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Almost all computer graphics practitioners have a good grasp of the 3D Cartesian space. However, in
many graphics applications, orientations and rotations are equally important, and the concepts and tools
related to rotations are less well-known.

Quaternions are the key tool for understanding and manipulating orientations and rotations, and this
book does a masterful job of making quaternions accessible. It excels not only in its scholarship, but also
provides enough detailed figures and examples to expose the subtleties encountered when using quaternions.
This is a book our field has needed for twenty years and I’m thrilled it is finally here.

—Peter Shirley, Professor, University of Utah

This book contains all that you would want to know about quaternions, including a great many things
that you don’t yet realize that you want to know!

—Alyn Rockwood, Vice President, ACM SIGGRAPH

We need to use quaternions any time we have to interpolate orientations, for animating a camera
move, simulating a rollercoaster ride, indicating fluid vorticity or displaying a folded protein, and it’s all
too easy to do it wrong. This book presents gently but deeply the relationship between orientations in 3D
and the differential geometry of the three-sphere in 4D that we all need to understand to be proficient in
modern science and engineering, and especially computer graphics.

— John C. Hart, Associate Professor, Department of Computer Science, Univer-
sity of Illinois Urbana-Champaign, and Editor-in-Chief, ACM Transactions on Graphics

Visualizing Quaternions is a comprehensive, yet superbly readable introduction to the concepts,
mechanics, geometry, and graphical applications of Hamilton’s lasting contribution to the mathematical
description of the real world. To write effectively on this subject, an author has to be a mathematician,
physicist and computer scientist; Hanson is all three.

Still, the reader can afford to be much less learned since the patient and detailed explanations makes
this book an easy read.

—George K. Francis, Professor, Mathematics Department, University of Illinois
at Urbana-Champaign

The new book, Visualizing Quaternions, will be welcomed by the many fans of Andy Hanson’s
SIGGRAPH course.

—Anselmo Lastra, University of North Carolina at Chapel Hill



Andy Hanson’s expository yet scholarly book is a stunning tour de force; it is both long overdue,
and a splendid surprise! Quaternions have been a perennial source of confusion for the computer graphics
community, which sorely needs this book. His enthusiasm for and deep knowledge of the subject shines
through his exceptionally clear prose, as he weaves together a story encompassing branches of mathematics
from group theory to differential geometry to Fourier analysis. Hanson leads the reader through the
thicket of interlocking mathematical frameworks using visualization as the path, providing geometric
interpretations of quaternion properties.

The first part of the book features a lucid explanation of how quaternions work that is suitable for a
broad audience, covering such fundamental application areas as handling camera trajectories or the rolling
ball interaction model. The middle section will inform even a mathematically sophisticated audience, with
careful development of the more subtle implications of quaternions that have often been misunderstood,
and presentation of less obvious quaternion applications such as visualizing vector field streamlines or the
motion envelope of the human shoulder joint. The book concludes with a bridge to the mathematics of
higher dimensional analogues to quaternions, namely octonions and Clifford algebra, that is designed to
be accessible to computer scientists as well as mathematicians.

—Tamara Munzner, University of British Columbia
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Foreword

My first experiences with Andy Hanson’s work were with his visualizations of
mathematical and geometric problems, such as his clever and engaging “Visualizing
Fermat’s Last Theorem” (1990).∗ It was clear to me that he was a talented geometer
and an excellent communicator, so when the SIGGRAPH conference started to bun-
dle courses with its technical program I encouraged Andy to develop an advanced
course on geometry. This book is the result of that course. His course is still doing
well at SIGGRAPH—the audience overflowed a good-sized room at the conference
this year. Even some of Andy’s students couldn’t get in.

As a computer graphics instructor I have been interested in the way quaternions
represent 3D rotations and I hoped Andy’s book would help me learn more about
that. It has indeed shown me how quaternions represent 3D rotation frames and
how quaternion interpolation provides an elegant and powerful way to interpolate
3D rotations. But I have learned a great deal more than that. Andy puts quaternions
into a historical and mathematical context and shows how unit quaternions can
be understood through their projections into the closed 3D unit sphere S3. This
enables him take you from a discussion of twisted belts, rolling balls, and gimbal
lock to an appreciation of how thinking in S3 helps you to understand quaternion
curves and how to interpolate quaternions. This in turn helps you to interpolate
rotations more effectively as fully described in the later chapters.

Andy has written the first section of this book to be accessible to anyone with
a bit of mathematics background, such as a passing familiarity with complex vari-
ables, linear algebra, and analytic geometry. I think he has accomplished this, but
even an experienced reader will want to pause occasionally in thought in this first
part. My mathematics background is in noncommutative rings, so many of the
ideas presented here were not totally new to me. Even so, Andy’s fluency in mov-
ing between algebra and geometry and his intuition into the meaning of curves

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
∗ “Visualizing Fermat’s Last Theorem,” SIGGRAPH Video Review, issue 61, piece 4.
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xxiv FOREWORD

in quaternion space led me to resort to paper and pencil a few times to work out
his conclusions. The result has been worth the effort. Quaternions are beautiful
mathematics in their own right and lead to some mathematical ideas that tie geom-
etry and algebra together in a most lovely way. I am looking forward to further
exploring these ideas.

This book closes a circle for me since I first started doing computer graphics
in order to explore mathematics (though at a rather elementary level for my un-
dergraduate mathematics students). Now computer graphics has led me to a place
where I can use my graphics interests to return to mathematical questions. I hope
this book will lead you on a similar journey.

Steve Cunningham
August, 2005
Iowa City, Iowa



Preface

The purpose of this book is to examine both the properties and applications of
quaternions, and, in particular, to explore visual representations that help to de-
velop our intuition about quaternions and their exploitation. Of all the natural
advantages of quaternions, several stand out clearly above all others:

• Normalized quaternions are simply Euclidean four-vectors of length one,
and thus are points on a unit hypersphere (known to mathematicians as the
three-sphere) embedded in four dimensions. Just as the ordinary unit sphere
has two degrees of freedom, e.g., latitude and longitude, the unit hyper-
sphere has three degrees of freedom.

• There is a relationship between quaternions and three-dimensional rotations
that permits the three rotational degrees of freedom to be represented exactly
by the three degrees of freedom of a normalized quaternion.

• Because quaternions relate three-dimensional coordinate frames to points
on a unit hypersphere, it turns out that quaternions provide a meaningful
and reliable global framework that we can use to measure the distance or
similarity between two different three-dimensional coordinate frames.

• Finally, again because they are points on a hypersphere, quaternions can be
used to define optimal methods for smooth interpolation among sampled
sets of three-dimensional coordinate frames.

These features in fact characterize essential properties—an appealing geometric in-
terpretation, the existence of meaningful similarity measures, and interpolatability
of sampled data—that are advantageous in general for mathematical representations
that are used to model physical actions and states. Part I of the book will focus on
understanding these basic properties and how they can be useful to us.

xxv



xxvi PREFACE

For the reader who is looking for more novel ways to exploit the properties of
quaternions, we turn in Part II of the book to a number applications and insights
that go well beyond conventional quaternion methods. Among the more sophis-
ticated applications of quaternions presented in the text, I emphasize particularly
the exploitation of quaternion manifolds, which have appeared in scattered technical
articles, but have no equivalent systematic treatment elsewhere. There are three ba-
sic types of quaternion manifolds whose properties can be briefly summarized as
follows:

Quaternion Curves. Quaternion curves are familiar in the computer graph-
ics literature as the means to implement smooth interpolations of three-
dimensional coordinate frames; however, there are many other applications
that lead to natural curves in quaternion space representing continuous se-
quences of orientation frames. In a typical application from elementary dif-
ferential geometry, moving frames are attached to a curve, constrained so
that a particular frame axis follows the curve’s tangent. This leads to clas-
sical constructs such as the Frenet–Serret frame; however, there are other
equally important, but less familiar, frames that complement the Frenet–
Serret equations, and can be used when the latter fail. By studying the fam-
ily of all possible frames using the quaternion representation, we are led to
an elegant system of quaternion differential equations describing the evo-
lution of curve framings in general; these equations, known since the 19th
century, correspond in essence to the square root of the conventional equa-
tions. The dynamic quaternion frame equations are now commonly used
to replace the more traditional Euler-angle gyroscope dynamics equations
in modern approaches to physically-based modeling for computer graphics.
The entire family of concepts is amenable to depiction as curves embedded
in quaternion space, with a variety of possible visualizations, applications,
and intuitive interpretations.

Quaternion Surfaces. Computer graphicists and others with some mathematical
background may be familiar with the Gauss map, which is essentially a mesh
on a unit sphere, each point of which is the normal direction of the corre-
sponding vertex on a meshed surface; the Gauss map contains deep hints of
the fundamental nature of Riemannian geometry. In graphical models, sur-
faces are almost never adequately described simply by their vertex positions
and normals; typically, in order to apply a texture, for example, a complete
frame is required. I have proposed the quaternion Gauss map [70] as a natural and
fundamental approach to the surface frame problem. The properties of sur-
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face frame fields have no consistent representation in terms of Euler angles,
but can be studied as a surface with meaningful metric properties using the
quaternion Gauss map. Many fundamental properties of differential geome-
try, e.g., the absence of a global set of coordinate frames on an ordinary unit
sphere, are inescapably exposed by the quaternion Gauss map and the as-
sociated quaternion surfaces. For those with mathematical inclinations, we
present a novel quaternion extension of the Weingarten equations for the
classical differential geometry of surfaces.

Quaternion Volumes. Since the unit quaternions that are the central focus of this
book are themselves three-dimensional, and the entire quaternion space is
a hypersphere, the only remaining spaces that can usefully be constructed
from quaternions consist of bounded volumetric objects. Quaternion vol-
umes have found a new and essential application in the construction of orien-
tation domains; in particular, a human or robotic joint with three full degrees of
freedom can have any state represented as a quaternion point. The collection
of all such states is a volume, normally continuous, and the permissible space
of states is delineated by the boundary of that volume, thereby giving an el-
egant means of clamping errorful orientation measurements or commands
to the permitted domain. Quaternion volumes incorporate a natural method
for determining consistent distances and optimal paths from an invalid state
to the allowed orientation domain.

Finally, in Part III of the book, we briefly look at the issues involved in attempt-
ing to generalize the properties of quaternions to dimensions other than three.

Intended Audience: I assume initially that the reader has a passing familiarity with com-
plex variables, linear algebra, and analytic geometry, and has tried to transform a
vertex with a matrix a few times. Certain topics, such as complex variables, will be
reviewed thoroughly since they will serve as a framework for producing analogies
that will be used to study quaternions and their properties. As the text moves on
to more complex concepts, and particularly in the later chapters, the mathematics
becomes more challenging, though I have made substantial efforts to add intuitive
remarks and self-explanatory notes so that most readers should still be able to enjoy
and assimilate essential features of the material.

My intent is that the earlier chapters should be informative to almost anyone
with the noted minimal background, and that these readers need not trouble them-
selves with the more technical chapters. However, those who can potentially benefit
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from some of the more advanced mathematical concepts that arise in the study of
quaternions should find ample material to keep them occupied in the later chapters.

The book keeps several different levels of readers in mind, with signposts indi-
cating when a more advanced background may be needed to benefit fully from a
particular section. I therefore hope that readers with any number of diverse back-
grounds and interests, plus enough intellectual curiosity to follow a given train of
thought through to its inevitable conclusions, can absorb the arguments in the sec-
tions that are relevant to their interests, find them as fascinating as I do, and perhaps
generate some of their own original insights by asking “why” one time too many!

The basic material presented here covers first the needs of those wishing to
deepen their intuitive understanding of the relationship between quaternions and
rotations, quaternion-based animation, and moving coordinate frames. The next
level of material deals with concepts of 3D curves and surfaces appearing exten-
sively in computer graphics and scientific visualization applications. Finally, there is
a selection of topics addressing the needs of those familiar with advanced problems
and research, including an attempt to address some of the deeper theoretical un-
derpinnings of quaternions, such as the question of what aspects of quaternions are
and are not generalizable to other numbers systems and other dimensions. While
we do not focus extensively on practical implementations or attempt to provide a
“cookbook” for the graphics game developer, we do supply selected software ex-
amples to illustrate various points, and summarize the core body of code in an
appendix.

Illustrations: The illustrations form an essential part of the text, and my goal has
been to provide whatever visual cues are at my disposal to meet the objective of
allowing the reader to truly “visualize quaternions.” There are three main styles of
graphics that complement the text: the first consists of simple line drawings, many
formatted originally in the xfig package, and largely redrawn by the publisher’s
artists to correspond to my original drawings and sketches. The major portion of
the mathematically precise illustrations were obtained directly from their equa-
tions using Mathematica™; high-resolution 3D shaded models were produced by
the MeshView package [84,85], my own quaternion-friendly 3D-plus-4D visual-
ization tool that accepts a wide variety of elementary modeling data. The actual
model files used by MeshView were themselves typically computed and created
using Mathematica.

Outline: The history of quaternions has been recounted many times, and in many
ways. Our introduction will pause only momentarily to dwell on the historical as-
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pects and development of the field, referring the reader to a number of sources
more concerned with this material than we are. The book is divided into several
major thematic units. First we look into various ways in which rotations, and hence
quaternions, enter into everyday experience, and then begin to study 2D and 3D
rotations. We attempt to draw fruitful analogies between ordinary complex vari-
ables and quaternions, exploiting the surprising richness of two-dimensional rota-
tions and following an inevitable path to the relationship of quaternions to three-
dimensional orientation spaces. Next, we examine the quaternion description of
moving frames of coordinate-axis triples on curves and surfaces, revealing many
essential insights that are almost completely neglected in the standard literature. By
introducing the quaternion Gauss map, we are able to do for frames what the Gauss
map historically accomplished for surface normals, and then we explore the idea of
characterizing properties of curves and surfaces by analyzing the quaternion fields
of their moving frames. A family of vexing problems in modeling and geometry is
solved by defining a method that constructs optimal moving frames. Finding opti-
mal continuous relations among frames leads us to the historically-important study
of quaternion applications to orientation splines and energy-constrained choices
of smooth quaternion orientation paths. The application of quaternion volumes
to delimit the orientation spaces of biological or mechanical joints completes the
family of dimensions that can be examined as quaternion manifolds. A selection of
particular techniques that helps exploit all these quaternion manifold applications
includes overviews of spherical modeling primitives and spherical geometry. The
final chapters of our treatment outline the larger mathematical framework of di-
vision algebras and Clifford Algebras, in which quaternions play an essential part,
and thus shed light on the ways in which quaternion methods may (and may not)
be extended to higher dimensions.

Musings. The presentation style of this book is a somewhat personal and idiosyn-
chratic one. It has evolved over many years of writing about mathematics, and takes
a form that makes it easy for me personally to comprehend and retain essential facts.
It may not satisfy everyone. In particular, the mathematics is quite pragmatic, com-
pletely neglecting theorems and proofs; but for this I offer no apologies. My choices
of notation and mathematical exposition are clearly rooted in my background as a
classically trained theoretical physicist, not a mathematician or an engineer. How-
ever, the desire to make mathematical things visible has deep psychological roots,
possibly artistic in nature, and certainly owes a debt to a year of painfully inade-
quate accomplishment but inspirational hands-on study of 3D sculpture squeezed
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into my education as an undergraduate science major. For me, visual representa-
tions have always formed a more essential part of any intuitive understanding of
science than mathematical formulas. One must of course be wary that graphical
representations cannot often substitute for a facility with the mathematics itself.
Nevertheless, visual representations can certainly make the mathematics simpler to
recall and reconstruct, aid in the recognition of essential features, and enhance the
likelihood that correct intuitive insights can be generated and applied.

Notations indicating advanced or supplementary material. This book contains a wide variety of
information. We have attempted to separate the basic material into the first set of
Chapters in Part I, and reserve the later Chapters in Part II and Part III for more
advanced topics and applications. The main text in Part I is intended to follow a
fairly sequential train of thought, so that an “average” reader with strong computer
graphics background should be able to follow the main sections. However, some
material of an advanced nature is included in various places in Part I for com-
pleteness, and is marked with a dagger (†) to indicate that this material requires
additional background knowledge and can be skipped if desired. In Parts II and III,
the † symbol is generally omitted, since nearly every section requires some special-
ized knowledge or background. Extremely important points, relating concepts and
ideas that convey major themes of the book, are singled out by placing the text
inside a box . Finally, examples of elementary computer programs are given at
critical points throughout the text, with a summary in an appendix.

URL for demonstration software. The software fragments listed in the tables can be found
at http://www.visualizingquaternions.com, along with several demonstration systems that
support the interactive visualization of quaternions and supplement many of the
concepts presented in the text.
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3

The first group of chapters in this book, beginning with Chapter 1 and ending
with Chapter 14, sets forth the fundamental concepts of quaternions, methods of
quaternion visualization, and what we consider to be the most basic examples of
the ways that quaternions can be used to explain and manipulate the phenomena
of 3D orientation.

Although we have attempted to make the chapters in Part I as basic as possible,
there are still advanced technical issues of interest to selected readers that are noted
from time to time. These paragraphs are denoted with a dagger (†) to indicate that
they can be omitted at the discretion of the reader.
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The Discovery of Quaternions

01
1.1 HAMILTON’S WALK

Quaternions arose historically from Sir William Rowan Hamilton’s attempts in the
midnineteenth century to generalize complex numbers in some way that would be
applicable to three-dimensional (3D) space. Because complex numbers (which we
will discuss in detail later) have two parts, one part that is an ordinary real number
and one part that is “imaginary,” Hamilton first conjectured that he needed one ad-
ditional “imaginary” component. He struggled for years attempting to make sense
of an unsuccessful algebraic system containing one real and two “imaginary” parts.
In 1843, at the age of 38, Hamilton (see Figure 1.1) had a brilliant stroke of imag-
ination, and invented in a single instant the idea of a three-part “imaginary” system
that became the quaternion algebra. According to Hamilton, he was walking with
his wife in Dublin on his way to a meeting of the Royal Irish Academy when the
thought struck him. Concerning that moment, he later wrote to his son Archibald:

On the 16th day of [October]—which happened to be a Monday, and a Council day of
the Royal Irish Academy—I was walking in to attend and preside, and your mother was
walking with me, along the Royal Canal, to which she had perhaps driven; and although

5
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FIGURE 1.1 Sir William Rowan Hamilton, 4 August 1805–2 September 1865. (History
of Mathematics web pages of the University of St. Andrews, Scotland.)

she talked with me now and then, yet an under-current of thought was going on in my
mind, which gave at last a result, whereof it is not too much to say that I felt at once
the importance. An electric circuit seemed to close; and a spark flashed forth, the herald
(as I foresaw, immediately) of many long years to come of definitely directed thought
and work, by myself if spared, and at all events on the part of others, if I should even be
allowed to live long enough distinctly to communicate the discovery. Nor could I resist
the impulse—unphilosophical as it may have been—to cut with a knife on a stone of
Brougham Bridge, as we passed it, the fundamental formula with the symbols, i, j , k;
namely,

i2 = j2 = k2 = ijk = −1

which contains the Solution of the Problem. . .
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FIGURE 1.2 The plaque on Broome Bridge in Dublin, Ireland, commemorating the legendary
location where Hamilton conceived of the idea of quaternions. In fact, Hamilton and his wife
were walking on the banks of the canal beneath the bridge, and the plaque is set in a wall there.
(Photograph courtesy University of Dublin.)

A curiosity is that there is no “Brougham Bridge” in Dublin. Hamilton apparently
misspelled the name “Broome,” which is indeed the name of the bridge on which
he carved his equations, since the two spellings would have been pronounced the
same.

We can see that Hamilton was so overwhelmed by his discovery that he feared
he might collapse and die before he had a chance to tell anyone, and thus, for
safety, carved the equations into the nearest wall, the side of a bridge arching over
the canal along which he was walking! Although Hamilton’s own carving soon
disappeared with the weather, a plaque (Figure 1.2) was later placed on the very
spot, and commemorates the event to this day.
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A feature of quaternions that we will use throughout this book is that they
are closely related to 3D rotations, a fact apparent to Hamilton almost immedi-
ately but first published by Hamilton’s contemporary Arthur Cayley in 1845 [28].
Hamilton’s quaternion multiplication rule, which contains three subrules identi-
cal to ordinary complex multiplication, expresses a deep connection between unit-
length four-vectors and rotations in three Euclidean dimensions. Curiously, the rule
could in principle have been discovered directly by seeking such a connection, since
quaternion-like relations appear buried in rotation-related formulas that predate the
discovery of quaternions by Hamilton. Rodrigues appears to actually have been the
first, in 1840 [142], to write down an equivalent version of the equations that
Hamilton scratched on “Brougham” Bridge in 1843 [5,17,112]. The appearance
of three copies of the complex multiplication rule and the involvement of three
Euclidean dimensions is not accidental. Complex multiplication faithfully repre-
sents the two-dimensional (2D) rotation transformation, and each complex mul-
tiplication subrule in the quaternion rule will be seen to correspond to a rotation
mixing two of the three possible orthogonal 3D axes.

Hamilton proceeded to develop the features of quaternions in depth over the
next decade, and published his classic book Lectures on Quaternions [64] exactly ten
years later in 1853. The still more extensive Elements of Quaternions [65] was not pub-
lished until 1866, shortly after Hamilton’s death in 1865. The banner of quater-
nions was then picked up by Peter Tait, who had diplomatically awaited Hamilton’s
passing before publishing his own, perhaps more readable, opus, Elementary Treatise
on Quaternions, [160] in 1867; Tait followed the Treatise with Introduction to Quaternions
in 1873 [161], and produced a major revision of the Treatise in 1890 [162]. From
there, the story continues in many directions that we shall not pursue here (see, for
example, Altmann [4,5], Crowe [35], or van der Waerden [164]).

1.2 THEN CAME OCTONIONS

One of the fascinating questions that occurred to several people shortly after they
learned of Hamilton’s discovery was this: “If quaternions generalize complex num-
bers, can quaternions themselves be further generalized?” Although the technical
answer to this question is complex, it was quickly found that, given certain com-
pelling mathematical conditions, there is exactly one further generalization, the
octonions.

The story of octonions is nearly as interesting as that of quaternions. Soon after
Hamilton discovered quaternions, he sent a letter describing them to his friend
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John T. Graves. Graves replied on 26 October, complimenting Hamilton on the
boldness of the idea, but adding “There is still something in the system which
gravels me. I have not yet any clear views as to the extent to which we are at liberty
arbitrarily to create imaginaries, and to endow them with supernatural properties.”
He also asked: “If with your alchemy you can make three pounds of gold, why
should you stop there?” [9].

On 26 December 1843, Graves wrote to Hamilton to tell him that he had suc-
cessfully generalized quaternions to the “octaves,” an 8-dimensional (8D) algebra,
with which he was able to prove that the product of two sums of eight perfect
squares is another sum of eight perfect squares. Unfortunately for Graves, Hamil-
ton put off assisting him in publishing his results and octonions were discovered
independently and published in 1845 by Arthur Cayley [29]. Despite the fact that
both Graves and Hamilton published notes claiming Graves’ priority over Cayley,
the octonions were thereafter known widely as “Cayley numbers,” and Graves’ con-
tribution is often overlooked. There are in fact several ways in which we can look
for generalizations of quaternions. These are typically very advanced topics, but we
have provided a brief treatment for the interested reader in Part III.

1.3 THE QUATERNION REVIVAL

Since the intense work on quaternions that occurred in the 19th century, many
things have happened. One is that, although Hamilton lobbied tirelessly to get
quaternions accepted as the standard notation for 3D vector operations such as the
dot product and the cross product (see Chapter 3 or Appendix A), the notation
was always perceived as awkward, and thus the alternative tensor notation set for-
ward by Gibbs became the standard [35]. Even in this book, we will universally
use Gibbs’ notation x = (x, y, z) to express a 3D vector and to help “explain”
the inner workings of quaternions, rather than the other way around. When the
quantum mechanics of the electron was developed in the early 20th century, it
became clear that quaternions were related to recently developed mathematical ob-
jects called spinors, and that electrons were related to both. Yet again, a quaternion-
based notation was possible, but was discarded in favor of an alternate notation; the
quaternion-equivalent notation that is standard in physics applications is based on
2× 2 matrices, known as the Pauli matrices.

Both the physical theory of rotating elementary particles and essential elements
of the mathematics of group theory incorporate quaternions, but the intense in-
terest of Hamilton’s era dimmed due to more transparent notational devices (an
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advantage never to be underestimated) and a lack of important practical applica-
tions. However, the theory of 3D rotations had one more trump card waiting in
the wings of technology: the need for comprehensive methods of representing ori-
entation frames and interpolating between them in the newly developed field of
3D computer graphics and animation. We will now, therefore, conclude our short
history by devoting some space to the remarkable story of the revival of quater-
nions and their adaptation to the needs of the computer modeling and animation
community.

Although the advantages of the quaternion forms for the basic equations of at-
titude control (clearly present in Cayley [28], Hamilton [64], and especially Tait
[160]) had been noticed and exploited by the aeronautics and astronautics com-
munity [169,98,103], the technology did not penetrate the computer animation
community until the landmark Siggraph 1985 paper of Ken Shoemake [149]. The
importance of Shoemake’s paper is that it took the concept of the orientation frame
for moving 3D objects and cameras, which require precise orientation specification,
exposed the deficiencies of the then-standard Euler-angle methods, and introduced
quaternions to animators as a solution. This stimulated a wide variety of inves-
tigations and applications (e.g., [4,139,104,115]), ultimately creating a general
awareness of quaternion exploitation as practiced by many different scientific com-
munities, and potentially unifying the approaches so that perhaps the “quaternion
wheel” will no longer be reinvented unnecessarily.

The primary tool introduced in Shoemake’s original paper was the interpola-
tion formula for a great circle connecting two points on an arbitrary-dimensional
sphere. By analogy to the acronym “LERP” that might be used for ordinary linear
interpolation, Shoemake coined the term “SLERP” for “spherical linear interpola-
tion,” a terminology that remains in common usage. Curiously, Shoemake himself
did not present a derivation of the SLERP formula in his original paper, although
there are several standard approaches, such as the Gram–Schmidt method, that we
will present in later chapters.

Given the SLERP, the analogy to standard iterative procedures for constructing
arbitrary-degree Euclidean splines from linear interpolation immediately suggests
methods for constructing spherical splines. Spherical arcs from the SLERP can, if
one analyzes the anchor points judiciously, be transformed to provide close analogs
of the anchor-point and tangent-direction properties of the conventional families
of Euclidean splines. It is reasonably straightforward to develop uniform quaternion
spline families in an elegant practical form, and we will discuss quaternion splines
thoroughly.



1.3 THE QUATERNION REVIVAL 11

The computer graphics and modeling community now has general familiarity
with quaternions and their uses, but we should note that there are still unresolved
issues and controversies regarding the necessity or advantages of quaternion orien-
tation representations. A number of industry-standard animation systems continue
to omit quaternions entirely, requiring separate x-axis, y-axis, and z-axis inter-
polations for character and camera orientation control, and the author has more
than once asked an animation team member of a graphics-effects-laden Hollywood
movie whether quaternions were used to control orientations in their software and
received a dismissive negative answer. The explanation is that good tools, or ex-
tremely skilled use of poor tools, can still produce good results, and that quaternion
curve methods can easily suffer from their own anomalies unless skillfully applied.
Without good tools and sophisticated designers, quaternion methods can produce
results that are as poor as any other naively applied orientation spline method and
that may show no clear superiority over a classic Euler-angle approach. Increasingly
sophisticated quaternion interpolation tools, as well as awareness of their advan-
tages, are necessary to generate an environment in which quaternions realize their
potential for the representation and manipulation of orientation states. Creating and
facilitating this awareness is one of the purposes of this book.
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Folklore of Rotations

The rise of digital computing as an es-

02 sential component of human existence has
influenced everything from entertainment
and the functionality of the family car to
the conduct of warfare and the methods of
scientific research. Both NASA astronauts
and Hollywood film directors use com-
puter systems to monitor and control the
positions of objects in space. Computer

systems perform operations inside the virtual mathematical world of computer
models that would once have been done with sticks and clay, and this has altered
forever the importance of the mathematics of rotations. What once might have
been done simply by taking a physical object in hand is now done by a mathemati-
cal computer model. The traditional movie camera operator on a rolling miniature
trolley car was replaced in Star Wars by elaborate computer-controlled platforms,
and again in Toy Story by a computer model for each and every camera motion. The
World War II pilot’s controls that were mechanically connected to the flight sur-
faces have given way to computer-based controls for the Apollo Lunar Module, and
a completely electronic fly-by-wire system for the F16 jet fighter.

Let us now look at some surprising examples of how orientation frames for
3D objects appear in our lives. We will gradually come to realize that the more
complex are the tasks required of 3D orientation frames the more advantages we
gain from discarding traditional representations of orientations and replacing them
with quaternion-based methods.

We will examine three objects: an ordinary belt, a ball, and a gyroscope. We
will see how each shows us a new property that is difficult, if not impossible, to
explain properly in everyday language. Once we learn the language of quaternions

13
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a few chapters from now, we will be able to see these simple objects in a new way
that will change our perceptions forever after.

2.1 THE BELT TRICK

Our first example is so simple it does not even require a computer to show us that
something unexplainable by everyday logic is associated with sequences of rotations. The
ancient “belt trick” parlor game is played with an ordinary leather belt or similar
object as follows.

1 Two people begin by firmly holding opposite ends of the belt.
2 There is one rule: Each of the two people can move their end of the belt to

any point in space they like, as long as their end of the belt keeps the same orienta-
tion in space they started with. Switching hands is fine, but the orientation can-
not change. (Obviously, we also disallow any physical alteration of the belt.)

3 First, as shown in Figure 2.1, the players twist the belt by one full rotation
(360 degrees). Following the keep-the-ends-pointing-the-same-way rule,
the two players try every possible legal way to untwist the belt. It is discov-
ered that they can change the twist from clockwise to counterclockwise (or vice
versa) without violating the rule, but they never succeed at untwisting the
belt.

4 Next, as shown in Figure 2.2, they twist the belt by two full rotations (720
degrees).
It is discovered that under the same rules the belt can readily be returned to
a flat, untwisted state!

Why?

There is no way to actually understand the results of the “belt trick” parlor
game without quaternions or something equivalent to quaternions. We will
show how to understand the deep reasons behind the belt trick in Chapter 12,
after we have learned some basic quaternion visualization methods.

2.2 THE ROLLING BALL

Our next example is also so commonplace that many readers may have noticed it
without even realizing that something unusual was happening. Again, no computer
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FIGURE 2.1 The result of the belt-trick move for a 360-degree twist changes the orientation
sequence from clockwise to counterclockwise, but cannot untwist the belt.

is required—just a simple baseball, tennis ball, or even a beach ball. The “rolling
ball” game, which again focuses on the result of a sequence of rotations, is played as
follows.
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FIGURE 2.2 A 720-degree twist can be continuously deformed to an untwisted belt.
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FIGURE 2.3 Place a ball on a table, and put the palm of your hand on top of the ball. Making
a circular rubbing motion with your hand parallel to the tabletop results in a spinning motion of
the ball about the vertical axis, in the direction opposite your circular rubbing motion.

1 Place a ball on a flat table.
2 Place your hand flat on top of the ball, with the palm horizontal and parallel

to the table, touching the ball at only one point (the top of the ball). Moving
the hand parallel to the tabletop will result in a rotation about an axis in the
plane of the tabletop, as shown in Figure 2.3.

3 Without twisting your wrist in any way about the vertical axis, and keeping
the palm absolutely flat and parallel to the table, make a circular rubbing
motion, as though polishing the tabletop. Let only one point of the palm of
your hand contact the ball, and let the ball roll freely.

4 Watch a point on the equator of the ball.
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FIGURE 2.4 Three successive 90-degree rotations about axes lying in the plane of the page result
in a 90-degree motion about the axis perpendicular to the page, even though none of motions were
around the perpendicular axis.

5 If you rub in small clockwise circles, the point on the equator will rotate
slowly counterclockwise. If you rub in small counterclockwise circles, the
point on the equator will rotate slowly clockwise.

6 To obtain a more dramatic result, rotate the ball 90 degrees by moving your
palm to the right, 90 degrees again by moving the palm toward your body,
and 90 degrees once more by moving your palm to the left.
The result, illustrated in Figure 2.4, is a 90-degree counterclockwise twist
about the vertical axis, yet no motion twisting the ball about the vertical axes
was ever performed!

Why does this happen?
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The answer involves the deepest properties of group theory, and yet in Chap-
ter 13 we will be able to make a simple quaternion picture that basically
allows us to explain this phenomenon in practical terms. Quaternions permit
us to make a representation of what is going on that is completely different
from any other way of looking at the “rolling ball” game.

2.3 THE APOLLO 10 GIMBAL-LOCK INCIDENT

Quaternions are now used throughout the aerospace industry for attitude control of
aircraft and spacecraft. The reader who is interested in further details may wish to
consult the book Quaternions and Rotation Sequences by J. B. Kuipers [115] for an exhaus-
tive list of applications. The physical devices used to sense and correct the orienta-
tion of spacecraft, however, have inescapable limitations that illustrate a family of
problems that also occur in computer representations of orientations. A computer
program can sidestep most such problems by properly exploiting quaternions, but
conventional mechanical attitude control systems such as the Apollo Inertial Mea-
surement Unit (IMU)—shown in Figure 2.5—cannot.

A vivid illustration is taken from the NASA logs and commentary [165] for 18
May 1969, describing the return of the Apollo 10 Lunar Module Snoopy to the Com-
mand Module Charlie Brown during the final “dry run” to test the Apollo systems in
lunar orbit before the actual Apollo 11 lunar landing on 20 July 1969. As we join
the event, the Lunar Module, manned by astronauts Stafford and Cernan, has fin-
ished its solo flight tests in lunar orbit and is returning to dock with the Command
Module to start the trip back to Earth.

After Stafford’s camera failed, he and Cernan had little to do except look at the scenery
until time to dump the descent stage. Stafford had the vehicle in the right attitude 10
minutes early. Cernan asked, “You ready?” Then he suddenly exclaimed, “Son of a bitch!”
Snoopy seemed to be throwing a fit, lurching wildly about. He later said it was like flying
an Immelmann turn in an aircraft, a combination of pitch and yaw. Stafford yelled that
they were in gimbal lock—that the engine had swiveled over to a stop and stuck—
and they almost were. He called out for Cernan to thrust forward. Stafford then hit the
switch to get rid of the descent stage and realized they were 30 degrees off from their
previous attitude. The lunar module continued its crazy gyrations across the lunar sky,
and a warning light indicated that the inertial measuring unit really was about to reach
its limits and go into gimbal lock. Stafford then took over in manual control, made a big
pitch maneuver, and started working the attitude control switches. Snoopy finally calmed
down.
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FIGURE 2.5 Engineering drawing of the Apollo gimbal assembly. (Images from
NASA, Apollo Lunar Surface Journal at www.hq.nasa.gov/office/pao/History/alsj/
lm_imu.gif.)

In fact, there are a number of places in the Apollo development records and flight
logs where it is mentioned that special maneuvers are required “to avoid gimbal
lock.” As shown in Figures 2.6 and 2.7, there are actual warning lights on the
control panel and red-painted danger areas on the flight director attitude indicator
that are intended to detect and prevent gimbal lock.
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FIGURE 2.6 The actual Apollo 13 guidance computer console with “Gimbal Lock” warning
light. (Source: http://history.nasa.gov/afj/pics/dsky.jpg from http://history.nasa.gov/
afj/compessay.htm.)
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FIGURE 2.7 Assorted images of the Apollo flight director attitude indicator (FDAI), with
gimbal lock limits of spacecraft oriention marked as red disks at the poles (near yaw equal to 0
degrees or 180 degrees). (From http://history.nasa.gov/ap08fj/09day3_green.htm, www.
space1.com/Artifacts/Apollo_Artifacts/FLOWN_FDAI/flown_fdai.html, and www.space1.
com/Artifacts/Apollo_Artifacts/FDAI/fdai.html.)
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What is gimbal lock, and why did it become so visible in the Apollo missions?
The basic context is that the Apollo IMU, shown in Figure 2.5, is a mechanical
system with three apparent degrees of freedom. Figure 2.8 shows a schematic di-
agram of the IMU system. To understand the problem, we need to walk through
the set of images shown in Figure 2.9, which are taken from a tutorial on gimbal
lock compiled into the NASA Apollo 15 transcript [176]. The critical feature is a
mechanical gyroscope system, which is designed to maintain constant orientation
with respect to the outside world. The gyroscope system is attached to the space-
craft frame using three rotating rings of decreasing diameter. Initially, as shown in
Figure 2.8, the rotation axes of the three rings are set up to be orthogonal, pointing
along the current axes labeled 1, 2, and 3, respectively. The outer frame, represent-
ing the spacecraft structure, can rotate freely about axis 1 (Figure 2.9a) or about
axis 3 (Figure 2.9b) and nothing worrisome happens.

However, if we rotate by 90 degrees about axis 2—as illustrated in Figure 2.9c—
axes 1 and 3 line up, so that we have effectively lost one of our degrees of freedom: the
ability to spin freely about the original axis 1 (Figure 2.9a). This would perhaps
be acceptable if there were no gyroscope-based inertial guidance system involved.
When we tried to rotate about the original axis 1, as shown in Figure 2.9d, we
would note that the gray square fixed to the inner ring would be forced to change
direction and would no longer point in the same direction as in all the other figures.
Unfortunately, real gyroscopes do not behave this way. If you take a single gyroscope
spinning along axis 3 in Figure 2.9d and forcibly rotate it around the vertical axis
(original axis 1), the gyroscope will obey Newton’s laws for applied torque (see
Figure 2.10) and immediately start changing its direction until it points straight
down, aligned with the axis of the forced rotation.

This spells disaster: If you have only a single gyroscope, the sensors attached to the
gyroscope will be fooled into thinking the spacecraft has suddenly pitched by 90
degrees, and the control system will fire all the thrusters to (very quickly) realign
the spacecraft structure with the gyroscope, possibly seriously damaging the vehicle
in the process. (Note: Even this process can be described elegantly using quaternion
versions of Newton’s laws for gyroscopes, as we will see in Chapter 26.)

Reality is even worse: If you have multiple gyroscopes pointing in different direc-
tions, as in a typical real-world guidance system (see Figure 2.5), major incompat-
ible forces are exerted and the system could actually self-destruct.
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FIGURE 2.8 A schematic representation of the gimbal system of a spacecraft guidance system.
The outer rim represents the (presumably quite massive) structure of the vehicle. The cylinders con-
necting the rings to other structures represent nearly frictionless rotating bearings. The gray square
in the middle is the inertial guidance system, which presumably is set to a particular orientation
and is thereafter not supposed to change its direction. (Image from NASA Apollo 15 Flight
Journal transcripts at www.hq.nasa.gov/office/pao/History/ap15fj/15solo_ops3.htm,
W. David Woods and Frank O’Brien.)
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(a) (b)

(c) (d)

FIGURE 2.9 How a spacecraft gets into gimbal lock. Starting from the initial configuration
(Figure 2.8), we observe that each of the configurations a through c corresponds to rotations
about a single axis. The 90-degree rotation about axis 2 in Figure 2.8 causes axes 1 and 3 to
line up in c, losing a degree of freedom and potentially destroying the ability to further monitor
the spacecraft’s attitude. An external force causing rotation about the vertical axis in the bottom
images will attempt to make the “locked” gyroscopes move with the spacecraft. A single gyro-
scope would simply flip in response to Newton’s laws for torques. Multiple orthogonal gyroscopes
such as those in the Lunar Module IMU would resist all torques and eventually cause disastrous
damage to the spacecraft. (Images from NASA Apollo 15 Flight Journal transcripts
at www.hq.nasa.gov/office/pao/History/ap15fj/15solo_ops3.htm, W. David Woods and
Frank O’Brien.)
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FIGURE 2.10 When a force F is applied in an attempt to reorient a single gyroscope with
angular momentum L to any axis not aligned with the current gyroscope axis, the resulting torque
T will change the gyroscope’s direction by as much as 180 degrees. With multiple gyroscopes,
the system cannot follow the motion without massive stress on the mechanical system.

Gimbal-lock situations, in which two axes presumed independent become
aligned due to a particular motion (a 90-degree rotation about axis 2 in
Figure 2.8), must therefore be avoided at all costs! We will see in Chapter 14
how to visualize what is happening in gimbal lock, and why it is so difficult
to completely avoid it.

2.4 3D GAME DEVELOPER’S NIGHTMARE

Whereas mechanical devices such as the IMU (Figure 2.5) cannot escape the pos-
sibility of the gimbal-lock scenario (Figure 2.9), computer orientation systems—
often designed with exactly the same features—can in principle do so using quater-
nions or equivalent techniques. In the “game developer’s nightmare” scenario,
there are no gyroscopes or torques but very similar (though hopefully less lethal)
phenomena occur anyway. The following, for example, is a typical interchange
from a newsgroup for a 3D modeling and animation system.

Q. I do not understand the logic behind this behavior. What’s worse is that if I try to
drag the cube in random directions there does not seem to be any rhyme or reason to its
behavior. It is completely mad. I’ve been struggling with this for hours and I give up.
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A. What you are encountering is something called “gimbal lock” and is apparently not at
all simple to fix. I know that it is on the list of enhancements to be made to [the system],
but am not sure if this will be done in the current upgrade or a future one.

What has happened to user Q? He or she has most likely created a mathematical
model for the behavior of a simple cube that corresponds to a tandem continuous
rotation about all three axes in Figure 2.8 simultaneously. When the moving angle
of axis 2 passes through 90 degrees while the other two axes are also still applying
their own rotation angle changes, the results can be counterintuitive. In particular,
the object can twist backward and forward around the expected direct path between
the initial and target orientations, resulting in a very unphysical model of what
ought to be a physically satisfying motion. That is, the orientation sequence for
even a simple cube becomes poorly defined.

The “game developer’s nightmare” is occurring for basically the same reason as
the Apollo 10 incident, but now the arena is the control of an object’s orientation
within a computer—perhaps less threatening to life and limb, but just as frustrating
to the programmer! Again, we will see in Chapter 14, using quaternion representa-
tions for rotations, exactly why this must happen and how to picture what is going
on. Using a minimal arc-length quaternion path from the starting to the ending
orientation, as introduced in Chapter 10, eliminates the problem.

2.5 THE URBAN LEGEND OF THE UPSIDE-DOWN F16

Stories about the development of the high-performance F16 military fighter aircraft
provide yet another example of a situation in which a proper understanding of 3D
orientation issues is absolutely necessary. Although it is not clear whether quater-
nion technology could have avoided the reported situation, it is perfectly clear that
a lucid understanding of the nature of orientation computations, facilitated by the
study of quaternion orientations, would not have hurt!

The basic story is that in early testing it was discovered during simulated flight
that the F16 computer guidance system caused it to turn upside down when it crossed the
equator. The reason was apparently not gimbal lock but a glitch in the orientation
calculation that confused up and down when the sign of the latitude changed. You can
see that if “|sinlatitude|” (the absolute magnitude of the value) were used to de-
termine the “up” direction of the z axis instead of “sinlatitude” itself, the minute
the latitude became negative (as it does when crossing the equator) the default
“up” direction would be toward the North Pole, which would point the top of the
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FIGURE 2.11 One possible scenario for the legendary (simulated) F-16 flip. The “up” direction
is assumed to be the North Pole, so that when the airplane crosses the equator this direction switches
from being toward the sky to being toward the earth, causing the automatic guidance system to
reorient the cockpit to point toward the earth!

aircraft back in a northerly direction—upside down if you were over Brazil! Signs and
continuity of rotations, which are handled more transparently by quaternions, do
matter!

Figure 2.11 indicates one way this could happen. At each moment, the guidance
system checks the current aircraft orientation with respect to the North Pole and
defines the closest match between the current “up” and the North Pole. When the
airplane flies south over the equator, “up” relative to the North Pole is in fact toward
the earth rather than up toward the sky. The guidance system believes that somehow
the plane just flipped over, and it is instructed to flip it back. Of course, the plane
did not move, the guidance system did, and thus when the correction is applied
the guidance system remains stable but the entire aircraft flips to align the cockpit
as closely with “north” as it can.
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There is an urban legend that this happened in real life, but we can find no
verifiable report. However, the early versions of the Microsoft F-16 flight simulator
game were rumored to have this same feature. Of the many alleged records of this
problem, the following seemed more authentic than most.

F-16 Problems (from Usenet net.aviation) http://catless.ncl.ac.uk/Risks/3.44.html:
Bill Janssen janssen@mcc.com
Wed, 27 Aug 86 14:31:45 CDT

A friend of mine who works for General Dynamics here in Ft. Worth wrote some of the
code for the F-16, and he is always telling me about some neato-whiz-bang bug/feature
they keep finding in the F-16:

Since the F-16 is a fly-by-wire aircraft, the computer keeps the pilot from doing dumb
things to himself. So if the pilot jerks hard over on the joystick, the computer will instruct
the flight surfaces to make a nice and easy 4 or 5G flip. But the plane can withstand a
much higher flip than that. So when they were “flying” the F-16 in simulation over the
equator, the computer got confused and instantly flipped the plane over, killing the pilot
[in simulation]. And since it can fly forever upside down, it would do so until it ran out
of fuel.

Our point is that working with continuously changing orientations is a tricky busi-
ness, and systems defined in terms of systems of angles—each considered a sepa-
rately controlled activity—can lead to unexpected problems. Quaternions provide
smooth continuity among orientation frames, and even when this particular func-
tionality is not needed it is the case that learning to think about rotations from a
quaternion point of view can improve one’s intuitions and reduce the likelihood of
errors such as the F-16 flip.

2.6 QUATERNIONS TO THE RESCUE

This concludes our introductory discussion of how rotation frames and some of
their mysterious features appear in everyday life. All of the concepts involved in
resolving the mysteries can be framed in terms of quaternions. We proceed in the
next few sections to look at the basic properties of quaternions and how they can
be exploited to achieve better insights and to find solutions to practical problems.
In anticipation, we reiterate three fundamental features of quaternion technology
we will eventually learn to use to help us avoid orientation disasters.
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• Shape: Quaternions express a general 3D orientation frame as a point on a
hypersphere, a well-understood topological space, yielding a geometric pic-
ture of related quaternion shapes possessing both elegance and clarity of
notation.

• Metric: Quaternions provide a meaningful and reliable method of computing
similarities or distances needed to compare orientation states.

• Interpolatability: Quaternions support clearly motivated optimal methods for
smooth interpolation among intermediate orientation configurations.



Basic Notation

This chapter introduces a few basic con-

03 ventions for vectors, matrices, and com-
plex variables. If the reader finds that he
or she is not familiar with the notation in
this and the following chapters of Part I,
a dense but fairly complete synopsis of the
notation we use is presented in detail in
Appendix A. For readers who are conver-
sant with the conventions of 3D vector no-

tation, matrices, and complex variables, this chapter and Appendix A should be
elementary and can be skipped. Nevertheless, for anyone who might benefit from
a quick summary, or who might be accustomed to notational conventions substan-
tially different from those of the author, the material found here will be useful.
In particular, the explanations of basic quaternion notation presented in Chapter 4
depend strongly on the notational conventions. Summaries of essential notation are
provided in the sections that follow.

3.1 VECTORS

A vector x is a set of real numbers that we typically write in the form

x = (x, y)

for 2D vectors, as

x = (x, y, z)

31
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for 3D vectors, and as

x = (w,x, y, z)

for 4D vectors. Technically, we should treat this notation as a shorthand for a column
vector because we are thinking in the back of our minds of multiplying these vectors
on the left by rotation matrices to transform them to a new orientation.

3.2 LENGTH OF A VECTOR

The length of a Euclidean vector is computed from the Pythagorean theorem, gen-
eralized to higher dimensions. Several equivalent notations are common for the
squared length of a Euclidean vector, e.g.,

‖u‖2 = u2 = u · u = x2 + y2

in 2D,

‖u‖2 = u2 = u · u = x2 + y2 + z2

in 3D, and

‖u‖2 = u2 = u · u = w2 + x2 + y2 + z2

in 4D. The length of the vector u is the square root of its squared length

‖u‖ =
√

x2 + y2

in 2D,

‖u‖ =
√

x2 + y2 + z2

in 3D, and

‖u‖ =
√

w2 + x2 + y2 + z2

in 4D, respectively.

