Gouraud shading and
texture mapping, I want to cover polygon rasterization one more time. I originally covered
the subject in the first Tricks, and I briefly mentioned it in the last chapter, but it’s some-
thing that keeps coming up everywhere in 3D graphics. 99% of everything has something
to do with rasterization, interpolation, or sampling, so this is something it pays to know
well.

Taking that into consideration, I’ve rewritten our basic polygon rasterizers to make them a
little more accurate. The original rasterizers operated on integer coordinates only. I also
define a “fill convention” and a number of other details; I want to discuss those things
now so that you have an understanding of them.

Triangle Rasterization
There are a number of ways to draw triangles, including tracing the two edges of the trian-
gle with a line drawing algorithm such as Bresenham’s or with simple interpolation. I
prefer interpolation because its more straightforward. Let’s once again see how this works.
Take a look at Figure 9.9. All we have to do is find the points that make up the rasterized
version of the triangle. These points are shown in the figure as little dots. Once we find
these pixel locations for each scan line that makes up the triangle, drawing the triangle is
nothing more than performing a simple memory fill from point to point, as shown in
Figure 9.10.

Finding these points is nothing more than interpolating the slope (well, almost) of each
side of the triangle. The interpolation is performed as follows.

We know that the height of the triangle is

dy = (y2 - y0); 

and the difference in X’s between the lower-left vertex and the lower-right vertex is

dx_left_side = (x2 - x0);

dx_right_side = (x1 - x0);

Thus, the slope of the left-hand side is

slope_left_side = dy/dx_left_side = (y2 - y0)/(x2 - x0);

and the slope of the right-hand side is

slope_right_side = dy/dx_right_side = (y2 - y0)/(x1 - x0);
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FIGURE 9.9 Setup for triangle rasterization.
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FIGURE 9.10 Rasterizing single scan line.

However, we don’t exactly want the slope. The slope is the “change in y per change in x.”
This means that if we were to move over exactly one pixel in the x direction, the y would
change by the slope. We don’t want that; we want the opposite, or dx/dy. That’s because
we’re drawing the triangle scan line by scan line, and incrementing y each time; hence, 
dy = 1, which is a constant, so:

dx_left_side = 1 * (x2 - x0)/(y2 - y0);

and

dx_right_side = 1 * (x1 - x0)/(y2 - y0);
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That’s it! That’s the entire triangle-drawing algorithm for a flat-bottom triangle. A flat-top
triangle is similar and I leave writing the interpolation algorithm up to you. Take a look at
the following pseudo-code implementation of the triangle drawing algorithm:

void Draw_Triangle(float x0,float y0, // vertex 0

float x1,float y1, // vertex 1

float x2,float y2, // vertex 2

int color)     // color

{

// this function rasterizes a triangle with a flat bottom

// compute left side interpolant

float dx_left = (x2 - x0)/(y2 - y0);

// compute right side interpolant

float dx_right = (x1 - x0)/(y2 - y0);

// seed left and right hand interpolators

float x_left = x0; 

float x_right = x0;

// enter into rasterization loop

for (int y=y0; y<=y1; y++)

{

// draw the scanline

Draw_Line(x_left, x_right, y, color);

// advance interpolants

x_left+=dx_left;

x_right+=dx_right;

} // end for y

} // end DRAW_Triangle

This function actually works fine and is the basis for our real triangle rasterizer. However,
it has a few shortcomings. First, it’s written in floating-point math. Ironically this isn’t the
problem, because floating point is as fast as integer math these days. Of course, you can
get in trouble when converting back and forth from integers to floating point for the final
rasterization phase, but let’s hold off on that for a second.

The real problem is the Draw_Line() function. We’re assuming that it takes floating-point
values, and maybe it does, but at some point those floating-point values must be
converted to integers and therein lies the dilemma. Should we truncate, round, use the
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mathematical ceiling function or the mathematical floor function? All these question
relate to what is called a fill convention.

TIP

The mathematical ceiling(x) function shown in Figure 9.11 returns the smallest integer greater
than or equal to x. Conversely, the floor(x) function shown in Figure 9.12 returns the largest
integer less than or equal to x.
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FIGURE 9.11 A graph of the ceiling() function. 

FIGURE 9.12 A graph of the floor() function. 

Fill convention has to do with how polygons are rasterized in relation to the starting and
stopping pixels from the top to bottom and from the left to right that are lit. We’ll get to
this in a moment because it’s so important, but for now let’s continue on with our raster-
izer and talk about some more details.

So, aside from the fill convention issue, what else are we making assumptions about with
the preceding rasterizer prototype?

1. There’s no mention of general triangles, and we need to deal with that.

2. There’s no mention of clipping, either image space or object space, and that needs to
be addressed.
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Let’s discuss (1) first. In this book, I’ve been using the triangle rasterizers from the first
Tricks. If you review those, you’ll find that they all break up polygons into three different
types:

Type 1: Triangles with a flat top

Type 2: Triangles with a flat bottom

Type 3: General triangles

These types are shown in Figure 9.13. I think you get the point by now that it might be
faster to perform initial tests so that we don’t have to write a more general triangle raster-
izer that simply draws any triangle. Let me refresh your memory on my thinking process.
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FIGURE 9.13 The special cases of triangles.

When drawing a triangle, you’ll notice we have an inner loop from y0 to y1. In this loop,
we simply adjust the left- and right-pixel locations and draw the line. However, for a
general triangle, the slope of either the right or left side of the triangle will change at
some point. This means that we either have to place some test code within the y0 to y1
loop for this, or we need to break up the rasterization into two portions: a flat bottom and
a flat top.

If we take the second approach, we’re back to having special cases. If we take the first
approach—that is, changing the slope midstream—we have an extra conditional some-
thing like what’s shown next, assuming that we’re rasterizing the triangle shown in Figure
9.14:

for (y=y0; y < y2; y++)

{

Draw_Line(x_left, x_right, y, color);

x_left+=dx_left;

x_right+=dx_right;
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// test for change of slope

if (y==y1)

dx_right = new_dx_right;

} // end for

Polygon Rasterization Review 933

9

v0

v2

v1

v1Slope transition
point

Slope_left

Slope_left*

Slope_right

v0 �x0,  y0�

v2 �x2,  y2�

�x1,  y1�

Dx        �x1 � x0� 

�y1 � y0� Dy

Dx         �x2 � x1� 

�y2 � y1� Dy

�

�

The lines from and     
               overlap
in pixel space
at 

v1 v2

v1 �y�

FIGURE 9.14 A closeup view of the slope transition during triangle rasterization.

Basically, during the inside loop, we have to test when the line interpolation hits the new
triangle edge and update the slope appropriately. However, this uncovers a nasty subtlety:
No matter how we break up the triangle—that is, two subtriangles, one flat bottom, one
flat top, or have a conditional that flags a change in slope—there’s potential for an error
during this change of slopes. Take a look at Figure 9.14 to see this. The problem is that
when we draw the last pixel on the left edge and then transition to the new slope of the
new left edge, where do we start? Do we start on the current pixel? One below it?
Basically, we have to be careful that we don’t overdraw the pixel (which is harmless), but
worse yet that we mess up the current y position. What has to be done is the following:
We must pre-step down to the next line the exact amount from the exact (x1, y1) vertex
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location. Let me repeat that again. When the y position hits the transition vertex, depend-
ing on what kind of variable y is (integer or float), we must be careful not to advance the x
component by the full slope new_dx_right, but by the differential difference based on the
actual position of (x1, y1) at that point.

Fill Convention
When rasterizing polygons in a 3D engine, the point of rasterizing the polygons is usually
to build up an image of some solid object. What this means is that when we’re drawing
polygons that define a mesh, many times the polygons share vertices. And if they do, we
want to draw the polygons such that polygons that share vertices do not overdraw the
same lines. Take a look at Figure 9.15a to see what I’m talking about. Here we see two
triangles building up a diamond shape. The top triangle ends at row 20, but the bottom
triangle starts at row 20! So, we either need to stop the top triangle at row 19 or start the
bottom triangle at row 21. As a second example, take a look at Figure 9.15b. Here we see
two triangles adjacent horizontally creating a diamond shape. Again, should the left trian-
gle draw the last rightmost pixel at column 50, or should the rightmost triangle start at
column 51, and so on? All of these questions define a fill convention.
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FIGURE 9.15 Polygons that share vertices and edges.

We’re going to use what is termed as a top-left fill convention, which is what Direct3D uses
for rasterization. That is, if you were to render a rectangle from (0,0) to (5,5), you would
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think that the pixels on the fifth row and fifth column would be filled, but they aren’t;
this is shown in Figure 9.16.
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FIGURE 9.16 Top-left fill convention applied to a rectangle. 

The rectangle depicted fills 25 pixels, just as you would expect. The width of the rectangle
is defined as right minus left. The height is defined as bottom minus top, but the last row
and last column are not yet filled.

The top-left filling convention determines the action taken when a triangle passes through
the center of a pixel. In Figure 9.17, we see two triangles: one at (0, 0), (5, 0), and (5, 5),
and the other at (0, 5), (0, 0), and (5, 5). The first triangle in this case gets 15 pixels
(shown in black), whereas the second gets only 10 pixels (shown in gray) because the
shared edge is the left edge of the first triangle.

This is the fill convention we want to employ because it’s the standard as far as I can tell.
In any event, to facilitate this fill convention, we simply need to snap the incoming pixel
coordinates to integral positions with the ceiling function. So, for example, if we were
rasterizing a flat-bottom triangle from y0 to y1, these coordinates would change to

ystart = ceil(y0)

yend = ceil(y1)-1
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FIGURE 9.17 Top-left fill convention applied to triangles. 

During the looping process, when we are generating x values for each scan line, we also
need to compute the ceiling of those:

xs = ceil(x_left)

xe = ceil(x_right)-1

So, to sum up, we need to compute the ceiling function of both the initial y starting and
ending loop values, and also compute the ceiling function of the x end points before we
rasterize each scan line.

Alright, easy enough, but is there anything else we’re missing? Actually, yes. Because we
are throwing away information about the pixel locations before starting rasterization, we
need to take this into consideration when prestepping the x positions. That means that
the real vertical span was from y0 to y1, but we decided on a top-left fill convention and
thus took the ceil(y0) and ceil(y1)-1 to compute our starting and ending positions. But
we need to take this into consideration with the x_left and x_right (if we’re drawing a
flat-bottom triangle). Take a look at Figure 9.18.

We see the details of the top-left filling convention side effect in relation to the initial x-
position for the left interpolant. The key here to make sure that we take the altered ystart
position into consideration, this is easy though and nothing more than

x_left = x_left + (ystart – y0) * dx_left
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FIGURE 9.18 Taking coordinate truncation into consideration and pre-stepping properly.

In other words, we need to add the small differential change caused by snapping y0 to the
value ceil(y0) to x. Thus, we compute the difference from the original y0 and the
ceil(y0), take the difference, and multiply by the gradient of the left edge to properly set
the initial x position of the left side interpolant. A similar process must be performed for
the right side interpolant.

Okay, I think that’s about it. The only other housekeeping details to rasterize a triangle is
that, on entry, we must sort the vertices from top to bottom and from left to right, so that
we know the order they’re in.

Clipping
The final topic I want to discuss before moving on to some real triangle code is clipping.
We’ve discussed clipping a number of times, but let’s review it once again in the context
of triangle rasterization. We could clip all triangles to the screen rectangle as shown in
Figure 9.19. However, I find that this is more of a pain than it’s worth, and it’s better to
perform clipping during rasterization. To accomplish this is rather trivial. We need to
determine what kind of clipping is needed—that is, y-clipping, x-clipping, or no clip-
ping—and then select the code block that performs this, as shown in Figure 9.20. The case
where no clipping is needed is the simplest, of course, and then comes the y-clipping case.
In this case, part of the triangle extends beyond the top or bottom of the screen (or both
for a large triangle).
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FIGURE 9.19 Screen rectangle clipping.
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FIGURE 9.20 Special case clippers based on geometry.

For example, to clip to the top of the screen (y = 0 in most cases), we test if the topmost
triangle vertex is less than 0. If so, we set the new y = 0, but we have to be careful here;
we must step the left and right x coordinates down the edges of the triangle to account
for the new y. Once again, this is a pre-stepping phase, and care must be taken not to lose
accuracy. This is also shown in Figure 9.21.

Clipping the bottom of the triangle is much easier than the top: We simply stop rasteriz-
ing at the last screen row, but we don’t need to recompute any left- or right-side x inter-
polants because we aren’t scanning down the edges from the top; we’re scanning down
and stopping before the bottom.
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FIGURE 9.21 Properly recomputing or stepping x rasterization locations after clipping on the
y-axis.

The final case is when, as the triangle is being rasterized, its starting and ending x posi-
tions extend beyond the right and left of the window. This is similar to the top y-clipping
case. Starting with scan lines that are clipped to x = 0, we simply set the x position to 0,
and then we perform the same test to the right side x position and clip it. The results are
then stored and the scan line drawn—it’s simple as that.

TIP

A little later, we’re going to perform 3D clipping somewhat, but we’ll find that it’s not worth
performing a full 3D clip against the view frustrum because a single triangle can end up having
six sides after clipping. However, we’ll absolutely have to perform near z-plane clipping, which
can result in quadrilaterals that then need to be split into triangles once again. But that will be
performed at the rendering list level, so it’s not going to be a killer to split triangles that get
clipped once in a while.

The New Triangle Functions
Now that we’ve reviewed some of the details to rasterize a triangle, let’s take a look at the
new triangle rendering functions that take some of these concepts into consideration. I
basically rewrote all the triangle rendering functions for both 8- and 16-bit bit depths. My
main concern was that the old versions didn’t support floating-point coordinates, so the
new ones do. Also, I have conditionally compilation flags to select how accurate you want
the rasterizers because the more accurate they are, the slower they are. I felt that using
conditional compilation was better than using assembly language optimization at this
point. In any case, I don’t want to list all the functions. I’m only going to show a couple
that are indicative of the new functionality, so let’s look at the triangle-splitting function
that makes the call to the low-level top/bottom triangle drawing functions first (16-bit
version):
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void Draw_Triangle_2D2_16(float x1,float y1,

float x2,float y2,

float x3,float y3,

int color,

UCHAR *dest_buffer, int mempitch)

{

// this function draws a triangle on the destination buffer

// it decomposes all triangles into a pair of flat top, flat bottom

float temp_x, // used for sorting

temp_y,

new_x;

#ifdef DEBUG_ON

// track rendering stats

debug_polys_rendered_per_frame++;

#endif

// test for h lines and v lines

if ((FCMP(x1,x2) && FCMP(x2,x3)) || (FCMP(y1,y2) && FCMP(y2,y3)))

return;

// sort p1,p2,p3 in ascending y order

if (y2 < y1)

{

SWAP(x1,x2,temp_x);

SWAP(y1,y2,temp_y);

} // end if

// now we know that p1 and p2 are in order

if (y3 < y1)

{

SWAP(x1,x3,temp_x);

SWAP(y1,y3,temp_y);

} // end if

// finally test y3 against y2

if (y3 < y2)

{

SWAP(x2,x3,temp_x);

SWAP(y2,y3,temp_y);

} // end if
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// do trivial rejection tests for clipping

if ( y3 < min_clip_y || y1 > max_clip_y ||

(x1 < min_clip_x && x2 < min_clip_x && x3 < min_clip_x) ||

(x1 > max_clip_x && x2 > max_clip_x && x3 > max_clip_x) )

return;

// test if top of triangle is flat

if (FCMP(y1,y2))

{

Draw_Top_Tri2_16(x1,y1,x2,y2,x3,y3,color, dest_buffer, mempitch);

} // end if

else

if (FCMP(y2,y3))

{

Draw_Bottom_Tri2_16(x1,y1,x2,y2,x3,y3,color, dest_buffer, mempitch);

} // end if bottom is flat

else

{

// general triangle that’s needs to be broken up along long edge

new_x = x1 + (y2-y1)*(x3-x1)/(y3-y1);

// draw each sub-triangle

Draw_Bottom_Tri2_16(x1,y1,new_x,y2,x2,y2,color, dest_buffer, mempitch);

Draw_Top_Tri2_16(x2,y2,new_x,y2,x3,y3,color, dest_buffer, mempitch);

} // end else

} // end Draw_Triangle_2D2_16

The function has the same prototype as the previous version, Draw_Triangle_2D_16(). The
only differences are that all calculations are performed in floating-point math and the
pixel coordinates are sent as floats. Next, let’s take a look at the function that draws a flat-
bottom 16-bit triangle:

void Draw_Bottom_Tri2_16(float x1, float y1, 

float x2, float y2, 

float x3, float y3,

int color,

UCHAR *_dest_buffer, int mempitch)

{

// this function draws a triangle that has a flat bottom

float dx_right,  // the dx/dy ratio of the right edge of line

dx_left,   // the dx/dy ratio of the left edge of line

xs,xe,    // the starting and ending points of the edges
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height,   // the height of the triangle

temp_x,   // used during sorting as temps

temp_y,

right,    // used by clipping

left;

int iy1,iy3,loop_y;

// cast dest buffer to ushort

USHORT *dest_buffer = (USHORT *)_dest_buffer;

// destination address of next scanline

USHORT *dest_addr = NULL;

// recompute mempitch in 16-bit words

mempitch = (mempitch >> 1);

// test order of x1 and x2

if (x3 < x2)

{

SWAP(x2,x3,temp_x);

} // end if swap

// compute delta’s

height = y3 - y1;

dx_left = (x2-x1)/height;

dx_right = (x3-x1)/height;

// set starting points

xs = x1;

xe = x1; 

#if (RASTERIZER_MODE==RASTERIZER_ACCURATE)

// perform y clipping

if (y1 < min_clip_y)

{

// compute new xs and ys

xs = xs+dx_left*(-y1+min_clip_y);

xe = xe+dx_right*(-y1+min_clip_y);

// reset y1

y1 = min_clip_y;
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// make sure top left fill convention is observed

iy1 = y1;

} // end if top is off screen

else

{

// make sure top left fill convention is observed

iy1 = ceil(y1);

// bump xs and xe appropriately

xs = xs+dx_left*(iy1-y1);

xe = xe+dx_right*(iy1-y1);

} // end else

if (y3 > max_clip_y)

{

// clip y

y3 = max_clip_y;

// make sure top left fill convention is observed

iy3 = y3-1;

} // end if

else

{

// make sure top left fill convention is observed

iy3 = ceil(y3)-1;

} // end else

#endif

#if ((RASTERIZER_MODE==RASTERIZER_FAST) || 

(RASTERIZER_MODE==RASTERIZER_FASTEST))

// perform y clipping

if (y1 < min_clip_y)

{

// compute new xs and ys

xs = xs+dx_left*(-y1+min_clip_y);

xe = xe+dx_right*(-y1+min_clip_y);

// reset y1

y1 = min_clip_y;

} // end if top is off screen

if (y3 > max_clip_y)

y3 = max_clip_y;
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// make sure top left fill convention is observed

iy1 = ceil(y1);

iy3 = ceil(y3)-1;

#endif 

// compute starting address in video memory

dest_addr = dest_buffer + iy1*mempitch;

// test if x clipping is needed

if (x1 >= min_clip_x && x1 <= max_clip_x &&

x2 >= min_clip_x && x2 <= max_clip_x &&

x3 >= min_clip_x && x3 <= max_clip_x)

{

// draw the triangle

for (loop_y = iy1; loop_y <= iy3; loop_y++, dest_addr+=mempitch)

{

// draw the line

Mem_Set_WORD(dest_addr+(unsigned int)(xs),color,

(unsigned int)((int)xe-(int)xs+1));

// adjust starting point and ending point

xs+=dx_left;

xe+=dx_right;

} // end for

} // end if no x clipping needed

else

{

// clip x axis with slower version

// draw the triangle

for (loop_y = iy1; loop_y <= iy3; loop_y++,dest_addr+=mempitch)

{

// do x clip

left = xs;

right = xe;

// adjust starting point and ending point

xs+=dx_left;

xe+=dx_right;

// clip line

if (left < min_clip_x)
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{

left = min_clip_x;

if (right < min_clip_x)

continue;

}

if (right > max_clip_x)

{

right = max_clip_x;

if (left > max_clip_x)

continue;

}

// draw the line

Mem_Set_WORD(dest_addr+(unsigned int)(left),color,

(unsigned int)((int)right-(int)left+1));

} // end for

} // end else x clipping needed

} // end Draw_Bottom_Tri2_16

Again, the naming convention appends a 2 to the primary function name, but the inter-
face stays the same. Reviewing the function, you can see the support for filling convention
as well as the conditional compilation flags that I’ve highlighted in the code as bold and
are defined here:

// these are defines for conditional compilation of the new rasterizers

// I don’t want 80 million different functions, so I have decided to 

// use some conditionals to change some of the logic in each

// these names aren’t necessarily the most accurate, but 3 should be enough

#define RASTERIZER_ACCURATE 0 // sub-pixel accurate with fill convention

#define RASTERIZER_FAST   1 // 

#define RASTERIZER_FASTEST  2

// set this to the mode you want the engine to use

#define RASTERIZER_MODE    RASTERIZER_ACCURATE

To change the conditional compilation, modify the bolded line in the preceding code in
the T3DLIB7.H file to RASTERIZER_FAST; for example, to speed up the rasterizer a bit in
exchange for accuracy. The function basically implements everything we’ve discussed; its
sister function that renders flat-top triangles is similar. Additionally, there are versions for
8-bit modes as shown in the earlier functional listing.

Now that you’ve been completely bored out of your mind with rasterization, let’s talk
briefly about some optimizations that can be made to these rasterizers.
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Optimizations
The beautiful thing about these rasterizers is that they’re so short. The optimization
domain is small, meaning that we can see the entire code at once. So, what are some areas
to optimize? Well, the algorithms are sound, meaning that we aren’t going to get much
with changing the algorithm—rasterization is rasterization. Rasterization is not like sorting
where huge gains can be realized with new algorithms. Additionally, the inner loops have
very little in them—for the most part, a couple additions and a line draw, and that’s it.
The only thing we can get some speed out of is looking closely at data conversions and
doing math we don’t need to do. Take a look at the following fragment, which represents
the inner loop of the rasterizer:

// draw the triangle

for (loop_y = iy1; loop_y <= iy3; loop_y++, dest_addr+=mempitch)

{

// draw the line

Mem_Set_WORD(dest_addr+(unsigned int)(xs),

color,(unsigned int)((int)xe-(int)xs+1));

// adjust starting point and ending point

xs+=dx_left;

xe+=dx_right;

} // end for

The only killer is the highlighted line, which makes the call to Mem_Set_WORD(). This is an
inline function, but I still don’t like the call, so that’s something we might code directly
with inline ASM to do the WORD move. Other things that disturb me are all the type
conversions going on; this could potentially be a killer. Basically, I’m trying to implement
the fill convention here for horizontal lines. And I’m only partially doing it because I’m
not performing a ceiling operation on each scan line end point, so I’m overdrawing, but
calling the ceil() function will take too long. Now, if we want to follow the fill conven-
tion explicitly, we need a faster ceil() function so that we can use it all the time and we
have to really analyze how we’re performing conversion to integer and so forth. The point
is that this is an area for assembly language because the compiler is too coarse-grained to
write tight code for this inner loop for us. Hence, we’ll defer assembly optimization until
the end of the book for the most part.

But let’s briefly talk about the ceil() and floor() functions. They’re implemented in
standard C/C++ libraries and even though we’re calling them only for the accurate version
of the polygon rasterizer on a per-polygon basis, that’s still 10–20,000 potential calls, so
why not speed them up? One way to speed up the ceil() function is to write our own,
based on the domain of numbers that we know are going to pass through it. In other
words, we know that we’re going to be rendering triangles that have coordinates some-
where in the range of screen_width × screen_height +- some negative and positive
overlap, so it’s possible to make a lookup table for ceil() and floor() based on this
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knowledge. For example, let’s look at the functional mapping for the ceil() function for a
second:

ceil(x) = { if x >= 0:

if x=int(x) then ceil(x) = x

else x=int(x)+1

{ if x < 0: ceil(x) = int(x)

Ultimately, the deciding factor for computing ceil(x) is if there’s a decimal portion to x.
If so, we bump x up to the next integer; otherwise, we leave x alone (for the x >= 0 case).
For x < 0, we simply truncate the decimal portion. Here’s an algorithm:

inline int Ceiling(float x)

{

if (x < 0) return (int)x;

else

if ((int)x < x) return((int)x+1);

} // end if

If you use inline floating point ASM, you can make this a few instructions. The analysis of
floor() is similar. Hence, if you want to optimize these math functions, those are some
ideas.

TIP

It’s possible to convert ceiling to floor, and then use the modulus operator to compute the floor.
However, all the work seems to cancel out in most cases, and I prefer the more straightforward
approach. You might want to consult a math book on this transformation or try it yourself.

But the point of all this is to bring your attention to the simple fact that it doesn’t matter
how fast the floating-point processor or integer process is if you get penalized for conver-
sions when you finally compute the integer pixel locations. That’s why it makes sense
sometimes to use fixed-point math: We can use a single data type int to perform all our
math, and when it’s time to rasterize, we simply use the upper 16 bits for the pixel loca-
tions. This makes a lot of sense, and is the approach I’ve taken for both the Gouraud
shader and affine texture mapper.

Finally, although your main optimizations should always be focused on the innermost
loops, as we saw, these polygon routines may be called 10–20,000 times each frame.
Hence, anything you can shave off the “setup” phase per polygon is surely worth it. Thus,
our philosophy of having a triangle function that breaks a triangle into a flat top, flat
bottom, or general, and then makes either one or two calls to the specific polygon raster-
izer might be a good place to optimize later and make rendering a polygon a single call.
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Again, this is the strategy I took when writing the Gouraud shader and affine texture
mapper; the rasterizers handle a general polygon all in one—no splitting.

Just food for thought. There are so many ways to rasterize triangles, and you can always
make them faster. I would guess that you can get an approximate 2–10 times speed
increase from what we have here if you muck with it, use assembly language, SIMD, and
so forth.

Implementing Gouraud Shading
Alright, we’re finally to the good part: the entire point of this chapter is to cover Gouraud
shading and affine texture mapping, but we had to cover the preliminaries, you know!
Anyway, take a look at Figure 9.22. It’s a screenshot of the engine in action. Look at the
colored lights on the textures and the smooth shading on the polygons— pretty cool,
huh? Now let’s see how this all works.
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FIGURE 9.22 The Gouraud-shaded texture-mapped 3D engine in action.

As we discussed in the lighting material of the last chapter, Gouraud shading/lighting
differs from flat shading in that instead of computing a single polygon normal per
polygon and a light intensity for the entire surface, the Gouraud shading algorithm
computes the light intensity at each vertex. When the rasterization phase occurs, the light
intensities are interpolated across the triangle.

Figure 9.23 illustrates the interpolation process. Basically, we run the lighting engine for
each polygon vertex normal rather than the single polygon normal, and then we compute
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the incident light intensity’s RGB value, and store that value in the vertex as its color. We
simply linearly interpolate the colors down the triangle and presto! We have a Gouraud-
shaded polygon.
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FIGURE 9.23 Gouraud interpolation across a polygon.

Now then, writing a Gouraud shading engine has two parts to it:

Part 1—We need a lighting engine that can compute light based on a surface normal, but
we already have that. Therefore, all we need to do is light each vertex normal of any
polygon that has Gouraud shading enabled and then compute the light intensities for
each vertex.

Part 2—We need to write a Gouraud rasterizer that can handle different colors at each
polygon vertex and interpolate between them.

Part 1 is already mostly done, so let’s assume for a minute that we pass an OBJECT4DV2 or a
RENDERLIST4DV2 through the lighting module and it outputs polygons lit as before: emis-
sive, flat, and now Gouraud. If a polygon is Gouraud-shaded, the vertex colors for the lit
vertices will be stored in lit_color[0..2]. Otherwise, for emissive and flat-shaded polys,
lit_color[0] contains the color for the entire polygon. Therefore, if we assume that we
have this lighting technology, the problem really become simple: We need a triangle
rasterizer that rasterizes a single triangle, but such that it not only interpolates the pixels
down the edges and draws lines from edge to edge, but also interpolates the colors from
vertex to vertex and line to line. This is what we need to write.

Gouraud Shading Without Lighting
This section is so titled because I don’t care how we get the vertex colors. They could be
set manually, or computed with a light engine based on radiosity, or looked up as part of a
static scene, whatever. The point is that I simply need to interpolate the values across the
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triangle as I’m rendering it. This problem is really simple and we’ve seen it many times
now: interpolation.

Figure 9.24 illustrates the setup we need to implement. We have a general triangle with
vertices v0, v1, v2, ordered as shown. Additionally, let’s say that each vertex has a full
RGB color in 8.8.8 format. Now, when we rasterized a triangle, what did we do? We
computed the left and right edge gradients and called them dx_left and dx_right.
Basically these gradients were nothing more than the change in x relative to the change in
y; thus, as we moved from scan line to scan line we simply added dx_left and dx_right
to the starting and ending x positions on the scan line and then drew a line. This is
exactly what we need to do to Gouraud shade—we need to interpolate the colors down
the edges of the triangle as a function of y. Let’s try to do this for a simplified intensity-
only version with some pseudo code. Writing an RGB version is the same; we simply need
to do it three times, once for each color channel. Now, I’m not going to worry about fill
convention, vertex sorting, and things like that right now, I just want to get the interpola-
tion under control.
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FIGURE 9.24 The setup for Gouraud interpolation.

Let’s begin by working through the interpolation manually so that you can see what’s
going on. I’ll use slightly different variable names in the final functions. These are just to
make things easy for discussion. Anyway, referring to Figure 9.24, we see a general triangle
labeled as before with vertices v0, v1, and v2 in a clockwise fashion. Additionally, you see
quite a few Vulcan-looking markings—these are all the gradients and coordinate location
labels. Let’s interpolate this triangle step by step:

Step 1: Initial setup and computation of left and right edge gradients.

These variables track the positions of the interpolation on the left and right edges of the
triangle:

13 0672318350 CH09  05•02•2003  2:49 PM  Page 950



xl_edge = x0

xr_edge = x0

These variables track the intensity interpolation on the left and right edges of the triangle:

il_edge = i0

ir_edge = i0

Step 2: Compute all left and right gradients as a function of y.

This is the left edge gradient for the change in x with respect to y; the standard rasteriza-
tion gradient:

dxldy = (x2 – x0)/(y2 – y0)

Similar for the right edge:

dxrdy = (x1 – x0)/(y1 – y0)

Now compute the intensity gradients. These are the changes in intensity as a function 
of y:

dildy = (i2 – i0)/(y2 – y0)

Similar for the right edge:

dirdy = (i1 – i0)/(y1 – y0)

Step 3: Enter into the y loop, for y = y0 to y2 (first half of the triangle).

Step 4: The horizontal rasterization step. At this point, we’re going to draw a single scan
line, but we have to draw it a pixel at a time because we’re interpolating both vertically
and horizontally.

Set up starting points for x and intensity:

i = il_edge

x = xl_edge

Compute horizontal intensity gradient i as a function of x:

dix = (ir_edge – il_edge) / (xr_edge – xl_edge)

Step 5: Rasterize line pixel by pixel with interpolation:

For (x = xl_edge to xr_edge)

begin

setpixel(x,y,i)
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// update the intensity

i = i + dix

end

Step 6: Update vertical interpolants and loop.

First normal rasterization left and right edge positions:

xl_edge = xl_edge + dxldy

xr_edge = xr_edge + dyrdy

Now, update intensity interpolation values:

il_edge = il_edge + dildy

ir_edge = ir_edge + dirdy

Next y interation.

Step 7: Perform the same logic for the bottom half of the triangle, but update left edge
gradients to reflect terminal vertex v1.

Take some time to review the pseudo-code algorithm to make sure that you understand it,
but in a nutshell the rasterization works identically to the standard triangle rasterization
except that we’re tracking the intensities down the left and right edges of the triangle. For
each scan line, instead of drawing a constant colored line, we must interpolate the scan
line intensity from left to right where the value being interpolated is the current intensity
on the left and right edge of the triangle. Now, just for fun, let’s completely convert the
pseudo-code to rough C/C++ code to see the entire algorithm at once:

void Draw_Gouraud_Triangle(float x0, float y0, float i0, // vertex 0

float x0, float y0, float i0, // vertex 1

float x0, float y0, float i0, // vertex 2

{

// assume that vertex positions are in the form as shown

// in the figure

// initialize positions

xl_edge = x0;

xr_edge = x0;

// initialize intensities

il_edge = i0;

ir_edge = i0;

// initialize vertical edge gradients

dxldy = (x2 – x0)/(y2 – y0);
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dxrdy = (x1 – x0)/(y1 – y0);

dildy = (i2 – i0)/(y2 – y0);

dildy = (i1 – i0)/(y1 – y0);

// enter into y loop (first half of triangle only)

for (y=y0; y < y2; y++)

{

// setup starting points for x and intensity

i = il_edge

x = xl_edge

// compute horizontal intensity gradient i 

// as a function of x:

dix = (ir_edge – il_edge) / (xr_edge – xl_edge);

// Rasterize line pixel by pixel with interpolation

for (x = xl_edge; x < xr_edge; x++)

{

// draw the pixel at (x,y) with intensity i

setpixel(x,y,i);

// update the intensity

i = i + dix

} // end for 

// update vertical interpolants and loop

xl_edge = xl_edge + dxldy;

xr_edge = xr_edge + dyrdy;

il_edge = il_edge + dildy;

ir_edge = ir_edge + dirdy;

} // end for y

// add code for second half of triangle here, need to

// update the left side gradients only and then perform

// same logic

} // end Draw_Gouraud_Triangle

In summary, rendering a Gouraud-shaded triangle or, more technically, rasterizing a
triangle where the intensity or colors at each vertex are smoothly interpolated from vertex
to vertex both vertically and horizontally, is nothing more than what’s shown in the
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earlier pseudo-code and the minimal C/C++ function. So, what do we need to do this for
real? Well, truthfully, we just need to interpolate red, green, and blue, instead of a single
“intensity” values. For the final scan line horizontal interpolation, when we write the
pixel, we just build the pixel back up. Or, in other words, we interpolate RGB down the
left and right edge of the triangle, For every scan line, we interpolate RGB across the scan
line, as shown in Figure 9.25.
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FIGURE 9.25 Rasterizing a single scan line with full-colored Gouraud shading.

The only program with all this interpolation is speed. We’re interpolating six color chan-
nels and two rasterization channels, for a total of two values down the left and right edges
in total. Furthermore, when we draw the scan line, we have to interpolate the RGB color
from the left to right side of the scan line, which is three channels, as shown in Figure
9.25. This stuff has to go fast!

Keeping all that in mind, I wrote this a couple times, and I ended up using fixed-point
16.16 math. I did that not because fixed-point is faster than floating-point, but because I
wanted to avoid the final floating-point-to-integral conversions when writing pixels and
computing final RGB words because the compiler likes to use crappy code when doing
this. I also wanted to avoid assembly at this point. In any case, I’ve decided to include the
function listing even though it’s rather large. This will be the only function listing I’m
going to include in this chapter because the code is so long and complex. However, I
think it’s worth it because the code is written in a RISC-like manner to take advantage of
the pipelining of the Pentium processors, so I’ve really coded things in a long drawn-out
manner to get as much parallelism as possible. Of course, the function is approximately
30 pages, so I can’t list it in its entirety. I’m going to only list the first triangle case
handled in the code, but that contains everything you need to see:
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void Draw_Gouraud_Triangle16(POLYF4DV2_PTR face,  // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch)    // bytes per line, 320, 640 etc.

{

// this function draws a gouraud shaded polygon, 

// based on the affine texture mapper, instead

// of interpolating the texture coordinates, 

// we simply interpolate the (R,G,B) values across

// the polygons, I simply needed at another interpolant, 

// I have mapped u->red, v->green, w->blue

int v0=0,

v1=1,

v2=2,

temp=0,

tri_type = TRI_TYPE_NONE,

irestart = INTERP_LHS;

int dx,dy,dyl,dyr,   // general deltas

u,v,w,

du,dv,dw,

xi,yi,       // the current interpolated x,y

ui,vi,wi,      // the current interpolated u,v

index_x,index_y,  // looping vars

x,y,        // hold general x,y

xstart, xend, ystart, yrestart, yend, xl,

dxdyl, xr, dxdyr, dudyl, ul, dvdyl, vl, dwdyl,

wl, dudyr, ur, dvdyr, vr, dwdyr, wr;

int x0,y0,tu0,tv0,tw0,  // cached vertices

x1,y1,tu1,tv1,tw1,

x2,y2,tu2,tv2,tw2;

int r_base0, g_base0, b_base0, // base colors

r_base1, g_base1, b_base1,

r_base2, g_base2, b_base2;

USHORT *screen_ptr = NULL,

*screen_line = NULL,

*textmap   = NULL,

*dest_buffer = (USHORT *)_dest_buffer;

#ifdef DEBUG_ON

// track rendering stats
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debug_polys_rendered_per_frame++;

#endif

// adjust memory pitch to words, divide by 2

mem_pitch >>=1;

// first trivial clipping rejection tests 

if (((face->tvlist[0].y < min_clip_y) && 

(face->tvlist[1].y < min_clip_y) &&

(face->tvlist[2].y < min_clip_y)) ||

((face->tvlist[0].y > max_clip_y) && 

(face->tvlist[1].y > max_clip_y) &&

(face->tvlist[2].y > max_clip_y)) ||

((face->tvlist[0].x < min_clip_x) && 

(face->tvlist[1].x < min_clip_x) &&

(face->tvlist[2].x < min_clip_x)) ||

((face->tvlist[0].x > max_clip_x) && 

(face->tvlist[1].x > max_clip_x) &&

(face->tvlist[2].x > max_clip_x)))

return;

// degenerate triangle

if ( ((face->tvlist[0].x==face->tvlist[1].x) && 

(face->tvlist[1].x==face->tvlist[2].x)) ||

((face->tvlist[0].y==face->tvlist[1].y) && 

(face->tvlist[1].y==face->tvlist[2].y)))

return;

// sort vertices

if (face->tvlist[v1].y < face->tvlist[v0].y) 

{SWAP(v0,v1,temp);} 

if (face->tvlist[v2].y < face->tvlist[v0].y) 

{SWAP(v0,v2,temp);}

if (face->tvlist[v2].y < face->tvlist[v1].y) 

{SWAP(v1,v2,temp);}

// now test for trivial flat sided cases

if (face->tvlist[v0].y==face->tvlist[v1].y)

{ 
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// set triangle type

tri_type = TRI_TYPE_FLAT_TOP;

// sort vertices left to right

if (face->tvlist[v1].x < face->tvlist[v0].x) 

{SWAP(v0,v1,temp);}

} // end if

else

// now test for trivial flat sided cases

if (face->tvlist[v1].y==face->tvlist[v2].y)

{ 

// set triangle type

tri_type = TRI_TYPE_FLAT_BOTTOM;

// sort vertices left to right

if (face->tvlist[v2].x < face->tvlist[v1].x) 

{SWAP(v1,v2,temp);}

} // end if

else

{

// must be a general triangle

tri_type = TRI_TYPE_GENERAL;

} // end else

// assume 5.6.5 format -- sorry!

// we can’t afford a function call in the inner loops, so we must write 

// two hard coded versions, if we want support for both 5.6.5, and 5.5.5

_RGB565FROM16BIT(face->lit_color[v0], &r_base0, &g_base0, &b_base0);

_RGB565FROM16BIT(face->lit_color[v1], &r_base1, &g_base1, &b_base1);

_RGB565FROM16BIT(face->lit_color[v2], &r_base2, &g_base2, &b_base2);

// scale to 8 bit 

r_base0 <<= 3; g_base0 <<= 2; b_base0 <<= 3;

// scale to 8 bit 

r_base1 <<= 3; g_base1 <<= 2; b_base1 <<= 3;

// scale to 8 bit 

r_base2 <<= 3; g_base2 <<= 2; b_base2 <<= 3;

// extract vertices for processing, now that we have order

x0 = (int)(face->tvlist[v0].x+0.5);

y0 = (int)(face->tvlist[v0].y+0.5);

tu0 = r_base0; tv0 = g_base0; tw0 = b_base0; 
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x1 = (int)(face->tvlist[v1].x+0.5);

y1 = (int)(face->tvlist[v1].y+0.5);

tu1 = r_base1; tv1 = g_base1; tw1 = b_base1; 

x2 = (int)(face->tvlist[v2].x+0.5);

y2 = (int)(face->tvlist[v2].y+0.5);

tu2 = r_base2; tv2 = g_base2; tw2 = b_base2; 

// set interpolation restart value

yrestart = y1;

// what kind of triangle

if (tri_type & TRI_TYPE_FLAT_MASK)

{

if (tri_type == TRI_TYPE_FLAT_TOP)

{

// compute all deltas

dy = (y2 - y0);

dxdyl = ((x2 - x0)  << FIXP16_SHIFT)/dy;

dudyl = ((tu2 - tu0) << FIXP16_SHIFT)/dy; 

dvdyl = ((tv2 - tv0) << FIXP16_SHIFT)/dy;  

dwdyl = ((tw2 - tw0) << FIXP16_SHIFT)/dy; 

dxdyr = ((x2 - x1)  << FIXP16_SHIFT)/dy;

dudyr = ((tu2 - tu1) << FIXP16_SHIFT)/dy; 

dvdyr = ((tv2 - tv1) << FIXP16_SHIFT)/dy;  

dwdyr = ((tw2 - tw1) << FIXP16_SHIFT)/dy;  

// test for y clipping

if (y0 < min_clip_y)

{

// compute overclip

dy = (min_clip_y - y0);

// computer new LHS starting values

xl = dxdyl*dy + (x0 << FIXP16_SHIFT);

ul = dudyl*dy + (tu0 << FIXP16_SHIFT);

vl = dvdyl*dy + (tv0 << FIXP16_SHIFT);

wl = dwdyl*dy + (tw0 << FIXP16_SHIFT);

// compute new RHS starting values

xr = dxdyr*dy + (x1 << FIXP16_SHIFT);

ur = dudyr*dy + (tu1 << FIXP16_SHIFT);

vr = dvdyr*dy + (tv1 << FIXP16_SHIFT);

wr = dwdyr*dy + (tw1 << FIXP16_SHIFT);
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// compute new starting y

ystart = min_clip_y;

} // end if

else

{

// no clipping

// set starting values

xl = (x0 << FIXP16_SHIFT);

xr = (x1 << FIXP16_SHIFT);

ul = (tu0 << FIXP16_SHIFT);

vl = (tv0 << FIXP16_SHIFT);

wl = (tw0 << FIXP16_SHIFT);

ur = (tu1 << FIXP16_SHIFT);

vr = (tv1 << FIXP16_SHIFT);

wr = (tw1 << FIXP16_SHIFT);

// set starting y

ystart = y0;

} // end else

} // end if flat top

else

{

// must be flat bottom

// compute all deltas

dy = (y1 - y0);

dxdyl = ((x1 - x0)  << FIXP16_SHIFT)/dy;

dudyl = ((tu1 - tu0) << FIXP16_SHIFT)/dy; 

dvdyl = ((tv1 - tv0) << FIXP16_SHIFT)/dy;  

dwdyl = ((tw1 - tw0) << FIXP16_SHIFT)/dy; 

dxdyr = ((x2 - x0)  << FIXP16_SHIFT)/dy;

dudyr = ((tu2 - tu0) << FIXP16_SHIFT)/dy; 

dvdyr = ((tv2 - tv0) << FIXP16_SHIFT)/dy;  

dwdyr = ((tw2 - tw0) << FIXP16_SHIFT)/dy;  

// test for y clipping

if (y0 < min_clip_y)

{

// compute overclip

dy = (min_clip_y - y0);

// computer new LHS starting values

xl = dxdyl*dy + (x0 << FIXP16_SHIFT);

ul = dudyl*dy + (tu0 << FIXP16_SHIFT);

vl = dvdyl*dy + (tv0 << FIXP16_SHIFT);
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wl = dwdyl*dy + (tw0 << FIXP16_SHIFT);

// compute new RHS starting values

xr = dxdyr*dy + (x0 << FIXP16_SHIFT);

ur = dudyr*dy + (tu0 << FIXP16_SHIFT);

vr = dvdyr*dy + (tv0 << FIXP16_SHIFT);

wr = dwdyr*dy + (tw0 << FIXP16_SHIFT);

// compute new starting y

ystart = min_clip_y;

} // end if

else

{

// no clipping

// set starting values

xl = (x0 << FIXP16_SHIFT);

xr = (x0 << FIXP16_SHIFT);

ul = (tu0 << FIXP16_SHIFT);

vl = (tv0 << FIXP16_SHIFT);

wl = (tw0 << FIXP16_SHIFT);

ur = (tu0 << FIXP16_SHIFT);

vr = (tv0 << FIXP16_SHIFT);

wr = (tw0 << FIXP16_SHIFT);

// set starting y

ystart = y0;

} // end else  

} // end else flat bottom

// test for bottom clip, always

if ((yend = y2) > max_clip_y)

yend = max_clip_y;

// test for horizontal clipping

if ((x0 < min_clip_x) || (x0 > max_clip_x) ||

(x1 < min_clip_x) || (x1 > max_clip_x) ||

(x2 < min_clip_x) || (x2 > max_clip_x))

{

// clip version

// point screen ptr to starting line

screen_ptr = dest_buffer + (ystart * mem_pitch);

for (yi = ystart; yi<=yend; yi++)

{

// compute span endpoints

xstart = ((xl + FIXP16_ROUND_UP) >> FIXP16_SHIFT);

xend  = ((xr + FIXP16_ROUND_UP) >> FIXP16_SHIFT);

// compute starting points for u,v,w interpolants
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ui = ul + FIXP16_ROUND_UP;

vi = vl + FIXP16_ROUND_UP;

wi = wl + FIXP16_ROUND_UP;

// compute u,v interpolants

if ((dx = (xend - xstart))>0)

{

du = (ur - ul)/dx;

dv = (vr - vl)/dx;

dw = (wr - wl)/dx;

} // end if

else

{

du = (ur - ul);

dv = (vr - vl);

dw = (wr - wl);

} // end else

///////////////////////////////////////////////////////////////////////

// test for x clipping, LHS

if (xstart < min_clip_x)

{

// compute x overlap

dx = min_clip_x - xstart;

// slide interpolants over

ui+=dx*du;

vi+=dx*dv;

wi+=dx*dw;

// reset vars

xstart = min_clip_x;

} // end if

// test for x clipping RHS

if (xend > max_clip_x)

xend = max_clip_x;

///////////////////////////////////////////////////////////////////////

// draw span

for (xi=xstart; xi<=xend; xi++)

{
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// write textel assume 5.6.5

screen_ptr[xi] = ((ui >> (FIXP16_SHIFT+3)) << 11) + 

((vi >> (FIXP16_SHIFT+2)) << 5) + 

(wi >> (FIXP16_SHIFT+3));  

// interpolate u,v

ui+=du;

vi+=dv;

wi+=dw;

} // end for xi

// interpolate u,v,w,x along right and left edge

xl+=dxdyl;

ul+=dudyl;

vl+=dvdyl;

wl+=dwdyl;

xr+=dxdyr;

ur+=dudyr;

vr+=dvdyr;

wr+=dwdyr;

// advance screen ptr

screen_ptr+=mem_pitch;

} // end for y

} // end if clip

// . REMOVED NON-CLIPPED SUB-CASE to allow listing in book!!!!

} // end if

// . REMOVED GENERAL CASE to allow listing in book!!!!

} // end Draw_Gouraud_Triangle16

What you’re looking at is the 16-bit version of the Gouraud shader. This function
Draw_Gouraud_Triangle16() has no concept of lighting or any of that; all it does is inter-
polate the vertex colors it finds in lit_color[] down the triangle. Now, there’s some bad
news: I’ve decided to use 5.6.5 format from now on where speed is important. In other
words, I’m losing speed here and there by asking the question of what mode we’re in or
using the function pointers to access the correct bit-merging functions. Because 99.9% of
cards are all 5.6.5, this shouldn’t be a problem. However, if you happen to have a 5.5.5
card, you can rewrite the code that does the bit manipulations manually. For example,
look at the inner horizontal loop rasterizer in the earlier function as shown in the
following:
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// draw span

for (xi=xstart; xi<=xend; xi++)

{

// write textel assume 5.6.5

screen_ptr[xi] = ((ui >> (FIXP16_SHIFT+3)) << 11) + 

((vi >> (FIXP16_SHIFT+2)) << 5) + 

(wi >> (FIXP16_SHIFT+3));  

// interpolate u,v,w

ui+=du;

vi+=dv;

wi+=dw;

} // end for xi

If you look closely at the final pixel assignment, I’m manually writing a 5.6.5 pixel. I
would hate to make any calls here, so this is my motivation. If you need to change it, you
will have to do so in anything that draws to the screen, but it’s easy to find because you’ll
always see the shifting and masking operations, and I also comment it.

NOTE

You might be wondering why I have called the interpolants u, v, and w. Well, I actually wrote the
texture mapper first, and instead of going nuts renaming everything to r, g, and b, I just used the
texture mapper, which uses u and v, and added a w. Thus u, v, and w maps to red, green, and
blue. They’re just variable names, so if they bug you, YOU change them! There are too many of
them and even with text replace, and changing them is asking for bugs.

Cool, so let’s take a look at a demo of the Gouraud shader, which is nothing more than
drawing triangles. Figure 9.26 is a screenshot of DEMOII9_1.CPP|EXE in action. Try running
the program for yourself. It randomly selects a vertex position for a triangle along with
colors and then calls the Gouraud triangle function. Also, there’s an 8-bit version called
DEMOII9_1_8b.CPP|EXE.

Adding Vertex Lighting for the Gouraud Shader
The next step is to use our lighting engine functions to actually compute the light inten-
sity at each vertex, resulting in a final RGB color for each vertex. When we call the
Gouraud shader function as a replacement for the standard flat shader function, presto!
We have Gouraud-shaded triangles that change as a function of the lighting in the scene.
So, let’s reiterate what needs to be done to make this work. We already created new
polygon structures that have color arrays to hold the final lit colors after the lighting
stage. This array is named lit_color[] and it has three slots, one for each triangle vertex.
Thus, all we really need to do is take our lighting function that lights either the rendering
list or an object itself, and modify it so that it knows how to light emissive, flat-, and
Gouraud-shaded polygons.

Implementing Gouraud Shading 963

9

13 0672318350 CH09  05•02•2003  2:49 PM  Page 963



FIGURE 9.26 A screenshot of the Gouraud triangle rendering function in action. 

We already have it working for emissive and flat-shaded polygons. In the case of emissive,
the function does nothing but copy the polygon color field directly into lit_color[0]
and it’s done. But for flat-shaded polygons, the function processes each light that’s active
in the system and lights the polygon based on it’s base color and it’s normal. Hence, we
simply need to copy this functionality in another loop so that polygons that are Gouraud-
shaded will be lit on a vertex-by-vertex basis. This process is shown in Figure 9.27, where
we see polygons coming down the pipeline, the lighting engine performing the lighting
calculations on each polygon, and the steps that are involved.

As you can see in the figure, we basically need to replicate the lighting code to light
Gouraud-shaded polygons to take into consideration that Gouraud-shaded polygons have
their normals stored in the VERTEX4DTV1 structure in the n (normal) field, and that’s about
it! The only downside, of course, is the triple calculations that must be performed for each
polygon because we have to recompute the light for each vertex—ouch! However, there
are some optimizations that we can apply here and I’ll discuss them later in the section.

That’s all good, so let’s take a look at the new lighting functions that support vertex light-
ing and Gouraud shading for both 16- and 8-bit modes.

16-Bit Gouraud Lighting
As outlined earlier, adding vertex lighting support to the lighting functions is rather easy.
It’s nothing more than code copying and changing the polygon normals used for the flat
shading to the vertex normals and performing the lighting three times, or once for each
vertex. However, the only problem is that the lighting function becomes rather compli-
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cated because of this, and each polygon can take quite a long time to process. That’s why
you don’t see too many software-based, colored-light systems with Gouraud shading. But
this one isn’t bad, and it’s even fast enough for games.
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FIGURE 9.27 The new lighting pipeline supports both flat shading and Gouraud shading.

We need to rewrite two functions to enable Gouraud lighting; they’re the object-based
lighting function and the rendering list–based lighting function. I’m going to show you
the rendering list version because we’ve been doing most of our work at the rendering list
level, including lighting. Although even in the previous version of the engine, we had
both object-level and rendering list–level lighting functions for both 8- and 16-bit, we
tended to use the rendering list version. However, Gouraud lighting has a twist that neces-
sitates a rethinking of this in relation to optimization.

Here’s the deal. Take a look at Figure 9.28. We see a cube as a unified object and as sepa-
rate polygons in a rendering list. The problem is that while in its OBJECT4DV2 form, the
cube only has eight vertex normal (because there are only eight vertices). But once the
cube is “ripped” and inserted into the rendering list, the cube now has 12*3 = 36 vertex
normals! This is of course due to the fact that we create a totally self-contained polygon
for each polygon in the rendering list and we completely forego all indirection.

Alas, if we perform lighting at the OBJECT4DV2 phase—that is, while an object is still intact
as a single mesh—we can take advantage of the minimum number of vertex normals.
However, if we wait until the object has been converted into polygons and then light the
rendering list, we take a 300% or more over calculation hit recalculating copied vertex
normals. This is obviously not acceptable and something we’ll need to address later when
we optimize.
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FIGURE 9.28 Objects have vertex coherence while intact, but once converted to polygons
they lose coherence.

To that end, both the object-based lighting functions and the rendering list lighting func-
tions light three vertex normals for each polygon. Even though the object lighting func-
tion could “tag” vertices it has already lit so that we can minimize calculations, this is
complicated to get working for a first iteration, so I wanted to lay off it for now, but keep
it in mind. 

The reason it’s complicated is that when a vertex is lit and the final vertex colors are
computed and stored in lit_colors[], the base color of the polygon that contains those
vertices is used in the lighting calculations. Hence, to reuse vertices that have been lit, we
have to break the lighting into two steps: the first step is an intensity-only lighting phase
where we tag lit vertices and don’t light them again for other polygons that share them.
Then there’s a post-processing step where we take the final vertex intensities and then
modulate them by each polygon’s actual color. The details of this make the code messy,
and we’re dealing with enough stuff right now. However, this is an optimization that I’ll
use in upcoming chapters, so keep your eyes peeled, or you may like to do it now yourself.

In any case, let’s take a look at the 16-bit lighting functions in the source on the CD.
They’re way too large to list in the book (30+ pages), but basically we have two new
functions:
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int Light_RENDERLIST4DV2_World16(RENDERLIST4DV2_PTR rend_list,// list

CAM4DV1_PTR cam,   // camera position

LIGHTV1_PTR lights, // light list 

int max_lights)   // maximum lights in list

And the object-based version:

int Light_OBJECT4DV2_World16(OBJECT4DV2_PTR obj,// object to process

CAM4DV1_PTR cam,  // camera position

LIGHTV1_PTR lights,// light list 

int max_lights)  // maximum lights in list

The functions work in the same way as the previous versions did in the last chapter.
What’s changed are the versions of the rendering list and the objects themselves; other
than that, there’s nothing new to calling them. However, I do want to excerpt some code
from the functions to show you some interesting additions in relation to the Gouraud
shading. As I said, the functions are way too big to list, but let’s at least take a look at
some of the internal Gouraud shading code. Here’s an example of the code that performs
the ambient and infinite lighting calculations on a per-vertex basis in the Gouraud
shading section of the code:

if (curr_poly->attr & POLY4DV2_ATTR_SHADE_MODE_GOURAUD) //////////////////

{

// gouraud shade, unfortunetly at this point in the pipeline, 

// we have lost the original mesh, and only have triangles, 

// thus, many triangles will share the same vertices and

// they will get lit 2x since we don’t have any way to tell this, 

// alas, performing lighting at the object level is a better idea 

// when gouraud shading is performed since the commonality of vertices 

// is still intact, in any case, lighting here is similar to polygon

// flat shaded, but we do it 3 times, once for each vertex, 

// additionally there are lots of opportunities for optimization, 

// but I am going to lay off them for now, so the code

// is intelligible, later we will optimize

// step 1: extract the base color out in RGB mode

// assume 565 format

_RGB565FROM16BIT(curr_poly->color, &r_base, &g_base, &b_base);

// scale to 8 bit 

r_base <<= 3;  g_base <<= 2;  b_base <<= 3;

// initialize color sum(s) for vertices

r_sum0 = 0;  g_sum0 = 0;  b_sum0 = 0;
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r_sum1 = 0;  g_sum1 = 0;  b_sum1 = 0;

r_sum2 = 0;  g_sum2 = 0;  b_sum2 = 0;

// new optimization:

// when there are multiple lights in the system we will end up 

// performing numerous redundant calculations to minimize this 

// my strategy is to set key variables to to MAX values on each 

// loop then during the lighting calcs to test the vars for

// the max value, if they are the max value then the first 

// light that needs the math will do it, and then save the 

// information into the variable (causing it to change state

// from an invalid number) then any other lights that need 

// the math can use the previously computed value

// loop thru lights

for (int curr_light = 0; curr_light < max_lights; curr_light++)

{

// is this light active

if (lights[curr_light].state==LIGHTV1_STATE_OFF)

continue;

// what kind of light are we dealing with

if (lights[curr_light].attr & LIGHTV1_ATTR_AMBIENT) ///////////

{

// simply multiply each channel against the color of the 

// polygon then divide by 256 to scale back to 0..255

// use a shift in real life!!! >> 8

ri = ((lights[curr_light].c_ambient.r * r_base) / 256);

gi = ((lights[curr_light].c_ambient.g * g_base) / 256);

bi = ((lights[curr_light].c_ambient.b * b_base) / 256);

// ambient light has the same affect on each vertex

r_sum0+=ri; g_sum0+=gi; b_sum0+=bi;

r_sum1+=ri; g_sum1+=gi; b_sum1+=bi;

r_sum2+=ri; g_sum2+=gi; b_sum2+=bi;

} // end if

else

if (lights[curr_light].attr & LIGHTV1_ATTR_INFINITE) //////////

{

// infinite lighting, we need the surface normal, 

// and the direction

// of the light source

// no longer need to compute normal or length, 

// we already have the vertex normal

// and it’s length is 1.0 
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// ....

// ok, recalling the lighting model for infinite lights

// I(d)dir = I0dir * Cldir

// and for the diffuse model

// Itotald =  Rsdiffuse*Idiffuse * (n . l)

// so we basically need to multiple it all together

// notice the scaling by 128, I want to avoid floating point 

// calculations not because they are slower, 

// but the conversion to and from cost cycles

// need to perform lighting for each vertex

// vertex 0

dp = VECTOR4D_Dot(&curr_poly->tvlist[0].n, 

&lights[curr_light].dir); 

// only add light if dp > 0

if (dp > 0)

{ 

i = 128*dp; 

r_sum0+= (lights[curr_light].c_diffuse.r * r_base * i) / 

(256*128);

g_sum0+= (lights[curr_light].c_diffuse.g * g_base * i) / 

(256*128);

b_sum0+= (lights[curr_light].c_diffuse.b * b_base * i) / 

(256*128);

} // end if

// vertex 1

dp = VECTOR4D_Dot(&curr_poly->tvlist[1].n, 

&lights[curr_light].dir);

// only add light if dp > 0

if (dp > 0)

{ 

i = 128*dp; 

r_sum1+= (lights[curr_light].c_diffuse.r * r_base * i) / 

(256*128);

g_sum1+= (lights[curr_light].c_diffuse.g * g_base * i) / 

(256*128);

b_sum1+= (lights[curr_light].c_diffuse.b * b_base * i) / 

(256*128);

} // end if

Implementing Gouraud Shading 969

9

13 0672318350 CH09  05•02•2003  2:49 PM  Page 969



// vertex 2

dp = VECTOR4D_Dot(&curr_poly->tvlist[2].n, 

&lights[curr_light].dir);

// only add light if dp > 0

if (dp > 0)

{ 

i = 128*dp; 

r_sum2+= (lights[curr_light].c_diffuse.r * r_base * i) / 

(256*128);

g_sum2+= (lights[curr_light].c_diffuse.g * g_base * i) / 

(256*128);

b_sum2+= (lights[curr_light].c_diffuse.b * b_base * i) / 

(256*128);

} // end if

} // end if infinite light

If you review this code, you’ll notice that I’m using r_sum0..2, g_sum0..2, and b_sum0..2
to store the red, green, and blue vertex results for vertices 0..2. And, of course, the base
polygon color that’s lit is r_base, g_base, and b_base. The calculations are the same as the
flat-shaded calculations except they’re tripled. I’ve highlighted the vertex calculations in
the infinite light model so that you can see the redundancy.

However, there’s a very interesting optimization that I’ve introduced into the new lighting
functions—I call it calculation caching. Basically, I analyze the lighting loops and as each
polygon is lit, we process multiple lights over the polygon surface: ambient, infinite,
point, spotlights, and so forth. However, in each of these subcalculations, we recompute
everything, meaning that if we need the distance from a light source to a polygon, we
compute it; if we need the normal, we compute it; and so forth. The trick is to find
common calculations that are light source invariant and cache them. For example, the
distance to the light source is variant because it changes for each light. However, the
polygon normal does not vary from light source to light source. Therefore, this is a candi-
date for caching. This is a great way to speed up the lighting, but it works only if you have
multiple lights. I haven’t gone nuts with it, and I’ve implemented only the surface normal
calculation that’s common in the point and spotlight calculations, but later I’ll revisit the
optimization and be more aggressive about it.

Unfortunately, the Gouraud shading excerpt can’t take advantage of this. However, the flat
shading section can. Therefore, here’s an excerpt from the flat shading portion of the
function that uses the optimization. It begins right before the light loop that processes
each light:
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// set surface normal.z to FLT_MAX to flag it as non-computed

n.z = FLT_MAX;

// loop thru lights

for (int curr_light = 0; curr_light < max_lights; curr_light++)

{

I simply set one of the normal vector’s components to infinity for all intents and purposes
to “tag” it as invalid, and then during the lighting loop, light models that need the
normal contained in this code:

// test if we already computed poly normal in previous calculation

if (n.z==FLT_MAX)

{

// we need to compute the normal of this polygon face, and recall

// that the vertices are in cw order, u=p0->p1, v=p0->p2, n=uxv

// build u, v

VECTOR4D_Build(&curr_poly->tvlist[0].v, &curr_poly->tvlist[1].v, &u);

VECTOR4D_Build(&curr_poly->tvlist[0].v, &curr_poly->tvlist[2].v, &v);

// compute cross product

VECTOR4D_Cross(&u, &v, &n);

} // end if

A test is performed on n.z, and if it’s still FLT_MAX, it’s computed; otherwise, it’s passed
over. Therefore, if you have eight point lights, the normal will be computed only once!
Pretty cool, huh?

TIP

This strategy can really speed things up, but, you can go too far and assume there will be lots of
lights when in fact your game may only have one or two. In such a case, this optimization actu-
ally slows things down, so if you indulge in this optimization, make sure that the overhead of
setup is outweighed by the many lights that need the calculations.

As a demo of Gouraud shading with light values generated from the lighting engine,
check out DEMOII9_2.CPP|EXE. Figure 9.29 is a screenshot of the demo running. The
program creates three water molecules and then spins them with multiple light sources in
the scene. One is constant-shaded, one flat-shaded, and the last one is Gouraud-shaded—
can you guess which is which? Notice how the edges of the Gouraud-shaded molecule
look round even though the models are faceted—this is of course due to the vertex averag-
ing at the corners.

Implementing Gouraud Shading 971

9

13 0672318350 CH09  05•02•2003  2:49 PM  Page 971



FIGURE 9.29 A full 3D demo of Gouraud lighting. 

8-Bit Gouraud Lighting
This is where things get slightly ugly. Surprisingly, 8-bit lighting almost works the same as
16-bit lighting in the lighting stage now. In fact, almost the same code is used for the 8-bit
versions of the functions. The only difference is that if a polygon is emissive or flat-
shaded, the final color index is computed and stored into lit_color[0] with a call to the
lookup table as follows:

curr_poly->lit_color[0] = rgblookup[RGB16Bit565(r_sum, g_sum, b_sum)];

If you recall, the lookup table works by taking an RGB 5.6.5 word (concatenating it) and
using it as a 16-bit index into the table. The table then outputs the color index that is the
closest match to the requested RGB color. We create the table with a call to

// create lookup for lighting engine

RGB_16_8_IndexedRGB_Table_Builder(DD_PIXEL_FORMAT565, // pixel format

palette,  // source palette

rgblookup); // storage for table

in the initialization phase of the program—remember from last chapter? Anyway, that’s
fine, but here’s the problem: When we Gouraud shade a triangle, it’s pointless to convert
the final vertex colors to color indices because we can’t interpolate them! We need actual
RGB colors to interpolate; therefore, when a polygon is Gouraud lit in 8-bit mode, the
actual RGB values are stored in each of the array elements lit_colors[0..2] just as we do
with the 16-bit version. Then the real action takes place in the 8-bit Gouraud rasterizer.
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The function that draws Gouraud triangles in 8-bit mode is

void Draw_Gouraud_Triangle(POLYF4DV2_PTR face,// ptr to face

UCHAR *dest_buffer, // pointer to video buffer

int mem_pitch)   // bytes per line, 320, 640 etc.

Just like the 16-bit version, but the difference is in the initial setup of the interpolants and
the final pixel write to the screen. The function is too large to list, but let’s take a look at
these highlights. First, here’s the initial RGB color extraction step:

// assume 5.6.5 format -- sorry!

// we can’t afford a function call in the inner loops, so we must write 

// two hard coded versions, if we want support for both 5.6.5, and 5.5.5

// notice that eventhough we will rasterize in 8-bit, the incoming data

// is still in RGB format

_RGB565FROM16BIT(face->lit_color[v0], &r_base0, &g_base0, &b_base0);

_RGB565FROM16BIT(face->lit_color[v1], &r_base1, &g_base1, &b_base1);

_RGB565FROM16BIT(face->lit_color[v2], &r_base2, &g_base2, &b_base2);

// scale to 8 bit 

r_base0 <<= 3;

g_base0 <<= 2;

b_base0 <<= 3;

// scale to 8 bit 

r_base1 <<= 3;

g_base1 <<= 2;

b_base1 <<= 3;

// scale to 8 bit 

r_base2 <<= 3;

g_base2 <<= 2;

b_base2 <<= 3;

If you look closely, it’s the same as the 16-bit version! And it should be because when a
polygon is Gouraud lit in the 8-bit lighting functions, we store the final vertex colors as
full 5.6.5 RGB words in lit_colors[0..2] instead of converting them to color indices.
That would be a waste of time and cycles because we can’t interpolate color indices. In
any event, the real action happens in the final inner loop that rasterized a single line; take
a look:

// draw span

for (xi=xstart; xi<=xend; xi++)

{

// write textel assume 5.6.5

Implementing Gouraud Shading 973

9

13 0672318350 CH09  05•02•2003  2:49 PM  Page 973



screen_ptr[xi] = rgblookup[( ((ui >> (FIXP16_SHIFT+3)) << 11) + 

((vi >> (FIXP16_SHIFT+2)) << 5) + 

(wi >> (FIXP16_SHIFT+3)) ) ];  

// interpolate u,v

ui+=du;

vi+=dv;

wi+=dw;

} // end for xi

What’s going on here? Well, what I did was this: I simply converted the RGB values into
5.6.5 format again, and then used our trusty RGB to the index lookup table to find the
right color index that’s closest to our desired color.

This brings me to a philosophical question? Is 8-bit slower than 16-bit? The answer is yes
and no. Yes, if you’re trying to do full lighting in a straightforward way; no, if you’re using
monochrome lighting designed specifically for 8-bit mode. It’s pretty simple. If you have a
computer that’s really slow, writing 16-bit graphics would be out of the question, and so
would colored light (sorta), so you would end up supporting white lights only and your
Gouraud shader would interpolate only intensities. Then you would create a lookup table
that has all 256 colors and 256 shades of each and then index the table with the color and
intensity. Ironically we have one of these tables for just such an occasion. Hence, if we
wanted to, we could cripple the lighting functions for 8-bit mode and have them output
intensity only. Then, at each vertex, the 8-bit rasterizer would interpolate only one inten-
sity channel, which would be three times faster than RGB interpolation. At rasterization
time, we could use our color index/intensity lookup to look up the color index for each
specific color/intensity combination and whammo! 8-bit fast monochrome Gouraud
shading.

We could get creative and have multiple lookup tables for colored lights as shown in
Figure 9.30. Then we could pump the intensity value through one of the color tables by
first selecting the light color that’s closest to the real light in the scene—get it? For
example, assume that we know that for the most part we’re going to have white, red,
green, blue, and orange lights. Well then, we simply make five lookup tables that map
color indices along with intensities to color indices that are “tinted” or colored as they
would be if that particular colored light hit the surface. This is how you can do colored
lights using lookup tables without a performance hit.

However, the moral of the story is that all this work for 8-bit mode isn’t really necessary
because 16-bit is fast enough these days. In fact, the 8-bit stuff is slowing us down because
we’re really targeting 16-bit and then converting to 8-bit mode! On the other hand, tricks
like the lookup table stuff can come in handy—why? Well, no one ever said we can’t do
this in 16-bit mode. For example, if we know that we’re never going to use lights other
than red, green blue, white, orange, whatever, we can use single monochrome interpola-
tion in the 16-bit Gouraud shader and for the light that’s coloring the polygon, we can
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select the correct table on function entry and get rid of those other two interpolants—
pretty neat, huh? We might do this later in the book when we optimize, but I don’t want
to start doing this stuff now; once I start on lookup tables, it’s hard to say what will
happen!
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FIGURE 9.30 Using multiple lookup tables with precomputed lighting values for common
light colors.

As a demo of an 8-bit Gouraud shading, check out DEMOII9_2_8b.CPP|EXE in action. Try
running the program for yourself—it creates three water molecules and then spins them
with multiple light sources in the scene. One is constant-shaded, one flat-shaded, and one
is Gouraud-shaded. Notice how the edges of the Gouraud-shaded molecule look round,
even though the models are the same. Amazingly, even with the limited color space it
doesn’t look too bad.

Alright, it’s time for texture mapping!
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Basic Sampling Theory
Guess what? You’re already done with texture mapping! Seriously, there’s nothing to it.
Instead of interpolating color, you interpolate texture coordinates. Of course, there are
some details, but for the most part, that’s it. Now, I’m only talking about affine or linear
texture mapping; perspective correction is an entirely different story. Figure 9.31 depicts
the classic checkerboard example of linear and perspective correction texture mapping.
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FIGURE 9.31 Linear and perspective texture mapping. 

However, if you’re nervous about the subject of texture mapping, don’t be. You already
know how to do it. With that in mind, let’s take yet another look at interpolation from a
different point of view—a view in which we’re sampling data with the interpolated coor-
dinates.

Sampling in One Dimension
What we want to do is come up with an algorithm that samples the texture map, so that
the sampled pixels can be used to color each pixel of each scan line of the target triangle
polygon as it’s being rendered. Figure 9.32 illustrates this for the three basic triangles that
we usually break into cases: flat top, flat bottom, and general.

FIGURE 9.32 Texture mapping the three basic triangle cases. 
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Figure 9.33 shows the exact process that we want to implement. We want to texture-map a
rectangular bitmap that is m×m pixels (8-/16-bit color) onto an arbitrary triangle with any
coordinates. That means we need a way to take rotation and scaling of the triangle into
consideration. To help design the algorithm, I’ve labeled a number of points of interest on
Figure 9.33.
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FIGURE 9.33 Details of mapping a texture in u, v space to a triangle.

First, you’ll see that the destination triangle is made up of three vertices. These have been
labeled p0, p1, and p2, with coordinates (x0, y0), (x1, y1), and (x2, y2), respectively. In
addition, I’ve labeled the axes around the texture map as u and v, where u is the horizon-
tal axis and v is the vertical axis. Note that both u and v range from (0,0) in the upper-left
corner to (63,63) in the lower-right corner for this example. However, in many cases, u,v
can range from 0..1 if they are normalized texture coordinates, or 0…(any power of 2).

Linearly texture mapping a triangle with a rectangular texture map is nothing more than a
lot of interpolating, but there’s so much interpolating that it’s easy to make a mistake and
or write a slow algorithm. Also, even though we’ve covered this for both triangle rasteriza-
tion and Gouraud shading, we’ve never taken the point of view that we were sampling
data. Thus, let’s take our time and look at interpolation from another point of view; that
is, with the goal of sampling data rather than interpolating rasterizer coordinates or color
intensities. Let’s start with the simplest case of sampling in one dimension.

Figure 9.34 illustrates the world’s simplest texture mapper, the texture mapping of a single
vertical line. In the figure, we have a texture map that’s exactly one pixel thick and eight
pixels high. We want to map this into a destination polygon that is exactly one-pixel
thick, but any height. How do we do this? Sampling again comes to the rescue.

What we need to do is “sample” the texture map, which in this case is a single 1×8 pixel
bitmap, and map it into the destination polygon which is 1xn pixels, where n can range
from 1 to infinity. Refer to Figure 9.34 and let’s take a look at some examples.
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FIGURE 9.34 One-dimensional texture mapping.

As a first example, let’s say that our destination polygon is 1×4 pixels. It makes sense that
we want to sample every other pixel of the source texture, as shown in the figure. Thus, if
we select pixels (0,2,4,6) of the source texture and map them into the destination polygon
at positions (0,1,2,3), we’re doing pretty good. But how did I arrive at (0,2,4,6)? The
answer is by using a sampling ratio, which is nothing more than an interpolation factor.
Here’s the math:

In general:

sampling_ratio = source_height / destination_height

Thus the sampling ratio for this example is

sampling_ratio = 8/4 = 2.0

Hence, for every 1.0 pixels we move on the destination polygon in the vertical axis, we
must move 2.0 pixels in the source to keep up. That’s where the 2 comes from and, hence,
the sampling sequence (0,2,4,6). If you’re still with me, you should say, “Wait a minute,
we lost color information!” Indeed we did—we had to throw away half the pixels. This is
definitely a problem with sampling on an integer matrix without any averaging or filter-
ing. If you were writing a high end 3D modeler like 3D Studio Max, you would probably
average the pixels you’re sampling (area sampling) so as to get a better approximation. But
for games and real-time software, this first technique (which is referred to as point
sampling) will do. Now let’s see another example of the opposite extreme case.

In example 1, we saw that the source texture was compressed; that is, the destination was
smaller than the source, so information was lost. The second case, of course, would be
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when the destination is bigger than the source and there isn’t enough information to go
around. In this case, the source data must be sampled more than once and replicated. This
is where “chunkyness” comes from when texture-mapped polygons get too close to you in
a 3D game. There isn’t enough texture data, so some sample points are sampled—many
times creating big blocks. Anyway, referring to the second example in Figure 9.34, we see
that the source is again 1×8, but this time the destination is 1×14 pixels—yuck! Obviously,
we’re going to need a fractional sampling ratio, but let’s let the math do it.

As usual,

sampling_ratio = source_height / destination_height

Thus the sampling ratio is

sampling_ratio = 8/14 = 0.57

Hence, for every pixel we draw on the destination polygon, we should sample it 0.57 units
from the last sample point on the source. This gives us the following sample point
sequence for destination pixels (0,1,2,3,…13):

Sample 0: 0.57

Sample 1: 1.14

Sample 2: 1.71

Sample 3: 2.28

Sample 4: 2.85

Sample 5: 3.42

Sample 6: 3.99

Sample 7: 4.56

Sample 8: 5.13

Sample 9: 5.7

Sample 10: 6.27

Sample 11: 6.84

Sample 12: 7.41

Sample 13: 7.98

To get the actual sample points, we simply truncate the sample points in integer space or
take the floor of each value resulting in the sample points (0, 1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 6,
7, 7) which sounds about right. Each point was sampled about two times, or 1/0.57 ~ 2.0.
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Bilinear Interpolation
As an aside, let’s briefly talk about basic filtering and why it’s important. As shown in the
previous example, when we compute the final sample pixels, we simply truncate the float-
ing-point sample values to integral values. However, what if we were to take the fractional
portion of the pixel values into consideration and sample more than one pixel based on a
geometrical filter? Take a look at Figure 9.35. It depicts what I’m talking about by showing
a point-sampled texture versus a filtered one. For example, if you look at sample 12 in the
example, it uses the floating-point sample value of 7.41. However, when point sampling,
we simply truncate this value and sample textel pixel 7.0, losing information.
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FIGURE 9.35 Point sampling versus bilinear filtering.

This is faster, yes, but it doesn’t look as nice. If we use a simple 1D box filter as shown in
Figure 9.36, and assume that pixel 7.0 would be centered at the pixel center, we see that
7.41 slides the box filter over .41 pixels, thereby partially covering pixel 7.0 as well as
partially covering pixel 8.0. The partial coverage, of course, is 59% pixel 7, and 41% pixel
8—do you see what’s coming? Yes, a blending function. Here it is:

final texture pixel = (.59) * pixel(7)
rgb

+ (.41) * pixel(8)
rgb

Of course, we perform the blending in RGB space, and the final textel will be the blended
pixel that we desire mixed from the color of pixel 7 and 8. The results will be much nicer
and you won’t see any jaggies. The only drawback to this is that we’re performing yet
another interpolation or, more simply, a blending operation per pixel rather than a simple
sample operation. Although this isn’t going to kill us, it’ll hurt us.

Moreover, we have to do this in not just one dimension, but in two! Because of this we
need to work in 2D for a real texture mapper—hence the term bilinear interpolation.
However, once again, there are “tricks” to speed this up with lookup tables and other
approximations. For example, if you perform the interpolation in fixed-point math, you
can use say 2–3 bits of the decimal portion as a “mixing” factor, and create a table that
contains from 0…100% of every color. Then you can access the table for each blending
component and add the results—you get the idea.
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FIGURE 9.36 A simple box filter for bilinear interpolation.

TIP

We aren’t going to implement bilinear filtering yet, but we might later if we can make it fast
enough. Truthfully, it tends to blur textures and remove the high frequency aliasing that occurs
during sampling. However, we can minimize the aliasing with point-sampled textures by pre-
blurring or softening textures used in the engine in the art asset stage. You lose a bit of detail,
but it’s well worth it because it looks much better.

Interpolating u and v
The idea behind the algorithm is that we want to interpolate down the left and right
edges of the triangle and draw each scan line strip as we go with the proper texture pixels.
So, what we need to do first is assign full texture coordinates to the vertices of the destina-
tion triangle to give us a frame of reference for the interpolants. Thus we must assign each
vertex a (u,v) texture coordinate, as shown in Figure 9.37. Therefore, each vertex has a
total of four components (we throw away z). We’ll need to perform the texture mapping
(x, y, u, v). Of course, our new VERTEX4DTV1 already has support for texture coordinates,
and there are u,v texture coordinate arrays in the OBJECT4DV2 structure, so we have every-
thing we need to define a final texture mapping onto a triangle.
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FIGURE 9.37 The setup for texture mapping. 

Moving on, let’s talk about the range of the texture coordinates. Because our source
texture map must be m×m where m is a power of 2 and is usually 64×64, 128×128, or
256×256 pixels, it means that the texture coordinates must range from zero to these values
minus 1. For sake of discussion, let’s assume that all texture maps are 64×64. Therefore all
texture coordinate must be (0…63, 0…63) for any vertex. This will map or stretch the
texture map to each vertex.

For example, in Figure 9.38, we see a couple examples: one triangle with the texture coor-
dinates (0,0), (63,0), and (63,63) mapped to vertices 0, 1, and 2, respectively. This basically
copies half of the texture map to the destination triangle, which is what we would expect.
In the second example in Figure 9.38, we see the same texture mapped onto two triangles
that are adjacent to each other, forming a square. In this case, the texture coordinates are
selected in such a way that half of the texture map is mapped to one triangle and the rest
to the other; hence, a perfect texture wrapping around two triangles. Moreover, this is
how you would make a quadrilateral with two triangles.

Now that you have a visual on the problem, refer to the labeling from Figure 9.37. Let’s
implement the algorithm mathematically. Note that the variable names used in the
following analysis are based on Figure 9.37 and the final texture mapper, so that you can
follow the program code more easily.

The left edge interpolants are as follows:

dxdyl = (x2 - x0)/(y2 - y0); // the x interpolant for the left hand side

dudyl = (u2 - u0)/(y2 - y0); // the u interpolant for the left hand side

dvdyl = (v2 - v0)/(y2 - y0); // the v interpolant for the left hand side

Similarly, the right edge interpolants are as follows:

dxdyr = (x1 - x0)/(y2 - y0); // the x interpolant for the right hand side

dudyr = (u1 - u0)/(y2 - y0); // the u interpolant for the right hand side

dvdyr = (v1 - v0)/(y2 - y0); // the v interpolant for the right hand side
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FIGURE 9.38 Example texture mappings on a triangle and quadrilateral.

Of course, there’s a lot of room for optimization in the math. For example, the term 
(y2 - y0) is common and need only be computed once; furthermore, it’s better to compute
the reciprocal of (y2 - y0) and then multiply, but you get the idea. Anyway, now that we
have the interpolants, we’re almost ready to rock. The interpolants must be in reference to
some starting point, right? This starts at the topmost vertex, vertex 0. Hence, we need to
start the algorithm off like this:

xl = x0; // the starting point for the left hand side edge x interpolation

ul = u0; // the starting point for the left hand side edge u interpolation

vl = v0; // the starting point for the left hand side edge v interpolation

And for the right-hand side:

xr = x0; // the starting point for the right hand side edge x interpolation

ur = u0; // the starting point for the right hand side edge u interpolation

vr = v0; // the starting point for the right hand side edge v interpolation

Now we’re almost ready to go. We can interpolate down the left-hand edge and the right
edge with

xl+=dxdyl;

ul+=dudyl;

vl+=dvdyl;

and

xr+=dxdyr;

ur+=dudyr;

vr+=dvdyr;
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But at each point on the left- and right-hand edge of the triangle, we still need to perform
one more linear interpolation across the scan line! This is the final interpolation and the
one that will give us our texture coordinates (ui,vi), which we’ll use as [row, column]
indices into the texture bitmap to obtain the textel. All we need to do is compute the u,v
coordinate on the left and right sides and then use the dx to compute a linear interpola-
tion factor for each. Here’s the math:

dx = (xend - xstart); // the difference or delta dx

xstart = xl;     // left hand starting point

xend = xr;     // right hand starting point

Therefore, the interpolants across each scan line in u,v space are

du = (ul - ur)/dx; 

dv = (vl - vr)/dx;

With du,dv, we have everything we need to interpolate across the scan line at vertical posi-
tion y from xstart to xend. Here’s a code fragment:

// initialize u,v interpolants to left and right hand side values

ui = ul;

vi = vl;

// now interpolate from left to right, i.e, in a positive x direction

for (x = xstart; x <= xend; x++)

{

// get texture pixel value

pixel = texture_map[ui][vi];

// plot pixel at x,y

Plot_Pixel(x,y,pixel);

// advance u,v interpolants

ui+=du; 

vi+=dv;

} // end for x

That’s it. Of course, for the outer loop, you would still interpolate xl, ul, vl, xr, ur, vr
down the triangle edges for each scan line of the triangle.

Again there are lots of details to writing the texture mapper that are left out in the preced-
ing pseudo-functions, but as I mentioned, the Gouraud rasterizer is the texture mapper.
That is, I wrote the texture mapper first and then converted it to the Gouraud shader, so
you’re already familiar with the function. Additionally, the texture mapper and the
Gouraud shader use fixed point just, so I can save the conversions to and from floating
point in the inner loops when the pixels are written because I don’t trust the compiler.
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Remember that floating math is as fast as integer, but sometimes the code emitted by the
compiler for the conversion back and forth takes 10–100 times as long as the math!

Implementing Affine Texture Mapping
Alright, I think we have all the theory out of the way for texture mapping functions, so I
want to discuss the details of the functions a little, and present the prototypes and a bit of
code from each. Again, the functions are too large to list, so you’ll have to refer to the CD.
(Sorry, but until eBooks are available, we can’t have 20–30 page listings all the time—it
would make the book unbindable!) Nevertheless, I’ve implemented both 8- and 16-bit
versions of the texture mapper. The only interesting facets of each are in the final inside
loops that actually sample the textures and write to the screen. If you recall, the Gouraud
rasterizers used the final interpolants as RGB values and then built up a pixel value from
that. However, the texture mappers use the final u,v interpolants as the texture coordi-
nates and then sample the texture map and render the pixel. Of course, there’s no bilinear
filtering—yet <BG>.

16-Bit Texture Mapping
The 16-bit texture mapping function is almost identical to the Gouraud shader. It has only
a few differences as noted in the final inner loop that writes the pixel, but I’ll get to that
momentarily. Right now, let’s take a look at the function prototype and talk about its use:

void Draw_Textured_Triangle16(POLYF4DV2_PTR face, // ptr to face

UCHAR *_dest_buffer,// pointer to video buffer

int mem_pitch) // bytes per line, 320, 640 etc.

Expecting more? Less is always more—Stephen Wolfram believes that the entire universe
can be described in a few lines of code—therefore complexity can be derived from simplic-
ity in many cases. Anyway, the function is called simply by setting up a POLYF4DV2 struc-
ture with the vertices, texture map, destination buffer, and memory pitch. Bam! You’ll see
a textured, clipping triangle on the screen faster than a gnat can flap it’s wings!

So, to solidify the use of the function, here’s an example of how you might call the texture
mapper. This is excerpted from one of the rendering functions:

if (rend_list->poly_ptrs[poly]->attr & POLY4DV2_ATTR_SHADE_MODE_TEXTURE)

{

// set the vertices

face.tvlist[0].x = (int)rend_list->poly_ptrs[poly]->tvlist[0].x;

face.tvlist[0].y = (int)rend_list->poly_ptrs[poly]->tvlist[0].y;

face.tvlist[0].u0 = (int)rend_list->poly_ptrs[poly]->tvlist[0].u0;

face.tvlist[0].v0 = (int)rend_list->poly_ptrs[poly]->tvlist[0].v0;

face.tvlist[1].x = (int)rend_list->poly_ptrs[poly]->tvlist[1].x;

face.tvlist[1].y = (int)rend_list->poly_ptrs[poly]->tvlist[1].y;
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face.tvlist[1].u0 = (int)rend_list->poly_ptrs[poly]->tvlist[1].u0;

face.tvlist[1].v0 = (int)rend_list->poly_ptrs[poly]->tvlist[1].v0;

face.tvlist[2].x = (int)rend_list->poly_ptrs[poly]->tvlist[2].x;

face.tvlist[2].y = (int)rend_list->poly_ptrs[poly]->tvlist[2].y;

face.tvlist[2].u0 = (int)rend_list->poly_ptrs[poly]->tvlist[2].u0;

face.tvlist[2].v0 = (int)rend_list->poly_ptrs[poly]->tvlist[2].v0;

// assign the texture

face.texture = rend_list->poly_ptrs[poly]->texture;

// is this a plain emissive texture?

if (rend_list->poly_ptrs[poly]->attr & POLY4DV2_ATTR_SHADE_MODE_CONSTANT)

{

// draw the textured triangle as emissive

Draw_Textured_Triangle16(&face, video_buffer, lpitch);

} // end if

else

{

// draw as flat shaded

face.lit_color[0] = rend_list->poly_ptrs[poly]->lit_color[0];

Draw_Textured_TriangleFS16(&face, video_buffer, lpitch);

} // end else

Pay attention to the highlighted section; it’s the setup for the triangle. As you can see, the
(x,y,u,v) for each vertex is assigned to the face and then used in the call to
Draw_Textured_Triangle16(). Also, you may notice that there is another
Draw_Textured_TriangleFS16() function right below; this is the “shaded” version of the
function that supports flat shading, but we’ll get to that in a moment. Currently, the
texture mapper inside the call to Draw_Textured_Triangle16() supports only constant or
emissive shading. Meaning that, in your model, you must set the shading mode to
“constant”, and then apply a texture. The lights in the scene will have no affect at all on
the texture. We’ll fix this shortly, but this is the first version of the texture mapper that
supports only constant shading. Anyway, let’s move on to some of the highlights of the
Draw_Textured_Triangle16() function.

Here’s the inner loop from the texture mapping function:

// draw span

for (xi=xstart; xi<=xend; xi++)

{

// write textel

screen_ptr[xi] = textmap[(ui >> FIXP16_SHIFT) + (

(vi >> FIXP16_SHIFT) << texture_shift2)];
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// interpolate u,v

ui+=du;

vi+=dv;

} // end for xi

Let’s discuss the highlighted code for a moment. First, the texture coordinates ui, vi are in
16.16 fixed-point format, thus the shifting operation, so the math looks like this function-
ally:

screen_ptr[xi] = textmap[ui + vi * word_pitch]

See that multiplication by word_pitch? That is of course implemented as a shift operation
via texture_shift2, and because the texture maps are in row major form, we can access
them as a 2D array using this expression. The only thing of interest is the derivation of
the term texture_shift2. It’s very simple; it’s just the log base 2 of the texture width. So,
a texture map that’s 64×64 (remember they always have to be square) has a
texture_shift2 of 6 because 26 = 64 or log

2
64 = 6. 

The thing that’s kind of a bummer is that I use the BITMAP_IMAGE structure to hold texture
maps, and even though it contains the width and height of a texture, it doesn’t contain
the nearest power of 2. So, I could have put that somewhere in the polygon, or hacked it
into the BITMAP_IMAGE somewhere in the upper 4 bits of something, but that would be
shady. Instead, for fun, I decided to make a log

2
lookup table:

// logbase2ofx[x] = (int)log2 x, [x:0-256]

UCHAR logbase2ofx[257] = 

{

0,0,1,1,2,2,2,2,3,3,3,3,3,3,3,3, 4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4, 

5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5, 5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5, 

6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6, 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6, 

6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6, 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6, 

7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 

7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 

7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 

7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 8,

};

The table’s operation is simple; send it any number from 0–256, inclusive, and it’ll give
you the nearest log

2
of that number. For example, logbase2ofx[128] = 7,

logbase2ofx[129] also is 7, and so forth. Therefore, on entry into the texture mapping
function, we determine what power of 2 the texture is, store it in texture_shift2, and use
that as the shift in the final textel computation, thereby supporting any size texture from
1×1 to 256×256. However, I wouldn’t trust anything less than 16×16—the fixed point
might freak out!
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In any event, this is just another example of thinking out of the box and speeding things
up with lookup tables. But what we really need in a new BITMAP storage structure that
precomputes the power of 2 of the texture and stores it. A single table lookup per polygon
isn’t going to kill us, but remember: A single anything per polygon or pixel isn’t going to
kill us, but when you get lots of those, you find yourself dead! So, watch out! We’re chip-
ping away at performance.

8-Bit Texture Mapping
The 8-bit emissive texture mapper is nearly identical to the 16-bit because it’s a sampling
operation and not a color operation. Therefore, the code really has no changes. It just
operates on BYTEs rather than SHORTs. Other than that it’s exactly the same, and works
the same, so there’s no need to belabor it, the function prototype is

void Draw_Textured_Triangle(POLYF4DV2_PTR face, // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch) // bytes per line, 320, 640 etc.

Updating the Lighting/Rasterization Engine for
Textures
Now let’s update the lighting engine itself to support textures. For the most part, this is
already done! We literally don’t have to add a single line of code to the lighting functions
to support textures. But we do have to perform a slight hack—let me explain.

When a polygon is lit by the lighting system, we use the base color of the polygon as the
material and then modulate that color with the lights. That is, a red polygon will reflect
only red light and so forth. However, when texture mapping, we can’t even begin to think
of lighting each pixel of a texture map, so we need to use a trick. What we’ll do is this: For
any polygon that has a texture mapped to it, we’ll set the underlying polygon to white
(255,255,255), and then we’ll perform lighting as usual on the polygon. However, I’ve
written a rasterizer that deals only with flat-shaded textured polygons at this point, not
Gouraud-shaded textured polygons, so the lighting model for any texture-mapped
polygon must be constant or flat. In any case, back to the white base color trick. As I said,
we’ll color every polygon that is texture-mapped as white, and then run the lighting on
the polygon as usual, ignoring the fact that the polygon is texture mapped.

This has the effect of the polygon picking up all the light that strikes the polygon. This is
exactly what we want. Then, in the rasterization phase, when we draw the textured
polygon, instead of just accessing the texture map, we modulate each textel with the after-
lighting polygon coloring and presto: lit textured polys! With that in mind, let’s look at
the 16-and 8-bit implementations.
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Adding Lighting to 16-Bit Texture Rendering
The final lighting and rasterization process for 16-bit flat-shaded textures is shown in
Figure 9.39. The function that draws flat-shaded textured polys is shown here:

void Draw_Textured_TriangleFS16(POLYF4DV2_PTR face, // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch)    // bytes per line, 320, 640 etc.
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FIGURE 9.39 The final pipeline for lighting and rasterizing textures.

The prototype is identical to the non-flat-shaded version, except that this function has an
added “FS” concatenated on the function name to remind you that it supports flat
shading. Anyway, let’s look at some excerpts from the function to see the lighting stuff in
action. Now remember that the lighting function will light the polygon as if it were white
and store the results in lit_color[0] for us. We simply need to modulate the texture
color, or multiply it, in other words, and that will light the texture. First, let’s look at the
old inner loop from the constant-shaded texture rendering function
Draw_Textured_Triangle16() for reference:

// draw span

for (xi=xstart; xi<=xend; xi++)

{
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// write textel

screen_ptr[xi] = textmap[(ui >> FIXP16_SHIFT) + 

((vi >> FIXP16_SHIFT) << texture_shift2)];

// interpolate u,v

ui+=du;

vi+=dv;

} // end for xi

And now, here’s the new inner loop with lighting modulation:

// draw span

for (xi=xstart; xi<=xend; xi++)

{

// write textel

// get textel first

textel = textmap[(ui >> FIXP16_SHIFT) + 

((vi >> FIXP16_SHIFT) << texture_shift2)];

// extract rgb components

r_textel = ((textel >> 11)    ); 

g_textel = ((textel >> 5) & 0x3f); 

b_textel =  (textel    & 0x1f);

// modulate textel with lit background color

r_textel*=r_base; 

g_textel*=g_base;

b_textel*=b_base;

// finally write pixel, note that we did the math such that the results

// are r*32, g*64, b*32 hence we need to divide the results by 32,64,32

// respetively, BUT since we need to shift the results to fit into the

// destination 5.6.5 word, we can take advantage of the shifts

// and they all cancel out for the most part, but we will need logical

// anding, we will do it later when we optimize more...

screen_ptr[xi] = ((b_textel >> 5) +

((g_textel >> 6) << 5) +

((r_textel >> 5) << 11));

// interpolate u,v

ui+=du;

vi+=dv;

} // end for xi
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As you can see, we just totally annihilated our performance in the inner loop. We’re doing
like 10 times the work to add just flat shading, but still, amazingly enough, if you only
have a few textured objects with flat shading in your game, this will work. The inner loop
works as follows: We need to extract each textel from the texture map, and then it’s
modulated by the polygon color from the lighting engine, and written to the screen. The
thing that kills us is all this bit manipulation and shifting. In assembly, we could do much
better, and using single instruction multiple data instructions we could do four times
better than that. Finally, by using lookup tables, we might be able to avoid some of the
math.

Figure 9.40 is a screenshot of DEMOII9_3.CPP|EXE in action. It’s a demo of the fully lit, flat-
shaded texture engine spinning a textured cube with lights.
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FIGURE 9.40 The fully lit 16-bit texture engine in action.

Adding Lighting to 8-Bit Texture Rendering
The 8-bit version of the flat-shaded textured rasterization function is identical to the 16-
bit version all the way down to the inner loop, but that’s where the magic happens. First,
let’s get the prototype out of the way:

void Draw_Textured_TriangleFS16(POLYF4DV2_PTR face,// ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch)    // bytes per line, 320, 640 etc.
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Alright, take a look at Figure 9.41 to follow my algorithm. The problem with all the 8-bit
lighting is that we’ve been using full RGB lighting rather than ramp or mono lighting;
that’s like putting brakes on a fast car. The whole reason we even wanted to support 8-bit
was to make everything fast, but I decided to support full RGB for two reasons. You may
want a full RGB 8-bit engine, for example, you’re a GameBoy Advance programmer;
secondly, the RGB calculations can always be reduced to monochrome calculations, but
converting to RGB from monochrome is much harder, so I decided to stick to making
things more robust rather than focusing on speed.
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FIGURE 9.41 8-bit lighting data flow.

In any event, the problem when rasterizing 8-bit flat-shaded textured polygons is that we
can’t really modulate colors because we’re in index space when accessing 8-bit texture
maps. Sure, we could do something insane like read the textel out of the texture map in 8-
bit mode, look up the RGB values in the color lookup table, modulate the RGB color in
lit_color[0], reconvert the final result to an index via the RGB to index lighting table,
and then sit back and say 8-bit mode is two times slower than RGB mode! Or we can be
clever <BG>.

13 0672318350 CH09  05•02•2003  2:49 PM  Page 992



Referring to Figure 9.41, my strategy is to create a lookup table that contains all possible
products of any pair of colors. Now, this normally would take a lookup table that contains
232 or 4 billion elements. However, in 256-color mode, we can get more devious about it.

In 8-bit mode, there are only 256 colors. Thus, we can create a lookup table that contains
65536 rows for full RGB coverage; that is, for any 5.6.5 RGB words, we compute all 256
possible products with that RGB word and color index 0..255, and then we scan the color
table for the closest match. For example, say I wanted color index 26 modulated by RGB
(5,10,12), which is in 5.6.5 format or ranges of (0..31, 0..63, 0..63). Thus, in 8.8.8 format,
we need to multiply by (8,4,8)*(5,10,12) = (40, 40, 96).

We first extract out the RGB values from index 26; say they’re (90,12,60). Remember they
are in 8.8.8 mode. Then we multiply that by RGB color indexed by index 26, which is
(40,40,96) in 8.8.8 format, so we have

final color = (90, 12, 60) * (40, 40, 96) = (3600, 480, 5760)

Now, we need to scale these back down to 0..255, so we must divide by 255, which results
in the integral values of

(14, 1, 22)

So what does this all mean? The preceding RGB value is the resulting RGB color that
would result in the modulation of color index 26 by the RGB 5.6.5 color of (5,10,12).
Therefore, we’ve basically precomputed the light modulation step with one color index
and one possible RGB value. So, to make this complete, we scan the color lookup table,
find the closest index to (5,10,12), and store it. To look it up, you would use this lookup:

color_lookup[RGBcolor][color_index]

where RGBcolor varies from 0..65535, and color_index varies from 0..255. However, this is
a huge table: 16.7MB. Do we really need all that? The answer is no! The trick is to pre-
scale all RGB values from the lighting engine down to 4.4.4 format, or 16 shades of red,
green, and blue, and then use that as the modulator with all 256 colors in the table.
Therefore this table is only 212 * 256 = 1MB, which is manageable. The only problem is
making the table; it takes about 20 seconds on a Pentium 4! Anyway, a table like this is
created by the following function:

int RGB_12_8_Lighting_Table_Builder(LPPALETTEENTRY src_palette, 

UCHAR rgblookup[4096][256]) 

{

// this function creates a lighting table used for 8-bit 

// lighting inside the texture mapping function, what we 

// need is a table that for every possible

// light color and textel color outputs the textel index 

// that is the closest match for the given color modulation, 
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// however, that would be 256*65536! a little excessive, thus, 

// we will scale the incoming light value down to 4.4.4

// format, or only 16 different intensities per channel, 

// or a total of 12 bits, now we will only need 256*2^12 = 1meg 

// which is reasonable for the speed gain

// additionally, the table is going to be 2d, 

// where the row is the intensity and the column is the color, 

// this format is more effective since tables are stored in 

// row-major form, and since we are shading flat shaded polys with

// texture, we know the texture color will change during the calculations,

// but not the light color, thus, the cache coherence will be excellent

// if we access elements in the form:

// rgblookup[RGBcolor.12bit][textel index.8bit]

// finally, it’s up to the caller to send in the rgblookup pre-allocated

// here it goes...

// first check the pointers

if (!src_palette || !rgblookup)

return(-1);

// there are 4096 RGB values we need to compute, assuming that 

// we are in RGB: 4.4.4 format

for (int rgbindex = 0; rgbindex < 4096; rgbindex++)

{

// for each RGB color 0..4095 

// we need to multiple by each palette entry 0..255

// and then scan for the closest match, lots of loops!!!!

for (int color_index = 0; color_index < 256; color_index++)

{

int curr_index = -1;    // current color index of best match

long curr_error = INT_MAX; // dist to nearest match or “error”

// extract r,g,b from rgbindex, assuming an encoding of 4.4.4

int r = (rgbindex >> 8);

int g = ((rgbindex >> 4) & 0x0f);

int b = (rgbindex & 0x0f);

// final target is this r,g,b value, simulating the light source

// multiplied by the textel color, that IS our target...

// modulate values together, make sure results 0..255, divide results

// by 15 since the r,g,b values were normalized to 15 rather than 1.0

r = (int)(((float)r *(float)src_palette[color_index].peRed) /15);

g = (int)(((float)g *(float)src_palette[color_index].peGreen)/15);

b = (int)(((float)b *(float)src_palette[color_index].peBlue)/15);
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// now scan palette to find this color

for (int color_scan = 0; color_scan < 256; color_scan++)

{

// compute distance to color from target

long delta_red  = abs(src_palette[color_scan].peRed  - r);

long delta_green = abs(src_palette[color_scan].peGreen - g);

long delta_blue = abs(src_palette[color_scan].peBlue - b);

long error = (delta_red*delta_red) + 

(delta_green*delta_green) + 

(delta_blue*delta_blue);

// is this color a better match?

if (error < curr_error)

{ 

curr_index = color_scan;

curr_error = error;  

} // end if

} // end for color_scan

// best match has been found, enter it into table

rgblookup[rgbindex][color_index] = curr_index;  

} // end for color_index

} // end for rgbindex

// return success

return(1);

} // end RGB_12_8_Lighting_Table_Builder

I’ve created a global variable to hold the table:

UCHAR rgblightlookup[4096][256]; // rgb 8.12 lighting table lookup

Thus, when working with 8-bit modes, you must create the table after loading your
palette, but before you make any 3D lighting calls like this:

RGB_12_8_Lighting_Table_Builder(palette,     // source palette

rgblightlookup); // lookup table

We simply call the function with the global table and the global palette, which happens to
be in the variable palette from T3DLIB1.CPP <BG>. 

Now, let’s get back to the actual 8-bit flat-shaded rasterizer. Here’s the deal: The table
consists of 4,096 rows of 256 values; each row represents the 4.4.4 RGB value multiplied
by all 256 colors, and the elements of that row are the nearest matches. Therefore, all we
do on entry to the 8-bit rasterizer is alias a pointer to the row that we’re trying to light the
polygon as. In the inner loop of the rasterizer, we index into the one-dimensional table
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with the color index from the texture map, and the table basically performs the entire
lighting modulation for us! Here’s the code:

// draw span

for (xi=xstart; xi<=xend; xi++)

{

// write textel

// get textel

textel = textmap[(ui >> FIXP16_SHIFT) + 

((vi >> FIXP16_SHIFT) << texture_shift2)];

// modulate with base color via light table and write textel

screen_ptr[xi] = lightrow444_8[textel];

// interpolate u,v

ui+=du;

vi+=dv;

} // end for xi

See that reference to lightrow444_8[]? That’s the row that has all 256 colors “lit” or
modulated by the incoming color of the white polygon under the texture. I hope you get
this! If you’re really paying attention, you’ll see that we can use this same technique for
16-bit lighting! The tables will be huge, but if we’re clever, we might be able to make the
16-bit inner loop look just like this one, or maybe two lookups at most!

As a demo of the 8-bit version of texture mapping with flat shading, check out
DEMOII9_3_8b.CPP|EXE. It’s a demo of the fully lit, flat-shaded texture engine spinning a
textured cube in 8-bit mode.

Final Thoughts on Optimization Strategies for 8- and
16-Bit Modes
Throughout this chapter, I’ve mentioned many opportunities for optimization and lots of
ideas. I avoided implementing 90% of them because the code would become nearly
impossible to follow—for me especially <BG>. Nonetheless, I want to briefly recap some of
the ideas to keep you thinking about them.

Lookup Tables
I can’t say enough about this technique. You can use lookup tables for just about every-
thing. I’ve barely touched the surface. I suggest that you look at every algorithm, and
anything that has functional inputs that when concatenated together can be stored in a
table that is a few KB with an upward bound of a couple of MB—do it! Computers have a
ton of memory these days. The one I am writing on has 2.0GB of RAM, so even if your
game has 32–64 megs of lookup tables, who cares?

The areas to concentrate your lookup table endeavors are obviously mathematical, but in
3D graphics there are many other places to use them in relation to color mapping, texture
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mapping, and other related operations. Also, try to use what I call cascading lookup tables.
Let me explain.

Say that you have two inputs x,y that are both 16 bits, and you need a single-byte output
for all possible x,y inputs. That’s a total of 16+16 = 32 bits of input possibilities, or 4.2
billion bytes for a lookup table—ouch, a little big. However, the trick is to recast the
problem in stages so that maybe you can work with only the upper 8 bits of each operand,
perform a look up on them (which would take a total of (8+8) = 16, or 64K bytes), and
based on that output, you would plug it into yet another lookup with the remaining 16
bits.

So maybe now the output from table 1 is 8 bits. You add that to the other 16-bit data and
you have 24 bits you need to look up a single BYTE for each value—that’s only 16 million
bytes! Get it? 16 million is large, but it’s a lot smaller than 4 billion! The point is that
sometimes you can use a logarithmic breakdown of the search/computation space, so that
if you break the problems input domain down into halves or chunks, you can use a 2-n
step lookup table process and use much less space.

Also, don’t be afraid to scale your input data down to make it manageable. For example,
in the flat-shaded 8-bit texture mapper, I used a giant lookup table that worked in 4.4.4
RGB mode to find color indices that matched the desired 8.8.8 color indices. This table
cost me nothing memorywise, but speeds up the process immensely. And in reality, we’re
working with 5.6.5 in screen space, so scaling down to 4.4.4 only loses half the color space
for the most part, but in 8-bit mode no one notices anyway—these are the kinds of tricks
you need to be thinking about.

Mesh Vertex Coherence
Although we didn’t implement any mesh coherence in the vertex shading code for the
Gouraud lighting model, this is screaming to be optimized. Why light 36 vertices for a
cube when I need to light only 8? Remember, while objects are still intact, there is a one-
to-one relationship between vertices and polygons because polygons share vertices—there
are no duplicates. This goes for vertex normals, texture coordinates, and so forth; so, if
there’s optimization you can take advantage of while objects are still objects (such as light-
ing them), do it—we’ll actually do this very soon. Of course, you don’t want to light poly-
gons that are backfaces and such, so you have to be careful that you aren’t foolhardy and
aren’t paying attention to the minimum amount of work that needs to be performed.

Mathematical Caching
We saw a little of this in the new lighting functions when I cached the computation of the
polygon normal that was re-used in the point and spotlight lighting functions. Of course,
there are many more opportunities for this kind of caching. Simply look through code,
and anything that’s redundantly computed more than once is a candidate. The way to
code it cleanly is to set the variable that contains the results or a field of it to infinity to
“tag” the data in essence, and before the data is used, you test for infinity. If it’s equal,
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compute the value and store it. Otherwise, jump the code; for example, here’s a function
before computational caching:

// code block

f1 = sin(x)*cos(y)+zeta

f2 = f1 * cos(y)

f3 = alpha + beta * sin(x)

Now, assuming that x, zeta, alpha, and beta change in this loop due to external forces,
the one thing that stays constant is y. Thus, we can cache cos(y) as follows:

cosy = cos(y)

// code block

f1 = sin(x)*cosy+zeta

f2 = f1 * cosy

f3 = alpha + beta * sin(x)

Now, the problem with the preceding fragment is that we know that cos(y) needs to be
used later down the line, so we compute it. But if we don’t, we surely do not want to even
waste the time computing it until it’s needed—get it? For example, the earlier code block
might never be called, and we would wastefully compute cos(y) for nothing. Thus, a
more robust strategy to use when a value may or may not be needed is to set it to infinity
(or some other impossible tag value) and when it’s needed, compute it:

// initialization

float cosy = FLT_MAX;

//. code

// ..more code

// this code is executed only when we are certain

// that cosy is needed

if (cosy == FLT_MAX)

cosy = cos(y);

SIMD
SIMD stands for single instruction multiple data. Its part of the Pentium III+ architecture that
allows you to perform the same operation on multiple data streams. Meaning that you can
multiply four numbers by four numbers, and so on. This is perfect for the types of opera-
tions we’re doing in 3D. You may be saying, “‘Isn’t that MMX?” Yes and no. MMX, or
multimedia extensions, was the first generation of this technology and didn’t quite
deliver. It basically gave the Pentium the ability to perform four integer operations simul-
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taneously, but at the expense of the floating-point registers. On the other hand, I can tell
you that SIMD does work!

With the Pentium 4 for example, we can speed up our math and 3D algorithms almost
400% by using inline SIMD instructions and/or the compiler-specific intrinsic functions.
I’ll cover this briefly at the end of the book, but it’s definitely something to look at.
Imagine how much faster we can light, Gouraud shade, texture map, and transform poly-
gons—the list is limitless! Check out Intel’s site at

http://www.intel.com

Search under “sse,” “sse2,” and “simd.”

Also, you can download the Visual C++ processor pack for the Visual C++ compiler to give
it support for SSE (streaming SIMD extensions)/SSE2 (streaming SIMD extensions 2)
instructions at:

msdn.microsoft.com/vstudio/downloads/ppack/default.asp

Final Demos
Alrighty then! It’s been while since I said that—I think I’ll say it again: Alrighty then!
Okay, now I feel better! It’s time for a demo of the engine. I’m getting seriously sick of this
tank thing, but I’ve been waiting until we had the technology to make something very
cool before I spent the 20 hours or so needed to make a cool demo. However, because it’s
a no-brainer to upgrade the tank demo with all this stuff, DEMOII9_4.CPP|EXE is the 16-bit
version and DEMOII9_4_8b.CPP|EXE is the 8-bit version. Check out the screenshot in Figure
9.42 to see the nice shading. Basically, it’s the same demo we’ve been working with, but
with Gouraud shading added to many of the objects in the scene along with a texture-
mapped, flat-shaded craft that you control. As usual, you can control the demo with the
keys shown in Table 9.1.

TABLE 9.1 Controls for DEMOII9_4xx.CPP|EXE

Key Function

A Toggles ambient light source

I Toggles infinite light source

P Toggles point light source

S Toggles spotlight source

W Toggled wire frame/solid mode

B Toggles backface removal

L Toggles lighting engine

Right arrow Rotates player right

Left arrow Rotates player left

Up arrow Moves player forward

Down arrow Moves player backward

Space bar Turbo

H Toggles Help menu

Esc Exits demo

Final Demos 999
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FIGURE 9.42 The good old tank demo with Gouraud shading and texture mapping.

Raiders 3D II
Now for the fun stuff! I’ve decided to remake the initial Chapter 1 space demo in full solid
3D. Figure 9.43 is a screenshot from the demo. It supports everything we’ve created so far:
colored lights, texture mapping, and a lot more. It’s very basic and a technology demo, so
feel free to add all kinds of stuff. The demo is RAIDERS3D_2.CPP|EXE and
RAIDERS3D_2B.CPP|EXE (a slightly different color scheme), and you will need to link in all
library modules T3DLIB1.CPP|H through T3DLIB7.CPP|H. And, of course, remember to copy
all the assets into your executable directory. Also remember that all texture maps use a
texture directory named

char texture_path[80] = “./”; 

You may want to set it to “TEXTURE/” or something, but then remember all the textures
must be contained within this subdirectory contained within your working directory of
your final .EXE.

The game is similar to the version in Chapter 1, but is quite a bit more advanced. Use the
mouse to move the targeting reticule and the left mouse button to fire. To exit, press Esc.
The gameplay logic is very simple: You must destroy the incoming enemies with your
particle beam weapons. When 25 enemies escape your clutches, the game ends. To restart,
simply press Return. Some of the other engine controls are still available, for example:
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W—Toggles the wireframe mode

I—Toggles the primary sun point light

A—Toggles the ambient light 

Final Demos 1001
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FIGURE 9.43 Raiders 3D II.

Even though the game is simple, there are a number of interesting features of the game
that I would like to discuss one by one, so you can add to the game yourself.

The Stars
The 3D star field is implemented as a hack of sorts. Our engine has no support for stars, so
to get them in there, I had to overlay them into the engine and render them in manually
using the same view distance and window size for the perspective equations. However, for
the most part, the star logic is straight out of Chapter 1’s RAIDERS3D.CPP|EXE demo.
Amazingly, we can get away with this because “particle”-like stars are so small, who cares
if they’re lit or z-sorted. However, we definitely need to add some support for particles in
the engine soon so that we don’t have to use hacks like this. On the other hand, I would
hate to force something as simple as particles through the entire rendering process, so a
happy medium is something we need to think about.

The Energy Weapons
This is a really cool effect. At first I had nothing more than straight lines to represent the
weapons, but then I thought it would be cool to simulate a particle or plasma energy
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weapon that looked like lightning. To implement the weapons, I simply wrote code that
took the two endpoints to draw the energy beam between, the number of segments to
break the beam into, and finally the maximum amplitude. Amazingly, it worked on the
first try and looks perfect!

The Collision Detection and Target Tracking
The collision detection is a bit of work to get right. Basically, you have a reticule that’s in
2D that you move around on the screen. But the objects are in 3D space, so the trick is
that you have to “project” the bounding box of each ship into 2D screen space and then
test whether the center of the targeting reticule is within it. To accomplish this task, I
simply found the bounding box of each ship, and then projected the four points defining
the bounding box. Then I tested the reticule to see if it was in it. Nothing you haven’t
seen—it’s just another application of it. However, this technique is important to be able to
implement because it’s the basis of 3D “picking” with a 2D position. But just remember:
Project the 3D image’s bounding box onto screen space and always work from there.

The Explosions
The explosions didn’t quite turn out as dramatic as I had wished. The algorithm basically
takes the polygon mesh of the alien ship and then copies it into an explosion mesh that’s
disposable. However, I purposely lose the vertex coherence, copy each polygon one by
one, and replicate its vertices. This is done so that I can animate or transform each
polygon individually in the object during the explosion phase. Then, during the explosion
phase, I throw out the polygons (shrapnel) at different angles and velocities. It looks okay,
but there’s nothing like a bitmap explosion! Please add one on top of the polygon explo-
sion—the game needs that, and I don’t have time, but you do <BG>.

The Font Engine
As you know, GDI is very slow, and although displaying stats or other debugging informa-
tion with it is okay, it’s just too slow and clunky for game text. So, what I did was write a
simple font engine for this game. The font engine uses two functions that you’ll find in
the RAIDERS3D_2.CPP itself, not the library:

int Load_Bitmap_Font(char *fontfile, BOB_PTR font);

The function loads a bitmap containing a templated font. The font must contain exactly
64 chanters in 4 rows of 16, and each character must be 16×14 pixels. The first character
should be the SPACE char. Take a look at the file tech_char_set_01.bmp within the direc-
tory for this chapter. Also, you need to send the load font an empty BOB so that it will
place the font in where each animation cell is a character.

The next function is used to display a string at any x,y position on the screen. You send it
the BOB containing the bitmap font, the x,y string, and the horizontal and vertical
spacing you would like, along with the surface to render on. Here’s that function:
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int Draw_Bitmap_Font_String(BOB_PTR font, 

int x, int y, 

char *string, 

int hpitch, int vpitch, 

LPDIRECTDRAWSURFACE7 dest); 

Using them is trivial. I suggest reviewing the code to see them in action. I’ll probably add
them to our library next chapter with some cleanup.

Lighting in the Game
The whole point of this chapter is lighting! Well, this little demo has its share. There are
four engine lights:

• An ambient light.

• A sun (white), which is a point light located in the upper-right sector of space.

• A sun (red), which is a point light located in the lower-left sector near the 
bitmap sun.

• An energy discharge, which is a point light, located a few hundred units in front of
your ship. It’s activated only when your weapons are engaged.

TIP

Try disabling the ambient light to see more dramatic lighting effects.

Final Comments
This game barely touches on the capabilities of our little engine. With some work, a
complete 3D space game that you could probably sell could be constructed from this
demo! It needs levels, goals, storyline, and so on, but the technology is there. And remem-
ber that this engine is 1/10 to 1/20 as fast as it could be after optimizations. Anyway, make
sure to try both the red (RAIDERS3D_2.EXE) and green (RAIDERS3D_2B.EXE) versions of the
game (they simply have different backgrounds).

Summary
This chapter was gigantic. I don’t know what’s happening, but I really want to try and
cover as many details as possible. To cover both the theoretical ground as well as the prac-
tical and then write the code that does it is simply taking us places we never thought we
would go! But I’m very happy with our progress. If you put this book down right now and
forget the rest of it, you still have the capability to create a fully lit, colored, exterior 3D
engine with texture mapping and 8/16-bit support—and that’s pretty good.
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I promise that the next chapter will be shorter, but please take some time and really mess
with the code from this chapter and experiment with the demo. I don’t have time to
really ring out the engine and make really cool demos for you, but I have barely touched
the surface of what our crude unoptimized engine can do. I’m sure you can make it do
things that are amazing!
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IN THIS CHAPTER

• Introduction to Clipping

• Theoretical Coverage of
Clipping Algorithms

• Practical View Frustrum
Clipping

• A Little Fun with Terrain

CHAPTER 10

Clipping in 3D++

“Don’t worry, it’s not a threat to you.”

—Marla, Fight Club

We have avoided 3D clipping for quite some time, but it
has finally caught up with us! There is simply no way we can
avoid the issue any longer—not that I was trying to <BG>. In
this chapter, I am going to cover both a theoretical as well as
practical framework for clipping in 3D, the reasons behind
the techniques, and what really works. Here are the general
topic areas:

• Introduction to clipping

• Theoretical coverage of clipping algorithms

• Implementing view frustrum clipping

• A little fun with terrains

Introduction to Clipping
We have discussed clipping in general many times in both
this book and in Tricks of the Windows Game Programming
Gurus, Second Edition. Clipping is of the utmost importance in
3D graphics because geometry that is not clipped properly
will not only be displayed incorrectly, but can cause divide-
by-zero exceptions, memory crashes, and lots of other nasty
problems. With that in mind, let’s briefly recap the different
kinds of clipping and the reasons for using each one.

Object Space Clipping
Object space clipping occurs when you clip the actual geome-
try of the primitives to some clipping region. The clipping
region can be 2D or 3D, but the point is that object space
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1006 CHAPTER 10 Clipping in 3D++

clipping occurs in mathematical space using the mathematical representations of the
objects, polygons, primitives, or whatever. The nice thing about object space clipping is
that abstractly, it’s very clean; you have an object or list of polygons, and you clip them to
the view extents, either 2D or 3D, and you then send these clipping polygons (triangles in
our case) to the next stage in the 3D pipeline.

The problem with the object space approach is, of course, in the details. We are always
using triangles in our engine, so we must clip triangles to either 2D rectangles or 3D
viewing pyramids. This can create polygons with more than three vertices (non-triangles).
Put in another way, for each clipping plane, we have the potential to introduce extra
vertices in each triangle during the clipping operation, making them quads or more; thus
they have to be converted back into triangles. This might not be a clean process. If we had
designed the engine so that polygons could have any number of vertices, this wouldn’t be
such an issue, but we have made numerous optimizations based on the knowledge that we
are only using triangles. Secondly, performing clipping in any object space system means
intersecting lines with lines, lines with planes, and so forth. This might seem easy, but
again, it’s a bit tricky, and there are lots of problems involved.

Far clipping
plane

Near clipping
plane

x � z view of viewing frustrum

Visible portion or
view frustrum

�v1, v2,� • z � 0

negative z values

cause �xs, ys� projections

to be inverted.  

V0 �x0, y0, z0�

V1 �x1, y1�

V2 �x2, y2, z2�V1 
V2

V0

�z

zf

�z

�x �x

�y
Perspective transform:

xs �   d • x2

0

ys �   d • y2

0

divide by 0.0
error!

zn

FIGURE 10.1 Projecting vertices with z less than or equal to 0 is bad.
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2D Clipping in Object Space
2D clipping in object space is something that we have already performed, and have been
doing for quite some time in 2D. The basic idea here is that we have lines or triangles that
are already projected onto the viewplane and simply need to be clipped to the rectangular
viewplane. The code to do this has been covered in both this book and more deeply in the
first Tricks. Clipping in 2D isn’t going to help us anymore because our major problem is
that in 3D, we are projecting polygons that could potentially be so long that they not
only pierce the near clipping plane in 3D, but also the z = 0 plane, and thus the projected
vertices have negative z values. This is shown in Figure 10.1. Therefore, a more aggressive
3D clipping is needed in object space.
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FIGURE 10.2 Long polygons must be clipped.

3D Clipping in Object Space
There is simply no way to avoid 3D clipping to the near clipping plane if you want to
have geometry that has polygons with any size to it (the case shown in Figure 10.2). For
example, you can get away with the trivial rejection and culling of polygons if they are
small enough and move in their entirety beyond the near clipping plane, as shown in
Figure 10.3, but if you are running around in an interior level, this isn’t going to work.

At the very least, we must perform clipping of all polygons to the near clipping plane, and
the resulting clipped polygons might no longer be triangles, but quads. Therefore we must
split them once again into triangles, and re-insert them into the rendering list. So, at
worst, we have to clip all polygons to the near clipping plane, which is a line/plane inter-
section. However, the details of this are more problematic. I have already mentioned the
splitting triangle problem, but we also have to clip the texture coordinates, get any light-
ing information for Gouraud shading, and new vertex normals must be computed—lots of
drama, but we will get to it.
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FIGURE 10.3 Little polygons can slip by.

On the other hand, we are going to learn that we do not need to clip our polygons to the
other five view frustrum walls. Take a look at Figure 10.4. You see, clipping a polygon to
the far z-clipping plane is a waste of time. What would we gain from that? Nothing, but it
would waste time, so we will trivially reject polygons that are beyond the far clipping
plane, no matter how long or short they are. If they are totally beyond the far z-clipping
plane, we will cull them rather than try to clip them.

Similarly, the top/bottom and right/left clipping planes that make up the viewing frustrum
also turn out to be a waste to clip to as well. The reason is that the clipping operations
take a bit of time, and in the end, why are we clipping? We are clipping so that the final
projected coordinates do not extend beyond the 2D view plane, but who cares? We can
clip these polygons in image space during rasterization, which turns out to be as fast or
faster. Plus, we don’t mire the situation by adding even more polygons to the pipeline
with top/bottom, right/left clipping to the viewing frustrum.
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FIGURE 10.4 3D clipping need not be performed for all the view frustrum planes.
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FIGURE 10.5 The steps in our 3D clipping pipeline.
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Of course, if you want to do this for a clean design, you are more than welcome to do so,
and I will show you how, but we are going to stick with the following steps for culling and
clipping, as shown in Figure 10.5:

1. Cull all objects (if possible, you might not have objects in your system-only level
data or large terrains).

2. Remove back-faces.

3. Clip all polygons to the viewing frustrum. Only the near z-clipping plane performs a
full clip and split to polygons; the remaining five planes are a gross trivial accept-or-
reject clip/cull. This means that if a triangle is entirely in the region or partially
inside the viewing frustrum, pass it on; if it’s completely outside the top/bottom,
right/left clipping planes, cull it.

4. Pass all the polygons down the viewing pipeline, and any triangles that extend
beyond the 2D boundaries of the viewing plane and screen space will be clipped in
2D during rasterization.

This is very easy system to implement, works perfectly, and is very fast.

Image Space Clipping
Finally, let’s reiterate what we mean by image space clipping. Basically, we have the situa-
tion shown in Figure 10.6: A polygon is ready to be rasterized, but extends a bit over one
of the 2D bounding lines that make up the viewplane/screen. This is no problem in the
vertical cases. We just begin the rasterization loop lower from the top vertex by computing
where the triangles begin on the screen. This takes one line of code to figure this out, and
in the horizontal cases, we select a slightly different rasterizer that on each scanline as the
primitive is being rendered we clip the line, but this is better than clipping every triangle
to all four of the top/bottom, right/left clipping planes that make up the viewing frustrum
and potentially adding many new polygons into the pipeline, clipping their texture coor-
dinates, recomputing their normals, and so forth. It’s bad enough clipping the polygons to
the near clipping plane, and potentially splitting each one that intersects with it.

On the other hand, we don’t want to image space clip polygons where we would lose any
kind of 3D information; this is actually a very important point when we get to z-buffering
and so forth. We must be careful about what we do in screen space when we start interpo-
lating z values down polygon edges, and at least keeping the z components of vertices
around will become important. What I am saying is that we might find that when we
finally rasterize, we cannot clip in screen space anymore with only 2D coordinates. But let’s
see how things go, and worry about what happens later.

CHAPTER 10 Clipping in 3D++1010
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FIGURE 10.6 Image space clipping during rasterization.

Theoretical Coverage of Clipping Algorithms
Before I get started, I want to say one thing: I think it’s almost ridiculous how there are all
these ”named” clipping algorithms. I have personally thought of every single one before I
even knew they existed—which doesn’t mean I am smart, it just means that they are
simply common sense for anyone that writes graphics algorithms. Figuring out how not to
pay taxes—that would make me smart <BG>. Algorithm naming is a problem prevalent in
computer graphics: Someone “thinks” she’s come up with a new “algorithm,” publishes it,
and from then on the algorithm has a name. Of course, this is many times not the
author’s intention; she just writes a paper, and then it’s someone else that keeps referring
to the algorithm by that name. 

Clipping is far too simple to even think that it was “discovered.” Every clipping algorithm
is just a slight variation on intersecting lines and common sense. I personally just make all
my algorithms to suit the job—sometimes I re-invent something, sometimes I don’t. The
point I am trying to make is that I am going to list the accepted clipping algorithms by
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name, but do me a favor—please don’t think that these are the only ways to do it. As I am
sure you know, many times you spend hours trying to figure something out, only to find
out later it’s very similar to something else already solved. In the case of clipping, I wish
the algorithms had more descriptive names—that’s all. I don’t know if they are algorithm
names or law firms!

I think that for an algorithm to have a name, it should have a sufficient level of sophisti-
cation, and it has to be completely non-obvious to the average person in that field. I think
something like Binary Space Partitioning should be named after the inventor because
that’s not something that’s totally obvious; whereas the second you try to clip a polygon
against another polygon, within 1–2 hours you go through every permutation of line clip-
ping, vertex classification, bit encoding, parametric line representations there is. Guess
what: You just thought of everything I am about to show you!

TIP

The point of the preceding paragraph is for you to try new things yourself. Ninety-nine percent
of the time what you have thought of has been thought of before, but it might not be
published, so just use it and be happy!

Now that I have complained about this, let’s get to it! I’m going to cover some of the most
popular clipping algorithms from a theoretical point of view, and then later we will actu-
ally implement one for our needs. Our algorithm will be a hybrid of many of the
concepts, because I just made it up to solve the problem. Let’s begin with a little back-
ground on clipping.

Clipping Fundamentals
Clipping polygons reduces to clipping lines, which reduces to determining whether points
are within some region—either a 2D area or a 3D volume. Figure 10.7 illustrates the
general problem. We have a collection of lines/geometry that make up the polygons of our
scene that we are going to project at some point, and we must determine whether these
entities are within some boundary. This simplifies to determining whether single points
are within a boundary. In other words, all triangles are made of three points that define
three edges. Although the edges make the geometry “solid” or “real,” it’s the points that
really matter. Hence, at the lowest level, we need to determine whether a point (x,y) or
(x,y,z) is inside or outside a bounding area/volume with point testing.

Point Testing 2D Case
Given a point in 2D p0(x,y) and a rectangular region bounded by xmin, xmax, ymin,
ymax as seen in Figure 10.7, the point is inside if it satisfies the following inequalities:

{xmin <= x <=xmax} and {ymin <= y <=ymax}
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FIGURE 10.7 Point testing in 2D.

Point Testing 3D Cases
Subcase 1: Cuboid volume

Given a point in 3D p0(x,y,z) and a rectangular cuboid region bounded by xmin, xmax,
ymin, ymax, zmin, and zmax as seen in Figure 10.8, the point is inside if it satisfied the
following inequalities:

{xmin <= x <=xmax} and {ymin <= y <=ymax} and {zmin <= z <=zmax}

You might wonder why we care about clipping to a cuboid when we know that the
viewing frustrum is a pyramid shape made of six planes. This is true, but remember when
we discussed projection, and the perspective projection had the effect of “straightening”
out the viewing frustrum into a cuboid shape? In this case, the clipping volume is trivial
and simple comparisons to the containment walls are all that is needed to perform the
clipping operation. Additionally, no one ever said that clipping is only for the viewing
frustrum—maybe you want to clip laser beams in a cube or rectangular solid somewhere
out in the middle of a game universe.
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FIGURE 10.8 Point testing in 3D.

Subcase 2: General pyramid shape viewing frustrum

This case is the one that we are going to deal with. It’s the standard case, in which we
have six planes that make up the viewing frustrum that all geometry must be clipped to.
In this case, we can define the viewing frustrum in a number of ways: the z position of the
z-clipping planes, along with a field of view for the horizontal and vertical extents, for
example, but the bottom line is that we are going to end up with six planes. Let’s call
them Ptop, Pbottom, Pright, Pleft, Pfar, and Pnear. Additionally, let’s assume that we
have defined the planes in such a way that they are consistently constructed with all
normals pointing inward, toward the interior of the viewing frustrum. Then given a point
p0(x,y,z) we compute the half space that the point is in. Positive half space means the
point is on the interior side of the clipping plane, whereas a negative half space means
that the point is on the negative side of the clipping plane, or outside the clipping plane
and the viewing frustrum. If you recall, to determine whether a point is on a plane or in
the positive or negative half space, we simply plug the point into the plane equation (this
was covered in Chapter 4, “ It’s a Math, Math, Math World—Trigonometry, Vectors,
Matrices, and Quaternions,” and Chapter 5, “Building a Math Engine”). So, let’s assume
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the operator HS(p, pln) outputs the half space value for the point p, and the plane pln, +1
for positive half space, -1 for negative, and 0 for on the plane itself.

So we need to determine whether the following inequalities are satisfied:

{HS(p0, Ptop)  > 0} and {HS(p0, Pbottom) > 0} and

{HS(p0, Pright) > 0} and {HS(p0, Pleft)  > 0} and

{HS(p0, Pnear) > 0} and {HS(p0, Pfar)  > 0}

That seems like a lot of work, but it’s really not.

Line Clipping Basics
Now we can determine whether points are inside or outside a clipping region that is either
2D or 3D. The next step is to move up the hierarchy and clip the lines/edges that are
defined by the points that make up the triangles of the mesh. Thus, we need tools to
intersect line segments with infinite lines and/or finite segments. Once again, we covered
all this in Chapters 4 and 5, so I am not going to cover it again in depth, but I will refresh
your memory.

Polygon clipping is one baby step above line clipping, so I don’t want to spoil everything,
but basically we just need to think of how to clip a line segment against another infinite
line (in 2D) or a plane (in 3D). A full clipping algorithm is nothing more than iteratively
or recursively applying the clipping procedure over and over for every line segment that
makes up the polygon against every clipping boundary. Of course, the point of the clip-
ping algorithms is to minimize the work, but for the most part, that’s clipping: 2D, 3D,
whatever.

Line Clipping 2D Case Anyway, back to the line clipping problem. Let’s do the 2D case
first. Referring to Figure 10.9, we see a line from point p0(x0,y0) to p1(x1,y1) that we
want to clip against the vertical line at x = xl.

NOTE

In most cases, we don’t need to clip our triangles against arbitrary lines, so studying the horizon-
tal or vertical clipping case is sufficient.

To clip the line, all we need to do is convert the line into parametric form and then plug
in the vertical x value at which we want to find the intersection. Here’s the derivation:

In vector form, the position of the point along the line segment is

p = p0 + (p1-p0)*t

In component form:

x = x0 + (x1 – x0)*t, {0 <= t <= 1}

y = y0 + (y1 – y0)*t, {0 <= t <= 1}
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FIGURE 10.9 Simple line clipping.

If we want to test for an intersection of the line with a vertical line, we plug the x value
that defines the vertical line (in this case, x = xL) into the left-hand side of the equation
for x, and then solve for t. If {0 <= t <= 1}, there is an intersection; if there isn’t:

x = x0 + (x1 – x0)*t

Plugging xL into the left-hand side, we get

xL = x0 + (x1 – x0)*t

Solving for t:

(xL – x0)/(x1 – x0) = t

If t is between 0 and 1, there was an intersection on the segment itself. Remember, a
parametric line defined as we have defined it thus far exists from p0 to p1 when {0 <= t
<= 1}; t values beyond this range are still on the line, but not on the segment from p0 to
p1. Anyway, assuming we have a good t, we just plug it into the equation for y:

y = y0 + (y1 – y0)*t
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And then we have our (x,y) intersection with the vertical line defined by x = xL.
Computing the horizontal case is just as trivial, but instead of solving for t in terms of the
x equation, we use the y equation. Let’s do it for a horizontal line y = yL:

Plugging yL into the left-hand side, we get

yL = y0 + (y1 – y0)*t

Solving for t:

(yL – y0)/(y1 – y0) = t

Again, a sanity check on t. If {0 <= t <= 1}, there is an intersection, and we plug t into the
equation for x:

x = x0 + (x1 – x0)*t

And once again, we get the (x,y) of the intersection with the vertical line.

Of course, you need to use some common sense and trivial rejection tests here. If the
endpoints p0 and p1 are the same, there’s no need to perform intersection tests. Similarly,
trying to intersect a horizontal line with another horizontal line doesn’t make sense, and
so on.

Line Clipping 3D Case The 3D case of line clipping is just as simple as the 2D case—it’s
all a matter of how you want to represent the planes. But at this point we’re not using any
tricks, so let’s review the general case where we have a plane equation in 3D and a
parametric line equation in 3D. Referring to Figure 10.10, let’s construct the problem. First
the plane equation—we define a plane using the point normal form:

Let p0 = (x0, y0, z0) be a point on the plane, and n =< nx, ny, nz> be the normal to the
plane:

nx*(x – x0) + ny*(y – y0) + nz*(z – z0) = 0

And now a parametric line from p1 to p2 in vector form:

p = p1 + (p2 – p1)*t, {0 <= t <= 1}

In component form:

x = x1 + (x2 – x1)*t

y = y1 + (y2 – y1)*t

z = z1 + (z2 – z1)*t
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FIGURE 10.10 3D line intersecting a plane.

Now we need to compute the intersection. Once again, this is in Chapter 4, in the section
“Computing the Intersection of a 3D Parametric Line and a 3D Plane,” but the results are
derived basically by plugging in the values for x,y,z of the parametric line into the plane
equation and solving for t:

nx*(x – x0) + ny*(y – y0) + nz*(z – z0) = 0

Now plug x,y,z into the plane equation:

nx*(( x1 + (x2 – x1)*t) – x0) +

ny*(( y1 + (y2 – y1)*t) – y0) +

nz*(( z1 + (z2 – z1)*t) – z0) = 0

Now solve for t and plug back into the parametric line to solve for x,y,z to find the actual
point. We already did this, so I am skipping the math to save space. You get the idea.
That’s all there is to clipping—once you can intersect a line with a line and a line with a
plane, you have the problem beat. All you really need then is to come up with an algo-
rithm that fits your situation. Let’s look at some of the more common clipping algorithms
with this in mind.
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Cohen-Sutherland Clipping
The Cohen-Sutherland algorithm is one of the most popular methods to clip lines to a
rectangular region in 2D or a cuboid region in 3D. The algorithm has two distinct phases.

Endpoint Classification Phase
In the classification phase, each line segment in 2D or 3D is classified as being inside or
outside the clipping boundary by using bit codes to encode the position of each end point
as being inside (FALSE) or outside (TRUE). This classification code scheme is shown for the
2D case in Figure 10.11.
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FIGURE 10.11 The bit code classification code system for Cohen-Sutherland clipping.

Each vertex (x,y) of the line p0(x0, y0) to p1(x1,y1) is classified. A 4-bit (6-bit for 3D)
code is derived for the line segment; we’ll call it bitcode0 for vertex p0, and bitcode1 for
vertex p1. The bits can be encoded any way you want, but generally, given a rectangular
bounding region in 2D of {xmin, xmax} to {ymin, ymax}, Table 10.1 lists one possible
encoding.

TABLE 10.1 The Bit Encodings for Cohen-Sutherland Algorithm Outcodes

Bit Meaning when TRUE

b3 y > ymax, above top edge

b2 y < ymin, below bottom edge

b1 x > xmax, to right of right edge

b0 x < xmin, to left of left edge
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After the end points of the line have been classified, the algorithm moves on to the
processing phase, where the actual analysis and clipping occur.

The Processing Phase
The processing phase begins by trying to trivially reject or accept line segments. The cool
thing about this algorithm is that it’s really doing a precalculation to save us time with
writing lots of redundant if statements. Because we have a bit-encoding word for each
vertex, we can use bitwise logic operations to ask multiple questions at once (like the
adversary argument, for you combinatorialists). For example, suppose you want to know
whether your line is outside the clipping region. You would have to ask if both vertices are
above, below, to the right, to the left—that’s a lot of if statements! But it’s trivial with the
bit classification codes, because we can use logical operators to ask questions in parallel.
The trivial rejection/acceptance cases are as follows:

Test 1: If (bitcode0=0) and (bitcode1=0), the line p0->p1 is totally within the clipping
region and no clipping is needed. Refer to Figure 10.11.

Next, we logically AND each bit code together and look at the results:

bc = (bitcode0 & bitcode1)

Test 2: If (bc > 0), both vertices are beyond at least one common boundary and the line
can be trivially rejected. Refer to Figure 10.11.

After tests 1 and 2 have been performed and failed, the hard work comes—each line
segment can potentially intersect one or two points and must be clipped. This case is also
shown in Figure 10.11. There are a number of ways to approach this contingency. One
method is to clip the line to both of the lines it goes out of bounds on, creating one or
two more segments, and then to reapply the algorithm to the segments. A divide-and-
conquer algorithm might be used to compute these intersections, or perhaps through
brute force (which isn’t bad). Usually I find myself using the classification part of this
algorithm and then hybridizing the last part after the two trivial cases have failed.

Cyrus-Beck/Liang-Barsky Clipping
The next algorithm is a little more generalized, and works in terms of both parametric
lines, as well as general convex boundaries (2D or 3D) to clip to. The algorithm operates
on the premise that it’s more natural to think of lines in their parametric form, and uses t
values for the intersections rather than explicit (x,y) (or x,y,z) points. Thus, the clipping
conditionals and logic can be performed on the intersecting t values at a high level, and
the magnitude of the t intersection values, as well as their ranges, can shed light on the
intersections and their properties, and clean up the crude low-level details of Cohen-
Sutherland a bit.
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FIGURE 10.12 The setup for Cyrus-Beck/Liang-Barsky clipping.

In Figure 10.12, let’s consider the 2D case. We have a boundary defined by {xmin, xmax}
to {ymin, ymax} and a parametric 2D line of the form

p = p1 + (p2 – p1)*t, {0 <= t <= 1}

Or in component form, letting dx = (x2 – x1) and dy = (y2 – y1):

x = x1 + dx*t

y = y1 + dy*t
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We want these inequalities to hold true for the line to remain inside the clipping region:

Left & Right Side: xmin <= x1 + dx*t <= xmax

Bottom & Top Side: ymin <= y1 + dy*t <= ymax

Which further simplifies to these equations:

Left:   xmin <= (x1 + dx*t)

Right:   -(x1 + dx*t) >= -xmax

Top:   -(y1 + dy*t) >= -ymax

Bottom:   ymin <= (y1 + dy*t)

And finally, we simplify once more to get the dx*t and dx*y terms on the same side of the
inequality:

Left:   xmin-x1 <= dx*t

Right:   -dx*t >= -xmax + x1

Top:   -dy*t >= -ymax + y1

Bottom:   ymin – y1 <= dy*t

Multiplying by (-1) to flip the inequalities:

FORMULA 10.1 The Clipping Inequalities

Left side inequality  n=0:   -dx*t <= (-xmin + x1)

Right side inequality n=1:    dx*t <= (xmax - x1)

Top side inequality  n=2:    dy*t <= (ymax - y1)

Bottom side inequality n=3:    -dy*t <= (-ymin + y1)

TIP

I had a heck of a time getting these inequalities correct. It’s really easy to make a mistake when
flipping the direction of the comparison signs, so go slow. Remember the rule: when you divide
or multiply either side by a negative number, you must invert the comparison sign.

Assuming that each inequality is of the form p
n
*t < qn, where n means the nth inequality

as labeled previously, then we have the following cases:

Case 1: If (p
n

= 0), the segment is parallel with the boundary and can’t possible intersect it.

Case 2: If (p
n

>= 0), the segment is inside the boundary.

Case 3: If (p
n

< 0 ), the segment is outside the boundary.
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Case 4: If (p
n

< 0), the segment extends from outside the boundary to inside the boundary inter-

secting the segment.

Case 5: If (p
n

> 0), the segment extends from inside the boundary to outside the boundary inter-

secting the segment.

I know, I know, it’s confusing. However, if you review the cases a few times, basically we
only need to be concerned with Cases 4 and 5. These are the cases where we need to do
some work. We need to solve for the t intersection point for each inequality, but at the
same time, keeping track of which case we are dealing with (Case 4 or 5) when we perform
the computation of t is done with

p
n
* t < q

n

Therefore,

t = q
n
/ p

n
= r

n

We perform this computation for each of the four inequalities n = 0,1,2,3, and call each of
the results r

n
for {n = 0, 1, 2, 3}. So, r

n
is the t intersection value when we perform the

calculation q
n

/p
n
, which is one of the inequalities in Formula 10.1.

For the final step, we classify which r
n

values were the result of segments entering the clip-
ping region (p

n
< 0), and which were the results of segments exiting the clipping region (p

n

> 0). For those r
n

values computed when (p
n

< 0), we compute the value of t1:

t1 = max(0, r
n
)

For the t values we computed when the segments were exiting (pn > 0), we compute the
value of t2:

t2 = min(1, rn)

So what does this mean? Once again, here’s what we are doing: We try the trivial rejection
tests, they fail, so now we come to Cases 4 and 5. To solve these, we must compute the
intersection values of our line segment with the boundaries of the region. We have four
equations that we need to solve for p

n
*t < q

n
, so we compute the t value for each of the

four inequalities (which are numbered and listed in Formula 10.1) and call each resulting t
value r

n
. Then we sort the r

n
values based on whether or not they resulted from segments

entering or exiting the clipping region. Then we compute two final t values called t1 and
t2, which are the final intersections we need to clip this darn line!

If (t1 > t2), the line segment is completely out of the clipping region and we can exit.
Otherwise, we need to clip the line by plugging t1 and t2 into the parametric equation of
the line and the resulting two vertices pi1 and pi2:

pi1 = p1 + (p2 – p1)*t1

pi2 = p1 + (p2 – p1)*t2
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These are the vertices that define the clipped line. I agree that this algorithm seems like a
nightmare, but it’s only hard for humans to follow—it really is very straightforward for the
computer to solve. This algorithm works perfectly, and is much better than the Cohen-
Sutherland algorithm, because it’s based on parametric lines and transfers easily to 3D.

An Example of the Algorithm
To solidify our discussion about this algorithm, let’s try a simple example to make sure it
works, shall we? In Figure 10.12, we see our clipping region in quadrant I, slightly offset,
so we have the following setup:

xmin = -4, xmax = 8

ymin = -4, ymax = 6

p1=(-2,-6), p2=(10,4)

p = p1 + (p2-p1)*t

x = -2 + (10 – (-2))*t = -2 + 12*t

y = -6 + (4- (-6))*t = -6 + 10*t

Therefore, dx = 12 and dy = 10. Now, let’s run the algorithm and compute each inequality:

Left:   -dx*t <= (-xmin + x1)

Right:    dx*t <= (xmax - x1)

Top:    dy*t <= (ymax - y1)

Bottom:   -dy*t <= (-ymin + y1)

Plugging in our values:

Left:   -12*t <= (-(-4) + (-2))   = (2)

Right:    12*t <= (8 – (-2))     = (10)

Top:    10*t <= (6 – (-6))     = (12)

Bottom:   -10*t <= (-(-4) + (-6))   = (-2)

Extracting out p
n
, q

n
, and computing r

n
for each case:

Left:   -12*t <= (2), p0=-12, q0=2, r0=(q0/p0)=-1/6

Right:   12*t <= (10), p1=12, q1=10, r1=(q1/p1)=5/6

Top:  10*t <= (12), p2=10, q2=12, r2=(q2/p2)=6/5

Bottom:  -10*t <= (-2), p3=-10, q3=-2, r2=(q3/p3)=1/5

Now we split into two cases. First, when (p
n

< 0), we compute the value of t1:

t1 = max(0, r
n
) = max(0, -1/6, 1/5) = 1/5.
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For the t values we computed when the segments were exiting (p
n

> 0), we compute the
value t2:

t2 = min(1, r
n
) = min(1, 5/6, 6/5) = 5/6.

Whew! Now we test whether (t1 > t2). If so, the line is totally out of the clipping region.
This is obviously not true from the figure, but our math tells us t1 < t2. Thus, we need to
plug t1 and t2 into our parametric line equation, and the result will be a shiny new line!
Plugging in t1 = 1/5, we get

x1’ = -2 + 12*(1/5) = -2 + 2.4 = .4

y1’ = -6 + 10*(1/5) = -6 + 10/6 = -4.0

and plugging in t2 = 5/6, we get

x2’ = -2 + 12*(5/6) = -2 + 10 = 8

y2’ = -6 + 10*(5/6) = -6 + 50/6 = 2.3

Thus, the final clipped line segment is p0'(0.4, -4.0) to p1'(8.0, 2.3), which if you refer to
Figure 10.12, looks about right (it better be!)

If you think about the algorithm for a moment, what it’s really doing is helping you clas-
sify and organize little pieces of information in a clean manner. The ironic thing is that if
you look at the code structure of many clippers written by people without knowledge of
this algorithm, the code follows the same kind of information flow, so that tells me some-
thing—the algorithm is really good!

We won’t be formally implementing this algorithm, but maybe later when we get to opti-
mizing, we’ll redo the old Cohen-Sutherland algorithm for 2D clipping with this one.
Which brings me to a point: can this algorithm be used in 3D? Of course. To convert it to
3D, the exact same procedure is used, except that the inequalities are now whether or not
the points are on the positive or negative half space of the planes. Thus, you need to use
the dot-product or half-space test.

Weiler-Atherton Clipping
The final algorithm I want to cover fits more of the mindset that polygons are made of
vertices, and a vertex is either contained within the clipping region or not. The algorithm
is designed to clip any polygon against any other polygon. By this determination, if each
vertex that defines a polygon is within the clipping region, the edge that it defines is
either leaving or entering the clipping region. In Figure 10.13, the polygon we want
clipped is called the subject polygon, and the polygon that we are clipping against is called
the clipping polygon.
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FIGURE 10.13 Weiler-Atherton clipping setup.

To set things up properly, the polygons must be defined by a list of vertices in an array or
linked list and be ordered in some consistent manner. Let’s assume a clockwise ordering
for both. The algorithm begins with the subject polygon vertex 0, and computes its inter-
section with each edge of the clipping polygon. If an intersection is found, the intersec-
tion point is added to both the subject polygon list and the clipping polygon’s vertex list
(in between the vertices that make up the edge that the intersection occurred), but marked
with an entering or exiting flag, indicating whether the intersection occurred when an
edge was entering or leaving the clipping region. After these lists are generated, the follow-
ing procedure is followed to generate the resulting polygon:

1. Find the first intersection in the subject polygon list that is an entering point.
Output this point as the first vertex of the resulting clipped polygon.

2. Traverse the subject polygon until another intersection point is found. While you do
this, add each point you visit to the final resulting polygon. When you reach this
intersection point, it must by definition be the exiting point.

3. Based on the location where you found the intersection point in the subject polygon
list, you must now traverse the clipping polygon list until you find the same intersec-
tion point (to synchronize the lists).
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4. Now traverse the clipping polygon list and output each vertex you visit to the result-
ing polygon until you find another intersection point. You are now at the entering
point.

5. If the intersection point from step 4 is not equal to the first point of the result
polygon, go back to step 2 (you’re trying to close the polygon).

6. If the intersection point from step 4 is equal to the first point of the result polygon,
the polygon is closed, but not necessarily complete. If all the entering points in the
subject polygon have been included, you are done (use a counter or flags for this);
otherwise, traverse to the next entering point on the subject polygon and jump back
to step 2.

The preceding algorithm works great and will clip any polygon to any other polygon.
Figure 10.14 depicts a flowchart of the actual algorithm working on a simple case for a few
steps.
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FIGURE 10.14 The Weiler-Atherton algorithm in action.
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I personally don’t like the thought of all the pre-processing and then making multiple
passes over the vertex lists. Also, remember that we are dealing with triangles here, and we
can’t afford long algorithms in general. In most cases, we just need to hack together a clip-
ping algorithm based on these ideas that is super fast. Anyway, another algorithm based
on the Weiler-Atherton algorithm’s idea of entering and exiting polygons is as follows:

First, let’s just think of one polygon (a triangle) that we want to clip to a single line or
plane (we can use multiple lines or planes to make up regions or volumes by repeating the
process). You start by classifying the starting vertex as inside or outside the clipping
region. If it’s inside, you output that vertex, and if it’s not, you do nothing and move onto
the next vertex. If the start point and end points of an edge have different states (one is
inside, one is outside), you find the intersection and output that vertex. Basically you
simply traverse the edges that make up a polygon one by one. If you happen to start in
the clipping region, great. Anytime you exit out of the clipping region, you emit the inter-
section point and continue. Then when you finally reach an edge that re-enters the clip-
ping region, you emit that intersection and continue. This is really a simplified version of
Weiler-Atherton, but is more real-time and on the fly. It’s actually what I use most of the
time in one form or another, because it’s overkill to create complex clipping vertex lists for
the clipping rectangle and subject polygon since I know that they are both so simple.
Figure 10.15 illustrates the simplified algorithm working on a simple case.
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FIGURE 10.15 The simplified Weiler-Atherton algorithm.

Further Studies on Clipping
So that’s it, baby! You know how to clip! Seriously, there isn’t much to it—you use one of
the algorithms or a hybrid and for the most part, just find intersections of your polygons
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with 2D regions on 3D volumes. Next we are going to actually implement 3D clipping for
the engine in a practical way, but if you want to learn more about clipping algorithms,
there are some great books on the subject. This is where the academic texts really shine;
although academic books are useless for implementing real-time game algorithms, they do
at least have full coverage of the algorithms in gory detail. Some of my favorites are the
following:

• Computer Graphics: Principles and Practice by Foley, van Dam, Feiner, and Hughes
(Addison-Wesley)

• Introduction to Computer Graphics by Foley, van Dam, Feiner, Hughes, and Phillips
(Addison-Wesley)

• 3D Computer Graphics by Alan H. Watt (Addison-Wesley)

• Procedural Elements for Computer Graphics by David F. Rogers (McGraw-Hill)

Those should turn your brains to mush in no time!

Practical View Frustrum Clipping
Alright, now it’s time to actually add clipping to our 3D engine! Basically we want to clip
polygons to the 3D viewing frustrum at some point in the pipeline. As I mentioned, our
plan of attack is to perform a 3D clip on polygons, but to minimize the amount of triangle
splitting and to only clip in 3D what absolutely must be clipped.

So when do we absolutely have to clip something? Well, the only time a polygon must be
clipped is if it extends beyond the near clipping plane, or worse yet, into z <= 0 space.
Projecting polygons with z coordinates that are less than or equal to 0 will cause divides
by 0, and inverted (x,y) projections. This is not acceptable.

Up until this point, we have been cheating death by pushing the near clipping plane of
the view frustrum far enough in front of the projection plane and the z = 0 barrier that no
polygon could ever get past it, because we have been culling whole objects that got too
close to the viewpoint and the z = 0 plane. However, at this point, we need to forget about
object-level culling and think more in terms of a general list of polygons. These polygons
are the problem, because they could be anywhere.

In any event, we are going to write a hybrid clipper/culler that will clip the rendering list
polygons to the viewing frustrum—but actual vertex clipping will only occur against the
near clipping plane. Polygons that are partially within the to/bottom, right/left, or far clip-
ping planes will simply be left alone, or culled completely if they are beyond those planes.
Of course, when projected, these polygons will extend beyond the 2D viewplane, but they
will get clipped by the rasterizer and not cause us anymore grief. As we discussed before,
this strategy ends up being simpler and faster than clipping every polygon against all six
faces of the viewing frustrum, because in the end, all that accomplishes is a lot of wasted
time—splitting polygons all over the place, recomputing normals, texture coordinates—all
for nothing, because we have to rasterize the darn things anyway! The only polygons we
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need to clip are those that are so long that they pierce the near plane and can potentially
cause distortions and mathematical errors during projection. What’s cool about our
approach is that we’re not only going to remove back-faces, but cull polygons that are not
in the viewing frustrum. We’ll remove even more geometry than before, and get better
performance! I’m getting excited, so let’s get to it!

3D clipping can be performed in a number of places in the 3D pipeline: world space,
camera space, or perspective projective space. There are pros and cons of all of these
approaches. For example, clipping in world space saves us the work of transforming all the
geometry into camera coordinates, but then our nice clean viewing frustrum is located at
the viewpoint, and has an arbitrary orientation. Thus, the clipping and culling must be
slightly more generalized. On the other hand, if we let the polygons get by the world-to-
camera transformation, they’re nice and neatly placed relative to the camera, which is at
the origin, and the viewing frustrum has its planes all parallel and perpendicular to the
axes, which makes the clipping very easy. So we waste the transformation of all the geom-
etry-to-camera coordinates, but the actual clipping/culling process becomes easier. Next, if
we wait until the perspective projection (this is actually kinda tricky), the geometry will all
be normalized to a canonical viewing volume of the perspective viewing frustrum as a
cuboid. In other words, if we perspective-transform all the geometry and then clip, we no
longer need to clip to a pyramid, but to a cuboid—we covered this a few times in the
math and 3D chapters on projection.

So what to do? Well, forget the perspective projection/clipping thing—waiting that long is
very bad. Not only would we light polygons that don’t need lighting, we would fill the
pipeline up with 200% more polygons that will never be rendered, which is a waste. We
could clip in world space, but I personally don’t cherish the idea of transforming the
viewing frustrum all over the place and then performing the clipping (although I am
really being a wimp, because it’s not that bad). Also, any polygons that are split will be
transformed. Thus, assume that we have 1,000 polygons in a scene: We end up with
around 1,200 because of clipping and splitting (I am being really biased here, of course).
Now we have to transform 1,200 polygons into camera space—ouch! Additionally, the
clipping test for each polygon in world space is going to be a little more complex than
when the polygons are in camera space, with the camera located at the origin and the
viewing frustrum aligned with the positive z-axis.

On the other hand, suppose that we clip in world space and remove approximately half of
the polygons. Then we only have to transform 500 polygons into camera space. These two
cases show that either approach has its good and bad points. In the end, I have decided to
perform the clipping/culling of polygons after the world-to-camera transformation because
it’s easier to understand, and I really don’t think I would gain that much if I did it in
world space. However, when we optimize at the end of the book, we might give it a try.

Summing up, we are going to clip/cull after the world-to-camera transformation, removing
polygons that are totally outside the viewing frustrum completely, while clipping polygons
that pierce the near clipping plane only. Partial piercing on the top/bottom and right/left
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planes will be tolerated because the image space raster clipping will handle those poly-
gons. Take a look at Figure 10.16 to see our final pipeline with the new clipper added.
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FIGURE 10.16 The final pipeline with 3D clipping added.

The Geometry Pipeline and Data Structures
In Figure 10.16, we see that geometry is loaded into the system via complete objects (or
generated as individual polygons), the objects are then transformed, culled, converted into
polygons, back-faces removed, transformed some more, clipped, culled, lit, transformed
again, and displayed. Lots of transforming going on! The point is that we start with
objects—this is great for games with no interior or exterior geometry, but bad for games
that have these things.

We need to start loosening our grip on the concept of “objects” and think about new enti-
ties that are more suitable for terrain, indoor environments, and so forth. This is exactly
why we have been using very little of the object-based calls for lighting and culling. I
want you to think in terms of polygons, because very soon we are going to have to come
up with some more advanced data structures that support large objects. However, we don’t
want these objects to be just one big mesh of polygons. We might want them to be
ordered, sorted, connected, hierarchical, and so forth.

For example, take a look at Figure 10.17. It depicts an aerial view of an outdoor city game
level that we might want to model. Although the level data may be contained in an
object-like container, we want to have secondary data structures that enable us to quickly
cull away subcomponents of the geometry. This is where the concept of BSP (binary space
partitioning) trees, portals, quad-trees, and so forth, come into play.
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FIGURE 10.17 An aerial view of a game level.

But for all these things to work, we have to be able to get to them efficiently, and at some
point turn them all into plain old polygons. My point is that we need to think about what
kind of games we are going to make, and realize that in the cases of these interior/exterior
kinds of games, clipping is going to be very important (along with culling at the polygon
level), so we better be able to do both! That’s why we’re adding support now for both clip-
ping and culling of polygons in the rendering lists rather than placing the burden in the
object code, because we can’t assume everything is going to fit into the object data struc-
tures for long.

Adding Clipping to the Engine
Let’s start from the beginning. The new library module that contains the clipping code is
named T3DLIB8.CPP|H. It’s very short and only has a few functions. As usual, I want to
give you a brief overview of the library module without talking about why the functions
are there. So, let’s review each part of the header file.
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The Header File
There are only a few constants used for the clipper, and they have to do with controlling
the clipper’s logic and what planes are clipped to. Here are those defines:

// general clipping flags for polygons

#define CLIP_POLY_X_PLANE    0x0001 // cull on the x clipping planes

#define CLIP_POLY_Y_PLANE    0x0002 // cull on the y clipping planes

#define CLIP_POLY_Z_PLANE    0x0004 // cull on the z clipping planes

#define CLIP_OBJECT_XYZ_PLANES  (CULL_OBJECT_X_PLANE | \ 

CULL_OBJECT_Y_PLANE | CULL_OBJECT_Z_PLANE)

There are only two functions in the library—one to clip, and the other to generate a
terrain (it’s a surprise):

void Clip_Polys_RENDERLIST4DV2(RENDERLIST4DV2_PTR rend_list, 

// the rendering list to clip

CAM4DV1_PTR cam, // the camera

int clip_flags); // the clipping flags, what to do

int Generate_Terrain_OBJECT4DV2(OBJECT4DV2_PTR obj, // pointer to object

float twidth,      // width in world coords on x-axis

float theight,     // height (length) in world coords on z-axis

float vscale,      // vertical scale of terrain

char *height_map_file, // filename of height bitmap encoded in 256 colors

char *texture_map_file, // filename of texture map

int rgbcolor,      // color of terrain if no texture

VECTOR4D_PTR pos,    // initial position

VECTOR4D_PTR rot,    // initial rotations

int poly_attr);     // the shading attributes we would like

That was easy enough, so now let’s discuss how the clipping function works.

Building the Clipper
The clipping function needs to operate in camera coordinates on the rendering list, which
simply means that we know the viewing frustrum is located at the origin, and the clipping
planes are aligned to the positive z-axis, as shown in Figure 10.18.
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FIGURE 10.18 Clipping in camera coordinates.

The following is a standard code listing of what we have been doing to render a 3D
display with our current pipeline:

Reset_OBJECT4DV2(&obj);

// build an identity matrix

MAT_IDENTITY_4X4(&mtrans);

// transform the mesh

Transform_OBJECT4DV2(&obj, &mtrans, TRANSFORM_LOCAL_TO_TRANS,1);

// perform world transform

Model_To_World_OBJECT4DV2(&obj, TRANSFORM_TRANS_ONLY);

// insert the object into render list

Insert_OBJECT4DV2_RENDERLIST4DV2(&rend_list, &obj,0);

// remove backfaces

Remove_Backfaces_RENDERLIST4DV2(&rend_list, &cam);

// apply world to camera transform

World_To_Camera_RENDERLIST4DV2(&rend_list, &cam);

/////////////////////////////////////////////////////

// this is where we need to clip the polygons to the viewing frustrum

/////////////////////////////////////////////////////
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// light scene all at once

Light_RENDERLIST4DV2_World16(&rend_list, &cam, lights, 4);

// sort the polygon list (hurry up!)

Sort_RENDERLIST4DV2(&rend_list, SORT_POLYLIST_AVGZ);

// apply camera to perspective transformation

Camera_To_Perspective_RENDERLIST4DV2(&rend_list, &cam);

// apply screen transform

Perspective_To_Screen_RENDERLIST4DV2(&rend_list, &cam);

// lock the back buffer

DDraw_Lock_Back_Surface();

// render the polygons

Draw_RENDERLIST4DV2_Solid16(&rend_list, back_buffer, back_lpitch);

// unlock the back buffer

DDraw_Unlock_Back_Surface();

I have bolded where in the pipeline we want to clip the polygons: after the camera trans-
formation, but before the lighting calculations. This is perfect, because after we clip the
polygons, not only will there be less of them, but the ones that are totally culled won’t 
be lit.

Let’s talk now about what needs to be done to clip the rendering list. The rendering list is
composed of two data structures: an array of polygons, and an array of pointers to the
polygons. The reason for the indirection, of course, is for fast sorting, and so we don’t ever
need to reallocate or deallocate space—the storage is always there.

Clipping to the Top/Bottom or Right/Left Clipping Planes We agreed that we are not
going to partially clip polygons to the top/bottom or right/left clipping planes that make
up the viewing frustrum. We are going to determine whether the test polygon is totally
inside the plane or totally outside it. If the polygon is totally inside the plane, we pass on
it and move on to the next polygon. If it’s outside the plane, we completely cull it (no
holds barred clipping, in essence), as shown in Figure 10.19.

To accomplish this task, we only need to know the vertices of the triangle we are testing
against the top/bottom-right/left planes, as well as the position and orientation of the
clipping planes themselves. There are a couple of ways to approach this. If we’ve left the
clipping in world space coordinates, we would be better off using the plane equations for
the planes in point-normal form and then performing a dot product with each vertex to
compute the half-space the vertex lies in. If all three vertices are on one side of the plane
or the other, we can trivially reject or accept.
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FIGURE 10.19 No-holds-barred 3D clipping.

However, we can cheat a bit because we know that the clipping planes are all perpendicu-
lar and parallel to the world-axes, so we can use the slope of the planes, or the viewing
angle to compute if a point is within the viewing frustrum. Take a look at Figure 10.19
again. You see test polygon 1 being tested against the right-most clipping plane that makes
up the viewing frustrum. We can forget about the y-component for a moment and only
think about the x-z plane. The question is this: Is the vertex v1(x1, y1, z1) inside or
outside the right clipping plane? Well, with similar triangles we can find out.

In Figure 10.19, I used a viewing angle of 90 degrees, which means that both the right and
left clipping planes make a 45 degree angle with the z-axis, and thus the plane equation is
really just x = z (y can be anything). That means if the x-coordinate of the test vertex x1 =
z1, the vertex p1 is on the clipping plane; if x1 > z1, it’s outside the clipping plane; and if
x1 < z1, the test vertex is inside the clipping plane.

NOTE

I am using the term inside to mean in the interior of the viewing frustrum, or the positive half-
space of the plane. Similarly, I am using the term outside to mean the exterior of the viewing frus-
trum, or the negative half-space of the plane.
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In general, given a test vertex v(x,y,z), for a viewing angle of 90 degrees:

• If (x > z), p is outside the right clipping plane.

• If (x < z), p is inside the right clipping plane.

• If (x = z), p is on the right clipping plane.

Similarly, we can perform tests for the left clipping plane:

• If (x > z), p is inside the left clipping plane.

• If (x < z), p is outside the left clipping plane.

• If (x = z), p is on the left clipping plane.
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FIGURE 10.20 Computing the clip values based on plane slope projections.

The same process goes for the top and bottom planes: We just replace x with y. Of course,
this is a special example, and only works for a viewing angle equal to 90, but if you
remember, changing the viewing angle really only changes the slope of the projected
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planes, so we need only change the formulas slightly to account for this. In Figure 10.20
we see the general case for the right/left clipping planes and the expression

tan(?) = x/z

Therefore,

x = tan(?)*z

In other words, we have these cases:

• When x = tan(?)*z, the test vertex is on the clipping plane’s boundary.

• When x < tan(?)*z, the test vertex is in the positive half-space of the clipping plane or
inside the viewing frustrum.

• When x > tan(?)*z, the test vertex is in the negative half-space of the clipping plane or
outside the viewing frustrum.

The bottom line is that you need to test each vertex to determine whether it’s inside each
of the four clipping planes (right/left and top/bottom). This means you need to compare
the (x,y) coordinates to the z-coordinate of each vertex v(x,y,z) based on the viewing
angle, which factors in as the tangent function, or a derivative thereof. For example, the
viewplane width/height and the viewing distance are related to the field of view, so these
can be used as well in the comparison.

We have done all of this about 500 times, so you should feel comfortable with what I am
saying at this point. In any event, if a triangle has all three vertices on the interior, we just
move on to the next triangle in the list. However, if all three vertices are outside the
viewing frustrum, we clip/cull the entire triangle and mark it as “clipped”:

// clip the poly completely out of frustrum

SET_BIT(curr_poly->state, POLY4DV2_STATE_CLIPPED);

I want to wait until we discuss the z clipping before I show you the code listing to save
space, but just to see the actual implementation of the tests we designed in the preceding,
here’s a quick excerpt that tests whether a single vertex of the test polygon is within the
right/left or x-axis clipping planes:

// since we are clipping to the right/left x-planes we need to use the FOV or

// the plane equations to find the z value that at the current x position would

// be outside the plane

z_factor = (0.5)*cam->viewplane_width/cam->view_dist;

// vertex 0

z_test = z_factor*curr_poly->tvlist[0].z;

CHAPTER 10 Clipping in 3D++1038

14 0672318350 CH10  05•02•2003  2:51 PM  Page 1038



if (curr_poly->tvlist[0].x > z_test)

vertex_ccodes[0] = CLIP_CODE_GX;

else

if (curr_poly->tvlist[0].x < -z_test)

vertex_ccodes[0] = CLIP_CODE_LX;

else

vertex_ccodes[0] = CLIP_CODE_IX;

All that explanation for 10 little lines of code! But as I said, we just need to know whether
the vertex is on one side of the clipping plane or the other. Based on that, the code sets
clipping code flags (something like the Cohen-Sutherland algorithm) that for each vertex
tracks whether it’s inside the viewing frustrum or outside. This helps with trivial rejec-
tion/acceptance later in the algorithm. At this point, let’s move on to the near/far 
z-clipping algorithm, because it’s much more complex.

Clipping to the Near/Far Z-Clipping Planes This is where things get a little tricky. Talking
about clipping is all fun and games, but when you actually do it in 3D, it’s pretty darn
hard! Not because the algorithm or the math is hard—it’s just the details that kill you, as
you will see.… So, assuming we have culled away all the polygons that where beyond the
right/left and top/bottom clipping planes, the remaining polygons still must be tested
against the near and far z-clipping planes, as we have discussed. Both tests are trivial
because the z-clipping planes are parallel to the X-axis, and the camera is already aligned
to the positive z-axis. Thus, for each vertex vi(xi,yi,zi) (for i = 0, 1, 2) of the test polygon,
all we need to do is test zi against the near and far z-clipping planes’ z values, which are
always within the camera structure and named near_clip_z, and far_clip_z, respec-
tively.

For example, to test whether a polygon is totally beyond the far clipping plane, we would
perform the following algorithm:

if (v0.z > far_clip_z) and

(v1.z > far_clip_z) and

(v2.z > far_clip_z) then cull polygon (v0, v1, v2).

Pretty easy, huh? Similarly, we can test for the near clipping plane:

if (v0.z < near_clip_z) and

(v1.z < near_clip_z) and

(v2.z < near_clip_z) then cull polygon (v0, v1, v2).

We don’t care about the cases where the triangle is partially inside and outside the viewing
frustrum relative to the far clipping plane, but we do care if the triangle pierces the near
clipping plane. This is the problem area that we can’t avoid. So, here’s the deal—we are
going to handle this in the following way:
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for each polygon P in the rendering list

begin

for each vertex v in the current polygon P

begin

Record the position of the vertex v:

1. Is v inside the viewing frustrum?

2. Is v beyond the far clipping plane?

3. Is v beyond the near clipping plane?

end

If all three vertices are beyond the near or far clipping planes then

cull P completely.

If (any vertex is within the viewing frustrum) and 

(any vertex is beyond the near clipping plane) then

clip P to the near clipping plane.

end

The bolded pseudo-code section is what we need to implement next. The problem is that
we need to figure out how to clip a polygon to the next clipping plane, which more or less
means that we have to clip each edge that exits the interior of the viewing frustrum with
the near clipping plane. Take a look at Figure 10.21 to see the two cases.
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Case 1: One interior vertex and two exterior vertices

This is the easy case. In it, we simply clip the two exiting edges to the near z-clipping
plane, and then overwrite the new vertices over the old ones in place. Also, if the triangle
had a texture map, we need to recompute the texture coordinates. Of course, the normal
must be recomputed because its length will change as a result of the smaller size of the
triangle. We also store the length of the normal to speed the lighting calculations, and
because this has changed it must be recomputed as well.

Case 2: Two interior vertices and one exterior vertex

This is the hard case. Referring to Figure 10.21, when a triangle has two interior vertices
and one exterior vertex, there are two intersection points with the near z-clipping plane.
This means that the final result polygon is a quadrilateral, or four-sided polygon, which
we don’t like. Thus, it must be split! The strategy we need to use is to copy all the triangle
information from the original triangle into a temporary triangle, then perform the clip,
splitting the original triangle into two triangles A and B. Then we overwrite the original
triangle with triangle A, and fix up the final vertices with the intersection points of trian-
gle A, while at the same time updating the temporary triangle B with the intersection data
as well. The result is that the original polygon in the rendering list is modified in place
with one of the resulting split triangles (A), and the second triangle resulting from the
split (B) must be inserted into the rendering list at the end of the list.

Please make sure you understand Case 2 before moving on. In a nutshell, when you clip a
triangle to a plane, you will end up with one or two triangles after the clip. If you end up
with one triangle, you can overwrite the subject triangle with the clipped triangle and
cause very little upheaval. If, on the other hand, the subject triangle results in two trian-
gles (A and B) after being clipped, the original triangle can be overwritten, but the new
triangle B must be added to the rendering list.

TIP

You might be thinking, “It’s too bad we don’t have a linked list of polygons rather than an array
of pointers to them.” The reason is that when we sort the polygons, and the polygon that is split
has its clone thrown clear to the end of the polygon list, we know that its z value for sorting is
identical to the z value of the original, which will slow the sort down because it will have to
move the split poly all the way back up the list. However, later we will optimize this anomaly.

Now that you know the plan of attack, the last detail is the actual clipping code. How will
we do it? Well, I decided on an algorithm that’s a hybrid of all the algorithms we’ve
discussed. We’re already doing the incode/outcode pre-processing step, so that’s been
discussed. The only problem left is how to intersect the edges of the triangle with the near
z-clipping plane. Well, because we know that there are only two cases to deal with (one
vertex interior to the clipping region versus two vertices interior to the clipping region), I
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coded them as separate cases. In each case, I created a parametric line definition of the
two exiting edges, something like

p = v0 + (v1 – v0)*t

where v0 is the initial vertex, and v1 is the terminal vertex of an edge.

I then plugged the z value of near_clip_z into the parametric line equation for the z
component and solved for t:

p = v0 + (v1 – v0)*t

x = v0.x + (v1.x – v0.x)*t

y = v0.y + (v1.y – v0.y)*t

z = v0.z + (v1.z – v0.z)*t

Plugging in near_clip_z for z:

near_clip_z = v0.z + (v1.z – v0.z)*t

t = near_clip_z – v0.z/(v1.z – v0.z)

Then I plugged this t value back into the equations for x and y of the parametric line, and
bam!—I have my intersection point! After doing this for both edges, I’m done. The rest is
just housekeeping, making sure to overwrite the proper vertex data with the intersections.

Computing the Texture Coordinates The only remaining detail is computing the new
texture coordinates—we have to be careful here. If a polygon has texture coordinates, we
have to clip them also, but luckily we can use the same t value to find the clipped texture
coordinate values. Here’s an example. Suppose that we have a Case 1 triangle, as shown in
Figure 10.22, with texture coordinates at each vertex, labeled as shown in the figure.

Now assume that we compute the intersection points, and find that at a value of t = .6,
the intersection occurs. We simply use this same t = .6 to linearly interpolate the texture
coordinates and find their clipped values, too. Referring to the figure, vertex 0 has the
texture coordinate u

0
v

0
(3,5), and vertex 1 has the texture coordinate u

1
v

1
(15,50).

Therefore, the clipped texture coordinates are

u_clipped = u0 + (u1 – u0)*t

v_clipped = v0 + (v1 – v0)*t

Plugging in the values, we get

u_clipped = 3 + (15 – 3)*(.6) = 10.2

v_clipped = 5 + (50 – 5)*(.6) = 32
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FIGURE 10.22 Computing new texture coordinates for a clipped triangle.

And that’s all there is to clipping to the near clipping plane with polygon splitting and
texture coordinate recomputation (if needed). Finally, before we go on our merry way, we
need to recompute the length of each polygon normal for both cases, because we need
this length in the lighting stage and it has unfortunately changed. We simply perform the
following code on all clipped polygons, split or not:

// build u, v

VECTOR4D_Build(&curr_poly->tvlist[v0].v, &curr_poly->tvlist[v1].v, &u);

VECTOR4D_Build(&curr_poly->tvlist[v0].v, &curr_poly->tvlist[v2].v, &v);

// compute cross product

VECTOR4D_Cross(&u, &v, &n);
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// compute length of normal accurately and store in poly nlength

// +- epsilon later to fix over/underflows

curr_poly->nlength = VECTOR4D_Length_Fast(&n);

It’s a bummer, but hopefully no more than a few hundred polygons per frame will need
clipping to the near clipping plane, and I’m using the fast length computation, which is a
little raw, but much faster than a square root. Although it’s less accurate (about 5–10%
error), we won’t know about it for too long, because if we are clipping a polygon to the
near clipping plane, it’s probably on its way by and out of view!

Well, I think I have beaten yet another subject to death, so let’s actually look at the func-
tion! Here’s the code:

void Clip_Polys_RENDERLIST4DV2(RENDERLIST4DV2_PTR rend_list, 

CAM4DV1_PTR cam, int clip_flags)

{

// this function clips the polygons in the list against the 

// requested clipping planes

// and sets the clipped flag on the poly, so it’s not rendered

// note the function ONLY performs clipping on the near and far clipping plane

// but will perform trivial tests on the top/bottom, left/right clipping planes

// if a polygon is completely out of the viewing frustrum , it will

// be culled, however, this test isn’t as effective on objects since

// objects that are visible have polygons that are visible, but in the

// case where the polygon list is based on a large object that 

// ALWAYS has some portion

// visible, testing for individual polys is worthwhile..

// the function assumes the polygons have been transformed into camera space

// internal clipping codes

#define CLIP_CODE_GZ  0x0001  // z > z_max

#define CLIP_CODE_LZ  0x0002  // z < z_min

#define CLIP_CODE_IZ  0x0004  // z_min < z < z_max

#define CLIP_CODE_GX  0x0001  // x > x_max

#define CLIP_CODE_LX  0x0002  // x < x_min

#define CLIP_CODE_IX  0x0004  // x_min < x < x_max

#define CLIP_CODE_GY  0x0001  // y > y_max

#define CLIP_CODE_LY  0x0002  // y < y_min

#define CLIP_CODE_IY  0x0004  // y_min < y < y_max

#define CLIP_CODE_NULL 0x0000
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int vertex_ccodes[3]; // used to store clipping flags

int num_verts_in;   // number of vertices inside

int v0, v1, v2;    // vertex indices

float z_factor,    // used in clipping computations

z_test;     // used in clipping computations

float xi, yi, x01i, y01i, x02i, y02i, // vertex intersection points

t1, t2,             // parametric t values

ui, vi, u01i, v01i, u02i, v02i;   // texture intersection points

int last_poly_index,  // last valid polygon in polylist

insert_poly_index; // the current position new polygons are inserted at

VECTOR4D u,v,n;     // used in vector calculations

POLYF4DV2 temp_poly;  // used when we need to split a poly into 2 polys

// set last, current insert index to end of polygon list

// we don’t want to clip poly’s two times

insert_poly_index = last_poly_index = rend_list->num_polys;

// traverse polygon list and clip/cull polygons

for (int poly = 0; poly < last_poly_index; poly++)

{

// acquire current polygon

POLYF4DV2_PTR curr_poly = rend_list->poly_ptrs[poly];

// is this polygon valid?

// test this polygon if and only if it’s not clipped, not culled,

// active, and visible and not 2 sided. 

// Note we test for backface in the event that

// a previous call might have already determined this, so why work

// harder!

if ((curr_poly==NULL) || !(curr_poly->state & POLY4DV2_STATE_ACTIVE) ||

(curr_poly->state & POLY4DV2_STATE_CLIPPED ) ||

(curr_poly->state & POLY4DV2_STATE_BACKFACE) )

continue; // move onto next poly

// clip/cull to x-planes

if (clip_flags & CLIP_POLY_X_PLANE)

{

// clip/cull only based on x clipping planes
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// for each vertice determine if it’s in the 

// clipping region or beyond it and

// set the appropriate clipping code

// we do NOT clip the final triangles, 

// we are only trying to trivally reject them

// we are going to clip polygons in the rasterizer 

// to the screen rectangle

// but we do want to clip/cull polys that are 

// totally outside the viewfrustrum

// since we are clipping to the right/left 

// x-planes we need to use the FOV or

// the plane equations to find the z value 

// that at the current x position would

// be outside the plane

z_factor = (0.5)*cam->viewplane_width/cam->view_dist;

// vertex 0

z_test = z_factor*curr_poly->tvlist[0].z;

if (curr_poly->tvlist[0].x > z_test)

vertex_ccodes[0] = CLIP_CODE_GX;

else

if (curr_poly->tvlist[0].x < -z_test)

vertex_ccodes[0] = CLIP_CODE_LX;

else

vertex_ccodes[0] = CLIP_CODE_IX;

// vertex 1

z_test = z_factor*curr_poly->tvlist[1].z;

if (curr_poly->tvlist[1].x > z_test)

vertex_ccodes[1] = CLIP_CODE_GX;

else

if (curr_poly->tvlist[1].x < -z_test)

vertex_ccodes[1] = CLIP_CODE_LX;

else

vertex_ccodes[1] = CLIP_CODE_IX;

// vertex 2

z_test = z_factor*curr_poly->tvlist[2].z;
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if (curr_poly->tvlist[2].x > z_test)

vertex_ccodes[2] = CLIP_CODE_GX;

else

if (curr_poly->tvlist[2].x < -z_test)

vertex_ccodes[2] = CLIP_CODE_LX;

else

vertex_ccodes[2] = CLIP_CODE_IX;

// test for trivial rejections, 

// polygon completely beyond right or left

// clipping planes

if ( ((vertex_ccodes[0] == CLIP_CODE_GX) &&

(vertex_ccodes[1] == CLIP_CODE_GX) &&

(vertex_ccodes[2] == CLIP_CODE_GX) ) ||

((vertex_ccodes[0] == CLIP_CODE_LX) &&

(vertex_ccodes[1] == CLIP_CODE_LX) &&

(vertex_ccodes[2] == CLIP_CODE_LX) ) )

{

// clip the poly completely out of frustrum

SET_BIT(curr_poly->state, POLY4DV2_STATE_CLIPPED);

// move on to next polygon

continue;

} // end if

} // end if x planes

// clip/cull to y-planes

if (clip_flags & CLIP_POLY_Y_PLANE)

{

// clip/cull only based on y clipping planes

// for each vertice determine if it’s in the 

// clipping region or beyond it and

// set the appropriate clipping code

// we do NOT clip the final triangles, 

// we are only trying to trivally reject them

// we are going to clip polygons in the rasterizer 

// to the screen rectangle

// but we do want to clip/cull polys that are totally 

// outside the viewfrustrum
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// since we are clipping to the top/bottom y-planes 

// we need to use the FOV or

// the plane equations to find the z value that at 

// the current y position would

// be outside the plane

z_factor = (0.5)*cam->viewplane_width/cam->view_dist;

// vertex 0

z_test = z_factor*curr_poly->tvlist[0].z;

if (curr_poly->tvlist[0].y > z_test)

vertex_ccodes[0] = CLIP_CODE_GY;

else

if (curr_poly->tvlist[0].y < -z_test)

vertex_ccodes[0] = CLIP_CODE_LY;

else

vertex_ccodes[0] = CLIP_CODE_IY;

// vertex 1

z_test = z_factor*curr_poly->tvlist[1].z;

if (curr_poly->tvlist[1].y > z_test)

vertex_ccodes[1] = CLIP_CODE_GY;

else

if (curr_poly->tvlist[1].y < -z_test)

vertex_ccodes[1] = CLIP_CODE_LY;

else

vertex_ccodes[1] = CLIP_CODE_IY;

// vertex 2

z_test = z_factor*curr_poly->tvlist[2].z;

if (curr_poly->tvlist[2].y > z_test)

vertex_ccodes[2] = CLIP_CODE_GY;

else

if (curr_poly->tvlist[2].x < -z_test)

vertex_ccodes[2] = CLIP_CODE_LY;

else

vertex_ccodes[2] = CLIP_CODE_IY;
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// test for trivial rejections, 

// polygon completely beyond top or bottom

// clipping planes

if ( ((vertex_ccodes[0] == CLIP_CODE_GY) &&

(vertex_ccodes[1] == CLIP_CODE_GY) &&

(vertex_ccodes[2] == CLIP_CODE_GY) ) ||

((vertex_ccodes[0] == CLIP_CODE_LX) &&

(vertex_ccodes[1] == CLIP_CODE_LX) &&

(vertex_ccodes[2] == CLIP_CODE_LX) ) )

{

// clip the poly completely out of frustrum

SET_BIT(curr_poly->state, POLY4DV2_STATE_CLIPPED);

// move on to next polygon

continue;

} // end if

} // end if y planes

// clip/cull to z planes

if (clip_flags & CLIP_POLY_Z_PLANE)

{

// clip/cull only based on z clipping planes

// for each vertice determine if it’s in the 

// clipping region or beyond it and

// set the appropriate clipping code

// then actually clip all polygons to the 

// near clipping plane, this will result

// in at most 1 additional triangle

// reset vertex counters, these help in classification

// of the final triangle

num_verts_in = 0;

// vertex 0

if (curr_poly->tvlist[0].z > cam->far_clip_z)

{

vertex_ccodes[0] = CLIP_CODE_GZ;

}

else

if (curr_poly->tvlist[0].z < cam->near_clip_z)

{
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vertex_ccodes[0] = CLIP_CODE_LZ;

}

else

{

vertex_ccodes[0] = CLIP_CODE_IZ;

num_verts_in++;

}

// vertex 1

if (curr_poly->tvlist[1].z > cam->far_clip_z)

{

vertex_ccodes[1] = CLIP_CODE_GZ;

}

else

if (curr_poly->tvlist[1].z < cam->near_clip_z)

{

vertex_ccodes[1] = CLIP_CODE_LZ;

}

else

{

vertex_ccodes[1] = CLIP_CODE_IZ;

num_verts_in++;

}

// vertex 2

if (curr_poly->tvlist[2].z > cam->far_clip_z)

{

vertex_ccodes[2] = CLIP_CODE_GZ;

}

else

if (curr_poly->tvlist[2].z < cam->near_clip_z)

{

vertex_ccodes[2] = CLIP_CODE_LZ;

}

else

{

vertex_ccodes[2] = CLIP_CODE_IZ;

num_verts_in++;

}

// test for trivial rejections, polygon completely beyond far or near

// z clipping planes

if ( ((vertex_ccodes[0] == CLIP_CODE_GZ) &&
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(vertex_ccodes[1] == CLIP_CODE_GZ) &&

(vertex_ccodes[2] == CLIP_CODE_GZ) ) ||

((vertex_ccodes[0] == CLIP_CODE_LZ) &&

(vertex_ccodes[1] == CLIP_CODE_LZ) &&

(vertex_ccodes[2] == CLIP_CODE_LZ) ) )

{

// clip the poly completely out of frustrum

SET_BIT(curr_poly->state, POLY4DV2_STATE_CLIPPED);

// move on to next polygon

continue;

} // end if

// test if any vertex has protruded beyond near clipping plane?

if ( ( (vertex_ccodes[0] | vertex_ccodes[1] | 

vertex_ccodes[2]) & CLIP_CODE_LZ) )

{

// at this point we are ready to clip the polygon to the near

// clipping plane no need to clip to the far plane since it can’t

// possibly cause problems. We have two cases: case 1: the triangle

// has 1 vertex interior to the near clipping plane and 2 vertices

// exterior, OR case 2: the triangle has two vertices interior of

// the near clipping plane and 1 exterior

// step 1: classify the triangle type based on number of vertices

// inside/outside

// case 1: easy case :)

if (num_verts_in == 1)

{

// we need to clip the triangle against the near clipping plane

// the clipping procedure is done to each edge leading away from

// the interior vertex, to clip we need to compute the intersection

// with the near z plane, this is done with a parametric equation of

// the edge, once the intersection is computed 

// the old vertex position

// is overwritten along with re-computing the 

// texture coordinates, if

// there are any, what’s nice about this case, 

// is clipping doesn’t

// introduce any added vertices, so we can overwrite the old poly

// the other case below results in 2 polys, 
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// so at very least one has

// to be added to the end of the rendering list -- bummer

// step 1: find vertex index for interior vertex

if ( vertex_ccodes[0] == CLIP_CODE_IZ)

{ v0 = 0; v1 = 1; v2 = 2; }

else

if (vertex_ccodes[1] == CLIP_CODE_IZ)

{ v0 = 1; v1 = 2; v2 = 0; }

else

{ v0 = 2; v1 = 0; v2 = 1; }

// step 2: clip each edge

// basically we are going to generate 

// the parametric line p = v0 + v01*t

// then solve for t when the z component 

// is equal to near z, then plug that

// back into to solve for x,y of the 3D line, 

// we could do this with high

// level code and parametric lines, 

// but to save time, lets do it manually

// clip edge v0->v1

VECTOR4D_Build(&curr_poly->tvlist[v0].v, 

&curr_poly->tvlist[v1].v, &v);

// the intersection occurs when z = near z, so t =

t1 = ( (cam->near_clip_z - curr_poly->tvlist[v0].z) / v.z );

// now plug t back in and find x,y intersection with the plane

xi = curr_poly->tvlist[v0].x + v.x * t1;

yi = curr_poly->tvlist[v0].y + v.y * t1;

// now overwrite vertex with new vertex

curr_poly->tvlist[v1].x = xi;

curr_poly->tvlist[v1].y = yi;

curr_poly->tvlist[v1].z = cam->near_clip_z;

// clip edge v0->v2

VECTOR4D_Build(&curr_poly->tvlist[v0].v, 

&curr_poly->tvlist[v2].v, &v);

// the intersection occurs when z = near z, so t =

t2 = ( (cam->near_clip_z - curr_poly->tvlist[v0].z) / v.z );

CHAPTER 10 Clipping in 3D++1052

14 0672318350 CH10  05•02•2003  2:51 PM  Page 1052



// now plug t back in and find x,y intersection with the plane

xi = curr_poly->tvlist[v0].x + v.x * t2;

yi = curr_poly->tvlist[v0].y + v.y * t2;

// now overwrite vertex with new vertex

curr_poly->tvlist[v2].x = xi;

curr_poly->tvlist[v2].y = yi;

curr_poly->tvlist[v2].z = cam->near_clip_z;

// now that we have both t1, t2, 

// check if the poly is textured, if so clip

// texture coordinates

if (curr_poly->attr & POLY4DV2_ATTR_SHADE_MODE_TEXTURE)

{

ui = curr_poly->tvlist[v0].u0 + 

(curr_poly->tvlist[v1].u0 - curr_poly->tvlist[v0].u0)*t1;

vi = curr_poly->tvlist[v0].v0 + 

(curr_poly->tvlist[v1].v0 - curr_poly->tvlist[v0].v0)*t1;

curr_poly->tvlist[v1].u0 = ui;

curr_poly->tvlist[v1].v0 = vi;

ui = curr_poly->tvlist[v0].u0 + 

(curr_poly->tvlist[v2].u0 - curr_poly->tvlist[v0].u0)*t2;

vi = curr_poly->tvlist[v0].v0 + 

(curr_poly->tvlist[v2].v0 - curr_poly->tvlist[v0].v0)*t2;

curr_poly->tvlist[v2].u0 = ui;

curr_poly->tvlist[v2].v0 = vi;

} // end if textured

// finally, we have obliterated our pre-computed normal length

// it needs to be recomputed!!!!

// build u, v

VECTOR4D_Build(&curr_poly->tvlist[v0].v, 

&curr_poly->tvlist[v1].v, &u);

VECTOR4D_Build(&curr_poly->tvlist[v0].v, 

&curr_poly->tvlist[v2].v, &v);

// compute cross product

VECTOR4D_Cross(&u, &v, &n);

// compute length of normal accurately and store in poly nlength

// +- epsilon later to fix over/underflows

curr_poly->nlength = VECTOR4D_Length_Fast(&n);
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} // end if

else

if (num_verts_in == 2)

{ // num_verts = 2

// must be the case with num_verts_in = 2

// we need to clip the triangle against the near clipping plane

// the clipping procedure is done to each edge leading away from

// the interior vertex, to clip we need to compute the intersection

// with the near z plane, this is done with a 

// parametric equation of

// the edge, however unlike case 1 above, 

// the triangle will be split

// into two triangles, thus during the first clip, 

// we will store the

// results into a new triangle at the end 

// of the rendering list, and

// then on the last clip we will overwrite 

// the triangle being clipped

// step 0: copy the polygon

memcpy(&temp_poly, curr_poly, sizeof(POLYF4DV2) );

// step 1: find vertex index for exterior vertex

if ( vertex_ccodes[0] == CLIP_CODE_LZ)

{ v0 = 0; v1 = 1; v2 = 2; }

else

if (vertex_ccodes[1] == CLIP_CODE_LZ)

{ v0 = 1; v1 = 2; v2 = 0; }

else

{ v0 = 2; v1 = 0; v2 = 1; }

// step 2: clip each edge

// basically we are going to generate the 

// parametric line p = v0 + v01*t

// then solve for t when the z component is equal to 

// near z, then plug that

// back into to solve for x,y of the 3D line, 

// we could do this with high

// level code and parametric lines, but to save time, 

// lets do it manually
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// clip edge v0->v1

VECTOR4D_Build(&curr_poly->tvlist[v0].v, 

&curr_poly->tvlist[v1].v, &v);

// the intersection occurs when z = near z, so t =

t1 = ( (cam->near_clip_z - curr_poly->tvlist[v0].z) / v.z );

// now plug t back in and find x,y intersection with the plane

x01i = curr_poly->tvlist[v0].x + v.x * t1;

y01i = curr_poly->tvlist[v0].y + v.y * t1;

// clip edge v0->v2

VECTOR4D_Build(&curr_poly->tvlist[v0].v, 

&curr_poly->tvlist[v2].v, &v);

// the intersection occurs when z = near z, so t =

t2 = ( (cam->near_clip_z - curr_poly->tvlist[v0].z) / v.z );

// now plug t back in and find x,y intersection with the plane

x02i = curr_poly->tvlist[v0].x + v.x * t2;

y02i = curr_poly->tvlist[v0].y + v.y * t2;

// now we have both intersection points, 

// we must overwrite the inplace

// polygon’s vertex 0 with the intersection point, 

// this poly 1 of 2 from

// the split

// now overwrite vertex with new vertex

curr_poly->tvlist[v0].x = x01i;

curr_poly->tvlist[v0].y = y01i;

curr_poly->tvlist[v0].z = cam->near_clip_z;

// now comes the hard part, 

// we have to carefully create a new polygon

// from the 2 intersection points and v2, 

// this polygon will be inserted

// at the end of the rendering list, 

// but for now, we are building it up

// in temp_poly

// so leave v2 alone, but overwrite v1 with v01, 

// and overwrite v0 with v02
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temp_poly.tvlist[v1].x = x01i;

temp_poly.tvlist[v1].y = y01i;

temp_poly.tvlist[v1].z = cam->near_clip_z;

temp_poly.tvlist[v0].x = x02i;

temp_poly.tvlist[v0].y = y02i;

temp_poly.tvlist[v0].z = cam->near_clip_z;

// now that we have both t1, t2, 

// check if the poly is textured, if so clip

// texture coordinates

if (curr_poly->attr & POLY4DV2_ATTR_SHADE_MODE_TEXTURE)

{

// compute poly 1 new texture coordinates from split

u01i = curr_poly->tvlist[v0].u0 + 

(curr_poly->tvlist[v1].u0 - curr_poly->tvlist[v0].u0)*t1;

v01i = curr_poly->tvlist[v0].v0 + 

(curr_poly->tvlist[v1].v0 - curr_poly->tvlist[v0].v0)*t1;

// compute poly 2 new texture coordinates from split

u02i = curr_poly->tvlist[v0].u0 + 

(curr_poly->tvlist[v2].u0 - curr_poly->tvlist[v0].u0)*t2;

v02i = curr_poly->tvlist[v0].v0 + 

(curr_poly->tvlist[v2].v0 - curr_poly->tvlist[v0].v0) *t2;

// write them all at the same time

// poly 1

curr_poly->tvlist[v0].u0 = u01i;

curr_poly->tvlist[v0].v0 = v01i;

// poly 2

temp_poly.tvlist[v0].u0 = u02i;

temp_poly.tvlist[v0].v0 = v02i;

temp_poly.tvlist[v1].u0 = u01i;

temp_poly.tvlist[v1].v0 = v01i;

} // end if textured

// finally, we have obliterated our pre-computed normal lengths

// they need to be recomputed!!!!

// poly 1 first, in place
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// build u, v

VECTOR4D_Build(&curr_poly->tvlist[v0].v, 

&curr_poly->tvlist[v1].v, &u);

VECTOR4D_Build(&curr_poly->tvlist[v0].v, 

&curr_poly->tvlist[v2].v, &v);

// compute cross product

VECTOR4D_Cross(&u, &v, &n);

// compute length of normal accurately and store in poly nlength

// +- epsilon later to fix over/underflows

curr_poly->nlength = VECTOR4D_Length_Fast(&n);

// now poly 2, temp_poly

// build u, v

VECTOR4D_Build(&temp_poly.tvlist[v0].v, 

&temp_poly.tvlist[v1].v, &u);

VECTOR4D_Build(&temp_poly.tvlist[v0].v, 

&temp_poly.tvlist[v2].v, &v);

// compute cross product

VECTOR4D_Cross(&u, &v, &n);

// compute length of normal accurately and store in poly nlength

// +- epsilon later to fix over/underflows

temp_poly.nlength = VECTOR4D_Length_Fast(&n) ;

// now we are good to go, insert the polygon into list

// if the poly won’t fit, it won’t matter, the function will

// just return 0

Insert_POLYF4DV2_RENDERLIST4DV2(rend_list, &temp_poly);

} // end else

} // end if near_z clipping has occured

} // end if z planes

} // end for poly

} // end Clip_Polys_RENDERLIST4DV2

I will admit that I rarely ever read code in books. For one thing, I just can’t figure it out
because it’s so cryptic; code is code, know what I mean? But sometimes I will go line by
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line and try to understand what the code does. However, I prefer abstract explanations
and pseudo-code. Nevertheless, some people learn in the exact opposite way—that’s why I
list code in my books. The point I am trying to make is that even if you’re like me, please
try and review this function line by line and understand it. It’s the basis for a lot of things,
and it’s actually really easy because it’s mostly redundant.

Using the function is nearly ridiculously simple. You call it like this:

Clip_Polys_RENDERLIST4DV2(&rend_list, &cam,

CLIP_POLY_Z_PLANE | CLIP_POLY_X_PLANE | CLIP_POLY_Y_PLANE);

The rendering list, the camera, and the control flags are sent and the function does the
rest. Notice that you can enable x,y,z clipping independently. I prefer to enable all three so
I can really cull those evil polygons out of my pipeline!

The Clipping Demo
As an example of using the clipping function and just for general principles, I have
written yet another demo with some obscure object spinning around in space <BG>. The
name of the demo is DEMOII10_1.CPP|EXE and it’s on the CD. of course. To compile it, you
will need T3DLIB1..8.CPP|H and all the DirectX .LIB files, as usual. A screenshot is shown
in Figure 10.23. The demo basically loads an object and displays it on the screen and
slowly spins it. You can move the object closer or farther from the viewplane and rotate it
around, forcing it off the screen.
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The point of the demo is twofold. First, with only object culling, we could never clip or
cull single polygons, so if an object was partially in the viewing frustrum, the entire object
was lit and transformed no matter what. Now that’s not true, as we’ll be clipping/culling
on a polygon level. Keep your eyes on the statistical information displays at the bottom of
the screen. The controls are listed on the onscreen help, but in general, use the arrow keys
to move the object, change objects with the O key, and enable/disable clipping of the x,y,z
clipping planes with the X, Y, and Z keys, respectively.

Lighting System Redux
Before we move on, there is a small detail that we need to address in relation to the light-
ing system. Up until now we have performed lighting in the world coordinate system,
thus both the lights and geometry were in world coordinates. However, at this point this
is a huge waste of computation. We can hold off lighting until we perform clipping and
save lighting polygons that will be clipped! To make this work, we need to transform the
lights into camera coordinates (because this is what the geometry will be in after the clip-
ping phase), and perform the lighting calculations there. There are a couple of ways to go
about this. We could rewrite the lighting functions and transform the light positions and
orientations based on the camera (because it’s already a parameter). However, the problem
with doing the light transforms on the fly is that if the lighting functions are called on an
object-by-object basis, we will transform the lights over and over for nothing. A better
strategy is to simply transform the lights themselves into camera coordinates (or what-
ever).

The only detail we need to consider is that once the positions and orientations of the
lights have been transformed into camera coordinates, where do we store the old local
lights and orientations? Alas, we must go into the lighting structures and update them
from LIGHTV1 to LIGHTV2 (version 2.0) and add some storage for the “transformed”
versions of their positions and orientation. In addition to this, we will need to rewrite
every single function that deals with lights, because internally they will now have to use
the LIGHTV2 struct, rather than the LIGHTV1 struct. The good news is that there are literally
almost no changes to the lighting functions, other than a text replacement of the string
LIGHTV1 to LIGHTV2. In any case, let’s take a look at the new LIGHTV2 struct:

// version 2.0 of light structure

typedef struct LIGHTV2_TYP

{

int state; // state of light

int id;  // id of light

int attr; // type of light, and extra qualifiers

RGBAV1 c_ambient;  // ambient light intensity

RGBAV1 c_diffuse;  // diffuse light intensity

RGBAV1 c_specular; // specular light intensity
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POINT4D pos;    // position of light world/transformed

POINT4D tpos;

VECTOR4D dir;    // direction of light world/transformed

VECTOR4D tdir;

float kc, kl, kq;  // attenuation factors

float spot_inner;  // inner angle for spot light

float spot_outer;  // outer angle for spot light

float pf;      // power factor/falloff for spot lights

int  iaux1, iaux2; // auxiliary vars for future expansion

float faux1, faux2;

void *ptr;

} LIGHTV2, *LIGHTV2_PTR;

I have highlighted the new additions to represent the transformed storage for both the
position and orientation. So, when a light is created, the only difference is that the local
position and orientation is still stored in pos and dir, but the camera coordinate versions
are stored in tpos and tdir. The question is, how do we transform the lights? Well, here’s
a function that will do it:

void Transform_LIGHTSV2(LIGHTV2_PTR lights, // array of lights to transform

int num_lights,   // number of lights to transform

MATRIX4X4_PTR mt,  // transformation matrix

int coord_select)  // selects coords to transform

{

// this function simply transforms all of the lights 

// by the transformation matrix

// this function is used to place the 

// lights in camera space for example, so that

// lighting calculations are correct if the lighting function is called AFTER

// the polygons have already been trasformed to camera coordinates

// also, later we may decided to optimize this a little by determining

// the light type and only rotating what is needed, however there are thousands

// of vertices in a scene and not rotating 10 more points isn’t going to make

// a difference

// NOTE: This function MUST be called even if a transform to the lights

// is not desired, that is, you are lighting in world coords, in this case

// the local light positions and orientations MUST still be copied into the

// working variables for the lighting engine to use pos->tpos, dir->tdir

// hence, call this function with TRANSFORM_COPY_LOCAL_TO_TRANS

// with a matrix of NULL
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int curr_light; // current light in loop

MATRIX4X4 mr;  // used to build up rotation aspect of matrix only

// we need to rotate the direction vectors of the lights also, but

// the translation factors must be zeroed out in the matrix otherwise

// the results will be incorrect, thus make a copy of the matrix and zero

// the translation factors

if (mt!=NULL)

{

MAT_COPY_4X4(mt, &mr);

// zero translation factors

mr.M30 = mr.M31 = mr.M32 = 0;

} // end if

// what coordinates should be transformed?

switch(coord_select)

{

case TRANSFORM_COPY_LOCAL_TO_TRANS:

{

// loop thru all the lights

for (curr_light = 0; curr_light < num_lights; curr_light++)

{

lights[curr_light].tpos = lights[curr_light].pos;

lights[curr_light].tdir = lights[curr_light].dir;

} // end for

} break;

case TRANSFORM_LOCAL_ONLY:

{

// loop thru all the lights

for (curr_light = 0; curr_light < num_lights; curr_light++)

{

// transform the local/world light coordinates in place

POINT4D presult; // hold result of each transformation

// transform point position of each light

Mat_Mul_VECTOR4D_4X4(&lights[curr_light].pos, mt, &presult);

// store result back

VECTOR4D_COPY(&lights[curr_light].pos, &presult);

Practical View Frustrum Clipping 1061

10

14 0672318350 CH10  05•02•2003  2:51 PM  Page 1061



// transform direction vector

Mat_Mul_VECTOR4D_4X4(&lights[curr_light].dir, &mr, &presult);

// store result back

VECTOR4D_COPY(&lights[curr_light].dir, &presult);

} // end for

} break;

case TRANSFORM_TRANS_ONLY:

{

// loop thru all the lights

for (curr_light = 0; curr_light < num_lights; curr_light++)

{

// transform each “transformed” light

POINT4D presult; // hold result of each transformation

// transform point position of each light

Mat_Mul_VECTOR4D_4X4(&lights[curr_light].tpos, mt, &presult);

// store result back

VECTOR4D_COPY(&lights[curr_light].tpos, &presult);

// transform direction vector

Mat_Mul_VECTOR4D_4X4(&lights[curr_light].tdir, &mr, &presult);

// store result back

VECTOR4D_COPY(&lights[curr_light].tdir, &presult);

} // end for

} break;

case TRANSFORM_LOCAL_TO_TRANS:

{

// loop thru all the lights

for (curr_light = 0; curr_light < num_lights; curr_light++)

{

// transform each local/world light and place the 

// results into the transformed

// storage, this is the usual way the function will be called

POINT4D presult; // hold result of each transformation
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// transform point position of each light

Mat_Mul_VECTOR4D_4X4(&lights[curr_light].pos, mt, 

&lights[curr_light].tpos) ;

// transform direction vector

Mat_Mul_VECTOR4D_4X4(&lights[curr_light].dir, &mr, 

&lights[curr_light].tdir);

} // end for

} break;

default: break;

} // end switch

} // end Transform_LIGHTSV2

Calling this function with the lights, number of lights, transformation matrix, and finally
the coordinate select, is all you need to do. The function is a standard transform like the
others you have seen, and it works the same way. In 99 out of 100 cases, you will call it
something like this:

Transform_LIGHTSV2(lights2, 4, &cam.mcam, TRANSFORM_LOCAL_TO_TRANS);

In this case, the array of lights lights2[] is transformed with the matrix cam.mcam, there
are four lights to transform, and the transformation should transform the local lights and
store the results in the transformed storage space. Also, now that we have new lights,
there is a new array that contains them, declared in T3DLIB8.CPP|H:

LIGHTV2 lights2[MAX_LIGHTS]; // lights in system

Additionally, in the header we need new #defines for the lights:

// defines for light types version 2.0

#define LIGHTV2_ATTR_AMBIENT   0x0001  // basic ambient light

#define LIGHTV2_ATTR_INFINITE   0x0002  // infinite light source

#define LIGHTV2_ATTR_DIRECTIONAL 0x0002  // infinite light source (alias)

#define LIGHTV2_ATTR_POINT    0x0004  // point light source

#define LIGHTV2_ATTR_SPOTLIGHT1  0x0008  // spotlight type 1 (simple)

#define LIGHTV2_ATTR_SPOTLIGHT2  0x0010  // spotlight type 2 (complex)

#define LIGHTV2_STATE_ON     1     // light on

#define LIGHTV2_STATE_OFF     0     // light off

// transformation control flags

#define TRANSFORM_COPY_LOCAL_TO_TRANS  3 // copy data as is, no transform
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They have the exact same values as the LIGHTV1 versions, just changed the name to
LIGHTV2 as the prefix. Also, there is one more transform command specifically for the
Transform_LIGHTSV2() function TRANSFORM_COPY_LOCAL_TO_TRANS that simply selects no
transform at all and just copies the local lights to the transformed lights.

Finally, all the lighting functions have to be rewritten. However there are no changes for
the most part, other than new names,instead of accessing pos and dir for the lights, we
need to access tpos and tdir when performing calculations. I am not going to list the
code because it’s huge, but here are the prototypes from the header file:

int Light_OBJECT4DV2_World2_16(OBJECT4DV2_PTR obj, // object to process

CAM4DV1_PTR cam,   // camera position

LIGHTV2_PTR lights, // light list (might have more than one)

int max_lights);   // maximum lights in list

int Light_OBJECT4DV2_World2(OBJECT4DV2_PTR obj, // object to process

CAM4DV1_PTR cam,   // camera position

LIGHTV2_PTR lights, // light list (might have more than one)

int max_lights);   // maximum lights in list

int Light_RENDERLIST4DV2_World2(RENDERLIST4DV2_PTR rend_list, 

// list to process

CAM4DV1_PTR cam,   // camera position

LIGHTV2_PTR lights, // light list (might have more than one)

int max_lights);   // maximum lights in list

int Light_RENDERLIST4DV2_World2_16(RENDERLIST4DV2_PTR rend_list, // list to process

CAM4DV1_PTR cam,   // camera position

LIGHTV2_PTR lights, // light list (might have more than one)

int max_lights);   // maximum lights in list

// lighting system

int Init_Light_LIGHTV2(LIGHTV2_PTR lights, // light array to work with (new)

int      index,// index of light to create (0..MAX_LIGHTS-1)

int     _state,// state of light

int     _attr, // type of light, and extra qualifiers

RGBAV1    _c_ambient, // ambient light intensity

RGBAV1    _c_diffuse, // diffuse light intensity

RGBAV1    _c_specular,// specular light intensity

POINT4D_PTR _pos,    // position of light

VECTOR4D_PTR _dir,    // direction of light
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float    _kc,    // attenuation factors

float    _kl,

float    _kq,

float    _spot_inner, // inner angle for spot light

float    _spot_outer, // outer angle for spot light

float    _pf);    // power factor/falloff for spot lights

int Reset_Lights_LIGHTV2(LIGHTV2_PTR lights,// light array to work with (new)

int max_lights);  // number of lights in system

The only difference from these functions and the previous versions is that there is one
additional parameter: the pointer to the array of lights as the first parameter. This allows
the lighting system to have more than one set of global lights.

CAUTION

When you position a light or give a direction to a light, make sure you send in points or vectors
that are VECTOR4D or POINT4D with the last parameter always equal to 1.0. If you forget to do this
when the lights are transformed, the translation aspect of the transform matrix will not have any
effect!

As an example of making the new calls, simply review the demos. The main point of
redoing the lighting functions is simply so we can perform lighting in camera coordinates,
so we can put off lighting until we have the absolute minimum number of polygons to
light.

A Little Fun with Terrain
The reasons for clipping in 3D are numerous, but the main motivations are to minimize
the number of polygons sent down the pipeline, and to make sure that polygons with
negative or z = 0 coordinates are not projected, causing potential problems with the
perspective calculations. Up until this point in the book, we have made all outdoor object-
based demos with no large polygons or interiors, so the chances of these events occurring
was nonexistent for the most part. However, we still don’t have the capability to load any
kind of level or interior models or large polygons worlds, so how can I show this in
action? Well, I decided to create a really crude terrain engine function that will generate a
very large terrain for us (any size really) and then tessellate it with triangles based on a
height map.

We have two problems with this. First, we don’t have any 3D object entity except for the
OBJECT4DV2, and it isn’t really designed to hold such large meshes, but we can still use it
for now. However, the real problem is that terrains are notorious for having thousands to
millions of polygons. However, with a little design common sense, we can cull out 99% of
the polygons by using sectorizing algorithms that create huge terrains by tiling space with
terrain patches and then only process the terrain patches that are in view. In essence, each
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terrain patch becomes an object, and we have a giant array of these patches, as shown in
Figure 10.24.
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FIGURE 10.24 An example of creating a large world by sectorizing the terrain patches into
objects.

We could use multiple objects and stitch them together to make a huge terrain, and then
use object culling to cull away terrain patches that aren’t visible. But the second problem
is more insidious—even after we have a single terrain patch to deal with, it might use
32×32, 64×64, or 256×256 heights, meaning that there would be 31×31, 63×63, or
255×255 tiles, because the number of tiles in each dimension is always one fewer than the
number of heights. This is because we are using the heights to define the corners of the
bounding quad; thus there would be 312*2, 632*2, or 2552*2 polygons in the patch!

Even with clipping and culling, this would kill us. A real terrain engine performs level-of-
detail analysis on the fly, combining polygons where they aren’t needed and adding them
where they are. The result is that when viewing a single patch that was, say, 64×64 tiles,
each made up of two triangles, there would be 8,192 triangles in the model. After the
reduction, however, there might literally be only a few hundred needed! We aren’t going
to cover these algorithms because they are another subject that falls under terrain render-
ing and modeling, but I will give you some references at the end of this section for further
study.

Right now, I want to tell you what I did to create a simple terrain that we can generate
with a single call that places the terrain into an object that we can work with as usual.
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The Terrain Generating Function
There are a number of ways to generate a terrain: with random numbers, from satellite
data, with color height maps, or various combinations of these methods. We are going to
go with the height map technique. The plan of attack is to load a 256-color bitmap image
that will be used to represent a height field that we want to model, along with the color
texture that would be stretched over it to show the terrain it represents. Figure 10.25
shows one such height field (greatly scaled so you can see it, of course). Notice the various
colors in the height map that indicate different heights.
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FIGURE 10.25 Using a bitmap to represent terrain height data encoded as color indices.

The height bitmap will be interpreted in the following way: We will generate a regular grid
centered at (0,0,0) in world coordinates, and then lay down a matrix of height points
where each height point is proportional to the pixel value in the bitmap. For example,
color index 0 is the lowest altitude, and color index 255 is the highest. We can generate
any height range we desire by multiplying these values. As an example, take a look at
Figure 10.26, which is a graphic illustration of a 4×4 bitmap with height values and the
generated height matrix with labelings.

Generating the height field mesh from the data is really nothing more than a couple of
for loops and a lot of being careful about “off by one” errors. The algorithm works by
generating two triangles for each height square, which has its height defined by the color
index and some scaling factor. Also, we need to know how big to make the height map,
meaning its width and height (or maybe you might want to call it the width and length?).
The point is that we will generate the height map in the x-z plane and use the bitmap
data to define the heights of each of the quads that define each square of the height map.
Then for each quad, we will generate two triangles and stuff them into the vertex list of
the object.
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FIGURE 10.26 A fully annotated 4×4 height field construction.

I mentioned that there are lots of “off by one” potential pitfalls when doing this. If you
don’t know what I mean by that, how many numbers are there from 0 to 10? Well, there
are 11! How many parking spaces are there if I draw five lines? There are four. Those are
off-by-one errors—you need to make sure to count things correctly. This is really impor-
tant when doing things like generating meshes artificially because being off by one can
push you into memory or cause anomalies and so on. What I like to do is literally run
through the algorithm with a really small case. I usually use 1×1, then maybe 4×4 for
things like this. That way, I have proven that the base case and the nth case work, so I can
assume under induction more or less all cases work.

Anyway, building an OBJECT4DV2 structure artificially isn’t too bad. Basically we are just
streaming the information that would normally be read off disk in the object we are
generating. We need the vertex list, polygon list, the number of each of them, and the
attributes for each polygon. Everything is simple except the attributes for each polygon,
meaning the lighting and texture information. This information must send in manually to
the function using these parameters:

// defines for polygons and faces version 2

// attributes of polygons and polygon faces

#define POLY4DV2_ATTR_2SIDED        0x0001
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#define POLY4DV2_ATTR_TRANSPARENT      0x0002

#define POLY4DV2_ATTR_8BITCOLOR       0x0004

#define POLY4DV2_ATTR_RGB16         0x0008

#define POLY4DV2_ATTR_RGB24         0x0010

#define POLY4DV2_ATTR_SHADE_MODE_PURE    0x0020

#define POLY4DV2_ATTR_SHADE_MODE_CONSTANT  0x0020 // (alias)

#define POLY4DV2_ATTR_SHADE_MODE_EMISSIVE  0x0020 // (alias)

#define POLY4DV2_ATTR_SHADE_MODE_FLAT    0x0040

#define POLY4DV2_ATTR_SHADE_MODE_GOURAUD  0x0080

#define POLY4DV2_ATTR_SHADE_MODE_PHONG   0x0100

#define POLY4DV2_ATTR_SHADE_MODE_FASTPHONG 0x0100 // (alias)

#define POLY4DV2_ATTR_SHADE_MODE_TEXTURE  0x0200

// new

#define POLY4DV2_ATTR_ENABLE_MATERIAL  0x0800 // use material for lighting

#define POLY4DV2_ATTR_DISABLE_MATERIAL 0x1000 // use basic color only

// for lighting (emulate version 1.0)

I have highlighted the attributes we are concerned with. Let’s talk about them for a
moment. The terrain generator can generate terrain in either 8-bit or 16-bit modes, so you
must set either flag, so these defines control that:

POLY4DV2_ATTR_8BITCOLOR

POLY4DV2_ATTR_RGB16

Next, the function will support constant, flat, or Gouraud shading, because geometrically
there is nothing different about these, other than that the normals must be computed. But
we don’t have to worry about that because once we have the mesh, we make the calls to

// compute the polygon normal lengths

Compute_OBJECT4DV2_Poly_Normals(obj);

// compute vertex normals for any gouraud shaded polys

Compute_OBJECT4DV2_Vertex_Normals(obj);

to perform any normal calculations that are needed for Gouraud shading (vertex normals),
or general polygon normals for back-face removal and polygon lighting.

To set the shade mode, we would select one of these constants:

POLY4DV2_ATTR_SHADE_MODE_EMISSIVE

POLY4DV2_ATTR_SHADE_MODE_FLAT

POLY4DV2_ATTR_SHADE_MODE_GOURAUD
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Then if we want a texture map stretched over the terrain, we need to enable texture
mapping with the constant

POLY4DV2_ATTR_SHADE_MODE_TEXTURE

However, when texture mapping is enabled, we only have rasterizers for emissive or flat
shading, so you can’t turn on Gouraud shading. So that’s it—to create a Gouraud-shaded
16-bit terrain with no texture for example, you would use these constants:

(POLY4DV2_ATTR_RGB16 | POLY4DV2_ATTR_SHADE_MODE_GOURAUD  )

To create a flat-shaded terrain with texture mapping:

(POLY4DV2_ATTR_RGB16 |

POLY4DV2_ATTR_SHADE_MODE_FLAT |

POLY4DV2_ATTR_SHADE_MODE_TEXTURE)

As you see, we just logically OR the polygon attribute flags together. Alright, now let’s talk
about the texture mapping support.

Take a look at Figure 10.27. It’s a bitmap that we can use to texture our terrain (it was
actually generated by a program as the texture map for the terrain, so it works out quite
nicely). The bitmap is 256×256, but could be any square power of 2 sized down to 8×8
pixels. 256×256 is the largest our system supports in the rasterizer stage as a single texture.
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FIGURE 10.27 A sample terrain color map texture.

The approach I took is to compute texture coordinates for the input texture map and then
stretch it over the terrain map vertex list. Of course, we could use huge texture maps,
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break them up into 256×256 size chunks, and then map them to specific polygons, but
right now this is simpler, and I don’t really care about making a real terrain engine—I just
want something with which to do demo clipping. In any event, if you select a texture
map, you will send the filename to the function of the texture (along with the filename of
the bitmap in 256 color for the height information) and the function will compute the
texture coordinates to “skin” the terrain with the single texture map. This is rather simple,
and once again just a lot of details with the width, height, and number of cells in the
terrain map.

Therefore, if texture mapping is selected for the terrain, you must send in a filename of a
16-bit texture map. The texture map should be square, of course. The terrain function will
map the texture onto the terrain via computing texture coordinates that map each triangle
of each square that makes up the terrain properly.

That’s about it for the terrain generating function—it takes two input files in most cases.
One file is the height map in 256 color .BMP format, which should be square if possible,
and usually less than 40×40 pixels. This is because anything larger would result in a terrain
that has 40×40 heights (39×39 quads, or 392*2 triangles = 3,042 polygons), which is
getting up there for our little software engine!

Now I want you to review the function itself, and then we will see how to call it with
some examples:

int Generate_Terrain_OBJECT4DV2(OBJECT4DV2_PTR obj,   // pointer to object

float twidth,      // width in world coords on x-axis

float theight,      // height (length) in world coords on z-axis

float vscale,      // vertical scale of terrain

char *height_map_file, // filename of height bitmap encoded in 256 colors

char *texture_map_file, // filename of texture map

int rgbcolor,      // color of terrain if no texture

VECTOR4D_PTR pos,    // initial position

VECTOR4D_PTR rot,    // initial rotations

int poly_attr)     // the shading attributes we would like

{

// this function generates a terrain of width x height in the x-z plane

// the terrain is defined by a height field encoded as color values

// of a 256 color texture, 0 being ground level 255 being 1.0, this value

// is scaled by vscale for the height of each point in the height field

// the height field generated will be composed of triangles where each vertex

// in the height field is derived from the height map, thus if the height map

// is 256 x 256 points then the final mesh will be (256-1) x (256-1) polygons

// with a absolute world size of width x height (in the x-z plane)

// also if there is a texture map file then it will be mapped onto the terrain

// and texture coordinates will be generated

// the function generates either 8-bit or 16-bit terrains, but make
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// sure to use the correct attributes and match the color texture map

// bit depth!!

char buffer[256]; // working buffer

float col_tstep, row_tstep;

float col_vstep, row_vstep;

int columns, rows;

int rgbwhite;

BITMAP_FILE height_bitmap; // holds the height bitmap

// Step 1: clear out the object and initialize it a bit

memset(obj, 0, sizeof(OBJECT4DV2));

// set state of object to active and visible

obj->state = OBJECT4DV2_STATE_ACTIVE | OBJECT4DV2_STATE_VISIBLE;

// set position of object

obj->world_pos.x = pos->x;

obj->world_pos.y = pos->y;

obj->world_pos.z = pos->z;

obj->world_pos.w = pos->w;

// create proper color word based on selected bit depth of terrain

// rgbcolor is always in rgb5.6.5 format, so only need to downconvert for

// 8-bit mesh

if (poly_attr & POLY4DV1_ATTR_8BITCOLOR)

{

rgbcolor = rgblookup[rgbcolor];

rgbwhite = rgblookup[RGB16Bit(255,255,255)];

} // end if

else

{

rgbwhite = RGB16Bit(255,255,255) ;

} // end else

// set number of frames

obj->num_frames = 1;

obj->curr_frame = 0;

obj->attr = OBJECT4DV2_ATTR_SINGLE_FRAME;
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// clear the bitmaps out

memset(&height_bitmap, 0, sizeof(BITMAP_FILE));

memset(&bitmap16bit, 0, sizeof(BITMAP_FILE));

// Step 2: load in the height field

Load_Bitmap_File(&height_bitmap, height_map_file);

// compute basic information

columns = height_bitmap.bitmapinfoheader.biWidth;

rows  = height_bitmap.bitmapinfoheader.biHeight;

col_vstep = twidth / (float)(columns - 1);

row_vstep = theight / (float)(rows - 1);

sprintf(obj->name ,”Terrain:%s%s”, height_map_file, texture_map_file);

obj->num_vertices = columns * rows;

obj->num_polys  = ((columns - 1) * (rows - 1) ) * 2;

// store some results to help with terrain following

// use the auxilliary variables in the object -- might as well!

obj->ivar1 = columns;

obj->ivar2 = rows;

obj->fvar1 = col_vstep;

obj->fvar2 = row_vstep;

// allocate the memory for the vertices and number of polys

// the call parameters are redundant in this case, but who cares

if (!Init_OBJECT4DV2(obj,  // object to allocate

obj->num_vertices,

obj->num_polys,

obj->num_frames))

{

Write_Error(“\nTerrain generator error (can’t allocate memory).”);

} // end if

// load texture map if there is one

if ( (poly_attr & POLY4DV2_ATTR_SHADE_MODE_TEXTURE) && texture_map_file)

{

// load the texture from disk

Load_Bitmap_File(&bitmap16bit, texture_map_file);
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// create a proper size and bitdepth bitmap

obj->texture = (BITMAP_IMAGE_PTR)malloc(sizeof(BITMAP_IMAGE)) ;

Create_Bitmap(obj->texture,0,0,

bitmap16bit.bitmapinfoheader.biWidth,

bitmap16bit.bitmapinfoheader.biHeight,

bitmap16bit.bitmapinfoheader.biBitCount);

// load the bitmap image (later make this 8/16 bit)

if (obj->texture->bpp == 16)

Load_Image_Bitmap16(obj->texture, 

&bitmap16bit,0,0,BITMAP_EXTRACT_MODE_ABS);

else

{

Load_Image_Bitmap(obj->texture, 

&bitmap16bit,0,0,BITMAP_EXTRACT_MODE_ABS);

} // end else 8 bit

// compute stepping factors in texture map for 

// texture coordinate computation

col_tstep = (float)(bitmap16bit.bitmapinfoheader.biWidth-1)/

(float)(columns - 1);

row_tstep = (float)(bitmap16bit.bitmapinfoheader.biHeight-1)/

(float)(rows - 1);

// flag object as having textures

SET_BIT(obj->attr, OBJECT4DV2_ATTR_TEXTURES);

// done, so unload the bitmap

Unload_Bitmap_File(&bitmap16bit);

} // end if

Write_Error(“\ncolumns = %d, rows = %d”, columns, rows);

Write_Error(“\ncol_vstep = %f, row_vstep = %f”, col_vstep, row_vstep);

Write_Error(“\ncol_tstep=%f, row_tstep=%f”, col_tstep, row_tstep);

Write_Error(“\nnum_vertices = %d, num_polys = %d”, 

obj->num_vertices, obj->num_polys);

// Step 4: generate the vertex list, 

// and texture coordinate list in row major form

for (int curr_row = 0; curr_row < rows; curr_row++)

{

for (int curr_col = 0; curr_col < columns; curr_col++)

{
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int vertex = (curr_row * columns) + curr_col;

// compute the vertex

obj->vlist_local[vertex].x = curr_col * col_vstep - (twidth/2);

obj->vlist_local[vertex].y = vscale*

((float)height_bitmap.buffer[curr_col + (curr_row * columns)]) / 255;

obj->vlist_local[vertex].z = curr_row * row_vstep - (theight/2);

obj->vlist_local[vertex].w = 1;

// every vertex has a point at least, set that in the flags attribute

SET_BIT(obj->vlist_local[vertex].attr, VERTEX4DTV1_ATTR_POINT) ;

// need texture coord?

if ( (poly_attr & POLY4DV2_ATTR_SHADE_MODE_TEXTURE) && texture_map_file)

{

// now texture coordinates

obj->tlist[vertex].x = curr_col * col_tstep;

obj->tlist[vertex].y = curr_row * row_tstep;

} // end if

Write_Error(“\nVertex %d: V[%f, %f, %f], T[%f, %f]”, 

vertex, obj->vlist_local[vertex].x,

obj->vlist_local[vertex].y,

obj->vlist_local[vertex].z,

obj->tlist[vertex].x,

obj->tlist[vertex].y);

} // end for curr_col

} // end curr_row

// perform rotation transformation?

// compute average and max radius

Compute_OBJECT4DV2_Radius(obj);

Write_Error(“\nObject average radius = %f, max radius = %f”,

obj->avg_radius[0], obj->max_radius[0]);

// Step 5: generate the polygon list

for (int poly=0; poly < obj->num_polys/2; poly++)

{

// polygons follow a regular pattern of 2 per square, row
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// major form, finding the correct indices is a pain, but

// the bottom line is we have an array of vertices mxn and we need

// a list of polygons that is (m-1) x (n-1), with 2 triangles per

// square with a consistent winding order.. this is one one to arrive

// at the indices, another way would be to use two loops, etc.,

int base_poly_index = (poly % (columns-1)) + 

(columns * (poly / (columns - 1)) );

// upper left poly

obj->plist[poly*2].vert[0] = base_poly_index;

obj->plist[poly*2].vert[1] = base_poly_index+columns;

obj->plist[poly*2].vert[2] = base_poly_index+columns+1;

// lower right poly

obj->plist[poly*2+1].vert[0] = base_poly_index;

obj->plist[poly*2+1].vert[1] = base_poly_index+columns+1;

obj->plist[poly*2+1].vert[2] = base_poly_index+1;

// point polygon vertex list to object’s vertex list

// note that this is redundant since the polylist is contained

// within the object in this case and its up to the user to select

// whether the local or transformed vertex list is used when building up

// polygon geometry, might be a better idea to set to NULL in the context

// of polygons that are part of an object

obj->plist[poly*2].vlist = obj->vlist_local;

obj->plist[poly*2+1].vlist = obj->vlist_local;

// set attributes of polygon with sent attributes

obj->plist[poly*2].attr = poly_attr;

obj->plist[poly*2+1].attr = poly_attr;

// now perform some test to make sure any secondary data elements are

// set properly

// set color of polygon

obj->plist[poly*2].color = rgbcolor;

obj->plist[poly*2+1].color = rgbcolor;

// check for gouraud of phong shading, if so need normals

if ( (obj->plist[poly*2].attr & POLY4DV2_ATTR_SHADE_MODE_GOURAUD) ||

(obj->plist[poly*2].attr & POLY4DV2_ATTR_SHADE_MODE_PHONG) )

{
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// the vertices from this polygon all need normals, set that in the 

➥flags attribute

SET_BIT(obj->vlist_local[ obj->plist[poly*2].vert[0] ].attr, 

VERTEX4DTV1_ATTR_NORMAL);

SET_BIT(obj->vlist_local[ obj->plist[poly*2].vert[1] ].attr, 

VERTEX4DTV1_ATTR_NORMAL);

SET_BIT(obj->vlist_local[ obj->plist[poly*2].vert[2] ].attr, 

VERTEX4DTV1_ATTR_NORMAL);

SET_BIT(obj->vlist_local[ obj->plist[poly*2+1].vert[0] ].attr, 

VERTEX4DTV1_ATTR_NORMAL);

SET_BIT(obj->vlist_local[ obj->plist[poly*2+1].vert[1] ].attr, 

VERTEX4DTV1_ATTR_NORMAL);

SET_BIT(obj->vlist_local[ obj->plist[poly*2+1].vert[2] ].attr, 

VERTEX4DTV1_ATTR_NORMAL);

} // end if

// if texture in enabled the enable texture coordinates

if (poly_attr & POLY4DV2_ATTR_SHADE_MODE_TEXTURE)

{

// apply texture to this polygon

obj->plist[poly*2].texture = obj->texture;

obj->plist[poly*2+1].texture = obj->texture;

// assign the texture coordinates

// upper left poly

obj->plist[poly*2].text[0] = base_poly_index;

obj->plist[poly*2].text[1] = base_poly_index+columns;

obj->plist[poly*2].text[2] = base_poly_index+columns+1;

// lower right poly

obj->plist[poly*2+1].text[0] = base_poly_index;

obj->plist[poly*2+1].text[1] = base_poly_index+columns+1;

obj->plist[poly*2+1].text[2] = base_poly_index+1;

// override base color to make poly more reflective

obj->plist[poly*2].color = rgbwhite;

obj->plist[poly*2+1].color = rgbwhite;

// set texture coordinate attributes

SET_BIT(obj->vlist_local[ obj->plist[poly*2].vert[0] ].attr, 

VERTEX4DTV1_ATTR_TEXTURE);
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SET_BIT(obj->vlist_local[ obj->plist[poly*2].vert[1] ].attr, 

VERTEX4DTV1_ATTR_TEXTURE);

SET_BIT(obj->vlist_local[ obj->plist[poly*2].vert[2] ].attr, 

VERTEX4DTV1_ATTR_TEXTURE);

SET_BIT(obj->vlist_local[ obj->plist[poly*2+1].vert[0] ].attr, 

VERTEX4DTV1_ATTR_TEXTURE);

SET_BIT(obj->vlist_local[ obj->plist[poly*2+1].vert[1] ].attr, 

VERTEX4DTV1_ATTR_TEXTURE);

SET_BIT(obj->vlist_local[ obj->plist[poly*2+1].vert[2] ].attr, 

VERTEX4DTV1_ATTR_TEXTURE);

} // end if

// set the material mode to ver. 1.0 emulation

SET_BIT(obj->plist[poly*2].attr, POLY4DV2_ATTR_DISABLE_MATERIAL);

SET_BIT(obj->plist[poly*2+1].attr, POLY4DV2_ATTR_DISABLE_MATERIAL);

// finally set the polygon to active

obj->plist[poly*2].state = POLY4DV2_STATE_ACTIVE;

obj->plist[poly*2+1].state = POLY4DV2_STATE_ACTIVE;

// point polygon vertex list to object’s vertex list

// note that this is redundant since the polylist is contained

// within the object in this case and its up to the user to select

// whether the local or transformed vertex list is used when building up

// polygon geometry, might be a better idea to set to NULL in the context

// of polygons that are part of an object

obj->plist[poly*2].vlist = obj->vlist_local;

obj->plist[poly*2+1].vlist = obj->vlist_local;

// set texture coordinate list, this is needed

obj->plist[poly*2].tlist = obj->tlist;

obj->plist[poly*2+1].tlist = obj->tlist;

} // end for poly

#if 0

for (poly=0; poly < obj->num_polys; poly++)

{

Write_Error(“\nPoly %d: Vi[%d, %d, %d], Ti[%d, %d, %d]”,poly,

obj->plist[poly].vert[0],

obj->plist[poly].vert[1],

obj->plist[poly].vert[2],
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obj->plist[poly].text[0],

obj->plist[poly].text[1],

obj->plist[poly].text[2]);

} // end

#endif

// compute the polygon normal lengths

Compute_OBJECT4DV2_Poly_Normals(obj);

// compute vertex normals for any gouraud shaded polys

Compute_OBJECT4DV2_Vertex_Normals(obj);

// return success

return(1);

} // end Generate_Terrain_OBJECT4DV2

The function is based on the .PLG loader. I basically started with the .PLG loader because
it had a template for what I needed to do to build an OBJECT4DV2, and then added the
algorithm to artificially generate the terrain—cool, huh? Now let’s take a look at how to
call the function. Here’s a call to generate a 32×32 terrain with texture mapping and flat
shading for a 4000×4000 size world using the height map EARTHHEIGHTMAP01.BMP and
using the texture map (256×256×16) EARTHCOLORMAP01.BMP:

VECTOR4D terrain_pos = {0,0,0,0};

Generate_Terrain_OBJECT4DV2(&obj_terrain, // pointer to object

4000,   // width in world coords on x-axis

4000,   // height (length) in world coords on z-axis

700,    // vertical scale of terrain

“earthheightmap01.bmp”, // filename of height bitmap encoded in 256 colors

“earthcolormap01.bmp”, // filename of texture map

RGB16Bit(255,255,255), // color of terrain if no texture

&terrain_pos,      // initial position

NULL,          // initial rotations

POLY4DV2_ATTR_RGB16 |

POLY4DV2_ATTR_SHADE_MODE_FLAT | POLY4DV2_ATTR_SHADE_MODE_TEXTURE);

The parameters to the function are straightforward. You send in the width and height of
the terrain map in world coordinates (this will be the x-z boundaries, 4000×4000 in this
case), the height scale of the terrain map, and basically all the heights will be scaled so
that the height peak is the value (700 in this case). Next comes the names of the height
map and texture map bitmaps on the disk (if there isn’t a texture, the texture map should
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be NULL). Next is the color of the terrain (when the terrain isn’t textured, you must tell the
function what color to make it). Next is the position of the terrain in world coordinates
(usually 0,0,0 is good). Next is the initial rotation of the mesh (use NULL if it’s not imple-
mented yet), and finally are the polygon attributes you want to use (in this case, flat-
shaded, 16-bit, textured).

You can create as many terrain objects as you want, and if you are so inclined, you could
create one huge world with, say, 16×16 of them, each as an object, and then take advan-
tage of the object culling. But as I said, I just wanted something to create really large poly-
gons for an interior or exterior environment that we could fly around in, and this works
great.

Generating the Terrain Data
You might be thinking, this is totally cool, but how can I generate the terrain data itself?
Well, you can make a program to do it. You also need to make sure that any texture you
skin it with looks right. For example, snow caps should be on the mountain tops and blue
should be in the water. However, most people use a program to generate terrain that can
actually generate both the terrain height map in 256 color .BMP mode, along with a
texture map to skin it with. One such program is called VistaPro, which is up to version
4.0, I believe. The problem is, they have licensed the program to everyone, so the best
thing to do is go on the Internet and search for VistaPro to find the most current
publisher. Another program that will generate terrain and height maps is Bryce by
Metacreations—but they have also sold the company, and the property is now owned by
Corel. Once again, these are just some ideas—there are tons of free terrain generator
programs on the Net.

The Dune Buggy Demo
Alright, now let’s put this terrain mapping and clipping to use and see if it works! To do
this, I have created a little demo in DEMOII10_2.CPP|EXE (the 8-bit version is in
DEMOII10_2_8b.CPP|EXE) in the form of a dune buggy simulation on a desert island. Figure
10.28 and 10.29 are screenshots from the demo. To compile the demo, you will need the
main .CPP file and T3DLIB1-8.CPP|H, along with the standard DirectX .LIB files.

The demo is pretty straightforward, as usual. It makes a single call to create the terrain
with the same parameters as the example you just reviewed, and then dumps the camera
down and allows you to drive over the terrain—yes, drive! Alas, I have a little explaining
to do about terrain coming up.

The controls for the demo are shown on the onscreen help, which you can toggle with the
H key, but the most important things to try are enabling and disabling the 3D clipping
planes with the X, Y, and Z keys. Then drive around and try looking at the polygon stats
at the bottom of the screen. As you enable/disable different axis clippers, watch the
pipeline stats change.
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FIGURE 10.28 A screenshot of the terrain demo in wireframe mode.

A Little Fun with Terrain 1081

10

FIGURE 10.29 A screenshot of the terrain demo in solid textured mode.
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CAUTION

You might cause the application to crash when you disable the near z-clipping plane, because
really large polygons will be passed and projected. This could be a bad thing, but of course it
won’t hurt the computer! Finally, try switching to wireframe mode with the W key to see all the
polygons.

The Terrain Following Algorithm
The terrain following algorithm and the simple physics model for the virtual dune buggy
are interrelated, so I will discuss both of them at the same time. The problem is this: We
have a camera that is used to represent the first-person point of view of the player (with a
little prerendered dune buggy front end overlaid, of course). We need the player to be able
to drive over the terrain, but not drive through it, so we need to compute the height of
the terrain under the camera and move the eye position up appropriately, as shown in
Figure 10.30.
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FIGURE 10.30 The terrain following setup.

There are a number of ways to approach this problem. We could make a completely real
physics model for the dune buggy with momentum, but that’s a lot for such a simple
problem. We could also go to the other extreme and just move the camera up to the
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highest point of any tile cell it’s hovering over, but that would suck, so I have come up
with a happy medium: A very simplified physics model based on velocity, gravity, and
impulse acceleration is attached to the camera’s position and orientation, so I will refer to
the camera as the dune buggy and vice versa. Here are the physics model highlights:

• The dune buggy has a forward velocity and direction, which are controlled by the
arrow keys (the acceleration is constant when the player presses forward or back-
ward).

• There is a downward “gravity” force, which is constantly applied to the dune buggy.
The result of this is the y-axis downward velocity of the dune buggy increases as a
function of time.

• There is an upward “normal” force applied to the dune buggy. If the dune buggy is
ever below sea level, this pushes it upward.

• At every instant of time, the current position of the dune buggy in world space is
used to compute which terrain cell the dune buggy is hovering over, and then the
four vertices heights are averaged together. This height value is compared to the
current height of the dune buggy, and if the current height of the dune buggy is less
than the terrain height (minus the ground clearance), the upward velocity of the
dune buggy is increased with an impulse acceleration proportional to the delta in
the height. Additionally, a stop-limit is applied to the dune buggy height, so when a
steep incline or height change is detected, the dune buggy will “skip” up vertically
so as not to go through the geometry.

• In addition to changing the height of the dune buggy to track the terrain, the pitch
of the dune buggy/camera is changed relative to the gradient of the terrain the dune
buggy is traversing. This gives the illusion that the nose of the dune buggy is pitch-
ing up and down with the terrain.

• Finally, there is code to force stability in the physics model, so that if the change in
position or orientation is small enough, it doesn’t oscillate and is zeroed out.

With all that in mind, here are some of the physics constants and variables used in the
simulation:

// terrain defines

#define TERRAIN_WIDTH     4000

#define TERRAIN_HEIGHT    4000

#define TERRAIN_SCALE     700

#define MAX_SPEED       20

// physical model defines play with these to change the feel of the vehicle

float gravity  = -.40;  // general gravity

float vel_y   = 0;    // the y velocity of camera/jeep
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float cam_speed = 0;    // speed of the camera/jeep

float sea_level = 50;   // sea level of the simulation

float gclearance = 75;   // clearance from the camera to the ground

float neutral_pitch = 10;  // the neutral pitch of the camera

And here is the code that runs the entire terrain following/driving simulation:

// motion section /////////////////////////////////////////////////////////

// terrain following, simply find the current cell we are over and then

// index into the vertex list and find the 4 vertices that make up the

// quad cell we are hovering over and then average the values, and based

// on the current height and the height of the terrain push the player upward

// the terrain generates and stores some results to help with terrain following

//ivar1 = columns;

//ivar2 = rows;

//fvar1 = col_vstep;

//fvar2 = row_vstep;

int cell_x = (cam.pos.x + TERRAIN_WIDTH/2) / obj_terrain.fvar1;

int cell_y = (cam.pos.z + TERRAIN_HEIGHT/2) / obj_terrain.fvar1;

static float terrain_height, delta;

// test if we are on terrain

if ( (cell_x >=0) && (cell_x < obj_terrain.ivar1) && 

(cell_y >=0) && (cell_y < obj_terrain.ivar2) )

{

// compute vertex indices into vertex list of the current quad

int v0 = cell_x + cell_y*obj_terrain.ivar2;

int v1 = v0 + 1;

int v2 = v1 + obj_terrain.ivar2;

int v3 = v0 + obj_terrain.ivar2;

// now simply index into table

terrain_height = 0.25 * (obj_terrain.vlist_trans[v0].y + 

obj_terrain.vlist_trans[v1].y +

obj_terrain.vlist_trans[v2].y + 

obj_terrain.vlist_trans[v3].y) ;

// compute height difference

delta = terrain_height - (cam.pos.y - gclearance);
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// test for penetration

if (delta > 0)

{

// apply force immediately to camera (this will give it a springy feel)

vel_y+=(delta * (0.025));

// test for pentration, if so move up immediately,

// so we don’t penetrate geometry

cam.pos.y+=(delta*.3);

// now this is more of a hack than the physics model :) let move the front

// up and down a bit based on the forward velocity and the gradient of the

// hill

cam.dir.x -= (delta*.015);

} // end if

} // end if

// decelerate camera

if (cam_speed > (0.25) ) cam_speed-=.25;

else

if (cam_speed < (-0.25) ) cam_speed+=.25;

else

cam_speed = 0;

// make engine sound

DSound_Set_Freq(car_sound_id,8000+fabs(cam_speed)*250);

// force camera to seek a stable orientation

if (cam.dir.x > (neutral_pitch+0.3)) cam.dir.x -= (.3);

else

if (cam.dir.x < (neutral_pitch-0.3)) cam.dir.x += (.3);

else

cam.dir.x = neutral_pitch;

// apply gravity

vel_y+=gravity;

// test for absolute sea level and push upward..

if (cam.pos.y < sea_level)

{

vel_y = 0;
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cam.pos.y = sea_level;

} // end if

// move camera

cam.pos.x += cam_speed*Fast_Sin(cam.dir.y);

cam.pos.z += cam_speed*Fast_Cos(cam.dir.y);

cam.pos.y += vel_y;

It’s actually very small—the inputs to the system are the current camera position and
that’s about it. From there the system functions.

Well, that’s it for my little demo. Please feel free to tweak the variables—you can get every-
thing from a 1,000,000-ton tank to a water craft. Also, with very little work, you should be
able to add multiple terrain patches via objects, and make it 3D racing, boating, jet skiing,
snowboarding, or whatever—it’s up to you. A snowboarding demo would be really easy—
you could create, say, 16 or 32 patches of terrain that are each 32×32 tiles, and say
2000×2000 in world space, and then line them up in such a way that they create one large
run. Let the object culler remove the patches that are beyond the far clipping plane, have
the clipper deal with the one that’s in view, throw a snowboard in front of the camera,
change the height map, and you’re shreddin’!

Summary
I’m glad this chapter is over—I was getting tired of setting the near clipping plane a light
year away from the viewplane so that negative projection anomalies didn’t occur! But now
things are much more stable. In any event, you should now have a good understanding of
clipping algorithms, and better yet, that they aren’t that complicated at all, just a lot of
details. Also, the added culling feature that totally clips polygons that are beyond view out
of the viewing frustrum but not back-faces really speeds things up, so now the engine is
even faster. Finally, as a added bonus we got to play a little with terrain stuff, and make a
little demo that you can easily make into a water or offroad game without much work. It’s
not going to be Splashdown or V-Rally, but it’s a start! And last but not least—this is the
last chapter with 8-bit support.
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IN THIS CHAPTER

• Introduction to Depth
Buffering and Visibility

• Z-Buffering Basics

• Creating the Z-Buffer System

• Possible Z-Buffer
Optimizations

• Problems with the Z-Buffer

• The Software and Z-Buffer
Demos

CHAPTER 11

Depth Buffering and
Visibility

“I’m not frightened that I don’t know …”

—Dr. Richard Feynman, Caltech Physics Lectures

In this chapter, we are going to look at one of the most basic
methods of hidden surface removal/visibility—the Z-buffer.
And as usual, we’ll rewrite our engine to support the technol-
ogy, make a couple of demos, and that’s about it. Believe me,
that’s enough <BG>. Here’s a list of the main topic areas:

• Introduction to depth buffering and visibility

• Z-buffering basics

• The plane equation

• Z interpolation

• 1/z-buffering

• Creating the Z-buffer system

• Adding Z-buffer support to the rasterizers

• Possible Z-buffer optimizations

• The new software and Z-buffer demos

Introduction to Depth Buffering and
Visibility
First things first: There is a lot of confusion with the follow-
ing two concepts:

• Hidden surface removal

• Visible surface determination
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1088 CHAPTER 11 Depth Buffering and Visibility

The reason is that they are really the same thing in some cases, and different things in
others. For example, when we perform the back-face removal step in the 3D pipeline, we
are definitely performing hidden surface removal. On the other hand, clipping is both
hidden surface removal (clipping away regions that aren’t within the viewing frustrum)
and at the same time visible surface determination, as we are determining what is visible
and not clipped. I can’t give you a straight answer myself, because there isn’t one. From
now on, unless I am specifically removing something, I am just going to refer to the
whole business of what to do and what not to draw as visible surface determination (VSD).
Many books follow suit, so this shouldn’t be any surprise. Moreover, no matter what we
do when we talk about z-buffering, the algorithm works down to the pixel level, so there
are no surfaces, just components or pieces of surfaces! The moral of the story is the termi-
nology is irrelevant—if it becomes an issue, I will comment on it.

In any case, at this point in the book you should be quite comfortable writing your own
3D engine. We have covered every major aspect of rendering and the 3D pipeline. Of
course, physics and gameplay are out of the scope of this book, as we are focusing only
how to transform, light, and render polygons. So where are we at this point? Well, we
have a fairly advanced lighting system and we can texture map and clip in 2D and 3D, but
our polygon models and environments have still been a little simplistic. There are two
reasons for this: first, we simply haven’t loaded any interior levels because we don’t really
have a tool or an appropriate file format to do so, but we have the technology to render
them nonetheless. The second reason is a little more subtle: We can’t sort the polygons or
decide what order they should be drawn in with complete accuracy.

Up until now, we have used the painter’s algorithm to sort polygons, which does nothing
more than use the average, minimum, or maximum z value of each polygon in the
rendering list as a sorting key to sort the rendering list. Then we simply draw the polygons
from back to front as a painter would, and the display is mostly correct. However, we
learned that this algorithm has a number of shortcomings; for example, it doesn’t handle
long polygons well, or allow interpenetration of polygons, as shown in Figure 11.1.

On the bright side, the painter’s algorithm works for 99% of the polygonal data that we
have been working with thus far. It works great for scenes that are heavily made up of
objects (especially where the objects don’t overlap, and themselves are made of small poly-
gons). Additionally, it works fine for rendering meshes such as terrains, which have regu-
larity and non-overlapping geometry. That is, although a terrain is 3D, it’s mostly 2D with
perturbations in height.

However, the painter’s algorithm (or just z-sorting, as I will call it from now on) can really
look bad when special effects such as interpenetration, complex geometry, large and small
geometry, and so forth, come into play. We need another method to resolve the order in
which to render the polygons. At first thought, we might decide to rewrite the z-sorting
and make it “smarter.” This actually is possible. For example, we can look at the problem a
pair of polygons at a time and run further tests on them to determine their correct order.
This class of algorithms is usually referred to as list priority algorithms and there are many
names tied to them, but as usual, they are all really just common sense. The bottom line is
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that if you have a z-sorted list and you want to make sure that no pair of polygons has
been incorrectly sorted, you apply some further tests to satisfy this desire. Here is one set
of tests derived from the Newell-Sancha algorithm:
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FIGURE 11.1 Z-sorting failure cases.

Look at the two polygons P1 and P2 shown in Figure 11.2. Both have been depth-sorted
such that the largest z value of each polygon has been used as the sorting key. Thus, the
farthest polygon from the viewpoint is the first in the list.

• Test 1 (z-overlap test): If the z-extents of P1 and P2 do not overlap, no part of P1 can
overlap P2 (in other words, if P1

min
> P2

max
, draw P1 to the frame buffer. This case is

shown in Figure 11.2a. On the other hand, if P2
max

< P2
min

, it’s possible that P1
obscures P2 even though P1 has been sorted farthest and will be drawn first.
Therefore, a number of tests must be performed to determine this. If any of these
tests can be answered affirmatively, the algorithm can exit and P1 can’t possibly
obscure P2.

• Test 2 (bounding box test): Are the bounding boxes of P1 and P2 disjointed in x or
y? That is, if either the x-extents or y-extents of P1 and P2 do not overlap, the poly-
gons can’t possibly obscure one another. This is shown in Figure 11.2b.

• Test 3 (half-space test): Is P1 or P2’s half-space farther from the viewpoint? If so,
draw P1 and exit. This is shown in Figure 11.2c.

• Test 4 (half-space test): Is P2 or P1’s half-space nearer to the viewpoint? If so, then
draw P1 and exit.

• Test 5 (perspective test): Are the perspective projections of P1 and P2 disjointed?
That is, when the polygons are projected, do their projections overlap? If no, draw
P1 and exit.
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FIGURE 11.2 Polygon sorting setup.

If all the tests fail, swap P1 and P2 and mark them as swapped. If an attempt to swap them
is made again, there must be a cyclic overlap, as shown in Figure 11.3. In this case, one of
the polygons P1 or P2 must be split to overcome this problem.

If you don’t get the algorithm, don’t worry—no one uses it! I just wanted you to see the
general flow of it. Basically, the problem is that we are trying to solve a problem by asking
more and more complex questions until we absolutely pin down the correct order. Is it
worth it? The answer is no! If you want perfect order, you would never use that disaster of
an algorithm in the first place, and if you didn’t care about perfect order, you again
wouldn’t use the algorithm because the z-sort would look fine in most cases (many games
on the PS one and PC use basic z-sorting and you probably never knew!).

So, we need something more elegant (or more simple) that solves the problem of render-
ing order perfectly without all these complex tests—enter the Z-buffer.
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FIGURE 11.3 Polygon cyclic overlap case.

Z-Buffering Basics
The z-sorting algorithm is ironically the solution to all our problems. Remember that it
works really well with small polygons, but starts to produce anomalies if the size differen-
tial between polygons gets large. This is because of improper sorting (as we saw in some of
the algorithm analysis cases in the previous example). However, what if we were to z-sort
on a pixel-by-pixel basis? Then there is no possible way that we can get the incorrect order
for two polygons, because we are down to the smallest screen unit, the pixel. This is
exactly how the Z-buffer works—it’s a z-sort on the pixel level, or a pixel-level painter’s
algorithm, in other words. Try and say that three times!

Amazingly, the idea is so simple, it almost feels like cheating. Historically, the algorithm
was originally invented in 1974 by Edwin Catmull (or at least that’s what “they” want us
to believe). The algorithm is deceptively simple:

For a screen that is M×N, create a Z-buffer zbuffer[x,y] that contains the z values of each pixel of

each polygon as it’s being rasterized or scan-converted. The Z-buffer will also be M×N and will be

initialized to the farthest possible z value (infinity, for all intents and purposes).
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With the Z buffer do

For each polygon in the rendering list begin

1. Rasterize the polygon and generate xi, yi, zi 

for each value that the polygon’s projection on

the screen would generate during the rasterization.

2. if (zi < zbuffer[xi, yi]) then write zi into the Z buffer, 

zbuffer[xi, zi] = zi, and then

write the pixel to the screen, Plot(xi,yi).

end for

Simply put, you create an array of floats or integers to track the z values of each polygon
as it’s being scan-converted. However, instead of just drawing each pixel on the screen,
you compare the z value of the pixel to the current z value in the Z-buffer at that position.
If the z value of the polygon that is being scan-converted at pixel xi,yi is less than the
current z value in the Z-buffer at zbuffer[xi,yi], update the Z-buffer with the new (closer) z
value zi, and then write the pixel to the screen. Otherwise, do nothing. This algorithm is
shown graphically in Figure 11.4.
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FIGURE 11.4 The Z-buffer algorithm.
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This algorithm has the effect of continually drawing closer pixels on top of farther ones,
and updating the 2D Z-buffer array with the z value at every x,y position—basically a
pixel-level painter’s algorithm. Cool, huh? Of course, there are a billion details, and I will
get to them, but let’s talk about some obvious problems before we go there.

Z-Buffer Problems
First we have to figure out a way to compute the z values of each polygon we are rasteriz-
ing. This might be challenging, because by the time the polygons get to the rasterizer, we
have usually lost all the z information. This needs to be addressed, as well as what “space”
the z values are computing in. Secondly, assuming we can get the z values into the raster-
izer, who said we want to compute them? Ouch! That sounds like more work for our poor
rasterizer, which is already dying from lighting, texturing, clipping—we’re killing that
poor thing. Lastly, the Z-buffer is going to take up as much or more storage as the screen
buffer, thus we double our memory footprint.

Summing up, by adding z-buffering, we slow down the rasterizer, we overdraw pixels, and
we use up at least two times as much memory! That doesn’t sound like much help.
Ironically, when we get to perspective correct texture mapping we are going to compute z
values no matter what, so we need them in the future regardless. As far as the overdraw
problem, there are other ways around this, but a pure z buffer will overdraw, that’s life, so
the best approach is to make it fast. And finally, the average computer these days has at
least 128MB of memory, so another 2MB for an 800×600 Z-buffer at 32 bits per element
isn’t going to kill anyone—maim a little, definitely not kill <BG>.

Z-Buffer Example
To make sure you understand the Z-buffer algorithm before we get to the make and imple-
mentation, let’s take a quick look at a simple example. Let’s assume we have a Z-buffer
that is 10×10 pixels (this is a late 70s machine alright!), and that each Z-buffer element is
an 8-bit integer, so we will round any fractional values if we see any. Therefore, we might
use the following data structure to hold the Z-buffer:

UCHAR zbuffer[10][10];

Or maybe

UCHAR zbuffer[10*10];

It doesn’t really matter—whatever suits you. For this example, let’s assume we can access
the array with the notation zbuffer[xi][yi], {0 <= xi <=9}, {0 <= yi <= 9}. To make things
interesting, let’s assume we have a 10×10 screen that is also an array. We’ll call it
screen_buffer[][], with the same addressing scheme as the Z-buffer.

Initializing the Z-buffer to a large value that we know will never be written into the Z-
buffer, we start off like this:
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zbuffer[][] =

255 255 255 255 255 255 255 255 255 255

255 255 255 255 255 255 255 255 255 255

255 255 255 255 255 255 255 255 255 255

255 255 255 255 255 255 255 255 255 255

255 255 255 255 255 255 255 255 255 255

255 255 255 255 255 255 255 255 255 255

255 255 255 255 255 255 255 255 255 255

255 255 255 255 255 255 255 255 255 255

255 255 255 255 255 255 255 255 255 255

255 255 255 255 255 255 255 255 255 255

And let’s initialize the screen_buffer to all zeros, which will be black, let’s say.

screen_buffer[][]=

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Now let’s draw a rectangle (these are easier than triangles on paper) from (0,0) to (3,3)
with a z value of 100 and a color of 5. Because 100 is always less than 255, the 100 will
overwrite the 255 values in the Z-buffer from (0,0) to (3,3), and we will update the screen
with the pixel color value 5. Here’s what zbuffer[][] and screen_buffer[][] look like now:

zbuffer[][] =

100 100 100 100 255 255 255 255 255 255

100 100 100 100 255 255 255 255 255 255

100 100 100 100 255 255 255 255 255 255

100 100 100 100 255 255 255 255 255 255

255 255 255 255 255 255 255 255 255 255

255 255 255 255 255 255 255 255 255 255

255 255 255 255 255 255 255 255 255 255

255 255 255 255 255 255 255 255 255 255
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255 255 255 255 255 255 255 255 255 255

255 255 255 255 255 255 255 255 255 255

screen_buffer[][]=

5 5 5 5 0 0 0 0 0 0

5 5 5 5 0 0 0 0 0 0

5 5 5 5 0 0 0 0 0 0

5 5 5 5 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

NOTE

I have bolded the affected zbuffer and screen_buffer locations so you can see them.

Okay, cool, let’s go another round. This time, let’s write a rectangle from (2,2) to (5,4) with
a z value of 150 and a color of 8. The 150 is farther than 100, but nearer than 255, so
here’s what happens:

zbuffer[][] =

100 100 100 100 255 255 255 255 255 255

100 100 100 100 255 255 255 255 255 255

100 100 100 100 150 150 255 255 255 255

100 100 100 100 150 150 255 255 255 255

255 255 150 150 150 150 255 255 255 255

255 255 255 255 255 255 255 255 255 255

255 255 255 255 255 255 255 255 255 255

255 255 255 255 255 255 255 255 255 255

255 255 255 255 255 255 255 255 255 255

255 255 255 255 255 255 255 255 255 255

screen_buffer[][]=

5 5 5 5 0 0 0 0 0 0

5 5 5 5 0 0 0 0 0 0

5 5 5 5 8 8 0 0 0 0

5 5 5 5 8 8 0 0 0 0

0 0 8 8 8 8 0 0 0 0

0 0 0 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

NOTE

I have bolded the affected zbuffer and screen_buffer locations so you can see them.

As you can see, the first rectangle has Z-buffer priority over the new rectangle, so the area
of overlap is unaffected by the new rectangle. However, the other portion to the right and
below are both updated in zbuffer[][] and screen_buffer[][]. Last but not least, a final
example of a rectangle from (0,0) to (9,9) with a z value of 50 and a color of 1:

zbuffer[][] =

50 50 50 50 50 50 50 50 50 50

50 50 50 50 50 50 50 50 50 50

50 50 50 50 50 50 50 50 50 50

50 50 50 50 50 50 50 50 50 50

50 50 50 50 50 50 50 50 50 50

50 50 50 50 50 50 50 50 50 50

50 50 50 50 50 50 50 50 50 50

50 50 50 50 50 50 50 50 50 50

50 50 50 50 50 50 50 50 50 50

50 50 50 50 50 50 50 50 50 50

screen_buffer[][]=

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

As you can see, the entire Z-buffer and screen buffer were totally overwritten! This is the
worst-case scenario of overwrite. This is something we don’t want to see a lot of, because
we end up drawing pixels over and over for nothing. However, in defense of the Z-buffer
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over straight z-sorting, we actually have been doing this with the z-sorting, because the z-
sort draws entire polygons without considering anything.

NOTE

There is one redeeming quality of the Z-buffer’s z-comparison, and that’s for cases where the
new pixel does not overwrite the previous rasterization calculations, avoiding the pixel plotting
step, which makes a difference when texture mapping and lighting are occurring on a per-pixel
basis.

Well, that’s enough introduction—let’s get down to it and see how we are going to actu-
ally compute the z values of polygons as we are rasterizing them.

The Plane Equation Method
So how do we compute the z value of each pixel as we are scan-converting each polygon?
There are a few ways, but we’re going to look at two of the simplest. The first method is to
simply use the definition of a plane during the scan conversion. We know that each
polygon’s vertices lie in a single plane. This is a requirement of all the polygons in our
system, and a physical attribute of all triangles. Therefore, if we are scan-converting a
triangle, for example, we could first compute the plane equation of the plane the triangle
lies in. This can be done by finding the normal to the polygon and then using it in the
point-normal form of the plane equation, which looks like

nx*(x-x0) + ny*(y-y0) + nz*(z-z0) = 0

where <nx,ny,nz> is the normal to the polygon being scan-converted, and (x0,y0,z0) is a
point on the polygon.

This can then be converted into the form

a*x+b*y+c*z + d = 0

where a = nx, b = ny, c = nz, and d = -(nx*x0+ny*y0+nz*z0)

Then, solving for z by rearranging terms, we see that

z = -(a*x + b*y + d)/c

which can be computed, since we know the (x,y) of every pixel because the scan converter
is generating them. The only drawback to the preceding method is that the plane equa-
tion and constants must be computed, and there are two multiplications, one division,
and two additions per pixel to find z. Of course, we can trim this down. First off, we can
use a precomputed surface normal that is part of each polygon structure, saving us the
time of computing the surface normal. Secondly, we can totally simplify the z calculation
by using forward differencing and incremental calculations, just as we did for the Gouraud
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shading and the standard triangle scan converter. To do this, we start by realizing that the
change in x in each pixel is exactly 1.0. Therefore, we can come up with the incremental
calculations detailed in the following sections.

Z As a Function of x
Noting that

z
i

= -(a*x + b*y + d)/c

then

z
i+1

= -(a*(x+1)+b*y + d)/c

= -(a*x + a + b*y + d)/c

= -(a*x + b*y + d)/c + (-a/c)

=    z
i

+ (-a/c)

Therefore, we see that the next z value on a horizontal run is simply the previous z value
plus the constant term (-a/c). Therefore, we have just cut down the z interpolation to a
single addition per pixel. Of course, we still need to compute the very first z value of each
line, but this can be done incrementally, because the change in y each line is 1.0.
Therefore, carrying out the same incremental calculations on z, we get the following calcu-
lation.

Z As a Function of Y
Noting that

z
i

= -(a*x + b*y + d)/c

then

z
i+1

= -(a*x+b*(y+1) + d)/c

= -(a*x + b*y + b + d)/c

= -(a*x + B*y + d)/c + (-b/c)

=    z
i

+ (-b/c)

which states that as y is incremented down one line, the new value of z is equal to the old
value at the beginning of the last line plus the constant (-b/c). Figure 11.5 shows the
relationship between both of the incremental calculations and the scan conversion of a
polygon.

Although using the plane equation directly to compute the z values of the polygon is
correct, there are two reasons not to do it: It’s only correct in object space (I will revisit
this concept later), and we can compute the z values just as easily with interpolation. Just
as we interpolated the intensity levels of the three corners of a triangle to Gouraud shade
it, or used the texture coordinates to affine texture map it, we can do the same thing with
the z values!
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FIGURE 11.5 The planar-based incremental calculations.

Z Interpolation
Take a look at Figure 11.6, which shows the setup we’re going to work from for the
example. You will notice that the triangle has a flat top, and the calculations are similar
for the flat bottom, so we will only derive the flat top version and the final software
implementation will handle both.

The interpolation equations for the values of z_left, z_right, and z_middle are

z_left = ((y3-y)*z1 + (y-y1)*z3)/(y3-y1);

z_right = ((y3-y)*z2 + (y-y1)*z3)/(y3-y1);

z_middle = ((xe - x)*z_left + (x-xs)*z_right)/(xe-xs);

which are a little complex, to say the least, because they are not incremental. We can
easily derive versions of these equations that are incremental. First, let’s find an incremen-
tal version of z_middle for changes in x:
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z_middle
i+1

= ((xe-x-1)*z_left + (x+1-xs)*z_right)/(xe-xs)

= ((xe-x)*z_left -z_left +

(x-xs)*z_right + z_right)/(xe-xs)

= ((xe-x)*z_left + (x-xs)*z_right +

z_right-z_left)/(xe-xs)

= ((xe-x)*z_left + (x-xs)*z_right)/(xe-xs) +

(z_right-z_left)/(xe-xs)

= z_middle
i
+ (z_right-z_left)/(xe-xs)
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FIGURE 11.6 The setup for interpolating z.

If we let delta_zx be equal to the constant (z_right-z_left)/(xe-xs), the next z value
pixel to the right of the previous pixel scan-converted is simply the last z value plus
delta_zx. Or in other words:

z_middle
i+1

= z_middle
i
+ delta_zx
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We have again succeeded at finding an algorithm that yields the next value with a single
addition. But we still have the problem of determining z_right and z_left for each scan-
line, however. Again, we can apply the forward differencing and come up with an incre-
mental algorithm based on the fact that each scanline differs by a change in y of 1.0.
Foregoing the long version of the derivation, the results of the calculations are

z_left
i+1

= z_left
i
+ (z3-z1)/(y3-y1)

and

z_right
i+1

= z_right
i
+ (z3-z2)/(y3-y1)

If we let the constants delta_zyl = (z3-z1)/(y3-y1) and delta_zyr = (z3-z2)/(y3-y1),
the incremental formulas for z_left and z_right simplify to

z_left
i+1

= z_left
i
+ delta_zyl

and

z_right
i+1

= z_right
i
+ delta_zyr

which states that the new values of z_right and z_left can be found with a single addi-
tion each per scanline. Pretty cool, huh?

All right, now that we have the interpolation equations, all we need to do is work them
into a new triangle scan converter along with the physical Z-buffer, and we’re in business.
Before we get too ahead of ourselves, I want to bring up a couple of things. First, the previ-
ous derivation is basically standard linear interpolation, and thus we don’t need to do
anything new to the texture mapper or Gouraud shader. Both functions already linearly
interpolate values across the triangles, so we can just add one more value to interpolate—
the z value—and be done with it. Therefore, the previous derivation is good if you want to
start all over, but it’s not needed because we already have a code base. However, the more
subtle detail that I have been working up to is this: Z-buffering as we have derived it is
wrong! Well, sorta … <BG>.

Z-Buffering Problems and 1/Z Buffering
The reason that our current z-buffering algorithm will be incorrect is that we have been
working in world or camera coordinates thus far. We are using (x,y,z) coordinates of trian-
gles and forgetting that we have already projected the triangles, and hence are working
with projected (x',y') coordinates in screen space! This is a major problem. Take a look at
Figure 11.7 to see what I am talking about.

It does us no good to interpolate across a triangle in 3D space, because we need to draw
2D triangles based on the projection equations:

x_screen = d*x/z

y_screen = d*y/z
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FIGURE 11.7 Screen space Z-interpolation is incorrect.

If you look at Figure 11.7, you see that we’re interpolating the z values from the original
3D triangle, but using the projected 2D (x_screen and y_screen) coordinates. The result is
that the z values are not linear in screen space, and there is Z-buffer artifacting, just as we
found with Gouraud shading and affine texture mapping. However, it’s not that bad with
Gouraud shading, and with affine texture mapping, we can live with it if the polygons are
reasonably small and parallel to the viewplane. Z-buffering by interpolating the z values
from the 3D triangle based on the (x,y) values of the projected triangle will have the same
effect. We will end up not correctly computing the z values. You can see this in Figure
11.7. The rays from each one of the polygons’ intersections in screen space linearly inter-
polate the x value down the screen, but those same rays, when traced back to the original
un-projected polygon edge, are sampling non-linearly. In fact, they are sampling at a 1/z
rate. I will show the math for this in more detail when we implement perspective-correct
texture mapping, but for now suffice to say that z is not linear in screen space, but 1/z is.