3.3 3D DOT PRODUCT

The inner product (or dot product) of two different vectors is closely related to the
length, and is defined in 4D as
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x1 · x2 = x1x2 + y1y2 + z1z2 + w1w2,

where we drop terms in an obvious way to obtain the 2D and 3D cases.

3.4 3D CROSS PRODUCT

The cross product of two 3D vectors, used in an essential way in the definition of
quaternion products, is given by

x1 × x2 = (y1z2 − y2z1, z1x2 − z2x1, x1y2 − x2y1).

3.5 UNIT VECTORS

A unit vector û is the vector that results when we divide a (nonzero) vector u =
(x, y) or u = (x, y, z) by its Euclidean length, ‖u‖. That is,

û = u
‖u‖ .

3.6 SPHERES

Spheres are described by the equation

u · u = 1,

and are labeled by the dimension of the space that results if you cut out a bit of
the sphere and flatten it. A circle then has dimension one, and a balloon dimension
two (an exploded balloon can be flattened like a sheet of paper). Thus, a circle is
the one-sphere S1 embedded in 2D space, a balloon is a two-sphere S2 embedded
in 3D space, and the three-sphere used to describe quaternions is the hypersphere
S3 embedded in 4D space.

3.7 MATRICES

Matrices are arrays of numbers, typically enclosed in square brackets. The multipli-
cation of a 3× 3 matrix times a column vector is written as follows.

x′ = R · x =
[

r11 r12 r13
r21 r22 r23
r31 r32 r33

][
x

y

z

]
=
[

x r11 + y r12 + z r13
x r21 + y r22 + z r23
x r31 + y r32 + z r33

]
=
[

x′
y′
z′

]
.



34 CHAPTER 03. BASIC NOTATION

3.8 COMPLEX NUMBERS

Complex numbers can be written in Cartesian or in polar form as

z = x + iy

= r cosθ + ir sinθ

= reiθ ,

where i is the imaginary square root of −1, with i2 = −1. Complex multiplication
follows from the properties of i, so that, for example,

z1z2 = (x1 + iy1)(x2 + iy2)

= (x1x2 − y1y2) + i(x1y2 + x2y1),

z1z2 = r1e
iθ1r2e

iθ2

= r1r2e
i(θ1+θ2)

= r1r2 cos(θ1 + θ2) + ir1r2 sin(θ1 + θ2).

We reiterate that further details of our notation conventions may be found in
Appendix A.



What Are Quaternions?

If this book were a musical composition

04 rather than a mathematical one, perhaps
it would begin with a single melodic
theme carried by a solo trumpet, fol-
lowed by other instruments entering in
harmony. It would then move to a full
ensemble—echoing, developing, and ex-
ploring dozens of variations on the orig-
inal theme, some barely recognizable—

and finally reach a climactic crescendo, trailing with a lone trumpet reprising the
original perfect melody. In this short chapter, we present that mathematical melody: the
four quaternion equations from which every theme in the entire book is in some
way derived.

Quaternions are four-vectors q = (q0, q1, q2, q3) = (q0,q) to which we assign
the noncommutative multiplication rule

1. Quaternion
Multiplication

p � q = (p0,p1,p2,p3) � (q0, q1, q2, q3)

=



p0q0 − p1q1 − p2q2 − p3q3
p1q0 + p0q1 + p2q3 − p3q2
p2q0 + p0q2 + p3q1 − p1q3
p3q0 + p0q3 + p1q2 − p2q1




= (p0q0 − p · q,p0q + q0p + p × q), (4.1)
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the inner product

2. Quaternion Inner
Product

p · q = (p0,p1,p2,p3) · (q0, q1, q2, q3)

= p0q0 + p1q1 + p2q2 + p3q3

= p0q0 + p · q, (4.2)

and the conjugation rule

3. Quaternion Conjugationq̄ = (q0,−q1,−q2,−q3)

= (q0,−q), (4.3)

which is constructed so that

q � q̄ = (q · q,0).

We will generally restrict ourselves to quaternions of unit length, obeying the unit-length
restriction

4. Unit-length Quaternionsq · q = (q0)
2 + (q1)

2 + (q2)
2 + (q3)

2 = (q0)
2 + q · q = 1. (4.4)

Unit-length quaternions have three degrees of freedom rather than four. The mod-
ifier “unit length” will be assumed whenever we refer to a quaternion unless we
explicitly specify otherwise. Equation 4.4 is the equation of the hypersphere (or the
three-sphere), written formally as S3, embedded in a 4D Euclidean space parameterized
by the quaternion q = (q0, q1, q2, q3). A representative set of computer programs
implementing these basic features of quaternions is provided in Chapter 7, as well
as in Appendix E.
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Equations 4.1, 4.2, 4.3, and 4.4 form the foundation of all concepts pre-
sented in this book.

This book focuses on visualizable representations of quaternions, and on their fea-
tures, technology, folklore, and applications. We will heavily emphasize the rep-
resentation and manipulation of orientation fields. We regard an orientation field
simply as the assignment of a set of oriented orthonormal axes to each point of
a topological structure (such as a curve) traced by a moving object (e.g., a movie
camera). Quaternions provide a unique and powerful tool for characterizing the
relationships among 3D orientation frames that the orthonormal axes themselves and
traditional representations of them are unable to supply. We will also extensively
study the geometry of spheres, which arise inescapably in every aspect of our study
of unit quaternions. In that quaternion orientation-frame representations are spe-
cific to 3D Euclidean space, one might ask whether the methods of quaternions
generalize in some way to allow the treatment of higher-dimensional analogs of
the frame-representation problem. Although this is in itself an enormous subject,
and far beyond the intended scope of this book, we introduce in the final chapters
some material pertinent to this problem.

Our beginning chapters focus on the use of the simplified case of 2D rotations
as a rich but algebraically simple proving ground in which we can see many of
the key features of quaternion geometry in a very manageable context. The most
elementary features of the relationship between 3D rotations and quaternions are
then introduced as natural extensions of the 2D treatment. We will then be ready
to start exploring the full implications of quaternions themselves.

† Note on the multiplication rule: The quaternion multiplication rule Equation 4.1, at-
tributed to Hamilton, contains three subrules identical to ordinary complex multi-
plication, and expresses a deep connection between unit four-vectors and rotations in
three Euclidean dimensions. This rule was in fact known earlier to Rodrigues [142]
(see also Altmann [5]), though in a very different context and notation.
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Road Map to Quaternion
Visualization

Now that we have experienced a bit of

05 the quaternion melody in Chapter 4, let
us look forward along the road to develop
a picture of the more elaborate themes to
be explored.

5.1 THE COMPLEX NUMBER CONNECTION

The first thing we will do is to exploit the close relationship between complex
numbers and quaternions. By building up a very simple framework for the un-
derstanding of rotations in 2D space using unit-length complex numbers, we will
develop an intuitive picture that allows us to quickly perceive quaternion analogs.
Thus, we can create a framework for 2D rotations based on complex numbers,
and extend that to an already-recognizable framework for 3D rotations based on
quaternions.

5.2 THE CORNERSTONES OF QUATERNION
VISUALIZATION

Using the complex numbers and properties associated with 2D rotations as a start-
ing point, we will study several basic conceptual structures that we will extend to
the properties of 3D rotations and the effective exploitation of quaternions them-
selves. The four cornerstones of our edifice, presented schematically in Figure 5.1,
are as follows.
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FIGURE 5.1 The cornerstones of quaternion orientation visualization: geometry, algebra, calcu-
lus, and interpolation.

• Geometry: Quaternions are unit four-vectors, and thus correspond geomet-
rically to points at constant radius from an origin, which is the definition
of a sphere. According to mathematical convention, spheres are named using
the dimension of the space a tiny bug would perceive crawling around at
the North Pole. Thus, a circle is a one-sphere, a balloon is a two-sphere,
and quaternions describe a three-sphere. By studying the visualization of
spheres in general, we will later be able to draw and see the geometry of
quaternions.
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• Algebra: Quaternion algebra has a geometric interpretation that includes
complex numbers as a subalgebra, and the results of algebraic operations
can be visualized using geometric methods.

• Calculus, logarithms, and exponentials: The relationships among quater-
nionic logarithms, their exponentials, and quaternion calculus provide other
visualizable properties, which we will study starting from the polar form of
a complex number.

• Interpolation: The interpolation from one quaternion to another has pro-
found analogies to standard polynomial interpolation methods in Euclidean
space. We will see that geodesic or “great circle” curves on spheres pro-
vide the starting point for a rich family of interpolation methods and their
graphical depiction.

Starting from the nature of rotations in space, the geometry of quaternions, the
algebraic properties of quaternion multiplication, quaternion calculus, and inter-
polatability, we will then proceed to successively more challenging developments
of the main theme.
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Fundamentals of Rotations

Quaternions are related in a fundamen-

06 tal way to 3D rotations, which can repre-
sent orientation frames and can act to pro-
duce changes in orientation frames. In this
chapter, we begin by presenting the rela-
tionships among 2D rotation operations,
2D rotation matrices, and complex num-
bers. We then move on to 3D rotation
matrices, examine an interesting idea that

looks like the square root of a rotation, and finally relate all of this to 3D rotations
and quaternions.

6.1 2D ROTATIONS

Rotations of 2D vectors are implemented by the action of 2D orthogonal matrices
R2 with determinant one, and thus

[
x′

y′

]
= R2(θ) ·

[
x

y

]
=
[

cosθ −sinθ

sinθ cosθ

][
x

y

]

=
[

x cosθ − y sinθ

x sinθ + y cosθ

]
. (6.1)
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The 2× 2 matrix R2, written in the form

R2(θ) =
[

A −B

B A

]
=
[

cosθ −sinθ

sinθ cosθ

]
,

obeys by definition the constraints

detR2 = A2 + B2 = +1

and

R2 · RT
2 =

[
A2 + B2 0

0 A2 + B2

]
=
[

1 0

0 1

]
≡ I2.

6 . 1 . 1 R E L AT I O N T O C O M P L E X N U M B E R S

We have already seen the algebra of complex numbers, (x1 + iy1)(x2 + iy2) =
(x1x2 −y1y2)+ i(x1y2 +x2y1), in Chapter 3. The 2D rotations can be represented
using unit-length complex numbers very simply as

z = x + iy,

z′ = eiθ (x + iy)

= (x cosθ − y sinθ) + i(x sinθ + y cosθ), (6.2)

which reproduces exactly the matrix results of Equation 6.1.

6 . 1 . 2 T H E H A L F - A N G L E F O R M

With some foreknowledge of where we are going, we now examine an apparently
trivial way of rewriting 2D rotations. What we shall see is that although the exact
parallels to quaternions do not appear in the standard 2D form of the rotation
matrix or its complex equivalents they begin to reveal themselves when we make a
half-angle transformation on the 2D rotation framework. If we simply let

A = a2 − b2, B = 2ab,
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then we can see that with a = cos(θ/2) and b = sin(θ/2) we recover the original
matrix, in that

A = cos2(θ/2) − sin2(θ/2)

= cosθ,

B = 2 cos(θ/2)sin(θ/2)

= sinθ,

and the rotation matrix is unchanged:

R2 =
[

a2 − b2 −2ab

2ab a2 − b2

]
=
[

cosθ −sinθ

sinθ cosθ

]
.

Note also that whereas detR2 = A2 + B2 = 1 when we compute the determinant
using the variables (a, b) we find the curious property

detR2(a, b) = (
a2 − b2)2 + (2ab)2 = (

a2 + b2)2 = 1. (6.3)

We will see very soon that the pair (a, b) is interpretable as the simplest special case
of a quaternion.

6 . 1 . 3 C O M P L E X E X P O N E N T I A L V E R S I O N

The complex version follows from the half-angle exponential

eiθ/2 = cos(θ/2) + i sin(θ/2)

= a + ib,

where eiθ/2eiθ/2 = eiθ . Thus, via Equation 6.2 we see that eiθ/2 is literally the square
root of the original complex number representing 2D rotations.
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6.2 QUATERNIONS AND 3D ROTATIONS

Like R2, the standard 3D rotation matrix R3 is also orthonormal:

R3 · RT
3 =




1 0 0

0 1 0

0 0 1


≡ I3,

detR3 = 1.

However, the following two new features appear in 3D.

• Order dependence: The product of two R3 matrices S and T may depend on the
order in which the multiplication occurs. That is, except in special cases, we
find that

S · T �= T · S.

• Single real eigenvector: R3 has a single real eigenvector (Euler’s theorem), and
thus all 3D rotation matrices (and their products) can be written as follows
in terms of one single final rotation matrix R3(θ, n̂) that leaves a particular
3D direction fixed:

R3(θ, n̂) · n̂ = n̂.

In addition to leaving n̂ fixed, R3(θ, n̂) expresses all possible 3D rotations
as a spinning by an angle θ about the direction n̂.

6 . 2 . 1 C O N S T RU C T I O N

We now drop the subscript, write R3 = R for simplicity, and introduce the con-
ventional set of three 3D rotation matrices that are simply rotations in the 2D plane
of each pair of orthogonal axes.

Rx =




1 0 0

0 cosθ −sinθ

0 sinθ cosθ


 ,
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Ry =




cosθ 0 sinθ

0 1 0

−sinθ 0 cosθ


 ,

Rz =




cosθ −sinθ 0

sinθ cosθ 0

0 0 1


 .

These produce right-handed rotations fixing the basis vectors x̂ = (1,0,0), ŷ =
(0,1,0), ẑ = (0,0,1), respectively. Rx rotates the yz plane about its origin, Ry

the zx plane, and Rz the xy plane. We can explicitly construct R(θ, n̂) as follows.

1 Let n̂ = (cosα sinβ,sinα sinβ,cosβ), with 0 � α < 2π and 0 � β � π ,
denote the fixed axis of the eigenvector about which we wish to rotate, as
shown in Figure 6.1.

2 Define ẑ as the column vector (0,0,1)T , and note that

n̂ = Rz(α) · Ry(β) · ẑ.

3 To construct the rotation matrix that spins about n̂, transform n̂ to ẑ by in-
verting the previously cited transformation, spin about ẑ by θ using the ele-
mentary matrix Rz(θ), and tilt ẑ back to the direction n̂ (where it started):

R(θ, n̂) = Rz(α) · Ry(β) · Rz(θ) · RT
y (β) · RT

z (α). (6.4)

Writing out all components of this product of matrices, and rewriting all appear-
ances of α and β in terms of

n̂ = (cosα sinβ,sinα sinβ,cosβ) = (n1, n2, n3),

we find finally that the desired rotation matrix fixing the n̂ direction is

R(θ, n̂) =




c + (n1)
2(1− c) n1n2(1− c) − sn3 n1n3(1− c) + sn2

n2n1(1− c) + sn3 c + (n2)
2(1− c) n2n3(1− c) − sn1

n3n1(1− c) − sn2 n3n2(1− c) + sn1 c + (n3)
2(1− c)


 ,

(6.5)
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FIGURE 6.1 Polar coordinate conventions for construction of normal direction n̂ on S2.

where c = cosθ , s = sinθ , and n̂ · n̂ = 1 by construction. The manner in which
the eigenvector n̂ emerges can be seen directly with the brief computation

R(θ, n̂) · n̂ =




n1c + n1(n1)
2(1− c) + n1(n2)

2(1− c) + n1(n3)
2(1− c)

n2(n1)
2(1− c) + n2c + n2(n2)

2(1− c) + n2(n3)
2(1− c)

n3(n1)
2(1− c) + n3(n2)

2(1− c) + n3c + n3(n3)
2(1− c)




=




n1(c + 1− c)

n2(c + 1− c)

n3(c + 1− c)




= n̂.
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6 . 2 . 2 Q UAT E R N I O N S A N D H A L F A N G L E S

Finally, we return to our half-angle form of the 2D rotation and observe that in
each 2D subplane there must be a 3D rotation that corresponds to the half-angle
form. For example, with n1 = n2 = 0 we must have n3 = 1, and thus

Rz =




cosθ −n3 sinθ 0

n3 sinθ cosθ 0

0 0 1




=




a2 − b2 −2ab 0

2ab a2 − b2 0

0 0 1


 , (6.6)

where a = cosθ/2, b = sinθ/2. It would seem highly probable that the general
eigenvector form of the matrix can be expressed in terms of half angles as well, not
just the Cartesian special cases. Thus, we are tempted to rewrite the entire matrix
in terms of θ/2 using a = cos(θ/2) and b = sin(θ/2) for notational convenience.
The factor (1− c) in Equation 6.5 does not immediately take the same form as the
expected 2D limit in Equation 6.6 until we have the insight that in fact a2 +b2 = 1.
Then, motivated to make the substitution 1− c = (a2 + b2)− (a2 − b2) = 2b2 we
find the remarkable expression

R(θ, n̂) =

a2 − b2 + (n1)2(2b2) 2b2n1n2 − 2abn3 2b2n3n1 + 2abn2

2b2n1n2 + 2abn3 a2 − b2 + (n2)2(2b2) 2b2n2n3 − 2abn1

2b2n3n1 − 2abn2 2b2n2n3 + 2abn1 a2 − b2 + (n3)2(2b2)




=

 a2 + b2(n2

1 − n2
2 − n2

3) 2b2n1n2 − 2abn3 2b2n3n1 + 2abn2

2b2n1n2 + 2abn3 a2 + b2(n2
2 − n2

3 − n2
1) 2b2n2n3 − 2abn1

2b2n3n1 − 2abn2 2b2n2n3 + 2abn1 a2 + b2(n2
3 − n2

1 − n2
2)


.

Here we exploited the relation (n1)
2 + (n2)

2 + (n3)
2 = 1 to make the expression

even more symmetric by making the substitution

−b2 + 2b2(n1)
2 = −(

(n1)
2 + (n2)

2 + (n3)
2)b2 + 2b2(n1)

2

= b2((n1)
2 − (n2)

2 − (n3)
2)

and its cyclic permutations.
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This is a quadratic form that can now be written solely in terms of points on the
hypersphere S3, and thus in terms of quaternions! To make this explicit, we choose the
following parameterization for the set of quaternion variables on the hypersphere,
an explicit choice that guarantees that q · q = 1 (see Equation 4.4) is satisfied.

q0 = a = cos(θ/2),

q1 = n1b = n1 sin(θ/2),

q2 = n2b = n2 sin(θ/2),

q3 = n3b = n3 sin(θ/2). (6.7)

With this substitution, we find the final result

R(q) =




q2
0 + q2

1 − q2
2 − q2

3 2q1q2 − 2q0q3 2q1q3 + 2q0q2

2q1q2 + 2q0q3 q2
0 − q2

1 + q2
2 − q2

3 2q2q3 − 2q0q1

2q1q3 − 2q0q2 2q2q3 + 2q0q1 q2
0 − q2

1 − q2
2 + q2

3


 .

(6.8)

Equations 6.5 and 6.8 are seen to be identical, R(θ, n̂) ≡ R(q), when we substitute
Equation 6.7 into 6.8. In summary:

Relation of Quaternions to
3D Rotations

The quaternion equation 6.7, q(θ, n̂) = (cosθ
2, n̂ sin θ

2), when substituted
into Equation 6.8, produces the standard matrix R(θ, n̂) of Equation 6.5 for
a rotation by θ in the plane perpendicular to n̂, where n̂ · n̂ = 1 is a unit
three-vector lying on an ordinary sphere (the two-sphere S2) and θ is an
angle obeying 0 � θ < 4π rather than 0 � θ < 2π . This extension of the
range of θ allows the values of q to reach all points of the hypersphere S3.

† We now can verify various properties of Equation 6.8 that are important in linear
algebra. For example, whereas the determinant of R2 in Equation 6.3 is a square
of a sum of squares, for R3 it is a cube because there is one additional power in a
determinant of a matrix that is one dimension larger:

detR3 = (q · q)3 = 1.
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In addition, although it is complicated to verify, each row (or column) of Equa-
tion 6.8 has unit magnitude, as in, for example,(
(q0)

2 + (q1)
2 + (q2)

2 + (q3)
2)2 + (2q1q2 − 2q0q3)

2 + (2q1q3 + 2q0q2)
2

= (q · q)2 = 1,

where we have used q · q = 1. In addition, each row (or column) is orthogonal to its
neighbor, as in, for example,

3∑
i=1

Ri1Ri2 = 0,

and so on. These properties (each column or row has unit length and is orthogonal
to its neighbors) define R as an orthogonal matrix.

6 . 2 . 3 D O U B L E VA L U E S

Because the quaternion values appear only quadratically in the rotation matrix Equa-
tion 6.8, the matrix obeys

R(q) = R(−q),

and thus:

Quaternions Double
Rotations

The quaternions q and −q generate the same 3D rotation matrix. There-
fore, quaternions realize a double covering (2:1 mapping) of ordinary 3D
rotations.

6.3 RECOVERING θ AND n̂

Given an arbitrary rotation matrix M, one may recover the Euler-theorem eigen-
vector n̂ and the value of θ using an efficient direct calculation, avoiding the com-
plexity of a general linear-algebra approach. The steps are as follows.

1 Axis computation: As long as sinθ is nonzero and large enough to avoid nu-
merical errors, n̂ may be computed by subtracting the transpose and using
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Equation 6.5 to find

R − RT =




0 −2n3 sinθ +2n2 sinθ

+2n3 sinθ 0 −2n1 sinθ

−2n2 sinθ +2n1 sinθ 0




=




0 −c b

c 0 −a

−b a 0


 .

Numerically, we simply compute d = √
a2 + b2 + c2 and normalize to yield

the result

n̂ = (a/d, b/d, c/d).

2 Angle computation: Again, we return to Equation 6.5 and next examine its trace
to find that

t = TraceR = 1+ 2 cosθ.

Thus, the calculation is completed by taking

cosθ = 1

2
(t − 1),

sinθ = +
√

1− cos2 θ.

Because R(θ, n̂) = R(−θ,−n̂), the sign of sinθ may be taken as positive in
the square root without loss of generality.

† There are some cases for which this basic approach requires further (sophisticated)
modifications. For example, if sinθ � 0 we must be more careful. Details of the fully
rigorous method are given in Chapter 16.

6.4 EULER ANGLES AND QUATERNIONS

There are many common ways to parameterize the standard 3×3 rotation matrices.
So far, we have focused on the standard axis-angle version R(θ, n̂) of Equation 6.5
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and its corresponding quaternion

q(θ, n̂) = (
cos(θ/2), n̂ sin(θ/2)

)
,

where the eigenvector of R may itself be parameterized as the S2 point

n̂ = (cosα sinβ,sinα sinβ,cosβ).

This form has no degenerate variable states (due essentially to the explicit appear-
ance of the eigenvector) and hence avoids gimbal-lock anomalies.

Many applications, however, treat rotations as sequences of axis-angle rotations,
and this is one source of the gimbal-lock anomalies we will work through in
Chapter 14. Triple sequences of axis-angle rotations are usually called Euler-
angle representations, and we can easily relate these representations to corre-
sponding quaternion parameterizations. The following are the two most common
forms.

• XYZ: Because this sequence of rotations involves all three independent Carte-
sian rotation axes, it is sometimes mistakenly thought to be singularity-free.
The explicit matrix is typically written as

Rxyz(α,β, γ ) = R(α, x̂) · R(β, ŷ) · R(γ, ẑ)

=

 cosβ cosγ −cosβ sinγ sinβ

sinα sinβ cosγ + cosα sinγ cosα cosγ − sinα sinβ sinγ −sinα cosβ

−cosα sinβ cosγ + sinα sinγ sinα cosγ + cosα sinβ sinγ cosα cosβ


 .

(6.9)

The corresponding quaternion is given by

q0 = cos
α

2
cos

β

2
cos

γ

2
− sin

α

2
sin

β

2
sin

γ

2
,

q1 = sin
α

2
cos

β

2
cos

γ

2
+ cos

α

2
sin

β

2
sin

γ

2
,

q2 = cos
α

2
sin

β

2
cos

γ

2
− sin

α

2
cos

β

2
sin

γ

2
,

q3 = cos
α

2
cos

β

2
sin

γ

2
+ sin

α

2
sin

β

2
cos

γ

2
. (6.10)
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One can see from the quaternion coordinates that at β = ±π/2, this is a
function only at α + γ or α − γ , respectively,

q(α,±π/2, γ ) = 1√
2

(
cos

α ± γ

2
,sin

α ± γ

2
,±cos

α ± γ

2
,±sin

α ± γ

2

)
.

• ZYZ: The following sequence corresponds to a coordinate system used tra-
ditionally in classical and quantum physics to parameterize the motion of a
spinning physical object.

Rzyz(α,β, γ ) = R(α, ẑ) · R(β, ŷ) · R(γ, ẑ) = R(γ, ĉ) · R(β, b̂) · R(α, ẑ)

=

cosα cosβ cosγ − sinα sinγ −sinα cosγ − cosα cosβ sinγ cosα sinβ

sinα cosβ cosγ + cosα sinγ cosα cosγ − sinα cosβ sinγ sinα sinβ

−sinβ cosγ sinβ sinγ cosβ


 ,

(6.11)

where ĉ = (cosα sinβ,sinα sinβ,cosβ) and b̂ = (−sinα,cosα,0). The
corresponding quaternion is given by

q0 = cos
β

2
cos

1

2
(α + γ ),

q1 = sin
β

2
sin

1

2
(γ − α),

q2 = sin
β

2
cos

1

2
(γ − α),

q3 = cos
β

2
sin

1

2
(α + γ ). (6.12)

One can see that at β = 0, this is a function only of (α + γ ), and that at
β = π this is a function only of (α − γ ).

6.5 † OPTIONAL REMARKS

6 . 5 . 1 † C O N N E C T I O N S T O G RO U P T H E O RY

The fact that quaternion multiplication preserves membership in S3 leads to the
observation that unit quaternions are a realization of the actual group manifold of the
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group SU(2), whereas ordinary 3D rotations belong to the group SO(3). Because
the quaternion is a point q on the three-sphere S3, and because ordinary rotations
identify each pair (q,−q) as the same point in their own manifold, ordinary 3D rota-
tion matrices correspond not to the geometry of S3 but to S3/Z2, which is RP3, the
real three-dimensional projective space. (For an extensive treatment of the properties
of this space, we refer the reader to Weeks [167].)

6 . 5 . 2 † “ P U R E ” Q UAT E R N I O N D E R I VAT I O N

Many treatments of quaternion rotations begin from a quaternion with a vanishing
q0 component and derive Equation 6.8 directly by bracketing the “pure quaternion”
v = (0,v) between a pair of unspecified conjugate quaternions. In fact, when we
carry out the computation as follows, we do find exactly the set of matrix components
in Equation 6.8.

q � v � q̄ = q � (0,v) � q̄ = (
0,R(q) · v

)
. (6.13)

However, the interpretation of v = (0,v) as a 3D vector in the usual sense in this
derivation is a subject of some controversy, eloquently discussed by Altmann [5]. It
can be argued that, although Hamilton himself believed strongly in this interpretation,
in fact (0,v) only coincidentally obeys the same transformation law as a pure vector. The
alternative viewpoint is that, to be precise, v = (0,v) should be considered instead as
a rotation by θ = π . Whichever viewpoint one takes, Equation 6.13 does in fact serve as
a convenient alternative derivation of Equation 6.8.

6 . 5 . 3 † Q UAT E R N I O N E X P O N E N T I A L V E R S I O N

In parallel with the complex exponential, an exponential approach using quaternions
can be found. We will explore this in detail in a subsequent section. What we will
see is that we can write the following exponential and expand it in a power series to
find a quaternion expression corresponding exactly in apparent form to the complex
expression for 2D rotations.

ei·n̂θ/2 = cos(θ/2) + i · n̂ sin(θ/2)

= q0 + i · q

= q0 + iq1 + jq2 + kq3,
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where the three components of i = (i, j, k) are the quaternion “imaginaries” of
Hamilton’s original notation (Chapter 1), obeying i2 = j2 = k2 = ijk = −1. As a
consequence, for each component (e.g., just the i component with q2 = q3 = 0) we
recover precisely eiθ/2, which is literally the square root of the complex representa-
tion of this 2D subset of the 3D rotations. More details and related approaches are
presented in Chapter 15.

6.6 CONCLUSION

We now know all of the basic properties of the relationship between complex vari-
ables and 2D rotations, and the remarkable ways in which they extend to the more
complicated structures relating quaternions to 3D rotations. From this basis, we
will build an elaborate framework for the analysis of the orientation properties of
many different structures, ranging from curves in space to the properties of the
human shoulder.



Visualizing Algebraic Structure

In this chapter we continue to lay the

07 foundation for quaternion visualization
methods, examining first the geometric
interpretation of the algebra of complex
numbers and then extending that intu-
ition into the quaternion domain. As we
will see, the quaternion algebra itself has
a geometric interpretation that includes
complex numbers as a subalgebra, and the

results of algebraic operations can be visualized using geometric methods.

7.1 ALGEBRA OF COMPLEX NUMBERS

In our context, an algebra is a rule for the combination of sets of numbers. We
encounter one particular algebra frequently in ordinary scientific computation: the
algebra of complex numbers. The quaternion algebra is one of only two possible
generalizations of complex numbers. (The octonion algebra is the other. See Chap-
ter 30 for more technical details.)

The quaternion algebra has been expressed in a wide variety of equivalent forms,
each of which has aspects that parallel those of the multiplication of ordinary com-
plex numbers. Thus, we will work toward the possibility of visualizing the quater-
nion algebra by looking first at the properties of complex numbers.

57
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7 . 1 . 1 C O M P L E X N U M B E R S

We can represent a complex number z in the following alternative ways.

z[ complex Cartesian ] = x + iy,

z[ complex polar ] = reiθ = r cosθ + i sinθ,

z[ 2× 2 matrix ] =
[
x −y

y x

]
,

z[ 2× 1 matrix ] =
[
x

y

]
. (7.1)

The algebra of complex multiplication follows from each of these forms, either by
explicitly using i2 = −1 or from matrix multiplication. Matrix multiplication itself
can be used to represent the complex algebra in two alternate forms: one in which
the complex number acted upon is itself a matrix, and one in which it is a column
vector. Thus, for example,

z1z2 = (x1 + iy1)(x2 + iy2)

= (x1x2 − y1y2) + i(x1y2 + x2y1),

z1z2 = r1e
iθ1r2e

iθ2

= r1r2e
i(θ1+θ2),

z1z2 =
[
x1 −y1

y1 x1

]
·
[
x2 −y2

y2 x2

]

=
[
x1x2 − y1y2 −(x1y2 + x2y1)

x1y2 + x2y1 x1x2 − y1y2

]
,

z1z2 =
[
x1 −y1

y1 x1

][
x2

y2

]

=
[
x1x2 − y1y2

x1y2 + x2y1

]
.
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7 . 1 . 2 A B S T R A C T V I E W O F C O M P L E X
M U LT I P L I C AT I O N

This leads us to the useful concept of defining the algebra abstractly, independently
of any particular representation using “imaginary” numbers or matrices. We may
simply define complex multiplication to be the algebra mapping two pairs of num-
bers into a new single pair of numbers using a rule. Starting by reexpressing z in
Equation 7.1 as the pair of real numbers (x, y), we can then straightforwardly write
the abstract algebra of complex numbers as the following quadratic map from reals
to reals, where we now use � to remind us that this is no longer ordinary multipli-
cation:

(x1, y1) � (x2, y2) = (x1x2 − y1y2, x1y2 + x2y1). (7.2)

Table 7.1 realizes Equation 7.2 as an elementary computer program. We remark
that the algebra might also be expressed in polar coordinates, as in, for example,

(r1, θ1) � (r2, θ2) = (r1r2, θ1 + θ2).

We see that algebras may have more than one equivalent abstract form. The polar
form is related to a logarithmic map, and follows from

logz = logr + iθ + 2nπi,

with log(z1 � z2) = logz1 + logz2, where the phase ambiguity of the exponential
of this logarithm is specified by the integer n.

The complex conjugation operation, defined as

z̄ = x − iy, (7.3)

allows us to write the modulus or magnitude |z| of a complex number in terms of
the complex product of a number with its conjugate,

|z|2 = zz̄ = (
x2 + y2,0

)
. (7.4)

An essential property of the algebra is the existence of an identity element. We can
see that multiplying the pair (1,0) by any element gives back the same element:

(x, y) � (1,0) = (x × 1− y × 0, x × 0+ 1× y)

= (x, y).
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void
ComplexProduct(double x1, double y1, double x2, double y2,

double *x, double *y)
{
*x = x1*x2 - y1*y2;
*y = x1*y2 + x2*y1;

}

void
ComplexSum(double x1, double y1, double x2, double y2,

double *x, double *y)
{
*x = x1 + x2;
*y = y1 + y2;

}

void
ComplexConjugate(double x1, double y1, double *x, double *y)
{
*x = x1;
*y = -y1;

}

double
ComplexModulus(double x1, double y1)
{
return(sqrt(x1*x1 + y1*y1));

}

TABLE 7.1 Elementary C code implementing the complex operations for multiplica-
tion, addition, complex conjugation, and modulus. Identical results can be obtained using
C++ classes and alternate methods of passing the results. To ensure completely elementary
code, we return multiple values as results only through pointers such as double *x.

Thus, (1,0) is the (unique) identity element of the algebra.
Alongside the identity property, we also have the property that every nonzero complex

number can be divided into another complex number. Division is defined as multiplication by
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the inverse,

z−1 = z̄

|z|2 ,

which obviously fails for the excluded case when z = 0, and otherwise satisfies
z � z−1 = (1,0) as required.

7 . 1 . 3 R E S T R I C T I O N T O U N I T- L E N G T H C A S E

Finally, we add the requirement that our pairs all be of unit length, and thus points
in S1. Given the unit-length conditions

∥∥(x1, y1)
∥∥2 = (x1)

2 + (y1)
2 = 1,∥∥(x2, y2)

∥∥2 = (x2)
2 + (y2)

2 = 1,

we can verify by explicit computation that the product has unit length as well!

∥∥(x1, y1) � (x2, y2)
∥∥2 = (x1)

2(x2)
2 + (y1)

2(x2)
2 + (x1)

2(y2)
2 + (y1)

2(y2)
2

= ∥∥(x1, y1)
∥∥2∥∥(x2, y2)

∥∥2

= 1.

Thus, we find a fundamental and far-reaching property of unit-length complex
numbers (number pairs obeying the algebra of Equation 7.2):

Complex Unit Circle The algebraic form of complex multiplication preserves membership in the
unit circle.

† This property makes the unit-length complex numbers into a group—the unitary
group U(1).

We may now visualize the algebra directly by watching how complex multiplication
transports points around a circle, as illustrated in Figure 7.1. The entire essence of
the unit-circle-preserving picture can now be seen alternatively as a consequence
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FIGURE 7.1 Visualizing the complex algebra for unit-length complex numbers. Points on the
circle produce new points on the same circle when the complex algebra is applied. The point (1,0)

has the properties of the identity; when multiplied by (a, b), it produces (a, b) itself.

of the rules for trigonometric functions of sums: if (a, b) = (cosθ,sinθ) and
(a′, b′) = (cosθ ′,sinθ ′), then

(a, b) � (a′, b′) = (cosθ cosθ ′ − sinθ sinθ ′,sinθ cosθ ′ + sinθ ′ cosθ ′)

= (
cos(θ + θ ′),sin(θ + θ ′)

)
,

which is exactly the rigid 2D rotation shown in Figure 7.1. We note that the scalar
product has a somewhat different interpretation, in that it singles out the relative angle
between the two directions on the circle:

(a, b) · (a′, b′) = cosθ cosθ ′ + sinθ sinθ ′

= cos(θ − θ ′).



7.2 QUATERNION ALGEBRA 63

7.2 QUATERNION ALGEBRA

7 . 2 . 1 T H E M U LT I P L I C AT I O N RU L E

For completeness in this context, we first review the formula for the quaternion
product of two quaternions p and q, which may be written as

p � q = (p0q0 − p · q,p0q + q0p + p × q),

or more explicitly in component form as

p � q =




[p � q]0
[p � q]1
[p � q]2
[p � q]3


=




p0q0 − p1q1 − p2q2 − p3q3

p1q0 + p0q1 + p2q3 − p3q2

p2q0 + p0q2 + p3q1 − p1q3

p3q0 + p0q3 + p1q2 − p2q1


 . (7.5)

The only noncommutative part is the ordinary 3D Euclidean cross-product term,
and our signs are chosen so that this has a positive coefficient. (See Table 7.2 for
an implementation of the basic quaternion operations as an elementary computer
program.)

Just as we did with complex numbers, we can represent the quaternion product
in two different ways using matrix multiplication itself: one in which the quater-
nion acted upon is a represented as column vector, and a second in which the
quaternion itself is represented a matrix:

p � q = P · q

=




p0 −p1 −p2 −p3

p1 p0 −p3 p2

p2 p3 p0 −p1

p3 −p2 p1 p0







q0

q1

q2

q3


 ,
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double MIN_NORM = 1.0e-7;

void
QuaternionProduct
(double p0, double p1, double p2, double p3,
double q0, double q1, double q2, double q3,
double *Q0, double *Q1, double *Q2, double *Q3)
{ *Q0 = p0*q0 - p1*q1 - p2*q2 - p3*q3;
*Q1 = p1*q0 + p0*q1 + p2*q3 - p3*q2;
*Q2 = p2*q0 + p0*q2 + p3*q1 - p1*q3;
*Q3 = p3*q0 + p0*q3 + p1*q2 - p2*q1;

}

double
QuaternionDot
(double p0, double p1, double p2, double p3,
double q0, double q1, double q2, double q3,
{return(p0*q0 + p1*q1 + p2*q2 + p3*q3); }

void
QuaternionConjugate
(double q0, double q1, double q2, double q3,
double *Q0, double *Q1, double *Q2, double *Q3)
{ *Q0 = q0;
*Q1 = -q1;
*Q2 = -q2;
*Q3 = -q3;

}

void
NormalizeQuaternion(

double *q0, double *q1, double *q2, double *q3)
{double denom;
denom =sqrt((*q0)*(*q0) + (*q1)*(*q1) + (*q2)*(*q2)

+ (*q3)*(*q3));
if(denom > MIN_NORM) { *q0 = (*q0)/denom;

*q1 = (*q1)/denom;
*q2 = (*q2)/denom;
*q3 = (*q3)/denom; }

}

TABLE 7.2 Elementary C code implementing the quaternion operations of Equa-
tions 4.1 through 4.3, and forcing unit magnitude as required by Equation 4.4. In this
straight C-coding method, we return multiple values as results only through pointers such
as double *Q0.
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p � q = P · Q

=




p0 −p1 −p2 −p3

p1 p0 −p3 p2

p2 p3 p0 −p1

p3 −p2 p1 p0


 ·




q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0


 .

The matrix forms show that the quaternion algebra is also equivalent to multipli-
cation by an orthogonal matrix in 4D Euclidean space (a matrix whose transpose
is the same as its inverse). One can see that P is an orthogonal matrix by checking
explicitly that for unit quaternions PT · P = I4.

† Because P has only three free parameters, and because 4D orthogonal matrices
(which are 4D rotations) have six free parameters, P does not itself include all 4D
rotations.

7 . 2 . 2 S C A L A R P RO D U C T

For completeness, we note also the behavior of the scalar product of quaternions,
which is determined by the relative angle φ between the two directions on the hy-
persphere. If we let p = (cos(θ/2), n̂ sin(θ/2)), and q = (cos(θ ′/2), n̂′ sin(θ ′/2)),

p · q = cos(θ/2)cos(θ ′/2) + n̂ · n̂′ sin(θ/2)sin(θ ′/2)

= cosφ.

7 . 2 . 3 M O D U L U S O F T H E Q UAT E R N I O N P RO D U C T

One of the very special properties of the quaternion algebra is that the modulus of
a product is the product of the moduli. We can check this fact explicitly as follows:

|p|2|q|2 ?= |p � q|2(
(p0)

2 + p2)((q0)
2 + q2) = (p0q0 − p · q)2

+ (p0q + q0p + p × q) · (p0q + q0p + p × q)
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= (p0)
2(q0)

2 − 2p0q0p · q + (p · q)2

+ (p0q + q0p)2 + p2q2 − (p · q)2

= (p0)
2(q0)

2 + (q0)
2p2 + (p0)

2q2 + p2q2

= (
(p0)

2 + p2)((q0)
2 + q2). (7.6)

We note that the cancellations of the cross dependences of p and q that make
the expression on the right-hand side factor into separable components are quite
nontrivial.

† Quaternions, like complex numbers, are one of the four division algebras (see
Chapter 30) that preserve the Euclidean norm, which is the deeper significance of
Equation 7.6.

7 . 2 . 4 P R E S E RVAT I O N O F T H E U N I T Q UAT E R N I O N S

If p · p = 1 and q · q = 1, we see that

(p � q) · (p � q) = qT PT Pq = qT q = q · q = 1,

and thus:

Quaternion Algebra
Preserves the Sphere

Quaternion multiplication preserves membership in the space S3 of unit
quaternions.

† This property makes the unit-length quaternions into a group—the special unitary
group SU(2) (also known as Spin(3))—which is the double cover of the group of
ordinary 3D rigid rotations, the special orthogonal group SO(3).

We may now visualize the action of the quaternion algebra schematically as shown
in Figure 7.2, which symbolizes the motion of a unit quaternion acted upon by
any other unit quaternion. This creates a new unit quaternion, i.e., a new point
restricted to the unit hypersphere just like both the original quaternion q and the
quaternion p that acts on it. Thus, the quaternion multiplication algebra itself has
a geometric interpretation, and the systematic changes resulting from the algebra
can be visualized using our geometric methods.
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FIGURE 7.2 Visualizing the algebra of unit-length quaternions. A quaternion point q on the
hypersphere is transformed to new point p � q on the same hypersphere when the quaternion
algebra is used to multiply p and q . The point (1,0) has the properties of the identity; when
multiplied by (q0,q), it produces (q0,q) itself.
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Visualizing Spheres

In this chapter we begin the task of explor-

08 ing the techniques that can help us visual-
ize quaternions and their properties. Be-
cause a quaternion is nothing more than
a point on a generalized sphere, the first
thing to do is to look at the properties
of spheres, starting with simple ones, and
work our way up to hyperspheres and
quaternions. Additional material extend-

ing the treatment in this chapter is presented in Chapter 17 and in Appendix I.
To clearly understand our options for making graphical visualizations of quater-

nions, we need to begin by examining ways in which points on spheres can be
viewed in reduced dimensions. Although the full import will not be apparent un-
til later chapters, we will discover in this section that 3D graphics is luckily just
sufficient to make a usable interactive graphics system for looking at individual
quaternion points, quaternion curves, and even quaternion surfaces, volumes, and
sets of streamlines.

A sphere can, in general, be described as the set of points lying at a constant ra-
dius from the origin. The local space in which a bug living on a sphere would move
is one dimension lower than the Euclidean space used to describe the constant-
radius equation. A sphere is parameterized using the dimension in which a bug
would live, and thus for example a circle on a piece of paper in 2D space is a
one-sphere (or S1) and a balloon in physical 3D space is a two-sphere (or S2),
which denotes the surface of the standard sphere of everyday language. Quaternion
geometry is the geometry of the hypersphere, typically referred to as the three-
sphere (or S3). Thus, we can work up to understanding quaternion geometry by
studying spherical geometry in the following sequence of examples:

69
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Description Equation Embedding

Dimension

Circle (S1) q · q = (q0)
2 + (q1)

2 = 1 R2

Sphere (S2) q · q = (q0)
2 + (q1)

2 + (q2)
2 = 1 R3

Hypersphere (S3) q · q = (q0)
2 + (q1)

2 + (q2)
2 + (q3)

2 = 1 R4

In each of these cases, we can use a different version of the same visualization
method to perceive the structure of the sphere in its local dimension, a dimension
one lower than the embedding dimension.

The Sphere TrickThe basic “trick” to seeing a sphere is based on the fact that if we have
any unit vector, the sphere describing its degrees of freedom can be made
quantitatively visible in the next-lower dimension.

8.1 2D: VISUALIZING AN EDGE-ON CIRCLE

Our first example of the sphere trick follows from examining a circle, a “ring”
in 2D, as shown in Figure 8.1. We shall argue that the horizontal projection (the
projection perpendicular to q0) is sufficient to determine the entire unit vector up
to the sign of q0, and that a two-mode depiction of this horizontal line resolves
that ambiguity nicely. The fundamental algebraic equation of the one-sphere S1 is

(q0)
2 + (q1)

2 = 1. (8.1)

Our goal is to describe points on the resulting circle using a single 1D line seg-
ment. Although our main point is to note that the circle is a curve whose points
solve Equation 8.1, Figure 8.1 shows us another important concept; namely, that
the interior of the circle, with (q0)

2 + (q1)
2 < 1, is also a significant component.

Depending on how one wants to think of it, one can describe the interior of a
circle (and we will generalize this to any sphere) either as an empty space enclosed by
the curve or as a space that is “filled up” and thus has dimensions of area. In any
event, the points interior to the curve but never part of the curve are an important
feature to keep in mind.
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FIGURE 8.1 The simplest sphere is a circle—a curve of dimension one consisting of the points
at a constant distance from the origin and enclosing an empty space (a disk with the dimensions
of area).

Equation 8.1 has only one free parameter, even though we draw it as a locus of
points (q0, q1) in 2D. We next examine various ways of choosing the single variable
parameterizing the points of S1.

8 . 1 . 1 T R I G O N O M E T R I C F U N C T I O N M E T H O D

Knowing that the trigonometric functions cosine and sine satisfy Equation 8.1, we
could choose to solve the equations as

q0 = cosθ,

q1 = sinθ (8.2)

and create a preliminary image (Figure 8.2) showing what would be seen and
unseen if we knew only the projection onto the horizontal axis. In this form, the

two values of q0 = ±
√

1− sin2 θ that solve the equation for each −1 < q1 < +1
emerge automatically from the periodicity of the trigonometric functions.
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FIGURE 8.2 Framework for tilting the circle so that all we see from our viewpoint is a straight
line.

8 . 1 . 2 C O M P L E X VA R I A B L E M E T H O D

We recall from our earlier chapter on 2D rotations and complex variables that we
can think of a complex variable with unit length as an exponential obeying Euler’s
famous identity,

eiθ = cosθ + i sinθ.

Thus, our circle (as described, for example, by Equation 8.2) can be written as a
single unit-magnitude complex variable

z = q0 + iq1

= eiθ

= cosθ + i sinθ.

Recalling the definition of the complex conjugate z̄ = q0 − iq1, we verify that
|z|2 = zz̄ = 1.
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FIGURE 8.3 The same horizontal projection is shared by the north vector (+√
1− t2, t)

and the south vector (−√
1− t2, t).

8 . 1 . 3 S Q UA R E RO O T M E T H O D

However, we are looking for a way to represent the circle that does not depend on a 2D
view. Thus, we examine the alternate parameterization given by the two separate,
single-valued roots of Equation 8.1,

q1 = t,

q0 = ±
√

1− t2, (8.3)

as illustrated by the ambiguous projection shown in Figure 8.3. Taking q1 = t ,
we thus produce an alternate interpretation of the ambiguity of q0 due to the
fact that a quadratic equation has two roots: one in the northern hemisphere and
one in the southern hemisphere. Considered only as an intrinsic 1D mathematical
object, we can imagine going from the full view in Figure 8.4 to an alternative
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FIGURE 8.4 A point on a circle (a unit two-vector) characterized by its projections (q0, q1)

onto the two orthogonal coordinate axes. In these two depictions, we show that for the same q1,
q0 can be either in the upper (northern) half-space, or in the lower (southern) half-space. We
distinguish these by drawing the horizontal projection with either a solid or dashed line. Thus, the
horizontal projection and its drawing mode (e.g., solid or dashed) together determine the entire
unit vector q without ambiguity.

two-part view (shown in Figure 8.5). We see only two copies of −1 � q1 � 1,
corresponding to the plus and minus signs in Equation 8.3, and the equator (the
two points q1 = ±1). These two points, which are the degenerate two-point sphere
S0 satisfying x2 = 1, effectively sew the two pieces together to enclose the invisible
2D area (seen “sideways” in Figures 8.3 and 8.4). We must now imagine this unseen
area as lying between the North and South Poles, and this is what is represented in
Figure 8.6.