So, why interpolate z across the polygon? Why not interpolate 1/z because it is linear in
screen space? Good idea—that’s exactly what we’ll do, but later. Right now we are going to
interpolate linearly in z, and suck up the distortion, because it turns out that the Z-buffer
will still work fine. However, when we get to perspective-correct texture mapping, we will
switch to 1/z-buffering and then use the 1/z values for the texture mapping coordinate
computation and kill two birds with one stone! For now let’s keep it simple—adding z-
buffering is enough for one code module.
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A Sample Interpolation of Both Z and 1/Z
Now that you know the reasoning behind sticking with a standard Z-buffer and the advan-
tages of the 1/z-buffer, let’s run through an example so we know it cold. John Carmack
once said (and I am paraphrasing) that the one piece of advice he can give anyone is

To know it cold, have a deep understanding of the fundamentals.

This has always been my philosophy, too. To this end, I will write it down, graph it, chart
it, test it, code it, whatever, and make sure I get it. That’s how the feeling of “now I get it”
happens. Otherwise, you have an idea of how something works, but not exactly. Anyway,
let’s try a simple example and see what happens with z-buffering and 1/z-buffering.

In Figure 11.8 we see a typical perspective projection setup. The vertical axis is y, the hori-
zontal is z, and x is coming out of the paper. The viewing distance is 2, and we will
assume for simplicity’s sake that the x value of all points is 0; that is, this polygon is in the
x = 0 plane.

To begin with, we have a triangle that we want to project, rasterize, and z-buffer. The first
edge up for processing is p0(0,12,4) -> p1(0,5,7). The projected points on the viewplane at
d = 2 are p0'(0,y0',0) -> p1'(0,y1',0). We of course need to calculate the y0' and y1' values,
but we know that the x and z components are both 0, because both are in the x = 0 plane
and the projections are 2D—so there is no z, or we can say it’s 0. In any case, here’s the
fun part: We’re going calculate the screen-projected values of p0' and p1', then we’re
going to use them to interpolate to find pa', pb', and the linearly projected pa*, pb*
values that are incorrect, as you will see shortly. Let’s begin with tabulating what we know:

p0 = (0,12,4), p1 = (0,5,7)

Then perspective-projecting them with the formula

y’ = (d/(d+z))*y

Note: We would do the same with x, but for this example we assume x = 0.

p0’ = (0,(2/(2+4))*12,0) = (0, 4, 0)

p1’ = (0,(2/(2+7))*5, 0) = (0, 1.111,0)

However, we are going to linearly interpolate the z values based on these projected points,
so we are going to assign the unprojected z values to the zeroed out z values in p0' and
p1':

p0’ = (0, 4, 4)

p1’ = (0, 1.111, 7)

Now we are ready to interpolate, so let’s compute dy and dz:

dy = p1’(y) – p0’(y) = (1.11 – 4.0) = -2.89

dz = p1’(z) – p0’(z) = (7 – 4) = 3
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FIGURE 11.8 Sample perspective projection and z-interpolation error analysis.

Therefore, to rasterize the strip in screen space from p0' -> p1', we would simply draw
pixels from p0' to p1' one at a time, but each time we decrement 1.0 pixel rows to the
next lower value of y. We would interpolate z by the value of dz/dy; that is, the change in
z per the change in y:

dz/dy = (3)/(-2.89) = -1.03

This is the magic number that shows how linear interpolation fails. We start at p0'(0,4) in
screen space and then draw three pixels. Table 11.1 shows the action step by step.
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TABLE 11.1 The z-Interpolation Example 1

Iteration x y z

[0] Start x = 0 y = 4 z = 4

[1] dy = -1, dz/dy = -1.03 x = 0 y = 3 z = 4+1.03 = 5.03

[2] dy = -1, dz/dy = -1.03 x = 0 y = 2 z = 5.03+1.03 = 6.06

[3] dy = -1, dz/dy = -1.03 x = 0 y = 1 z = 6.06+1.03 = 7.09

Although we went a little farther than y = 1.1, this is okay. Remember, in a real rasterizer,
our filling convention would have stopped us, but I wanted to complete the step so we
had enough samples. In any case, the point is this: If you look at Figure 11.8, the rays
from pa and pb to pa' and pb' are the correct interpolations for perspective. This is easy
with graph paper, but our linear interpolations at pa* and pb* are way off! This is the
linear interpolation causing errors for us, because the sample points are linear. The error
will die down as the polygon line is increasingly parallel to the viewing plane, and
increase as it becomes more skewed.

The problem is really simple if you look at it this way: how can adding a constant value
(in this case, dz/dy = -1.03) sample the z value correctly when the relationship from world
coordinates to screen coordinates is nonlinear (the division by z makes it that way)? It
can’t. We need to sample the z value based on something that is linear in screen space,
such as 1/z, then the projection and interpolation in effect cancel out and then change
linearly (via a multiplication constant) with each other.

In any event, I hope you are starting to see that straight z interpolation is incorrect. I bet
that if you crack open 10 3D graphics books, they will all do this wrong, or more correctly,
not explain this little detail. Now let’s try the same experiment, but interpolate 1/z
instead. As before, let’s start with our points:

p0’ = (0, 4, 4)

p1’ = (0, 1.11, 7)

But with 1/z as the last coordinate, we get

p0’=(0,4,0.25)

p1’=(0,1.11,.142)

Now we are ready to interpolate, so let’s compute dy and dz (where we are using 1/z
values instead of z values):

dy = p1’(y) – p0’(y) = (1.11 – 4.0) = -2.89

dz = p1’(z) – p0’(z) = (1/7 – 1/4) = -.107

Once again, to rasterize the strip in screen space from p0' -> p1', we would simply draw
pixels from p0' to p1' one at a time, but each time we decrement 1.0 pixel rows to the
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next lower value of y (subtracting 1.0 in this case). We would interpolate z by the value of
dz/dy; that is, the change in z per the change in y:

dz/dy = (-.107)/(-2.89) = 0.037

This number again illustrates linear interpolation fails. We start at p0'(0,4) in screen space
and then draw three pixels. Table 11.2 shows the action step by step.

TABLE 11.2 The z-Interpolation Example 2

Iteration x y z

[0] Start x = 0 y = 4 z = 1/4 = 0.25

[1] dy = -1, dz/dy = -0.037 x = 0 y = 3 z = 0.25-.037 = 0.213

[2] dy = -1, dz/dy = -0.037 x = 0 y = 2 z = .213-.037 = 0.176

[3] dy = -1, dz/dy = -0.037 x = 0 y = 1 z = 0.176+.037 = 0.139

Which is amazingly correct! Although we undershot the last value a bit, this occurred
because we rasterized a little too much. If we had rasterized exactly 2.89 pixels rather than
3.0, we would have ended at a 1/z value of exactly 0.142, which would have locked us on
the end 1/z value of p1'.

Z-buffering makes sense, but how do we use 1/z to compare and update our Z-buffer? We
simply flip the sign of our comparison operator. That is, if 1/z is greater than the current
1/z-buffer value, we update the 1/z-buffer and write the pixel—easy!

Creating the Z-Buffer System
Well, enough theory—I’m going nuts with all these little numbers! Let’s implement the Z-
buffer, shall we? We need some memory storage, the size of the Z-buffer, maybe some flags
or attributes to define some of its characteristics, and that’s about it. Here’s what I came up
with for a first version:

// defines for zbuffer

#define ZBUFFER_ATTR_16BIT  16

#define ZBUFFER_ATTR_32BIT  32

// structure for zbuffer

typedef struct ZBUFFERV1_TYP

{

int attr;    // attributes of zbuffer

UCHAR *zbuffer; // ptr to storage

int width;   // width in zpixels

int height;   // height in zpixels

int sizeq;   // total size in QUADs

// of zbuffer

} ZBUFFERV1, *ZBUFFERV1_PTR;
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This type has storage for the Z-buffer, tracks its size in “words,” and its total size in 32-bit
QUADS. The width and height fields represent the general width and height of the Z-
buffer, but sizeq is the actual number of QUADS (each QUAD is four bytes). Also, there is
an attribute field attr, which at this point only tracks whether the Z-buffer is 16- or 32-
bit. Right now, I only foresee us using 32-bit Z-buffers, so this isn’t needed as of yet; but
later when we optimize, we might need the option. Anyway, we only need to be able to
do a few things to the Z-buffer:

• Create the Z-buffer.

• Destroy the Z-buffer.

• Clear/fill the Z-buffer with a value (really fast).

Here’s the function that creates a Z-buffer:

int Create_Zbuffer(ZBUFFERV1_PTR zb, // pointer to a zbuffer object

int width,   // width

int height,   // height

int attr)    // attributes of zbuffer

{

// this function creates a zbuffer with the sent width, height,

// and bytes per word, in fact the the zbuffer is totally linear

// but this function is nice so we can create it with some

// intelligence

// is this a valid object

if (!zb)

return(0);

// is there any memory already allocated

if (zb->zbuffer)

free(zb->zbuffer);

// set fields

zb->width = width;

zb->height = height;

zb->attr  = attr;

// what size zbuffer 16/32 bit?

if (attr & ZBUFFER_ATTR_16BIT)

{

// compute size in quads

zb->sizeq = width*height/2;

// allocate memory

if ((zb->zbuffer = (UCHAR *)malloc(width * height * sizeof(SHORT))))
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return(1);

else

return(0);

} // end if

else

if (attr & ZBUFFER_ATTR_32BIT)

{

// compute size in quads

zb->sizeq = width*height;

// allocate memory

if ((zb->zbuffer = (UCHAR *)malloc(width * height * sizeof(INT))))

return(1);

else

return(0);

} // end if

else

return(0);

} // end Create_Zbuffer

The function simply takes a pointer to a ZBUFFERV1 object that you want to create, along
with the width, height, and attributes. For example, to create an 800×600 32-bit Z-buffer,
you would make the call

ZBUFFERV1 zbuffer; // storage for our Z buffer

Create_Zbuffer(&zbuffer, 800, 600, ZBUFFER_ATTR_32BIT);

Here’s the interesting part: The ZBUFFERV1 Z-buffer storage is really typeless. It’s of the
UCHAR type, so you can cast it to anything you like—int, float, and so on, in your algo-
rithms. For the rasterizers we are going to write, we will cast the storage to unsigned inte-
gers, but you are free to do as you want.

The next function we need is to clear/fill the Z-buffer with a value. This must be done
each frame just as the frame buffer is cleared. Usually you will fill the Z-buffer with the
largest value you possibly expect for your numeric range, or infinity for all intents and
purposes. Here’s the function:

void Clear_Zbuffer(ZBUFFERV1_PTR zb, UINT data)

{

// this function clears/sets the zbuffer to a value, the filling

// is ALWAYS performed in QUADS, thus if your zbuffer is a 16-bit

// zbuffer then you must build a quad that has two values each
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// the 16-bit value you want to fill with, otherwise just send

// the fill value casted to a UINT

Mem_Set_QUAD((void *)zb->zbuffer, data, zb->sizeq);

} // end Clear_Zbuffer

You will notice that the function uses the call to a function Mem_Set_QUAD(). This is actu-
ally an inline assembler function located in T3DLIB1.H, as shown in the following:

inline void Mem_Set_QUAD(void *dest, UINT data, int count)

{

// this function fills or sets unsigned 32-bit aligned memory

// count is number of quads

_asm

{

mov edi, dest  ; edi points to destination memory

mov ecx, count ; number of 32-bit words to move

mov eax, data  ; 32-bit data

rep stosd    ; move data

} // end asm

} // end Mem_Set_QUAD

I am using asm so I can clear the Z-buffer as fast as possible (actually, I can do better with
SIMD instructions). Of course, when you call the function to clear the Z-buffer, you must
cast your data without conversion into an unsigned int. Also, if your Z-buffer is 16-bit,
you must create two maximum value words and concatenate them, as shown in Figure 11.9.
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For example, if you’re using a 16-bit Z-buffer, you can’t simply send a 32-bit value version
of your maximum 16-bit infinity value. You must build one up, so that as the QUAD
memory fills memory, the algorithm fills adjacent cells:

USHORT zmax16 = 10000; // say your max is 10000

unsigned int zdata =

( ( (unsigned int)zmax16 ) << 16 | (unsigned int)zmax16);

As another example, here’s how you would set each cell in the 32-bit Z-buffer to the 32-bit
fixed-point value of 32000:

Clear_Zbuffer(&zbuffer, (32000 << FIXP16_SHIFT));

Finally, to destroy the Z-buffer and release the memory call, you would use this function:

int Delete_Zbuffer(ZBUFFERV1_PTR zb)

{

// this function deletes and frees the memory of the zbuffer

// test for valid object

if (zb)

{

// delete memory and zero object

if (zb->zbuffer)

free(zb->zbuffer);

// clear memory

memset((void *)zb,0, sizeof(ZBUFFERV1));

return(1);

} // end if

else

return(0);

} // end Delete_Zbuffer

Simply call Delete_ZBuffer() with a pointer to the Z-buffer object you want to destroy
and it will release the memory and clear the object out, too.

TIP

I abstracted Z-buffers into the type ZBUFFERV1 so that we can potentially have multiple Z-buffers
later and try some special effects.
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Adding Z-Buffer Support to the Rasterizers
To add Z-buffer support to all the rasterizers, first we need to define which rasterizers need
support. Currently we have the following rasterizers:

• Class 1: Flat/constant-shaded

• Class 2: Gouraud-shaded

• Class 3: Texture-mapped with constant shading

• Class 4: Texture-mapped with flat shading

The class 1 rasterizers are the oldest we have. In fact, they are from the original Tricks core
software, and work in mixed integer/floating-point rather than pure fixed-point. That isn’t
to say they are slower or faster, but simply different that the class 2–4 rasterizers, which all
are based on the same core rasterizer/interpolater. In one case, we interpolate colors (the
Gouraud shader), in another we interpolate texture coordinates (the texture mapper). So
the first decision we have to make is which rasterizers should we upgrade? Well, I want
them all! However, I want to rewrite the class 1 rasterizer that rasterizes flat/constant
shaded polygons because it has no interpolation capability, and it would be hard to force
z-buffering into it. Therefore we are going to redo all of them.

Now for the good news: Redoing them involves only about 10 lines of code each! Maybe a
little more, but not much. This is because all of them already have interpolations of two
or more variables—either RGB colors for the Gouraud shader, or texture coordinates for
the texture mappers. We just need to add the z values of each polygon, interpolate them,
add the Z-buffer logic in the inner loops, and we’re done. Let’s rewrite each function one
by one and go from there.

Updating the Flat Shader
Rewriting the flat/constant shader is the hardest of all because we have to completely redo
it, but I’m going to use the Gouraud shader as a base and take out the RGB interpolation,
use a single color for the pixels, and change one of the interpolants to the z values of each
vertex. To do this, we need a couple of things. First we need to make sure that the new
function (whatever we call it) is sent a polygon structure with the x,y, and z of each
vertex. If you recall, the current rasterizer calls omitted the z coordinates in the setup
before the calls to the rasterizer. Bring your attention to Draw_RENDERLIST4DV2_Solid16(),
which I have copied in the following from T3DLIB7.CPP:

void Draw_RENDERLIST4DV2_Solid16(RENDERLIST4DV2_PTR rend_list,

UCHAR *video_buffer,

int lpitch)

{

if (!(rend_list->poly_ptrs[poly]->state & POLY4DV2_STATE_ACTIVE) ||

(rend_list->poly_ptrs[poly]->state & POLY4DV2_STATE_CLIPPED ) ||

(rend_list->poly_ptrs[poly]->state & POLY4DV2_STATE_BACKFACE) )

continue; // move onto next poly
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// need to test for textured first, since a textured poly can either

// be emissive, or flat shaded, hence we need to call different

// rasterizers

if (rend_list->poly_ptrs[poly]->attr & POLY4DV2_ATTR_SHADE_MODE_TEXTURE)

{

// set the vertices

face.tvlist[0].x = (int)rend_list->poly_ptrs[poly]->tvlist[0].x;

face.tvlist[0].y = (int)rend_list->poly_ptrs[poly]->tvlist[0].y;

face.tvlist[0].u0 = (int)rend_list->poly_ptrs[poly]->tvlist[0].u0;

face.tvlist[0].v0 = (int)rend_list->poly_ptrs[poly]->tvlist[0].v0;

face.tvlist[1].x = (int)rend_list->poly_ptrs[poly]->tvlist[1].x;

face.tvlist[1].y = (int)rend_list->poly_ptrs[poly]->tvlist[1].y;

face.tvlist[1].u0 = (int)rend_list->poly_ptrs[poly]->tvlist[1].u0;

face.tvlist[1].v0 = (int)rend_list->poly_ptrs[poly]->tvlist[1].v0;

face.tvlist[2].x = (int)rend_list->poly_ptrs[poly]->tvlist[2].x;

face.tvlist[2].y = (int)rend_list->poly_ptrs[poly]->tvlist[2].y;

face.tvlist[2].u0 = (int)rend_list->poly_ptrs[poly]->tvlist[2].u0;

face.tvlist[2].v0 = (int)rend_list->poly_ptrs[poly]->tvlist[2].v0;

// assign the texture

face.texture = rend_list->poly_ptrs[poly]->texture;

// is this a plain emissive texture?

if (rend_list->poly_ptrs[poly]->attr & POLY4DV2_ATTR_SHADE_MODE_CONSTANT)

{

// draw the textured triangle as emissive

Draw_Textured_Triangle16(&face, video_buffer, lpitch);

} // end if

else

{

// draw as flat shaded

face.lit_color[0] = rend_list->poly_ptrs[poly]->lit_color[0];

Draw_Textured_TriangleFS16(&face, video_buffer, lpitch);

} // end else

} // end if

else

if ((rend_list->poly_ptrs[poly]->attr & POLY4DV2_ATTR_SHADE_MODE_FLAT) ||

(rend_list->poly_ptrs[poly]->attr & POLY4DV2_ATTR_SHADE_MODE_CONSTANT) )

{
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// draw the triangle with basic flat rasterizer

Draw_Triangle_2D2_16(rend_list->poly_ptrs[poly]->tvlist[0].x,

rend_list->poly_ptrs[poly]->tvlist[0].y,

rend_list->poly_ptrs[poly]->tvlist[1].x,

rend_list->poly_ptrs[poly]->tvlist[1].y,

rend_list->poly_ptrs[poly]->tvlist[2].x,

rend_list->poly_ptrs[poly]->tvlist[2].y,

rend_list->poly_ptrs[poly]->lit_color[0], 

video_buffer, lpitch);

} // end if

else

if (rend_list->poly_ptrs[poly]->attr & POLY4DV2_ATTR_SHADE_MODE_GOURAUD)

{

// {andre take advantage of the data structures later..}

// set the vertices

face.tvlist[0].x = (int)rend_list->poly_ptrs[poly]->tvlist[0].x;

face.tvlist[0].y = (int)rend_list->poly_ptrs[poly]->tvlist[0].y;

face.lit_color[0] = rend_list->poly_ptrs[poly]->lit_color[0];

face.tvlist[1].x = (int)rend_list->poly_ptrs[poly]->tvlist[1].x;

face.tvlist[1].y = (int)rend_list->poly_ptrs[poly]->tvlist[1].y;

face.lit_color[1] = rend_list->poly_ptrs[poly]->lit_color[1];

face.tvlist[2].x = (int)rend_list->poly_ptrs[poly]->tvlist[2].x;

face.tvlist[2].y = (int)rend_list->poly_ptrs[poly]->tvlist[2].y;

face.lit_color[2] = rend_list->poly_ptrs[poly]->lit_color[2];

// draw the gouraud shaded triangle

Draw_Gouraud_Triangle16(&face, video_buffer, lpitch);

} // end if gouraud

} // end for poly

} // end Draw_RENDERLIST4DV2_Solid16

The function has three main execution paths: flat/constant shaded polygons, Gouraud-
shaded, and texture-mapped, not necessarily in that order. For execution path, we set up
the function call and then call one of the following functions:

• Draw_Gouraud_Triangle16()—The standard Gouraud shader.

• Draw_Textured_Triangle16()—The constant-shaded texture mapper.

• Draw_Textured_TriangleFS16()—The flat-shaded texture mapper.

• Draw_Triangle_2D2_16()—The old flat/constant-shaded polygon rasterizer.
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The last one is where we will start, but basically we need to rewrite all of these, including
the Draw_RENDERLIST4DV2_Solid16() itself. Abracadabra! I’m done. Here’s the new func-
tion prototype for the flat/constant polygon rasterizer:

void Draw_Triangle_2DZB_16(POLYF4DV2_PTR face,  // ptr to face

UCHAR *_dest_buffer,  // pointer to video buffer

int mem_pitch,     // bytes per line

UCHAR *_zbuffer,    // pointer to z-buffer

int zpitch)      // bytes per line of zbuffer

This is different from the old one. The previous version didn’t take a POLYF4DV2_PTR; it
took explicit vertices and a color. However, now we need to unify the calling procedures,
so from now on all the rasterizers will have the same calling footprint. The only other
additions are pointers to the Z-buffer storage array, and the pitch in bytes of a single line
of the Z-buffer. It’s up to the rasterizer to access the Z-buffer correctly, and up to the caller
to make it big enough. Therefore, to call the function, you would do something like this:

// draw as constant shaded

face.lit_color[0] = rend_list->poly_ptrs[poly]->lit_color[0];

// set the vertices

face.tvlist[0].x = (int)rend_list->poly_ptrs[poly]->tvlist[0].x;

face.tvlist[0].y = (int)rend_list->poly_ptrs[poly]->tvlist[0].y;

face.tvlist[0].z = (int)rend_list->poly_ptrs[poly]->tvlist[0].z;

face.tvlist[1].x = (int)rend_list->poly_ptrs[poly]->tvlist[1].x;

face.tvlist[1].y = (int)rend_list->poly_ptrs[poly]->tvlist[1].y;

face.tvlist[1].z = (int)rend_list->poly_ptrs[poly]->tvlist[1].z;

face.tvlist[2].x = (int)rend_list->poly_ptrs[poly]->tvlist[2].x;

face.tvlist[2].y = (int)rend_list->poly_ptrs[poly]->tvlist[2].y;

face.tvlist[2].z = (int)rend_list->poly_ptrs[poly]->tvlist[2].z;

// draw the triangle with basic flat rasterizer

Draw_Triangle_2DZB_16(&face, video_buffer, lpitch,zbuffer,zpitch);

In this example, a polygon from the rendering list has its vertices copied into the trans-
port face. The color is set in lit_color[0] because flat/constant-shaded polys only need
that color defined. Finally, the call is made to rasterize into the sent video_buffer storage
with its pitch lpitch, along with the Z-buffer zbuffer and its pitch zpitch. This should all
look familiar—this is exactly how all the other rasterizers have been working since we
wrote the lighting/texture mapping modules.

That’s about it for the call to the Draw_Triangle_2DZB_16() function and its use. I can’t
list it out because it’s giant, but I am going to excerpt the line rasterizer so you can see the
Z-buffer code—it’s interesting:
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// point screen ptr to starting line

screen_ptr = dest_buffer + (ystart * mem_pitch);

// point zbuffer to starting line

z_ptr = zbuffer + (ystart * zpitch);

for (yi = ystart; yi<=yend; yi++)

{

// compute span endpoints

xstart = ((xl + FIXP16_ROUND_UP) >> FIXP16_SHIFT);

xend  = ((xr + FIXP16_ROUND_UP) >> FIXP16_SHIFT);

// compute starting points for u,v,w interpolants

zi = zl + FIXP16_ROUND_UP;

// compute u,v interpolants

if ((dx = (xend - xstart))>0)

{

dz = (zr - zl)/dx;

} // end if

else

{

dz = (zr - zl);

} // end else

// draw span

for (xi=xstart; xi<=xend; xi++)

{

// test if z of current pixel is nearer than current z buffer value

if (zi < z_ptr[xi])

{

// write textel 5.6.5

screen_ptr[xi] = color;

// update z-buffer

z_ptr[xi] = zi;

} // end if

// interpolate z

zi+=dz;

} // end for xi

// interpolate x,z along right and left edge

xl+=dxdyl;
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zl+=dzdyl;

xr+=dxdyr;

zr+=dzdyr;

// advance screen ptr

screen_ptr+=mem_pitch;

// advance z-buffer ptr

z_ptr+=zpitch;

} // end for y

The preceding code basically draws the spans from one y value to another. Notice that I
have highlighted the Z-buffer code, as it literally follows suit with what we have been
talking about. First the current z value is compared with the value in the Z-buffer:

if (zi < z_ptr[xi])

{

If this is true, the pixel is rasterized:

// write textel 5.6.5

screen_ptr[xi] = color;

And the Z-buffer is updated:

// update z-buffer

z_ptr[xi] = zi;

} // end if

TIP

Notice that even after I determine that the Z-buffer should be updated, I do not update it with
the value of zi. This is an optimization trick. It’s usually a bad idea to immediately read and then
write the same value—better to put something in between and then write the value.

That is the meat of the entire flat/constant shader. The rest are all the same; I simply add
code to interpolate z down the triangles, and then perform the z comparisons to update
the Z-buffer.

Updating the Gouraud Shader
The Gouraud shader was a snap to add z-buffering to because we already had three inter-
polants for R, G, and B. It was just a matter of text additions following the exact interpola-
tion code. Here’s the prototype of the new rasterizer. It only differs by name and the
addition of the Z-buffer and pitch:
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void Draw_Gouraud_TriangleZB16(POLYF4DV2_PTR face,  // ptr to face

UCHAR *_dest_buffer,  // pointer to video buffer

int mem_pitch,     // bytes per line, 320, 640 etc.

UCHAR *_zbuffer,    // pointer to z-buffer

int zpitch)      // bytes per line of zbuffer

Calling the function is done exactly as before, except that the additional parameters of the
pointer to the Z-buffer storage and the pitch of the Z-buffer in bytes per line must be sent
(the same as the flat/constant shader). Now let’s look inside the Gouraud shader and see
what the inner loop looks like with Z-buffer support:

screen_ptr = dest_buffer + (ystart * mem_pitch);

// point zbuffer to starting line

z_ptr = zbuffer + (ystart * zpitch);

for (yi = ystart; yi<=yend; yi++)

{

// compute span endpoints

xstart = ((xl + FIXP16_ROUND_UP) >> FIXP16_SHIFT);

xend  = ((xr + FIXP16_ROUND_UP) >> FIXP16_SHIFT);

// compute starting points for u,v,w interpolants

ui = ul + FIXP16_ROUND_UP;

vi = vl + FIXP16_ROUND_UP;

wi = wl + FIXP16_ROUND_UP;

zi = zl + FIXP16_ROUND_UP;

// compute u,v interpolants

if ((dx = (xend - xstart))>0)

{

du = (ur - ul)/dx;

dv = (vr - vl)/dx;

dw = (wr - wl)/dx;

dz = (zr - zl)/dx;

} // end if

else

{

du = (ur - ul);

dv = (vr - vl);

dw = (wr - wl);

dz = (zr - zl);

} // end else

///////////////////////////////////////////////////////////////////////
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// test for x clipping, LHS

if (xstart < min_clip_x)

{

// compute x overlap

dx = min_clip_x - xstart;

// slide interpolants over

ui+=dx*du;

vi+=dx*dv;

wi+=dx*dw;

zi+=dx*dz;

// reset vars

xstart = min_clip_x;

} // end if

// test for x clipping RHS

if (xend > max_clip_x)

xend = max_clip_x;

///////////////////////////////////////////////////////////////////////

// draw span

for (xi=xstart; xi<=xend; xi++)

{

// test if z of current pixel is nearer than current z buffer value

if (zi < z_ptr[xi])

{

// write textel assume 5.6.5

screen_ptr[xi] = ((ui >> (FIXP16_SHIFT+3)) << 11) +

((vi >> (FIXP16_SHIFT+2)) << 5) +

(wi >> (FIXP16_SHIFT+3));

// update z-buffer

z_ptr[xi] = zi;

} // end if

// interpolate u,v,w,z

ui+=du;

vi+=dv;

wi+=dw;

zi+=dz;

} // end for xi

CHAPTER 11 Depth Buffering and Visibility1118

15 0672318350 CH11  05•02•2003  2:53 PM  Page 1118



// interpolate u,v,w,z,x along right and left edge

xl+=dxdyl;

ul+=dudyl;

vl+=dvdyl;

wl+=dwdyl;

zl+=dzdyl;

xr+=dxdyr;

ur+=dudyr;

vr+=dvdyr;

wr+=dwdyr;

zr+=dzdyr;

// advance screen ptr

screen_ptr+=mem_pitch;

// advance z-buffer ptr

z_ptr+=zpitch;

} // end for y

Again, I have highlighted the Z-buffer comparison. What’s interesting now is that if we
don’t write the pixel, there is actually some savings. Remember, if this had been the old
rasterizer, the pixel is rendered and the pixel plot code is executed no matter what.
However, in the case of the Z-buffer version, we update the Z-buffer and write the pixel
only if the current z value is less than what’s currently in the Z-buffer; therefore, we are
doing more work to z-buffer the polygon, but we are saving time when the Z-buffer
comparison fails. Also, notice that to support the Z-buffer interpolation, we basically have
two more additions per outer loop:

zl+=dzdyl;

zr+=dzdyr;

And only one addition in the span rasterization inner loop:

zi+=dz;

So all in all, this Z-buffer stuff isn’t that bad! In fact, when you see the demos, you will be
amazed that it’s basically as fast as without a Z-buffer. But we get pixel-perfect rendering!

Updating the Texture Mappers
As you recall, we have two texture mappers. One handles constant-shaded polygons—that
is, with no lighting at all; the texture map is simply stretched on the polygon.

The other handles flat-shaded textured polygons. This texture mapper, with the FS name
appended to it, actually lights the entire polygon using RGB white (255,255,255) as the

Creating the Z-Buffer System 1119

11

15 0672318350 CH11  05•02•2003  2:53 PM  Page 1119



base color, and then uses the resulting color to modulate the texture map on a pixel-by-
pixel basis.

The Constant-Shaded Texture Mapper We need to add Z-buffer support to both. Once
again, this is a snap. We just add another interpolant to each, along with the Z-buffer
comparison in the inner loop, and we’re done! Here’s the new prototype of the constant-
shaded texture mapper:

void Draw_Textured_TriangleZB16(POLYF4DV2_PTR face, // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch,    // bytes per line, 320, 640 etc.

UCHAR *_zbuffer,   // pointer to z-buffer

int zpitch)      // bytes per line of zbuffer

The function is called as before; however, the z values of the transport face must be
assigned, and of course the pointer to the Z-buffer, along with its bytes per line pitch,
must be sent. Once again here is the Z-buffer code from the line rasterizer with the Z-
buffer comparison highlighted:

// point screen ptr to starting line

screen_ptr = dest_buffer + (ystart * mem_pitch);

// point zbuffer to starting line

z_ptr = zbuffer + (ystart * zpitch);

for (yi = ystart; yi<=yend; yi++)

{

// compute span endpoints

xstart = ((xl + FIXP16_ROUND_UP) >> FIXP16_SHIFT);

xend  = ((xr + FIXP16_ROUND_UP) >> FIXP16_SHIFT);

// compute starting points for u,v interpolants

ui = ul + FIXP16_ROUND_UP;

vi = vl + FIXP16_ROUND_UP;

zi = zl + FIXP16_ROUND_UP;

// compute u,v interpolants

if ((dx = (xend - xstart))>0)

{

du = (ur - ul)/dx;

dv = (vr - vl)/dx;

dz = (zr - zl)/dx;

} // end if

else

{

du = (ur - ul);
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dv = (vr - vl);

dz = (zr - zl);

} // end else

///////////////////////////////////////////////////////////////////////

// test for x clipping, LHS

if (xstart < min_clip_x)

{

// compute x overlap

dx = min_clip_x - xstart;

// slide interpolants over

ui+=dx*du;

vi+=dx*dv;

zi+=dx*dz;

// reset vars

xstart = min_clip_x;

} // end if

// test for x clipping RHS

if (xend > max_clip_x)

xend = max_clip_x;

///////////////////////////////////////////////////////////////////////

// draw span

for (xi=xstart; xi<=xend; xi++)

{

// test if z of current pixel is nearer than current z buffer value

if (zi < z_ptr[xi])

{

// write textel

screen_ptr[xi] = textmap[(ui >> FIXP16_SHIFT) +

((vi >> FIXP16_SHIFT) << texture_shift2)];

// update z-buffer

z_ptr[xi] = zi;

} // end if

// interpolate u,v,z

ui+=du;

vi+=dv;
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zi+=dz;

} // end for xi

// interpolate u,v,x along right and left edge

xl+=dxdyl;

ul+=dudyl;

vl+=dvdyl;

zl+=dzdyl;

xr+=dxdyr;

ur+=dudyr;

vr+=dvdyr;

zr+=dzdyr;

// advance screen ptr

screen_ptr+=mem_pitch;

// advance zbuffer ptr

z_ptr+=zpitch;

} // end for y

It’s almost criminal that adding Z-buffer support is so easy! Oh well, not everything has to
be as hard as writing a real-time colored lighting engine <BG>. Anyway, once again not a
single change, other than the addition of a couple of interpolants in both the inner and
outer loops of the rasterizer to interpolate the z values of the vertices.

The Flat-Shaded Texture Mapper Now let’s take a look at the flat-shaded texture mapper.
Actually, the most complex shader code-wise is the z-buffered Gouraud shader, but techni-
cally this is the most complex. We just need a new function that enables us to pass the Z-
buffer and its pitch. Here’s the prototype:

void Draw_Textured_TriangleFSZB16(POLYF4DV2_PTR face, // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch,    // bytes per line, 320, 640 etc.

UCHAR *_zbuffer,   // pointer to z-buffer

int zpitch)     // bytes per line of zbuffer

Everything works the same as before—just make sure to call the function with valid z
coordinates for each polygon, and of course send in the pointer to the Z-buffer memory
and its pitch in bytes per line. Finally, here’s the code for the rasterization loop with Z-
buffer support (I have highlighted the Z-buffer code):

// point screen ptr to starting line

screen_ptr = dest_buffer + (ystart * mem_pitch);
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// point zbuffer to starting line

z_ptr = zbuffer + (ystart * zpitch);

for (yi = ystart; yi<=yend; yi++)

{

// compute span endpoints

xstart = ((xl + FIXP16_ROUND_UP) >> FIXP16_SHIFT);

xend  = ((xr + FIXP16_ROUND_UP) >> FIXP16_SHIFT);

// compute starting points for u,v interpolants

ui = ul + FIXP16_ROUND_UP;

vi = vl + FIXP16_ROUND_UP;

zi = zl + FIXP16_ROUND_UP;

// compute u,v interpolants

if ((dx = (xend - xstart))>0)

{

du = (ur - ul)/dx;

dv = (vr - vl)/dx;

dz = (zr - zl)/dx;

} // end if

else

{

du = (ur - ul);

dv = (vr - vl);

dz = (zr - zl);

} // end else

// draw span

for (xi=xstart; xi<=xend; xi++)

{

// test if z of current pixel is nearer than current z buffer value

if (zi < z_ptr[xi])

{

// write textel

// get textel first

textel = textmap[(ui >> FIXP16_SHIFT) +

((vi >> FIXP16_SHIFT) << texture_shift2)];

// extract rgb components

r_textel = ((textel >> 11)    );

g_textel = ((textel >> 5) & 0x3f);

b_textel =  (textel    & 0x1f);
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// modulate textel with lit background color

r_textel*=r_base;

g_textel*=g_base;

b_textel*=b_base;

// finally write pixel, note that we did the math such

// that the results are r*32, g*64, b*32

// hence we need to divide the results by 32,64,32 respetively,

// BUT since we need to shift the results to fit into the

// destination 5.6.5 word, we can take advantage of the shifts

// and they all cancel out for the most part, but we will need

// logical anding, we will do it later when we optimize more...

screen_ptr[xi] = ((b_textel >> 5) +

((g_textel >> 6) << 5) +

((r_textel >> 5) << 11));

// update z-buffer

z_ptr[xi] = zi;

} // end if

// interpolate u,v,z

ui+=du;

vi+=dv;

zi+=dz;

} // end for xi

// interpolate u,v,x along right and left edge

xl+=dxdyl;

ul+=dudyl;

vl+=dvdyl;

zl+=dzdyl;

xr+=dxdyr;

ur+=dudyr;

vr+=dvdyr;

zr+=dzdyr;

// advance screen ptr

screen_ptr+=mem_pitch;

// advance zbuffer ptr

z_ptr+=zpitch;

} // end for y
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This inner loop is rather complex, and not plotting pixels when the Z-buffer comparison
fails is a good thing. We can avoid a lot of code in that case, because we jump over this
mess of calculations:

// write textel

// get textel first

textel = textmap[(ui >> FIXP16_SHIFT) +

((vi >> FIXP16_SHIFT) << texture_shift2)];

// extract rgb components

r_textel = ((textel >> 11)    );

g_textel = ((textel >> 5) & 0x3f);

b_textel =  (textel    & 0x1f);

// modulate textel with lit background color

r_textel*=r_base;

g_textel*=g_base;

b_textel*=b_base;

screen_ptr[xi] = ((b_textel >> 5) +

((g_textel >> 6) << 5) +

((r_textel >> 5) << 11));

// update z-buffer

z_ptr[xi] = zi;

The interesting thing is that as we make more and more complex rasterizers, we think that
we are going to slow them down, but we end up speeding them up, because when they
are put to use in a real game world, the losses are made up by the gains. In this case, not
rasterizing pixels that aren’t drawn because of their position in the Z-buffer actually ends
up averaging out the performance, and once again we get pixel-perfect rendering for free.

Updating the Rendering List Function
The final function we need to complete the Z-buffer functionality is the rendering list
function, which takes a rendering list and makes the calls to the appropriate functions
based on the type of polygons in the list. Here’s the new version of render list drawing
function:

void Draw_RENDERLIST4DV2_SolidZB16(RENDERLIST4DV2_PTR rend_list,

UCHAR *video_buffer,

int lpitch,

UCHAR *zbuffer,

int zpitch)

{

// 16-bit version

// this function “executes” the render list or in other words
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// draws all the faces in the list, the function will call the

// proper rasterizer based on the lighting model of the polygons

POLYF4DV2 face; // temp face used to render polygon

// at this point, all we have is a list of polygons and it’s time

// to draw them

for (int poly=0; poly < rend_list->num_polys; poly++)

{

// render this polygon if and only if it’s not clipped, not culled,

// active, and visible, note however the concecpt of “backface” is

// irrelevant in a wire frame engine though

if (!(rend_list->poly_ptrs[poly]->state & POLY4DV2_STATE_ACTIVE) ||

(rend_list->poly_ptrs[poly]->state & POLY4DV2_STATE_CLIPPED ) ||

(rend_list->poly_ptrs[poly]->state & POLY4DV2_STATE_BACKFACE) )

continue; // move onto next poly

// need to test for textured first, since a textured poly can either

// be emissive, or flat shaded, hence we need to call different

// rasterizers

if (rend_list->poly_ptrs[poly]->attr & POLY4DV2_ATTR_SHADE_MODE_TEXTURE)

{

// set the vertices

face.tvlist[0].x = (int)rend_list->poly_ptrs[poly]->tvlist[0].x;

face.tvlist[0].y = (int)rend_list->poly_ptrs[poly]->tvlist[0].y;

face.tvlist[0].z = (int)rend_list->poly_ptrs[poly]->tvlist[0].z;

face.tvlist[0].u0 = (int)rend_list->poly_ptrs[poly]->tvlist[0].u0;

face.tvlist[0].v0 = (int)rend_list->poly_ptrs[poly]->tvlist[0].v0;

face.tvlist[1].x = (int)rend_list->poly_ptrs[poly]->tvlist[1].x;

face.tvlist[1].y = (int)rend_list->poly_ptrs[poly]->tvlist[1].y;

face.tvlist[1].z = (int)rend_list->poly_ptrs[poly]->tvlist[1].z;

face.tvlist[1].u0 = (int)rend_list->poly_ptrs[poly]->tvlist[1].u0;

face.tvlist[1].v0 = (int)rend_list->poly_ptrs[poly]->tvlist[1].v0;

face.tvlist[2].x = (int)rend_list->poly_ptrs[poly]->tvlist[2].x;

face.tvlist[2].y = (int)rend_list->poly_ptrs[poly]->tvlist[2].y;

face.tvlist[2].z = (int)rend_list->poly_ptrs[poly]->tvlist[2].z;

face.tvlist[2].u0 = (int)rend_list->poly_ptrs[poly]->tvlist[2].u0;

face.tvlist[2].v0 = (int)rend_list->poly_ptrs[poly]->tvlist[2].v0;
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// assign the texture

face.texture = rend_list->poly_ptrs[poly]->texture;

// is this a plain emissive texture?

if (rend_list->poly_ptrs[poly]->attr & 

POLY4DV2_ATTR_SHADE_MODE_CONSTANT)

{

// draw the textured triangle as emissive

Draw_Textured_TriangleZB16(&face, video_buffer, 

lpitch,zbuffer,zpitch);

} // end if

else

{

// draw as flat shaded

face.lit_color[0] = rend_list->poly_ptrs[poly]->lit_color[0];

Draw_Textured_TriangleFSZB16(&face, video_buffer, 

lpitch,zbuffer,zpitch);

} // end else

} // end if

else

if ((rend_list->poly_ptrs[poly]->attr & POLY4DV2_ATTR_SHADE_MODE_FLAT) ||

(rend_list->poly_ptrs[poly]->attr & 

POLY4DV2_ATTR_SHADE_MODE_CONSTANT) )

{

// draw as constant shaded

face.lit_color[0] = rend_list->poly_ptrs[poly]->lit_color[0];

// set the vertices

face.tvlist[0].x = (int)rend_list->poly_ptrs[poly]->tvlist[0].x;

face.tvlist[0].y = (int)rend_list->poly_ptrs[poly]->tvlist[0].y;

face.tvlist[0].z = (int)rend_list->poly_ptrs[poly]->tvlist[0].z;

face.tvlist[1].x = (int)rend_list->poly_ptrs[poly]->tvlist[1].x;

face.tvlist[1].y = (int)rend_list->poly_ptrs[poly]->tvlist[1].y;

face.tvlist[1].z = (int)rend_list->poly_ptrs[poly]->tvlist[1].z;

face.tvlist[2].x = (int)rend_list->poly_ptrs[poly]->tvlist[2].x;

face.tvlist[2].y = (int)rend_list->poly_ptrs[poly]->tvlist[2].y;

face.tvlist[2].z = (int)rend_list->poly_ptrs[poly]->tvlist[2].z;

// draw the triangle with basic flat rasterizer

Draw_Triangle_2DZB_16(&face, video_buffer, lpitch,zbuffer,zpitch);
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} // end if

else

if (rend_list->poly_ptrs[poly]->attr & POLY4DV2_ATTR_SHADE_MODE_GOURAUD)

{

// {andre take advantage of the data structures later..}

// set the vertices

face.tvlist[0].x = (int)rend_list->poly_ptrs[poly]->tvlist[0].x;

face.tvlist[0].y = (int)rend_list->poly_ptrs[poly]->tvlist[0].y;

face.tvlist[0].z = (int)rend_list->poly_ptrs[poly]->tvlist[0].z;

face.lit_color[0] = rend_list->poly_ptrs[poly]->lit_color[0];

face.tvlist[1].x = (int)rend_list->poly_ptrs[poly]->tvlist[1].x;

face.tvlist[1].y = (int)rend_list->poly_ptrs[poly]->tvlist[1].y;

face.tvlist[1].z = (int)rend_list->poly_ptrs[poly]->tvlist[1].z;

face.lit_color[1] = rend_list->poly_ptrs[poly]->lit_color[1];

face.tvlist[2].x = (int)rend_list->poly_ptrs[poly]->tvlist[2].x;

face.tvlist[2].y = (int)rend_list->poly_ptrs[poly]->tvlist[2].y;

face.tvlist[2].z = (int)rend_list->poly_ptrs[poly]->tvlist[2].z;

face.lit_color[2] = rend_list->poly_ptrs[poly]->lit_color[2];

// draw the gouraud shaded triangle

Draw_Gouraud_TriangleZB16(&face, video_buffer, lpitch,zbuffer,zpitch);

} // end if gouraud

} // end for poly

} // end Draw_RENDERLIST4DV2_SolidZB16

Please take a moment to see how clean and simple each one of the control paths are. The
function checks what kind of polygon we have and then calls the appropriate function. Of
course, if this were full-blown C++, we would simply overload the functions, or use virtual
functions and not do this case-select stuff. However, C++ is great with a fixed design, and
we are all over the map, so it doesn’t really help us. We are just writing code here, experi-
menting with algorithms and seeing what happens. Later you will definitely want to code
what we have done and will do in a much more efficient and clean manner. In any event,
the Draw_RENDERLIST4DV2_SolidZB16() function works just as its predecessor
Draw_RENDERLIST4DV2_Solid16() did, but with the additional parameters of a pointer to
the Z-buffer’s memory and the pitch of the Z-buffer’s bytes per line.

NOTE

You might wonder why I decided not to send the Z-buffer object itself to each function
ZBUFFERV1_PTR. Well, I wanted to keep my options open—this way, if we decide to upgrade the
Z-buffer object ZBUFFERV1, we don’t break the rasterizers.
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Possible Z-Buffer Optimizations
The computation of the Z-buffer values during the rasterization are about as simple as we
are going to get them without resorting to assembly language (SIMD instructions, and so
forth). So, we have to look at a higher level to optimize. There are a few possibilities, so
let’s take a look at them.

Using Less Memory
The first possibility to make the Z-buffer a little faster is to make it smaller; that is, to use a
16-bit Z-buffer rather than a 32-bit buffer. Although this seems like a good idea, it can
actually be slower than 32-bit access. The reason is that Pentium processors are 32-bit
devices. They like doing things 32 bits at a time. Although you will have better cache
coherence with less memory per cache line, you might get a hit from using 16-bit access
because of alignment and other subtleties. Additionally, 16 bits is getting close to the
minimum you need to represent any decent amount of z resolution to resolve the pixel
order of polygons—that’s another issue to try out. Personally, I found that because the Z-
buffer is part of the inner loop of the rasterizer, the gains made by making it 16-bit were
negligible.

Clearing the Z-Buffer Less Often
The memory fill that clears out the Z-buffer takes a little time. Basically, it’s the amount of
time it takes to write a 32-bit value to memory multiplied by the size of the Z-buffer. As an
example, let’s say we have a Pentium III+ machine that has an average of four clocks to
write to memory because of caching and other effects. Let’s also say it’s running at
500MHz. Therefore, one clock cycle is 2×10-9 seconds, or two nanoseconds. Therefore, at
800×600 we have

Total time =

clocks_per_write * width * height * time_per_clock

= 4*800*600*(2x10-9 s) = 3.84 milliseconds.

Although that might not seem like very much time, it really is a lot, considering that a
single frame at 60 fps takes 16 milliseconds. This means that roughly 3.84/16 = 24% of
your time is spent clearing the Z-buffer! That kinda hurts! This is definitely an area we
would like to get rid of. There are a few options: We can use dirty rectangles, track areas of
the Z-buffer that aren’t touched each frame, and then we simply don’t clear them. This
sounds good, but doesn’t work in reality. The only other option is to not clear the Z-buffer
at all. However, this can only be accomplished with 1/z-buffering. Because with 1/z-buffer-
ing, the value of 1/z can never be larger than 1.0 as long as z >= 1, we can use a bias each
frame and add this “z bias” to every single z value written to the Z-buffer. This way, each
frame is a little farther than the rest, but guaranteed not to interfere with the last frame.
Additionally, we must change the z-buffering comparisons because each frame the values
of z get larger, but this is a simple change to the comparison value. This is shown graphi-
cally in Figure 11.10.
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FIGURE 11.10 Avoiding 1/z-buffer clearing.

As an example, here are two frames using this technique. Each pixel’s (x,y) is the same, so
we will only look at the z value of each. During each frame, we will have a series of pixels
plotted on top of each other with different z values to see whether the 1/z buffer is correct
at the end. If, when we bias the 1/z buffer, the next frame renders properly. Here’s the
experiment:

Frame 0: Initial Z-buffer value 0.0

Pixel# z 1/z Bias Final 1/z (with bias)

0 10 .100 0 .100

1 12 .083 0 .083

2 5 .200 0 .200

Analysis of Frame 0:

Z-buffer = 0.0

Pixel 0 has a final 1/z value of .1, which is greater than 0.0. Therefore, the pixel is written
to screen and the 1/z buffer is updated to 0.1.

Z-buffer = 0.1
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Pixel 1 has a final 1/z value of .083, which is less than .1. Therefore, the pixel is NOT
written, and the 1/z-buffer is left alone.

Z-buffer = 0.1

Pixel 2 has a final 1/z value of .2, which is greater than .1. Therefore, the pixel is written
to screen and the 1/z-buffer is updated to 0.2.

Reviewing the analysis, the bottom line is that the pixel that is closest to the viewpoint
(Pixel 2 with a z value of 5.0) should be the last written to screen and to the Z-buffer, and
indeed it was.

Frame 1: Z-buffer value 0.2

Pixel# z 1/z Bias Final 1/z (with bias)

0 5 .200 1.0 1.200

1 2 .5 1.0 1.500

2 3 .333 1.0 1.333

Analysis of Frame 1:

Z-buffer = 0.0

Pixel 0 has a final 1/z value of 1.2, which is greater than 0.2. Therefore, the pixel is written
to screen and the 1/z-buffer is updated to 1.2.

Z-buffer = 1.2

Pixel 1 has a final 1/z value of 1.5, which is greater than 1.2. Therefore, the pixel is written
and the 1/z-buffer is updated to 1.5.

Z-buffer = 1.5

Pixel 2 has a final 1/z value of 1.333, which is less than 1.5. Therefore, the pixel is NOT
written to screen and the 1/z-buffer is NOT updated.

Z-buffer = 1.5

Reviewing the analysis, the bottom line is that the pixel that is closest to the viewpoint
(Pixel 1 with a z value of 2.0) should be the last written to screen and to the Z-buffer, and
indeed it was.

The 1/z-buffer with delayed writing works fine! The only problem is that at some point,
the 1/z-buffer will overflow. Basically, this happens after n frames, where n is the largest
integer that can be represented along with the decimal portion of the 1/z buffer.

Hybrid Z Buffering
The next optimization idea is to use a hybrid Z-buffer. That is, you only z-buffer certain
portions of the scene, and you z-sort others. For example, we could filter any polygon that
has a z value greater than 30% of the viewing distance and simply z-sort it, because most
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of the time it will look okay. But for polygons that fall into the first 30% of the viewing
distance, we z-buffer them. This actually works very well. First we z-sort the far polygons,
render them using the painter’s algorithm back to front, and then z-buffer the nearer poly-
gons that need to be perfect. Figure 11.11 illustrates this graphically.
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Problems with the Z-Buffer
Lastly I want to talk about problems with the Z-buffer. Obviously, the first problem is that
it’s totally incorrect. We are interpolating something that’s not linear in screen space, so
we are going to get those anomalies right off the bat, but that’s not the main issue. The
main issue with the Z-buffer is that because of the perspective transform and the non-
linearity of the z-interpolation, we are going to lose accuracy for large viewing volumes. In
other words, imagine that we have a game universe that has a far clipping plane of
1,000,000 units (this is completely reasonable for a space game). To accurately represent
1,000,000 units, we need about 20 bits. Even with a 32-bit Z-buffer, this only leaves us
with 12 bits for the decimal portion of the z values. So we waste all the Z-buffer’s accuracy
spread out over this huge range when we need it up close where it counts. This is another
reason why the 1/z-buffer is better.

The Software and Z-Buffer Demos
First, let’s talk about the new software modules. Everything in this chapter is contained in
the new library files:

• T3DLIB9.CPP—The C/C++ source

• T3DLIB9.H—The header file for T3DLIB9.CPP

Of course, to compile anything you need T3DLIB1-8.CPP|H, as well as the new file
T3DLIB9.CPP|H.
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FIGURE 11.12 A screenshot of the first Z-buffer demo. 

Demo I: Z-Buffer Visualization
As usual, I like to give an example that leverages the material from the chapter into a
game-like or technology demo. I am still not sure what to do for a game, but I will know
by the end of this section. The cool thing is that from your point of view, it will be
written instantaneously; but from my point of view, I am looking at 4–12 hours of
hacking!

Anyway, let’s start with a technology demo. Figure 11.12 is a screenshot of
DEMOII11_1.CPP|EXE. Basically, it enables you to slowly move around the environment
with the arrow keys as usual. The cool part is that you can select z-sorting or z-buffering
with the Z key. Try selecting each and then moving around causing interpenetrations of
the geometry with your player object. Then switch back and forth from z-sorting to z-
buffering, and you will see how the Z-buffer version works perfectly. This is all fine and
dandy, but I thought it would be cool if you could actually visualize the Z-buffer.

This really isn’t very hard. Basically I copy the Z-buffer into the frame buffer through a
simple translation filter that takes the 32-bit z depth values and converts them to colors.
Because RGB is encoded in 16 bits, with the high bits representing red and the low bits
representing blues, this works out in such a way that the Z-buffer is a colored depth map,
where red intensities indicate long distances and blue intensities indicate something close
to the viewpoint, as shown in Figure 11.13.
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FIGURE 11.13 The Z-buffer demo in Z-buffer visualization mode.

It’s very cool, and reminds me of the movie Predator <BG>. Anyway, here are the impor-
tant controls:

• Arrow keys—Movement

• Z—Toggle z-buffering

• S—Toggle z-sorting

• N—Switch objects

• H—Toggle help menu

• D—Toggle normal rendering/Z-buffer filter

• Esc—Exit demo

To compile the demo, you will need the main .CPP file DEMOII11_1.CPP, along with all the
library modules in T3DLIB1-9.CPP|H. You will also need to link in the DirectX libraries and
WINMM.LIB, as usual.

CAUTION

When in Z-buffer visualization mode, you will notice the colors cycling. This effect is because z is
linear from the viewpoint to infinity. However, colors are encoded as RGB values in 5.6.5 format,
and when we map the z values into colors as z increases from 0 to 65536, it will cycle through
the lower bits, which represent blue 2048 times, and so forth. Nevertheless, the main point is
that the general shade from blue to red indicates depth.
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Demo II: Wave Raider
For the second demo, I wanted to take our little terrain demo and improve the physics a
bit and create a water simulation. Water is the perfect geometry for the Z-buffer because
the “water polygons” are drawn at some level and the jet ski or watercraft polygons pene-
trate the water and go below it, so it looks as though the watercraft is partially above and
below the waterline—which is exactly what it should look like! Anyway, take a look at
Figure 11.14 for a screenshot of the water demo DEMOII11_2.CPP|EXE; it’s pretty cool for
the amount of code it took.
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FIGURE 11.14 Wave Raider putting the Z-buffer to good use with water interpenetration. 

Here are the controls, so you can try it out right away.

• Enter/Return—Starts engine

• Right—Turn right

• Left—Turn left

• Up—Throttle

And most of the help and engine controls still work:

• Z—Toggle z-buffering

• S—Toggle z-sorting

• D—Toggle normal rendering/Z-buffer filter
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• H—Toggle help menu

• Esc—Exit demo

Now let’s talk about a couple of key programming points of the demo.

The Terrain Race Course
I had a miniature nightmare making the race course. The problem is that there are lots of
terrain generation programs that will create height maps, but when you are on a schedule
like I am, you don’t have hours to figure out how to force the tool to create a race course.
In the end, I found two incredible programs to help:

• Terragen—http://www.planetside.co.uk/terragen/

• Worldmachine—http://students.washington.edu/sschmitt/world/

Both have shareware versions that you can use. I actually ended up using Worldmachine
to create the height map for this game demo. Figure 11.15 is a screenshot of
Worldmachine in action.
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FIGURE 11.15 Worldmachine with my water race track. 

For the actual terrain I had to generate a height map with the program along with a
texture to stretch over the height map. Figures 11.16 and 11.17 illustrate the height map
in grayscale encoding, along with the beautiful texture map that Worldmachine generated
for me. The in-game terrain height map is 40×40 and the texture is 256×256, but the
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figures illustrate the higher resolution versions at 512×512, so you can see them before I
mangled them.
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FIGURE 11.16 The height map.

FIGURE 11.17 The texture map of the water raceway. 

After I had the terrain ready, I made a single call to our trusty terrain mesh generator and
that was it:

// generate terrain

Generate_Terrain_OBJECT4DV2(&obj_terrain,      // pointer to object

TERRAIN_WIDTH,      // width in world coords on x-axis
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TERRAIN_HEIGHT,     // height (length) in world coords on z-axis

TERRAIN_SCALE,      // vertical scale of terrain

“water_track_height_04.bmp”, // filename of height bitmap 

// encoded in 256 colors

“water_track_color_03.bmp”,  // filename of texture map

RGB16Bit(255,255,255), // color of terrain if no texture

&terrain_pos,      // initial position

NULL,          // initial rotations

POLY4DV2_ATTR_RGB16 |

POLY4DV2_ATTR_SHADE_MODE_FLAT | /*POLY4DV2_ATTR_SHADE_MODE_GOURAUD */

POLY4DV2_ATTR_SHADE_MODE_TEXTURE );

As you can see, the terrain is flat-shaded.

Animating the Water
Getting the water to animate is actually trivial. The idea is to simply modulate the terrain
mesh with a sine wave or other related “wave” function. The tricky part is to only modu-
late the “water” part of the mesh. However, it’s not that bad if you think of it this way: As
each frame begins, you start off with the initial mesh in local coordinates and then copy
that into the transformed mesh so you can alter it. Then you run a wave function (which I
will show you in a moment) over the entire terrain mesh; however, you only apply the
modulation to vertices that are below the virtual water level. This is the trick. Figure 11.18
depicts this concept graphically.
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FIGURE 11.18 Modulating the water under the water line.

Here’s the entire code that modulates the wave onto the terrain for any vertex that has a
height less than the water level:

15 0672318350 CH11  05•02•2003  2:53 PM  Page 1138



// wave generator ////////////////////////////////////////////////////////

// for each vertex in the mesh apply wave modulation if height < water level

for (int v = 0; v < obj_terrain.num_vertices; v++)

{

// wave modulate below water level only

if (obj_terrain.vlist_trans[v].y < WATER_LEVEL)

obj_terrain.vlist_trans[v].y+=

WAVE_HEIGHT*sin(wave_count + (float)v/(2*(float)obj_terrain.ivar2+0));

} // end for v

// increase the wave position in time

wave_count+=WAVE_RATE;

Kinda disgusting, huh? You probably thought it would have all kinds of complex physics,
spring constants, wave functions—Nope! All I need is a little sine wave and a counter. This
is not to say writing a real water model isn’t important, but sometimes you can get away
with really simple code for special effects.

The Physics Model for the Jet Ski
The physics model for the jet ski is identical to the driving model from the last chapter.
Basically, I only changed the model constants, making the jet ski more springy and inter-
penetrate the geometry more to show off the Z-buffer. For the most part, no changes have
been made to our physics model. The player accelerates the jet ski, the terrain follower
looks at the mesh under it and then pushes the model upward or lets it fall downward.
The cool thing is that as the mesh model modulates with the wave, so does the jet ski, so
it looks like it’s floating and bobbing in the water! Anyway, here’s the entire physics model
for your review, along with the final jet ski model placement out in front of the camera
(this is a bit cheesy, but oh well):

// motion section /////////////////////////////////////////////////////////

// terrain following, simply find the current cell we are over and then

// index into the vertex list and find the 4 vertices that make up the

// quad cell we are hovering over and then average the values, and based

// on the current height and the height of the terrain push the player upward

// the terrain generates and stores some results to help with terrain following

//ivar1 = columns;

//ivar2 = rows;

//fvar1 = col_vstep;

//fvar2 = row_vstep;

int cell_x = (cam.pos.x + TERRAIN_WIDTH/2) / obj_terrain.fvar1;

int cell_y = (cam.pos.z + TERRAIN_HEIGHT/2) / obj_terrain.fvar1;
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static float terrain_height, delta;

// test if we are on terrain

if ( (cell_x >=0) && (cell_x < obj_terrain.ivar1) && 

(cell_y >=0) && (cell_y < obj_terrain.ivar2) )

{

// compute vertex indices into vertex list of the current quad

int v0 = cell_x + cell_y*obj_terrain.ivar2;

int v1 = v0 + 1;

int v2 = v1 + obj_terrain.ivar2;

int v3 = v0 + obj_terrain.ivar2;

// now simply index into table

terrain_height = 0.25 * (obj_terrain.vlist_trans[v0].y + 

obj_terrain.vlist_trans[v1].y +

obj_terrain.vlist_trans[v2].y + 

obj_terrain.vlist_trans[v3].y);

// compute height difference

delta = terrain_height - (cam.pos.y - gclearance);

// test for penetration

if (delta > 0)

{

// apply force immediately to camera (this will give it a springy feel)

vel_y+=(delta * (VELOCITY_SCALER));

// test for pentration, if so move up immediately,

// so we don’t penetrate geometry

cam.pos.y+=(delta*CAM_HEIGHT_SCALER);

// now this is more of a hack than the physics model :) 

// let move the front

// up and down a bit based on the forward velocity 

// and the gradient of the

// hill

cam.dir.x -= (delta*PITCH_CHANGE_RATE);

} // end if

} // end if

// decelerate camera

if (cam_speed > (CAM_DECEL) ) cam_speed-=CAM_DECEL;
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else

if (cam_speed < (-CAM_DECEL) ) cam_speed+=CAM_DECEL;

else

cam_speed = 0;

// force camera to seek a stable orientation

if (cam.dir.x > (neutral_pitch+PITCH_RETURN_RATE)) 

cam.dir.x -= (PITCH_RETURN_RATE);

else

if (cam.dir.x < (neutral_pitch-PITCH_RETURN_RATE)) 

cam.dir.x += (PITCH_RETURN_RATE);

else

cam.dir.x = neutral_pitch;

// apply gravity

vel_y+=gravity;

// test for absolute sea level and push upward..

if (cam.pos.y < sea_level)

{

vel_y = 0;

cam.pos.y = sea_level;

} // end if

// move camera

cam.pos.x += cam_speed*Fast_Sin(cam.dir.y);

cam.pos.z += cam_speed*Fast_Cos(cam.dir.y);

cam.pos.y += vel_y;

// position point light in front of player

lights2[POINT_LIGHT_INDEX].pos.x = cam.pos.x + 150*Fast_Sin(cam.dir.y);

lights2[POINT_LIGHT_INDEX].pos.y = cam.pos.y + 50;

lights2[POINT_LIGHT_INDEX].pos.z = cam.pos.z + 150*Fast_Cos(cam.dir.y);

// position the player object slighty in front of camera and in water

obj_player.world_pos.x = cam.pos.x + 120*Fast_Sin(cam.dir.y);

obj_player.world_pos.y = cam.pos.y - 75 + 7.5*sin(wave_count);

obj_player.world_pos.z = cam.pos.z + 120*Fast_Cos(cam.dir.y);

If we were going to write a real game, we would have the camera very loosely locked to
watch the player, instead of using the camera as an anchor and then drawing the player in
front of it. Additionally, this physics model doesn’t model friction, so the jet ski turns on a
dime. It would be easy to add, but I have to leave something for other demos!
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Sound Effects
I am most proud of the sound in this game. I took a number of samples of the sounds of
jet skis, water, the ocean, splashes, and myself (as the announcer) and put them all
together to give you a game-like experience. The sound effects have three different
aspects—let’s cover each briefly, because sound is so important in a game and can make
the difference between fun and boring.

The Announcer The game has three primary parts: the introduction from atop mount
Aleph One, the in-water instructions, and the normal gameplay. When the game starts, an
overview is heard. Then a state change is made and the player is dumped in the water, and
the instructions are given.

To make these digital voiceovers, I recorded myself sounding as cheesy as I possibly could
in 11KHz 8-bit mono, using Sound Forge to do the recording. I added a bit of noise to
make things sound authentic, and finally echoed my voice slightly. The results sound
great, and my friend couldn’t believe it was me!

The Water Sounds For the water sounds, I sampled water and waves from the Sound
Ideas General 6000 sound library. It consists of 40 CDs and cost me around $2,500, but it’s
worth every penny. In any case, I sampled both a light lake wave sound, and a heavy
water wave in a lake sound. Then I played each at different amplitudes and slightly modi-
fied their frequencies in the game based on the player’s speed. Amazingly, at 8-bit and
11KHz sampling, the sound of the water remained intact. And of course, the water sounds
are played as continuous loops.

The Jet Ski Sounds This was the most complex part of the model. I really wanted the
sound of a jet ski and the feel of it to come through. This is always a problem when doing
sound effects. In real life, lots of things don’t make sound—we just think they do. In
movies, for example, all the sounds are so exaggerated it’s ridiculous. That’s why foley
artists enhance each event after the movie is complete, so you can hear it as well as see it,
even if there isn’t anything to hear!

In any event, the jet ski has a number of different states:

• State 1—Engine off

• State 2—Engine start (single shot)

• State 3—Engine idle (loop)

• State 4—Accelerate (single shot)

• State 5—Engine running at RPM (loop)

I needed a good starting sound, and in the end I used a 25-HP outboard motor mixed with
a real jet ski starting, because the jet ski was simply too subdued. Next, I used a real jet ski
for the idle, acceleration, and running sounds. The tricky part was mixing all of them to
sound correctly. I tracked the state of the jet ski, the velocity of the player, and a number
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of other variables to signal me when to change things. For example, when the player hits
the Enter key and starts the jet ski, I turned all the sounds on except the accelerate sound!
You can only hear the starting sound for the most part because it’s so loud, but the idle is
in there under it all. However, the State 5 sound is at zero percent because the jet ski isn’t
moving.

When the player hits the throttle, I nailed the accelerate sound with a one shot, and you
hear the jet ski taking off. At the same time, the player model is accelerating the jet ski.
This velocity is used to modulate both the amplitude and frequency of the running engine
sound, so the faster you go, the higher its pitch and the louder it is. Still, under it all is the
idle sound, waiting for you to let off the throttle.

Of course, there are lots of ways to model these sounds and optimize what really needs to
be on at any time rather than turning the volume down, but this seemed to work really
well.

CAUTION

The rasterizers still have a divide-by-zero bug in them, and depending on the situation, a degen-
erate triangle sometimes passes into the rasterizer, causing the demo to crash! Ironically, this
occurs in this demo sometimes when passing the highest peak with green grass—you will see it
on your left. I have thus named it Zemulda Triangle <BG>.

To compile the demo, you will need the main .CPP file DEMOII11_2.CPP, along with all the
library modules in T3DLIB1-9.CPP|H. You will also need to link in the DirectX libraries and
WINMM.LIB, as usual.

Summary
Well, another seemingly complex topic beat down and begging for mercy. That’s the trick
to graphics—just take your time, run the examples on paper, understand it, and every-
thing will work out. The bottom line is that it all starts from plot (x,y). At any rate, we
now have a pretty decent 3D engine! It has 16-bit support, lighting, z-buffering, and
model loading. And it runs reasonably fast for absolutely no optimization. I am pretty
happy at this point. From this point on, we are going to continue adding features to the
engine: better lighting, support for hierarchical objects like interior levels, and so forth.
However, for the most part, we are done with 90% of everything you need to know about
3D graphics. You should be proud!
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PART IV

Advanced 3D Rendering
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IN THIS CHAPTER

• Texturing—The Second Wave

• Building a New Rasterizer
Base

• Gouraud-Shaded Texturing

• Transparency and Alpha
Blending

• Perspective-Correct Texturing
and 1/z-Buffering

• Bilinear Texture Filtering

• Mip Mapping and Trilinear
Texture Filtering

• Multiple Pass Rendering and
Texturing

• Wrapping Things Up with a
Single Call

CHAPTER 12

Advanced Texturing
Techniques

“Maybe fun is just fragments of existence with better packaging.”

—Steve Jobs, Pirates of Silicon Valley

In this chapter, we are primarily going to discuss rasteriza-
tion techniques. Although we already have a fairly advanced
software rasterizer core, it still has no support for alpha blend-
ing, perspective-correct textures, texture filtering, mip
mapping, Gouraud-shaded textures, and so forth. Hence, we
are going to address these issues here. Finally, we will once
again rewrite all the rasterizers. Ouch! You’re killing me here
… <BG>. Here are the main areas of interest in this chapter:

• Transparency and alpha blending

• Gouraud-shaded texturing

• Perspective-correct texturing

• 1/z-buffering

• Bilinear texture filtering

• Mip mapping and trilinear texture filtering

• New object loaders

• DirectDraw initialization function revamping

• Multiple pass rendering

Texturing—The Second Wave
I have written so many rasterizers for this chapter that I’m
going to explode! I think I’ve cranked out something like
50,000+ lines of code just for the rasterizers—the reason being
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that a separate rasterizer is needed for every single permutation of capabilities we add to
our engine. This is because I refuse to generalize the rasterizers themselves and take a
performance hit.

After writing all these rasterizers and the demos to go along with them, I realized, or
rather confirmed, that this chapter wasn’t a good place for more lighting and discussions
of shadows—that’s really a separate topic. Additionally, I really want to show light
mapping, environment mapping, and shadows in action, so I need something with which
to create levels to do this properly. Thus we are going to hold off on these topics until
after the next chapter, which covers spatial partitioning, because after we cover that mate-
rial, we will have some level editing tools to play with that we can leverage for light
mapping demos. At least that’s the plan.

Let’s talk about what’s happening in this chapter. We are going to cover a number of new
techniques, such as inverse z-buffering, alpha blending, perspective-correct texturing, mip
mapping, bilinear and trilinear texturing, and more. And of course, we will need to rewrite
every single rasterizer and then some. This chapter has more than 40 new rasterizers!
That’s a lot of code, and a lot to debug, so I worked really hard to try and keep everything
fast. In the end I think you’re going to be amazed at the speed we get without resorting to
assembly language and/or any excessive optimization (we will leave that until the end of
the book).

So as usual, there’s a new library module and header file you will need to compile all the
programs from this chapter:

• T3DLIB10.CPP—The C/C++ source file

• T3DLIB10.H—The header file

You will need to include these, along with the previous library modules T3DLIB1–9.CPP|H,
to compile any programs from this chapter. You’ll also need the DirectX .LIB files, and of
course, you’ll need to set the compiler up correctly (Win32 .EXE target). I always mention
what a program needs to compile at the top of the source code, so you can always look
there.

In any case, we’re going to cover each topic, review the code, create a demo, and move
on. I didn’t implement some of the techniques (or did and found them to be too slow),
such as trilinear filtering, but we will cover all of them nonetheless.

Additionally, I have updated some of the other functions to support some of our new
features—such as the terrain generation function, the Caligari trueSpace .COB file loader,
and a redo of the DirectDraw functions that initialize DirectDraw and flip pages because of
an anomaly when doing alpha blending and reading from a DirectDraw backbuffer. As
usual, I want you to take a quick look at the header file, just to see what’s coming. Don’t
worry if things don’t make any sense; it’s just to have an idea of what’s going on.
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The Header File Data Structures
The following text describes the header file T3DLIB10.H. We will cover the functions and
structures in more detail throughout the text, but you know I like to start off by showing
you everything. Let’s begin with the #defines. There’s not much here, other than some
new fixed-point constants and a set of rendering options we will need later when we write
a single all-encompassing rendering function:

// DEFINES //////////////////////////////////////////////////////////////////

// alpha blending defines

#define NUM_ALPHA_LEVELS       8  // total number of alpha levels

// perspective correct/ 1/z buffer defines

#define FIXP28_SHIFT         28 // used for 1/z buffering

#define FIXP22_SHIFT         22 // used for u/z, 

// v/z perspective texture mapping

// new attributes to support mip mapping

#define POLY4DV2_ATTR_MIPMAP     0x0400 // flags if polygon has a mipmap

#define OBJECT4DV2_ATTR_MIPMAP    0x0008 // flags if object has a mipmap

///////////////////////////////////////////////////////////////////////////////

// defines that control the rendering function state attributes

// note each class of control flags is contained within

// a 4-bit nibble where possible, this helps with future expansion

// no z buffering, polygons will be rendered as are in list

#define RENDER_ATTR_NOBUFFER           0x00000001

// use z buffering rasterization

#define RENDER_ATTR_ZBUFFER           0x00000002

// use 1/z buffering rasterization

#define RENDER_ATTR_INVZBUFFER          0x00000004

// use mipmapping

#define RENDER_ATTR_MIPMAP            0x00000010

// enable alpha blending and override

#define RENDER_ATTR_ALPHA            0x00000020

// enable bilinear filtering, but only supported for

// constant shaded/affine textures

#define RENDER_ATTR_BILERP            0x00000040

Texturing—The Second Wave 1149
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// use affine texturing for all polys

#define RENDER_ATTR_TEXTURE_PERSPECTIVE_AFFINE  0x00000100

// use perfect perspective texturing

#define RENDER_ATTR_TEXTURE_PERSPECTIVE_CORRECT 0x00000200

// use linear piecewise perspective texturing

#define RENDER_ATTR_TEXTURE_PERSPECTIVE_LINEAR  0x00000400

// use a hybrid of affine and linear piecewise based on distance

#define RENDER_ATTR_TEXTURE_PERSPECTIVE_HYBRID1 0x00000800

// not implemented yet

#define RENDER_ATTR_TEXTURE_PERSPECTIVE_HYBRID2 0x00001000

Next we have a single new type, which I refer to as a rendering context. Basically, it enables
us to initialize it with the desired rendering options. Then a single function call using it as
a parameter renders everything, rather than making calls to numerous different rendering
functions, as we have been doing in the past. Here’s the new structure:

// this is a new type to contain the “rendering context” RC, so

// we don’t have to keep passing more and more variables to the

// rendering functions, we can fill this structure in with what we

// need and then pass it as a whole

typedef struct RENDERCONTEXTV1_TYP

{

int   attr;         // all the rendering attributes

RENDERLIST4DV2_PTR rend_list; // ptr to rendering list to render

UCHAR *video_buffer;     // ptr to video buffer to render to

int   lpitch;        // memory pitch in bytes of video buffer

UCHAR *zbuffer;       // ptr to z buffer or 1/z buffer

int   zpitch;        // memory pitch in bytes of z or 1/z buffer

int   alpha_override;    // alpha value to override ALL polys with

int   mip_dist;       // maximum distance to divide up into

// mip levels

// 0 - (NUM_ALPHA_LEVELS - 1)

int   texture_dist;     // the distance to enable affine texturing

// when using hybrid perspective/affine mode

// future expansion

int   ival1, ival2;    // extra integers
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float  fval1, fval2;     // extra floats

void  *vptr;        // extra pointer

} RENDERCONTEXTV1, *RENDERCONTEXTV1_PTR;

Most of the fields should ring a bell. There are a few new ones to support mip mapping
and various optimized texturing techniques, but we will cover them as we broach each
topic pertaining to them.

Now for the globals: There is only one, a lookup table to help us with alpha blending:

// this table contains each possible RGB value multiplied by some scalar

USHORT rgb_alpha_table[NUM_ALPHA_LEVELS][65536];

Lastly, I want to dump the prototypes so you can see the sheer number of them that we
have to deal with, and to get an idea of what we are going to be doing in this chapter:

// PROTOTYPES //////////////////////////////////////////////////////////////

// zbuffered versions

void Draw_Textured_TriangleZB2_16(POLYF4DV2_PTR face, // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch,    // bytes per line, 320, 640 etc.

UCHAR *zbuffer,    // pointer to z-buffer

int zpitch);     // bytes per line of zbuffer

void Draw_Textured_Bilerp_TriangleZB_16(POLYF4DV2_PTR face, // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch,    // bytes per line, 320, 640 etc.

UCHAR *zbuffer,    // pointer to z-buffer

int zpitch);     // bytes per line of zbuffer

void Draw_Textured_TriangleFSZB2_16(POLYF4DV2_PTR face, // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch,    // bytes per line, 320, 640 etc.

UCHAR *zbuffer,    // pointer to z-buffer

int zpitch);     // bytes per line of zbuffer

void Draw_Textured_TriangleGSZB_16(POLYF4DV2_PTR face,  // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch,    // bytes per line, 320, 640 etc.

UCHAR *_zbuffer,   // pointer to z-buffer

int zpitch);     // bytes per line of zbuffer
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void Draw_Triangle_2DZB2_16(POLYF4DV2_PTR face, // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch,    // bytes per line, 320, 640 etc.

UCHAR *zbuffer,   // pointer to z-buffer

int zpitch);     // bytes per line of zbuffer

void Draw_Gouraud_TriangleZB2_16(POLYF4DV2_PTR face,  // ptr to face

UCHAR *_dest_buffer,// pointer to video buffer

int mem_pitch,   // bytes per line, 320, 640 etc.

UCHAR *zbuffer,   // pointer to z-buffer

int zpitch);    // bytes per line of zbuffer

void Draw_RENDERLIST4DV2_SolidZB2_16(RENDERLIST4DV2_PTR rend_list,

UCHAR *video_buffer, // pointer to video buffer

int lpitch, // bytes per line, 320, 640 etc.

UCHAR *zbuffer, // pointer to z-buffer

int zpitch); // bytes per line of zbuffer

// 1/z versions

void Draw_Textured_TriangleINVZB_16(POLYF4DV2_PTR face, // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch,    // bytes per line, 320, 640 etc.

UCHAR *zbuffer,    // pointer to z-buffer

int zpitch);     // bytes per line of zbuffer

void Draw_Textured_Bilerp_TriangleINVZB_16(POLYF4DV2_PTR face, // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch,    // bytes per line, 320, 640 etc.

UCHAR *zbuffer,    // pointer to z-buffer

int zpitch);     // bytes per line of zbuffer

void Draw_Textured_TriangleFSINVZB_16(POLYF4DV2_PTR face, // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch,    // bytes per line, 320, 640 etc.

UCHAR *zbuffer,    // pointer to z-buffer

int zpitch);     // bytes per line of zbuffer

CHAPTER 12 Advanced Texturing Techniques1152

17 0672318350 CH12  05•02•2003  2:54 PM  Page 1152



void Draw_Textured_TriangleGSINVZB_16(POLYF4DV2_PTR face,  // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch,    // bytes per line, 320, 640 etc.

UCHAR *_zbuffer,   // pointer to z-buffer

int zpitch);     // bytes per line of zbuffer

void Draw_Triangle_2DINVZB_16(POLYF4DV2_PTR face, // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch,    // bytes per line, 320, 640 etc.

UCHAR *zbuffer,    // pointer to z-buffer

int zpitch);     // bytes per line of zbuffer

void Draw_Gouraud_TriangleINVZB_16(POLYF4DV2_PTR face,  // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch,    // bytes per line, 320, 640 etc.

UCHAR *zbuffer,   // pointer to z-buffer

int zpitch);     // bytes per line of zbuffer

void Draw_Textured_Perspective_Triangle_INVZB_16(POLYF4DV2_PTR face,// face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch,    // bytes per line, 320, 640 etc.

UCHAR *_zbuffer,   // pointer to z-buffer

int zpitch);     // bytes per line of zbuffer

void Draw_Textured_Perspective_Triangle_FSINVZB_16(POLYF4DV2_PTR face,//face

UCHAR *_dest_buffer,// pointer to video buffer

int mem_pitch,   // bytes per line, 320, 640 etc.

UCHAR *_zbuffer,  // pointer to z-buffer

int zpitch);    // bytes per line of zbuffer

void Draw_Textured_PerspectiveLP_Triangle_FSINVZB_16(POLYF4DV2_PTR face,//face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch,    // bytes per line, 320, 640 etc.

UCHAR *_zbuffer,   // pointer to z-buffer

int zpitch);     // bytes per line of zbuffer

void Draw_Textured_PerspectiveLP_Triangle_INVZB_16(POLYF4DV2_PTR face, //face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch,    // bytes per line, 320, 640 etc.

UCHAR *_zbuffer,   // pointer to z-buffer

int zpitch);     // bytes per line of zbuffer
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void Draw_RENDERLIST4DV2_SolidINVZB_16(RENDERLIST4DV2_PTR rend_list,

UCHAR *video_buffer,

int lpitch,

UCHAR *zbuffer,

int zpitch);

// z buffered and alpha

void Draw_Textured_TriangleZB_Alpha16(POLYF4DV2_PTR face, // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch,    // bytes per line, 320, 640 etc.

UCHAR *zbuffer,   // pointer to z-buffer

int zpitch,     // bytes per line of zbuffer

int alpha);

void Draw_Textured_TriangleFSZB_Alpha16(POLYF4DV2_PTR face, // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch,    // bytes per line, 320, 640 etc.

UCHAR *zbuffer,   // pointer to z-buffer

int zpitch,     // bytes per line of zbuffer

int alpha);

void Draw_Textured_TriangleGSZB_Alpha16(POLYF4DV2_PTR face,  // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch,    // bytes per line, 320, 640 etc.

UCHAR *_zbuffer,   // pointer to z-buffer

int zpitch,     // bytes per line of zbuffer

int alpha);

void Draw_Triangle_2DZB_Alpha16(POLYF4DV2_PTR face, // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch,    // bytes per line, 320, 640 etc.

UCHAR *zbuffer,   // pointer to z-buffer

int zpitch,     // bytes per line of zbuffer

int alpha);

void Draw_Gouraud_TriangleZB_Alpha16(POLYF4DV2_PTR face,  // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch,    // bytes per line, 320, 640 etc.

UCHAR *zbuffer,   // pointer to z-buffer

int zpitch,     // bytes per line of zbuffer

int alpha);

void Draw_RENDERLIST4DV2_SolidZB_Alpha16(RENDERLIST4DV2_PTR rend_list,

UCHAR *video_buffer,
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int lpitch,

UCHAR *zbuffer,

int zpitch,

int alpha_override);

// 1/z buffered and alpha

void Draw_Textured_TriangleINVZB_Alpha16(POLYF4DV2_PTR face, // ptr to facev

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch,    // bytes per line, 320, 640 etc.

UCHAR *zbuffer,   // pointer to z-buffer

int zpitch,     // bytes per line of zbuffer

int alpha);

void Draw_Textured_TriangleFSINVZB_Alpha16(POLYF4DV2_PTR face, // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch,    // bytes per line, 320, 640 etc.

UCHAR *zbuffer,   // pointer to z-buffer

int zpitch,     // bytes per line of zbuffer

int alpha);

void Draw_Textured_TriangleGSINVZB_Alpha16(POLYF4DV2_PTR face,  // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch,    // bytes per line, 320, 640 etc.

UCHAR *_zbuffer,   // pointer to z-buffer

int zpitch,     // bytes per line of zbuffer

int alpha);

void Draw_Triangle_2DINVZB_Alpha16(POLYF4DV2_PTR face, // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch,    // bytes per line, 320, 640 etc.

UCHAR *zbuffer,   // pointer to z-buffer

int zpitch,     // bytes per line of zbuffer

int alpha);

void Draw_Gouraud_TriangleINVZB_Alpha16(POLYF4DV2_PTR face,  // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch,    // bytes per line, 320, 640 etc.

UCHAR *zbuffer,   // pointer to z-buffer

int zpitch,     // bytes per line of zbuffer

int alpha);
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void Draw_Textured_Perspective_Triangle_INVZB_Alpha16(POLYF4DV2_PTR face, 

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch,    // bytes per line, 320, 640 etc.

UCHAR *_zbuffer,   // pointer to z-buffer

int zpitch,     // bytes per line of zbuffer

int alpha);

void Draw_Textured_PerspectiveLP_Triangle_INVZB_Alpha16(POLYF4DV2_PTR face, 

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch,    // bytes per line, 320, 640 etc.

UCHAR *_zbuffer,   // pointer to z-buffer

int zpitch,     // bytes per line of zbuffer

int alpha);

void Draw_Textured_Perspective_Triangle_FSINVZB_Alpha16(POLYF4DV2_PTR face, 

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch,    // bytes per line, 320, 640 etc.

UCHAR *_zbuffer,   // pointer to z-buffer

int zpitch,     // bytes per line of zbuffer

int alpha);

void Draw_Textured_PerspectiveLP_Triangle_FSINVZB_Alpha16(POLYF4DV2_PTR face, 

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch,    // bytes per line, 320, 640 etc.

UCHAR *_zbuffer,   // pointer to z-buffer

int zpitch,     // bytes per line of zbuffer

int alpha);

void Draw_RENDERLIST4DV2_SolidINVZB_Alpha16(RENDERLIST4DV2_PTR rend_list,

UCHAR *video_buffer,

int lpitch,

UCHAR *zbuffer,

int zpitch,

int alpha_override);

// non zbuffered versions

void Draw_Textured_Triangle2_16(POLYF4DV2_PTR face, // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch);    // bytes per line, 320, 640 etc.

CHAPTER 12 Advanced Texturing Techniques1156

17 0672318350 CH12  05•02•2003  2:54 PM  Page 1156



void Draw_Textured_Bilerp_Triangle_16(POLYF4DV2_PTR face, // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch);    // bytes per line, 320, 640 etc.

void Draw_Textured_TriangleFS2_16(POLYF4DV2_PTR face, // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch);   // bytes per line, 320, 640 etc.

void Draw_Triangle_2D3_16(POLYF4DV2_PTR face, // ptr to face

UCHAR *_dest_buffer,// pointer to video buffer

int mem_pitch);   // bytes per line, 320, 640 etc.

void Draw_Gouraud_Triangle2_16(POLYF4DV2_PTR face, // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch);   // bytes per line, 320, 640 etc.

void Draw_Textured_TriangleGS_16(POLYF4DV2_PTR face, // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch);   // bytes per line, 320, 640 etc.

void Draw_Textured_Perspective_Triangle_16(POLYF4DV2_PTR face, // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch);   // bytes per line, 320, 640 etc.

void Draw_Textured_PerspectiveLP_Triangle_16(POLYF4DV2_PTR face, 

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch);   // bytes per line, 320, 640 etc.

void Draw_Textured_Perspective_Triangle_FS_16(POLYF4DV2_PTR face, 

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch);   // bytes per line, 320, 640 etc.

void Draw_Textured_PerspectiveLP_Triangle_FS_16(POLYF4DV2_PTR face, 

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch);   // bytes per line, 320, 640 etc.
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void Draw_RENDERLIST4DV2_Solid2_16(RENDERLIST4DV2_PTR rend_list,

UCHAR *video_buffer, // pointer to video buffer

int lpitch); // bytes per line, 320, 640 etc.

// alpha versions, non-z buffered

int RGB_Alpha_Table_Builder(int num_alpha_levels,  // num levels to create

USHORT rgb_alpha_table[NUM_ALPHA_LEVELS][65536]); // lookup table

void Draw_Triangle_2D_Alpha16(POLYF4DV2_PTR face, // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch,    // bytes per line, 320, 640 etc.

int alpha);

void Draw_Textured_Triangle_Alpha16(POLYF4DV2_PTR face, // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch,    // bytes per line, 320, 640 etc.

int alpha);

void Draw_Textured_TriangleFS_Alpha16(POLYF4DV2_PTR face, // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch,    // bytes per line, 320, 640 etc.

int alpha);

void Draw_Textured_TriangleGS_Alpha16(POLYF4DV2_PTR face, // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch,    // bytes per line, 320, 640 etc.

int alpha);

void Draw_Gouraud_Triangle_Alpha16(POLYF4DV2_PTR face,  // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch,    // bytes per line, 320, 640 etc.

int alpha);

void Draw_RENDERLIST4DV2_Solid_Alpha16(RENDERLIST4DV2_PTR rend_list,

UCHAR *video_buffer, // pointer to video buffer

int lpitch, // bytes per line, 320, 640 etc.

int alpha_override); // alpha value
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// new rendering function that works for everything!!! yaaa!!!!!

void Draw_RENDERLISTV2_RENDERCONTEXTV1_16(RENDERCONTEXTV1_PTR rc);

// new model functions

int Load_OBJECT4DV2_COB2(OBJECT4DV2_PTR obj, // pointer to object

char *filename,   // filename of Caligari COB file

VECTOR4D_PTR scale, // initial scaling factors

VECTOR4D_PTR pos,  // initial position

VECTOR4D_PTR rot,  // initial rotations

int vertex_flags,  // flags to re-order vertices

// and perform transforms

int mipmap=0);   // mipmap enable flag

// 0 means no mipmap, 1 means

// generate mip map

int Generate_Terrain2_OBJECT4DV2(OBJECT4DV2_PTR obj,  // pointer to object

float twidth,     // width in world coords on x-axis

float theight,     // height (length) in world coords on z-axis

float vscale,     // vertical scale of terrain

char *height_map_file, // filename of height bitmap encoded in 256 colors

char *texture_map_file,// filename of texture map

int rgbcolor,     // color of terrain if no texture

VECTOR4D_PTR pos,   // initial position

VECTOR4D_PTR rot,   // initial rotations

int poly_attr,     // the shading attributes we would like

float sea_level=-1,  // height of sea level

int alpha=-1);     // alpha level for sea polygons

// new directdraw functions

int DDraw_Init2(int width, int height, int bpp, 

int windowed, int backbuffer_enable = 1);

int DDraw_Flip2(void);

// mip mapping functions

int Generate_Mipmaps(BITMAP_IMAGE_PTR source, 

BITMAP_IMAGE_PTR *mipmaps, float gamma = 1.01);

int Delete_Mipmaps(BITMAP_IMAGE_PTR *mipmaps, int leave_level_0);

Welcome to my nightmare! That’s a ton of prototypes, huh? Imagine writing all the code
to go along with them.
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Building a New Rasterizer Base
Alright, let’s start from the beginning. The first thing we need to rewrite are the core
rasterizers. We have been using a set of rasterizers that have a few problems. The major
problem is one that you may or may not have noticed. When we wrote the rendering
function to call the triangle rasterizer functions, we always truncated the vertices to inte-
gers, rather than leaving them as floating-point values to be converted more accurately in
the rasterizers themselves into fixed-point. Thus, we lost precision. To refresh your
memory, here’s what a typical rendering function did to the vertices before passing them
into the triangle function:

// set the vertices

face.tvlist[0].x = (int)rend_list->poly_ptrs[poly]->tvlist[0].x;

face.tvlist[0].y = (int)rend_list->poly_ptrs[poly]->tvlist[0].y;

Truncation was needed primarily because the original fixed point rasterizers that we were
using for texturing liked to start with integer coordinates and then work from there.
However, this forced us to lose precision with the preceding truncation. This has been
fixed—now all the triangle functions can directly take floating-point values, and the func-
tions will round and convert them to fixed-point.

The Final Decision to Go with Fixed-Point
Next I have decided to work with fixed-point numbers. The bottom line is that floating-
point is faster for multiplication and division in most cases. The problem is that rasteriz-
ing is inherently a “bit twiddling” operation, and we are playing with encoded RGB
values, texture coordinates, and memory. Floating-point is horrible at this, and the conver-
sion to int and from int in the rasterization loop’s outer and inner line rasterizing code
will kill you. Conversion from float to integer is around 70 cycles at worst—totally unac-
ceptable. Additionally, working with 32-bit integers allows us all kinds of optimizations
that aren’t possible with floating-point formats.

The bottom line is that we will use floating-point for everything but rasterization. This is
the best of both worlds: As long as we maintain floating-point calculations, which we do
for transformations, lighting, and so on, floating-point is faster and more accurate, but the
second we hit the rasterization code, it kills us. I experimented with floating-point—I
wrote floating-point, fixed-point, and hybrid versions of everything, and hands down
fixed-point 32-bit was much faster for rasterizing each time.

However, the old format of 16.16 fixed-point had to be augmented with other formats like
4.28 and 10.22 to be better suited for high decimal accuracy calculations. However, I will
cover that when we get to 1/z-buffering and perspective-correct texturing, where the new
formats are needed.

Summing up, we are going to use fixed-point math from here on out for all rasterizers—
period! Also, I cleaned up the base rasterizers to follow our upper-left fill convention
better. They are sub-pixel accurate now, so the texturing is very clean, as well as the
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rendering of solids. There are no cracks or pixels being overdrawn on connected meshes
because of incorrect fill conventions. With that in mind, let’s look at the new base rasteriz-
ers that build on these new features.

The New Non-z-Buffered Rasterizers
First let’s take a look at the basic non-z-buffered rasterizers. Of course, there are new raster-
izers for perspective-correct, alpha blending, and mip mapping, but we are only going to
look at the rewrites of the ones we already had at this point so we don’t get ahead of
ourselves. Here they are one at a time, with explanations:

Function:

void Draw_Triangle_2D3_16(POLYF4DV2_PTR face, // ptr to face

UCHAR *_dest_buffer,// pointer to video buffer

int mem_pitch);   // bytes per line, 320, 640 etc.

Description: Draw_Triangle_2D3_16() simply draws a constant or flat-shaded polygon to
the screen. There is no z-buffering, of course, so the polygon will be drawn without any
consideration for its rendering order. It’s up to the caller to presort the polygons. As you
see, the function just has a funky name, but that’s about the only difference from the
previous version 2.0. However, the cool part is that the function is faster, cleaner, and is
sub-pixel accurate, with the upper-left hand fill convention maintained. Additionally, the
previous version of this function used the top/bottom triangle convention to split all
triangles into two cases. This has been unified in this version, so it’s just like all the other
rasterizers now—one triangle, one leader.

Function:

void Draw_Gouraud_Triangle2_16(POLYF4DV2_PTR face, // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch);   // bytes per line, 320, 640 etc.

Description: void Draw_Gouraud_Triangle2_16() is a slightly improved version of the
previous version of the function, but with sub-pixel accuracy, and more strictly adheres to
the upper-left hand fill convention.

Function:

void Draw_Textured_Triangle2_16(POLYF4DV2_PTR face, // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch);    // bytes per line, 320, 640 etc.

Description: Draw_Textured_Triangle2_16() is a slightly improved version of the previ-
ous affine texture mapping function, but with sub-pixel accuracy, and more strictly
adheres to the upper left hand fill convention. This improves the texturing and makes it
look more solid.
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NOTE

To tell you the truth, the affine texturing is so nice and fast that I don’t want to use perspective
<BG>.

Function:

void Draw_Textured_TriangleFS2_16(POLYF4DV2_PTR face, // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch);   // bytes per line, 320, 640 etc.

Description: Draw_Textured_TriangleFS2_16() is a slightly improved version of the
previous affine texture mapping function that supports flat shading, but with sub-pixel
accuracy, and the upper left-hand fill convention is more strictly adhered to. This
improves the texturing and makes it look more solid.

Function:

void Draw_RENDERLIST4DV2_Solid2_16(RENDERLIST4DV2_PTR rend_list, // render list

UCHAR *video_buffer, // pointer to video buffer

int lpitch); // bytes per line, 320, 640, etc.

Description: Draw_RENDERLIST4DV2_Solid2_16() is the entry point to call the previously
listed functions—that is, no z-buffering. The internals of the function are identical to the
previous version; however, the integer truncation is removed. Here is the listing of the
function for reference:

void Draw_RENDERLIST4DV2_Solid2_16(RENDERLIST4DV2_PTR rend_list,

UCHAR *video_buffer,

int lpitch)

{

// 16-bit version

// this function “executes” the render list or in other words

// draws all the faces in the list, the function will call the

// proper rasterizer based on the lighting model of the polygons

POLYF4DV2 face; // temp face used to render polygon

// at this point, all we have is a list of polygons and it’s time

// to draw them

for (int poly=0; poly < rend_list->num_polys; poly++)

{

// render this polygon if and only if it’s not clipped, not culled,

// active, and visible, note however the concecpt of “backface” is

// irrelevant in a wire frame engine though

if (!(rend_list->poly_ptrs[poly]->state & POLY4DV2_STATE_ACTIVE) ||

(rend_list->poly_ptrs[poly]->state & POLY4DV2_STATE_CLIPPED ) ||
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(rend_list->poly_ptrs[poly]->state & POLY4DV2_STATE_BACKFACE) )

continue; // move onto next poly

// need to test for textured first, since a textured poly can either

// be emissive, or flat shaded, hence we need to call different

// rasterizers

if (rend_list->poly_ptrs[poly]->attr & POLY4DV2_ATTR_SHADE_MODE_TEXTURE)

{

// set the vertices

face.tvlist[0].x = (float)rend_list->poly_ptrs[poly]->tvlist[0].x;

face.tvlist[0].y = (float)rend_list->poly_ptrs[poly]->tvlist[0].y;

face.tvlist[0].z = (float)rend_list->poly_ptrs[poly]->tvlist[0].z;

face.tvlist[0].u0 = (float)rend_list->poly_ptrs[poly]->tvlist[0].u0;

face.tvlist[0].v0 = (float)rend_list->poly_ptrs[poly]->tvlist[0].v0;

face.tvlist[1].x = (float)rend_list->poly_ptrs[poly]->tvlist[1].x;

face.tvlist[1].y = (float)rend_list->poly_ptrs[poly]->tvlist[1].y;

face.tvlist[1].z = (float)rend_list->poly_ptrs[poly]->tvlist[1].z;

face.tvlist[1].u0 = (float)rend_list->poly_ptrs[poly]->tvlist[1].u0;

face.tvlist[1].v0 = (float)rend_list->poly_ptrs[poly]->tvlist[1].v0;

face.tvlist[2].x = (float)rend_list->poly_ptrs[poly]->tvlist[2].x;

face.tvlist[2].y = (float)rend_list->poly_ptrs[poly]->tvlist[2].y;

face.tvlist[2].z = (float)rend_list->poly_ptrs[poly]->tvlist[2].z;

face.tvlist[2].u0 = (float)rend_list->poly_ptrs[poly]->tvlist[2].u0;

face.tvlist[2].v0 = (float)rend_list->poly_ptrs[poly]->tvlist[2].v0;

// assign the texture

face.texture = rend_list->poly_ptrs[poly]->texture;

// is this a plain emissive texture?

if (rend_list->poly_ptrs[poly]->attr & 

POLY4DV2_ATTR_SHADE_MODE_CONSTANT)

{

// draw the textured triangle as emissive

Draw_Textured_Triangle2_16(&face, video_buffer, lpitch);

//Draw_Textured_Perspective_Triangle_16(&face, video_buffer, lpitch);

} // end if

else

if (rend_list->poly_ptrs[poly]->attr & POLY4DV2_ATTR_SHADE_MODE_FLAT)

{

// draw as flat shaded

face.lit_color[0] = rend_list->poly_ptrs[poly]->lit_color[0];
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Draw_Textured_TriangleFS2_16(&face, video_buffer, lpitch);

//Draw_Textured_Perspective_Triangle_FS_16(&face, video_buffer, lpitch);

} // end else

else

{

// must be gouraud POLY4DV2_ATTR_SHADE_MODE_GOURAUD

face.lit_color[0] = rend_list->poly_ptrs[poly]->lit_color[0];

face.lit_color[1] = rend_list->poly_ptrs[poly]->lit_color[1];

face.lit_color[2] = rend_list->poly_ptrs[poly]->lit_color[2];

Draw_Textured_TriangleGS_16(&face, video_buffer, lpitch);

} // end else

} // end if

else

if ((rend_list->poly_ptrs[poly]->attr & POLY4DV2_ATTR_SHADE_MODE_FLAT) ||

(rend_list->poly_ptrs[poly]->attr & POLY4DV2_ATTR_SHADE_MODE_CONSTANT))

{

// draw as constant shaded

face.lit_color[0] = rend_list->poly_ptrs[poly]->lit_color[0];

// set the vertices

face.tvlist[0].x = (float)rend_list->poly_ptrs[poly]->tvlist[0].x;

face.tvlist[0].y = (float)rend_list->poly_ptrs[poly]->tvlist[0].y;

face.tvlist[0].z = (float)rend_list->poly_ptrs[poly]->tvlist[0].z;

face.tvlist[1].x = (float)rend_list->poly_ptrs[poly]->tvlist[1].x;

face.tvlist[1].y = (float)rend_list->poly_ptrs[poly]->tvlist[1].y;

face.tvlist[1].z = (float)rend_list->poly_ptrs[poly]->tvlist[1].z;

face.tvlist[2].x = (float)rend_list->poly_ptrs[poly]->tvlist[2].x;

face.tvlist[2].y = (float)rend_list->poly_ptrs[poly]->tvlist[2].y;

face.tvlist[2].z = (float)rend_list->poly_ptrs[poly]->tvlist[2].z;

// draw the triangle with basic flat rasterizer

Draw_Triangle_2D3_16(&face, video_buffer, lpitch);

} // end if

else

if (rend_list->poly_ptrs[poly]->attr & POLY4DV2_ATTR_SHADE_MODE_GOURAUD)

{

// set the vertices

face.tvlist[0].x = (float)rend_list->poly_ptrs[poly]->tvlist[0].x;

face.tvlist[0].y = (float)rend_list->poly_ptrs[poly]->tvlist[0].y;
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face.tvlist[0].z = (float)rend_list->poly_ptrs[poly]->tvlist[0].z;

face.lit_color[0] = rend_list->poly_ptrs[poly]->lit_color[0];

face.tvlist[1].x = (float)rend_list->poly_ptrs[poly]->tvlist[1].x;

face.tvlist[1].y = (float)rend_list->poly_ptrs[poly]->tvlist[1].y;

face.tvlist[1].z = (float)rend_list->poly_ptrs[poly]->tvlist[1].z;

face.lit_color[1] = rend_list->poly_ptrs[poly]->lit_color[1];

face.tvlist[2].x = (float)rend_list->poly_ptrs[poly]->tvlist[2].x;

face.tvlist[2].y = (float)rend_list->poly_ptrs[poly]->tvlist[2].y;

face.tvlist[2].z = (float)rend_list->poly_ptrs[poly]->tvlist[2].z;

face.lit_color[2] = rend_list->poly_ptrs[poly]->lit_color[2];

// draw the gouraud shaded triangle

Draw_Gouraud_Triangle2_16(&face, video_buffer, lpitch);

} // end if gouraud

} // end for poly

} // end Draw_RENDERLIST4DV2_Solid2_16

Notice all the float casts now—the vertices are sent as is, without any loss of precision. I
am so happy about this! Now, let’s move on to the new z-buffered base rasterizers, omit-
ting anything with new technology, like alpha blending, for now.

The New Z-Buffered Rasterizers
The following lists the new base functions for z-buffering. They are not exhaustive, and
thus do not include alpha blending, because we haven’t covered that yet. These are just
replacements for the previous functions you have been using.

Function:

void Draw_Triangle_2DZB2_16(POLYF4DV2_PTR face, // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch,    // bytes per line, 320, 640 etc.

UCHAR *zbuffer,   // pointer to z-buffer

int zpitch);     // bytes per line of zbuffer

Description: Draw_Triangle_2DZB2_16() is the most basic of the new Z-buffer functions,
and simply draws a z-buffered triangle to the screen and updates the Z-buffer while doing
so. The function is sub-pixel accurate, and follows the upper left-hand fill convention
more strictly. Nothing has changed with the parameters, just the name of the function.
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Function:

void Draw_Textured_TriangleZB2_16(POLYF4DV2_PTR face, // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch,    // bytes per line, 320, 640 etc.

UCHAR *zbuffer,    // pointer to z-buffer

int zpitch);     // bytes per line of zbuffer

Description: Draw_Textured_TriangleZB2_16() is the new z-buffered function that draws
a constant-shaded affine textured triangle. However, with new sub-pixel accuracy as well
as the top-left fill convention, this function works much better. As usual, the calling
convention is the same.

Function:

void Draw_Textured_TriangleFSZB2_16(POLYF4DV2_PTR face, // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch,    // bytes per line, 320, 640 etc.

UCHAR *zbuffer,    // pointer to z-buffer

int zpitch);     // bytes per line of zbuffer

Description: Draw_Textured_TriangleFSZB2_16() is the new z-buffered function that
draws a flat-shaded affine textured triangle. However, with new sub-pixel accuracy as well
as the top-left fill convention, this function works much better. As usual, the calling
convention is the same.

Function:

void Draw_Gouraud_TriangleZB2_16(POLYF4DV2_PTR face,  // ptr to face

UCHAR *_dest_buffer,// pointer to video buffer

int mem_pitch,   // bytes per line, 320, 640 etc.

UCHAR *zbuffer,   // pointer to z-buffer

int zpitch);    // bytes per line of zbuffer

Description: Draw_Gouraud_TriangleZB2_16() is the new z-buffered function that draws
a Gouraud-shaded triangle. However, with new sub-pixel accuracy as well as the top-left
fill convention, this function works much better. The calling convention is the same.

Function:

void Draw_RENDERLIST4DV2_SolidZB2_16(RENDERLIST4DV2_PTR rend_list,

UCHAR *video_buffer,

int lpitch,

UCHAR *zbuffer,

int zpitch);

Description: Draw_RENDERLIST4DV2_SolidZB2_16() is the entry point to call the previ-
ously listed functions—that is, the function with z-buffering. The internals of the function
are identical to the previous version; however, the integer truncation is removed.
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Alright, that’s about where we were in the last chapter. We could draw solid polygons that
are constant-, flat-, or Gouraud-shaded, along with affine textured polygons that are
constant- or flat-shaded. The preceding functions do the same thing more or less, but just
cleaner, more accurately, and with fewer errors. No point in a demo—it would look the
same. Let’s move on to something where we can “see” the difference!

Gouraud-Shaded Texturing
The first edition to our rasterization library is support for Gouraud-shaded texturing.
Although I originally thought it would be too slow in software, after experimenting with
it, I found that it was more than fast enough. Our little fixed-point rasterizer is really fast,
so although the inner loop is more complex to support Gouraud shading because I had to
add more interpolants, it showed very little slowdown. In any event, let’s talk about what’s
needed to support Gouraud-shaded texturing. In Figure 12.1 we see the two setups for
constant-shaded affine texturing and single-colored Gouraud shading. The trick is to
merge them.
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FIGURE 12.1 Merging the setups for constant-shaded texturing and Gouraud-shaded poly-
gons.

My plan of attack is simple: We start with the Gouraud-shading function that draws a
single color polygon, add the support to interpolate the u and v coordinates for texturing,
and then merge the two using the Gouraud shading function as the base (because it’s the
larger of the two, and we have added less to it. Let’s take a look at what needs to be done,
starting with the Gouraud-shading code. Here’s an excerpt of the inner loop that draws
the polygon (non-z-buffered version):
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// point screen ptr to starting line

screen_ptr = dest_buffer + (ystart * mem_pitch);

for (yi = ystart; yi < yend; yi++)

{

// compute span endpoints

xstart = ((xl + FIXP16_ROUND_UP) >> FIXP16_SHIFT);

xend  = ((xr + FIXP16_ROUND_UP) >> FIXP16_SHIFT);

// compute starting points for u,v,w interpolants

ui = ul + FIXP16_ROUND_UP;

vi = vl + FIXP16_ROUND_UP;

wi = wl + FIXP16_ROUND_UP;

// compute u,v,w interpolants

if ((dx = (xend - xstart))>0)

{

du = (ur - ul)/dx;

dv = (vr - vl)/dx;

dw = (wr - wl)/dx;

} // end if

else

{

du = (ur - ul);

dv = (vr - vl);

dw = (wr - wl);

} // end else

// draw span

for (xi=xstart; xi < xend; xi++)

{

// write textel 5.6.5

screen_ptr[xi] = ((ui >> (FIXP16_SHIFT+3)) << 11) +

((vi >> (FIXP16_SHIFT+2)) << 5) +

(wi >> (FIXP16_SHIFT+3));

// interpolate u,v,w

ui+=du;

vi+=dv;

wi+=dw;

} // end for xi

// interpolate u,v,w,x along right and left edges

xl+=dxdyl;
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ul+=dudyl;

vl+=dvdyl;

wl+=dwdyl;

xr+=dxdyr;

ur+=dudyr;

vr+=dvdyr;

wr+=dwdyr;

// advance screen ptr

screen_ptr+=mem_pitch;

} // end for y

I have bolded the innermost loop that draws the single span, which is based on the inter-
polation of red, green, and blue in 16.16 fixed-point format, stored in u, v, and w respec-
tively. This little code snippet builds the RGB 16-bit word up in 5.6.5 format from the
fixed-point values and writes it to the screen:

screen_ptr[xi] = ((ui >> (FIXP16_SHIFT+3)) << 11) +

((vi >> (FIXP16_SHIFT+2)) << 5) +

(wi >> (FIXP16_SHIFT+3));

Other than that, there’s nothing else to the Gouraud shader. Now let’s look at the affine
texture mapper, and see what it’s interpolating:

// point screen ptr to starting line

screen_ptr = dest_buffer + (ystart * mem_pitch);

for (yi = ystart; yi < yend; yi++)

{

// compute span endpoints

xstart = ((xl + FIXP16_ROUND_UP) >> FIXP16_SHIFT);

xend  = ((xr + FIXP16_ROUND_UP) >> FIXP16_SHIFT);

// compute starting points for u,v interpolants

ui = ul + FIXP16_ROUND_UP;

vi = vl + FIXP16_ROUND_UP;

// compute u,v interpolants

if ((dx = (xend - xstart))>0)

{

du = (ur - ul)/dx;

dv = (vr - vl)/dx;

} // end if
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else

{

du = (ur - ul);

dv = (vr - vl);

} // end else

// draw span

for (xi=xstart; xi < xend; xi++)

{

// write textel

screen_ptr[xi] = textmap[(ui >> FIXP16_SHIFT) +

((vi >> FIXP16_SHIFT) << texture_shift2)];

// interpolate u,v

ui+=du;

vi+=dv;

} // end for xi

// interpolate u,v,x along right and left edges

xl+=dxdyl;

ul+=dudyl;

vl+=dvdyl;

xr+=dxdyr;

ur+=dudyr;

vr+=dvdyr;

// advance screen ptr

screen_ptr+=mem_pitch;

} // end for y

Again, the actual code to write the pixel is rather trivial. ui and vi are fixed-point texture
coordinates that are converted from 16.16 fixed-point format back into integers and then
used to access the texture map. The textel (texture pixel) is then written to memory, and
that’s it. Therefore, merging these two subprograms shouldn’t be that hard. The thing we
have to remember is that we are Gouraud-shading the texture, but as we did with the flat-
shaded version of the texture mapper, we assumed that the color under the texture was
white. Based on that, we performed the lighting calculations with the white base color
and then used the results of that as the color to modulate the texture color. We are going
to do the same thing here. Figure 12.2 illustrates the flow of data in this process.
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FIGURE 12.2 The interpolation flow of the Gouraud texture mapper.

Basically, the Gouraud shading and texture mapping run side by side simultaneously. The
Gouraud shader interpolates r, g, and b (using the interpolants u, v, and w), whereas the
texture mapper interpolates u and v (using the interpolants s and t). Then at the last
minute the texture access and color modulation step occurs. Review the code excerpt from
the completed Gouraud texture mapper and the following:

// point screen ptr to starting line

screen_ptr = dest_buffer + (ystart * mem_pitch);

for (yi = ystart; yi < yend; yi++)

{

// compute span endpoints

xstart = ((xl + FIXP16_ROUND_UP) >> FIXP16_SHIFT);

xend  = ((xr + FIXP16_ROUND_UP) >> FIXP16_SHIFT);

// compute starting points for u,v,w,s,t interpolants

ui = ul + FIXP16_ROUND_UP;

vi = vl + FIXP16_ROUND_UP;

wi = wl + FIXP16_ROUND_UP;

si = sl + FIXP16_ROUND_UP;

ti = tl + FIXP16_ROUND_UP;
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// compute u,v interpolants

if ((dx = (xend - xstart))>0)

{

du = (ur - ul)/dx;

dv = (vr - vl)/dx;

dw = (wr - wl)/dx;

ds = (sr - sl)/dx;

dt = (tr - tl)/dx;

} // end if

else

{

du = (ur - ul);

dv = (vr - vl);

dw = (wr - wl);

ds = (sr - sl);

dt = (tr - tl);

} // end else

// draw span

for (xi=xstart; xi < xend; xi++)

{

// get textel first

textel = textmap[(si >> FIXP16_SHIFT) + 

((ti >> FIXP16_SHIFT) << texture_shift2)];

// extract rgb components

r_textel = ((textel >> 11)    );

g_textel = ((textel >> 5) & 0x3f);

b_textel =  (textel    & 0x1f);

// modulate textel with gouraud shading

r_textel*=ui;

g_textel*=vi;

b_textel*=wi;

// finally write pixel, note that we did the math

// such that the results are r*32, g*64, b*32

// hence we need to divide the results by 32,64,32 respectively,

// BUT since we need to shift

// the results to fit into the destination 5.6.5 word,

// we can take advantage of the shifts

// and they all cancel out for the most part,
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// but we will need logical anding, we will do

// it later when we optimize more...

screen_ptr[xi] = ((b_textel >> (FIXP16_SHIFT+8)) +

((g_textel >> (FIXP16_SHIFT+8)) << 5) +

((r_textel >> (FIXP16_SHIFT+8)) << 11));

// interpolate u,v

ui+=du;

vi+=dv;

wi+=dw;

si+=ds;

ti+=dt;

} // end for xi

// interpolate u,v,w,x along right and left edge

xl+=dxdyl;

ul+=dudyl;

vl+=dvdyl;

wl+=dwdyl;

sl+=dsdyl;

tl+=dtdyl;

xr+=dxdyr;

ur+=dudyr;

vr+=dvdyr;

wr+=dwdyr;

sr+=dsdyr;

tr+=dtdyr;

// advance screen ptr

screen_ptr+=mem_pitch;

} // end for y

I have highlighted the inner loop as usual. The first step is to extract the textel we want to
Gouraud shade. This is accomplished with this code:

r_textel = ((textel >> 11)    );

g_textel = ((textel >> 5) & 0x3f);

b_textel =  (textel    & 0x1f);
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At this point, r_textel, g_textel, and b_texel hold the RGB value of the textel in 5.6.5
format. We need to multiply these values by the red, green, and blue Gouraud interpolants
that have been interpolating the “white” ghost polygon under the texture. Here’s the code
that does this:

r_textel*=ui;

g_textel*=vi;

b_textel*=wi;

Now, let’s stop for a moment here to see what is happening with the fixed-point math.
r_textel, g_texel, and b_textel are not in fixed-point anymore—they are integers (0..31),
(0..63), and (0..31), respectively. However, ui, vi, wi, are fixed-point, so multiplying a
fixed-point number by a normal integer results in a fixed-point number. Therefore,
r_textel, g_textel, and b_textel now have the modulated r,g,b Gouraud-shaded texture.
We just need to extract the correct data out of each because they are fixed-point and
scaled, shift them into place, and write the final pixel. The following code performs the bit
manipulations to achieve this while at the same time formatting the final r, g, and b
values into 5.6.5 format to write to the screen:

screen_ptr[xi] = ((b_textel >> (FIXP16_SHIFT+8)) +

((g_textel >> (FIXP16_SHIFT+8)) << 5) +

((r_textel >> (FIXP16_SHIFT+8)) << 11));

NOTE

For example, adding fixed-point 10 to fixed-point 10 equals fixed-point 20. That’s the same as
multiplying fixed-point 10 by 2. Let’s see why. Using 16.16 format, fixed-point 10 = (10 *
65536). Therefore, fixed-point 10 added to fixed-point 10 equals

(10*65536) + (10*65536) = (20*65536) = (2*10*65536) = 2*(10*65536)

So, we can bring integral factors in and out of the fixed-point numbers, and they always remain
fixed-point.

Amazing, huh? That’s an entire Gouraud-shaded, texture mapped rasterization with three
multiplications, a few adds/shifts, and it’s very fast. This is why we want to stick to fixed-
point math—floating-point would kill us in the conversions here.

Now, if you’re like me, you’re probably trying to think of ways to speed this up. There are
many ways, of course, but algorithmically the code is nearly optimal, meaning it’s doing
nearly the minimum amount of work needed to get the job done. There are a couple of
bit-scaling manipulations that could be done, but for the most part, there’s no way to do
less and get the same results.

Using lookup tables might help, but again, they cause caching problems, and I am not
sure that there’s much we can use them for. However, the most obvious table to create is
something that precomputes all possible products of the textel with the RGB value of the

CHAPTER 12 Advanced Texturing Techniques1174

17 0672318350 CH12  05•02•2003  2:54 PM  Page 1174



Gouraud interpolants. That would be a very big table, because we would need to precom-
pute every possible product of two RGB values in 5.6.5 format, which is 65536 * 65536 =
232 = 4 billion, roughly. Way too big! So, another option is to used reduced space computa-
tion, maybe scale each down to 12-bit or something, but then we would have 212 * 212 = 224

= 16.7 million, roughly. Still too large, and we have lost a lot of color space. I’m not saying
it’s not possible to use lookup tables, but it’s probably not wise. The key to making the
preceding code faster is in rearranging a little and other subtle changes—the structure is
pretty good as is.

Moving on, here’s the actual function that contains the Gouraud-shading texture mapper
without z-buffering:

void Draw_Textured_TriangleGS_16(POLYF4DV2_PTR face,  // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch)    // bytes per line, 320, 640 etc.

You would call the function as usual with the flat-shaded version, but of course, because
it’s Gouraud shaded as well as texture mapped, you must set up both the u,v texture coor-
dinates as well as the vertex colors, which must be stored in lit_colors[0..2]—remem-
ber the vertex color array? Additionally, here is the Z-buffer version of the function:

void Draw_Textured_TriangleGSZB_16(POLYF4DV2_PTR face,  // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch,    // bytes per line, 320, 640 etc.

UCHAR *_zbuffer,   // pointer to z-buffer

int zpitch);     // bytes per line of zbuffer

Once again, the function needs the transport face to have texture coordinates as well as
vertex lighting set, and finally the Z-buffer and Z-buffer pitch must be sent. For example,
here’s an excerpt from one of the rendering functions setting up to call the Gouraud
texturing function:

// set up vertex list and texture coordinates

face.tvlist[0].x = (float)rend_list->poly_ptrs[poly]->tvlist[0].x;

face.tvlist[0].y = (float)rend_list->poly_ptrs[poly]->tvlist[0].y;

face.tvlist[0].z = (float)rend_list->poly_ptrs[poly]->tvlist[0].z;

face.tvlist[0].u0 = (float)rend_list->poly_ptrs[poly]->tvlist[0].u0;

face.tvlist[0].v0 = (float)rend_list->poly_ptrs[poly]->tvlist[0].v0;

face.tvlist[1].x = (float)rend_list->poly_ptrs[poly]->tvlist[1].x;

face.tvlist[1].y = (float)rend_list->poly_ptrs[poly]->tvlist[1].y;

face.tvlist[1].z = (float)rend_list->poly_ptrs[poly]->tvlist[1].z;

face.tvlist[1].u0 = (float)rend_list->poly_ptrs[poly]->tvlist[1].u0;

face.tvlist[1].v0 = (float)rend_list->poly_ptrs[poly]->tvlist[1].v0;
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face.tvlist[2].x = (float)rend_list->poly_ptrs[poly]->tvlist[2].x;

face.tvlist[2].y = (float)rend_list->poly_ptrs[poly]->tvlist[2].y;

face.tvlist[2].z = (float)rend_list->poly_ptrs[poly]->tvlist[2].z;

face.tvlist[2].u0 = (float)rend_list->poly_ptrs[poly]->tvlist[2].u0;

face.tvlist[2].v0 = (float)rend_list->poly_ptrs[poly]->tvlist[2].v0;

// assign the texture

face.texture = rend_list->poly_ptrs[poly]->texture;

// set the vertex colors

face.lit_color[0] = rend_list->poly_ptrs[poly]->lit_color[0];

face.lit_color[1] = rend_list->poly_ptrs[poly]->lit_color[1];

face.lit_color[2] = rend_list->poly_ptrs[poly]->lit_color[2];
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FIGURE 12.3 A screenshot of the Gouraud-shaded texturing rasterizers in action. 

That’s about all there is to Gouraud texturing. I have moved rather quickly through the
material because you have seen each individual technique many times; we simply merged
them into one cohesive function.

For a demo of Gouraud texturing, check out DEMOII12_1.CPP|EXE. Figure 12.3 is a screen-
shot of the demo in action. It depicts a collection of constant-, flat-, and Gouraud-
textured objects on the screen (left to right, respectively), so you can see the difference in
quality. Press the 1, 2, and 3 keys to select different objects. Notice how Gouraud texturing
doesn’t help much on angular objects, but on objects that are smooth, it sure makes a
difference!
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Transparency and Alpha Blending
To tell the truth, I was a little worried that adding transparency to the engine was going to
kill the speed. Theoretically, alpha blending/transparency is nothing more than a simple
blending operation. Given two pixels p_source1(r,g,b) and p_source2(r,g,b) and a
blending factor we will call alpha (which ranges from 0..1), we want to compute the final
pixel p_final(r,g,b), which blends them together. The formula for this is

p_final = (alpha)*(p_source1) + (1-alpha)*(p_source2)

Each pixel is really made up of three components r, g, and b. Hence, the equations really
look like this:

p_finalr = (alpha)*(p_source1r) + (1-alpha)*(p_source2r)

p_finalg = (alpha)*(p_source1g) + (1-alpha)*(p_source2g)

p_finalb = (alpha)*(p_source1b) + (1-alpha)*(p_source2b)

If alpha = 1, p_source1 is completely opaque and p_source2 is not blended whatsoever.
Similarly, if alpha = 0, p_source1 is completely transparent and p_source2 is completely
opaque. And finally, if alpha = 0.5, both p_source1 and p_source2 are blended 50/50. This
is the basis of our transparency/alpha blending technology. So, we have three major prob-
lems:

• How do we perform this complex mathematical operation fast enough?

• How do we support alpha blending in the engine? That is, how do we indicate that
polygons have an alpha value?

• How do we deal with DirectX slowing down up to 30 times when reading from a
backbuffer surface?

I will defer the second and third problems because they are at a higher level and we’ll deal
with them later. Right now, let’s figure out the first problem.

Alright, so we are looking at something like six multiplications here, plus three additions
per pixel. This just kills me for something that we might want to use a lot of and simply
isn’t feasible to do by brute force. Sure, we could just apply the alpha blending math to
each pixel during the rasterization loop and be done with it, but that’s not acceptable.
There has to be a better way to do this. This is a case where lookup tables can help us.

Using Lookup Tables for Alpha Blending
The problem facing us is this nasty computation to support alpha blending shown here:

p_finalr = (alpha)*(p_source1r) + (1-alpha)*(p_source2r)

p_finalg = (alpha)*(p_source1g) + (1-alpha)*(p_source2g)

p_finalb = (alpha)*(p_source1b) + (1-alpha)*(p_source2b)
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Not only are there six multiplications, but there are three additions and one extra addition
to compute the constant (1-alpha), for a total of four additions. This says nothing of the
fact that this is pure math—chances are, we won’t be able to just perform these calcula-
tions to our pixels because many times they are in RGB format and must be extracted. So
what we would like to do is create a lookup table that takes two RGB values in 5.6.5
format and an alpha value from 0..255 and gives us the result. This is shown graphically
in Figure 12.4. Of course, once again we find ourselves with the same dilemma: a huge
lookup table. Here’s a calculation to show the size:

Inputs to table (3):

Color 1:   RGB 5.6.5 format, 16-bits

Color 2:   RGB 5.6.5 format, 16-bits

Alpha factor: 0..255, 8-bits
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FIGURE 12.4 A potential alpha blending system implemented with tables.

Thus we need the table to precompute all possible products of the two input colors 1 and
2, along with 256 different alpha blending factors. Therefore, we have:

65536 * 65536 * 256 = 1.099512

Needless to say, this approach isn’t going to work as is. Let’s see if we can’t look at the
problem in another way. Let’s look at the math again:
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p_finalr = (alpha)*(p_source1r) + (1-alpha)*(p_source2r)

p_finalg = (alpha)*(p_source1g) + (1-alpha)*(p_source2g)

p_finalb = (alpha)*(p_source1b) + (1-alpha)*(p_source2b)

If we forget about solving the entire problem at once, we can focus on some sub-problems
that are worth solving. The major computation is the alpha factor multiplied by each of
the r,g,b components, and the (1-alpha) factor multiplied by the same components—ah
ha! What if we create a lookup table that has 65,536 entries, each entry the result of
multiplying a specific alpha factor times the entry encoded in 5.6.5 format, say alpha =
0.5. Figure 12.5 illustrates this setup.
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FIGURE 12.5 A more efficient alpha table lookup system.

Assuming we have this table, if we want to know what two pixels blended together with
an alpha of 0.5 is (or mathematically):

p_final = (0.5)*(p_source1) + (1-0.5)*(p_source2)

We could do it with two lookups and one addition:

p_final = alphatable[p_source1] + alphatable[p_source2];
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So with one lookup table that’s 65,536 entries long and each entry is 16 bits, we have just
turned the following computation:

p_finalr = (alpha)*(p_source1r) + (1-alpha)*(p_source2r)

p_finalg = (alpha)*(p_source1g) + (1-alpha)*(p_source2g)

p_finalb = (alpha)*(p_source1b) + (1-alpha)*(p_source2b)

into this:

p_final = alphatable[p_source1] + alphatable[p_source2];

And I will tell you right now, it flies! But you might be asking about other alpha values.
Well, each alpha value costs us 64K words, so if we want to support eight equally sepa-
rated alpha values:

0, .125, .250, .375, .5, .625, .75, 1.00

We need eight tables for a total of 8*64K = 512K. That I can live with.

NOTE

If you’re really clever, you might notice that we don’t need the tables for alpha 0 and 1.0. We
could use conditional logic for these cases. If the alpha is 0, the pixel is totally transparent, and
just use the other pixel without further ado. Similarly, if the alpha is 1.0, draw the pixel as usual
without any concern for the alpha, because an alpha of 1.0 is totally opaque. For now, we will
just use the extra memory to keep the alpha rasterizers clean and free of special cases.

In summarizing the alpha lookup table, we are going to create a lookup table for a set of
alpha values 0..1, where we compute the product of the alpha value with every possible
RGB value in the table, but perform the calculations such that we multiply the alpha value
by the r,g,b components of the input 5.6.5 RGB word in a masked fashion. We do not
want to multiply alpha by the integral value of each 16-bit value from 0..65535, but by
each extracted r,g,b value that each integral value from 0..65535 represents. In pseudo-
code, we have the following algorithm:

for each color from 0 to 65535

begin

convert the 16-bit encoded color to r,g,b 5.6.5 format

now multiply each channel by the alpha value

r=r*alpha

g=g*alpha

b=b*alpha
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finally place the 16-bit color word built up from r.g.b

into the lookup table at location indexed by color:

alphatable[value] = r.g.b

end

It really is a simple table to create. The key to understanding it is that we are using each
16-bit index to represent a color that we want multiplied by the alpha value, but before we
carry out the multiplication, we must extract out the r,g,b values of each integral 16-bit
value masquerading as a plain number, multiply each of them by the alpha value, and
then put them back together. Then we need a few of these tables, maybe eight or sixteen,
to cover enough alpha values so we can blend things properly. I decided on eight tables,
but you can change the constant that controls this. Anyway, here’s where the lookup table
is stored globally in T3DLIB10.CPP:

USHORT rgb_alpha_table[NUM_ALPHA_LEVELS][65536];

Currently, NUM_ALPHA_LEVELS is set to 8, which gives eight levels of alpha with 0.125 incre-
ments. Also, as you see, I have decided to arrange the tables in rows, where each row
represents a different alpha value. Figure 12.6 illustrates this.
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FIGURE 12.6 Using multiple alpha lookup tables.

With all that in mind, here’s the function RGB_Alpha_Table_Builder() that creates all
these tables for us:

int RGB_Alpha_Table_Builder(int num_alpha_levels, // numlevels to create

USHORT rgb_alpha_table[NUM_ALPHA_LEVELS][65536]) // lookup table

{
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// this function creates an alpha lookup table, the purpose of the table is as

// follows; when alpha blending two RGB values, 

// one can’t simply use the formula:

// final = (alpha)*(source1RGB) + (1-alpha)*(source2RGB)

// the reason of course is that the multiplication 

// has to be carried out on R, G, B

// separately, this we first have to extract out 

// r,g,b from both sources, then multiply

// both, then add the results, then build 

// the result up and store it ! Ouch!

// therefore, we can use a table to speed this 

// up in some cases, so if we think of

// the input RGB as a number and then let the 

// table extract everything out and do the

// multiplication by the alpha blending factor, 

// then we save all that work and in the

// end an alpha blend turns into two accesses, 

// and an addition, so we avoid 6 multiplications

// and all the shift. Of course, if the colors are already 

// in r,g,b form already then

// another approach may be better. 

// In any case, the function works by creating a

// table that consists of num_alpha_levels rows, 

// each row consist of 65536 entries which

// represents the scale value of that row times 

// each of the 65536 colors in RGB format

// also, the num_alpha_levels must be a power of two, 

// so num_alpha_levels of 8 for example

// will result in a table that has 8 rows, 

// where the multiplier each row would be

// 8/8, 7/8, 6/8..........1/8, 0/8 is the amount of source pixel to mix

// first check the pointer

if (!rgb_alpha_table)

return(-1);

int r,g,b; // used to scan colors out of rgbindex

float alpha    = 0;

float delta_alpha = EPSILON_E6 + 1/((float)(num_alpha_levels-1));

// we need num_alpha_level_rows

for (int alpha_level = 0; alpha_level < num_alpha_levels; alpha_level++)

{
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// there are 65536 RGB values we need to compute, 

// assuming that we are in RGB: 4.4.4 format

for (int rgbindex = 0; rgbindex < 65536; rgbindex++)

{

// extract r,g,b from rgbindex, assuming an encoding of 5.6.5

_RGB565FROM16BIT(rgbindex, &r, &g, &b);

// scale

r = (int)( (float)r * (float)alpha );

g = (int)( (float)g * (float)alpha );

b = (int)( (float)b * (float)alpha );

// build pixel back up and store

rgb_alpha_table[alpha_level][rgbindex] = _RGB16BIT565(r,g,b);

} // end for rgbindex

// decrease alpha level

alpha+=delta_alpha;

} // end for row

// return success

return(1);

} // end RGB_Alpha_Table_Builder

To use the function, you call it with the desired number of alpha levels and the storage for
the table, which in our case is fixed and global, so we call the function as follows:

RGB_Alpha_Table_Builder(NUM_ALPHA_LEVELS, rgb_alpha_table);

And we are ready to rock and roll. Now that we have the alpha tables, let’s see how use
them.

Adding Alpha Blending to the Basic Rasterizers
To add alpha blending to the basic non-z-buffered rasterizers is the path of least resistance,
so we will start there. To begin, let’s review what we want to alpha blend. The whole point
of alpha blending is to be able to see through something that is rendered over something
else. Figure 12.7 illustrates this concept.

We have a scene, and then an object is rendered on top of the scene with alpha set to
about 20%. Therefore, the background shows through 80%, and the foreground object
shows through 20%. This bring us to the first problem with alpha blending and trans-
parency: The object under the transparent object must be drawn first. This is a problem for
a number of different algorithms. For example, we might have a very optimal rendering
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algorithm that has zero overdraw. This means that any polygon that’s obscured by another
polygon is not drawn. This is shown in Figure 12.8. The problem is, if we want the
polygon on top to be alpha channeled or transparent, there will be nothing under it to see
through to!
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Another problem occurs when you are z-buffering. Suppose that two polygons reach the Z-
buffer in front-to-back order; that is, polygon 1 is closer to the viewer than polygon 2, as
shown in Figure 12.9.
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FIGURE 12.9 Problems with alpha blending and z-buffering.

In this case, polygon 1 passes the Z-buffer test and is written to the screen and the Z-
buffer with transparency. However, polygon 2 does not pass the Z-buffer test and is never
drawn at all. However, polygon 1 is transparent, so polygon 2 should be visible under it.
Alas, you see the dilemma. There are a number of ways around these problems. For
example, if you are trying to get zero overdraw, polygons that are transparent don’t count
in your calculations—that is, they are drawn regardless. And as for the Z-buffer problem,
you can sort polygons back to front to get a rough ordering and then Z-buffer to get
perfect order with alpha transparency for polygons that are transparent; thus the farther
polygons will be drawn first, and the near alpha channeled polygons will be drawn after,
so they can blend. If you don’t want to waste time by sorting the polygons, you can mark
transparent polygons, and then during rendering, if any polygon is determined to be at all
within the bounds of a nearer transparent polygon, it is drawn first regardless of Z order.

Now that I have scared you out of your mind about using transparency with software, let’s
implement it! Let’s start with the simplest of all the rasterizers that draw constant-/flat-
shaded polygons without a Z-buffer or texturing, the new function
Draw_Triangle_2D3_16(). If we look at this, we can transform its inner loop and add extra
code to make it support alpha transparency as a parameter. Let’s first look at the inner-
most loop again, and come up with a plan:
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// draw span

for (xi=xstart; xi < xend; xi++)

{

// write textel assume 5.6.5

screen_ptr[xi] = color;

} // end for xi

That looks harmless enough <BG>. So to add transparency, we need to read the current
pixel at screen_ptr[xi] and blend it with color rather than just writing color to
screen_ptr[xi]. We’ll use our mighty lookup table to do this. Let’s assume that the table
is always global, so we don’t have to pass it, and further assume that for generality we will
pass an alpha level to the rasterizing function that ranges from 0..(NUM_ALPHA_LEVELS –

1). We will then use the alpha level as an index into the row of the alpha lookup table,
and get a pointer to the row (remember, each row represents a different alpha value multi-
plied by all possible 5.6.5 RGB values) along with a pointer to the (1-alpha) row. If we
pick an alpha level of 0, we would want one pointer to row 0 and another pointer to row
(NUM_ALPHA_LEVELS – 1). Or in our case with eight alpha levels, if the alpha level is from
0..7, the first row is from 0..7, and the second row selected to blend is from 7..0—get it? The
setup code to access the correct table rows for each source would look something like this:

// assign both source1 and source2 alpha tables based on polygon alpha level

USHORT *alpha_table_src1 = 

(USHORT *)&rgb_alpha_table[(NUM_ALPHA_LEVELS-1) - alpha][0];

USHORT *alpha_table_src2 = 

(USHORT *)&rgb_alpha_table[alpha][0];

At this point, we are done for the most part. All we need to do is blend the pixel that’s on
the screen with the pixel we want to render on the screen, and that’s nothing more than
using our mixing algorithm with lookup tables. Here’s the new inner loop code for that:

for (xi=xstart; xi < xend; xi++)

{

// write textel assume 5.6.5

screen_ptr[xi] = alpha_table_src1[screen_ptr[xi]] + alpha_table_src2[color];

} // end for xi

We have reduced the complex problem of alpha blending in real time, 16-bit full color to
a single addition and two table lookups! Cool, huh? Based on the preceding formulation,
you should see how to add alpha blending to every single rasterizer: You just set the tables
up with the alpha level, read the pixel and mix it with the pixel or textel you are about to
render, and that’s all there is to it!

Alpha Support for Simple Shading Rasterizers The final function with alpha blending
support that renders plain constant-/flat-shaded non-z-buffered polygons is called
Draw_Triangle_2D_Alpha16(), and here’s its prototype:
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void Draw_Triangle_2D_Alpha16(POLYF4DV2_PTR face, // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch,    // bytes per line, 320, 640 etc.

int alpha);     // the alpha level to use

Other than the addition of the single parameter alpha, the function works in the exact
same way as the non-alpha version, and the setup is the same. However, remember that
alpha must be from 0. (NUM_ALPHA_LEVELS-1)—otherwise, you will cause a memory
protection fault accessing memory out of range of the lookup table! Now that you’re a
pro, let’s add alpha support to the other basic rasterizers that support texturing and
Gouraud shading.

Alpha Support for Gouraud-Shading Rasterizers Adding alpha support to the Gouraud
shader is trivial. We need only setup the look up tables for the sent in alpha level with the
lines of code:

// assign both source1 and source2 alpha tables based on polygon alpha level

USHORT *alpha_table_src1 = 

(USHORT *)&rgb_alpha_table[(NUM_ALPHA_LEVELS-1) - alpha][0];

USHORT *alpha_table_src2 = 

(USHORT *)&rgb_alpha_table[alpha][0];

And then modify the inner loop from this:

// draw span

for (xi=xstart; xi < xend; xi++)

{

// write textel assume 5.6.5

screen_ptr[xi] = ((ui >> (FIXP16_SHIFT+3)) << 11) +

((vi >> (FIXP16_SHIFT+2)) << 5) +

(wi >> (FIXP16_SHIFT+3));

// interpolate u,v,w

ui+=du;

vi+=dv;

wi+=dw;

} // end for xi

To this:

// draw span

for (xi=xstart; xi < xend; xi++)

{

// write textel assume 5.6.5

screen_ptr[xi] = alpha_table_src1[screen_ptr[xi]] +
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alpha_table_src2[((ui >> (FIXP16_SHIFT+3)) << 11) +

((vi >> (FIXP16_SHIFT+2)) << 5) +

(wi >> (FIXP16_SHIFT+3))];

// interpolate u,v,w

ui+=du;

vi+=dv;

wi+=dw;

} // end for xi

Notice how the original code’s textel access is now a parameter of the alpha blending
code’s lookup along with the screen pixel. Therefore, the process of converting each of
these functions is almost trivial; take the code for generating the pixel value and use it as
one parameter in the lookup table, then take the pixel address where the value is to be
written and use it as the destination, as well as the other parameter in the other lookup
table, and that’s all you do. Here’s the new Gouraud-shaded function with alpha support:

void Draw_Gouraud_Triangle_Alpha16(POLYF4DV2_PTR face,  // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch,    // bytes per line

int alpha);     // alpha level

Once again, the only difference from the non-alpha version is the alpha parameter, which
must be from 0..(NUM_ALPHA_LEVELS-1).

Alpha Support for Affine Texture Mapping Rasterizers Adding alpha support for the
affine texture mappers is identical to the previous examples, but there are three different
versions we need to make. I am simply going to list the prototypes:

void Draw_Textured_Triangle_Alpha16(POLYF4DV2_PTR face, // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch,    // bytes per line, 320, 640 etc.

int alpha);      // the alpha level

void Draw_Textured_TriangleFS_Alpha16(POLYF4DV2_PTR face, // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch,    // bytes per line, 320, 640 etc.

int alpha);      // the alpha level

void Draw_Textured_TriangleGS_Alpha16(POLYF4DV2_PTR face, // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch,    // bytes per line, 320, 640 etc.

int alpha);     // the alpha level

Now we have the plain constant-shaded, flat-shaded, and Gouraud-shaded texture
mappers, all with support for the alpha channel (I have highlighted the new alpha
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parameters). As an example, let’s look at the plain constant-shaded texture mapper’s inner
loop before and after alpha support. Here’s the inner span loop before adding alpha support:

// draw span

for (xi=xstart; xi < xend; xi++)

{

// write textel

screen_ptr[xi] = textmap[(ui >> FIXP16_SHIFT) +

((vi >> FIXP16_SHIFT) << texture_shift2)];

// interpolate u,v

ui+=du;

vi+=dv;

} // end for xi

And here it is after adding the alpha support via the lookup tables:

// draw span

for (xi=xstart; xi < xend; xi++)

{

// write textel

screen_ptr[xi] = alpha_table_src1[screen_ptr[xi]] +

alpha_table_src2[textmap[(ui >> FIXP16_SHIFT) +

((vi >> FIXP16_SHIFT) << texture_shift2)]];

// interpolate u,v

ui+=du;

vi+=dv;

} // end for xi

Again, we simply use the textel and the screen pixel as parameters/indexes into the lookup
tables, and then sum the results and write them to the screen. Finally, here’s the rendering
function to call the alpha-supported rasterizers:

void Draw_RENDERLIST4DV2_Solid_Alpha16(

RENDERLIST4DV2_PTR rend_list, // render list

UCHAR *video_buffer,  // pointer to video buffer

int lpitch,       // bytes per line of video buffer

int alpha_override);  // alpha override for fullscreen alpha

The function works like all the rest: You send it a rendering list, pointer to video, and
memory pitch, and it renders the rendering list, that is, draws all the polygons in the data
structure. However, there is one interesting extra parameter: alpha_override. This is to
force everything to be drawn with alpha. If alpha_override is -1, nothing happens. If
alpha_override is from 0..(NUM_ALPHA_LEVELS-1), this value will override all real alpha
values and render them along with everything else at the sent override value.
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CAUTION

I am still leaving something out here: The rasterization functions take an alpha level, but where
do they get it? For now, they get it from nowhere—you override it—but soon we will encode it
in the polygon base color.

Adding Alpha Blending to the Z-Buffered Rasterizers
Adding alpha blending transparency to the z-buffered rasterizers is exactly the same as the
non-z-buffered rasterizers. There are no differences whatsoever, other than the logical
difference that because of the Z-buffer pass test, polygons coming into the Z-buffer that
are behind a previously z-buffered polygon will not show up under the z-buffered polygon
and thus render incorrectly. To solve this, you can presort polygons from back to front
with the z-sort and the Z-buffer, or you can add extra logic to the calling function that
renders the polygons to force polygons that are under/covered by transparent polygons to
always render first in the Z-buffer. However, we will leave that as something to do later, if
it becomes an issue. For now, the Z-buffer alpha blending code just blends what comes
first.

The addition of alpha blending is identical to all the rest, so once again I will simply show
you the final function prototypes, along with a single example of a modified before-and-
after function. Here are the prototypes:

void Draw_Textured_TriangleZB_Alpha16(POLYF4DV2_PTR face, // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch,    // bytes per line, 320, 640 etc.

UCHAR *zbuffer,   // pointer to z-buffer

int zpitch,     // bytes per line of zbuffer

int alpha);     // the alpha level

void Draw_Textured_TriangleFSZB_Alpha16(POLYF4DV2_PTR face, // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch,    // bytes per line, 320, 640 etc.

UCHAR *zbuffer,   // pointer to z-buffer

int zpitch,     // bytes per line of zbuffer

int alpha);     // the alpha level

void Draw_Textured_TriangleGSZB_Alpha16(POLYF4DV2_PTR face, // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch,    // bytes per line, 320, 640 etc.

UCHAR *_zbuffer,   // pointer to z-buffer

int zpitch,     // bytes per line of zbuffer

int alpha);     // the alpha level

void Draw_Triangle_2DZB_Alpha16(POLYF4DV2_PTR face, // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer
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int mem_pitch,    // bytes per line, 320, 640 etc.

UCHAR *zbuffer,   // pointer to z-buffer

int zpitch,     // bytes per line of zbuffer

int alpha);     // the alpha level

void Draw_Gouraud_TriangleZB_Alpha16(POLYF4DV2_PTR face,  // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch,    // bytes per line, 320, 640 etc.

UCHAR *zbuffer,   // pointer to z-buffer

int zpitch,     // bytes per line of zbuffer

int alpha);     // the alpha level

These include every variation of shading and lighting we have so far! As an example, let’s
take a look at the most complex Z-buffer alpha function’s inner loop before and after. This
would be the Gouraud-shaded, texture-mapped rasterizer
Draw_Textured_TriangleGSZB_Alpha16(). Its inner loop before adding alpha is from
Draw_Textured_TriangleGSZB_16(), which is shown here:

// draw span

for (xi=xstart; xi < xend; xi++)

{

// write textel assume 5.6.5

// test if z of current pixel is nearer than current z buffer value

if (zi < z_ptr[xi])

{

// get textel first

textel = textmap[(si >> FIXP16_SHIFT) + 

((ti >> FIXP16_SHIFT) << texture_shift2)];

// extract rgb components

r_textel = ((textel >> 11)    );

g_textel = ((textel >> 5) & 0x3f);

b_textel =  (textel    & 0x1f);

// modulate textel with gouraud shading

r_textel*=ui;

g_textel*=vi;

b_textel*=wi;

// finally write pixel

// note that we did the math such that the results are r*32, g*64, b*32

screen_ptr[xi] = ((b_textel >> (FIXP16_SHIFT+8)) +

((g_textel >> (FIXP16_SHIFT+8)) << 5) +

((r_textel >> (FIXP16_SHIFT+8)) << 11));
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// update z-buffer

z_ptr[xi] = zi;

} // end if

// interpolate u,v,w,z,s,t

ui+=du;

vi+=dv;

wi+=dw;

zi+=dz;

si+=ds;

ti+=dt;

} // end for xi

That’s a little nasty, no matter how you look at it! Anyway, here it is with alpha blending
added:

// draw span

for (xi=xstart; xi < xend; xi++)

{

// write textel assume 5.6.5

// test if z of current pixel is nearer than current z buffer value

if (zi < z_ptr[xi])

{

// get textel first

textel = textmap[(si >> FIXP16_SHIFT) + 

((ti >> FIXP16_SHIFT) << texture_shift2)];

// extract rgb components

r_textel = ((textel >> 11)    );

g_textel = ((textel >> 5) & 0x3f);

b_textel =  (textel    & 0x1f);

// modulate textel with gouraud shading

r_textel*=ui;

g_textel*=vi;

b_textel*=wi;

// finally write pixel

// note that we did the math such that the results are r*32, g*64, b*32

screen_ptr[xi] = alpha_table_src1[screen_ptr[xi]] +

alpha_table_src2[((b_textel >> (FIXP16_SHIFT+8)) +

((g_textel >> (FIXP16_SHIFT+8)) << 5) +
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((r_textel >> (FIXP16_SHIFT+8)) << 11))];

// update z-buffer

z_ptr[xi] = zi;

} // end if

// interpolate u,v,w,z,s,t

ui+=du;

vi+=dv;

wi+=dw;

zi+=dz;

si+=ds;

ti+=dt;

} // end for xi

NOTE

Sorry for all the code, but there is a ton of it—approximately 50,000+ lines, so I am only showing
you a fraction of it.

Lastly, there is a rendering function that calls all of the rasterizers with alpha support and
z-buffering. It’s called Draw_RENDERLIST4DV2_SolidZB_Alpha16(), and here’s its prototype:

void Draw_RENDERLIST4DV2_SolidZB_Alpha16(RENDERLIST4DV2_PTR rend_list,

UCHAR *video_buffer,

int lpitch,

UCHAR *zbuffer,

int zpitch,

int alpha_override);

The function takes the normal parameter set—rendering list, video buffer, memory pitch,
Z-buffer, Z-buffer memory pitch—but it also has the added alpha_override parameter to
force alpha on the rendering list. This must be from 0..(NUM_ALPHA_LEVELS-1) or -1 for no
effect.

As a demo of alpha blending, check out DEMOII12_2.CPP|EXE. A screenshot of it in action
is shown in Figure 12.10.

This demo enables you to move around in a world full of basic objects (they are supposed
to be Borg ships, so use your imagination), and then the demo slowly increases and
decreases the alpha blending via the alpha_override variable at a low level (because we
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still can’t set the alpha level at an object level). You can also enable/disable z-sorting, as
well as other options. To compile the demo, please make sure to add all the modules
T3DLIB1–10.CPP|H along with the DirectX .LIB files. And of course, use a Win32 .EXE target!
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FIGURE 12.10 A screenshot of the alpha blending demo in action. 

Supporting Alpha Blending at the Object Level
The next issue we have to deal with is a way to set polygons in our models as having
transparency or alpha. Ironically, we thought of this already when we designed the color
descriptor back in T3DLIB6.CPP|H:

typedef struct RGBAV1_TYP

{

union

{

int rgba;          // compressed format

UCHAR rgba_M[4];       // array format

struct { UCHAR a,b,g,r; }; // explicit name format

}; // end union

} RGBAV1, *RGBAV1_PTR;
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The structure represents full 32-bit colors with support for 8 bits of alpha and RGB 8.8.8
format. Unfortunately, the polygon structures don’t use this type—they use the base type
of a 32-bit integer to hold colors in reduced 16-bit format without any concept of alpha.
Nevertheless, we are still okay. Right now, all RGB colors are stored at 16-bit values in the
lower 16 bits of the color field in the polygon structures, so we have the upper 16 bits
available to do with as we wish. So, we will store the alpha channel in the upper 8 bits of
each polygon color. Additionally, we will flag any polygon that has alpha with this
attribute:

#define POLY4DV2_ATTR_TRANSPARENT      0x0002

Which we had already defined in T3DLIB7.CPP|H because we were planning on this! So as
far as the polygons go, that’s all we need to do to support alpha blending: Just set the
attribute to POLY4DV2_ATTR_TRANSPARENT for the polygon, along with whatever other
attributes, and then set the upper 8 bits of the color to the alpha level
(0..(NUM_ALPHA_LEVELS-1)). Figure 12.11 illustrates this setup.
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FIGURE 12.11 Encoding the alpha level in the upper 8 bits of the color word.

Now for the hard part—as my friend Mike Perone always says, “It’s always something.”
You never get away with doing anything without a little drama, and here comes ours: We
need to rewrite the object loader! Yup, there’s no way to avoid this. We must not only
rewrite it, but come up with a way to tag polygons as transparent. Well, luckily for us the
Caligari trueSpace .COB format already has a transparency class in the file format, so we
can just use this. As always, we need to come up with a convention to use the class field
to communicate the information we need and to communicate it in a semi-natural way. I
don’t want to have to resort to using pink to mean transparent!

The first step is to determine what support there is for transparency in all the various
versions of the Caligari modeler. It looks like 4.0+ supports what we need right in the
interface, so we are good to go. Now, to refresh your memory on how we have been
encoding things thus far for shading models, here are our conventions at this point:

1. All polygons must be triangles.

2. A polygon that does not have a texture must have the color class set to plain color.
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3. A polygon with texture must have the color class set to texture map. Also, only one
texture per object, and it must be wrapped around the object with repeat factors 
1.0, 1.0.

4. The shading mode of a polygon is encoded in the reflectance class; constant for
constant shading or emissive; matte for flat shading; and plastic for Gouraud
shading.

This has worked great, and we can pretty much model naturally and get what we want out
of it. Now, to support transparency, we are going to use the transparency class of the
Caligari .COB format. Figure 12.12 is an annotated screenshot of me selecting the trans-
parency.
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FIGURE 12.12 A detailed screenshot of setting the alpha on a model in Caligari trueSpace. 

We are going to set the transparency to “filter” mode, drop down the transparency
controls, and then use the slider to control how transparent or how much alpha the
polygon or surface has. For example, the blue cube in Figure 12.12 has color class plain
color (no texturing), reflectance matte (flat shading), and a transparency of filter mode,
along with a setting of RGB 128 out of 256, or 50%. Here’s the file the system outputs for
what I call CUBEBLUEALPHA_01.COB (minus some extraneous data):

Caligari V00.01ALH

Name Cube

center 1.08471 1.23355 1
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x axis 1 0 0

y axis 0 1 0

z axis 0 0 1

Transform

1 0 0 1.08471

0 1 0 1.23355

0 0 1 0

0 0 0 1

World Vertices 8

-1.000000 -1.000000 0.000000

-1.000000 -1.000000 2.000000

1.000000 -1.000000 0.000000

1.000000 -1.000000 2.000000

-1.000000 1.000000 0.000000

1.000000 1.000000 0.000000

1.000000 1.000000 2.000000

-1.000000 1.000000 2.000000

Texture Vertices 14

0.000000 0.333333

0.000000 0.666667

0.250000 0.333333

0.250000 0.666667

0.500000 0.000000

0.500000 0.333333

0.500000 0.666667

0.500000 1.000000

0.250000 0.000000

0.250000 1.000000

0.750000 0.333333

0.750000 0.666667

1.000000 0.333333

1.000000 0.666667

Faces 12

Face verts 3 flags 0 mat 0

<0,0> <1,1> <3,3>

Face verts 3 flags 0 mat 0

<0,0> <3,3> <2,2>

Face verts 3 flags 0 mat 0

<0,8> <2,2> <5,5>

Face verts 3 flags 0 mat 0

<0,8> <5,5> <4,4>

Face verts 3 flags 0 mat 0

<2,2> <3,3> <6,6>
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Face verts 3 flags 0 mat 0

<2,2> <6,6> <5,5>

Face verts 3 flags 0 mat 0

<1,9> <7,7> <6,6>

Face verts 3 flags 0 mat 0

<1,9> <6,6> <3,3>

Face verts 3 flags 0 mat 0

<4,10> <5,5> <6,6>

Face verts 3 flags 0 mat 0

<4,10> <6,6> <7,11>

Face verts 3 flags 0 mat 0

<0,12> <4,10> <7,11>

Face verts 3 flags 0 mat 0

<0,12> <7,11> <1,13>

DrawFlags 0

Unit V0.01 Id 18620117 Parent 18620116 Size 00000009

Units 2

ObRQ V0.01 Id 18620121 Parent 18620116 Size 00000121

Object Radiosity Quality: 0

Object Radiosity Max Area: 0

Object Radiosity Min Area: 0

Object Radiosity Mesh Accuracy: 0

Mat1 V0.06 Id 18855732 Parent 18620116 Size 00000099

mat# 0

shader: phong facet: auto32

rgb 0.227451,0.235294,1

alpha 1 ka 0.1 ks 0.1 exp 0 ior 1

ShBx V0.03 Id 18855733 Parent 18855732 Size 00000462

Shader class: color

Shader name: “plain color” (plain)

Number of parameters: 1

colour: color (58, 60, 255)

Flags: 3

Shader class: transparency

Shader name: “filter” (plain)

Number of parameters: 1

colour: color (128, 128, 128)

Flags: 3

Shader class: reflectance

Shader name: “matte” (matte)

Number of parameters: 2

ambient factor: float 0.1

diffuse factor: float 1

Flags: 3
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Shader class: displacement

Shader name: “none” (none)

Number of parameters: 0

Flags: 3

END V1.00 Id 0 Parent 0 Size    0

I have highlighted all the material classes we are now using. So, we just need to add
support to the .COB parser to read in one more class (transparency), and then parse the
colour field and extract out the alpha level. But before we do that, we need to finalize one
more detail. The alpha/transparency in most modelers (including trueSpace) has three
channels: red, green, and blue. We have no concept of color-based alpha—we are simply
using a monochrome alpha channel. We’re simply going to take the largest of the three
channels and use it as the alpha value. You can use red, green, or blue, or combinations of
all of them, but the parser will take the largest value of each component and make that
the alpha value. And finally, as the alpha value from the .COB will be in the range of
0..255, we must scale that to our range of (0..(NUM_ALPHA_LEVELS-1)). And that’s it—we
have model-level support for alpha blending and transparency! Here is the new prototype
for the new .COB loader with alpha support:

int Load_OBJECT4DV2_COB2(OBJECT4DV2_PTR obj, // pointer to object

char *filename,   // filename of Caligari COB file

VECTOR4D_PTR scale, // initial scaling factors

VECTOR4D_PTR pos,  // initial position

VECTOR4D_PTR rot,  // initial rotations

int vertex_flags,  // flags to re-order vertices

// and perform transforms

int mipmap )    // mipmap enable flag

// 0 means no mipmap, 1 means

// generate mip map

For now, just disregard the little mip map parameter—that comes later—and just look at
the prototype. You will notice that, other than the mip map parameter, it’s identical to the
previous version Load_OBJECT4DV2_COB(). The changes are internal to read the trans-
parency class of the .COB model. So let’s take a look at that code:

///////////////////////////////////////////////////////////////////////////

// ADDED CODE FOR TRANSPARENCY AND ALPHA BLENDING /////////////////////////

///////////////////////////////////////////////////////////////////////////

// Now we need to know if there is any transparency for the material

// we have decided to encoded this in the shader class: transparency :)

// also, you must use the “filter” shader, and then set the RGB color to

// the level of transparency you want, 0,0,0 means totally transparent

// 255,255,255 means totally opaque, so we are looking for something like

// this:

// Shader class: transparency
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// Shader name: “filter” (plain)

// Number of parameters: 1

// colour: color (146, 146, 146)

//

// and if there isn’t transparency then we will see this:

//

// Shader class: transparency

// Shader name: “none” (none)

// Number of parameters: 0

//

// now, since we aren’t doing any kind of RGB transparency, 

// we are only concerned

// with the overall value, so the way, I am going to do this is to look at the

// 3 values of R, G, B, and use the highest one as the final alpha/transparency

// value, so a value of 255, 255, 255 with be 100% alpha or totally opaque

// look for the “Shader class: transparency”

while(1)

{

// get the next line

if (!parser.Getline(PARSER_STRIP_EMPTY_LINES | PARSER_STRIP_WS_ENDS))

{

Write_Error(“\nshader transparency class not found in .COB file %s.”, 

filename);

return(0);

} // end if

// look for “Shader class: transparency”

if (parser.Pattern_Match(parser.buffer, 

“[‘Shader’] [‘class:’] [‘transparency’]”) )

{

// now we know the next “shader name” 

// is what we are looking for so, break

break;

} // end if

} // end while

while(1)

{

// get the next line

if (!parser.Getline(PARSER_STRIP_EMPTY_LINES | PARSER_STRIP_WS_ENDS))

{

Write_Error(“\nshader name ended abruptly! in .COB file %s.”, 

filename);

CHAPTER 12 Advanced Texturing Techniques1200

17 0672318350 CH12  05•02•2003  2:54 PM  Page 1200



return(0);

} // end if

// get rid of those quotes

ReplaceChars(parser.buffer, parser.buffer, “\””,’ ‘,1);

// did we find the name?

if (parser.Pattern_Match(parser.buffer, “[‘Shader’] [‘name:’] [s>0]” ) )

{

// figure out if transparency is enabled

if (strcmp(parser.pstrings[2], “none”) == 0)

{

// disable the alpha bit and write 0 alpha

RESET_BIT(materials[material_index + num_materials].attr, 

MATV1_ATTR_TRANSPARENT);

// set alpha to 0, unused

materials[material_index + num_materials].color.a = 0;

} // end if

else

if (strcmp(parser.pstrings[2], “filter”) == 0)

{

// enable the alpha bit and write the alpha level

SET_BIT(materials[material_index + num_materials].attr, 

MATV1_ATTR_TRANSPARENT);

// now search for color line to extract alpha level

// look for the “Shader class: transparency”

while(1)

{

// get the next line

if (!parser.Getline(PARSER_STRIP_EMPTY_LINES | 

PARSER_STRIP_WS_ENDS))

{

Write_Error(“\ntransparency color not found in .COB file %s.”, 

filename);

return(0);

} // end if

// get rid of extraneous characters

ReplaceChars(parser.buffer, parser.buffer, “:(,)”,’ ‘,1);

// look for colour: color (146, 146, 146)

if (parser.Pattern_Match(parser.buffer, 
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“[‘colour’] [‘color’] [i] [i] [i]”) )

{

// set the alpha level to the highest value

int max_alpha = MAX(parser.pints[0], parser.pints[1]);

max_alpha = MAX(max_alpha, parser.pints[2]);

// set alpha value

materials[material_index + num_materials].color.a =

(int)( (float)max_alpha/255 * 

(float)(NUM_ALPHA_LEVELS-1) + (float)0.5);

// clamp

if (materials[material_index + num_materials].color.a 

>= NUM_ALPHA_LEVELS)

materials[material_index + num_materials].color.a = 

NUM_ALPHA_LEVELS-1;

break;

} // end if

} // end while

} // end if

break;

} // end if

} // end while

I have highlighted the final conversion process of the alpha level for you. The last thing to
do is to set the polygon attribute bit to transparent at the end of the file loader, so the
rasterizers can know what’s up, and they can fork to the alpha blending rasterizers rather
than the opaque ones. Here’s the code—pay attention to the location of the alpha
channel, as it’s stored in the upper 8 bits as we outlined:

// now test for alpha channel

if (materials[ poly_material[curr_poly] ].attr & MATV1_ATTR_TRANSPARENT)

{

// set the value of the alpha channel, 

// upper 8-bits of color will be used to hold it

// lets hope this doesn’t break the lighting engine!!!!

obj->plist[curr_poly].color += 

(materials[ poly_material[curr_poly] ].color.a << 24);
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// set the alpha flag in polygon

SET_BIT(obj->plist[curr_poly].attr, POLY4DV2_ATTR_TRANSPARENT);

} // end if

That’s it. We have already seen alpha blending on a rendering list-wide basis, but we had
no local control via the objects themselves—we just set the alpha_override value and
called the rendering list function, overriding everything and making every polygon trans-
parent. Now we can support alpha object-to-object on a per-polygon basis. As an example
of controlling alpha and transparency, check out DEMOII12_3.CPP|EXE. It loads a number
of transparent spheres, along with a solid black and white checkboard textured sphere.
The spheres then bounce around in front of a 2D image. Figure 12.13 is a screenshot of
the demo in action. The onscreen help is available as usual. Make sure to try disabling the
ambient and infinite light sources with the A and L keys, respectively.
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FIGURE 12.13 A screenshot of alpha blending on a per-polygon/object basis. 

Adding Alpha to the Terrain Generator for Fun
Now that we can control alpha on a polygon level, let’s put it to use with the terrain
generator. One of the best examples of transparency is water with terrain under it, so I
wanted to test the transparency on a large scale. I thought I would redo the jet ski simula-
tion with support for transparency in the water. To do this, we could go into the color
map or height map and encode transparency in some way to mark polygons as being
transparent, along with some value for the transparency, but an easier method is to simply
set a “sea level” parameter along with a alpha level, and send it to the terrain generation
function itself. Then as the function is generating the mesh, any polygon that is below
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the sea level is set to transparent, with the alpha value encoded in its color. It took all of
five minutes to modify the terrain generation function to support this. Here’s the new
prototype for version 2.0 of the terrain generator:

int Generate_Terrain2_OBJECT4DV2(OBJECT4DV2_PTR obj, // pointer to object

float twidth,     // width in world coords on x-axis

float theight,     // height (length) in world coords on z-axis

float vscale,     // vertical scale of terrain

char *height_map_file, // filename of height bitmap

char *texture_map_file,// filename of texture map

int rgbcolor,     // color of terrain if no texture

VECTOR4D_PTR pos,   // initial position

VECTOR4D_PTR rot,   // initial rotations

int poly_attr,     // the shading attributes we would like

float sea_level,    // height of sea level

int alpha);      // alpha level to make all polys below sea level

Generate_Terrain2_OBJECT4DV2() has two new parameters:

• float sea_level—The actual level relative to the terrain height that should be the
cutoff for transparency. Any value less than this value will be set transparent.

• int alpha—A value from 0..255 that represents how transparent to make the water
(0 is totally transparent; 255 is totally opaque). This value will be scaled internally to
(0..(NUM_ALPHA_LEVELS-1).

To enable the transparency, set the alpha to a number larger than -1. The sea_level
(whatever it might be) will then be used as the value to force polygons transparent, as
shown in Figure 12.14.
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FIGURE 12.14 Adding transparency to the terrain generation via sea level.
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Other than this added functionality, there is no difference in the terrain generation—it’s
still brute force as can be <BG>. The following is the added code that supports the alpha
channel. It’s excerpted from the vertex generation portion of the terrain generator:

// check for alpha enable for sea level polygons to help with water effect

if (alpha >=0 )

{

// compute heights of both polygons

float avg_y_poly1 = (obj->vlist_local[ obj->plist[poly*2].vert[0] ].y +

obj->vlist_local[ obj->plist[poly*2].vert[1] ].y +

obj->vlist_local[ obj->plist[poly*2].vert[2] ].y )/3;

float avg_y_poly2 = (obj->vlist_local[ obj->plist[poly*2+1].vert[0] ].y +

obj->vlist_local[ obj->plist[poly*2+1].vert[1] ].y +

obj->vlist_local[ obj->plist[poly*2+1].vert[2] ].y )/3;

// test height of poly1 relative to sea level

if (avg_y_poly1 <= sea_level)

{

int ialpha = (int)( (float)alpha/255 * 

(float)(NUM_ALPHA_LEVELS-1) + (float)0.5);

// set the alpha color

obj->plist[poly*2+0].color+= (ialpha << 24);

// set the alpha flag in polygon

SET_BIT(obj->plist[poly*2+0].attr, POLY4DV2_ATTR_TRANSPARENT);

} // end if

// test height of poly1 relative to sea level

if (avg_y_poly2 <= sea_level)

{

int ialpha = (int)( (float)alpha/255 * 

(float)(NUM_ALPHA_LEVELS-1) + (float)0.5);

// set the alpha color

obj->plist[poly*2+1].color+= (ialpha << 24);

// set the alpha flag in polygon

SET_BIT(obj->plist[poly*2+1].attr, POLY4DV2_ATTR_TRANSPARENT);

} // end if

} // end if
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To create the demo, I took the jet ski demo from the last chapter and changed the func-
tion call to the new version 2.0 and added the proper call to the rendering function that
supports z-buffered alpha channel. 

There’s also one more feature that slows the demo down a bit, but it’s necessary. When the
water is transparent, the background skyscape is visible, which is a no-no. Thus I had to
place an extra terrain mesh under the top terrain to create a sea floor in essence, so when
we look through the water, you see the sea bottom rather than the skyscape. In essence,
we are rendering two terrains—ouch! However, it doesn’t slow down to an unplayable rate
(however, I did need to drop the resolution down to 640×480 to make it fast enough). You
can toggle the second terrain if you want with the T key to see the difference, but I warn
you, you will see the clouds under there! Anyway, Figure 12.15 is a screenshot of
DEMOII12_4.CPP|EXE in action.
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FIGURE 12.15 The jet ski demo with transparent water and a sea bottom mesh. 

When you play the demo, move around and watch the sea bottom under the water
level—it’s pretty cool. The controls are the same as the previous jet ski demo:

After the announcer is done, he explains how to play:

• Enter/Return—Starts engine

• Right—Turn right

• Left—Turn left

• Up—Throttle

• T—Toggle sea floor terrain
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And most of the help and engine controls still work:

• Z—Toggle z-buffering

• S—Toggle z-sorting

• D—Toggle normal rendering/Z-buffer filter

• H—Toggle help menu

• Esc—Exit demo

Try experimenting with turning different light sources on and off, z-buffering, z-sorting,
and so forth. To compile the program, you will need the main program DEMOII12_4.CPP|H
along with T3DLIB1-10.CPP|H and the DirectX .LIB files as usual.

Perspective-Correct Texturing and 1/z-Buffering
Finally we’re ready to deal with our perspective-correct dilemma once again. The reason
that we haven’t tackled perspective-correct texturing yet is that it relies on a number of
fundamental concepts that we still needed to cover, such as z-buffering and affine texture
mapping. The reason why we needed to start with affine texture mapping is obvious, but
z-buffering might not be so obvious. However, we performed an analysis in the previous
chapter where we proved that 1/z is linear in screen space, and contemplated using a 1/z
buffer rather than a Z-buffer, but didn’t implement it. In essence, we were putting together
the tools to not only implement perspective texture mapping, but to really understand it.
Sure, I could just dump a totally optimized SIMD (single instruction multiple data—new
instructions supported by the Pentium III+) perspective-correct texture mapper on you,
but what would that help?

In any event, in this section we are going to cover the mathematical derivation of perspec-
tive-correct texture mapping (in a couple of different ways), create 1/z-buffering rasterizers,
and then put the ideas together to implement both perfect perspective-correct (as well as
piecewise linear perspective-correct) texture mappers. Finally, we will talk about some
other approximation techniques and optimizations that can be exploited. Let’s start first
with the mathematical foundation for perspective texture mapping.

Mathematical Foundations for Perspective Texture Mapping
Affine texture mapping, Gouraud shading and the triangle rasterizer itself are all based on
the linear interpolation of values down the triangle edges to be rasterized. This is shown
in Figure 12.16.

We have done this many times, and the bottom line is that if you want to linearly inter-
polate a value from the top of the triangle to the bottom of the triangle, you break it up
into equally distanced values and interpolate from top to bottom. So, in general, to inter-
polate the value d from y0 to y1, you would do something like this:
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float d = y0;

float dy = y1 – y0;

float dxdy = d/dy;

for (y=y0; y <= y1; y++)

{

// do something with d

// interpolate d

d+=dxdy;

} // end for
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FIGURE 12.16 Standard interpolation flow.

The problem with linear interpolation is that we can’t use it to interpolate anything that
is not linear in screen space. Therefore, it doesn’t work for texturing, z-coordinates, or
even color intensities. In all cases, we are warping the data because of the perspective
created via the projection-to-screen coordinates; however, it’s manageable in all cases.
Affine texture mappers look fine at a distance, Gouraud shading with linear interpolation
doesn’t look too bad, and z-buffering seems to work most of the time—but they are all
wrong!
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Based on our analysis last chapter, we proved that anything we linearly interpolate in
screen space after the perspective projection is not linear, and must be divided by z as well
to remain linear. That is, only 1/z is linear in screen space. This is the key to everything.
What I would like to do is show you two different derivations of the perspective-correct
texturing that are commonly used, so that you get a real grip on why and how it really
works.
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FIGURE 12.17 Projecting a line from 3D to 2D.

Perspective Derivation One
This first proof is a little less robust, but more to the point that the next one, so let’s start
here. In Figure 12.17, we see a line that we would like to project onto the screen (it’s a 2D
case, but 3D is the same; just imagine we are in the X-Z plane and y = 0). The line has two
endpoints (x1, z1) and (x2,z2). We know that we can write an equation that represents
this line as

a*x + b*z = c

where the coefficients a, b, and c can be found in a number of ways. For example, just
plug in (x1, z1) and (x2,z2) and solve for them like this:

a*x1 + b*z1 = c

a*x2 + b*z2 = c
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You can use substitution, matrices, Gaussian elimination, or your TI-92 calculator. But we
don’t need the coefficients, we are just interested in the form:

a*x + b*z = c

Now let’s imagine that we project a point on the line (x,z) onto the screen using the
perspective transformation. That means we just divide by z (of course, the view distance d
is multiplied by is a concern, but assume d is 1.0 for now, so it has no effect):

x
per

= x/z

Look familiar? Now, if we rearrange this to solve for x:

x/z = x
per

x  = z*x
per

So, we are mapping things backwards, asking the question, “What x in 3D space is equal
to what x in screen space?” Now let’s plug x into the line equation:

a*x + b*z = c -> a*( z*x
per

) + b*z = c

Factoring z out, we get

(a*x
per
)*z + b*z = c

(a*x
per 

+ b)*z = c

Rearranging to solve for z, we get

z = c / (a*x
per 

+ b)

which is a mess, so let’s take the reciprocal of each side:

EQUATION 12.1 The Perspective Linear Equation

1/z = (a*x
per 

+ b) / c

1/z = (a/c)*x
per 

+ (b/c)

This equation states that 1/z is linear with respect to x
per

. However, if we plug the value x/z
back into x

per
, we get this back:

1/z = (a/c)* x/z + (b/c)

This says that 1/z is linear with x/z. And that’s the proof! What this means is that if we
linearly interpolate 1/z, it’s linear with x/z. So, if we linearly interpolate x, z, u, whatever,
we need to first divide them by z, then linearly interpolate these values. Then at each
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interpolation interval, we need the original value back, so we must divide by 1/z. For
example, let’s plug in a texture coordinate u and see what happens:

1/z = (a/c)* u/z + (b/c)

We start off and compute 1/z and set it equal to z'. Similarly, we compute u/z and call it 
u'. Then we perform one linear interpolation step. We now have the values u' and z'. u'
represents the linearly interpolated value of u/z, and z' represents the linearly interpolated
value of 1/z. But we want the real u, not u', so we must divide by z'. Here’s the math:

u = u’/z’ = (u/z) / (1/z) = (u/z) * (z/1) = u

We simply interpolate away, and at each step we must divide by z' to compute the real u.
Of course, u could be anything—a texture coordinate, light value, and so on. Thus, if u
was a texture coordinate, we would need two divisions per pixel to compute u and v from
u’ and v’, and that’s where the two divisions per pixel come from with perspective correct
texture mapping!

Before we move on to the next derivation, which is a little more robust, let’s talk about
what is going on from a programming point of view. Without a doubt, we are going to
need to interpolate 1/z down the sides of the triangles. Because we are doing this, we can
immediately switch from a Z-buffer to a 1/z-buffer and lose nothing. We simply invert the
inner loop comparisons from less than to greater than, and use a 1/z-buffer. Practically, we
will have to rethink our fixed-point format to get a little more decimal accuracy, because
1/z will never be larger than 1.0. Hence, there is no need to have 16 bits of the whole
number part and 16 bits of the fractional number part with the old 16.16 fixed-point
format. We should slide the fixed-point way over to give us nearly the entire range—some-
thing like a 4.28 format will be good. I will get to this when we implement the 1/z-buffer.
Assuming the implementation details will be handled, we are pretty much stuck with two
divisions per pixel. There is no way around this—period. We can use optimizations and
approximations, of course.

Before moving on, let’s do a real example on paper and see what happens with an affine
texture mapper and perspective correct. Let’s interpolate a single triangle edge with just
one coordinate. Let’s use points of the form (x,y,z), with p1(100,100,20) at u1 = 0 and
p2(50,110,50) at u2 = 63. This is shown in Figure 12.18.

Here is the algorithm that will perform pure affine/linear interpolation of the texture coor-
dinates:

float x1=100, y1=100, z1=20, u1=0,

x2=50, y2=110, z2=50, u2=63;

float du = u2 - u1;

float dy = y2 - y1;

float dudy = du/dy;
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// initialize interpolant

float u = u1;

// interpolate

for (int y=(int)y1; y <= (int)y2; y++)

{

printf(“\n@y=%d, u=%f”,y,u);

// interpolate u

u+=dudy;

} // end for
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FIGURE 12.18 Triangle edge setup for perspective interpolation.

NOTE

The preceding program is so little, I didn’t include it on the CD. Just type it in and make a
console application if you want to run it. We really need a quick and dirty C/C++ compiler to do
these little programs—hmmm, that gives me an idea … <BG>.

If you type in this little program, you will get the following run of incorrect data, shown
in Table 12.1.
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TABLE 12.1 Linear Interpolation of Texture Coordinates

Y Value Texture Coordinate

100 u = 0.000

101 u = 6.300

102 u = 12.600

103 u = 18.900

104 u = 25.200

105 u = 31.500

106 u = 37.799

107 u = 44.099

108 u = 50.399

109 u = 56.699

110 u = 62.999

Notice the delta between each iteration of the loop is always the same (6.3), so we are
blatantly disregarding the z values here! Figure 12.19 shows a plot of this data.
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Notice that u varies linearly with z, which we know is incorrect. Now, take a look at the
perspective-correct version of the function that interpolates 1/z as well as u/z, and then
computes u each iteration by dividing (u/z) by (1/z):

float x1=100, y1=100, z1=20, u1=0,

x2=50, y2=110, z2=50, u2=63;

float du = u2/z2 - u1/z1;

float dy = y2 - y1;

float dz = 1/z2 - 1/z1;

float dzdy = dz/dy;

float dudy = du/dy;

// initialize interpolant

float u = u1/z1;

float z = 1/z1;

// interpolate

for (int y=(int)y1; y <= (int)y2; y++)

{

printf(“\n@y=%d, 1/z=%f, u/z=%f: u=%f”,y, u, z, u/z);

// interpolate u/z

u+=dudy;

// interpolate 1/z

z+=dzdy;

} // end for

Now take a look at Figure 12.19 and Table 12.2. You can now see that the texture coordi-
nate in not interpolating linearly, but varying with 1/z, as it should.

TABLE 12.2 Perspective-Correct Interpolation of Texture Coordinates

Y Value 1/z u/z Texture Coordinate

y = 100 1/z = 0.000 u/z = 0.050 u = 0.000

y = 101 1/z = 0.126 u/z = 0.047 u = 2.680

y = 102 1/z = 0.252 u/z = 0.044 u = 5.727

y = 103 1/z = 0.378 u/z = 0.041 u = 9.219

y = 104 1/z = 0.504 u/z = 0.038 u = 13.263

y = 105 1/z = 0.630 u/z = 0.035 u = 17.999

y = 106 1/z = 0.756 u/z = 0.032 u = 23.624

y = 107 1/z = 0.882 u/z = 0.029 u = 30.413

y = 108 1/z = 1.008 u/z = 0.026 u = 38.769

y = 109 1/z = 1.134 u/z = 0.023 u = 49.304

y = 110 1/z = 1.26 u/z = 0.020 u = 62.999
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And as one final example to really make this rock solid, let’s set the z coordinates equal to
one another. In this case, we should see absolutely no perspective, because the polygon
this would represent would be flat to the screen, right? So in this case, the perspective
interpolation should be identical to the data from the affine/linear texture mapper—let’s
see! Setting z1 = 20 and z2 = 20 to get rid of any perspective, we run the program, and
Table 12.3 shows the results.

TABLE 12.3 Perspective-Correct Interpolation of Texture Coordinates with z Values Equal

Y Value 1/z u/z Texture Coordinate

y = 100 1/z = 0.000 u/z = 0.050 u = 0.000

y = 101 1/z = 0.315 u/z = 0.050 u = 6.300

y = 102 1/z = 0.630 u/z = 0.050 u = 12.600

y = 103 1/z = 0.945 u/z = 0.050 u = 18.900

y = 104 1/z = 1.260 u/z = 0.050 u = 25.199

y = 105 1/z = 1.575 u/z = 0.050 u = 31.500

y = 106 1/z = 1.890 u/z = 0.050 u = 37.800

y = 107 1/z = 2.205 u/z = 0.050 u = 44.100

y = 108 1/z = 2.520 u/z = 0.050 u = 50.400

y = 109 1/z = 2.835 u/z = 0.050 u = 56.700

y = 110 1/z = 3.150 u/z = 0.050 u = 63.000

If you compare the values from Table 12.1 and Table 12.3, you will see that the texture
coordinates are the same (with small floating-point errors, of course). Thus proving that
our algorithm works in all cases.

Perspective Derivation Two
For the second derivation, we are going to do something similar, but a little more robust
that fits into the interpolation equation a little better. This means a little more rigor in the
final formulation of the interpolation equation from point to point in the following
formula.

EQUATION 12.2 Basic Point-to-Point Interpolation Formula

p = (1-t)*p1 + (t)*p2

NOTE

p can be vector valued or a single scalar.

Thus, we want to end up with something that illustrates the interpolated relationship
from p1 to p2 in terms of z. Let’s begin with Figure 12.20, which shows the setup for the
derivation.
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FIGURE 12.20 Line interpolation and perspective projection.

We have two points in world space, with the coordinates (y1,z1) and (y2,z2). These points
project and intersect our viewplane at a distance z = d, and at points (p1, d) and (p2, d).
Additionally, we have an arbitrary point (x,z) that projects and intersects the viewplane 
at (p,d).

Let’s begin with the equation of the line that represents a polygon edge in 3D space, but
in the y-z plane with x = 0. This line has the form

a*y + b*z = c

Now, referring to Figure 12.20, we can once again use similar triangles to relate the inter-
section point (p,d) and the 3D point (x,z):

p/y = d/z

Solving for y, we get

y = (p/d)*z
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Plugging y into the line equation, we get

a*y + b*z = c

a*(p/d)*z + b*z = c

(a*p/d)*z + b*z = c

Factoring z out, we get

((a*p/d) + b)*z = c

Then dividing both sides by the term ((a*p/d) + b), we get

z = c / ((a*p/d) + b)

Taking the reciprocal of both sides, we get

1/z = ((a*p/d) + b)/c = (a*p/c*d) + (b/c)

And pulling p out to separate constants from variables, we get Equation 12.3.

EQUATION 12.3 Inverse Z-Linear Relationship

1/z = (a/c*d)*p + (b/c)

This means that at (y1, z1) with projected point (p1,d), we can write

1/z1 = (a/c*d)*p1 + (b/c)

And at (y2, z2) with projected point (p2,d), we can write

1/z2 = (a/c*d)*p2 + (b/c)

We have defined the endpoints of the interpolation from p1 to p2, but we still need to see
what happens in the middle at the point p. So let’s take Equation 12.2 and plug it into
Equation 12.3:

Given:

1/z = (a/c*d)*p + (b/c)

And plugging p = (1-t)*p1 + (t)*p2 into it for p, we get

1/z = (a/c*d)*[ (1-t)*p1 + (t)*p2 ] + (b/c)

Multiplying terms out, we get

1/z = (a/c*d)*p1*(1-t) + (a/c*d)*p2*(t) + (b/c)
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Now, here’s the tricky part algebraically. We need to add (b/c)*t and subtract (b/c)*t to the
right-hand side. The results of this will be

1/z = [ (a/c*d)*p1 + (b/c) ]*(1-t) + [ (a/c*d)*p2 + (b/c) ]*(t)

Now look at the terms I have highlighted. They should look familiar—they are the right-
hand sides of

1/z1 = (a/c*d)*p1 + (b/c)

1/z2 = (a/c*d)*p2 + (b/c)

Therefore, we can substitute the left-hand sides, that is the 1/z1 and 1/z2 terms, giving us
the final results:

1/z = [(1/z1)]*(1-t) + [(1/z2)]*(t)

This says that we can linearly interpolate 1/z1 to 1/z2. Or in other words, anything that
we project from 3D space to screen space will only be linear if it’s interpolated with a divi-
sion by z.

Hopefully, you have a good understanding of why interpolating 1/z is linear, and that any
x value you interpolate as that value divided by z (x/z) is also linear in screen space! This
should also make sense intuitively, because to get the screen projected values, we divide by z.

Adding 1/z-Buffering Support to the Rasterizers
Now that you see the reasoning behind needing 1/z to be interpolated in our rasterizers to
support perspective-correct texturing, we need to support it. Doing this is reasonably
straightforward, but some work has to be done with the fixed-point format to give us
higher accuracy. Currently, we are using a 16.16 format. This allows for signed integers
from -32768 to 32767 to be represented, along with a smallest fractional number of 1/216,
or approximately 1.5258×10-5 to be represented—about 4–5 decimal places of accuracy.
However, this only holds in relation to the format itself. When operations such as division
or multiplication are carried out, this accuracy can be quickly destroyed because of shift-
ing. Alas, we need to come up with another fixed-point format that is more conducive to
representing numbers that are less than 1.0, or in other words reciprocals of z. The ques-
tion is, how far can we go?

The answer is pretty far off, but not too far off. We are using 32-bit integers and we need a
sign bit, so that means that we really have only 31 bits to work with. Of course, we could
use a 2.30 format, that gives us 1 bit for the sign, 1 bit for the “1” if our number is
between 0..1.99999999, but this is too tight. I experimented with it, and it overflows here
and there, so in the end I went with a 4.28 format. That’s 28 bits of decimal accuracy,
three bits of whole part, and the sign bit. So, we can represent -8 to +7 with 28 bits of
decimal, which is enough for our 1/z-buffer and any future interpolation we might need
to implement. The only #define for this new type is found in T3DLIB10.H:

#define FIXP28_SHIFT 28
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Based on this, I took the Z-buffer rasterizers and converted them to 1/z. After that, I made
versions that were perspective-correct by changing the affine texture interpolation to u/z,
v/z interpolation and dividing each pixel by 1/z to compute the real u,z in texture space—
whew. But I will get to that shortly—for now, let’s take a look at the simplest 1/z-buffering
rasterizer that draws constant-/flat-shaded polygons with no alpha. Here’s the function
prototype:

void Draw_Triangle_2DINVZB_16(POLYF4DV2_PTR face, // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch,    // bytes per line, 320, 640 etc.

UCHAR *zbuffer,    // pointer to z-buffer

int zpitch);     // bytes per line of zbuffer

The function has identical calling parameters to the z-buffering version, except that inter-
nally it works with a 1/z-buffer. Before we get too far, let’s back out for a second and
review how the 1/z-buffer works. If there’s a pixel at z = 100 and another at z = 200, the z
= 100 pixel should overwrite the z = 200 pixel. Let’s compute 1/z for each:

The z = 100 pixel:

1/100 = .01

The z = 200 pixel:

1/200 = .005

So, our normal comparison in the inner loop of

if (zi < screen_ptr[x]) then write pixel…

needs to be inverted, so that larger 1/z values win out:

if (zi > screen_ptr[x]) then write pixel…

We covered this already in the previous chapter, so this shouldn’t be a surprise. We have
to change our initialization of the Z-buffer each frame. With a Z-buffer, we would write
the largest potential z value we expect into the Z-buffer, like 32000. Here’s the code we
have been using:

Clear_Zbuffer(&zbuffer, (32000 << FIXP16_SHIFT));

However, now we are not only using a different format for the fixed-point representation,
but we need to fill the buffer with 0 anyway! So we need to change the Z-buffer clear to

Clear_Zbuffer(&zbuffer, 0);

That’s convenient, huh?
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TIP

Now that we are working on a 1/z-buffer, or inverse Z-buffer as I like to call it, we can potentially
take advantage of the optimization I mentioned that adds a bias to the z value each frame so the
Z-buffer doesn’t need to be cleared each frame. However, we can only do this a few times,
because we have only three bits to store whole numbers with our 4.28 format. I have decided to
omit this optimization for now.

The next issue is the Z-buffer code itself. Do we need to do anything to the data structures
and so on? The answer is no—the Z-buffer doesn’t care, it’s just memory. However, we
surely can’t mix Z-buffer calls with 1/z-buffer calls, as the Z-buffer memory would be a
mess. Nevertheless, even though there are some effects you could get by doing this, I will
leave it to you.

Moving on, let’s take a look at the 1/z-buffering setup code in the sample rasterizer. Here’s
what the vertex setup stage looked like before, with normal z-buffering in the simple
rasterizer:

// extract vertices for processing, now that we have order

x0 = (int)(face->tvlist[v0].x+0.0);

y0 = (int)(face->tvlist[v0].y+0.0);

tz0 = (int)(face->tvlist[v0].z+0.5);

x1 = (int)(face->tvlist[v1].x+0.0);

y1 = (int)(face->tvlist[v1].y+0.0);

tz1 = (int)(face->tvlist[v1].z+0.5);

x2 = (int)(face->tvlist[v2].x+0.0);

y2 = (int)(face->tvlist[v2].y+0.0);

tz2 = (int)(face->tvlist[v2].z+0.5);

I have highlighted the z coordinate lines. Now let’s look at what it looks like with 1/z-
buffering in mind:

// extract vertices for processing, now that we have order

x0 = (int)(face->tvlist[v0].x+0.0);

y0 = (int)(face->tvlist[v0].y+0.0);

tz0 = (1 << FIXP28_SHIFT) / (int)(face->tvlist[v0].z+0.5);

x1 = (int)(face->tvlist[v1].x+0.0);

y1 = (int)(face->tvlist[v1].y+0.0);

tz1 = (1 << FIXP28_SHIFT) / (int)(face->tvlist[v1].z+0.5);
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x2 = (int)(face->tvlist[v2].x+0.0);

y2 = (int)(face->tvlist[v2].y+0.0);

tz2 = (1 << FIXP28_SHIFT) / (int)(face->tvlist[v2].z+0.5);

There are two things going on that weren’t in the previous version. First, we are using
fixed-point right off the bat. Notice I am converting 1.0 to fixed-point 4.28 format, and
then dividing by the z value. Thus, tz0, tz1, and tz2 are now in fixed-point format right
from the beginning, whereas they were not in the previous version that supported straight
z-buffering. The reason for this is that I can’t divide z into 1 without losing everything
because we are dealing with integers here, so I had to convert to fixed-point before the
division operation. Thus, all the places in the code where there was a shift by
FIXP16_SHIFT to convert the z interpolants are now gone because they are already in
fixed-point format. Performance-wise, I think we might gain a little from this, but I
haven’t counted it yet—I think it’s the same. However, the nice thing is that we start out
with tz0, tz1, and tz1 as 1/z values in fixed-point 4.28 format. Then the rasterizer
proceeds as usual. For example, when we computed all the interpolants for z (I have
deleted all the other code here), we used to shift everything by FIXP16_SHIFT to convert to
fixed-point as we did this:

dy = (y2 - y0);

dzdyl = ((tz2 - tz0) << FIXP16_SHIFT)/dy;

dzdyr = ((tz2 - tz1) << FIXP16_SHIFT)/dy;

dy = (min_clip_y - y0);

// computer new LHS starting values

zl = dzdyl*dy + (tz0 << FIXP16_SHIFT);

zr = dzdyr*dy + (tz1 << FIXP16_SHIFT);

However, the 1/z-buffering now looks like this in these areas:

dy = (y2 - y0);

dzdyl = ((tz2 - tz0))/dy;

dzdyr = ((tz2 - tz1))/dy;

dy = (min_clip_y - y0);

// computer new LHS starting values

zl = dzdyl*dy + (tz0);

zr = dzdyr*dy + (tz1);

So we lose all the shifts! Cool, huh? Anyway, in the final inner loop everything is the
same, except for the inverted Z-buffer comparison to support 1/z-buffering. This is true
because the code doesn’t care what we are interpolating, it just interpolates it. The key to
this is remembering that the setup is different, and we simply initialize everything to 1/z
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values rather than z values. With that in mind, here’s an excerpt from
Draw_Triangle_2DINVZB_16() that shows one complete y scan loop. The entire function is
way too long to list, but this excerpt shows that the inverse z-buffering is basically identi-
cal to z-buffering, and faster if anything. Here’s the code:

// point screen ptr to starting line

screen_ptr = dest_buffer + (ystart * mem_pitch);

// point zbuffer to starting line

z_ptr = zbuffer + (ystart * zpitch);

for (yi = ystart; yi < yend; yi++)

{

// compute span endpoints

xstart = ((xl + FIXP16_ROUND_UP) >> FIXP16_SHIFT);

xend  = ((xr + FIXP16_ROUND_UP) >> FIXP16_SHIFT);

// compute starting points for u,v,w interpolants

zi = zl;

// compute u,v interpolants

if ((dx = (xend - xstart))>0)

{

dz = (zr - zl)/dx;

} // end if

else

{

dz = (zr - zl);

} // end else

// draw span

for (xi=xstart; xi < xend; xi++)

{

// test if z of current pixel is nearer than current z buffer value

if (zi > z_ptr[xi])

{

// write textel 5.6.5

screen_ptr[xi] = color;

// update z-buffer

z_ptr[xi] = zi;

} // end if
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// interpolate z

zi+=dz;

} // end for xi

// interpolate x,z along right and left edge

xl+=dxdyl;

zl+=dzdyl;

xr+=dxdyr;

zr+=dzdyr;

// advance screen ptr

screen_ptr+=mem_pitch;

// advance z-buffer ptr

z_ptr+=zpitch;

} // end for y

Let’s briefly review where we are and then take a look at all the rasterizers for 1/z-buffer-
ing, minus the perspective-correct one. We need 1/z to perspective-texture map polygons
correctly; however, 1/z-buffering turns out to be just as good as z-buffering, so it’s a wash,
and we lose nothing performance-wise. However, we had to change the fixed-point format
to support the reciprocal of z and have enough accuracy. Furthermore, 1/z has more reso-
lution for polygons that are near the viewplane where the Z-buffer spreads the accuracy
through the entire viewspace z distance. Thus we get an added bonus of the visibility
being more accurate up close. Because we convert all 1/z values to fixed-point from the
gate, we save a few shifts during the setup that used to exist in the plain Z-buffer rasteriz-
ers. And finally, we need to clear the Z-buffer memory with the value of 0 rather than the
farthest possible z value each frame as we did with the Z-buffer. This gives us the opportu-
nity to use the inverse Z-buffer bias techniques, not clearing the buffer each frame for a
few frames, and potentially reaping a performance gain. We will look into this later.

NOTE

Last but not least, there is absolutely no difference in supporting the alpha blending with inverse
z-buffering: You just take the alpha blending z-buffered rasterizers and convert them to use the
inverse Z-buffer. We aren’t going to look inside them, but I will show their prototypes.

Here are the prototypes for the new rasterizers that support 1/z-buffering minus the
perspective ones, which we are going to cover in a moment:
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Function:

void Draw_Triangle_2DINVZB_16(POLYF4DV2_PTR face, // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch,    // bytes per line, 320, 640 etc.

UCHAR *zbuffer,    // pointer to z-buffer

int zpitch);     // bytes per line of zbuffer

Description: Draw_Triangle_2DINVZB_16() draws a standard colored triangle using the
inverse Z-buffer.

Function:

void Draw_Gouraud_TriangleINVZB_16(POLYF4DV2_PTR face,  // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch,    // bytes per line, 320, 640 etc.

UCHAR *zbuffer,   // pointer to z-buffer

int zpitch);     // bytes per line of zbuffer

Description: Draw_Gouraud_TriangleINVZB_16() draws a standard Gouraud-shaded trian-
gle using the inverse Z-buffer.

Function:

void Draw_Textured_TriangleINVZB_16(POLYF4DV2_PTR face, // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch,    // bytes per line, 320, 640 etc.

UCHAR *zbuffer,    // pointer to z-buffer

int zpitch);     // bytes per line of zbuffer

Description: Draw_Textured_TriangleINVZB_16() draws an affine-textured triangle with
constant shading and an inverse Z-buffer.

Function:

void Draw_Textured_TriangleFSINVZB_16(POLYF4DV2_PTR face, // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch,    // bytes per line, 320, 640 etc.

UCHAR *zbuffer,    // pointer to z-buffer

int zpitch);     // bytes per line of zbuffer

Description: Draw_Textured_TriangleFSINVZB_16() draws an affine-textured triangle
with flat shading and an inverse Z-buffer.

Function:

void Draw_Textured_TriangleGSINVZB_16(POLYF4DV2_PTR face,  // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch,    // bytes per line, 320, 640 etc.
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UCHAR *_zbuffer,   // pointer to z-buffer

int zpitch);     // bytes per line of zbuffer

Description: Draw_Textured_TriangleGSINVZB_16() draws an affine-textured triangle
with Gouraud shading and an inverse Z-buffer.

Function:

void Draw_RENDERLIST4DV2_SolidINVZB_16(RENDERLIST4DV2_PTR rend_list,

UCHAR *video_buffer, // pointer to video buffer

int lpitch,    // bytes per line, 320, 640 etc.

UCHAR *zbuffer, // pointer to z-buffer

int zpitch);   // bytes per line of zbuffer

Description: Draw_RENDERLIST4DV2_SolidINVZB_16() is the rendering list function that
calls all of the rasterizers based on shading and texturing information per polygon. The
function only calls inverse Z-buffer functions.

Next we have all the alpha blending versions of the inverse Z-buffer functions. They are
identical to the non-alpha version, except they all have an extra alpha_override variable
appended to the parameter list (once again, I am leaving out the perspective versions
because we haven’t covered them yet):

Function:

void Draw_Triangle_2DINVZB_Alpha16(POLYF4DV2_PTR face, // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch,    // bytes per line, 320, 640 etc.

UCHAR *zbuffer,   // pointer to z-buffer

int zpitch,     // bytes per line of zbuffer

int alpha);     // alpha level

Description: Draw_Triangle_2DINVZB_Alpha16() draws a standard colored triangle using
the inverse Z-buffer.

Function:

void Draw_Gouraud_TriangleINVZB_Alpha16(POLYF4DV2_PTR face,  // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch,    // bytes per line, 320, 640 etc.

UCHAR *zbuffer,   // pointer to z-buffer

int zpitch,     // bytes per line of zbuffer

int alpha);     // alpha level

Description: Draw_Gouraud_TriangleINVZB_Alpha16() draws a standard Gouraud-shaded
triangle using the inverse Z-buffer.
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Function:

void Draw_Textured_TriangleINVZB_Alpha16(POLYF4DV2_PTR face, // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch,    // bytes per line, 320, 640 etc.

UCHAR *zbuffer,   // pointer to z-buffer

int zpitch,     // bytes per line of zbuffer

int alpha);     // alpha level

Description: Draw_Textured_TriangleINVZB_Alpha16() draws an affine-textured triangle
with constant shading and an inverse Z-buffer.

Function:

void Draw_Textured_TriangleFSINVZB_Alpha16(POLYF4DV2_PTR face, // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch,    // bytes per line, 320, 640 etc.

UCHAR *zbuffer,   // pointer to z-buffer

int zpitch,     // bytes per line of zbuffer

int alpha);     // alpha level

Description: Draw_Textured_TriangleFSINVZB_Alpha16() draws an affine-textured trian-
gle with flat shading and an inverse Z-buffer.

Function:

void Draw_Textured_TriangleGSINVZB_Alpha16(POLYF4DV2_PTR face,  // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch,    // bytes per line, 320, 640 etc.

UCHAR *_zbuffer,   // pointer to z-buffer

int zpitch,     // bytes per line of zbuffer

int alpha);     // alpha level

Description: Draw_Textured_TriangleGSINVZB_Alpha16() draws an affine-textured trian-
gle with Gouraud shading and an inverse Z-buffer.

Function:

void Draw_RENDERLIST4DV2_SolidINVZB_Alpha16(RENDERLIST4DV2_PTR rend_list,

UCHAR *video_buffer, // pointer to video buffer

int lpitch,     // bytes per line, 320, 640 etc.

UCHAR *zbuffer,   // pointer to z-buffer

int zpitch,     // bytes per line of zbuffer

int alpha_override); // alpha override value

Description: Draw_RENDERLIST4DV2_SolidINVZB_Alpha16() is the rendering list function
that calls all of the rasterizers based on shading and texturing information per polygon.
The function only calls inverse Z-buffer functions.
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DEMOII12_5.CPP|EXE is a demo of the 1/z-buffer technology. A screenshot is shown in
Figure 12.21.
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FIGURE 12.21 A screenshot of the 1/z-buffer technology. 

The demo enables you to switch from Z-buffer to 1/z-buffer to no buffer at all by pressing
the Z key. You can also enable and disable z-sorting with the S key. Try moving around
and pushing the “probe” into objects with each buffering technique—which looks more
accurate to you? To compile the demo, you will need DEMOII12_5.CPP|H,
T3DLIB1–10.CPP|H, and the DirectX .LIB files.

TIP

Make sure you disable the ambient light source with the A key—it makes the demo look really
cool.

Implementing Perfect Perspective Mapping
Implementing perfect texture mapping at this point involves nothing more than some
text editing. We simply need to start with the inverse z-buffering affine texture mapper
and make some changes to the interpolants and the final calculation of u,v for each pixel.
The changes are in the following areas:

• During entry/initialization, we need to compute the texture coordinates u/z and v/z
and interpolate them as well as 1/z.
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• In the inner loop of the rasterizer, we need to compute the real u,z texture coordi-
nates. This is accomplished by dividing (1/z) into our linearly correct (u/z) and (v/z)
values to arrive at the perspective correct (u,v) values at which to sample the 
texture map.

Of course, the devil is in the details <BG>. First, we need to revisit the fixed-point format
once again. The problem is we are no longer interpolating u,v values—we are interpolating
(u/z) and (v/z) values. So, we’re going to need more than 16 bits of decimal accuracy.
However, we can’t use the 4.28 format we created for interpolating 1/z because the texture
coordinates themselves can range up to 255. We need at least 8 bits to represent 0..255,
plus we need a sign bit, so that’s 9 bits, plus I hate odd numbers, so that makes a total of
10 bits for the whole part of the texture coordinate. Therefore, we’re left with 22 bits of
decimal accuracy for the decimal part.

We are going to use a 10.22 fixed-point format to interpolate (u/z) and (v/z), and a 4.22
fixed-point format to interpolate (1/z). This means that when we perform our final divi-
sion of (1/z) into (u/z) and (v/z), we are going to be dividing a fixed-point 4.22 into fixed-
point 10.22, so we need to be careful to shift things properly. Keep that in mind for now.

Let’s look at the setup of the vertex and u,v information. Here’s an excerpt from the
inverse z-buffering, perspective-correct, constant-shaded rasterizer:

// extract vertices for processing, now that we have order

x0 = (int)(face->tvlist[v0].x+0.0);

y0 = (int)(face->tvlist[v0].y+0.0);

tu0 = ((int)(face->tvlist[v0].u0+0.5) << FIXP22_SHIFT) / 

(int)(face->tvlist[v0].z+0.5);

tv0 = ((int)(face->tvlist[v0].v0+0.5) << FIXP22_SHIFT) / 

(int)(face->tvlist[v0].z+0.5);

tz0 = (1 << FIXP28_SHIFT) / (int)(face->tvlist[v0].z+0.5);

x1 = (int)(face->tvlist[v1].x+0.0);

y1 = (int)(face->tvlist[v1].y+0.0);

tu1 = ((int)(face->tvlist[v1].u0+0.5) << FIXP22_SHIFT) / 

(int)(face->tvlist[v1].z+0.5);

tv1 = ((int)(face->tvlist[v1].v0+0.5) << FIXP22_SHIFT) / 

(int)(face->tvlist[v1].z+0.5);

tz1 = (1 << FIXP28_SHIFT) / (int)(face->tvlist[v1].z+0.5);

x2 = (int)(face->tvlist[v2].x+0.0);

y2 = (int)(face->tvlist[v2].y+0.0);
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tu2 = ((int)(face->tvlist[v2].u0+0.5) << FIXP22_SHIFT) / 

(int)(face->tvlist[v2].z+0.5);

tv2 = ((int)(face->tvlist[v2].v0+0.5) << FIXP22_SHIFT) / 

(int)(face->tvlist[v2].z+0.5);

tz2 = (1 << FIXP28_SHIFT) / (int)(face->tvlist[v2].z+0.5);

And of course, the constant FIXP22_SHIFT is defined as

#define FIXP22_SHIFT 22

Please take a moment to make sure you see what’s going on with the setup. We are doing
the same thing with the 1/z calculation, but the (u,v) texture coordinates for each vertex
are now being computed as (u/z) and (v/z). First we pre-shift (u,v) into fixed-point 10.22
format and then divide by z. However, as you might recall from a previous math note in
this chapter, we proved that a fixed-point number can be divided or multiplied by a
normal integer and the number will remain fixed-point, as long as it’s not overflowed or
underflowed, of course. Therefore, at the end of this initialization, we have (1/z) and all
the texture coordinates for each vertex in (u/z), (v/z) format ready to be linearly interpo-
lated.

Take my word for it—the code is the same in the rasterizer up until the inner-most loop.
This is where the action takes place. We need the real texture coordinates (u,v) to access
the texture memory, but to compute them for perfect perspective-correct texturing, we
need to divide (1/z) into each (u/z), (v/z) interpolant. In other words:

u = (u/z) / (1/z)

v = (v/z) / (1/z)

However, (u/z) and (v/z) are in 10.22-fixed point format, and (1/z) is in 4.22 fixed-point
format, so a straight division won’t work. We need to shift one or both of the operands
before performing the division, so we are left with both u,v in straight integral format
without any loss of precision. Here’s the inner span loop that accomplishes this:

for (xi=xstart; xi < xend; xi++)

{

// test if z of current pixel is nearer than current z buffer value

if (zi > z_ptr[xi])

{

// write textel

screen_ptr[xi] = textmap[ ((ui << (FIXP28_SHIFT - FIXP22_SHIFT)) / zi) +

( ((vi << (FIXP28_SHIFT - FIXP22_SHIFT)) / zi) << texture_shift2)];

// update z-buffer

z_ptr[xi] = zi;

} // end if
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// interpolate u,v,z

ui+=du;

vi+=dv;

zi+=dz;

} // end for xi

I have highlighted the magical code. With normal affine texturing, this code looked like

screen_ptr[xi] = textmap[(ui >> FIXP16_SHIFT) +

((vi >> FIXP16_SHIFT) << texture_shift2)];

Now we see the division by zi, as well as the shift by the difference (FIXP28_SHIFT –
FIXP22_SHIFT). Let’s talk about this shift value and why it’s (FIXP28_SHIFT –
FIXP22_SHIFT) = (6). Take a look at Figure 12.22.
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FIGURE 12.22 Getting the fixed points to line up.

Think of it like this: ui and vi are both in 10.22 format, and zi is in 4.28 format.
Therefore, we need to line up the fixed points so the division results in no scaling, and
thus an integer. To do this, we see that ui and vi need to be shifted six places to the left
to line up with zi. This makes sense because the two formats differ by exactly

(FIXP28_SHIFT – FIXP22_SHIFT) = (28 – 22) = 6
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Therefore, the shifting puts both the dividend and divisor into 4.28 format, and the result-
ing division reduces to a quotient that is integral and non-scaled.

TIP

There is another potential optimization with the texture addressing. If you look at the code, it
performs the following texture access:

texture[u + (v << n)]

where n is the log
2

of the texture width, or the number of words per row—so it’s a multiplica-
tion, more or less. However, if we prescale vi by this value, we can avoid the left shift << opera-
tor in the final texture address calculation, and therefore speed up the texture address
computation by approximately 30% <BG>. But we’ll leave that one for later.

And that’s simply all there is to perspective-correct texture mapping. Of course, the two
divisions per pixel is not acceptable, but we will address that in a number of ways momen-
tarily. At the very least, the division can always be turned into multiplication by computa-
tion of the reciprocal of the divisor. For example:

float x,y,c;

// some computations are performed with x,y,c…

x = x/c;

y = y/c;

Assuming anywhere from 15–40 cycles for each division, we are looking at around 30–80
cycles. Now let’s perform this simple transformation:

float x,y,c;

// some computations are performed with x,y,c…

float oneoverc = 1/c;

x = x*c;

y = y*c;

We have a single division costing us 15–40 cycles, plus two multiplications costing 2–3
cycles each, so that’s a total of 34—46 cycles. Of course, I am being brutally pessimistic
with all the cycle counting, but we are looking at a savings of nearly 50% by first comput-
ing the single reciprocal. Nevertheless, any division at all in the innermost loop is totally
unacceptable—we have to do better. Our only algorithmic possibilities are by approxima-
tion, and we will explore them shortly, but for now, let’s take a look at the new functions
that support perspective correct texturing with the inverse Z-buffer.
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Function:

void Draw_Textured_Perspective_Triangle_INVZB_Alpha16(

POLYF4DV2_PTR face, // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch,    // bytes per line, 320, 640 etc.

UCHAR *_zbuffer,   // pointer to z-buffer

int zpitch,     // bytes per line of zbuffer

int alpha);     // the alpha level

Description: Draw_Textured_Perspective_Triangle_INVZB_Alpha16() draws a perspec-
tive-correct triangle with alpha blending and constant shading.

Function:

void Draw_Textured_Perspective_Triangle_FSINVZB_Alpha16(

POLYF4DV2_PTR face, // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch,    // bytes per line, 320, 640 etc.

UCHAR *_zbuffer,   // pointer to z-buffer

int zpitch,     // bytes per line of zbuffer

int alpha);     // the alpha level

Description: Draw_Textured_Perspective_Triangle_FSINVZB_Alpha16() draws a
perspective-correct triangle with alpha blending and flat shading.

Function:

void Draw_Textured_Perspective_Triangle_INVZB_16(

POLYF4DV2_PTR face, // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch,    // bytes per line, 320, 640 etc.

UCHAR *_zbuffer,   // pointer to z-buffer

int zpitch);     // bytes per line of zbuffer

Description: Draw_Textured_Perspective_Triangle_INVZB_16() draws a perspective-
correct triangle with constant shading.

Function:

void Draw_Textured_Perspective_Triangle_FSINVZB_16(

POLYF4DV2_PTR face,// ptr to face

UCHAR *_dest_buffer,// pointer to video buffer

int mem_pitch,   // bytes per line, 320, 640 etc.

UCHAR *_zbuffer,  // pointer to z-buffer

int zpitch);    // bytes per line of zbuffer

Description: Draw_Textured_Perspective_Triangle_FSINVZB_16() draws a perspective-
correct triangle with flat shading.
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For a demo of the perspective-correct texturing, the best thing is of course a walkthrough
interior environment, but we are still without a good tool to build interiors.
DEMOII12_6.CPP|EXE instead creates a very flat terrain, with a checkerboard texture on it as
the map. This shows the difference between the affine and perspective texture mappers
quite significantly. Figure 12.23 is a screenshot of the demo in action.
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FIGURE 12.23 The perspective-correct texturing demo. 

Use the arrow keys to navigate around as usual, and press the T key to select between
affine and perspective texturing. To compile the demo, you will need DEMOII12_6.CPP|H,
along with T3DLIB1–10.CPP|H and the DirectX .LIB files.

Implementing Linear Piecewise Perspective Mapping
Although we could probably speed up the perfect texture mapper with some optimization
within the two divisions using the product-of-reciprocal trick, a division is a division, and
not acceptable for a software engine in most cases. Alas, is there anything we can do to
speed this up? Can we make an approximation that is faster, and visually pleasing? The
answer is it depends. All approximations are based on the concept of acceptable error, so it
really depends on how much error is acceptable with the final rendered image. For
example, a first-person shooter might not have the tolerance an outdoor terrain game
might have to texture distortion, so these are the kinds of factors you need to take into
consideration. So, we are going to implement a type of approximation that we can control
to go from totally affine to totally perspective. Unfortunately, my implementation won’t
have this capability programmed in, but you can add it if you need it.
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In any case, the approximation we are going to implement is called linear piecewise approxi-
mation (or piecewise linear, depending on what side of the bed you sleep on). Basically, it’s
somewhere between affine texture mapping and perspective-correct texture mapping, and
is illustrated in Figure 12.24.
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FIGURE 12.24 Linear piecewise approximation sampling points on the triangle.

Here’s how it works: Unlike perfect-perspective texture mapping, linear piecewise texture
mapping computes the perfect texture coordinates only on specific intervals, such as every
16–32 pixels, and then performs an affine linear texture mapping between these pixels. In
Figure 12.25, you see the sampling curve of a perfect and linear piecewise approximation.

Basically, we are computing the correct texture coordinates along the perspective curve
and then linearly interpolating between them. As the number of sample points increases,
the curve becomes more and more like perfect-perspective texturing, as you can see in the
figure. Therefore, this is a perfect technology to use for on-demand texturing. With
control over quality and precision, we can save the divisions per-pixel, compute them
every nth pixel, and then linearly interpolate between them! When objects get close, we
can turn up the approximation (make the number of sample points higher), and when
polygons are far from the viewplane, we can turn the number of sample points way down
so that the texturing is nearly affine.
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FIGURE 12.25 Linear piecewise approximation relative to the perspective curve.

In practice, I find that recomputing the texture coordinates every 16–32 pixels looks
nearly perfect, even when you are on top of the texture. Now for the bad news: The details
of implementing the algorithm are a little tricky—more like yucky! So it’s a little bit hard
to code for the general case every nth pixel. What I mean by this is that there are a few
ways to implement the piecewise sampling, as shown in Figure 12.26 and listed in the
following points.
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FIGURE 12.26 Methods of computing new texture coordinates for piecewise linear texture
mapping.

17 0672318350 CH12  05•02•2003  2:55 PM  Page 1235



• Method 1: The exact texture coordinates can be computed every n scanlines, and
then every n pixels along each scanline.

• Method 2: The exact texture coordinates can be computed every scanline, and then
every n pixels along that scanline.

• Method 3: The exact texture coordinates can be computed every scanline, and then
the scanline is linearly interpolated.

We are going to implement method 3 for now, and we might implement method 2 later.
The reason is that we already have the logic to compute the exact texture coordinates each
scanline with the perfect texture mapper we just wrote, and we can just turn off the
perfect texture mapping per pixel and simply linearly interpolate each scanline with the
perfect u,v end points. We could implement method 2, but it’s got a lot of overhead to get
the recomputation of u,v every nth pixel along the scanline, and at this point we don’t
need it. We’ll come back to it if we need to when we go more interior with our models
and engine. However, you are free to try it yourself, along with traveling to parallel
dimensions and hyperplanes via mental telepathy.

In any event, the plan is this: We simply take the perspective-correct texture mapper (any
of them) and change it so that instead of computing the exact u,v coordinates of each
pixel, we only compute the exact u,v texture coordinates of each scanline at the end
points of the scan line. Then, using the perfect u,v coordinates we compute at the
endpoints of the scanline, we linearly interpolate the texture coordinates from left to
right.

NOTE

The interesting thing about this technique is that if a polygon is flat on the screen, and then it’s
rotated parallel to the x-axis, the texture mapping will be perfect. Only when it’s rotated parallel
to the y-axis will distortion occur. Thus, the technique is perfect in one axis. If we were to recom-
pute the perfect u,v coordinates along each scanline, say every 32 pixels, the x-axis rotation
would still give zero distortion, but the y-axis rotation would result in less distortion because we
are resampling every 32 pixels.

Now let’s look at the code that does this. Here’s an excerpt from the most basic piecewise
linear texture mapper Draw_Textured_PerspectiveLP_Triangle_INVZB_16(). This is the
main y loop that renders the entire triangle:

// point screen ptr to starting line

screen_ptr = dest_buffer + (ystart * mem_pitch);

// point zbuffer to starting line

z_ptr = zbuffer + (ystart * zpitch);

for (yi = ystart; yi < yend; yi++)

{
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// compute span endpoints

xstart = ((xl + FIXP16_ROUND_UP) >> FIXP16_SHIFT);

xend  = ((xr + FIXP16_ROUND_UP) >> FIXP16_SHIFT);

// compute linear version of ul, ur, vl, vr

ul2 = ((ul << (FIXP28_SHIFT - FIXP22_SHIFT)) / (zl >> 6) ) << 16;

ur2 = ((ur << (FIXP28_SHIFT - FIXP22_SHIFT)) / (zr >> 6) ) << 16;

vl2 = ((vl << (FIXP28_SHIFT - FIXP22_SHIFT)) / (zl >> 6) ) << 16;

vr2 = ((vr << (FIXP28_SHIFT - FIXP22_SHIFT)) / (zr >> 6) ) << 16;

// compute starting points for u,v interpolants

zi = zl + 0; // ????

ui = ul2 + 0;

vi = vl2 + 0;

// compute u,v interpolants

if ((dx = (xend - xstart))>0)

{

du = (ur2 - ul2) / dx;

dv = (vr2 - vl2) / dx;

dz = (zr - zl) / dx;

} // end if

else

{

du = (ur2 - ul2) ;

dv = (vr2 - vl2) ;

dz = (zr - zl);

} // end else

// draw span

for (xi=xstart; xi < xend; xi++)

{

// test if z of current pixel is nearer than current z buffer value

if (zi > z_ptr[xi])

{

// write textel

screen_ptr[xi] = textmap[(ui >> FIXP22_SHIFT) +

((vi >> FIXP22_SHIFT) << texture_shift2)];

// update z-buffer

z_ptr[xi] = zi;

} // end if
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// interpolate u,v,z

ui+=du;

vi+=dv;

zi+=dz;

} // end for xi

// interpolate u,v,x along right and left edge

xl+=dxdyl;

ul+=dudyl;

vl+=dvdyl;

zl+=dzdyl;

xr+=dxdyr;

ur+=dudyr;

vr+=dvdyr;

zr+=dzdyr;

// advance screen ptr

screen_ptr+=mem_pitch;

// advance zbuffer ptr

z_ptr+=zpitch;

} // end for y

I know the code is out of context and a little hard to follow, but take a minute and drudge
through it if you can. I have bolded the two main areas where the action occurs. The first
bolded area is where the exact u,v coordinates are computed for the current scanline by
dividing by 1/z. The results are stored in ul2, vl2, ur2, and vr2. After this is done, the rest
is trivial. The scanline rasterization’s innermost loop is entered (the second bolded section)
and the values (ul2, vl2) and (ur2, vr2) are linearly interpolated as texture coordinates.
Although we are still dividing to compute the exact u,v texture coordinates, we are doing
it on a per-scanline basis now, rather than per-pixel. Additionally, adding support to
recompute the exact u,v coordinates along the scanline and then linearly interpolating in
between isn’t that complicated, but it’s “unclean” to say the least, and messes up my
perfect inner loop; so right now we’ll leave that alone.

So that’s all there is to piecewise linear perspective correct texture mapping; it’s nothing
more than computing the perfect texture coordinates every so often and then linearly
interpolating between them. Let’s see the new functions that support this (note that all
the functions work with an inverse Z-buffer only):

Function:

void Draw_Textured_PerspectiveLP_Triangle_FSINVZB_16(

POLYF4DV2_PTR face,// ptr to face

UCHAR *_dest_buffer, // pointer to video buffer
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int mem_pitch,    // bytes per line, 320, 640 etc.

UCHAR *_zbuffer,   // pointer to z-buffer

int zpitch);     // bytes per line of zbuffer

Description: Draw_Textured_PerspectiveLP_Triangle_FSINVZB_16() draws a linear
piecewise perspective-correct texture using flat shading.

Function:

void Draw_Textured_PerspectiveLP_Triangle_INVZB_16(

POLYF4DV2_PTR face, // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch,    // bytes per line, 320, 640 etc.

UCHAR *_zbuffer,   // pointer to z-buffer

int zpitch);     // bytes per line of zbuffer

Description: Draw_Textured_PerspectiveLP_Triangle_INVZB_16() draws a linear piece-
wise perspective-correct texture using constant shading.

Function:

void Draw_Textured_PerspectiveLP_Triangle_FSINVZB_Alpha16(

POLYF4DV2_PTR face, // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch,    // bytes per line, 320, 640 etc.

UCHAR *_zbuffer,   // pointer to z-buffer

int zpitch,     // bytes per line of zbuffer

int alpha);     // the alpha

Description: Draw_Textured_PerspectiveLP_Triangle_FSINVZB_Alpha16() draws a linear
piecewise perspective-correct texture using flat shading with alpha blending.

Function:

void Draw_Textured_PerspectiveLP_Triangle_INVZB_Alpha16(

POLYF4DV2_PTR face, // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch,    // bytes per line, 320, 640 etc.

UCHAR *_zbuffer,   // pointer to z-buffer

int zpitch,     // bytes per line of zbuffer

int alpha);     // alpha

Description: Draw_Textured_PerspectiveLP_Triangle_INVZB_Alpha16() draws a linear
piecewise perspective-correct texture using constant shading with alpha blending.

NOTE

I am truly sorry about how long these function names are getting, but there’s really no way
around it—they would be much worse if I spelled out inverse, Z-buffer, Gouraud, and so on.
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To compare the affine, linear piecewise approximation and perfect-perspective correct
texturing, I have updated the previous demo to support the linear piecewise rasterizers.
Figure 12.27 is a screenshot of DEMOII12_7.CPP|EXE in action.
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FIGURE 12.27 Linear piecewise texturing in action. 

In the linear piecewise mode, it doesn’t look too bad! Anyway, the controls are the same—
move around with the arrow keys, and use the T key to switch from affine, linear, and
perfect texturing modes.

Exploring Quadratic Approximations for Perspective Texturing
The next approximation technique I want to discuss is called quadratic approximation. It’s
based on the idea of linear piecewise approximation, but instead of linearly interpolating
each scanline, we use a quadratic curve to approximate the perspective curve. Now, you
might think that sounds worse than two divisions per pixel, but it’s not! In fact, we can
do it almost as easily as linear piecewise, except that it’s nearly identical to perfect-
perspective texture mapping. Before you get too excited, we are not going to implement it
yet because we don’t need it, but you can if you like. However, we are going to cover
every detail of how it works, which turns out to be very easy.

First let’s state the problem. Let’s assume that we are computing the exact u,v texture coor-
dinates per scanline (maybe using the multiplication of reciprocals to compute the divi-
sions). We want a better approximation per scanline than what we are getting with the
linear affine interpolation per scanline, but we don’t want to resort to breaking the scan-
line up into more pieces. The solution is to interpolate the scanline from the left to right
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not linearly, but with a curve that passes through the true perspective curve at three
points on the curve, or at the very least closer to the perspective curve than the straight
line we are using when we linearly interpolate. Figure 12.28 shows what we are looking for
in the abstract.
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FIGURE 12.28 Quadratic approximation fitting the perspective curve.

Therefore, we need a curve that can look like c/z, where c is a constant, and this is where
the quadratic part comes in. We know that functions of the form

a*x2 + bx + c = 0

are parabolas. For example, Figure 12.29 shows what the curve

f(x) = 1*x2 + 2*x + 3

looks like. It’s definitely curvy!

We need to figure out a way to map the general quadratic a*x2 + bx + c to our texture
curve c/z. I really want you to understand this, because it’s key to so many approxima-
tions in computer graphics. Also remember that although the quadratic curve is a
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parabola, that’s only when we plot it from (-∞, +∞). No one ever said we can’t take a small
range of it in some interval [i,j] and then use that as our approximation, right? This is
exactly what we’re going to do. We simply need to find the correct coefficients a, b, and c
in the formula

f(x) = a*x2 + b*x + c
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FIGURE 12.29 A standard parabola.

This will follow the perspective curve as closely as possible. The trick is this: We compute
the texture coordinates at each end as we go, and then we use the texture coordinates at
each end to solve for a, b, and c. This will force the curve through them, but what will it
do in the middle? This is where we need a little more information. We have three
unknowns (a, b, and c), and we have only two knowns (ul, ur, (or vl, vr)), which are the
endpoints we are trying to interpolate. Remember, both u and v are independent, so they
must be interpolated separately. So, we need one quadratic curve to interpolate u, and
another to interpolate v. So, after we figure u out, we have figured v out.

Now we have the quadratic polynomial we are going to use as the interpolator:

f(x) = a*x2 + b*x + c
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We also have two endpoints ul and ur. We now need at least one more piece of informa-
tion, because there are three unknowns in the quadratic. We could use the slope as the
third; that is, if we differentiate

f(x) = a*x2 + b*x + c

with respect to x, we get

f’(x) = (d/dx)(a*x2 + b*x + c) = 2*a*x + b

If we had the first derivative of the curve at the point ul, we could plug that in, but that
still only dictates the slope at a point—we are more interested with the curve interpolating
the c/z curve not having the same slope. Alas, we are stuck, and we need one more exact
u,v pair to perform the computation to find the coefficients of a*x2 + bx + c = 0. We have
the exact u,v at the left and right edge of the scanline we are trying to interpolate, and we
are going to compute the exact u,v at the midway point, or at .5 along the scanline. This
is shown in Figure 12.30.
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FIGURE 12.30 The setup for computation of endpoints and the midway point of the
quadratic curve.

To compute the midpoint u,v we will need to perform two divisions as usual, but that’s
unavoidable. We simply multiply the scanline interpolants for the current scanline, we’ll
call them (u_z)i, (v_z)i, by 0.5, followed by a multiplication of the current scanlines dx
(0.5*dx). Additionally, we would have to find the (1/z) value at the midpoint because we
need it to divide into the (u/z), (v/z) midpoint values to find the real midpoint u,v values.
Thus, we need to multiply the current scanline’s (1/z)i interpolant by (0.5*dx), and then
add those values respectively to ul, vl, and zl (the left-side u/z, v/z, and 1/z values) and
then divide to compute the real u,v, as shown in Figure 12.30 and in the following.

Given the following:

• u_zl, v_zl, and zl are the u/z, v/z, and 1/z values at the current scanline’s left edge.
That is, they are the interpolants for the left side of the current scanline to be
drawn.
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• (1_z)
i
is the 1/z interpolant at the left side for the current scanline.

• (u_z)
i
is the (u/z) scanline interpolant at the left side for the current scanline.

• (v_z)
i
is the (v/z) scanline interpolant at the left side for the current scanline.

• dx is the distance from the left edge to the right side of the current scanline; that is,
dx = (x

r
– x

l
)

We attempt to find the real u,v midpoints.

First compute 1/z at the midpoint, because we need it to divide into the (u/z), (v/z) values
at the midpoint to extract the final, real (u,v):

1_z
mid

= 1/zl + [(1_z)
i
*(0.5*dx)]

Now with the 1/z midpoint in hand, compute the real u,v midpoints:

u
mid

= u_zl + [(u_z)
i
*(0.5*dx)] / 1_z

mid

v
mid

= v_zl + [(v_z)
i
*(0.5*dx)] / 1_z

mid

Although the explanation of the midpoint computation sounds a little like crop circles,
the computation is trivial. We just need the blasted midpoint’s real (u,v)! Now that we
have it, let’s get back to the quadratic approximation. Once again, we need to compute
the coefficients for both the u curve and v curve, but they are the same, so we can derive
the curve for u, copy it, and then replace u with v to find the coefficients of the v curve.
Also, without loss of generality we can assume that the line we are rasterizing goes from 0
to 1, rather than xl to xr for the computation of the coefficients:

Given that at the left side of scanline curve the real u texture coordinate is ul, at the right
side the real u texture coordinate is ur, and the midpoint is u

mid
, we want to find the coef-

ficients a0, b0, and c0 for the quadratic

f(x) = a0*x2 + b0*x + c0

such that when

x=0,  f(0)  = ul

x=1,   f(1)  = ur

x=0.5, f(0.5) = u
mid

That is, the curve interpolates ul, u
mid

, and ur. Begin by plugging in the values x = 0, x = 1
and setting them equal to ul and ur, respectively:

At x=0,  f(0) = a0*02 + b0*0 + c0 = ul

= c0 = ul

At x=1,   f(1) = a0*12 + b0*1 + c0 = ur

= a0 + b0 + c0 = ur
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Substituting in ul for c0:

a0 + b0 + ul = ur

a0 + b0 = (ur – ul)

We’re almost there. Let’s use our last data point at x = 0.5, remembering the fact that 
c0 = ul:

At x=0.5,  f(0.5)   = a0*0.52 + b0*0.5 + c0 = u
mid

= a0*0.25 + b0*0.5 + ul = u
mid

= a0*0.25 + b0*0.5 = (u
mid

– ul)

We are ready for the last step. Let’s take the last two equations and solve for a0 and b0
(rearranging slightly, and writing coefficients first):

Line 1: (1)  * a0 + (1) * b0 = (ur – ul)

Line 2: (0.25)* a0 + (0.5)* b0 = (u
mid

– ul)

Multiplying line 2 by 4, we get

Line 1: (1)* a0 + (1)* b0 = (ur – ul)

Line 2: (1)* a0 + (2)* b0 = 4*(u
mid

– ul)

And subtracting line 1 from line 2, we get

Line 1: (1)* a0 + (1)* b0 = (ur – ul)

Line 2:      (1)* b0 = 4*(u
mid

– ul) - (ur – ul)

= (4*u
mid 

- 3*ul - ur)

Therefore, b0 = (4*u
mid

- 3*ul - ur). Now, substituting b0 into line 1, we get

a0 + (4*u
mid 

- 3*ul - ur) = (ur – ul)

a0   = (ur – ul) - (4*u
mid 

- 3*ul - ur)

= ur – ul - 4*u
mid 

+ 3*ul + ur

= -4*u
mid 

+ 2*ul + 2*ur

Collecting our results, we have

a0 = (-4*u
mid 

+ 2*ul + 2*ur)

b0 = (4*u
mid 

- 3*ul - ur)

c0 = ul

Therefore, u(x) equals

u(x) = a0*x2 + b0*x + c0

= (-4*u
mid 

+ 2*ul + 2*ur)*x2 + (4*u
mid 

- 3*ul - ur)*x + ul
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Pretty cool, huh? Let’s test it out and make sure it’s correct. At x = 0, u(0) should be ul:

u(x) = (-4*u
mid 

+ 2*ul + 2*ur)*02 + (4*u
mid 

- 3*ul - ur)*0 + ul

= ul

And at x = 1, u(1) should be ur:

u(x) = (-4*u
mid 

+ 2*ul + 2*ur)*12 + (4*u
mid 

- 3*ul - ur)*1 + ul

= -4*u
mid 

+ 2*ul + 2*ur + 4*u
mid 

- 3*ul – ur + ul

= ur

And finally, at x = 0.5, u(.5) should be umid:

u(x) = (-4*u
mid 

+ 2*ul + 2*ur)*x2 + (4*u
mid 

- 3*ul - ur)*x + ul

= (-4*u
mid 

+ 2*ul + 2*ur)*.52 + (4*u
mid 

- 3*ul - ur)*.5 + ul

= -u
mid 

+ .5*ul + .5*ur + 2*u
mid 

– 1.5*ul - .5*ur + ul

= u
mid

Of course, to interpolate the curve for the v texture coordinate (let’s use the coefficients
a1, b1, and c1), we simply replace the variables:

a1 = (-4*v
mid 

+ 2*vl + 2*vr)

b1 = (4*v
mid 

- 3*vl - vr)

c1 = vl

Now we have everything we need to interpolate the perspective approximation from the
left side to the right side for both u and v, and what’s more, there are no divisions per
pixel! But wait a minute—we have traded two divisions for five multiplications and four
additions, because we now need to compute these each pixel along the scanline:

u(x) = a0*x2 + b0*x + c0

v(x) = a1*x2 + b1*x + c1

NOTE

x2 can be computed once and then substituted into v(x).

Using Forward Differences to Evaluate the Quadratic Polynomial
Using brute force to evaluate the polynomial is still faster than the two divisions per pixel
in practice, but we can do better with a number of techniques, such as forward differenc-
ing, because along the curve nothing changes other than x. Therefore, we simply compute
u(0) and v(0). To compute the forward difference, we want to find u(x+1). Given that we
have u(x), we make the assumption that

u(x+1) = u(x) + du
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That is, du is the forward difference, therefore

du = u(x+1) – u(x)

Now we must compute du by evaluating u(x+1) – u(x), which is in general for a quadratic:

du   = [a*(x+1)2 + b*(x+1) + c] – [a*x2 + b*x + c]

= [a*x2 + 2*a*x + a+ b*x + b + c ] – [a*x2 + b*x + c]

= a*x2 + 2*a*x + a+ b*x + b + c – a*x2 - b*x – c

= 2*a*x + a + b

Therefore,

u(x+1) = u(x) + (2*a*x+a+b)

We can still do better if we want. At this point, we need two multiplications (we might be
able to get away with one multiplication because there’s a factor of 2 in there) and two
additions per pixel, for a total of four multiplications and four additions per pixel. This is
compared to the brute-force evaluation of the quadratic, which will take five multiplica-
tions and four additions. A little better, but not much. However, we are getting there! Let’s
do one more iteration of forward differencing with the linear equation of du:

du(x) = 2*a*x + a + b

So we want to find the forward difference ddu, such that du(x+1) is equal to

du(x+1) = du(x) + ddu

Therefore, ddu is equal to

ddu = du(x+1) – du(x)

Plugging into 2*a*x + a + b, we get

ddu   = [2*a*(x+1) + a + b  ] – [2*a*x + a + b  ]

= 2*a*x + 2*a + a + b – 2*a*x - a - b

= 2*a

Thus we have cheated death! It’s a constant, so we can compute each new u(x) as follows:

u(x+1) = u(x) + du

du = du(x) + ddu

So we simply need to find u(0) and du(0), and the forward differences can begin from
there, with a total of two additions per pixel times two interpolants, for a total of four
additions per pixel, per textel for the interpolation! As Quake would say, “I M P R E S S I V E.”
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Optimizing Texturing with Hybrid Approaches
Now that we have affine piecewise linear perspective and perfect-perspective texture
mapping, there’s obviously a number of optimizations that can be made by calling differ-
ent texture mappers, depending on what’s being texture mapped, and on how close and or
how much distortion you are willing to accept during rendering. For example, one
approach might be the following: For really close polygons, only the perfect-perspective
correct rasterizer is called; for polygons that are in the midrange, the linear piecewise
texture mapper is called; and for polygons that are far away, the affine texture mapper is
called. This setup is shown in Figure 12.31.

CHAPTER 12 Advanced Texturing Techniques1248

�y

�z

�x

Transition points
for texture mapping
selection.

Use affine  z � z2

Use linear piecewise  z1 �  z �  z2

Use perspective correct  d �  z �  z1

Viewing plane 

z � z2

z � z1

z � d

Viewing frustrum

FIGURE 12.31 Hybrid texturing based on distance.

Thus, we get excellent performance, excellent visualization, and the best of all worlds.
Setting this optimization up is actually trivial. During the call to the rendering list func-
tion (or outside it), the current z position of the polygon being rendered is determined (or
the average). This value is then compared against the different quality ranges—perfect,
linear, and affine—and the appropriate texture mapper is called! We might have some
pseudo-code that looks like this:

float perfect_range  = 1000; // use perfect mapping 0-1000 units

float piecewise_range = 2000; // use piecewise linear mapping 1000 – 2000 units

float affine_range  = 2000; // use affine mapping 2000 on
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// rasterizer selection

if (curr_poly->z < perfect_range)

Perfect_Perspective_Texture_Mapper(curr_poly);

else

if (curr_poly->z > perfect_range && curr_poly->z < linear_range)

Linear_Piecewise_Perspective_Texture_Mapper(curr_poly);

else

if (curr_poly->z > affine_range)

Affine_Perspective_Texture_Mapper(curr_poly);

Obviously, we have different function names, and accessing the vertex information is
different in the real engine, but the preceding algorithm is what’s important. This is a
really good optimization, and I have implemented it in the final high-level wrapper func-
tion. However, I decided to add support for the more simplistic use of just the linear piece-
wise and affine texture mappers, because they are so much faster. This selection is
programmable, so when the call is made to the high-level function, you can select which
optimization (or none) to take.

As a demo, I have manually implemented the preceding algorithm because we haven’t seen
the wrapper function yet, and we need to discuss more concepts before I show it to you.
This demo implementation is brute force based on the preceding algorithm. The filename
of the program is DEMOII12_8.CPP|EXE. Figure 12.32 is a screenshot of the demo in action.
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FIGURE 12.32 Hybrid texture mapping in action.
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You can change the distance where the perfect, linear piecewise, and affine texture
mappers switch in and out with the following controls:

<1> - Decrease first distance cutoff. 

<2> - Increase first distance cutoff.

<3> - Decrease second distance cutoff. 

<4> - Increase second distance cutoff.

To compile the program, you will need DEMOII12_8.CPP|H, along with T3DLIB1–10.CPP|H
and the DirectX .LIB files.

Bilinear Texture Filtering
Bilinear texture filtering, or bilerp for short, is the process of sampling more than one pixel
during texture mapping from the source texture and averaging or using some other filter
to arrive at the final pixel value for the destination pixel. Currently when we texture map,
we use point sampling—that is, we compute the u,v texture coordinates, throw away the
decimal fractions (or round them), and then use them to access the textel in the source
texture. This is shown in Figure 12.33.
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FIGURE 12.33 Point sampling mechanics.

The problem is that information we could use to make a better picture is being thrown
away. This is where bilinear interpolation, or filtering, comes in. Instead of throwing away
the fractional components of the u,v texture coordinates, we use them to access the
textels around our source point in the texture map, and then average or filter them
together in a linear fashion.
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FIGURE 12.34 Bilinear filtering visually.

As an example, let’s assume that we have a 64×64 texture map, as shown in Figure 12.34.
We want to sample the four surrounding textels and average them together linearly (or we
might use linear interpolation plus a weighting function). Figure 12.34 shows the process
visually. We want to compute the final pixel pfinal from p1, p2, p3, and p4, which are the
pixels surrounding p0 itself. The way to think about the problem is thus: p0 is a sampling
box, and we slide it over the 2×2 pixel matrix made up of p1–p4. Then we look at the area
of coverage that pfinal makes on p1–p4 and sum them up (in RGB space, of course). Figure
12.34 shows a few examples of this. Let’s run through them, shall we?

Without loss of generality, we can assume that the pixel matrix p0–p3 is the upper left-
hand corner of the texture. Now let’s say that (u,v) were both exactly (0,0)—then we
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would have the sampling you see in Figure 12.34a. In this case, the sampling box is
perfectly coincident with textel (0,0), so you would expect 100% of p0, and 0% of p1–p3.
Therefore, our result pfinal would be equal to p0. Mathematically, we would have

p
final

= (1.0)*p0 + (0.0)*p1 + (0.0)*p2 + (0.0)*p3

As another example, take a look at Figure 12.34b. Here we see the sampling box slightly
shifted on the u axis. In this case, we have (u,v) equal to (0.5, 0). Therefore, the sampling
box has a 50% coverage of p0 and a 50% coverage of p1. Thus the final pixel value would
be 50% of p0, and 50% of p1, or mathematically:

p
final

= (0.5)*p0 + (0.5)*p1 + (0.0)*p2 + (0.0)*p3

Now let’s take a look at Figure 12.34c, which is the full 2D bilinear interpolation case. In
this case, we have texture coordinates (u,v) of (0.5, 0.5). Therefore, the sampling box is
covering exactly 25% of each textel. Mathematically we have

p
final

= (0.5)*(0.5)*p0 +

(0.5)*(0.5)*p1 +

(0.5)*(0.5)*p2 +

(0.5)*(0.5)*p3

= (0.25)*p0 + (0.25)*p1 + (0.25)*p2 + (0.25)*p3

In this case, we not only had to multiply each pixel sample by the u value, but also by the
v value, and therefore the “bilinear” interpolation. Let’s try one more—take a look at
Figure 12.34d. Here we have u = 0.25, v = 0.25. Reviewing the figure (and counting
squares to create fractional areas), we see that pfinal is

= (9/16)*p0 + (3/16)*p1 + (1/16)*p2 + (3/16)*p3

Mathematically, we have

p
final

= (1-0.25)*(1-0.25)*p0 +

(0.25) *(1-0.25)*p1 +

(0.25) *(0.25)*p2  +

(1-0.25)*(0.25)*p3

= (0.5625)*p0 + (0.1875)*p1 + (0.0625)*p2 + (0.1875)*p3

This is identical to the fractional computation we did visually. Thus we can see we simply
need to apply the standard one-dimensional interpolation value of

(x)*value_1 + (1-x)*value_2

to two dimensions.
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What we need is a general formula that enables us to plug in any u or v value and bilin-
early interpolates the fractional components of u and v, samples the texture map, and
gives us the final pixel value we desire. Here’s the pseudo-code that will accomplish this
for a single monochrome value rather than full RGB:

// single channel bilinear texture interpolation

// our monochrome texture

float texture[TEXT_SIZE[TEXT_SIZE];

float u,v; // texture coordinates 0..TEXT_SIZE-1

// compute integral values of u,v

int ui = (int)u;

int vi = (int)v;

// compute fractional components of u,v

float du = u – ui;

float dv = v – vi;

// now we are ready to sample the texture

float pfinal = (1-du)*(1-dv)* texture[u] [v]  +

(du) *(1-dv)* texture[u+1][v]  +

(du) *(dv) * texture[u+1][v+1] +

(1-du)*(dv) * texture[u] [v+1];

As you can see, the problem with bilinear interpolation is that there are a lot of computa-
tions going on. For a single monochrome channel, we have to first compute the integer
values of u and v and the fractions. Then we have to compute one minus the fractional
part, so that’s like four addition operations, more or less. Then we need to perform eight
multiplications, and potentially two more additions to get the u+1, v+1 terms.

That’s a total of six additions and eight multiplications per pixel, per channel—now we
need three channels, so that’s 3*(6 additions) = 18 additions per pixel, and 3*(8 multiplica-
tions) = 24 multiplications per pixel. This is a bit much for software. Of course, with tricks
and optimizations it can be sped up, but even with lookup tables and such, there is a lot
of interpolation and data extraction going on here.

So, the question is, is it worth implementing bilinearly texture mapping/filtering? Well,
it’s going to be reasonably slow, can only be used in a small amount, and not for every-
thing, so if you want a small number of things to look good, it’s worth it. However, you
can get some of the same effects by slightly blurring your textures with a blur, Gaussian
filter, or whatever to remove high frequencies. Of course, this diminishes the texture defi-
nition, so it’s a give and take solution.
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What I’m going to do is implement bilinear texture mapping on the most basic rasterizers
only: constant-shaded with affine texturing for the non-z-buffered, z-buffered, and 1/z-
buffered rasterizers (for a total of three new rasterizers). It’s pointless to redo all the differ-
ent versions to support bilerp, because it’s just not worth the work at this point because of
its speed. Also, to keep things real, I will show at least one of the modifications to one of
the texture mappers (because all of them are huge), so you can rip the code to make other
versions if you need them.

I think the Z-buffer, constant-shaded, affine texture mapper will be our target for modifi-
cation. Therefore, I am going to take the function Draw_Textured_TriangleZB2_16() and
make a bilinear interpolation version of it. This function has the simplest inner loop of all
the texture mappers; therefore, if you do want to move ahead and create alternative
versions, you can do so. Anyway, the prototype of the new version that supports bilinear
interpolation is shown in the following:

void Draw_Textured_Bilerp_TriangleZB_16(POLYF4DV2_PTR face, // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch,    // bytes per line, 320, 640 etc.

UCHAR *_zbuffer,    // pointer to z-buffer

int zpitch)     // bytes per line of zbuffer

The calling convention is the same, but it just has bilinear texture interpolation inside. I
have more or less implemented the pseudo-code algorithm we derived in the preceding
with heavy optimizations and fixed-point format. The following is a listing of the inner
loop of the texture mapper, so you can see what’s going on:

// draw span

for (xi=xstart; xi < xend; xi++)

{

// test if z of current pixel is nearer than current z buffer value

if (zi < z_ptr[xi])

{

// compute integral values of u,v

int uint = ui >> FIXP16_SHIFT;

int vint = vi >> FIXP16_SHIFT;

int uint_pls_1 = uint+1;

if (uint_pls_1 > texture_size) uint_pls_1 = texture_size;

int vint_pls_1 = vint+1;

if (vint_pls_1 > texture_size) vint_pls_1 = texture_size;

int textel00 = textmap[(uint+0)   + ((vint+0) << texture_shift2)];

int textel10 = textmap[(uint_pls_1) + ((vint+0) << texture_shift2)];

int textel01 = textmap[(uint+0)   + ((vint_pls_1) << texture_shift2)];

int textel11 = textmap[(uint_pls_1) + ((vint_pls_1) << texture_shift2)];
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// extract rgb components

int r_textel00 = ((textel00 >> 11)    );

int g_textel00 = ((textel00 >> 5) & 0x3f);

int b_textel00 = (textel00    & 0x1f);

int r_textel10 = ((textel10 >> 11)    );

int g_textel10 = ((textel10 >> 5) & 0x3f);

int b_textel10 = (textel10    & 0x1f);

int r_textel01 = ((textel01 >> 11)    );

int g_textel01 = ((textel01 >> 5) & 0x3f);

int b_textel01 = (textel01    & 0x1f);

int r_textel11 = ((textel11 >> 11)    );

int g_textel11 = ((textel11 >> 5) & 0x3f);

int b_textel11 = (textel11    & 0x1f);

// compute fractional components of u,v in fixed 24.8 point format

int dtu = (ui & (0xffff)) >> 8;

int dtv = (vi & (0xffff)) >> 8;

int one_minus_dtu = (1 << 8) - dtu;

int one_minus_dtv = (1 << 8) - dtv;

// each interpolant has 3 terms, (du), (dv), textel, however

// the (du) and (dv) terms repeat during each computation of

// r_textel, g_textel, and b_textel, so we can compute them once

int one_minus_dtu_x_one_minus_dtv = (one_minus_dtu) * (one_minus_dtv);

int dtu_x_one_minus_dtv      = (dtu)      * (one_minus_dtv);

int dtu_x_dtv           = (dtu)      * (dtv);

int one_minus_dtu_x_dtv      = (one_minus_dtu) * (dtv);

// now we are ready to sample the texture

int r_textel = one_minus_dtu_x_one_minus_dtv * r_textel00 +

dtu_x_one_minus_dtv      * r_textel10 +

dtu_x_dtv           * r_textel11 +

one_minus_dtu_x_dtv      * r_textel01;

int g_textel = one_minus_dtu_x_one_minus_dtv * g_textel00 +

dtu_x_one_minus_dtv      * g_textel10 +

dtu_x_dtv           * g_textel11 +

one_minus_dtu_x_dtv      * g_textel01;

int b_textel = one_minus_dtu_x_one_minus_dtv * b_textel00 +

dtu_x_one_minus_dtv      * b_textel10 +
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dtu_x_dtv           * b_textel11 +

one_minus_dtu_x_dtv      * b_textel01;

// write textel

screen_ptr[xi] = ((r_textel >> 16) << 11) + 

((g_textel >> 16) << 5) + 

(b_textel >> 16);

// update z-buffer

z_ptr[xi] = zi;

} // end if

More or less, the code computes the fractional values and then carries out the computa-
tion in RGB space. The results are written to the screen, and we’re done. The problem with
this algorithm is not its inherent complexity, but simply that there’s a lot to do, and opti-
mization is difficult as a result. In essence, we are performing an image processing algo-
rithm, which is never something that goes down well in real time. If you review the code,
you will see a number of optimizations, such as precomputation of common factors, and
the use of the 8.24 fixed-point format. This new format was necessary because during the
multiplication of each bilinear term, there are three products; two of them being fixed-
point 16.16 would overflow the format, so I had to back it off a little and go with 8.24 to
keep things in range. However, the results are very impressive, and the bilinear demo
looks darn good!

Additionally, here are the prototypes to the other two modified functions, with added
bilinear interpolation support: the inverse Z-buffer, and no sorting version (both still
affine/constant-shaded):

void Draw_Textured_Bilerp_TriangleINVZB_16(POLYF4DV2_PTR face, // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch,    // bytes per line, 320, 640 etc.

UCHAR *zbuffer,    // pointer to z-buffer

int zpitch);     // bytes per line of zbuffer

void Draw_Textured_Bilerp_Triangle_16(POLYF4DV2_PTR face, // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch);    // bytes per line, 320, 640 etc.

As an example of the bilinear interpolation, check out DEMOII12_9.CPP|EXE. Figure 12.35
is a screenshot of it running. It basically enables you to toggle point-sampling/bilinear-
filtered texture mapping for the objects via the B key. You can also use the N key to select
different objects. See if you can tell the difference. To compile the program, you need
DEMOII12_9.CPP|H, along with T3DLIB1–10.CPP|H and the DirectX .LIB files.
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FIGURE 12.35 Bilinear interpolation makes the jaggies go away.

Mip Mapping and Trilinear Texture Filtering
Mip mapping is based on the phrase multum in parvo, which means “many things in a small
place.” The problem that mip mapping solves is that of aliasing. The problem is that when
you are texture-mapping a texture onto a polygon and sampling the texture (point
sampling, bilinear filtering, and so on) you end up with a number of odd effects that are
all related to the sampling theory of spatial information. One of the problems you might
have seen when texture mapping is sparkling. Sparkling occurs when high frequency
elements of the texture map (that is, large changes in intensity as a function of position in
the map) come in and out of view, and the texture map is being minified (scaled down).
Basically, you are seeing the high frequency information come in and out of phase with
the sampling frequency.

The second major problem with texture mapping is low frequency aliasing, resulting in
moiré patterns. This occurs when low frequency images start forming based on the high
frequency original image. Figure 12.36 shows a point-sampled checkerboard image. Notice
the sinusoidal pattern that forms in it? Now, take a look at Figure 12.37—it depicts the
same scene with mip mapping and texture filtering. The effect is much reduced, and the
image is much cleaner
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NOTE

When two identical repetitive patterns of lines, circles, or arrays of dots are overlapped with
imperfect alignment, the pattern of light and dark lines called a moiré pattern appears. The moiré
pattern is not a pattern of the images themselves, but rather a pattern in the image formed in
your eye. Basically, the patterns show up where there are high areas of contrast, or high
frequency components. Moiré patterns also show up when two images are overlaid because of
the interference of the light and dark areas.
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FIGURE 12.36 Point-sampled images look bad. 

To implement mip mapping, we are going to create what is called a mip chain of textures,
each texture half as large as the previous one on each axis, all the way down to 1×1.
Additionally, we are going to generate each of these mip textures using a filter (averaging,
box, Gaussian, and so on), and then based on some metric, we will select the appropriate
mip texture to use, as we are rendering the polygons based on the distance from the view
point or the area of the projected polygon (more on this later). This will minimize the
amount of sparkling and low frequency aliasing/moiré patterns that will form. So that’s
the plan from a high level—let’s get down to the details.

Introduction to Fourier Analysis and Aliasing
I had first planned to go into a large explanation of Fourier analysis, but after taking many
semesters in college in both mathematics and electrical engineering on the subject, there
is simply no way I am going to be able to do it any justice in fewer than 100 pages.
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Instead, I’m just going to give you some information about why it’s important, what it
does, what it tells us, and why we care, and then we’ll move on.
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FIGURE 12.37 Mip-mapped images with filtering look good. 

NOTE

If you’re really interested in more information on Fourier analysis, I highly recommended these
texts: Information, Transmission, Modulation and Noise by Mischa Schwartz (McGraw Hill), and
Continuous and Discrete Signal and System Analysis by McGillem and Cooper (Oxford University
Press). For more of a computer graphics-based explanation, try Computer Graphics: Principles and
Practice by Foley et al (Addison-Wesley) and Digital Image Warping by George Wolberg (Wiley-
IEEE Press).

Fourier analysis is all about the deconstruction of signals in the time domain (or spatial
domain, when talking about graphics) into their constituent sinusoidal components. That
is, any periodic signal for the most part (the Dirchlet conditions must hold though) can
be broken into a sum of sine waves of varying frequency, amplitude, and phase—simple as
that. Put another way, any signal has a basis that is a sum of sine waves. So, we can write
any signal in the form of a Fourier series, which is more or less a sum of sine terms—that
is, the Fourier series is a basis that can represent any signal. I am going in circles, I know
<BG>.

The Fourier transform enables us to extract this frequency information from the signal
and compute the constituent parts of it. For example, let’s say we have a pure sine wave
with frequency f and period T = 1/f, as shown in Figure 12.38a.
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FIGURE 12.38 Your garden variety sine wave and its Fourier transform.

This signal is in the time domain—that is, we have a function of time t that looks like this
(t is time and T is the period):

f(t) = a*sin(2*?*f*T)

NOTE

t is time, and T is period.

Here a is the amplitude, t is time, and f is the frequency. Now, if we were to take the
Fourier transform of this simple sine function, the result would be a single value (plus its
imaginary conjugate) located at the frequency f of the original sine wave, with an ampli-
tude of a on the frequency axis. Therefore, we graph Fourier transforms not on the time
axis, but on the frequency axis. Figure 12.38b shows the single sine Fourier transform as
plotted on the frequency axis. If we take the single sine

f(t) = 10*sin(100*t) + 20*sin(200*t)

and take the Fourier transform of it, we get exactly two frequency pulses at (100, 200) and
(-100, -200) in the frequency domain. Sine waves have the same effect. Any signal can be
broken into sine waves, and can be reconstructed back into the original. So, the magical
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operation that performs this transformation and converts a signal from the time domain
to the frequency domain is

+∞
?

F{ f(t) } = ? f(t)*e-j*2*?*f dt

-∞

You simply take your function f(t) and perform the integration to compute the Fourier
transform, where j is the imaginary number that’s equal to the square root of -1. j is also
called i in many texts. In any case, you hardly need to know how to do this to perform
mip mapping. The whole point of the Fourier transform is to have a mathematical way to
extract the frequency components of a signal, so this is the tool we would use. However,
someone has already done all this work for us (thank God!); now let’s talk about the
results.

TIP

The graphs for Figure 12.39 were generated with MathGV, a freeware graphing program that’s as
good as professional packages. Check it out on the CD in the Applications\ directory, or at
http://www.mathgv.com.

I want you to take a look at Figure 12.39. In Figure 12.39a, we see a signal that we might
want to sample (this could be audio, imagery, or whatever). The signal has a frequency f

0

and a period T
0

= 1/f
0
. In Figure 12.39b we sample the signal again, along with the

sampled version following at some interval T
1

at a frequency f
1

> 2*f
0
. As you can see from

Figure 12.39b, there is no confusion about the reconstructed signal. Now let’s slow down
the sample rate to exactly 2*f

0
, as shown in Figure 12.39c. Here we see that, by dumb luck,

we are sampling right on the zero crossings! Thus our reconstructed wave is a flat line!

Finally, take a look at Figure 12.39d. Here we are sampling the original signal at a
frequency f1 < 2*f0, and because we are doing so, the reconstructed wave actually isn’t still
a signal, but a low frequency alias of the original. This is exactly what happens when we
are point-sampling information while at the same time minifying it—we are creating low
frequency aliases in our final image.

The problem is that there is no way around this for the most part—no matter how much
higher a frequency we sample our image at, this alias will always occur. We can only mini-
mize it. To minimize it, the trick is to remove the high frequency components that are
causing the aliasing to occur when we are getting heavy texture minification. This is the
entire basis of mip mapping: to create a chain of textures based on the original texture
with less and less high frequency information, each texture one-fourth the size of the orig-
inal.
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FIGURE 12.39 What happens when a signal is sampled. 
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Creating the Mip Map Chain
What we want to do is take our base texture, let’s call it T0 (which has nothing to do with
the period of a signal), and then create a chain of textures derived from T0 (by averaging
usually), where each consecutive texture T1, T2, Tn is one-fourth the original size of T0.
That is, for the Tn texture to create the next smallest texture Tn+1, we divide the width
and height of Tn by 2. This is shown in Figure 12.40.
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FIGURE 12.40 Down-sampling a base texture to create a mip map chain.

To compute the pixel value in each new texture from the previous mip level, we can use
an averaging filter. That is, we take the pixels (x,y), (x+1,y), (x+1, y+1), and (x,y+1), and
average them together in RGB space. This is the final pixel we write to the new texture.
This operation is shown in Figure 12.41.

Now, there are some rules to create mip map chains. First, all textures must be square and
powers of two. This is so that they mip down at the same rate. When we reach the end of
the mip chain, the final texture is always 1×1. The convention is to call the original
texture mip level 0, and each progressively smaller texture 1,2,3,4…n. So as an example,
say we have a texture that’s 256×256—the mip chain would be the sizes shown in Table 12.4.

TABLE 12.4 Mip Map Texture Size for Base Texture of 256×256

Mip Level Texture Size

T0 256×256

T1 128×128

T2 64×64

T3 32×32

T4 16×16

T5 8×8
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T6 4×4

T7 2×2

T8 1×1
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TABLE 12.4 Continued
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FIGURE 12.41 The averaging filter used to create mip maps.

Therefore, we see that the total number of mip levels excluding the original texture, is
computed in Equation 12.4.

EQUATION 12.4 Total Number of Mip Levels Excluding Base Texture

log
2
T0

In this case, that would be log
2 
256 = 8. Moreover, if we wanted the total number of

textures, we would just add 1 to account for the base texture we are mipping from.
Therefore, the total number of textures is always (log

2 
T0 + 1), or 9 in this case.
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FIGURE 12.42 Actual mip maps.

Cool, but what about memory usage? Well, take a look at Figure 12.42, which is a screen-
shot of actual mip maps. Notice how each one fits into one-fourth the size of the previous
one? We are reducing the size of the texture by a factor of 1/4 each time, so the memory is
very small. In fact, let’s see what happens if we perform a simple calculation on the
preceding example:

If the initial texture size is 256×256, or 2562 words, let’s compute the mip map chain
memory requirements such that its memory footprint is always one-fourth as much:

x = 1282 + 642 + 322 + 162 + 82 + 42 + 22 + 12

And we want to compare the ratio of x with the original memory, so we divide x by 2562:

x   1282 + 642 + 322 + 162 + 82 + 42 + 22 + 12

--- = ------------------------------------------

2562 2562

= 1.333..

Or in other words, adding the mip mapping textures adds another 33% to our memory
storage per texture. A small price to pay for what it brings to the table.

Now that we know how to create mip maps, and how much memory they take, we just
need to figure out a way to add them to the engine! Well, I thought hard about this and
was considering changing the object/polygons structures again, but then it dawned on me:
We can just point the texture pointer to a mip map chain rather than a single texture.
Then we set a flag in each polygon that is mip mapped, and when we go to render a
polygon, instead of just using the texture pointer as a pointer to a bitmap, we use it as if it
were a pointer to an array of pointers to bitmaps! This way, we use all the same structures
and nothing is lost. Take a look at Figure 12.43 to see what I’m talking about.
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FIGURE 12.43 The new array of texture pointers to support the mip map chain.

When a texture is requested to be mip mapped, the original texture pointer is used at the
level 0 mip map. Then from there, the mip map chain is created in two steps. First, we
need to allocate an array of pointers to bitmaps, and then point the original texture
pointer to that array. Then we need to allocate the memory for each mip texture, generate
it, and point each entry in the mip chain array to each respective mip level texture
bitmap. Seems confusing, but it’s not.

The only problem with this whole scheme is that we are forcing/coercing the bitmap
image pointer in the object/polygons to point to something that is not a bitmap, but an
array of pointers to bitmaps. Therefore, we have to be very careful to ensure that any func-
tion that doesn’t know a texture has been mip mapped gets tricked into thinking the level
0 texture is the normal texture; of course, any function that does know that a texture is
mip mapped must select the correct mip map from the chain.

There are some runtime details to all this, but I will get to that shortly. Right now I want
to show you the mip map function in its entirety:

int Generate_Mipmaps(BITMAP_IMAGE_PTR source,  // source bitmap for mipmap

BITMAP_IMAGE_PTR *mipmaps, // pointer to array to store mipmap chain

float gamma)        // gamma correction factor

{

// this functions creates a mip map chain of bitmap textures
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// on entry source should point to the bottom level d = 0 texture

// and on exit mipmap will point to an array of pointers that holds

// all the mip levels including source as entry 0, additionally the

// function will return the total number of levels or -1 if there

// is a problem, the last param gamma is used to brighten each mip level up

// since averaging has the effect of darkening, a value of 1.01 is usually

// good, values greater that 1.0 brighten each mip map, values less than

// 1.0 darken each mip map, and 1.0 has no effect

BITMAP_IMAGE_PTR *tmipmaps; // local temporary pointer to array of pointers

// step 1: compute number of mip levels total

int num_mip_levels = logbase2ofx[source->width] + 1;

// allocate array of pointers to mip maps

tmipmaps = (BITMAP_IMAGE_PTR *)malloc(num_mip_levels * 

sizeof(BITMAP_IMAGE_PTR) );

// point element 0 (level 0) to entry source

tmipmaps[0] = source;

// set width and height (same actually)

int mip_width = source->width;

int mip_height = source->height;

// iterate thru and generate pyramid mipmap levels using averaging filter

for (int mip_level = 1; mip_level < num_mip_levels; mip_level++)

{

// scale size of mip map down one level

mip_width = mip_width / 2;

mip_height = mip_height / 2;

// allocate memory for bitmap object

tmipmaps[mip_level] = (BITMAP_IMAGE_PTR)malloc(sizeof(BITMAP_IMAGE) );

// create a bitmap to hold mip map

Create_Bitmap(tmipmaps[mip_level],0,0, mip_width, mip_height, 16);

// enable the bitmap for rendering

SET_BIT(tmipmaps[mip_level]->attr, BITMAP_ATTR_LOADED);

// now interate thru previous level’s mipmap and 

// average down to create this level

for (int x = 0; x < tmipmaps[mip_level]->width; x++)

{
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for (int y = 0; y < tmipmaps[mip_level]->height; y++)

{

// we need to average the 4 pixel located at:

// (x*2, y*2), (x*2+1, y*2), (x*2,y*2+1), (x*2+1,y*2+1)

// in previous mipmap level, and then write them

// to x,y in this mipmap level :) easy!

float r0, g0, b0,    // r,g,b components of 4 sample pixels

r1, g1, b1,

r2, g2, b2,

r3, g3, b3;

int r_avg, g_avg, b_avg; // used to compute averages

USHORT *src_buffer = (USHORT *)tmipmaps[mip_level-1]->buffer,

*dest_buffer = (USHORT *)tmipmaps[mip_level]->buffer;

// extract rgb components of each pixel

_RGB565FROM16BIT( src_buffer[(x*2+0)+(y*2+0)*mip_width*2],

&r0, &g0, &b0);

_RGB565FROM16BIT( src_buffer[(x*2+1)+(y*2+0)*mip_width*2],

&r1, &g1, &b1);

_RGB565FROM16BIT( src_buffer[(x*2+0)+(y*2+1)*mip_width*2],

&r2, &g2, &b2);

_RGB565FROM16BIT( src_buffer[(x*2+1)+(y*2+1)*mip_width*2],

&r3, &g3, &b3);

// compute average, take gamma into consideration

r_avg = (int)(0.5f + gamma*(r0+r1+r2+r3)/4);

g_avg = (int)(0.5f + gamma*(g0+g1+g2+g3)/4);

b_avg = (int)(0.5f + gamma*(b0+b1+b2+b3)/4);

// clamp values to max r, g, b values for 5.6.5 format

if (r_avg > 31) r_avg = 31;

if (g_avg > 63) g_avg = 63;

if (b_avg > 31) b_avg = 31;

// write data

dest_buffer[x + y*mip_width] = _RGB16BIT565(r_avg,g_avg,b_avg);

} // end for y

} // end for x

} // end for mip_level
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// now assign array of pointers to exit

*mipmaps = (BITMAP_IMAGE_PTR)tmipmaps;

// return success

return(num_mip_levels);

} // end Generate_Mipmaps

The function begins by taking three parameters, and they are a little tricky. The first is the
source bitmap pointer. This can be a pointer to any valid BITMAP_IMAGE object, but remem-
ber, it’s a pointer. The second parameter is a little more complicated:

BITMAP_IMAGE_PTR *mipmaps;

This is a pointer to a pointer to a BITMAP_IMAGE. Let me explain: Suppose we have an
object (or polygon, for that matter) that has a texture pointer. The texture pointer is point-
ing to a BITMAP_IMAGE; that is, the structure element itself in the object or polygon is a
BITMAP_IMAGE_PTR (a BITMAP_IMAGE *, in other words). Now, the problem is that when the
mip map function runs and generates all the mip maps, we want the pointer to point to
the mip map chain itself, but to do this, we need the address of the pointer itself so we
can modify it. Thus, a ** BITMAP_IMAGE is needed. That’s why we have a pointer to a
pointer on entry. This is what we are going to point to the mip map chain array of 
pointers.

I wrote the function to be flexible, so on entry you might send in the same object as both
the source and the mip map. For the source parameter, you will only send the pointer, but
for the mip map object, you will send the address of the pointer so the function can
modify it with the new information. Let’s say that you called the function like this:

Generate_Mipmaps(obj->texture, (BITMAP_IMAGE_PTR *)&obj->texture,1.01);

where obj is of the type OBJECT4DV2_PTR, which has an internal field texture that is a
pointer to a BITMAP_IMAGE or a BITMAP_IMAGE_PTR, using our types. This is great, but look
at that call carefully: We send in the pointer as the first parameter, but we send in the
address of it as the second parameter, so any change made will change the actual value
that obj->texture was pointing to and potentially lose the original data to which it was
pointing. But, wait! The trick is that we aren’t going to lose anything, but we are going to
use the original bitmap pointed to by obj->texture as the first mip texture in the mip
map chain, and then when we are all done. We will fix the pointer back up when we
delete the mip maps. Figure 12.44 shows the entire process.

Back to the function—it basically implements our mip mapping function line for line,
allocating the memory for the texture pointer array, computing the size of the next mip
level, allocating the memory, and then performing an averaging filter in RGB space to
create the next mip level. This process is iterated until a mip level of 1×1 is reached when
the function exits. Finally, the last parameter of the function (which actually has a default
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value of 1.01) controls the gamma. It turns out that when you iteratively average down an
image, it tends to lose its brightness; therefore, a gamma factor is usually used to brighten
up each mip level to keep the overall intensity constant. To show you this, I would like to
skip ahead and have you play with a demo program. The demo program
DEMOII12_10.CPP|EXE enables you select different texture maps, and the program creates
mip maps on the fly and displays them as shown in Figure 12.45. Additionally, you can
change the gamma level and see the effects. The controls are shown here:

• RIGHT—Select next texture

• LEFT—Select previous texture

• UP—Increase gamma level

• DOWN—Decrease gamma level
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FIGURE 12.44 Linking in and out the mip map chain from the object texture pointer.
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TIP

Each mip map is computed by averaging down the previous texture from (m×m) to (m/2×m/2).
This has the effect of slowly decreasing the overall intensity of the image. With this in mind, the
gamma factor is used as a multiplier during the averaging filter process, so the textels can be
slightly brightened to make up for this problem.
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FIGURE 12.45 A screenshot of the real-time mip map generator.

To compile the program, you will need the DEMOII12_10.CPP|H, along with the library files
T3DLIB1–10.CPP|H and the DirectX .LIB files.

Now back to the explanation: obj->texture, in the case of the preceding call to
Generate_Mipmaps(), would now point to a mip chain, rather than a single bitmap
texture. Therefore, if you just call a rasterizer, you’ll get a big boo-boo! So, we need to tag
polygons that are mipped, and we need to take this into consideration before calling the
rasterizer. To do this, I have created a couple of flags: one for polygons, and one for
objects.