8.2 THE SQUARE ROOT METHOD

Let us now focus on the two-part square root representation (Equation 8.3) of the
circle. We can see that every value of q1 implies the value of q0 up a sign. Knowing the
position of the unit-length mark and the position of q1, we already know what the
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FIGURE 8.5 Result of transforming the circle to an edge-on projection, leaving only a line
segment with length between −1 and +1.

FIGURE 8.6 The simple circle S1 visualized as two line segments, the northern and southern
hemispheres, together with the equatorial point pair (this is actually S0) that forms the border
exactly between the two, at q0 = 0, or equivalently at |q1| = 1.

size of q0 must be. We illustrated this in Figure 8.2, showing also the trigonometric
parameterization of the positive root of Equation 8.3 for additional clarity.

From Figure 8.2, we can now imagine tilting the circle until we are look-
ing perpendicular to the q0 axis, finally doing away with q0 altogether. Figure 8.5
shows what happens if we display just q1 and use our knowledge of the fact that
|q0| =

√
1− (q1)2 to deduce the missing information. The picture implied by Fig-
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ure 8.4 is complete if we supply two alternative images corresponding to q0 being
above or below the origin. We could code these visually in different colors (as in an
interactive computer visualization utility) or with different line styles (as in Fig-
ures 8.4 and 8.5).

Summary: A 1D vector q1 with length varying between −1 and +1, assisted by a
two-valued coding or tag, is all we need to watch the behavior of points on a circle,
knowing that the missing component always has |q0| =

√
1− (q1)2.

There is one other remarkable fact we should note, and need to remember for
the next case. From Figure 8.1, we see that there is a completely empty interior region
within the circle. The region, obeying the constraint (q0)

2 + (q1)
2 < 1, exists and

is potentially important. It cannot be seen in Figures 8.5 and 8.6 but must be held in
mind.

8.3 3D: VISUALIZING A BALLOON

Each point on S2, the ordinary balloon-like sphere from everyday life in three
dimensions, satisfies the equation

(q0)
2 + (q1)

2 + (q2)
2 = 1. (8.4)

Our goal is to describe points on the sphere using a single 2D line segment.
The sphere S2 (described by Equation 8.4) has two free parameters that de-

scribe, for example, the latitude and longitude of the spherical surface as 3D points.
S2 can be parameterized by two variables in several ways, but it cannot be described
in terms of complex variables as we did for S1. As in the case of the circle S1, there
is an “interior” of S2, the set of points for which (q0)

2 + (q1)
2 + (q2)

2 < 1 that
can either be thought of as the space hollowed out inside S2 or more appropriately
as a solid ball filling the portion of the 3D space enclosed by S2. In mathematical
language this is referred to as a three-ball, denoted by B3. S2 is the boundary of this
object—the skin you would peel off the surface of the solid ball.

8 . 3 . 1 T R I G O N O M E T R I C F U N C T I O N M E T H O D

Knowing the polar form of a 3D unit vector, we can easily find trigonometric
functions satisfying Equation 8.4.

q0 = cosθ,
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FIGURE 8.7 Projection of the basic properties of a point on S2 as seen from a 3D perspective.

q1 = sinθ cosφ,

q2 = sinθ sinφ.

This polar form produces graphic representation shown in Figure 8.7, as well as
the projection to 2D shown in Figure 8.8. The 2D projected vectors are modulated
simply by sinθ , and thus the value of q0 = cosθ is known up to a sign and we can,
for example, draw the vector as a solid line for the northern hemisphere and as a
dashed line for the southern.

8 . 3 . 2 S Q UA R E RO O T M E T H O D

As before, we can easily write down an alternate parameterization given by the two
single-valued roots of Equation 8.4.

q0 = ±
√

1− (t1)2 − (t2)2, (8.5)

q1 = t1, (8.6)

q2 = t2. (8.7)
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FIGURE 8.8 Pure 2D view of the basic properties of S2. Exploiting the constraints on q0
allows the deduction of the entire unit three-vector from the projected 2D component and the
which-polar-region sign marking.

We thus produce yet another formulation of the ambiguity of q0 due to the fact
that a quadratic equation has two roots. Note that q0 = 0 at the equator, where

(q1)
2 + (q2)

2 = 1.

During a continuous motion from the northern hemisphere to the southern
hemisphere, the projected vector approaches the equator from the north (where
q0 > 0), touches it at q0 = 0, and then reverses apparent direction in the projec-
tion as it crosses into the southern hemisphere (where q0 < 0).

In summary, a 2D vector q = (q1, q2) with length varying between 0 and
+1, assisted by a two-valued coding or tag, is all we need to watch the be-
havior of points on a sphere, knowing that the missing component always has
|q0| =

√
1− (q1)2 − (q2)2. An interior volume with q ·q < 1 lies hidden, sandwiched

between the disk denoting the projection of the northern hemisphere to the plane
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FIGURE 8.9 The standard sphere S2 visualized as two filled 2D discs, the northern and southern
hemispheres, together with the equatorial circle (i.e., S1) that forms the border exactly between
the two, at q0 = 0, or equivalently at ‖q‖ = 1.

and the disk denoting the projection of the southern hemisphere to the plane. The
equator of the sphere at q0 = 0 is the circular outer boundary of both disks that
joins the northern hemisphere continuously to the southern hemisphere, which
we see merged “on top” of each other.

We picture this situation explicitly in Figure 8.9. Again, considered only as an
intrinsic 2D mathematical object we can imagine an alternative two-part view
of S2, as shown in Figure 8.9. We see only two copies of the filled disk—with
(q1)

2 + (q2)
2 � 1, corresponding to the plus and minus signs in Equation 8.7—

and the equator, which is now the circle q0 = 0 or ‖q‖2 = (q1)
2 + (q2)

2 = 1.
This S1 circular curve once again serves to sew together the two filled-in disks sur-
rounding the North and South polar regions to enclose the invisible 3D volume
(seen “sideways” in Figure 8.7). We must now imagine this unseen volume as lying
between the North and South Poles.
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8.4 4D: VISUALIZING QUATERNION GEOMETRY ON S3

If a four-vector quaternion given by q = (q0,q) obeys the constraint q · q = 1,
the locus of these points is the three-sphere S3. The S2, the hollow balloon, had
hemispheres that looked like we had filled in the middle of a circle, and each point
on the balloon was surrounded by an almost-flat patch of 2D Euclidean space. By
analogy, we can understand that each point of S3 is like a little solid cube, an
almost-flat patch of 3D Euclidean space, and a hemisphere is constructed by filling
in the interior of a balloon. Furthermore, although this is more difficult to see, S3

is also hollow. The hemispheres, which we will study in more detail in a moment,
surround an empty region of 4D space; namely, all those 4D points q for which
q · q < 1.

The unit quaternion four-vectors, because q · q = 1, lie on the three-sphere S3

itself and do not have four independent degrees of freedom, but can have only three
independent components. Just as we did for each of the simpler spheres, we will
argue that if we display just three independent components, which we write as q,
we can in principle infer the value of q0 = ±√

1− q · q using the sphere projection
trick.

By the sphere projection trick, q0 is essentially redundant information and can
be inferred from the projection and the hemisphere flag. Figure 8.10 shows a
solid sphere with a 3D vector q having length less than or equal to unity representing
the entire quaternion. At the center (q = 0) we have q0 = +1, and this point—
q = (+1,0,0,0)—is the identity quaternion. Moving out to ‖q‖ = 1, we touch the
S3 equator, which is itself a two-sphere (S2) surface—the surface at which q0 = 0
and which has no ambiguity. Continuing on a smooth path, we pass through the
q0 = 0 equator and “down” into the southern hemisphere, where q0 < 0. When
the southern hemisphere flagged-vector q approaches the origin (q = 0) for the
second time, we have arrived at q0 = −1, which characterizes the South Pole.

Quaternion space, as shown in Figure 8.11, thus consists of the following com-
ponents to be kept in mind during the visualization:

• Northern hemisphere: The northern hemisphere is a solid ball of unit radius with
the identity quaternion q = (1,0,0,0) appearing at the origin, namely,
q = 0.

• Southern hemisphere: The solid ball of unit radius with q0 < 0 and the conjugate
identity quaternion q = (−1,0,0,0), the South Pole, at the origin where
q = 0.
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FIGURE 8.10 A quaternion value displayed as a three-vector q—a vector from the origin (the
location of the identity quaternion (1,0,0,0) or q0 = 1) to the point q = (q1, q2, q3)

inside a solid ball. The equator ‖q‖ = 1 is the surface of the ordinary sphere S2 enclosing the
solid ball.

• Equator, a two-sphere: The equator is the S2 outer skin of both solid balls, respec-
tively representing the northern hemisphere and the southern hemisphere.
The equator is the set of points where q0 = 0 and ‖q‖ = 1, and thus lies
exactly halfway between the poles q0 = +1 and q0 = −1, splitting the en-
tire S3 right down the middle into two identical parts. One can think of the
equator as the “stitching” where the two identical halves (the solid balls)
are sewn together to make the entire three-sphere.

• Four-ball interior: One must imagine an enclosed 4D volume sandwiched be-
tween the two solid balls denoting the northern hemisphere and the south-
ern hemisphere (shown in Figure 8.11). This is the interior four-ball with
‖q‖ � 1, whose boundary is in fact the entire S3 at ‖q‖ = 1.

One could in principle plot any three quaternion variables or their appropriate
linear combinations and infer the unseen coordinate as usual using qunseen=
±√

1− (qseen)2. One could also implement arbitrary 4D rigid transformations,
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FIGURE 8.11 The quaternion S3 visualized as two solid 3D balls, the northern and southern
hemispheres, together with the equatorial S2 that forms the border exactly between the two, at
q0 = 0, or equivalently at ‖q‖ = 1.

and project to 3D using the top three rows of an arbitrary interactively adjustable
4× 4 orthogonal rotation matrix in four Euclidean dimensions.

8 . 4 . 1 S E E I N G T H E PA R A M E T E R S O F A S I N G L E
Q UAT E R N I O N

Any (unit) quaternion is a point on S3 and therefore described by three parameters
incorporated in the standard parameterization

q(θ, n̂) =
(

cos
θ

2
, n̂ sin

θ

2

)
, (8.8)

where 0 � θ < 4π and where the eigenvector of the rotation matrix (unchanged
by the rotation) is a point on the two-sphere S2 representable as

n̂ = (cosα sinβ,sinα sinβ,cosβ),



8.4 4D: VISUALIZING QUATERNION GEOMETRY ON S3 83

with

0� α < 2π and 0� β � π.

An informative visualization of quaternions can be constructed by examining their
properties carefully. If we simply make a 3D display of the vector part of the quater-
nion, n̂ sin θ

2 , we see that the scalar element of the quaternion is redundant because
for each θ ,

q0 = cos
θ

2
= ±

(
1−

∥∥∥∥n̂ sin
θ

2

∥∥∥∥2)1/2

. (8.9)

That is, q0 is just the implicitly known height of the 4D unit vector in the unseen
projection direction, as illustrated in Figure 8.12a. In Figure 8.12b, we schema-
tize the mental model of metric distance required to complete the interpretation
of the visualization. If we imagine dividing the arc of the semicircle shown in Fig-
ure 8.12a into equal angular segments, the arc lengths are all the same distance
apart in spherical coordinates. Projected onto the q plane, however, the projected
spacing is nonuniformly scaled by a factor of sinθ . Thus, to keep our vision of
distance consistent we imagine the space to be like 3D graph paper with concentric
spheres drawn at equal distances in the special scale space. Such a 3D graph paper
representation would look like that shown in Figure 8.12b. For small 3D radii, dis-
tances are essentially Euclidean near the 3D origin; they are magnified as the radius
approaches unity to make the marked spheres equidistant in conceptual space.

If we assume the positive root is always taken for q0, we effectively restrict our-
selves to a single hemisphere of S3 and eliminate the twofold redundancy in the
correspondence between quaternions and the rotation group. Alternatively, despite
the fact that quaternions with both signs of q0 map to the same point in this projec-
tion, we can indicate the simultaneous presence of both hemispheres using graph-
ical cues. One possible method is to use saturated colors in the “front” hemisphere
and faded colors (suggesting distance) for objects in the “back” hemisphere.

8 . 4 . 2 H E M I S P H E R E S I N S3

To clarify the terminology, we note that a projected hemisphere for S2 is a filled
disk (a two-ball) in the plane, and the full surface of the sphere consists of two
such disks joined at the outer circular boundary curve. For S3, we use the word
hemisphere to indicate a filled solid two-sphere (technically a three-ball) and imagine
the full volume of the three-sphere to consist of two such spherical solids joined on
the skin (a two-sphere) of the surface enclosing both.
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(a)

(b)

FIGURE 8.12 (a) Illustration of how the q0 = cos(θ/2) part of a quaternion is “known”
if we have a 3D image of the vector part q = n̂ sin θ

2 of the quaternion. (b) Schematic repre-
sentation of the concentric-sphere uniform distance scales needed to form a mental model of the
metric distances in quaternion space between two points in the parallel 3D projection. Distances are
roughly Euclidean near the origin (q ≈ 0) and equal-length lines appear increasingly compressed
as the radius approaches the S2 equator at θ = π , or equivalently ‖q‖ = sin(θ/2) = 1, or
q0 = 0.



8.4 4D: VISUALIZING QUATERNION GEOMETRY ON S3 85

The family of possible values of Equation 8.8 projects to a double-valued line
(actually an edge-on projection of a circle), which is a directed diameter of the
unit two-sphere in the direction of n̂. In a polar projection, this circle becomes a
line to infinity through the origin.

Any particular 3D rotation is represented twice, because the quaternion circle
is parameterized by 0 � θ < 4π . A simple parallel projection thus produces two
solid balls on top of each other in the 3D projection—one the analog of the North
Pole disk of a two-sphere projected parallel from 3D to a screen, and the other the
analog of the South Pole disk of a two-sphere.



This page intentionally left blank



Visualizing Logarithms and
Exponentials

The calculus of quaternions involves

09 studying infinitesimal forms and rates of
change. These infinitesimal transforma-
tions of quaternions are closely related to
their logarithms and exponentials, and we
will begin by exploring the relationships
among quaternionic logarithms, their ex-
ponentials, and quaternion calculus. As is
now our custom, we will begin to study

these objects and their visualizable properties starting from complex numbers,
from which we will see that the polar form of a complex number has particularly
useful properties that we will be able to exploit in assisting our intuitions.

9.1 COMPLEX NUMBERS

Infinitesimal transformations of quaternions are closely related to their logarithms,
and the relationship between quaternionic logarithms and their exponentials pro-
vides another visualization viewpoint. We introduce the subject here by using, once
again, unit-length complex numbers. The quaternion formulas will be very similar,
with the important exception that the order of multiplication is not arbitrary.

The logarithm is of course simply the object that when exponentiated produces
the argument of the logarithm. In the case of unit-length complex numbers,

log
(
eiθ

)= iθ,

up to an arbitrary additive factor of 2nπi, since

ei(θ+2nπ) ≡ eiθ

87
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for an integer n. However, the real essence of this mathematical tool, which ulti-
mately allows us to work with the order-dependent quaternion algebra instead of
just the order-independent complex algebra, is the relation among the logarithm,
infinitesimal quantities, and the power series expansion for the exponential. (The
power series ultimately gives us a way of handling order dependence.) To begin,
the formula for the exponential series is

et =
∞∑

n=0

tn

n! ,

where by definition

loget = t.

We are interested in unit-length complex numbers and their derivatives. One way
of studying them is to replace t with itθ , converting the exponential into a unit-
length complex number due to Euler’s formula. This is represented as

eitθ =
∞∑

n=0

(itθ)n

n!
= cos(tθ) + i sin(tθ),

which can be proven in a number of elegant ways, e.g., from the power series for
the trigonometric functions.

However, the most striking properties of this expression are found by exploiting
the power series to investigate small changes in t , leading to derivative formulas
and a sense of the nature of calculus for unit-length complex numbers—ultimately
leading to quaternions. For example, if we take a unit-length complex number eiθ

to a power we find (
eiθ

)t = eitθ .

Since det/dt = et , the derivative with respect to t is

deitθ

dt
= iθeitθ .

Similarly, because d logx = dx/x we have

d log(eitθ )

dt
= iθ.
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FIGURE 9.1 A straight, purely imaginary, line “upstairs” in the argument of the exponential
function becomes a periodic circle “downstairs” in the complex plane.

What is more interesting for us is this: Imagine a picture (see Figure 9.1) in which
we think of the logarithm as living “upstairs” in the exponential and the result of
the entire power series as living “downstairs” on the bottom line of the equation.
Then we can start to see the following.

• The exponential is linear upstairs: The logarithm is a pure imaginary nonperiodic
number whose magnitude has no bound and whose imaginary part there-
fore looks like the real line.

• The exponential is curved, possibly periodic downstairs: There is a direct correspondence
between the flat-space appearance of the logarithm values and the image
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FIGURE 9.2 Visualizing the exponentiation of a complex logarithm, which is in an unbounded
1D flat space, to produce a result that follows a periodic path on the circle S1.

as each point is mapped to S1 by the exponential function. In particular,
because i(θ + 2nπ) produces the same point on the circle as iθ for any
integer n, the same point on the circle may correspond to an infinite number
of distinct points in the logarithm.

In summary:

The Exponential MapThe exponential map of a pure imaginary number generates a circle.The log-
arithm of a point on the circle is not unique but many-valued.

We may therefore visualize the logarithms and their correspondence to points on the
circle S1 directly by watching the map from a point on a straight line to a possibly
periodically repeated point on a circle, as illustrated in Figure 9.2.
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† Mathematical note: “Upstairs” is essentially where the Lie algebra of a group lives,
and “downstairs” is where we see the Lie group itself. For example, if we look at
the coefficient of i in the exponential form of a unit-length imaginary number it
can take any value on the real line. Once we look at the value of the exponential,
however, it must lie on a unit circle in the complex plane, and this circle is precisely
the topological group U(1).

9.2 QUATERNIONS

Quaternion logarithms follow almost exact parallels to unit-modulus complex
numbers. In fact, for any quaternion with n̂ contained completely in one Carte-
sian axis, for example, n̂ = (1,0,0), we recover a unit-modulus complex number.
Thus, knowing that

ei θ
2 = cos

θ

2
+ i sin

θ

2
,

and knowing that the quaternion p = (a, b,0,0) obeys exactly the same algebra as
complex numbers,

p1 � p2 = (a1a2 − b1b2, a1b2 + a2b1),

we can deduce that

p =
(

cos
θ

2
,sin

θ

2
,0,0

)
= elogp

implies

logp =
(

0,
θ

2
,0,0

)
.

We are quickly led to attempt to expand the power series of a pure-vector quater-

nion of the form logp = (0, n1
θ
2, n2

θ
2, n3

θ
2). Substituting into the exponential

power series and using the quaternion algebra of Equation 7.5, we find by direct
computation that

e(0,n̂ θ
2 ) =

(
cos

θ

2
, n̂ sin

θ

2

)
.

Therefore, because by definition p = exp(logp),

log

(
cos

θ

2
, n̂ sin

θ

2

)
=
(

0, n̂
θ

2

)
. (9.1)
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Standard operations such as taking derivatives proceed in the usual way. Because

logq = (0, n̂ θ
2) appears in every term of the exponential power series

qat = exp(at logq) =
∞∑

k=0

1

k! (at)k
k∏

j=0

�

(
0, n̂

θ

2

)
,

where the products are quaternion products, we can pull out a factor of logq at
either the beginning or the end and obtain the same result. Using the power series
to compute the derivative terms, we may resume with the factor of logq at either
end, yielding the derivative formula

dqat

dt
= a(logq)qat = aqat (logq).

Polar (logarithmic) version of the multiplication rule: Just as the complex-number multipli-
cation rule exhibits some simplification in polar form, we can use quaternion loga-
rithms to seek a similar quaternion expression. Just as we could rewrite the complex
multiplication algebra suggestively as (r1, θ1)�(r2, θ2) = (r1r2, θ1+θ2), we can do
the same for quaternions in a polar form in which the “angle” is a pure quaternion
vector:

p�q =
(

r1, n̂1
θ1

2

)
�

(
r2, n̂2

θ2

2

)
=
(

r1r2, m̂
θ12

2

)
.

Here,

m̂ = p0q + q0p + p × q
‖p0q + q0p + p × q‖ ,

and cos(θ12/2) = p0q0 − p · q. Noncommutativity makes this form much less
useful than the complex case, but because ‖(r, θ n̂)‖ ≡ r and (r1)(r2) = (r1r2) it
does show that the norm-preserving algebra holds directly.



Visualizing Interpolation
Methods

In this chapter we complete our set of

10 fundamental visualization methods by
studying interpolation in the context of
spheres, and eventually in the context of
quaternion points. The interpolation from
one quaternion to another has profound
analogies with standard polynomial inter-
polation methods in Euclidean space. We
will see that geodesic curves on spheres

provide the starting point for a rich family of interpolation methods and their
graphical depiction.

10.1 BASICS OF INTERPOLATION

We will begin with the most fundamental object—the interpolation that creates
a great circle on a sphere of any dimension. This interpolation is in fact slightly
nontrivial to derive even for S1. The derivation we present is the classic method
used throughout the mathematical and group theory literature but less often seen
in the computer graphics literature.

1 0 . 1 . 1 I N T E R P O L AT I O N I S S U E S

In Euclidean space, linear interpolation (sometimes abbreviated LERP) takes the
form

x(t) = x0 + t (x1 − x0) = (1− t)x0 + tx1,

93
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FIGURE 10.1 The 1D linear interpolation producing points on a straight line.

where—with x(0) ≡ x0 and x(1) ≡ x1—taking 0 � t � 1 restricts the parametric
curve to the straight line segment between x0 and x1. The LERP is shown in Fig-
ure 10.1. However, it would be silly to apply the LERP to points q on a sphere,
because even if ‖q0‖ = ‖q1‖ = 1 the linearly interpolated point

p(t) = (1− t)q0 + tq1

will not have the desired properties. We can see easily from Figure 10.2 and the
direct computation

p(t) · p(t) = 1− 2t + 2t2 + 2t (1− t)cosφ,

where q0 · q1 = cosφ, that ‖p(t)‖ can be anywhere from 0 to 1 and thus will not
describe a point on the same circle as q0 and q1. Figure 10.3, in contrast, shows
the more desirable circular arc interpolation.

Note: Of course it is possible to renormalize a linearly interpolated p(t) at every point
to give it unit length and therefore force it to lie on the sphere. However, this
neglects the fact that one of the goals of a linear interpolator is the enforcement of
constant velocity in the parameter t . Therefore, the correct analog for the spherical
linear interpolator is the enforcement of constant angular velocity. Renormalizing p(t)

cannot achieve this goal. Examining the projection of equally spaced portions of
the straight line from q0 to q1 in Figure 10.4 to the circle, we see that the resulting
circular arc segments are never equally spaced. The subtle but important differences
between the angular velocity properties of the normalized LERP and the spherical
linear interpolation (SLERP) are illustrated explicitly in Figures 10.4 and 10.5.
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FIGURE 10.2 A linear interpolant between the two points q0 and q1 on a circle in any
dimension is not on the circle in general.

FIGURE 10.3 Spherical, length-preserving interpolant of a path on the circle S1.
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FIGURE 10.4 A linear interpolant between the two points q0 and q1 on a circle in any
dimension is not on the circle in general.

FIGURE 10.5 Spherical, length-preserving interpolant of a path on the circle S1.
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The SLERP has the goal of automatically adjusting the value of the interpolated
vector so that it is guaranteed to lie on the circle and to maintain constant angular
velocity. We have already seen something similar to this, in our circle-preserving
algebra visualization (Figure 7.1). The method for meeting the requirements of
the SLERP, which extends trivially to any dimension once we have worked it out
for the circle S1 in 2D, is based on the classic Gram–Schmidt procedure. We begin
as before by taking two points q0 and q1 on the circle, or any sphere, obeying
‖q0‖ = ‖q1‖ = 1. We impose one restriction, namely, that the angle φ describing
the angle between the two vectors, where

cosφ = q0 · q1,

satisfies 0 � φ < π . These conditions can be relaxed if care is taken, but this range
turns out to be all that is needed for most quaternion applications.

1 0 . 1 . 2 G R A M – S C H M I D T D E R I VAT I O N O F T H E S L E R P

To find an interpolated unit vector that is guaranteed to remain on the sphere, and
thus preserve its length of unity, we first assume that one vector, say q0, is the
starting point of the interpolation. To apply a standard rotation formula using a
rigid length-preserving orthogonal transformation in the plane of q0 and q1, we
need a unit vector orthogonal to q0 that contains some portion of the direction q1.
Defining

q′
1 = q1 − q0(q0 · q1)

‖q1 − q0(q0 · q1)‖ ,

we see that by construction

q′
1 · q0 = 0,

q′
1 · q′

1 = 1,

where we of course continue to require q0 · q0 = 1. The denominator of this ex-
pression has the curious property that

∥∥q1 − q0(q0 · q1)
∥∥2 = 1− 2 cos2 φ + cos2 φ

= sin2 φ,
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FIGURE 10.6 The length-preserving spherical interpolation framework, showing the construc-
tion of a new orthonormal basis (q0,q′

1) that allows us simply to rotate the unit vector rigidly
using sines and cosines.

where we recall that cosφ = q0 · q1. Note that because we have imposed 0 �
φ < π , the sine is always nonnegative, and we can replace |sinφ| with sinφ, which
we will find convenient in the following. When φ = 0, there is no interpolation to
be done in any event.

Referring to the graphical construction shown in Figure 10.6, we next rephrase
the unit-length-preserving rotation using the angle tφ, where 0 � t � 1 takes us
from a unit vector aligned with q0 at t = 0 to one aligned with q1 at t = 1. Using
our new orthonormal basis, we thus have

q(t) = q0 costφ + q′
1 sintφ

= q0 costφ + (q1 − q0 cosφ)
sintφ

sinφ

= q0
costφ sinφ − sintφ cosφ

sinφ
+ q1

sintφ

sinφ

= q0
sin(1− t)φ

sinφ
+ q1

sintφ

sinφ
. (10.1)
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This is the SLERP formula, which guarantees that

q(t) · q(t) ≡ 1

by construction. The fact that q(0) = q0 is obvious, whereas the fact that q(1) = q1
is slightly more subtle, recognition of which depends on our observing in Fig-
ure 10.6 that cosφ is the component of q1 projected onto the q0 axis (remember
again the definition of cosφ), and sinφ can only be the remaining component in
the orthogonal direction. In summary:

SLERP Properties The SLERP interpolator rotates one unit vector into another, keeping the in-
termediate vector in the mutual plane of the two limiting vectors while guar-
anteeing that the interpolated vector preserves its unit length throughout and
therefore always remains on the sphere. The formula is true in any dimension
whatsoever because it depends only on the local 2D plane determined by the
two limiting vectors.

1 0 . 1 . 3 † A LT E R NAT I V E D E R I VAT I O N

Another way of understanding the SLERP is directly in terms of a linear algebra prob-
lem (e.g., see Eberly [41]). Let q be a unit vector on a sphere (we will be thinking
of quaternions, but it does not matter what dimension the sphere is). We assume
that q is located partway between two other unit vectors q0 and q1, with the location
defined by some constants c0 and c1 as

q = c0q0 + c1q1. (10.2)

As shown in Figure 10.7, q must partition the angle φ between q0 and q1, where
cosφ = q0 · q1, into two subangles, φ0 and φ1, where cosφ0 = q · q1 and cosφ1 =
q · q0 and φ = φ0 + φ1. The apparently backward labeling is in fact intentional: it is
chosen so that φ0 = φ makes q = q0 and φ1 = φ makes q = q1. No matter what the
dimension of the unit-length qs, taking two dot products reduces this to a solvable
linear system, as follows:

q · q0 = cosφ1 = c0 + c1 cosφ,

q · q1 = cosφ0 = c0 cosφ + c1.
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FIGURE 10.7 Alternate length-preserving spherical interpolation framework, applying linear
algebra to a partition of the angles with φ = φ0 + φ1.

Using Cramer’s rule, we immediately find c0 and c1:

c0 =
det

[
cosφ1 cosφ
cosφ0 1

]
det

[
1 cosφ

cosφ 1

]
= cosφ1 − cosφ0 cosφ

1− cos2 φ
,

c1 =
det

[
1 cosφ1

cosφ cosφ0

]
det

[
1 cosφ

cosφ 1

]
= cosφ0 − cosφ1 cosφ

1− cos2 φ
.
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When we replace φ by substituting φ = φ0 + φ1, after a little trigonometry we see
that

c0 = (cosφ1 sinφ0 + cosφ0 sinφ1)sinφ0

sin2 φ

= sinφ0

sinφ

= sint0φ

sinφ
,

c1 = (cosφ1 sinφ0 + cosφ0 sinφ1)sinφ1

sin2 φ

= sinφ1

sinφ

= sint1φ

sinφ
,

where we have defined t0 = φ0/φ and t1 = φ1/φ to obtain a partition of unity,
t0 + t1 = 1. Choosing, for example, t0 = 1 − t and t1 = t , we recover the standard
SLERP formula (Equation 10.1).

10.2 QUATERNION INTERPOLATION

Because the SLERP formula (Equation 10.1), applies to any sphere in any dimen-
sion, we can use the same formula for simple quaternion interpolation along
a geodesic or great circle arc between two quaternion points q0 and q1 with
cosφ = q0 · q1.

q(t) = q0
sin(1− t)φ

sinφ
+ q1

sintφ

sinφ
. (10.3)

However, there are several special tricks that we will mention here, and apply in
detail later on. In particular, comparing quaternion interpolation operations to or-
dinary linear interpolations reveals that even the simple ideas of the identity, addi-
tion, subtraction, and multiplication need to be handled in a new way, as specified
by the following.

• Identity: In linear interpolation, x = 0 is the identity. In quaternion interpo-
lation, it is important to remember that quaternion multiplication forms a
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group and thus has an identity. The quaternion identity is not zero but is analo-
gous to the complex identity value (1,0):

qIdentity = (1,0,0,0).

• Addition: Addition is replaced by quaternion multiplication. In this way, we
preserve such properties as the need to get back the same value if we add
something to the identity. We thus transform addition in quaternion space
as follows.

x1 + x2 
⇒ q1 � q2.

All of the basic properties are then preserved, and membership in the unit
three-sphere is intact as well.

• Subtraction: In linear interpolation, we often subtract two objects to get an
incremental form of the interpolation—as in, for example, t (x1 − x0). Sub-
traction has no meaning for quaternion rotation representations, but in most
cases where a difference would be used in a linear interpolation we can re-
place subtraction by a quaternion inverse displacement. The idea is that if x0 = 0
the difference must reduce to the object itself, but there must be a way of
getting smoothly from one quaternion point to another. The technique is
to premultiply by the inverse of the object you would subtract in ordinary
arithmetic. Thus,

(x1 − x0) 
⇒ (q0)
−1 � q1.

• Multiplication: Just as subtraction is mapped into multiplication, multiplication
is mapped into exponentiation. The quaternion analog of an expression such
as t (x1 − x0) uses the factor t as a power, so that t = 0 is the null operation
and t = 1 reaches the end via

t (x1 − x0) 
⇒ (
q−1

0 � q1
)t


⇒ et∗log(q−1
0 �q1),

where quaternion logarithms are treated in the preceding section.
• Iteration: Iterative procedures such as the de Casteljau construction can be

converted into Bezier splines and B-splines just as is done for linear splines
by substituting different control points. For almost any case of this sort, fol-
lowing the quaternion substitution rules for the linear interpolation arith-
metic analogies just given works straightforwardly.
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We may, in fact, write the SLERP equation now with a completely alternative deriva-
tion based on the arithmetic analogies just presented. Following these rules, we
would convert the Euclidean expression

x(t) = x0 + t (x1 − x0)

to the analogous quaternion expression

q(t) = q0 �
(
q−1

0 � q1
)t

= q0 � expt log
(
q−1

0 � q1
)
.

To see the equivalence of this notation to the others presented, we first note that
the scalar component of the quaternion product Q = q−1

0 � q1 is in fact

Q0 = q0 · q1 = cosφ. (10.4)

Second, we see that we can isolate all essential features of the interpolation by
looking at the special case q0 = identity = (1,0,0,0). Then we can simply re-
place (q−1

0 � q1) with an equivalent q1 whose scalar component agrees with
Equation 10.4 and whose vector component is in the direction n̂. Thus, q1 =
(cosφ, n̂ sinφ). Then, we find

q(t) = q0
sin(1− t)φ

sinφ
+ q1

sintφ

sinφ

= (1, 0)
sin(1− t)φ

sinφ
+ (cosφ, n̂ sinφ)

sintφ

sinφ

=
(

sinφ costφ − sintφ cosφ + sintφ cosφ

sinφ
, n̂

sintφ sinφ

sinφ

)
= (costφ, n̂ sintφ)

= exp(0, tφn̂)

= (q1)
t ,

where we used log(q1) = (0, tφn̂). Displacing this to start the interpolation at any
arbitrary q0 and using the value of n̂ computed from (q−1

0 � q1) immediately gives
the standard SLERP formula (Equation 10.3).
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10.3 EQUIVALENT 3×3 MATRIX METHOD

Although it is often claimed that the smooth orientation interpolations desired for
computer graphics applications can only be obtained using quaternions, this is not
strictly correct. Although the quaternion hypersphere S3 provides us with many
capabilities that are most naturally described in terms of quaternions, and in par-
ticular quaternion distances for measuring the closeness of families of orientation
frames, many individual tasks support alternative approaches that are equivalent to
a quaternion approach.

The SLERP and the nested SLERP used to describe higher-order quaternion in-
terpolations do in fact have a completely equivalent formulation that follows from
the treatment in the previous section. All we need to do is replace the quaternions
in the previous section by ordinary 3× 3 rotation matrices.

† The logarithm of a 3 × 3 matrix is defined in a group-theoretic context as the
associated 3 × 3 antisymmetric matrix (an element of the so(3) Lie algebra) that
when exponentiated generates the desired SO(3) matrix corresponding to R(θ, n̂).
This turns out to be easy to compute using essentially the same technology we use to
extract θ and n̂ from any 3× 3 rotation matrix R. If we let r̂ be a basis for the set of
antisymmetric matrices, one can show that

R(θ, n̂) = exp(θ r̂ · n̂).

Assuming that we can compute the necessary logarithms and axis-angle compo-
nents of the chosen 3× 3 rotation matrices R0, R1, and their products, the entire
set of arguments follows through in exactly the same formal way, so that we may
write

R(t) = R0 · (R−1
0 · R1

)t
= R0 · expt log

(
R−1

0 · R1
)
,

where we have explicitly denoted the 3×3 matrix multiplication by a dot (·) to in-
dicate how matrix multiplication replaces quaternion multiplication in this context.
With this formalism, we may replace any iterated SLERP operations on quaternions
by iterated 3D matrix interpolations. However, in general it will be easier techni-
cally to implement the algebra using quaternion notation and use Equation 6.8 to
compute R(t).



Looking at Elementary
Quaternion Frames

The quaternion framework allows us to

11 analyze the relationships among coordi-
nate frames in a variety of ways. In prepa-
ration for the more complex situations
that will soon arise in subsequent chap-
ters, we pause for a moment to review a
few very simple cases that exploit quater-
nion visualization. In the following we
will look at single frames, the relation-

ships between two or more discrete frames, and smoothly changing sequences
of frames.

11.1 A SINGLE QUATERNION FRAME

The simplest possible frame is the identity frame. If we take coordinate la-
bels for points on S3 to be (w,x, y, z)—standing for the Euler-eigenvector ro-
tation parameterization q = (cos(θ/2), n̂ sin(θ/2))—the 3D identity frame can
be represented by either of the two possible quaternions, q = (1,0,0,0) and
q = (−1,0,0,0).

Figure 11.1a represents the standard positive hemisphere of the vector part
of the quaternions, and the black dot at the origin is the quaternion identity
q = (1,0,0,0). We cannot see q = (−1,0,0,0) in this visualization because we
can only draw one hemisphere of S3 at a time projected to this coordinate sys-
tem. On the other hand, if we switch from the standard (x, y, z) projection to the
(x, y,w) projection (shown in Figure 11.1b), we can see both alternative signs of
the identity quaternion, with the black dot showing q = (1,0,0,0) and the white
dot showing q = (−1,0,0,0).
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(a) (b)

FIGURE 11.1 (a) The identity frame, q = (1,0,0,0), is a point at the origin in our
standard “vector-only” projection. (b) Looked at from the side, we see that this quaternion is of
unit length, with the only nonzero component w = 1, as we can infer from the fact that all
quaternion frames must have unit length.

11.2 SEVERAL ISOLATED FRAMES

If we wish to examine two isolated frames q1 and q2 and their relationship, the first
thing we need to do is to remember that we should always simplify our lives in this
situation by making a good “anchor” for our visualization. We can accomplish this
by simply translating q1 back to the identity frame using

q̄1 � q1 = (1,0), (11.1)

and applying the same transformation to q2 to produce a new quaternion p that has
the same relation to the identity as q2 does to q1:

q̄1 � q2 = p. (11.2)
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FIGURE 11.2 The relationship between two arbitrary quaternions, simplified by transforming
q1 back to the identity, leaving the relationship defined completely by p = q̄1 � q2.

Then, as shown in Figure 11.2, we can simply plot (px,py,pz) in the standard
eigenvector coordinate system. The relationship to the identity transform (the ori-
gin of the coordinate system) is immediate: If we denote the vector part of the
quaternion p = q̄1 � q2 by p = (px,py,pz), then q1 and q2 are related by a rota-
tion about the fixed axis in the direction of

p̂ = p
‖p‖ ,

and with a total angle of rotation about p̂ given by

θ = 2 arcsin‖p‖.

11.3 A ROTATING FRAME SEQUENCE

The simplest example of a rotating frame is a parameterized sequence of rotation
matrices. For example, this might be a rotation about the x̂ axis by an angle ranging
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(a) (b)

FIGURE 11.3 A sequence of frames formed by rotating about the x̂ axis. (a) Usual projection.
(b) w projection.

from 0 (the identity frame) to θ using intermediate angles tθ with 0� t � 1:[ costθ −sintθ 0
+sintθ costθ 0

0 0 1

]
.

The corresponding family of quaternions is simply the line segment given by

q(t) = (costθ/2, sintθ/2,0,0).

In the standard coordinate system, the visualization of this family of frames is the
straight line on the x̂ axis, shown in Figure 11.3a. Viewing this curve from the side
to show the (redundant) w coordinate explicitly yields Figure 11.3b.

To replace the rotation about the x̂ axis by a rotation about an arbitrary axis n̂,
we simply reorient the straight line on the x̂ axis (Figure 11.3a) to point in the
direction n̂. Figures 11.4a and 11.4b show the corresponding general cases for a
sequence of frames generated by a rotation about the n̂ axis.
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(a) (b)

FIGURE 11.4 A sequence of frames formed by rotating about the n̂ axis. (a) Usual projection.
(b) w projection.

Using the x̂ axis as a reference frame: In conclusion, it is important to note that for the
case of the simple rotation about the n̂ axis we really do not need to consider any-
thing but the x̂-axis rotation! Just as we understood the relationship between q1

and q2 more clearly by translating q1 back to the identity frame, there is a direct
construction that transforms a rotation about the n̂ axis back to a “standard” equiv-
alent rotation about the x̂ axis, which one can adopt as the “reference origin” for
studying these simple rotations. The explicit transformation is achieved by rotating
the n̂ direction back to the x̂ direction using the fixed rotation axis m̂ and angle φ

derived from

m̂ = n̂ × x̂
|n̂ × x̂| ,

cosφ = n̂ · x̂.
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11.4 SYNOPSIS

Quaternion frames are points in space with clearly visualizable relationships. By
creating plots relying on a variety of display strategies, we not only see the rela-
tionships between isolated frames but clearly understand the essential properties
of continuous families of orientation frames (e.g., resulting from the application
of smooth rotations). In the next chapter, we will exploit this concept of a con-
nected family of rotations to see one way in which everyday 3D space itself gives
unmistakable evidence for the existence of quaternions. The ability to make smooth
deformations of quaternion paths will also play an essential role in advancing our
understanding.



Quaternions and the Belt Trick:
Connecting to the Identity

There is an ancient parlor trick, whose

12 popularization in the physics community
has long been attributed to Dirac (e.g., see
Hart et al. [87] and Misner et al. [126]),
that catapults the reality of the quaternion
into an everyday context seemingly inno-
cent of such esoteric constructs. We have
already met the belt trick in Chapter 2, and
now we are ready to follow the details of

the quaternion visualization.
The belt trick begins with two people holding opposite ends of an ordinary

leather belt. (In one of many variants, sometimes known as the Dirac string trick,
two or more strings replace the edges of the belt.) As illustrated in the initial frames
of Figures 12.1 and 12.2, one person then twists the belt about its long axis by
either 360 degrees (2π radians) or 720 degrees (4π radians). The main rule of
the game is that the absolute orientation of the last inch of the two ends of the belt
cannot change. The two people holding the ends of the belt can move the location
of the belt end anywhere they like, but they cannot twist or rotate their end of the
belt relative to, say, the walls of the room. As long as the belt is not torn or cut,
the players can pass the end of the belt from hand to hand if desired, provided the
orientation of the coordinate frame of the last inch does not change.

The belt-end holders are then given the goal of trying to untwist the belt subject
to the rules. The “trick” then consists of the following pair of observations.

• With a 360-degree twist: With a 360-degree clockwise twist, no matter what
the two belt holders do when they return to the original position the belt
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FIGURE 12.1 The result of the belt-trick move for a 360-degree twist changes the orientation
sequence from clockwise to counterclockwise, but cannot untwist the belt.

FIGURE 12.2 A 720-degree twist can be continuously deformed to an untwisted belt.
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is either unchanged or possibly changed to a 360-degree counterclockwise
twist. However, it is never untwisted. (See Figure 12.1.)

• With a 720-degree twist: With a 720-degree twist, it is possible (even easy) to
find a motion that leaves the belt entirely flat and untwisted in its initial
position, as illustrated in Figure 12.2.

12.1 VERY INTERESTING, BUT WHY?

We are now led to pose two questions: how can we explain the belt trick and,
interesting as it is, how could it have anything to do with quaternions?

1 2 . 1 . 1 T H E I N T U I T I V E A N S W E R

What is astonishing, and not at all obvious, is that continuous sequences of ordinary
orientation frames can be arranged in such a way that we can actually detect the
distinction in our everyday lives between the pairs of quaternion frames that appear the
same if we look at them as isolated instances of an object positioned in 3D space. If
we cut the belt, it is impossible to tell whether one end has been twisted relative to
the other by 0, 360, or 720 degrees, but when we keep a record of the orientation
frame sequence (the belt itself remembers), there is something in the real world
that is different and that allows us to tell the difference. Only quaternions can help
us clearly explain why we can tell the difference. The belt trick proves, in some
sense, that quaternions are real and are not an irrelevant abstraction. This is because
they tell us how the belt is “keeping track” of continuous sequences of orientation
frames, each differing only infinitesimally from its neighbors.

Considering another example, we are accustomed to looking at a pair of iso-
lated objects, such as two teapots, and concluding that if they look exactly the same
they have indistinguishable orientations. In fact, the belt trick is showing that in a
continuous sequence of orientation frames the relationship between the frames dif-
fering by 360 degrees is fundamentally different from the relationship between the
frames differing by 720 degrees, even though in isolation they cannot be distin-
guished.

1 2 . 1 . 2 † T H E T E C H N I C A L A N S W E R

The precise mathematical answer is that the group corresponding to quaternions is
the group SU(2), with a topological space S3 that is simply connected, and that 720-
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degree rotations correspond to a closed path in the group SU(2) that is smoothly

deformable to the identity. Ordinary rotations correspond to the group SO(3), with a

topological space RP3 that is not simply connected. Although a 360-degree rotation

has a path in SO(3) that connects an identity orientation to an identity orientation,

this path gets “hung up” in such a way that a smooth deformation of all points on the

path to the identity is impossible. We already know that SU(2) is the double cover of

SO(3); that is, there are two distinct quaternions for each distinct orientation frame

in 3D space. The belt trick reflects this double-valued relationship, distinguishing a

one-circuit 360-degree rotation from the equivalent two-circuit 720-degree rotation.

In the following, we will work out exactly how this happens, and we will clearly

visualize the unmistakable difference as it shows up in the quaternion coordinates for

the frame sequences.

12.2 THE DETAILS: HOW QUATERNION
VISUALIZATION EXPLAINS THE BELT TRICK

Using quaternions, we can construct a visualization of the belt and the belt trick that
is both mathematically exact and intuitively appealing. In addition, we can actually
create a computer simulation of the motions made by the belt holders doing the
belt trick (although for computational simplicity the simulation turns out to be
much easier using an elastic belt or elastic strings).

The basic idea is that because each small piece of the belt (a line drawn on the
belt in its shortest direction) and the vector perpendicular to the belt form a 3D
frame, and because each such frame is a point in quaternion space, the entire belt
is representable as a connected path of points in the quaternion space S3. The initial
twisting of the belt and the motions of the belt holders attempting to untwist the
belt are then nothing more than curves in quaternion space, and are immediately
visualizable using appropriate projections of the curves.

When the belt is untwisted, all of its frames are the identity frame, and these
are therefore all stacked up as a huge pile of identical quaternion points at w = +1
corresponding to the connected frames of the untwisted belt. If we let t parame-
terize the belt, with t = 0 being the start of the belt and t = 1 being the end of the
belt, then

q(t) = (1,0,0,0)
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FIGURE 12.3 Each section of the belt defines a 3D frame based on the line cutting across the
belt and the normal direction to the belt surface at that point.

and there is no change in the frame as t varies. When we twist the belt about its
long axis (say, the z axis), for a total twist θ in 3D space we have

q(t) =
(

cos
tθ

2
, 0, 0, cos

tθ

2

)
.

In Figure 12.3, we show the belt itself as a sequence of frames, along with a sam-
pling of isolated frames that correspond explicitly to


costθ −sintθ 0

sintθ costθ 0

0 0 1


 .
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FIGURE 12.4 The set of frames of a twisted belt forms a curve in quaternion space. The
360-degree twist along the z axis forms a half circle in S3, connecting the North and South
Poles at w = +1 and w = −1, respectively.

Then we see the following, both analytically and visually.

• θ = 2π : 360 degrees: If we twist by a single full rotation, 2π or 360 degrees,
then

q(0) = (+1,0,0,0),

q(t) = (costπ,0,0,sintπ),

q(1) = (−1,0,0,0),

and the belt’s frames correspond to the quaternion curve shown in Fig-
ure 12.4, which runs between the North and South Poles.
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FIGURE 12.5 In quaternion space, the 720-degree twist along the z axis forms a full circle
in S3, making a closed curve that connects the North Pole at w = +1 back to itself in a
continuous path.

• θ = 4π : 720 degrees: If we twist by a double full rotation, 4π or 720 degrees,
then

q(0) = (+1,0,0,0),

q(t) = (cos2tπ,0,0,sin2tπ),

q(1) = (+1,0,0,0).

The belt’s frames correspond to a closed curve, as shown in Figure 12.5.
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12.3 FRAME-SEQUENCE VISUALIZATION METHODS

Given an equation for a sequence of quaternions, how can we see the way the
belt (or the set of strings, and so on) actually moves in ordinary 3D space? Here,
the crucial observation is that there is a very simple way of modeling a family
of infinitesimally differing 3D frames. If we consider an “onion” of nested glass
spheres, each very close to the next and each containing one short slice of the belt,
each sphere in fact exactly represents the 3D orthonormal frame of its belt slice.
(Imagine a set of (x, y, z) axes poking out through the shell of each sphere, as
shown in Figure 12.6. This represents a single half twist around the z axis.)

FIGURE 12.6 A sequence of frames shown both as a twisted belt, and as a series of nested glass
spheres, each representing the frame of the belt at a selected orientation.
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The sequence of frames corresponds also, as we know, to a sequence of con-
nected points forming a smooth curve q(t) in quaternion space. Thus, if we want
to represent a deformation of this curve, say q(t, α), corresponding to a sequence
of belt deformations we can simply take each quaternion point in the deformation
equations to correspond, via the quadratic map, to the frame of a glass sphere.
Thus, we simply start at an initial belt state (e.g., α = 0) for which the family of
nested frames represented by the glass spheres are twisted to some extent about the
z axis as t varies from 0 to 1. As we slowly vary α, the family of spheres varies as
well, and the belt goes along for the ride (with a little stretching). Because each
point on each sphere differs only infinitesimally from the corresponding point on
its neighbor, one can fill the volume of the original nested spheres with belts,
strings, or tubes and still maintain a continuous and tearing-free motion for any
smooth quaternion deformation path. This is the basis of the animation “Air on
the Dirac Strings” [144], described in detail by Hart, Francis, and Kaufmann [87].
Next, we will write down in complete detail explicit examples of exactly how to
accomplish examples of the deformations of interest.

FIGURE 12.7 The function q(t, α) showing the deformation of the single-twist quaternion
path to smoothly change from a clockwise twist about the z axis to a counterclockwise twist.
The plot is a 3D projection of the quaternion w,y, z components, omitting the vanishing x

component.
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1 2 . 3 . 1 O N E RO TAT I O N

According to the rules of the belt trick, the frames of the ends of the belt cannot
change, and thus for θ = 2π = 360◦ the belt holders can deform the curve itself any
way they like, but they can never detach the ends from their locked positions at w =
+1 and w = −1. As shown in Figure 12.1, the largest possible change is to change
a clockwise to a counterclockwise rotation, and this is simply a deformation of
the path to q(t) = (costπ,0,0,−sintπ), which can take any route that preserves
q · q = 1. An example of this is

q(t, α) = (costπ,0,sinα sintπ,cosα sintπ),

with 0 � α � π . Figure 12.7 shows the 3D (w,y, z) projection of this deforma-
tion in quaternion space, and Figure 12.8 shows the corresponding nested-sphere
frame-sequence visualization for selected values of α.

FIGURE 12.8 Selected frames from the deformation sequence of the single-twist belt, using the
nested glass-sphere visualization mechanism for each single belt configuration.
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1 2 . 3 . 2 T WO RO TAT I O N S

For the θ = 4π = 720-degree twist, the rules of the belt trick do not restrict us
in any way as long as the single point w = +1 remains fixed on the curve. The
belt holders can deform the curve so that every single point shrinks (maintaining
the quaternion condition q · q = 1) slowly toward w = +1 and every frame of the
belt returns to the identity frame q = (1,0,0,0), as illustrated in Figure 12.2. An
explicit example of such a deformation (following a method suggested by Hart et
al. [87]) is

q(t, β) = (
sin2 β + cos2 β cos2tπ,0,cosβ sinβ(1− cos2tπ),cosβ sin 2tπ

)
which obeys q · q = 1, reduces to the full double twist for β = 0, and is the single
point q = (1,0,0,0) (that is, w = +1) for β = π/2. One can of course make any
desired deformation shrinking the original circle smoothly to a point to obtain an
arbitrary sequence of belt cross-section frame changes that straighten out the belt

FIGURE 12.9 The function q(t, β) showing the deformation of the quaternion path for
a double-twist about the z axis to collapse all points smoothly to the quaternion identity at
w = +1. The plot is a 3D projection of the quaternion w,y, z components, omitting the
vanishing x component.
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FIGURE 12.10 Selected frames from the deformation sequence of the double-twist belt to the
untwisted belt, using the nested glass-sphere visualization mechanism for each belt configuration.

to its original untwisted state. Figure 12.9 shows the (w,y, z) quaternion values of
the β deformation, and Figure 12.10 presents the nested-sphere frame sequences
for sampled values of β .

1 2 . 3 . 3 S Y N O P S I S

The reader should now be convinced that there are things in our everyday lives
that make it necessary to treat sequences of orientation frames more carefully than
isolated frames, and that sequences of frames can only be completely understood if
we visualize them in the back of our minds as curves in quaternion space. It is intriguing
to ask what this might imply about isolated objects rotating in spacetime.



Quaternions and the Rolling
Ball: Exploiting Order
Dependence

We return now to the mystery of the

13 rolling ball from Chapter 2. What we saw
there was that we can place a baseball on
a table under the palm of our hand and
make it rotate around an axis perpendicular to
the table, pointing right through the palm
of our hand, even though we never twist
our wrist in that direction. Somehow, just
moving the hand parallel to the table in

small “rubbing” circles makes the ball rotate as though we were twisting our wrist!
We know this happens, but we had no explanation why. Now that we have learned
a bit about quaternions and how to use them to understand what happens when
things rotate in space, we can try to “see” what is happening with the rolling
ball [66].

13.1 ORDER DEPENDENCE

The basic fact is that although the order of two rotations that take place in the same
plane (rotating about the same axis) does not matter, two rotations in different
planes (about different axes) will give different results if their order is reversed.

† Noncommutativity: The mathematical term for operations that are order dependent is
noncommutativity, which is useful when we need a precise terminology for this phe-
nomenon.
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FIGURE 13.1 Rotation order matters. If we implement two simple rotations A and B

about different axes and look at the results of one order—say A · B versus the opposite order,
B · A—we can see plainly that the results differ!

If we take a simple object and rotate it as shown in Figure 13.1, we find that
when we rotate first in one direction and then the other we get a particular final
orientation. However, if we perform the rotation operations in the opposite order the
final orientation is quite different!
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In fact, we can make the order dependence work for us once we understand
what it is doing. We will accomplish this by examining a deceptively simple way
of controlling the orientation of an object in space, and watch what it does both in
ordinary space and using the quaternion viewpoints we have now learned.

13.2 THE ROLLING BALL CONTROLLER

Figure 13.2 shows a particular example of a set of order-dependent rotations that
consist only of operations that can be done with a ball on a table and the flat palm
of your hand. Try it yourself: you will see that a mark on the equator of the ball
will move exactly as shown, as though your entire hand had been spun about the
vertical axis, and yet no such motion ever occurred (the hand stays rigidly oriented
with respect to the vertical axis).

FIGURE 13.2 Sketch of how the rolling ball generates rotation about the orthogonal axis.
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We can write a computer program that implements this very easily based on
what we now know regarding rotations about a particular axis of “spin.” Our “ta-
ble” is now going to correspond to two equivalent flat spaces: (1) the flat mouse
pad on which the mouse moves in response to the user and (2) the flat computer
screen containing a cursor controlled by the mouse. We will consider these spaces
to be essentially the same. You need to be comfortable with this before the rest of
the argument will make sense.

Each time the mouse moves on the mouse pad, the computer interface will
provide us with two numbers: the amount dx telling us how far the mouse cursor
moved in the screen-horizontal direction since the last motion, and the amount
dy that the mouse cursor moved in the screen-vertical direction. We will make a
3D vector out of this pair of numbers that describes the incremental motion of the
mouse cursor on the screen, and which we write as follows:

dr = (dx, dy,0).

Next, we will use a very ancient and very important geometric trick: once we know
dr, we can immediately write down a vector n in the screen plane that is precisely
perpendicular to dr, that is n · dr ≡ 0, as follows.

n = (−dy,+dx,0). (13.1)

n is the same length as dr, but has the following remarkable property.

Rolling Ball Axisn points in the direction of the rotation axis that a ball would roll if we moved
our palm (in screen coordinates) in the direction dr.

We illustrate this geometry in Figure 13.3. Figure 13.3a shows how these vectors
are arranged in screen coordinates, and Figure 13.3b shows what the correspond-
ing rolling ball would look like on the computer screen.

The rest of the procedure requires us to specify precisely the arguments to a
standard rotation matrix R(θ, n̂) that is applied to the object or situation whose
orientation we are controlling or examining. First we normalize the axis of rotation
to unit length. Defining the magnitude of the mouse motion as dr =√

dx2 + dy2,
we have

n̂ = n
‖dr‖ =

(−dy

dr
,
+dx

dr
,0

)
,
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(a) (b)

FIGURE 13.3 (a) The geometric components of the rolling ball controller. (b) The general
rotation of the controlled object about the screen-constrained axis n = (−dy,+dx) in response
to the controller motion (dx, dy).

which satisfies n̂ · n̂ ≡ 1, as required. Note: You do not want to divide by zero. If the
hardware has for some reason called your program with vanishing mouse motion,
be sure to handle this situation as a null operation.

Finally, to determine the angle of rotation we need only decide what type of vir-
tual ball we are rolling. A marble will rotate very quickly for a given hand motion,
and a beach ball will hardly rotate at all. The effective radius R of the ball relative to
the scale of the mouse motion parameters is what determines the sensitivity of the
control. If we choose an appropriate value of R, the amount by which the ball
rotates is determined by

tanθ = dr

R
,

cosθ = R√
R2 + dr2

,

sinθ = dr√
R2 + dr2

.

In practice, we might choose R ≈ 50× 〈averagedr〉, and thus there is no reason
to compute expensive transcendental functions because for small θ we know that
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int x0, y0; /* Global previous cursor state */
float R = 100.0; /* Global tuning parameter */

void rollball(int x, int y)
{int dx, dy;
float dr, nhatx, nhaty, theta;
dx = x - x0;
dy = y - y0;
dr = sqrt(dx*dx + dy*dy);
if(dr != 0.0)
{ nhatx = - (float)dy/dr;

nhaty = + (float)dx/dr;
theta = dr/R;
leftrotate(theta, nhatx, nhaty, 0.0);

}
}

TABLE 13.1 Rolling ball implementation code fragment.

sinθ ≈ θ and we can often simply choose

θ = dr

R

and achieve perfectly acceptable interface behavior. Different values of R can be
selected to adjust the sensitivity. The rotation to be applied is then simply

R(θ, n̂).

An example code fragment implementing this behavior is shown in Table 13.1.

13.3 ROLLING BALL QUATERNIONS

The following describes how we can put all this into context with a quaternion
visualization. To translate the rolling ball algorithm into quaternion notation, we
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FIGURE 13.4 The quaternion path of a series of small circular motions of the rolling ball
controller. This generates a curve in space that does not close but ends a small distance away from
the origin. This signifies that we have made a small rotation about the orthogonal axis.

simply compute the values of θ and n̂ exactly as before and choose the correspond-
ing quaternion to be

q(θ, n̂) = (
cos(θ/2),sin(θ/2)n̂

)
.

Successive values of this incremental quaternion are left-multiplied onto the cumu-
lative quaternion orientation using quaternion multiplication to find each point on
the quaternion path.
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The first thing we can do is simply to monitor the quaternion coordinates of
the orientation frame of the ball as we make one small circle with the palm of our
hand. Regardless of whether we make an extremely simple rectangular motion—
such as (dx, dy,−dx,−dy), where dx is a small palm motion to the right (−dx

to the left) and dy a small forward palm motion (−dy backward)—or a smooth
circular motion, we will see essentially the quaternion path shown in Figure 13.4.
If rotations were order independent (if they commuted), the path would return to the
same point (i.e., the same orientation, as depicted in quaternion space). As we have
already seen elsewhere, as well as in Figure 13.1 in this chapter, rotations are order
dependent. The quaternion path shows us explicitly how the order dependence mani-
fests itself. If we observe very carefully what happens, we note that as we move or
“rub” the palm of our hand in a clockwise or counterclockwise direction the direc-
tion of the spiral shown in Figure 13.4 will be reversed. When we rub clockwise,
the overall rotation will be counterclockwise, approximately about the z axis per-
pendicular to the palm. When we rub counterclockwise, the overall rotation will
be clockwise about the z axis. This is a fact of nature: try as you may, you cannot
change this counter-rotation unless you make some drastic mathematical change
to the rolling ball method described so far. (There are methods that support this,
such as the “virtual sphere” method of Chen et al. [30], but each method has its
own strengths and weaknesses. The rolling ball is context free, whereas the virtual
sphere is highly context dependent.)

13.4 † COMMUTATORS

The Lie algebra of rotations is generated by three abstract operators (see, for example,
Gilmore [56]), which we write as

X = (Xx,Xy,Xz).

The properties of these operators make mathematically precise statements about the
noncommutativity of the rotation group because we can actually write down the way in
which the order matters by defining the commutator of two operators as [A,B] = AB −BA

and writing the properties of the generators of the Lie algebra of rotations as

[Xy,Xz] = −Xx,

[Xz,Xx] = −Xy,

[Xx,Xy] = −Xz,



13.5 THREE DEGREES OF FREEDOM FROM TWO 131

with all other combinations vanishing. The first line means that when we move the
palm of our hand in a small clockwise circle in the (x, y) plane the entire ball will
spin by a small amount in the counterclockwise direction about the z axis, perpendicular
to our palm. The sign of this rotation is fixed by the immutable laws of mathematics.
There is nothing we can do to make the rolling ball controller rotate the ball clockwise
when we rub our palm in a clockwise direction. The ball will always counter-rotate.

13.5 THREE DEGREES OF FREEDOM FROM TWO

The final visualization that makes the entire context of the rolling ball perfectly clear
(with or without any knowledge of Lie group theory) is shown in Figure 13.5. Per-
forming a continuous small, circular rubbing motion in the (x, y) plane produces
a quaternion path that is a spiral that does indeed return to its original approximate
position in orientation space, but only after two complete revolutions of the ball around
the z axis! The average path in quaternion space, the center of the spiral in Fig-
ure 13.5, is exactly the same as a simple rotation about the z axis implemented
by R(t, ẑ) as t : 0 → 4π . If the circular motions in the xy plane are “left-handed”
(clockwise), the quaternion path starts in the “right-handed” (counterclockwise,
or positive z) direction and proceeds around a great circle. If the circular motions in
the xy plane are “right-handed” (counterclockwise), the quaternion path starts in
the “left-handed” (clockwise, or negative z) direction and proceeds around a great
circle in the opposing direction. Because exactly the same thing happens in any
plane chosen for the rolling ball controller, the particular case we have examined
tells us what happens in all cases. There is nothing more you can know about or-
der dependence of rotations and how they are utilized in the rolling ball controller
that one cannot deduce from Figure 13.5. The most important fact from a practical
standpoint is simply:

Three Degrees of Freedom
from Two Variables

With only two controller variables, dx and dy, we can explore the en-
tire three-degree-of-freedom space of rotations due to the availability of the
z-axis rotations (shown in Figure 13.5).
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FIGURE 13.5 The quaternion path of a large number of small circular motions of the rolling
ball controller. This generates an “orbit” of the simple quaternion rotation path describing a
rotation about the orthogonal axis. A few more motions returns the state to its starting point at
q = (1,0,0,0).



Quaternions and Gimbal Lock:
Limiting the Available Space

One of the classic problems with using

14 ordinary 3 × 3 matrices to represent ro-
tations is the possibility of gimbal lock,
a phenomenon we explored qualitatively
in our introduction. Now we have enough
tools to look more carefully at the phe-
nomenon, and to work toward exploring
how to understand it, when to expect it,
and how to avoid it.

There are basically two related, but quite distinct, phenomena that are referred
to as gimbal lock. These are discussed in the sections that follow.

14.1 GUIDANCE SYSTEM SUSPENSION

Figure 14.1 shows the basic configuration of a set of rotatable rings that typically
house an inertial guidance system. There is a very specific mechanical problem that
can occur when two of the axes line up. The problem is critical when one has
three rings, the minimal number for free rotation of the guidance system, but no
matter how many concentric rotating rings there are, you can still line them all
up. As soon as all the rings are coplanar, as shown in Figure 14.2, any rotation
about the perpendicular axis generates a torque on the guidance system. This is
a serious problem, in that the rotating rings (or gimbals) are supposed to move
freely and prevent any torques from acting on the guidance system. At this point,
either the guidance system or the vehicle experiences a destructive force, because
the guidance system cannot accommodate the attempted change in direction with-
out applying a huge backward torque on the framework surrounding it. (See also
Figure 14.3.)
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FIGURE 14.1 The basic gimbal configuration, with three orthogonal rotation axes correspond-
ing initially to elementary rotations about the orthogonal Cartesian axes (x̂, ŷ, ẑ).

14.2 MATHEMATICAL INTERPOLATION
SINGULARITIES

The physical phenomenon of gimbal lock results from having coplanar axes of rota-
tion. When trying to control continuous changes in the orientation of an object in
3D space, we can encounter essentially the same results. When we have a sequence
of orientations that are smoothly changing, and the sequence reaches a point at
which the fixed axes of the rotation line up in a single plane, there is no way to
perform a rotation about the axis perpendicular to the plane.

14.3 QUATERNION VIEWPOINT

We can see how all the gimbal lock phenomena are related by expressing the prob-
lem in terms of quaternions. We simply take the innocent-looking three-degree-
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FIGURE 14.2 A gimbal lock situation occurs when the concentric rings rotate into configuration
where a degree of freedom is lost.

of-freedom rotation sequence

M(θ,φ,ψ) = R(θ, x̂) · R(φ, ŷ) · R(ψ, ẑ)

and write down its quaternion counterpart

Q(θ,φ,ψ) = q(θ, x̂) � q(φ, ŷ) � q(ψ, ẑ).

In Figure 14.3, we show the quaternion surfaces that result when we fix vari-
ous values of φ and plot the surface Q(θ,φ,ψ) as a function of the parameters
(θ,ψ). As φ → π/2, the surface loses its 2D character and becomes a 1D ring,
even though there are two parameters still attempting to describe it. As illustrated
in Figure 14.3d, this is gimbal lock.
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(a) (b)

(a) (b)

FIGURE 14.3 Gimbal lock from the quaternion viewpoint. For a given φ and a rotation
sequence R(θ, x̂) · R(φ, ŷ) · R(ψ, ẑ), the remaining orientation degrees of freedom are
plotted here in the q projection as a function of (θ,ψ). (a) φ = 0, the largest available space.
(b and c) φ = π/6 and φ = π/3, approaching gimbal lock. (d) At φ = π/2, all signs of
two degrees of freedom disappear, leaving only a 1D circle (this is the quaternion picture of what
happens in the gimbal-lock state).
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The remaining chapters in this book focus on more advanced topics that should
be informative to a variety of readers with specialized interests. Most of the material
in these chapters would qualify to be marked with the dagger (†) designation used
in Part I.
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Alternative Ways of Writing
Quaternions

We have taken advantage so far of the clar-

15 ity of a notation in which a quaternion is
represented simply as a four-vector—a list
of four variables that obeys certain rules.
There are several other completely equiva-
lent notations, including Hamilton’s orig-
inal formulas, that incorporate the rules
of quaternion multiplication as an intrin-
sic part of the notation itself. As far as we

are concerned, these add no new information to the notation we have been using and thus
they are not essential to the overall problem of trying to visualize quaternions. Nev-
ertheless, they do relate to notations used in other fields of mathematics and physics
and thus have value for their ability to expose those connections.

Basic four-vector: To provide a comparative basis, we repeat our own basic notation
for a quaternion, which is

q = (q0, q1, q2, q3) = (q0,q). (15.1)

In this way, a quaternion q can be regarded simply as a list of four numbers—
possibly a row vector, possibly a column vector, or as an object that has one scalar
part q0 and one three-vector part q.
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15.1 HAMILTON’S GENERALIZATION OF COMPLEX
NUMBERS

When he invented quaternions, Hamilton had as his goal to create a generalization
of complex numbers that permitted a division operation in which any nonzero
number could divide any other number and produce a sensible answer. Hamilton’s
original notation is then closely tied to complex numbers, and provides three sepa-
rate copies of a quantity that strongly resembles the i = √−1 of ordinary complex
arithmetic. We denote these as (i, j, k) and assign them the multiplication rules

i2 = −1,

j2 = −1,

k2 = −1,

ijk = −1, (15.2)

which lead to the more detailed rules of the form

ij = k,

jk = i,

ki = j,

ij + ji = 0,

jk + kj = 0,

ki + ik = 0,

ij − ji = 2k,

jk − kj = 2i,

ki − ik = 2j.

Any quaternion can then be written, using the vector i = (i, j, k), in a way that
implies its multiplication rule in exactly the same way that z = x + iy implies the
complex algebra. Hamilton’s form is then

q = q0 + iq1 + jq2 + kq3

= q0 + i · q, (15.3)
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and the reader can easily verify that Equation 15.2 implies all of the properties we
have been referring to as the quaternion algebra.

Note in addition that if we examine quaternions with arbitrary q0 and only
q1 �= 0, or only q2 �= 0, or only q3 �= 0 in turn they are indistinguishable from complex
numbers. As long as we keep the other components equal to zero, a quaternion
can be equivalent to a complex number in three different ways. When we consider
this in light of the relationship of ordinary complex numbers to 2D rotations (de-
tailed in Section 6.1), we see that these three cases correspond to the quaternion
representation of 3D rotations restricted to the following three independent 2D
subspaces.

• q0 + iq1: leaving x̂ fixed (yz-plane rotations)
• q0 + jq2: leaving ŷ fixed (zx-plane rotations)
• q0 + kq3: leaving ẑ fixed (xy-plane rotations)

15.2 PAULI MATRICES

Because of the relationship between quaternions and 3D rotations, we might ex-
pect that there would be a way of writing down quaternions in terms of matrix
elements and reproducing the quaternion algebra in terms of matrix multiplica-
tion properties. There are an infinite number of ways of doing this, related to the
theory of group representations. Despite the mathematical terminology, the basic
ideas can be simply understood in practical terms. We could start by writing down
the simplest matrices, which are 2 × 2, and play with them to see what happens.
What we would discover is that a set of three matrices (known as the Pauli matrices,
used in physics to describe the angular momentum of elementary particles such
as electrons) do the job perfectly. The Pauli matrices are written by convention as
follows, where i is the usual imaginary number with i2 = −1.

σ1 =
[

0 1

1 0

]
,

σ2 =
[

0 −i

i 0

]
,

σ3 =
[

1 0

0 −1

]
.
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We can immediately verify that the Pauli matrices obey the following relationships.

+I2 = (σ1)
2 = (σ2)

2 = (σ3)
2,

σ1σ2 = iσ3,

σ2σ3 = iσ1,

σ3σ1 = iσ2. (15.4)

Now any quaternion can be written

q = q0I2 − iσ1q1 − iσ2q2 − iσ3q3

=
[

q0 − iq3 −iq1 − q2

−iq1 + q2 q0 + iq3

]

= q0 − iσ · q,

where in the last expression q0 abbreviates the implicit multiplication by I2,
the 2 × 2 identity matrix. We can immediately see that i = (i, j, k) and −iσ =
−i (σ1, σ2, σ3) have exactly the same properties.

Physicists and mathematicians are fond of two pieces of shorthand, known as
the Kronecker delta δjk and the Levi-Civita symbol εjkl (the totally antisymmetric
pseudotensor), which we describe in more detail in Appendix F for those who are
interested. With this notation, the set of equations in Equation 15.4 collapses into

σjσk = δjk + i

3∑
l=1

εjklσl,

where δjk = 0 if j �= k, δjk = 1 if j = k, εjkl = 0 if any two indices are equal,
εjkl = +1 if the indices are in cyclic order, and εjkl = −1 if the indices are in
anticyclic order.

15.3 OTHER MATRIX FORMS

One can easily find sets of three matrices with larger dimensions that can be used
in place of σ to produce equivalent ways of writing down a quaternion as a matrix.
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One example we have already encountered is the orthogonal 4 × 4 matrix form,
which also exactly reproduces the algebra. To see this, we define

Σ1 =




0 −1 0 0

+1 0 0 0

0 0 0 −1

0 0 +1 0


 ,

Σ2 =




0 0 −1 0

0 0 0 +1

+1 0 0 0

0 −1 0 0


 ,

Σ3 =




0 0 0 −1

0 0 −1 0

0 +1 0 0

+1 0 0 0


 ,

where

−I4 = Σ 2
1 = Σ 2

2 = Σ 2
3 ,

Σ1Σ2 = Σ3,

Σ2Σ3 = Σ1,

Σ3Σ1 = Σ2.

The quaternion algebra then follows directly if we write the quaternion (using
these matrices) as

q = q0I4 + � · q

=




q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0


 . (15.5)
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Efficiency and Complexity
Issues

One might hope that because the quater-

16 nion representation of a 3D orientation
frame or rotation matrix requires only four
floating-point numbers for its computer
representation, and the standard 3×3 ma-
trix requires nine floating-point numbers,
that the computational complexity of stan-
dard computer graphics operations involv-
ing rotations would favor quaternions. In

fact, one can find many places in which it is claimed that all rotations should be
converted to quaternions at the outset and that thereafter one should use only the
quaternion libraries for implementing standard operations. The procedures that
need to be examined to confirm or deny such efficiency claims include the follow-
ing.

• Matrix to quaternion: Produce a quaternion four-vector from a 3×3 orthogonal
rotation matrix.

• Quaternion to matrix: Produce a 3×3 orthogonal rotation matrix from a quater-
nion four-vector.

• Transform a three-vector to a new orientation.
• Transform many three-vectors to the same new orientation.
• Compose two rotations to find a new composite rotation.

Unfortunately, in most situations involving these operations it is actually more effi-
cient to keep mapping the quaternion representation of an orientation matrix back
to the 3 × 3 orthogonal rotation matrix rather than performing pure quaternion
operations. The notable exception is the case of optimal interpolation among co-
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ordinate frames, where, regardless of efficiency, the quaternion representation is
required at the lowest level.

The complexity analysis of the standard quaternion operations listed above has
been considered by a number of authors, but we feel that the issues have been
misrepresented often enough that it is important for reference purposes to repeat
the results in this short section. We will closely follow the analysis presented by
Eberly [42] and by Schneider and Eberly [146].

16.1 EXTRACTING A QUATERNION

The basic method of obtaining the appropriate quaternion representation if one is
given a particular 3 × 3 orthogonal rotation matrix R was outlined in Chapter 6,
where we showed that the basic quantities (including the rotation axis and the
angle giving the amount of spin about that axis) could be computed from the trace

t = TraceR = 1+ 2 cosθ, (16.1)

and by subtracting the transpose

R − RT =




0 −2n3 sinθ +2n2 sinθ

+2n3 sinθ 0 −2n1 sinθ

−2n2 sinθ +2n1 sinθ 0


 . (16.2)

However, as pointed out by various authors (e.g., see Nielson [132], Shuster [153],
and Shuster and Natanson [154]), one can get into trouble making naive assump-
tions about these equations because, for example, θ = π is a perfectly legitimate
rotation parameter but the matrix R − RT is no longer useful.

The completely general basic procedure for extracting a quaternion from a ma-
trix depends on the fact, proved in detail by Shuster and Natanson [154], that there
will always be at least one component of the diagonal of R that will be “large.” We
can find from Equation 16.1 and the half-angle formula that the value of q0 is

q0 = cos
θ

2
= 1√

2

√
cosθ + 1= 1

2

√
TraceR + 1. (16.3)

Because a quaternion and its negation produce the same rotation matrix, we can
choose the positive root in Equation 16.3, as long as we keep the three-vector part
of the quaternion consistent with this sign.
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1 6 . 1 . 1 P O S I T I V E T R A C E R

Suppose first that TraceR > 0. Then, because q0 > 1/2, we have no trouble divid-
ing by it, and we can examine the quaternion form

R =




q2
0 + q2

1 − q2
2 − q2

3 2q1q2 − 2q0q3 2q1q3 + 2q0q2

2q1q2 + 2q0q3 q2
0 − q2

1 + q2
2 − q2

3 2q2q3 − 2q0q1

2q1q3 − 2q0q2 2q2q3 + 2q0q1 q2
0 − q2

1 − q2
2 + q2

3


 (16.4)

and observe that

R32 − R23 = 4q0q1,

R13 − R31 = 4q0q2,

R21 − R12 = 4q0q3,

and thus

q1 = R32 − R23

4q0
,

q2 = R13 − R31

4q0
,

q3 = R21 − R12

4q0
.

This yields the quaternion q = (q0, q1, q2, q3).

1 6 . 1 . 2 N O N P O S I T I V E T R A C E R

Now suppose that TraceR � 0. We now do not actually know that q0 is a suitable
divisor. It could approach zero. We thus now examine the diagonal entries in the
quaternion quadratic form (Equation 16.4), observing that if R11 is the largest
of the diagonal terms Rii then q1 will be the largest of the vector quaternion
components qi . Repeating this for each case, we can extract the values of qi from
the diagonal components, avoiding the potentially problematic trace, with the results
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q1 = 1

2

√
1+ R11 − R22 − R33,

q2 = 1

2

√
1+ R22 − R33 − R11,

q3 = 1

2

√
1+ R33 − R11 − R22.

From this basic information on the magnitudes of the diagonals, we can finally
determine the remaining values safely using the following family of conditions:

• q1 has the largest magnitude: Then we choose

q0 = R32 − R23

4q1
, q2 = R21 + R12

4q1
, q3 = R13 + R31

4q1
.

• q2 has the largest magnitude: Then we choose

q0 = R13 − R31

4q2
, q1 = R12 + R21

4q2
, q3 = R23 + R32

4q2
.

• q3 has the largest magnitude: Then we choose

q0 = R21 − R12

4q3
, q1 = R31 + R13

4q3
, q2 = R23 + R32

4q3
.

16.2 EFFICIENCY OF VECTOR OPERATIONS

Following the approach in Eberly [42] and in Schneider and Eberly [146], we first
define a dictionary of low-level operations in terms of which the complexity of the
basic composite operations will be phrased. Here, we will tabulate only the relative
complexity of the quaternion operations. A more complete comparison, including
axis-angle methods, may be found in [146].

• M: Multiplication
• A: Addition or subtraction
• D: Division
• F: Library function evaluations such as trigonometric functions, which are

composite operations often involving a large number of elementary multi-
plications, divisions, and additions
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• C: Comparisons, which can also add significantly to computational cost by
interrupting pipelined operations, etc.

Operation A M D F C

Quaternion to matrix 12 12

Matrix to quaternion (Trace> 0) 6 5 1 1 1

Matrix to quaternion (Trace� 0) 6 5 1 1 3

Rotate Vector A M Notes

With rotation matrix 6 9

With quaternion 24 32 Using generic quaternion multiplies

With quaternion 17 24 Using specialized quaternion multiplies

With quaternion 18 21 Convert to 3× 3 matrix first

Rotate n Vectors A M Notes

With rotation matrix 6n 9n

With quaternion 24n 32n Using generic quaternion
multiplies

With quaternion 17n 24n Using specialized
quaternion multiplies

Quaternion 12+ 6n 12+ 9n Convert to 3× 3 matrix first

Compose Two Rotations A M

Rotation matrix 18 27

Quaternion 12 16

We see that the only place in this set of standard operations where quaternions
have reduced complexity is in the composition of large numbers of rotation op-
erations to produce a new composition of the repeated operations. Once this is
accomplished, however, it is still typically faster to convert the resulting quaternion
to a standard 3× 3 matrix before performing additional vector operations.
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Advanced Sphere Visualization

This chapter presents additional methods

17 that can be used to study spheres. We
will start from the basic observations of
Chapter 8 and explore a selection of other
mathematical methods that can be used
in specific applications for representing,
manipulating, and visualizing spheres. As
usual, we introduce the methods begin-
ning with the circle, S1, and work our

way up to the ordinary sphere S2 and the unit hypersphere S3 needed to describe
quaternions.

17.1 PROJECTIVE METHOD

An alternative to the Northern–Southern hemisphere method introduced in Chap-
ter 8 is to construct a projection that removes one point of the sphere to infinity
and maps the rest to a flat Euclidean space. The advantage of this approach is that it
places the entire sphere, with the exception of a single point, into a flat Euclidean
framework. The disadvantage is that the metric properties (the ability to accurately
estimate distances) are completely distorted. Although there is indeed distortion in
the more conventional image of a sphere as well, it is a more familiar and intuitive
distortion.

1 7 . 1 . 1 T H E C I R C L E S1

For the circle, the projective method is an interesting alternative to the hemicircle
method we used previously to disambiguate the square root in the solution of the
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FIGURE 17.1 Polar projection maps the North Pole (+1,0) or the South Pole (−1,0) of
the circle S1 to infinity on the real line.

algebraic equation of the circle. To project the unit circle from either pole onto
the horizontal real line, we choose a point (q0, q1) = (cosθ,sinθ) on the circle
(see Figure 17.1). Because the circle is assumed to have unit radius, q0 provides a
partition of the vertical axis into two pieces of length 1− q0 and 1+ q0. The right
triangle with base of length x1 is similar to the upper triangle with base q1, and
thus the law of similar triangles shows that the projection from the North Pole is

x1 = q1

1− q0

= sinθ

1− cosθ
. (17.1)

To project from the South Pole to the horizontal real line, we employ instead the
right triangle whose bottom apex is at the South Pole and whose horizontal edge
has length x̄1. This triangle is similar to the larger triangle containing it, with
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horizontal edge of length q1, showing that

x̄1 = q1

1+ q0

= sinθ

1+ cosθ
. (17.2)

The resulting polar projections create a point on a straight line for every angle θ on
the circle except the poles, but destroy any symmetry between the North Pole and
South Pole, as can be seen in Figure 17.1. We also note the following useful inverse
formulas, which map a point on the infinite real line to a point on a circle:

[North projection center] q0 = r2 − 1

r2 + 1
, q1 = 2x1

r2 + 1
, r = |x1|, (17.3)

[South projection center] q0 = 1− r̄2

1+ r̄2
, q1 = 2x̄1

1+ r̄2
, r̄ = |x̄1|. (17.4)

Here, r and r̄ generalize to higher dimensions, taking the value of the distance
from the origin to the point being mapped. In the 2D case, r = |x1| for the North
Pole projection and r̄ = |x̄1| for the South Pole projection. Observe that

[North] (q0)
2 + (q1)

2 = x4
1 + 2x2

1 + 1

(x2
1 + 1)2

= 1,

[South] (q0)
2 + (q1)

2 = x̄ 4
1 + 2x̄2

1 + 1

(x̄2
1 + 1)2

= 1

as required. Because the projection of the circle to the infinite real line introduces
massive distortions and asymmetries into the geometry, we would use this method
only in special circumstances, preferring the more uniform two-part square-root
projection.

1 7 . 1 . 2 G E N E R A L SN P O L A R P RO J E C T I O N

The extension of the 2D polar projection, which sends either the North Pole or the
South Pole to infinity, basically takes the same form in all higher dimensions, and
thus it will be straightforward to handle the S2 and S3 cases together.
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We now expect that for the two-sphere S2 the projection will send the North
Pole or the South Pole to infinity and map the rest into the flat 2D plane R2. For the
three-sphere S3, all points except for one pole are flattened out into ordinary 3D
Euclidean space R3. This is the origin of the statement that S3 can be considered
to be the same as Euclidean 3D space R3, with the addition of a single point. The
projective method implements precisely this transformation.

From the previously cited Equations 17.1 and 17.2 for the S1 polar projection,
we can deduce the general polar projection equations for S2 and S3 by simply
replacing q1 with q = (q1, q2) or q = (q1, q2, q3), respectively, and x1 with x =
(x1, x2) or x = (x1, x2, x3), respectively. Thus, the projection of the N -sphere SN

to a Euclidean space of dimension N is simply

x = q
1− q0

, (17.5)

x̄ = q
1+ q0

. (17.6)

The inverse transformation takes a point in Euclidean space back to the sphere
SN embedded in (N + 1)-dimensional Euclidean space with constant unit radius.
We basically need to generalize the distances r and r̄ in Equations 17.3 and 17.4
to higher dimensions. For the S2 embedded in a 3D space with coordinates
(q0, q1, q2), we take r2 = x2 = x2+y2, and for S3 we take r2 = x2 = x2+y2+z2.
The result is

q0 = r2 − 1

r2 + 1
= 1− r̄2

1+ r̄2
, (17.7)

q = 2x
r2 + 1

= 2x̄
1+ r̄2

. (17.8)

The basic picture of what happens in the transformation is unchanged from that
represented by Figure 17.1.

17.2 DISTANCE-PRESERVING FLATTENING METHODS

As noted, the polar projection method for the sphere reduces the dimension of the
space needed to study a sphere to the intrinsic dimension of the sphere itself, but at
the price of massive interference with our ability to accurately estimate distances in
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terms of the arc length on the given sphere. Is it possible to have our cake and eat
it too, that is, to create a flat projection that also permits access to accurate distance
or size information? The answer is “sort of.” In this section, we show how this goal
is exactly achievable with an ordinary circle and demonstrate that some features of
the goal can be achieved for S2 and S3 as well.

1 7 . 2 . 1 U N RO L L - A N D - F L AT T E N S1

Our alternative way of understanding a circle is to forget altogether about the circle
S1 and its embedding in 2D space as a curve of constant distance from the origin.
The main feature that is often required (the preservation of distances among points)
is obtained if we simply cut the circle at the North Pole and flatten it down to a
straight line without stretching or distorting the point-to-point distances. This is
shown schematically in Figure 17.2. Just as all the visualization methods have some
drawback, there is one here as well: because we cut the circle at some point, we can
no longer take a continuous path that goes around and around the circle, returning
automatically to the original point after each complete circuit. In the unroll-and-
flatten method, this feature has to be imposed externally in some way, either by
simply declaring the path to jump to the other end when the traveler reaches one
end or by making a periodic tiling of the real line and identifying all points that are
2π units apart.

1 7 . 2 . 2 S2 F L AT T E N E D E Q UA L - A R E A M E T H O D

For S2, the simple unrolling approach that worked for the circle has no analog.
S2 is intrinsically curved and cannot be flattened. However, there is a trick here as
well: if we do not care about avoiding distortion, and we do not care about having
to impose periodicity by hand, there exist families of maps from S2 to the plane
that preserve local area. The map often used for this purpose in astronomy is called
the Aitoff–Hammer map. (There are many classic equal-area maps, and others are
equally popular in other disciplines.) This map starts from the latitude φ and the
longitude λ and describes the 3D points on the sphere by the expression

(q1, q2, q3) = (cosλcosφ,sinλcosφ,sinφ),

where φ is the latitude, with −π/2 � φ � +π/2, and λ is the longitude, with
−π � λ � +π . The Aitoff–Hammer projection maps the spherical point para-
meterized by (φ,λ) to a Cartesian point (x, y) in such a way that area is locally
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FIGURE 17.2 Framework for unwrapping the circle so that it becomes a straight line. Here,
unlike the projective method, the metric distances are preserved, but in contrast the periodicity
must be artificially imposed.

preserved. Thus, for example, light intensities of spherical sky maps are uniform if
they appear uniform in the sky. Using the auxiliary variable

t =√
1+ cosφ cos(λ/2), (17.9)

we find (x, y), which lie within an oval-shaped region defined by the equations

x = 2
√

2

t
cosφ sin(λ/2), (17.10)

y =
√

2

t
sinφ. (17.11)

Alternatively, we can map the Cartesian source coordinates (q1, q2, q3) obeying
q · q = 1 into the xy plane directly instead of using the polar coordinates. We let

r2 = (q1)
2 + (q2)

2,

t =
√

1+
√(

r2 + rq1
)
/2

so that
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x = 2 sign(q2)

t

√(
r2 − rq1

)
,

y =
√

2

t
q3. (17.12)

The inverse map is given by taking the auxiliary variable

w =
√

1−
(

x

4

)2

−
(

y

2

)2

(17.13)

and performing the transformation

λ = 2 arctan

(
xw

2(2w2 − 1)

)
, (17.14)

φ = arcsin(yw). (17.15)

In Figure 17.3, we show the result of the Aitoff–Hammer transformation on a
standard latitude–longitude ruled sphere, on the remaining whole triangles of an
icosahedral split down a line of constant longitude, and on a random collection
of points chosen to be evenly distributed on the surface of a sphere. This is the
closest we can come to an advantageous unwrapping of the sphere S2 onto a flat
plane. The relative areas of individual local sections are preserved, providing at least
one type of metric property, but Figure 17.3 clearly shows that geodesic paths (the
great circles of the longitude lines) are irregularly distorted, and periodicity is lost.
However, in certain types of applications this can be an appropriate choice.

1 7 . 2 . 3 S3 F L AT T E N E D E Q UA L - VO L U M E M E T H O D

For S3, we can again use a variant of the Aitoff–Hammer trick for creating a dis-
torted but volume-preserving representation of S3 in ordinary flat Euclidean 3D
space. The transformation takes the three-sphere coordinates

q0 = cosλcosφ cosψ,

q1 = sinλcosφ cosψ,

q2 = sinφ cosψ,

q3 = sinψ (17.16)
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(a)

(b)

(c)

FIGURE 17.3 Aitoff–Hammer equal-area projections of S2. (a) A standard lati-
tude–longitude ruling. (b) Partition of S2 using the remaining triangles of an icosahedron split
down a longitude line. (c) Map of a spherically uniform random distribution of dots.
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to the Cartesian coordinates (x, y, z) while preserving local volume elements. Us-
ing the auxiliary variable

t =√
1+ cosψ cosφ cos(λ/2), (17.17)

we find the Cartesian point (x, y, z)—which lies within an ellipsoidal region—
from the equations

x = 2
√

2

t
cosψ cosφ sin(λ/2), (17.18)

y =
√

2

t
cosψ sinφ, (17.19)

z =
√

2

t
sinψ. (17.20)

To map the Cartesian coordinates (q0, q1, q2, q3) into the volume-preserving ellip-
soid directly, we take the same auxiliary variables as in the 2D case,

r2 = (q0)
2 + (q1)

2,

t =
√

1+
√(

r2 + rq0
)
/2,

and choose

x = 2 sign(q1)

t

√(
r2 − rq0

)
,

y =
√

2

t
q2,

z =
√

2

t
q3. (17.21)

The inverse map is given by taking the auxiliary variable

w =
√

1−
(

x

4

)2

−
(

y

2

)2

−
(

z

2

)2

(17.22)

and performing the transformation
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(a) (b)

(c)

FIGURE 17.4 (a) The Aitoff–Hammer equal-volume projection of S3 for a standard polar
ruling. (b) The Aitoff–Hammer equal-volume projection for S3 subdivided using the parame-
ters of the Clifford torus tessellation. (c) Map of a uniform random distribution of dots on the
hypersphere S3.

λ = 2 arctan

(
xw

2(2w2 − 1)

)
,

φ = arcsin(yw),

ψ = arcsin(zw). (17.23)
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Whereas there is significant distortion at the outer surface of this transformation,
the very center (like the 2D case) is essentially correct and can be used to study
the properties of the 3D quaternion space of interest by applying a quaternion
transformation to move each point of interest to the origin. In Figure 17.4, we
show the overall appearance of the 3D Aitoff–Hammer map for a uniform random
sample on S3, for the standard polar coordinates of Equation 17.16, and for the
Clifford torus parameterization, which is given by

q0 = cosθ cosα,

q1 = cosθ sinα,

q2 = sinθ cosβ,

q3 = sinθ sinβ. (17.24)
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More on Logarithms and
Exponentials

The visualization of the calculus of rota-

18 tions requires that we perceive not only
the global properties of individual isolated
frames but also their infinitesimal prop-
erties, which tell us how nearby frames
are related and provide a basis for the cal-
culus of frames, angular velocities, and
higher derivatives. In this chapter, we will
carry out a more advanced treatment of

the properties of infinitesimal rotations and their relationship to the concept of log-
arithms and exponentials, both for matrices, and for abstract quaternions.

18.1 2D ROTATIONS

Rotations in two dimensions correspond precisely to a unit-length complex vector,
which in turn can always be written as the exponential

R2(θ) = eiθ . (18.1)

By representing a general 2D vector as the complex number

V = (r cosα, r sinα) = reiα,

we can then implement rotations as complex multiplication in the following way:

V ′ = R2(θ)V = rei(α+θ). (18.2)

165
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Thus, we may consider the logarithm of a 2D rotation to be defined as

logR2(θ) ≡ iθ. (18.3)

This has a particularly interesting implication if we attempt to perform a rotation
from one particular 2D frame, say, the frame given by rotating the identity frame
by θ0 so that

F0 = eiθ0,

to a second frame related to the identity frame by the rotation θ1 so that

F1 = eiθ1.

To make a smooth parametric rotation from one frame to the other we would
require the interpolating rotation F(t) to obey

F(0) = F0,

F (1) = F1.

Starting from a standard multiplicative interpolation x(t) from x(0) = a to x(1) =
b given by

x(t) = a

(
b

a

)t

,

we are led to examine

F(t) = F0 · (F−1
0 F1

)t
.

Written in terms of the exponentials, this becomes

F(t) = ei(θ0+t (θ1−θ0)).

Linearity in the logarithm: We see that we can use the logarithm to turn a multiplicative
interpolation into a linear one:

log
(
F(t)

)= i
(
θ0 + t (θ1 − θ0)

)
.

The calculus of the transformation is also easy to investigate, because (assuming
that t is a correctly scaled time variable) we have

dF(t)

dt
= i(θ1 − θ0)F (t).
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Because the standard differential equation for an object rotating at a constant angu-
lar velocity ω is Ḟ (t) = iωF (t), we see that the angular velocity of the interpola-
tion is

ω = θ1 − θ0,

where we have implicitly assumed that a time unit for t has been carried along as a
divisor, so that ω has units of angular measure divided by time.

18.2 3D ROTATIONS

In three dimensions, a rotation in any plane can be rewritten locally (using the unit
complex number form of the previous section) precisely as a 2D rotation. What
the complex notation cannot account for, of course, is the noncommatativity of 3D
rotations, and that is why the quaternion algebra has three separate “imaginary”
components with a mutually noncommutative algebra.

To try to understand the concept of a logarithm of a 3D rotation, we will of
course wind up using quaternions. However, all fundamental properties of the for-
mulas can be understood first via some very powerful observations regarding ma-
trices and powers of matrices. First, consider the triplet of antisymmetric traceless
3× 3 matrices

Lx =
[0 0 0

0 0 −1
0 1 0

]
, (18.4)

Ly =
[ 0 0 1

0 0 0
−1 0 0

]
, (18.5)

Lz =
[0 −1 0

1 0 0
0 0 0

]
. (18.6)

In the group theory of 3D rotations, these are the infinitesimal generators of the
rotations about each Cartesian axis. We can see what this means by looking at
powers of the matrices:

Lz · Lz =
[−1 0 0

0 −1 0
0 0 0

]
, (18.7)
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Lz · Lz · Lz = −Lz

=
[ 0 1 0

−1 0 0
0 0 0

]
. (18.8)

This holds similarly for Lx and Ly . If we take an exponential power series of θLz,
we find exactly R3(θ, ẑ).

I3 +
∞∑

k=1

(θLz)
k

k! (18.9)

= I3 +
∞∑

k=odd

(−1)(k−1)/2θk

k! Lz (18.10)

+
∞∑

k=even

(−1)(k−2)/2θk

k! Lz · Lz (18.11)

=
[cosθ −sinθ 0

sinθ cosθ 0
0 0 1

]
. (18.12)

Because the logarithm is the object that,when inserted into the exponential series
produces the function in question, we see that

logR3(θ, ẑ) = θLz,

and conversely

exp(θLz) = R3(θ, ẑ).

The standard formula for the 3D rotation matrix R3(θ, n̂) (whose Euler-theorem
eigenvector is n̂) can thus be shown to have the logarithm

Log of a MatrixlogR3(θ, n̂) = θ n̂ · L,
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where L = (Lx,Ly,Lz). In fact, there is a generally useful way of deducing the
form of the matrices L (or, more technically, n̂ · L) from this set of formulas using
calculus to find the result of an infinitesimal transformation. We replace θ → tθ ,
take the derivative with respect to t , and evaluate at t = 0, producing a vector in
the tangent space of the transformation, which is the mathematical meaning of the
matrices L = (Lx,Ly,Lz). For example,

dR3(tθ, ẑ)
dt

∣∣∣∣
t=0

=
[−sintθ −costθ 0

costθ −sintθ 0
0 0 0

]∣∣∣∣∣t=0

=
[ 0 −1 0

+1 0 0
0 0 0

]

≡ +Lz.

We note in conclusion that the components of L themselves obey the following
algebra.

Ly · Lz − Lz · Ly = +Lx, (18.13)

Lz · Lx − Lx · Lz = +Ly, (18.14)

Lx · Ly − Ly · Lx = +Lz. (18.15)

Note: Thus we can identify L with the conventional Lie algebra with X = L (see
Chapter 13).

Quaternion exponentiation: Essentially the same argument can be made using the Pauli
matrices σ instead of the matrices L, except that the Pauli matrices become pro-
portional to the identity matrix when squared:

(σ1)
2 = (σ2)

2 = (σ3)
2 = I2.

Thus, as noted in Chapter 15, the Pauli matrices become an exact realization of the
quaternion algebra with the identification

(−iσx,−iσy,−iσz) = (i, j,k).