// new attributes to support mip mapping

#define POLY4DV2_ATTR_MIPMAP     0x0400 // flags if polygon has a mipmap

#define OBJECT4DV2_ATTR_MIPMAP    0x0008 // flags if object has a mipmap

If an object that we want mip mapped is loaded, we must set this flag in its attributes.
We’ll also do it for each polygon that is mip mapped. However, who’s going to do this?
Yup, you guessed it—we need yet another object-loading function that supports mip
mapping. I have only added the functionality to the Caligari .COB reader because I find
myself using it the most. Here is the new prototype:
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int Load_OBJECT4DV2_COB2(OBJECT4DV2_PTR obj,  // pointer to object

char *filename,    // filename of Caligari COB file

VECTOR4D_PTR scale,  // initial scaling factors

VECTOR4D_PTR pos,   // initial position

VECTOR4D_PTR rot,   // initial rotations

int vertex_flags,   // flags to re-order vertices

// and perform transforms

int mipmap )     // mipmap enable flag

// 0 means no mipmap, 1 means

// generate mip map

The function is absolutely identical to the previous version, except for the addition of the
last parameter mipmap, which is a flag that indicates whether you want mip mapping. If
you set the parameter to 1 and there are any textures on the object, they will be mip
mapped; if the flag is 0, no mip mapping will be done. The loading function is gigantic, so
I can’t list it, but there are only two new code blocks inside. The first one sets the mip
attribute on the object:

// before performing texture application we 

// need to determine if the texture on this

// object is mipmapped, if so we need to create 

// a mip map chain, and set the proper

// attributes in both the object and the polygons themselves

if (mipmap==1)

{

// set the mipmap bit in the object

SET_BIT(obj->attr, OBJECT4DV2_ATTR_MIPMAP);

// now with the base texture as level d=0 call the mipmap chain generator

Generate_Mipmaps(obj->texture, (BITMAP_IMAGE_PTR *)&obj->texture);

} // end if

This code appears right before the final material analysis and cleanup is done. And then in
the final attribute setting of all the polygons, there is some mip map code to set the attrib-
utes inside the texture case:

if (materials[ poly_material[curr_poly] ].attr & MATV1_ATTR_SHADE_MODE_TEXTURE)

{

// set shading mode

SET_BIT(obj->plist[curr_poly].attr, POLY4DV2_ATTR_SHADE_MODE_TEXTURE);

// apply texture to this polygon

obj->plist[curr_poly].texture = obj->texture;

// if the object was mipmapped this above assignment 

// will just point the texture to
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// the mipmap chain array, however we still need to 

// set the polygon attribute, so

// we know the poly is mip mapped, since once its in 

// the rendering list we will have

// no idea

if (mipmap)

SET_BIT(obj->plist[curr_poly].attr,POLY4DV2_ATTR_MIPMAP);

// set texture coordinate attributes

SET_BIT(obj->vlist_local[ obj->plist[curr_poly].vert[0] ].attr, 

VERTEX4DTV1_ATTR_TEXTURE);

SET_BIT(obj->vlist_local[ obj->plist[curr_poly].vert[1] ].attr, 

VERTEX4DTV1_ATTR_TEXTURE);

SET_BIT(obj->vlist_local[ obj->plist[curr_poly].vert[2] ].attr, 

VERTEX4DTV1_ATTR_TEXTURE);

} // end if

And that’s the extent of the modifications to the new object loader to create and set the
mip map attributes. The trick is in the selection and logic to pass mip maps to the rasteriz-
ers, but I will get to that shortly. Right now, I want to show you the last function pertain-
ing to mip maps, the deletion function:

int Delete_Mipmaps(BITMAP_IMAGE_PTR *mipmaps, int leave_level_0)

{

// this function deletes all the mipmaps in the chain

// that each pointer in the array mipmaps points to and

// then releases the array memory itself, the function has the

// ability to leave the top level 0 bitmap in place if

// leave_level_0 flag is 1

BITMAP_IMAGE_PTR *tmipmaps = (BITMAP_IMAGE_PTR *)*mipmaps;

// are there any mipmaps

if (!tmipmaps)

return(0);

// step 1: compute number of mip levels total

int num_mip_levels = logbase2ofx[tmipmaps[0]->width] + 1;

// iterate thru delete each bitmap

for (int mip_level = 1; mip_level < num_mip_levels; mip_level++)

{

// release the memory for the bitmap buffer

Destroy_Bitmap(tmipmaps[mip_level]);
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// now release the bitmap object itself

free(tmipmaps[mip_level]);

} // end for mip_level

// now depending on the leave_level_0 flag delete everything or leave the

// original level 0 in place

if (leave_level_0 == 1)

{

// we need a temp pointer to the level 0 bitmap

BITMAP_IMAGE_PTR temp = tmipmaps[0];

// and the array storage too

//free(*tmipmaps);

// and assign mipmaps to the original level 0

*tmipmaps = temp;

} // end if

else

{

// delete everything!

Destroy_Bitmap(tmipmaps[0]);

// now release the bitmap object itself

free(tmipmaps[0]);

// and the array storage too

//free(*tmipmaps);

} // end else

// return success

return(1);

} // end Delete_Mipmaps

Delete_Mipmaps() takes two parameters: a pointer to the pointer of the bitmap image, and
a flag to leave or destroy the level 0 mip map. The reason why we need the address of the
pointer is similar to the case when we generated the mip map chain itself. We need to
modify the pointer on exit; in other words, we need to undo all the damage we have
wrought, pointing it to the mip array, rather than a normal BITMAP_IMAGE as it was
intended to do. For example, suppose you have an object obj that has a single texture
that’s mapped on the object. You then request that it be mip mapped via a call to the new
load object function, with a mip map enable of 1. Now the function takes the texture and
creates a mip map chain, but when we are done, we need to put things back to the way
they were. The object deletion works because it knows nothing of mip maps, so we need
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to delete the mip map chain texture elements 1-n, but we need to point the texture
pointer back to texture element 0.

This is why we need the address of the pointer, rather than just the pointer. In any case,
Delete_Mipmaps() supports all of this via the leave_level_0 variable. If leave_level_0 is
1, the level 0 texture will be fixed back up and survive. However, if leave_level_0 is equal
to 0, everything will be deleted. The mip array, all the textures including level 0, and the
pointers will all be set to NULL on exit. If we want be perfect, we need to call
Delete_Mipmaps() on the object’s texture pointer before exiting our program or block
when we load an object with mip mapping.

Mip Map Selection and Setup
There are two ways to select the mip map when rendering: per-pixel and per-polygon. Per-
pixel uses a metric or algorithm to determine which mip map to select on a pixel-by-pixel
basis. There are a few methods to do this, but all of them are much too complex to do in
real time with a software engine. We’re going to stick with per-polygon mip map selection.

The trick to finding a suitable algorithm to select the proper mip level is to remember why
we created mip levels in the first place: to minimize the amount of high frequency aliasing
(showing up as low frequency aliases or moiré patterns) by averaging the texture map
down by one-fourth each time, and then using a smaller texture map with less high
frequency components in it as the projection polygon being rendered gets smaller.

There is no point in using a 256×256 size texture to texture a polygon that is 10×10
pixels—you are going to see all kinds of artifacts, sparkling, and so forth; but if you were
to use an 8×8 texture, that would be just right. Therefore, we now see the basis of an algo-
rithm: We simply take the projected area of the polygon in screen coordinates and compare
it to the level 0 mip map area. This will tell us the ratio of textels to pixels, which we want
to be as close to 1:1 as possible. In other words, we don’t want to use a 256×256 texture
for a 10×10 polygon; we would like to use maybe an 8×8. Likewise, we wouldn’t want to
use an 8×8 size texture for a 30×30 size polygon; a 32×32 size texture might be more
appropriate.

Selection of Mip Level Based on Textel-to-Pixel Ratio
Now that we have a general heuristic, let’s see whether we can make a robust formula
based on the fact that we know each mip level has one-fourth the information as the
previous one. Every time the textel-to-pixel ratio is greater than a factor of 4, we know we
need to move another mip level up or down the chain. Mathematically, we have the ratio
of textels to pixels as shown in Equation 12.5.

EQUATION 12.5 Computation of Mip Ratio

area of level 0 mip map texture in textels

mip_ratio = --------------------------------------------

projected area of polygon in pixels
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As an example, let’s say our level 0 mip texture is 256×256 (our base texture), and we are
texturing it onto a polygon that has area 24×90. We would have a mip_ratio of

mip_ratio = 256*256 / 24*90 = 65536 / 2160 = 30.3

Rounding off, that means a mip ratio of 30.3:1. We know that for every factor of 4, we
need to go to the next mip level. But we need to be careful here on what this means—we
need to compute the log

4
30.3 to find the mip level, not divide 4 into 30. Thus, we need

to compute the log
4 
30.3. That is the number xin 4x = 30.3. Luckily for us, there is a

conversion from one base to another, shown in Equation 12.6.

EQUATION 12.6 Change of Logarithmic Base

log
a 
x = ln x / ln a

Where ln is the natural log, or the log base e = 2.718.

Applying the change-of-base formula to log
4

30.3, we get

log
4
30.3 = ln 30.3 / ln 4 = 2.46

Alrighty then, we have the mip level! It’s 2.46—that means we should select the second
mip level (rounding or truncating). Referring back to Table 12.4, we see that the second
mip level has a size 64×64, or a textel area of 4096. This is within a factor of 4 of the real
projected pixel area of 2160, so we have indeed picked out the best matched mip map of
64×64 to the polygon of 24×90. Very cool, huh?

Just to make sure you believe it works, let’s do two more quick examples. If the polygon
size is 200×170, we would expect that mip level 0 would be selected because it’s the closest
within a factor of 4. Let’s see:

mip_ratio = (256*256) / (200*170) = 1.927

log
4
1.927 = 0.

This suggests we take mip level 0, or the 256×256 texture! Hmmm … Let’s try one more
case at the other end of the spectrum. Suppose we have a polygon that has a projected
pixel area of 3×4. We would expect a final mip level of 6 or 7, which is 4×4 and 2×2,
respectively. Let’s see:

mip_ratio = (256*256) / (3*4) = 5461.33

log
4
5461.33 = 6.2.

This suggests we select mip level 6. Are we gods, or what?

The only problem with the preceding outlined textel-to-pixel ratio computation algorithm
is that we have to compute the area of each polygon (triangle) and compare it with the
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texture area, do some logs, and come up with a mip level. Although this can be done in a
few instructions, it’s really unnecessary. In practice, a far easier method can be employed
that looks 99% as good with regard to selecting the mip level, and it actually enables you
to tune it more. It’s based on a linear falloff from the view point which we will 
discuss now.

Selection of Mip Map Based on Simple Z Distance
The bottom line is that we want to select from n different mip maps as polygons get
smaller. Well, they usually get smaller as they get farther from the viewpoint, right? True, a
teenie-weenie polygon viewed up close and a huge polygon far away look the same, but
that’s an extreme case. The point is that we can use a loose heuristic like distance instead
of the textel-to-pixel area ratio computation to select mip map levels.

In Figure 12.46, we’re going to set a maximum mip distance at which we want the last
mip level to be selected. In other words, suppose we set the maximum mip distance to
10,000 units. Then any polygon that has a z coordinate (max or average) greater than
10,000 will always select the highest mip level (which is 1×1). Any polygons within the
range of 0–10,000 units will select a mip level as a linear function of the range and the
maximum distance.
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FIGURE 12.46 Selecting mip levels based on distance.

With that in mind, I want to show you the actual code from the rendering context func-
tion Draw_RENDERLIST4DV2_RENDERCONTEXTV1_16() that performs the mip level selection:

// test if this is a mipmapped polygon?

if (rc->rend_list->poly_ptrs[poly]->attr & POLY4DV2_ATTR_MIPMAP)

{

// determine if mipmapping is desired at all globally

if (rc->attr & RENDER_ATTR_MIPMAP)

{

// determine mip level for this polygon

// first determine how many miplevels there 

// are in mipchain for this polygon

int tmiplevels =
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logbase2ofx[((BITMAP_IMAGE_PTR *)

(rc->rend_list->poly_ptrs[poly]->texture))[0]->width];

// now based on the requested linear miplevel fall off distance, cut

// the viewdistance into segments, 

// determine what segment polygon is

// in and select mip level -- simple! 

// later you might want something more

// robust, also note I only use a single vertex, 

// you might want to find the average

// since for long walls perpendicular to view 

// direction this might causing mip

// popping mid surface

int miplevel = (tmiplevels * rc->rend_list->poly_ptrs[poly]->tvlist[0].z / 

rc->mip_dist);

// clamp miplevel

if (miplevel > tmiplevels) miplevel = tmiplevels;

// based on miplevel select proper texture

face.texture = ((BITMAP_IMAGE_PTR *)

(rc->rend_list->poly_ptrs[poly]->texture))[miplevel];

// now we must divide each texture coordinate by 2 per miplevel

// very crude

for (int ts = 0; ts < miplevel; ts++)

{

face.tvlist[0].u0*=.5;

face.tvlist[0].v0*=.5;

face.tvlist[1].u0*=.5;

face.tvlist[1].v0*=.5;

face.tvlist[2].u0*=.5;

face.tvlist[2].v0*=.5;

} // end for

} // end if mipmmaping enabled globally

else // mipmapping not selected globally

{

// in this case the polygon IS mipmapped, 

// but the caller has requested NO

// mipmapping, so we will support this 

// by selecting mip level 0 since the
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// texture pointer is pointing to a mip chain regardless

face.texture = ((BITMAP_IMAGE_PTR *)

(rc->rend_list->poly_ptrs[poly]->texture))[0];

// note: texture coordinate manipulation is unneeded

} // end else

} // end if

else

{

// assign the texture without change

face.texture = rc->rend_list->poly_ptrs[poly]->texture;

} // end if

There’s a lot going on here, so let’s start at the top. The code block is excerpted from one
of the rasterizer entry points where it’s being determined whether mip mapping is being
requested. There are a number of cases to consider. The first is the polygon has no mip
mapping, in which case we can’t mip map it. The second is the polygon has mip mapping
but we didn’t request it with the rendering attributes. Third is the polygon is mip mapped
and we requested it. All these cases have to be considered as the code runs. Let’s step
through it. First the block starts, and the number of mip levels is computed by taking the
log

2
of the width of the level 0 texture map:

int tmiplevels =

logbase2ofx[((BITMAP_IMAGE_PTR *)

(rc->rend_list->poly_ptrs[poly]->texture))[0]->width];

This bit of nasty code has all the texture and pointer coercion needed to cast the texture
pointer from an array of pointers to a texture pointer, and then access the first texture’s
width (remember, the first texture is always the texture level 0), so if it’s, say, 128×128, we
know there are log

2
128 = 7 mip levels. Anyway, we perform the computation and then

move on to selecting the mip texture with this code:

int miplevel = (tmiplevels * rc->rend_list->poly_ptrs[poly]->tvlist[0].z / 

rc->mip_dist);

This is basically scaling our range down based on the mip_dist parameter in the rendering
context. This is the variable that determines how far to divide mip mapping; or in other
words, the point where all mip maps will be at the highest level (1×1). Next we set the
face texture with this code:

// based on miplevel select proper texture

face.texture = ((BITMAP_IMAGE_PTR *)

(rc->rend_list->poly_ptrs[poly]->texture))[miplevel];
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Again, lots of nasty pointer casting because the texture pointer isn’t a pointer to a texture
anymore, but a pointer to an array of pointers to textures. face.texture needs only the
pointer, so we have to jump through some hoops here.

Next is a very important detail that I haven’t mentioned yet. Suppose we have the texture
coordinates (u,v) = (63,63), and we have a level 0 texture that is 64×64 pixels. So, (63,63)
means the far u,v corner. However, when we select another mip level, the texture is no
longer 64×64! It could be 8×8, 2×2, or whatever. Therefore, we need to scale the texture
coordinates down to make sure they map correctly. This is shown in Figure 12.47.
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FIGURE 12.47 Scaling texture coordinates down to fit the mipped textures.

The code that does this basically looks at how many mip levels up the chain we need to
go, then iteratively divides the texture coordinates by 2 (multiplying by .5) on each axis to
match up the texture map with the texture coordinates:
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for (int ts = 0; ts < miplevel; ts++)

{

face.tvlist[0].u0*=.5;

face.tvlist[0].v0*=.5;

face.tvlist[1].u0*=.5;

face.tvlist[1].v0*=.5;

face.tvlist[2].u0*=.5;

face.tvlist[2].v0*=.5;

} // end for

There are definitely faster ways to do this, such as using a lookup table with constants of
(0.5)mip_level and then multiplying by that rather than iteratively doing it, but this is easier to
understand for now.

NOTE

Everything we do to the texture coordinates, texture, and so on, is performed on the local face
object, so we don’t have to worry about restoring anything.

That’s mip mapping for you! Of course, you might find that you prefer to do the area ratio
selection method rather than this faster method, but that’s up to you. Anyway, before
moving onto a demo, let’s see a sample setup of loading an object and then setting up a
rendering context. Here’s a typical call to load an object with mip mapping enabled:

// load in the scenery object that we will place all over the place

Load_OBJECT4DV2_COB2(&obj_scene, “cube_flat_textured_01.cob”,

&vscale, &vpos, &vrot, VERTEX_FLAGS_SWAP_YZ |

VERTEX_FLAGS_TRANSFORM_LOCAL ,

,1); // enable mip mapping

Now let’s set up the rendering context:

// set up rendering context

rc.attr = RENDER_ATTR_ZBUFFER

| RENDER_ATTR_MIPMAP

| RENDER_ATTR_TEXTURE_PERSPECTIVE_AFFINE;

rc.video_buffer  = back_buffer;

rc.lpitch     = back_lpitch;

rc.mip_dist    = 1500;

rc.zbuffer    = (UCHAR *)zbuffer.zbuffer;

rc.zpitch     = WINDOW_WIDTH*4;

rc.rend_list   = &rend_list;
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rc.texture_dist  = 0;

rc.alpha_override = -1;

// render scene

Draw_RENDERLIST4DV2_RENDERCONTEXTV1_16(&rc);

For an example of mip mapping and bilinear interpolation, check out the
DEMOII12_11.CPP|EXE;files: shown in Figure 12.48. It enables you to move around and
enable/disable mip mapping in the 3D world.
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FIGURE 12.48 The mip mapping demo in action.

Notice how much better textures look when mip mapped. Also, the demo has bilinear
texturing capability, so it looks really good. The controls are as follows:

• Arrow keys—Move around

• B—Toggle bilinear filtering

• M—Toggle mip mapping

• 1, 2—Decrease/increase mip distance

• N—Select next object to experiment with
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Also try adjusting the mip distance so that the texures pop in and out. This is called mip
popping, and if it occurs within a polygon, it’s called mip banding. The bottom line is that
using the linear distance method to select mip levels works fine and is much cheaper than
the more complex area method.

TIP

Use the 1 and 2 keys to change the mip distance. Make it something like 500–1000, and you will
really see heavy mipping. Change it to 3500 or so, which is a good in-game value.

Finally, to compile the demo, you will need DEMOII12_11.CPP|H, along with
T3DLIB1–10.CPP|H and the DirectX .LIB files.

Trilinear Filtering
Last but not least, let’s talk for a moment about trilinear filtering. Trilinear filtering brings
bilinear interpolation together with mip mapping for the ultimate in texture filtering. First
we select the mip level to render the polygon or pixel by using whatever technique we
want (most likely the area technique, because it’s more accurate). We end up with a
number like 4.3. What this tells us is that we want to use both mip map level 4 and level
5. That is, we want to linearly interpolate the final value from mip map 4 with 5, using
this formula:

mip_pixel = (1 - 0.3)* mip_level_pixel_4 + (.3)*mip_level_pixel_5

So instead of just using one mip level, we linearly interpolate between the pixel from two
of them, which is the linear interpolation of the decimal value from the mip level compu-
tation. If this looks like linear interpolation, the trilinear part comes in because we first
select the pixel from map 4 via bilinear interpolation, then select the pixel from map 5
with bilinear interpolation, and then linearly interpolate the resulting pixels to arrive at a
final value of the pixel. This entire process is shown in Figure 12.49.

Now, many engines/hardware don’t actually do all this work. Some engines just linearly
interpolate between the point-sampled textels from maps 4 and 5, whereas others perform
the entire computation. We could actually implement this right now, but it will be just a
bit too slow. However, as an exercise, I think you should do it just for fun. The problem is
that the final interpolation has to happen inside the rasterizers, and this is the rub that
gets you in trouble.
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FIGURE 12.49 Trilinear filtering.

Multiple Pass Rendering and Texturing
It’s a little hard to believe, but multiple passes with a software rasterizer are possible. Look
at it this way: We’re able to render about 1,000–3,000 polygons per frame at 15–30 fps
right now, depending on the settings. So, I just cut that down by half and perform two
passes. There are lots of effects you can get with this. For example, a reflection-in-water
effect can be achieved by first rendering the scene right side up, and then rendering it
upside down (with transparency), blending it with the ground plane, which is supposed to
be a shiny surface.

You can also get shadow and other special effects with multiple rendering passes. However,
in our case, two passes is the most you’ll want to try, even with a simple world, because
it’s going to kill your frame rate. As an example of multiple pass rendering, I have created
a scene with some simple geometric shapes sitting on a plane. To create the effect, I render
the ground plane object without any Z-buffer. Then I render the reflection with the alpha
channel and the Z-buffer by inverting the view matrix. Next I render the scene once more
with no alpha and the Z-buffer with the normal view matrix. The final results are a shiny
surface reflecting the objects. Figure 12.50 shows a screenshot.
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FIGURE 12.50 A screenshot of the reflection demo.

To run the demo, check out DEMOII12_12.CPP|EXE. Use the arrow keys to move around the
environment, and press the P key to toggle through different passes, so you can see the
scene being built up. To compile the demo, you will need DEMOII12_12.CPP|H, along with
T3DLIB1–10.CPP|H and the DirectX .LIB files.

Wrapping Things Up with a Single Call
Wow—I began this chapter without thinking it would be this big. Amazingly, this is after
deciding to move the lighting and shadow code into a chapter of their own. However, it’s
turned out to be a nasty chapter nonetheless. This further emphasizes that even a very
basic software 3D engine is a complex subject. However, it’s amazing how far we have
come!

Anyway, the code size is getting out of hand at this point, and we need to add a single
layer of indirection on top of the rendering calls to draw the rendering list. Currently, we
have a different version of sorted, z-buffered, 1/z-buffered, mip mapped, alpha’ed, perspec-
tive, and so on rasterizers; there are quite a few of them. This is totally unacceptable in the
long run. Figure 12.51 shows what I am talking about. Of course, if you know what kind
of rasterization you want, you don’t need another layer. But at this point, creating demos
for this book is getting too complicated with all this code.
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FIGURE 12.51 Our system as it stands without a unified rendering port.

The New Rendering Context
To solve the problem of function call anarchy, I have created a new data structure called a
rendering context that we set up like a DirectX structure. The point of data structure is to
enable us to fill it in with information like the video buffer, Z-buffer, rendering flags, and
so forth, and then make a single call to a high-level function that analyzes the rendering
context and makes all the calls to the proper triangle. Figure 12.52 shows this abstractly.
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FIGURE 12.52 Our new system with rendering context support.

Here’s the new data structure (which is found in T3DLIB10.H):

// this is a new type to contain the “rendering context” RC, so

// we don’t have to keep passing more and more variables to the

// rendering functions, we can fill this structure in with what we

// need and then pass it as a whole

typedef struct RENDERCONTEXTV1_TYP

{

int   attr;         // all the rendering attributes

RENDERLIST4DV2_PTR rend_list; // ptr to rendering list to render

UCHAR *video_buffer;     // ptr to video buffer to render to

int   lpitch;        // memory pitch in bytes of video buffer

UCHAR *zbuffer;       // ptr to z buffer or 1/z buffer

int   zpitch;        // memory pitch in bytes of z or 1/z buffer

int   alpha_override;    // alpha value to override ALL polys with
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int   mip_dist;       // maximum distance to divide up into

// mip levels

// 0 - (NUM_ALPHA_LEVELS - 1)

int   texture_dist,     // the distance to enable affine texturing

texture_dist2;    // when using hybrid perspective/affine mode

// future expansion

int   ival1, ivalu2;    // extra integers

float  fval1, fval2;     // extra floats

void  *vptr;        // extra pointer

} RENDERCONTEXTV1, *RENDERCONTEXTV1_PTR;

In essence, it’s nothing more than the parameter list of the union of all the rendering
functions. So, it has everything we could possibly need to set up a rendering frame. All the
fields are self-explanatory by their name and do what they normally do, but I want to
cover them briefly just to make sure we are both on the same page:

• attr—This controls how the rendering is carried out; that is, what options are used:
z-buffering, no buffering, alpha blending, bilinear interpolation, mip mapping, and
so forth. Before the final call to the rendering function is made, you will set this up
with the logical OR of the requested rendering options. More on this shortly.

• rend_list—A pointer to the rendering list your wish rendered.

• video_buffer—A pointer to the final video buffer to which you want the scene
rendered.

• lpitch—The memory pitch of the video_buffer in bytes.

• zbuffer—A pointer to the Z-buffer storage. You might use a Z-buffer or inverse Z-
buffer, but the storage needs are always the same.

• zpitch—The memory pitch of the Z-buffer storage in bytes.

• alpha_override—If you have enabled alpha blending with the rendering context,
you can override the entire scene by placing an integer from (0..NUM_ALPHA_LEVELS-
1) in this variable—otherwise keep it -1.

• mip_dist—This controls the mip range in which to perform mip mapping. The
range is from 0 to this value; within this the mip levels will be linearly selected as a
function of distance.

• texture_dist, texture_dist2—These are used to control the range selects when
using hybrid texturing modes. You will need to set one or both of them depending
on whether you want perfect perspective, linear piecewise, affine, or the simpler
linear piecewise affine hybrid modes. More on this shortly.

• ival1, ival2—These are simply extra integers to do with as you will.

Wrapping Things Up with a Single Call 1289

12

17 0672318350 CH12  05•02•2003  2:55 PM  Page 1289



• fval1, fval2—These are simply extra floats to do with as you will.

• vptr—A void ptr to do with as you will.

Setting Up the Rendering Context
Now let’s talk about setting up the rendering context. First, a rendering context must be
created (this will usually be a single global, but you might have more than one):

RENDERCONTEXTV1 rc;

It’s always a good idea to clear out any large structure with some code like this:

memset(&rc,0,sizeof(rc));

The attr field of the rendering context is the key to everything—you simply need to set it
up with whatever rendering options you want. The control flags are found in T3DLIB10.H
and are listed here:

// defines that control the rendering function state attributes

// note each class of control flags is contained within

// a 4-bit nibble where possible, this helps with future expansion

// no z buffering, polygons will be rendered as are in list

#define RENDER_ATTR_NOBUFFER           0x00000001

// use z buffering rasterization

#define RENDER_ATTR_ZBUFFER           0x00000002

// use 1/z buffering rasterization

#define RENDER_ATTR_INVZBUFFER          0x00000004

// use mipmapping

#define RENDER_ATTR_MIPMAP            0x00000010

// enable alpha blending and override

#define RENDER_ATTR_ALPHA            0x00000020

// enable bilinear filtering, but only supported for

// constant shaded/affine textures

#define RENDER_ATTR_BILERP            0x00000040

// use affine texturing for all polys

#define RENDER_ATTR_TEXTURE_PERSPECTIVE_AFFINE  0x00000100

// use perfect perspective texturing

#define RENDER_ATTR_TEXTURE_PERSPECTIVE_CORRECT 0x00000200
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// use linear piecewise perspective texturing

#define RENDER_ATTR_TEXTURE_PERSPECTIVE_LINEAR  0x00000400

// use a hybrid of affine and linear piecewise based on distance

#define RENDER_ATTR_TEXTURE_PERSPECTIVE_HYBRID1 0x00000800

// not implemented yet

#define RENDER_ATTR_TEXTURE_PERSPECTIVE_HYBRID2 0x00001000

Now let’s look at some examples. Suppose you want to set up a rendering context that has
no buffering at all (you z-sort the polygons yourself or whatever).

Rendering Context Setup: Example 1
No alpha, no mip mapping, and you want affine texture mapping for everything. This
would be the setup:

// set up rendering context

rc.attr     = (RENDER_ATTR_NOBUFFER |

RENDER_ATTR_TEXTURE_PERSPECTIVE_AFFINE);

rc.video_buffer = back_buffer; // set video buffer up

rc.lpitch    = back_lpitch;

rc.mip_dist   = 0;

rc.zbuffer   = NULL;

rc.zpitch    = 0;

rc.rend_list  = &rend_list; // rendering list

rc.texture_dist = 0;

rc.alpha_override = -1;

That’s it!

Rendering Context Setup: Example 2
Z-buffering with alpha support and linear piecewise perspective texture mapping:

// set up rendering context

rc.attr     = (RENDER_ATTR_ZBUFFER |

RENDER_ATTR_ALPHA |

RENDER_ATTR_TEXTURE_PERSPECTIVE_LINEAR);

rc.video_buffer = back_buffer; // set up video buffer

rc.lpitch    = back_lpitch;

rc.mip_dist   = 0;

rc.zbuffer   = (UCHAR *)zbuffer.zbuffer; // we need this now

rc.zpitch    = WINDOW_WIDTH*4;

rc.rend_list  = &rend_list;

rc.texture_dist = 0;

rc.alpha_override = -1;
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Rendering Context Setup: Example 3
Now let’s try one with mip mapping and a mip distance of 2000. Full perspective-correct
texturing and 1/z-buffer will be needed, of course.

// set up rendering context

rc.attr     = (RENDER_ATTR_INVZBUFFER |

RENDER_ATTR_ALPHA |

RENDER_ATTR_MIPMAP |

RENDER_ATTR_TEXTURE_PERSPECTIVE_CORRECT);

rc.video_buffer = back_buffer; // set up video buffer

rc.lpitch    = back_lpitch;

rc.mip_dist   = 2000; // and mip distance

rc.zbuffer   = (UCHAR *)zbuffer.zbuffer; // the storage for the 1/z buffer

rc.zpitch    = WINDOW_WIDTH*4;

rc.rend_list  = &rend_list;

rc.texture_dist = 0;

rc.alpha_override = -1;

NOTE

Remember, the mip_dist variable is the maximum amount of distance that all the levels of the
mip chain will be divided into from the viewing plane.

Rendering Context Setup: Example 4
Let’s try one more example using the hybrid texturing. Let’s select mode 1, which is only
linear piecewise up close and then switches to affine past the first texture distance mark
texture_dist. We will set the texture distance to 500, so everything from 0–500 will use
the linear piecewise texture mapper, and everything beyond 500 on will use affine texture
mapping. All the other settings will be the same as the previous example:

// set up rendering context

rc.attr     = (RENDER_ATTR_INVZBUFFER |

RENDER_ATTR_ALPHA |

RENDER_ATTR_MIPMAP |

RENDER_ATTR_TEXTURE_PERSPECTIVE_HYBRID1);

rc.video_buffer = back_buffer; // set up video buffer

rc.lpitch    = back_lpitch;

rc.mip_dist   = 2000; // and mip distance

rc.zbuffer   = (UCHAR *)zbuffer.zbuffer; // the storage for the 1/z buffer

rc.zpitch    = WINDOW_WIDTH*4;

rc.rend_list  = &rend_list;

rc.texture_dist = 500;

rc.alpha_override = -1;
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CAUTION

When using any form of perspective-correct texturing, you MUST use a 1/z-buffer, because it’s
not supported with plain or Z-buffering rasterizers.

Making the Call to Render the Rendering Context
Now that you have the rendering context set up, it’s time to actually do the rendering. We
need a function that will take all these options and transparently do our dirty work, and
figure out what rasterizer to call for each polygon. This function has a lot of conditional
logic, but I do want you to see it, so I am going to list this one.

However, please note that there are better ways to do this. For example, I am executing
conditionals in the inner loop for each polygon that could be precomputed. Then we can
make the function as optimal as calling the lower-level functions via function pointers.
However, then you wouldn’t see the real work being done, so I have left it slightly unopti-
mized for now. Later we will add the function pointer support and make a version that is
optimal and faster.

The only problem with the function is that it’s rather large (15-30 pages), so I can’t list it
here. What I’m going to do is partially list one component of it. The function optimizes
the conditional logic slightly by first determining whether the caller has requested no
buffer, z-buffering, or 1/z-buffering, and then goes from there. Therefore, I am going to list
just the first section that takes care of the no-buffering cases; the other cases are similar,
but have been deleted to save space.

void Draw_RENDERLIST4DV2_RENDERCONTEXTV1_16(RENDERCONTEXTV1_PTR rc)

{

// this function renders the rendering list, it’s based on the new

// rendering context data structure which is container for everything

// we need to consider when rendering, z, 1/z buffering, alpha, mipmapping,

// perspective, etc. the function is basically a merge of all the functions

// we have written thus far, so its rather long, but better than having

// 20-30 rendering functions for all possible permutations!

POLYF4DV2 face; // temp face used to render polygon

int alpha;   // alpha of the face

// we need to try and separate as much conditional logic as possible

// at the beginning of the function, so we can minimize it inline during

// the traversal of the polygon list, let’s start by subclassing which

// kind of rendering we are doing none, z buffered, or 1/z buffered

if (rc->attr & RENDER_ATTR_NOBUFFER) ////////////////////////////////////

{

// no buffering at all
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// at this point, all we have is a list of polygons and it’s time

// to draw them

for (int poly=0; poly < rc->rend_list->num_polys; poly++)

{

// render this polygon if and only if it’s not clipped, not culled,

// active, and visible, note however the concecpt of “backface” is

// irrelevant in a wire frame engine though

if (!(rc->rend_list->poly_ptrs[poly]->state & POLY4DV2_STATE_ACTIVE) ||

(rc->rend_list->poly_ptrs[poly]->state & POLY4DV2_STATE_CLIPPED ) ||

(rc->rend_list->poly_ptrs[poly]->state & POLY4DV2_STATE_BACKFACE) )

continue; // move onto next poly

// test for alpha override

if (rc->alpha_override>= 0)

{

// set alpha to override value

alpha = rc->alpha_override;

} // end if

else

{

// extract alpha (even if there isn’t any)

alpha = ((rc->rend_list->poly_ptrs[poly]->color & 0xff000000) >> 24);

} // end else

// need to test for textured first, since a textured poly can either

// be emissive, or flat shaded, hence we need to call different

// rasterizers

if (rc->rend_list->poly_ptrs[poly]->attr & POLY4DV2_ATTR_SHADE_MODE_TEXTURE)

{

// set the vertices

face.tvlist[0].x = (float)rc->rend_list->poly_ptrs[poly]->tvlist[0].x;

face.tvlist[0].y = (float)rc->rend_list->poly_ptrs[poly]->tvlist[0].y;

face.tvlist[0].z = (float)rc->rend_list->poly_ptrs[poly]->tvlist[0].z;

face.tvlist[0].u0 = (float)rc->rend_list->poly_ptrs[poly]->tvlist[0].u0;

face.tvlist[0].v0 = (float)rc->rend_list->poly_ptrs[poly]->tvlist[0].v0;

face.tvlist[1].x = (float)rc->rend_list->poly_ptrs[poly]->tvlist[1].x;

face.tvlist[1].y = (float)rc->rend_list->poly_ptrs[poly]->tvlist[1].y;

face.tvlist[1].z = (float)rc->rend_list->poly_ptrs[poly]->tvlist[1].z;

face.tvlist[1].u0 = (float)rc->rend_list->poly_ptrs[poly]->tvlist[1].u0;

face.tvlist[1].v0 = (float)rc->rend_list->poly_ptrs[poly]->tvlist[1].v0;

face.tvlist[2].x = (float)rc->rend_list->poly_ptrs[poly]->tvlist[2].x;

face.tvlist[2].y = (float)rc->rend_list->poly_ptrs[poly]->tvlist[2].y;
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face.tvlist[2].z = (float)rc->rend_list->poly_ptrs[poly]->tvlist[2].z;

face.tvlist[2].u0 = (float)rc->rend_list->poly_ptrs[poly]->tvlist[2].u0;

face.tvlist[2].v0 = (float)rc->rend_list->poly_ptrs[poly]->tvlist[2].v0;

// test if this is a mipmapped polygon?

if (rc->rend_list->poly_ptrs[poly]->attr & POLY4DV2_ATTR_MIPMAP)

{

// determine if mipmapping is desired at all globally

if (rc->attr & RENDER_ATTR_MIPMAP)

{

// determine mip level for this polygon

// first determine how many miplevels 

// there are in mipchain for this polygon

int tmiplevels = logbase2ofx[((BITMAP_IMAGE_PTR *)

(rc->rend_list->poly_ptrs[poly]->texture))[0]->width];

// now based on the requested linear 

// miplevel fall off distance, cut

// the viewdistance into segments, 

// determine what segment polygon is

// in and select mip level -- simple! 

// later you might want something more

// robust, also note I only use a single vertex, 

// you might want to find the average

// since for long walls perpendicular to 

// view direction this might causing mip

// popping mid surface

int miplevel = (tmiplevels * 

rc->rend_list->poly_ptrs[poly]->tvlist[0].z / rc->mip_dist);

// clamp miplevel

if (miplevel > tmiplevels) miplevel = tmiplevels;

// based on miplevel select proper texture

face.texture = ((BITMAP_IMAGE_PTR *)

(rc->rend_list->poly_ptrs[poly]->texture))[miplevel];

// now we must divide each texture coordinate by 2 per miplevel

for (int ts = 0; ts < miplevel; ts++)

{

face.tvlist[0].u0*=.5;

face.tvlist[0].v0*=.5;

Wrapping Things Up with a Single Call 1295

12

17 0672318350 CH12  05•02•2003  2:55 PM  Page 1295



face.tvlist[1].u0*=.5;

face.tvlist[1].v0*=.5;

face.tvlist[2].u0*=.5;

face.tvlist[2].v0*=.5;

} // end for

} // end if mipmmaping enabled globally

else // mipmapping not selected globally

{

// in this case the polygon IS mipmapped, 

// but the caller has requested NO

// mipmapping, so we will support this by 

// selecting mip level 0 since the

// texture pointer is pointing to a mip chain regardless

face.texture = ((BITMAP_IMAGE_PTR *)

(rc->rend_list->poly_ptrs[poly]->texture))[0];

// note: texture coordinate manipulation is unneeded

} // end else

} // end if

else

{

// assign the texture without change

face.texture = rc->rend_list->poly_ptrs[poly]->texture;

} // end if

// is this a plain emissive texture?

if (rc->rend_list->poly_ptrs[poly]->attr & 

POLY4DV2_ATTR_SHADE_MODE_CONSTANT)

{

// draw the textured triangle as emissive

if ((rc->attr & RENDER_ATTR_ALPHA) &&

((rc->rend_list->poly_ptrs[poly]->attr & 

POLY4DV2_ATTR_TRANSPARENT) || rc->alpha_override>=0) )

{

// alpha version

// which texture mapper?

if (rc->attr & RENDER_ATTR_TEXTURE_PERSPECTIVE_AFFINE)

{
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Draw_Textured_Triangle_Alpha16(&face, rc->video_buffer, 

rc->lpitch, alpha);

} // end if

else

if (rc->attr & RENDER_ATTR_TEXTURE_PERSPECTIVE_CORRECT)

{

// not supported yet!

Draw_Textured_Triangle_Alpha16(&face, rc->video_buffer, 

rc->lpitch, alpha);

} // end if

else

if (rc->attr & RENDER_ATTR_TEXTURE_PERSPECTIVE_LINEAR)

{

// not supported yet

Draw_Textured_Triangle_Alpha16(&face, rc->video_buffer, 

rc->lpitch, alpha);

} // end if

else

if (rc->attr & RENDER_ATTR_TEXTURE_PERSPECTIVE_HYBRID1)

{

// test z distance again perspective transition gate

if (rc->rend_list->poly_ptrs[poly]->tvlist[0].z > 

rc-> texture_dist)

{

// default back to affine

Draw_Textured_Triangle_Alpha16(&face, rc->video_buffer, 

rc->lpitch, alpha);

} // end if

else

{

// use perspective linear

// not supported yet

Draw_Textured_Triangle_Alpha16(&face, rc->video_buffer, 

rc->lpitch, alpha);

} // end if

} // end if

} // end if

else

{

// non alpha

// which texture mapper?

if (rc->attr & RENDER_ATTR_TEXTURE_PERSPECTIVE_AFFINE)

{
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Draw_Textured_Triangle2_16(&face, rc->video_buffer, 

rc->lpitch);

} // end if

else

if (rc->attr & RENDER_ATTR_TEXTURE_PERSPECTIVE_CORRECT)

{

// not supported yet

Draw_Textured_Triangle2_16(&face, rc->video_buffer, 

rc->lpitch);

} // end if

else

if (rc->attr & RENDER_ATTR_TEXTURE_PERSPECTIVE_LINEAR)

{

// not supported yet

Draw_Textured_Triangle2_16(&face, rc->video_buffer, 

rc->lpitch);

} // end if

else

if (rc->attr & RENDER_ATTR_TEXTURE_PERSPECTIVE_HYBRID1)

{

// test z distance again perspective transition gate

if (rc->rend_list->poly_ptrs[poly]->tvlist[0].z > 

rc-> texture_dist)

{

// default back to affine

Draw_Textured_Triangle2_16(&face, rc->video_buffer, 

rc->lpitch);

} // end if

else

{

// use perspective linear

// not supported yet

Draw_Textured_Triangle2_16(&face, rc->video_buffer, 

rc->lpitch);

} // end if

} // end if

} // end if

} // end if

else

if (rc->rend_list->poly_ptrs[poly]->attr & 

POLY4DV2_ATTR_SHADE_MODE_FLAT)

{
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// draw as flat shaded

face.lit_color[0] = rc->rend_list->poly_ptrs[poly]->lit_color[0];

if ((rc->attr & RENDER_ATTR_ALPHA) &&

((rc->rend_list->poly_ptrs[poly]->attr & 

POLY4DV2_ATTR_TRANSPARENT) || 

rc->alpha_override>=0) )

{

// alpha version

// which texture mapper?

if (rc->attr & RENDER_ATTR_TEXTURE_PERSPECTIVE_AFFINE)

{

Draw_Textured_TriangleFS_Alpha16(&face, rc->video_buffer, 

rc->lpitch, alpha);

} // end if

else

if (rc->attr & RENDER_ATTR_TEXTURE_PERSPECTIVE_CORRECT)

{

// not supported yet!

Draw_Textured_TriangleFS_Alpha16(&face, rc->video_buffer, 

rc->lpitch, alpha);

} // end if

else

if (rc->attr & RENDER_ATTR_TEXTURE_PERSPECTIVE_LINEAR)

{

// not supported yet

Draw_Textured_TriangleFS_Alpha16(&face, rc->video_buffer, 

rc->lpitch, alpha);

} // end if

else

if (rc->attr & RENDER_ATTR_TEXTURE_PERSPECTIVE_HYBRID1)

{

// test z distance again perspective transition gate

if (rc->rend_list->poly_ptrs[poly]->tvlist[0].z > 

rc-> texture_dist)

{

// default back to affine

Draw_Textured_TriangleFS_Alpha16(&face, rc->video_buffer, 

rc->lpitch, alpha);

} // end if

else

{

// use perspective linear
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// not supported yet

Draw_Textured_TriangleFS_Alpha16(&face, rc->video_buffer, 

rc->lpitch, alpha);

} // end if

} // end if

} // end if

else

{

// non alpha

// which texture mapper?

if (rc->attr & RENDER_ATTR_TEXTURE_PERSPECTIVE_AFFINE)

{

Draw_Textured_TriangleFS2_16(&face, rc->video_buffer, 

rc->lpitch);

} // end if

else

if (rc->attr & RENDER_ATTR_TEXTURE_PERSPECTIVE_CORRECT)

{

// not supported yet

Draw_Textured_TriangleFS2_16(&face, rc->video_buffer, 

rc->lpitch);

} // end if

else

if (rc->attr & RENDER_ATTR_TEXTURE_PERSPECTIVE_LINEAR)

{

// not supported yet

Draw_Textured_TriangleFS2_16(&face, rc->video_buffer, 

rc->lpitch);

} // end if

else

if (rc->attr & RENDER_ATTR_TEXTURE_PERSPECTIVE_HYBRID1)

{

// test z distance again perspective transition gate

if (rc->rend_list->poly_ptrs[poly]->tvlist[0].z > 

rc-> texture_dist)

{

// default back to affine

Draw_Textured_TriangleFS2_16(&face, rc->video_buffer, 

rc->lpitch);

} // end if

else

{
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// use perspective linear

// not supported yet

Draw_Textured_TriangleFS2_16(&face, rc->video_buffer, 

rc->lpitch);

} // end if

} // end if

} // end if

} // end else

else

{

// must be gouraud POLY4DV2_ATTR_SHADE_MODE_GOURAUD

face.lit_color[0] = rc->rend_list->poly_ptrs[poly]->lit_color[0];

face.lit_color[1] = rc->rend_list->poly_ptrs[poly]->lit_color[1];

face.lit_color[2] = rc->rend_list->poly_ptrs[poly]->lit_color[2];

if ((rc->attr & RENDER_ATTR_ALPHA) &&

((rc->rend_list->poly_ptrs[poly]->attr & 

POLY4DV2_ATTR_TRANSPARENT) || 

rc->alpha_override>=0) )

{

// alpha version

// which texture mapper?

if (rc->attr & RENDER_ATTR_TEXTURE_PERSPECTIVE_AFFINE)

{

Draw_Textured_TriangleGS_Alpha16(&face, rc->video_buffer, 

rc->lpitch, alpha);

} // end if

else

if (rc->attr & RENDER_ATTR_TEXTURE_PERSPECTIVE_CORRECT)

{

// not supported yet!

Draw_Textured_TriangleGS_Alpha16(&face, rc->video_buffer, 

rc->lpitch, alpha);

} // end if

else

if (rc->attr & RENDER_ATTR_TEXTURE_PERSPECTIVE_LINEAR)

{

// not supported yet

Draw_Textured_TriangleGS_Alpha16(&face, rc->video_buffer, 

rc->lpitch, alpha);

} // end if
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else

if (rc->attr & RENDER_ATTR_TEXTURE_PERSPECTIVE_HYBRID1)

{

// test z distance again perspective transition gate

if (rc->rend_list->poly_ptrs[poly]->tvlist[0].z > 

rc-> texture_dist)

{

// default back to affine

Draw_Textured_TriangleGS_Alpha16(&face, rc->video_buffer, 

rc->lpitch, alpha);

} // end if

else

{

// use perspective linear

// not supported yet

Draw_Textured_TriangleGS_Alpha16(&face, rc->video_buffer, 

rc->lpitch, alpha);

} // end if

} // end if

} // end if

else

{

// non alpha

// which texture mapper?

if (rc->attr & RENDER_ATTR_TEXTURE_PERSPECTIVE_AFFINE)

{

Draw_Textured_TriangleGS_16(&face, rc->video_buffer, 

rc->lpitch);

} // end if

else

if (rc->attr & RENDER_ATTR_TEXTURE_PERSPECTIVE_CORRECT)

{

// not supported yet

Draw_Textured_TriangleGS_16(&face, rc->video_buffer, 

rc->lpitch);

} // end if

else

if (rc->attr & RENDER_ATTR_TEXTURE_PERSPECTIVE_LINEAR)

{

// not supported yet

Draw_Textured_TriangleGS_16(&face, rc->video_buffer, 

rc->lpitch);

} // end if
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else

if (rc->attr & RENDER_ATTR_TEXTURE_PERSPECTIVE_HYBRID1)

{

// test z distance again perspective transition gate

if (rc->rend_list->poly_ptrs[poly]->tvlist[0].z > 

rc-> texture_dist)

{

// default back to affine

Draw_Textured_TriangleGS_16(&face, rc->video_buffer, 

rc->lpitch);

} // end if

else

{

// use perspective linear

// not supported yet

Draw_Textured_TriangleGS_16(&face, rc->video_buffer, 

rc->lpitch);

} // end if

} // end if

} // end if

} // end else

} // end if

else

if ((rc->rend_list->poly_ptrs[poly]->attr & 

POLY4DV2_ATTR_SHADE_MODE_FLAT) ||

(rc->rend_list->poly_ptrs[poly]->attr & 

POLY4DV2_ATTR_SHADE_MODE_CONSTANT) )

{

// draw as constant shaded

face.lit_color[0] = rc->rend_list->poly_ptrs[poly]->lit_color[0];

// set the vertices

face.tvlist[0].x = (float)rc->rend_list->poly_ptrs[poly]->tvlist[0].x;

face.tvlist[0].y = (float)rc->rend_list->poly_ptrs[poly]->tvlist[0].y;

face.tvlist[0].z = (float)rc->rend_list->poly_ptrs[poly]->tvlist[0].z;

face.tvlist[1].x = (float)rc->rend_list->poly_ptrs[poly]->tvlist[1].x;

face.tvlist[1].y = (float)rc->rend_list->poly_ptrs[poly]->tvlist[1].y;

face.tvlist[1].z = (float)rc->rend_list->poly_ptrs[poly]->tvlist[1].z;
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face.tvlist[2].x = (float)rc->rend_list->poly_ptrs[poly]->tvlist[2].x;

face.tvlist[2].y = (float)rc->rend_list->poly_ptrs[poly]->tvlist[2].y;

face.tvlist[2].z = (float)rc->rend_list->poly_ptrs[poly]->tvlist[2].z;

// draw the triangle with basic flat rasterizer

// test for transparent

if ((rc->attr & RENDER_ATTR_ALPHA) &&

((rc->rend_list->poly_ptrs[poly]->attr & 

POLY4DV2_ATTR_TRANSPARENT) || rc->alpha_override>=0) )

{

Draw_Triangle_2D_Alpha16(&face, rc->video_buffer, rc->lpitch,alpha);

} // end if

else

{

Draw_Triangle_2D3_16(&face, rc->video_buffer, rc->lpitch);

} // end if

} // end if

else

if (rc->rend_list->poly_ptrs[poly]->attr & 

POLY4DV2_ATTR_SHADE_MODE_GOURAUD)

{

// {andre take advantage of the data structures later..}

// set the vertices

face.tvlist[0].x = (float)rc->rend_list->poly_ptrs[poly]->tvlist[0].x;

face.tvlist[0].y = (float)rc->rend_list->poly_ptrs[poly]->tvlist[0].y;

face.tvlist[0].z = (float)rc->rend_list->poly_ptrs[poly]->tvlist[0].z;

face.lit_color[0] = rc->rend_list->poly_ptrs[poly]->lit_color[0];

face.tvlist[1].x = (float)rc->rend_list->poly_ptrs[poly]->tvlist[1].x;

face.tvlist[1].y = (float)rc->rend_list->poly_ptrs[poly]->tvlist[1].y;

face.tvlist[1].z = (float)rc->rend_list->poly_ptrs[poly]->tvlist[1].z;

face.lit_color[1] = rc->rend_list->poly_ptrs[poly]->lit_color[1];

face.tvlist[2].x = (float)rc->rend_list->poly_ptrs[poly]->tvlist[2].x;

face.tvlist[2].y = (float)rc->rend_list->poly_ptrs[poly]->tvlist[2].y;

face.tvlist[2].z = (float)rc->rend_list->poly_ptrs[poly]->tvlist[2].z;

face.lit_color[2] = rc->rend_list->poly_ptrs[poly]->lit_color[2];

// draw the gouraud shaded triangle

// test for transparent

if ((rc->attr & RENDER_ATTR_ALPHA) &&

((rc->rend_list->poly_ptrs[poly]->attr & 
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POLY4DV2_ATTR_TRANSPARENT) || rc->alpha_override>=0) )

{

Draw_Gouraud_Triangle_Alpha16(&face, rc->video_buffer, 

rc->lpitch,alpha);

} // end if

else

{

Draw_Gouraud_Triangle2_16(&face, rc->video_buffer, rc->lpitch);

} // end if

} // end if gouraud

} // end for poly

} // end if RENDER_ATTR_NOBUFFER

else

if (rc->attr & RENDER_ATTR_ZBUFFER) ////////////////////////////////////

{

// z buffer block goes here..

} // end if RENDER_ATTR_ZBUFFER

else

if (rc->attr & RENDER_ATTR_INVZBUFFER)

{

// inverse z buffer block goes here..

} // end if RENDER_ATTR_INVZBUFFER

} // end Draw_RENDERLIST4DV2_RENDERCONTEXTV1_16

The code simply iterates through all the possibilities branching on different rendering
conditions. Pay close attention the alpha and mip mapping sections, along with the
hybrid texture mapping computations. Admittedly, this is slower than just calling the
correct rasterizer, as we are losing about 1–3% of our performance from calling the high-
level function, but we will get it back and then some, I promise. For now, this is much
better than trying to call all those millions of zillions of rendering functions! In any event,
let’s make a call to the function with one of our setup rendering contexts:

// render scene

Draw_RENDERLISTV2_RENDERCONTEXTV1_16(&rc);

Now isn’t that worth it? I agree <BG>. There’s no demo for this function call because that’s
not much of a demo, but if you look at all the demos thus far, I have secretly been using
the new function—he he he!

Wrapping Things Up with a Single Call 1305
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Summary
This has been another long chapter dealing with seemingly brief material that just seemed
to blow up when we got into it! Additionally, we wrote more code than in any other
chapter, but it was all worth it. At this point, the engine supports so much stuff that it’s
ready to make games. We added perspective-correct texturing, alpha blending, mip
mapping, 1/z-buffering, optimizations galore, and rewrote the engine rasterization inter-
face to have a single interface. Moreover, we added some features to the .COB model
loader, as well as the terrain generator. Last but not least, there were some good demos
that are good starting points for you to experiment. Remember, the point of this book is
not to teach bleeding-edge techniques, but to give you a solid understanding of 3D algo-
rithms and practical real-time implementations. The funny thing is that this engine is
looking pretty good—I had one of the demos running, and someone walked in and
thought it was hardware because of the lighting and texturing. The fact is, if we stopped
here, you would have more than enough to keep you busy. But we’ve come this far—why
not go totally insane <BG>?

My only regret is that bugs are starting to creep into the system. There is so much software
that I hardly get time to test it. Of course, the point of the book and demos is as a teach-
ing aid so you can make your own engine, but it’s kind of a bummer when you see flaws.
However, I will continue to try and squash them. Right now, the major thing bugging me
is that the 3D clipper seems to be having trouble with large polygons, but no one is
perfect <BG>. Next we are going to cover spatial partitioning techniques and start dealing
with world geometry.

CHAPTER 12 Advanced Texturing Techniques1306
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IN THIS CHAPTER

• The New Game Engine
Module

• Introduction to Spatial
Partitioning and Visible
Surface Determination

• The Binary Space Partition

• Potentially Visible Sets

• Portals

• Bounding Hierarchical
Volumes and Octrees

• Occlusion Culling

CHAPTER 13

Spatial Partitioning and
Visibility Algorithms

“What if you miss?”

“I won’t.”

—Halo 2

In this chapter, we’re going to cover spatial partitioning
algorithms such as binary space partitions, bounding hierar-
chical volumes, octrees, portals, and more. Additionally, we
are also going to discuss general visibility algorithms such as
potentially visible sets, and occlusion culling. Because of the
highly technical nature of the material and its sheer volume,
we are only going to implement a couple of techniques
including BSP trees. However, this will be more than enough
to keep you busy. Here’s the general outline for this chapter:

• The new game engine library module

• Introduction to spatial partitioning and visible surface
determination

• Binary space partitioning

• Potentially visible sets

• Portals

• Bounding hierarchical volumes and octrees

• Occlusion culling

The New Game Engine Module
Once again, there is enough software in this chapter for a
separate library module. We are up to T3DLIB11 now, so to
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1308 CHAPTER 13 Spatial Partitioning and Visibility Algorithms

compile any program from this chapter, you will need the main .CPP file for the program,
the DirectX .LIB files, and these new library modules:

• T3DLIB11.CPP—The C/C++ source for the spatial partitioning technology, and so on.

• T3DLIB11.H—The accompanying header file.

NOTE

Of course, you must link to T3DLIB1–10.CPP|H as well.

I would list the library source and header, but we are running out of room and need to be
frugal with the listings. However, every function and data structure will be shown within
the chapter, either in full or with prototypes.

Introduction to Spatial Partitioning and Visible Surface
Determination
Spatial partitioning and visible surface determination go hand in hand. In general, any
given 3D world is filled with objects, terrain, interiors, and exteriors. The problem is that
all these model meshes can easily represent thousands, if not millions, of polygons (and
hundreds of millions very soon). Thus far, we have worked very hard to find ways to
remove as many polygons from the rendering pipeline as possible. Our current system is
based on objects for the most part, where each object is a collection of polygons. These
objects are transformed and then inserted into the global rendering list for more transfor-
mations, such as lighting, clipping, projection, and rasterization. However, we learned
early on that we can cull entire objects from the viewing frustrum by using the bounding
sphere of each object and clipping it to the view frustrum before passing the object into
the rendering pipeline. This is shown in Figure 13.1.

Nevertheless, many objects can’t be culled with this crude technique, and get passed down
the pipeline. For example, long objects, or objects that contain many sub-parts and so on,
don’t fit well into bounding spheres. However, we didn’t give up, and we performed a
back-face removal stage, where polygons that are not facing the viewer are removed from
the pipeline as well. These techniques are shown in Figure 13.2.

Finally, polygons that we can’t cull make it to the 3D clipper and are clipped to the
viewing frustrum in object space, and are finally clipped in 2D space during rasterization.
The clipping process itself is a form of polygon-based culling, and entire polygons can be
culled, as shown in Figure 13.3.
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FIGURE 13.1 Bounding sphere culling.

For the most part, this system works fine for sparse, outdoor, object-based scenes, and
even works with our crude terrain demos. The point is that we are not taking advantage of
any of the geometrical cues of the mesh geometry or common sense. This is the theme of
this chapter. We are interested in solutions to two primary problems:

Problem 1: How can we partition space/objects, possibly using preprocessing or other
assumptions, so that we can quickly cull large portions of the scene away and or help with
rendering and visibility?

Problem 2: Are there ways to determine what polygons are visible from any given view-
point in the game, and only process polygons that are potentially visible from said view-
point?

Both of these problems slightly overlap and fall under the concepts of visibility determina-
tion, occlusion, and spatial partitioning, which comprise the material we are going to
explore in this chapter.

Introduction to Spatial Partitioning and Visible Surface Determination 1309
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FIGURE 13.2 Back-face culling.
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The largest problem with computer graphics is not rasterization, lighting, or many of the
topics we have covered thus far. Doing those things is of course important—they have all
been solved by hardware for the most part. However, the problems that we are going to
talk about in this chapter have not been solved by hardware, and probably never will be
solved in closed form. In other words, a single technique will work for a finite number of
polygons, but then when we increase that number ten times, we need a new technique. A
line-drawing algorithm is a line-drawing algorithm—it doesn’t care whether we are
drawing a house or a space ship, but spatial portioning and visibility algorithms do care
about the kind and size of data sets they are working on. And as we make larger and larger
worlds, these data sets are going to continually get larger. Thus, the world of visibility
determination and culling is of utmost concern, because not rendering something is
always the fastest way to draw it!

For example, suppose we want to use our little terrain generator function to create a
1024×1024 terrain. We could use the function to do that, but then huge amounts of poly-
gons would be passed to the culler and clipper because the terrain is a single object. A
better technique would be to create a hierarchy of terrains themselves in a cell-based world
of 32×32, so each cell itself is a terrain of 32×32 tiles (or 32×32×2 polygons, because there
are two triangles per cell) and then we can cull each terrain object as single objects. This is
shown in Figure 13.4.

Can we do better? What about grouping terrain cells of 8×8 and placing bounding rectan-
gles around them, or cells of 16×16, or 32×32! See what I’m getting at? We can create hier-
archical data structures that contain more or less world data, and then during the culling
or visibility determination phase, we can immediately throw away vast amounts of data.
This is absolutely necessary for large-scale terrains, indoor worlds, and environments out
in space. Can you imagine trying to model a galaxy with 100,000,000 star systems? It’s
actually possible: We can store the position of each planet in each star system, we can
store a procedural algorithm with a set of parameters that can generate the planet terrain
on the fly at any level of detail, and we can create records of the buildings, vegetation,
and so on, on each planet. However, what we can’t do is run through all 100,000,000 star
systems each iteration and determine whether they should be rendered. However, with a
spatial partitioning system, this can be accomplished in a few iterations—believe it or not!

We’re going to cover a number of spatial partitioning techniques, starting with binary
space partitioning, because this is one of the most commonly used and powerful algo-
rithms, and the one I decided to implement here for you. Remember though why we need
this technology: The point is that we can’t simply throw polygons at the pipeline anymore
when we are dealing with huge datasets.

Introduction to Spatial Partitioning and Visible Surface Determination 1311
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FIGURE 13.4 Object hierarchy representations. 

Additionally, when running around in say a first-person shooter, 99% of the time we are
going to be in a level with hundreds of rooms, but we can only see the geometry in the
current room the viewpoint is in (sure, there might be windows). For the most part, we
surely don’t want to render all those extra rooms, so we want to find techniques and algo-
rithms to deal with this kind of problem. Figure 13.5 illustrates this visibility problem.

We’ll look at a number of techniques, some just in theory, some in practical use, and then
you should be able to handle just about any problem with indoor/outdoor rendering, or at
least know what you need to do and where to begin.
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FIGURE 13.5 The visibility problem.

The Binary Space Partition
The binary space partition (BSP) is a technique that belongs to the class of 3D spatial parti-
tioning algorithms that trade initial space and offline computation time (with some
geometrical constraints) for fast runtime performance. In essence, BSP is a method that
takes as an input a collection of polygons, and then through a recursive algorithm, the
BSP creates a binary tree structure with a number of interesting properties. These proper-
ties enable us to walk the tree in perfect back-to-front polygon order, or front to back. We
can also use the tree for collision detection, or for large scale culling. This data structure is
the basis for games like Doom, Quake, and many other first-person shooters. The basis of
the BSP tree is that it partitions space into convex subspaces using separating planes.
These planes can be axis-aligned or co-planar with the polygons themselves, but the point
is that the geometry itself is used to partition space.

The BSP sounds too good to be true, so let’s take a look at how it works. Refer to the x-z
aerial view shown in Figure 13.6 for the following explanation. The figure depicts a collec-
tion of polygons that might make up the geometry of a game level. Each polygon defines
a plane that it lies in. As you can see, if we were to place the viewer in any position within
the figure, it’s not too difficult to manually determine the order in which the polygons
should be drawn for a given viewing direction and frustrum so that the scene would be
rendered correctly.

The Binary Space Partition 1313
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For example, in Figure 13.7, the rendering order would be back-to-front a, b, c, d, e, f. This
is the same problem that we solved in a number of ways, such as the painter’s algorithm
and with z-buffering before. However, it’s possible to solve the problem in another way: by
using the BSP tree. From any viewpoint, the BSP can tell us the proper back-to-front and
front-to-back order of the polygons, as well as other useful information.
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FIGURE 13.6 The basic problem for the BSP to solve.

The BSP algorithm works by simply taking all the polygons in the mesh or environment
and then partitioning them into convex subspaces based on splitting planes. These split-
ting planes can either be axis-aligned, arbitrary, or coplanar with the polygons themselves.
Let’s take a quick look at each of these techniques and then focus on the most commonly
used method.

Axis-Aligned Binary Space Partitioning
Figure 13.8 depicts an initial set of polygons and the subsequent partitioning of the poly-
gons with axis-aligned planes. As you see, the polygons are partitioned into small boxes
until each box contains a single polygon. If a partition intersects any polygon, the
polygon is split and added to both subspaces of the partitioning plane in most cases.
However, another technique is to tag the polygon in both subspaces (or boxes, in this
case), and then later during runtime flag the polygon as being “touched.” Then when
another pass from another subspace tries to access the polygon, it’s ignored because it has
already been touched. Also, note that by definition, each partitioned space is convex,
because any square or cube is convex. Thus, each node of the BSP defines a convex
subspace—we will return to this in detail shortly.
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FIGURE 13.7 Rendering order for back-to-front rendering.

Arbitrary Plane Space Partitioning
Figure 13.9 depicts the second method of partitioning the polygons: selecting partitioning
planes that divide the polygons up into nice clean partitions. A heuristic or other algo-
rithm might also be invoked to try to find partitioning planes that equally divide the
polygons, or cause the least number of splits, and so forth. The result of this type of parti-
tioning is that a BSP tree is generated in which each node defines a subspace, and each
terminal leaf defines a convex subspace. Thus, beginning at the root, the right child
defines everything behind the partitioning plane, and the left child defines everything in
front of the partitioning plane. Then when a terminal lead node is reached in the tree, it
defines a convex subspace that contains one or more polygons, as shown in Figure 13.9.

You are probably still wondering how all this partitioning helps, and I am getting there,
but first let’s get the mechanical stuff out of the way. Let’s direct our attention toward the
last method of partitioning.
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FIGURE 13.8 Axis-aligned polygon partitioning.

Polygon-Aligned Space Partitioning
Polygon-aligned space partitioning works as follows: A polygon is selected from the scene
as the partitioning plane (it doesn’t really matter which, for now). The plane in which the
polygon lies is infinite in nature and is referred to as a hyperplane. This then divides space
into two half spaces, as shown in Figure 13.10.

Then the algorithm tests each polygon in the scene against the partitioning plane and
determines which side the test polygon is on (front or back). If the partitioning plane
happens to cut a polygon(s) in half, the polygon is split into two polygons at the intersec-
tion point (line), as shown in Figure 13.11.
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FIGURE 13.9 Arbitrary polygon partitioning planes.
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NOTE

The term hyperplane is used in n-dimensional geometry to simply describe an object that has one
fewer dimension than the space itself. For example, in 3D space a hyperplane would be a 2D
sheet or a plane, as you would expect. In n-dimensional space, a hyperplane would have the
dimension n-1. In reality, it just sounds cool. <BG>
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FIGURE 13.11 A polygon-aligned partition partitioning space and dividing geometry.

After the algorithm has completed this first step, each of the polygon lists representing the
polygons on the front and back half spaces that were generated by this step (the list of
polygons on the front and back sides of the partitioning plane) are recursively processed
in a similar fashion. This is continued until all the polygons have been processed and the
BSP tree has been built. Thus, the initial polygon-linked list attached to the BSP node is
used to “feed” the partitioning system.

As an example, Figure 13.12 illustrates the construction of two similar BSPs from a scene
consisting of five polygons using two different starting selections for the initial partition-
ing plane. The first step of the algorithm is to create a single node that contains the parti-
tioning plane. Then the children of this node become two linked lists: one list represents
the front polygons, and the other represents the back polygons relative to the plane itself.
Each of these lists are then processed in the same way: The front list has a partitioning
plane selected (any will work, for now) and then the polygons in the front list are parti-
tioned. This process continues until finally trees of the form in Figures 13.12b and 13.12e
are obtained.

After the BSP tree is constructed, it exhibits a number of special properties that can be
leveraged for rendering, collision, or large-scale culling. For example, a modified in-order
recursive visitation algorithm can be used to visit the polygon in perfect back-to-front
order for any viewpoint. Let me repeat that: For any viewpoint in the 3D world, we can
use a simple linear time in-order search to determine the exact order in which to render
the polygons back to front (like the perfect painter’s algorithm). We can do this without
polygon sorting and without a Z-buffer!

Additionally, as the search time to visit every node of a binary search tree (BST) is always
linear, or O(n), because it can be reduced to a linear stack problem. Finding a single key is
always O(log

2
n).
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FIGURE 13.12 Step-by-step creation of a BSP tree.
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NOTE

The selection of the partitioning plane is important, because poor selection can lead to more
polygon splits and/or unbalanced trees. (The former is much more important.) This is definitely
an important detail to discuss later. In most cases, a simple heuristic can be used in which
0.1–1% of the potential set of polygons are selected randomly each iteration as potential split-
ters. The algorithm is run on each, and the results are used to select which polygon to actually
use as the splitter, based on the number of splits, and the balance as parameters to an optimiza-
tion function, and the algorithm continues. So, if you have a world of 10,000 polygons, you will
need to test 10–100 polygons at most each iteration to get nearly optimal results.

Now that you have a rough idea of how a BSP tree is created, let’s get down to the details
and list the steps needed to code it. Assuming that a linked list of polygons that makes up
the game universe or level to be partitioned has been created (by some tool or function)
and the head of this list is called root, then a rough algorithm to create the BSP tree is as
follows:

1. Select a polygon in the list based on some heuristic and use it as a partitioning
plane. If there are no more polygons in the list, exit.

2. Create two sublists, each attached to the front and back pointers of the partitioning
plane BSP node that contain the polygons in front and in back of the partitioning
plane, as seen in Figure 13.13.

3. Process the front list recursively.

4. Process the back list recursively.

Of course, there are a million details to be considered, such as how do we determine
which side a polygon is on relative to the partitioning plane? Which plane should be
selected as the partitioning plane each cycle? (We have made some suggestions on this
topic.) What are the best data structures to use?

NOTE

We have been generalizing BSP trees, but now we need to start getting specific. We are going to
implement a 2D BSP for the most part. Of course, the BSP will be used in a full 3D engine.
However, I don’t have time to create a full 3D modeling tool to generate 3D BSPs, and the planar
intersection calculations for arbitrary planes intersecting is more complex and has nothing to do
with BSP trees. Thus, I’m going to keep it simple and we are going to create BSP worlds that
consist of line segments that will be converted into 3D walls. However, all the modeling and BSP
will initially be performed in 2D space to ease the complexity of the problem. Generalizing the
math to 3D is just that—more math—and you are more than equipped to do it.

CHAPTER 13 Spatial Partitioning and Visibility Algorithms1320
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FIGURE 13.13 A detailed view of the BSP data and related data structure.

Displaying/Visiting Each Node of a BSP Tree
As I mentioned, BSP trees can be used for many things: rendering, collision, culling, and
so forth. However, in many cases they are used to compute the exact back-to-front or
front-to-back rendering order of a level for an arbitrary viewpoint. Let’s talk about how
this is done.

Thankfully, displaying the BSP tree is much easier than building it. All we need to do is
write an algorithm that uses a modified in-order binary tree traversal algorithm, along
with a traversal condition that guides the search path branches taken based on which side
the viewer is on for each test polygon (partitioning plane).

The algorithm works as follows: We begin at the root of the BSP, as shown in Figure 13.14.
Then the viewpoint is tested against the plane equation of the root polygon (which
defines a plane in 3D). If the viewpoint is on the front side of the root, the algorithm
recursively searches the back branch, visits the polygon (displaying or processing the
polygon), and then recursively traverses the front branch.
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FIGURE 13.14 The polygons and BSP tree used for the sample traversal.

On the other hand, if the viewpoint is on the back side of the partitioning plane, the
opposite steps are taken: The front branch is traversed recursively, the polygon is visited,
and finally the back branch is recursively traversed.

This might be a little confusing, so let’s think about it for a moment and then look at
another example. The key to the BSP tree is that after the tree is built, then wherever we
place the viewpoint, the subspace that the viewpoint is currently in is guaranteed both to
have the closest polygon in it and to be convex. Thus the subspace behind said polygon is
guaranteed to be farther away. Therefore, we can take advantage of this by exploiting the
BSP’s capability to determine the perfect back-to-front rendering order of the polygons. In
Figure 13.15, we see the viewpoint located in world coordinates at some location p0,
along with the polygons that make up the BSP.

Initially, we see that our viewpoint is on the front side of polygon 1. Thus, we know that
we must be closest to it, because if we are on the front side of it and there are no more
partitioning planes, by definition we are in a convex subspace, and polygon 1 is the
closest to us. Based on this property, we know that polygons on the back side of polygon 1
are farther from us, so if we visit those polygons, we can apply this same idea recursively
at any point. Thus, if we visit the polygons (always recursing such that we continually
search until we are the farthest away from the viewpoint) and then visit each node
(drawing it), we are guaranteed to get back-to-front order. Similarly, if we visit each node
using the opposite search strategy, the results will be perfect front-to-back order.
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FIGURE 13.15 The polygons in the current subspace are closer to the viewpoint.

Let’s take a look at another example to illustrate these concepts and solidify them. Using
the BSP tree from Figure 13.14, assume the viewpoint is located as shown in Figure 13.14
also. Let’s see whether the algorithm works correctly by applying the algorithm step-by-
step to the polygons, as outlined here.

1. Begin at polygon 2. The viewpoint is within the back-half space; therefore, traverse
the front-half space of polygon 2.

2. Because polygon 1 has no children, it is rendered and the stack is popped back to
polygon 2.

3. Polygon 2 is rendered and the back-half space is traversed.

4. The viewpoint is within the front-half space of polygon 4; therefore, traverse the
back-half space of polygon 4.

5. Because polygon 3 has no children, it is rendered and the stack is popped back to
polygon 4.

6. Polygon 4 is rendered.
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7. The front-half space of polygon 4 is traversed.

8. Because polygon 5 has no children, it is rendered and the stack is popped all the 
way out.

Therefore, the polygons are drawn in the sequence 1, 2, 3, 4, and 5, which is perfect back-
to-front order.

The BSP visitation algorithm will work all the time regardless of the polygon(s) selected as
the partitioning planes during construction, and regardless of the viewpoint and orienta-
tion. And just to be complete, let’s see the traversal algorithm in pseudo-C/C++ code this
time, instead of a step-by-step fashion.

Assume each node has both a front and a back pointer:

void Bsp_Traverse(BSPNODEV1_PTR root, VECTOR4D viewpoint)

{

if (root==NULL)

return;

if (viewpoint is on front side of root)

{

// perform an inorder traversal

Bsp_Traverse(root->back, viewpoint);

Visit_Polygon(root->poly);

Bsp_Traverse(root->front, viewpoint);

}

else

{

// perform an inorder traversal

Bsp_Traverse(root->front, viewpoint);

Display_Polygon(root->poly);

Bsp_Traverse(root->back, viewpoint);

}

} // end else

} // end Bsp_Traverse

Simple, huh! Of course, the determination of which side the viewpoint is on relative to
each polygon is a dot product computation. I left it out for simplicity here, so you can see
the beauty of the search algorithm.
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The next thing we’re going to do is take a look at what kind of data structures and support
we need to create a working BSP demo and integrate it into our existing 3D engine, with
support for lighting, texturing, clipping, and so forth.

The BSP Tree Functions and Data Structures
Implementing a BSP tree and supporting functions isn’t as simple as it might seem—there
are many decisions to make. Even though we are only interested in a demo of the tech-
nique, creating such a demo wasn’t an easy task. In the end I have tried to make every-
thing as simple as possible so the ideas are understood. Let’s begin with the data structure
used to represent a single-wall/BSP node, which uncovers our first problem.

Currently, our 3D engine is based completely on triangles and not quadrilaterals. This
design decision was made to simplify just about everything from representation, lighting,
clipping, and more. However, triangles aren’t the best representation when modeling inte-
rior models because most interiors are constructed of flat planar surfaces that are mostly
quads. With this in mind, I had to punt. Rather than use two triangles to represent a
quad, I decided to simply create a new polygon type with four vertices instead of three
and do all the BSP work with this new representation. Then, during traversal of the BSP,
we can convert each BSP polygon node to two triangles, as shown in Figure 13.16.
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FIGURE 13.16 Using a quadrilateral representation to simplify the creation of the BSP tree.

On the other hand, I wanted to use a structure that was very familiar. Therefore, all I did
was take the POLYF4DV2 and add one more vertex to it, along with a “Q” to the name.
Here’s the new polygon that supports quads:

// a self contained quad polygon used for the render list version 2 //////

// we need this to represent the walls since they are quads

typedef struct POLYF4DV2Q_TYP

{
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int   state;      // state information

int   attr;      // physical attributes of polygon

int   color;      // color of polygon

int   lit_color[4]; // holds colors after lighting, 0 for flat shading

// 0,1,2 for vertex colors after vertex lighting

BITMAP_IMAGE_PTR texture; // pointer to the texture information for 

// simple texture mapping

int   mati;     // material index (-1) for no material

float  nlength;    // length of the polygon normal if not normalized

VECTOR4D normal;    // the general polygon normal

float  avg_z;     // average z of vertices, used for simple sorting

VERTEX4DTV1 vlist[4];  // the vertices of this quad

VERTEX4DTV1 tvlist[4]; // the vertices after transformation if needed

POLYF4DV2Q_TYP *next;  // pointer to next polygon in list??

POLYF4DV2Q_TYP *prev;  // pointer to previous polygon in list??

} POLYF4DV2Q, *POLYF4DV2Q_PTR;s

I have bolded the changed fields from the previous POLYF4DV2 structure. We can use the
POLYF4DV2Q to represent single quads, but we need to encapsulate it in a BSP node that
contains not only one of these quads, which represents both the polygon itself and parti-
tioning plane (implicitly), but it needs to support front and back links to build the BSP
structure itself. I call this a general BSP node:

// a general bsp node, all bsp trees are built from this

// struct, and the root of a bsp is also this struct

typedef struct BSPNODEV1_TYP

{

int    id;   // id tag for debugging

POLYF4DV2Q wall; // the actual wall quad

struct BSPNODEV1_TYP *link; // pointer to next wall

struct BSPNODEV1_TYP *front; // pointer to walls in front

struct BSPNODEV1_TYP *back; // pointer to walls behind

} BSPNODEV1, *BSPNODEV1_PTR;

The BSPNODEV1 is the basic unit that will be contained within the BSP tree. Figure 13.17
depicts the BSPNODEV1 graphically. Each node basically consists of a quadrilateral polygon,
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an identification number for debugging, and three pointers, two of which we have
discussed (the front and back pointers). The last pointer is called link, and is used to link
all the BSP node walls together in a linked list during construction. This data linked to
link is the raw input format for the walls to the binary space partitioner algorithm.
Therefore, any program can create the linked list of walls that make up the game level to
be BSPed. The list is then presented to the binary space partitioner for processing.
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FIGURE 13.17 The BSPNODEV1 unit graphically represented.

Now, let’s assume for a moment that some other program or tool has enabled the user to
input a set of walls, and a linked list using the link elements to connect each wall has
been generated, as shown in Figure 13.18. Let’s write a program that takes this as the
input and creates the final BSP tree.

Creating the BSP Tree
Theoretically (long pause), building the BSP isn’t too hard, but when the pointers start
flying, the memory is being allocated, and coplanar walls have points in common, things
get uglier faster than an IRS audit of a massage parlor. However, I have tried to make the
function as clean as possible. Abstractly, the function works as follows: The wall list is
presented to the function, then the first element in the list is used as the partitioning
plane, and the walls on the front and back of the plane are placed into two lists that lead
from the front and back pointers of the first partitioning node. The individual lists are
linked together using the link field of the wall structure. Each of these lists are then used
as inputs to recursive calls to the BSP creation function again. This process continues until
each of the front and back lists have only one polygon or none. At this point, the BSP tree
is complete.
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FIGURE 13.18 The wall list before being processed into a BSP tree.

There are a couple of major difficulties during this process, and some special cases that
must be considered. First let’s talk about the difficulties. The first problem is how to deter-
mine which side a polygon is on of the partitioning plane. Figure 13.19 shows the three
cases.
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FIGURE 13.19 The geometrical orientation cases that must be considered for each wall.

Case 1: Both endpoints are on the front side on the test partition.

Case 2: Both endpoints are on the back side of the test partition.

Case 3: One endpoint is on the front side and one is on the back side of the test parti-
tion, so the polygon must be split into two.
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Cases 1 and 2 are easy to test and easy to deal with. In these cases, the surface normal of
the partitioning plane and the dot product of the vector to each test vertex of the test
polygon’s endpoints are used to determine which side each of the endpoints of the test
wall are on. Walls on the front side are added to the front list of the partitioning wall, and
walls on the back side of the partitioning wall are added to the back of the partitioning
plane’s linked lists. The problems occur with Case 3.

In this case, we need to extend the partitioning plane and determine where it intersects
the test wall. This is easy to do because the walls are represented as 2D segments in the 
x-z plane. Computing the point of intersection between two walls thus becomes the same
as determining the point of intersection between two 2D lines, as shown in Figure 13.20.
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FIGURE 13.20 The mechanics of two intersecting lines.

There are many ways to compute the intersection of the infinite lines, but we are going to
use the straightforward method of the line equations rather than parametrics, because it
would be extra work to put the line segments into parametric form, as we gain nothing
from it, for the most part, in this limited context. In a real BSP engine, I might decide to
use parametric lines, but for now the line equations are easier. Also, remember that creat-
ing the BSP isn’t time-critical (only displaying it is), because after we have the BSP, we can
just load it in from disk and use it—so a little extra computation isn’t going to kill us here.

Anyway, refer to Figure 13.20 for the derivation of the intersection equations (which
should look familiar). What we need are two linear equations of the form

a1*x + a1*y = c1

a2*x + a2*y = c2

where each equation represents one of the lines in question. Then we can solve the system
of equations using Cramer’s rule, matrix multiplication, or substitution, as we learned in
Chapters 4 and 5. I prefer Cramer’s rule, which states in a nutshell that the variables in a
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system of linear equations can be computed by replacing the column in the coefficient
matrix of the desired variable with the constant column vector and then computing the
determinant of the matrix. The results of this calculation are then divided by the determi-
nant of the original coefficient matrix. This is done for each variable to be computed. The
coefficient matrix of the preceding system is

C =   |a1  b1|

|a2  b2|

and Det(C) = (a1*b2 - a2*b1)

To find x, we would compute the following:

Det of  |c1  b1|

|c2  b2|          (b2*c1 - b1*c2)

xi = ------------------------- = ----------------------

(a1*b2 - a2*b1)            (a1*b2 - a2*b1)

And y can be found with the following:

Det of   |a1  c1|

|a2  c2|        (a1*c2 - a2*c1)

yi = ------------------------ = ----------------------  

(a1*b2 - a2*b1)          (a1*b2 - a2*b1)

But the only problem is, how do we get the lines into linear equation form? Simple—we
can use the point-slope form of a line, which states

m*(x-x0) = (y-y0)

where m is the slope, and is equal to (y1-y0)/(x1-x0). If we rearrange the equation, we can
put it into the linear form we desire:

(m)*x + (-1)* y = (m*x0-y0)

Which is of the form:

a*x + b*y = c

where a = m, b = -1, and c = (m*x0-y0)

Based on the preceding derivation (which should look very familiar, as we covered this
same material in Chapters 4 and 5), the following function computes the intersection of
two lines, given their endpoints:

void Intersect_Lines(float x0,float y0,float x1,float y1,

float x2,float y2,float x3,float y3,

float *xi,float *yi)

{
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// this function computes the intersection of the sent lines

// and returns the intersection point, note that the function assumes

// the lines intersect. the function can handle vertical as well

// as horizontal lines. note the function isn’t very clever, it simply applies

// the math, but we don’t need speed since this is a pre-processing step

// we could have used parametric lines if we wanted, but this is more straight

// forward for this use, I want the intersection of 2 infinite lines

// rather than line segments as the parametric system defines

float a1,b1,c1, // constants of linear equations

a2,b2,c2,

det_inv, // the inverse of the determinant of the coefficient matrix

m1,m2;  // the slopes of each line

// compute slopes, note the cludge for infinity, however, this will

// be close enough

if ((x1-x0)!=0)

m1 = (y1-y0) / (x1-x0);

else

m1 = (float)1.0E+20;  // close enough to infinity

if ((x3-x2)!=0)

m2 = (y3-y2) / (x3-x2);

else

m2 = (float)1.0E+20;  // close enough to infinity

// compute constants

a1 = m1;

a2 = m2;

b1 = -1;

b2 = -1;

c1 = (y0-m1*x0);

c2 = (y2-m2*x2);

// compute the inverse of the determinate

det_inv = 1 / (a1*b2 - a2*b1);

// use cramers rule to compute xi and yi

*xi=((b1*c2 - b2*c1)*det_inv);

*yi=((a2*c1 - a1*c2)*det_inv);

} // end Intersect_Lines
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The function takes as parameters the x,y endpoints of two lines, and a pair of pointers to
floats to return the intersection point in.

NOTE

The function assumes that the lines are not parallel; that is, they intersect. If the lines are parallel,
there is a problem and a division by zero will occur, because the determinant of two parallel lines
will always be zero. This can easily be remedied by first checking whether the lines are parallel
within some tolerance, and then returning some code to signify that there is a problem.
However, if the function is called, the lines weren’t parallel in the first place. It’s good defensive
programming to add the test just in case—I leave it to you.

Now that we know how to find the intersection of the partitioning plane with the test
wall, we unfortunately must split the test wall into two walls at the intersection point xi,
yi (or in 3D: xi, zi in the x-z plane). One half of the split wall is then inserted into the
front-linked list, and the other is inserted into the back-linked list of the partitioning
plane’s node.

Splitting Strategies
Before moving on, let’s talk about an optimization. When a wall is split into two sub-
walls, instead of splitting the wall, it’s possible to add the wall to both the front and back
sub-trees intact, but with a field that records where the intersection takes place for future
reference. This way, we won’t get polygon splits. However, we do get two copies of the
polygon linked to the front and back partitioning planes.

This might seem like a problem, but it’s not. During BSP traversal, any polygon that’s
visited is tagged or marked as it’s visited. So, if a polygon has two links, the first visitation
will set the visited flag and any other visitations will be ignored. Additionally, using this
technique a polygon might be split numerous times, and therefore have multiple splitting
points. Thus, a strategy to track multiple split points in an array or other similar data
structure is needed. Nevertheless, the visitation tagging algorithm will continue to work—
after a polygon is visited, even if it’s visited again, ignore it. This will always maintain the
property of perfect back-to-front and front-to-back BSP searching. However, we won’t be
doing this, because it complicates my already complicated life <BG>.

Moving on, let’s get back to building the BSP and talk about special cases, because they
always exist. First, we’re going to assume that no two walls intersect, as shown in Figure
13.21. This isn’t much of a constraint, because if you want a wall to intersect another, you
can always use two walls, one on each side of the intersector.

However, the other common case of two walls with a vertex point in common is unavoid-
able and must be dealt with. Take a look at Figure 13.22. Here we see a set of coplanar
polygon wall segments. The problem is that during our calculation, we find that the
points in common can neither be classified as on the front side or on the back side of the
partitioning planes. So, what should we do?

CHAPTER 13 Spatial Partitioning and Visibility Algorithms1332

18 0672318350 CH13  05•02•2003  2:58 PM  Page 1332



FIGURE 13.21 Walls are not allowed to intersect and interpenetrate.
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FIGURE 13.22 Coplanar polygons sets with shared vertices.

The answer is to ask ourselves, what exactly does it mean when two walls have an edge in
common? This is the key to determining what to do in this case. When two walls have a
vertical edge in common, or from the aerial view they have common endpoints, it only
means that the point is neither on the front nor the back side of the wall. In essence, the
common point is on the plane itself; therefore, we must decide where the test wall should
be placed in reference to the partitioning plane by analyzing the second endpoint.
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Hence, after it has been determined that the partitioning plane and the test wall have a
common edge or point (however you want to think of it, 3D or 2D), the second vertex
point of the test wall is used to resolve which side the test polygon is on relative to the
partitioning plane. Alas, there is one little problem: What if the second endpoint or edge
is also on the plane of the partitioning plane? Well, this isn’t a problem—in fact, in this
case it doesn’t matter on which side we put the test wall, as either the front or the back
will do equally well.

However, there is another optimization or simplification that can be made with coplanar
walls, and that is to place them into collections with each other. For example, in Figure
13.22, why even perform any computations with all the individual wall segments? We
know that they are all coplanar (or we can compute it), so we can use a single segment or
wall to represent all of them, and cases of coplanar wall segments will never occur!

Of course, this comes at the cost of simplicity. The data structure holding the BSP once
again becomes more complex, and although we can think of the collection of wall
segments as a single wall or plane, we still have to be able to split them on other partition-
ing planes. So, basically we have to collect them into a linked list of coplanar walls,
perform the intersection calculations as if they were a single wall, and then split them as if
they were multiple walls and place them appropriately on the front and back links of the
partitioning plane at any given iteration of the algorithm. This is shown in Figure 13.23.
Again, this is a lot of drama so we are going to pass on it; however, in a real engine, you
definitely want to go through the trouble of writing the code for this, because it will be
worth it in the end.
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Now that we finally have an outline of the algorithm in implementational terms, let’s see
the actual function that creates the BSP tree, given a linked list of walls generated by some
other source. Here’s the code:

void Bsp_Build_Tree(BSPNODEV1_PTR root)

{

// this function recursively builds the bsp tree from the root of the wall list

// the function works by taking the wall list which begins as a linked list

// of walls in no particular order, then it uses the wall at the TOP of the list

// as the separating plane and then divides space with that wall computing

// the walls on the front and back of the separating plane. The walls that are

// determined to be on the front and back, are once again linked lists, that

// are each processed recursively in the same manner. When the process is

// complete the entire BSP tree is built with exactly one node/leaf per wall

static BSPNODEV1_PTR next_wall, // pointer to next wall to be processed

front_wall,  // the front wall

back_wall,   // the back wall

temp_wall;   // a temporary wall

static float dot_wall_1,       // dot products for test wall

dot_wall_2,

wall_x0,wall_y0,wall_z0, // working vars for test wall

wall_x1,wall_y1,wall_z1,

pp_x0,pp_y0,pp_z0,    // working vars for partitioning plane

pp_x1,pp_y1,pp_z1,

xi,zi;          // points of intersection when the partioning

// plane cuts a wall in two

static VECTOR4D test_vector_1, // test vectors from the partioning plane

test_vector_2; // to the test wall to test the side

// of the partioning plane the test wall

// lies on

static int front_flag = 0,   // flags if a wall is on the front or back

back_flag = 0,   // of the partioning plane

index;        // looping index

// SECTION 1 ////////////////////////////////////////////////////////////////

// test if this tree is complete

if (root==NULL)

return;
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// the root is the partitioning plane, partition the polygons using it

next_wall = root->link;

root->link = NULL;

// extract top two vertices of partioning plane wall for ease of calculations

pp_x0 = root->wall.vlist[0].x;

pp_y0 = root->wall.vlist[0].y;

pp_z0 = root->wall.vlist[0].z;

pp_x1 = root->wall.vlist[1].x;

pp_y1 = root->wall.vlist[1].y;

pp_z1 = root->wall.vlist[1].z;

// SECTION 2 ////////////////////////////////////////////////////////////////

// test if all walls have been partitioned

while(next_wall)

{

// test which side test wall is relative to partioning plane

// defined by root

// first compute vectors from point on partioning plane to points on

// test wall

VECTOR4D_Build(&root->wall.vlist[0].v,

&next_wall->wall.vlist[0].v,

&test_vector_1);

VECTOR4D_Build(&root->wall.vlist[0].v,

&next_wall->wall.vlist[1].v,

&test_vector_2);

// now dot each test vector with the surface normal and analyze signs

// to determine half space

dot_wall_1 = VECTOR4D_Dot(&test_vector_1, &root->wall.normal);

dot_wall_2 = VECTOR4D_Dot(&test_vector_2, &root->wall.normal);

// SECTION 3 ////////////////////////////////////////////////////////////////

// perform the tests

// case 0, the partioning plane and the test wall have a point in common

// this is a special case and must be accounted for, shorten the code

// we will set a pair of flags and then the next case will handle

// the actual insertion of the wall into BSP
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// reset flags

front_flag = back_flag = 0;

// determine if wall is tangent to endpoints of partitioning wall

if (VECTOR4D_Equal(&root->wall.vlist[0].v ,&next_wall->wall.vlist[0].v) )

{

// p0 of partioning plane is the same at p0 of test wall

// we only need to see what side p1 of test wall in on

if (dot_wall_2 > 0)

front_flag = 1;

else

back_flag = 1;

} // end if

else

if (VECTOR4D_Equal(&root->wall.vlist[0].v, &next_wall->wall.vlist[1].v) )

{

// p0 of partioning plane is the same at p1 of test wall

// we only need to see what side p0 of test wall in on

if (dot_wall_1 > 0)

front_flag = 1;

else

back_flag = 1;

} // end if

else

if (VECTOR4D_Equal(&root->wall.vlist[1].v, &next_wall->wall.vlist[0].v) )

{

// p1 of partioning plane is the same at p0 of test wall

// we only need to see what side p1 of test wall in on

if (dot_wall_2 > 0)

front_flag = 1;

else

back_flag = 1;

} // end if

else

if (VECTOR4D_Equal(&root->wall.vlist[1].v, &next_wall->wall.vlist[1].v) )

{

// p1 of partioning plane is the same at p1 of test wall

// we only need to see what side p0 of test wall in on
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if (dot_wall_1 > 0)

front_flag = 1;

else

back_flag = 1;

} // end if

// SECTION 4 ////////////////////////////////////////////////////////////////

// case 1 both signs are the same or the front or back flag has been set

if ( (dot_wall_1 >= 0 && dot_wall_2 >= 0) || front_flag )

{

// place this wall on the front list

if (root->front==NULL)

{

// this is the first node

root->front   = next_wall;

next_wall    = next_wall->link;

front_wall    = root->front;

front_wall->link = NULL;

} // end if

else

{

// this is the nth node

front_wall->link = next_wall;

next_wall    = next_wall->link;

front_wall    = front_wall->link;

front_wall->link = NULL;

} // end else

} // end if both positive

// SECTION 5 ////////////////////////////////////////////////////////////////

else // back side sub-case

if ( (dot_wall_1 < 0 && dot_wall_2 < 0) || back_flag)

{

// place this wall on the back list

if (root->back==NULL)

{

// this is the first node

root->back   = next_wall;
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next_wall    = next_wall->link;

back_wall    = root->back;

back_wall->link = NULL;

} // end if

else

{

// this is the nth node

back_wall->link = next_wall;

next_wall    = next_wall->link;

back_wall    = back_wall->link;

back_wall->link = NULL;

} // end else

} // end if both negative

// case 2 both signs are different, we must partition the wall

// SECTION 6 ////////////////////////////////////////////////////////////////

else

if ( (dot_wall_1 < 0 && dot_wall_2 >= 0) ||

(dot_wall_1 >= 0 && dot_wall_2 < 0))

{

// the partioning plane cuts the wall in half, the wall

// must be split into two walls

// extract top two vertices of test wall for ease of calculations

wall_x0 = next_wall->wall.vlist[0].x;

wall_y0 = next_wall->wall.vlist[0].y;

wall_z0 = next_wall->wall.vlist[0].z;

wall_x1 = next_wall->wall.vlist[1].x;

wall_y1 = next_wall->wall.vlist[1].y;

wall_z1 = next_wall->wall.vlist[1].z;

// compute the point of intersection between the walls

// note that the intersection takes place in the x-z plane

Intersect_Lines(wall_x0, wall_z0, wall_x1, wall_z1,

pp_x0,  pp_z0,  pp_x1,  pp_z1,

&xi, &zi);

// here comes the tricky part, we need to split the wall in half and

// create two new walls. We’ll do this by creating two new walls,

The Binary Space Partition 1339

13

18 0672318350 CH13  05•02•2003  2:58 PM  Page 1339



// placing them on the appropriate front and back lists and

// then deleting the original wall (hold your breath)...

// process first wall...

// allocate the memory for the wall

temp_wall = (BSPNODEV1_PTR)malloc(sizeof(BSPNODEV1));

// set links

temp_wall->front = NULL;

temp_wall->back = NULL;

temp_wall->link = NULL;

// poly normal is the same

temp_wall->wall.normal = next_wall->wall.normal;

temp_wall->wall.nlength = next_wall->wall.nlength;

// poly color is the same

temp_wall->wall.color = next_wall->wall.color;

// poly material is the same

temp_wall->wall.mati = next_wall->wall.mati;

// poly texture is the same

temp_wall->wall.texture = next_wall->wall.texture;

// poly attributes are the same

temp_wall->wall.attr = next_wall->wall.attr;

// poly states are the same

temp_wall->wall.state = next_wall->wall.state;

// add factor denote a split

temp_wall->id = next_wall->id + WALL_SPLIT_ID; 

// compute wall vertices

for (index = 0; index < 4; index++)

{

temp_wall->wall.vlist[index].x = next_wall->wall.vlist[index].x;

temp_wall->wall.vlist[index].y = next_wall->wall.vlist[index].y;

temp_wall->wall.vlist[index].z = next_wall->wall.vlist[index].z;

temp_wall->wall.vlist[index].w = 1;

// copy vertex attributes, texture coordinates, normal

temp_wall->wall.vlist[index].attr= next_wall->wall.vlist[index].attr;
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temp_wall->wall.vlist[index].n  = next_wall->wall.vlist[index].n;

temp_wall->wall.vlist[index].t  = next_wall->wall.vlist[index].t;

} // end for index

// now modify vertices 1 and 2 to reflect intersection point

// but leave y alone since it’s invariant for the wall spliting

temp_wall->wall.vlist[1].x = xi;

temp_wall->wall.vlist[1].z = zi;

temp_wall->wall.vlist[2].x = xi;

temp_wall->wall.vlist[2].z = zi;

// SECTION 7 ////////////////////////////////////////////////////////////////

// insert new wall into front or back of root

if (dot_wall_1 >= 0)

{

// place this wall on the front list

if (root->front==NULL)

{

// this is the first node

root->front   = temp_wall;

front_wall    = root->front;

front_wall->link = NULL;

} // end if

else

{

// this is the nth node

front_wall->link = temp_wall;

front_wall    = front_wall->link;

front_wall->link = NULL;

} // end else

} // end if positive

else

if (dot_wall_1 < 0)

{

// place this wall on the back list

if (root->back==NULL)

{

// this is the first node

root->back   = temp_wall;

The Binary Space Partition 1341

13

18 0672318350 CH13  05•02•2003  2:58 PM  Page 1341



back_wall    = root->back;

back_wall->link = NULL;

} // end if

else

{

// this is the nth node

back_wall->link = temp_wall;

back_wall    = back_wall->link;

back_wall->link = NULL;

} // end else

} // end if negative

// SECTION 8 ////////////////////////////////////////////////////////////////

// process second wall...

// allocate the memory for the wall

temp_wall = (BSPNODEV1_PTR)malloc(sizeof(BSPNODEV1));

// set links

temp_wall->front = NULL;

temp_wall->back = NULL;

temp_wall->link = NULL;

// poly normal is the same

temp_wall->wall.normal = next_wall->wall.normal;

temp_wall->wall.nlength = next_wall->wall.nlength;

// poly color is the same

temp_wall->wall.color = next_wall->wall.color;

// poly material is the same

temp_wall->wall.mati = next_wall->wall.mati;

// poly texture is the same

temp_wall->wall.texture = next_wall->wall.texture;

// poly attributes are the same

temp_wall->wall.attr = next_wall->wall.attr;
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// poly states are the same

temp_wall->wall.state = next_wall->wall.state;

// add factor denote a split

temp_wall->id = next_wall->id + WALL_SPLIT_ID; 

// compute wall vertices

for (index=0; index < 4; index++)

{

temp_wall->wall.vlist[index].x = next_wall->wall.vlist[index].x;

temp_wall->wall.vlist[index].y = next_wall->wall.vlist[index].y;

temp_wall->wall.vlist[index].z = next_wall->wall.vlist[index].z;

temp_wall->wall.vlist[index].w = 1;

// copy vertex attributes, texture coordinates, normal

temp_wall->wall.vlist[index].attr= next_wall->wall.vlist[index].attr;

temp_wall->wall.vlist[index].n  = next_wall->wall.vlist[index].n;

temp_wall->wall.vlist[index].t  = next_wall->wall.vlist[index].t;

} // end for index

// now modify vertices 0 and 3 to reflect intersection point

// but leave y alone since it’s invariant for the wall spliting

temp_wall->wall.vlist[0].x = xi;

temp_wall->wall.vlist[0].z = zi;

temp_wall->wall.vlist[3].x = xi;

temp_wall->wall.vlist[3].z = zi;

// insert new wall into front or back of root

if (dot_wall_2 >= 0)

{

// place this wall on the front list

if (root->front==NULL)

{

// this is the first node

root->front   = temp_wall;

front_wall    = root->front;

front_wall->link = NULL;

} // end if

else

{

// this is the nth node

front_wall->link = temp_wall;
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front_wall    = front_wall->link;

front_wall->link = NULL;

} // end else

} // end if positive

else

if (dot_wall_2 < 0)

{

// place this wall on the back list

if (root->back==NULL)

{

// this is the first node

root->back   = temp_wall;

back_wall    = root->back;

back_wall->link = NULL;

} // end if

else

{

// this is the nth node

back_wall->link = temp_wall;

back_wall    = back_wall->link;

back_wall->link = NULL;

} // end else

} // end if negative

// SECTION 9 ////////////////////////////////////////////////////////////////

// we are now done splitting the wall, so we can delete it

temp_wall = next_wall;

next_wall = next_wall->link;

// release the memory

free(temp_wall);

} // end else

} // end while

// SECTION 10 ////////////////////////////////////////////////////////////////
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// recursively process front and back walls/sub-trees

Bsp_Build_Tree(root->front);

Bsp_Build_Tree(root->back);

} // end Bsp_Build_Tree

The function has clear areas of interest that are arranged in highlighted sections. Let’s
review what each section does:

• Section 1—Tests whether the current BSPNODEV1 pointer is NULL. If not, the vertices
of the partitioning plane are extracted.

• Section 2—The two endpoints of the first wall below the partitioning plane in its
wall-linked list are used to determine their relative positions to the partitioning wall
by use of dot products.

• Section 3—The special case of common endpoints is processed, and flags are set to
track this into the next phase.

• Section 4—Based on the signs of the dot products, the test wall is determined to be
on front side of the partitioning plane and the test wall is added to the front-linked
list.

• Section 5—Based on the signs of the dot products, the test wall is determined to be
on the back side of the partitioning plane, and the test wall is added to the back-
linked list.

• Section 6—The test wall must have been cut in half by the partitioning plane.
Therefore, the coordinates of the two halves are computed.

• Section 7—If section 6 was executed, the first half of the wall is inserted into either
the front- or back-linked list.

• Section 8—If section 6 was executed, the second half of the wall is inserted into
either the front- or back-linked list.

• Section 9—The next wall to be processed is accessed and the process continues.

• Section 10—When all the walls of the list have been processed, the front and back
wall lists are recursively processed, and the function processes the front and back
lists.

When the function exits, the BSP tree is complete and the original wall list links are
mangled. The memory won’t be lost, but you can no longer use the link element to
traverse the wall list. Now that we have the BSP tree, let’s see how to display it.
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Traversing and Displaying the BSP Tree
We have already seen the algorithm to traverse the BSP tree, but how can we work this
into our graphics pipeline? The answer is that we will traverse the BSP tree, and during the
traversal, we’ll insert the polygons as they are visited into the rendering list, and then
simply pass the rendering list on to the remaining pipeline modules as we would any
object. Of course, as we traverse the BSP tree and insert each polygon into the rendering
list, we must split the quadrilateral into two triangles and compute the proper vertices,
texture coordinates, and so on of the two sub-triangles that the original quad composed.
This is shown in Figure 13.24.
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FIGURE 13.24 BSP traversal and insertion into the global rendering list.

The cool part is that we don’t need any sorting or z-buffering during rendering. We only
need to make sure that we insert the polygons that make up the BSP tree using the modi-
fied in-order traversal, so that the polygons are inserted in back-to-front order (like the
painter’s algorithm). Their ordering will be correct because they will be inserted into the
polygon list during the modified recursive in-order traversal of the BSP tree, which is guar-
anteed to generate the proper order for any viewpoint. Here’s the function that traverses
the BSP tree and adds the polygons to the rendering list.

void Bsp_Insertion_Traversal_RENDERLIST4DV2(

RENDERLIST4DV2_PTR rend_list, // the rendering list

BSPNODEV1_PTR root, // root of bsp tree

CAM4DV1_PTR cam,  // current camera

int insert_local=0) // which vertices to use

{

// converts the entire bsp tree into a face list and then inserts
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// the visible, active, non-clipped, non-culled polygons into

// the render list, also note the flag insert_local control

// whether or not the vlist_local or vlist_trans vertex list

// is used, thus you can insert a bsp tree “raw” totally untranformed

// if you set insert_local to 1, default is 0, that is you would

// only insert an object after at least the local to world transform

// the functions walks the tree recursively in back to front order

// relative to the viewpoint sent in cam, the bsp must be in world coordinates

// for this to work correctly

// this function works be testing the viewpoint against the current wall

// in the bsp, then depending on the side the viewpoint is the algorithm

// proceeds. the search takes place as the rest in an “inorder” method

// with hooks to process and add each node into the polygon list at the

// right time

static VECTOR4D test_vector;

static float dot_wall;

// SECTION 1 ////////////////////////////////////////////////////////////////

//Write_Error(“\nEntering Bsp_Insertion_Traversal_RENDERLIST4DV2()...”);

//Write_Error(“\nTesting root...”);

// is this a dead end?

if (root==NULL)

{

//Write_Error(“\nRoot was null...”);

return;

} // end if

//Write_Error(“\nRoot was valid...”);

// test which side viewpoint is on relative to the current wall

VECTOR4D_Build(&root->wall.vlist[0].v, &cam->pos, &test_vector);

// now dot test vector with the surface normal and analyze signs

dot_wall = VECTOR4D_Dot(&test_vector, &root->wall.normal);

//Write_Error(“\nTesting dot product...”);

// SECTION 2 ////////////////////////////////////////////////////////////////
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// if the sign of the dot product is positive then the viewer on on the

// front side of current wall, so recursively process the walls behind then

// in front of this wall, else do the opposite

if (dot_wall > 0)

{

// viewer is in front of this wall

//Write_Error(“\nDot > 0, front side...”);

// process the back wall sub tree

Bsp_Insertion_Traversal_RENDERLIST4DV2(rend_list, 

root->back, 

cam, insert_local);

// split quad into (2) triangles for insertion

POLYF4DV2 poly1, poly2;

// the only difference from the POLYF4DV2 and the POLYF4DV2Q is that

// the later has (4) vertices rather than (3), thus we are going to

// create (2) triangles from the single quad :)

// copy fields that are important

poly1.state  = root->wall.state;   // state information

poly1.attr  = root->wall.attr;    // physical attributes of polygon

poly1.color  = root->wall.color;   // color of polygon

poly1.texture = root->wall.texture;  // pointer to the texture 

// information for simple texture mapping

poly1.mati  = root->wall.mati;    // material index (-1) 

// for no material (new)

poly1.nlength = root->wall.nlength;  // length of the polygon normal 

// if not normalized (new)

poly1.normal = root->wall.normal;   // the general polygon normal (new)

poly2.state  = root->wall.state;   // state information

poly2.attr  = root->wall.attr;    // physical attributes of polygon

poly2.color  = root->wall.color;   // color of polygon

poly2.texture = root->wall.texture;  // pointer to the texture information 

// for simple texture mapping

poly2.mati  = root->wall.mati;    // material index (-1) f

// or no material (new)

poly2.nlength = root->wall.nlength;  // length of the polygon normal 

// if not normalized (new)

poly2.normal = root->wall.normal;   // the general polygon normal (new)

// now the vertices, they currently look like this

// v0   v1

//
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//

// v3   v2

// we want to create (2) triangles that look like this

//  poly 1      poly2

// v0   v1        v1

//

//

//

// v3        v3   v2

//

// where the winding order of poly 1 is v0,v1,v3 and the winding order

// of poly 2 is v1, v2, v3 to keep with our clockwise conventions

if (insert_local==1)

{

// polygon 1

poly1.vlist[0] = root->wall.vlist[0]; // the vertices of this triangle

poly1.tvlist[0] = root->wall.vlist[0]; // the vertices of this triangle

poly1.vlist[1] = root->wall.vlist[1]; // the vertices of this triangle

poly1.tvlist[1] = root->wall.vlist[1]; // the vertices of this triangle

poly1.vlist[2] = root->wall.vlist[3]; // the vertices of this triangle

poly1.tvlist[2] = root->wall.vlist[3]; // the vertices of this triangle

// polygon 2

poly2.vlist[0] = root->wall.vlist[1]; // the vertices of this triangle

poly2.tvlist[0] = root->wall.vlist[1]; // the vertices of this triangle

poly2.vlist[1] = root->wall.vlist[2]; // the vertices of this triangle

poly2.tvlist[1] = root->wall.vlist[2]; // the vertices of this triangle

poly2.vlist[2] = root->wall.vlist[3]; // the vertices of this triangle

poly2.tvlist[2] = root->wall.vlist[3]; // the vertices of this triangle

} // end if

else

{

// polygon 1

poly1.vlist[0] = root->wall.vlist[0];  // the vertices of this triangle

poly1.tvlist[0] = root->wall.tvlist[0]; // the vertices of this triangle

poly1.vlist[1] = root->wall.vlist[1];  // the vertices of this triangle

poly1.tvlist[1] = root->wall.tvlist[1]; // the vertices of this triangle
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poly1.vlist[2] = root->wall.vlist[3];  // the vertices of this triangle

poly1.tvlist[2] = root->wall.tvlist[3]; // the vertices of this triangle

// polygon 2

poly2.vlist[0] = root->wall.vlist[1];  // the vertices of this triangle

poly2.tvlist[0] = root->wall.tvlist[1]; // the vertices of this triangle

poly2.vlist[1] = root->wall.vlist[2];  // the vertices of this triangle

poly2.tvlist[1] = root->wall.tvlist[2]; // the vertices of this triangle

poly2.vlist[2] = root->wall.vlist[3];  // the vertices of this triangle

poly2.tvlist[2] = root->wall.tvlist[3]; // the vertices of this triangle

} // end if

//Write_Error(“\nInserting polygons...”);

// insert polygons into rendering list

Insert_POLYF4DV2_RENDERLIST4DV2(rend_list, &poly1);

Insert_POLYF4DV2_RENDERLIST4DV2(rend_list, &poly2);

// now process the front walls sub tree

Bsp_Insertion_Traversal_RENDERLIST4DV2(rend_list, root->front, 

cam, insert_local);

} // end if

// SECTION 3 ////////////////////////////////////////////////////////////////

else

{

// viewer is behind this wall

//Write_Error(“\nDot < 0, back side...”);

// process the back wall sub tree

Bsp_Insertion_Traversal_RENDERLIST4DV2(rend_list, root->front, 

cam, insert_local);

// split quad into (2) triangles for insertion

POLYF4DV2 poly1, poly2;

// the only difference from the POLYF4DV2 and the POLYF4DV2Q is that

// the later has (4) vertices rather than (3), thus we are going to

// create (2) triangles from the single quad :)

// copy fields that are important

poly1.state  = root->wall.state;   // state information
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poly1.attr  = root->wall.attr;    // physical attributes of polygon

poly1.color  = root->wall.color;   // color of polygon

poly1.texture = root->wall.texture;  // pointer to the texture 

// information for simple texture mapping

poly1.mati  = root->wall.mati;    // material index (-1) 

// for no material (new)

poly1.nlength = root->wall.nlength;  // length of the polygon normal 

// if not normalized (new)

poly1.normal = root->wall.normal;   // the general polygon normal (new)

poly2.state  = root->wall.state;   // state information

poly2.attr  = root->wall.attr;    // physical attributes of polygon

poly2.color  = root->wall.color;   // color of polygon

poly2.texture = root->wall.texture;  // pointer to the texture 

// information for simple texture mapping

poly2.mati  = root->wall.mati;    // material index (-1) 

// for no material (new)

poly2.nlength = root->wall.nlength;  // length of the polygon normal 

// if not normalized (new)

poly2.normal = root->wall.normal;   // the general polygon normal (new)

// now the vertices, they currently look like this

// v0   v1

//

//

// v3   v2

// we want to create (2) triangles that look like this

//  poly 1      poly2

// v0   v1        v1

//

//

//

// v3        v3   v2

//

// where the winding order of poly 1 is v0,v1,v3 and the winding order

// of poly 2 is v1, v2, v3 to keep with our clockwise conventions

if (insert_local==1)

{

// polygon 1

poly1.vlist[0] = root->wall.vlist[0]; // the vertices of this triangle

poly1.tvlist[0] = root->wall.vlist[0]; // the vertices of this triangle

poly1.vlist[1] = root->wall.vlist[1]; // the vertices of this triangle

poly1.tvlist[1] = root->wall.vlist[1]; // the vertices of this triangle
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poly1.vlist[2] = root->wall.vlist[3]; // the vertices of this triangle

poly1.tvlist[2] = root->wall.vlist[3]; // the vertices of this triangle

// polygon 2

poly2.vlist[0] = root->wall.vlist[1]; // the vertices of this triangle

poly2.tvlist[0] = root->wall.vlist[1]; // the vertices of this triangle

poly2.vlist[1] = root->wall.vlist[2]; // the vertices of this triangle

poly2.tvlist[1] = root->wall.vlist[2]; // the vertices of this triangle

poly2.vlist[2] = root->wall.vlist[3]; // the vertices of this triangle

poly2.tvlist[2] = root->wall.vlist[3]; // the vertices of this triangle

} // end if

else

{

// polygon 1

poly1.vlist[0] = root->wall.vlist[0];  // the vertices of this triangle

poly1.tvlist[0] = root->wall.tvlist[0]; // the vertices of this triangle

poly1.vlist[1] = root->wall.vlist[1];  // the vertices of this triangle

poly1.tvlist[1] = root->wall.tvlist[1]; // the vertices of this triangle

poly1.vlist[2] = root->wall.vlist[3];  // the vertices of this triangle

poly1.tvlist[2] = root->wall.tvlist[3]; // the vertices of this triangle

// polygon 2

poly2.vlist[0] = root->wall.vlist[1];  // the vertices of this triangle

poly2.tvlist[0] = root->wall.tvlist[1]; // the vertices of this triangle

poly2.vlist[1] = root->wall.vlist[2];  // the vertices of this triangle

poly2.tvlist[1] = root->wall.tvlist[2]; // the vertices of this triangle

poly2.vlist[2] = root->wall.vlist[3];  // the vertices of this triangle

poly2.tvlist[2] = root->wall.tvlist[3]; // the vertices of this triangle

} // end if

//Write_Error(“\nInserting polygons...”);

// insert polygons into rendering list

Insert_POLYF4DV2_RENDERLIST4DV2(rend_list, &poly1);

Insert_POLYF4DV2_RENDERLIST4DV2(rend_list, &poly2);
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// now process the front walls sub tree

Bsp_Insertion_Traversal_RENDERLIST4DV2(rend_list, root->back, 

cam, insert_local);

} // end else

//Write_Error(“\nExiting Bsp_Insertion_Traversal_RENDERLIST4DV2()...”);

} // end Bsp_Insertion_Traversal_RENDERLIST4DV2

As usual, the reality of implementing a function is much different from the theoretical
version. As you can see, the preceding function is much more complex than the pseudo-
code version we saw a while ago. Let’s take a look at the sections.

• Section 1—Tests whether the current node is NULL. If so, it exits; otherwise the
viewpoint position relative to the current node is computed using a dot product.

• Section 2—The sign of the dot product from section 1 is used to determine which
side the viewpoint and hence the viewer is on. Based on this, one of two different
traversal methods is selected, both of which are identical except for the recursive
calls.

• Section 3—First a recursive call to process the back walls is made. Then the polygon
is split into two triangles, texture coordinates are copied along with vertices and
other information, and the two triangles are added to the rendering list. Finally, a
recursive call is made to process the back-side walls.

The second block of code works in a similar way, except the order of the recursive calls is
reversed.

After the call is made to Bsp_Insertion_Traversal_RENDERLIST4DV2(), the rendering list is
updated with the BSP mesh, and we can simply continue using the rendering pipeline as
we would after inserting an object.

However, there are still a couple of issues we need to address. First, you should have
noticed that the preceding function has a flag insert_local, which determines whether
either the local vertex list vlist[] or the transformed vertex list tvlist[] is used during
the insertion of the wall into the polygon list. The BSP tree is in local space, but because
it’s a mesh of a level, local space might be the same as world space, so both arrays might
have the same data. However, if they don’t and you want to perform a transformation on
the BSP tree, you simply need to walk it (in any order) and perform the transformation.
For example, say you want to translate every vertex in the BSP; you could write something
like this:

void Bsp_Translate(BSPNODEV1_PTR root, VECTOR4D_PTR trans)

{

// this function translates all the walls that make up the bsp world
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// note function is recursive, we don’t really need this function, but

// it’s a good example of how we might perform transformations on the BSP

// tree and similar tree like structures using recursion

// note the translation is perform from local to world coords

static int index; // looping variable

// test if we have hit a dead end

if (root==NULL)

return;

// translate back most sub-tree

Bsp_Translate(root->back, trans);

// iterate thru all vertices of current wall and translate them

for (index=0; index < 4; index++)

{

// perform translation

root->wall.tvlist[index].x = root->wall.vlist[index].x + trans->x;

root->wall.tvlist[index].y = root->wall.vlist[index].y + trans->y;

root->wall.tvlist[index].z = root->wall.vlist[index].z + trans->z;

} // end for index

// translate front most sub-tree

Bsp_Translate(root->front, trans);

} // end Bsp_Translate

You simply send the root of the BSP along with a translation vector and the entire BSP will
be translated.

NOTE

You might be wondering whether all this recursion is healthy. Well, the fact is that I tried convert-
ing many of the functions to pure stack-based data recursion, and found that the compiler is just
as good at it as I am. In the end, I found that if the functions have any “body” at all, it’s nearly
useless to convert them to data recursion via a stack to save the function invocation overhead.

A more generalized transformation function would walk the BSP and apply a matrix trans-
form to the vertices. Additionally, as many of our transformations work, we are able to
select which coordinates the transformation is applied to: local coordinates, transformed
coordinates, or local-copied-to-transformed. The following function implements this func-
tionality:

CHAPTER 13 Spatial Partitioning and Visibility Algorithms1354

18 0672318350 CH13  05•02•2003  2:58 PM  Page 1354



void Bsp_Transform(BSPNODEV1_PTR root, // root of bsp tree

MATRIX4X4_PTR mt,  // transformation matrix

int coord_select)  // selects coords to transform)

{

// this function traverses the bsp tree and applies the transformation

// matrix to each node, the function is of course recursive and uses

// and inorder traversal, other traversals such as preorder and postorder

// will would just as well...

// test if we have hit a dead end

if (root==NULL)

return;

// transform back most sub-tree

Bsp_Transform(root->back, mt, coord_select);

// iterate thru all vertices of current wall and transform them into

// camera coordinates

// what coordinates should be transformed?

switch(coord_select)

{

case TRANSFORM_LOCAL_ONLY:

{

// transform each local/model vertex of the object mesh in place

for (int vertex = 0; vertex < 4; vertex++)

{

POINT4D presult; // hold result of each transformation

// transform point

Mat_Mul_VECTOR4D_4X4(&root->wall.vlist[vertex].v, mt, &presult);

// store result back

VECTOR4D_COPY(&root->wall.vlist[vertex].v, &presult);

// transform vertex normal if needed

if (root->wall.vlist[vertex].attr & VERTEX4DTV1_ATTR_NORMAL)

{

// transform normal

Mat_Mul_VECTOR4D_4X4(&root->wall.vlist[vertex].n, 

mt, &presult);

// store result back

VECTOR4D_COPY(&root->wall.vlist[vertex].n, &presult);

} // end if
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} // end for index

} break;

case TRANSFORM_TRANS_ONLY:

{

// transform each “transformed” vertex of the object mesh in place

// remember, the idea of the vlist_trans[] array is to accumulate

// transformations

for (int vertex = 0; vertex < 4; vertex++)

{

POINT4D presult; // hold result of each transformation

// transform point

Mat_Mul_VECTOR4D_4X4(&root->wall.tvlist[vertex].v, mt, &presult);

// store result back

VECTOR4D_COPY(&root->wall.tvlist[vertex].v, &presult);

// transform vertex normal if needed

if (root->wall.tvlist[vertex].attr & VERTEX4DTV1_ATTR_NORMAL)

{

// transform normal

Mat_Mul_VECTOR4D_4X4(&root->wall.tvlist[vertex].n, 

mt, &presult);

// store result back

VECTOR4D_COPY(&root->wall.tvlist[vertex].n, &presult);

} // end if

} // end for index

} break;

case TRANSFORM_LOCAL_TO_TRANS:

{

// transform each local/model vertex of the 

// object mesh and store result

// in “transformed” vertex list

for (int vertex=0; vertex < 4; vertex++)

{

POINT4D presult; // hold result of each transformation

// transform point

Mat_Mul_VECTOR4D_4X4(&root->wall.vlist[vertex].v, mt, 

&root->wall.tvlist[vertex].v);
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// transform vertex normal if needed

if (root->wall.tvlist[vertex].attr & VERTEX4DTV1_ATTR_NORMAL)

{

// transform point

Mat_Mul_VECTOR4D_4X4(&root->wall.vlist[vertex].n, mt, 

&root->wall.tvlist[vertex].n);

} // end if

} // end for index

} break;

default: break;

} // end switch

// transform front most sub-tree

Bsp_Transform(root->front, mt, coord_select);

} // end Bsp_Insertion_Traversal_RENDERLIST4DV2

Bsp_Insertion_Traversal_RENDERLIST4DV2() is called with the root to the BSP tree, along
with a transformation matrix and the transformation selection flag. The function performs
the requested transformation recursively and returns (hopefully). However, in most cases,
you will never need to translate, rotate, or transform the BSP, because in all likelihood the
BSP will represent static indoor or outdoor level data. The only thing moving in it is the
camera.

To release all the memory allocated by the BSP tree, here’s a deletion function that will
walk the BSP and release all the memory it allocates:

void Bsp_Delete(BSPNODEV1_PTR root)

{

// this function recursively deletes all the nodes in the bsp tree and free’s

// the memory back to the OS.

BSPNODEV1_PTR temp_wall; // a temporary wall

// test if we have hit a dead end

if (root==NULL)

return;

// delete back sub tree

Bsp_Delete(root->back);
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// delete this node, but first save the front sub-tree

temp_wall = root->front;

// delete the memory

free(root);

// assign the root to the saved front most sub-tree

root = temp_wall;

// delete front sub tree

Bsp_Delete(root);

} // end Bsp_Delete

Just call Bsp_Delete() with the root of the BSP tree and the tree will be recursively de-allo-
cated.

Finally, for diagnostics, here’s a printing function that will dump the BSP (trust me, take it,
you will need it!):

void Bsp_Print(BSPNODEV1_PTR root)

{

// this function performs a recursive in-order traversal of the BSP tree and

// prints the results out to the file opened with fp_out as the handle

// test if this child is null

if (root==NULL)

{

Write_Error(“\nReached NULL node returning...”);

return;

} // end if

// search left tree (back walls)

Write_Error(“\nTraversing back sub-tree...”);

// call recursively

Bsp_Print(root->back);

// visit node

Write_Error(“\n\n\nWall ID #%d”,root->id);

Write_Error(“\nstate  = %d”, root->wall.state); // state

Write_Error(“\nattr  = %d”, root->wall.attr); // attributes of poly

Write_Error(“\ncolor  = %d”, root->wall.color); // color of poly

Write_Error(“\ntexture = %x”, root->wall.texture); // pnt to texture info 

// for simple texture mapping
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Write_Error(“\nmati  = %d”, root->wall.mati); // material index 

// (-1) for no material (new)

Write_Error(“\nVertex 0: (%f,%f,%f,%f)”,root->wall.vlist[0].x,

root->wall.vlist[0].y,

root->wall.vlist[0].z,

root->wall.vlist[0].w);

Write_Error(“\nVertex 1: (%f,%f,%f, %f)”,root->wall.vlist[1].x,

root->wall.vlist[1].y,

root->wall.vlist[1].z,

root->wall.vlist[1].w);

Write_Error(“\nVertex 2: (%f,%f,%f, %f)”,root->wall.vlist[2].x,

root->wall.vlist[2].y,

root->wall.vlist[2].z,

root->wall.vlist[2].w);

Write_Error(“\nVertex 3: (%f,%f,%f, %f)”,root->wall.vlist[3].x,

root->wall.vlist[3].y,

root->wall.vlist[3].z,

root->wall.vlist[3].w);

Write_Error(“\nNormal (%f,%f,%f, %f), length=%f”,root->wall.normal.x,

root->wall.normal.y,

root->wall.normal.z,

root->wall.nlength);

Write_Error(“\nTextCoords (%f,%f)”,root->wall.vlist[1].u0,

root->wall.vlist[1].v0);

Write_Error(“\nEnd wall data\n”);

// search right tree (front walls)

Write_Error(“\nTraversing front sub-tree..”);

Bsp_Print(root->front);

} // end Bsp_Print

Simply call Bsp_Print() with the root of the tree, but make sure you have previously
opened an error channel with a call to Open_Error_File(). That’s about all there is to a
complete BSP system—now let’s see how we’re going to add it to our graphics pipeline.
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Integrating BSP Tree into the Graphics Pipeline
Adding the BSP tree technology to the graphics pipeline shouldn’t be that hard. We’re
going to add the BSP system in a similar fashion to how we integrated the Z-buffer system
previously. We won’t need any of the object functions because the BSP tree contains all
the geometry for the static components of the game universe itself. We treat the BSP
object the same as any other object, with one caveat: We must insert the BSP into the
rendering list first, and we must not z-sort the rendering list, because it would destroy the
BSP ordering.

Of course, if you aren’t interested in using the back-to-front in-order visitation property
exhibited by the BSP tree and want it for collision detection or culling (which we will get
to later), you can insert the BSP tree in any order you want (before or after objects) and
enable z-sorting and/or a Z-buffer, or whatever. In fact, 99% of all hardware-based games
don’t use BSPs to compute render order anymore, but use them only for collision and
culling. However, for our demo we are going to use the BSP to show that perfect back-to-
front rendering order can be extracted from the BSP tree with a back-to-front in-order walk
of the tree.

To integrate the BSP, all you need to do is make a single call to
Bsp_Insertion_Traversal_RENDERLIST4DV2() at the top of your rendering loop in the
same place that you would make your calls to insert objects into the rendering list.
However, you must insert the BSP knowing that it is in back-to-front order as is, and
anything else added to the rendering list will be in front of it because sorting is out of the
question. Of course, you can turn on z-buffering, but that blows the whole point of the
BSP in this example (to compute back-to-front rendering order). In any case, here’s an
example of the order of operations to use the BSP functionality in the rendering pipeline
(I have excerpted this from the upcoming demo and removed anything extraneous, so you
can see the main calls):

// start the timing clock

Start_Clock();

// clear the drawing surface

DDraw_Fill_Surface(lpddsback, 0);

// read keyboard and other devices here

DInput_Read_Keyboard();

// game logic here...

// reset the render list

Reset_RENDERLIST4DV2(&rend_list);

// generate camera matrix

Build_CAM4DV1_Matrix_Euler(&cam, CAM_ROT_SEQ_ZYX);

CHAPTER 13 Spatial Partitioning and Visibility Algorithms1360

18 0672318350 CH13  05•02•2003  2:58 PM  Page 1360



// insert the bsp into rendering list

Bsp_Insertion_Traversal_RENDERLIST4DV2(&rend_list,

bsp_root, &cam, 1);

// apply world to camera transform

World_To_Camera_RENDERLIST4DV2(&rend_list, &cam);

// clip the polygons themselves now

Clip_Polys_RENDERLIST4DV2(&rend_list,

&cam,

((x_clip_mode == 1) ? CLIP_POLY_X_PLANE : 0) |

((y_clip_mode == 1) ? CLIP_POLY_Y_PLANE : 0) |

((z_clip_mode == 1) ? CLIP_POLY_Z_PLANE : 0) );

// light scene all at once

if (lighting_mode==1)

{

Transform_LIGHTSV2(lights2, 4, &cam.mcam, TRANSFORM_LOCAL_TO_TRANS);

Light_RENDERLIST4DV2_World2_16(&rend_list, &cam, lights2, 4);

} // end if

// apply camera to perspective transformation

Camera_To_Perspective_RENDERLIST4DV2(&rend_list, &cam);

// apply screen transform

Perspective_To_Screen_RENDERLIST4DV2(&rend_list, &cam);

// lock the back buffer

DDraw_Lock_Back_Surface();

// set up rendering context for no zbuffer

rc.attr    = RENDER_ATTR_NOBUFFER | RENDER_ATTR_TEXTURE_PERSPECTIVE_AFFINE;

rc.video_buffer  = back_buffer;

rc.lpitch     = back_lpitch;

rc.mip_dist    = 0;

rc.zbuffer    = (UCHAR *)zbuffer.zbuffer;

rc.zpitch     = WINDOW_WIDTH*4;

rc.rend_list   = &rend_list;

rc.texture_dist  = 0;

rc.alpha_override = -1;

// render scene

Draw_RENDERLIST4DV2_RENDERCONTEXTV1_16(&rc);
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// unlock the back buffer

DDraw_Unlock_Back_Surface();

// flip the surfaces

DDraw_Flip2();

As you can see, the BSP is inserted with a single call, and the remainder of the 3D pipeline
is called as usual. The final version in the demo has both a ceiling and a floor mesh,
which are actually OBJECT4DV2s that are inserted into the rendering list first with the BSP
following, because by definition the floor and ceiling are always under the walls; or in
other words, the walls always occlude the floors and ceiling. Also, the walls and ceilings
do not need to be sorted as long as they are all coplanar. Anyway, we will get to that
shortly.
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FIGURE 13.25 A screenshot of the BSP demo in action.

The BSP Level Editor
The BSP demo program is about 90% interface code with a few calls to all the BSP func-
tions. This is a perfect example of how complex it is to write interfaces. Most of the time,
the interface code is 10 times bigger than the program it encapsulates. Anyway, the demo
is named DEMOII13_1.CPP|EXE and enables us to use the mouse to draw a top view of a
game level constructed from 2D walls. Figure 13.25 shows a screenshot of the program
running. As you can see, there are three main areas of interest. The area on the right is the
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control area, and the area on the left is the editor area. The top menu bar is used to select
various modes and compile, save, load, and so on.

NOTE

To compile the demo yourself, you will need DEMOII13_1.CPP, along with all the library modules
T3DLIB1–11.CPP|H in addition to the DirectX .LIB files. Additionally, you will need the resource
file for the menus and so on. This file is named DEMOII13_1.RC.

Before getting into how to use the editor, let’s talk about a few constraints you will need
to adhere to when using it:

• No more than 256 lines.

• When drawing walls, I suggest not making them more than 2–4 grid snaps long.
Otherwise, you will get horrible texture mapping artifacts (because of the affine
texturing for speed). I find that walls that are 2–3 grid snaps in length with a height
of 128 seem to look like a standard FPS.

• Try not to overlap wall segments.

• Try to keep the levels simple—this system is hardly robust, and will crash on you.

• The editor and viewer both work in windowed mode, with a minimum resolution of
800×600×16 necessary on your desktop. Of course, the color depth must be 16-bit, as
with all our windowed applications.

The Doom Demo
This demo hardly looks like Doom, but it’s a catchy title, so I used it. Anyway, before we
get into the editor’s code and functionality, I thought a brief look how to load a level and
run around would be a good start. Here are the steps I want you to follow:

1. Launch the executable DEMOII13_1.EXE from its working directory. To ensure that all
the assets are intact, make sure your desktop is in 16-bit color mode with a resolu-
tion of 800×600 or greater—I suggest 1024×768. You should see something like
Figure 13.26.

2. Select the File menu on the main menu bar and select File, Load .LEV File. This is
shown in Figure 13.28. Now, type in DOOM01.LEV into file edit box and click OK.

3. The level editor will load the level, and you’ll see something like the image shown in
Figure 13.25. Now, to compile the level into a BSP tree and view it, simply use to
mouse to select the main menu item Build and select the submenu Build, Compile
BSP and View. The second you do this, the system will compile the level into a BSP
tree and then switch into 3D mode. You should see something like the image shown
in Figure 13.29.
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FIGURE 13.26 Launching the level editor.

CHAPTER 13 Spatial Partitioning and Visibility Algorithms1364

FIGURE 13.27 Loading a level into the editor.
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FIGURE 13.28 Entering in the level filename.
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4. Now you are in the world: Try moving around, toggling the lights with the A, I, and
P keys. If you have a fast enough machine (1.5GHz or better), the display should be
pretty snappy. Try walking through walls and playing around. Also, try enabling and
disabling the wireframe mode with the W key and keep your eye on the polygon
count per frame.

5. Return to the editor with the Esc key. You can enter and exit 3D mode over and over
with steps 3, 4, and 5. This will be your modeling sequence.

CAUTION

At the time I wrote this chapter, there were still a few outstanding bugs with the BSP demo, and
sometimes certain walls cause the system to hang, or not display correctly. So keep it simple—
otherwise you will be terminating applications <BG>.

Now that you have a rough idea of what the level editor can do, let’s review the file
format, each of the controls, and how to use the editor.

The Level Editor GUI
When I first decided to make a basic level editor, my first impulse was to try to parse the
Quake format, but that is simply too complicated. There is too much stuff in it, plus I like
really simple file formats, so the underlying concepts can be understood rather than
dealing with the complexities of more file formats.

After I bit the bullet and decided to make a level editor (in about one day), I had to decide
how to write it: should I use Visual Basic, Visual C++, Borland Builder, DirectX, GDI, and
so on? In real life, I would (and do) build all my tools with Builder or Visual Basic, but for
this, that’s too much work, and you wouldn’t be able to play with it and add to it, so I
decided to go with straight Visual C++.

Then, of course, the issue of using a real Windows application or a full-screen application
comes into play. I need a DirectX application for 3D mode, but for the GUI I need buttons
and controls. I decided that I would use Windows controls for the menu only and do
everything else manually—that is, make my own buttons for the editor area controls. This
is a lot easier than making Windows and DirectX play nice. In any event, it all worked out
pretty well, and the editor works well enough for our needs. We’ll get back to the software
for it later. Right now I want to switch gears to user mode and show you how each of the
controls works.

The editor has a simple goal: to enable you to draw wall segments in the x-z plane that
represent 3D walls in the 3D world. It also places floor tile textures, which are represented
by polygons in the 3D world. So, from a user’s point of view, we simply draw wall
segments and floor tiles with various textures and then build the BSP and view it—very
simple.
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FIGURE 13.30 Detailed level editor interface annotation.