Using the quaternion algebra in the abstract—which is the same as the Pauli matrix
algebra (or (i, j,k) algebra, if one prefers that notation)—we can make essen-
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tially the same observation relating exponentials of infinitesimal quaternions to a
full quaternion as we did for L. Starting with the quaternion (0, θ n̂), and using
quaternion multiplication, we form an exponential power series as follows:

exp(0, θ n̂) = (1,0) +
∞∑

k=1

�(0, θ n̂)k

k! . (18.16)

Because

(0, θ n̂) � (0, θ n̂) = (−θ2,0
)

(0, θ n̂) � (0, θ n̂) � (0, θ n̂) = (
0,−θ3n̂

)
(0, θ n̂) � (0, θ n̂) � (0, θ n̂) � (0, θ n̂) = (+θ4,0

)
,

the series repeats every fourth term in a way that is familiar from eiθ , except with
components in the quaternion algebra:

Quaternion Exponentialexp(0, θ n̂) = (cosθ,sinθ n̂).

Thus, we conclude that the logarithm of a unit quaternion (the quaternion that
when exponentiated produces a generic quaternion) must be

Quaternion Logarithmlog(cosθ,sinθ n̂) = (0, θ n̂).

Note: Recall that to obtain correspondence with ordinary 3D rotations we use the
half-angle form q(θ, n̂) ≡ (cos(θ/2), n̂ sin(θ/2)) = exp(0, n̂θ/2).
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18.3 USING LOGARITHMS FOR QUATERNION
CALCULUS

We can now easily proceed to study powers and derivatives of quaternions using
the logarithmic machinery we have just developed. Because

exp(tθ n̂) = (
cos(tθ),sin(tθ)n̂

)
,

and because

qt = exp(t logq),

we conclude that

qt = (
cos(tθ),sin(tθ)n̂

)
.

Taking the derivative with respect to t at t = 0, we find

dqt

dt

∣∣∣∣
t=0

= (logq)qt

∣∣∣∣
t=0

(18.17)

= logq (18.18)

= (0, θ n̂). (18.19)

When we substitute (0, n̂) back into the exponential, we see that this is the precise
analog in quaternion space of the matrix n̂ · L generating infinitesimal rotations in
the space of 3× 3 matrices.

18.4 QUATERNION INTERPOLATIONS VERSUS LOG

We have now seen that rotations in three dimensions correspond precisely to the
exponentiation of a pure quaternion (0, θ n̂) to produce a unit-length quaternion
four-vector:

q(2θ, n̂) = e(0,θ n̂) = (
cos(θ),sin(θ)n̂

)
. (18.20)

We can now examine a rotation from one particular 3D frame, say, the quaternion
frame F0 given by rotating the identity frame by 2θ0n̂0 so that

F0 = e(0,θ0n̂0),
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to a second frame F1, related to the identity frame by the rotation 2θ1n̂1, where

F1 = e(0,θ1n̂1).

To make a smooth parametric rotation from one frame to the other, the 3D inter-
polating rotation F(t) must obey

F(0) = F0,

F (1) = F1,

just as in the 2D case. We again examine

F(t) = F0 �
(
F−1

0 � F1
)t

,

which written in terms of the exponentials becomes

F(t) = e(0,θ0n̂0) � et (log(F−1
0 �F1)).

Following essentially the same argument as that of Section 10.2, we can identify
this as a SLERP parameterized by the angle φ between the quaternions F0 and F1,
with

F0 · F1 = cosφ = cosθ0 cosθ1 + (n̂0 · n̂1)sinθ0 sinθ1.

If the two rotations are coplanar, we verify that this reduces to cos(θ1 − θ0) as
expected.



Two-Dimensional Curves

Our purpose in this chapter is to introduce

19 the idea of orientation frames in two di-
mensions, and in particular to study the
technology of moving orientation frames.
We choose two dimensions as our logi-
cal starting point because it is the simplest
framework available, and there are many
basic concepts that generalize to three di-
mensions and provide insight into quater-
nion methods.

19.1 ORIENTATION FRAMES FOR 2D SPACE CURVES

Suppose we have a 2D object (a simple box, for example), as shown in Figure 19.1.
The orientation frame consists of two orthogonal vectors, denoted by the tangent T
(the direction corresponding to the slope of the “hillside” the box is sitting on)
and the normal N, which is the direction perpendicular to the “hillside” curve and
perpendicular to the direction of T. This simple example will allow us to study the
following two profound concepts:

• Basic fact 1: The columns of any rotation matrix are interpretable as coordinate
frame axes.

• Basic fact 2: Rotation matrices belong to a group, and because groups have geo-
metric properties each matrix is actually a point on a geometric object. Therefore,
any set of coordinate frame axes is also such a point.

173
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FIGURE 19.1 Moving frame on a smooth curve defined by the tangent and normal directions.
The pair (T̂, N̂) is a rotation matrix defining the relation of the curve’s tangent frame to the
orientation described by the 2× 2 identity matrix.

We will now begin the task of more deeply understanding rotations, their associ-
ated coordinate frame axes, and the phenomenon of moving frames in 2D. We will
continue to find new ways to exploit the fact that there exists a geometric corre-
spondence between rotations and the geometry of complex numbers. Because complex
numbers are a special subspace of quaternions, 2D rotations can be used to intro-
duce us to quaternion frames and their geometric meaning.

1 9 . 1 . 1 2 D RO TAT I O N M AT R I C E S

The first visualization of a rotation matrix we will use is based on the idea of a
smooth curve in the plane, as shown in Figure 19.1. At each point of the curve,
we can see that there is a tangent vector. We will let one end of the curve be the
“beginning,” so that the tangent vector points unambiguously from the beginning
toward the end. In precise mathematical terms, if the curve is specified by a pair of
parametric functions, which we write as the two-vector

f(t) = (
x(t), y(t)

)
,

the tangent vector at each point of the curve is the derivative

T(t) = df(t)
dt

= (
ẋ(t), ẏ(t)

)
.
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The reader should be convinced that this derivative and the slope of the curve are
the same thing. (Hint: Try some simple examples, such as f(t) = (t,0), f(t) = (t, t),
f(t) = (t, t3), and so on.)

We take the convention that if the direction T is the “virtual x axis” of a 2D
coordinate frame there is a unique “virtual y axis” dictated by the right-handed
orientation convention. We call this the normal direction and denote it by

N(t) = ×T = (−ẏ(t),+ẋ(t)
)
.

Clearly, T(t) · N(t) = 0 for all t , and therefore the tangent and the normal together
can be normalized to form an orthonormal moving frame:

T̂ = T
‖T‖ , N̂ = N

‖N‖ .

The tangent and normal change continuously as we move along the 2D curve, as
implied by Figure 19.1.

1 9 . 1 . 2 T H E F R A M E M AT R I X I N 2 D

The varying orientation of the frame is described at each point (or time) by the 2D
rotation matrix

R2(θ) = [ T̂ N̂ ]

=
[

cosθ −sinθ

sinθ cosθ

]
, (19.1)

as well as the two more abstract forms we have already introduced,

R2(A,B) =
[

A −B

B A

]
.

(with the constraint A2 + B2 = 1) and

R2(a, b) =
[

a2 − b2 −2ab

2ab a2 − b2

]
,

with the constraint a2 + b2 = 1.
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1 9 . 1 . 3 F R A M E E VO L U T I O N I N 2 D

Next let us examine the time evolution of the 2D frame, which will be of great
interest in 3D. First, using the coordinates θ(t) for the frame we have

[ T̂ N̂ ] =
[

cosθ(t) −sinθ(t)

sinθ(t) cosθ(t)

]
. (19.2)

Differentiating the columns separately, we find the frame equations

˙̂T(t) = +κN̂,

˙̂N(t) = −κT̂, (19.3)

where κ(t) = dθ/dt is the curvature.
This is the 2D analog of the 3D Parallel Transport Frame, which handily maps any

continuously differentiable curve into its corresponding tangent frame. The set of
Equations 19.3 is often arranged to make a “vector matrix equation:”

[ ˙̂T(t)
˙̂N(t)

]= [
T̂(t) N̂(t)

][ 0 −κ(t)

+κ(t) 0

]
. (19.4)

19.2 WHAT IS A MAP?

We are going to start studying objects by creating new objects that are closely
related to them, usually with a point-by-point correspondence, but which may not
correspond exactly to the objects themselves. This approach is known as a map.
Creating a map amounts to taking a point p on a geometric object and giving a
rule that tells us how to compute a new point x that is not necessarily even of the
same dimension as p. Formally, we might write

f maps p → x,

f(p) = x,

with typical examples being, respectively, the constant map, a scalar field, the iden-
tity map, or a tensor map:

f (p) = 1,
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f (p) = p · p,

f (p) = p,

f (p) = pipj .

The task of the map f (p) is to perform some computation depending on the point
p and to return some object, possibly a vector of the same dimensions, possibly
not, that is related to each point p.

19.3 TANGENT AND NORMAL MAPS

In Figure 19.2, we show an example of a 2D curve with its tangent and normal
fields. The normalized tangent and normal fields have only one degree of freedom,
which we denote by the angle θ(t). The column vectors T̂ and N̂ then represent a
moving orthonormal coordinate frame, as in Equation 19.2.

FIGURE 19.2 A smooth 2D curve with its normal and tangent frame fields. The segments d

and f are intended to be straight.
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(a) (b)

FIGURE 19.3 2D Gauss map sketches of (a) the tangent directions and (b) the normal direc-
tions corresponding to the U-shaped curve shown in Figure 19.2. All vectors lie on the unit circle
in 2D. The straight line segments along d and f in Figure 19.2 correspond to single points in
both maps.

A 2D version of the Gauss map [46,61] used in the classical differential geome-
try of surfaces follows when we discard the original curve (Figure 19.2) and restrict
our view to show only the path of the normalized tangents (as in Figure 19.3a) or
the normalized normals, as in Figure 19.3b. Both vector fields take values only in
the unit circle. These are the tangent map of the curve in Figure 19.2, and the normal
map of the curve in Figure 19.2, respectively.

We note that any sufficiently small open neighborhood of the curve has unique
tangent and normal directions, up to the possibility of a shared limit point for
straight segments such as d and f (Figure 19.2). Over the entire curve, however,
particular neighborhoods of directions may be repeated many times, resulting in
an overlapping nonunique 2D map, as indicated schematically in Figure 19.3. We
will accept this as a feature, not necessarily a deficiency, of the construction.
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19.4 SQUARE ROOT FORM

1 9 . 4 . 1 F R A M E E VO L U T I O N I N (a, b)

With some amount of prescience about quaternions, we can ask what happens if
we express the standard angular form of the 2D frame equations we have been
using not in the form of the (A = cosθ,B = sinθ) variables but in terms of a =
cos(θ/2), b = sin(θ/2) (i.e., A = a2 −b2, B = 2ab). When we carry through this
alternative parameterization, we find, as usual,

R2(a, b) =
[

a2 − b2 −2ab

2ab a2 − b2

]
,

where orthonormality implies (a2 + b2)2 = 1, which reduces back to

a2 + b2 = 1.

We observe that the pair (a, b) provides a double-valued parameterization of the frame:

[ T̂ N̂ ] =
[

a2 − b2 −2ab

2ab a2 − b2

]
. (19.5)

Here, (a, b) describes precisely the same frame as (−a,−b).

Remark: Yet another one-parameter representation. The redundant parameter can be elimi-
nated locally by using projective coordinates such as c = b/a = tan(θ/2), where
−∞ < c < +∞, to get another parameterization:

[ T̂ N̂ ] = 1

1+ c2

[
1− c2 −2c

2c 1− c2

]
.

(Note: there is a useful equivalent of this formula for quaternions.)

1 9 . 4 . 2 S I M P L I F Y I N G T H E F R A M E E Q UAT I O N S

Using the basis (T̂, N̂) for the frame, we have four equations with three constraints from
orthonormality, yielding one true degree of freedom. However, a major simplifica-
tion occurs when we carry out the calculation in (a, b) coordinates! Differentiating,
we get
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˙̂T = 2

[
aȧ − bḃ

aḃ + bȧ

]
= 2

[
a −b

b a

][
ȧ

ḃ

]
.

However, this formula for ˙̂T is just κN̂, where

κN̂ = κ

[ −2ab

a2 − b2

]
= κ

[
a −b

b a

][−b

a

]
or

κN̂ = κ

[
a −b

b a

][
0 −1
1 0

][
a

b

]
.

Now, because [
a −b

b a

]

is an orthogonal matrix, we can simply multiply the pair of equations for ˙̂T and

κN̂ by the transpose, so that ˙̂T = +κN̂ becomes precisely equivalent to[
ȧ

ḃ

]
= 1

2

[
0 −κ(t)

κ(t) 0

][
a

b

]
. (19.6)

Thus, (a(t), b(t)) with the constraint a2 + b2 = 1 acts as the square root of (T̂, N̂),
and the differential equation given by Equation 19.6 contains all properties needed
to compute and reconstruct the behavior of the frame described in a less elegant
way by Equations 19.3 and 19.4.



Three-Dimensional Curves

The methods of 3D frames are taught as a

20 basic area of study in differential geome-
try. However, classical methods do not take
advantage of the quaternion techniques
that can be used to clarify the nature of
moving frames. In this chapter we review
the classical differential geometry of mov-
ing frames on 3D space curves, and then
introduce the equivalent quaternion for-

mulation along with the quaternion tangent map, which allows us to see global proper-
ties of a framing choice at a single glance.

The fundamental difference between 2D space curves and 3D space curves is that
although the tangent direction is still determinable directly from the space curve,
there is an additional degree of rotational freedom in the normal plane, the portion
of the frame perpendicular to the tangent vector. This is indicated schematically in
Figure 20.1.

20.1 INTRODUCTION TO 3D SPACE CURVES

Dense families of space curves can be generated by many applications, including
time-dependent particle flow fields, static streamlines generated by integrating a
volume vector field, and deformations of a solid coordinate grid. Our fundamental
approach singles out space curves, although variations could be used to treat indi-
vidual point frames (see Alpern et al. [3]), stream surfaces (see Hultquist [99]),
and orientation differences (which are themselves orientation fields). Thus, we
begin with the properties of a curve x(t) in 3D space parameterized by the unnor-

181
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FIGURE 20.1 General form of a moving frame for a 3D curve x(t), with the tangent direction
T̂ determined directly from the curve derivative and the exact orientation of the basis (N̂1, N̂2)

for the normal plane determined only up to an axial rotation about T̂.

malized arc length t . If x(t) is once-differentiable, the normalized tangent vector at
any point is

T̂(t) = x′(t)
‖x′(t)‖ .

The standard arc-length differential is typically expressed as

v(t)2 =
(

ds

dt

)2

=
(

dx(t)

dt
· dx(t)

dt

)
= ∥∥x′(t)

∥∥2
.

In practice, we never have smooth curves in numerical applications, but only piece-
wise linear curves that are presumed to be approximations to differentiable curves.
Thus, for a curve given by the set of points {xi} we might typically take

T̂i = xi+1 − xi

‖xi+1 − xi‖ ,

or any corresponding formula with additional sampling points and desirable sym-
metries. We would typically use a five-point formula to get a smoother result. One
could also produce finer intermediate states by spline interpolation.
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If the curve is locally straight—that is, x′′(t) = 0 or T̂i+1 = T̂i—there is no lo-
cally determinable coordinate frame component in the plane normal to T̂. A non-
local definition must be used to decide on the remainder of the frame once T̂ is
determined. In the following, we formulate our two alternate coordinate frames,
one of which (the Frenet frame) is completely local but is indeterminable where
the curve is locally straight. The other coordinate frame, the parallel transport
frame, is defined everywhere but depends on a numerical integration over the en-
tire curve.

Tangent map examples: The tangent direction of a 3D curve at each point is given simply
by taking the algebraic or numerical derivative of the curve at each sample point
and normalizing the result. Each tangent direction thus has two degrees of freedom
and lies on the surface of the two-sphere S2. The curve resulting from joining the
ends of neighboring tangents is the tangent map of the curve. As in the 2D case treated
earlier, the tangent map of a 3D curve is not necessarily single valued except in local
neighborhoods, and may have limit points (e.g., if there are straight segments). In
Figures 20.2a and 20.2b we show examples of two classic 3D curves—one a closed
knot, the (2,3) trefoil knot lying on the surface of a torus, and the other the open
helix:

xtorus(p, q)(r, a, b)(t) = (
r + a cos(qt)

)
cos(pt)x̂

+ (
r + a cos(qt)

)
sin(pt)ŷ + b sin(qt)ẑ, (20.1)

xhelix(a, b, c)(t) = a cos(t)x̂ + b sin(t)ŷ + ct ẑ. (20.2)

For the torus knot, p and q are normally relatively prime integers, r is the radius
of the torus, and a and b describe the elliptical cross section of the toroidal tube.
Differentiating these curves yields the tangent maps shown in Figure 20.2c.

20.2 GENERAL CURVE FRAMINGS IN 3D

The evolution properties of all possible frames for a 3D curve x(t) can be written
in a unified framework. The basic idea is to consider an arbitrary frame to be
represented in the form of columns of a 3× 3 orthonormal rotation matrix:

Curve Frame= [
T̂ N̂1 N̂2

]
. (20.3)
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(a) (b) (c)

FIGURE 20.2 Tangent maps. (a) The (2,3) torus knot and the helix as 3D line drawings.
(b) Illustrating an application of tubing to make the 3D curves more interpretable. (c) The
corresponding normalized tangent maps determined directly from the curve geometry. These are
curves on the two-sphere, which have been tubed to improve visibility.

Here, T̂(t) = x′(t)/‖x′(t)‖ is the normalized tangent vector determined directly by
the curve geometry and is thus unalterable. (N̂1(t), N̂2(t)) is a pair of orthonormal
vectors spanning the plane perpendicular to the tangent vector at each point of the
curve. Because ‖T̂‖2 = ‖N̂1‖2 = ‖N̂2‖2 = 1 and all other inner products vanish by
definition, any change in a basis vector must be orthogonal to itself and thereby expressible in terms of
the other two basis vectors. Thus, the most general possible form for the frame evolution
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equations is[
T̂′(t) N̂′

1(t) N̂′
2(t)

]

= [
T̂(t) N̂1(t) N̂2(t)

]
v(t)




0 −ky(t) +kx(t)

+ky(t) 0 −kz(t)

−kx(t) +kz(t) 0


 , (20.4)

where v(t) = ‖x′(t)‖ is the velocity of the curve if we are not using a unit-speed
parameterization. (See Equation 19.4 for comparison.)

The particular choice of notation and signs for the curvatures k in Equation 20.4
is compellingly motivated by the quaternion algebra treatment to be presented later.
The natural properties of the curve-frame evolution are also exposed using the
Darboux form of the equations

T̂′ = v(t)F × T̂,

N̂′
1 = v(t)F × N̂1, (20.5)

N̂′
2 = v(t)F × N̂2,

where F generalizes the Darboux vector field (e.g., see Gray [61, p. 205]):

F = kxN̂1 + kyN̂2 + kzT̂. (20.6)

The square magnitude of the total “force” acting on the frame is ‖F‖2 = k2
x + k2

y +
k2
z , and we will see in the following that this is a minimum for the parallel transport

frame. The arbitrariness of the basis (N̂1(t), N̂2(t)) for the plane perpendicular to
T̂(t) can be exploited as desired to eliminate any one of the (kx, ky, kz) (e.g., see
Bishop [19]). For example, if

M̂1 = N̂1 cosθ − N̂2 sinθ,

M̂2 = N̂1 sinθ + N̂2 cosθ, (20.7)

differentiating and substituting from Equation 20.4 yields

M̂′
1 = M̂2(kz − θ ′) − T̂(kx sinθ + ky cosθ), (20.8)

M̂′
2 = −M̂1(kz − θ ′) + T̂(kx cosθ − ky sinθ). (20.9)
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Thus, the angle θ(t) may be chosen to cancel the angular velocity kz in the plane
spanned by N̂1(t) and N̂2(t). The same argument holds for any other pair. Attempt-
ing to eliminate additional components produces new mixing, leaving at least two
independent components in the evolution matrix.

20.3 TUBING

We remark that to generate a ribbon or tube such as those we commonly use to
display curves one simply sweeps the chosen set of frames through each curve point
p(t) to produce a connected tube:

x(t, θ) = p(t) + cosθ N̂1(t) + sinθ N̂2(t).

The resulting structure is sampled in t and over one full 2π period in θ to produce
a tessellated tube. Arbitrary functions of (t, θ) can be introduced instead of the
cosine and sine to produce ribbons and general linear structures. A typical example
of a tube-based modeling operation, sometimes known as the generalized cone,
takes a particular 2D cross-section shape and moves it along a framed path, possibly
varying in size or shape as it travels. The result is the class of tube-like geometric
objects shown in Figure 20.3.

20.4 CLASSICAL FRAMES

We now note a variety of approaches to assigning frames to an entire 3D space
curve, each with its own peculiar advantages. Figure 20.4 compares the tubings of
the (2,3) trefoil knot and the helix for each of the three frames described in the
following. For further details, see (for example) Eisenhart [46] and Gray [61].

2 0 . 4 . 1 F R E N E T– S E R R E T F R A M E

The classical Frenet–Serret frame, also commonly referred to as the “Frenet frame,”
is determined by local conditions at each point of the curve but is undefined when-
ever the curvature vanishes (e.g., when the curve straightens out or has an inflection
point). For the Frenet frame, we make the choices
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(a) (b) (c)

FIGURE 20.3 Moving orientation control of extruded shapes. (a) A ribbon generated by a pair
of vectors. (b) A tube with a circular cross section. (c) A tube with a star-shaped cross section
and a varying radius.

kx = 0,

ky = κ(t),

kz = τ(t),

where κ(t) is the curvature (which geometrically can be understood as the inverse
radius of curvature at a curve point) and τ(t) is the torsion, which mixes the two
normal vectors in their local plane. This identification produces the Frenet–Serret
equations

[
T̂′(t) N̂′(t) B̂′(t)

]

= [
T̂(t) N̂(t) B̂(t)

]
v(t)




0 −κ(t) 0

+κ(t) 0 −τ(t)

0 +τ(t) 0


 . (20.10)

Note that the squared Darboux vector is thus ‖F‖2 = κ2 + τ2 � κ2.
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(a) (b) (c)

FIGURE 20.4 Curve framings for the (2,3) torus knot and the helix based on (a) Frenet
frame, (b) geodesic reference frame (minimal tilt from North Pole), and (c) parallel transport
frame, which is not periodic like the other frames.

If x(t) is any thrice-differentiable space curve, we can identify the triad of nor-
malized Frenet frame vectors directly with the local derivatives of the curve,

T̂(t) = x′(t)
‖x′(t)‖ ,

N̂1 = N̂(t) = B̂(t) × T̂(t),

N̂2 = B̂(t) = x′(t) × x′′(t)
‖x′(t) × x′′(t)‖ , (20.11)
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FIGURE 20.5 The triad of orthogonal axes forming the Frenet frame for a curve with nonvan-
ishing curvature.

where one can identify the curvature and torsion in Equation 20.10 with

κ(t) = ‖x′(t) × x′′(t)‖
‖x′(t)‖3

and

τ(t) = x′(t) × x′′(t) · x′′′(t)
‖x′(t) × x′′(t)‖2

,

respectively.
We illustrate the standard Frenet frame configuration in Figure 20.5. When the

second derivative vanishes on some interval, the Frenet frame is temporarily unde-
fined, as illustrated in Figure 20.6. Attempts to work around this problem involve
various heuristics [147] but can be resolved rigorously using the Bishop frame
[19], also known as the parallel transport frame, which we will describe in a mo-
ment.
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FIGURE 20.6 The triad of orthogonal axes forming the Frenet frame for a curve with vanishing
curvature on an interval. The frame is undefined on the interval.

2 0 . 4 . 2 PA R A L L E L T R A N S P O RT F R A M E

The parallel transport frame is equivalent to a heuristic approach that has been
frequently used in graphics applications (e.g., see Bloomenthal [21], Klock [114],
Max [121], Shani and Ballard [147]). A careful mathematical treatment by Bishop
[19] presents its differential properties in a form that can be easily compared with
the standard features of the Frenet frame. The parallel transport frame is distin-
guished by the fact that it uses the smallest possible rotation at each curve sam-
ple to align the current tangent vector with the next tangent vector. The current
orientation of the plane normal to the tangent vector depends on the history
of the curve, starting with an arbitrary initial frame, and thus one is essentially
integrating a differential equation for the frame change around the curve. The
frame depends on the initial conditions, and unlike the Frenet frame cannot be
determined locally on the curve. The algorithm with the best limiting proper-
ties [119] for computing this frame involves determining the normal direction
N̂ = Ti × Ti+1/‖Ti × Ti+1‖ to the plane of two successive tangents to the curve,
finding the angle θ = arccos(T̂i · T̂i+1) and rotating the current frame to the next
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frame using the 3× 3 matrix R(θ, N̂) or its corresponding quaternion,

q(θ, N̂) = q
(
arccos(T̂i · T̂i+1),Ti × Ti+1/‖Ti × Ti+1‖

)
. (20.12)

(Recall that we define q(θ, N̂) = (cos(θ/2), N̂ sin(θ/2)).) If the successive tan-
gents are collinear, one leaves the frame unchanged. If the tangents are anti-
collinear, a result can be returned but it is not uniquely determined. To identify
the parallel transport frame with Equation 20.4, we set

ky ⇒ k1(t),

−kx ⇒ k2(t),

kz ⇒ 0

to avoid unnecessary mixing between the normal components (effectively the def-
inition of parallel transport). This choice produces Bishop’s frame equations:[

T̂′(t) N̂′
1(t) N̂′

2(t)
]

= v(t)
[
T̂(t) N̂1(t) N̂2(t)

]



0 −k1(t) −k2(t)

k1(t) 0 0

k2(t) 0 0


 . (20.13)

This frame choice behaves entirely differently from the Frenet frame because, as
illustrated in Figure 20.7, it remains continuous and well defined for a curve with
vanishing curvature on a segment.

Because ‖T̂′‖2 = (k1)
2 + (k2)

2 is an invariant independent of the choice of the
normal frame, Bishop identifies the curvature, orientation, and angular velocity as

κ(t) = (
(k1)

2 + (k2)
2)1/2

,

θ(t) = arctan

(
k2

k1

)
,

ω(t) = dθ(t)

dt
.

k1 and k2 thus correspond to a Cartesian coordinate system for the curvature po-
lar coordinates (κ, θ), with θ = θ0 + ∫

ω(t) dt and ω(t) is effectively the classical
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FIGURE 20.7 The parallel transport curve frame for the curve shown in Figure 20.6 [19].
This frame, unlike the Frenet frame shown in Figure 20.6, is continuous along the “roof peak”
(where the curvature vanishes).

torsion τ(t) appearing in the Frenet equations. A fundamental ambiguity in the par-
allel transport frame compared to the Frenet frame thus arises from the arbitrary
choice of an integration constant for θ , which disappears from τ due to the differ-
entiation. Note that the squared Darboux vector ‖F‖2 = ‖T̂′‖2 = k2

1 + k2
2 = κ2 is

now a frame invariant. It is missing the torsion component present for the Frenet
frame, and thus assumes its minimal value.

A numerical method of computing the parallel transport frame with the de-
sired properties works as follows. Given a frame at xi−1, compute two neighbor-
ing tangents Ti and Ti−1 and their unit vectors T̂i = Ti/‖Ti‖. Find the angle
θ = arccos(T̂i · T̂i−1) between them and find the perpendicular to the plane of the
tangents given by V = (T̂i−1 × T̂i ). Finally, rotate the frame at xi−1 by θ about V̂
to get the frame at point xi .
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Just as for the Frenet frame, one can begin with a curve x(t) and an initial
frame, or a pair of functions (k1(t), k2(t)) and an initial frame, or a frame over the
entire curve, and then integrate where needed to compute the missing variables.
It is also worthwhile noting that (k1(t), k2(t)) form a 2D Cartesian vector field at
each point of the curve, and thus allow a natural alternate characterization to Gray’s
(κ, τ ) curve properties [31,60].

2 0 . 4 . 3 G E O D E S I C R E F E R E N C E F R A M E

We will often need a frame that is guaranteed to have a particular axis in one direc-
tion, but we will not care about the remaining axes because they will be considered
as a space of possibilities. A convenient frame with these properties can always be
constructed starting from the assumption that there exists a canonical reference
frame in which, say, the ẑ axis corresponds to the preferred direction. Thus, if v̂
is the desired direction of the new axis, we can simply tilt the reference axis ẑ
into v̂ along a minimal, geodesic curve using an ordinary rotation R(θ, n̂) or its
corresponding quaternion:

q(θ, n̂) = q
(
arccos(ẑ · v̂), ẑ × v̂/‖ẑ × v̂‖). (20.14)

Clearly any reference frame, including frames related to the viewing parameters
of a moving observer, could be used instead of ẑ. This frame has the drawback
that it is ambiguous whenever v̂ = −ẑ. Sequences of frames passing through this
point will not necessarily be smoothly varying because only a single instance of
a one-parameter family of frames can be returned automatically by a context-free
algorithm. Luckily, this is of no consequence for most of our applications. As we
will discuss later in the quaternion framework, this property is directly related to
the absence of a global vector field on the two-sphere.

2 0 . 4 . 4 G E N E R A L F R A M E S

When possible, we will work with the top-level framework for coordinate frames
of arbitrary generality, rather than choosing conventional frames or hybrids of the
frames described so far (e.g., see Klock [114]). Although the classical frames have
many fundamentally appealing mathematical properties, we are not restricted to
the use of any one of them. Keeping the tangent vector field intact, we may modify
the angle of rotation about the tangent vector at will to produce an application-
dependent frame assignment. An example of such an application is a closed curve
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with inflection points: the Frenet frame is periodic but not globally defined, the
parallel transport frame will not be periodic in general, and the geodesic refer-
ence frame will be periodic but may have discontinuities for antipodal orientations.
Thus, to obtain a satisfactory smooth global frame we need something close to a
parallel transport frame but with a periodic boundary condition. An example of an
ad hoc solution is to take the parallel transport frame and impose periodicity by
adding to each vertex’s axial rotation a fraction of the angular deficit of the paral-
lel transport frame after one circuit. However, this is highly heuristic and depends
strongly on the chosen parameterization. Chapter 22 introduces a more compre-
hensive approach.

20.5 MAPPING THE CURVATURE AND TORSION

Any individual space curve implicitly contains additional information that is deriv-
able from its shape by exploiting its derivatives. The classic examples of such mea-
sures, which we discuss for completeness on our way to a quaternion treatment, are
the torsion and the curvature. The treatment given here is available in almost any
differential geometry textbook (e.g., see Eisenhart [46] and Gray [61]), whereas
the use of torsion and curvature maps for visualization has been particularly em-
phasized by Gray [61,31].

The standard treatment is based on the Frenet frame, which we recall is defined by
first assuming that we are given x(t), an arbitrary thrice-differentiable parameteri-
zation of the (unique) position of the curve in space. If we are given a nonvanishing
curvature and a torsion as smooth functions of t , we can theoretically integrate the
system of equations to find the unique numerical values of the corresponding space
curve x(t) (up to a rigid motion). (See Appendix H.)

We recall that the classical torsion and curvature for an arbitrary curve are com-
puted as

κ(t) = ‖x′(t) × x′′(t)‖
‖x′(t)‖3

, (20.15)

τ(t) = (x′(t) × x′′(t)) · x′′′(t)
‖x′(t) × x′′(t)‖2

(20.16)

and therefore require not only a nonzero first derivative but also that the curve
have nonvanishing curvature. To compute the torsion, we must in addition have a
well-defined third derivative. Given such information, we can encode their values
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FIGURE 20.8 (2,3) torus knot.

FIGURE 20.9 (3,5) torus knot.
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in the visualization, for example by mapping a color to the curve to emphasize the
numerical values of the bending and twisting of the curve at different points.

Examples of analytic curves: We begin with a classic mathematical example, the torus
knot. The parametric equation of the (p, q) torus knot can be written as given
in Equation 20.1. As examples of complex curve shapes, we choose a (2,3) torus
knot and a (3,5) torus knot, and plot the 3D curves with and without an attached
Frenet-frame tubing (Figures 20.8 and 20.9). We can learn some useful facts about
the curve by computing its curvature and torsion. Following the work of Gray [31,
61], we compute from Equations 20.15 and 20.16 the curvature and torsion for
the (2,3) and (3,5) torus knots with size parameters (r, a, b) = (8,3,5), and use
these quantities to choose values from an appropriate color table. The resulting
values of the curvature and torsion are plotted and color encoded onto the curves
themselves in Figures 20.10 and 20.11.

20.6 THEORY OF QUATERNION FRAMES

It is awkward to represent moving frames visually in high-density data because a
frame consists of three 3D vectors (or nine components) yet has only three in-
dependent degrees of freedom. Some approaches to representing these degrees of
freedom in a 3D space were suggested, for example, by Alpern et al. [3]. We pro-
pose instead to systematically exploit the representation of 3D orientation frames
in four dimensions using equivalent unit quaternions that correspond, in turn, to
points on the three-sphere (see, e.g., Shoemake [149]). For example, a collection
of oriented frames such as those of a crystal lattice can thus be represented by
mapping their orientations to a point set in the 4D quaternion space. The mov-
ing frame of a 3D space curve can be transformed into a path in quaternion space
corresponding pointwise to the 3D space curve.

The quaternion representation of rotations reexpressing a moving frame of a
3D space curve is an elegant unit four-vector field over the curve. The resulting
quaternion frames can be displayed as curves in their own right, or can be used in
combination with other methods to enrich the display of each 3D curve (e.g., by
assigning a coded display color representing a quaternion component).
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(a) (b)

FIGURE 20.10 A (2,3) torus knot with size parameters (r, a, b) = (8,3,5): (a) the
curvature plot and a color encoding and (b) the torsion plot and a color encoding.

2 0 . 6 . 1 G E N E R I C Q UAT E R N I O N F R A M E E Q UAT I O N S

Quaternions permit the nine matrix elements with six orthonormality constraints
comprising a 3D orientation frame to be succinctly summarized in terms of four
quaternion equations with the single constraint of unit length. Here we will derive
the general features of these equations and how they are used to transform the
standard 3D frame evolution equations into the more elegant quaternion form,
which is essentially a square root of the conventional form.
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(a) (b)

FIGURE 20.11 A (3,5) torus knot with size parameters (r, a, b) = (8,3,5): (a) the
curvature plot and a color encoding and (b) the torsion plot and a color encoding.

We begin with a common formula for the correspondence between 3× 3 ma-
trices Rij and quaternions q:

[
R(q) · V

]i =
∑
j

RijVj = q � (0,Vi) � q−1. (20.17)



20.6 THEORY OF QUATERNION FRAMES 199

[Recall that we use the notation � to distinguish quaternion multiplication, and
will use the dot (·) when necessary to denote ordinary Euclidean inner products.]
Next, we express each orthonormal frame component as a column of R by using
an arbitrary quaternion to rotate each of the three Cartesian reference axes to a new,
arbitrary orientation:

T̂ = q � (0, x̂) � q−1,

N̂1 = q � (0, ŷ) � q−1,

N̂2 = q � (0, ẑ) � q−1. (20.18)

(Technically speaking, in Equation 20.18 T̂ really means the quaternion (0, T̂)

with only a vector part, and so on.) All of this can be transformed into the following
explicit representation of the frame vectors as columns of a matrix of quaternion
quadratic forms.

[[T̂] [N̂1] [N̂2]
]

=




q2
0 + q2

1 − q2
2 − q2

3 2q1q2 − 2q0q3 2q1q3 + 2q0q2

2q1q2 + 2q0q3 q2
0 − q2

1 + q2
2 − q2

3 2q2q3 − 2q0q1

2q1q3 − 2q0q2 2q2q3 + 2q0q1 q2
0 − q2

1 − q2
2 + q2

3


 . (20.19)

Taking differentials of q � q−1 = (1,0), we generate expressions of the form

dq = q �
(
q−1 � dq

)= q �
1

2
(0,k), (20.20)

dq−1 = (
dq−1 � q

)
� q−1

= −(
q−1 � dq

)
� q−1

= −1

2
(0,k) � q−1, (20.21)

where

k = 2(q0 dq − qdq0 − q × dq). (20.22)

Substituting these expressions into the calculation for the first column, we find
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dT̂ = dq � (0, x̂) � q−1 + q � (0, x̂) � dq−1

= 1

2
q �

(
(0,k) � (0, x̂) − (0, x̂) � (0,k)

)
� q−1

= q � (0,k × x̂) � q−1.

The rest of the columns are computed similarly, and a straightforward expansion
of the components of the cross products proves the correspondence between Equa-
tions 20.4 and 20.20.

To relate the derivative to a specific curve coordinate system, for example, we
would introduce the curve velocity normalization v(t) = ‖x′(t)‖ and write

q ′ = v(t)
1

2
q � (0,k). (20.23)

One of our favorite ways of rewriting this equation follows directly from the full
form for the quaternion multiplication rule. Because this multiplication can be
written as an orthogonal matrix multiplication on the 4D quaternion space, we
could equally well write




q ′
0

q ′
1

q ′
2

q ′
3


 = v(t)

1

2




0 −kx −ky −kz

+kx 0 +kz −ky

+ky −kz 0 +kx

+kz +ky −kx 0


 ·




q0

q1

q2

q3


 . (20.24)

This is the 3D analog of Equation 19.6.

2 0 . 6 . 2 Q UAT E R N I O N F R E N E T F R A M E S

Using Equation 20.24, we can express all 3D coordinate frames in the form of
quaternions. If we assume that the columns of Equation 20.24 are the vectors
(T,N,B), respectively, one can show from Equation 20.10 that [q ′(t)] takes the
form (see Hanson [68])
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


q ′
0

q ′
1

q ′
2

q ′
3


= v

2




0 −τ 0 −κ

τ 0 κ 0

0 −κ 0 τ

κ 0 −τ 0


 ·




q0

q1

q2

q3


 . (20.25)

This equation has the following key properties.

• The matrix on the right-hand side is antisymmetric, so that q(t) · q ′(t) = 0
by construction. Thus, all unit quaternions remain unit quaternions as they
evolve by this equation.

• The number of equations has been reduced from nine coupled equations
with six orthonormality constraints to four coupled equations incorporat-
ing a single constraint that keeps the solution vector confined to the three-
sphere.

We verify that the matrices

A =




q0 q1 −q2 −q3

q3 q2 q1 q0

−q2 q3 −q0 q1


 ,

B =




−q3 q2 q1 −q0

q0 −q1 q2 −q3

q1 q0 q3 q2


 ,

C =




q2 q3 q0 q1

−q1 −q0 q3 q2

q0 −q1 −q2 q3




explicitly reproduce Equation 20.10,

2[A] · [q ′] = T′ = vκN,

2[B] · [q ′] = N′ = −vκT + vτB,

2[C] · [q ′] = B′ = −vτN,
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where we have applied Equation 20.25 to obtain the right-hand terms. Just as the
Frenet equations may be integrated to generate a unique moving frame with its
space curve for nonvanishing κ(t), we may integrate the much simpler quaternion
Equations (20.25). (See Appendix H.)

2 0 . 6 . 3 Q UAT E R N I O N PA R A L L E L T R A N S P O RT
F R A M E S

Similarly, a parallel transport frame system given by Equation 20.13 with
(N1,T,N2) (in that order) corresponding to the columns of Equation 20.24 is
completely equivalent to the following parallel transport quaternion frame equa-
tion for [q ′(t)]. 


q ′

0

q ′
1

q ′
2

q ′
3


 = v

2




0 −k2 0 k1

k2 0 −k1 0

0 k1 0 k2

−k1 0 −k2 0


 ·




q0

q1

q2

q3


 . (20.26)

Here, antisymmetry again guarantees that the quaternions remain constrained to
the unit three-sphere. The correspondence to Equation 20.13 is verified as follows.

2[B] · [q ′] = T′ = vk1N1 + vk2N2,

2[A] · [q ′] = N′
1 = −vk1T,

2[C] · [q ′] = N′
2 = −vk2T.

20.7 ASSIGNING SMOOTH QUATERNION FRAMES

Given a particular curve, we are next faced with the task of assigning quaternion
values to whatever moving frame sequence we have chosen.

2 0 . 7 . 1 A S S I G N I N G Q UAT E R N I O N S T O F R E N E T
F R A M E S

The Frenet frame equations are pathological, for example, when the curve is per-
fectly straight for some distance or when the curvature vanishes momentarily. Thus,
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real numerical data for space curves will frequently exhibit behaviors that make the
assignment of a smooth Frenet frame difficult, unstable, or impossible. In addition,
because any given 3 × 3 orthogonal matrix corresponds to two quaternions that
differ in sign, methods of deriving a quaternion from a Frenet frame are intrin-
sically ambiguous. Therefore, we prescribe the following procedure for assigning
smooth quaternion Frenet frames to points on a space curve.

1 Select a numerical approach to computing the tangent T at a given curve
point x. This typically depends on the chosen curve model and the number
of points one wishes to sample.

2 Compute the remaining numerical derivatives at a given point and use those
to compute the Frenet frame according to Equation 20.11. If any critical
quantities vanish, tag the frame as undefined (or as needing a heuristic fix).

3 Check the dot product of the previous binormal B(t) with the current value.
If it is near zero, choose a correction procedure to handle this singular point.
Among the correction procedures we have considered are (1) simply jump
discontinuously to the next frame to indicate the presence of a point with
very small curvature, (2) create an interpolating set of points and perform
a geodesic interpolation [149], or (3) deform the curve slightly before and
after the singular point to “ease in” with a gradual rotation of the frame or
apply an interpolation heuristic (e.g., see Shani and Ballard [147]). Creating
a jump in the frame assignment is our default choice, since it does not
introduce any new information.

4 Apply a suitable algorithm (e.g., see Chapter 16) to compute a candidate for
the quaternion corresponding to the Frenet frame.

5 If the 3 × 3 Frenet frame is smoothly changing, make one last check on
the 4D inner product of the quaternion frame with its own previous value.
If there is a sign change, choose the opposite sign to keep the quaternion
smoothly changing (this will have no effect on the corresponding 3 × 3
Frenet frame). If this inner product is near zero instead of ±1, you have
detected a radical change in the Frenet frame that should have been noticed
in the previous tests.

6 If the space curves of the data are too coarsely sampled to give the de-
sired smoothness in the quaternion frames but are still close enough to give
consistent qualitative behavior, one may choose to smooth out the inter-
vening frames using the desired level of recursive SLERPing [145,149] to
get smoothly splined intermediate quaternion frames. (More details can be
found in Chapter 25.)
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In Figure 20.12, we plot an example of a torus knot (a smooth space curve
with everywhere nonzero curvature) together with its associated Frenet frames,
its quaternion frame values, and the path of its quaternion frame field projected
from four-space.

Figure 20.13 plots the same information, but this time for a curve with a discon-
tinuous frame that flips instantly at a zero-curvature point. This space curve has two
planar parts drawn as though on separate pages of a partly open book and meeting
smoothly on the “crack” between pages. We see the obvious jump in the Frenet
and quaternion frame graphs at the meeting point. If the two curves are joined by
a long straight line, the Frenet frame is ambiguous and is essentially undefined in
this segment. Rather than invent an interpolation, we generally prefer to use the
parallel transport method described in the following section.

2 0 . 7 . 2 A S S I G N I N G Q UAT E R N I O N S T O PA R A L L E L
T R A N S P O RT F R A M E S

To determine the quaternion frames of an individual curve using the parallel trans-
port method, we follow a similar, but distinct, procedure.

1 Select a numerical approach to assigning a tangent at a given curve point as
usual.

2 Assign an initial reference orientation to the initial point on the curve, in the
plane perpendicular to the initial tangent direction. The entire set of frames
will be displaced from the origin in quaternion space by the corresponding
value of this initial orientation matrix, but the shape of the entire curve will
be the same regardless of the initial choice. This choice is intrinsically am-
biguous and application dependent. However, one appealing strategy is to
base the initial frame on the first well-defined Frenet frame, and then pro-
ceed from there using the parallel transport frame evolution. This guarantees
that identical curves have the same parallel transport frames.

3 Compute the angle between successive tangents, and rotate the frame by this
angle in the plane of the two tangents to get the next frame value.

4 If the curve is straight, the algorithm automatically makes no changes.
5 Compute a candidate quaternion representation for the frame, applying con-

sistency conditions (such as forcing positive signs of neighboring quater-
nion dot products) as needed.
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(a) (b)

(c) (d)

FIGURE 20.12 (a) Projected image of a 3D (3,5) torus knot. (b) Selected Frenet frame
components displayed along the knot. (c) The corresponding smooth quaternion frame components,
with q0, q1 in the top row and q2, q3 in the bottom row. (d) The path of the quaternion
frame components in the three-sphere projected from four-space. Color scales indicate the zeroth
component of the curve’s four-vector frame (upper left-hand graph in c).
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(a) (b)

(c) (d)

FIGURE 20.13 (a) Projected image of a pathological curve segment. (b) Selected Frenet frame
components, showing a sudden change of the normal. (c) The quaternion frame components, with
q0, q1 in the top row and q2, q3 in the bottom row, showing an unacceptable discontinuity in
frame values. (d) The discontinuous path of the quaternion frame components in the three-sphere.
Color scales indicate the zeroth component of the curve’s four-vector frame (upper left-hand graph
in c).
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(a) (b)

(c) (d)

FIGURE 20.14 (a) Projected image of a 3D (3,5) torus knot. (b) Selected parallel transport
frame components displayed along knot. (c) The corresponding smooth quaternion frame com-
ponents. (d) The path of the quaternion frame components in the three-sphere projected from
four-space. Color scales indicate the zeroth component of the curve’s four-vector frame (upper
left-hand graph in c).
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(a) (b)

(c) (d)

FIGURE 20.15 (a) Projected image of a pathological curve segment. (b) Selected parallel trans-
port frame components, showing smooth change of the normal. (c) The quaternion frame compo-
nents, showing continuity in values. (d) The continuous path of the quaternion frame components
in the three-sphere. Color scales indicate the zeroth component of the curve’s four-vector frame
(upper left-hand graph in c).
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Note that the initial reference orientation and all discrete rotations can be repre-
sented directly in terms of quaternions, and thus quaternion multiplication can be used
directly to apply frame rotations. Local consistency is then automatic.

An example is provided in Figure 20.14, which shows the parallel transport ana-
log of Figure 20.12 for a torus knot. Figure 20.15 is the parallel transport analog of
the pathological case shown in Figure 20.13, but this time the frame is continuous
when the curvature vanishes.

20.8 EXAMPLES: TORUS KNOT AND HELIX
QUATERNION FRAMES

The torus knot and the helix described previously (Equations 20.1 and 20.2) and
shown in Figure 20.2 can now be studied in quaternion space using each of the
representative frames. The comparison of each of our standard frames (Frenet,
Bishop/parallel-transport, and geodesic reference) is depicted in Figure 20.16 for
each of the curves.

(a) (b)

FIGURE 20.16 Frenet (green), parallel transport (cyan), and geodesic reference (red) quater-
nion frames in “standard” 3D vector projection. (a) For the (2,3) torus knot. (b) For the helix.
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Labeled Red in Figure 20.16 is the geodesic reference framing. This is planar
by construction, in that all 3D points must lie in the plane perpendicular to the
reference axis. The 3D origin is at the centroid of the red curve. Labeled Green in
the figure is the Frenet frame. The Frenet frame is actually cyclic, but to see this
easily for this (2,3) torus knot the mirror image of the current frame would need
to be added, giving effectively a double traversal of the curve. Finally, we show the
quaternion path (labeled Cyan) of the parallel transport frame. The parallel trans-
port frame must be given a starting value, which here is chosen to coincide with
the starting Frenet frame (at the top center of the image). The parallel transport
frame is not cyclic, but is the shortest path, with three very noticeable tight loops.
The same selection of quaternion frames is shown also for the helix. Again, the Red
geodesic reference curve is planar (and cycles back on itself twice for this helix).
The Green Frenet frame takes a longer path that will return to its original orienta-
tion, and the Cyan parallel transport frame, seen starting at the same orientation as
the Frenet frame, will not ordinarily return to the same orientation but will have
the shortest 4D path length. (The hidden double circuit of the geodesic reference
frame for this helix in fact makes it longer.)