Let’s take a look at each of the controls on the right-hand side control panel of the inter-
face. In Figure 13.30, there are two main sub-panels of the control group:

• Wall Geometry

• Floor Texturing

Segment Mode Let’s talk about the wall geometry section first. The element labeled 1,
SEGMENT MODE, in Figure 13.30 indicates that you want to draw single segments in the
editor area to the left. When you left-click on this button, the system will switch into
single segment mode. This mode works as follows: When you move the mouse over to the
editor area on the left and left-click, a node will be created. Release the mouse button and
you will see a dragging line following the mouse pointer. Left-click again and a wall
segment will be generated at the current point. This mode is good if you like to do things
one at a time. If you decide to terminate the current line segment before finishing the
line, right-click and the system will discard the line.

Polyline Mode Polyline mode is more flexible and enables you to draw multiple line
segments in succession. Referring to the element labeled 2 in Figure 13.30, if you select
POLYLINE MODE by left-clicking on it, the editor will change into polyline mode. This
mode works as follows: When you move over to the editor area on the left and left-click, a
“starting point” is created. Then you will see a line dragged to the current mouse position
that will show you where the next line will be placed. To place the line, simply left-click
again. The system will keep allowing you to add segments without terminating the
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segment, as it did in the segment mode. To stop adding segments to the polyline, simply
right-click.

Delete Mode Next is the wall deletion mode. To select deletion mode, place the cursor
over the DELETE MODE button, shown in Figure 13.30 as the element labeled 3. Once in
this mode, the system tracks the nearest line to the cursor in the editor area and illumi-
nates it with a glow to indicate that it’s the “hot” spot. Simply left-click while hovering
over any line segment, and the line segment will be deleted from the system.

Clear All The element labeled 4 in Figure 13.30 is the CLEAR ALL button. This is used to
clear the entire system, including walls and floors, and resets everything to the initial
state. Simply left-click it and say bye bye to your level!

Wall Height and Texture Preview So far we know how to draw lines in the editor, but
what do they represent? Well, they represent 3D vertical walls in the x-z plane (world
space), each roughly the size of 48 length units between each grid tick. However, we have
said nothing yet about the height or texture map that is mapped on each wall. These
values are controlled by GUI elements 5 and 6. GUI element 5 is the wall height, and you
can change it by clicking the blue arrows under the value to the value you desire. I suggest
you start off with walls that are 128 grid marks high and 2 grid marks in length.

For each wall, a texture is mapped onto it and stretched without repeating. The textures
are all 128×128, and there are currently about 20 or so of them. The currently active
texture is displayed in the texture preview window pointed to by GUI element 6. To
change the texture, use the right and left arrows under the preview and click on them.
Note that all walls drawn with the current wall height and texture cannot be changed. The
only way to modify a wall is to delete it and redo it—sorry!

Wall Height and Texture Scanners In addition to the wall height and texture preview
elements, there are some other elements indicated by GUI elements 7 and 8. These are like
the eye dropper in a paint program, and show you the texture and wall height for any
wall segment that the cursor is hovering over in the editor area to the left. For example,
suppose you’ve drawn a level and can’t remember what texture you applied to a wall or its
height. Just move the mouse over the wall segment until it highlights with a glow, and the
texture and height scanner will display the data. Remember—you can’t change it; you
must delete the segment and start over.

Floor Mode The last important part of the level editor GUI other than the main menu is
the FLOOR MODE button, indicated by GUI label 9. When you draw a level, it will have
no floor or ceiling geometry. To add a single floor tile, you must select the floor mode by
clicking on it. The current texture depicted in the Floor Texturing texture preview will be
applied to any tile that you left-click on in the editor area. This way, you can “paint” floor
tiles down. If you make a mistake, you can erase floor tiles by right-clicking on them, but
you must be in floor mode for this to work. As with wall texturing, you can select differ-
ent floor tiles from a palette of 20 or so by clicking the right and left arrows under the
floor texture preview, labeled as GUI element 10.
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The Main Menu The main menu has a number of menu items on it. Let’s take a look at
each.

• File—File has three submenu options: Load .LEV File, Save .LEV File, and Exit. Load
and Save enable you to load or save a BSP file in ASCII format. Simply enter in the
name of the file you want to load or save with the .LEV extension and click OK.
Exit, of course, exits the system.

• Options—The Options menu enables you to select what is visible in the editor
window. Sometimes you might want to see only the walls, or floors, or disable the
grid, and the Options menu enables you to do this. There are three submenu
options: View Grid, View Walls, and View Floor. You can toggle them on or off by
selecting them.

• Build—The Build menu has two options, but only one is currently active: Compile
BSP and View. This single option compiles the BSP level and switches to 3D render-
ing mode. While in 3D rendering mode, you can use the arrow keys to navigate and
use the H key to display help. ESC enables you to exit back to the editor and make
changes transparently.

• Help—This menu has a single About submenu.

NOTE

The camera will be positioned at (0,0,0) in the 3D world, which is marked by a green triangle.
Additionally, your altitude will always be the current wall height. So before entering your 3D
world, make sure to make the wall height less than the highest wall, otherwise your head will
poke out from the ceiling.

Final Notes on the Editor and Viewing Levels That wraps it up for using the editor, but I
want to mention of few details before moving on to the technical material. In most cases,
you will launch the editor and start with a blank level. If you have a level in progress, you
would load it by selecting File, Load .LEV File from the main menu. In either case, you
will select a wall height and texture and proceed to add walls to the level. Then you might
switch to floor mode and add some floor tiles. When you’re ready to view the level,
change the wall height to the altitude at which you want the player’s viewpoint and then
select the Build, Compile BSP and View from the main menu to generate the BSP and walk
through it. Then you can exit the 3D mode and return to the editor with the Esc key.

You will continue this process until you have a level that you like. Now, there are some
things to keep in mind. First, the editor will generate both a floor and a ceiling from the
floor tiles you lay down. The ceiling will be a mirror reflection of the floor, but it’s
rendered with the height of the highest wall in your level. Additionally, I suggest that you
save your work before trying to compile it—when dealing with complex levels, it tends to
get hung sometimes.
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BSP Editor File Format
Now that you have an idea of how to use the editor, let’s talk about how the level data is
stored. The file format has the extension .LEV, and is an ASCII format that is human-read-
able for the most part. It is composed of a header, the wall list, and the floors. Here’s a
sample of the file of a single square room, as shown in Figure 13.31. The name of file is
BSPEXAMPLE01.LEV and can be found on the CD.
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FIGURE 13.31 A sample room file.

Version: 1.0

NumSections: 2

Section: walls

NumWalls: 20

240 192 288 192 0 128 11 65535 4169

288 192 336 192 0 128 11 65535 4169

336 192 384 192 0 128 11 65535 4169

384 192 432 192 0 128 11 65535 4169

432 192 480 192 0 128 11 65535 4169

480 192 480 240 0 128 11 65535 4169

480 240 480 288 0 128 11 65535 4169

480 288 480 336 0 128 11 65535 4169

480 336 480 384 0 128 11 65535 4169
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480 384 480 432 0 128 11 65535 4169

480 432 432 432 0 128 11 65535 4169

432 432 384 432 0 128 11 65535 4169

384 432 336 432 0 128 11 65535 4169

336 432 288 432 0 128 11 65535 4169

288 432 240 432 0 128 11 65535 4169

240 432 240 384 0 128 11 65535 4169

240 384 240 336 0 128 11 65535 4169

240 336 240 288 0 128 11 65535 4169

240 288 240 240 0 128 11 65535 4169

240 240 240 192 0 128 11 65535 4169

EndSection

Section: floors

NumFloorsX: 27

NumFloorsY: 24

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1-1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1-1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1-1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1-1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1-1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1-1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1-1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1-1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 13 13 13 13 13 13 13 13 13 13 -1 -1 -1 -1 -1 -1-1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 13 13 13 13 13 13 13 13 13 13 -1 -1 -1 -1 -1 -1-1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 13 13 13 13 13 13 13 13 13 13 -1 -1 -1 -1 -1 -1-1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 13 13 13 13 13 13 13 13 13 13 -1 -1 -1 -1 -1 -1-1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 13 13 13 13 13 13 13 13 13 13 -1 -1 -1 -1 -1 -1-1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 13 13 13 13 13 13 13 13 13 13 -1 -1 -1 -1 -1 -1-1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 13 13 13 13 13 13 13 13 13 13 -1 -1 -1 -1 -1 -1-1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 13 13 13 13 13 13 13 13 13 13 -1 -1 -1 -1 -1 -1-1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 13 13 13 13 13 13 13 13 13 13 -1 -1 -1 -1 -1 -1-1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 13 13 13 13 13 13 13 13 13 13 -1 -1 -1 -1 -1 -1-1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1-1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1-1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1-1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1-1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1-1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1-1

EndSection
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The file format begins with the version of the file, which in this case is 1.0. The next
element is the number of sections. Currently all files have two sections (the walls and
floors), but we are going to build on this format, so the number of sections field leaves
things open-ended. I hate parsing a file to find out how many things I need to parse! I like
to be told. So this is a nice feature for your own file format—tell the reader what’s coming.
Anyway, next are the sections. They can be anything, and are always of the form

Section: “section name”

.

.

.

EndSection

where the dots represent the data and can be anything you want. The section name infor-
mation tells your parser what to look for. In this case, we have two section types, walls
and floors. The wall section is first, and has the field

NumWalls: 20

This indicates the number of walls that are to be read in line by line. Each wall is
composed of seven values (for now) and has this format:

x0.f y0.f x1.f y1.f elev.f height.f text_id.d color.d attr.d

Where x0.f, y0.f, x1.f, and y1.f are the endpoints of the line segment, evel.f and
height.f are the elevation and height of the wall (elevation is currently unused and is
always 0), and finally text_id.d, color.d, and attr.d are the texture ID, color, and attrib-
utes, respectively.

NOTE

.f means floating point, and .d means integer.

For example, the first wall defined in BSPEXAMPLE01.LEV is

240 192 288 192 0 128 11 65535 4169

which means a wall segment from (240, 192) to (288, 192) with an elevation of 0.0, a
height of 128.0, a color of RGB 255.255.255 and attributes of 4169, which means it’s flat-
shaded, two-sided, and in 16-bit color.

After the wall section is parsed, the EndSection keyword is reached and the floor section
begins.

Section: floors
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The first two lines define the size of the game world in tiles:

NumFloorsX: 27

NumFloorsY: 24

The floor tiles are stored as single integers that each represent the texture ID of the tile. If
the tile has a value of -1, there is no floor tile there. Values greater than or equal to zero
are considered texture indices. The engine parses them, and based on their position in the
matrix, generates an OBJECT4DV2 constructed of a polygon mesh, where each floor tile is a
texture-mapped pair of triangles.

That’s all there is to the file format. The cool thing is that you can make changes with an
ASCII editor, and we can easily add more functionality with the Section and EndSection
commands, so it’s very flexible.

The Level Editor Program
The level editor is a typical hacked-together program, and is in no way meant to be an
illustration of clean programming. Nevertheless, it gets the job done, and we will use it to
add more features for future BSP-related demos (if there are any). The level editor has a set
of functions that it needs to perform for the level editing to take place that might seem
easy, but are truly a pain to get working. Let’s briefly discuss them.

The GUI is the first problem. I had to write a button handler that allows mouse clicks,
dragging, and drawing in the editor area. The problem with this is that the mixture of
DirectX and GDI/Win32 menus and so forth caused me to have to let Windows handle
the mouse. This means that mouse events come into the WinProc(), rather than through
DirectInput (yuck), so I have to buffer them and then read them out in the Game_Main()
loop. Additionally, because I am using DirectX to render the display, DirectX and our
system like rendering the display 30 times a second. In other words, drawing on the
window is really happening in real time, and is being redrawn in real time—it’s not static
imagery. This is an issue, and when designing an editor, you must decide whether you are
going to update your display in real time or not.

The next issue is the drawing of the walls and floors. I used lines, and scaled bitmaps to
represent the walls and floor textures, but placing everything and getting the mouse to
point to where you think you’re pointing it is always a bit troublesome. Additionally, the
2D screen is supposed to represent a 3D top-down x-z view of a left-handed system, and I
had to pick a scale and a size to scale the 2D data to when converting to 3D. This was
another semi-arbitrary design decision along with the grid size, among other things.

Finally, I needed a secondary data structure to represent the walls and floors while editing,
loading, and saving, rather than the more complex BSPNODEV1. I used nothing more than
this:

// the bsp line type that represents single 2d lines

typedef struct BSP2D_LINE_TYP

{
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int id;      // id of line

int color;     // color of line (polygon)

int attr;     // line (polygon) attributes (shading modes etc.)

int texture_id;  // texture index

POINT2D p0, p1;  // endpoints of line

int elev, height; // height of wall

} BSP2D_LINE, *BSP2D_LINE_PTR;

This is totally for the editor and has nothing to do with 3D, but simply helps to represent
the 2D editor world. And of course, the floor tiles are nothing more than a 2D array of
integers:

int floors[BSP_CELLS_Y-1][BSP_CELLS_X-1];

When the Build, Compile BSP and View command is executed from the main menu, a
couple of things happen. First, the walls are converted from the BSP2D_LINE format
preceding into a linked list of BSPNODEV1s. This is accomplished by the function
Convert_Lines_To_Walls(), which is too long to list, but basically converts the 2D wall
list to a 3D set of polygons and stores them as a single linked list of BSPNODEV1s. Then the
root is passed to Bsp_Build_Tree(), which builds the tree.

Only one thing is left: the floors and ceiling. The floors are the only mesh that needs be
generated. As the ceiling is just the floor translated, we can use the same OBJECT4DV2. In
any case, the function

int Generate_Floors_OBJECT4DV2(OBJECT4DV2_PTR obj, // pointer to object

int rgbcolor,    // color of floor if no texture

VECTOR4D_PTR pos,  // initial position

VECTOR4D_PTR rot,  // initial rotations

int poly_attr);   // the shading attributes we would like

generates the floors. It takes a pointer to the output object, along with the base color of
the floors under the texture (RGB white usually), a position, rotation, and polygon attrib-
utes you want the entire floor mesh to have. Then it generates the floor. For example, if
you passed in the floor tiles shown in Figure 13.32, the output would be a mesh some-
thing like Figure 13.32b, with the texture coordinates, attributes, the works all set up.

After the floors are generated, the editor switches state to 3D mode and is, more or less,
the standard 3D demo model loop we have been using. The only difference is that the
loop never uses sorting or z-buffering, and inserts the geometry into the rendering list in
this order each frame:

1. Floors

2. Ceiling
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3. BSP tree

4. Repeat
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FIGURE 13.32 Floor-to-mesh conversion.

This guarantees the correct ordering because the floors and ceilings are always “behind”
the BSP, as long as the BSP has the correct order (which we know it will have, because we
are inserting it by walking the tree with an in-order, back-to-front walk).

Limitations of the BSP
Although the BSP tree is an incredibly fast way to determine polygon rendering orders
during runtime, it isn’t without its limitations. The first limitation is that the universe
must be semi-static. This means that polygons can’t rotate, but they can translate in some
cases. For example, take a look at Figure 13.33. Here we see a view of two walls. If we slide
one of the walls upward as in Figure 13.33b, the order remains the same. Thus, a BSP tree
can be used if there are polygon translations in the plane that the polygon exists in, but
that’s it.
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FIGURE 13.33 The BSP tree is invariant for y-axis translations of the walls.

The second main limitation is that BPS trees are definitely not the way to go for simula-
tors or games with a lot of motion, because the BSP would have to be regenerated each
frame. But all in all, the BSP tree is a very elegant solution to the rendering problem, and
can be used in situations were the player is moving through a generally static environ-
ment. However, no one ever said that BSP trees have to be for rendering only.

Zero Overdraw Strategies Using BSP Trees
The BSP can be used to determine the exact back-to-front order of polygons in a scene for
a given set of static polygons from any viewpoint. This is determined by walking the BSP
tree with a modified in-order recursive search and visiting nodes in a back-to-front order
with the painter’s algorithm.

The problem with this is that in many cases, the same pixel will get painted over and over.
This is a huge problem with any sorting or z-buffering algorithm. The correct rendering
order is determined, and the same pixel can be overdrawn many times (in some cases,
hundreds of times).

For example, take a look at Figure 13.34. Here we see a set of polygons in the x-z plane.
The polygons are already sorted back to front, or they are rendered with a Z-buffer. In the
case of using z-sorting, each pixel that makes up the smallest polygon in the set will be
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overwritten by the remaining polygons. Each pixel in the next largest polygon will be
overwritten by each larger polygon, and so forth. In this simple example, we see that each
pixel of each of the far z polygons is going to be redrawn by one to (n-1), where n is the
number of polygons in this set.
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FIGURE 13.34 The worst case of overdraw.

The z-buffered version is equally bad. Not only are the pixels overwritten (if the z values
are nearer), but no matter what, the Z-buffer is always tested. So although the overdraw
isn’t as bad in general for a Z-buffer, the Z-buffer read/write is. Again, we’re getting killed
by drawing pixels, or testing pixels that can’t possibly be seen. There must be a solution to
this overdraw problem, right?

Here come BSP trees to the rescue. Instead of traversing the BSP tree in a back-to-front
order, we traverse it in a front-to-back order. Then for each polygon we visit, we mask data
writes to the screen or use the polygons as a stencil buffer of sorts. In theory, this is great,
but in reality, we are just z-buffering again, (testing a condition and then writing a pixel if
the condition passes or fails). Sure, we don’t do the overdraw, but we still perform the test
for every single pixel. The question is, can we take advantage of the front and back order
in a more intelligent way? The answer is always yes, but I like to have some sort of excit-
ing build-up <BG>. Anyway, one possibility is to use scan line rendering.
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Scan line rendering works as follows: Instead of drawing a polygon pixel by pixel, we only
compute the endpoints of each scan line and then place them into a linked list or data
structure. Basically, we just disable the inner loop that rasterizes each scan line and instead
place the endpoint data into a list. Then for each polygon, we insert the scan lines into
this list and sort the list on x and y, so we have a collection of scan line buckets for each
possible screen row. Thus, we have separated the problem into a collection of scan lines.
The process is shown in Figure 13.35. If we can solve the problem for a single scan line,
we have solved it for all of them, so let’s start there.
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FIGURE 13.35 Storing polygons as scan lines rather than rasterizing them on the fly.

Let’s look at a number of cases, as shown in Figure 13.36, of what can happen:

• In case 1, a single scan line is inserted into row n. In this case, that scan line is
rasterized, and we are done.

• In case 2, two scan lines are inserted into row n, but they don’t overlap in X.
Therefore, once again we simply rasterize each of them, because they can’t possibly
overlap.

• In case 3, one scan line is inserted, followed by another, but the second scan line is
completely obscured by the first scan line; thus the second scan line is summarily
discarded and there is no overdraw.

• In case 4, one scan line is inserted, followed by another, but this time, the second
scan line added is only partially obscured by the first scan line. We therefore clip the
second scan line to the first, and then draw only the remaining part of the second
scan line—again, zero overdraw.

These cases illustrate the types of conditions that arise and how they might be handled.
Using the scan line technique with front-to-back rendering, you can achieve perfect
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rendering with zero overdraw. However, there is a price to pay, and that’s the amount of
time it takes to determine whether a scan line is either obscured or clipped and then
merging the scan lines. Getting the algorithm to actually work in practice with texture
coordinates and so on isn’t easy to do. Nevertheless, even a crude version that doesn’t
remove 100% of the overdraw might be worth the effort.
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FIGURE 13.36 Potential scan line span cases.

BSP Trees for Culling
One of the most powerful properties of any spatial partitioning algorithm is the capability
to quickly cull large amounts of polygonal information from the rendering pipeline. In
fact, in most cases, this along with collision detection is the only reason people use BSP
trees these days. BSP trees’ convex subspace properties, along with their linear time traver-
sal, make them ideal for large-scale culling. We are going to look at two different culling
techniques that can be applied to BSP trees: back-face culling and frustrum culling. The
former is more of an atomic culling, whereas the latter is more of a high-level culling that
really takes advantage of the BSP structure to shred the polygons that aren’t potentially
visible.

Back-Face Culling
Even though we simply walked the BSP and inserted the polygons into the rendering list,
it’s also possible to back-face cull or clip the BSP polygons during the insertion function.
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However, in most cases, walls are two-sided, so performing a standard back-face culling
operation isn’t effective because all faces will pass through the culler. Therefore, a more
accurate back-face culling algorithm must be employed if you want to remove back-faces
during the insertion scan.

To refresh your memory, take a look at the setup for back-face culling shown in Figure
13.37. As depicted in the figure, the surface normal of the polygon is computed (or refer-
enced, if precomputed), and then the dot product is computed with the normal vector
and the vector to the viewpoint. If the angle is greater 90 degrees (the dot product is < 0),
the polygon is a back-face. However, as I mentioned, this only works for one-sided poly-
gons.
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FIGURE 13.37 A detailed analysis of back-face removal.

Additionally, the back-face removal algorithm does not take the view direction vector into
consideration. For example, take a look at Figure 13.38. Here the angle between the
normal and view vector is less than 90 degrees, but if we bring the view direction vector
into consideration, we see that even though the standard back-face removal algorithm
does not remove the back-face, the polygon is in fact impossible to see.
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vdir�

n

�
� � 90, passes backface removal, 
but due to viewing direction polygon 
can’t possibly be seen. 

View frustrum
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^

FIGURE 13.38 Back-face removal doesn’t take view direction into consideration.
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If back-face removal is performed in camera space, this detail disappears, because we know
that the orientation of the view vector is always straight down the positive z-axis (0,0,1).
So, the back-face cull is correct in this case, and won’t let any extra polygons through the
pipeline. But the question is, do we want to transform polygons into camera space just to
cull them? Of course, the answer is no. Thus we have been culling back-faces in world
space, which actually results in extra polygons slipping through behind us that are then
trivially removed by the clipping stage.

Therefore, with all that in mind, you see that in the case of a BSP tree where we are for the
most part using two-sided polygons, we are going to have to perform a more strict back-
face culling if we want it to work during traversal and insertion of the BSP into the render-
ing list. Of course, we can just ignore this entire optimization, let the rendering list move
through the pipeline, and let the rendering list back-face removal function work on it, as
usual. However, this is a nice optimization that is going to come in handy in the next
section when you cull entire subspaces.

Let’s take a look at what we need to know to solve the back-face problem for two-sided
polygons in world space based on both the view position and view direction. Figure 13.39
depicts the setup.

We first need to determine what side the viewpoint is on relative to the test polygon. Next
we need to compute the angle between the test polygon surface normal and the view
vector itself. However, we need to be careful, taking into consideration the field of view of
the viewing frustrum. In other words, even if the angle between the positive surface
normal and the view direction vector (not to be confused with the view vector, which is
the vector from the polygon to the viewpoint) is greater than 90 degrees, the polygon can
still be in the field of view. This is true because the field of view “opens” up the valid
range of angles that the test polygon can potentially be visible in, as shown in Figure
13.39.

Thus, we need to take the field of view into consideration when carrying out the calcula-
tions. We need to compute or use the surface normal of the test polygon, and perform a
dot product between it and the view vector to the viewpoint to determine what side the
viewpoint is on relative to the polygon’s front/back orientation.

After we have determined which side the viewpoint is on, we carry out a second dot
product, but this time we perform a dot product with the surface normal of the polygon
side we are on and the viewing direction vector. This result is our final determining factor.
Moreover, we have two cases: If we are on the front side of the test polygon and (? +
FOV/2) > 90, the polygon is visible; otherwise it’s a back-face. On the other hand, if we are
on the back side of the polygon, then we want to test whether (? - FOV/2) < 90 for visibil-
ity. Mathematically, we have the following:

Given:

• v
dir

is the view direction vector.

• v
pos

is the viewpoint position.
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• n is the surface normal.

• v
view

is the surface to viewpoint vector.

• ? is the angle from the surface normal n to the view direction vector v
dir

.
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FIGURE 13.39 Setup for full back-face removal with viewpoint and view direction taken into
consideration.

Case 1: If the viewpoint v
pos

is on the front side of the test polygon, that is, if 
(n . v

view
> 0), then:

Visibility Condition: (? + FOV/2) > 90, therefore:

n . v
dir

= |n| * | v
dir

| * cos ?

Assume the vectors have been normalized, |n| = | v
dir

| = 1, then:

n . v
dir

= cos ?
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Taking the inverse cosine of each side, we have:

? = arccosine(n . v
dir
)

Here we simply compute ? and plug it into the visibility condition, or we can use the
converse to detect whether the polygon is culled. However, obviously we can’t use arcco-
sine() in real time! But I’ll get to that in a moment—let’s look at the back side case.

Case 2: If the viewpoint v
pos

is on the back side of the test polygon, that is, if 
(n . v

view
< 0), then:

Visibility Condition: (? - FOV/2) < 90.

The angle ? is computed similarly to case 1, and simply plugged into the back side visibil-
ity condition.

Computing the Inverse Cosine Really, Really Fast If the thought of computing the
inverse cosine doesn’t make you completely cringe, you must be using a quantum
computer, because there is no way we can possibly make a call to the math library func-
tion arccosine() in real time work. It’s time for another trick, or a lookup table, more
specifically. Let’s talk about what exactly arccosine() does first.

arccosine() is the inverse cosine, or in other words, given a value x in the interval [-1,1],
find a function f(x) such that cos(f(x)) = x. f(x) is said to be the inverse cosine, or arccosine.
For example:

cosine(30) = .866

arccos(.866) = 30 degrees

Composing the functions, we get

cosine(arccos(.866)) = .866

NOTE

These examples are in degrees.

We can create a lookup table to compute arccosine rather easily. We need to map the
values [-1,1] into the angles 0–180 using the arccosine as the mapping function. Now, we
surely can’t use a lookup table with negative or decimal numbers, so we need to shift the
range first by adding 1. So, [-1,1] becomes [0,2]. It’s then sort of useless to have a table
with three elements, so we’re going to scale the range so that there’s at least one value for
each possible angle 0–180. We multiply by 90, for example, and we get the range 90*[0,2]
= [0,180]—perfect!

The mapping function is as follows:

Input x: [-1,1]

Mapping function f(x) = (x+1)*90 = index
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Then we use index as an index into a lookup table that has the arccosine computed for
180 values equally spaced from [-1,1] but mapped to the range 0–180 always. Figure 13.40
depicts the setup of the lookup table.
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FIGURE 13.40 Inverse cosine lookup table setup.

If we want more accuracy, we increase the mapping; that is, we might break the range of
[-1,1] into 360 intervals that still represent the angles 0–180, but now in half-degree
angles. I have written software to do all this. First is the storage for the lookup table:

float dp_inverse_cos[360+2]; // 0 to 180 in .5 degree steps

// the +2 for padding

So, I am defining a global lookup that has storage for roughly 360 elements (the +2 is so
we don’t overflow when the 360th or 361st elements are accessed with slight floating-
point overflow during the mappings). And to make things easier, I have created the
following macro to compute the arccosine of x, where x is in the range of [-1,1]:

#define FAST_INV_COS(x) \

(dp_inverse_cos[(int)(((float)x+1)*(float)180)])

And here is the function that generates the lookup table:

void Build_Inverse_Cos_Table(float *invcos,   // storage for table

int  range_scale) // range for table to span

{

// this function builds an inverse cosine table used to help with
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// dot product calculations where the angle is needed rather than

// the value -1 to 1, the function maps the values [-1, 1] to

// [0, range] and then breaks that interval up into n intervals

// where the interval size is 180/range then the function computes

// the arccos for each value -1 to 1 scaled and mapped as

// referred to above and places the values in the table

// for example if the range is 360 then the interval will be

// [0, 360] therefore, since the inverse cosine must

// always be from 0 - 180, we are going to map 0 - 180 to 0 - 360

// or in other words, the array elements will each represent .5

// degree increments

// the table must be large enough to hold the results which will

// be = (range_scale+1) * sizeof(float)

// to use the table, the user must scale the value of [-1, 1] to the

// exact table size, for example say you made a table with 0..180

// the to access it with values from x = [-1, 1] would be:

// invcos[ (x+1)*180 ], the result would be the angle in degrees

// to a 1.0 degree accuracy.

float val = -1; // starting value

// create table

for (int index = 0; index <= range_scale; index++)

{

// insert next element in table in degrees

val = (val > 1) ? 1 : val;

invcos[index] = RAD_TO_DEG(acos(val));

// increment val by interval

val += ((float)1/(float)(range_scale/2));

} // end for index

// insert one more element for padding, so that durring access if there is

// an overflow of 1, we won’t go out of bounds and we can save the clamp in the

// floating point logic

invcos[index] = invcos[index-1];

} // end Build_Inverse_Cos_Table

In the initialization section of your code, make a call to Build_Inverse_Cos_Table() with
these parameters:
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// build the inverse cosine lookup

Build_Inverse_Cos_Table(dp_inverse_cos, 360);

This tells the function to use the array dp_inverse_cos as storage for the table. The table
should cover 360 entries to represent the 0–180 range, or an accuracy of .5 degrees.

To use the function, just use the macro (of course, the macro assumes a table with 362
elements):

// x:[-1, 1]

FAST_INV_COS(.5)

Now with the macro in hand, we can rewrite the BSP insertion function so that it
attempts to cull based on the view direction, as well as the viewpoint.

TIP

Why 362 elements? We need 0–360, so that’s 361, but then many algorithms can be sped up if
they’re not fence posted, and we ignore the case in which they round up to 361 because of
floating-point error. However, if the table has a 361st element that’s a copy of the 360th
element, we get the fence post value for free!

Aligning the View Vector Only one problem remains before we can write the new BSP
insertion function: Because we aren’t performing the world-to-camera transformation with
the world geometry, we don’t know the view direction vector. Normally, we use the Euler
angles or the UVN representation to transform the world geometry, and then we assume
the camera is located at (0,0,0) pointed down the positive z-axis, or in other words, with a
direction vector of (0,0,1).

We have a bit of a wrinkle here, because we need the view direction vector. However, we
can compute it rather easily on a per-frame basis. We are simply going to transform the
vector (0,0,1) by the camera transformation matrix (the inverse, actually), and this will
give us the view direction vector. However, we don’t need the total transformation includ-
ing the translation vector—we simply need to rotate the vector (0,0,1) by the rotation
angles only. These angles for the Euler model are exactly cam.dir.x, cam.dir.y, and
cam.dir.z. Of course, the order of rotation is important, but we have been using the call

Build_CAM4DV1_Matrix_Euler(&cam, CAM_ROT_SEQ_ZYX);

to build our camera matrix, which means that we need to perform the rotation of the
vector in XYZ order (the opposite) in addition to using the non-inverse transformations.
In other words, we just take the vector (0,0,1) and rotate it with the XYZ rotation matrix
based on the angles cam.dir.x, cam.dir.y, and cam.dir.z. This can be accomplished with
a call to
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MATRIX4X4 mrot;

Build_XYZ_Rotation_MATRIX4X4(cam.dir.x,

cam.dir.y,

cam.dir.z

&mrot);

Then we transform the direction vector with the matrix with a call to

VECTOR4D vz = {0,0,1,1}; // z = 1, w = 1

Mat_Mul_VECTOR4D_4X4(&vz,

&mrot,

&vdir);

Finally, we have everything we need. I know this might seem like a lot of work to
compute the vectors and remove back-faces when the rendering list back-face removal
works perfectly well as is. However, the time lost performing the test is definitely worth
the time lost transforming the two extra triangles per quad that will be inserted into the
rendering list, not to mention the wasted time performing the world-to-camera transfor-
mation on them. Remember, while in the BSP tree, all walls are still quads, and haven’t yet
been broken into two triangles, so we should leverage that if possible.

In conclusion, although this entire section has been important, it’s more of a segue to the
next section on frustrum culling, which will enable us to remove entire sub-trees at once
in the BSP. In any event, the new function that has the additional capability to remove
back-faces during the BSP insertion process is shown here (prototype only):

void Bsp_Insertion_Traversal_RemoveBF_RENDERLIST4DV2(

RENDERLIST4DV2_PTR rend_list, // rendering list

BSPNODEV1_PTR root, // root of BSP tree to insert

CAM4DV1_PTR cam,   // camera

int insert_local=0); // insertion flags

The function has the exact same calling convention as the previous version without
support for back-face removal, so you can interchange them without worry. The code that
performs the back-face removal is identical to the work we have derived in the past few
pages, and to save space I have omitted the listing, but it’s on the CD with everything else
in this chapter.

As a demo of the function, take a look at DEMOII13_2.CPP|EXE. It’s the standard level
editor, but when you enter into 3D mode, you’ll see a display indicating the number of
polygons entering the pipeline from the BSP insertion function at the bottom of the
screen. Use the C key to toggle the culling mode between the standard BSP insertion func-
tion and the new one, and then look at the number of polygons entering the rendering
list decrease as you experiment with different viewpoints.
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NOTE

To compile the demo yourself, you will need DEMOII13_2.CPP, along with all the library modules
T3DLIB1–11.CPP|H in addition to the DirectX .LIB files. Additionally, you will need the resource
file for the menus and so on—this file is named DEMOII13_2.RC. Also, make sure to use the
DOOM01.LEV file for experimentation.

NOTE

As you run the demo, you might be surprised that when you walk outside, you still see polygons
being inserted from the BSP into the rendering list. This is actually correct, because we are culling
planes, not finite polygons. If we want to take the culling to the next level, not only do we have
test whether the plane is visible, but that the endpoints of the polygon are in the view frustrum.
This is a bit much, and starts to result in diminishing returns. However, you might want to try it,
as shown in Figure 13.41.
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FIGURE 13.41 Polygons can be back-faces, but we are culling partitioning planes.
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Frustrum Culling
A more powerful culling operation can be used on BSP trees than trivial back-face culling.
The irony is that we already wrote it when we wrote the back-face culling function—we
just didn’t finish it. Take a look at Figure 13.42 to see what I mean. The viewpoint is on
the negative half space of the partitioning plane. Because of the view direction’s orienta-
tion, the plane is definitely not visible, but more importantly, neither is the entire positive
half space behind the partitioning plane!
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FIGURE 13.42 Full frustrum culling.

In other words, we can kill the entire sub-tree from the current node and not even
consider it! Think how powerful this is: After a partitioning plane that we are in front of
(or behind) is found, and we can’t possibly see the plane from our current orientation,
then not only that plane, but the entire sub-tree behind it can be culled. This is the true
power of the BSP tree, with its property of representing space carved up into convex sub-
spaces.

To further convince you, take a look at Figure 13.43. Here we see a simple example of two
rooms (assume we have constructed a BSP tree, of course). Additionally, we see the view-
point in room 1, but the wall behind the player and the entire contents of room 2 are
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invisible. We can determine this immediately by noting that wall 3 is invisible, and thus
the entire subspace behind it is, too. Therefore, we no longer need to traverse any further.
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Implementing the frustrum culling is actually pretty easy—we are already done more or
less, and we can either write a separate function that tags nodes that are culled and all
their children, or we can do it on the fly, as we did with the back-face culler. Because
there’s really no need to walk the tree twice, we are going to integrate the frustrum culling
with the BSP insertion as we did the back-face culling. The strategy will be to simply
enclose the recursive calls to visit the front or back trees within the culling operation. In
other words, after we have determined that a polygon is culled, then we know that
anything behind it is also culled—thus there is no need to make the recursive call to
traverse the backfacing sub-tree. This is the only change—a single line of code.

The new function that implements this is the following:

void Bsp_Insertion_Traversal_FrustrumCull_RENDERLIST4DV2(RENDERLIST4DV2_PTR 

➥rend_list,

BSPNODEV1_PTR root,

CAM4DV1_PTR cam,

int insert_local=0);

This is called identically to the previous two; the only difference is that it performs both
back-face culling and frustrum culling.

As a demo of the function, take a look at DEMOII13_3.CPP|EXE. This is the standard level
editor, but when you enter into 3D mode you will see a display indicating the number of
polygons entering the pipeline from the BSP insertion function at the bottom of the
screen. Use the C key to toggle the culling mode between the standard BSP insertion func-
tion and the new one, and then look at the number of polygons entering the rendering
list decrease as you experiment with different viewpoints.

18 0672318350 CH13  05•02•2003  2:58 PM  Page 1390



You will notice that in this case, the number of polygons are even fewer that that of the
back-face culling version, because entire subtrees are being culled, and polygons within
the subtrees that have visible planes are not slipping through, as they were with the more
simplistic back-face culling function alone.

NOTE

To compile the demo yourself, you will need DEMOII13_3.CPP, along with all the library modules
T3DLIB1–11.CPP|H in addition to the DirectX .LIB files. Additionally, you will need the resource
file for the menus and so on. This file is named DEMOII13_3.RC. Also, make sure to use the
DOOM01.LEV file for experimentation.

One final note: It’s of course possible to make the frustrum culling even more powerful by
both considering just the polygons in the viewing frustrum rather than just the planes
they lie in, and by using a finite viewing volume and enabling view frustrum clipping.
This way, after you determine that a polygon is beyond the near or far clipping planes,
you can discard the entire back-facing subtrees, as shown in Figure 13.44.
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FIGURE 13.44 Using the finite view frustrum for aggressive frustrum clipping.

This stuff really gets me excited—I can’t wait to do some more culling! Seriously though,
you should be able to see that the possibilities are limitless with BSP trees. They do have
their limitations, but if you can use them in your system, they are powerful allies.

BSP Trees for Collision Detection
Last but not least, let’s briefly touch on collision detection using BSPs (we will cover the
subject in more depth when we discuss collision detection formally). A BSP tree can be
used for a quick determination of collision with the player or other objects. In most cases,
bounding volumes such as cubes, spheres, or cylinders are used to enclose the player or
non-player-character mesh, but the point is that after the collision surface is constructed,
the BSP is used for quick determination of potential collisions.
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The advantage of the BSP is that it enables very fast traversal of the 3D space by “pushing”
the object’s origin down the BSP until the object is within the convex subspace of a leaf
node. This operation takes an average log

2
n steps, but can take n steps for a completely

unbalanced tree. This is true because during each iteration, as the viewpoint or object
center is being compared to nodes, half the volume of the 3D space is discarded until the
test node is determined to be within a lead node.

After the test point is within the leaf node, the geometry can be used to test against the
BSP geometry to see whether there is (or will be) a collision with the bounding object by
expanding the bounding volume, or by expanding the BSP itself along the normal vector
lines—that is, by pushing each partitioning plane along its normal until there is a collision.

Anyway, this is just a little bit to get you thinking about it.

Integrating BSP Trees and Standard Rendering
This section is only important if you want to walk BSP trees to compute the exact perfect
painter’s algorithm back-to-front (or front-to-back) rendering order. If you’re not interested
in using this property, integration is irrelevant. If you are, read on.

Integration with Z-sorting
Integrating BSP trees with z-sorting is rather tricky because the BSP tree has perfect order,
and the z-sorting is going to result in a re-ordering of your already perfect polygon order.
However, in the case of the BSP level editor demo, I did something like this. I knew that
the floors and ceiling both were always “under” the wall geometry; in other words, like a
painter, I could always render them first, then render the walls in BSP order. Thus, for
simple layered scenes, you can use z-sorting for the background and the foreground, as
long as you don’t sort into the BSP polygons.

For example, in the case of the BSP demo, the floor polygons are all coplanar, so it didn’t
matter what order they were rendered in, because they can’t possibly occlude one another.
However, let’s say that they had some ordering low to the ground (that is, some height to
them—maybe they’re bumpy). In this case, a near polygon with a bump in it must be
drawn after a far polygon without a bump. We can still handle this with a hybrid
approach—we simply load the rendering list with all the polygons for the floor, z-sort
them, and then insert the BSP tree with its perfect order. As long as none of the BSP geom-
etry is smaller than the floor geometry (meaning there’s a tiny BSP wall that could be
occluded by something at the floor level), then we can render the rendering list back-to-
front and once again get perfect order.

Personally, I don’t like to use z-sorting with BSP trees because it’s nearly useless for
anything but floors, ceilings, or geometry you have tagged as being completely in front or
behind the BSP. Z-buffering is the better approach.

Integration with Z-Buffering and Movable Objects
The whole point of BSP tree rendering is to compute the proper back-to-front rendering
order (with a perhaps a PVS to minimize polygon overdraw) and then draw the polygons
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without a Z-buffer. However, this approach doesn’t work for movable objects because we
surely can’t recompute the BSP tree every time an object moves around (this could take
seconds, minutes, or even hours with complex levels).

NOTE

If a polygon within a BSP plane moves within the same plane that it’s defined in and it does not
cut into another convex subspace that a different BSP node represents, you can safely move the
polygon in said plane. This is great for things like doors, elevators, and so on.

Alas, we must find a way to integrate the BSP rendering with z-buffering. However, if we z-
buffer the BSP tree, we have lost out on the whole point of the BSP rendering, which is to
use back to front order with an in-order walk. The trick is as follows: We create special
rasterizers in which we can turn the z-comparision functions off, and simply always write
to the Z-buffer. Instead of doing a read-compare-write per pixel, we only do a write per pixel
(a write-through). Therefore, we get a Z-buffer out of it that we can use at a later stage. The
reason we are guaranteed that the Z-buffer is correct is that the back-to-front in-order walk
of the BSP gives us the correct image, and thus the correct Z-buffer, because we are always
overwriting the Z-buffer back to front. This is shown in Figure 13.45.
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FIGURE 13.45 A back-to-front walk always overwrites the Z-buffer with closer z values.

For example, here’s an excerpt from the flat-shaded z-buffering function
Draw_Triangle_2DZB_16() before the write-through functionality has been added:
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// draw span

for (xi=xstart; xi<=xend; xi++)

{

// test if z of current pixel is nearer than current z buffer value

if (zi < z_ptr[xi])

{

// write textel assume 5.6.5

screen_ptr[xi] = color;

// update z-buffer

z_ptr[xi] = zi;

} // end if

// interpolate u,v,w,z

zi+=dz;

} // end for xi

After removing the z comparison and allowing straight write-through:

// draw span

for (xi=xstart; xi<=xend; xi++)

{

// write thru z buffer

// write textel assume 5.6.5

screen_ptr[xi] = color;

// update z-buffer

z_ptr[xi] = zi;

// interpolate u,v,w,z

zi+=dz;

} // end for xi

Now we are ready to render in the movable objects using the Z-buffer. In this phase, we
actually use the standard read-compare-write algorithm, but we don’t clear the Z-buffer.
We use the z image that was generated during the BSP pass and then draw our objects and
so on as usual, with z-buffering using the z image from the BSP. We get perfect BSP order-
ing, with movable objects able to hide behind walls, interpenetrate, and more.

The New Write-Through Z-Buffer Software To add z write-through functionality, we
need to add this capability to the rasterization functions (just a few of them for demos),
and we need a new rendering context constant to select the write-through Z-buffer, along
with a new rendering context function to steer the logic to the new rasterization func-
tion—ouch! Let’s start with the new constant to select a rendering context mode of 
Z-buffer write-through:

CHAPTER 13 Spatial Partitioning and Visibility Algorithms1394
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// use a Z buffer, but with write thru, no compare

#define RENDER_ATTR_WRITETHRUZBUFFER      0x00000008

Next we need some rasterization functions to support z-buffering write-through. In
essence, I simply removed the Z-buffer test logic and just let the code write the Z-buffer
without testing the Z-buffer. Of course, we have about 40–50,000 lines of rasterizer code,
so I didn’t want to go nuts—I only supported flat-shaded, Gouraud-shaded, affine textured
with constant lighting, and affine textured with flat shading. The following are the new
prototypes. They only differ in the string WT (which stands for write through) inserted in
the middle of the previous function names:

Function:

void Draw_Gouraud_TriangleWTZB2_16(POLYF4DV2_PTR face, // ptr to face

UCHAR *_dest_buffer,   // pointer to video buffer

int mem_pitch,      // bytes per line, 320, 640 etc.

UCHAR *_zbuffer,     // pointer to z-buffer

int zpitch);       // bytes per line of zbuffer

Description: Draw_Gouraud_TriangleWTZB2_16() draws a Gouraud-shaded triangle with
write-through z-buffering. The polygon is not textured and is drawn with pure color only.

Function:

void Draw_Triangle_2DWTZB_16(POLYF4DV2_PTR face, // ptr to face

UCHAR *_dest_buffer,  // pointer to video buffer

int mem_pitch,     // bytes per line, 320, 640 etc.

UCHAR *_zbuffer,    // pointer to z-buffer

int zpitch);      // bytes per line of zbuffer

Description: Draw_Triangle_2DWTZB_16() draws a constant/flat-shaded triangle with
write-through z-buffering. The polygon is not textured and is simply drawn with a single
color.

Function:

void Draw_Textured_TriangleGSWTZB_16(POLYF4DV2_PTR face, // ptr to face

UCHAR *_dest_buffer,  // pointer to video buffer

int mem_pitch,     // bytes per line, 320, 640 etc.

UCHAR *_zbuffer,    // pointer to z-buffer

int zpitch);      // bytes per line of zbuffer

Description: Draw_Textured_TriangleGSWTZB_16() draws a Gouraud-shaded affine
texture mapped triangle with write-through z-buffering.
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Function:

void Draw_Textured_TriangleFSWTZB2_16(POLYF4DV2_PTR face, // ptr to face

UCHAR *_dest_buffer,   // pointer to video buffer

int mem_pitch,      // bytes per line, 320, 640 etc.

UCHAR *_zbuffer,     // pointer to z-buffer

int zpitch);       // bytes per line of zbuffer

Description: Draw_Textured_TriangleGSWTZB_16() draws a flat-shaded affine texture
mapped triangle with write-through z-buffering.

Function:

void Draw_Textured_TriangleWTZB2_16(POLYF4DV2_PTR face, // ptr to face

UCHAR *_dest_buffer,    // pointer to video buffer

int mem_pitch,       // bytes per line, 320, 640 etc.

UCHAR *_zbuffer,      // pointer to z-buffer

int zpitch);        // bytes per line of zbuffer

Description: Draw_Textured_TriangleWTZB2_16() draws a constant-shaded affine texture
mapped triangle with write-through z-buffering.

Every one of the functions works exactly as the previous version they update, except that
they don’t test z values, they only overwrite them. It’s the caller’s responsibility to make
sure that polygons are rendered back to front before normal z-buffered movable objects are
rendered in.

Last but not least we need a new rendering context function that has a code block to
handle the new Z-buffer mode of

RENDER_ATTR_WRITETHRUZBUFFER

The new function has the following prototype:

void Draw_RENDERLIST4DV2_RENDERCONTEXTV1_16_2(RENDERCONTEXTV1_PTR rc);

It’s also identical to the previous version Draw_RENDERLIST4DV2_RENDERCONTEXTV1_16(),
except that it has the added support for the new Z-buffer write-through mode and knows
how to call the write-through Z-buffer rasterizers.

Finally, here’s an example of setting up the rendering context for a write-through Z-buffer
pass:

// set up rendering context for 1/z buffer

rc.attr = RENDER_ATTR_WRITETHRUZBUFFER |

RENDER_ATTR_TEXTURE_PERSPECTIVE_AFFINE;

CHAPTER 13 Spatial Partitioning and Visibility Algorithms1396
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// clear the z buffer

Clear_Zbuffer(&zbuffer, (32000 << FIXP16_SHIFT));

rc.video_buffer  = back_buffer;

rc.lpitch     = back_lpitch;

rc.mip_dist    = 0;

rc.zbuffer    = (UCHAR *)zbuffer.zbuffer;

rc.zpitch     = WINDOW_WIDTH*4;

rc.rend_list   = &rend_list;

rc.texture_dist  = 0;

rc.alpha_override = -1;

// render scene

Draw_RENDERLIST4DV2_RENDERCONTEXTV1_16_2(&rc);

The single change other than the call to Draw_RENDERLIST4DV2_RENDERCONTEXTV1_16_2() is
the flag RENDER_ATTR_WRITETHRUZBUFFER rather than the flag RENDER_ATTR_ZBUFFER.
However, notice that the Z-buffer is still cleared before the pass. The pass writes through
the Z-buffer, but it still needs the Z-buffer to be initialized before writing; otherwise, the
next pass will be incorrect when objects are inserted with z-buffering on.

That’s really all there is to adding objects. The steps are as follows:

1. Initialize the Z-buffer.

2. Render all static geometry with Z-buffer write-through mode. This pass must be
back-to-front, because the Z-buffer will not consider an incorrect rendering order.

3. Render all movable geometry with the Z-buffer on.

4. Display the frame.

Example of Moving Objects
As an example of moving objects and the BSP, I have used the demo level editor to make a
version that loads a Tron recognizer (at least that’s what it’s supposed to be) and moves it
around the game universe in a circular path. The direction of the moving object is always
aligned to the tangent of its circular path, as shown in Figure 13.46.

The only change to the working demo is the addition of the new write-through mode, and
in the Game_Main() code of the demo is the code to move the object around. This is just a
hack and not part of the normal demo, but I added it so you can see that the technique
does work. The name of demo is DEMOII13_4.CPP|EXE, and Figures 13.47a and b are
screenshots of it in action (wireframe and solid modes). It is identical to the level editor
demo; however, when you go into 3D mode with the Build, Compile BSP, and View menu
item, the object that is z-buffered into the final display will be floating around. You can
use any level you have constructed (if any), but just use DOOM01.LEV if you don’t have any
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yet. To run the demo, the first step is to select File, Load .LEV File. Then select Build,
Compile BSP, and View. Also, try toggling the Z-buffer on and off with the Z key.
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FIGURE 13.46 Z-buffered object path and orientation.

FIGURE 13.47A Screenshot of the wireframe z-buffered demo in action.
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FIGURE 13.47B Screenshot of the solid z-buffered demo in action.NOTE

NOTE

To compile the demo yourself, you will need DEMOII13_4.CPP, along with all the library modules
T3DLIB1–11.CPP|H in addition to the DirectX .LIB files. Additionally, you will need the resource
file for the menus and so on. This file is named DEMOII13_4.RC. Also, make sure to use the
DOOM01.LEV file for experimentation.

Potentially Visible Sets
The theme that we are seeing repeatedly is that avoiding processing geometry that is invis-
ible to the viewpoint (outside the viewing frustrum) is a good thing. We learned that the
BSP tree itself can be used to perform large-scale culling of BSP nodes because at any node
if the node is beyond the view frustrum, anything behind the node is also beyond the
frustrum and can be culled trivially. This way, huge amounts of geometry can be removed.

However, this still leaves us with the visible geometry. If there are 10,000 polygons in the
viewing frustrum, even with zero overdraw, we must still process the polygons and deter-
mine that they don’t need to be drawn. What if we could determine that we don’t need to
draw them before we even start? That is, at any given viewpoint, what if we had a list of
all the polygons that are potentially visible? We can perform whatever culling we want on
large-scale geometry, but then when we run down the list of polygons that are still in the
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view frustrum, we refer to this potentially visible set (PVS) of polygons that uses our view-
point as the index, and only draw polygons in the list.

There are a billion ways to implement this idea—with BSPs, octrees, or nothing at all—so I
will focus on the idea for a moment. Let’s say that you have a level editor and have
constructed some rooms as shown in Figure 13.48.
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A. Room geometry visibility from Room 1

B. Visibility data structure

Source
room

Visibility list for each room

Room 1:  1, 2, 3, 5
Room 2:  2, 1, 3, 4, 5
Room 3:  3, 1, 2, 4, 5, 6
Room 4:  4, 2, 3, 6
Room 5:  5, 1, 2, 3
Room 6:  6, 4, 3

View 
point

1

2 3 4

5 6

FIGURE 13.48 Room-to-room visibility.

In the figure, there are six different axis-aligned rooms, each room is constructed of a
number of different polygons, and there might even be objects in the rooms made of
polygons. For simplicity’s sake, let’s assume that the mesh data is static. Now, let’s create a
PVS for room 1. The question is, if we were in room 1, what rooms are potentially visible?
We can immediately see that from room 1, rooms 1, 2, 3, and 5 can be seen through the
doorways.

NOTE

Room 1 is included because polygons in the source viewpoint room are always visible.

As a second example, imagine that we have a hierarchical example in which each one of
these rooms is stored in a data structure with a list of all rooms potentially visible from
each source room, as in Figure 13.48b. In this case, there’s a list or array of rooms that are

18 0672318350 CH13  05•02•2003  2:58 PM  Page 1400



visible from any source room. Of course, another strategy would be to have an adjacency
matrix that is m×m, where m is the number of rooms and the value in the matrix i,j (i is
the column, and j is the row) determines whether there is visibility from room i to j. For
example, recoding our example with an adjacency matrix looks like Figure 13.49.
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FIGURE 13.49 Adjacency graph for rooms.

Here is the level encoding:

i1  i2  i3  i4  i5  i6

j1  1 1 1 0  1 0

j2  1 1 1 1 1 0

j3  1 1 1 1 1  1

j4  0  1 1 1  0  1

j5  1 1 1 0  1 0

j6  0  0  1 1  0  1

For the most part, we see that from any source room, say room i, most of the other rooms
in the level are potentially visible. Room 6 seems to have the least number of rooms
visible from it. At this point, we have a PVS that has a room “granularity,” or in other
words, we must include all the polygons from the source room to potentially visible
rooms. This is okay, and we will come back to this point in a moment. For now, let’s talk
about using the PVS.
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Using the Potentially Visible Set
Assuming that you have created a level that contains a set of rooms, each room with an
encoded visibility of the other rooms that are potentially visible, then PVS is easy to take
advantage of to reduce overdraw. For example, suppose you have used a BSP or other
spatial partitioning system to represent each individual room. You have culled everything
you can to the viewing frustrum, including using BSP culling to remove large parts of the
environment. At this point, you are ready to pass polygons down the pipeline for clipping,
lighting, projection, back-face removal, and so forth. Here’s where the PVS comes into
play. You first determine what room you are in—this can be done using the BSP, or simply
by sectorizing the game level and determining what cell you are in. Let’s say that you are
in room 6, with a view frustrum as shown in Figure 13.50.
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* Every single room is within view frustrum

*With PVS only rooms 6.4.3 will be considered.

View point

View direction

1

2 3 4

5 6 FOV

FIGURE 13.50 Using the PVS to cull geometry.

Even with BSP culling, the entire model database would probably pass into the rendering
list. However, by using our PVS, we can remove nearly all the overdraw! It’s so easy, it feels
like cheating, but all you have to do is look up the current room that you’re in—room 6
in this case. The next step is to access your data structure that contains the PVS for the
room. In this case, we used an adjacency list, and we need to look at column 6 in the
adjacency list and read out all the rooms that are potentially visible, which are rooms 3, 4,
and 6 (the source room is always included in the PVS list, of course).
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FIGURE 13.51 Even a simple Doom level can create an overdraw nightmare.

The amazing thing is that from the viewing frustrum’s point of view, every single room is
visible, and thus nearly every polygon would be passed into the pipeline. Some would be
clipped for sure, but many polygons that are completely occluded by the walls of room 6
would be drawn, or at least z-tested.

This is totally unacceptable, and if you have a level something like that shown in Figure
13.51 (a simple Doom level) with many rooms, I think you can see how this overdraw
could pile up very quickly, with the screen redrawing many times. Therefore, the use of
the PVS is an incredible tool to speed up rendering, and to minimize overdraw to nearly
zero.

Some polygons are going to be partially occluded, but will still be included in the PVS.
This is totally acceptable, and in my experience, an overdraw of 50–150% is the worst case
scenario with a general PVS as we have outlined. Without the PVS, an overdraw of
10–20% can happen very easily with large levels. So, the PVS alone can increase our frame
rate or decrease our polygon count by an order of magnitude.

Other Encodings of the Potentially Visible Set
When the size of a level gets large (10,000 to 1,000,000 polygons), the size of the PVS can
become rather huge, and its storage and access can likewise become huge. In our simple
example, we used two methods: either an explicit list attached to each room, sector, or
BSP node, or an adjacency list. Either of these techniques will work fine when you are
encoding a room-to-room PVS (a PVS that encodes room visibility rather than individual
polygon visibility), but that’s the next level of PVS.
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If we want to encode specific polygons that are visible from any viewpoint, we can once
again use a sectoring technique where we encode the viewpoint as a specific sector and
then compute each and every polygon visible from that viewpoint. Finding the visible
polygons is a geometry problem that I will return to, but it’s more or less based on light
and line-of-sight visibility, so it’s not that hard. However, let’s focus for a moment on the
encoding of such large data.

Assuming that we have a level that has 50,000 polygons and there are 100 rooms, then we
have a couple of choices. We can encode PVS visibility based on which room the view-
point is in, or we can compute it based on sectorizing the gameworld into little squares or
cubes, and then for each and every room or sector, we construct a list of potentially visible
polygons for the entire world. Figure 13.52 illustrates this in the abstract.
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FIGURE 13.52 Sector-based PVS.

Now, there’s a definite trade-off here. If we encode the PVS as pointers or indices, we need
to have one for each and every polygon that’s in the PVS for a given room or sector. For
example, with our hundred-room example, out of the 50,000 polygons, on average 1,000
of them are visible from each room. That means that the PVS will have on the order of:
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(100 rooms) × (1000 polygons potentially visible) × (4 bytes) = 400K bytes to encode the
entire PVS.

This is actually not too bad. Of course, we could do a little better by encoding each index
by three bytes, rather than a full 4-byte, 32-bit integer. On the other hand, it might be
more productive to encode the PVS in another way.

For example, instead of using the explicit index list, let’s use an encoding such that
instead of using the polygon index as an element of the PVS, we create an ordered bit list
from polygon 0…n, and tag each bit if the polygon is visible. In other words, say there are
10 polygons in the world and I want to say that for room n I can see polygons 0, 5, and 6.
The PVS would look like this:

Room n PVS: 0, 0, 0, 0, 0, 1, 1, 0, 0, 0

Of course, with this bit encoding, we can’t skip indices because they are in order, but it
does save on memory, so let’s take a look at what this encoding takes using single bits to
encode each potentially visible polygon:

(100 rooms) × (50,000 polygons) × (1 bit per polygon) = 625,000 bytes!

Ouch—but I said it was smaller! It is, but you need to compress it. A simple run-length
encoding where you compress runs of zeros or ones can compress the PVS by a factor of 1
to 20 in most cases. Thus, the real storage is around 50KB in most cases.

In conclusion, it’s up to you how you store the PVS—as polygon indices, or an explicit list
of enabled polygons in an ordered list. Both have their pros and cons. Personally, I am a
memory hog, so I like the index list methods.

More Robust Computation of the PVS
So far we have been avoiding the details of computing the PVS, not because it’s hard, but
because there is no “correct” way to do it. There are a number of approaches, so let’s take
a look at a couple of the most popular techniques.

Tool-Based PVS
The first and easiest method to create a PVS is to do it manually. For example, let’s say
you’ve a created a tool to draw 2D worlds that are extruded into 3D worlds. Each room
has a set of polygons that make it up, and after you have modeled the 2D world, you
enter another stage of the model where you manually create an adjacency list or other
supporting structure that indicates which rooms are visible from which. This could be
done via line drawing, flood filling, or whatever. The point is, why make it hard? If you
are working with small worlds with 10–50 rooms, you can very quickly draw the adja-
cency information visually room by room and be done with it, without complex algo-
rithms.

This is the method I suggest when you are starting out. Simply encode the PVS manually
or with a tool, so you can work on using the PVS rather than creating it. Because the PVS
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is usually created offline, time is not an issue. However, if you are continually changing
your gameworld, it would be a pain to keep redoing the PVS. Because the PVS is only an
optimization, you can wait until the very end when you are totally happy with your
gameworld to create the PVS.

Portal-/Light-Based PVS
The next and more common method of generating a PVS is by using cell-to-cell portal
visibility, or by using the properties of light to “find” potentially visible polygons from
any room, sector, or cell. For example, take a look at Figure 13.53. Here we see a room
example with each door marked—these are referred to as portals.
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FIGURE 13.53 Portal visibility with polygon resolution.

Additionally, each room is now constructed of separate polygons, so we are looking for a
PVS that includes polygons. Referring to the figure, we see the room-to-room visibility
originating from room 4 with the lightly shaded areas. We are looking for a more precise
visibility, so we can tag individual polygons. This can be obtained by computing every
single ray path from room 4 to the remaining shaded rooms that have a completely unob-
scured path. Doing this manually would nearly be impossible, but if we think of the portal
from room 4 as a light source and then trace the light cone using the other portals as
occluders, we will get exactly what we are looking for, as shown by the dark areas in
Figure 13.53.

As you see, I have ray-traced out the light cones from the portal of room 4 through the
adjacent room 1 into the other potentially visible rooms, and where the light strikes is the
total volume, or wedge, that is potentially visible from room 4. Any polygon edge that falls
within the area or volume of these shaded areas is part of the PVS for room 4.
Additionally, we must add room 1 to the list in its entirety, because it’s immediately adja-
cent to room 4 and there is no “in-between room” from the portal boundaries.
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With this new technique, we have minimized the PVS from room 4 from containing all
the geometry from rooms 0, 1, 2, and 5, to containing only the geometry that is inter-
sected or contained within the light cones using the portal of Room 4 as the light source.
Thus, in this case, from room 4 there is something like 30–50% fewer polygons we need to
include in the PVS. For example, polygons a, b, and c are not in the PVS, even though
they would have been included in the room-to-room PVS before with our more crude
method.

This technique also extends to objects in the room. They are also simply polygons, and
you test to see whether they too are within the light cones (or anti-penumbras, as some call
them). Of course, the PVS is only good for static objects, and if room objects move
around, they might become invisible, but the PVS will continue to keep them in view.
However, you can also create “shadow” areas, whereby you take sectors within a room that
are shadowed for an object, meaning that an object is only in the PVS while it’s in said
sector. If it moves out of the sector, it’s occluded.

As you can see, you can go crazy with all kinds of cool optimizations, special cases, and so
forth with the concept of PVS—only your imagination will stop you. However, the main
point to remember is that computation of the PVS is offline, so you can take as long as
needed to come up with the polygons that are visible from any given viewpoint or room.

This brings me to another example: What if you don’t have a room-based world with
cleanly defined portals or doors you can use as light casters? This is no problem—you just
have to get creative. One possible technique involves sectorizing the world into squares or
cubes (depending on whether it’s mostly level-based or completely arbitrary 3D). In either
case, you randomly select thousands, tens of thousands, or hundreds of thousands of
random viewpoints in the world, or you select them uniformly based on how the player
can move. Then for every single viewpoint, you try to cast rays to each and every polygon
in the world. If you can cast a ray unobstructed by at least one ray from the sample view-
point to at least one vertex, you can be quite certain that that particular polygon is visible
from that viewpoint, and you can add the polygon to the viewpoint’s PVS. This is shown
in Figure 13.54.

Final Thoughts on PVS
Potentially visible sets are an absolute necessity for any game with a large polygon data-
base. They are nearly free to use in runtime, and have at most a medium-sized memory
footprint, even with the crudest encoding. PVSs work hand in hand with BSP trees,
octrees, portals (in particular), and more. Computing the PVS can be quite computation-
ally intensive, depending on how accurate you want the PVS to be. However, I have
shown that a simple tool-based PVS, or a portal-based/light casting PVS can be computed
with a little geometry and ray tracing. Finally, after the PVS is computed, it can be
encoded as an adjacency matrix, list, or one-to-one bit encoding.
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FIGURE 13.54 Ray casting to determine visibility.

Portals
Portals have gotten a lot of attention in the past few years. The funny thing is that they
have been around since the 60s more or less, so all you coders that think you invented
them—think again <BG>. Two of the most famous portal games are Descent and Duke
Nukem 3D, shown in Figures 13.55 and 13.56. Descent is a 3D flying game with six possible
directions of flight, and allows the player to fly around a seemingly endless 3D maze of
tunnels. There’s lighting, texture mapping, and really cool effects. However, what’s
amazing is that the worlds are rendered so quickly. Duke Nukem 3D is another amazing 3D
game from the mid-90s. It also features real-time lighting, texture mapping, multiple
levels, stairs, moving objects—the list goes on and on—also a product of portal technol-
ogy. Portals are hardly magical—they are nothing more than a PVS strategy implemented
in real time.

The point is, even if you have a level with a billion polygons, if you only need to draw a
couple hundred each frame, you will have an amazing game that can seemingly handle
enormous amounts of data. The trick is in rendering only what you can see. Portals are
based on the fact that if you have a cell- or room-based environment, if you can tag the
“portals” to adjacent rooms, you can use a clever technique to compute a PVS on the fly.
Here’s how it works. Take a look at Figure 13.57, which depicts yet another room example,
but this time there are only five rooms and I have marked each doorway as a portal.
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FIGURE 13.55 Descent uses portals to the max.

FIGURE 13.56 Duke Nukem 3D.
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Disregarding any objects that might be within the rooms, let’s see whether we can
compute the visible polygons on the fly using the doorway portals. The first step is to
create at the very least a room-to-room visibility list offline. We do this because there’s no
reason to even invoke the portal logic if we can’t see from room 1 to room 5. This time,
let’s use adjacency lists rather than a matrix, as shown in Figure 13.57b. After we have
these lists, we are ready to go in real time. Here are the steps:

1. From the current viewpoint, compute which room/cell the viewpoint is in. Save this
information.

2. Render the polygons in the current room using whatever technique (BSP, z-buffering,
z-sorting, and so on) you want to use.

3. IMPORTANT: For each portal leading out of the current room (we have a list,
remember), adjust the viewing frustrum by adding the clipping planes that define the
portal doorway, and then recurse into the next room in the list and draw the poly-
gons in that room.
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FIGURE 13.57 Offline computation of room-to-room visibility for portals.

I have highlighted the important part, but let’s review the process before delving into the
clipping details. You begin with the room you’re in, then you render it, and then you
recursively traverse the room’s adjacency list via the portal list, but each time you enter
into a room from a previous room, you only render what’s visible through the portal from
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the source room to the destination room. In other words, you clip your view from the
source room to the destination room to the exit portal. This is shown in Figure 13.58.
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A. Polygons from Room 1 are rendered

View frustrum

View point

B. View frustrum is clipped to portal A.

Room 1 Room 2

Portal A

New view frustrum

View point

Room 1 Room 2

Only this polygon
segment will be
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FIGURE 13.58 A simple two-room example of portal clipping and traversal.

Let’s try an example with exactly two rooms in 2D to see the process. In Figure 13.58, we
begin with an adjacency list from room 1 to room 2, meaning that both rooms are visible
to each other through the portal. The viewpoint happens to be in room 1, so we render all
the polygons in room 1 with the full viewing frustrum. Now we recurse into room 2,
because it’s visible through the portal marked A. However, we adjust the viewing frustrum
to the clipping planes defined by the original viewpoint clipped by the portal geometry
(in this case 2D). The new viewing frustrum is shown in Figure 13.58b. Now only the
polygons in this new viewing frustrum are visible to the original viewpoint, and any other
polygons are invisible and thus won’t be rendered. Therefore, because we are clipping to
the portal geometry itself, by definition the viewpoint in room 1 will only see exactly
what’s visible in room 2 through the portal (doorway).
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There are two problems with portals that we can see right off the bat. First, the portal
technology still doesn’t give a PVS; it only creates a new clipping volume or viewing frus-
trum for us. However, if we have a BSP or octree, we can cull entire rooms or cells to the
current portal, which saves time. The second problem is more difficult. Every time we
recurse into the next room and add the portal geometry to the current viewing frustrum,
we have to adjust the viewing frustrum from a nice four sides (plus near and far) to a
potential n-sided volume, as shown in Figure 13.59.
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FIGURE 13.59 The viewing frustrum gets ugly after numerous portal clips.

This is reasonable, and can be done with a set of planes, but the real problem is all that
clipping after the fact. The clipping starts to eat into the rendering of the polygons—the
clipping takes so long that you might as well just render the darn polygons!

In conclusion, portals work well with simple worlds that are connected by hallways or
have a very regular geometry. In addition, if you are willing to relax your clipping and
portal plane-to-view frustrum merging, you can get away with some very good real-time
performance. However, portals still don’t beat PVS—how can they? It’s always better
knowing what to draw and what not to draw ahead of time—period.
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FIGURE 13.60 Grouping objects in bounding hierarchical spheres.

Bounding Hierarchical Volumes and Octrees
Bounding hierarchical volumes (BHVs) are just another method for grouping objects or
geometry for fast collision detection or culling. In fact, we have been using bounding
spheres since day one to collect the geometry of objects for fast culling. BHV simply takes
this idea to the next level and creates a hierarchy of volumes, as shown in Figure 13.60.
The volumes might be bounding spheres, as shown in Figure 13.60, or they might be axis-
aligned cubic shapes, or object-oriented cubic shapes. The choice is yours. In most cases,
people use spheres or axis-aligned cubes.

As an example, imagine you have a collection of objects as shown in Figure 13.61. Each
object is represented by its bounding sphere. The point of BHV is to further group the
objects in large sets, so that we can trivially cull the entire set, rather than the individual
constituents. Figure 13.61b shows the objects collected into a number of smaller spheres,
and Figure 13.61c shows one last collection of even smaller spheres.
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FIGURE 13.61 Layering bounding volumes.
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The data structure to hold something similar to what’s shown in Figure 13.62 could be
anything, but a treelike structure works most naturally. However, because any higher level
in the hierarchy could have more than two children, we need to employ an n-tree struc-
ture, as shown in Figure 13.62.
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FIGURE 13.62 A possible data structure abstraction for the BHV.

Each node would have a center, radius, an array or linked list of nodes to its children
nodes, and an array or linked list of the actual objects contained within the node, along
with state information. Here’s one possible set of data structures you might employ:

// object container to hold any object

typedef struct OBJ_CONTAINERV1_TYP

{

int state;     // state of container object

int attr;      // attributes of container object

POINT4D pos;    // position of container object

VECTOR4D vel;    // velocity of object container

VECTOR4D rot;    // rotational rate of object container

int auxi[8];    // aux array of 8 ints

int auxf[8];    // aux array of 8 floats
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void *aux_ptr;   // aux pointer

void *obj;     // pointer to master object

} OBJ_CONTAINERV1, *OBJ_CONTAINERV1_PTR;

// a bounding hierarchical volume node

typedef struct BHV_NODEV1_TYP

{

int state;     // state of this node

int attr;     // attributes of this node

POINT4D pos;    // center of node

VECTOR4D radius;  // x,y,z radius of node

int num_objects;  // number of objects contained in node

OBJ_CONTAINERV1 *objects[MAX_OBJECTS_PER_BHV_NODE]; // objects

int num_children; // number of children nodes

BHV_NODEV1_TYP *links[MAX_BHV_PER_NODE]; // links to children

} BHV_NODEV1, *BHV_NODEV1_PTR;

The preceding structures can handle spheres, cubes, or rectangular solids. Because the
radius is VECTOR4D, we can easily have different axial widths. Used in conjunction with the
attribute field, BHV_NODEV1 should work for most applications. Also, note that BHV_NODEV1
has been slightly abstracted to hold a generalized object OBJ_CONTAINERV1, rather than an
OBJECT4DV2. Moreover, note that OBJ_CONTAINERV1 itself has a void pointer to the object it
points to. This way, if we change the object, we can still use these same data structures.

Of course, we need a strategy for how the bounding spheres might be constructed, or in
other words, how the objects are selected at each iteration and how the size of the spheres
is computed. Right now though, let’s discuss how to use the BHV tree.

Using the BHV Tree
Assuming that a BHV has been constructed using bounding spheres (or cuboid shapes), we
can now use it during runtime to perform large-scale collision detection or culling.
Because they are both related, and the theme of this chapter is rendering, not collision, I
will stick with the culling aspects of the BHV.

In any event, the BHV represents all the geometry in the world at varying levels or coarse-
ness. At the topmost root level, there is a single sphere that encloses the entire universe,
so the first step is to try to cull the entire sphere to the view frustrum. This is easily
accomplished; it’s similar to how we cull bounding spheres for objects. If the entire root
node can be culled, all objects in the objects[] array are tagged as culled, and there is no
further processing. The following simple line of code

SET_BIT(obj->state, OBJECT4DV2_STATE_CULLED);
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suffices to set the culled flag for any object. If the topmost node can’t be culled, an algo-
rithm that can be implemented either recursively or explicitly simply runs through each
link of the current node and tries to cull the bounding spheres of each node. At each
node, the process can continue in either a depth-first or breadth-first manner, as shown in
Figure 13.63. In either case, the entire tree will be tested, if need be. The thing to remem-
ber is that after a node is culled, all objects in the node are tagged as culled no matter
what, and all children from the node are not visited.
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FIGURE 13.63 Depth-first and breadth-first searching of the BHV.

When the process is complete, each culled object will be tagged, so during rendering when
the main loop runs through the objects, a simple test can be made to see whether the
object has been culled already by checking the OBJECT4DV2_STATE_CULLED flag in the
object state. If the object hasn’t been culled, the standard object culling procedure must
still be performed, because there is no guarantee that the BHV system created bounding
volumes around single objects.

Runtime Performance
Let’s talk a moment about runtime performance, and why the BHV helps. Consider a test
case with 10,000 objects that are equally distributed in space. Now imagine that we have
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four levels of bounding volumes. Level 0 is the root that contains all the objects. Level 1
also contains all the objects, but the bounding volumes are at most 50% the size of the
root level, and each level continues on.

Let’s make up an example:

Root: The BHV has a radius r. All 10,000 objects contained.

Level 1: This level will contain BHVs with a radius <= r/2. There can be one or more Level
1 BHVs. Let’s assume this level has five BHVs, each with a radius of r/2. They are equally
distributed, so there are 2,000 objects per BHV.

Level 2: This level contains BHVs with a radius <= r/4. There can be one or more Level 2
BHVs. Let’s assume this level has 20 BHVs, each with a radius of r/4. They are equally
distributed, so there are 100 objects per BHV.

Level 3: This level contains BHVs with a radius <= r/8. There can be one or more Level 2
BHVs. Let’s assume this level has 10 BHVs, each with a radius of r/8. They are equally
distributed, so there are 10 objects per BHV.

We end up with a tree that looks something like that shown in Figure 13.64. Now we
simply push the tree through a frustrum sphere culler, starting at the root (the code from
Cull_OBJECT4DV2() is exactly what would be used). If we can discard the root from the
view frustrum, we are done, and we know that not a single object is visible—we just
turned 10,000 bounding sphere tests into one test! However, chances are, the only way the
entire game universe is out of view is if hell has frozen over. Alas, we must continue down
to the next level of the tree. This is where things get interesting.
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FIGURE 13.64 A visual of the BHV example.

The root has five children, so we traverse the five children either depth-first or breadth-
first. Let’s just stick to breadth-first for now, meaning we will process each of the five
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children and determine whether the BHVs are culled. If so, we tag all the objects in that
node as culled, and tag the node’s BHV as visited so none of its children are visited. Let’s
assume that four of the five children BHVs are culled during the pass. We then traverse to
the next level and process the its BHVs—in this case there are 20. The process continues as
before until each necessary BHV node has been visited.

When the traversal is complete, all possible objects will have been culled. On average, we
are talking about a few dozen tests compared to 10,000, so this is quite significant. This is
the power of BHV techniques.

However, there are some obvious optimizations that can be applied. First, when traversing
the BHV tree, it’s quite possible that one object exists in overlapping nodes, and thus may
be culled at a high level and then culled (or attempted to be culled) more than once. This
is acceptable in most cases, and has to do more with the percentage overlap any two BHVs
possess. In other words, two BHVs may have objects in both sets.

The second major optimization is a counter that simply counts the number of objects that
are uniquely culled. If this counter reaches the total number of possible objects, the traver-
sal algorithm can stop.

Selection Strategies
The final piece of the puzzle is the initial algorithm to select the BHVs. In a later section,
we will contrast general BHVs to the more specific case of octrees, which are very deter-
ministic. However, general BHVs can be deterministic or heuristic in nature. For example,
you might use a tool to select the BHVs manually, or you might write a loose heuristic
algorithm, or you might write a very deterministic algorithm. So, what I’m going to do is
throw out some ideas that I have used.

Additionally, many people use BHVs for real-time collision and the culling of moving
objects. This means the BHV tree must be regenerated whenever an object moves out of a
node, or each frame—whichever is more appropriate. Thus, simple schemes that have few
levels 3–8 are usually employed. Remember, we just want some help here—we don’t need
it to be perfect. Speed is always the most important concern.

Divide and Conquer
This strategy is based on sectorizing the 3D space into cubes, spheres, or whatever, but
doing it in a consistent basis, where the size of each sector is the same. For example, the
first step is always to contain the entire space in the root BHV. The second step could be to
divide space into cubelets that all have some size—perhaps it’s always 16×16×16, or maybe
4×4×4, and space is equally divided up. Then the BHVs are sized around them. Any sector
that doesn’t contain any objects isn’t included in the BHV for that level. Then at each
level, each BHV that makes up the level (the children BHVs) are once again sectorized into
cubelets (or other geometry). This process is shown in Figures 13.65a and b. The nice
thing about the divide and conquer technique is that it’s easy to implement. However, we
are walking a fine line with octrees using this strategy (in fact, we are building an octree—
he he he!).
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FIGURE 13.65b 3D sectorization wireframe view.

Clustering
Although the divide and conquer technique is easy to implement, it’s not very smart. For
example, take a look at Figure 13.66. I can immediately see that sectorizing this universe is
a waste of time, when I can immediately just circle the three clusters of objects and start
there.
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FIGURE 13.65a 3D sectorization solid view.
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FIGURE 13.66 Sectorization is wasteful in this case.

Thus, clustering works on a heuristic algorithm based on randomly selecting a single
object. For that object, the average distance to every other object is determined. Objects
that are within a specific maximum cluster range are included in the cluster. That is one
potential clustering. The algorithm continues and selects yet another random cluster seed
and performs the same logic.

The process continues until some stopping condition is met, maybe n seeds and so on.
The best seed object is used, the BHV is used, and the process continues, finding other
BHVs in a similar manner. Figure 13.67 shows the process highly simplified for six objects.
Each object is tested as a potential seed, but during the first pass, it’s found that object A is
the best overall seed, and its average distance to the objects in its cluster is the minimum.
Thus, the first BHV is created using object A as the center. Then the next BHV is centered
on the remaining objects, and shrunk to fit it more tightly.
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Implementing BHV
As an example of BHV, I have written a demo that creates a 3D universe, loads a few
hundred objects, and places them randomly in the universe. Then a divide and conquer
algorithm is employed to group the objects in each level of the BHV. The algorithm
continues n levels, where n is programmable. The function that performs the BHV analysis
is specifically designed for the way the objects are represented. If you have been reviewing
the multiple object demos, in most cases a single OBJECT4DV2 is loaded, and then an array
is defined that positions a set of objects, each pointing to the single root object. Thus, for
our BHV to work, we once again must use this technique, so we are going to create an
array of virtual objects, then render the array by using each position, and so on. This setup
is shown in Figure 13.68.
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FIGURE 13.68 Single master object cloned.

Here is the basic object container:

typedef struct OBJ_CONTAINERV1_TYP

{

int state;     // state of container object

int attr;      // attributes of container object

POINT4D pos;    // position of container object

OBJECT4DV2_PTR obj; // pointer to master object

} OBJ_CONTAINERV1, * OBJ_CONTAINERV1_PTR;
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Of course, I used the previously defined BHV_NODEV1 as the basic BHV node. There are only
two functions involved in the entire BHV process: one to create the BHV, and one to cull
the BHV to the viewing frustrum. The creation function is shown here:

void BHV_Build_Tree(BHV_NODEV1_PTR bhv_tree, // tree to build

OBJ_CONTAINERV1_PTR bhv_objects,// ptr to all objects in intial scene

int num_objects,        // number of objects in initial scene

int level,           // recursion level

int num_divisions,       // number of division per level

int universe_radius)       // initial size of universe to enclose

{

// this function builds the BHV tree using a divide and conquer

// divisioning algorithm to cluster the objects together

Write_Error(“\nEntering BHV function...”);

// are we building root?

if (level == 0)

{

Write_Error(“\nlevel = 0”);

// position at (0,0,0)

bhv_tree->pos.x = 0;

bhv_tree->pos.y = 0;

bhv_tree->pos.z = 0;

bhv_tree->pos.w = 1;

// set radius of node to maximum

bhv_tree->radius.x = universe_radius;

bhv_tree->radius.y = universe_radius;

bhv_tree->radius.z = universe_radius;

bhv_tree->radius.w = 1;

Write_Error(“\nnode pos[%f, %f, %f], r[%f, %f, %f]”,

bhv_tree->pos.x,bhv_tree->pos.y,bhv_tree->pos.z,

bhv_tree->radius.x,bhv_tree->radius.y,bhv_tree->radius.z);

// build root, simply add all objects to root

for (int index = 0; index < num_objects; index++)

{

// make sure object is not culled

if (!(bhv_objects[index].state & OBJECT4DV2_STATE_CULLED))

{

bhv_tree->objects[bhv_tree->num_objects++] = 
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(OBJ_CONTAINERV1_PTR)&bhv_objects[index];

} // end if

} // end for index

// at this point all the objects have been inserted into the root node

// and num_objects is set to the number of objects

// enable the node

bhv_tree->state = 1;

bhv_tree->attr = 0;

// and set all links to NULL

for (int ilink = 0; ilink < MAX_BHV_PER_NODE; ilink++)

bhv_tree->links[ilink] = NULL;

// set the number of objects

bhv_tree->num_objects = num_objects;

Write_Error(“\nInserted %d objects into root node”, bhv_tree->num_objects);

Write_Error(“\nMaking recursive call with root node...”);

// done, so now allow recursion to build the rest of the tree

BHV_Build_Tree(bhv_tree,

bhv_objects,

num_objects,

1,

num_divisions,

universe_radius);

} // end if

else

{

Write_Error(“\nEntering Level = %d > 0 block, number of objects = %d”,

level, bhv_tree->num_objects);

// test for exit state

if (bhv_tree->num_objects <= MIN_OBJECTS_PER_BHV_CELL)

return;

// building a child node (hard part)

// we must take the current node and split it 

// into a number of children nodes, and then

// create a bhv for each child and then insert 

// all the objects into each child

// the for each child call the recursion again....
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// create 3D cell temp storage to track cells

BHV_CELL cells[MAX_BHV_CELL_DIVISIONS]

[MAX_BHV_CELL_DIVISIONS]

[MAX_BHV_CELL_DIVISIONS];

// find origin of bounding volume based on radius and center

int x0 = bhv_tree->pos.x - bhv_tree->radius.x;

int y0 = bhv_tree->pos.y - bhv_tree->radius.y;

int z0 = bhv_tree->pos.z - bhv_tree->radius.z;

// compute cell sizes on x,y,z axis

float cell_size_x = 2*bhv_tree->radius.x / (float)num_divisions;

float cell_size_y = 2*bhv_tree->radius.y / (float)num_divisions;

float cell_size_z = 2*bhv_tree->radius.z / (float)num_divisions;

Write_Error(“\ncell pos=(%d, %d, %d) size=(%f, %f, %f)”, 

x0,y0,z0, cell_size_x, cell_size_y, cell_size_z);

int cell_x, cell_y, cell_z; // used to locate cell in 3D matrix

// clear cell memory out

memset(cells, 0, sizeof(cells));

// now partition space up into num_divisions (must be < MAX_BHV_CELL_DIVISIONS)

// and then sort each object’s center into each cell of the 3D sorting matrix

for (int obj_index = 0; obj_index < bhv_tree->num_objects; obj_index++)

{

// compute cell position in temp sorting matrix

cell_x = (bhv_tree->objects[obj_index]->pos.x - x0)/cell_size_x;

cell_y = (bhv_tree->objects[obj_index]->pos.y - y0)/cell_size_y;

cell_z = (bhv_tree->objects[obj_index]->pos.z - z0)/cell_size_z;

// insert this object into list

cells[cell_x][cell_y][cell_z].obj_list

[cells[cell_x][cell_y][cell_z].num_objects ]= bhv_tree->objects[obj_index];

Write_Error(“\ninserting object %d /

located at (%f, %f, %f) into cell (%d, %d, %d)”,

obj_index,

bhv_tree->objects[obj_index]->pos.x,

bhv_tree->objects[obj_index]->pos.y,

bhv_tree->objects[obj_index]->pos.z,

cell_x, cell_y, cell_z);
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// increment number of objects in this cell

if (++cells[cell_x][cell_y][cell_z].num_objects >= 

MAX_OBJECTS_PER_BHV_CELL)

cells[cell_x][cell_y][cell_z].num_objects = MAX_OBJECTS_PER_BHV_CELL-1;

} // end for obj_index

Write_Error(“\nEntering sorting section...”);

// now the 3D sorting matrix has all the information we need, the next step

// is to create a BHV node for each non-empty

for (int icell_x = 0; icell_x < num_divisions; icell_x++)

{

for (int icell_y = 0; icell_y < num_divisions; icell_y++)

{

for (int icell_z = 0; icell_z < num_divisions; icell_z++)

{

// are there any objects in this node?

if ( cells[icell_x][icell_y][icell_z].num_objects > 0)

{

Write_Error(“\nCell %d, %d, %d contains %d objects”,

icell_x, icell_y, icell_z,

cells[icell_x][icell_y][icell_z].num_objects);

Write_Error(“\nCreating child node...”);

// create a node and set the link to it

bhv_tree->links[ bhv_tree->num_children ] =

(BHV_NODEV1_PTR)malloc(sizeof(BHV_NODEV1));

// zero node out

memset(bhv_tree->links[ bhv_tree->num_children ], 

0, sizeof(BHV_NODEV1) );

// set the node up

BHV_NODEV1_PTR curr_node = 

bhv_tree->links[ bhv_tree->num_children ];

// position

curr_node->pos.x = (icell_x*cell_size_x + cell_size_x/2) + x0;

curr_node->pos.y = (icell_y*cell_size_y + cell_size_y/2) + y0;

curr_node->pos.z = (icell_z*cell_size_z + cell_size_z/2) + z0;

curr_node->pos.w = 1;
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// radius is cell_size / 2

curr_node->radius.x = cell_size_x/2;

curr_node->radius.y = cell_size_y/2;

curr_node->radius.z = cell_size_z/2;

curr_node->radius.w = 1;

// set number of objects

curr_node->num_objects = 

cells[icell_x][icell_y][icell_z].num_objects;

// set num children

curr_node->num_children = 0;

// set state and attr

curr_node->state    = 1; // enable node

curr_node->attr     = 0;

// now insert each object into this node’s object list

for (int icell_index = 0;

icell_index < curr_node->num_objects; icell_index++)

{

curr_node->objects[icell_index] =

cells[icell_x][icell_y][icell_z].obj_list[icell_index];

} // end for icell_index

Write_Error(“\nChild node pos=(%f, %f, %f), r=(%f, %f, %f)”,

curr_node->pos.x,curr_node->pos.y,curr_node->pos.z,

curr_node->radius.x,curr_node->radius.y,curr_node->radius.z);

// increment number of children of parent

bhv_tree->num_children++;

} // end if

} // end for icell_z

} // end for icell_y

} // end for icell_x

Write_Error(“\nParent has %d children..”, bhv_tree->num_children);

// now for each child build a BHV

for (int inode = 0; inode < bhv_tree->num_children; inode++)
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{

Write_Error(“\nfor Level %d, creating child %d”, level, inode);

BHV_Build_Tree(bhv_tree->links[inode],

NULL, // unused now

NULL, // unused now

level+1,

num_divisions,

universe_radius);

} // end if

} // end else level > 0

Write_Error(“\nExiting BHV...level = %d”, level);

} // end BHV_Build_Tree

Here’s the BHV frustrum culling function:

int BHV_FrustrumCull(BHV_NODEV1_PTR bhv_tree, // the root of the BHV

CAM4DV1_PTR cam,     // camera to cull relative to

int cull_flags)     // clipping planes to consider

{

// NOTE: is matrix based

// this function culls the BHV from the viewing

// frustrum by using the sent camera information and

// the cull_flags determine what axes culling should take place

// x, y, z or all which is controlled by ORing the flags

// together. as the BHV is culled the state information in each node is

// modified, so rendering functions can refer to it

// test for valid BHV and camera

if (!bhv_tree || !cam)

return(0);

// we need to walk the tree from top to bottom culling

// step 1: transform the center of the nodes bounding

// sphere into camera space

POINT4D sphere_pos; // hold result of transforming center of bounding sphere

// transform point

Mat_Mul_VECTOR4D_4X4(&bhv_tree->pos, &cam->mcam, &sphere_pos);
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// step 2: based on culling flags remove the object

if (cull_flags & CULL_OBJECT_Z_PLANE)

{

// cull only based on z clipping planes

// test far plane

if ( ((sphere_pos.z - bhv_tree->radius.z) > cam->far_clip_z) ||

((sphere_pos.z + bhv_tree->radius.z) < cam->near_clip_z) )

{

// this entire node is culled, so we need to set the culled flag

// for every object

for (int iobject = 0; iobject < bhv_tree->num_objects; iobject++)

{

SET_BIT(bhv_tree->objects[iobject]->state, OBJECT4DV2_STATE_CULLED);

} // end for iobject

// this node was visited and culled

bhv_nodes_visited++;

return(1);

} // end if

} // end if

if (cull_flags & CULL_OBJECT_X_PLANE)

{

// cull only based on x clipping planes

// we could use plane equations, but simple similar triangles

// is easier since this is really a 2D problem

// if the view volume is 90 degrees the the problem is trivial

// buts lets assume its not

// test the the right and left clipping planes 

/ against the leftmost and rightmost

// points of the bounding sphere

float z_test = (0.5)*cam->viewplane_width*sphere_pos.z/cam->view_dist;

if ( ((sphere_pos.x - bhv_tree->radius.x) > z_test) || // right side

((sphere_pos.x + bhv_tree->radius.x) < -z_test) ) 

// left side, note sign change

{

// this entire node is culled, so we need to set the culled flag

// for every object

for (int iobject = 0; iobject < bhv_tree->num_objects; iobject++)

{
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SET_BIT(bhv_tree->objects[iobject]->state, OBJECT4DV2_STATE_CULLED);

} // end for iobject

// this node was visited and culled

bhv_nodes_visited++;

return(1);

} // end if

} // end if

if (cull_flags & CULL_OBJECT_Y_PLANE)

{

// cull only based on y clipping planes

// we could use plane equations, but simple similar triangles

// is easier since this is really a 2D problem

// if the view volume is 90 degrees the the problem is trivial

// buts lets assume its not

// test the the top and bottom clipping planes 

// against the bottommost and topmost

// points of the bounding sphere

float z_test = (0.5)*cam->viewplane_height*sphere_pos.z/cam->view_dist;

if ( ((sphere_pos.y - bhv_tree->radius.y) > z_test) || // top side

((sphere_pos.y + bhv_tree->radius.y) < -z_test) ) 

// bottom side, note sign change

{

// this entire node is culled, so we need to set the culled flag

// for every object

for (int iobject = 0; iobject < bhv_tree->num_objects; iobject++)

{

SET_BIT(bhv_tree->objects[iobject]->state, OBJECT4DV2_STATE_CULLED);

} // end for iobject

// this node was visited and culled

bhv_nodes_visited++;

return(1);

} // end if

} // end if

// at this point, we have concluded that this BHV node is too large

// to cull, so we need to traverse the children and see if we can cull them
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for (int ichild = 0; ichild < bhv_tree->num_children; ichild++)

{

// recursively call..

BHV_FrustrumCull(bhv_tree->links[ichild], cam, cull_flags);

// here’s where we can optimize by tracking the total number

// of objects culled and we can exit early if all the objects

// are already culled...

} // end ichild

// return failure to cull anything!

return(0);

} // end BHV_FrustrumCull

BHV_FrustrumCull() walks the BHV as outlined before, and simply applies the bounding
sphere-to-frustrum culling algorithm from the Cull_OBJECT4DV2() function. In essence,
we’re using the center of the BHV, along with its radius, to create a bounding sphere, and
then testing whether the bounding sphere is within the viewing frustrum.

CAUTION

Using a bounding sphere is great if the volume is a sphere, but in the default case that the
bounding volume is a cube, you’ll see objects culled early in some cases. This is an easy fix: You
just need to write a culler that supports cubes. I will leave this to you, because you might need
many shapes depending on how you use the technology, but the sphere is easy for demonstra-
tive purposes.

TIP

Implementing the cube cull is relatively simple: Instead of finding the six tangent points to the
sphere, simply use the eight vertex points of the bounding cube!

After BHV_FrustrumCull() runs, the array of objects are updated via their state field (with
the culled bit is set or not). Then during the object rendering loop, the array of objects is
simply tested. Objects that are culled are ignored; objects that are not culled are processed
as usual, which includes standard bounding sphere culling!

Figure 13.69 depicts a screenshot of the DEMOII13_5.EXE|CPP running. It doesn’t look that
exciting because all the action is behind the screen, but the status and information display
is interesting. The display indicates the number of objects culled, the number of BHV
nodes visited, and the number of objects passed to the rendering loop (not culled by the
BHV). You can enable and disable the BHV with the B key.
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FIGURE 13.69 A screenshot of the BHV demo.

NOTE

To compile the demo yourself, you will need DEMOII13_5.CPP, along with all the library modules
T3DLIB1–11.CPP|H in addition to the DirectX .LIB files. Additionally, you will need the resource
file for the menus and so on. This file is named DEMOII13_5.RC.

Octrees
Octrees are simply a special case of the more generalized BHV system we just developed.
In fact, when the number of divisions is equal to two, a call to BHV_Build_Tree() actually
creates an octree! I wrote the BHV code first because it’s more general.

To reiterate, an octree is simply a BHV that is axis-aligned and has children per node. Each
node is exactly the same size, and is always shaped like a cube. The BHV system enables
non-cubic bounding objects like spheres and so on because we track the radius as a vector,
and have an attribute word for each node that could potentially describe each bounding
volume type.

With that in mind, we already have an octree system, and there’s nothing else to write.
However, there are some points I want to mention about generating an octree.

Octrees (and BHVs, for that matter) can operate at the object or polygon level. In our case,
we have worked with objects rather than polygons (but we used polygons for the BSP
demo, so I thought this would be a nice change) because octrees and BHVs are really
useful for huge outdoor worlds with thousands of objects.
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Octrees always have up to eight equally sized children per node in 3D. However, there is
no rule that says each child must be contained in the octree.
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FIGURE 13.70 A 2D representation of an octree division (technically a quadtree).

For example, take a look at Figure 13.70. Here we see a few iterations of an octree BHV
algorithm running and partitioning space (a 2D projection with numbering indicating the
level of the iteration). However, the partitioning does not partition space equally—the
partitioning only occurs where polygons or objects are actually contained within the
node. This is to save memory. If you like, you can surely create eight nodes each iteration
and place nothing in them, but I prefer to create the eight nodes virtually (like our BHV
does), and then if there is something in the node, it’s committed to the data structure,
otherwise the octant is NULLed.

When creating an octree, as with a BHV, there are a number of stopping conditions. You
might decide to stop when an octant has reached a certain size, or when a certain recur-
sive depth has been reached, or maybe when there is a minimum number of polygons in
each node. The choice is up to you.

In conclusion, octrees are simply specific cases of BHVs. The algorithms we have written
create an octree with the build function when the division is set to two, like this:

BHV_Build_Tree(&bhv_tree,

scene_objects,

NUM_SCENE_OBJECTS,

0,

2);
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The frustrum culling works the exact same. Cool, huh! The only reason to use an octree
rather than some bizarre division scheme (with 10 divisions per node for 100 little sectors
with spheres, for example) is that the eight octants mimic the eight octants of a 3D system
very well, which has some nice properties and is easier to work with.

Occlusion Culling
The last topic I want to talk about is again related to drawing what you can see. We saw
with PVS technology that we can generate lists of polygons from any viewpoint in the
game, and then refer to these lists to determine what polygons should be considered
during any particular frame. However, what if you aren’t using a PVS, or it’s just not feasi-
ble, or doesn’t help because of the type of world?

There is yet another class of techniques that work from the other end of the problem
called occlusion culling. In essence, occlusion culling is a technique used when you may or
may not want a static solution to your visibility (maybe your world changes frequently,
and PVS, BSP, and octrees are out of the question). Nevertheless, there are some key
geometrical elements in your world that are simply invisible, because they are so large
they occlude much of the scene.

For example, take a look at the screenshot of Unreal 2003 in Figure 13.71. Now take a look
at the screenshot in Figure 13.72. I did nothing but rotate, but all of a sudden there is a
giant object in front of me occluding my vision, so PVS isn’t going to help here (unless we
do it based on view angle, which would be huge). Portals are useless, but there has to be
something we can do to take this ridiculously simple case into consideration and not
render or even consider polygons occluded by this object. This is the basis of occlusion
culling.

Occlusion Volumes
Let’s break the problem down into a really simple case that comes up in outdoor-based
games with cityscapes, for example. Take a look at Figure 13.73a. Here we see a top view of
a cityscape (Houston, actually) where the little blocks represent building meshes. There is
no sense of rooms, portals, and so on. We could do a PVS, but without any bounding
indoor geometry, we would have to use the viewing frustrum as the containment cell to
build the PVS for each viewpoint. Forget about that, and let’s focus on the obvious. In
Figure 13.73a, take a look at where the viewpoint is placed and the viewing frustrum
around it. Notice the large shaded building in front of the viewpoint. Now, take a look at
Figure 13.73b—you can see this building occludes 90% of the potentially visible polygons!

Therefore, if we create an occlusion volume and objects that are within the shadow of the
volume are not visible, we are done. Of course, creating these bounding volumes generally
isn’t easy. There are many algorithms to find the silhouette edges of a 3D object, and from
the silhouette, you can project a number of planes, which then define an occlusion frus-
trum.
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FIGURE 13.71 An open view in Unreal 2003.
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FIGURE 13.73a Cityscape setup for occlusion.
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FIGURE 13.73b Cityscape after rendering occlusion shadow volume.

Anything within the frustrum is clipped. You can take this idea further and have multiple
occluders and create multiple occlusion volumes. Of course, there is a point of diminishing
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returns, when the complexity of determining whether a polygon is within the occlusion
volume takes longer than simply drawing the polygon. However, no one said that we have
to use polygons as the smallest unit to occlude. We can occlude objects, BSP trees, octree
cells, and so on, just as well.

Selection of Occluders
The next step in getting occlusion to work is occluder selection. We still need some
method to select what objects are potential occluders (which we might even perform some
preprocessing on to compute the bounding silhouette). There are a number of strategies
people use to select occluders, but they all fall into one of two broad categories: offline
and runtime. In the case of offline occluder selection, a modeler might tag specific objects
as potential occluders. These are tagged because they are large, or they will continually
occlude the player’s viewpoint during game play. Additionally, a set of potential occluders
might be selected on a sector-by-sector basis.

For the online category of occluders, there is usually an offline phase, or at least the
tagging of potential occluders. During runtime, the system determines whether the
occluder is worth adding to the occlusion list, and hence converting it into an occlusion
volume and the clipping/culling that will be introduced as such. The heuristic might be
based on the size of each occluder, meaning that only objects that are large and movable,
or perhaps large terrain or environment objects will be tagged as potential occluders. Then
during runtime, the system determines a projected screen space of the occluder, and
decides whether it’s worth using as an occluder. This brings me to a hybrid technique that
I like to use.

Hybrid Occluder Selection
Occluders can be selected during an offline processing or modeling step (or algorithmi-
cally); they can be selected during runtime from a potential occluder set; or they can be
selected completely on the fly by computing the volume of large projected objects (or
polygons) and then deciding whether it’s worth using the object as an occluder. Taking all
these techniques into consideration takes a bit of work in your modeling and rendering
pipeline. However, there are lots of simple opportunities to select occluders that are either
polygons are object-based. The steps are as follows:

1. For all the objects and geometry that are definitely within the viewing frustrum and
potentially visible, make a pass through them and select the n nearest objects that
have the largest size.

2. Project the objects or geometry into screen space and look at the area of the
projected region(s). Select the m <= n objects or geometry that make up the largest
screen space. Then compute bounding rectangles that are contained within each of
the occluders. (Although this will miss some potential occlusions, the bounding
rectangles are much easier to project than the arbitrary polygons or meshes.)
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3. Now add the small set of occlusion rectangles to the occlusion volumes, and pass all
objects and all polygons through the occlusion volumes, removing all occluded
geometry.

In essence, the algorithm is quite straightforward—you make a quick pass and select a few
of the nearest largest objects or geometry, assuming that these will probably be occluders.
Then you project their volumes/areas into screen space, and a set of these occluders are
selected because they have the potential to occlude a great deal of the viewspace.
However, instead of using complex geometry, bounding inscribed rectangles are used that
are wholly inside each occluder as the basis of the occluder volume. Then any object that
has z values farther than the occluder object plane and is within the occlusion volume is
disregarded. Of course, this works best when there is still some hierarchy left in the
object/world representation, such as BSP, rooms, octrees, and so on, so large chunks can be
occluded and disregarded.

Summary
This has been a really cool chapter. We covered all the important spatial partitioning algo-
rithms, got down to the nitty gritty on many of them and implemented the most impor-
tant ones. With this knowledge, you now have a framework to create your own visibility
algorithms as hybrids of what I have covered here. In fact, you will find yourself with a
surplus of ideas on this topic.

However, before you start coding anything, make sure to read everything you can get your
hands on about the subject, so you don’t reinvent the wheel too many times—people
have tried just about everything. Of course, you know that I am a proponent of trying
everything just for the experience of it, but if you have a finite schedule, it’s worth reading
through previous works on the subject.

Finally, a word of warning: Many of the algorithms are recursive, so take your time and
program defensively, because debugging recursion is a nightmare, because debugging
recursion is a nightmare, because debugging recursion is a nightmare, because debugging
recursion is a nightmare…

Stack Overflow: Instruction Pointer = 0x00fff564

See what I mean?

Summary 1437

13

18 0672318350 CH13  05•02•2003  2:58 PM  Page 1437



18 0672318350 CH13  05•02•2003  2:58 PM  Page 1438



IN THIS CHAPTER

• The New Game Engine
Module

• Introduction and Game Plan

• The Physics of Shadows

• Simulating Shadows with
Projective Images and
Billboards

• Planar Mesh Shadow
Mapping

• Introduction to Light
Mapping and Surface
Caching

• Putting Everything Together

CHAPTER 14

Shadows, Lighting, and
Secrets of the id

“If we knew what it was we were doing, it would not be called

research, would it?”

—Albert Einstein

In this chapter, we are going to cover some material that will
add a little more realism to our scenes: shadows and light
mapping. As usual, our coverage is going to be down and
dirty, focusing on software techniques because we aren’t
cheating with hardware, but interesting nonetheless. Here’s
what’s in store:

• The new game engine library module

• Introduction and game plan

• The physics of shadows

• Simulating shadows with projective images and bill-
boards

• Planar mesh shadow mapping

• Light mapping and surface caching

• Putting everything together

• Lots of demos!

The New Game Engine Module
Once again, there is enough software in this chapter for a
separate library module. We are up to T3DLIB12.CPP|H now,
so to compile any program from this chapter, you will need
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1440 CHAPTER 14 Shadows, Lighting, and Secrets of the id

the main .CPP program file for the program, the DirectX .LIB files, and the following new
library modules:

T3DLIB12.CPP—The C/C++ source for the added shadow and light mapping software.

T3DLIB12.H—The accompanying header file.

Of course, you must link to T3DLIB1–11.CPP|H, as well.

Introduction and Game Plan
We have held off on this chapter for a long time. The reason was that I wanted to build up
enough technology, demos, and techniques, so that by the time we got here, you could do
it yourself, more or less. Of course, I am not going to leave you hanging, but the point I
want to make is that we have already more or less covered light mapping. Didn’t we blend
textures with light textures in Chapter 8, “Basic Lighting and Solid Modeling”? And as for
shadows, haven’t we written alpha blending rasterizers that could potentially be used to
draw shadow projections? Absolutely! Thus, what we are going to do in this chapter is
systems integrate what we already have, and add a couple of things to make the demos
possible. But for the most part, you will probably finish each one of my sentences, because
you know how to do this already, I bet!

In any event, I think the best approach to the main topics of this chapter is to start off
with some physics relating to shadows, and then implement a couple of shadowing tech-
niques (there are many more, but they work better for hardware, so I will leave that to
Direct3D/OpenGL books). Then we’ll move on to light mapping and surface caching in a
very simplified case, rather than adding total support to the engine for it. I made this deci-
sion because adding general light mapping to the engine would take about ten times more
code than an example of it. Plus, if you’re like me, a simple example is more meaningful
than a long implementation.

This will be the theme throughout the remainder of the book. We are getting near the
end, and at this point, you should be able to create a software engine capable of rendering
Quake/Unreal-like worlds. When we finish this chapter, you will have a few more special
effects, but for the most part you are ready. Let’s get started.

The Simplified Physics of Shadows
The exact details of the photons and the interactions of surfaces is far beyond what we
need to model shadows, but we do want to model or at least understand how shadows are
generated, and why they have the “soft” and “hard” edges you see, or if you recall, what
are called the umbra and penumbra, from when we discussed lighting earlier in the book.

In Figure 14.1, we see a cylinder resting on a plane with a point light source above it.
There is a bit of ambient light, so the cylinder is visible from all sides, but the cylinder
casts a shadow on the plane because it obscures the line of sight of the point light source
to the ground plane—this is a shadow. However, there is an interesting second-order effect
if you look at the rendering closely.
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FIGURE 14.1 A simple shadow cast by a cylinder.

Analyzing the shadow itself, it has a solid dark area in the middle (the umbra), but near
the edges where the shadow falls off, the area is brighter (or less shadowed). This is called
the penumbra. Also, notice that the existence of the penumbra is only pronounced at the
far boundaries of the shadow, and not at the base of the cylinder.

Inspecting the base of the cylinder and the shadow in this area, you will notice that the
shadow is very “hard” and strong. These are the kinds of details we want to simulate,
model, or otherwise implement in our engine. Let’s take a look at what is happening from
the photon’s point of view.

Ray Tracing Photons and Computing Intensity
Take a look at Figure 14.2a. Here we see a side view of our cylinder example, with a single
point light source. Tracing the ray from the light source and intersecting it with the
ground plane, we see that the results are trivial. A single point of light illuminates every-
thing not in the shadowed area (occluded by the cylinder). Therefore, we get a hard-edged
shadow, as shown in Figure 14.2b.

Here’s where things get interesting. What if the point light source wasn’t a point at all, but
a small sphere? Figure 14.3 illustrates this setup. The interesting thing about the situation
in Figure 14.3 is that for any point p

i
located on the x-axis in the shadow cast by the

cylinder, the amount of light intensity is different for each position x, and is directly
proportional to the area of the projectors from the point of interest to the two points that
intersect the point light sphere.
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FIGURE 14.2a Ray tracing a point light source.
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FIGURE 14.2b Ray tracing a point light source.
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FIGURE 14.3 Ray tracing a spherical light source.

These points generate an “area” on the sphere. This is the total illumination that the
receiver point(s) receive, and as the receiver point moves on the x-axis, the amount of area
increases or decreases. This effect generates the penumbra, and that’s why as we move the
test point away from the edges of the shadow, the intensity of light increases or the
shadow diminishes—because there is more surface area illuminating the position (Figure
14.4b is actually a rendering of this situation). Finally, maintaining the position of the
point and increasing the size of the point light source sphere size softens the shadow. This
is illustrated in Figures 14.4a and b.

The bottom line is that if we want to correctly model the umbra and penumbra, we need
to take into consideration the size of the light source, and we need to do a little ray
tracing. However, this could be very computationally intensive. That’s not to say you
couldn’t do it, but is it really needed? Well, the answer is no. As of the writing of this
book, many games still do not have shadows—sure, many do, but the shadows are hard
with no penumbra. However, some games do have soft shadows, and they look great
(usually implemented with multitexturing, pixel shaders, and stencil buffers).
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FIGURE 14.4a Increasing the size of the point light source creates softer shadows.
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FIGURE 14.4b Increasing the size of the point source light creates softer shadows. 

The point is that for nearly a quarter century, video games have lived without shadows (or
physically correct ones, at least), so any shadow at all is better than nothing. Hence, even
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if we don’t compute the exact light intensity at every pixel, we can basically create an arti-
ficial soft shadow with an alpha blending pass, or other tricks. And in software, this is
more than enough.

Now that you know what generates shadows from an optical point of view and how the
umbra and penumbra are generated, let’s get down to creating some shadows in steps,
from really simple-looking to reasonably realistic.

Simulating Shadows with Projective Images and
Billboards
The first type of shadow technology is hardly a real shadow, as far as the geometry of the
occluder is concerned, but looks very convincing nonetheless until you really focus on it.
The technology I am referring to is simply drawing a shadow bitmap right under the
object that is supposed to be generating a shadow. Take a look at Figure 14.5 where we see
a good example of a billboard or projective shadow under the character object (Mario in
this case). The shadow is nothing more than a circular blur located under the character.
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FIGURE 14.5 An example of a 2D shadow being rendered under a character with a bitmap
or billboard.

In the simplest case, the shadow will stay exactly under the character and not take any
light source into position. The next level of detail would be to scale the size of the shadow
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as the character moves up and down in the y-axis (changed height), and thus the shadow
would get larger or smaller. This is pretty common as well.

Additionally, many games use a bitmap projection of the object for the shadow, rather than
a circle. For example, take a look at Figure 14.6a. Here we see a 3D space fighter, and in
Figure 14.6b, we see a shadow bitmap projected from a top-down view (of course, the final
bitmap would be resized). This is the bitmap we might use if we want a little more detail.
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FIGURE 14.6a A space fighter. 

FIGURE 14.6b The 2D bitmap projection of the fighter to be used as the billboard shadow
texture. 
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However, there are problems with this: Every object will need a shadow bitmap. That’s not
too bad, but the fact that the shadow is a bitmap of the object means that it is orienta-
tion-dependent, and as the object rotates, the bitmap must be rotated as well. This isn’t a
problem if the bitmap is textured onto a polygon billboard, as shown in Figure 14.7,
because we can rotate the mesh, which will rotate the texture. However, a first attempt at
shadows is best made with a single “shadow” bitmap for everything. Later you can try
using a shadow bitmap for each object, properly tracking the rotational orientation of the
shadow object and rotating or transforming the shadow appropriately.
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FIGURE 14.7 Mapping the shadow texture onto a polygon mesh, simplifying rotation.

Moving on, the next detail we can implement in the shadow model is to not only change
the scale of the shadow with the height of the shadow occluder, but to actually use one of
the light sources in the calculations, look where the light would project through the
shadow object, and then cast a shadow on the ground. Figure 14.8 illustrates this idea
briefly. Again, this is a bit of a hack, because we are only going to use the center of the
shadow occluder object—the center of the light source—to look at where the projector
pierces the ground plane and then simply draw the circular shadow there. Even so, it
looks pretty good. The only thing we are missing is the shearing of the shadow, as we are
always drawing the same bitmap (perhaps rotated). We’ll implement shearing in the next
section on planar shadows; for now, let’s keep it simple.
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FIGURE 14.8 Scaling the shadow and projecting its location on the ground plane.

What we’re going to do now is implement the preceding ideas one by one. But before we
can do that, we need to be able to draw billboards, or flat square polygons with textures
mapped onto them, where the textures have a transparent value. We will need this capa-
bility to implement the actual rendering of the shadow. The plan is to create a square
from two triangles, and then texture-map the texture of a black circular area as a shadow.
But where there is the transparent pixel, we need to see through it. This is a bit of a
problem, because we don’t have support for transparency in the rasterizers. So, we’re going
to have to once again rewrite some of them to add this support.

Implementing Rasterizers with Transparency Support
To draw shadows, or billboards in general, we have almost everything we need already. We
are going to create a simple two-polygon mesh, as shown in Figure 14.9, and then texture-
map a shadow texture onto it. The only problem is that right now, all of our texture
mappers only deal with opaque textures—there is no way to “see through” any portion of
the texture.

TIP

Billboard is a common term used in 3D programming to mean a polygon that has a 2D image
textured onto it. The polygon that is textured usually keeps its orientation parallel to the view-
plane, or some other plane. Billboarding is used to “draw” the 2D projections of 3D objects on a
2D plane in such a way that they look real. You will see billboards in many 3D games represent-
ing trees, houses, or other objects that don’t need a full 3D polygonal mesh (fire and explosions
are good examples of billboards—they’re almost never made from polygons; they’re just 2D
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images that are always oriented toward you). In our case, we are going to implement billboards
informally just to draw shadows on them, and then we’ll draw the billboards on the ground
plane with the texture shadow.
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FIGURE 14.9 Our billboard is based on a simple two-polygon mesh.

Adding support for transparency is rather simple with the rasterizers we currently have.
However, I want to make sure that we are on the same page: transparency is not alpha
blending. Transparency in this context means completely transparent. That means if a pixel
has value i

rgb
, that pixel is not rendered or rasterized. So, if there is a texture that has holes

in it with the pixel value i
rgb

in the area of the holes, we will see through it to the back-
ground. Figure 14.10 illustrates this with a rod iron fence and a Terragen rendering.

Because I’m a fiend about speed, I don’t want to use a general value for the transparent
color. Let’s just use RGB (0,0,0) so the SHORT value of the 16-bit color in the texture will be
0. Therefore, we can add a single comparison to the inner loops of our code that looks like
this:

if (pixel)

{

// render pixel

} // end if
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FIGURE 14.10 An example of transparent texture mapping.

Or, if negative logic is more appropriate:

if (!pixel)

{

// don’t draw

} // end if

In either case, 0 is a great number to test for, and there are numerous optimizations that
can be made with it. The only downfall to using RGB(0,0,0) for the transparent color is
that it’s totally black. What if there is black in the texture that we want to be opaque?
Well, too bad—make it (0,0,1) or (1,1,1) and I guarantee your eyes won’t see it. Although
many people use pink RGB(255,0,255), we’re going to use black.

With all that in mind, I’m not going to redo every single rasterizer, because we need trans-
parency for the shadows and lighting, and advanced shading isn’t needed for a shadow.
However, I don’t want to be cheap, so I will redo enough of the rasterizers to give you the
ability to use transparent textures for at least z-buffered renderings. If you want 1/z
support, you will have to redo them yourself (it takes about five minutes to modify each
rasterizer). Anyway, before I show you all the new function prototypes, here’s the main
loop from the constant-shaded affine texture mapping rasterizer, with support for trans-
parent RGB(0,0,0) values:

// draw span

for (xi=xstart; xi < xend; xi++)

{

// write thru the z buffer always

// write textel
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// test for transparent pixel

textel = textmap[(ui >> FIXP16_SHIFT) +

((vi >> FIXP16_SHIFT) << texture_shift2)];

if (textel)

{

// update z-buffer

z_ptr[xi] = zi;

// write pixel

screen_ptr[xi] = textel;

} // end if

// interpolate u,v,z

ui+=du;

vi+=dv;

zi+=dz;

} // end for xi

I have highlighted the single line of code we need to make this work. Also, for reference,
here’s the old function’s code before adding support for transparency:

// draw span

for (xi=xstart; xi < xend; xi++)

{

// write thru the z buffer always

// write textel

screen_ptr[xi] = textmap[(ui >> FIXP16_SHIFT) +

((vi >> FIXP16_SHIFT) << texture_shift2)];

// update z-buffer

z_ptr[xi] = zi;

// interpolate u,v,z

ui+=du;

vi+=dv;

zi+=dz;

} // end for xi

If you compare the preceding old code and the new code fragment with transparency
support, you will see that basically the new texture mapper simply reads the textel and
compares it to RGB(0,0,0). If it’s not (0,0,0), rendering proceeds along with a Z-buffer
update.
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TIP

It’s very important that the Z-buffer is not updated on transparent pixels. They are not there, so
they shouldn’t have an effect on the Z-buffer.

The New Software Library
The new software and rasterizers are located within T3DLIB12.CPP|H. Here’s the header file
for your reference:

// T3DLIB12.H - header file for T3DLIB12.H

// watch for multiple inclusions

#ifndef T3DLIB12

#define T3DLIB12

// EXTERNALS ///////////////////////////////////////////////////////////////

extern HWND main_window_handle; // save the window handle

extern HINSTANCE main_instance; // save the instance

// MACROS ////////////////////////////////////////////////

// PROTOTYPES //////////////////////////////////////////////////////////////

// new rendering context function that calls the transparent rasterizers

void Draw_RENDERLIST4DV2_RENDERCONTEXTV1_16_3(RENDERCONTEXTV1_PTR rc);

// normal z-buffered, with write thru z and transparency support on textures

void Draw_Textured_TriangleGSWTZB2_16(POLYF4DV2_PTR face, // ptr to face

UCHAR *_dest_buffer,   // pointer to video buffer

int mem_pitch,      // bytes per line, 320, 640 etc.

UCHAR *_zbuffer,     // pointer to z-buffer

int zpitch);       // bytes per line of zbuffer

void Draw_Textured_TriangleFSWTZB3_16(POLYF4DV2_PTR face, // ptr to face

UCHAR *_dest_buffer,   // pointer to video buffer

int mem_pitch,      // bytes per line, 320, 640 etc.

UCHAR *_zbuffer,     // pointer to z-buffer

int zpitch);       // bytes per line of zbuffer

void Draw_Textured_TriangleWTZB3_16(POLYF4DV2_PTR face, // ptr to face

UCHAR *_dest_buffer,    // pointer to video buffer
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int mem_pitch,       // bytes per line, 320, 640 etc.

UCHAR *_zbuffer,      // pointer to z-buffer

int zpitch);        // bytes per line of zbuffer

// normal z-buffered, and transparency support on textures

void Draw_Textured_TriangleZB3_16(POLYF4DV2_PTR face, // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch,    // bytes per line, 320, 640 etc.

UCHAR *_zbuffer,   // pointer to z-buffer

int zpitch);     // bytes per line of zbuffer

// normal z-buffered, with write thru z and 

// transparency support on textures and alpha

void Draw_Textured_TriangleWTZB_Alpha16_2(POLYF4DV2_PTR face, // ptr to face

UCHAR *_dest_buffer, // pointer to video buffer

int mem_pitch,    // bytes per line, 320, 640 etc.

UCHAR *_zbuffer,   // pointer to z-buffer

int zpitch,     // bytes per line of zbuffer

int alpha);

void Draw_Textured_TriangleZB_Alpha16_2(POLYF4DV2_PTR face, // ptr to face

UCHAR *_dest_buffer,  // pointer to video buffer

int mem_pitch,     // bytes per line, 320, 640 etc.

UCHAR *_zbuffer,    // pointer to z-buffer

int zpitch,      // bytes per line of zbuffer

int alpha);

void Draw_Textured_Triangle_Alpha16_2(POLYF4DV2_PTR face,  // ptr to face

UCHAR *_dest_buffer,    // pointer to video buffer

int mem_pitch, int alpha); // bytes per line, 320, 640 etc.

#endif

Referring to the header file, you see that there are six new rasterizers that are identical to
the previous versions they each build on, but with the one added feature of transparency
support. I reworked enough of the functions to make sure we could draw alpha blended
textures with transparency support with or without z-buffering. However, if you are
keeping up with current events, you know that we stopped calling the rasterizers manu-
ally, and have been using a “rendering context” function that we set up and then call. We
were on version 2.0, and now we are on version 3.0:

void Draw_RENDERLIST4DV2_RENDERCONTEXTV1_16_3(RENDERCONTEXTV1_PTR rc);
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There is absolutely no difference, other than the name has a “3” in it. And of course,
within the function there is support for the transparent rasterizers. There is a slight speed
hit for using transparency. I could have added a flag in the polygon attributes to indicate
that a texture was transparent, and then used a switch case on which rasterizer to use and
fork, but that’s not worth the trouble at this point. Additionally, you would have to set
something in the modeler to indicate transparency for the attached texture, and we have
enough weird settings for lighting and alpha blending as it is!

That’s all there is to the software—the rest is just math, and we will implement each tech-
nique in the context of a demo.

Simple Shadows
Implementing simple shadows involves nothing more than drawing a bitmap shadow
with alpha blending directly under the object that is supposedly casting the shadow. To
implement this effect, first we need two things: the shadow texture, and the shadow
polygon mesh for the billboard. Let’s start with the shadow texture: Its name is
shadow64_64.bmp; it’s 64×64 pixels, and basically a very dark disk RGB(16,16,16) with a
RGB(0,0,0) fill color. Figure 14.11 is a negative version of the texture, because you can’t see
the black on the printed side, but you can at least see the shape. Just imagine it black on
black!
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FIGURE 14.11 Our shadow texture (inverted negative image).

The next step is to model a square made of two triangles and then apply the shadow
texture to the mesh. Additionally, to make the nontransparent parts of the texture look
more realistic as shadows, the alpha should be enabled in the model. If you recall, we
have support for this with the Caligari .COB file format. We just set the transparency to
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filter mode, and then set the level of transparency to whatever. In this case, I used a level
that makes the shadow texture look dark—but not too much, so it doesn’t look black.
Finally, the lighting model on the shadow model billboard model should be constant
shading; we don’t want light reflecting off the shadow!

The final model for the shadow billboard model is named shadow_poly_01.cob and can be
found on the CD in this chapter’s directory. I would show you a screenshot of it, but
there’s nothing to show—just two triangles! Anyway, now that we have the shadow
polygon mesh and the transparent texture with alpha set on the polygons to blend on
nontransparent textures, we are ready to write a demo.

Writing the demo is rather easy. The steps to creating a shadow for any object are the
following:

1. Render all objects in the world with normal z-buffering.

2. Make a second pass, and for each object that a shadow should be projected from,
render the shadow mesh directly under the object and above the terrain (if there’s
any below it) with alpha blending and the transparent texture mappers.

The reason why a second pass is needed is because to alpha blend the shadow with the
terrain or geometry under it, we need an image in the buffer with which to alpha blend.
Also, because the shadow is supposed to be on the ground, we need to figure out not only
where the ground is, but at what altitude to draw the shadow above the ground. Figure
14.12 illustrates these considerations.

For the demo, I used our trusty terrain generator to make an icy planet with a little
planet/moon orbiting around the center of the terrain (I have no idea what I was think-
ing!). The rendering process goes as follows: The terrain and planet are rendered as usual,
and then a second pass is made, but this time, a single object is rendered—the shadow
mesh. The position of the shadow mesh is located directly under and centered relative to
the planet mesh object (which is projecting the shadow), and at a height that takes the
terrain into consideration, so the shadow doesn’t “z-fight” the Z-buffer. Of course, for
really rough terrain, this won’t look good, because the shadow is planar and will end up
intersecting the geometry no matter what you do!

In any case, here’s a code snippet from the demo illustrating the shadow pass:

// shadow object

// reset the render list

Reset_RENDERLIST4DV2(&rend_list);

// reset the object (this only matters for backface and object removal)

Reset_OBJECT4DV2(&shadow_obj);
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// compute terrain cell shadow is over

cell_x = (obj_work->world_pos.x + TERRAIN_WIDTH/2) / obj_terrain.fvar1;

cell_y = (obj_work->world_pos.z + TERRAIN_HEIGHT/2) / obj_terrain.fvar1;

// compute vertex indices into vertex list of the current quad

int v0 = cell_x + cell_y*obj_terrain.ivar2;

int v1 = v0 + 1;

int v2 = v1 + obj_terrain.ivar2;

int v3 = v0 + obj_terrain.ivar2;

// now simply index into table

terrain_height = MAX(  MAX(obj_terrain.vlist_trans[v0].y,

obj_terrain.vlist_trans[v1].y),

MAX(obj_terrain.vlist_trans[v2].y,

obj_terrain.vlist_trans[v3].y) );

// update position

shadow_obj.world_pos  = obj_work->world_pos;

shadow_obj.world_pos.y = terrain_height+10;

// create identity matrix

MAT_IDENTITY_4X4(&mrot);

// transform the local coords of the object

Transform_OBJECT4DV2(&shadow_obj, &mrot, TRANSFORM_LOCAL_TO_TRANS,1);

// perform world transform

Model_To_World_OBJECT4DV2(&shadow_obj, TRANSFORM_TRANS_ONLY);

// insert the object into render list

Insert_OBJECT4DV2_RENDERLIST4DV2(&rend_list, &shadow_obj,0);

Further down in the complete code, the rendering context is set up and a full render pass
is made. Figure 14.13 is a screenshot of the demo in action. It’s quite cool, but it’s going to
get a lot cooler by the end of the chapter—he he he! The name of the demo is
DEMOII14_1.CPP|EXE, and to compile it you will need all the usual DirectX .LIB files, along
with all the library modules T3DLIB1–12.CPP|H. The controls for the demo are on the
screen, but you can basically move around with the keyboard and try toggling the lights
and wireframe modes so you can see what’s going on.
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FIGURE 14.12 Computing the height at which to render the shadow polygon.
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FIGURE 14.13 A screenshot of the simple shadow demo.
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Shadows that Scale
Now that we have something that resembles a shadow, let’s take it to the next level. We
need to scale the shadow based on three things: the size of the object, the position of the
object relative to the ground (its altitude), and the position of the light source creating the
fictional shadow.

The size of the object is constant in the calculations, so we don’t need to worry about
that. We can use a scaling factor later to account for this, but we must consider the height
of the object and the height/position of the light source in real time. A mathematical rela-
tionship must be derived that takes at least the height of the object above the ground and
the height of the light source above the ground into account. Take a look at Figure 14.14
to see a derivation.
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In Figure 14.14, we see a 2D dimensional version of the problem. Without loss of general-
ity, we can position the object on the y-axis some height h

0
with radius r

0
. We can then

position the light source above the object at a position h
i
. Also in the figure, there are a

number of other rays plotted out. You can see that a light with position h
1

will leave
everything in shadow from the origin to r

1
. Similarly, a light with position h

2
will leave

everything in shadow from the origin to position r
2
, and so forth. In general, when the

light source is at position h
i
, the radius of the shadow will be r

i
. The googleplex question

is, what is the relationship between r
0
, r

i
, h

0
, and h

i
?

Similar triangles to the rescue! Noting that the triangle formed by the origin, h
i
, and r

i
, is

similar to the triangle formed by (h
i
– h

0
), and r

0
, we can write this relationship:

r
0

(h
i
– h

0
)

---- = ------------

r
i

(h
i
)

Rearranging and solving for r
i
, we have:

r
i
= r

0
*( h

i
/ (h

i
– h

0
) )

Let’s try this out with some common sense. What if the light source is like the sun, and
infinitely far away? We would expect that the light rays would be nearly parallel, and thus
the shadow would approach the radius r

0
in the limit. Let’s check it out:

lim r
i
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i
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i
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0
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i
->∞
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0
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i
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i
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0
))
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Dividing top and bottom by h
i
, we get
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0
* lim  ((h

i
/h

i
) / (h

i
/h

i
– h

0
/h

i
))

h
i
->∞

= r
0
* lim  (1 / (1 – h

0
/h

i
))

h
i
->∞

As h
i
approaches infinity, the quotient h

0
/h

i
approaches 0. Therefore, we have

= r
0
* (1 / (1 – 0)) = r

0

from which we conclude that as the light source altitude gets larger and larger (y tends
toward positive infinity), the shadow radius approaches the object radius, and the
converse is true as well. Now let’s implement our findings.

The next demo will take the shadow scaling math into account, along with the actual
position of one of the point light sources we are so used to seeing floating around.
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However, only the altitude of the light source will be used in the calculations (the green
point light will be our source). The process to render the shadow is exactly the same as
before, only the final scale is factored in, and the shadow mesh is scaled before rendering.
Here’s the code fragment that accomplishes this task:

// now make second rendering pass and draw shadow(s)

// reset the render list

Reset_RENDERLIST4DV2(&rend_list);

//////////////////////////////////////////////////////////////////////////

// shadow object

// reset the object (this only matters for backface and object removal)

Reset_OBJECT4DV2(&shadow_obj);

// compute terrain cell shadow is over

cell_x = (obj_work->world_pos.x + TERRAIN_WIDTH/2) / obj_terrain.fvar1;

cell_y = (obj_work->world_pos.z + TERRAIN_HEIGHT/2) / obj_terrain.fvar1;

// compute vertex indices into vertex list of the current quad

int v0 = cell_x + cell_y*obj_terrain.ivar2;

int v1 = v0 + 1;

int v2 = v1 + obj_terrain.ivar2;

int v3 = v0 + obj_terrain.ivar2;

// now simply index into table

terrain_height = MAX(  MAX(obj_terrain.vlist_trans[v0].y,

obj_terrain.vlist_trans[v1].y),

MAX(obj_terrain.vlist_trans[v2].y,

obj_terrain.vlist_trans[v3].y) );

// update position

shadow_obj.world_pos  = obj_work->world_pos;

shadow_obj.world_pos.y = terrain_height+25;

// now compute the size of the shadow radius based on the

// calculations shown in the book

// the size of the projected shadow, assuming a sphere as the

// occluder with a point lightsource

// height hl above the ground plane, a spherical object

// with radius ro, and height above

// the groundplane ho, the radius of the shadow is rs:

//

//  rs = ro * (hl)/(hl - ho)
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// set height to altitude of green light for fun

hl = lights2[POINT_LIGHT_INDEX].pos.y;

// use the average radius of the object to base calcs on, better than nothing

float rs = ks * ( obj_work->avg_radius[0] * 

(hl/ (hl - obj_work->world_pos.y)) );

// generate scaling matrix bases on shadow scale

MAT_IDENTITY_4X4(&mrot);

// set scaling values to scale in X-Z plane

mrot.M00 = rs;

mrot.M11 = 1.0;

mrot.M22 = rs;

// scale the local coords of the object via the matrix

Transform_OBJECT4DV2(&shadow_obj, &mrot, TRANSFORM_LOCAL_TO_TRANS,1);

// perform world transform

Model_To_World_OBJECT4DV2(&shadow_obj, TRANSFORM_TRANS_ONLY);

// insert the object into render list

Insert_OBJECT4DV2_RENDERLIST4DV2(&rend_list, &shadow_obj,0);

TIP

You will notice a constant ks being multiplied against the scale computation. This is just a “fudge
factor” to make the size of the shadow look good. Sometimes correct doesn’t look as real as real.

I have highlighted the new code, which is almost identical to the math we derived. The
only interesting fact is that I opted to use a matrix transform to scale the mesh. If you
recall, to scale any vertex point p via a matrix M

s
, the scaling matrix should look like this:

|sx  0   0  0|

|0   sy  0  0|

M
s
= |0   0   sz 0|

|0   0   0  1|

In this case, we only want to scale in the x-z plane, of course.

Figure 14.15 is a screenshot of DEMOII14_2.CPP|EXE in action. To compile the demo, you
will need T3DLIB1–12.CPP|H, in addition to the DirectX .LIB files. The controls of the
demo are identical to the previous demo, with the addition of controlling the altitude of
the green point light with the 1 and 2 keys. Try changing the height of the light and see
what happens to the shadow, but don’t raise the light too high, or the illusion will break
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down! Also, make sure to toggle to wireframe mode with the W key to see the mesh being
rendered for the shadow to confirm that it’s just a square.
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FIGURE 14.15 A screenshot of the shadow demo that supports scaling shadows.

Tracking the Light Source
Now we are starting to get somewhere. The shadow is starting to look like a shadow. It’s
always a disk—I could use a minibus as the occluder and we would still see disk for the
shadow—but that’s easy enough to fix. The real issue here is that the shadow is always
directly under the object casting the shadow, and this is not correct. In the previous demo,
we used the green point light as the shadow light source, but only used its height to help
compute how large to make the projected shadow’s radius. However, what we really need
to do is the full mathematical projection of where the shadow would be in the x-z plane,
given the position of the object and the light source.

Take a look at Figure 14.16 for the setup of the problem we need to solve. For a change, I
thought I would solve the problem using parametric vector equations rather than similar
triangles (I feel cheap and dirty when I use similar triangles). In the figure, the position of
the point light source is p

l
, the center of the object is located at position p

o
, and the

projected point on the ground plane is p
s
.

Let’s write these equations out and see what we can find. The parametric line in 3D space
from the light source piercing the center of the shadow object and intersecting the ground
plane is

p
s
= p

l
+ t * (p

o
– p

l
)
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FIGURE 14.16 The geometrical setup for computing the shadow position based on a light
source.

Writing p
s
as components, we have

p
s
.x = p

l
.x + t * (p

o
.x – p

l
.x)

p
s
.y = p

l
.y + t * (p

o
.y – p

l
.y)

p
s
.z = p

l
.z + t * (p

o
.z – p

l
.z)

We are interested in the x and z components when y = 0. Thus we can set p
s
.y to 0.0 and

solve for t, then plug t back into p
s
.x and p

s
.z, and solve for the x and z components.

Solving for t is easy:

p
s
.y = p

l
.y + t * (p

o
.y – p

l
.y) = 0

Therefore,

p
l
.y + t * (p

o
.y – p

l
.y) = 0

t = -p
l
.y / (p

o
.y – p

l
.y)

With the point p
s
in hand, we simply render the shadow object centered at p

s
(y = 0, of

course) and we are done! The shadow will follow the light source properly, as if the object
were occluding it. Moreover, we will add the scaling effect to complete the system.