20.9 COMPARISON OF QUATERNION FRAME CURVE
LENGTHS

Previously (Figure 20.4) we compared the tubings for the (2,3) torus knot and
for the helix based on the Frenet, geodesic reference, and parallel transport frames.
The corresponding quaternion paths are illustrated together in Figure 20.16. The
parallel transport frame shown uses the initial Frenet frame as a starting point.
We could, however, use any starting quaternion with the correct tangent vector.
The relative path lengths of the curves shown in Figure 20.16 are summarized in
Table 20.1. We note the following properties.

• Frenet: Periodic for periodic nonsingular curves and has a tendency to twist
a bit too much (where the torsion is high), leaving long jumps between
neighboring samples in quaternion space. Undefined at inflection points
and zero curvature segments.

• Geodesic reference: Also guaranteed to be periodic for periodic curves, but has
the odd property that it always lies in a plane perpendicular to the reference
axis in our preferred 3D quaternion projection. Ambiguous and therefore
potentially not smooth for frames opposing the reference frame direction.
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Curve Lengths (2,3) Torus Knot Helix

Frenet frame 14.3168 6.18501

Geodesic reference frame 14.6468 7.82897

Parallel transport frame 10.1865 6.06301

TABLE 20.1 Relative lengths (in radians) of the quaternion frame maps for various
frame choices describing the (2,3) torus knot and the helix. The parallel transport frame
is the shortest possible frame map.

• Parallel transport: This is the quaternion frame with minimal 4D length, though
it may be difficult to see this feature immediately in our standard projection.
It is not in general a periodic path. Different choices of starting frame pro-
duce curves of identical length differing by rigid 4D motions.
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3D Surfaces

Classical 3D differential geometry deals

21 with the properties of surfaces as well as
curves. The various tools used to analyze
curves become more complex when we
turn to surfaces. The role of the tangent is
taken by the surface normal, and the entire
treatment becomes more involved. From
our point of view, we will focus from the
outset not only on the surface normal but

on the entire frame at each point, leading ultimately to an alternative quaternion
treatment for the entire subject of surface geometry.

21.1 INTRODUCTION TO 3D SURFACES

This section contains a brief outline of the features of classical differential geom-
etry of surfaces that we will require to proceed to our quaternion treatment. For
more details, we refer the reader to Eisenhart [46] or Gray [61], or to any other
traditional differential geometry treatment.

If we are given a surface patch x(u, v) with some set of nondegenerate coordi-
nates (u, v), we may determine the normals at each point by computing

N(u, v) = xu × xv, (21.1)

where xu = ∂x/∂u and xv = ∂x/∂v. For surfaces defined numerically in terms of
vertices and triangles, we would choose a standard procedure (such as averaging
the normals of the faces surrounding each vertex) to determine the vertex nor-
mal. Alternatively, if we have an implicit surface described by the level-set function

213
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f (x) = 0, the normals may be computed directly from the gradient at any point x
satisfying the level set equation

N(x) = ∇f (x).

The normalized normal is defined as usual by N̂ = N/‖N‖.

For 3D curves, the geometry of the curve determines the tangent vector T̂ and
leaves a pair of normal vectors (N̂1, N̂2), with one extra degree of freedom to
be determined in the total frame [T̂ N̂1 N̂2]. The analogous observation for
surfaces is that the geometry fixes the normal N̂ at each surface point, leaving a pair
of tangent vectors (T̂1, T̂2), with one extra degree of freedom to be determined in
the total surface frame:

Surface Frame= [T̂1 T̂2 N̂]. (21.2)

When a (u, v) surface parameterization is available, the surface partial derivatives xu

and xv can in principle be used to assign a frame [T̂1 T̂2 N̂] (using Gram–
Schmidt orthonormalization methods if xu · xv �= 0), but there is no reason to
believe that this frame has any special properties in general. In practice, it is ex-
tremely convenient to define a rectangular mesh on the surface patch, and a grid
parameterized by (u, v) typically serves this purpose.

2 1 . 1 . 1 C L A S S I C A L G AU S S M A P

We have seen in Chapter 20 examples of maps and their applications to space curves.
The traditional surface analog of the tangent map of a curve is the Gauss map, which
takes a selection of points on the surface, typically connected by a mesh of some
sort, and associates to each point its normalized surface normal. The Gauss map is
then the plot of each of these normals in the coordinate system of a unit sphere S2

in R3. The Gauss map is guaranteed to be unique in some sufficiently small open
set of each point of a regular surface, but may be arbitrarily multiple valued for the
entire surface. Note also that many nearby surface points can be mapped to a single
point in the Gauss map (e.g., for certain types of planar curves in the surface or for
a planar area patch).

Figure 21.1 shows a coordinate mesh on an ellipsoidal surface and its single-
valued Gauss map, as well as a quarter of a torus and its Gauss map. The Gauss map
of the entire torus would cover the sphere twice, and there are two entire circles on
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(a) (b)

(c) (d)

FIGURE 21.1 Examples of Gauss maps. (a) An ellipsoid and (b) a portion of a torus. (c and
d) The corresponding standard Gauss maps projecting the normal vectors of each surface point
onto the sphere. Patches with coincident normals (e.g., for the full torus) would overlap in this
representation.

the torus that correspond to single points (the North and South Poles) in the Gauss
map.

2 1 . 1 . 2 S U R F A C E F R A M E E VO L U T I O N

The equations for the evolution of a surface frame follow the same basic structure as
those of a space curve, except that the derivatives are now directional, with two lin-
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early independent degrees of freedom corresponding to the tangent basis (T̂1, T̂2)

in the surface. Typically (see [46,61]), one assumes a not-necessarily-orthogonal
parameterization (u, v) that permits one to express the tangent space in terms of
the partial derivatives (xu,xv), giving the normals N̂(u, v) of Equation 21.1.

Standard differential geometry notation: In the standard approach, one writes the local cur-
vatures K and H in terms of any linearly independent pair of vector fields (U,V)

as

DUN̂ × DVN̂ = K(U × V), (21.3)

DUN̂ × V + U × DVN̂ = 2H(U × V). (21.4)

With U = xu · ∇ and V = xv · ∇, we get the classical expressions. As Gray [61]
succinctly notes, because all derivatives of N̂ are perpendicular to N̂, the entire
apparatus amounts to constructing the tangent map of the Gauss map.
If we try to build the geometry of surfaces from a parametric representation, each
directional derivative has a vector equation of the form taken by Equation 20.4.
Thus, we may write equations of the general form

∂

∂u

[
T̂1(u, v) T̂2(u, v) N̂(u, v)

]

= [
T̂1(u, v) T̂2(u, v) N̂(u, v)

][ 0 −az(u, v) +ay(u, v)

+az(u, v) 0 −ax(u, v)

−ay(u, v) +ax(u, v) 0

]

(21.5)

and

∂

∂v

[
T̂1(u, v) T̂2(u, v) N̂(u, v)

]

= [
T̂1(u, v) T̂2(u, v) N̂(u, v)

][ 0 −bz(u, v) +by(u, v)

+bz(u, v) 0 −bx(u, v)

−by(u, v) +bx(u, v) 0

]
.

(21.6)
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The last lines of each of Equations 21.5 and 21.6 are typically combined in textbook
treatments to give[

∂N̂(u, v)

∂u

∂N̂(u, v)

∂v

]
= [

T̂1(u, v) T̂2(u, v)
][K], (21.7)

where the matrix [K] has eigenvalues that are the principal curvatures k1 and k2,
and thus

K = det[K] = k1k2 (21.8)

is the Gaussian curvature and

H = 1

2
tr[K] = 1

2
(k1 + k2) (21.9)

is the mean curvature.

2 1 . 1 . 3 E X A M P L E S O F S U R F A C E F R A M I N G S

If we are given a description of a surface, we can compute normals and choices of
the corresponding frames by various means. Figure 21.2 illustrates three of these
for the sphere. The first is derived from the standard orthonormal polar coordinate
system, and the second is the extension to surfaces of the geodesic reference frame,
which assigns the frame closest to a standard reference axis at the North Pole. The
third is a frame based on polar projective coordinates for the sphere. We choose
explicitly the parameterization of the South Pole inverse map of Equations 17.7
and 17.8, which yields

x(u, v) = 2u

1+ u2 + v2
,

y(u, v) = 2v

1+ u2 + v2
,

z(u, v) = 1− u2 − v2

1+ u2 + v2
. (21.10)

This choice maps the real plane into the unit sphere, with x2 +y2 + z2 = 1, except
for the point at infinity corresponding to the South Pole. In fact, the polar projective
coordinates generate the same assignments as the geodesic reference frame does,
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(a) (b) (c)

FIGURE 21.2 Examples of frame choices for the upper portion of an ordinary sphere.
(a) Frames derived from standard polar coordinates on sphere. (b) Geodesic reference frame for
the sphere. Each frame is as close as possible to the canonical coordinate axes at the North Pole.
(c) Frames derived from projective coordinates on the sphere, which turn out to be the same frame
field as the geodesic reference frame.

and thus except for the difference in locations of the grid sampling these are the
same framings.

Note: Do not be confused by alternate samplings of the same framings. If a parameteri-
zation x(u, v) gives a frame with T1 = ∂x(u, v)/∂u and T2 = ∂x(u, v)/∂v, we can
change to a polar sampled mesh—(r = (u2 +v2)1/2, θ = arctan(v/u))—yet still re-
tain the same frames at the same points x(r, θ) = x(u = r cosθ, v = r sinθ). From
these basic concepts, we can now proceed to a full quaternion treatment of surface
frames that closely follows the quaternion curve framing methods introduced in
Chapter 20.

21.2 QUATERNION WEINGARTEN EQUATIONS

2 1 . 2 . 1 Q UAT E R N I O N F R A M E E Q UAT I O N S

Our task is now to rephrase the general properties of curve and surface frames
in quaternion language. Ultimately, this will provide us with a well-defined space
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in which to consider optimizing frame assignments. We begin with the standard
definition (Equation 6.13) for the correspondence between 3× 3 matrices Ri

j and
quaternions q:

Rq(V)i =
∑
j

Ri
jV

j = q �
(
0,V i

)
� q−1. (21.11)

Following the pattern of our treatment of curve framings, we express each ortho-
normal frame component as a column of Ri

j by using an arbitrary quaternion to
rotate each of the three Cartesian reference axes to a new, arbitrary orientation:

T̂1 = q � (0, x̂) � q−1,

T̂2 = q � (0, ŷ) � q−1,

N̂ = q � (0, ẑ) � q−1, (21.12)

where N̂ really means the quaternion (0, N̂), as usual. All of this can be transformed
into the following explicit representation of the frame vectors as columns of a
matrix of quaternion quadratic forms.[ [T̂1] [T̂2] [N̂] ]

=

q2

0 + q2
1 − q2

2 − q2
3 2q1q2 − 2q0q3 2q1q3 + 2q0q2

2q1q2 + 2q0q3 q2
0 − q2

1 + q2
2 − q2

3 2q2q3 − 2q0q1

2q1q3 − 2q0q2 2q2q3 + 2q0q1 q2
0 − q2

1 − q2
2 + q2

3


 .

(21.13)

Taking differentials and again using the curve velocity normalization v(t) = ‖x′(t)‖
we can write the quaternion differential as

q ′ = v(t)
1

2
q � (0,k), (21.14)

or equivalently as




q ′
0

q ′
1

q ′
2

q ′
3


= v(t)

1

2




0 −kx −ky −kz

+kx 0 +kz −ky

+ky −kz 0 +kx

+kz +ky −kx 0


 ·




q0
q1
q2
q3


 . (21.15)
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This is the 3D analog of Equation 19.6. With

k = 2(q0dq − qdq0 − q × dq),

we find

dT̂1 = q � (0,k × x̂) � q−1,

dT̂2 = q � (0,k × ŷ) � q−1,

dN̂ = q � (0,k × ẑ) � q−1.

2 1 . 2 . 2 Q UAT E R N I O N S U R F A C E E Q UAT I O N S
( W E I N G A RT E N E Q UAT I O N S )

At this point, there are many other directions we could carry this basic structure,
but we will not pursue the general theory of quaternion differential geometry fur-
ther here. We will conclude with a short summary of the quaternion treatment of
the classical surface equations. Starting from Equation 21.14, we are led immedi-
ately to the quaternion analogs of Equations 21.5 and 21.6:

qu ≡ ∂q/∂u = 1

2
q � (0,a), (21.16)

qv ≡ ∂q/∂v = 1

2
q � (0,b). (21.17)

But how shall we express the curvatures in a way similar to the classical formula of
Equation 21.7? An elegant form follows by pursuing the quaternion analog of the
vector field equations given in Equations 21.3 and 21.4. We write

qu � q−1
v = −1

4
q � (0,a) � (0,b) � q−1

= −1

4
q � (−a · b,a × b) � q−1

= −1

4

[−a · bÎ + (a × b)xT̂1 + (a × b)yT̂2 + (a × b)zN̂
]
,

(21.18)

where we use the quaternion forms in Equation 21.12 with the addition of the
quaternion identity element Î = (1,0) = q � (1,0) � q−1 for the frame vectors.
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We see that the projection to the normal direction gives precisely the determinant
(a × b)z = K identified in Equation 21.8 as the scalar curvature. The mean curva-
ture follows from an expression similar to that of Equation 21.4:

q � (0, x̂) � q−1
u + q � (0, ŷ) � q−1

v

= −1

2
q � (−x̂ · a − ŷ · b, x̂ × a + ŷ × b) � q−1

= −1

2

[−(ax + by)Î + bzT̂1 − azT̂2 + (ay − bx)N̂
]
. (21.19)

Here, the coefficient of the normal, (ay − bx) = tr[K] = 2H , is again the desired
expression. Similar equations can be phrased directly in the 4D quaternion mani-
fold using the forms of Equation 21.15.

21.3 QUATERNION GAUSS MAP

The quaternion Gauss map extends the Gauss map to include a representation of
the entire coordinate frame at each surface point, introducing a number of new
issues. In particular, there is a useful but mathematically suspect approach (which
we might call an “engineering” approach) to the quaternion Gauss map that lets us
quickly get informative visualizations for those special cases in which we are given
a locally orthogonal parameterization of the surface except perhaps for isolated
singularities of the coordinate system.

For these cases, we may construct the precise quaternion analog of the Gauss
map by lifting the surface’s coordinate mesh into the space of quaternions at each
value of the orthonormal coordinatization (u, v) of the surface or surface patch.
The correspondence of this map to the Gauss map is not directly visible, because (see
Equation 21.13) the normal directions of the Gauss map are nontrivial quadratic
forms constructed from all quaternion components. However, a projection to a sub-
space of the quaternion space based on the bilinear action of quaternions on pure
vectors may be constructed by imitating the projection of the Hopf fibration of S3

(e.g., see, Berger [16] and Shoemake [152]). In Figure 21.3, we show two such
cases, an ellipsoid with orthonormal polar coordinates singular at the poles and a
torus with global, nonsingular coordinates, using our now-standard projections of
the quaternion Gauss map to 3D. In each of these cases, a single circuit of the sur-
face generates only half the quaternion surface shown. The symmetric quaternion
figure results from traversing the surface twice to adjoin the reflected image of the
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(a) (b)

(c) (d)

FIGURE 21.3 Examples of quaternion Gauss maps for surfaces. (a) The ellipsoid and (b) the
torus. (c and d) The corresponding quaternion Gauss maps, projected from the three-sphere in
4D. The equatorial direction has been traversed twice in order to get a closed path in the map.
The singular poles in the ellipsoid coordinate system correspond to the edges or boundaries of the
quaternion-space ribbon.
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single-circuit quaternion surface. That is, each point on the 3D surfaces appears
twice, once at q, and once at −q, in these periodic quaternion Gauss maps.

We see that the singular coordinate system typically used for the ellipsoid
is topologically a cylinder. The circles corresponding to the singularities of the
coordinate system (circles of normal directions) at the North and South poles
correspond to boundaries of the quaternion Gauss map. The torus, which has the
extremely unusual feature that it possesses a global regular coordinate system, has
a (reflection-doubled) quaternion Gauss map that is another 4D torus embedded
in the quaternion S3 space.

21.4 EXAMPLE: THE SPHERE

2 1 . 4 . 1 Q UAT E R N I O N M A P S O F A LT E R NAT I V E
S P H E R E F R A M E S

Figure 21.2 showed three alternate sets of frames for the upper half of an ordinary
sphere. The assigned coordinate systems may be converted directly into quaternion
frames and coerced into consistency in the usual manner. Figure 21.4 shows the
results. The geodesic reference frames and the projective coordinates are in fact the
same space of frames computed in different ways (both are planes perpendicular
to the ẑ axis). The coordinate systems used to compute the quaternion Gauss maps
in a and b of the figure are commensurate, and thus we may compare the areas,
computed using solid angle on the three-sphere in units of steradians. The results
are outlined in Table 21.1.

2 1 . 4 . 2 C OV E R I N G T H E S P H E R E A N D T H E G E O D E S I C
R E F E R E N C E F R A M E S O U T H P O L E
S I N G U L A R I T Y

The geodesic reference frame for a surface patch has the peculiarity that it has an
ambiguity whenever the vector to be assigned is exactly opposite the reference
frame. As we show in Figure 21.5, the tilting from the reference frame in quater-
nion space (easily seen in ordinary 3D space as well) eventually reaches a quater-
nion circle representing the ambiguous orientation of the frame with reference
direction along the −ẑ axis. This phenomenon is a practical consequence of the
fact that the two-sphere does not admit a global vector field. According to classical
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Patch Areas Hemispherical Patch

Polar coordinates 2.1546

Geodesic reference frame 1.9548

TABLE 21.1 Areas (in steradians) of the quaternion frame maps for the polar coordi-
nate and geodesic reference frame choices on the hemispherical patches of Figure 21.4.

(a) (b) (c)

FIGURE 21.4 Examples of quaternion Gauss maps for the frame choices for the upper portion
of an ordinary sphere shown originally in Figure 21.2. (a) Frames derived from standard polar
coordinates on sphere. (b) Geodesic reference frame for the sphere. Each frame is as close as possible
to the canonical coordinate axes at the North Pole. (c) Frames derived from projective coordinates
on the sphere.

manifold theory (e.g., see, Milnor [123] or Grimm and Hughes [63]), one needs
at least two separate patches, one for the North Pole and one for the South Pole,
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(a) (b)

FIGURE 21.5 The geodesic reference frame tilts to an ambiguous result as the tilt angle ap-
proaches π , the inverted direction of the chosen reference frame. We see two different 3D pro-
jections of the quaternion surface: (a) giving the vector coordinates (q1, q2, q3) and (b) the
coordinates (q0, q1, q2). The center is the North Pole, the middle ring is the equator, and outer
circle is in fact the space of possible frames at the South Pole of the sphere. There is no unique way
to tilt the North Pole to the orientation of the South Pole, as there is a full circle of arbitrariness
in the choice.

to place a complete set of coordinates (or equivalently, for our problem, a set of
frames) on a sphere.

The more mathematical approach requires that interesting surfaces be defined
as a collection of patches [45,63], and the spaces of frames for each patch must
be matched up and sewn together by assigning a transition function along the
boundaries. There are a variety of ways one can approach the problem of taking
a manifold and associating fiber bundles with it. The most relevant fiber bundle
for the context of the current problem is the space of moving frames of the space R3 in
which the surface is embedded [45,156]. We in fact move as usual from the space
of frames to the space of associated quaternions. Then at each point x of a patch
we have frames that are functions from the patch into the topological space S3 of
quaternion frames. We can express the relationship between the frames q and q ′



226 CHAPTER 21. 3D SURFACES

of two neighboring patches U and U ′, represented as quaternions, via quaternion
multiplication by a transition function t :

q ′ = t � q.

We may explicitly construct the transition functions between the two patches as
quaternion maps, giving a quaternion version of one of the classical procedures of
manifold theory. Figure 21.6a shows the projective coordinates on the sphere that
produced the set of coordinate frames shown in Figure 21.2c, which are essen-
tially equivalent to those in Figure 21.6b produced by sampling at polar coordinate
values. Using the polar coordinate sampling, so that we can easily identify the equa-
tor, we show in Figure 21.6c the quaternion maps corresponding to the coordinate
frames derived from this orthonormal coordinate system covering the North Pole
(disk in center) and the South Pole (smashed side view of a hemisphere in the 3D
projection with its q → (−q) partner). These coordinate systems agree at exactly
one point on the equator, which is (almost) evident from the figure. Note that we
have chosen to display the coordinate systems only up to the equator, unlike the
patches of Figure 21.5, which cover the entire sphere except for one pole.

To establish a mapping covering the complete sphere, we must write down
an explicit correspondence between the quaternion frames for each patch at each
shared point on the equator. Figure 21.7a shows the geodesic arcs on S3 symbol-
izing the transition rotation

t (θ) = qsouth(θ) � q−1
north(θ)

at each point on the equatorial circle parameterized by θ . Note carefully the or-
der of quaternion multiplication. With our conventions, a different order will not
work. The arcs themselves are actually segments of the space of possible frames,
in that the simplest rotation between two frames with the same normal (at the
same point on the equator) is a geodesic rotation about that normal. Figures 21.7b
and 21.7c show the transition functions q(θ) sampled at regular intervals in θ and
referred to the origin (1,0,0,0) in quaternion space. Each quaternion point at the
end of an arc represents a rotation to be applied to a point on the North Pole patch
equator to obtain the coordinate frame at the corresponding point on the South
Pole patch equator. One point is the identity, and there is some degeneracy due to
reflection symmetry across the equator.
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(a) (b)

(c)

FIGURE 21.6 (a) The North Pole projective coordinatization of the sphere. (b) A similar reg-
ular patch for the South Pole. Because of the “no-hair” theorem, no single regular patch can
cover the entire sphere. (c) The quaternion mappings of the systems of frames given by the North
and South Pole coordinate patches, sampled in polar coordinates. The q → (−q) reflected im-
ages are included, although the North Pole’s images both have the same projection and are thus
indistinguishable here. The maps in c extend only to the equator, unlike the patches shown in
Figure 21.5.
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(a) (b) (c)

FIGURE 21.7 (a) The transition functions from the North Pole frame to the South Pole frame
as arcs in the three-sphere. These arcs are pieces of the space of possible frames with a given normal
on the equatorial point. (b) A representation of the transition functions as arcs from the origin in
rotation space (the pole (1,0,0,0) in quaternion space) common to all arcs here. The ends of
the arcs thus represent the actual rotation needed to match the coordinate systems at each point on
the equator. (c) A different projection from 4D to 3D, showing more details of the structure of
the transition function arcs, which have a twofold degeneracy in the standard projection (b).

21.5 EXAMPLES: MINIMAL SURFACE QUATERNION
MAPS

Minimal surfaces possess many special properties following from the fact that the
mean curvature is everywhere the vanishing sum of two canceling local principal
curvatures [61]. We present a family of classic examples here that is remarkable for
the fact that the usual framings are already very close or exactly optimal. Thus, we
do not have much work to do except to admire the results, although there may be
some interesting theorems implicit that would be beyond our scope to pursue.

Figures 21.8a through 21.8c show the following classical minimal surfaces.

xcatenoid(u, v) = cosucoshvx̂ + sinucoshvŷ + vẑ, (21.20)

xhelicoid(u, v) = v cosux̂ + v sinuŷ + uẑ, (21.21)
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(a) (b) (c)

FIGURE 21.8 (a) The catenoid, a classic minimal surface in 3D space with a natural ortho-
normal parameterization. (b) The helicoid. (c) Enneper surface.

xEnneper(u, v) = (
u − u3/3+ uv2)x̂ (21.22)

+ (
v − v3/3+ vu2)ŷ + (

u2 − v2)ẑ. (21.23)

The quaternion Gauss map choices determined by these parameterizations and by
the geodesic reference algorithm are shown in Figure 21.9. The coordinate-based
catenoid map and helicoid map are 4π double coverings, whereas the Enneper
surface curiously has a coordinate system map that is exactly identical to the geo-
desic reference framing. For the periodic framings of the catenoid and helicoid, we
find the noteworthy result that the geodesic reference frame (which has a disjoint
quaternion reflected image) is a minimum (under variations of the surface) that is
distinct from the quaternion frames derived from the coordinate systems (which
are also minima but contain their own q → (−q) reflected images). The resulting
3D frame triads are shown in Figure 21.10 for comparison. A theoretical analysis
of the general properties of quaternion Gauss maps for minimal surfaces is beyond
our scope, but experimentally we see that there could be very interesting general
properties.
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(a) (b) (c)

(d) (e) (f)

FIGURE 21.9 The geodesic reference quaternion frames of (a) the catenoid, (b) the helicoid,
and (c) Enneper surface. (d–f) The corresponding quaternion Gauss maps determined directly
from the parameterization. Both the catenoid and the helicoid fail to be cyclic in quaternion
space without a 4π turn around the repeating direction, and thus these are doubled maps. The
Enneper-surface framing turns out to be identical to its geodesic reference frame.
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(a) (b) (c)

(d) (e) (f)

FIGURE 21.10 The 3D geodesic reference frames displayed directly on the surfaces of (a) the
catenoid, (b) the helicoid, and (c) Enneper surface. (d–f) The 3D frames computed directly from
the standard parameterizations. Because the Enneper surface is the same, we show in (f) a different
viewpoint of the same frames.
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Optimal Quaternion Frames

In this chapter we continue to study the

22 nature of orientation frames on curves and
surfaces and their corresponding quater-
nion structures. Our visualizations again
exploit the fact that quaternions are points
on the three-sphere or hypersphere S3

embedded in 4D. The methods in this sec-
tion follow closely techniques introduced
in Hanson and Ma [78,80] and Hanson

[70,71] for analyzing families of coordinate frames on curves and surfaces using
quaternion maps.

22.1 BACKGROUND

General questions involving the specification of curve framings have been inves-
tigated in many contexts. For a representative selection of approaches see, for ex-
ample, Bloomenthal [21], Klock [114], Max [121], and Shani and Ballard [147].
The quaternion Gauss map is a logical extension of the quaternion frame approach
to visualizing space curves introduced by Hanson and Ma [78,80]. The formula-
tion of the quaternion form of the differential equations for frame evolution was
apparently introduced by Tait [160].

For basic information on orientation spaces and their relationship to quaternions
see, for example, Altmann [4], Kuipers [115], and Pletincks [139]. Additional
background on the differential geometry of curves and surfaces may be found in
sources such as the classical treatise of Eisenhart [46] and in Gray’s Mathematica-
based text [61].

233
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Our main task is to work out a general framework for selecting optimal systems
of coordinate frames that can be applied to the study of curves and surfaces in 3D
space. We will see that our preferred optimizations contain minimal-turning paral-
lel transport framings of curves as a special case and extend naturally to situations
in which parallel transport is not applicable.

22.2 MOTIVATION

Many graphics problems require techniques for effectively displaying the properties
of curves and surfaces. The problem of finding appropriate representations can be
quite challenging. Representations of space curves based on single lines are often
inadequate for graphics purposes. Significantly better images result from choosing
a tubing to display the curve as a graphics object with spatial extent. Vanishing
curvature invalidates methods such as the Frenet frame, and alternative approaches
such as those based on parallel transport involve arbitrary heuristics to achieve such
properties as periodicity. Similar problems occur in the construction of suitable
visualizations of complex surfaces and oriented particle systems on surfaces. If a
surface patch is represented by a rectangular but nonorthogonal mesh, for example,
there is no obvious local orthonormal frame assignment. If the surface has regions
of vanishing curvature, methods based on directions of principal curvatures break
down as well.

Although we emphasize curves and surfaces to provide intuitive examples, there
are several parallel problem domains that can be addressed with identical tech-
niques. Among these are extrusion methods and generalized cones in geometric
modeling, the imposition of constraints on a camera-frame axis in keyframe an-
imation, and the selection of a 2D array of camera-frame axis choices as a con-
dition on a constrained-navigation environment (e.g., see Hanson and Wernert
[83]).

Figure 22.1 summarizes the basic class of problems involving curves that will
concern us here. The line drawing (a) of a (3,5) torus knot provides no use-
ful information about the 3D structure. Improving the visualization by creating
a tubing involves a subtle dilemma that we attempt to expose in the rest of
the figure. We cannot use a periodic Frenet frame as a basis for this tubing be-
cause inflection points or near-inflection points occur for many nice-looking torus
knot parameterizations, and in such cases the Frenet frame is undefined or twists
wildly. The parallel transport tubing shown in (b) is well behaved but not pe-
riodic. By looking carefully at the magnified portion next to the arrow in Fig-
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(a) (b) (c)

FIGURE 22.1 The (3,5) torus knot, a complex periodic 3D curve. (a) The line drawing is
nearly useless as a 3D representation. (b) A tubing based on parallel transporting an initial reference
frame produces an informative visualization, but is not periodic. (c) The arrow in this close-up
exposes the subtle but crucial nonperiodic mismatch between the starting and ending parallel
transport frames. This would invalidate any attempt to texture the tube. Quaternion methods
provide robust parameterization-invariant principles for resolving such problems.

ure 22.1c, one can see a gross mismatch in the tessellation (due to the nonpe-
riodicity) that would, for example, preclude the assignment of a consistent tex-
ture. Although it would be possible in many applications to ignore this mismatch,
it has been the subject of a wide variety of previous papers (e.g., see Bloomen-
thal [21], Klock [114], and Shani and Ballard [147]), and must obviously be
repaired for many other applications, such as those requiring textured periodic
tubes.

Figure 22.2 illustrates a corresponding problem for surface patches. Although
the normals to the four corners of the patch are always well defined (a), one finds
two different frames for the bottom corner, depending on whether one parallel
transports the initial frame around the left-hand path (b) or the right-hand path (c).
There is no immediately obvious right way to choose a family of frames covering
this surface patch. Our goal is to propose a systematic family of optimization meth-
ods for resolving problems such as these.
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(a) (b) (c)

FIGURE 22.2 (a) A smooth 3D surface patch having a nonorthogonal parameterization, along
with its geometrically fixed normals at the four corners. No unique orthonormal frame is derivable
from the parameterization. If we imitate parallel transport for curves to evolve the initial frame at
the top corner to choose the frame at the bottom corner, we find that the paths shown in b and
c result in incompatible final frames at the bottom corner. Our goal is to address the problem of
systematically choosing a compatible set of surface frames in situations such as this.

22.3 METHODOLOGY

We focus on unit quaternion representations of coordinate frames as points on the
three-sphere S3, which admits a natural distance measure for defining optimization
problems and supports in addition a variety of regular frame-interpolation meth-
ods (e.g., see Kim et al. [111], Nielson [132], Schlag [145], Shoemake [149],
and Chapter 25). We do not directly address the related question of optimal freely
moving frames treated by the minimal-tangential-acceleration methods (e.g., see
Barr et al. [15], Kajiya [106], and Ramamoorthi and Barr [140]). We are instead
concerned with closely spaced points on curves and surfaces where one direction
of the frame is already fixed and the chosen functional minimization in quater-
nion space must obey the additional constraint imposed by the fixed family of
directions. Additional references of interest, especially regarding the treatment of
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(a) (b) (c)

FIGURE 22.3 (a) The camera frame interpolation problem is analogous to the problem of
finding a minimal-bending spline curve through a series of fixed key points. (b) The optimal curve
frame assignment problem is analogous to fixing the end points of a curve segment and choosing
in addition a family of lines along which the intermediate points are constrained to slide during
the optimization process. In 3D, the spline path need not pass through the constraint lines. (c) In
typical practical situations, the sample points are generally close enough together that we can apply
the constraints to piecewise linear curves analogous to those shown here.

surfaces, include [106,138]. Figure 22.3 provides a visualization of the difference
between the general interpolation problem and our constrained problem. A typical
spline minimizes the bending energy specified by the chosen anchor points. Re-
quiring intermediate points to slide on constrained paths during the minimization
modifies the problem. In particular, 3D spline curves need not intersect any of the
constraint paths. In addition, we note that we typically have already sampled our
curves and surfaces as finely as we need to, and thus piecewise linear curves are
generally sufficient for the applications we discuss.

2 2 . 3 . 1 T H E S PA C E O F P O S S I B L E F R A M E S

Our solution to the problem is to transform the intrinsic geometric quantities (such
as the tangent field of a curve and the normal field of a surface) to quaternion space
and to construct the quaternion manifold corresponding to the one remaining de-
gree of rotational freedom in the choice of coordinate frame at each point. Curves



238 CHAPTER 22. OPTIMAL QUATERNION FRAMES

and surfaces in these spaces of possible frames correspond to specific choices of the quater-
nion Gauss map, a subspace of the space of possible quaternion frames of the object
to be visualized.

For space curves, specifying a frame assignment as a quaternion path leads at
once to tubular surfaces that provide a “thickened” representation of the curve
that interacts well with lighting and rendering models. For surface patches, the
approach results in a structure equivalent to that of an anisotropic oriented particle
system (a species of texture) whose pairs of tangent vector fields in the surface
produce natural flow fields that characterize the local surface properties and are
easy to display. We will see that certain complex features of surfaces that are well
known in manifold theory arise naturally and can be clearly visualized using the
quaternion Gauss map.

We will typically exploit our standard S3 method of visualizing the geometry
of the space of quaternions in which quaternion Gauss maps and the spaces of
possible quaternion frames are represented. We show how to compute the required
subspaces of allowed frames in practice, and how to express this information in a
form that can be used to optimize an energy measure, thereby leading to optimal
frame choices.

2 2 . 3 . 2 PA R A L L E L T R A N S P O RT A N D M I N I M A L
M E A S U R E

Our approach is to constrain each quaternion frame with one degree of freedom
to its own circular quaternion path (the axial degree of rotational freedom), and
then to minimize the quaternion length of the frame assignment for curves and the
quaternion area of the frame assignment for surfaces to achieve an optimal frame
choice. This choice reduces to the parallel transport frame for simple cases. Our
justification for choosing minimal quaternion length for curves is that there is a
unique rotation in the plane of two neighboring tangents that takes each tangent
direction to its next neighbor along a curve. This is the geodesic arc connecting
the two frames in quaternion space, and is therefore the minimum distance be-
tween the quaternion points representing the two frames. The choice of minimal
area for surface frames is more heuristic, basically a plausibility argument that the
generalization of minimal length is minimal area (no doubt this could be made more
rigorous).

By imposing other criteria, such as end-point derivative values and minimal
bending energy (see Barr et al. [15] and Ramamoorthi and Barr [140]), the short
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straight line segments and polygons that result from the simplest minimization
could be smoothed to become generalized splines passing through the required
constraint rings. Because in practice our curve and surface samplings are arbitrarily
dense, we will typically work directly with the unique quaternion rings giving the
degrees of freedom at each sample point.

22.4 THE SPACE OF FRAMES

We are now ready to introduce the details of our key concept, the space of possible
frames. Suppose at each sample point x(t) of a curve we are given a unit tangent
vector, T̂(t), computed by whatever method one likes (two-point sampling, five-
point sampling, analytic, and so on). Then one can immediately write down a one-
parameter family describing all possible choices of the normal plane orientation.
This is simply the set of rotation matrices R(θ, T̂(t)), or quaternions q(θ, T̂(t)),
that leave T̂(t) fixed.

For surfaces, the analogous construction follows from determining the unit nor-
mal N̂(u, v) at each point x(u, v) on the surface patch. The needed family of ro-
tations R(θ, N̂(u, v)), or quaternions q(θ, N̂(u, v)), now leaves N̂(u, v) fixed and
parameterizes the space of possible tangent directions completing a frame definition
at each point x(u, v).

However, there is one slight complication: the family of frames R(θ, v̂) leaving
v̂ fixed does not have v̂ as one column of the 3× 3 rotation matrix, and thus does
not actually describe the desired family of frames. Therefore, we proceed as follows.

We define f (θ, v̂) = (f0, f1, f2, f3) to be a quaternion describing the family
of frames for which the direction v̂ is a preferred fixed axis of the frame, such as
the tangent or normal vector. The orthonormal triad of three-vectors describing the
desired frame is

F(θ, v̂) =

f 2

0 + f 2
1 − f 2

2 − f 2
3 2f1f2 − 2f0f3 2f1f3 + 2f0f2

2f1f2 + 2f0f3 f 2
0 − f 2

1 + f 2
2 − f 2

3 2f2f3 − 2f0f1

2f1f3 − 2f0f2 2f2f3 + 2f0f1 f 2
0 − f 2

1 − f 2
2 + f 2

3


 ,

(22.1)

where one column of our choice is picked to be v̂, the fixed direction.
The standard rotation matrix R(θ, v̂) leaves v̂ fixed but does not have v̂ as one

column of the 3× 3 rotation matrix, and thus we have more work to do. To com-
pute f (θ, v̂), we need the following.
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• A base reference frame b(v̂) that is guaranteed to have one column exactly
aligned with a chosen vector v̂, which is either the tangent to a curve or the
normal to a surface.

• A one-parameter family of rotations that leaves a fixed direction v̂ invariant.

The latter family of rotations is given simply by the standard quaternion

q(θ, v̂) =
(

cos
θ

2
, v̂ sin

θ

2

)
, (22.2)

for 0� θ < 4π . The base frame can be chosen as

b(T̂) = q
(
arccos(x̂ · T̂), (x̂ × T̂)/‖x̂ × T̂‖) (22.3)

for a curve frame with the tangent T̂ in the first column,

Curve Frame= [ T̂ N̂1 N̂2 ] ,

and as

b(N̂) = q
(
arccos(ẑ · N̂), (ẑ × N̂)/‖ẑ × N̂‖) (22.4)

for a surface frame with the normal N̂ in the last column:

Surface Frame= [ T̂1 T̂2 N̂ ] .

We have already introduced the frame b(v̂), which we will refer to as the geodesic ref-
erence frame because it tilts the reference vector (e.g., x̂, ŷ, or ẑ) along a geodesic arc
until it is aligned with v̂ (see Figure 22.4). If v̂ = ẑ (or x̂ or ŷ), there is no problem,
in that we simply take b(v̂) to be the quaternion (1,0). If v̂ = −ẑ, we may choose
any compatible quaternion (such as (0,0,0,1), and so on). We escape the classic
difficulty of being unable to assign a global frame to all of S2 because we need a pa-
rameterization of all possible frames, not any one particular global frame. If one wants
to use a reference frame that is not the identity frame, one must premultiply b(v̂)

on the right by a quaternion rotating from the identity into that reference frame.
This is important when constructing a nonstandard geodesic reference frame such
as that required to smoothly describe a neighborhood of the southern hemisphere
of S2.
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FIGURE 22.4 Example of the geodesic reference frame: (a) On the northern hemisphere of a
two-sphere, the geodesic reference frame tilts the ẑ axis of the North Pole’s identity frame along
the shortest arc to align with a specified reference direction. (b) The quaternion map has just a
single possible plane for the tilt axes allowed by this procedure.

We can thus write the full family of possible quaternion frames keeping v̂ as a
fixed element of the frame triad to be the quaternion product

f (θ, v̂) = q(θ, v̂) � b(v̂), (22.5)

where � denotes quaternion multiplication and all possible frames are described
twice (in that 0 � θ < 4π). To summarize, if we specify a frame axis v̂ to be fixed
then the variable θ in f (θ, v̂) serves to parameterize a ring in quaternion space,
each point of which corresponds to a particular 3D frame and each frame of which
has a diametrically opposite twin.

We argue that because optimization will typically be done in the full quater-
nion space the fact that two opposite-sign quaternions map to the same physical
three-space rotation is not a detriment. In fact, it potentially permits an additional
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stability in the variational process because rotations by +π and −π are not close
to each other in quaternion space (as they are in ordinary rotation matrices). In
principle, any quaternion Gauss map can be replaced by its exact negative, and the
variational process could converge from an ambiguous starting point to either one;
the frames would be the same. In our standard (vector-part-only) projection, the
two reflection-equivalent maps are inversions of each other about the 3D origin.
Their unseen opposite q0 values can of course cause an additional large separation
of the maps in 4D space.

2 2 . 4 . 1 F U L L S PA C E O F C U RV E F R A M E S

We can now construct the space of frames step by step using the previously de-
scribed method. As an illustrative example, we show in Figure 22.5 the trefoil knot
with its Frenet-frame tubing and its (doubled) quaternion Frenet frame. Each point
on the quaternion Frenet frame map in Figure 22.5b must lie on the quaternion
ring f (θ, T̂i ), where T̂i is the (local) tangent direction at some point xi on the
curve and θ parameterizes the ring of possibilities. What we see in Figure 22.5 is
one set of the values {θi} corresponding to the frame uniquely determined by the
Frenet formulas. Next, we examine what happens when we release θ in f (θ, T̂)

from its Frenet values at the first few sample points of the curve.
Figure 22.6 shows the steps in the construction of the space of frames for the

trefoil knot, beginning with a few tangent vectors and the quaternion basis frames
corresponding to quaternions that tilt the reference axis into this tangent direction.
The circular curve of quaternions representing the space of normal frames is drawn
for each tangent. Each basis frame touches this curve once, modulo quaternion
doubling. Then the family of these circular curves sweeps out a cylindrical two-
manifold, the full space of invariant frames for a 3D curve.

This full space, shown in Figure 22.7, has several nontrivial properties. One
is that, given one circular ring of frames, a neighboring ring that is a parallel-
transported version of the first ring is a so-called “Clifford parallel” of the first
ring, meaning that the distance from any point on one ring to the nearest point on
the second ring is the same. This is nontrivial to visualize and is a feature of the
4D space we are working in. Another property is that the intervals between rings
in the quaternion space directly indicate the curvature. This comes about because
the magnitude of T̂′ is related to the parallel transport transition between any two
sample points, given by Equation 20.12. Because the parallel transport frames are
legal frames, and because the starting frame is arbitrary, each full ring is a parallel
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(a) (b)

FIGURE 22.5 (a) A trefoil torus knot. (b) Its quaternion Frenet frame projected to 3D. For
this trefoil knot, the frame does not close on itself in quaternion space unless the curve is traversed
twice, corresponding to the double-valued “mirror” image of the rotation space that can occur in
the quaternion representation. Observe the longer segments in (b). These correspond to the three
high-torsion segments observable in (a).

transport of its predecessor, with the angular distance of the transition rotation
providing a measure of the curvature relative to the sampling interval.

2 2 . 4 . 2 F U L L S PA C E O F S U R F A C E M A P S

The full space of frames for a surface patch is even more complex to visualize,
because it is a hypercylindrical three-manifold formed by the direct product of
patches of surface area with the rings of possible frames through each surface point.

As a very simple case of a surface, consider the patch shown in Figure 22.2a.
The coordinate system used does not provide a unique tangent frame, and thus one
cannot immediately determine a logical frame choice.

Figure 22.8 shows spaces of possible frames for the four corners as four rings
of quaternion values compatible with the normals at the patch corners. Recall that
parallel transporting the initial frame along two different routes (Figures 22.2b and
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(a) (b)

FIGURE 22.6 (a) The first several pieces of the construction of the invariant quaternion space
for the frames of the trefoil knot. The red fan of vectors shows the first several elements of the tangent
map, represented as vectors from the origin to the surface of the two-sphere and connected by a line.
Each green vector points from the origin to the geodesic reference element of the quaternion space
q(arccos(T̂ · x̂), x̂ × T̂/‖x̂ × T̂‖) guaranteed to produce a frame with the tangent T̂. The
black curves are the first several elements of the one-parameter space of quaternions representing all
possible quaternion frames with the tangent T̂. (b) This piece of the space of possible frames is
represented as a continuous surface, where a circle on the surface corresponds to the space of frames
for one point on the curve. All quaternions are projected to 3D using only the vector part.

22.2c) produces incompatible frames at the final corner. We represent this situation
in Figure 22.8 by drawing the routes in quaternion space between the initial frame
(the degenerate circle appearing as a central vertical line) and the final frame. The
mismatch between the two final frames is illustrated by the fact that the two paths
meet at different points on the final ring specifying the frame freedom for the
bottom corner’s frame.
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FIGURE 22.7 Full surface of the invariant quaternion frame space for the frames of the trefoil
knot. All quaternions are projected to 3D using only the vector part.
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(a) (b) (c)

FIGURE 22.8 A different viewpoint of the mismatch problem of Figure 22.2. (a) Choosing
different routes to determine the frame at the bottom point results in the incompatible frames shown
here in 3D space. (b) The same information is presented here in the quaternion space-of-frames
picture. We use throughout a quaternion projection that shows only the three-vector part of
the quaternion, dropping q0. This is much like projecting away z in a polar projection of the
two-sphere. Each heavy black curve is a ring of possible frame choices that keeps the normals in
a fixed. The labels mark the point in quaternion space corresponding to the frames at the corners
in a, and thus the gap between the labels C and C′ represents the frame mismatch in quaternion
space on the same constraint ring. (The apparent vertical line is the result of drawing a squashed
circle of frames at vertex A in this projection.) (c) The method proposed to resolve this conflict is
to fix one point (say A), divide the polygon ABCB ′ into triangles, and slide B , C, and B ′
along the constraint rings until the total triangle areas are minimized and some compromise with
C = C′ is reached.

Sliding rings and overall rotational freedom: In Figure 22.9a, we go one step further and first
show how the quaternion Gauss map of an entire patch is situated relative to the
ring space. Keeping one corner fixed and sliding the rest of the frames around the
circular rings takes us to distinct families of frames, which obviously have different



22.4 THE SPACE OF FRAMES 247

(a) (b)

FIGURE 22.9 (a) A more complete picture of the space of frames for this surface patch. The
surface shown is a sparse quaternion frame choice for the surface, and we show a subset of the
rings of constraints. Each ring passes through one quaternion point on the frame map, the point
specifying the current frame choice. Variations must keep each vertex on its ring. (b) An equivalent
set of frames is formed by applying a rotation to the entire set of frames. All points follow their
own ring of constraints to keep the same normal. These pictures represent the three-manifold in
quaternion space swept out by the possible variations.

areas in the quaternion space. Finally, in Figure 22.9b we keep the fundamental
space of frames the same but exercise the freedom to choose the single parameter
describing the basis for the overall orientation. Rotating the basis sweeps out both
the three-manifold describing the space of frames for this patch and the family
of equivalent frames differing by an insignificant orientation change in the basis
vector.
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To resolve the frame choice ambiguity, one needs a systematic approach. We
propose in the next section to accomplish this by optimizing appropriate quantities,
e.g., by minimizing the area of the quaternion Gauss map in quaternion space.

We remark that the general features of the surface curvature can in principle be
noted from the space of possible frames in a manner similar to that for curves. The
family of curves through any point spanning the surface’s tangent space at that point
possesses a family of rings parallel to the space of frames at the point, allowing
estimates of the rates of change in different directions. The principal curvatures
then correspond to the maxima and minima.

22.5 CHOOSING PATHS IN QUATERNION SPACE

We have now seen that the space of possible frames at any point of a curve or sur-
face thus takes the form of a great circle on the unit three-sphere representing the
unit quaternions in 4D Euclidean space. Although diametrically opposite points on
this circle represent the same frame in 3D space, the twofold redundancy can ac-
tually be an advantage, in that it helps avoid certain types of wraparound problems
encountered when trying to find paths in the space. Our task then is to select a set
of values of the parameter on each of these great circles.

The advantage of looking at this entire problem in the space of quaternions
is that one can clearly compare the intrinsic properties of the various choices by
examining such properties as length and smoothness in the three-sphere. We note
the following issues.

• Frame–frame distance: Suppose we are given two neighboring tangents, T̂1 and
T̂2, and two corresponding candidate frame choices parameterized by θ1
and θ2. What is the “distance” in frame space between these? The simplest
way to see how we should define the distance is by observing that by Euler’s
fundamental theorem there is a single rotation matrix R(θ, n̂) or quaternion
q(θ, n̂) that takes one frame to the other. If R1(θ1, T̂1) and R2(θ2, T̂2) are
the two frames, one can write R = (R2 · (R1)

−1) (or q = (q2 � (q1)
−1))

and solve for θ and n̂. Clearly, the value of θ gives a sensible measure of the
closeness of the two frames.

• Quaternion distance: We remark that essentially the same procedure is required
to obtain the parameters of R directly or to find the value of the equivalent
quaternion. If we work in quaternion space, we compute q1(θ1, T̂1) and
q2(θ2, T̂2) and then find rather more straightforwardly an equivalent result
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by noting that the zeroth component of q = q2 � (q1)
−1 is identical to the

rotation-invariant scalar product of the two quaternions, q1 · q2, and thus
provides the needed angle at once:

θ = 2 arccos(q1 · q2).