Once again, implementing the rendering pipeline is identical to the previous demo—there
are no changes: The terrain and the object are rendered, then the shadow objects are
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positioned using the math we just outlined, and a second rendering pass alpha blends the
shadow objects (with transparent textures) on the ground plane of the terrain, for a fairly
realistic shadow demo.

Of course, we still have two things that we need to address: the shape of the shadow has
nothing to do with the object, as we are always using a circular disk; and the shadow
always has the same dimension—there is no shearing or skewing—but we will get to that.

With that in mind, let’s take a look at the new shadow code that computes the position of
the shadow based on the position of the light source, the object, and the y = 0 plane.
Here’s the code fragment from the next demo that does this:

// reset the render list

Reset_RENDERLIST4DV2(&rend_list);

// reset shadow image for car, if in shadow change to 0

cockpit.curr_frame = 0;

int v0, v1, v2, v3; // used to track vertices

VECTOR4D pl, // position of the light

po, // position of the occluder object

vlo, // vector from light to object

ps; // position of the shadow

float  rs, // radius of shadow

t;  // parameter t

//////////////////////////////////////////////////////////////////////////

// shadow object

// reset the object (this only matters for backface and object removal)

Reset_OBJECT4DV2(&shadow_obj);

// compute terrain cell shadow is over

cell_x = (obj_work->world_pos.x + TERRAIN_WIDTH/2) / obj_terrain.fvar1;

cell_y = (obj_work->world_pos.z + TERRAIN_HEIGHT/2) / obj_terrain.fvar1;

// compute vertex indices into vertex list of the current quad

v0 = cell_x + cell_y*obj_terrain.ivar2;

v1 = v0 + 1;

v2 = v1 + obj_terrain.ivar2;

v3 = v0 + obj_terrain.ivar2;

// now simply index into table

terrain_height = MAX(  MAX(obj_terrain.vlist_trans[v0].y,
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obj_terrain.vlist_trans[v1].y),

MAX(obj_terrain.vlist_trans[v2].y,

obj_terrain.vlist_trans[v3].y) );

// update position

//shadow_obj.world_pos  = obj_work->world_pos;

shadow_obj.world_pos.y = terrain_height+25;

// using point light source 1 as the projector, compute target projection

// position, use local variables to make the math easier to understand

// assign light position from point light

pl = lights2[POINT_LIGHT_INDEX].pos;

// assign object position

po = obj_work->world_pos;

// create vector from lightsource to object

VECTOR4D_Build(&pl, &po, &vlo);

// now, comes the fun part, solve for t when y=0 of the projector line

// technically, we are placing the shadow slightly higher in the math above,

// so if you like, you can change the solution of t,

// to take that into consideration

// but this is cleaner for now

t = -pl.y / vlo.y;

// now compute x,z of projected shadow position

// (scale t by .5 to keep the shadow close)

shadow_obj.world_pos.x = pl.x + t*vlo.x;

shadow_obj.world_pos.z = pl.z + t*vlo.z;

// now compute the size of the shadow radius based on the calculations

// shown in the book the size of the projected shadow, assuming a sphere

// as the occluder with a point lightsource height hl above the

// ground plane, a spherical object with radius ro, and height above

// the groundplane ho, the radius of the shadow is rs:

//

//  rs = ro * (hl)/(hl - ho)

// set height to altitude of light

hl = lights2[POINT_LIGHT_INDEX].pos.y;
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// use the average radius of the object to base calcs on, better than nothing

rs = ks * ( obj_work->avg_radius[0] * (hl/ (hl - obj_work->world_pos.y)) );

// generate scaling matrix bases on shadow scale

MAT_IDENTITY_4X4(&mrot);

// set scaling values to scale in X-Z plane

mrot.M00 = rs;

mrot.M11 = 1.0;

mrot.M22 = rs;

// scale the local coords of the object

Transform_OBJECT4DV2(&shadow_obj, &mrot, TRANSFORM_LOCAL_TO_TRANS,1);

// perform world transform

Model_To_World_OBJECT4DV2(&shadow_obj, TRANSFORM_TRANS_ONLY);

// insert the object into render list

Insert_OBJECT4DV2_RENDERLIST4DV2(&rend_list, &shadow_obj,0);

//////////////////////////////////////////////////////////////////////////

// test if camera is in shadow

VECTOR4D vd;

VECTOR4D_Build(&cam.pos, &shadow_obj.world_pos, &vd);

float d = VECTOR4D_Length_Fast(&vd);

// test if distance is within 1.5 times the radius of the shadow,

// the 1.5 makes it a little more noticeable

if (d < 1.5*rs)

cockpit.curr_frame = 1; // cockpit with lower brightness

else

cockpit.curr_frame = 0; // cockpit with higher brightness

The code implements the parametric projection and intersection almost verbatim; the
only added feature is some code to swap out cockpit bitmaps when the camera is in the
virtual shadow. If you have ever played a first-person game, when you walk into a dark
area, the lighting of the mesh is diminished, either by the light model or by manually
decreasing the ambient factor for the mesh to simulate the effect of the shadow. For fun, I
did the same thing here. I used a little cockpit from a jeep vehicle rendering and have two
versions of it: full intensity and dark. When I detect that the camera is in a shadow, I swap
out the bright image for the dark image and vice versa, thus creating the illusion (and I
am pushing it with that euphemistic word to say the least) that the car is in the shadow.
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In a real first-person game, you probably would use real 3D geometry for the cockpit,
player, gun, or whatever, and let the lighting model drive the shading for real. However,
the lighting model doesn’t know about shadows, so at very least, you still have to deter-
mine whether the mesh is in a shadow and then decrease the ambient term or something
to make the mesh get darker. Anyway, I highlighted the code fragment that performs this
little test and bitmap swap.

The only other extra code you will find in the final demo is that it renders a shadow for
every single point light source (there are two of them), and this is a key point when
performing shadow calculations. More or less, you must render a shadow for each object,
for all light sources. Even with simple shadow algorithms, this can spin out of control
quickly. Imagine 50 objects with three lights—that’s an added 150 renderings! Sure, each is
just a two-polygon mesh with a texture on it, but they are alpha blended, so they hurt
performance somewhat. Just something to think about.

Last but not least, just to make sure we are on the same page with the rendering algo-
rithm, take a look at the flow chart in Figure 14.17. It illustrates the pipeline:
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FIGURE 14.17 A flowchart of the rendering process for shadows.
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1. Render the terrain.

2. Render the light markers.

3. Render the shadow object itself.

4. Rasterize the image.

5. Render each of the shadows.

6. Rasterize the image with alpha blending.

Take a look at Figure 14.18 for a screenshot of DEMOII14_3.CPP|EXE in action. Once again,
the controls are the same, but this time you can control the height of both the green and
red point lights with the 1 and 2 keys (for the green points) and the 3 and 4 keys (for the
red points). But watch out—if you make the lights too low, you will cause an inverted
projection, and the shadows will do weird things—try it! Also, experiment by making the
points’ lights very high above the ground plane to simulate sun light. You will notice that
not only do the positions of the projections stay near the planet object, but the size of the
shadows are the same, because their radius will tend toward the radius of the occluder
object, as we derived in our calculations.
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FIGURE 14.18 A screenshot of the shadow demo with scaling, and positioning.

To compile the demo, you will need the library modules T3DLIB1–12.CPP|H, as well as the
main program DEMOII14_3.CPP|H and the DirectX .LIB files.
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Final Thoughts on Simulated Shadows
Even with what we have now, we can do some pretty cool shadow effects. In fact, posi-
tional, scaling, and alpha blended shadows are middle-of-the-road for most hardware
accelerated games, so we aren’t doing bad.

One last feature you might want to add is using a bitmap image of the 3D mesh projected
from a light source point of view. This way, the shadow looks like it has something to do
with the object. The only problem, of course, is that if the object rotates, the shadow
mesh must be rotated also. However, this is easily solved if the rotation is parallel to the y-
axis, as shown in Figure 14.19.
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FIGURE 14.19 Rotation of the bitmap shadow billboard tracking the object.

If the object rotates in the y-axis, simply rotate the shadow mesh the exact same amount
and use the projected bitmap image of the object as the texture. Of course, the system will
look wrong if the object rotates on the other axis, but for many games and objects, you
can get away with this. It’s an easy thing to add (two to five lines of code), and an extra
bitmap really makes the shadow look more convincing.
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Planar Mesh Shadow Mapping
We are now ready for the next level of shadow technology. This involves actually project-
ing the mesh geometry on the ground plane and then drawing the mesh with gray color
and alpha to make it look like a shadow. We’ll basically model how a single photon would
trace from the light source through a given vertex on the object mesh we want as the
shadow generator and onto the ground. This is shown in Figure 14.20.
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FIGURE 14.20 Planar mesh shadow mapping.

We’ve solved this problem in the previous example—we just need to generalize it a bit.
What we really need to do is find a transformation that will “project” a 3D mesh intact
onto a flat plane (the x-z in this case), and then we will render this flattened mesh with
shading set so it looks like a shadow (disabling textures and lighting, more or less). In
other words, we are going to render the object itself projected onto the ground plane as a
shadow!

Computing the Vector Transformations for Projection
Let’s work through the algorithm. What we need is a transformation that will take any
vertex from the source mesh and then project it onto the ground plane based on the posi-
tion of the light source. Let’s derive the math with a slightly different notation:
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We want to project the vertex v
i
from the mesh, and v

i
is really a vertex from a polygon

p
i
. The light source we are projecting from is at p

l
, and the ground plane is located at 

y = 0. The projected point on the ground plane we will call p
s
; it is computed as follows:

p
s
= p

l
+ t * (v

i
– p

l
)

Writing p
s
as components, we have

p
s
.x = p

l
.x + t * (v

i
.x – p

l
.x)

p
s
.y = p

l
.y + t * (v

i
.y – p

l
.y)

p
s
.z = p

l
.z + t * (v

i
.z – p

l
.z)

Once again, we know that p
s
.y = 0 in the x-z plane. Thus, we can solve p

s
.y = 0 for t

(calling it t
0
), and then plug the solution back into the system to solve for the x,z compo-

nents:

p
s
.y = p

l
.y + t

0
* (v

i
.y – p

l
.y) = 0

Therefore,

p
l
.y + t

0
* (v

i
.y – p

l
.y) = 0

t
0
= -p

l
.y / (v

i
.y – p

l
.y)

Then plugging back in, we have

p
s
.x = p

l
.x + (-p

l
.y / (v

i
.y – p

l
.y)) * (v

i
.x – p

l
.x)

p
s
.y = 0

p
s
.z = p

l
.z + (-p

l
.y / (v

i
.y – p

l
.y)) * (v

i
.z – p

l
.z)

If you play with the math for a minute, you will arrive at the general vector equation:

p
s
= p

l
+ t

0
* (v

i
– p

l
)

= p
l
+ t

0
* v

i
- t

0
*p

l

= t
0
*v

i
+ p

l
*(1-t

0
)

Or in other words, for every point v
i
in the initial mesh, the projected point equals that

point scaled by the constant t
0

plus the sum of p
l
scaled by (1-t

0
). This is perfect for a

matrix operation to perform the operation. Here’s the matrix:

|t
0

0        0         0|

M
ps

= |0           t
0

0          0|

|0           0           t
0

0|

|p
l
.x*(1-t

0
)  p

l
.y*(1-t

0
)  p

l
.z*(1-t

0
)  1|
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If you take the planar shadow matrix and pre-multiply by the vertex v
i
, you will get

v
i
*M

ps
= [t

0
*v

i
.x + p

l
.x*(1-t

0
), t

0
*v

i
.y + p

l
.y*(1-t

0
), t

0
*v

i
.z + p

l
.z*(1-t

0
)]

which is correct, but there is one little problem with this—can you guess? It only works
with one vertex! The computation of t

0
used v

i
in it; therefore, although the matrix opera-

tion is valid, it’s only valid for v
i
. We need this to recompute t

0
for the next v

i
, and so on.

Alas, using a matrix transform isn’t as good an idea as it seemed. The best approach is to
simply compute the vector equation manually for each vertex in a loop, solving for t

0
at y

= 0, plugging it back in, and solving for x and z for each transformed vertex. But on a
positive note, because we are doing all this transformation and computing in world space,
we can perform the local-to-world transform right in the shadow calculation and omit the
step to position the shadow mesh—this is a nice gain.

Now let’s assume that we have the shadow mesh flattened out based on the shadow object
and the light source. We are ready to render it, but rendering a flattened-out version of the
object (car, planet, and so on) isn’t going to look like a shadow—we need to change its
shading properties. Here are the steps we will follow to change the shading properties, so
the object’s shadow looks like a shadow:

1. Take the object mesh that we want to project a shadow for, transform it, project the
local coordinates to the planar projection, and store them in the transformed coordi-
nates. (Remember, no matter what we do to a mesh, it doesn’t hurt it as long as we
don’t mess with the local coordinates for the model. We can always transform them
and copy them in the transformed vertex list.)

2. With the new flattened mesh in hand, change the lighting and shading of the mesh,
so that the mesh will look like a shadow. Simply save each color and the attributes
for each polygon and then overwrite into each polygon constant shading, alpha
blending, an alpha value at roughly 50%, and disable the texture.

3. Send the mesh into the pipeline, and restore the color and attributes previously
saved.

In essence, if an object is supposed to cast a shadow, we use the object itself to generate
the shadow by projecting its mesh on the ground plane, then we modify the shading para-
meters of the mesh to make it look like a shadow would, render it, and then restore it!
Cool, huh?

So without further ado, here’s the code fragment from the next demo that does all this:

// reset the render list

Reset_RENDERLIST4DV2(&rend_list);

//////////////////////////////////////////////////////////////////////////

// project shaded object into shadow by projecting its vertices onto

// the ground plane
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// reset the object (this only matters for backface and object removal)

Reset_OBJECT4DV2(obj_work);

// save the shading attributes/color of each polygon, and override them with

// attributes of a shadow then restore them

int pcolor[OBJECT4DV2_MAX_POLYS],  // used to store color

pattr[OBJECT4DV2_MAX_POLYS];   // used to store attribute

// save all the color and attributes for each polygon

for (int pindex = 0; pindex < obj_work->num_polys; pindex++)

{

// save attribute and color

pattr[pindex] = obj_work->plist[pindex].attr;

pcolor[pindex] = obj_work->plist[pindex].color;

// set attributes for shadow rendering

obj_work->plist[pindex].attr  = POLY4DV2_ATTR_RGB16 |

POLY4DV2_ATTR_SHADE_MODE_CONSTANT |

POLY4DV2_ATTR_TRANSPARENT;

obj_work->plist[pindex].color  = RGB16Bit(0,0,0) + (2 << 24);

} // end for pindex

// create identity matrix

MAT_IDENTITY_4X4(&mrot);

// solve for t when the projected vertex intersects ground plane

pl = lights2[POINT_LIGHT_INDEX].pos;

// transform each local/model vertex of the object mesh and store result

// in “transformed” vertex list, note

for (int vertex=0; vertex < obj_work->num_vertices; vertex++)

{

POINT4D presult; // hold result of each transformation

// compute parameter t0 when projected ray pierces y=0 plane

VECTOR4D vi;

// transform coordinates to worldspace right now...

VECTOR4D_Add(&obj_work->vlist_local[vertex].v, &obj_work->world_pos, &vi);

float t0 = -pl.y / (vi.y - pl.y);
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// transform point

obj_work->vlist_trans[vertex].v.x = pl.x + t0*(vi.x - pl.x);

obj_work->vlist_trans[vertex].v.y = 25.0; // pl.y + t0*(vi.y - pl.y);

obj_work->vlist_trans[vertex].v.z = pl.z + t0*(vi.z - pl.z);

obj_work->vlist_trans[vertex].v.w = 1.0;

} // end for index

// insert the object into render list

Insert_OBJECT4DV2_RENDERLIST4DV2(&rend_list, obj_work,0);

Then the next light source is used to create yet another mesh, and so on until all the light
sources have been projected to cast shadows (in this case, there are only two). Then the
old attributes and colors are restored and the mesh is back to normal:

// restore attributes and color

for (pindex = 0; pindex < obj_work->num_polys; pindex++)

{

// save attribute and color

obj_work->plist[pindex].attr = pattr[pindex];

obj_work->plist[pindex].color = pcolor[pindex];

} // end for pindex

The rendering order is exactly the same as before: first the terrain is rendered, then the
light markers, and the object itself. Then a second pass is made where the shadows are
rendered, because they need to alpha blend in with the background image.

The results of the planar mesh projection is rather stunning—I leave it to you to imple-
ment. Just kidding! Figure 14.21a is a screenshot of the demo in wireframe mode, and
14.21b is another screenshot, but in solid mode. The point I want to make is that the
shadows are indeed complete 3D meshes—they’re simply squished (yes, that’s a technical
term).

The name of the demo is DEMOII14_4.CPP|EXE. To compile it, you will need the library
modules T3DLIB1–12.CPP|H, along with the DirectX .LIB files. To control the demo, every-
thing is the same as the previous demo, but I highly suggest you play with the wireframe
mode (toggle it with the W key) to see all the skewing that goes on to create this geometri-
cally correct shadow.

Optimizing Planar Shadows
Now for the bad news—we are rendering a lot of geometry we don’t need to render. We
have basically compressed a complete volumetric model into two dimensions. Thus, we
are possibly rendering back-faces or geometry that is overlapping, and so on. What we
really want to do is project only the silhouette of the occluder object as a shadow mesh.
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FIGURE 14.21a A wireframe screenshot of the planar shadow demo.
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FIGURE 14.21b A solid-shaded screenshot of the planar shadow demo.

Take a look at Figure 14.22, which depicts a simple cube and outlines the silhouette. The
trick is finding the silhouette, and there are many tricks and techniques to do this. The
silhouette is composed of edges shared by polygons that are both back-faces and front-
faces relative to the light source.

The edge labeled e
i
in the figure is a silhouette edge. If you inspect it, it is a common edge

for polygon P0 and P1. Polygon P0 is a back-face, whereas polygon P
1

is a front-face rela-
tive to the light source. Therefore, we can algorithmically detect edges this way and create
a silhouette. The problem is that this will only work for objects without holes and non-
intersecting geometry. This is okay too, but in the end, is it worth it?
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FIGURE 14.22 The silhouette of a cube.

Maybe it is—I have found that using silhouette edges is more suited to different algo-
rithms based on stencil buffers or volume shadows. The problem is that in many cases, the
time it takes to save yourself some time is longer than just drawing the polygons!
Therefore, another trick is to project a simplified mesh (a really simplified mesh) for each
object when generating the shadow and be done with it. This simplified mesh might have
10% of the polygons that the full model has or less, so the hit is an extra 10% for
shadows—not bad.

Introduction to Light Mapping and Surface Caching
This is a bit hard to explain, so before I say anything, I want you to look at a 3D scene
without light mapping. Take a look at Figure 14.23a.
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FIGURE 14.23a A Quake level without light mapping.
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Now take a look at Figure 14.23b. See the difference? Big difference, huh! You might
wonder what the big deal is—our Gouraud shaders and other lighting systems can gener-
ate something like that. The truth is that they can’t for two reasons. First, Gouraud
shading is vertex based, so we can never get anything detailed. Secondly, we have no way
to create shadows on walls, objects, self shadowing, and so on. This is what light mapping
is all about.
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FIGURE 14.23b A Quake level with light mapping.

The technique of light mapping is rather old—from the 8-bit days, or probably earlier
(basically drawing textures in textures). The trick is simply this: Instead of doing lighting
in real time, lighting computations are performed offline to compute the illumination,
shadows, and so on in a scene. An artist can do this manually and just draw what the
lighting would look like. This computation or drawing is a 2D image called a light map.

For example, on a very small scale, if we take the texture shown in Figure 14.24a and then
multiply the light map texture shown the Figure 14.24b, the results are what is shown in
Figure 14.24c. This is something we already did when we covered lighting models much
earlier in the book. However, now we are going to just scale the technique up to entire
rooms and meshes.

Therefore, the idea of light mapping is to use a light map texture to modulate the textures
that are mapped on the geometry of the worlds and objects in our games. Thus, the light-
ing is just a mirage—it’s just “drawn in.”
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FIGURE 14.24 Light mapping a single texture.

The first thing you might say is cool, but why not just create pre-lit textures? You could,
but what if you have a large environment with 1,000 walls/surfaces, and each wall has a
256×256 texture on it? If the base texture is similar to the image in Figure 14.25, you
would need 1,000 copies of it, all pre-lit! This is definitely a waste of memory. On the
other hand, you might argue that if you use the same texture, you still need 1,000 light
maps! This is true, but not entirely so. The key is that the light maps don’t need to have
the same resolution as the textures. For example, we can use light maps that are 32×32
textels for textures that are 256×256 and it would hardly be noticeable.
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FIGURE 14.25 A possible wall texture.

Figure 14.26 shows an example of using low-resolution light maps to modulate a texture.
The figure shows the original texture, the 32×32 light map, and the modulated texture.
Sure, it’s looks a little rough, but if we pass the light map through a filter and buffer the
results before modulating, we can get a perfect image. That is, we store our light maps at a
resolution many times smaller than the target textures (32×32 and so on), then we decom-
press the light maps into a buffer and average or blur them. Next we take the final results,
say 256×256, and use that light map to modulate the texture, which is also possibly
256×256. Therefore, each one of our light maps only takes 32×32 = 1024 bytes (mono-
chrome) in the worst case rather than 65536 bytes—a 64× savings!
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FIGURE 14.26 Using low-resolution light maps.

However, the results look the same because we have a decompression and averaging step.
Of course, if you are astute, you can see that the decompression is really nothing more
than interpolation of the light maps. The point is that light is something that bleeds and
blurs by nature, and soft shadows look better than harsh edges. Using low-resolution light
maps and an averaging filter to reduce the jaggies from the light map before modulating
will do the trick.

The overall process for light mapping is shown in Figure 14.27. The light map is brought
in and decompressed from its low resolution and copied out to a higher resolution buffer
(this step is optional, of course). Then the light map is used to modulate the texture map.
Remember, all that means is that the light map values are multiplied by the texture map
values, and the results are buffered and used as the final texture to map onto the polygon
or polygons.
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FIGURE 14.27 The light mapping pipeline.
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That’s all there really is to light mapping. You take a 2D light map texture, use it to modu-
late a solid texture in 2D space, and then use the results to texture the geometry. The tech-
nique is great, because the only computation is the overhead of generating the light
mapped texture from the source. This can be considerable, because for a 256×256 texture,
there are at least 64,000 calculations, each of which consists of 1–3 multiplications
(depending on whether you are using monochrome or full RGB color), along with addi-
tions and possible comparisons for clamping. Call the computation time constant per pixel
c

m
. Therefore, for an m×n texture and an m×n light map, a total of c

m
*m*n calculations

must be done, at the very least. This is a lot of work, and every time we light-map a texture
and render it, we throw it away—ouch! This is where surface caching comes into play.

Surface Caching
Surface caching is nothing more than remembering the results of previous light-mapping
calculations. For example, suppose you have 10 textures that are to be light mapped for a
room. You are not leaving the room, so why not compute all the light-mapped versions of
the textures and cache them for the next frame? Then if the light-mapped texture is avail-
able in the cache, you don’t need to recompute it. This way, not only do you not throw
away light-mapping calculations, you amortize your computations: As a texture needs
light mapping, the calculations are performed; and as light-mapped textures get old and
are no longer needed, they are flushed. The light mapping surface cache works as follows:

Surface Caching Algorithm:

Initialize Texture Cache, and flush all textures

Begin Scene

For each texture T in scene Begin

if T exists in surface cache then render polygon(s) with T

else

Begin

Find light map for T, light map texture T store in cache

if cache is full, delete least recently used texture

End else

End Scene

Repeat

Very simple. Basically, we just cache every single light-mapping computation until the
cache is full, and use the results whenever the same request is made. Therefore, once you
enter a room and the modulated textures are computed based on the light maps, you get
the beautiful light mapping and shadows absolutely free! It can’t be true, but it is.
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Of course, with anything this cool, there are problems, such as the following:

• How large will the light maps be?

• Will the light maps be on a per-polygon basis or on a per-surface (coplanar polygon
set) basis?

• Will the light maps be compressed?

• Will the light maps be monochrome or full RGB for colored effects, as well as for
general shadowing?

• How large will the surface cache (if any) be?

And the list goes on and on. However, these are the kind of decisions only experience and
your particular situation will be able to answer. For now, our goal is simply to implement
the technology to show how simple and how amazing it is.

Generating the Light Maps
I hinted earlier that you could generate the light maps either algorithmically or via a
human artist. If you decide to generate the light maps algorithmically, chances are the
whole idea of light mapping is to show nice shadows, dark crevices, and so on. The only
way you are going to get this look is with an offline lighting system that either ray traces
or performs some other global illumination algorithms, such as photon mapping or
radiosity.

Ray tracing isn’t too hard to implement, but doesn’t look as nice as radiosity, which is
essentially the computation of the energy flow in a scene. Figure 14.28 is an image of a
radiosity-illuminated scene—it looks almost real, as you can see. But in our case, all we
want is the lighting portion of the computation for the light maps. Radiosity is something
I am not going to cover, because it’s not real-time (yet), but there are many good books on
it, as well as on photon mapping and ray tracing.

Your second choice still related to using the aforementioned techniques is to simply take
your geometry into a 3D modeling tool such as Pov-Ray, trueSpace, or 3D Studio Max and
use the tool to create a fully lit monochrome scene that you can cut up into light maps by
changing the position of the camera.

Finally, you can simply have an artist “draw” light maps as textures, and through trial and
error come up with light maps that look as good or better than the real thing. The choice
is up to you—in most cases, I find I use a mixture of these techniques. id Software, for
example, has its own tools to compute light maps, but many other companies use tools
like Pov-Ray or 3D Studio Max that already exist, and just make an interface or plug-in to
leverage the ray tracing or radiosity systems rather than waste time writing one.
Nonetheless, when you are just getting the hang of the technique, I suggest that you just
draw your light maps and be done with it, as I have for these examples.
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FIGURE 14.28 A scene illuminated with radiosity. 

Implementing the Light Mapper
You’re going to hate me when you read this. Here we go.

Done.

Yup, we already wrote the light mapping code! Remember, all the algorithm does is modu-
late (multiply) one texture with another. Of course, it has to do a lot of computations for
large textures, but DEMOII8_4.CPP|EXE did exactly this. I took the code from that demo,
optimized it a bit, and created an inline fragment that uses the texture source, the light
map, and a buffer to modulate the texture source by the light map. The results are very
fast and look great. However, an algorithm like this is dying to be optimized using a SIMD
(single instruction multiple data) architecture, such as that featured in Pentium III+
processors. Maybe we will do this in the last chapter on optimization, but for now, here’s
the code fragment that performs the light mapping to the source texture:

// perform lightmapping here //////////////////////////////////////////////

// the idea is to take the source lightmap and use it to modulate the texture

// that is being mapped onto the target polygons and then write the results

// into the texture for rendering

///////////////////////////////////////////

// our little image processing algorithm :)

// Pixel_dest[x,y]rgb = pixel_source[x,y]rgb * light_map[x,y]rgb
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USHORT *sbuffer = (USHORT *)texture_copy.buffer;

USHORT *lbuffer = (USHORT *)lightmaps[curr_lightmap].buffer;

USHORT *dbuffer = (USHORT *)obj_terrain.texture->buffer;

// perform RGB transformation on bitmap

for (int iy = 0; iy < texture_copy.height; iy++)

for (int ix = 0; ix < texture_copy.width; ix++)

{

int rs,gs,bs;  // used to extract the source rgb values

int rl, gl, bl; // light map rgb values

int rf,gf,bf;  // the final rgb terms

// extract pixel from source bitmap

USHORT spixel = sbuffer[iy*texture_copy.width + ix];

// extract RGB values

_RGB565FROM16BIT(spixel, &rs,&gs,&bs);

// extract pixel from lightmap bitmap

USHORT lpixel = lbuffer[iy*texture_copy.width + ix];

// extract RGB values

_RGB565FROM16BIT(lpixel, &rl,&gl,&bl);

// compute modulation term

rf = ( (rs*rl) >> 5 );

gf = ( (gs*gl) >> 6 );

bf = ( (bs*bl) >> 5 );

// rebuild RGB and test for overflow

// and write back to buffer

dbuffer[iy*texture_copy.width + ix] = _RGB16BIT565(rf,gf,bf);

} // end for ix

The algorithm is very straightforward—it takes the source texture in sbuffer, modulates it
with the light map in lbuffer, and stores the results in dbuffer. The calculations are
performed in RGB space for each pixel. Thus, there are two loops, one for x and one for y,
that iterate over the texture space, extract the RGB values for both the source texture and
the light map, multiply them together, and store the results back into the destination
buffer, dbuffer, which is then used as the final texture to map onto the polygon mesh.

Before I show you the light mapping demo, let’s see what we could have done without
light mapping. Take a look at Figure 14.29.
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FIGURE 14.29 A screenshot of the planar shadow demo with an overhead fan.

It’s a screenshot of DEMOII14_5.CPP|EXE, which is a prelude to the light mapping demo.
Basically, it’s nothing more than DEMOII14_4.CPP|EXE with an overhead fan model for the
object to be shadowed. The fan is shown in Figure 14.30.
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FIGURE 14.30 The model used for the overhead fan. 
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Now that you have something for comparison, let’s take a look at how the light mapping
demo works. The first light mapping demo DEMOII14_6.CPP|EXE has a number of pieces to
build this demo. First I needed the fan model, which I made in trueSpace in about 5–10
minutes. It’s just a cylinder and four blades. The name of the file model file is
fan_01b.cob. Then I needed a texture to map onto the floor (which is a terrain object
generated on the fly), shown in Figure 14.31.
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FIGURE 14.31 The floor texture for the demo. 

Finally I needed the light maps. This was really the only tricky part. I used the modeler to
create a top view of the fan, and then rendered it at 256×256 in full 16-bit color. The
setup is shown in Figure 14.32.

FIGURE 14.32 The setup for rendering the light map for the fan object. 
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After I had the 2D bitmap rendering, I brought the bitmap of the fan into Paint Shop Pro
and rotated the image in 10-degree increments to create the light map animations. This is
shown in Figure 14.33. Now, with model and light maps in hand, the actual program is
simple to create.
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FIGURE 14.33 The light maps after rotation and image processing. 

DEMOII14_16.CPP is a very simple loop—it begins by taking the current light map (1 of 9),
selecting a light map, modulating the base terrain texture with it, and moving along to
the rendering phase. The terrain is rendered with the light-mapped texture, and then the
3D model of the overhead fan is rendered in a single pass, because there is no alpha
blending step here. And that’s it! Amazing, huh? All the work is done offline, and during
the texture modulation step to perform the actual light mapping. The results are pretty
cool, and you can see them for yourself in Figure 14.34. To compile the demo, you will
need T3DLIB1–12.CPP|H, along with the main file DEMOII14_6.CPP, and don’t forget to link
in the DirectX .LIB files.

Dark Mapping
No one said that we have to draw shadows—we can draw light just as well. In fact, the
term light mapping is really a misnomer, because what we are really doing is mapping dark-
ness, not light—we are using a modulation algorithm that at best doesn’t change a pixel’s
value, but in most cases darkens it.

In any case, for a demo that is more to the point, I modified DEMOII14_6.CPP|EXE to load
in light maps that have the opposite polarity. That is, I took the nine light maps and
inverted their images, as shown in Figure 14.35.
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FIGURE 14.34 A screenshot of the light mapping demo in action. 
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FIGURE 14.35 The inverted dark maps. 

Then I took a little artistic license and blurred them a bit to make the light parts look a
little more caustic. I then dropped them into the demo, and the results are in
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DEMOII14_6b.CPP|EXE. Figure 14.36 is a screenshot of the demo in action. Pretty cool,
huh? Make sure to try both demos out—notice that the light sources don’t have too much
to do with the final lighting, because it’s being done via light mapping.
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FIGURE 14.36 A screenshot of the dark mapping demo in action. 

Special FX with Light Maps
Before finishing up the chapter, let’s talk about some ideas and cool things that can be
achieved with light maps. First, the biggest challenge with light maps is that they are for
the most part static. However, this isn’t really a big deal—no one said you can’t have
animated light maps. Of course, you want to be cognizant of the memory footprint, but a
few areas with animated light maps is easy to do. For example, you can have flickering
light (like in Quake), color effects, and more by using multiple light maps. Additionally,
suppose you have a large room that is broken up into four quadrants—as long as you
make sure the light maps don’t overlap, you can have lights turning on and off in one
section that don’t effect the others.

Another light map effect that’s really cool is complex shadows animation. For example,
when a door opens, you use a light map to show the light pouring into the darkened
room, then when the light is at a maximum, you just turn on the normal lighting. You
can also use light maps to project animations of light on other objects. For example, you
can take a cylinder with a plastic transparent wrap around it and put a light in it. (Of
course, this is all done in model space.) You rotate the model in 3D, and then take the
texture itself and use it as the light map (this is actually called projective textures, but the
idea is the same, and is based on light mapping).
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Finally, one area that hasn’t had much done with it is procedural light maps. Using a
mathematical formula to generate light map textures and then using these textures for the
light maps themselves, you can get really cool clouds, smoke, and other effects that always
look different, but somehow modulate the light in the scene.

Optimizing the Light Mapping Code
The light mapping code is algorithmically pretty optimal, but of course there are always
ways to make it faster. The first is to use a lookup table instead of multiplications.
However, these days cache coherence can really slow things down and multiplication only
takes a single cycle, so I don’t see much help there. The other opportunity is in using the
SIMD instructions and performing the light mapping calculations four at a time. This is
definitely doable, and the first thing you should do.

However, putting aside the actual modulation code for a moment, the real problem is
working the light mapping into an engine in a way that it doesn’t hurt anything or cause
a speed loss when it’s not being used (and when it is used, the speed hit should be mini-
mized). We have already discussed the surface caching technique to generate light-mapped
textures once and then reuse them, so this is the best optimization I can suggest. However,
it’s also worth using smaller light map textures in the 32×32 size, or at least 1/16 to 1/32
of the resolution of the texture maps, just so that they fit into the cache all at once or
nearly so, and the texture modulation phase can run very quickly.

In conclusion, I think a simple system with a surface cache, low-resolution light maps that
have both full RGB and monochrome support, along with support for animation to the
light maps is a very robust system.

Putting Everything Together
Now that you have the tools to perform real-time shadows and light mapping, I bet you
are going nuts with cool ideas—I know I am. However, keep in mind that you only have
so many CPU cycles per frame, so although full polygonal projective shadows for each
light source looks cool, you can probably get away with the billboards for many objects,
especially if they are far away. Also, when in doubt, use light mapping, especially for inte-
rior scenes. No amount of lighting will even come close to the look of light-mapped
geometry in a software or hardware engine.

As a final experiment, try doing some two-pass stuff, where you render your scene from
one angle and then from another. Maybe the top, and then use the rendering as the light
map for the floor? That way, you get fully animated shadows that look very real! The
possibilities are limitless.

Summary
This chapter has been one of the coolest, as we got a lot of visual mileage out of a little
code. More importantly, this chapter illustrates how thinking outside the box is a powerful
tool.
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We learned that amazing special effects can be achieved using surface caching tech-
niques—shadows, lighting, animation, and more. Remember this and see whether you can
apply the same techniques to other aspects of your games and engines—that is, doing
things completely backwards, sideways, or nonconventionally.

Finally, this chapter brings into the spotlight another more subtle aspect of game develop-
ment—asset generation and tool paths. As game programmers, we have to write code
where needed, but also think about letting artists and other tools do work for us offline. If
an artist can do it nearly as well with art, and in half the time, who cares if something is
mathematically correct? The key is knowing when to give in and cheat, and when to do it
for real.
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IN THIS CHAPTER

• The New Game Engine
Module

• Introduction to 3D Animation

• The Quake II .MD2 File
Format

• Simple Non-Character-Based
Animation

• 3D Collision Detection

CHAPTER 15

3D Character Animation,
Motion, and Collision

Detection

“As far as the laws of mathematics refer to reality, they are not

certain; and as far as they are certain, they do not refer to reality.”

—Albert Einstein

In this chapter, we’re going to discuss (for the most part) the
loading and displaying of 3D animated models of the Quake II
.MD2 file format. We will also cover some motion techniques
in 3D, along with formalizing basic collision detection tech-
niques for model-to-model collision and model-to-environ-
ment collision. Here’s the outline:

• The new library module

• Introduction to 3D animation

• Loading Quake II .MD2 files

• Animating Quake II .MD2 files

• Rotational and linear motion

• Parametric and curved motion

• Using scripts for motion

• 3D collision and terrain-following techniques

The New Game Engine Module
Once again, there is enough software in this chapter for a
separate library module. We are up to T3DLIB13.CPP|H now,
so to compile any program from this chapter, you will need
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the main .CPP program file for the program, the DirectX .LIB files, and the following new
library modules:

• T3DLIB13.CPP—The C/C++ source for the added shadow and light mapping software

• T3DLIB13.H—The accompanying header file

Of course, you must link to T3DLIB1–12.CPP|H as well.

Introduction to 3D Animation
The primary focus of this chapter is animation, with an emphasis on character animation.
I had hoped to have time to cover skeletal animation and motion files (such as Biovision
and so on), but it’ll have to wait until the next volume. For now, we are to have to settle
for key-framed animation and interpolation. Even so, key-framed animation looks great,
and if it’s good enough for Quake and Quake II, it’s good enough for our experimental uses.
Thus, we’re going to focus on three primary topics as they relate to animation: the defini-
tion, loading, and rendering of Quake II .MD2 models; the movement and positioning of
3D models and objects in general; and collision detection techniques for 3D models that
represent characters.

The majority of code and examples in this chapter will be related to the first topic—that
is, the loading and rendering of 3D models based on id Software’s Quake II .MD2 format.
This is by far the most complex aspect of this chapter. We’ll discuss the remaining subjects
theoretically for the most part, concentrating on ideas rather than implementations
because there’s nothing more I can teach you at this point—we have covered so many
things in so many ways, that it’s really up to you from here on out.

The Quake II .MD2 File Format
The Quake II .MD2 file format, which I will refer to as .MD2 from here on, was developed
by id Software for the blockbuster game Quake II (shown in Figure 15.1). Quake II brought
hardware acceleration to the forefront of gaming, and showed the world what could be
accomplished with the technology. The end of the software acceleration era for commer-
cial products was upon us with Quake II. In any event, many cool technologies were
explored and exploited in Quake II, and one of them was better character animation via
key-framed animation and interpolation.

Although .MD2 files don’t have skeletons or support inverse/forward kinematics, the file
format is relatively easy to parse and easy to understand. However, the best aspect of .MD2
files is that there are a zillion of them on the Internet, and a bazillion tools to go along
with them! Thus, you will have no trouble finding models, tools, and other applications.
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FIGURE 15.1 A screenshot of Quake II in action. 

NOTE

One of the best places to look for Quake II models is Planet Quake:

http://www.planetquake.com/polycount/

There are also plenty of tools you can use to manipulate .MD2 files. Many can be found here:

http://www.planetquake.com/polycount/resources/quake2/tools.shtml

Finally, the technical specs for the format can be found here:

http://www.planetquake.com/polycount/resources/quake2/q2frameslist.shtml

I have downloaded a few models from Planet Quake, which are all free to use as long as
you don’t make money from them. However, the author of every model is listed, so if you
want to use them in a commercial game, I am sure you can contact the developer and ask.
So, without further ado, let’s talk about the format itself.

Let me begin by saying that I have never had so much trouble trying to find a decent
description of anything on the Internet as when I was trying to find out about the .MD2
format. I looked at every single article and book that discusses the .MD2 format, and in
every example, the authors always leave out some really important detail, so I’m really
going to try to be very thorough about the file format so you don’t have any lingering
questions.

Let’s start with a high-level description and drill down to the details. The .MD2 file format
consists of two main sections: a header and the data, as shown in Figure 15.2.
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• Header section—Contains a description of the model, number of polygons, vertices,
animation details, and so on.

• Data section—The actual data that makes up the polygon mesh of the model, includ-
ing all the polygon, vertex, and texture data.

CHAPTER 15 3D Character Animation, Motion, and Collision Detection1496

Header Section

•
•
•
Offset_skins

Offset_textcoords

Offset_Polys

Offset_frames

Offset_frames

Offset_openGLcmds

Skin file names

Texture coordinates

Polygons

Frames (0…197)

Open GL commands

Data Section

Header Section

Note: Each subsection not
 necessarily in this order.

TRIS.MD2
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FIGURE 15.2 The general structure of a Quake II .MD2 file.

TIP

All polygons in the .MD2 file are triangles, and there are no other entities—just triangles, baby!

The header is a standard header without anything out of the ordinary, but the data is
rather interesting, in that the vertex data (which we will get to in a moment) doesn’t
define a single frame of animation, but many. In fact, there are 198 frames of animation
in a .MD2 file, numbered 0…197.

CAUTION

You might find models with 199, 200 or more frames of animation that are malformed from the
original definition. Nonetheless, the original id Software spec calls for 198 frames. This only
matters for the animation frames because indices are used to define what is a walk, run, death,
and so on.
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These frames are defined as polygon meshes consisting of collections of vertices in model
space, with the origin at (0,0,0) in a right-hand coordinate system featuring a counter-
clockwise winding order (this will be important later, so keep this in mind). These vertices
define what the mesh looks like for each frame of animation, and each of these animation
frames might consist of a number of frames per each specific animation: walk, run, jump,
and so on. We will cover all this in detail of course, but for now, just keep in mind that
there is a header at the beginning of the file that defines the model, and based on the
header information, you load the frame data, which is a pure binary stream.

Animation is performed by sequencing through the frames of animation. For example, the
“standing idle” animation is defined as consisting of frames 0–39, so you would display
these frames in succession, and you would see the “standing idle” animation. However,
these frames are key frames, meaning that if you want to, you can linearly interpolate
between them to get a smoother animation. For example, you might decide to interpolate
at a rate of 0.25 from frame i to i+1; thus, you would blend the vertex (x,y,z) positions
together from frame i to i+1, with the interpolation values 0, 0.25, 0.50, 0.75, 1.0.

The next important thing is the texture map, or skin, as the guys at id Software like to call
it. Figure 15.3 depicts a standard skin texture for a .MD2 model (this one is Warhammer
from Polycount, designed by Joe “Ebola” Woodrell). The skin is 256×256 in 256 colors,
and comes in the .PCX file format for the most part. Thus, we will have to convert all
skins to 16-bit color and .BMP format.
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FIGURE 15.3 A Quake II skin. 

In any case, the idea of the skin is that it is used as a texture for the model. Each model
may have many skins (for different colors and styles). The interesting thing is that skins
are not part of the .MD2 file. They are only referenced in the .MD2 file as filenames in the
path of the Quake II game directory. Thus, during parsing of the file header to the .MD2
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file, you might find that there are three skins for the model (maybe a blue, a camouflaged,
and blood red). In that case, you would use the file path and name to load the .PCX file
and thus the texture—more on this later.

The .MD2 Header
Now let’s take a detailed look at the header section of the .MD2 file format. First, most
.MD2 models that you will find on the Internet will be located in a single directory when
you decompress them. You will typically find a number of files related to the model that
have to do with the model itself, weapons, the art, and the sound. We are only interested
in the model and the skins, so let’s focus on that. When you download a model from the
Internet or look at the ones I placed on the CD for you to play with, you will list out the
directory and find, at the very least, the following:

• TRIS.MD2—This is always the file that contains the actual model data for the
character.

• WEAPON.MD2—This may or may not be present, but usually is. This file contains the
weapon model, which is also a .MD2 file. We aren’t going to consider the weapons
in this chapter, but you can load them similarly to the character models.

Next you will find a number of texture files in the 256×256 256-color .PCX file format.
Simply browse them with your favorite painting application (Paint Shop Pro, Photoshop,
and so on). The images you’ll see are mostly the skins used for texturing for the model.
They are 256×256 because all texture coordinates are from 0…255 for both u and v in the
data part of the .MD2 file. However, to use any of the textures, we need to convert them
to 16-bit color and save them as .BMP files. (Even though we have a .PCX loader, .BMP is
easier.)

You will also see a number of small images used for icons, as well as a number of .WAV
files used for sound effects. We don’t care about this stuff, either. All we really want is the
TRIS.MD2 file and one or more of the skins converted to 16-bit .BMP format. In most cases,
I download a .MD2 model from Polycount or some other site and decompress it into a
directory. Then I browse the images in the directory and look for the skins. When I find a
couple of skins I like, I increase the color depth to 16-bit, brighten the textures by
10–20%, and then save them as .BMP files with whatever name I like. The name is irrele-
vant, because we are going to override the built-in texture skin names in the header and
use our own with our own paths. This will work out because all the texture coordinates
are still the same in 256×256 u,v space, and the texture(s) are still the same, so nothing
will look incorrect.

TIP

The texture skin support is natively designed to load from the paths to the Quake II .EXE file, so
we aren’t going to bother trying to extract only the filename from the paths, because we can just
as well supply the name of our .BMP version of the texture to the .MD2 loader and override it.
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Of course, we can’t supply just any skin—we must use one of the real skins from the model itself,
because we need the texture coordinate to match up and map correctly. We can at least simplify
the texture access on the disk media by placing them where we want them, and with the names
we like.

Okay, now that you know what to look for on the hard drive when you download a .MD2
file, let’s take a look at the header and data. First, note that the .MD2 file is totally binary,
and the data must be read as bytes. Here is the header, which always comes first in the
.MD2 file from byte 0 on:

// this if the header structure for a Quake II .MD2 file by id Software,

// I have slightly annotated the field names to make them more readable

// and less cryptic :)

typedef struct MD2_HEADER_TYP

{

int identifier;   // identifies the file type, should be “IDP2”

int version;    // version number, should be 8

int skin_width;   // width of texture map used for skinning

int skin_height;  // height of texture map using for skinning

int framesize;   // number of bytes in a single frame of animation

int num_skins;   // total number of skins

// listed by ASCII filename and are available

// for loading if files are found in full path

int num_verts;   // number of vertices in each model frame, the

// number of vertices in each frame is always the

// same

int num_textcoords; // total number of texture coordinates in entire file

// may be larger than the number of vertices

int num_polys;   // number of polygons per model, or per frame of

// animation if you will

int num_openGLcmds; // number of openGL commands which can help with

// rendering optimization

// however, we won’t be using them

int num_frames;   // total number of animation frames

// memory byte offsets to actual data for each item

int offset_skins;   // offset in bytes from beginning of file to the

// skin array that holds the file name for each skin,

// each file name record is 64 bytes

int offset_textcoords; // offset in bytes from the beginning of file to the

// texture coordinate array
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int offset_polys;   // offset in bytes from beginning of file to the

// polygon mesh

int offset_frames;   // offset in bytes from beginning of file to the

// vertex data for each frame

int offset_openGLcmds; // offset in bytes from beginning of file to the

// openGL commands

int offset_end;    // offset in bytes from beginning of file to end of file

} MD2_HEADER, *MD2_HEADER_PTR;

Depending on where you learn about .MD2 files and the header, you will see slightly
different field names, but for the most part, everyone tries to stick to names that are repre-
sentative of id’s original definition. However, the data types and their order must be iden-
tical to the preceding structure; otherwise, you won’t be able to reference the header data
when you load the TRIS.MD2 file. Let’s cover each field in detail:

int identifier—This magic number field identifies the file type as .MD2 and should be
IDP2 in little endian format. In other words, on a PC with an Intel processor (big endian),
you should look for this value (notice the I is the low byte):

#define MD2_MAGIC_NUM ((‘I’) + (‘D’ << 8) + (‘P’ << 16) + (‘2’ << 24))

int version—This is the version number, and should always be 8. Again, I have defined a
constant to compare it to:

#define MD2_VERSION     8

If either the magic number or version are not correct, you either have a bad .MD2 file or
your computer was just hit by a lot of high energy particles. In either case, check it out.

int skin_width—This is the width of the texture map used for skinning the model in
pixels. This is usually 256 for models created by third parties; however, it might be differ-
ent, so if you really want to be robust, take this into consideration.

int skin_height—This is the height of the texture map used for skinning the model in
pixels. This is usually 256 for models created by third parties; however, it might be differ-
ent, so if you really want to be robust, take this into consideration.

Note that all the texture maps for any particular model will have skins that are the same
size, so on the disk, you will never have to worry about them changing size after you
determine the size of the textures. However, in 99% of the cases, the textures are 256×256.
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FIGURE 15.4 The details of a single animation frame.

int framesize—This field is very tricky. It’s the size in bytes of a single frame of anima-
tion for the model, as shown in Figure 15.4. Each frame consists of a header and vertex
information for each vertex of the model. We will revisit this shortly, but for now, keep in
mind that a single frame consists of all the vertices for the model and a header, which
instructs us how to scale and position the vertices. There are 198 of these frames in most
cases for id Software-compliant .MD2 files.

int num_skins—This field defines the total number of skins defined by ASCII filenames
that are available with the model files on the disk. Each skin name is located in an array
of strings at the end of the header (at a specific position, of course). Each skin name is 64
bytes exactly. Any white space is NULL, (padded with 0). The model might have one or
more skin names. These names will in most cases have path information that is Quake II-
specific; that’s why we’re going to ignore them and just manually look at the skins in the
directory of the model, rename them, and then when loading the model, pass a string
with the path and filename of the skin we like (in 16-bit .BMP format).

int num_verts—This field is the number of vertices in a single model frame—not the total
number of vertices in the entire file, but the number of vertices in a single frame of
animation. This is very important. Also, because the model always has the exact same
polygons that make it up, the number of vertices is always the same frame to frame. Thus,
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the only thing that changes frame to frame is the position of the vertices. This is how
animation is achieved with the .MD2 format.

int num_textcoords—This is another tricky field. It defines the total number of texture
coordinates in the model file. Be careful here: you might think that we need a texture
coordinate for each vertex. This is not necessarily true. Remember, a texture coordinate is
a pair of u,v coordinates in texture space; however, many times you might have more or
fewer texture coordinates than you have vertices, because you can map multiple vertices
to the same texture coordinate and so on. Think of the texture coordinates as all the possi-
ble texture coordinates needed by the model in any frame of animation. In most cases,
there are a few hundred texture coordinates. Moreover, there is only one set or pool of
these coordinates shared by all animation frames. This is shown in Figure 15.5.
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FIGURE 15.5 Texture coordinates are shared by all animation frames.

int num_polys—This field is the number of polygons in the model, or per frame of anima-
tion. This number is always the same for every frame of animation, so if a model has 800
polygons, it means that every frame of animation has 800 polygons—period.
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int num_openGLcmds—We are going to ignore this field, but it’s the number of OpenGL
commands that can help with rendering optimization for hardware. When rendering with
hardware, better performance can be achieved by rendering polygon fans or strips—these
commands dictate when to use which, how many, and so on.

int num_frames—This field is the total number of animation frames. It should be 198 for
most .MD2 models.

The next fields are the memory offsets to the actual data streams. Keep in mind that the
.MD2 file is a pure binary file, so this should all make sense. These offsets indicate how
many bytes from the beginning of the .MD2 file to skip to find each particular data item.
The data structure(s) are then simply overlaid, and the data is accessed. This overall format
is shown in Figure 15.6.
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int offset_skins—This is the offset in bytes from the beginning of the file to the skin
array that holds the filename for each skin. Each filename record is 64 bytes.

int offset_textcoords—This is the offset in bytes from the beginning of the file to the
texture coordinate array. Each texture coordinate is a SHORT, and is defined as follows:

// this is a single u,v texture

typedef struct MD2_TEXTCOORD_TYP

{

short u,v; // texture coordinate

} MD2_TEXTCOORD, *MD2_TEXTCOORD_PTR;

Thus, each texture coordinate is 32 bits, or four bytes total. We use the num_textcoords
along with the preceding structure to access each texture coordinate.

int offset_polys—This field is the offset in bytes from the beginning of the file to the
polygon mesh data. Each polygon is defined as a set of indices to the vertices that make
up the polygon. Now, we need to be careful here: Suppose that polygon 0 has vertex
indices (12,56,99). This means that polygon 0 always has vertices (12,56,99)—it doesn’t
matter what vertex set or frame is being used. So, the end result is that we only need one
polygon definition for the model that describes the relationship of polygons to vertex
indices. For animation, we swap vertex sets in and out, but the same vertex indices are
always used. Figure 15.7 illustrates this.
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The data format of each polygon definition is as follows:

// this is a data structure for a single md2 polygon (triangle)

// its composed of 3 vertices and 3 texture coordinates, both indices

typedef struct MD2_POLY_TYP

{

unsigned short vindex[3];  // vertex indices

unsigned short tindex[3];  // texture indices

} MD2_POLY, *MD2_POLY_PTR;

The polygon list is an array of polygons, each with six elements. The first three are
unsigned shorts that define the vertex indices, and the second set of three unsigned shorts
define the texture coordinate indices. Thus, the polygon is totally defined indirectly, as
shown in Figure 15.8.

int offset_frames—This is the offset in bytes from the beginning of the file to the vertex
data for each frame. This is probably the data that gives people the most trouble, because
it’s not very clear what each frame consists of, so let’s start here. An offset_frames is an
array of frames. Each frame consists of a small header and an array of vertices that define
the animation frame. Figure 15.9 depicts this.

The header for each frame is defined as

// this is a single frame for the md2 format, it has a small header portion

// which describes how to scale and translate the model vertices, but then

// has an array to the actual data points which is variable, so the definition

// uses a single unit array to allow the compiler to address up to n with

// array syntax

typedef struct MD2_FRAME_TYP

{

float scale[3];    // x,y,z scaling factors for the frame vertices

float translate[3];  // x,y,z translation factors for the frame vertices

char name[16];     // ASCII name of the model, “evil death lord” etc. :)

MD2_POINT vlist[1];  // beginning of vertex storage array

Following the header is the actual vertex data array, but let’s hold off on that for a
moment and talk about the frame header. The frame header has four fields, all within
float scale[3].

float scale[3]—This is an array of three floats that are the x, y, and z scaling factors by
which to scale every single vertex, so when you load the .MD2 frame, you must scale each
vertex by this value. The x scaling factor is stored in scale[0], the y scaling factor in
scale[1], and the z scaling factor is in scale[2]. The reason for the scaling factor is
twofold: First, each vertex is compressed to fit into 8 bits to save space (similar to wavelet
compression), so you have to scale each vertex back to its normal size position; secondly,
to help achieve animation. Suppose you want to scale a frame as part of the animation—
this is how you would do it.
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FIGURE 15.8 Each polygon is defined indirectly.

float translate[3]—This is an array of three floats that are the x, y, and z translation
factors by which to translate every single vertex, so when you load the .MD2 frame, you
must translate each vertex by this value. The x translation factor is stored in
translate[0], the y translation factor in translate[1], and the z translation factor is in
translate[2]. The reason for the translation factor is once again to save space because
each vertex is stored in an 8-bit value, but more importantly, this is done to move each
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frame around in model space to achieve animation. For example, this is how a “jump”
motion is achieved—by translating the model coordinates, rather than translating the
world position and performing a local-to-world transformation.
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FIGURE 15.9 The animation frames array.

Figure 15.10 illustrates the transformations that the frame header defines as they relate
the each vertex, and here’s some pseudo-code that performs the transformations:

Given a vertex v with scale[] and translate[] arrays to scale and position any vertex:

v.x = v.x * scale[0] + translate[0];

v.y = v.y * scale[1] + translate[1];

v.z = v.z * scale[2] + translate[2];

char name[16] This field is nothing more than an ASCII name of the model—
”Terminator T1000,” and so on.

Finally, here’s the actual frame data:

MD2_POINT vlist[1] This is a pointer, more or less, to an array of vertices. However, we
don’t know how many vertices, so the trick of defining an array of size 1 is used. Hence, if
you access vlist[2], and so on, the compiler will allow it—just make sure there is some-
thing there to access, or you will get an access violation! This is a common trick used with
variable size data structures: You overlay a pointer or an array, and then index into it with
knowledge of how long it is. However, you can use a single data structure template for any
size. With that in mind, the vertex list vlist[] is the list of vertices for a particular frame
of animation. There will always be exactly num_verts vertices, and they will always be in
the format shown here:
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// this is a single point for the md2 model, contains an 8-bit scaled x,y,z

// and an index for the normal to the point that is encoded as an

// index into a normal table supplied by id software

typedef struct MD2_POINT_TYP

{

unsigned char v[3];     // vertex x,y,z in compressed byte format

unsigned char normal_index; // index into normal table from id Software (unused)

} MD2_POINT, *MD2_POINT_PTR;
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FIGURE 15.10 The frame header transformations to apply to each vertex set.

Notice that the x,y,z of each point is defined as an unsigned char—that’s only 8 bits! Now
you see why the scale and translate support is necessary in the header section of each
frame. Each vertex is composed of three bytes, followed by another byte called the
normal_index. The normal_index is used for another trick/compression scheme. For every
vertex of every frame, the vertex has a normal to it, as shown in Figure 15.11.

The normal is once again in model space, but is encoded as an index into an array of
precomputed normals. id Software created a table located in the Quake II source code that
has the values for each normal. However, even though we aren’t going to use this value
because we are going to compute normals only on a per-polygon basis, once again we see
optimization and indirection to save space and speed computation.

Summing up, at the beginning of the frame data at offset_frames is an array of frames
(198 of them). Each frame consists of a header and an array of vertices. The header has a
scaling factor and a translation factor, along with an ASCII frame name, all followed by
the frame’s vertex data. The data consists of an array of 4-byte values, the first three of
which are the x,y,z vertex positions in model space. The last item is an index to a 256-
element table of vertex normals (which we aren’t supporting).
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FIGURE 15.11 The Quake II lighting normals.

int offset_openGLcmds—This field is the offset in bytes from the beginning of file to the
OpenGL commands. We aren’t using OpenGL, so this is ignored.

int offset_end—Last but not least is the offset in bytes from the beginning of the file to
the end of file. This is not necessary because we can query the filesystem for the length of
the file, but it’s here if you need it.

Now let’s write some code to load the .MD2 files.

Loading Quake II .MD2 Files
You might recall that we originally thought that the OBJECT4DV2 structure would be used
to support animation, and actually wrote a bunch of code to support multiple frames.
However, it dawned on me that the OBJECT4DV2 is just a “container” class that renders a
mesh—why make it support animation, .MD2 files, or whatever? A better approach is to
simply write extraction functions that “fill” an OBJECT4DV2 object with polygon data and
then pass the object to the rendering engine and leverage all the software we already have.
This is the approach I ended up using, so all that animation support we wrote was pretty
much an exercise in typing, but it built a lot of character <BG>.
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In any event, the general plan of attack to load and render .MD2 files is as follows:

1. Load the .MD2 file and convert it into a more easily accessible format and from
which frames can be extracted and loaded into an OBJECT4DV2.

2. Write a couple of support functions to prepare OBJECT4DV2s to be used as “hosts” for
.MD2 frames.

3. Write an extraction function to extract a given frame from the .MD2 model anima-
tion, load it into an OBJECT4DV2 host, and then do whatever you want with the
OBJECT4DV2 as usual, leveraging the entire engine.

At first, I thought I could extract frames directly from the native .MD2 file loaded as pure
data in memory, but that would mean performing the frame scaling, translations, and so
on. Plus, all the bizarre compressed and indirect data structures make this a bad idea. A
better idea is to create yet another container class or structure that’s really good at holding
.MD2 data, but one that uses a lot of our data structures for points, vertices, textures, and
so on. This way, we can access this container class and extract frames from it very quickly.

This is the main point here—speed. We want to be able to render any frame almost
instantly, and we don’t want much overhead when switching frames. Also, we need to
have some forward thinking when designing the container class to support animation,
motion, and general state information, like a blitter object, or BOB. In the end, I came up
with the following structure:

typedef struct MD2_CONTAINER_TYP

{

int state;     // state of the model

int attr;      // attributes of the model

int color;     // base color if no texture

int num_frames;   // number of frames in the model

int num_polys;   // number of polygons

int num_verts;   // number of vertices

int num_textcoords; // number of texture coordinates

BITMAP_IMAGE_PTR skin;  // pointer to texture skin for model

MD2_POLY_PTR polys; // pointer to polygon list

VECTOR3D_PTR vlist; // pointer to vertex coordinate list

VECTOR2D_PTR tlist; // pointer to texture coordinate list

VECTOR4D world_pos; // position of object

VECTOR4D vel;    // velocity of object

int  ivars[8];   // integer variables

float fvars[8];   // floating point variables

int counters[8];  // general counters
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void *link;     // A generic void pointer

int anim_state;   // state of animation

int anim_counter;  // general animation counter

int anim_mode;   // single shot, loop, etc.

int anim_speed;   // smaller number, faster animation

int anim_complete; // flags if single shot animation is done

float curr_frame;   // current frame in animation

} MD2_CONTAINER, *MD2_CONTAINER_PTR;

All the fields are clearly marked, and many are copies of the data found in the .MD2
header, but let’s review all of them so we are on the same page:

• int state—This is the state of the model—if it’s alive, dead, and so on.

• int attr—This is the attributes of the model’s polygons; that is, how we want the
polygons rendered, or the shader attributes. We need this because the .MD2 format
doesn’t have any kind of shading or lighting information, so we need to define how
we would like the model rendered. This field is used to store these flags and is then
inserted into the OBJECT4DV2 for each polygon later. In most cases, the attributes will
be as follows:

(POLY4DV2_ATTR_RGB16 | POLY4DV2_ATTR_SHADE_MODE_FLAT |

POLY4DV2_ATTR_SHADE_MODE_TEXTURE)

which indicates 16-bit color, flat shading, and texture support.

• int color—This is the base color if no texture is supplied. However, a single color
model is pretty boring, so in most cases, this will be set to RGB(255,255,255) for
maximum reflectivity of the texture skin.

• int num_frames—This is the total number of frames in the .MD2 model for all the
animations (198 usually). This element is copied from the .MD2 header.

• int num_polys—This is the total number of polygons that make up a single frame of
animation. This is the same as in the .MD2 header, and is always the same for each
frame of animation because the polygon mesh is the template, and the only things
that change each frame of animation are the vertices themselves.

• int num_verts—This is the number of vertices for a single frame of animation (there
are usually hundreds of vertices in a .MD2 animation frame). This is always the same
for every frame of animation. The only things that change to animate the model are
the positions of the vertices.

• int num_textcoords—This is the number of texture coordinates available for all
vertices. Each frame of animation references texture coordinates as indices into the
texture coordinate array. In most case, there are a couple hundred texture coordi-
nates in a .MD2 model.
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• BITMAP_IMAGE_PTR skin—This is a pointer to the texture skin for the model. This
bitmap is derived by taking the 256×256 256-color skin from the model directory
and increasing the color depth to 16-bit, saving as a .BMP, and loading and storing it
here as the texture to be mapped onto the model.

The following fields define where the actual geometrical storage is, but unlike the raw
.MD2 file, this data is all ready to go for rendering—it’s been scaled, translated, and so
forth. Moreover, it’s all stored using our native data structures, so they can easily be
manipulated.

• MD2_POLY_PTR polys—This is a pointer to polygon list, which is composed of an
array of structures. Each structure is a record that contains the vertex indices and
texture indices for each vertex. This is the same as in the .MD2 file. There is no need
for this to have a different format, because it’s basically an indirection array.
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FIGURE 15.12 The vertex list in frame set order.

• VECTOR3D_PTR vlist—This is a pointer to the vertex coordinate list. Each vertex is a
standard VECTOR3D. The interesting thing about this array is that it has every single
vertex for every single frame of animation (thousands of vertices!). The data is stored
as shown in Figure 15.12—that is, frame 0, frame 1 … frame n. Each frame is
composed of num_verts vertices, each of which is a VECTOR3D. There is no other
structure, so to access a specific frame of animation and gain access to the vertices
for that frame, the frame number must be multiplied by num_verts and this result
used as a base index.

• VECTOR2D_PTR tlist—This is a pointer to the texture coordinate list. Each texture
coordinate is stored as a floating-point value in a VECTOR2D. The entire texture coor-
dinate list is stored in this array. There are num_textcoords elements.
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These next two fields are used to help position and move the model in 3D space:

• VECTOR4D world_pos—This is the position of the model in world coordinates.

• VECTOR4D vel—This is the velocity of model.

These next fields are just for fun and to help store state information, perform logic, or
whatever:

• int ivars[8]—Some generic integer variables.

• float fvars[8]—Some generic floating point variables.

• int counters[8]—Some generic counters.

• void *link—A generic void pointer.

These fields are rather important, and are used to help animate and track the state of the
model:

• int anim_state—This is the state of the animation, which in this context means
which animation is currently being played. Basically, the guys at id Software came
up with a list of animations that they wanted to support for each model. The list
features walking, running, dying, shooting, and so on. However, over the past few
years many people have taken creative license on this list and created more anima-
tions, so in the end I had to go to the Quake II source code itself and figure out
exactly how many animations there are supposed to be, what they are called
roughly, and what frame indices they are. My findings were as follows:

• There are 198 total frames in a .MD2 file.

• There are 20 different animations.

• Each animation consists of a number of frames, and these frame numbers are
always the same.

Table 15.1 lists the animations by name and frame indices. I derived this list by reviewing
the Quake II source code, and by looking at the file M_PLAYER.H in the headers directory of
the Quake II source code, which can be found at http://www.fileplanet.com/files/
80000/83000.shtml.

However, a search at Google.com or Yahoo.com will work just as well if that link dies.

TABLE 15.1 Animation Specification for the Animation Frames of the .MD2 File Format

Animation # Text Name Frame Indices

0 STANDING_IDLE 0–39

1 RUN 40–45

2 ATTACK 46–53
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3 PAIN 1 54–57

4 PAIN 2 58–61

5 PAIN 3 62–65

6 JUMP 66–71

7 FLIP 72–83

8 SALUTE 84–94

9 TAUNT 95–111

10 WAVE 112–122

11 POINT 123–134

12 CROUCH STAND 135–153

13 CROUCH WALK 154–159

14 CROUCH ATTACK 160–168

15 CROUCH PAIN 169–172

16 CROUCH DEATH 173–177

17 DEATH BACK 178–183

18 DEATH FORWARD 184–189

19 DEATH SLOW 190–197

Most of the text descriptions describe what the animation represents. For example, Pain
1, Pain 2, and Pain 3 are the animations for when the model is hit and feels “pain”;
ATTACK is the animation when the model fires its weapon, and so on. However, the most
important data is the frame numbers: They do not change, and they are always the same.
The problem is that many models you will find on the Internet are not correct, and there
might be too many or too few frames for a particular animation. This is not a big problem,
but one you will have to deal with sooner or later, because you will see problems with
animations. The best approach is to use a table of frame indices that’s programmable, so
you can change them on the fly on a per-model basis if need be. In any case, I have
created a set of defines to help select the anim_state in your code:

// md2 animation states

#define MD2_ANIM_STATE_STANDING_IDLE  0 // model standing and idling

#define MD2_ANIM_STATE_RUN       1 // model running

#define MD2_ANIM_STATE_ATTACK     2 // model firing weapon/attacking

#define MD2_ANIM_STATE_PAIN_1     3 // model being hit version 1

#define MD2_ANIM_STATE_PAIN_2     4 // model being hit version 2

#define MD2_ANIM_STATE_PAIN_3     5 // model being hit version 3

#define MD2_ANIM_STATE_JUMP      6 // model jumping

#define MD2_ANIM_STATE_FLIP      7 // model using hand gestures :)

#define MD2_ANIM_STATE_SALUTE     8 // model saluting

#define MD2_ANIM_STATE_TAUNT      9 // model taunting

#define MD2_ANIM_STATE_WAVE      10 // model waving at someone

#define MD2_ANIM_STATE_POINT     11 // model pointing at someone
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#define MD2_ANIM_STATE_CROUCH_STAND  12 // model crouching and idling

#define MD2_ANIM_STATE_CROUCH_WALK  13 // model walking while crouching

#define MD2_ANIM_STATE_CROUCH_ATTACK 14 // model firing weapon while crouching

#define MD2_ANIM_STATE_CROUCH_PAIN  15 // model being hit while crouching

#define MD2_ANIM_STATE_CROUCH_DEATH  16 // model dying while crouching

#define MD2_ANIM_STATE_DEATH_BACK   17 // model dying while falling backward

#define MD2_ANIM_STATE_DEATH_FORWARD 18 // model dying while falling forward

#define MD2_ANIM_STATE_DEATH_SLOW   19 // model dying slowly (any direction)

NOTE

You might notice that there is no timing information. Basically, we are left to our own devices to
decide how fast to play and interpolate the frames; however, I have added support to simplify
this when we get to implementing animation.

• int anim_counter—This is a general animation counter used to count frames until
the animation is updated to the next frame.

• int anim_mode—This defines how the animation in anim_state is to be played:
single shot or in a loop. Usually anim_mode will be one of these two defines:

// modes to run animation

#define MD2_ANIM_LOOP      0 // play animation over and over

#define MD2_ANIM_SINGLE_SHOT  1 // single shot animation

• int anim_speed—This is the actual animation speed that anim_counter counts up to
before updating the animation. The smaller the number, the faster the animation.

• int anim_complete—This flags whether single shot animation is complete (1 is
complete, 0 is pending). Use this to poll the model from the main line code to
control logic based upon when an animation is complete. For example, when a
“jump” completes, you might make a landing sound, and so forth.

• float curr_frame—This is a the current frame of animation to render. Notice that
it’s floating-point, not an integer—this is very important. We are supporting interpo-
lation between frames, so fractional frame numbers are allowed. For example, frame
5.4 would mean to interpolate between frame 5 and 6 at 40%, and so on. We will go
into more detail when discussing animation and vertex interpolation later in the
chapter.

That was a lot of setup! Let’s implement the loader function first. We need to load a .MD2
file from disk into a memory buffer, overlay the MD2 header, extract all the information
and store it into the container class MD2_CONTAINER, and then release the temp buffer.
Normally, I wouldn’t list such a large function, but I think it’s warranted in this case. I am
going to modify it from the function in T3DLIB13.CPP by removing extraneous error
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handling/output code, but you can always review the actual function on the CD. Anyway,
here’s the function, with lots of inline comments. Please review the function slowly and
read the comments—they proceed in a very linear fashion. When you’re done, I’ll meet
you at the end of the function:

int Load_Object_MD2(MD2_CONTAINER_PTR obj_md2, // storage for md2 model

char *modelfile,  // the filename of the .MD2 model

VECTOR4D_PTR scale, // initial scaling factors

VECTOR4D_PTR pos,  // initial position

VECTOR4D_PTR rot,  // initial rotations (not implemented)

char *texturefile, // the texture filename for the model

int attr,      // the lighting/model attributes for the model

int color,     // base color if no texturing

int vertex_flags)  // control ordering etc.

{

// this function loads in an md2 file, extracts all the data

// and stores it in the container class which will be used

// later to load frames into a the standard object

// type for rendering on the fly

FILE *fp   = NULL; // file pointer to model

int  flength = -1;  // general file length

UCHAR *buffer = NULL; // used to buffer md2 file data

MD2_HEADER_PTR md2_header;  // pointer to the md2 header

// begin by loading in the .md2 model file

if ((fp = fopen(modelfile, “rb”))==NULL)

{

Write_Error(“\nLoad_Object_MD2 - couldn’t find file %s”, modelfile);

return(0);

} // end if

// find the length of the model file

// seek to end of file

fseek(fp, 0, SEEK_END);

// where is the file pointer?

flength = ftell(fp);

// now read the md2 file into a buffer to analyze it

// re-position file pointer to beginning of file

fseek(fp, 0, SEEK_SET);
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// allocate memory to hold file

buffer = (UCHAR *)malloc(flength+1);

// load data into buffer

int bytes_read = fread(buffer, sizeof(UCHAR), flength, fp);

// the header is the first item in the buffer, so alias a pointer

// to it, so we can start analyzing it and creating the model

md2_header = (MD2_HEADER_PTR)buffer;

// test for valid file

if (md2_header->identifier != MD2_MAGIC_NUM ||

md2_header->version != MD2_VERSION)

{

fclose(fp);

return(0);

} // end if

// assign fields to container class

obj_md2->state     = 0;           // state of the model

obj_md2->attr      = attr;          // attributes of the model

obj_md2->color     = color;         // base color of mesh

obj_md2->num_frames   = md2_header->num_frames; // num frames in model

obj_md2->num_polys   = md2_header->num_polys; // num polygons

obj_md2->num_verts   = md2_header->num_verts; // num vertices

obj_md2->num_textcoords = md2_header->num_textcoords; // num texture coords

obj_md2->curr_frame   = 0;             // current frame in anim

obj_md2->skin      = NULL;            // ptr to texture skin

obj_md2->world_pos   = *pos;            // pos of object in world

// allocate memory for mesh data

// pointer to polygon list

obj_md2->polys = (MD2_POLY_PTR)malloc(md2_header->num_polys*sizeof(MD2_POLY));

// pointer to vertex coordinate list

obj_md2->vlist = (VECTOR3D_PTR)malloc(md2_header->num_frames * 

md2_header->num_verts* sizeof(VECTOR3D));

// pointer to texture coordinate list

obj_md2->tlist = (VECTOR2D_PTR)malloc(md2_header->num_textcoords * 

sizeof(VECTOR2D));

for (int tindex = 0; tindex < md2_header->num_textcoords; tindex++)

{

// insert texture coordinate into storage container
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obj_md2->tlist[tindex].x =

((MD2_TEXTCOORD_PTR)(buffer+md2_header->offset_textcoords))[tindex].u;

obj_md2->tlist[tindex].y =

((MD2_TEXTCOORD_PTR)(buffer+md2_header->offset_textcoords))[tindex].v;

} // end for vindex

for (int findex = 0; findex < md2_header->num_frames; findex++)

{

MD2_FRAME_PTR frame_ptr =

(MD2_FRAME_PTR)(buffer + md2_header->offset_frames +

md2_header->framesize * findex);

// extract md2 scale and translate, 

// additionally use sent scale and translate

float sx = frame_ptr->scale[0],

sy = frame_ptr->scale[1],

sz = frame_ptr->scale[2],

tx = frame_ptr->translate[0],

ty = frame_ptr->translate[1],

tz = frame_ptr->translate[2];

for (int vindex = 0; vindex < md2_header->num_verts; vindex++)

{

VECTOR3D v; // temp vector

// scale and translate compressed vertex

v.x = (float)frame_ptr->vlist[vindex].v[0] * sx + tx;

v.y = (float)frame_ptr->vlist[vindex].v[1] * sy + ty;

v.z = (float)frame_ptr->vlist[vindex].v[2] * sz + tz;

// scale final point based on sent data

v.x = scale->x * v.x;

v.y = scale->y * v.y;

v.z = scale->z * v.z;

float temp; // used for swaping

// test for vertex modifications to winding order etc.

if (vertex_flags & VERTEX_FLAGS_INVERT_X)

v.x = -v.x;

if (vertex_flags & VERTEX_FLAGS_INVERT_Y)

v.y = -v.y;
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if (vertex_flags & VERTEX_FLAGS_INVERT_Z)

v.z = -v.z;

if (vertex_flags & VERTEX_FLAGS_SWAP_YZ)

SWAP(v.y, v.z, temp);

if (vertex_flags & VERTEX_FLAGS_SWAP_XZ)

SWAP(v.x, v.z, temp);

if (vertex_flags & VERTEX_FLAGS_SWAP_XY)

SWAP(v.x, v.y, temp);

// insert vertex into vertex list which is laid out:

// frame 0, frame 1,..., frame n

// frame i: vertex 0, vertex 1,....vertex j

obj_md2->vlist[vindex + (findex * obj_md2->num_verts)] = v;

} // end vindex

} // end findex

MD2_POLY_PTR poly_ptr = (MD2_POLY_PTR)(buffer + md2_header->offset_polys);

for (int pindex = 0; pindex < md2_header->num_polys; pindex++)

{

// insert polygon into polygon list in container

if (vertex_flags & VERTEX_FLAGS_INVERT_WINDING_ORDER)

{

// inverted winding order

// vertices

obj_md2->polys[pindex].vindex[0] = poly_ptr[pindex].vindex[2];

obj_md2->polys[pindex].vindex[1] = poly_ptr[pindex].vindex[1];

obj_md2->polys[pindex].vindex[2] = poly_ptr[pindex].vindex[0];

// texture coordinates

obj_md2->polys[pindex].tindex[0] = poly_ptr[pindex].tindex[2];

obj_md2->polys[pindex].tindex[1] = poly_ptr[pindex].tindex[1];

obj_md2->polys[pindex].tindex[2] = poly_ptr[pindex].tindex[0];

} // end if

else

{

// normal winding order
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// vertices

obj_md2->polys[pindex].vindex[0] = poly_ptr[pindex].vindex[0];

obj_md2->polys[pindex].vindex[1] = poly_ptr[pindex].vindex[1];

obj_md2->polys[pindex].vindex[2] = poly_ptr[pindex].vindex[2];

// texture coordinates

obj_md2->polys[pindex].tindex[0] = poly_ptr[pindex].tindex[0];

obj_md2->polys[pindex].tindex[1] = poly_ptr[pindex].tindex[1];

obj_md2->polys[pindex].tindex[2] = poly_ptr[pindex].tindex[2];

} // end if

} // end for vindex

// close the file

fclose(fp);

//////////////////////////////////////////////////////////////////////////////

// load the texture from disk

Load_Bitmap_File(&bitmap16bit, texturefile);

// create a proper size and bitdepth bitmap

obj_md2->skin = (BITMAP_IMAGE_PTR)malloc(sizeof(BITMAP_IMAGE));

// initialize bitmap

Create_Bitmap(obj_md2->skin,0,0,

bitmap16bit.bitmapinfoheader.biWidth,

bitmap16bit.bitmapinfoheader.biHeight,

bitmap16bit.bitmapinfoheader.biBitCount);

// load the bitmap image

Load_Image_Bitmap16(obj_md2->skin, &bitmap16bit,0,0,BITMAP_EXTRACT_MODE_ABS);

// done, so unload the bitmap

Unload_Bitmap_File(&bitmap16bit);

// finally release the memory for the temporary buffer

if (buffer)

free(buffer);

// return success

return(1);

} // end Load_Object_MD2
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To call Load_Object_MD2(), we need to send in a pointer to the container to hold the MD2
model, along with the name of the .MD2 file on disk, a scaling factor, position, rotation
(only the scale and position are used currently), filename for the .BMP file holding the 16-
bit 256×256 texture skin, the polygon attributes to be used for the model, the base color,
and finally vertex_flags to implement changing winding order, coordinate systems, and
so on.

If you look closely at the function prototype, I have tried to make this .MD2 file loader
look something like all our other file loaders, so the parameters should be reasonably
familiar. The function begins by searching for the .MD2 file on the disk, and then it opens
and loads the file into one large memory buffer. Then the function begins the analysis
stage: It scans the header’s information and, based on this, extracts all the important
information from the .MD2 model. At the same time, the code inserts all the data into the
container class in a cleaner, noncompressed format, and initializes all the fields of the
container class as well.

One of the most important code fragments is the vertex_flags code that allows the caller
to perform simple coordinate transformations with the axes and winding order. If you
recall, we are using a left-hand coordinate system, with a clockwise winding order. .MD2
files, on the other hand, use a right-hand system with a counterclockwise winding order.
To fix this, we only have to swap the y-z axes. This little detail can be a huge pain if it’s
not supported with a simple flag. In any case, after the model is loaded and extracted into
the MD2_CONTAINER class, we are almost ready to go. All we have to do is write a function
that can extract a single frame from the container and insert it into the OBJECT4DV2 host.
Along with this, we also need support functions to control the selected animations and
perform timing. Let’s take a look at this now.

Animating .MD2 Files
Animation is a snap once you understand the .MD2 file format, and have extracted and
massaged the data into a format more palatable than its native compressed format. This is
the function of the loader and the MD2_CONTAINER class. The loader is called with a
container class with something like the following:

// some working vectors

static VECTOR4D vs = {4,4,4,1};

static VECTOR4D vp = {0,0,0,1};

// load the md2 object

Load_Object_MD2(&obj_md2,  // the loaded md2 file placed in container

“./md2/q2mdl-tekkblade/tris.md2”, // the filename of the .MD2 model

&vs, // scale and position

&vp,

NULL,

“./md2/q2mdl-tekkblade/blade_black.bmp”, //texture filefor the model

POLY4DV2_ATTR_RGB16 |
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POLY4DV2_ATTR_SHADE_MODE_FLAT |

POLY4DV2_ATTR_SHADE_MODE_TEXTURE,

RGB16Bit(255,255,255),

VERTEX_FLAGS_SWAP_YZ);    // control ordering etc.

NOTE

This model is called “Tekkaman Blade” and can be found on Polycount. This is a good example
of the quality of the models found on Polycount. The author of this particular model is Michael
“Magarnigal” Mellor.

We would have the .MD2 model loaded into the MD2_CONTAINER obj_md2 from the file
“./md2/q2mdl-tekkblade/tris.md2” with the texture found in the file “./md2/q2mdl-
tekkblade/blade_black.bmp”.

All we need to do is extract the vertex list for any given frame and insert it into the vertex
list of an OBJECT4DV2. However, the cool thing is that the polygon list and the texture
coordinates, and so on of the OBJECT4DV2 never change, because they are indirection
arrays and refer to indices of vertices, not the vertices themselves. Basically, we create a
“host” OBJECT4DV2 and fill it with everything except the vertices of the mesh.

We set up the attributes, color, the polygon list, the texture coordinates, the texture map,
and so on, but we don’t insert any vertices. This is called preparation. When we are ready
to render a frame, we make a call to a function that, given a specific frame of animation,
extracts the vertices from the MD2_CONTAINER (obj_md2 in this case) and then inserts them
in to the “host” OBJECT4DV2. Then we pass the OBJECT4DV2 to the rendering engine, and it
has no idea what it is rendering!

Preparing an OBJECT4DV2 Host for the .MD2 Model
Let’s start with the function that prepares an OBJECT4DV2 to be a host for the
MD2_CONTAINER. Here’s the function that does that (minus some extraneous error display
code to save space):

int Prepare_OBJECT4DV2_For_MD2(OBJECT4DV2_PTR obj, // ptr to dest obj

MD2_CONTAINER_PTR obj_md2) // md2 obj to extract frame from

{

// this function prepares the OBJECT4DV2 to be used as a vessel to hold

// frames from the md2 container, it allocated the memory needed, set fields

// and pre-computes as much as possible since each new frame will change only

// the vertex list

// clear out the object and initialize it a bit

memset(obj, 0, sizeof(OBJECT4DV2));

CHAPTER 15 3D Character Animation, Motion, and Collision Detection1522

21 0672318350 CH15  05•02•2003  3:03 PM  Page 1522



// set state of object to active and visible

obj->state = OBJECT4DV2_STATE_ACTIVE | OBJECT4DV2_STATE_VISIBLE;

// set some information in object

obj->num_frames  = 1;  // always set to 1

obj->curr_frame  = 0;

obj->attr     = OBJECT4DV2_ATTR_SINGLE_FRAME | OBJECT4DV2_ATTR_TEXTURES;

obj->num_vertices = obj_md2->num_verts;

obj->num_polys  = obj_md2->num_polys;

obj->texture   = obj_md2->skin;

// set position of object

obj->world_pos = obj_md2->world_pos;

// allocate the memory for the vertices and number of polys

// the call parameters are redundant in this case, but who cares

if (!Init_OBJECT4DV2(obj,

obj->num_vertices,

obj->num_polys,

obj->num_frames))

{

Write_Error(“\n(can’t allocate memory).”);

} // end if

// compute average and max radius using the vertices from frame 0, this isn’t

// totally accurate, but the volume of the object hopefully does vary wildly

// during animation

// reset incase there’s any residue

obj->avg_radius[0] = 0;

obj->max_radius[0] = 0;

// loop thru and compute radius

for (int vindex = 0; vindex < obj_md2->num_verts; vindex++)

{

// update the average and maximum radius (use frame 0)

float dist_to_vertex =

sqrt(obj_md2->vlist[vindex].x * obj_md2->vlist[vindex].x +

obj_md2->vlist[vindex].y * obj_md2->vlist[vindex].y +

obj_md2->vlist[vindex].z * obj_md2->vlist[vindex].z );

// accumulate total radius

obj->avg_radius[0]+=dist_to_vertex;
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// update maximum radius

if (dist_to_vertex > obj->max_radius[0])

obj->max_radius[0] = dist_to_vertex;

} // end for vertex

// finallize average radius computation

obj->avg_radius[0]/=obj->num_vertices;

// copy texture coordinate list always the same

for (int tindex = 0; tindex < obj_md2->num_textcoords; tindex++)

{

// now texture coordinates

obj->tlist[tindex].x = obj_md2->tlist[tindex].x;

obj->tlist[tindex].y = obj_md2->tlist[tindex].y;

} // end for tindex

// generate the polygon index list, always the same

for (int pindex=0; pindex < obj_md2->num_polys; pindex++)

{

// set polygon indices

obj->plist[pindex].vert[0] = obj_md2->polys[pindex].vindex[0];

obj->plist[pindex].vert[1] = obj_md2->polys[pindex].vindex[1];

obj->plist[pindex].vert[2] = obj_md2->polys[pindex].vindex[2];

// point polygon vertex list to object’s vertex list

// note that this is redundant since the polylist is contained

// within the object in this case and its up to the user to select

// whether the local or transformed vertex list is used when building up

// polygon geometry, might be a better idea to set to NULL in the context

// of polygons that are part of an object

obj->plist[pindex].vlist  = obj->vlist_local;

// set attributes of polygon with sent attributes

obj->plist[pindex].attr  = obj_md2->attr;

// set color of polygon

obj->plist[pindex].color  = obj_md2->color;

// apply texture to this polygon

obj->plist[pindex].texture = obj_md2->skin;
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// assign the texture coordinates

obj->plist[pindex].text[0] = obj_md2->polys[pindex].tindex[0];

obj->plist[pindex].text[1] = obj_md2->polys[pindex].tindex[1];

obj->plist[pindex].text[2] = obj_md2->polys[pindex].tindex[2];

// set texture coordinate attributes

SET_BIT(obj->vlist_local[ obj->plist[pindex].vert[0] ].attr,

VERTEX4DTV1_ATTR_TEXTURE);

SET_BIT(obj->vlist_local[ obj->plist[pindex].vert[1] ].attr,

VERTEX4DTV1_ATTR_TEXTURE);

SET_BIT(obj->vlist_local[ obj->plist[pindex].vert[2] ].attr,

VERTEX4DTV1_ATTR_TEXTURE);

// set the material mode to ver. 1.0 emulation

SET_BIT(obj->plist[pindex].attr, POLY4DV2_ATTR_DISABLE_MATERIAL);

// finally set the polygon to active

obj->plist[pindex].state = POLY4DV2_STATE_ACTIVE;

// point polygon vertex list to object’s vertex list

// note that this is redundant since the polylist is contained

// within the object in this case and its up to the user to select

// whether the local or transformed vertex list is used when building up

// polygon geometry, might be a better idea to set to NULL in the context

// of polygons that are part of an object

obj->plist[pindex].vlist = obj->vlist_local;

// set texture coordinate list, this is needed

obj->plist[pindex].tlist = obj->tlist;

// extract vertex indices

int vindex_0 = obj_md2->polys[pindex].vindex[0];

int vindex_1 = obj_md2->polys[pindex].vindex[1];

int vindex_2 = obj_md2->polys[pindex].vindex[2];

// we need to compute the normal of this polygon face, and recall

// that the vertices are in cw order, u=p0->p1, v=p0->p2, n=uxv

VECTOR4D u, v, n;

// build u, v

u.x = obj_md2->vlist[vindex_1].x - obj_md2->vlist[vindex_0].x;

u.y = obj_md2->vlist[vindex_1].y - obj_md2->vlist[vindex_0].y;

u.z = obj_md2->vlist[vindex_1].z - obj_md2->vlist[vindex_0].z;

u.w = 1;
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v.x = obj_md2->vlist[vindex_2].x - obj_md2->vlist[vindex_0].x;

v.y = obj_md2->vlist[vindex_2].y - obj_md2->vlist[vindex_0].y;

v.z = obj_md2->vlist[vindex_2].z - obj_md2->vlist[vindex_0].z;

v.w = 1;

// compute cross product

VECTOR4D_Cross(&u, &v, &n);

// compute length of normal accurately and store in poly nlength

// +- epsilon later to fix over/underflows

obj->plist[pindex].nlength = VECTOR4D_Length(&n);

} // end for poly

// return success

return(1);

} // end Prepare_OBJECT4DV2_For_MD2

Prepare_OBJECT4DV2_For_MD2() takes two parameters: a pointer to the OBJECT4DV2 host
that will receive the MD2_CONTAINER mesh information, and a pointer to the MD2_CONTAINER
holding the actual .MD2 model we want to animate and render.
Prepare_OBJECT4DV2_For_MD2() more or less initializes the OBJECT4DV2 object and then
copies everything it can from the MD2_CONTAINER class that won’t change frame to frame.
Only the vertices are not copied. This function isn’t required to be fast because it’s called
during initialization, so speed isn’t important. The function basically creates the polygon
list, texture list, and performs all needed calculations on the object, such as computation
of surface normal lengths, and average and maximum radius.

CAUTION

The length of all polygon normals is calculated based on frame 0 as a reference. As the model
animates, the normals of the precomputed length of polygon normals will stay the same. This is
mostly unnoticeable, but is a factor for lighting. A more detailed model would be to store a
normal length for every polygon for each vertex set; however, that would mean for each
polygon, we would need an array 198 elements long, each with a normal, and then we would
have to copy that as well when we extract a frame. In the end, you can’t tell the difference. Also,
the average radius is also computed using only frame 0.

Extracting Frames from the MD2_CONTAINER Class
After the OBJECT4DV2 is prepared to be a host for the MD2_CONTAINER vertex information,
the rest is a snap. Simply select a frame from 0…198, figure out where in the vertex list
the vertices are, and then copy them into the vertex storage of the OBJECT4DV2, tricking it
into thinking it’s always the same frame. Here’s the code that does that:
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int Extract_MD2_Frame(OBJECT4DV2_PTR obj, // ptr to dest obj

MD2_CONTAINER_PTR obj_md2) // md2 obj to extract frame from

{

// this function extracts a single frame of animation

// from the md2 container and stores in into the object4dv2 container,

// this is so we can leverage the library to transform,

// light, etc. the mesh rather than writing new functions,

// granted the process of extraction is an unneeded overhead,

// but since we will only have a few MD2 object running around

// the rendering swamps the time to extract by many orders of magnitude,

// so the extraction is negligible the function also interpolates frames;

// if the curr_frame value is non-intergral then

// the function will blend frames together based on the decimal fraction

// test if frame number is greater than max frames allowable,

// some models are malformed

int frame_0,  // starting frame to interpolate

frame_1;  // ending frame to interpolate

// step 1: decide if this is an interpolated frame?

float ivalue = obj_md2->curr_frame - (int)obj_md2->curr_frame;

// test for integer?

if (ivalue == 0.0)

{

// single frame, no interpolation

frame_0 = obj_md2->curr_frame;

// check for overflow?

if (frame_0 >= obj_md2->num_frames)

frame_0 = obj_md2->num_frames-1;

// copy vertex list for selected frame, vertex list begins at

// base index (obj_md2->num_verts * obj_md2->curr_frame)

int base_index = obj_md2->num_verts * frame_0;

// copy vertices now from base

for (int vindex = 0; vindex < obj_md2->num_verts; vindex++)

{

// copy the vertex

obj->vlist_local[vindex].x = obj_md2->vlist[vindex + base_index].x;

obj->vlist_local[vindex].y = obj_md2->vlist[vindex + base_index].y;
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obj->vlist_local[vindex].z = obj_md2->vlist[vindex + base_index].z;

obj->vlist_local[vindex].w = 1;

// every vertex has a point and texture attached,

// set that in the flags attribute

SET_BIT(obj->vlist_local[vindex].attr, VERTEX4DTV1_ATTR_POINT);

SET_BIT(obj->vlist_local[vindex].attr, VERTEX4DTV1_ATTR_TEXTURE);

} // end for vindex

} // end if

else

{

// interpolate between curr_frame and curr_frame+1 based

// on ivalue

frame_0 = obj_md2->curr_frame;

frame_1 = obj_md2->curr_frame+1;

// check for overflow?

if (frame_0 >= obj_md2->num_frames)

frame_0 = obj_md2->num_frames-1;

// check for overflow?

if (frame_1 >= obj_md2->num_frames)

frame_1 = obj_md2->num_frames-1;

// interpolate vertex lists for selected frame(s), vertex list(s) begin at

// base index (obj_md2->num_verts * obj_md2->curr_frame)

int base_index_0 = obj_md2->num_verts * frame_0;

int base_index_1 = obj_md2->num_verts * frame_1;

// interpolate vertices now from base frame 0,1

for (int vindex = 0; vindex < obj_md2->num_verts; vindex++)

{

// interpolate the vertices

obj->vlist_local[vindex].x =((1-ivalue)*obj_md2->vlist[vindex+base_index_0].x

+ ivalue*obj_md2->vlist[vindex+base_index_1].x);

obj->vlist_local[vindex].y =((1-ivalue)*obj_md2->vlist[vindex+base_index_0].y

+ ivalue*obj_md2->vlist[vindex+base_index_1].y);

obj->vlist_local[vindex].z =((1-ivalue)*obj_md2->vlist[vindex+base_index_0].z

+ ivalue*obj_md2->vlist[vindex+base_index_1].z);

obj->vlist_local[vindex].w =1;
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// every vertex has a point and texture attached,

// set that in the flags attribute

SET_BIT(obj->vlist_local[vindex].attr, VERTEX4DTV1_ATTR_POINT);

SET_BIT(obj->vlist_local[vindex].attr, VERTEX4DTV1_ATTR_TEXTURE);

} // end for vindex

} // end if

// return success

return(1);

} // end Extract_MD2_Frame

Extract_MD2_Frame() once again simply takes a pointer to both the host OBJECT4DV2 that
receives the vertex information, and a pointer to the MD2_CONTAINER sourcing it. The frame
that’s extracted is curr_frame within the MD2_CONTAINER. However, there is a catch: The
extraction function performs key-frame interpolation. Let’s talk about this for a moment.

If you review Extract_MD2_Frame(), you will see that the function begins with an if state-
ment:

// test for integer?

if (ivalue == 0.0)

…

This tests whether there is a fractional or decimal component to the current frame. If not,
the exact frame is extracted from the vertex list. For example, suppose that curr_frame is
equal to 26. The vertex list from the 26th frame would then be copied to the host
OBJECT4DV2. This would be accomplished by multiplying 26 by the number of vertices per
model, which is num_verts, and then using that product as the base index into the vertex
list and copying num_verts vertices from there out into the host OBJECT4DV2, as shown in
Figure 15.12. Nothing strange about that, but when the curr_frame is not an integral
value, we need to vertex blend/interpolate between key frames.

Take a look at Figure 15.13. Here we see a number of key frames of a stick figure walking.
Suppose that we want the animation to look smoother. We can artificially compute what
the value/position of each vertex would be between any frame i and i+1. As long as
nothing too weird happens, and as long as each vertex follows a linear motion, interpola-
tion will look reasonable. This is the philosophy behind .MD2 files. Even though there are
198 frames of animation, they are used for 20 different animations. This might seem like a
lot, but if you were to run a game at 60 frames a second, and on average, each animation
has 198/20, or roughly 10 frames, each animation would occur in 10/60 = .16 seconds, or
160 milliseconds. Not much time to see anything!
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FIGURE 15.13 Key-frame animation.

To slow the animation, we can do two things: insert delays before we switch frames, or
interpolate. If we insert delays and render a new frame each 10 frames for example, we
slow it down 10 times. However, the animation still looks jerky because there are so few
frames per animation. A better solution is to interpolate between frames, or more specifi-
cally, to interpolate between vertices for each frame. This is exactly what the second code
block of Extract_MD2_Frame() does.

Implementing Frame/Vertex Interpolation
The second code block of Extract_MD2_Frame() is a little more complicated than the first.
This is because it’s performing a full vertex interpolation between two frames of anima-
tion. The two frames are selected based on curr_frame. Basically, if curr_frame is non-
integral (say it’s 5.1), it means we need to blend the vertices from frame 5 and frame 6
such that we get 90% of frame 5 and 10% of frame 6. Read that again: 90% of frame 5,
and 10% of frame 6—not the other way around!

The math for an interpolated vertex is given that v0 is a vertex from frame 0 and v1 is a
vertex from frame 1, and that we want to interpolate between the two based on the inter-
polant i value from 0…1.0, which is the decimal portion of curr_frame, then

v
i
= v

0
* (1- ivalue) + v

1
*(ivalue)

This is exactly what the code does. The only reason I create special cases on the integral
values is for speed. That is, when the curr_frame is a whole number, there is no interpola-
tion, and thus no need to perform the multiplication and addition.

We can send in any frame value 0…198 with a decimal fraction, and the
Extract_MD2_Frame() function will interpolate between frames if need be, extract the
vertices and place them in the OBJECT4DV2 host, and save the day!

The last piece to the puzzle is a little logic to drive the actual selection of animation, or
state, and to animate the model (select the frames).

CHAPTER 15 3D Character Animation, Motion, and Collision Detection1530

Examples
vertices
to interpolate

frame i � 1 frame i frame i � 1 

21 0672318350 CH15  05•02•2003  3:03 PM  Page 1530



Adding State-Based Animation to the .MD2 Support
At this point, we can load an .MD2 file from disk, convert it into a more easily accessible
MD2_CONTAINER class, extract frames with vertex animation, and store them in a host
OBJECT4DV2 object. We could stop right here, call a rendering function with the
OBJECT4DV2 object and be done. However, think of all those cool animations frames listed
in Table 15.1. It would be nice to be able to call a function that would allow us to initial-
ize and control the animation of the model with single-shot and looped animation. That
way, from our game we could tell the model to run, jump, idle, or whatever based on
game logic, and not have to hard-code it. So, let’s write one last set of functions to accom-
plish this task—it’s really simple.

We need two things: a simple data structure to hold animations, and a couple of functions
to drive the animation and update the MD2_CONTAINER’s fields. Let’s start with the anima-
tion. An animation consists of the starting frame, the ending frame, an interpolation rate,
and an animation speed:

// holds a simple animation start-end plus interpolation rate

typedef struct MD2_ANIMATION_TYP

{

int  start_frame; // starting and ending frame

int  end_frame;

float irate;    // interpolation rate

int  anim_speed;  // animation rate

} MD2_ANIMATION, *MD2_ANIMATION_PTR;

The start_frame and end_frame fields are simply going to hold the indices from Table
15.1, but irate and anim_speed need a little explanation. irate is the interpolation rate,
or in other words, how many steps are interpolated between frames. For example, if irate
is set to 0.1, interpolation from frame 5 to 6 would look like this:

5.0, 5.1, 5.2, 5.3 … 5.9, 6.0

In most cases, an interpolation rate of .25 or .50 works fine. Try to use nonrepeating deci-
mals; for example, .33 would be bad. The next field of interest is anim_speed. This is
simply the counter value used to perform the animation or interpolation logic as the game
runs, so setting it to 0 means update the animation each frame, setting it to 1 means
update the animation after one frame, and so forth. Between all these values, we can
create any timings we want. The next thing to do is to create an array of these structures,
each containing the animation indices from Table 15.1:

// the animations, the frames, and timing look good on most

// models, but tweak them to suit your needs OR create a table

// for every character in your game to fine tune your animation

MD2_ANIMATION md2_animations[NUM_MD2_ANIMATIONS] =

{

// format: start frame (0..197), end frame (0..197),
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// interpolation rate (0..1, 1 for no interpolation),

// speed (0..10, 0 fastest, 1 fast, 2 medium, 3 slow...)

{0,39,0.5,1},  // MD2_ANIM_STATE_STANDING_IDLE    0

{40,45,0.5,2},  // MD2_ANIM_STATE_RUN         1

{46,53,0.5,1},  // MD2_ANIM_STATE_ATTACK       2

{54,57,0.5,1},  // MD2_ANIM_STATE_PAIN_1       3

{58,61,0.5,1},  // MD2_ANIM_STATE_PAIN_2       4

{62,65,0.5,1},  // MD2_ANIM_STATE_PAIN_3       5

{66,71,0.5,1},  // MD2_ANIM_STATE_JUMP        6

{72,83,0.5,1},  // MD2_ANIM_STATE_FLIP        7

{84,94,0.5,1},  // MD2_ANIM_STATE_SALUTE       8

{95,111,0.5,1}, // MD2_ANIM_STATE_TAUNT        9

{112,122,0.5,1}, // MD2_ANIM_STATE_WAVE        10

{123,134,0.5,1}, // MD2_ANIM_STATE_POINT        11

{135,153,0.5,1}, // MD2_ANIM_STATE_CROUCH_STAND    12

{154,159,0.5,1}, // MD2_ANIM_STATE_CROUCH_WALK     13

{160,168,0.5,1}, // MD2_ANIM_STATE_CROUCH_ATTACK    14

{169,172,0.5,1}, // MD2_ANIM_STATE_CROUCH_PAIN     15

{173,177,0.25,0}, // MD2_ANIM_STATE_CROUCH_DEATH    16

{178,183,0.25,0}, // MD2_ANIM_STATE_DEATH_BACK     17

{184,189,0.25,0}, // MD2_ANIM_STATE_DEATH_FORWARD    18

{190,197,0.25,0}, // MD2_ANIM_STATE_DEATH_SLOW     19

};

In most cases, I use a .5 for the interpolation and a 1 for the animation update. Given this
data structure, we need a couple of functions to start an animation and run it. Here’s a
function to set up for a particular animation:

int Set_Animation_MD2(MD2_CONTAINER_PTR md2_obj, // md2 object

int anim_state,        // which animation to play

int anim_mode = MD2_ANIM_LOOP) // mode of animation single/loop

{

// this function initializes an animation for play back

md2_obj->anim_state  = anim_state;

md2_obj->anim_counter = 0;

md2_obj->anim_speed  = md2_animations[anim_state].anim_speed;

md2_obj->anim_mode  = anim_mode;

// set initial frame

md2_obj->curr_frame  = md2_animations[anim_state].start_frame;

// set animation complete flag

md2_obj->anim_complete = 0;
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// return success

return(1);

} // end Set_Animation_MD2

Set_Animation_MD2() takes a pointer to the MD2_CONTAINER of the model you want to
animate, along with the animation state and the mode for the animation. For example,
assume a model has been loaded and prepared from the MD2_CONTAINER object obj_md2. To
select the run animation for loop mode, you would make the call

Set_Animation_MD2(&obj_md2,

MD2_ANIM_STATE_RUN,

MD2_ANIM_LOOP);

and that’s it. However, we need something to update the animation and change
curr_frame in the MD2_CONTAINER class, so here’s the final animation function that does
this:

int Animate_MD2(MD2_CONTAINER_PTR md2_obj) // md2 object

{

// animate the mesh to next frame based on state and interpolation values...

// update animation counter

if (++md2_obj->anim_counter >= md2_obj->anim_speed)

{

// reset counter

md2_obj->anim_counter = 0;

// animate mesh with interpolation, algorithm is straightforward interpolate

// from current frame in animation to next and blend vertex positions based

// on interpolant ivalue in the md2_container class, couple tricky parts

// are to watch out for the endpost values of the animation, etc.

// if the interpolation rate irate=1.0 then there is no interpolation

// for all intent purposes...

// add interpolation rate to interpolation value, test for next frame

md2_obj->curr_frame+=md2_animations[md2_obj->anim_state].irate;

// test if sequence is complete?

if (md2_obj->curr_frame > md2_animations[md2_obj->anim_state].end_frame)

{

// test for one shot, if so then reset to last frame, if loop, the loop

if (md2_obj->anim_mode == MD2_ANIM_LOOP)

{

// loop animation back to starting frame
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md2_obj->curr_frame = md2_animations[md2_obj->anim_state].start_frame;

} // end if

else

{

// MD2_ANIM_SINGLE_SHOT

md2_obj->curr_frame = md2_animations[md2_obj->anim_state].end_frame;

// set complete flag incase outside wants to take action

md2_obj->anim_complete = 1;

} // end else

} // end if sequence complete

} // end if time to animate

// return success

return(1);

} // end Animate_MD2

You simply call Animate_MD2() with a pointer to the container class and it does the rest.
Notice that it knows nothing about interpolation. It only cares about timing, and whether
it’s performing a single-shot or a looped animation.

Well, that’s about it for the .MD2 file format—we can load them, convert them to
OBJECT4DV2 format, animate, and render them. Let’s actually see all this in action with a
demo.

.MD2 Demo
As a demo of loading, rendering, and animating .MD2 files, take a look at the screenshots
in Figure 15.14. They depict DEMOII15_1.CPP|EXE in action in both wireframe and solid
mode. The demo basically loads a .MD2 file from the CD/hard drive and then animates it
in place. The controls are as follows:

• 1—Previous animation

• 2—Next animation

• 3—Play the current animation single-shot

• 4—Play the current animation looped

• H—Onscreen help

• Arrow keys—Move the camera around

• Esc—Exit
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FIGURE 15.14 A screenshot of the .MD2 demo in action.

The rest of the controls are shown in the onscreen help. If you don’t like the timings, try
playing around with the irate and anim_speed values in the md2_animations[] array.
Finally, to compile the program, you will need DEMOII15_1.CPP|H, along with all the
library files, including this chapter’s T3DLIB1–13.CPP|H and a link with the DirectX .LIB
files. Of course, there is a precompiled .EXE file on the CD.
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CAUTION

This demo, like the rest, uses files within a subdirectory that contains the assets (the .MD2 files
and textures), so if you want to copy it all to the hard drive, make sure you copy the subdirecto-
ries, and don’t flatten them out—the paths are relative, but still need the subdirectories relative
to the .EXE’s root directory.

Simple Non-Character-Based Animation
Up until now, this entire book has been an exercise in overheating the warp core. In this
last section, we are going to really slow down and just talk about the remaining topics
rather than dig down deep. The reason why, of course, is that I’ve covered this stuff in the
first Tricks and throughout this book in one way or another. Nevertheless, I just want to
make sure that we at least touch upon these concepts, because so many people make
simple things hard. I want you to realize that none of this stuff is hard—you just have to
know how to approach it. With that in mind, let’s take a look at moving objects around
and animating them.

Of course, we already know how to perform character animation based on the .MD2
coverage, so the following material is going to simply cover moving objects as if they’re
points or objects. You would use the character animation techniques along with the
following ideas to complete the animation system—that is, to make an object look like it’s
walking or turning while the animation frame the character is displaying is the walking
sequence, and so on.

Rotational and Translational Motion
Let’s begin with the two most basic types of animation you can perform on a 3D object:
rotation and translation. Rotational animation is used when you want to turn an object as
it’s moving from one point to another, or for objects that are stationary that need to
simply rotate, such as a turret, for example. Translational animation is the only way you’re
going to move something from point A to point B.

Rotating Objects
To rotate any object, we simply need to perform a rotation transformation with an x,y,z
rotation matrix, and then apply the transformation to the object. We have done this
many times in many demos, so nothing interesting there. What is interesting is creating a
higher-level functionality to drive the rotation.

There’s also the consideration of transforming the local or transformed coordinates of the
model. If you recall, all models have a set of local or model vertices stored in the vlist[]
array. This is the only “fresh” copy of the model. Then when we transform the object, we
can perform the transformation on these local coordinates, or make a copy of them and
store the results in the transformed coordinate tvlist[]. This works out great—however,
any transformation you perform is lost each frame; the object doesn’t “remember”
anything about what you did.
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Nonetheless, this is usually a better approach that transforming the model coordinates
themselves because once they are transformed, the model’s vertex coordinates will be
altered, and moreover, errors will slowly creep into the vertex positions, so that after thou-
sands or tens of thousands of transformations, the model will degrade.

Thus, the best approach is to use a rotation variable or state that tracks the current rota-
tion angles of the object, and then for each frame, you should use this variable to trans-
form the local coordinates and store them into the transformed coordinates for rendering.
This is shown in Figure 15.15.
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FIGURE 15.15 Transforming local coordinates and storing results into other storage.

Of course, the downside to this approach is that you must perform a transformation on
your model each frame. For example, suppose you load your model into the system such
that its major axis is pointing toward the positive z-axis. You would then create a variable
to track its rotation around the y-axis (call it rot_y). Each frame, you will update rot_y
and use it to generate the transformation matrix for y-axis rotation and rotate the local
coordinates, but you’ll store them in the transformed vertex list. Thus, if you have a
model with 1,000 vertices, you are going to perform 1,000 transformations per frame to
transform it from model space to world space. This is the price you pay, but your original
model will never be destroyed.

TIP

If you are really trying to save time and can’t perform all these transformations per frame, you
can surely directly modify the model coordinates. However, after every 10,000 transformations,
you might want to “refresh” the model’s local coordinates with a copy of the original model’s
vertices to minimize degradation because of numeric inaccuracies.

In conclusion, I suggest that you try both and see what works best. Additionally, it will be
definitely worth your time to create some software with which you can command an
object to rotate some angle over some amount of time or number of frames and then stop.
Similarly to how we wrote the animation code for the .MD2 system, you might want to
write some helper functions, so you can simply start a rotation on an object and the
object will rotate each frame at some rate.
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Moving Objects in Lines
Moving an object in a straight line is rather trivial, as it’s nothing more than translation.
However, once again, there are a number of ways to achieve this. One way is to use a
simple velocity vector v, and then given a position vector p of the object, just apply the
transformation

p = p + v

each frame. This will move the object in a straight line starting from p along the vector v.
But what if you want to move an object from point p0 to point p1? Again, this is easy—we
simply set up a vector equation and parametrically translate the object along the vector
path. Here’s how:

Given p0, p1:

Set object’s world position to p0,
and then apply this transformation:

p = p
0
+ t*( p

1
– p

0
)

for t = 0 to 1.0

As you can see, the position vector p will trace a line from p0 to p1 as t ranges from 0 to
1.0. The rate of the motion is controlled by the change in t per unit of time. This is a para-
metric equation. Figure 15.16 illustrates this motion setup.
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Complex Parametric and Curved Motion
Although straight lines are very elegant, geometrically, they are rather boring! The next
step up the translational ladder of motion is to move objects in curved paths, or along
more complex parametric curves in general.

NOTE

All motion can be implemented with real-time physics models that drive motions, and the results
are totally realistic, based on the object’s mass, acceleration, and the environment. Here we are
more concerned with simple deterministic motions for arcade-like games with little physics
support.
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Creating curved paths is just as easy as the straight line parametric path; we simply need
to use more complex parametric equations. For example, let’s say that you want to move
an object in a circular path that slowly spirals up, as shown in Figure 15.17. To accomplish
this, we could use lookup tables, but a better approach would be to use the formula for a
circle or curve and then create a parametric version of it for our needs to move a position
vector p. Here’s one such derivation:

Given the position vector p, we want to move p such that it follows a circular or elliptical
path around center p0 in the x-z plane with some radius r, at some rate related to a para-
meter t.

p.x = p
0
.x + r

1
*cos(2*PI*c*t)

p.z = p
0
.z + r

2
*sin(2*PI*c*t)

p.y = p
0
.y + b*t;
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The above parametric equations will do the job. Let’s analyze the equations: r
1

and r
2

are
the radii on the x- and z-axes of the path, c is a rate constant that scales the rate or
frequency, t is the parameter, and b is the rate scale for the vertical motion. If we let b = c
= r

1 
= r

2 
= 1, and the location vector p0 = [0,0,0], let’s see what we get as the parameter t

ranges from 0 to 1.0:

p.x = cos(2*PI*t)

p.z = sin(2*PI*t)

p.y = t;

This is clearly a circle located at the origin that corkscrews upward from 0 to 1.0.

This is really all there is to creating complex curved paths. Most of them can be created
with sine/cosine curves, but you can surely follow more complex curves by using polyno-
mial, Bezier, or spline curves. If you recall when we did the perspective transformations,
we used quadratic curves to follow the perspective curve and interpolate points p0 and p1.
You can use this same derivation to interpolate curves for motion: Simply decide what
kind of curve you want (I suggest simple spline curves), create a parametric version of the
curve in x,y,z, and then compute the points along the curve and make your object follow
it. Of course, you will have to stitch a number of curve segments together, but that’s no
big deal.

NOTE

When an object is in 3D space, not only are we concerned with moving it along a path, but we
also have to rotate it simultaneously as it’s moving. For example, if a space fighter is following a
path, we might want to make it roll as it follows the path. This is easy—just perform a rotation
parallel to the vector path line from the last position to the next position or parallel to the deriva-
tive of the curve at the object’s current position.

Using Scripts for Motion
The final motion technique I want to cover is scripting. The idea is to create a small
program that has an instruction set that directs the motion and animation of a game char-
acter. The idea of a scripting system is that you create small scripts or behaviors for your
characters, and a scripting engine parses these instructions and instructs the character to
take action. Figure 15.18 illustrates this concept.

Using scripts, you can create extremely complex behaviors that enable game characters to
move and act in very complex ways that would normally be nearly impossible with hard-
coded logic or paths. Moreover, you can create very high-level, C-like scripting languages
that allow you to program the characters themselves.

NOTE

If you’re interested in learning more about game scripting, check out Game Scripting Mastery by
Alex Varanese and John Romero (Premier Press)—it’s the best book on the market on this subject.
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FIGURE 15.18 The architecture of a scripting engine.

As an example, let’s define a language that supports straight-line motion and rotation
around any axis with support for delays. Each instruction is encoded as a record or struc-
ture. We’ll create small script programs as an array or list of these instructions, and then
write a parser/engine that reads and executes the instructions. First, here’s a possible data
structure to hold each instruction, or opcode:

// a possible instruction format

typedef struct OPCODE_TYP

{

int   opcode; // the opcode for this instruction

float  op1;  // a simple floating point operand

VECTOR3D op2;  // a vector operand

} OPCODE, *OPCODE_PTR;

Each instruction has an opcode and two operands that may or may not be necessary. Here
are some opcodes:

#define OP_MOVE       0 // move opcode

#define OP_ROTATE_X     1 // rotate parallel to x

#define OP_ROTATE_Y     2 // rotate parallel to y

#define OP_ROTATE_Z     3 // rotate parallel to z

#define OP_DELAY      4 // delay

#define OP_END       -1 // end program

For each opcode, we have to decide how we are going to encode the operands in op1 and
op2 fields. Here’s one possible methodology:

• OP_MOVE—The new position is stored in op2, and the rate or speed in op1 (0 might be
very slow, 1 might be very fast).
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• OP_ROTATE_*—For all the rotation opcodes, the angle of rotation in degrees will be
encoded in op1. Positive angles and negative angles are supported.

• OP_DELAY—The number of frames to delay will be stored in op1; it must be integral.

• OP_END—When the pattern engine reads this instruction, it will stop running the
pattern.

That was easy enough, so now we can implement a simple state machine that executes a
program something like this:

int  instruction_ptr = 0; // instruction pointer

int  fetch      = 1; // used to fetch instructions

OPCODE instr;        // next instruction

// this while would really be part of a function or your

// main loop, etc.

while(1)

{

// fetch next instruction if we are ready for one

if (fetch)

{

instr = pattern[instruction_ptr];

fetch = 0;

} // end if

// now switch on the opcode

switch(instr.opcode)

{

case OP_MOVE:     // move opcode

{

// move the object to instr.op2

} break;

case OP_ROTATE_X:   // rotate parallel to x

{

// rotate the object instr.op1 in x-axis

} break;

case OP_ROTATE_Y:   // rotate parallel to y

{

// rotate the object instr.op1 in y-axis

} break;

case OP_ROTATE_Z:   // rotate parallel to z

{
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// rotate the object instr.op1 in z-axis

} break;

case OP_DELAY:     // delay

{

// count down from instr.op1

} break;

case OP_END:      // end program

{

// break out of loop, end program, etc.

} break;

default: break;

} // end switch

} // end while

Very minimal, but you get the idea. Of course, when each behavior is complete, it sets the
fetch flag back to 1, so another instruction is fetched. We also need a program, so here’s a
“square” example:

OPCODE program[] = {

{OP_MOVE, 1, 100,0,0 },

{OP_MOVE, 1, 100,100,0 },

{OP_MOVE, 1, 0,100,0 },

{OP_MOVE, 1, 100,0,0 },

{OP_DELAY,100, 0,0,0 },

};

Although this example is greatly simplified, the point is to use high-level scripts or
commands to drive low-level motion control of the game characters.

3D Collision Detection
Although I had hoped to write an entire chapter on collision detection, I spent my page
count describing graphics algorithms and rendering, which are more important, especially
for this book. Collision detection is nothing more than a geometry problem at the lowest
level, and there are a lot of interesting algorithms to solve the problem of determining
whether two objects intersect or collide. What I want to do here is encourage you to keep
it simple: 99% of the time, simple bounding spheres, boxes, and so on work just as well as
some really complicated collision algorithm, so let’s review some ideas.
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Bounding Spheres and Cylinders
The first method of collision detection is to use bounding spheres or cylinders around
each object and test whether these bounding volumes collide. Let’s assume we have two
objects A and B, as shown in Figure 15.19.
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Each object is contained by a bounding sphere with radii r
a

and r
b

to detect whether a
collision has occurred. We simply ask whether the distance between the two centers is less
than (r

a
+ r

b
), or

if (dist
xyz
(p

a
, p

b
) < (r

a
+ r

b
) )

{

// collision has occurred

} // end if

where dist
xyz
() computes the full distance between the points pa and pb in 3D space.

Of course, if the objects are not very spherical in nature, such as a long pipe and a board,
bounding spheres aren’t going to work too well. However, in my experience with writing
fast action games, you can get away with “tight” bounding spheres in these cases. In other
words, you shrink the bounding spheres up to 50–70% of the actual size they would
normally be.

Additionally, you can use other bounding volumes, such as cylinders, for objects that have
longitudinal geometry. As long as the cylinders are oriented the same way, then the test
for collision is similar. Take a look at Figure 15.20 for an example.

In the figure we see two objects A and B with radii r
a

and r
b
, respectively. However, to test

for a collision, we need to test two things: whether the objects overlap in the y-axis (as in
this case), and whether their circular radii overlap. Here’s the test:
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if (dist
xz
(p

a
, p

b
) < (r

a
+ r

b
) &&

(fabs(p
a
.y – p

b
.y) < (h

1
+h

2
)/2))

{

// collision has occured

} // end if
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In which dist
xz
() computes the 2D distance between the points pa and pb in the x-z plane

in 2D space.

Of course, you can continue using various bounding volumes to help better fit the
problem, such as axis- or object axis-aligned bounding boxes. The collision tests are
similar for the each—you simply need to compute whether the objects overlap with a
battery of geometrical tests.

NOTE

Some great books for collision detection geometry are Geometric Tools for Computer Graphics by
Philip J. Schneider and David H. Eberly (Morgan Kaufmann), as well as the Graphics and Game
Programming Gems series.

Using Data Structures to Speed Collision Detection
The final point I want to make about collision detection is related to optimization.
Collision detection techniques are like formulas—we all know them, there are a lot of
books that show them, and everyone uses the same math. The difference between a real-
time game and a theoretical collision detection algorithm is speed.
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As an example, imagine you have 1,000 objects in a game universe (object, bullets, and so
on)—this is very easy to imagine in any first-person shooter or space game. Now imagine
that you want to perform collision detection on these 1,000 objects: that’s 1000×1000 =
1,000,000 calculations! Now imagine that all these objects are shooting, particles are
flying, and the number of objects goes up to 10,000. Now you are talking about
10,000×10,000 = 100,000,000 calculations! Obviously, a faster line intersector or bounding
box collider isn’t going to help with this. The point I am making is that you have to
approach the collision detection problem from a different angle, and that is with spatial
partitioning.

We discussed spatial partitioning when we covered BSP trees and octrees, and I mentioned
that these data structures are not only useful for graphics but for collision as well, and you
can see why. Using these data structures, we can partition our objects into cells or regions
so that within each region, there are perhaps only a couple hundred or fewer objects. Our
calculations then go way down.

For example, using the 10,000 object example, let’s say that after we sector, octree, or BSP
the game universe, we find that in each cell, there are at most 50 objects. Thus, we have to
process 10,000/50 cells = 200 cells, and for each cell, we have to perform 50×50 calcula-
tions, for a total of 200×(2500) = 500,000 computations.

This is much better than 100,000,000! Put another way, with clever use of partitioning, we
solved a problem that made 100,000,000 calculations with only 500,000 calculations
(500,000/100,000,000 = .5% of the computational work).

This is the kind of out-of-the-box thinking you need to use when performing collision
detection. Don’t focus on the low-level algorithms that test for bounding boxes or poly-
gons intersecting—start with the general collision algorithm and work your way down.

Terrain-Following Techniques
The last topic I want to discuss is one that I get a lot of questions on. When you are
writing a game with any kind of terrain, you must follow the terrain with your tanks,
game characters, or whatever. In the majority of terrain demos in the later half of this
book, we have been using a very simple (but effective) physics model that scans the
polygon mesh under the center of the moving object, finds the height of the vertices
making up the patch, and then lifts or drops the object proportionally to the general
gradient of the change in distance from the current position to the new position.

This looks great, feels great, and comprises 10 lines of code. However, the problem is that
the object is still not following the terrain. In other words, if we were looking at the object
and it had wheels, for example, it would be lifting up and dropping down correctly, but it
wouldn’t be following the terrain. Let’s talk about how to fix this.

Referring to Figure 15.21, we see a patch of terrain that we want to follow. One possible
terrain-following algorithm is illustrated in the following steps:
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FIGURE 15.21 The problem to solve for terrain following. 

1. The current height or position of the object following the terrain is computed as the
average height of the vertices of the patch, or if you want to be more accurate, you
must drop a line from the center of the object and compute where it pierces the
plane of the polygon from the current patch it’s hovering over. Of course, if you
really want to be accurate, you should project these piercing rays from the wheels or
points of contact of the object, rather than its center. In any case, this value is what
you will use to lift or drop the object.

2. The rotational orientation of the object is the next concern. There are a couple of
approaches to solving this problem based on the points of contact of the object.
However, a quick and dirty method is as follows: Compute the normal vector to the
terrain patch. Then rotate the object such that its normal vector is in alignment with
the normal vector of the patch. To do this, you must compute the angles between
the normal of the patch and the normal of the object. This can be accomplished in a
number of ways—using the dot product, for example. After you have these rotation
angles, you must generate a matrix and transform the object, thus aligning it with
the normal to the patch.

I leave the details up to you—I’m out of paper, but those are the steps: First translate the
object to the proper height, and simply rotate the object so the normal of the object aligns
with the normal to the terrain patch.
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Summary
This chapter has been a lot of fun. Finally, we can animate 3D character models and see
them move around. As far as motion and general animation, we have done lots of it in
previous chapters, but it was good to review it a bit, even if the material was basic. Finally,
we covered some basic 3D collision tests, and discussed ideas for more advanced systems.

By now you are more than well equipped to develop all this stuff yourself. You have all
the fundamentals of 3D graphics and rasterization down, and that’s about all there is to it.
Now the rabbit hole just gets deeper, but I have at least shown you the rabbit hole! In the
next and last chapter, we are going to take a look at some optimization techniques we can
apply to our engine, and the new Pentium III+ processors that support SIMD (single
instruction multiple data) instructions.
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VTune
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• Single Instruction Multiple
Data (SIMD) Programming
Primer with SSE

• General Optimization Tricks

CHAPTER 16

Optimization
Technologies

“The speed of light sucks.”

—John Carmack, id Software

I think the preceding quote really sets the mood for this
chapter: Fast is never really fast enough. In fact, the speed of
light is a joke as far as velocities go—you couldn’t possibly
hope to travel anywhere of any appreciable distance in our
galaxy at light speed. But I like to think of it as a “governor.”
When a species is sufficiently evolved enough to figure out
how to get around the speed of light, then hopefully they are
smart enough not to ruin the rest of the galaxy.

Anyway, in this chapter, we are going to take a look at some
optimization technologies that aren’t quite as complex as
breaking the lightspeed barrier. We are going to avoid low-
level optimization techniques because they are too time-
consuming to implement, and instead concentrate on taking
advantage of new technologies and tools to help with the
optimization phase of game development. Also, by the end of
this chapter, I will show you how to get $250 worth of free
books from Intel! Here are the topics we are going to discuss:

• Introduction to optimization technologies

• Profiling your code with Visual C++ and Intel VTune

• Using the Intel C++ compiler

• Single Instruction Multiple Data programming primer

• General optimization tricks
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1550 CHAPTER 16 Optimization Technologies

Introduction to Optimization Technologies
In preparation for this chapter, I did a lot of thinking and research, and decided to
completely recast what I had originally planned based on an entirely new point of view.
Originally, I was going to do the standard stuff; show you loops, code examples, and so
forth, and then show you how to optimize them. However, not only have I done this
before, but I am not quite sure that information would have as much impact these days as
other information (which I will discuss in a moment). I wanted to give you some informa-
tion that’s really a “trick” or uncommon knowledge, so you would walk away from this
chapter really trying something different. Therefore, I turned my sights on technology
rather than on specifics, and asked myself, what tools do I use when optimizing code?
Then I conducted a survey and, amazingly, found some startling and disturbing statistics
about many game programmers—they had never used the tools/technologies, or had
never heard about them! I was very happy—I had finally found something that everyone
didn’t know about, so I thought this would be really good information to cover.

I’m going to ask you a few questions. If you answer no to any of them, you will definitely
get something out of this chapter.

• Question 1: Have you ever actually used Microsoft’s Visual C++ built-in profiling
tools?

• Question 2: Have you ever actually used Intel’s VTune optimization tool?

• Question 3: Have you ever installed and used Intel’s Optimizing C++ compiler
plug-in for Microsoft Visual C++?

• Question 4: Have you ever programmed SSE or SSE2 code? These acronyms stand
for Streaming Single Instruction Multiple Data Extensions, versions 1 and 2, for the
Pentium III and Pentium 4, respectively. (And yes, that’s the way Intel refers to the
Pentium III and 4.)

• Question 5: Have you read the Intel Pentium III/4 architecture and software devel-
opment manuals that are freely available online, and which will be sent to your
house free of charge?

In a quick study of 20 or so game developers, I found that 90% of hobbyists answered no
to almost all of these questions. That I expected—what was more shocking was that 50%
of professional game programmers also answered no to most of them. What this means is
that not only are most game developers not using real optimization tools, but they are
running Pentium III/4 processors in slow motion, and not taking full advantage of the
super scalar architecture that SIMD and the parallel execution units provide. As Darth
Vader said, “your lack of faith disturbs me.” With all that said, my goal in this chapter is
simply to show you how easy it is to try these tools and technologies out—you will have a
whole new world open up to you afterward.
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And of course, last but not least, I will throw a little voodoo your way at the end of
chapter to finally make good on the “tricks” part of the book’s title! So without further
ado, let’s get going—I am very excited!

Profiling Your Code with Microsoft Visual C++ and Intel
VTune
Back in the old days, you could get away with placing timing function calls at the begin-
ning of a function, and timing how long the function took to run by calling it thousands
of times. Or maybe you simply tried an optimization and then recompiled, ran it, and
empirically tested your program. Of course, this technique still works, and for small
programs, you can get a lot done. However, with advanced processors, optimizing compil-
ers, and software systems containing system calls, .DLLs, APIs, and your own code, trying
to drill down and figure out where to even begin optimizing can be tedious and nearly
impossible.

For example, suppose you are writing a rasterizer application. You might optimize the
inner loop of the rasterizer, thinking that this is where most of the work is being done.
However, you don’t realize that the call to a C runtime function above the rasterizer code
to memcpy() uses a byte-wide move that you could speed up 4×! The point being—how can
you optimize something if you don’t know it’s slow? Therefore, what we need are some
tools (visualization tools in particular) that help tabulate and graph the amount of
processing time on specific functions, memory usage, and other related factors, so at a
glance, you can look at your entire program’s “profile” and see exactly where you should
be spending your time. This is the point of profiling your program.

Now, there are a lot of tools with which to profile your program, but of the two I’m going
to talk about, you probably have one already, and the other is free (for the demo version,
at least).

Profiling with Visual C++
Microsoft Visual C++ has built-in profiling tools in both the Professional and Enterprise
editions. If you have the educational or standard edition, you will not be able to use this
feature (.NET has similar profiling capabilities, too). In any case, profiling under Visual
C++ is rather simple, and will immediately give you some decent results to start your opti-
mization analysis and find hot spots to recode. For the following example, we are going to
use DEMOII16_1.CPP|EXE as the program to profile. It’s basically the character demo from
the last chapter, except that it runs in a window so we can move it around, and if it
crashes, we can still gain control of the computer. To begin, I want you to compile the
program and get that all squared away.

To compile DEMOII16_1.CPP|EXE, set up a workspace or project, or use one you already
have. At this point, you should be able to do this with ease. Of course, you will need to
include T3DLIB1–13.CPP in the project, as well as the DirectX .LIB files, as you did in the
previous chapter to compile this demo. When you have a clean compile and running
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demo, you should see the character demo in a window when you execute the program, as
shown in the screenshot of Figure 16.1.
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FIGURE 16.1 A screenshot of the character demo running in windowed mode for ease of
profiling. 

Now that you have a working demo and can compile it, let’s set the compiler up for profil-
ing. Here are the steps:

1. On the main menu bar of Visual C++, select Project, Settings. On the property
sheets, select Link, and then select General in the Category field. You should see
something like that shown in Figure 16.2. Take a look at the check boxes, and check
the Enable Profiling and Generate Debug Info check boxes, as shown in the figure.
Now click OK and close the dialog box.

2. Now you must rebuild your application with the new settings. From the main menu,
select Build, Rebuild All to rebuild the application with profiling enabled.

3. Now you are ready to profile! That was too easy, huh? To begin your profiling run,
select Build, Profile on the main menu bar of Visual C++, and the application will
launch a small dialog to ask you what kind of profiling options you want. This
dialog is shown in Figure 16.3. Select Function Timing for this run and click OK. At
this point, the application will launch and run at an incredibly slow rate—this is
because of the sampling of the application.
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FIGURE 16.2 Enabling profiling with Visual C++. 
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16FIGURE 16.3 Selecting options in the profiling dialog. 

4. Let the analysis run for 30–60 seconds, and then kill the application by hitting the
close window icon or pressing the Esc key.

5. In one of your workspace views, there will be a new property selection tab called
Profile. In most cases, the compiler will switch to it automatically, but if not, click it
with the mouse as shown in Figure 16.4. Resize the window so you can see more
information as shown in Figure 16.5, and let’s see what we see.

FIGURE 16.4 Selecting the profiling output window in Visual C++.
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FIGURE 16.5 Opening up the profiling view to analyze the data.

Analyzing the Profile Data
After you run the profiler in Function Timing or Function Coverage Mode, you will see
the profiler output window:

Profile: Function timing, sorted by time

Date:  Fri Jan 03 18:57:23 2003

Program Statistics

------------------

Command line at 2003 Jan 03 18:55: “D:\source\t3dcodeII\test”

Total time: 12949.659 millisecond

Time outside of functions: 3.581 millisecond

Call depth: 6

Total functions: 574

Total hits: 12775605

Function coverage: 20.6%

Overhead Calculated 5

Overhead Average 5

Module Statistics for test.exe

------------------------------

Time in module: 12946.078 millisecond
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Percent of time in module: 100.0%

Functions in module: 574

Hits in module: 12775605

Module function coverage: 20.6%

Func     Func+Child      Hit

Time  %     Time   %   Count Function

---------------------------------------------------------

2751.804 21.3   2751.804 21.3  164604 Draw_Textured_TriangleGSZB_16(

struct POLYF4DV2_TYP *,unsigned char *,int,unsigned char *,int) (t3dlib10.obj)

1115.720  8.6   1115.720  8.6   158 DDraw_Flip2(void) (t3dlib10.obj)

1041.832  8.0   1484.683 11.5   316 Light_RENDERLIST4DV2_World2_16(

struct RENDERLIST4DV2_TYP *,struct CAM4DV1_TYP *,

struct LIGHTV2_TYP *,int) (t3dlib8.obj)

653.307  5.0   1334.972 10.3   316 Remove_Backfaces_RENDERLIST4DV2(

struct RENDERLIST4DV2_TYP *,struct CAM4DV1_TYP *) (t3dlib7.obj)

631.246  4.9   631.246  4.9  962220 Insert_POLY4DV2_RENDERLIST4DV2(

struct RENDERLIST4DV2_TYP *,struct POLY4DV2_TYP *) (t3dlib7.obj)

…

The header is general information, but the interesting part is each line of the profile:

• Func Time—This is the amount of time spent in the function itself.

• Func Time+Child Time—This is the amount of time spent in the function plus all
the calls to the functions within the parent function.

• Hit Count—The number of times the function was called.

Although the information isn’t very robust, it’s definitely a start. You would have to do a
lot of work to get the same information. As a quick example, take a look at the first line of
the profile (it’s highlighted). This is the call to the polygon rasterizer, and we see that it is
responsible for approximately 21% of the compute cycles of this application. Wow! The
bottom line is that if we make this function 2× as fast, the performance of the entire appli-
cation will go up quite a bit because the section that took 21% of the time now would
only take 10.5% of the time.

In conclusion, profiling your code is a powerful way to find out what functions are taking
up the most time in your program, so you can focus your optimization efforts there.
Although you might think your lighting function is slow, you might realize that the Z-
buffer clear (which is only a few lines of code) is taking up all the time, and you can focus
on these few lines to get a much better speed gain than by reworking 500–1,000 lines of
lighting code for the same gain. So—pick your fights.
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Optimizing with VTune
Everyone has heard of it, but who really uses it? People who want absolute power, that’s
who! Intel’s VTune is without a doubt one of the coolest tools I have ever used, but with
all that power comes complexity. However, Intel has made great efforts to make the tool
very easy to use for beginners, so anyone can immediately get something out of the tool
within minutes of installing and launching it.

Now if you haven’t heard of VTune, it’s basically Intel’s premier software optimization
tool. It enables you to view, analyze, and optimize any program. With it, you can analyze
everything from function timing, memory usage, cache access—the list goes on and on. Of
course, I could write a whole book on the subject, so rather than do that, let’s actually
install the thing and try it out.

Installing VTune
The first thing you need to do is download the latest version of VTune from Intel’s Web
site at

http://developer.intel.com/software/products/VTune/

Look around the Web site page and find the Free Evaluation Download link and download
the software. Make sure to select either the Visual C++ or the .NET version, depending on
which compiler you are using. After you download the application, launch the installer
and install the default version of the application onto your computer. The installation is
very straightforward, but you might have to reboot after the application installs.

Preparing for Profiling
After you have successfully installed the application, you are ready to profile. However,
before we launch VTune, let’s get our test application ready. Once again, we are going to
use DEMOII16_1.CPP|EXE, so launch Visual C++, load up the project or workspace with this
application ready to compile. First we need to make sure of a few compiler settings. Here
are the steps:

1. Because you are preparing to profile runtime code, it’s best to set the compiler for
release mode. This is done by selecting the main menu item Build, Set Active
Configuration and then selecting the release version of your application, as shown
in Figure 16.6.
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FIGURE 16.6 Selecting the release version of your application.
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2. The next step is to ensure that all the symbols are available for VTune to show you
“code views” of your code, so let’s make sure all the browse database information is
enabled on the compiler. Once again, select from the main menu Project, Settings,
and under the C++ tab, select General in the Category box. Then make sure that the
Generate Browse Info check box is checked and that you have selected Program
Database in the Debug Info box. This will ensure that the profiler can see all the
symbols and source code. Figure 16.7 shows the dialog and the selections. Leave the
dialog open—we aren’t done with it.
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3. We still need to check some items on the Link tab, so select it and then select the
General category. Now make sure that the Generate Debug Info check box is
checked, and if you have the Professional or Enterprise edition of Visual C++, you
might as well check the Enable Profiling check box, in case you want to compare
profiling results later. These selections are shown in Figure 16.8.

FIGURE 16.8 Enabling more debug and profiling settings.

4. Now you are ready to build the application, so select Build, Rebuild All from the
main menu and rebuild everything.
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That’s it—now you have a final .EXE (whatever you named it and a workspace to feed to
VTune).

Let the Games Begin: Running VTune
With Visual C++ minimized and the test application DEMOII16_1.CPP|EXE compiled, it’s
time to launch VTune and get down to business. You should see a link on your desktop to
VTune, or you can use the Programs, Intel VTune Performance Analyzer link. Either way,
launch the application, and you should see the dialog shown in Figure 16.9.
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FIGURE 16.9 Launching VTune.

This dialog is the wizard that enables you to create or load profiling projects. For now,
click the Quick Performance Analysis Wizard button to create a quick and dirty project.
Here are the steps to get started:

TIP

Note the button at the bottom of the dialog View Getting Started Tutorial. I highly recommend
taking 20–30 minutes and going through this entire tutorial—I had to do it, so it’s only fair you
do it, too!

1. After you select the Quick Performance Analysis Wizard button, you will be
presented with yet another dialog, as shown in Figure 16.10. This dialog enables you
to select the program to profile along with setting up its runtime environment. In
this case, we want to run DEMOII16_1.EXE (or whatever you called it), so navigate
and select the demo application by clicking the “…” browse button, which will
invoke a file find dialog. Then select the .EXE application, as shown in Figure 16.10.

2. Now the original dialog will populate with the name of your application, its path,
and so on, but you need to select what kind of profiling to perform. We are going to
select both the Collect Sampling with Counter Monitor Data and Collect Call Graph
Data check boxes. The former is for timing, and the latter is to generate a full call
graph of all the functional calling trees.
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FIGURE 16.10 Selecting the application to profile.

3. Click the Go button and the profiling will begin. The application will launch and
stop multiple times. On the last run, you will notice it running really slowly. This is
the final timing analysis, and you can let it run forever if you like—I suggest 1–2
minutes or so—then manually hit the Esc key, or kill the demo application by click-
ing the close window box. VTune will start working, and finally a little dialog that
enables you to select an activity will appear—just cancel it.
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FIGURE 16.11 Activity selection dialog.

You have a complete profile now, so let’s take a quick look at some of the cool informa-
tion you can get out of it.

Viewing VTune’s Data
I can hardly do this subject any justice—you absolutely must study the VTune tutorial to
see all the amazing methods of analysis this product supports. I will show you some of the
main areas to get you started.

The first view after the initial profiling has been performed presents you with the entire
application GUI and four main windows, as shown in Figure 16.12: a pane to the left (the
project pane), and two vertical panes (the Counter Monitor Runtime Data and the Legend
for it), along with a small output pane to the bottom. This first view simply shows the
system timing information on a system-wide basis. If you double-click any of the rows in
the Legend pane, the data will highlight in the data pane. Not very interesting—let’s take
a look at the Clockticks data.
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FIGURE 16.12 The main VTune view. 

Viewing the Clockticks View The Clockticks data shows you how each
application/process running on the system took up system resources on your PC. To select
it, double-click the Clockticks item under Run 0 in the leftmost project pane, as shown in
Figure 16.13.
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FIGURE 16.13 Reviewing processor time on a process-by-process basis with the Clockticks
view.
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Also in this figure, you see what the results will be: a bar graph of all the processes that
were running during the analysis and their respective times. If you look closely, you will
see our application DEMOII16_1.EXE (or whatever you named it) highlighted at the bottom.
Double-click the text and you will see a more detailed view of our application. Figure
16.14 shows this.
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FIGURE 16.14 Analyzing our application at the functional level.

Now we’re getting somewhere! This is an amazing view—here we can see on a function-
by-function basis exactly which functions are taking up the time. Try single-clicking on
different functions in the bar graph and highlighting them when you do so—you will see
the Selection Summary change in the right-most pane of the view. This shows the total
clock ticks spent in the function, and the percentage of processor time spent in the func-
tion relative to the other functions. If you double-click a function, you will open a new
window with its source code. Just close the window, or press Ctrl+Tab to sequence back to
the function list view.

At this point, I want to show you something that should make your head spin. Take a look
at the fifth function from the bottom of the bar chart; I have highlighted it in Figure
16.14. This is the _ftol() function that converts floats to integers. What’s going on? Well,
the sad thing is that a single C runtime function is taking nearly as long as the 3D engine
code! This is one of the most misunderstood math problems. To make a long story short,
when you assign a float to an int, like this

float f;

int i = (int)f;

22 0672318350 CH16  05•02•2003  3:05 PM  Page 1561



the compiler generates a function call to convert the floating-point value to an integer (in
some cases)! So in all of our nicely optimized code, we are getting killed by this! I have
actually touched on this in many books, and later I will show you some optimizations for
it. However, the point is that with this view, we see that finding a way around this func-
tion call can save us roughly 5% of the computing time.

Also, as a sanity check, let’s compare the results from the built-in profiler in Visual C++ to
VTune, and see what we can see. Select the last function in the bar chart
Draw_Textured_TriangleGSZB_16() and then review its summary in the right-hand pane,
as shown in Figure 16.15.
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FIGURE 16.15 Selecting a particular function to see its performance.

Notice the last line that details the percentage of time: it’s 35.9%. If you take a look back
at the information from the Visual C++ profiling, we found that the same function took
21.3% of the time. The two data points are out of agreement a little bit—this is because of
many factors, such as how the tests were performed and so on, so don’t worry about it.
With this bar chart, you can really drill down on each function, and at a glance, figure out
where to focus your optimization efforts. Of course, there is much more you can do from
this view, but this is enough for now. If you are interested in going further, the VTune
tutorial is your best bet.

Viewing the Call Graph Moving on, let’s take a look at another very important view
based on the call graph of the program that analyzes what’s calling what. To select the
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Call Graph, double-click Call Graph Results in the left-most project pane, and you should
see something like what’s shown in Figure 16.16. This is a graphical tree that enables you
to see the call “flow” of both the caller and the callee of each function. Simply click on the
little < and > icons at the end of each function to open or collapse the call list. The more
red a function is, the more time that is spent in it. Our application is thread_13A4 in
Figure 16.16.
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FIGURE 16.16 Viewing the Call Graph.

Figure 16.17 shows me drilling down to the Light_RENDERLIST4D() function and noting
that, once again, it’s calling that pesky _ftol() function a lot! In fact, that’s where a great
deal of the time is spent. Let’s flip the script and see what functions are calling _ftol().
To do this, we click the left icon on the function label of _ftol(), also shown in Figure
16.17. This will show the incoming call graph of _ftol() (if it isn’t already visible), so we
can see all the functions we need to purge this call from with some other coding tech-
nique.

In conclusion, VTune is incredibly powerful. I suggest you play with it for hours—try
clicking everything, see what happens, and please review the tutorial at the beginning of
the application.
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FIGURE 16.17 Drilling down on the lighting function to see what’s taking so long!

Using the Intel C++ Compiler
The next big thing I want to talk about is the Intel optimizing compiler. The reason I
mention this is that 95% of all games for PCs are written with Visual C++—can you
believe that? Well, it’s not hard to believe, because Microsoft makes really good tools, and
has integrated them very well into so many systems. Visual C++ is an amazing product,
and .NET is even more amazing.

Nevertheless, there was a time when other companies made compilers for PCs that were
used quite a bit. Remember Borland and Watcom? Well, the bottom line is that they went
out of business or were acquired because they couldn’t compete with Microsoft. However,
Microsoft is such a large company now that it’s hard for it to keep up with the state of the
art in everything (even though it tries), and compilers are something for which it actually
doesn’t have the most advanced product on all fronts.

This makes sense because Microsoft makes software, not microprocessors, so how could it
know everything about the Pentium processors to write the absolute best compiler? It
doesn’t, and that’s the point. The Microsoft compiler is the best tool for creating a huge
cross-section of software from applications to .DLLs to ActiveX components, but it’s not
the very best optimizer for Intel Pentium processors—the Intel optimizing compiler is.

Many people don’t even realize that Intel makes a compiler. You might have hypothesized
that they have internal tools and so on, but a commercial compiler? They do, and it’s the
most advanced optimizing compiler for the Intel series of processors in the world—that
means you’ll want to compile your games with it if you can afford to do so. Sometimes
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your code might not be any faster and sometimes it will, but it’s an option at least; if
you’re building a commercial product, a few hundred dollars for more speed is surely
worth the tens or hundreds of man-hours needed to get the same performance increase
with hand optimization with Visual C++.

The thought of learning a new tool after spending years with Visual C++ makes me ill, but
Intel realized this and made their C++ compiler plug right into Visual C++ Studio/.NET, so
you literally only have to click a single check box and it’s game time. Now that I have
your attention, it’s possible that simple recompilation with the Intel compiler can give you
speed gains of 0% to 200%! Definitely worth a few minutes of learning curve—so let’s get
started.

Downloading Intel’s Optimizing Compiler
The first step is to download the compiler itself. You can find the latest version online at
Intel’s site at

http://developer.intel.com/software/products/compilers/

Navigate around and find the Intel compiler for Windows free evaluation link and down-
load the product onto your hard drive.

TIP

Intel also has Linux versions of the compiler, and Fortran compilers for you scientists!

After you have downloaded the compiler, make sure you close all applications such as
Visual C++ and VTune, and then launch the installer. Run through the installation process
as you would anything else. At some point, you will see a dialog asking you to select
Itanium processor support—do not install this. Also, use the Typical installation files. The
installation will go very smoothly if all goes well, almost like nothing happened. Now
comes the fun part.

Using the Intel Compiler
Go ahead and launch Visual C++ and load in the test workspace with DEMOII16_1.CPP|EXE
that you have been using (of course, I have no idea what you named this). Visual C++ will
load up and display the workspace as usual. Now comes the fun part: On the main menu,
select the Tools, Select Compiler option, and the dialog shown in Figure 16.18 will be
displayed. You will notice a little check box titled Intel® C++ Compiler—check this box,
and you are now using the Intel optimizing compiler! Click OK to exit the dialog.

Ninety-nine percent of all the compiler options work the same with the Intel compiler, so
you shouldn’t have to change anything. However, the Intel compiler has a ton of new
optimization options that aren’t supported/standard in Visual C++ that you will have to
add in manually with flags.
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FIGURE 16.18 Selecting the Intel compiler is really easy! 

I will show you that in a moment, but for now, let’s just try to compile and run our demo
application DEMOII16_1.CPP and see whether it works. Select Build, Rebuild All from the
main menu to compile the project. When the build begins, you might see weird warnings
or compiler output that you haven’t seen before—this is a good thing, as it means that the
Intel compiler is working. When the application is compiled, we will continue.

CAUTION

It might take 2–3 times longer than usual because the Intel compiler is attempting all kinds of
optimization strategies. I will wait for you in the next paragraph…

If you compiled successfully, you should get a few warnings because of my “throw caution
to the wind” programming style, but hopefully no errors. Let’s run the program and see
whether it works. At the main menu, select Build, Execute… or press Ctrl+F5 and you
should see the mechs doing their thing. If you’re astute and have good eyes, you will
notice that the animation looks a little faster—that’s because it is! The demo is already
running about 5–10% faster, depending on your hardware, just with a plain recompilation
without any tweaking. This is amazing!

Taking Advantage of Compiler Options
The Intel optimizing compiler has a lot of added optimization features that you can
control via compiler flags, entering them in manually. Take a look at Table 16.1 for a small
list of some of the more interesting ones.

TABLE 16.1 Interesting Intel Optimizing Compiler Options

Option Meaning

Option Optimizes for:

-G5 Pentium processor

-G6 Pentium Pro, Pentium II, and Pentium III processors

-G7 Pentium 4 and Xeon processor
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Option-Specific Optimization for:

-Qxi Intel Pentium Pro, and Pentium II processors (uses the CMOV, FCMOV, and

FCOMI instructions)

-QxM Pentium processors with MMX technology instructions (does not imply i

instructions)

-QxK Pentium III processor with the Streaming SIMD Extensions (implies i and M

instructions)

-QxW Pentium 4 and Xeon processor with the Streaming SIMD Extensions 2

(implies i, M, and K instructions)

Option Optimizes for:

-Qaxi Intel Pentium Pro and Pentium II processors (uses the CMOV, FCMOV, and

FCOMI instructions)

-QaxM Pentium processors with MMX technology instructions

-QaxK Pentium III processor with Streaming SIMD Extensions (implies i and M

instructions)

-QaxW Pentium 4 and Xeon processor with Streaming SIMD Extensions 2 (implies i,

M, and K instructions)

-Qax{i|M|K|W} Enables the vectorizer and generates specialized and generic IA-32 code

(slower)

-Qx{i|M|K|W} Turns on the vectorizer and generates processor-specific specialized code

(faster)

General Optimization Levels:

-O1 Optimize for speed, but disable some optimizations that increase code size

for small speed benefit

-O2 Optimizes for speed

-O3 Enables high-level optimization (This level does not guarantee higher perfor-

mance)

-Og Enables global optimizations

-Os Enables most speed optimizations, but disables optimizations that increase

code size for a small speed benefit

-Ot Enables all speed optimizations

There are a lot more options than these, but these will get you started. Try setting the
compiler to target your specific processor, turning optimization all the way up, and make
sure to try the vectorization options. However, when you enable vectorization options,
you might break your code. If this happens, you can always compile each source file with
different options, or you can simply use the Microsoft compiler for those files. To select
which compiler to use on a source file-by-source file basis, you can force Visual C++ to use
either the Microsoft or Intel compiler using the following technique.
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Selecting Compiler Manually on a Source File Basis
Let’s assume that you have selected the Intel compiler in the Select Compiler dialog.
However, a specific source file is giving you too many errors, and simply won’t compile. If
you would like to force that specific source file (or any other) to use the standard
Microsoft compiler, use the following procedure.

1. In the source tree window, right-click the source file and select Settings.

2. You will see the dialog shown in Figure 16.19. Select the C/C++ tab and under
Category, select General.

CHAPTER 16 Optimization Technologies1568

FIGURE 16.19 Selecting the Intel/Visual C++ compiler on a source file basis.

3. Down in the Preprocessor Definitions edit box, add the following constant:

_USE_NON_INTEL_COMPILER

This will force Visual C++ to use the Microsoft compiler rather than the Intel compiler.

TIP

You can also set the compiler for normal Microsoft mode and then use the
_USE_INTEL_COMPILER to force the use of the Intel compiler for specific source files.

Optimization Strategies
After you get the compiler working and you can compile your programs with it, simply try
everything: Turn the optimizations way up, way down, target specific processors, and then
use profiling or VTune to find where the bottlenecks are located. Of course, you should do
this in a consistent and logical manner—play with a single compiler option at a time, and
then record the results. If you make multiple changes each experiment, you will never
track down what is doing what, so only change one option at a time and then test the
results.
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Single Instruction Multiple Data (SIMD) Programming
Primer with SSE
Alrighty then! It’s been a long time since I said that, huh? In any event, the next subject I
want to cover is something for which I feel like I am evangelizing the second coming:
SIMD (single-instruction multiple data) programming. If you have heard of SIMD and used
it, skip this section; if not, you are probably in for a shocking enlightenment.

First, let’s get our terminology, chronology, and history straight. After the initial release of
the Pentium processor, Intel came out with Multimedia Extensions, otherwise known as
MMX. The new MMX technology was supposed to change the world, accelerate 3D graph-
ics, and speed up the Internet—you know, the usual marketing stuff; just imagine music
and some dancing girls to make the image complete.

Alas, MMX didn’t gain popularity or meet expectations. The reason was that MMX was
shoehorned into the Pentium processor’s architecture. Basically, the MMX technology
added a few more instructions to the Pentium’s instruction set to allow parallel or SIMD
integer operations to take place.

The problem with this little plan was that Intel didn’t have any register real state for the
MMXs working registers, so it decided to alias them onto the floating-point registers and
use 64 bits of the 80 bits allocated to each FPU register, as shown in Figure 16.20a.
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mm3
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mm5
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Floating Point Registers

80-bits
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(A) MMX and floating-point
registers

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

128-bits

(B) SSE registers

FIGURE 16.20 Allocation of MMX registers from the FPU stack.

This was probably the biggest goof in microprocessor architecture history. The problem
was that when you wanted to use the MMX instructions, you had to switch processor
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states, save the FPU registers, do the math, and then restore everything. So, although you
could perform parallel additions and so on with MMX, by the time you got done switching,
doing the work, and restoring everything, it was slower! So, MMX didn’t quite work out.

However, with the advent of the Pentium III, they got it right, and implemented what is
known as Streaming SIMD Extensions (SSE)—yes, it’s an acronym within an acronym.

With SSE, Intel created an entirely new set of eight 128-bit registers labeled XMM0 to
XMM7, as shown in Figure 16.20b. Moreover, SSE can function in parallel with the FPU
and even integer MMX, and there is no context switching, no saving, no problems. Each
one of these registers can hold up to four 32-bit, single-precision floating-point numbers.
Thus, SSE is SIMD for floating-point and enables you to process four 32-bit floating-point
values at once. You can add, multiply, take square roots, compare—the list goes on and
on. In fact, there are approximately 70 new instructions added to the instruction set for
SSE—it’s like having another processor in there!

Before I move forward, I want to mention Streaming SIMD Extensions 2 (SSE2). These are
new additions to the Pentium 4 processor that add a total of 150 new instructions that
support double-precision floating-point operations rather than single-precision. If you
have a Pentium 4, you can perform two operations in parallel on two 64-bit floating-point
double values, rather than four 32-bit single-precision floating-point values. Figure 16.21
should clarify this conundrum.
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x3 x2 x1 x0

High word 3

(4) 32-bit single precision floating-point values

2 1 Low word 0

SSE
Pentium III

Bits 127-96 95-64 63-32 31-0

x1 x0

(2) 64-bit double precision floating-point values

SSE 2
Pentium 4

Bits 127-64 63-0

FIGURE 16.21 The breakdown of a single 128-bit SSE/SSE2 register.

SSE2 is great, but unless you are doing scientific programming or something of that
nature, where you need 64-bit accuracy, I don’t see the need to use double values in games
as of yet, and I would rather perform four operations at once with SSE instead of two oper-
ations with twice the precision via SSE2. However, the Pentium 4 supports both SSE and
SSE2, so your code that’s written for the Pentium III will work perfectly on the Pentium 4.
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Moreover, the SIMD registers XMM0–XMM7 are still 128-bit in both SSE and SSE2 imple-
mentations, so everything works the same. We’re only going to talk about SSE on the
Pentium III; or in other words, we only want single-precision 32-bit, four-way parallel
SIMD processing.

I think you can see why no one uses SSE/SSE2—first you need a darn interpreter to figure
out what all the acronyms mean! Anyway, from now on, I am going to refer to SSE/SSE2
simply as SIMD, and you need a Pentium III or better for everything to work.

Basic SIMD Architecture
The basic SIMD architecture consists of eight 128-bit registers, as shown in Figure 16.20b.
Each register holds four 32-bit single-precision values, and operations are carried out on
these values in parallel. Each SIMD register XMM0–XMM7 is laid out as shown in Figure
16.21: Bits 0–31 represent the least significant element, and bits 96–127 represent the most
significant element. Remember, each element or value is unaware of the others, and opera-
tions are performed in parallel on these data items; hence the term single instruction,
multiple data.

SIMD is uniquely applicable to 3D graphics because many operations can be parallelized,
such as dot products, matrix multiplication, lighting, rasterization, and so forth. However,
don’t get your hopes up too much, because although with SIMD you can perform four
floating-point operations at once, getting your data into and out of the registers and trans-
forming data representations in your programs to be SIMD-friendly creates a performance
hit. In the best case scenario, you will get about 200% better performance, with 150–170%
being average for reasonable intelligent programming of SIMD. Thus, all of your math
code will in most cases run twice as fast, at minimum!

Working with SIMD in the Real World
Using SIMD can be very easy if you know the steps, so let’s cover that now. First, you need
an operating system that supports it, in addition to a Pentium III+ processor. Windows
2000, XP, and later all support SSE/SSE2 in most cases. However, even if you have a
Pentium III+ that supports SIMD, you should always check out the operating system to
determine whether SSE is supported. Under Windows, you can use the following code to
check for both MMX and SSE:

if (IsProcessorFeaturePresent(PF_MMX_INSTRUCTIONS_AVAILABLE))

printf(“\nMMX Available.\n”);

else

printf(“\nMMX NOT Available.\n”);

if (IsProcessorFeaturePresent(PF_XMMI_INSTRUCTIONS_AVAILABLE))

printf(“\nXMMI Available.\n”);

else

printf(“\nXMMI NOT Available.\n”);
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The code uses the Windows API call IsProcessorFeaturePresent(), which reports back
TRUE or FALSE to the query for the requested feature. The function has many other features
you can request, I suggest referring to your API help to review them.

Once you know that the OS and processor support SSE, which in this case is the
PF_XMMI_INSTRUCTIONS_AVAILABLE, then you have to write some code, or have some that
uses it! Of course, we saw that the Intel compiler can actually target the Pentium III and 4,
so it intrinsically uses SIMD code during optimization. However, we are interested in
writing our own code, so let’s see what we need to do to accomplish this.

Setting Up the Compiler to Support SIMD
The Intel optimizing compiler already has SIMD support and the appropriate headers and
libraries within it. However, if you’re using Microsoft’s Visual C++, you are going to have
to download the new processor pack upgrade for it. This will install all the headers,
libraries, and so on. You will need Visual C++ Professional or Enterprise, along with 
Service Pack upgrade 4 or 5 (I suggest 5 or the latest, of course). The processor pack can be
found at

http://msdn.microsoft.com/vstudio/downloads/tools/ppack/default.asp

TIP

You also get MASM when you install the processor pack!

I highly recommend that you first install the latest Service Pack for Visual C++ Studio, at

http://msdn.microsoft.com/vstudio/downloads/updates/sp/vs6/sp5/default.asp

TIP

If you do not have Visual C++ Professional or Enterprise but still want to try out the SIMD instruc-
tions, don’t worry: The Intel compiler has it built in, so just download the free evaluation of
Intel’s compiler and you are good to go—for 30 days, at least!

Assuming that you download the processor pack, simply install it onto your machine and
follow the instructions. When installation is complete, you might be asked to restart your
machine. Now you are ready to go!

Let’s test out your new processor pack or SIMD support with a simple program. First create
a simple CONSOLE application, and then type in the following code from DEMOII16_2.CPP
(or use the source from the CD):

// DEMOII16_2.CPP - Hello world SIMD demo

// I N C L U D E S ///////////////////////////////////////////////////////////

CHAPTER 16 Optimization Technologies1572

22 0672318350 CH16  05•02•2003  3:05 PM  Page 1572



#define WIN32_LEAN_AND_MEAN

#include <windows.h>  // include important windows stuff

#include <windowsx.h>

#include <stdio.h>

#include <math.h>

#include <xmmintrin.h> // <-- this is needed for SIMD support (SSE I)

// MAIN //////////////////////////////////////////////////////////////////

void main()

{

// print out os/processor support

if (IsProcessorFeaturePresent(PF_MMX_INSTRUCTIONS_AVAILABLE))

printf(“\nMMX Available.\n”);

else

printf(“\nMMX NOT Available.\n”);

if (IsProcessorFeaturePresent(PF_XMMI_INSTRUCTIONS_AVAILABLE))

printf(“\nXMMI Available.\n”);

else

{

printf(“\nXMMI NOT Available.\n”);

return;

} // end if

// define 3 SIMD packed values, remember always must be 16byte aligned

__declspec(align(16)) static float x[4] = {1,2,3,4};

__declspec(align(16)) static float y[4] = {5,6,7,8};

__declspec(align(16)) static float z[4] = {0,0,0,0};

// lets do a little SIMD to add X and Y and store the results in Z

_asm

{

movaps xmm0, x // move the value of x into XMM0

addps xmm0, y // add the value of y to XMM0

movaps z, xmm0 // store the results from XMM0 into z

} // end asm

// print the results

printf(“\n x[%f,%f,%f,%f]”, x[0], x[1], x[2], x[3]);

printf(“\n+y[%f,%f,%f,%f]”, y[0], y[1], y[2], y[3]);

printf(“\n_______________________________________”);

printf(“\n=z[%f,%f,%f,%f]\n”, z[0], z[1], z[2], z[3]);

} // end main
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Compile your program with the Intel compiler or Visual C++ with the processor pack
extensions installed. You should get a clean compile. Run the program and you will see a
simple output that adds two sets of four floating-point values at once. The output should
look like that shown in Figure 16.22.
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FIGURE 16.22 The output of the SIMD demo program DEMOII16_2.CPP|EXE. 

NOTE

You might notice the use of the _asm command. This is how you instruct the compiler that you
want inline assembly language. Simply enclose the instructions as you would any other block
with { and } and you are good to go. For more information on the capabilities of the inline
assembler, consult your compiler’s help file. However, you can more or less use variable names
from your C/C++, pointers, constants, macros, and so on. The inline assembler is reasonably
intelligent.

The demo program basically creates three arrays of floats. Each array has four elements—
these elements are the units that the SIMD architecture processes in parallel. The program
then uses the SIMD instruction movaps to move the 128-bit value as a whole from array
x[] into SIMD register XMM0. The program then adds the value of y[] to XMM0 with the
instruction addps, and finally stores the results in the floating-point array z[]. I will detail
what the instructions mean and how they work shortly, but for now, realize that in a
single addition instruction, we perform four addition computations of 32-bit floating-
point values at once! That’s pretty amazing. Try some benchmarking for fun: Run the loop
1,000,000 times and time it, and then write it with straight C/C++ or even straight FPU
assembler to see whether you can beat SIMD—I bet you can’t!

NOTE

You can also use the source from DEMOII16_2.CPP on the CD if you don’t want to type it in.
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Data Types, Packing, and SOA/AOS Strategies
SIMD has assembly language support via the SIMD instructions, but there is also an
“intrinsic” library written by Intel that is supported by both Visual C++ and the Intel
compiler. The first important thing about this is the new 128-bit data type __m128. This
new data type is basically a packed array of four floats and it’s always 16-byte aligned.
When using the intrinsic functions, you must use the __m128 data type; otherwise, you
will need to cast results in and out. However, it’s basically equivalent to:

__declspec(align(16)) float __m128[4

In essence, SIMD uses what’s referred to as a packed data type; that is, four 32-bit floats
packed adjacently, starting on a 16-byte boundary. You can either use the built-in __m128
data type, or an aligned float[4] array; however, the float[4] array might be more
convenient because you can access each individual element by indexing. Nonetheless, if
you want to use the built-in intrinsic libraries for SIMD, you must use the __m128 type or
cast to it. We will get to intrinsics shortly.

The next important decision to make when using SIMD is the layout of data structures.
SIMD is capable of processing four data elements at once and performing simple logical or
mathematical operations on them. However, as efficient as SIMD is, you might find that
the process of transforming your data into SIMD-packed words and extracting your data
after the calculations might waste time. Therefore, consider using both the array-of-struc-
tures (AoS) or structure-of-arrays (SoA) formats when defining your data structures, as shown
in Figure 16.23.
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Array of structures (AOS)(A)

x0 y0 z0 w0 x1 y1 z1 w1 xn yn zn wn

Structure of Arrays (SOA)(B)

x0 x1 x2 xn

• • •

• • • •

y0 y1 y2 yn• • • •

z0 z1 z2 zn• • • •

w0 w1 w2 wn• • • •

FIGURE 16.23 Array of structures versus structure of arrays.
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As an example, let’s say that we want to perform operations on homogeneous 3D
vectors/points/vertices. A typical data structure might look like this:

typedef struct VECTOR4D_TYP

{

__declspec(align(16)) float x,y,z,w;

} VECTOR4D, *VECTOR4D_PTR;

With this structure, we might define 1,000 vertices like this:

VECTOR4D vertex_list[1000];

This would be an array-of-structures data structure. Now, let’s say that we want to simply
add up all the vectors. Sounds simple: We would load a VECTOR4D into a SIMD register, add
it to another VECTOR4D and then store the result, summing over all 1,000 vertices.

Now forget about the details for a moment, and let’s think about what we are doing. We
load a single VECTOR4D into one register in the format x

i
y

i
z

i
w

i
(low to high) and then add it

to another x
j
y

j
z

j
w

j
. However, we are wasting an entire computation slot with the w slot. w

is used for other things, and when performing vector addition, w is assumed to always be
1.0 (in most cases). This is just one example showing that perhaps a different format is in
order.

Using a structure of arrays solves this. Instead of defining a vertex and then creating an
array of them, we do this:

typedef struct VERTEXLIST4D_TYP

{

__declspec(align(16)) float x[1000];

__declspec(align(16)) float y[1000];

__declspec(align(16)) float z[1000];

__declspec(align(16)) float w[1000];

} VERTEXLIST4D, * VERTEXLIST4D_PTR;

Then in our loops, we load four x values at once, add them to the next set of x values, and
then run through the entire list 1000/4 times. We do the same thing with y and z and
we’re done.

These issues are related to what you want to do with SIMD. For example, if you’re going to
be doing a lot of dot products, a SoA format might work better, but if you are doing a lot
of summation of simple four-value 32-bit words, the AoS might work out well. The point
is that this is an important consideration when doing SIMD programming, and something
for which you will have to design your data structures. For example, using the SoA data
structure works faster for the addition example, but this is definitely not conducive to how
our engine likes to store data.
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Some Simple SIMD Examples
SIMD is a huge topic. In fact, it’s basically a whole new language and processor assembly
language, because there are 70+ instructions supported, so I can’t explain in a few pages. I
can show you how to perform basic mathematic operations with SIMD and you can work
from there. Also, at the end of the examples, I will show you the Intel intrinsic versions.

The intrinsic library is basically a wrapper around much of the SIMD assembly language
instructions. Using intrinsics is probably easier than straight assembly language SIMD, but
is slightly slower, so you might want to stick to assembly language. It goes without saying
that to make any of the code in the following examples, you must have the processor pack
installed into Visual C++ or be using the Intel compiler. Additionally, you must include
the following header file:

#include <xmmintrin.h>

TIP

If you want support for Pentium 4 SSE2 with double-precision SIMD, you must include
emmintrin.h also.

Finally, when reviewing the examples, realize that these are just a fraction of the instruc-
tions, and simply representatives of each primary class of instructions.

For all the examples, assume the following data structures:

__declspec(align(16)) float x[4], y[4], z[4];

__m128 m0, m1, m2;

Data Movement and Shuffling There are many, many ways to get a SIMD value into a
SIMD register using assembly language or intrinsics. In general, the inline assembler knows
the type of each variable and the difference between a pointer and a value. Thus, you can
always use variables that hold SIMD values directly and assign them to XMM registers
with the single-precision move-aligned movaps instruction, which has two basic forms:

movasp xmm_dest, xmm_src/memory

or

movasp xmm_dest/memory, xmm_src

Basically, you can always move from a XMM register to another XMM register.
Additionally, you can move from memory to an XMM register, or an XMM register to
memory, but not memory to memory. Let’s try some examples.

Given:

__declspec(align(16)) float x[4], y[4], z[4];

__m128 m0, m1, m2;
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Example: Move x[] into xmm0

_asm

{

movaps xmm0, x

}

You can also use pointer coercion to make sure that the source operand doesn’t cause a
compiler warning:

_asm

{

movaps xmm0, XMMWORD PTR x

}

Of course, you could also use one of the data pointers esi, edi, edx, and so on, like this:

_asm

{

lea esi, x

movaps xmm0, [esi]

}

Similarly, to store a result from an XMM register, you simply use a pointer to the destina-
tion memory:

Example: Move xmm0 into z[]

_asm

{

movaps z, xmm0

}

The intrinsic functions for storing and setting are:

// stores the SIMD intrinsic type __m128 into the float array *v

void _mm_store_ps(float *v, __m128 a);

// assigns a,b,c,d to the packed intrinsic type __m128

__m128 _mm_set_ps(float a, float b, float c, float d);

Example: Initialize m0 to [1,2,3,4]

m0 = _mm_set_ps(1,2,3,4);

Example: Store m0 into x[]

_mm_store_ps(x, m0);
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Of course, there are many other intrinsic movement, initialization, and assignment func-
tions, but the preceding should get you started.

Now that you can move data around and assign SIMD data to registers, let’s take a look at
something you will really need to have a handle on once you actually try doing stuff with
SIMD, and that’s data shuffling, or swizzling. The movement of words within a SIMD regis-
ters in other locations within a SIMD register. There are numerous instructions within the
SIMD instruction set to perform these operations, but we are only going to look at the
most representative instruction shufps, shown graphically in Figure 16.24 and following:

shufps xmm_dest, xmm_src, control8
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y3

b7 b0
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XMM_Dest

x3 x2 x1 x0

11 10 01 00
Word select

bits encoding

Dest

ShuFps XMM_dest, XMM_Src, control8

The lower 4 bits
control low word

selection, the upper 
4 bits control high words

Control
word

b7 b0

10 00 Control
word

y2 y1 x1 x0

� y3 – y0 � � y3 – y0 � � x3 – x0 � � x3 – x0 �

FIGURE 16.24 The shufps data movement instruction.

To make a long story short, the instruction has three operands: a source, destination, and
an 8-bit control word. The instruction’s purpose is to take two of the four words from the
destination operand, along with two of the four words of the source operand, and then
store them in the destination operand. Thus, the destination operand is used as a source
operand also. It’s best to think of the operation in two steps, in which both operands are
source operands, and the final results are simply overwritten into one of them. In this
case, it’s the first operand, or xmm_dest, in my instruction prototype. Let’s quickly discuss
the details of the instruction.

xmm_dest is the destination SIMD register, and xmm_src is the source SIMD register. The
tricky part is how the instructions work (refer to the Intel manuals for more detail).
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Basically, the instruction takes two of the four words from the source register and places
them in the destination register high words, and also takes two of the four words from the
destination register and places them in the low words of the destination register (refer to
Figure 16.24)! So, the destination is used as a source and a destination as mentioned
before—but just think of the source and destination registers as both being sources, and
the final result just happens to be stored in one of the source registers at the end of the
process. In any case, the bit encoding of the select control word for a particular 32-bit
word from either the source or destination is shown in Table 16.2.

TABLE 16.2 Control Word Encoding for shufps

2-Bit Value Meaning

00 Selects word 0 (low word, bits 0–31)

01 Selects word 1 (bits 32–63)

10 Selects word 2 (bits 64–95)

11 Selects word 3 (high word, bits 96–127)

And the control8 word has the following encoding:

(high bit) A
1
A
0
B
1
B
0
C
1
C
0
D
1
D
0
(low bit)

So each 2-bit subword controls the selection of one word from the source operands. Table
16.3 describes the encoding of each subcontrol bit word.

TABLE 16.3 2-Bit Control Word Encodings for shufps

Bits Operation

D
1
D

0
Selects the 32-word from the destination operand and places it in the (low) word 0 of the

result.

C
1
C

0
Selects the 32-word from the destination operand and places it in word 1 of the result.

B
1
B

0
Selects the 32-word from the source operand and places it in word 2 of the result.

A
1
A

0
Selects the 32-word from the source operand and places it in the (high) word 3 of the result.

Using shufps, instruction can take a little work, and figuring out the bits to move a word
to and from can be error-prone. A macro can help us out here:

// srch - A1A0

// srcl - B1B0

// desth - C1C0

// destl - D1D0

#define SIMD_SHUFFLE(srch,srcl,desth,destl) (((srch) << 6) | ((srcl) << 4) \

| ((desth) << 2) | ((destl)))
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Basically, all the macro does is take four parameters (the source and destination selection
control words) and shift them into place. The comments show the that the encoding of
the parameters basically maps directly to our bits in Table 16.3.

General SIMD Operation Flow In the next sections, we’ll discuss some basic operations
that SIMD can perform. In general, they all follow the same parallel flow, as shown in
Figure 16.25; that is, a single operation is applied to the two SIMD source registers, and
one of the source registers is used as the final destination.
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FIGURE 16.25 General SIMD operations.

Addition and Subtraction The instructions for packed single-precision aligned SIMD
addition and subtraction add and subtract four 32-bit values in parallel. Let’s begin with
addition:

addps xmm_dest, xmm_src/memory

addps adds either an XMM register or a 128-bit memory operand to the destination XMM
register.

Example: Compute x0+y0, x1+y1, x2+y2, x3+y3

_asm {

movaps xmm0, x // move contents of x into xmm0

addps xmm0, y // add contents of y to xmm0

movaps z, xmm0 // store results (x0+y0, x1+y1, x2+y2, x3+y3) in z

}

The subtraction instruction has the format

subps xmm_dest, xmm_src/memory
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subps subtracts either a XMM register or a 128-bit memory operand from the destination
XMM register.

Example: Compute x0-y0, x1-y1, x2-y2, x3-y3

_asm {

movaps xmm0, x // move contents of x into xmm0

subps xmm0, y // subtract contents of y to xmm0

movaps z, xmm0 // store results (x0-y0, x1-y1, x2-y2, x3-y3) in z

}

Multiplication and Division The instructions for packed single-precision aligned SIMD
multiplication and division multiply and divide four 32-bit values in parallel. Let’s begin
with multiplication:

mulps xmm_dest, xmm_src/memory

mulps multiplies either an XMM register or a 128-bit memory operand and the destination
XMM register.

Example: Compute x0*y0, x1*y1, x2*y2, x3*y3

_asm {

movaps xmm0, x // move contents of x into xmm0

mulps xmm0, y // multiple contents of y to xmm0

movaps z, xmm0 // store results (x0*y0, x1*y1, x2*y2, x3*y3) in z

}

The division instruction has the format

divps xmm_dest, xmm_src/memory

divps divides either an XMM register or a 128-bit memory operand into the destination
XMM register.

Example: Compute x0/y0, x1/y1, x2/y2, x3/y3

_asm {

movaps xmm0, x // move contents of x into xmm0

divps xmm0, y // divide contents of y into xmm0

movaps z, xmm0 // store results (x0/y0, x1/y1, x2/y2, x3/y3) in z

}

Square Roots The instruction for packed single-precision aligned SIMD square root
computes the square root of four 32-bit values in parallel:

sqrtps xmm_dest, xmm_src/memory
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sqrtps computes the square root of the four 32-bit values, each stored in either a XMM
register or a 128-bit memory operand, and stores the results in the destination XMM register.

Example: Compute x01/2, x11/2, x21/2, x31/2

_asm {

sqrtps xmm0, x // compute square root of x0,x1,x2,x3

movaps z, xmm0 // store results (x01/2, x11/2, x21/2, x31/2) in z

}

Logical Operations SIMD has full support for every logical operation you could ever
want. The basic logical instructions AND, OR, and XOR all work with single-precision packed
32-bit values and have the format

andps xmm_dest, xmm_src/memory

orps xmm_dest, xmm_src/memory

xorps xmm_dest, xmm_src/memory

where each logical operation applies the operation from either memory or an XMM regis-
ter and the destination register. The results are always stored in the destination register.

Example: Compute z = ((x AND y) OR z)

_asm {

mov xmm0, x // move contents of x into xmm0

mov xmm1, y // move contents of y into xmm1

mov xmm2, z // move contents of z into xmm2

andps xmm0, xmm1 // xmm0 = x AND y

orps xmm0, xmm2 // xmm0 = (x AND y) OR z

movps z, xmm0  // z = xmm0

}

Comparison Operations Lastly, there are many comparison instructions, but the basic
cmpps instruction is similar to the standard cmp IA-32 instruction you are used to. The
cmpps instruction means single-precision packed comparison, and has the following
format:

cmpps xmm_dest, xmm_src, immediate_8

Each of the four 32-bit packed values is compared, and the results are stored in xmm_dest
as four 32-bit strings of continuous 0s or 1s, depending on the results. immediate_8
controls the comparison to apply. The possible comparisons are shown in Table 16.4.
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TABLE 16.4 Comparison Operators

Bits 0–2 Comparison

0 Equal

1 Less than

2 Less than or equal to

3 Unordered

4 Not equal

5 Not less than

6 Not less than or equal to

7 Ordered

Note: Bits 4–7 are reserved.

Example: Test whether x[] < y[]

_asm {

mov xmm0, y

cmpps xmm0, x

// xmm0 has comparison bits, branch appropriately…

}

Intrinsic Support The intrinsic support is very similar to the instructions themselves. The
best thing to do is peruse the file xmmintrin.h to see for yourself, but here are some key
intrinsics.

Arithmetic Operations:

__m128 _mm_add_ps(__m128 a, __m128 b); // a+b

__m128 _mm_sub_ps(__m128 a, __m128 b); // a-b

__m128 _mm_mul_ps(__m128 a, __m128 b); // a*b

__m128 _mm_div_ps(__m128 a, __m128 b); // a/b

__m128 _mm_sqrt_ps(__m128 a); // square root of a

__m128 _mm_rcp_ps(__m128 a); // reciprocal a

__m128 _mm_rsqrt_ps(__m128 a); // reciprocal of a

__m128 _mm_min_ps(__m128 a, __m128 b); // min(a,b)

__m128 _mm_max_ps(__m128 a, __m128 b); // max(a,b)

Example: m0 = m1+m2

m0 = _mm_add_ps(m1, m2);

Logical Operations:

__m128 _mm_and_ps(__m128 a, __m128 b); // a AND b

__m128 _mm_andnot_ps(__m128 a, __m128 b); // a NAND b

__m128 _mm_or_ps(__m128 a, __m128 b); // a OR b

__m128 _mm_xor_ps(__m128 a, __m128 b); // a XOR b
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Example: m0 = m1 AND m2

m0 = _mm_and_ps(m1, m2);

Comparison Operations:

__m128 _mm_cmpeq_ps(__m128 a, __m128 b); // a == b

__m128 _mm_cmplt_ps(__m128 a, __m128 b); // a < b

__m128 _mm_cmple_ps(__m128 a, __m128 b); // a <= b

__m128 _mm_cmpgt_ps(__m128 a, __m128 b); // a > b

__m128 _mm_cmpge_ps(__m128 a, __m128 b); // a >= b

__m128 _mm_cmpneq_ps(__m128 a, __m128 b); // a!=b

__m128 _mm_cmpnlt_ps(__m128 a, __m128 b); // !(a < b)

__m128 _mm_cmpnle_ps(__m128 a, __m128 b); // !(a <= b)

__m128 _mm_cmpngt_ps(__m128 a, __m128 b); // !(a > b)

__m128 _mm_cmpnge_ps(__m128 a, __m128 b); // !(a >= b)

__m128 _mm_cmpord_ps(__m128 a, __m128 b);

__m128 _mm_cmpunord_ps(__m128 a, __m128 b);

Example: m0 = m1 < m2

m0 = _mm_ cmplt_ps(m1, m2);

You are free to use intrinsics and inline assembly as you want; however, keep in mind that
many intrinsics actually represent more than one atomic SIMD instruction, so you might
want to review the assembly language output when optimizing to make sure that you
can’t do a better job with inline assembly SIMD in performance hotspots.

Where to Find More Information When I was a teenager, I used to get thousands of
dollars of free chips, books, and software from companies just by calling up and asking.
These days, you can still do that, but it’s really hard to find the right person; however,
Intel has a lot of free stuff on its site that I think you would be very interested in. I want
to bring to your attention the fact that you can get the entire Pentium III/4 software
development, programming, and optimization manuals for free from Intel’s site. And I
don’t mean in PDF format—I mean real books, with a $250+ value, sent to your house! All
you have to do is read these books and you will be a Pentium optimization guru. Here’s
the URL where you can order within Intel’s Literature Center:

http://developer.intel.com/design/pentium4/manuals/index2.htm

You will find the following manuals on the site:

• “IA-32 Intel Architecture Software Developer’s Manual Volume 1: Basic Architecture”

• “IA-32 Intel Architecture Software Developer’s Manual Volume 2: Instruction Set
Reference”
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• “IA-32 Intel Architecture Software Developer’s Manual Volume 3: System
Programming Guide”

• “Intel Pentium 4 and Intel Xeon Processor Optimization Manual”

TIP

This is one of the best kept secrets in the world, so don’t order these free books unless you plan
to read them.

Nothing beats free stuff! Also, Intel’s site has a ton of articles and white papers on Pentium
optimization in general. If you’re going to make games, you must know this stuff, so take
the time and read all of it. I’m glad I did.

A SIMD 3D Vector Class
Now that you have a little SIMD theory under your belt, and some idea of how to use
some of the basic math instructions, let’s put it all together and start on a little C++ class
that supports 3D vectors with w, and uses SIMD to perform calculations.

The class is just a start and nowhere near done, but it’s a good place to experiment and try
coding SIMD. The class supports 4D vectors of the format [x,y,z,w], so each object has the
same layout as a SIMD register. Also, I have implemented addition, subtraction, dot
product, length, printing, array access, and a couple other housekeeping functions.
Additionally, I have implemented many functions with conditional compilation, allowing
pure assembly SIMD or intrinsic SIMD. The defines that control conditional compilation
are as follows:

// enable the final output type by setting one of these to 1 

// (the other MUST be 0!)

#define SIMD_INTRINSIC   0

#define SIMD_ASM      1

The following is the entire class. it’s extremely well commented, so please take your time
and read all of it, and try to follow each SIMD operation. Most of them should be very
easy to follow. The only operation that will give you some grief is the dot product. The
reason is that when performing a dot product, it’s easy to multiply two vectors in parallel,
but it’s hard to sum the results of an XMM register “horizontally.” This takes some shuf-
fling via the shufps instruction, along with some addpss to get the final results. Anyway,
here is the class:

// this is the new vector class that supports SIMD sse

// note the numerous ways we can access the data members,

// this allows transparent support of assignments,

// data access, and intrinsic library use without lots of casts
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class C_VECTOR4D

{

public:

union

{

__declspec(align(16)) __m128 v;  // SIMD data type access

float M[4];            // array indexed storage

// explicit names

struct

{

float x,y,z,w;

}; // end struct

}; // end union

// note: the declspec is redundant since in the type __m128 forces

// the compiler to align in 16-byte boundaries, so as long as __m128 is

// part of the union declspec is NOT needed :) But, it can’t

// hurt and when you are defining locals and globals, always put

// declspec(align(16)) to KNOW data is on 16-byte boundaries

// CONSTRUCTORS //////////////////////////////////////////////////////////////

C_VECTOR4D()

{

// void constructor

// initialize vector to 0.0.0.1

x=y=z=0; w=1.0;

} // end C_VECTOR4D

//////////////////////////////////////////////////////////////////////////////

C_VECTOR4D(float _x, float _y, float _z, float _w = 1.0)

{

// initialize vector to sent values

x = _x;

y = _y;

z = _z;

w = _w;

} // end C_VECTOR4D

// FUNCTIONS ////////////////////////////////////////////////////////////////
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void init(float _x, float _y, float _z, float _w = 1.0)

{

// initialize vector to sent values

x = _x;

y = _y;

z = _z;

w = _w;

} // end init

//////////////////////////////////////////////////////////////////////////////

void zero(void)

{

// initialize vector to 0.0.0.1

x=y=z=0; w=1.0;

} // end zero

//////////////////////////////////////////////////////////////////////////////

float length(void)

{

// computes the length of the vector

C_VECTOR4D vr = *this;

// set w=0

vr.w = 0;

// compile pure asm version?

#if (SIMD_ASM==1)

// begin inline asm version of SIMD dot product since we need its

// results for the length since length = sqrt(v*v)

_asm

{

// first we need dot product of this*this

movaps xmm0, vr.v  // move left operand into xmm0

mulps xmm0, xmm0  // multiply operands vertically

// at this point, xmm0 =

// [ (v1.x * v2.x), (v1.y * v2.y), (v1.z * v2.z), (1*1) ]

// or more simply: let xmm0 = [x,y,z,1] =

// [ (v1.x * v2.x), (v1.y * v2.y), (v1.z * v2.z), (1*1) ]

// we need to sum the x,y,z components into a single scalar
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// to compute the final dot product of:

// dp = x + y + z == x1*x2 + y1*y2 + z1*z2

// begin

// xmm0: = [x,y,z,1] (note: all regs in low to hight order)

// xmm1: = [?,?,?,?]

movaps xmm1, xmm0 // copy result into xmm1

// xmm0: = [x,y,z,1]

// xmm1: = [x,y,z,1]

shufps xmm1, xmm0, SIMD_SHUFFLE(0x01,0x00,0x03,0x02)

// xmm0: = [x,y,z,1]

// xmm1: = [z,1,x,y]

addps xmm1, xmm0

// xmm0: = [x ,y ,z ,1]

// xmm1: = [x+z,y+1,x+z,y+1]

shufps xmm0, xmm1, SIMD_SHUFFLE(0x02,0x03,0x00,0x01)

// xmm0: = [y ,x ,y+1,x+z]

// xmm1: = [x+z,y+1,x+z,y+1]

// finally we can add!

addps xmm0, xmm1

// xmm0: = [x+y+z,x+y+1,x+y+z+1,x+y+z+1]

// xmm1: = [x+z ,y+1 ,x+z  ,y+1]

// xmm0.x contains the dot product

// xmm0.z, xmm0.w contains the dot+1

// now low double word contains dot product, let’s take squaroot

sqrtss xmm0, xmm0

movaps vr, xmm0 // save results

} // end asm

#endif // end use inline asm version

// compile intrinsic version?

#if (SIMD_INTRINSIC==1)

#endif // end use intrinsic library version
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// return result

return(vr.x);

} // end length

// OVERLOADED OPERATORS //////////////////////////////////////////////////////

float& operator[](int index)

{

// return the ith element from the array

return(M[index]);

} // end operator[]

//////////////////////////////////////////////////////////////////////////////

C_VECTOR4D operator+(C_VECTOR4D &v)

{

// adds the “this” vector and the sent vector

__declspec(align(16)) C_VECTOR4D vr; // used to hold result

// aligned on 16 bytes

// compile pure asm version?

#if (SIMD_ASM==1)

// begin inline asm version of SIMD add

_asm

{

mov esi, this    // “this” contains a point to the left operand

mov edi, v     // v points to the right operand

movaps xmm0, [esi] // esi points to first vector, move into xmm0

addps xmm0, [edi] // edi points to second vector, add it to xmm0

movaps vr, xmm0   // move result into output vector

} // end asm

#endif // end use inline asm version

// compile intrinsic version?

#if (SIMD_INTRINSIC==1)

vr.v = _mm_add_ps(this->v, v.v);

CHAPTER 16 Optimization Technologies1590

22 0672318350 CH16  05•02•2003  3:05 PM  Page 1590



#endif // end use intrinsic library version

// always set w=1

vr.w = 1.0;

// return result

return(vr);

} // end operator+

//////////////////////////////////////////////////////////////////////////////

C_VECTOR4D operator-(C_VECTOR4D &v)

{

// subtracts the “this” vector and the sent vector

__declspec(align(16)) C_VECTOR4D vr; // used to hold result 

// aligned on 16 bytes

// compile pure asm version?

#if (SIMD_ASM==1)

// begin inline asm version of SIMD add

_asm

{

mov esi, this    // “this” contains a point to the left operand

mov edi, v     // v points to the right operand

movaps xmm0, [esi] // esi points to first vector, move into xmm0

subps xmm0, [edi] // edi points to second vector, subtract it from xmm0

movaps vr, xmm0   // move result into output vector

} // end asm

#endif // end use inline asm version

// compile intrinsic version?

#if (SIMD_INTRINSIC==1)

vr.v = _mm_sub_ps(this->v, v.v);

#endif // end use intrinsic library version
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// always set w=1

vr.w = 1.0;

// return result

return(vr);

} // end operator-

//////////////////////////////////////////////////////////////////////////////

float operator*(C_VECTOR4D &v)

{

// the dot product will be * since dot product is a more common operation

// computes the dot between between the “this” vector and the sent vector

__declspec(align(16)) C_VECTOR4D vr; // used to hold result

// aligned on 16 bytes

// compile pure asm version?

#if (SIMD_ASM==1)

// begin inline asm version of SIMD dot product

_asm

{

mov esi, this    // “this” contains a point to the left operand

mov edi, v     // v points to the right operand

movaps xmm0, [esi] // move left operand into xmm0

mulps xmm0, [edi] // multiply operands vertically

// at this point, xmm0 =

// [ (v1.x * v2.x), (v1.y * v2.y), (v1.z * v2.z), (1*1) ]

// or more simply: let xmm0 = [x,y,z,1] =

// [ (v1.x * v2.x), (v1.y * v2.y), (v1.z * v2.z), (1*1) ]

// we need to sum the x,y,z components into a single scalar

// to compute the final dot product of:

// dp = x + y + z where x = x1*x2, y = y1*y2, z = z1*z2

// begin

// xmm0: = [x,y,z,1] (note: all regs in low to hight order)

// xmm1: = [?,?,?,?]

movaps xmm1, xmm0 // copy result into xmm1
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// xmm0: = [x,y,z,1]

// xmm1: = [x,y,z,1]

shufps xmm1, xmm0, SIMD_SHUFFLE(0x01,0x00,0x03,0x02)

// xmm0: = [x,y,z,1]

// xmm1: = [z,1,x,y]

addps xmm1, xmm0

// xmm0: = [x ,y ,z ,1]

// xmm1: = [x+z,y+1,x+z,y+1]

shufps xmm0, xmm1, SIMD_SHUFFLE(0x02,0x03,0x00,0x01)

// xmm0: = [y ,x ,y+1,x+z]

// xmm1: = [x+z,y+1,x+z,y+1]

// finally we can add!

addps xmm0, xmm1

// xmm0: = [x+y+z,x+y+1,x+y+z+1,x+y+z+1]

// xmm1: = [x+z ,y+1 ,x+z  ,y+1]

// xmm0.x contains the dot product

// xmm0.z, xmm0.w contains the dot+1

movaps vr, xmm0

} // end asm

#endif // end use inline asm version

// compile intrinsic version?

#if (SIMD_INTRINSIC==1)

vr.v = _mm_mul_ps(this->v, v.v);

return(vr.x + vr.y + vr.z);

#endif // end use intrinsic library version

// return result

return(vr.x);

} // end operator*

//////////////////////////////////////////////////////////////////////////////

void print(void)

{
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// this member function prints out the vector

printf(“\nv = [%f, %f, %f, %f]”, this->x, this->y, this->z, this->w);

} // end print

//////////////////////////////////////////////////////////////////////////////

}; // end class C_VECTOR4D

In a moment, I will show you some simple examples of using the class, but before that,
you might notice the use of the SIMD_SHUFFLE() macro we discussed earlier in the section
on data movement. Once again, this macro does nothing more than move one SIMD
word from one position in a source operand to another position in a destination operand,
enabling you to move things around to order things in such a way that the data is easier
to work with.

The final stage of the dot product needs a horizontal addition, meaning that after the
initial computation u*v, the results of the first parallel SIMD multiply are

[ux*vx, uy*vy, uz*vz, 1*1]

The problem is, we need to add up (ux*vx + uy*vy + uz*vz) to arrive at the final dot
product result. This can’t be accomplished with normal SIMD instructions because there’s
no horizontal addition instruction. Thus, we need to copy the results, shift them, and add
them in an accumulator to derive the final results of

(ux*vx + uy*vy + uz*vz)

So, let’s put the class to use. Let’s define two SIMD vectors:

C_VECTOR4D v1(1,2,3), v2(4,5,6), result;

Here’s an addition:

result = v1+v2;

Let’s print out the result:

result.print();

Now let’s compute the length of this result vector and print it out:

length = result.length();

cout << “\nlength”;

And finally, computing the dot product of v1 and v2:

float dp = v1*v2;
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Doesn’t get much easier than that! For a demo of the class in action, take a look at
DEMOII16_3.CPP|EXE. It contains the entire class and a short demo similar to the preceding
examples. The program, like the previous demo, must be compiled as a CONSOLE applica-
tion, and you must have an SSE-compatible operating system, as well as a Pentium III+
processor. Try experimenting with the conditional assembly flag, and set it for intrinsic or
assembly mode via the defines we covered earlier in the section.

If you’re feeling creative, try adding matrix multiplication and everything else you can
think of. Take your time and think of the fastest way in and out of each operation. Good
SIMD programming takes some thought—similar to writing a class. If you just brute-force
it, you will find it’s not much better than straight C++.

General Optimization Tricks
In this next section, I am just going to throw out a few interesting optimization tricks that
you might find useful. They vary from tips to magical incantations. Some are my own,
others I’ve picked up from the references at the end of this chapter.

Trick 1: Getting Rid of _ftol()
When assigning a float to an int, the compiler will many times call the internal function
_ftol(), which can slow things down to a crawl. For example:

float f = 10.5;

int i = f;

To avoid this, use inline assembly and FPU instructions, such as fistp/fst:

_asm

{

fld f;

fistp i;

}

Or, use the compiler flag /QIfist to force the rounding mode to chop, and no call to
_ftol() will be made.

However, watch out for second-order effects and loss of accuracy throughout your code.
Try this on a module-to-module basis. However, the _ftol() call is one of the biggest
performance bottlenecks there is. You think you’re writing totally optimal code, you
simply assign a float to an int, and unbeknownst to you, a function call is being made!

Trick 2: Setting the FPU Control Word
The floating-point processor has a control word that dictates rounding mode, accuracy,
and denormalization. You can control the FPU control word with assembly language;
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however, there is a C/C++ runtime function that does the job for you called _control87()
and shown here:

unsigned int _control87( unsigned int control, unsigned int mask );

Table 16.5 contains some of the more useful control flags you can manipulate to gain
more performance.

TABLE 16.5 _control87() Parameters

Mask Hex Value Control Constant Hex Value

_MCW_DN (Denormal control) 0x03000000

_DN_SAVE 0x00000000

_DN_FLUSH 0x01000000

_MCW_RC (Rounding control) 0x00000300

_RC_CHOP 0x00000300

_RC_UP 0x00000200

_RC_DOWN 0x00000100

_RC_NEAR 0x00000000

_MCW_PC (Precision control) 0x00030000

_PC_24 (24 bits) 0x00020000

_PC_53 (53 bits) 0x00010000

_PC_64 (64 bits) 0x00000000

For example, when calculations are made and numbers are very small, this can cause
exceptions. However, if you set the denormal control to flush, processing will speed up.
Also, try lowering the precision of your calculations and see whether everything still
works. This will speed things up. Here’s the code to set both properties:

// set single precision

_control87( _PC_24, _MCW_PC );

// set to flush mode

_control87( _DN_FLUSH, _MCW_DN );

Trick 3: Fast Zeroing of Floating-Point Values
The binary encoding of an integer and floating-point value in general are completely
different. That is, (int)1 does not equal (float)1 in binary. However, (int)0 does happen
to equal (float)0, so if you need to quickly clear out a large area of memory and set them
with floating-point 0, you can replace this code:

float x[1000];

for (int i=0; i < 1000; i++)

x[i] = 0;
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with this code:

memset(x, 0x0, sizeof(float)*1000);

Or better yet, use some inline assembly language and a QUADword fill, like this:

_asm

{

mov edi, x    ; edi points to destination memory

mov ecx, 1000/4 ; number of 32-bit words to move

mov eax, 0    ; 32-bit data

rep stosd    ; move data

} // end asm

Trick 4: Fast Square Root
Here’s a fast square root algorithm that computes the square root of the sent number
within a 5% margin of error:

float Fast_SquareRT(float f)

{

float result; // used to send out result

_asm

{

mov eax, f

sub eax, 0x3f800000

sar eax, 1

add eax, 0x3f800000

mov result, eax

} // end asm

// return result

return(result);

} // end Fast_SquareRT

Trick 5: Piecewise Linear Arctangent
We have seen the use of lookup tables and other tricks to compute the arctangent.
However, all our techniques are special cases. There is an interesting piecewise solution to
the problem that for any (dx, dy) will output the arctangent and have a very small
amount of error.

The algorithm works by first using a decision tree to figure out the octant of (dx, dy) and
then uses an output function to give the final result in the range [0,8], which you can
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scale or remap to any value you like: 0–360 degrees, or 0–2PI radians, for instance. Figure
16.26 illustrates the algorithm graphically. Simply use the conditional code in each octant
as steering logic and output the value.
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2 � �����Y�
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7 � �1 ��Y���X��4 � �Y���X�
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0 � �Y���X�
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Conditional
Codes

Output
Codes

� � 0
Y � 0
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� � 0
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Y � 0

�X�  � �Y� 

� � 0
Y � 0

�X�  � �Y� 

� � 0
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� � 0
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�X�  � �Y� 

� � 0
Y � 0

�X�  � �Y� 

� � 0
Y � 0

�X� � �Y� 

output:  �0,7�

FIGURE 16.26 A graphical approximation to the arctangent.

Trick 6: Pointer Increment
When accessing arrays with pointers, don’t do this:

int *p = base;

*p = 5;

p++;

*p = 6;

p++;

*p = 7;
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Instead, try this:

p[0] = 5;

p[1] = 6;

p[2] = 7;

Accessing data with array notation is faster than incrementing the pointer and then
accessing it.

Trick 7: Take ifs Out of Loops
This is common sense, but I see it all the time in code, so I thought I would mention it.
Suppose you have a loop, and within the loop, you need to perform an operation every
nth iteration. So, you do something like this:

for (int i=0; i < 256; i++)

{

// test for special case

if ((i % 64) == 0)

{

// special case code

}

else

{

// normal case code

} // end else

} // end for

This is a disaster. Why not just break the loop up into four loops like this, so the if state-
ment is never needed:

// special case code for i = 0

// 1-63 loop

for (i = 1; i < 64; i++)

// normal code

// special case code for i=64

// 65 – 127 loop

for (; i < 128; i++)

// normal code

// special case code for i=128
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// 129 – 192 loop

for (; i < 192; i++)

// normal code

// special case code for i=192

// 193 – 255 loop

for (; i < 256; i++)

// normal code

Now there are no more if statements.

Trick 8: Branching the Pipeline
Pentium III/4 processors have very deep instruction pipelines (up to 20 instructions), so
when a mispredicted branch occurs, the entire pipeline is flushed; hence, mispredictions
should be avoided. Moreover, when the processor is executing code, it usually executes the
code it thinks you are going to need next, so not only does a misprediction stall the
pipeline, it also processes code that will never be needed! To avoid mispredictions, you
should code such that a conditional if should be taken most of the time, and only skipped
over some of the time.

Trick 9: Data Alignment
The Pentium processors work best with 16-/32-byte alignment, so if possible, align all data
structures to these boundaries, and/or pad data structures so they are multiples of these
numbers. You can control alignment in both the compiler options, and with the
__declspec(align(value)) methods.

Trick 10: Inline All Short Functions
Any function that is 10–20 lines of code that is called often should be inlined. To inline a
function, you must move it from the C/C++ source file to a header file, because the
compiler literally needs the source of the function, not just the header. As an example,
through profiling I found that the vector dot product and matrix multiplier were being
called more than any other math functions. I inlined these functions and gained about
3–5% in performance—all that from a single keyword.

References
The following is a list of references used for this chapter, and are great sources for more
optimizations:

• The Graphics Gems Series (Academic Press)

• “IA-32 Intel Architecture Software Developer’s Manual Volume 1: Basic Architecture”
(Intel Press)
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• “IA-32 Intel Architecture Software Developer’s Manual Volume 2: Instruction Set
Reference” (Intel Press)

• “IA-32 Intel Architecture Software Developer’s Manual Volume 3: System
Programming Guide” (Intel Press)

• “Intel Pentium 4 and Intel Xeon Processor Optimization Manual” (Intel Press)

• The Software Optimization Cookbook by Richard Gerber (Intel Press)

Summary
In this chapter, we didn’t cover much hard-core optimization. Instead the focus was on
technology and empowering you with tools and technologies that you’ve probably never
used. I can’t impress upon you how important it is for you to embrace all the technologies
discussed in this chapter—they really can change your entire outlook on programming
next-generation processors and game applications. Long gone are the days of using stop-
watches to optimize code—you really have to leverage every bit of technology out there.
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APPENDIX A

About the CD-ROM

The CD-ROM contains all the source, executables, sample
programs, stock art, software programs, sound FX, and bonus
technical articles that make up the book. Here’s the directory
structure:

CD-DRIVE:\

T3DIICD\

SOURCE\

T3DIICHAP01\

T3DIICHAP02\

.

.

TOOLS\

MEDIA\

BITMAPS\

3DMODELS\

SOUNDS\

DIRECTX\

GAMES\

ARTICLES\
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Each main directory contains specific data that you’ll need. Here’s a more detailed break-
down:

T3DIICD—The root directory that contains all other directories. Be sure to read the
README.TXT within it for any last minute changes.

SOURCE—Contains all the source directories for the book in chapter order. Simply drag the
entire SOURCE\ directory to your hard drive and work from there.

TOOLS—Contains demo programs that various companies have so graciously allowed me to
place on the CD-ROM.

MEDIA—Contains stock artwork, sounds, and models that you may use royalty-free in your
games.

DIRECTX—Contains the latest version of the DirectX SDK.

GAMES—Contains 3D shareware games that show off software rasterization.

ARTICLES—Contains articles written by various gurus in the field of 3D game program-
ming for your edification.

There isn’t a general installation program for the CD-ROM because there are so many
different types of programs and data. I leave the installation to you. However, in most
cases, you’ll simply copy the SOURCE\ directory to your hard drive and work within it. As
for the other programs and data, you’ll probably install them as you need them by drag-
ging them to your hard drive or running various setup or installation programs within
each directory.

CAUTION

When you copy files from a CD-ROM, many times the ARCHIVE attribute is set, as well as the
READ-ONLY attribute. Make sure to select all files that you copy to your hard drive and reset
these attributes. You can do this in Windows by selecting the directory(s), then pressing Ctrl+A to
select them all. Right-click and select Properties. Reset the attributes and click Apply.
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IN THIS APPENDIX

• Installing DirectX

• Using Visual C/C++

APPENDIX B

Installing DirectX and
Using Visual C/C++

Installing DirectX
The most important parts of the CD-ROM that you must
install are the DirectX SDK and runtime files. The installation
program is located within the DIRECTX\ directory along with a
README.TXT file explaining any last-minute changes.

NOTE

You must have the DirectX 8.1 SDK or better to work with the
source from this book, so if you’re not sure that you have the
latest files on your system, run the installation and it will tell
you. However, I suggest using the latest version, DirectX 9.0,
which is the SDK that I used for the final compilation of this
book.

When you are installing DirectX, pay attention to where the
installer places the SDK files, because you will have to point
your compiler’s Library (.LIB files) and Include (.H files)
search paths appropriately when you wish to compile.

In addition, when you install the DirectX SDK, the installer
will also ask whether you want to install the DirectX runtime
files. You need the runtime as well as the SDK to run the
programs. However, there are two versions of the runtime
libraries:

• Retail—This version is the full release retail consumer
version that you would expect a user to have. It’s faster
than the debug version. You can always install this one
on top of the debug version later if you want.

• Debug—This version has hooks for debugging, and is
what I suggest you install for development. However,
your DirectX programs will run a little slower.
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1608 APPENDIX B Installing DirectX and Using Visual C/C++

TIP

Note to Borland users (if there are any left): The DirectX SDK does have Borland versions of the
DirectX .LIB import libraries. You will find these in the BORLAND\ directory of the DirectX SDK
installation. You must use these files when compiling. Also, make sure to go to Borland’s Web site
and read the README.TXT in the BORLAND\ directory for any last-minute hints on compiling
DirectX programs with Borland compilers.

Finally, DirectX is continually updated by Microsoft, so make sure you frequently visit
their DirectX area at:

http://www.microsoft.com/windows/directx/default.asp 

Using Visual C/C++ Compiler
First off, I have received countless emails in recent years from people that don’t know how
to use the C/C++ compiler. I don’t want a single email about compiler problems unless
blood is squirting from the screen and the computer is speaking in tongues! Every single
problem was a result of a “rookie” compiler user. You simply can’t expect to use a piece of
software as complex as a C/C++ compiler and not read the manual—right, Jules? So please
do so before trying to compile programs from this book.

Anyway, here’s the deal about compiling: I used MS VC++6.0 for this book, so everything
works perfectly with that compiler. I would also imagine that VC++ 5.0 should work, too,
but don’t hold me to that. If you have a Borland or Watcom compiler, they should work
also, but you might have to do a bit of work getting the right setup to compile. My
suggestion is save yourself the headache and get a copy of VC++ for $99. The bottom line
is that the MS compiler is the best for Windows/DirectX programs—it just makes every-
thing work better. I have used Borland and Watcom for other things, but for Windows
applications, I don’t know many professional game programmers that don’t use MS VC++.
It’s just the right tool for the right job.

Additionally, the latest Microsoft C/C++ .NET compiler will work fine as well. However,
please read the compiler manuals, because the initial setup is slightly different, along with
some of the dialogs, compared to VC++ 6.0.

Compilation Hints
Here are some hints to set up the MS VC++ compilers; other compilers are similar.

• Application type—DirectX programs are Windows programs; more accurately, they
are Win32 .EXE applications. Hence, set your compiler to Win32 .EXE application
for ALL DirectX programs. If I tell you we are making a CONSOLE application, set
the compiler for CONSOLE application. Also, I suggest that you make a single
Workspace and compile all your programs in it.
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• Search directories—To compile DirectX programs, there are two things the compiler
needs: the .LIB files and the .H files. Now, listen up—set both search paths in the
compiler/linker options to search the DirectX SDK Library (.LIB files) directory and
Include (.H files) directory, so the compiler can find the files during compilation.
However, this isn’t enough! You must also make absolutely sure the DirectX paths
are FIRST in the search tree. The reason for this is that VC++ comes with an old
version of DirectX, and you will end up linking DirectX 3.0 files if you aren’t careful.
Furthermore, make sure that you MANUALLY include the DirectX .LIB files in your
projects. This means that you want to see DDRAW.LIB, DSOUND.LIB, DINPUT.LIB,
DINPUT8.LIB, and so on in the project! Very important!!!

• Error level setting—Make sure you turn the error level on your compiler to some-
thing reasonable, such as level 1 or 2. Don’t turn it off, but don’t put it on full blast.
The code from the book is professional-level C/C++, and the compiler will think that
there are a lot of things that I didn’t want to do—believe me, I wanted to do them.

• Typecast errors—If the compiler gives you a typecast error on a line of code (VC++
6.0 users beware), just cast it! I have received lots of emails from people that don’t
know what a typecast is. If you don’t, look it up in a C/C++ book. I will tell you that
some of my code might have slipped through without an explicit typecast here or
there, and VC++ 6.0 could possibly get belligerent. If you get one of these errors,
look at what the compiler expects and just put it in front of the rvalue in the
expression, and that will fix it.

• Optimization settings—We aren’t making full-release products yet, so don’t set the
compiler to a crazy optimization level—just set it for standard optimizations that
prefer speed to size. Within VC++, the optimization dialog can be found in the
Project, Settings dialog in the C/C++ tab, under the category of Optimizations.

• Threading models—Ninety-nine percent of the examples in the book are single-
threaded, so use the single-threaded libraries. If you don’t know what that means,
read the compiler book. However, if I do use multithreaded libraries, I will tell you.
To compile the examples from the chapter on multithreading, for example, you
must switch to the multithreaded libraries. Within VC++, the threading model dialog
can be found in the Project, Settings dialog in the C/C++ tab, under the category of
Code Generation.

• Code generation—This controls what kind of code the compiler generates. Set it for
Pentium Pro. I haven’t seen a 486 except in ancient tomes, so don’t worry about
compatibility. Within VC++, the target processor settings can be found in the
Project, Settings dialog in the C/C++ tab, under the category of Code Generation.

• Struct alignment—This controls the “filling” between structures. Pentium X proces-
sors like things in multiples of 32 bytes, so set the alignment as high as possible (16
bytes is currently the maximum supported by VC++). It will make the code a bit
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bigger, but a lot faster. Within VC++, the target processor settings can be found in
the Project, Settings dialog in the C/C++ tab, under the category of Code Generation.

• Compiler updates—Believe it or not, Microsoft updates everything, and I mean
everything—even their compilers! Therefore, make sure you have downloaded and
installed the latest service pack for VC++ or .NET from MSDN at
http://msdn.microsoft.com/.

• Finally, when you are compiling programs, make sure that you include all the source
files referenced in the main program. For example, if you see me include T3DLIB1.H,
chances are there’s a T3DLIB1.CPP that needs to be in the project.

APPENDIX B Installing DirectX and Using Visual C/C++1610
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IN THIS APPENDIX

• Trigonometry

• Vectors

APPENDIX C

Trigonometry and Vector
Reference

Although we covered a lot of math in the book, this fills in
some of the minor details and is for your reference, so you
won’t have to page through the book to find something
quickly.

Trigonometry
Trigonometry is the study of angles, shapes, and their rela-
tionships. Most trigonometry is based on the analysis of a
right triangle, as shown in Figure C.1.
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FIGURE C.1 The right triangle.

TABLE C.1 Radians Versus Degrees

360 degrees = 2*PI radians is approx. 6.28 radians

180 degrees = PI radians is approx. 3.14159 radians

360 degrees___________ = 1 radian is approx. 57.296 degrees
2*PI radians

2*PI radians___________ = 1 degree is approx. 0.0175 radians
360 degrees

Fact 1: There are 360 degrees in a complete circle, or 2*PI radians. Hence, there are PI
radians in 180 degrees. The computer functions sin() and cos() work in radians, not
degrees—remember that! Table C.1 lists the values.

Fact 2: The sum of the interior angles theta1 + theta2 + theta3 = 180 degrees, or PI radians.

Fact 3: Referring to the right triangle in Figure C.1, the side opposite theta1 is called the
opposite side, the side below it is called the adjacent side, and the long side is called the
hypotenuse.

+y
Hypotenuse = c = h = r

+x
ø

90°

c2 = a2 + b2, c =       a2 + b2

Dx

Dy

Opposite side
= b = y

Adjacent side
= a = x

Also,

m = slope =
 Dy

  Dx
 = tan Ø

Sin Ø =
 y

  H

Cos Ø =
 x

  H

Tan Ø =
 Sin Ø

  Cos Ø
 

=

 y
  H
  x
  H
 

=
 y

  x
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Fact 4: The sum of the squares of the sides of a right triangle equals the square of the
hypotenuse. This is called the Pythagorean Theorem. Mathematically, we write it like this:

hypotenuse2 = adjacent2 + opposite2

sometimes using a, b, and c for dummy variables:

c2 = a2 + b2

Therefore, if you have two sides of a triangle, you can find the third.

Fact 5: There are three main trigonometric ratios that mathematicians like to use: sine,
cosine, and tangent. They are defined as

adjacent side    x

cos(theta) = _____________ = ___

hypotenuse      r

DOMAIN: 0 <= theta <= 2*PI

RANGE: -1 to 1

opposite side    y 
sin(theta)  = _____________ = ___

hypotenuse      r

DOMAIN: 0 <= theta <= 2*PI

RANGE: -1 to 1

sin(theta)   opposite/hypotenuse
tan(theta)  = __________ = ___________________

cos(theta)   adjacent/hypotenuse

opposite      y
= ____________ = ___ = slope = M

adjacent      x

DOMAIN: -PI/2 <= theta <= PI/2

RANGE: -infinity to +infinity
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FIGURE C.2 Graphs of basic trigonometric functions.

Figure C.2 shows graphs of all the functions. Notice that all the functions are periodic
(repeating) and that sin(theta) and cos(theta) have periodicity of 2*PI, whereas tangent has
periodicity of PI. Also, notice that tan(theta) goes to ± infinity whenever theta mod PI is
PI/2.

TIP

You might note the use of the terms domain and range. These simply mean the input and the
output, respectively.

There are numerous trigonometric identities and tricks. Table C.2 lists some of the more
useful trigonometric ratios, as well as some interesting identities.
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A. Sin Ø

–1

1

0 –3π
2

3π
2

–π π
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2

π
2
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–1

1

0 
–3π

2
3π

2

–π π 2π–2π –π
2

π
2

Domain: (–∞, ∞)
Range: [–1, 1]

C. Tan Ø

–1

1

–3π
2

3π
2

–π π 2π–2π –π
2

π
2

Domain: All real #s except odd multiples of π/2

Range: [–∞, +∞]
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TABLE C.2 Useful Trigonometric Identities

Cosecant: csc(theta) = 1/sin(theta)

Secant: sec(theta) = 1/cos(theta)

Cotangent: cot(theta) = 1/tan(theta)

Pythagorean Theorem in terms of trig functions:

sin(theta)2 + cos(theta)2 = 1

Conversion identity:

sin(theta1) = cos(theta1 – PI/2)

Reflection identities:

sin(-theta) = -sin(theta)

cos(-theta) = cos(theta)

Addition identities:

sin(theta1 + theta2) = sin(theta1)*cos(theta2) + cos(theta1)*sin(theta2)

cos(theta1 + theta2) = cos(theta1)*cos(theta2) - sin(theta1)*sin(theta2)

sin(theta1 - theta2) = sin(theta1)*cos(theta2) - cos(theta1)*sin(theta2)

cos(theta1 - theta2) = cos(theta1)*cos(theta2) + sin(theta1)*sin(theta2)

Of course, you can derive many more identities based upon these. In general, identities
help you simplify complex trigonometric formulas, so you don’t have to do the math.
Hence, when you come up with an algorithm based on sin, cos, tan, and so on, always take
a look in a trigonometry book and see whether you can simplify your math, so that fewer
computations are needed to get to the result.

Vectors
Vectors are basically nothing more than finite line segments. They are defined by a start-
ing point and an end point, as shown in Figure C.3.

Vectors 1615
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4

3

2

1

–1
–4

–2

–3

–3

–2
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0

. . .
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V = P3P4

P3(x3, y3)

P1(x1, y1)

P4(x4, y4)

P2(x2, y2)

U = P1P2

FIGURE C.3 Vectors in the plane.
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In Figure C.3, you see a vector U defined by the two points p1 (the initial point) and p2
(the terminal point). The vector U = <u

x
,u

y
> is from p1(x1,y1) to p2(x2,y2). To compute U,

you simply subtract the initial point from the terminal point:

U = p2 – p1 = (x2-x1, y2-y1) = <u
x
, u

y
>

We usually represent vectors by bolded uppercase letters like U, and the components are
written within angled brackets like <u

x
,u

y
>. However, sometimes I drop to lowercase and

lose the bolding if in the context we are only talking about vectors—saves a bit of typing.

Another way to represent the vector from p1 to p2 is by using bar notation. This is done
by placing the two endpoints adjacent to each other and placing a bar over them:

p1p2

Okay, so a vector represents a line segment from one point to another, but that segment
can represent a lot of concepts, such as velocity, acceleration, or whatever. Be warned: Once
defined, vectors are always relative to the origin. This means that after you create a vector
from p1 to p2, the initial point in vector space is always at (0,0), or (0,0,0) in 3D. This
doesn’t matter because the math takes care of everything, but if you think about it, it
makes sense.

A vector is only two or three numbers in 2D and 3D space, so it really only defines an
endpoint in 2D or 3D space. Hence, the starting point is always thought of as the origin.
This doesn’t mean that you can’t translate vectors around and perform various geometrical
operations with the vectors themselves. It just means that you need to keep in mind what
a vector really is.

The cool thing about vectors is the operations you can perform on them. Because vectors
are really sets of ordered numbers, you can perform many of the standard mathematical
operations on them by performing a mathematical operation on each component inde-
pendently.

NOTE

Vectors can have any number of components. Usually in computer graphics you deal with 2D
and 3D vectors, or vectors of the form A = <x,y>, B = <x,y,z>. An n-dimensional vector has the
form

C = <c1, c2, c3, …, cn>

n-dimensional vectors are used to represent sets of variables rather than geometrical space,
because after 3D, you enter hyperspace.
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Vector Length
The length of a vector is called the norm, and is represented by two vertical bars, like this:
|U| This is read as “the length of U.”

The length is computed as the distance from the origin to the tip of the vector. Hence,
you can use the standard Pythagorean Theorem to find the length. Therefore, |U| is 
equal to

|U| = sqrt(u
x
2 + u

y
2)

And if U happened to be a 3D vector, the length would be

|U| = sqrt(u
x
2 + u

y
2 + u

z
2)

Normalization
After you have the length of a vector, you can do something interesting with it—normalize
the vector, or in other words shrink the vector to make sure that its length is 1.0. Unit
vectors have a lot of nice properties just like the scalar 1.0 does, so your intuition probably
agrees with me. Given a vector N = <n

x
,n

y
>, the normalized version of N is usually written

in lowercase as n, and is computed like this:

n = N/|N|

Very simple. The normalized version of a vector is simply the vector divided (multiplied
by the inverse) by the length of a vector.

Scalar Multiplication
The first operation that you might want to perform on a vector is scaling. This is
performed by multiplying each component by a single scalar number. For example:

Let U = <u
x
, u

y
>

k*U = k*<u
x
, u

y
> = <k*u

x
, k*u

y
>

Figure C.4 shows the scaling operation graphically.

In addition, if you want to invert the direction of a vector, you can multiply any vector by
–1. This will invert the vector, as shown in Figure C.5.

Mathematically:

Let U = <u
x
, u

y
>

The vector in the opposite direction of U is

-1*U = -1*<u
x
, u

y
> = <-u

x
, -u

y
>
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FIGURE C.4 Vector scaling.
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Length = 1.0

u

+y
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u
| u | = 1

k

k

k • u = k < ux, uy>
 = < k • ux, k • uy>

–x +x

–y

y

(–ux, –uy)

(ux, uy)

–1.u

u

FIGURE C.5 Vector inversion.

Vector Addition
To add two (or more) vectors together, all you have to do is add the respective compo-
nents together. Figure C.6 illustrates this graphically.
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FIGURE C.6 Vector addition.

Vector U is added to V, and the result is R. Notice how the addition was performed
geometrically. I took V, moved it to the terminal point of U, and then drew the other side
of the triangle. Geometrically, this is equivalent to the following operation:

U + V = <u
x
, u

y
> + <v

x
, v

y
> = <u

x
+v

x
, u

y
+v

y
>

Thus, to add any number of vectors together on graph paper, you can simply add them
“tip to tail.” Then, when you add them all up, the vector from the origin to the last tip is
the result.

Vector Subtraction
Vector subtraction is really vector addition with the opposite pointing vector. However, it
is sometimes illustrative to see subtraction graphically as well. Take a look at Figure C.7 to
see U–V and V–U.

Vectors 1619
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v
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This is u – v.

u

v

u – v

FIGURE C.7 Vector subtraction.

0672318350 AppC  05•02•2003  3:07 PM  Page 1619



Notice that the U–V is computed by drawing a vector from V to U, and V–U is computed
by drawing a vector from U to V. Mathematically, we have

U - V = <u
x
, u

y
> + <v

x
, v

y
> = <u

x
-v

x
, u

y
-v

y
>

This might be easier to remember, but a piece of graph paper can sometimes be a much
better “computer” when you’re doing the math manually, because you can visualize the
data more quickly. Hence, it’s a good idea to know how to add and subtract vectors on
graph paper when you’re rendering algorithms—trust me!

The Inner Product, or the “Dot” Product
The dot product is defined like this:

U . V = u
x
*v

x
+ u

y
*v

y

The dot product, usually represented by a dot (.), is computed by summing the products of
the individual terms. Moreover, the result is a scalar. Well, heck—how does that help? We
don’t even have vectors anymore! True, my young Jedi, but the dot product is also equal
to this expression:

U . V = |U|*|V|*cos θ

This states that U dot V is equal to the length of U multiplied by the length of V multi-
plied by the cosine of the angle between the vectors. If we combine the two different
expressions, we get this:

U . V = u
x
*v

x
+ u

y
*v

y

U . V = |U|*|V|*cos θ
u
x
*v

x
+ u

y
*v

y
= |U|*|V|*cos θ

This is a very interesting formula—it basically gives us a way to compute the angle
between two vectors, as shown in Figure C.8, which is a really useful operation.
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FIGURE C.8 The dot product.
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If you can’t see that, take a look at the equation after rearranging and taking the inverse
cosine of both sides:

θ = cos–1 (u
x
*v

x
+ u

y
*v

y
/|U|*|V|)

Or, more compactly, we assume that (U.V) means (u
x
*v

x
+ u

y
*v

y
) and just write:

θ = cos–1 (U.V/|U|*|V|)

This is a very powerful tool, and the basis of many 3D graphics algorithms. The cool thing
is that if the length of U and V are already 1.0, their product is 1.0 and the formula
simplifies further to

θ = cos–1 (U.V), for |U|=|V| = 1.0

And here are a few properties of the dot product:

Property 1: If the angle between U and V is 90 (perpendicular), U.V = 0.

Property 2: If the angle between U and V is < 90 (acute), U.V > 0.

Property 3: If the angle between U and V is > 90 (obtuse), U.V < 0.

Property 4: If U and V are equal, U.V = |U|2 = |V|2.

These properties are all shown graphically in Figure C.9.
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ø
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FIGURE C.9 Angles and their relationship to the dot product.
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The Cross Product
The next type of multiplication that can be applied to vectors is called the cross product.
However, the cross product only makes sense on vectors with three or more components,
so let’s use 3D space vectors as an example. Given U = <u

x
, u

y
, u

z
> and V = <v

x
, v

y
, v

z
>, the

cross product written U×V is defined as

U×V = |U|*|V|*sin θ * n

Analyzing the formula in steps, |U| denotes the length of U, |V| denotes the length of V,
and sin θ is the sin of the angle between the vectors. Thus, the product (|U|*|V|*sin θ) is a
scalar (that is, a number). Then you multiply it by n. But what is n? n is a unit vector,
which is why it’s in lowercase. In addition, n is a normal vector, which means that it’s
perpendicular to both U and V. Figure C.10 shows this graphically.

APPENDIX C Trigonometry and Vector Reference1622

v

u

u × v x – z

+y

–z

+x

+z

3-space

example

u × v is perpendicular to both u1 and v
if both u1 and v lie in the x – z plane
then u × v is parallel to the y axis

FIGURE C.10 The cross product.

So, the cross product tells us something about the angle between U and V and the normal
vector to both U and V. But without another equation, you aren’t going to get anywhere.
The question is how to compute the normal vector from U and V so that you can
compute the sin θ term, or whatever. The cross product is also defined as a very special
vector product. However, it’s hard to show without matrices, so bear with me. Assume that
you want to compute the cross product of U and V, or U×V. First you build a matrix like
this:

|i j k |

|u
x

u
y

u
z
|

|v
x

v
y

v
z
|

Here, i, j, k are unit vectors parallel to the x, y, and z axes, respectively. 
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Then, to compute the cross product of U and V, you perform this multiplication:

N = (u
y
*v

z
-v

y
*u

z
)*i + (-u

x
*v

z
+v

x
*u

z
)*j (u

x
*v

y
-v

x
*u

y
)*k

That is, N is just a linear combination of three scalars, each multiplied by mutually
orthogonal (perpendicular) unit vectors that are each parallel to the x, y, and z axes,
respectively. Thus, we can forget the i, j, k and rewrite the equation as

N = <u
y
*v

z
-v

y
*u

z
, -u

x
*v

z
+v

x
*u

z
, u

x
*v

y
-v

x
*u

y
>

N is the normal vector to both U and V. However, it is not necessarily a unit vector (if U
and V were both unit vectors, N would be), so you must normalize it to find n. After
that’s done, you can plug everything into the cross product equation and do what you
will.

In practice, though, few people ever use the U×V = |U|*|V|*sin θ * n formula. They simply
use the matrix form to find the normal vector. Again, normal vectors are very important
in 3D graphics. Normals are not only great because they are normal to two vectors, but
they are also used to define planes, and to compare the orientation of polygons—useful
for collision detection, rendering, lighting, and so forth.

The Zero Vector
Although you probably won’t use the zero vector much, it still exists. The zero vector has
zero length, no direction, and is simply a point, if you want to get technical. Thus, in 2D,
the zero vector is <0,0>, and in 3D, it’s <0,0,0>, and so on for higher dimensions.

Position Vectors
Position vectors are really useful when tracing out geometrical entities like lines, segments,
curves, and so on. I used them when we did clipping in Chapter 10, so it’s something
that’s important. Take a look at Figure C.11, which depicts a position vector that can be
used to represent a line segment.

The line segment is from p1 to p2. V is the vector from p1 to p1, and v is a unit vector
from p1 to p2. You then construct P to trace out the segment. P looks like this mathemat-
ically:

P = p1 + t*v

Here, t is a parameter that varies from 0 to |V|. If t = 0, you have

P = p1 + 0*v = <p1> = <p1
x
, p1

y
>
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FIGURE C.11 Position vectors.

Thus, at t = 0, P is pointing to the beginning of the segment. On the other hand, when t =
|V|, you have

P = p1 + |V|*v = p1 + V = <p1+V> 

= <p1
x
+V

x
, p1

y
+V

y
>

= p2 = <p2
x
, p2

y
>

Vectors as Linear Combinations
As you saw in the cross product calculation, vectors can also be written in this notation:

U = u
x
*i + u

y
*j + u

z
*k

Here, i, j, and k are unit vectors parallel to the x, y, and z axes. There is nothing magical
about this; it’s just another way to write vectors that you might need to know. All the
operations still work exactly the same. For example:

let U = 3i + 2j + 3k

let V = -3i – 5j + 12k

U + V = 3i + 2j + 3k – 3b – 5j + 12k

= 0i – 3j + 15k = <0, -3, 15>

Nothing but notation, really.
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APPENDIX D

C++ Primer 

First, let’s get the pronunciation of primer out of the way. For
many years, I pronounced primer as though it rhymed with
timer, but the truth is, that’s wrong. My friend Mitch Waite
(the founder of Waite Group) has made a pretty good living
off the word primer, but he told me one day that an English
author of his from the U.K. said that he was pronouncing the
word wrong. The correct pronunciation of primer rhymes with
trimmer, as in “prim and proper.” Primer the way we were
pronouncing it meant the stuff you put on before you paint,
or the first stage in an explosive process. In any case, I don’t
know if I will ever say it right—”prime-er” just sounds better!

TIP

If you’re a C++ programmer, you might be asking “Why does
André always use C?” The answer is simple—C is easier to
understand, and that’s all there is to it. C++ programmers obvi-
ously know C because it’s a subset, and most game program-
mers learn C before C++.

What Is C++?
C++ is simply C upgraded with object-oriented (OO) technol-
ogy. It’s really nothing more than a superset of C. C++ has
the following major upgrades:

• Classes

• Inheritance

• Polymorphism
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1626 APPENDIX D C++ Primer

Let’s take a quick look at each. Classes are simply a way of combining both data and func-
tions. Normally when you program in C you have data structures to hold data, and func-
tions that operate on the data, as shown in Part A of Figure D.1. However, with C++, both
data and the functions to operate on the data are contained within a class, as shown in
Part B of Figure D.1. Why is this good? Well, because you can think of a class as an object
that has properties and can perform actions. It’s just a tighter and more abstract way of
thinking.

x

y

z

Add ( . . . )

Sub ( . . . )

Length ( . . . )

Vector struct

C structures hold data

x

y

z

Add ( . . . )

Sub ( . . . )

Length ( . . . )

Data
part

Member
functions

Vector class

C++ classes hold data & functions

External functions operate on data

A. In C, the functions that operate on 
 structures are external to the structure.

B. In C++, both data & functions are
 defined in the class.

FIGURE D.1 The structure of a class.

The next cool thing about C++ is inheritance. After you create classes, they give you the
abstract ability to create relationships between class objects and base one object or class
upon another. It’s done all the time in real life, so why not in software? For example, you
might have a class called person that contains data about the person and maybe some
class methods to operate on the data (don’t worry about that for now). The point is, a
person is fairly generic. But the power of inheritance comes into play when you want to
create two different types of people: a software engineer and a hardware engineer, for
example. Let’s call them sengineer and hengineer.

0672318350 AppD  05•02•2003  3:07 PM  Page 1626



FIGURE D.2 Class inheritance.

Figure D.2 shows the relationship between person, sengineer, and hengineer. See how the
two new classes are based on person? Both sengineer and hengineer are persons, but with
extra data. Thus, you inherit the properties of a person, but add new ones to create sengi-
neer and hengineer. This is the basis of inheritance—you build up more complex objects
from pre-existing ones. In addition, there is multiple inheritance, which enables you to
build a new object as a set of subclasses.

The third and last big deal about C++ and OO programming is polymorphism, which means
“many forms.” In the context of C++, polymorphism means that a function or operator
means different things depending on the situation. For example, you know that the
expression (a + b) in straight C means to add a and b together. You also know that a and
b must be built in types like int, float, char, and short. In C, you can’t define a new type
and then say (a + b). In C++, you can! Therefore, you can overload operators like +, -, *,
/, [], and so on, and make them do different things, depending on the data.

Furthermore, you can overload functions. For example, suppose you write a function
Compute() like this:

int Compute (float x, float y)

{

// code

}

This function takes two floats, but if you send it integers, they’re simply converted to
floats and then passed to the function. Hence, you lose data. However, in C++, you can do
this:

What Is C++? 1627
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Salary
Operating system
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int Compute (float x, float y)

{

// code

}

int Compute (int x, int y)

{

// code

}

Even though the functions have the same names, they take different types. The compiler
thinks they are completely different functions, so a call with integers calls the second
function, while a call with floats calls the first. If you call the function with a float and an
integer, things get more complex. Promotion rules then come into play, and the compiler
decides which one to call using these rules.

That’s really all there is to C++. Of course, there is some added syntax and lots of rules
about all this stuff, but for the most part, all of it has to do with implementing these three
new concepts—easy, huh?

The Minimum You Need to Know About C++
C++ is an extremely complex language, and using the new technologies too much, too fast
can create totally unreliable programs with all kinds of memory leaks, performance issues,
and so on. The problem with C++ is that it is a language of black boxes. There are a
number of processes that go on behind the scenes, and you might never find bugs that
you have created because of this. However, if you start off using just a little C++ here and
there, and then add new features to your repertoire as you need them, you will be fine.

The only reason that I even wrote this appendix on C++ is that DirectX is based on it.
However, most of the C++ is encapsulated in wrappers and COM interfaces that you
communicate with via function pointer calls—that is, calls of the form interface->func-
tion(). If you have gotten this far in the book, you must have just dealt with that weird
syntax. Moreover, the chapter on COM (Component Object Model) should have eased
your nerves on the subject. In any event, we are going to cover just the basics, so you can
better understand C++, talk about it with your friends, and have a good working knowl-
edge of what’s available.

We are going to cover some new types and conventions, memory management, stream
I/O, basic classes, function and operator overloading, and that’s about it—but believe me,
that’s enough! So, let’s get started…

New Types, Keywords, and Conventions
Let’s start off with something simple—the new comment operator (//). This has become
part of C, so you might already use it, but the // operator is a single line comment in C++:

APPENDIX D C++ Primer1628
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Comments
// this is a comment

You can still use the old comment style, /* */, if you like:

/* a C style multi line comment

every thing in here is a comment

*/

Constants
To create a constant in standard C, you can do one of two things:

#define PI 3.14

or

float PI = 3.14;

The problem with the first method is that PI isn’t a real variable with a type. It’s only a
symbol that the pre-processor uses to do a text replacement, so it has no type, no size, and
so on. The problem with the second type definition is that it is writable. Thus, C++ has a
new type called const, which is like a read-only variable:

const float PI = 3.14;

You can use PI anywhere you want—its type is float, and its size is sizeof(float)—but
you can’t overwrite it. This is really a much better way to make constants.

Referential Variables
In C, there will be many times when you want to change the value of a variable in a func-
tion, so you pass a pointer, like this:

int counter = 0;

void foo(int *x)

{

(*x)++;

}

And if you make a call to foo(&counter), counter will be equal to 1 after the call. Hence,
the function changes the value of the sent variable. This is so common a practice that C++
has a new type of variable to help make this easier to do. It’s called a reference variable, and
it’s denoted by the address operator &.
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int counter = 0;

void foo(int &x)

{

x++;

}

Interesting, huh? But how do we call the function? Like this:

foo(counter);

Notice that we don’t need to put the & in front of counter anymore. What happens is that
x becomes an alias for whichever variable is sent. Therefore, counter is x, and no & is
needed during the call.

You can also create references outside of functions like this:

int x;

int &x_alias = x;

x_alias is an alias to x. Wherever and however you use x, you can use x_alias—they are
identical. I don’t see much need for this, though.

Creating Variables On the Fly
One of the coolest new features of C++ is the capability to create variables within code
blocks, and not just at the global or function level. For example, here’s how you might
write a loop in C:

void Scan(void)

{

int index; 

// lots of code here…

// finally our loop

for (index = 0; index < 10; index++)

Load_Data(index);

// more code here…

} // end Scan
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There is nothing wrong with the code. However, index is only used as a loop index in one
code segment. The designers of C++ saw this as non-robust, and felt that variables should
be defined closer to where they are used. Moreover, a variable that is used in one code
block shouldn’t be visible to other code blocks. For example, if you have a set of code
blocks like this:

void Scope(void)

{

int x = 1, y = 2; // global scope

printf(“\nBefore Block A: Global Scope x=%d, y=%d”,x,y);

{ // Block A

int x = 3, y = 4;

printf(“\nIn Block A: x=%d, y=%d”,x,y);

} // end Block A

printf(“\nAfter Block A: Global Scope x=%d, y=%d”,x,y);

{ // Block B

int x = 5, y = 6;

printf(“\nIn Block B: x=%d, y=%d”,x,y);    

} // end Block B

printf(“\nAfter Block B: Global Scope x=%d, y=%d”,x,y);

} // end Scope

There are three different versions of x and y. The first x and y are globally defined.
However, after code block A is entered, they go out of scope in light of the local x and y
that come into scope. Then, when code block A exits, the old x and y come back into
scope (with their old values), and the same process occurs for block B. With block-level
scoping, you can better localize variables and their use. Moreover, you don’t have to keep
thinking of new variable names. You can continue to use x, y, and so on without worrying
that the new variables will corrupt globals with the same name.

The really cool thing about this new variable scoping is that you can create a variable on
the fly in code. For example, take a look at the same for() loop based on index, but 
using C++:

// finally our loop

for (int index = 0; index < 10; index++)

Load_Data(index);

Isn’t that the coolest? I defined index right as I used it, rather than at the top of the func-
tion. Just don’t get too carried away with it.
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Memory Management
C++ has a new memory management system based on the operators new and delete. They
are equivalent to malloc() and free() for the most part, but are much smarter, because
they take into consideration the type of data being requested/deleted. Here’s an example:

To allocate 1000 ints from the heap in C:

int *x = (int*)malloc(1000*sizeof(int)); 

What a mess! Here’s the same thing in C++:

int *x = new int[1000];

Much nicer, huh? You see, new already knows to send back a pointer to int—that is, an
int*—so we don’t have to cast it. Now, to release the memory in C, you would do this:

free(x);

In C++, you would do this:

delete x;

About the same, but the cool part is the new operator. Also, use either C or C++ to allocate
memory. Don’t mix calls to new with calls to free() and malloc() with delete.

Stream I/O
I love printf(). Nothing is more pure than

printf(“\nGive me some sugar baby.”);

The only problem with printf() is all the format specifiers like %d, %x, %u, and so forth.
They’re hard to remember. In addition, scanf() is even worse, because you can really mess
up if you forget to use the address of a variable for storage. For example:

int x;

scanf(“%d”,x);

This is incorrect! We need the address of x or &x. Therefore, the correct syntax is

scanf(“%d”,&x);

I’m sure you have made this mistake. The only time you don’t have to use the address
operator is when you’re working with strings, because the name is the address. In any
case, this is reason why the new IOSTREAM class was created in C++. It knows the types of
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the variables, so you don’t need to specify them anymore. The IOSTREAM class functions
are defined in IOSTREAM.H, so you need to include it in your C++ programs to use it. Once
you do, you will have access to the streams cin, cout, cerr, and cprn, as shown in 
Table D.1.

TABLE D.1 C++ I/O Streams

Stream Name Device C Name Meaning

cin Keyboard stdin Standard Input

cout Screen stdout Standard Output

cerr Screen stderr Standard Error

cprn Printer stdprn Printer

Using the I/O streams is a bit weird, because they’re based on the overloaded operators <<
and >>. These normally signify bit-shifting in C, but in the context of the I/O streams,
they’re used to send and receive data. Here are some examples of using the standard
output:

int i;

float f;

char c;

char string[80];

// in C

printf(“\nHello world!”);

// in C++

cout << “\nHello world!”;

// in C

printf(“%d”, i);

// in C++

cout << i;

// in C

printf(“%d,%f,%c,%s”, i, f, c, string);

// in C++

cout << i << “,” << f << “,” << c << “,” << string;
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Isn’t that cool? You don’t need any type specifier: cout already knows the type and does it
for you. The only thing really weird about the syntax is the way C++ allows you to
concatenate the << operator to the end of each operation. The reason for this is that each
operation returns a stream itself, so you can add << forever. The only downside to using
streams for simple printing is the way you have to separate variables and string constants,
like the “,” that separates each variable. However, you can put the << on each line if you
want, like this:

cout << i 

<< “,” 

<< f 

<< “,” 

<< c 

<< “,” 

<< string;

Remember that in both C and C++, white space is discarded, so the above coding is legal.

The input stream works in much the same way, but with the >> operator instead. Here are
some examples:

int i;

float f;

char c;

char string[80];

// in C

printf(“\nWhat is your age?”);

scanf(“%d”,&i);

// in C++

cout << “\nWhat is your age?”;

cin >> i;

// in C

printf(“\nWhat is your name and grade?”);

scanf(“%s %c”, string, &c);

// in C++

cout << “\nWhat is your name and grade?”;

cin >> string >> c;

A little nicer than C, isn’t it. Of course, the IOSTREAM system has a million other functions
and neat things that you can do with it, so check it out.
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Classes
Classes in C++ are the most important addition to the language, and for the most part
give C++ its OO zeal. As I discussed before, a class is simply a container of both data and
methods (often called member functions) that operate on that data.

The New Struct in Town
Let’s begin learning classes by starting with standard structures, but with a twist. In C, you
defined a structure like this:

struct Point

{

int x,y;

};

You can then create an instance of a structure with this:

struct Point p1;

This creates an instance or object of the structure Point and names it p1. In C++, you
don’t need to use the struct keyword anymore to create an instance:

Point p1;

This creates an instance of the structure Point named p1. The reason for this is that C
programmers have been creating types so they don’t have to type struct anymore, like
this:

typedef struct Point_tag

{

int x,y;

} Point;

Thus, the syntax

Point p1;

Classes are similar to the new structures in that you don’t have to create a type—the defin-
itions themselves are the types.

Just a Simple Class
A class in C++ is defined with the keyword class. Here’s an example:
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class Point

{

public:

int x,y;

};

Point p1;

This is almost identical to the struct version of Point. In fact, both versions of p1 work in
the exact same way. For example, to access data, you just use the normal syntax:

p1.x = 5;

p1.y = 6;

And of course, pointers work the same. So, if you define something like this:

Point *p1;

then you would have to allocate memory for it first with malloc() or new:

p1 = new Point;

Then you could assign values to x and y like this:

p1->x = 5;

p1->y = 6;

The bottom line is that for the most part, classes and structures are identical when access-
ing public data elements. The key term is public—what does this mean? If you noticed in
my previous example of the Point class, defined as

class Point

{

public:

int x,y;

};

there is a keyword public: at the top of the definition before any declarations. This
defines the visibility of the variables (and member functions). There are a number of visi-
bility options, but usually only two are used: public and private.

Public Versus Private
If you place the keyword public at the top of all your class definitions and only have data
in the classes, you have nothing more than a standard structure. That is, structures are
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classes with public visibility. Public visibility means that anyone can look at the class data
elements. As for code in the main, other functions, and member functions, the data is not
hidden or encapsulated. Private visibility, on the other hand, gives you the capability to
hide data that you don’t want other functions that aren’t part of the class to alter. For
example, take a look at this class:

class Vector3D

{

public:

int x,y,z; // anyone can mess with these

private:

int reference_count; // this is hidden

};

Vector3D has two different parts to it: the public data area and the private data area. The
public data area has three fields that can be changed by anyone: x, y, and z. On the other
hand, there is a hidden field in the private section called reference_count. This field is
hidden to everything except the member functions of the class (there aren’t any yet).
Thus, if you were to write some code like this

Vector3D v;

v.reference_count = 1; // illegal!

the compiler would give you an error! So the question is, what good are private variables if
you can’t access them? Well, they’re great for writing something like a black box class
when you don’t want or need the user to alter internal working variables. In that example,
private is the way to go. However, to access the private members, you need to add member
functions or methods to the class—this is where we jump off the deep end…

Class Member Functions (Methods)
A member function or method (depending on who you’re talking to) is basically a func-
tion within a class that only works with the class. Here’s an example:

class Vector3D

{

public:

int x,y,z; // anyone can mess with these

// this is a member function

int length(void) 

{
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return(sqrt(x*x + y*y + z*z);

} // end length

private:

int reference_count; // this is hidden

};

I have highlighted the member function length(). I have defined a function right in the
class! Weird, huh? Let’s see how to use it:

Vector3D v; // create a vector

// set the values

v.x = 1;

v.y = 2;

v.z = 3;

// here’s the cool part

printf(“\nlength = %d”,v.length());

You call a class member function just like you access an element. And if v were a pointer,
you would do this:

v->length();

Now, you might be saying, “I have about 100 functions that are going to have to access
the class data—I can’t possibly put them all in the class!” Well, you can if you want, but I
agree that it would get messy. However, you can define class members function outside
the class definition. We’ll get to that in a minute. Right now, I want to add another
member function to show how you might access that private data member
reference_count:

class Vector3D

{

public:

int x,y,z; // anyone can mess with these

// this is a member function

int length(void) 

{

return(sqrt(x*x + y*y + z*z);

} // end length
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// data access member function

void addref(void)

{

// this function increments the reference count

reference_count++;

} // end addref

private:

int reference_count; // this is hidden

};

You talk to reference_count via the member function addref(). This may seem odd, but
if you think about it, it’s a good thing. Now the user can’t do anything stupid to the data
member. It always goes through your access function, which in this case only allows the
caller to increment the reference_count, as in

v.addref();

The caller can’t change the reference count, multiply it by a number, and so on, because
reference_count is private. Only member functions of the class can access it—this is data
hiding and encapsulation.

At this point, I think you’re seeing the power of classes. You can fill them with data-like
structure, add functions within the classes that operate on the data, and hide data—pretty
cool! But it gets even better!

Constructors and Destructors
If you have been programming C for over a week, there’s something that I’m sure you
have had to do about a million times—initialize a structure. For example, say that you
create a structure Person:

struct Person

{

int age;

char *address;

int salary;

};

Person people[1000];
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Now you need to initialize 1,000 people structures. Maybe all you want to do is this:

for (int index = 0; index < 1000; index++)

{

people[index].age     = 18;

people[index].address = NULL;

people[index].salary  = 35000;

} // end for index

But what if you forget to initialize the data and then just use the structures? Well, you
might wind up seeing your old friend General Protection Fault. You might also see it if
you forget to initialize your data structures. Similarly, what if during the run of your
program you allocate memory, and point the address field of a Person to the memory, like
this?

people[20].address = malloc(1000);

Then you forget about it, and do this:

people[20].address = malloc(4000);

Oops! You just lost a thousand bytes of memory in never-never land. What you needed to
do before allocating more memory was release the old memory with a call to free():

free(people[20].address);

I think you have probably done this, too. C++ solves these housekeeping problems by
giving you two new automatic functions that are called when you create a class: construc-
tors and destructors.

Constructors are called when a class object is instantiated. For example, when this code is
executed:

Vector3D v;

the default constructor is called, which doesn’t do anything. Similarly, when v goes out of
scope—that is, when the function v is defined in terminates, or if v is global when the
program terminates—the default destructor is called, which also doesn’t do anything. To
see any action, we have to write a constructor and destructor. You don’t have to if you
don’t want to, and you can define one or both.

Writing a Constructor
Let’s use the Person structure converted to a class as an example:
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class Person

{

public:

int age;

char *address;

int salary;

// this is the default constructor

// constructors can take a void, or any other set of parms

// but they never return anything, not even a void

Person() 

{ 

age     = 0;

address = NULL;

salary  = 35000;

} // end Person

};

Notice that the constructor has the same name as the class; in this case, Person. This is
not a coincidence—it’s a rule! Also, notice that the constructor returns nothing. This is
also a must. However, the constructor can take parameters. In this case, there are no para-
meters. However, you can have constructors with parameters—in fact, you can have an
infinite number of different constructors, each with a different calling list. This is how you
can create various types of Persons with different calls. Anyway, to create a Person and
have it automatically initialized, you just do this:

Person person1;

The constructor will be called automatically, and the following assignments will occur:

person1.age     = 0;

person1.address = NULL;

person1.salary  = 35000;

Cool, huh? Now, the power of the constructor comes into play when you code something
like this:

Person people[1000];

The constructor will be called for every single instance of Person, and all 1,000 of them
will be initialized without a single line of code on your part!

Now let’s get a little more advanced. Remember how I told you that functions can be over-
loaded? Well, you can overload constructors, too. Suppose you want a constructor for
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which you can set the age, address, and salary of a Person during its creation. You could
do this:

class Person

{

public:

int age;

char *address;

int salary;

// this is the default constructor

// constructors can take a void, or any other set of parms

// but they never return anything, not even void

Person() 

{ 

age     = 0; address = NULL; salary  = 35000;

} // end Person

// here’s our new more powerful constructor

Person(int new_age, char *new_address, int new_salary)

{

// set the age

age = new_age;

// allocate the memory for the address and set address

address = new char[strlen(new_address)+1];

strcpy(address, new_address);

// set salary

salary = new_salary;

} // end Person int, char *, int

};

Now we have two constructors: one that takes no parameters, and one that takes three (an
int, a char *, and another int). Here’s an example of creating a person that is 24 years
old, lives at 500 Maple Street, and makes $52,000 a year.

Person person2(24,”500 Maple Street”, 52000);

Isn’t that the coolest? Of course, you might think you can initialize C structures as well
with a different syntax, something like

Person person = {24, “500 Maple Street”, 52000};

APPENDIX D C++ Primer1642

0672318350 AppD  05•02•2003  3:07 PM  Page 1642



However, what about the memory allocation? What about the string copying, and so on?
Straight C can do a blind copy, but that’s it. C++ gives you the power to also run code,
and logic when an object is created. This gives you much more control.

Writing a Destructor
After you have created an object, at some point it must die. This is where you might
normally call a cleanup function in C, but in C++, the object cleans itself up with a call to
its destructor. Writing a destructor is even simpler than writing a constructor because you
have much less flexibility with destructors—they only have one form:

~classname();

No parameter, no return type—period. No exceptions! With this in mind, let’s add a
destructor to our Person class:

class Person

{

public:

int age;

char *address;

int salary;

// this is the default constructor

// constructors can take a void, or any other set of parms

// but they never return anything, not even void

Person() 

{ 

age     = 0; address = NULL; salary  = 35000;

} // end Person

// here’s our new more powerful constructor

Person(int new_age, char *new_address, int new_salary)

{

// set the age

age = new_age;

// allocate the memory for the address and set address

address = new char[strlen(new_address)+1];

strcpy(address, new_address);
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// set salary

salary = new_salary;

} // end Person int, char *, int

// here’s our destructor

~Person() 

{

free(address);

} // end ~Person

};

I’ve highlighted the destructor. Notice there is nothing special about the code within it; I
could have done anything that I wanted. With this new destructor, you don’t have to
worry about de-allocating memory. For example, in C, if you created a structure with
internal pointers in a function and then exited the function without de-allocating the
memory pointed to by the structure, that memory would be lost forever in never-never
land—that’s called a memory leak, as shown below with a C example:

struct 

{ 

char *name; 

char *ext;

} filename;

foo()

{

filename file; // here’s a filename

file.name = malloc(80);

file.ext  = malloc(4);

} // end foo

The structure file is destroyed, but the 84 bytes we allocated are lost forever! But, in C++,
with your destructor, this won’t happen, because the compiler makes sure to call the
destructor for you, de-allocating the memory!

Those are the basics about constructors and destructors, but there’s a lot more. There are
special constructors called copy constructors, assignment constructors, and so forth. But
you have enough to get started. As for destructors, there’s just the type I have shown you,
so you’re in good shape there.
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The Scope Resolution Operator
There is a new operator in C++ called the scope resolution operator, represented by a double
colon (::). It’s used to make reference to class functions and data members at class scope.
Don’t worry too much about what that means—I’m just going to show you how to use it
to define class functions outside the class.

Writing Class Member Functions Outside the Class Scope
Thus far, you’ve been defining class member functions right inside the class definition.
Although this is totally acceptable for small classes, it gets to be a little problematic for
large classes. Hence, you are free to write class member functions outside of the class, as
long as you define them properly and let the compiler know that they are class functions
and not normal file-level functions. You do this with the scope resolution operator and
the following syntax:

return_type class_name::function_name(parm_list)

{

// function body

}

Of course, in the class itself you must still define the function with a prototype (minus the
scope resolution operator and class name, of course), but you can hold off on the body
until later. Let’s try this with our Person class and see what we get. Here’s the new class
with the function bodies removed:

class Person

{

public:

int age;

char *address;

int salary;

// this is the default constructor

Person();

// here’s our new more powerful constructor

Person(int new_age, char *new_address, int new_salary);

// here’s our destructor

~Person();

};
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And here are the function bodies which you would place with all your other functions
after the class definition:

Person::Person() 

{

// this is the default constructor

// constructors can take a void, or any other set of parms

// but they never return anything, not even void 

age     = 0; 

address = NULL; 

salary  = 35000;

} // end Person

/////////////////////////////////////////////////////

Person::Person(int new_age, 

char *new_address, 

int new_salary)

{

// here’s our new more powerful constructor

// set the age

age = new_age;

// allocate the memory for the address and set address

address = new char[strlen(new_address)+1];

strcpy(address, new_address);

// set salary

salary = new_salary;

} // end Person int, char *, int

//////////////////////////////////////////////////////

Person::~Person() 

{

// here’s our destructor

free(address);

} // end ~Person
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TIP

Most programmers place a capital C before class names. I usually do, but I didn’t want to trip
you out. Thus, if I was programming, I probably would have called it CPerson instead of Person,
or perhaps CPERSON in all caps.

Function and Operator Overloading
The last topic I want to talk about is overloading, which comes in two flavors: function over-
loading and operator overloading. I don’t have time to explain operator overloading in
detail, but I’ll give you a general example. Imagine that you have our Vector3D class and
you want to add two vectors, v1 + v2, and store the sum in v3. You might do something
like this:

Vector3D v1 = {1,3,5}, 

v2 = {5,9,8}, 

v3 = {0,0,0};

// define an addition function, this could have

// been a class function

Vector3D Vector3D_Add(Vector3D v1, Vector3D v2)

{

Vector3D sum; // temporary used to hold sum

sum.x = v1.x+v2.x;

sum.y = v1.y+v2.y;

sum.z = v1.z+v2.z;

return(sum);

}// end Vector3D_Add

Then, to add the vectors with the function, you would write the following code:

v3 = Vector3D_Add(v1, v2);

This works, but it’s crude. With C++ and operator overloading, you can actually overload
the + operator and make a new version of it to add the vectors! So, you can write this:

v3 = v1+v2;

Cool, huh? The syntax of the overloaded operator function is below, so you can check it
out, but you’ll have to read a C++ book for the details:
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class Vector3D

{

public:

int x,y,z; // anyone can mess with these

// this is a member function

int length(void)  {return(sqrt(x*x + y*y + z*z); }

// overloaded the + operator

Vector3D operator+(Vector3D &v2)

{

Vector3D sum; // temporary used to hold sum

sum.x = x+v2.x;

sum.y = y+v2.y;

sum.z = z+v2.z;

return(sum);

} 

private:

int reference_count; // this is hidden

};

Notice that the first parameter is implicitly the object, so the parameter list has only v2.
Anyway, operator overloading is very powerful. With it, you can really create new data
types and operators, so that you can perform all kinds of cool operations without making
calls to functions.

You’ve already seen function overloading when I was talking about constructors. Function
overloading is nothing more than writing two or more functions that have the same name
but different parameter lists. Suppose you want to write a function called plot pixel that
has the following functionality: If you call it without parameters, it simply plots a pixel at
the current cursor position; if you call it with an x,y, it plots a pixel at the position x,y.
Here’s how you would code it:

int cursor_x, cursor_y; // global cursor position

// the first version of Plot_Pixel

void Plot_Pixel(void)

{
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// plot a pixel at the cursor position

plot(cursor_x, cursor_y);

}

////////////////////////////////

// the second version of Plot_Pixel

void Plot_Pixel(int x, int y)

{

// plot a pixel at the sent position and update

// cursor

plot(cursor_x=x, cursor_y=y);

}

Now you can call the functions like this:

Plot_Pixel(10,10); // calls version 2

Plot_Pixel(); // calls version 1

TIP

The compiler knows the difference, because the real name of the functions is created by not only
the function name, but also a mangled version of the parameter list, creating a unique name in
the compiler’s namespace.

Basic Templates
Templates have been around for a long time. In fact, you have probably used them or
even invented them by accident in your programming endeavors. Let’s start with a stan-
dard C example to illustrate what templates are and what problems they solve. Imagine
you have the following set of math functions:

int add(int a, int b)

{

int sum = a+b;

return(sum);

} // end add

int mul(int a, int b)

{

int product = a*b;

return(product);

} // end mul

Basic Templates 1649

D

0672318350 AppD  05•02•2003  3:07 PM  Page 1649



Well, that’s great, but what if you want to have the same functional support for floats?
Well, you could overload the functions like this:

float add(float a, float b)

{

float sum = a+b;

return(sum);

} // end add

float mul(float a, float b)

{

float product = a*b;

return(product);

} // end mul

But this gets to be tedious if you need to support more than a few data types. Additionally,
if you copy the code over and over and create overloaded functions, a single bug from
your “original” is copied multiple times, so it’s a source disaster. This is why templates
were invented: They are templates for a function (or class) that allow you to write the core
logic for a function using a generic data type, and then the compiler creates new versions
of the function on the fly as needed, so “write once” is the motto.

Here’s an example of declaring a templated function for our add() program:

template<class T> T add(T a, T b)

{

T sum; // declare the generic type

// perform generic computation

sum = a + b;

// return results

return(sum); 

} // end add

Let’s analyze the function syntax carefully (I have bolded the tricky parts). To begin with,
template functions start with the template keyword, followed by the <class T> declara-
tion. T is just a dummy and could be anything. The template keyword tells the compiler
that we are beginning a template function, and the <class T> tag tells the compiler that
anytime it encounters the symbol T, it should replace it with whatever type is needed.
Therefore, T is the generic data type that the template function will use to generate multi-
ple functions. Next is the return value, which in this case also happens to be T. Thus, the
function returns a generic type back; however, it could have been an intrinsic type like
int, float, and so on. Following this is the function and parameter list. Notice that the
function takes two parameters of type T; again, these are also generic. Here’s an example:

int a = 1, b = 2;

int sum = add(a,b);
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The compiler will generate a template function that takes two ints and returns an int
with no help from us. Moreover, if you code the following lines

float a = 1, b = 2;

float sum = add(a,b);

the compiler will create yet another version of the template function that takes floats and
returns a float!

In addition to template functions, there are template classes, but I am going to leave that
up to you. For our needs, template functions are more than enough to help us generate
generic functions for multiple data types.

TIP

Recently there has been an addition to the ANSI C++ standard to support templates called the
STL, or Standard Template Library. STL has built-in support for numerous data types and
advanced functionality. Definitely something you should try, but even though it’s supposed to be
an ANSI standard—watch out!

Introduction to Exception Handling
Most C programmers either create very robust error-handling code or none at all. For
example, a rookie might try something like this:

char *alloc_mem(int num_bytes)

{

char *ptr = NULL;

ptr = (char *)malloc(num_bytes);

memset(ptr, 0, num_bytes);

return(ptr);

} // end alloc_mem

Of course, the problem with the function is that if malloc() fails, a NULL pointer is
returned. Worse yet, num_bytes of memory is overwritten, and a protection fault occurs! A
more robust implementation would be:

char *alloc_mem(int num_bytes)

{

char *ptr = NULL;

if ((ptr = (char *)malloc(num_bytes))!=NULL)

{

memset(ptr, 0, num_bytes);

return(ptr);
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} // end if

return(NULL);

} // end alloc_mem

In this version of the function, if the memory can’t be allocated, the memory is zeroed
out. Moreover, the function returns NULL to indicate that something went wrong. These
techniques, along with error files, printf(), and other tactics, all work fine. However, the
problem that many C programmers face is that their error handling tends to get inter-
twined with their logic. This can become rather cumbersome. Additionally, recovering
from an error at all levels of functional nesting might become complex. Alas, new error-
handling facilities have been added to C++, called exception handling.

The Components of Exception Handling
Exception handling consists of three main components:

• Try blocks—These sections of code are where you want to “try” to detect an error. To
delineate a try block, you simply enclose in with the try keyword followed by braces
to enclose the block, as follows:

try { 

// code to try goes here

} // end try block

• Catch blocks—Catch blocks are the fielders for the try blocks—anything that is tried
is “caught” by a catch block. Catch blocks are started with the catch keyword and a
variable declaration of the type of information that is going to be sent, followed by
braces to enclose the block, as follows:

catch(type v) {

// error handling code for the try block goes here

// this catch will handle data of the class “type”

} // end catch block

• Throw statements—Last but not least are the throw statements. These are the actual
lines of code that initiate the error handling (throw the error, to keep the analogy
going). In other words, when the code logic detects an error, it throws the error to
the nearest catch block from the current try block. In essence, program flow immedi-
ately jumps to the catch block. Throw statements can throw any type of data—
strings, ints, floats, classes, and so on. The syntax is

throw(type v);
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Let’s try a simple example with all three components:

try {

// do an error prone calculation..

// error occurred! throw it

throw(“there was an error in the calculation module”);

} // end try

// the catch block MUST be directly below the try block

catch(const char *str) {

// take action!

printf(“\nError Thrown: %s”, str);

} // end catch block

In this example, we have the simple structure of first the try block, then the catch block,
and then the throw statement throwing a string variable, or more specifically, a const
char *. That’s why the catch block has the type declared as a const char *. However,
there is no reason why we can’t throw and catch multiple data types, as in this example:

try {

// do an error prone calculation..

// has bad thing 1 occurred? throw it

if (bad_thing1)

throw(“there was an error in the calculation module”);

// bad thing 2

if (bad_thing2)

throw(12);

} // end try

// the catch blocks MUST be directly below the try block

catch(const char *strerror) {

// take action for string throws

printf(“\nError Thrown: %s”, strerror);

} // end catch block

catch(int ierror) {

// take action for integer throws

printf(“\nError Thrown, Code: %d”, ierror);

} // end catch block

In the above example, we have one try block, but two possible errors; one throws a string,
and one throws an integer. This is no problem—we simply need a catch block that can
take a string or integer.
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The last feature of exception handling I want to mention is that exceptions can occur in
functions as function calls. For example, look at the code below:

void func(void)

{

// bad things happen here!

switch(rand()%3)

{

case 0: // string bad thing

throw(“Something went wrong with the text!”);

break;

case 1: integer bad thing

throw(1);

break;

case 2: floating point bad thing

throw(0.5);

break;

default: // all bad things!

} // end switch

} // end func

void main(void)

{

try {

// call our worker function WITHIN the try block

func();

} // end try

// the catch blocks MUST be directly below the try block

catch(const char *strerror) {

// take action for string throws

printf(“\nError Thrown: %s”, strerror);

} // end catch block

catch(int ierror) {

// take action for integer throws

printf(“\nError Thrown, Integer Code: %d”, ierror);

} // end catch block

catch(int ferror) {

// take action for float throws
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printf(“\nError Thrown, Floating Code: %d”, ferror);

} // end catch block

catch(…) {

// any other error goes here

} // end catch all

} // end main

TIP

Notice the catch(...) statement. This is called the catch all statement. Anything that doesn’t
have an explicit catch() block will end up here.

Referring to the code listing, the function func() is called from main() within a try block;
therefore, anything that happens within that try block will be caught.

Obviously, exception handling has a lot more functionality than what’s shown here, but
this is start. Here are some quick rules to code by:

• Don’t use exception handling on small projects.

• Don’t add exception handling to a code base that doesn’t have it already. That is, a
heterogeneous error-handling system isn’t a good idea.

• If you already have a robust error-handling system, there’s no need to recode it with
exception handling.

• Exception handling works best when it helps separate logic and error handling. In
fact, this is its strength.

Summary
Well, that’s it for my crash course in C++. You might not be a C++ coder now, but you
have a good idea of what the language adds to the C repertoire of functionality. If you’re
interested in learning more, here’s the URL of the free online book, Thinking in C++ 2nd
Edition, by Bruce Eckel:

http://www.mindview.net/Books/TICPP/ThinkingInCPP2e.html

It’s all about the free stuff!
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APPENDIX E

Game Programming
Resources

The following information is a potpourri of resources you
might find useful in your endeavors as a game programmer.

Game Programming and News Sites
There are hundreds of great game programming sites, so I
can’t list them all here. These are some of my favorites:

IGN

http://www.ign.com/

GameDev.Net

http://www.gamedev.net/

FlipCode

http://www.flipcode.com/

The Official MAME Page

http://www.mame.net/

The Games Domain

http://www.gamesdomain.com/

The Coding Nexus

http://www.gamesdomain.com/gamedev/gprog.html

The Computer Game Developers’ Conference

http://www.gdconf.com

The Xtreme Game Developers’ Conference

http://www.xgdc.com
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Download Points
A game programmer needs to have access to cool games, tools, utilities, and stuff like that.
Here’s a list of places that I like to download from:

eGameZone

http://www.egamezone.net

Happy Puppy

http://www.happypuppy.com

Game Pen

http://gamepen.ugo.com/topten.asp

Adrenaline Vault

http://www.avault.com/pcrl/

Download.com

http://www.download.com/

CNet

http://www.cnet.com

2D/3D Engines
The 3D Engine List is the focal point of all 3D engine development on the Web, contain-
ing 3D engines of varying levels of technology. The amazing thing is that many of the
authors will let you use their engines for free! Here’s the address:

http://cg.cs.tu-berlin.de/~ki/engines.html

Here are some additional links to some specific 2D/3D engines that rock!

Genesis 3D Engine

http://www.genesis3d.com

SciTech MGL

http://www.scitechsoft.com

Lithtech Engine

http://www.lithtech.com/
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Game Programming Books
There are lots of books on graphics, sound, multimedia, and game development, but
buying them all is too expensive. Here are some sites that review game-related books and
give you the lowdown:

Games Domain Bookstore

http://www.gamesdomain.com/gamedev/gdevbook.html

Premier Publishing Game Development Series

http://www.premierpressbooks.com/catalog/titlelist.cfm?category=

Game%20Development

Charles River Media Game Development Series

http://www.charlesriver.com

Microsoft DirectX Multimedia Exposition
Microsoft undoubtedly has the biggest Web site in the world. There are thousands of
pages, sections, FTP sites, and so on. However, the page you should be interested in is the
DirectX Multimedia Expo at

http://www.microsoft.com/windows/directx/default.asp

On this page you’ll find the latest news, along with downloads of the latest versions of
DirectX and any patches to previous versions. You could do worse than to take an hour
each week and read through this information. It will definitely keep you up to date with
the wonderful world of Microsoft and DirectX. And of course, let’s not leave out the new
Xbox site at

http://www.xbox.com/

Usenet Newsgroups
I’ve never been much into Internet newsgroups because it’s such a slow way to communi-
cate (it’s almost as bad as reading hard copy). But here are a few newsgroups that might be
worth checking out:

• alt.games

• rec.games.programmer

• comp.graphics.algorithms

• comp.graphics.animation

• comp.ai.games
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If you’ve never read a newsgroup before, read on … You’ll need a newsreader that can
download the information and allow you to read the message threads. Most Web
browsers, such as Netscape Navigator and Internet Explorer, have a built-in newsreader.
Just read the Help files and figure out how to set up your browser to read newsgroups.
Then log on to any of the newsgroups, such as alt.games, download all the messages, and
start reading!

Keeping Up with the Industry: Blues News
About 99.9% of the Internet is a complete waste of bandwidth. It’s mostly a bunch of
people babbling back and forth and communicating flights of fantasy. But there are a
couple of places that aren’t a total waste of your time. One of them, Blues News, is basi-
cally a place where various industry icons and poseurs post their thoughts of the day. Just
log on to http://www.bluesnews.com and check out what’s happening on a daily basis.

Game Development Magazines
To my knowledge, there is only one game development magazine in the English language.
Game Developer is published monthly and contains articles on game programming, art, 3D
modeling, market trends, and more. Its Web site is located at http://www.gdmag.com.

Quake Stuff
Everything you ever wanted to know about Quake is here:

http://www.planetquake.com/

Free Models and Textures
This is a great site to get free models, textures, and other assorted game programming
media:

http://www.3dcafe.com/asp/default.asp

Game Web Site Developers
The last thing that you might think of when you’re creating a game is its Web site! If
you’re trying to sell a game yourself as shareware, having a mini-site that shows off the
game is very important. You might know how to use FrontPage or the simple Web editor
in Netscape, but if you want a really cool Web site to show off your game and make it
look larger than life, you should have it done professionally. I have seen so many really
good games that have a horrible Web presence.

The company I use is the Belm Design Group. They can help you make a site for your
game, usually from $500–$3,000. Contact them at http://www.belmdesigngroup.com.

And last but not least, here’s my email address once more:

CEO@xgames3d.com
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APPENDIX F

ASCII Tables

If there’s one thing that I am always looking for, it’s an ASCII
chart! I think the only books in existence that have ASCII
charts are Peter Norton’s PC books! An ASCII chart should be
in every computer book ever printed, and I’m at fault as
much as the next guy. Alas, I have changed my evil ways, and
behold—here are the fully annotated extended ASCII charts
for the characters 0–127 and 127–255.
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