• Approximation by Euclidean distance: Using the methods previously discussed, one
can in principle compute precise arc-length distances among frames when
dealing with fine tessellations of smoothly varying geometric objects. In this
case, it may be sufficient for numerical purposes to estimate frame-to-frame
distances using the Euclidean distance in 4D Euclidean space, in that the
chord of an arc approximates the arc length well for small angles.

2 2 . 5 . 1 O P T I M A L PAT H C H O I C E S T R AT E G I E S

Why would one want to choose one particular set of values of the frame parameters
over another? The most obvious reason is to keep a tubing from making wild twists
such as those that occur for the Frenet frame of a curve with inflection points. In
general, one can imagine wanting to minimize the total twisting, the aggregate
angular acceleration, and so on subject to a variety of boundary conditions. A be-
wildering variety of energy functions to minimize can be found in the literature
(e.g., see Brakke [22]). The following summarize a selection of such criteria for
choosing a space of frames, with the caveat that one certainly may think of others!

• Minimal length and area: The most obvious criterion is to minimize the total
turning angle experienced by the curve frames. Fixing the frames at the
ends of a curve may be required by periodicity or external conditions, and
thus a good solution would be one that minimizes the sum total of the turn-
ing angles needed to get from the starting to the ending frame. The length
to minimize is simply the sum of the angles rotated between successive
frame choices (as noted previously), either exact or approximate. Similar
arguments apply to the area of a surface’s quaternion Gauss map.

• Parallel transport along geodesics: Given a particular initial frame, and no further
boundary constraints, one may also choose the frame that uses the minimum
local distance to get between each neighboring frame. Because the parallel
transport algorithm corresponding to the Bishop frame uses precisely the
smallest possible rotation to get from one frame to the next, this gives the
minimal free path that could be computed frame by frame. On a surface,
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the resulting paths are essentially geodesics, but (as noted in Figure 22.2)
there is no obvious analog of a global parallel transport approach to surface
framing.

• Minimal acceleration: Barr, Currin, Gabriel, and Hughes [15] proposed a direct
generalization of the no-acceleration criterion of cubic Euclidean splines
for quaternion curves constrained to the three-sphere. The basic concept
was to globally minimize the squared tangential acceleration experienced
by a curve of unit quaternions. Although the main application of that paper
was animation, the basic principles can be adopted and used to numerically
compute optimal frames for curves and surfaces in our context as well.

• Keyframe splines and constraints: If for some reason one must pass through or
near certain specified frames with possible derivative constraints, a direct
spline construction in the quaternion space may actually be preferred (e.g.,
see Kim et al. [111], Nielson [132], Schlag [145], Shoemake [149,152],
and Chapter 25). Most splines can be viewed in some sense as solving an
optimization problem with various constraints and conditions, and thus the
keyframe problem essentially reverts again to an optimization.

2 2 . 5 . 2 G E N E R A L R E M A R K S O N O P T I M I Z AT I O N
I N Q UAT E R N I O N S PA C E

For both curves and surfaces, there is a single degree of freedom in the frame
choice at each point where we can determine the tangent or normal direction,
respectively. This degree of freedom corresponds to a relatively common sliding
ring constraint that occurs in such minimization problems. General packages for
solving systems with constraints are mentioned in Barr et al. [15], who chose
MINOS [131]. For our own experiments, we have chosen Brakke’s Surface Evolver
package [22], which has a very simple interface for handling parametric constraint
conditions and can be used for a wide variety of general optimization problems.
See Appendix G for more details on the use of Surface Evolver. Alternatively, one
can in principle construct one’s own custom optimization packages.

Numerical optimization remains a bit of an art, requiring patience and resource-
fulness on the part of the investigator. We found, for example, that curve opti-
mization was relatively more stable than surface optimization because single curve
outliers add huge amounts to the length, whereas single surface points stuck in a
faraway crevice may contribute only a tiny amount to the area of a large surface. Al-
though Surface Evolver in principle handles spherical distances, we used the default
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4D Euclidean distance measure as an approximation. This generally corresponded
well to explicit area calculations using solid angle performed on the same data
sets. However, we did find that extremely random initial conditions (unrealistic for
most applications) could produce isolated points stuck in local minima diametri-
cally across quaternion space, at q → −q, from where they should be. This type of
problem can be largely avoided simply by running a consistency pre-processor to
force nearby neighbors to be on the same side of the three-sphere. Another useful
technique is to organize the data into hierarchies and optimize from the coarse
scale down to the fine scale. In other cases, when things seem unreasonably stuck
a manual “simulated annealing” procedure like that afforded by Surface Evolver’s
jiggle option often helps.

22.6 EXAMPLES

We now present some examples of frame choices computed by minimizing the
length of the total path among sliding ring constraints for selected curves, and the
total area spanned by analogous sliding rings for surfaces. One interesting result is
that there appear to be families of distinct minima. If the initial data for a periodic
surface, for example, are set up to return directly to the same point in quaternion
space after one period, one has two disjoint surfaces (one the q → (−q) image
of the other). If the data do not naturally repeat after one cycle, they must after
two, because there are only two quaternion values that map to the same frame.
The family of frame surfaces containing their own reflected images has a minimum
distinct from the disjoint family.

2 2 . 6 . 1 M I N I M A L Q UAT E R N I O N F R A M E S F O R S PA C E
C U RV E S

The helix provides a good initial example of the procedure we have formulated.
We know that we can always find an initial framing of a curve based on the geo-
desic reference algorithm. However, suppose we wish to impose minimal length
in quaternion space on the framing we select, and we do not know whether this
frame is optimal with respect to that measure. Then, as illustrated in Figure 22.10,
we can send the ring constraints on the possible quaternion frames at each sample
point to our chosen optimizer and let it automatically find the optimal framing.
The results and energies for several stages of this evolution are shown in the figure.
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FIGURE 22.10 Starting from the geodesic reference quaternion frame for a single turn of
the helix (the very dark gray circle), the optimization produces these intermediate steps while
minimizing the total quaternion curve length subject to the constraints in the space of frames. The
final result is the white curve, which to several decimal points is identical to the parallel transport
quaternion frame for the same helix. The numerical energies of the curves, from dark to light in
color, are 3.03, 2.91, 2.82, and 2.66 for the parallel transport frame. The individual tubings
used to display these curves are created using the parallel transport frame for each curve.

The final configuration is indistinguishable from the parallel transport frame, con-
firming experimentally our theoretical expectation that parallel transport produces
the minimal possible twisting.

In Figure 22.1, we introduced the question of finding an optimal framing of a
particular (3,5) torus knot whose almost-optimal parallel transport framing was
not periodic. In Figure 22.11, we show the solution to this problem achieved by
clamping the initial and final quaternion frames to coincide, and then letting the
optimizer pick the shortest quaternion path for all other frames. It would be possi-
ble, as in the case of the (2,3) torus knot framing shown in Figure 22.5, to have
different conditions produce a framing solution containing its own reflected image
rather than having a distinct reflected image (as is the case in Figure 22.11).

The types of solutions we find are remarkable in that they should be essentially
the same for all reparameterizations of the curve. Regardless of the spacing of the
sampling, the continuous surface of possible frames is geometrically the same in
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(a) (b)

(c) (d)

FIGURE 22.11 Optimization of the nonperiodic parallel transport frame of the (3,5) torus
knot introduced in Figure 22.1 to produce a nearby periodic framing. (a) The original quaternion
parallel transport frame used to produce the tubing in Figures 22.1b and 22.1c. (b) The frame
mismatch, repeated for completeness. (c) The result of fixing the final frame to coincide with
the initial frame, leaving the other frames free to move on the constraint rings and minimizing
the resulting total length in quaternion space. The length of the original curve was 13.777, and
that of the final was 13.700—not a large difference, but noticeable enough in the tube and the
quaternion space plot. (d) Close-up of the corresponding framing of the knot in ordinary 3D
space, showing that the mismatch problem has been successfully resolved. This tube can now be
textured, because the frames match exactly.
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(a) (b)

(c) (d)

FIGURE 22.12 (a) The initial geodesic reference quaternions for the small patch shown in
Figure 22.2. (b) Initial quaternions from parallel transporting the vertex frame down one edge,
and then across line by line. (c) A random starting configuration with the single same fixed corner
point as in a and b, and a range of −π to +π relative to the geodesic reference frame. (d) The
result of minimization of the quaternion area is the same for all starting configurations. The
relative areas are 0.147, 0.154, 0.296, and 0.141, respectively. Thus, the geodesic reference is
very close to optimal.
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(a) (b)

(c) (d)

FIGURE 22.13 The 3D frame configurations corresponding to the quaternion fields shown in
Figure 22.12. (a) The geodesic reference frame. (b) Two-step parallel transport frame. (c) Ran-
dom frames. (d) The frame configuration resulting from minimizing area in quaternion space.
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quaternion space, and thus paths that are minimal for one sampling should be
approximately identical to paths for any reasonable sampling. On the other hand, if
we want special conditions for certain parameter values it is easy to fix any number
of particular orientations at other points on the curve, just as we fixed the starting
points previously mentioned. Derivative values and smoothness constraints leading
to generalized splines can be similarly specified (see Barr et al. [15]).

2 2 . 6 . 2 M I N I M A L - Q UAT E R N I O N - A R E A S U R F A C E
PAT C H F R A M I N G S

A classic simple example of a surface patch framing problem was presented in the
discussion of Figures 22.2 and 22.8. This problem can also be handled by numeri-
cal optimization. We choose an initial quaternion frame for the mesh correspond-
ing to one of the arbitrary choices noted, and minimize the area in quaternion
space subject to the constraint that the normals remain unchanged, and hence the
frame choices may only slide around the rings as depicted in Figure 22.8b. The
results are shown in Figures 22.12 and 22.13. As a test, we started one case with
a random initial state with a range of 2π in the starting values. All converged to
the same optimal final framing. A heuristic observation is that although none of
the standard guesses appeared optimal, the geodesic reference frame is very close
to optimal for patches that do not bend too much.



Quaternion Volumes

We have now treated in detail two funda-

23 mental families of frames: the 1D family
of frames corresponding to points on a
curve carrying a continuous frame, with
one axis following the curve’s tangent vec-
tor and the 2D family of frames attached to
a surface, with one axis following the nor-
mal vector perpendicular to the surface at
each point. By transforming each of these

families of frames to quaternion form, we achieved a map from each point in the
manifold to a manifold of the same dimension in quaternion space. Because the
metric properties of quaternion space permit quantitative evaluation of proximity
among frames, the geometry of these maps reveals both local and global properties
of the frame assignments to the original manifolds that cannot be readily seen any
other way.

In this chapter we complete our investigation of quaternion maps by extending
our treatment to the last unexamined domain, quaternion volumes. Quaternion volumes
can in principle arise in the following ways.

• As fields attached to discrete sampled points in a spatial volume: In this domain, one
can imagine a regular or irregular lattice of points connected by edges to
form a tessellated volume. Given some unspecified mechanism associating a
frame and its quaternion value to each lattice point, the 3D sample spatial
lattice generates a corresponding quaternion lattice, as shown schematically
in Figure 23.1.

• Continuous generation of frames: A set of frames need not be associated directly to
discrete points in space. Indeed, instead of associating quaternion curves to

257
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FIGURE 23.1 A set of coordinate frames associated in some way with each point of a 3D lattice
(typically a sampled volumetric distribution) is associated with a quaternion lattice generated by
the quaternion frame map.

moving frames on differentiable space curves we could have simply had a
rigid object fixed at a single point and been given a one-parameter process
that continuously changed the object’s orientation from an initial state to a
final state. A quaternion surface could have been generated by a continuous
two-parameter process with specified boundaries and regions, not necessar-
ily simply connected. The 1D and 2D cases have practical examples corre-
sponding to restricted degrees of freedom in the motion of a single robotic
or biological joint. The volumetric quaternion map corresponds to the quaternion
volume generated by an unrestricted local orientation exploration (e.g., see
Herda et al. [89,91,92]). Typical scenarios are presented schematically in
Figure 23.2.
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FIGURE 23.2 Generating quaternion frame maps from 1D, 2D, and 3D sequences of frames.

23.1 THREE-DEGREE-OF-FREEDOM ORIENTATION
DOMAINS

To provide a motivating context, we will now focus our investigation of quaternion
volume maps primarily on the final example in our introduction, the generation of
a set of orientations by the reorientation of an abstract frame. If such a frame has
truly no restrictions, and can achieve every possible orientation, the result is not
very interesting. As all possible orientations are explored, the quaternion map will
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FIGURE 23.3 Plot of solid quaternion volume containing the degrees of orientation freedom of
a joystick with a twistable handle.

eventually fill the entire volume of S3, with each orientation frame R(θ, n̂) even-
tually appearing twice in the map—once at value q(θ, n̂) and again at −q(θ, n̂).

Of more practical interest is the case in which there are mechanical limits of
some type on the frames that can be reached. One example would be a joystick with
a knob that can be twisted a few degrees on its axis, as illustrated in Figure 23.3.
We expect that the quaternion volume field is locally a solid cylinder delimiting the
available frames of the knob. We can treat this device analytically by assuming that
the frame of the joystick’s knob can be represented as a tilting operation relative
to the base frame of the joystick housing. This orientation can be written as the
following tilt relative to the z axis, as illustrated in Figure 23.4:

ŝ(α,β) = (cosα sinβ,sinα sinβ,cosβ).

The entire transformation is then a tilt back up from the current joystick axis direc-
tion to the z axis, a spin about the current z axis by the polar angle γ , and a return
tilt. The resulting matrix is simply the concatenation of the transformations

N(α,β, γ ) = R(α, ẑ)R(β, ŷ)R(γ, ẑ)R(−β, ŷ)R(−α, ẑ). (23.1)

To produce the geometry restrictions of the joystick, we take
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FIGURE 23.4 The angles α and β specify the tilt of ŝ to mark the orientation of the joystick.

0� α � 2π,

0� β < b,

−c � γ � c,

which corresponds to limiting the tilt in β to a maximum value β = b, permitting
any axis orientation projection onto the xy plane whatsoever, and restricting the
knob twist to ±c. Mapping N(α,β, γ ) into quaternion space with N(0,0,0) =
Identity Frame, we find the quaternion

ν(α,β, γ ) = q(α, ẑ) � q(β, ŷ) � q(γ, ẑ) � q(−β, ŷ) � q(−α, ẑ)

=
(

cos
γ

2
,cosα sinβ sin

γ

2
,sinα sinβ sin

γ

2
,cosβ sin

γ

2

)
.

We now restrict the values of b and c suitably, and plot the three-vector part of
ν(α,β, γ ) in our usual visualization tool, thus producing the explicit analytic vol-
ume map visualization exhibited in Figure 23.5. We emphasize that this type of
information can now be combined with, e.g., human interface measurements about
the limits of the user’s comfort level to produce a complete visualization of product
design constraints for such a device.
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FIGURE 23.5 This solid cone describes the joystick access space as a quaternion volume. Two
ranges of the tilt limit of the joystick are given: b = π/2 and b = π/4.

23.2 APPLICATION TO THE SHOULDER JOINT

Now that we see how a quaternion three-manifold can be used in practice for
orientation maps that can be computed analytically, we are ready to study an appli-
cation that is more complex. The human shoulder joint [89,91,92] is an excellent
prototype of a generator for a frame set that does not have a simple analytic model.
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In fact, one of the sources of key interest in this system is that individual human
anatomy and individual robotic ball-and-socket joints can be quite distinct in their
limits. The quaternion volume map is perfectly suited for several different analy-
ses.

• Comparison of range signatures: The quaternion map for the allowed ranges for
an individual joint can be as distinct in shape as a fingerprint. Because the
metric properties allow one to make meaningful comparisons of limit dif-
ferences, one can compare two individuals or mark the stages of development
of a single individual (e.g., in the course of a conditioning regimen or recov-
ery from an injury). Two maps (before and after treatment of an injury) can
precisely quantify the restoration of joint functionality, for example.

• Projection to allowed orientation domains: The quaternion volume map of an ex-
perimentally determined range of motion for a three-degree-of-freedom
joint can have an arbitrarily complex boundary surface. This surface must
of course be compact, but it need not be convex or even simply connected.
This surface defines the allowed domain for plausible models of the given
joint, and more interestingly the domain to which any proposed positions of
the joint must be clamped. For example, if a visual detector performs a
measurement on the joint and proposes an interpretation of its 3D orien-
tation, the quaternion point may be outside the experimental volume and
thus illegal. To determine the optimal allowed reinterpretation of the joint
orientation, one would locate the nearest point (in the quaternion metric)
on the surface, and clamp the interpretation to that point.

• Processed enhancements of allowed orientation domains: Given an experimentally deter-
mined three-degree-of-freedom joint domain represented as a quaternion
volume and its surface, it is possible to create new structures that enhance
the application of determining allowed domains and dealing with the fact
that measurements of this type tend to be error prone. One natural approach
is to enhance the volume itself by running a 3D medial axis transformation
(e.g., see Russ [143]) on the volume. In this way, one can define a family of
isosurfaces (with the measured volume corresponding to the base isosurface
value) and normalize the field outside the base value to give an instanta-
neous lookup of the signed distance to the base surface for any given sample
orientation. Following the gradient of this distance field sends one directly
to the nearest legal point.
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23.3 DATA ACQUISITION AND THE
DOUBLE-COVERING PROBLEM

2 3 . 3 . 1 S E Q U E N T I A L DATA

Suppose we are acquiring orientation data for a three-degree-of-freedom joint in
a sequential manner. Each frame will be captured and converted in some way into
a 3 × 3 matrix. This matrix is in turn transformed (using one of the standard

FIGURE 23.6 Quaternion shoulder joint data before correction for doubling.
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algorithms) into quaternion parameters, which of necessity have a sign ambiguity:
any given frame can appear after quaternion mapping as either q or −q . Thus,
one can in principle wind up with a continuous sequence of closely spaced frames
connected by line segments (Figure 23.6)—a collection of connected points in
which almost identical 3D frames have quaternion images that are connected by
line segments 2π radians apart (technically π radians in the quaternion logarithm,
or −1→ +1 in the unit sphere itself).

2 3 . 3 . 2 T H E S E Q U E N T I A L N E A R E S T- N E I G H B O R
A L G O R I T H M

To make a sequence of points such as that shown in Figure 23.6 into something
more sensible, we simply force each point to be as close to its neighbor as possible.
This is achieved using the following steps of an algorithm, which we call the force-
close-1D-neighbors algorithm:

1 Assume a quaternion point p has been chosen for the previous frame in the
sequence.

2 Transform the current frame into a quaternion q .
3 Check the sign of p · q = cosθ(p, q).
4 If the sign is positive, adjoin q to the list of points.
5 If the sign is negative, adjoin −q to the list of points.
6 If the dot product vanishes, the point spacing is unreasonable. Resample,

replacing q by a new point halfway back to p.

In this way, we can obtain a continuous family of points such as that shown in
Figure 23.7. In terms of a point set, we have

{pi |pi · pi−1 > 0}.
A mathematical curve (such as a spline) could be fitted to these points, generating a
continuous model p(t), which could then be used for various types of data analysis
on the actual time sequence of the joint orientation motion.

2 3 . 3 . 3 T H E S U R F A C E - B A S E D N E A R E S T- N E I G H B O R
A L G O R I T H M

The next situation is the case in which one allows, for example, the direction of a
limb to vary—keeping its axial twist fixed or restricted in some way—yielding a
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FIGURE 23.7 A continuous sequence of quaternion shoulder orientations with neighbors forced
to be in the same hemisphere of quaternion space as their predecessors.

two-degree-of-freedom system. This system will then be described by a quaternion
surface when the frames are mapped to the three-sphere. Once again, frames that are
quite nearby can in principle wind up across the diameter of S3 in quaternion
values. If there is any definite lattice or 2D array order of the points, we use the
following 2D variant of the force-close-1D-neighbors algorithm.

1 Assume a quaternion 2D corner point p has been chosen.
2 Assume there is a known sequence of samples along an edge, and a known

sequence of edges that, when connected, tessellate the surface.
3 Perform the force-close-1D-neighbors algorithm on the first edge.



23.3 DATA ACQUISITION AND THE DOUBLE-COVERING PROBLEM 267

4 Take p to be the first point on the first edge, and q to be the first point on
the next edge. Check the sign of p · q = cosθ(p, q), and select q or −q so
that this is positive in the manner of the 1D algorithm.

5 Run the 1D algorithm on the edge starting at q .
6 Repeat until the entire surface-tessellation lattice is reconciled.

There are some anomalous cases that can in principle come up. For example, if the
sequence of points on one edge obeys the local-positive-dot-product criterion, it is
still conceivable that two adjacent points on neighboring edge sequences could fail
to satisfy p · q > 0.

2 3 . 3 . 4 T H E VO L U M E - B A S E D N E A R E S T- N E I G H B O R
A L G O R I T H M

Finally, given a volumetric collection of quaternion points one needs to pick a par-
ticular anchor point and then walk through the entire set to force close 3D neigh-
bors. In a randomly ordered set, it is still possible to migrate to an inappropriate
association unless one presorts clusters in some way.

No lattice order: If there is no lattice order, the brute-force ordering can be had from
making a −q copy of each point q and then searching through the parameter space
of possible “equators” specified by the family of S2s defined by the intersection of
the hyperplane

n̂ · x = 0,

with S3, which is itself simply parameterized by the three parameters placing the
unit four-vector n̂ in S3. One seeks the cleanest partition (with the most points
well separated from the chosen equator). For given applications, more specific op-
timization methods may be appropriate.

Existing lattice order: If there is a lattice order, we repeat the previous procedures, one
level higher, as follows.

1 Assume a quaternion 3D corner point p has been chosen.
2 Assume there is a known sequence of samples along an edge, a known se-

quence of edges that, when connected, tessellate the surface, and known
surfaces that sequentially tessellate the volume.

3 Perform the force-close-2D-neighbors algorithm on the first surface.
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(a) (b)

FIGURE 23.8 (a) A dense sample of shoulder orientation data in quaternion space. (b) Implicit
surface model fitted to the data.

4 Take p to be the first point on the first surface, and q to be the first point on
the next surface. Check the sign of p · q = cosθ(p, q), and select q or −q

so that this is positive in the manner of the 1D and 2D algorithms.
5 Run the 2D algorithm on the edge, starting at q .
6 Repeat until the entire volume-tessellation lattice is reconciled.

23.4 APPLICATION DATA

Given a collection of samples of volumetric orientation-frame data and a process
(such as one of those previously described) for refining the data’s quaternion pre-
sentation, we can finally visualize the data and develop an application for it. Our
example is chosen from a set of Vicom-generated shoulder data generated by Herda
(e.g., see [89,91,92]). Figure 23.8a shows the processed projection of a dense
sample of data for the range of shoulder motion of a single subject. The force-
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close-3D-neighbors process has grouped the collection of points into a compact
quaternion volume region, and all double-covering and q → −q problems have
been eliminated. Figure 23.8b shows the result of fitting an implicit surface model
to the salient boundaries of the quaternion volume. With this implicit surface, one
can now perform a selection of applications, including the following.

• Legality checking: One can check the range of motion of a new sample (e.g.,
a body position generated by an animation program) and determine if it
conforms to the legal range of a real human motion. If not, the hypothesized
sample is projected to the premeasured realistic orientation by mapping it
to the nearest legal point.

• Physiological progress metric: Suppose a patient is undergoing treatment for a joint
injury or problem. A range-of-motion data sample before treatment can be
compared to the sample at later times, and a quantitative measure of progress
in physiologically accessible motion range can be carried out.
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Quaternion Maps of
Streamlines

We now apply quaternion frame meth-

24 ods to the study of data containing a large
number of related curves. We assume that
we are given a family of analytic or ex-
perimentally sampled curves, with suffi-
cient information to extract smooth first
derivatives (and perhaps higher deriva-
tives) from the data. A representative ap-
plication domain is a flow field that has

been processed to generate streamlines by integrating the paths of test particles.
Standard methods are typically limited to visual representations showing the 3D
spatial positions of the test particle traces. The methods we shall study indicate that
the data contain a wealth of additional information we can exploit using intrinsic
geometric features and quaternion maps.

24.1 VISUALIZATION METHODS

The moving-frame field of a set of streamlines is potentially a rich source of detailed
information about the data. However, the nine-component frame is unsuitable for
direct superposition on dense data due to the high clutter resulting when its three
orthogonal three-vectors are displayed; direct use of the frame is only practical at
very sparse intervals, which prevents the viewer from grasping at a glance impor-
tant structural details and changes. Displays based on 3D angular coordinates are
potentially useful, but lack metric uniformity [3]. We believe the quaternion frame
is potentially a more informative and flexible basis for visualizing collections of
frames.
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We can study a single curve in a flow field using exactly the same methods we
did in Chapter 20. Given each curve and a method of computing its tangent vectors,
we can compute the Frenet frame, along with the corresponding curvature and tor-
sion, by the standard formulas. Gray [31,60] in particular has advocated the use of
curvature and torsion-based color mapping to emphasize the geometric properties
of curves. Because this information is essentially trivial to obtain simultaneously
with the Frenet frame, we can easily supply encodings of the curvature and torsion
as scalar fields mapped onto the streamlines. If the Frenet frame has anomalies,
we can choose a starting frame and compute the parallel transport (Bishop) frame
at each point. Once we have calculated the 3D moving frames, we can determine
the corresponding quaternion frames, retaining the information about curvature
and torsion for each point on the curve. We may then exploit these quantities to
supplement the ordinary 3D frame information and to expose the intrinsic prop-
erties of the family of curves. Because of the metric properties of the quaternion
representation, we also have the ability to visually note the similarities and differ-
ences of families of neighboring curves. Although we focus in this chapter on space
curves, we remark that collections of frames of isolated points, frames on stream
surfaces [99], and volumetric frame fields could also be represented using a similar
mapping into quaternion space.

2 4 . 1 . 1 D I R E C T P L O T O F Q UAT E R N I O N F R A M E
F I E L D S

We now emphasize the crucial observation: For each 3D space curve, the moving quaternion
frames define a completely new 4D space curve lying on the unit three-sphere embedded in 4D Euclidean
space. These curves can have entirely different geometry from the original space curve, in
that distinct points on a curve correspond to distinct orientations. Families of space
curves with exactly the same shape will map to the same quaternion curve, whereas
quaternion curves that fall away from their neighbors will stand out distinctly in
the S3 plot. Regions of vanishing curvature will show up as discontinuous gaps
in the otherwise continuous quaternion Frenet-frame field curves, but will be well
behaved in the quaternion parallel-transport frame fields. Straight 3D lines will of
course map to single points in quaternion space, which is a distinctive feature of
the display.
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2 4 . 1 . 2 S I M I L A R I T Y M E A S U R E S F O R Q UAT E R N I O N
F R A M E S

We also remind ourselves that quaternion frames carry with them a natural geom-
etry that may be exploited to compute meaningful similarity measures. Rather than
use the Euclidean distance in 4D Euclidean space R4, one should use a distance
based on the four-vector scalar product of unit quaternions

d(q,p) = |q · p| = |q0p0 + q1p1 + q2p2 + q3p3|,
or the corresponding angle

θ(q,p) = arccos
(
d(q,p)

)
,

which is the length of the geodesic arc connecting the two 4D unit vectors and is
the natural distance measure on S3. Choosing such a distance measure results in a
quantity that is invariant under 4D rotations, is invariant under quaternion multi-
plication, and is insensitive to the sign ambiguity in the quaternion representation
for a given frame. Thus, we may quantitatively measure the similarity of any two
3D frames. This is a natural way to compare either successive frames on a single
streamline or pairs of frames on different streamlines.

2 4 . 1 . 3 E X P L O I T I N G O R I G N O R I N G D O U B L E P O I N T S

The unique feature of quaternion representations of orientation frames is that they
are doubled. If we have a single smooth curve, it technically does not matter which
of the two points in S3 is chosen as a starting point because the others follow by
enforcing small distances or continuously integrating small transformations. A col-
lection of points with a uniform orientation as an initial condition will similarly
evolve in tandem, and one normally need make only a single choice to see the
pattern.

However, it is possible for a frame to rotate a full 2π radians back to its initial
orientation, and then be on the opposite side of S3, or for a collection of stream-
lines to have a wide range of starting orientations that preclude a locally consistent
method for choosing a particular quaternion q over its conjugate neighbor −q . We
then have the following alternatives.

• Include a reflected copy of every quaternion field in the display. This doubles the
data density but ensures that no two frame fields that are similar will appear
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diametrically opposite. The metric properties of similar curves will be easy
to detect. In addition, 4D rotations will do no damage to the continuity of
fields that are rotated to the outer surface and pass from the northern to the
southern hyperhemisphere. If 4D depth is represented via color coding, for
example, a point that rotates up to the surface of the displayed solid ball will
smoothly pass to the surface and then pass back toward the center while its
color changes from positive to negative depth coding.

• Keep only one copy, effectively replacing q with −q if it is not in the default
viewing hyperhemisphere. This has the effect that each data point is unique,
but that curve frames very near diametrically opposite points on the S2 sur-
face of the solid ball representing the north hyperhemisphere will be close
in orientation but far away in the projection. In addition, when 4D rotations
are applied curves that reach the S2 surface of the solid ball will jump to
the diametrically opposite surface instead of passing smoothly “around” the
edge to the southern hyperhemisphere.

24.2 3D FLOW DATA VISUALIZATIONS

We now examine some typical examples of streamline data, and see how the simul-
taneous application of our visualization methods to large families of curves helps
emphasize important features and trends. We render each curve in the data set using
the following alternative visualization modes.

• Curve and curvature: Use a 3D Euclidean space representation of the actual curve,
pseudocolored by the curvature value. This singles out rapidly bending por-
tions of the curve.

• Curve and torsion: Use a 3D Euclidean space picture, pseudocolored by torsion
value. This singles out rapidly twisting portions of the curve.

• Quaternion Frenet-frame map: Plot the four-vector quaternion Frenet-frame fields
in the three-sphere using one of our standard quaternion visualization meth-
ods. In the vector-only display method, pseudocolor can be used to remind
us of the value of the hidden fourth q0 component, even though it is in
principle redundant.

• Quaternion parallel-transport frame map: Plot the four-vector quaternion parallel-
transport frame field in the three-sphere using one of our standard quater-
nion visualization methods. The redundant fourth component can again be
emphasized by color encoding.
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2 4 . 2 . 1 AV S S T R E A M L I N E E X A M P L E

Our first example is shown in Figure 24.1. These data are from a standard public
AVS-generated streamline data set. The flow is obstructed somewhere in the cen-
ter, causing sudden jumps of the streamlines and their quaternion maps in certain
regions.

2 4 . 2 . 2 D E F O R M I N G S O L I D E X A M P L E

Our second example is derived from the simulation of a physical deformation
process. If we imagine a solid wall of deformable spaghetti strands running from
the top to the bottom of the wall, Figure 24.2 shows the result of twisting around
the vertical axis and tracing the deformations of the spaghetti strands. The result is
a symmetric but surprisingly complicated set of streamlines and quaternion maps.

24.3 BRUSHING: CLUSTERS AND INVERSE
CLUSTERS

One of the most interesting properties of the quaternion frame method is the ap-
pearance of clusters of similar frame fields in the three-sphere display. Two recip-
rocal tools for exploring these properties immediately suggest themselves. In Fig-
ure 24.3, we illustrate the effect of grabbing a cluster of streamlines that are spa-
tially close in 3D space and then highlighting their counterparts in the 4D quater-
nion field space, thus allowing the separate study of their moving frame properties.
This technique distinguishes curves that are similar in 3D space but have drastically
different frame characteristics.

Figure 24.4, in contrast, shows the result of selecting a cluster of curves with
similar frame-field properties and then highlighting the original streamlines back
in the 3D space display. This method assists in the location of similar curves that
could not easily be singled out in the original densely populated spatial display.
A variety of approaches can be used to design such tools for the exploration of
streamlines.

24.4 ADVANCED VISUALIZATION APPROACHES

The quaternion frame curves displayed in Figures 24.1 and 24.2 are, strictly speak-
ing, 2D projections of two overlaid 3D solid balls corresponding to the “front” and
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(a) (b)

(c) (d)

FIGURE 24.1 (a) Vector field streamlines, color coded by curvature. (b) Vector field streamlines,
color coded by torsion. (c) The corresponding quaternion field paths for the Frenet frames. (d) The
corresponding quaternion field paths for the parallel transport frames. The color code is keyed to the
value of the quaternion component q0 that is collapsed in the projection from 4D to 3D. (AVS
data set.)
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(a) (b)

(c) (d)

FIGURE 24.2 (a) Deformed volume, color coded by curvature. (b) Deformed volume, color
coded by torsion. (c) The corresponding quaternion field paths for the Frenet frames. (d) The
corresponding quaternion field paths for the parallel transport frames. The color code is keyed to
the value of the quaternion component q0 that is collapsed in the projection from 4D to 3D.
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(a) (b)

FIGURE 24.3 (a) Selecting stream fields that are close in the original 3D data display and
(b) echoing them in the 4D quaternion Frenet-frame display. The moving frames of these two
curves are drastically different, even though the curves appear superficially similar in 3D. The
unseen component of 4D depth, with a range −1.0 to 1.0, is mapped to the color index.

“back” hemispheres of S3. This S3 is projected from 4D to 3D along the zeroth
axis, and thus the “front” ball has points with 0� q0 � +1 and the “back” ball has
points with −1� q0 < 0. The q0 values of the frame at each point can be displayed
as shades of gray or pseudocolor. In the default view projected along the q0 axis,
points that are projected from 4D to the 3D origin are identity frames, because unit
length of q requires q = (±1,0,0,0) at these points. Figure 24.5 shows a sequence
of views of the same quaternion curves from different 4D viewpoints using parallel
projection. By performing a 4D rotation, we can bring different selected portions
of the streamline quaternion map data set into the less-distorted area around the
origin of the solid ball. Using the polar sphere projection methods of Chapter 17,
we can create the alternative viewpoints shown in Figure 24.6, which show the
additional contrast in structure sizes resulting from a 4D perspective projection.

The simplest viewing strategy plots wide lines that may be viewed in stereo or
using motion parallax. A more expensive viewing strategy requires projecting a line
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(a) (b)

FIGURE 24.4 (a) Selecting stream fields that are close in the 4D quaternion Frenet-frame
display and (b) echoing them in the original 3D data display, thus showing the locations of
similar curves that could not be easily singled out in the original 3D spatial display. The unseen
component of 4D depth, with a range −1.0 to 1.0, is mapped to the color index.

or solid from the 4D quaternion space and reconstructing an ideal tube in real time
for each projected streamline. The parallel transport techniques introduced earlier
are extremely relevant to this task, and may be applied to the tubing problem as
well (see Bloomenthal [21] and Hanson and Ma [79]).

2 4 . 4 . 1 3 D RO TAT I O N S O F Q UAT E R N I O N D I S P L AY S

Using, for example, the 3D rolling ball interface, we can generate quaternion repre-
sentations of 3D rotations of the form q = (cosθ

2, n̂ sin θ
2) and transform the entire

quaternion display by quaternion multiplication (i.e., by changing each point to
p′ = q � p). This effectively displaces the 3D identity frame in quaternion space
from (1,0,0,0) to q . This may be useful when trying to compare curves whose
properties differ by a rigid 3D rotation (a common occurrence in the parallel trans-
port frame due to the arbitrariness of the initial condition).
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FIGURE 24.5 Successive frames in a 4D rotation of the parallel-projected S3 display of
the quaternion fields for a set of streamline data.

FIGURE 24.6 Successive frames in a 4D rotation of the polar-projected S3 display of the
quaternion fields for a set of streamline data.

Other refinements might include selecting and rotating single streamlines in the
quaternion field display to make interactive comparisons with other streamlines
differing only by rigid rotations. One might also use automated tools to select
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rotationally similar structures based on minimizing the 4D scalar product between
quaternion field points as a measure of similarity.

2 4 . 4 . 2 P RO B I N G Q UAT E R N I O N F R A M E S W I T H 4 D
L I G H T

We next explore techniques developed for the exploitation of probes that are based
on 4D lighting models (e.g., see Hanson and Cross [72], Hanson and Heng [73,
76]). In these approaches, the critical element is the observation that 4D light can
be used to selectively emphasize geometric structure provided we can find a way
(such as thickening curves or surfaces until they become true three-manifolds) to
define a unique 4D normal vector that has a well-defined scalar product with the
4D light. When that objective is achieved, we can interactively employ a moving
4D light and a generalization of the standard illumination equations to produce
images that selectively expose new structural details.

Given a quaternion field, we may simply select a 4D unit vector L to represent
a “light direction” and employ a standard lighting model such as I (t) = L · q(t)

to select individual components of the quaternion fields for display using pseudo-
color coding for the intensity.

Figure 24.7 shows a streamline data set rendered by computing a pseudocolor
index at each point using the 4D lighting formula and varying the directions of the
four-vector L.

True 4D illumination: For completeness, we remark that quaternion curves in 4D
may also be displayed in an entirely different mode by thickening them—using the
method of Hanson and Heng [73,76]—to form three-manifolds and replacing q(t)

in the 4D lighting formula and its specular analogs by the 4D normal vector for each
volume element or vertex. Furthermore, the massive expense of volume rendering
the resulting solid tubes comprising the 4D projection to 3D can be avoided by
extending the “bear-hair” algorithm to 4D curves [14,72,108] and rendering the
tubes in the limit of vanishing radius.

4D light orientation control: Direct manipulation of 3D orientation using a 2D mouse
is typically handled using a rolling ball [66] or virtual sphere [30] method to
give the user a feeling of physical control. This philosophy extends well to 4D
orientation control [34,69], giving a practical approach to interacting with the
visualization approaches exploiting 4D lighting.

A 3D unit vector has only two degrees of freedom, and is thus determined
by picking a point within a unit circle to determine the direction uniquely up to
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FIGURE 24.7 Color coding a streamline data set using an interactively moving 4D “light” as a
probe to isolate similar components of the quaternion fields associated to each point of each curve.

the sign of its view-direction component. The analogous control system for 4D
lighting is based on a similar observation: Because the 4D normal vector has only
three independent degrees of freedom, choosing an interior point in a solid sphere
determines the vector uniquely up to the sign of its component in the unseen fourth
dimension (the “4D view-direction component”). Figure 24.7 shows via a series
of snapshots an example of this interactive interface at work. One can optionally
print or display the components of the 4D light vector at any particular moment.



Quaternion Interpolation

In this chapter we pursue the details of

25 parametric quaternion interpolation di-
rectly on S3. The main issue is the prob-
lem of creating smooth transitions among
orientation frames while retaining the
convenience of parametric forms famil-
iar from Euclidean polynomial parameter-
izations of curves and surfaces. We will
also briefly discuss alternate methods of

logarithmic-space interpolation and direct variational optimization of spherical
curves.

The methods of quaternion animation splines were introduced to the graphics
community originally by Shoemake [149]. This chapter provides an overview of
the techniques of constructing splines with various desirable continuity properties,
following the method of Schlag [145] applied to quaternion Bezier, Catmull–Rom,
and uniform B-splines. Some problems (such as those involving derivative compu-
tation) may be resolved by the exponential map approach of Kim et al. (e.g., see
[59,111]), which is briefly noted, along with the variational methods of Barr et al.
[15,140]. Alternative approaches, such as the rational quaternion spline method
of Jüttler [104,105], are not treated in detail. We begin with some basic technol-
ogy of Euclidean splines to lay the mathematical groundwork, and then apply that
intuition to the development of several useful families of quaternion splines.
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25.1 CONCEPTS OF EUCLIDEAN LINEAR
INTERPOLATION

In a Euclidean space of any dimension, the linear interpolation defining a pa-
rameterized straight line between two points x0 = (x0, y0, z0, . . .) and x1 =
(x1, y1, z1, . . .) is given by

x(t) = (1− t)x0 + tx1

= x0 + t (x1 − x0). (25.1)

An important feature of Euclidean interpolation is that each dimension is treated
independently. The first form is essentially a linear solution of the barycentric co-
ordinate form

x(u0, u1) = u0x0 + u1x1,

where u0 + u1 = 1 is the barycentric constraint in one dimension (shown in Fig-
ure 25.1). Note that u0 is opposite the vertex x0, and thus u0 = 1 gives full weight
to the point x0. Choosing

u0 = 1− t,

u1 = t (25.2)

gives the first parameterization, which is essentially the lowest-order Bernstein
polynomial basis. The second form of Equation 25.1, which starts with the con-

FIGURE 25.1 The 1D barycentric weight partition for an interpolated straight line.
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stant x0, has the feature that it exposes the derivative of the curve,

dx(t)

dt
= ẋ(t) = (x1 − x0),

which is the coefficient of t ; that is, the constant slope of the straight line x(t).

2 5 . 1 . 1 C O N S T RU C T I N G H I G H E R - O R D E R
P O LY N O M I A L S P L I N E S

Euclidean polynomial splines of higher order can be derived iteratively using the
de Casteljau construction, which takes a set of anchor points {x0,x1,x2, . . . ,xn}
and the linear interpolants

x01(t) = (1− t)x0 + tx1,

x12(t) = (1− t)x1 + tx2,

...

xij (t) = (1− t)xi + txj

and linearly interpolates each pair of these

x012(t) = (1− t)x01(t) + tx12(t),

...

xi,i+1,i+2(t) = (1− t)xi,i+1(t) + txi+1,i+2(t).

Repeating the process (as indicated schematically in Figure 25.2) generates a poly-
nomial of order n,

x01...n(t) =
∑

k

ckxk(1− t)n−ktk, (25.3)

which is the Bezier spline of order n.

2 5 . 1 . 2 M AT C H I N G

To string together several sets of Bezier splines, it is necessary to match all deriv-
atives at the end point (here, xn) with those at the starting point of the next set
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FIGURE 25.2 Nested linear splines in the de Casteljau framework produce arbitrary polynomial
spline curves.

(say, y0). This is feasible but tedious, and thus one typically looks instead for splines
with sliding sets of “windows” in the set of anchor points to automatically handle
the continuity of one or more derivatives.

The Catmull–Rom spline (sometimes called a cardinal spline) produces a cubic
spline that passes exactly through a set of anchor point values and matches first deriva-
tives by using a sliding window of four anchor points (see the simple cases shown in
Figure 25.3). The uniform cubic B-spline matches both the first and second deriv-
atives of each point in the sliding window, but has insufficient degrees of freedom
to force the curve to pass through the anchor points as the Catmull–Rom does; see
Figure 25.4.

For the cubic spline, the three standard interpolations (corresponding, respec-
tively, to the Bezier spline, Catmull–Rom spline, and uniform B-spline) are as fol-
lows.

Bz(t) = (1− t)3x0 + 3t (1− t)2x1 + 3t2(1− t)x2 + t3x3,

Cr(t) = −1

2
t (1− t)2x0 + 1

2
(1− t)

(
2+ 2t + 3t2)x1

+ 1

2
t
(
1+ 4t − 3t2)x2 + −1

2
(1− t)t2x3,
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FIGURE 25.3 Examples of the behavior of the Euclidean Catmull–Rom spline.

FIGURE 25.4 Examples of the behavior of the cubic uniform B-spline.

Ub(t) = 1

6
(1− t)3x0 + 1

6

(
4− 6t2 + 3t3)x1

+ 1

6

(
1+ 3t + 3t2 − 3t3)x2 + 1

6
t3x3.

In Euclidean space, side-by-side comparison of the three cubic splines (shown in
Figure 25.5) clearly exposes their fundamental characteristics. Their derivatives
give the directions of their slopes as follows.
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FIGURE 25.5 In Euclidean space, these three basic cubic splines look like this. The differences
are in the derivatives: Bezier has to start matching all over at every fourth point, Catmull–Rom
matches the first derivative, and B-spline is the “Cadillac,” matching all derivatives but matching
no control points.

Bz(t = 0)=x0, Bz(t = 1)=x3,

Bz′(t = 0)=3(x1 − x0), Bz′(t = 1)=3(x3 − x2),

Bz′′(t = 0)=6(x0 − 2x1 + x2), Bz′′(t = 1)=6(x1 − 2x2 + x3),

Bz′′′(t)=6(x3 − 3x2 + 3x1 − x0), (25.4)

Cr(t = 0)=x1, Cr(t = 1)=x2,

Cr ′(t = 0)= 1

2
(x2 − x0), Cr ′(t = 1)= 1

2
(x3 − x1),

Cr ′′(t = 0)= (2x0 − 5x1 + 4x2 − x3), Cr ′′(t = 1)= (−x0 + x1 − 5x2 + 2x3),

Cr ′′′(t)=3(x3 − 3x2 + 3x1 − x0), (25.5)

Ub(t = 0)= 1

6
(x0 + 4x1 + x2), Ub(t = 1)= 1

6
(x1 + 4x2 + x3),

Ub′(t = 0)= 1

2
(x2 − x0), Ub′(t = 1)= 1

2
(x3 − x1),

Ub′′(t = 0)= (x0 − 2x1 + x2), Ub′′(t = 1)= (x1 − 2x2 + x3),

Ub′′′(t)= (x3 − 3x2 + 3x1 − x0). (25.6)
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2 5 . 1 . 3 S C H L A G ’ S M E T H O D

There are several ways of rewriting these expressions to achieve a uniform repre-
sentation. One is the iterated linear interpolation method of Schlag [145], which
solves for the linear combination a + bt at each level of the de Casteljau algorithm
that actually transforms the spline into each of the forms above simply by substitut-
ing the appropriate expression (a + bt) into each level of the linear interpolation.
Schlag defines the linear interpolator

L(a, b; t) = (1− t)a + tb, (25.7)

writes

S(x1, x2, x3, x4; t)= L
(
L
(
L
(
x1, x2;f12(t)

)
, L

(
x2, x3;f23(t)

); f123(t)
)
,

L
(
L
(
x2, x3;f23(t)

)
, L

(
x3, x4;f34(t)

); f234(t)
);

f (t)
)
,

and solves for the forms of the set of f (t)’s for each cubic spline:

• Bezier: The de Casteljau algorithm for the Bezier spline is the trivial case
f (t) = t .

f12 = t f23 = t f34 = t

f123= t f234= t

f = t

• Catmull–Rom:

f12 = t + 1 f23 = t f34 = t − 1

f123= (t+1)
2 f234= t

2

f = t
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• Uniform B-spline:

f12 = (t+2)
3 f23 = (t+1)

3 f34 = t
3

f123= (t+1)
2 f234= t

2

f = t

This procedure can obviously be repeated for any additional level of nested inter-
polations L(a, b;f (t)) to generate any desired polynomial order for any spline.

2 5 . 1 . 4 C O N T RO L - P O I N T M E T H O D

An alternative approach is to ask: “What control points substituted into the de
Casteljau algorithm produce the Catmull–Rom and uniform B-spline?” Because
the control points always appear linearly, there must exist some combination that
achieves this. If we simply substitute

Cr(x0,x1,x2,x3; t) = Bz(u0,u1,u2,u3; t),
Ub(x0,x1,x2,x3; t) = Bz(v0,v1,v2,v3; t),

we find the solution

ucr
0 = x1,

ucr
1 = x1 + 1

6
(x2 − x0),

ucr
2 = x2 + 1

6
(x1 − x3),

ucr
3 = x2,

xcr
0 = u3 + 6(u0 − u1),

xcr
1 = u0,

xcr
2 = u3,

xcr
2 = u0 + 6(u3 − u2)
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for the Catmull–Rom and

uub
0 = 1

6
(x0 + 4x1 + x2),

uub
1 = 1

3
(2x1 + x2),

uub
2 = 1

3
(x1 + 2x2),

uub
3 = 1

6
(x1 + 4x2 + x3),

xub
0 = 6u0 − 7u1 + 2u2,

xub
1 = 2u1 − u2,

xub
2 = −u1 + 2u2,

xub
2 = 2u1 − 7u2 + 6u3

for the uniform B-spline.
If we examine the Catmull–Rom solution in Figure 25.6, we see that the interior

Bezier control points have become slope-controlling combinations:

ucr
1 − ucr

0 = 1

6
(x2 − x0), ucr

3 − ucr
2 = 1

6
(x3 − x1). (25.8)

Similarly, for the uniform B-spline we have

uub
1 − uub

0 = 1

6
(x2 − x0), uub

3 − uub
2 = 1

6
(x3 − x1). (25.9)

These observations are of some importance to us for several reasons. First, we
shall see that the Schlag procedure generalizes perfectly from Euclidean linear in-
terpolators to unit-length-preserving spherical interpolators, which is what we re-
quire for 3D orientation frame interpolation. Second, we will see that the alternative
slope-controlling transformation also has a direct relationship to an alternative view
of quaternion anchor points when we discover how linear algebra has exact analogs
in spherical algebra.
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FIGURE 25.6 Diagram of the values to use in the Bezier iterated spline formula with
u0(x),u1(x),u2(x),u3(x) to get the same result as the Catmull–Rom formula with anchor
points x0,x1,x2,x3.

25.2 THE DOUBLE QUAD

There is one further transformation among the linear splines (named the “Squad”
by Shoemake [149]) that is of interest because it reduces the required number of
linear interpolations and is therefore more efficient. Suppose we take a set of four
Bezier control points {x0,x1,x2,x3} and form first a pair of “bottom” and “top”
linear splines (as in Figure 25.7):

xbot(t) = (1− t)x0 + tx3,

xtop(t) = (1− t)x1 + tx2.

Then, if we perform a third interpolation using a quadratic function 2t (1 − t)—
whose features are plotted in Figure 25.8—instead of our usual linear function of t ,
we find

xsquad(t) = L
(
xbot(t),xtop(t);2t (1− t)

)
= (

1− 2t + 2t2)xbot(t) + 2t (1− t)xtop(t)

= (
1− 2t + 2t2)(1− t)x0 + 2t (1− t)2x1

+ 2t2(1− t)x2t
(
1− 2t + 2t2)x3.
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(a) (b)

FIGURE 25.7 The initial stage of the Squad interpolates separately along a “top” and a “bot-
tom” straight line.

FIGURE 25.8 The curve 2t (1− t) that goes symmetrically to zero at both ends of the range
0 � t � 1, thereby interpolating efficiently with the correct limits.

However, what is this with respect to our familiar cubic spline methods? It is in fact
a completely different cubic curve, which reduces to the same end points as the
standard Bezier curve. We can verify this by going through the algebra to subtract
the Bezier formula, with the result



294 CHAPTER 25. QUATERNION INTERPOLATION

xsquad(t) = xBezier(t) + t2(1− t)x0 − t (1− t)2x1

− t2(1− t)x2 + t (1− t)2x3,

x′
squad(0) = −3x0 + 2x1 + x3,

x′
squad(1) = −x0 − 2x2 + 3x3.

Thus, we find that this is yet another class of Euclidean spline that still satisfies
x(0) = x0, x(1) = x3 but whose first derivatives do not agree with the Bezier deriv-
atives at t = 0,1. Its advantage appears to be a reduction in the number of required
nested interpolations achieved by using a quadratic function 2t (1 − t) in the in-
terpolator. However, it is unclear just what geometric motivation suggests that the
“Squad” is a significant improvement over any of the standard splines.

25.3 DIRECT INTERPOLATION OF 3D ROTATIONS

Having now worked out how linear interpolations in Euclidean space lead to the
standard polynomial splines, let us see how much we can learn about orientation
interpolation by first avoiding quaternions and exploiting the 3×3 rotation matrix
as much as we possibly can. In this way, we can better distinguish the features
that properly belong only to quaternions from those that quaternions share with
advanced methods of ordinary 3D rotations.

First, recall that any product of 3D rotation matrices is still just equivalent to a
single rotation about a fixed axis that takes the identity frame to the final orthonor-
mal frame. In terms of linear algebra, we say that 3D rotations are generated by a
3×3 orthogonal matrix whose transpose is its inverse and whose multiple products
preserve orthogonality: the columns of an orthogonal matrix give the orientation
vectors of the axes into which the identity frame is transformed. In terms of group
theory, we say that any 3 × 3 3D rotation matrix is an element of the Lie group
SO(3) and that matrix multiplication by definition preserves membership in the
group.

The critical feature of an arbitrary rotation A (possibly resulting from any num-
ber of successive component rotations) is that, from Euler’s theorem, the matrix
has a single unique, real eigenvector n̂ and that there is an angle θ (unique up to
2π periodicity) that gives the rotation about that axis that goes from the identity
matrix I to the new matrix A whose columns are the transformed coordinate frame
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axes. This matrix is by now well known to us:

R(θ, n̂) = Rotate Identity by θ about n̂ to give A,

A = R(θ, n̂) · I. (25.10)

We can see from Figure 25.9 that the rotation fixing the axis n̂ is the most direct
route from the identity to the frame A. This operation can be thought of as rotat-
ing a platform or spinning a gyroscope whose axis is n̂ and whose equator is the
unit circle (Figure 25.9) perpendicular to n̂ at the origin. Thus, the smoothest angular
interpolation results when we simply replace θ with tθ :

Interp(t) = R(tθ, n̂),

Interp(0) = I,

Interp(1) = A.

2 5 . 3 . 1 R E L AT I O N T O Q UAT E R N I O N S

We already know that the quaternion

q(θ, n̂) = (
cos(θ/2), n̂ sin(θ/2)

)
is a point on S3, and that q(tθ, n̂) parameterizes a great circle, the shortest-distance
path on the hypersphere S3 as t : 0→ 1. Furthermore, q(tθ, n̂) coincides point for
point (via the quadratic map) with the 3D interpolation matrix R(tθ, n̂). There-
fore, we conclude that for single-axis rotations R(tθ, n̂) is going to work as well
as the quaternion q(tθ, n̂). The only important difference for this special case is
that relative distances between two frames are measured in units of tθ/2 radians in
quaternion space, instead of tθ radians in ordinary space (if we had never heard
of quaternions). The concrete evidence of an essential difference between the two
spaces, however, must be kept in mind—as the belt trick (Chapter 12) showed us
quite directly.

Note: The geometric properties of the hypersphere S3 are precisely described by
Riemannian geometry when we define a standard metric on S3. Topologically, S3 is
a simply connected space, which is the deeper mathematical reason the belt trick (Chap-
ter 12) works the way it does. On S3, Riemannian geometry precisely defines the



296 CHAPTER 25. QUATERNION INTERPOLATION

FIGURE 25.9 Spinning plane perpendicular to the Euler eigenvector.

path with shortest distance (or geodesic) in terms of the metric, and this can be
verified to correspond to the path parameterized by t in q(tθ, n̂) as t : 0 → 1. The
set of points q(tθ, n̂) coincide point for point, via the quadratic map, with the 3D
interpolation matrix R(tθ, n̂). However, R is a 3× 3 orthogonal matrix—a mem-
ber of the group SO(3) and the topological space RP3 (real projective space),
which is not a simply-connected metric space.

2 5 . 3 . 2 M E T H O D F O R A R B I T R A RY O R I G I N

As one can deduce from methods we have already seen, interpolating between
nonidentity frames is qualitatively similar to a Euclidean translation, except that we
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FIGURE 25.10 Set up the task of going from frame A to frame B .

apply a group transformation to the identity frame (the identity element of the ro-
tation group). Given two frames A and B (as shown schematically in Figure 25.10)
the shortest-angular-distance rotation matrix M(tθ, n̂), taking A → B with

M(0, n̂) = A,

M(θ, n̂) = B, (25.11)

can be found starting from

R = A−1B = AT B. (25.12)

(See Figure 25.11.) The eigenvector of R, n̂ such that

R · n̂ = n̂,

can be found from linear algebra or directly from the elements of (R − RT ). The
angle θ , as usual, comes from the trace, tr(A−1B) = 2 cos(θ) − 1. (See also Chap-
ters 6 and 16.) Thus, we immediately find all that is necessary to directly construct

R(θ, n̂) = A−1B (25.13)

and the great-circle interpolation R(tθ, n̂) from the identity to A−1B . Prepending
the initial condition from Equation 25.11 to displace the identity to the frame A,
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FIGURE 25.11 The structure of (A−1B).

we have

M(tθ, n̂) = A · R(tθ, n̂) (25.14)

as the general solution (see Figure 25.12). Hence, we basically find the difference
between the two rotations, extract the axis, and use this effective SLERP to perform
an incremental rotation.

2 5 . 3 . 3 E X P O N E N T I A L V E R S I O N

Many authors find it useful to use the behavior of matrix exponents and logarithms
to express Equation 25.14 in an alternative fashion. Writing

logR(tθ, n̂) = tθ n̂ · L (25.15)

so that

R = etθ n̂·L = R(θ, n̂)t ,
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FIGURE 25.12 Continuous transition from A to B using the parameter t . Note that the dot-
ted lines are the frame A in Figure 25.11 and the heavy lines are the frame B in Figure 25.11.

we arrive at

M(tθ, n̂) = A
(
A−1B

)t = Ae(t log(A−1B)) (25.16)

as an alternative means of looking at the great-circle interpolation in terms of 3×3
rotation matrices. However, its simplicity is deceptive. Although Equation 25.16 is
formally useful (e.g., for derivatives), in fact one must always compute n̂ by hand
from A−1B and return to the matrix R(tθ, n̂) to perform the actual transformation.
The quaternion form of the formula embodying the correct distance measure on
S3 can be immediately deduced as

m(tθ, n̂) = qA �
(
q−1
A � qB

)t = qA � q(tθ, n̂AB). (25.17)

2 5 . 3 . 4 S P E C I A L V E C T O R – V E C T O R C A S E

An extremely common special case involves the task of smoothly rotating one vec-
tor to another in their common plane. Because the final result is as always a fixed-
eigenvector interpolation, this is equivalent to the frame-frame interpolation prob-
lem but with a different phrasing of the initial data. Figure 25.13a shows the con-
ditions of the task, which requires the construction of a rotation matrix that takes
the three-vector direction â to the direction b̂. Any n̂ in the plane bisecting the arc
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(a) (b) (c)

FIGURE 25.13 (a) Diagram of the fixed axis rotating â to b̂. (b) Choices of circles that
connect a to b on the sphere. (c) Minimal-length solution with n̂ = â × b̂/|â × b̂| and
cosθ = â · b̂.

of the great circle from â → b̂ on S2 will have a θ that accomplishes this, as shown
schematically in Figure 25.13b. However, only one unique n̂ (up to a sign) and its
θ will give the minimal arc length θ = cos−1(â · b̂) in 3D, and θ/2= (1/2)cos−1(â · b̂)

in quaternion space.
The rotation parameters of the unique minimal-arc-length rotation, as shown in

Figure 25.13c, can be immediately read off as

cosθ = â · b̂, n̂ = â × b̂

|â × b̂| , (25.18)

and thus

R(â → b̂) = R

(
cos−1(â · b̂),

â × b̂

|â × b̂|
)

. (25.19)

This is guaranteed of course to leave the plane defined by â and b̂ fixed (in that
â · n̂ = b̂ · n̂ = 0), and thus all linear combinations of â and b̂, forming all possible
points in the plane, are perpendicular to n̂ as well. See Appendix F for an elegant
quaternion version of this transformation.
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2 5 . 3 . 5 M U LT I P L E - L E V E L I N T E R P O L AT I O N
M AT R I C E S

Now the question that should be uppermost in our minds is “what next?” In our
Euclidean-space introductory sections, we constructed polynomial splines from
multiple anchor points using the de Casteljau algorithm, and then showed that
all polynomial splines could be rephrased in this way by using suitably adjusted
linear combinations of the anchor points. Even though we may be aware of the
quaternion-based approach to orientation splines, what if we plunge ahead and
work directly with 3D frames to see how far we can go? To take an explicit ex-
ample, consider three frames A, B, C and two interpolations, as illustrated in
Figures 25.14 and 25.15:

TAB(t) = A
(
A−1B

)t = AR(tθAB, n̂AB),

TBC(t) = B
(
B−1C

)t = B R(tθBC, n̂BC).

Here, we define

cosθAB = angle
(
A−1B

)
from trace formula,

n̂AB = normalized eigenvector of
(
A−1B

)
, etc.,

FIGURE 25.14 Transition from frame A to frame B to frame C.
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FIGURE 25.15 Given intermediate frames AB and BC, we can form the equivalent of a
quadratic Bezier spline by forming the joint interpolator ABC.

or equivalently but less usefully

θABn̂AB · L = logA−1B, (25.20)

where L is the set of 3×3 antisymmetric matrices we used in Chapter 18 to define
rotations by matrix exponentiation.

If we now attempt the analog of a quadratic Bezier spline by interpolating from
TAB to TAC , we would find

TABC(t) = TAB(t)
[
T −1

AB TBC
]t

= AR(tθAB, n̂AB)R(tθABC, n̂ABC),

where n̂ABC(t) is the t-dependent eigenvector of T −1
AB (t) · TBC(t) and θABC is the

amount of rotation about that axis, obtainable as usual from the trace of [T −1
AB TBC].

To compare the equivalent quaternion form, we let (qA, qB, qC) be the quaternions
equivalent to the 3× 3 orthogonal matrices A,B,C and examine

qAB(t) = qA � (q̄A � qB)t = qA � q(tθAB, n̂AB), (25.21)

where we trivially extract the needed quantities from the quaternion product

q̄A � qB =
(

cos
θAB

2
, n̂AB sin

θAB

2

)
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or (again, equivalently but with only formal utility)

log q̄A � qB =
(

0,
1

2
θABn̂AB

)
.

Thus,

qABC(t) = qAB(t) � [q̄AB � qBC]t

= qAB(t) � q

(
tθABC(t), n̂ABC(t)

)
,

where all quaternion quantities by now are well known and have clear analogs in
3× 3 orthogonal matrices.

2 5 . 3 . 6 E Q U I VA L E N C E O F Q UAT E R N I O N A N D
M AT R I X F O R M S

It is obvious that the frames corresponding to points on any single geodesic arc
generated by TAB(t) are equivalent to those generated by applying the quadratic
form to qAB(t). It is also obvious that for some specific t0 (fixing a particular pair
of frames TAB and TBC) the arcs

RABC(t, t0) = TAB(t0)
[
T −1

AB (t0)TBC(t0)
]t

, (25.22)

qABC(t, t0) = qAB(t0) �
[
q̄AB(t0) � qBC(t0)

]t
(25.23)

must also correspond point by point as t varies (see Figure 25.16). This is because

log
[
T −1

AB (t0)TBC(t0)
] = θABC(n̂ABC · L̂),

log
[
q̄AB(t0) � qBC(t0)

] =
(

0,
1

2
θABCn̂ABC

)
(25.24)

involve the identical fixed-eigenvector rotation parameters, (θABC, n̂ABC). (Remark:
This separation of t0 is the first step of an orientation “blossom” construction.) By
induction, repeated nesting of Equation 25.22 or Equation 25.23 corresponding to
the Euclidean de Casteljau construction will agree point-by-point.
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FIGURE 25.16 Showing the interpolation point t , interpolating between two intermediate
points on different curves fixed at t0.

25.4 QUATERNION SPLINES

We now have clearly in mind what it means to make a smooth, constant-
angular-velocity rotation interpolation from one frame to another. The geodesic
or minimum-angle transition from any frame A to any other frame B is produced
by

MAB(t) = A
[
A−1B

]t = AR(tθAB, n̂AB), (25.25)

and t parameterizes a constant-angular-velocity rotation. The quaternion

qAB(t) = qA � [q̄A � qB ]t = qA � q

(
tθAB, n̂AB

)
(25.26)

is completely equivalent because the standard quadratic map will exactly reproduce
the matrix MAB(t). However, the quaternions qA and qB are also topological points
on the compact metric space S3, which gives us the novel opportunity to explore
a purely geometric viewpoint for orientation visualization.
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FIGURE 25.17 Projection of three-sphere S3 with two quaternion points plotted as rays from
the origin.

In the geometric approach to orientation splines, we consider the two points
(qA, qB) as arbitrary unit four-vectors, and plot them (as in Figure 25.17) using
one of our sphere visualization methods. We can always place the two unit vec-
tors in a 2D plane with an orientation of our choice (as shown in Figure 25.18)
because, regardless of the dimension, two points on a unit sphere combine with
the origin to define a simple 2D plane. The Gram–Schmidt process allows us to
immediately project out an axis q⊥ in the plane containing only the component of
qB perpendicular to qA:

q̃ = qB − qA(qA · qB),

‖q̃‖2 = q̃ · q̃ = 1− (qA · qB)2. (25.27)

Defining the measure of the angular difference between qA and qB in quaternion
space to be
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FIGURE 25.18 Flattened-out view with the local plane of the two quaternions in the plane of
the paper.

FIGURE 25.19 Gram–Schmidt orthonormal frame form of the unit-norm-preserving inter-
polation on a sphere.
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cosφ = qA · qB,

we find ‖q̃‖ =√
1− cos2 φ = |sinφ|, and thus

q⊥ = q̃

‖q̃‖ = 1

|sinφ| [qB − qA cosφ]. (25.28)

The standard constant-angular-velocity interpolation from qA to qB in the fully
geometrical Gram–Schmidt framework is thus recast into the local orthonormal
basis of Figure 25.19 in the usual way:

q(t) = qA cos(tφ) + q⊥ sin(tφ). (25.29)

A little trigonometry turns this into the nontraditional unit-norm-preserving SLERP

qSLERP(t) = SLERP(t;qA,qB)

= qA

[
sin((1− t)φ)

sinφ

]
+ qB

[
sin(tφ)

sinφ

]
, (25.30)

where (as usual) qA · qB = cosφ, q(0) = qA and q(1) = qB , as expected.
Equation 25.30 is precisely the same as Equation 25.26, except that 25.30

adopts a geometric point of view as opposed to the algebraic viewpoint expressed
in 25.26. We can quickly convince ourselves of the equivalence by transforming
the system to a special coordinate frame with qA = (1,0,0,0) = Identity and
qB = (cos(θ/2), x̂ sin(θ/2)), so cosφ = cosθ/2. (We can do this with no loss
of generality due to the fact that only a 2D subplane is actually involved.) Thus,
whereas

qAB(t) = (costθ/2, x̂ sintθ/2),

we can see that

qSLERP(t) =
(

sin(θ/2− tθ/2) + sin(tθ/2)cos(θ/2)

sin(θ/2)
, x̂

sin(θ/2)sin(tθ/2)

sin(θ/2)

)

=
(

sin(θ/2)cos(tθ/2)

sin(θ/2)
, x̂ sin(tθ/2)

)
= (

cos(tθ/2), x̂ sin(tθ/2)
)
,

and the two will be identical in any frame.
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The point is that, although we have shown that there exist equivalent de Castel-
jau constructions for 3 × 3 orthogonal matrices and quaternions, the geometrical
viewpoint of the global behavior of the interpolation exists only for quaternions.
We can examine each segment of the matrix interpolation locally using the ap-
propriate fixed-eigenvector matrix, but we cannot meaningfully depict the entire
curve and its metric properties, e.g., to see when a part of the curve passes near or
through a previous orientation.

25.5 QUATERNION DE CASTELJAU SPLINES

We are now ready to create and visualize the quaternion analogs of the standard
Bezier splines, as well as their counterparts such as Catmull–Rom splines and uni-
form B-splines, all in terms of the de Casteljau algorithm. In addition to the 3× 3
matrix-based uniform-rotation interpolation primitive,

RAB(t) = A
[
A−1B

]t
,

we have the following two equivalent quaternion-based uniform-rotation interpo-
lation primitives, the algebraic and the geometric form,

qalgebraic(t) = qA � [q̄A � qB ]t ,

qgeometric(t) = qA

sin((1− t)φ)

sinφ
+ qB

sintφ

sinφ
.

Although in principle any primitive can be used, the quaternion geometric form
built from the Gram–Schmidt local 4D quaternion frame is much closer in both
spirit and notation to the Euclidean spline framework. In fact, as pointed out by
Schlag [145] the two systems are entirely isomorphic if we simply replace the
Euclidean Lerp(t;a, b) primitive with the norm-preserving spherical Slerp(t;a, b)

primitive. The nesting of SLERPs in the de Casteljau algorithm can in principle be
repeated any number of times to get the analog of an nth-order spline, as illustrated
in Figure 25.20.

Following this ansatz, we may write the three standard cubic-equivalent quater-
nion splines as

I (q1, q2, q3, q4; t)=S
(
S
(
S
(
q1, q2;f12(t)

)
, S

(
q2, q3;f23(t)

); f123(t)
)
,

S
(
S
(
q2, q3;f23(t)

)
, S

(
q3, q4;f34(t)

); f234(t)
);

f (t)
)
,
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FIGURE 25.20 Nested SLERPs produce the spherical analog of a spline of any order.

where the weight functions are fi...j (t) = t for Bezier quaternion curves,

f12 = t f23 = t f34 = t

f123= t f234= t

f = t ,

and for Catmull–Rom splines

f12 = t + 1 f23 = t f34 = t − 1

f123= (t+1)
2 f234= t

2

f = t ,
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FIGURE 25.21 Spherical Bezier, Catmull–Rom, and uniform B-spline on S2.

and for the uniform B-spline

f12 = (t+2)
3 f23 = (t+1)

3 f34 = t
3

f123= (t+1)
2 f234= t

2

f = t .

Because these formulas are valid for any set of points {q} serving as anchor points
on a sphere, we can first visualize a set of spherical spline paths of each type on
S2 (the two-sphere in ordinary Euclidean 3D space), as shown in Figure 25.21.
The curves are of course not strictly cubic, but are clearly cubic equivalents in that
they have the exact expected behavior analogs with respect to the anchor points on
the sphere. Figure 25.22 shows the analogous quaternion visualization using the q
(vector-point-only) visualization, which places the identity frame at the apparent
origin.

Matching angular slopes: In ordinary Euclidean spline applications, we are often mod-
eling a static shape, and thus it is very important to match the slope of the tangent to
the curve. For Euclidean splines, we can enforce slope matching by evaluating the
curve derivative on each side of a given curve point. For orientations, the equiv-
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FIGURE 25.22 Spherical Bezier, Catmull–Rom, and uniform B-spline on S3 using the q
visualization projection.

alent operation is to find the directions of the locally geodesic arcs at each curve
point. If the rotation planes coincide, the orientation shape slopes will match.

The Catmull–Rom spline and uniform B-spline are automatically configured to
match first derivatives at intermediate end points in moving windows of four an-
chor points in a series (groups of four are for a cubic; n + 1 anchors are needed
for an nth-order spline). The Bezier must be matched by hand.

Figures 25.23 and 25.24 represent taking the derivative of a smooth curve on
a sphere, as we must do to check derivative matching or to enforce it by hand
in a Bezier sequence. Although the tangent line at a point on a sphere computed
by taking the derivative lies outside the space containing the curve itself (unlike
the Euclidean case), for our purposes it has qualitatively the same properties. For
example, at a given point joining two curves, from each direction there will be a
limiting value of the eigenvector n̂ of the rotation matrix. If the limiting values of
n̂ do not match, as in Figure 25.25, the 2D planes of the local rotation will not
match either, and there is a discontinuity. If they match as in Figure 25.26, the two
rotations momentarily coincide and the slopes match.

In quaternion language, instead of looking at 3D rotations in the 2D plane per-
pendicular to momentary eigenvector to qualitatively check a slope match we ex-
amine
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FIGURE 25.23 The tangent vector to sphere determines the spherical curve derivatives to be
matched.

FIGURE 25.24 The tangent vector to circle shows a clearer direct view of relationship of tangent
to the curve itself at one point.
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FIGURE 25.25 Mismatch of tangents (or derivatives) to two curves meeting at a point.

FIGURE 25.26 Matching tangents show that the slopes of the curves match and no instanta-
neous angular velocity discontinuity will be observed.
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q1 = (
cos(θ1/2), n̂1 sin(θ1/2)

)= en̂1(t)θ1(t)/2,

q2 = (
cos(θ2/2), n̂2 sin(θ2/2)

)= en̂2(t)θ2(t)/2. (25.31)

We see that matching slopes involves the process of matching the derivatives

q̇1(t) =
(

−1

2
θ̇1 sin(θ1)/2, ˙̂n1 sin(θ1/2) + 1

2
n̂1θ̇1 cos(θ1)/2

)
. (25.32)

If the orientation itself matches at the common anchor (common frame value),
q1(t0) = q2(t0), we need to match also the values:

q̇1(t0) = q̇2(t0).

For a cubic-style quaternion spline, one may also want to match second derivatives,
either automatically in the uniform B-spline or by hand in the Catmull–Rom and
Bezier splines.

If the spherical spline has been written in terms of constant anchor points with
the conventional simple angular parameterization, we have significant simplifica-
tion because any single component can be easily differentiated. For example, to
find the slope or tangent direction of

q(t) = SLERP(q1, q2; t) = q1 � [q̄1 � q2]t = q1e
t log(q̄1q2)

we know

q̇(t) = dq

dt

= q1 � et log(q̄1�q2) log[q̄1 � q2]
= −q1θ

cos((1− t)θ)

sinθ
+ q2θ

cos(tθ)

sinθ
.

If the interpolation is nested, this is where the advantage of the SLERP form
becomes apparent. For example, in a three-point quadratic interpolation with
cosθ(t) = q12(t) · q23(t),

q123(t) = q12(t)
sin((1− t)θ(t))

sinθ(t)
+ q23(t)

sin(tθ(t))

sinθ(t)
(25.33)

can be cleanly differentiated term by term.
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25.6 EQUIVALENT ANCHOR POINTS

In our introductory review of Euclidean polynomial splines, we noted that every
spline could be expressed as a Bezier spline with suitable combinations of anchor
points. We can achieve an equivalent form for the Schlag nested-SLERP formulas
that is somewhat more intuitive by adapting this procedure from translations to
rotations.

The basic requirement is to transform a linear algebraic combination

x = a + sb (25.34)

into a statement compatible with multiplicative group operations. We already know
that group displacements from the identity matrix are equivalent to Euclidean dis-
placements from the origin,

A = A · I ↔ a = a + 0, (25.35)

and thus that Euclidean translations with a plus sign are group multiplications and
that those with a minus sign require the inverse matrix operation:

I =A · A−1 · I, 0=a − a + 0,

A · B =A · B · I, a + b=a + b + 0,

B · A=B · A · I, b + a=b + a + 0,

A · B �=B · A, a + b=b + a. (25.36)

Here we must choose an order for possibly noncommutative group operations.
The remaining operation, scalar multiplication, must correspond, say, to a factor

of 2 being equivalent to twofold group multiplication, a factor of 3 to three-fold
multiplication, and so on. The only consistent interpolation of scalar multiples is
therefore

Bs = B · · ·B︸ ︷︷ ︸
s

↔ sb. (25.37)

Thus, we find the translation between Euclidean linear algebra and group algebra
must take the form

X = A · Bs ↔ x = a + sb, (25.38)

up to a choice of matrix multiplication order. The same correspondence must hold
for quaternions, whose algebra is isomorphic to a matrix algebra.
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Bezier-equivalent polynomial quaternion splines: We can thus immediately translate the
Catmull–Rom spline with control points (c0, c1, c2, c3), where in Euclidean space
the corresponding Bezier anchor points are

x0 = c1,

x1 = c1 + 1

6
(c2 − c0),

x2 = c2 + 1

6
(c1 − c3),

x3 = c2, (25.39)

to a nested SLERP with all simple f (t) = t interpolating functions, but with the
Catmull–Rom anchor quaternions pi replaced (up to a choice of multiplication
order) by Bezier control quaternions with the values

q0 = p1,

q1 = p1 � (p̄0 � p2)
1/6,

q2 = p2 � (p̄3 � p1)
1/6,

q3 = p2.

These equivalences are represented schematically in Figures 25.27 and 25.28. For
uniform B-splines, the equivalent transformation (up to a choice of multiplication
order) is

x0 = 1

6
(c0 + 4c1 + c2),

x1 = 1

3
(2c1 + c2),

x2 = 1

3
(c1 + 2c2),

x3 = 1

6
(c1 + 4c2 + c3),

q0 = p1 �
(
(p̄1)

2 � p0p2
)1/6

,

q1 = p1 � (p̄1 � p2)
1/3,
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FIGURE 25.27 The 2D Catmull–Rom segment anchor points ci are equivalent to the 2D
Bezier anchor points xi .

FIGURE 25.28 The 3D or 4D Catmull–Rom segment anchor points ci are equivalent to the
Bezier anchor points xi .
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FIGURE 25.29 The 2D B-spline segment anchor points ci are equivalent to the 2D Bezier
anchor points xi .

FIGURE 25.30 The 3D or 4D B-spline segment anchor points ci are equivalent to the Bezier
anchor points xi .
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q2 = p2 � (p̄2 � p1)
1/3,

q3 = p2 �
(
(p̄2)

2 � p1 � p3
)1/6

.

These equivalences are represented schematically in Figures 25.29 and 25.30.

25.7 ANGULAR VELOCITY CONTROL

There is one final technical detail that adds complexity to the procedures for inter-
polating orientation frames. There are two aspects of derivative matching that may
independently be of importance in practical applications.

• Static curve slope and higher derivatives: When modeling a shape with a Euclidean
spline, the curve or surface parameterization or subdivision spacing is of
little importance because the light-reflective properties of the static shape are
what is relevant. Only the anchor point slope-matching features are visible in
the reflectance, and if the normals (and possibly their derivatives) match all
is well. Orientation interpolation, however, is rarely used to generate static
light-reflective properties of object models, and thus the static shape of the
quaternion curve is not a relevant model property.

• Dynamic curve velocity and higher derivatives: When modeling a motion path of either
an object or a camera viewpoint, however, further parameters must be ad-
justed. The static slopes (and possibly higher derivatives) must still match,
but in addition the time steps must be adjusted so that the dynamic object
motion has the desired spatial velocity properties. For exactly the same math-
ematical curve in space, the apparent velocity of an object, moving on that
curve can be wildly different, as illustrated in Figure 25.31, as can higher
derivatives.

Although it is very straightforward (albeit tedious) to match the slopes of adjacent
quaternion curve segments, this is basically never enough. Quaternion splines typically
do not model shapes (like Euclidean splines do), but are used instead to model
moving objects and cameras, complementing the Euclidean spline curves describ-
ing translations of objects and cameras in time.

Thus, what we must do is match the sampling rate in the curve distance to achieve
the desired local angular velocity. Simply put, let there be three required orienta-
tions (q1, q2, q3) on the same curve q(t) defined by an arbitrary spherical spline
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FIGURE 25.31 Three curves comparing the spatial shape of a curve and two very different
sampling intervals leading to drastically different object velocity profiles for exactly the same curve
shape.

(i.e., q · q = 1). We take q1 and q3 to be given, for example in

q1 = q(0),

q3 = q(T ),

and we want to find the value of t0 such that q2 = q(t0) describes an orientation
that will produce a uniform angular velocity.

Mathematically, this requires simply that we match the quaternion arc length,
and thus matching dot products works if the angles are <π/2, producing

q1 · q2 ≈ q2 · q3.

The inverse cosines are the arc lengths shown in Figure 25.32:

d1 = cos−1(q1 · q2) ≈ d2 = cos−1(q2 · q3). (25.40)

Solving for the value of t0 such that q2 = q(t0) forces d1 = d2 is typically a numeri-
cal procedure. Starting from the fundamental principles of this simple example, we
can effectively exploit the correctness of the quaternion distance measure to solve
any variant of the problem, such as the following examples.



25.8 EXPONENTIAL-MAP QUATERNION INTERPOLATION 321

FIGURE 25.32 Partitioning the spherical curve (q1, q2, q3) so that q2 results in uniform
angular velocity.

• Constant angular velocity: Using equal-arc-length quaternion curve subdivision.
• Constant angular acceleration: Using second-order differences.
• Any desired model for the angular velocity curve: Matching a heuristic function for the

sample spacing.

25.8 EXPONENTIAL-MAP QUATERNION
INTERPOLATION

It is annoying that in exchange for the desirable properties of quaternions as a way
of parameterizing rotations we must work with and visualize S3. The hypersphere
S3 is a beautiful space from the mathematical standpoint, but the most straightfor-
ward way of viewing it is as an embedding in four Euclidean dimensions instead
of the familiar three. In addition, it is a compact three-manifold whereas human
spatial intuition tends to falter beyond compact two-manifolds.

Many complaints have been voiced about the 4D nature of quaternions, and
thus when people became aware of the 3D methods suggested by the paper of
Kim, Kim, and Shin [111] there was great initial enthusiasm. In this section, we
will briefly describe the exponential-map method and carefully delimit its strengths
and weaknesses (e.g., see the treatment of Grassia [59] for further details).

The mathematical foundation of the exponential-map method is the elegant dif-
ference between a Lie algebra (describing the tangent space, or infinitesimal limit,
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of a group action) and the group itself, which is the topological space resulting
from exponentiating the Lie algebra elements. In practical terms, this simply means
that for 2D rotations we can express a 2D frame alternatively with the single pure
imaginary number

(0, θ) ≈ iθ

or its exponential

e(0,θ) = (cosθ,sinθ) ≈ eiθ = cosθ + i sinθ,

where we show both the algebraic form z = (x, y) and the imaginary-unit form
z = x + iy for each complex number in the formulas. Conversely, the Euclidean
exponential-map form of the 2D rotation parameterization is

loge(0,θ) = (0, θ) ≈ logeiθ = iθ.

Note that whereas the parameter space (θ) is 1D, the complex algebra onto which
the exponential maps is 2D, but with the circle constraint x2 + y2 = 1. For 2D
frames, the fact that θ ∈ R maps periodically with period 2π but without singular-
ities to the matrix

R2 =
[

cosθ −sinθ

sinθ cosθ

]
(25.41)

means that the exponential map has perfectly acceptable properties.
For 3D frames, once again we can relate the 3D parameter space to the infinites-

imal transformation parameter, which we write as (0,n/2) = logq . Now with the
notation conventions |n| = θ and n̂ = n/|n| we have

q = e
1
2 (0,n) =

(
cos

(
1

2
θ

)
, n̂ sin

(
1

2
θ

))
. (25.42)

Purists will note that as θ → 0 some expressions become undefined and thus some-
times we must factor out θ , giving an expression such as

θ n̂
(

sinθ

θ

)

to maintain formal regularity.
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FIGURE 25.33 Example of a many-control-point Catmull–Rom spline carried out using the
exponential method in the 3D log space, then plotting (with our usual 3D projection) the full
quaternion curve resulting from the exponentiation.

Thus, any point q on S3 can be represented as logq = (0,n/2). Again, we see

that whereas n is a 3D Euclidean vector q = e(0, 1
2n) is the standard 4D embedding

of the 3D object S3. In this Euclidean 3D space, we can establish Euclidean anchor
points, and construct ordinary Euclidean splines. As illustrated in Figure 25.33 us-
ing a Catmull–Rom spline, the quaternion results are qualitatively similar to SLERPs
if one stays within the constraints of the methods.

However, we now note the following families of advantageous and disadvanta-
geous properties of the exponential map.
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FIGURE 25.34 Sketch of two concentric spheres, with the inner sphere showing singularity at
θ = 2π and the outer sphere at θ = 4π .

• Singularity at θ = 2π : When |n| = 2kπ , the exponential form maps all points
into the origin, and thus there is no continuous route through the logarith-
mic orientation space if we have a path that lives on the sphere (as illustrated
in Figure 25.34). Interpolation curves therefore are in danger of a type of
“generalized gimbal lock,” a situation in which a finite change in an orien-
tation parameter produces no change whatever in the orientation frame and
therefore differentiability is lost.

• No algebra for combining rotations: Quaternion multiplication moves from one ori-
entation to another along a specific arc in S3. There is no 3D Euclidean al-
gebra allowing insight into combined rotations in the exponential map. The
only way to find the result is to write out the two exponentials as quater-
nions q1 and q2, perform quaternion multiplication to get q1 � q2, and take
the logarithm to find the new point (0,n12/2) = log(q1 � q2) in the 3D
Euclidean space.
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• No curve metric allowing distance comparisons: Although the special case of a pure 2D
(planar) rotation reduces to logeiθ = iθ , this is the only case in which dis-
tances among orientation states along curve can be straightforwardly com-
puted in the exponential map.

Advantages of the exponential map: The exponential map does have advantages in several
situations. In general, to exploit the exponential map one first needs to impose
a restricted range. Conventionally, one stays within the half-sized ball of radius
r � π inside the singular surface at radius r = 2π (e.g., see Grassia [59]). In this
range, one can apply literally any 3D interpolation or spline from Euclidean geom-
etry and can take derivatives and integrate differential equations without nonlinear
constraints.

The apparent advantages of the exponential form—only three Euclidean degrees
of freedom, no constraints on a higher-dimensional parameter space (compared to
four with one constraint for quaternions, nine with six constraints for frame matri-
ces), and the ability to use classical Euclidean splines—attracted great interest when
proposed. However, one must be very careful to understand clearly that the expo-
nential form has its mathematical origins in the Lie algebra, which (considering
the following) achieves its simplicity at great cost.

• No geometry: The geometry appears only in the full Lie group (quaternions), in
that the Lie algebra only knows about local properties of the group derived
from its tangent space.

• No global metric: Only special cases, equivalent to 2D rotations passing through
the origin, permit the measurement of comparative distances directly in the
3D exponential space.

Thus, for example, the nice 3D Euclidean spline forms possess illusory simplicity:
the angular velocity is unknowable and uncontrollable without returning to the full
S3 space one is trying to avoid. A Euclidean spline in the exponential—as in

n(t) =
∑

anchors

cix(i)tn(i)(1− t)m(i), (25.43)

where q(t) = e(0,n(t)/2)—will have frame-frame distances as a function of t that
can only be measured using

d(t, t + dt) = cos−1 e(0,n(t)/2) · e(0,n(t+dt)/2). (25.44)
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If |n(t)| ≈ 2π , long distances in n coordinates could be vanishingly small in terms
of frame-frame distance so that in the exponential formalism it is not possible to
elegantly control the rate of frame change, which is critical to all orientation spline
applications.

25.9 GLOBAL MINIMAL ACCELERATION METHOD

Spline curves in Euclidean space are derived originally from the observation that
the eye is pleased by shapes that are naturally achieved by placing flexible pieces of
wood in a framework of stakes to make certain points fixed. It was discovered that
curves with minimal second derivatives were especially appealing. Mathematically,
this observation is expressed by the fact that cubic splines—which have vanishing
fourth derivative and constant third derivative—seem to be “ just complex enough”
to be aesthetically pleasing.

In this section, we will briefly outline a generalization of the minimal-
second-derivative idea from Euclidean space to quaternion space that was orig-
inally introduced by Barr, Currin, Gabriel, and Hughes [15] to make more ex-
plicit the differential geometric spherical spline treatment of Kajiya and Gabriel
[107]. Within this general framework, one can generate not only a more uni-
versal approach to the construction of smooth orientation changes but also a
more systematic way to attack the requirement for constraining angular veloci-
ties.

2 5 . 9 . 1 W H Y A C U B I C ?

The basic concept of the approach is that one can understand our standard
Euclidean-space splines by looking at a measure of the curvature energy based on
the second derivative of an unspecified curve x(t):

E[x] =
∫ 1

0
x′′(t) · x′′(t) dt. (25.45)

If we seek the specific curve out of all possible curves x that minimizes this en-
ergy functional (a functional is an object that returns a number for each choice
of a function), classical methods lead to the Euler–Lagrange equations, which for
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Equation 25.45 are simply

x′′′′(t) = d4x(t)

dt4
= 0. (25.46)

In other words:

Cubic is Minimal The minimal-bending-energy condition for E[x] is satisfied by x(t) with
constant third derivative, or by a cubic function of t .

2 5 . 9 . 2 E X T E N S I O N T O Q UAT E R N I O N F O R M

To carry out an analogous minimization in quaternion space, we can no longer find
such a simple equation. We must instead pay attention to the spherical nature of the
space and find the closest analog. Barr et al. argue that minimal tangential acceleration is
the key generalization required to construct a spherical analog of Equation 25.45.
Using the now-familiar Gram–Schmidt procedure (see also Chapter 10), we can
directly compute

α(t) = q ′′(t) − q(t)
(
q(t) · q ′′(t)

)
, (25.47)

which is explicitly perpendicular to the quaternion’s 4D radial unit vector q(t),

α(t) · q(t) ≡ 0

(because q · q = 1), and has the squared value

α · α = q ′′(t) · q ′′(t) − (
q(t) · q ′′(t)

)2
.

The overall energy to be minimized is then

E[q] =
∫ T

0
α(t) · α(t) dt, (25.48)

where one can select any number of keyframes

q(ti) = Qi, i = 1,2, . . . ,N,
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and the constraint q ·q = 1 must be enforced throughout. In addition, one may cal-
culate or impose the desired angular velocities at each keyframe and impose those
as additional conditions. The problem is now well-posed for numerical solution.



Quaternion Rotator Dynamics

In nature, rigid 3D extended objects fol-

26 low two sets of laws that determine their
motion in the course of interacting with
their external environment.

• Response to force: The response to a force F acting on the center of mass is to
accelerate or change the velocity v = ẋ of the center-of-mass position x. One
can then in theory integrate the differential equations

F = ma = mv̇ = dP
dt

(26.1)

and compute the path of the center of mass over time, as shown in Fig-
ure 26.1a.

• Response to torque: A rotating frame to which moments of inertia I and angular
momentum L = Iω can be assigned responds to a torque T by changing its
angular momentum in the direction of the torque according to the differen-
tial equation

T = I ω̇ = dL
dt

. (26.2)

Thus, one can in principle integrate the differential equations and track the
orientation of the frame defined by the angular momentum vector over time
(see Figure 26.1b).
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(a) (b)

FIGURE 26.1 Response of a rigid extended body to (a) external forces and (b) external torques.

Because our subject is rotations, we will naturally focus on the response of a me-
chanical body’s orientation frame to external torques. In particular, we will see how
to exploit quaternions to explore the dynamic behavior of rotating body frames.
This subject has been extensively treated in the physically based modeling litera-
ture (e.g., see Witkin and Baraff [174]), and was known to Hamilton and carefully
explored by Tait [162].

26.1 STATIC FRAME

The first step in describing the dynamics of a rigid body is to establish a private
coordinate system, the body frame, that typically corresponds to the directions of
the principal moments of inertia (Ix, Iy, Iz). Spinning bodies possess stable rota-
tion states about the axis of their maximal and minimal moments of inertia, and we
will by convention choose the z axis to be the direction of the principal moment of
inertia. Thus we can write the axes of the body frame in terms of a fixed external
reference frame as

R = [ x̂ ŷ ẑ ].
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FIGURE 26.2 Diagram of a spinning body with moment of inertia Iz by default along the axis
of rotation.

This is an orthogonal 3 × 3 matrix whose columns are the current directions of
the principal axes. If the object is rotating, we will assume for simplicity that it has
angular velocity ω about the z axis, as shown schematically in Figure 26.2.

A classical approach in mechanics adjusts the coordinates so that the center of
mass of the collection of points describing the composite rigid body is at the origin
in both the space-fixed axes, with coordinates x̂, and the body-fixed axes, with coordi-
nates x̂′. The space-fixed axes correspond to vectors indexed by the right-hand
index of Rij ,

Space-fixed= [Rix Riy Riz ] = [ x̂ ŷ ẑ ], (26.3)

and the body-fixed axes to the left-hand index

Body-fixed=
[

Rxi

Ryi

Rzi

]
=
[ x̂

ŷ
ẑ

]
. (26.4)
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Hence, the transformation relating a point in space-fixed coordinates x̂ to those in
body-fixed coordinates x̂′ is simply

x′
i =

∑
ij

Rij xj or x̂′ = R · x̂. (26.5)

There are some nice formal manipulations that can be done for the classic spinning
frame that lead in to our ultimate goal, the quaternion dynamics. First, note that
because of the orthogonality of R,∑

k

RikRjk =
∑

k

RkiRkj = δij ,

R · RT = RT · R = I3. (26.6)

We can make the assumption that each body-fixed point x′ is a constant and take
the derivative:

0= Ṙ · x + R · ẋ. (26.7)

We can immediately find an elegant form for the angular velocity of the moving
points by multiplying by R−1 to yield

ẋ = −RT · Ṙ · x = ṘT · R · x, (26.8)

where we used d(RT · R)/dt = ṘT · R + RT · Ṙ = 0. This allows us to define the
antisymmetric matrix ω with components

ωij = (
RT · Ṙ)

ij
=
∑

k

RkiṘkj

= −(
ṘT · R)

ij
= −ωji.

Thus,

ẋ = −ω · x (26.9)

describes the rotating point x in the composite object, and (in any coordinate
frame) we verify that the point stays at constant radius from the origin

1

2

d|x|2
dt

= x · ẋ = −x · ω · x = 0 (26.10)

due to ωij = −ωji .
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Remark: It can sometimes be useful to know that∑
ijk

εijkR
iaRjbRkc = εabc detR,

where detR = 1 for orthogonal matrices and the Levi-Civita symbol, the totally
antisymmetric pseudotensor εijk , is treated in detail in the Appendix F. For the
purposes of this section, it is sufficient to note that

εjkl = 0 if any two indices are equal,

εjkl = +1 if the indices are in cyclic order,

εjkl = −1 if the indices are in anticyclic order.

Another conventional form uses the vector angular velocity referred to the space-
fixed axes

ωi = +1

2

∑
jk

εijkωjk,

ωjk = +
∑

l

εjklωl,

and thus

ẋi = −
∑
jk

εijkωkxj

= + (ω × x)i ,

ẋ = v = ω × x.

This reproduces the standard picture (shown in Figure 26.3) for the computation
of the instantaneous velocity of any point x at a distance r from the rotation axis of
a rigid body rotating at a constant angular velocity

ωi = 1

2

∑
jk

εijk

(
RT · Ṙ)

jk
. (26.11)

By referring back to the fixed-eigenvector notation for a rotation, we see that in
fact R must leave the direction ω fixed. Thus, Figure 26.3 must be the consequence
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FIGURE 26.3 A point x in a spinning rigid body has local velocity v = ω × x if ω is the
angular velocity.

of a rotation matrix that we can now write exactly as

R(t) = R(ωt, ω̂) · R0, (26.12)

where ω̂ = ω/|ω| and R0 is the body-frame orientation at t = 0.

26.2 TORQUE

Continuing to neglect linearly accelerating forces, we now ask what happens when
our constant-angular-velocity frame R(t) is acted on by an external torque, which
will normally add to the system’s total energy. Defining the angular momentum

L = Iω, (26.13)

where I is the assumed-constant moment of inertia, we recall that the change in
angular momentum (the reaction to the torque) is equal to the applied torque
itself:

T = L̇. (26.14)
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In terms of the frame matrix R(t), we have

dωij

dt
= d

dt

(
RT · Ṙ)

ij

= ṘT · Ṙ + RT · R̈
= ṘT · R · RT · Ṙ + RT · R̈
= −

∑
l

ωilωlj + (
RT · R̈)

ij
.

Another familiar way to relate the rotation matrix itself to the angular momentum
is to think of ω = (ω1,ω2,ω3) as components of an antisymmetric 3 × 3 matrix,
in which case we can write

Ṙ = R · Ω,

Ω =
[ 0 ω3 −ω2

−ω3 0 ω1
ω2 −ω1 0

]
.

26.3 QUATERNION ANGULAR MOMENTUM

The basic formula for the angular velocity of a rigid body whose rotation is effected
by a time-varying frame matrix R(t) is

ω(t)ij = [
RT (t) · Ṙ(t)

]
ij
. (26.15)

The basic differential equation follows at once as

Ṙij =
∑

k

Rikωkj , (26.16)

where the usual three-vector angular velocity is [ω]i = (1/2)
∑

jk εijkωjk . For
constant angular velocity,

R(t) = R(ωt, ω̂) · R0. (26.17)

Now, in fact, recalling that

R =

q2

0 + q2
1 − q2

2 − q2
3 2q1q2 − 2q0q3 2q1q3 + 2q0q2

2q1q2 + 2q0q3 q2
0 − q2

1 + q2
2 − q2

3 2q2q3 − 2q0q1

2q1q3 − 2q0q2 2q2q3 + 2q0q1 q2
0 − q2

1 − q2
2 + q2

3


 , (26.18)
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and writing the columns of R as [R1,R2,R3], we may directly compute

Ṙi = 2Wi · q̇,

where

[W1] =
[

q0 q1 −q2 −q3
q3 q2 q1 q0

−q2 q3 −q0 q1

]
, (26.19)

[W2] =
[−q3 q2 q1 −q0

q0 −q1 q2 −q3
q1 q0 q3 q2

]
, (26.20)

[W3] =
[

q2 q3 q0 q1
−q1 −q0 q3 q2
q0 −q1 −q2 q3

]
. (26.21)

Because the rows of the Wi matrices form a mutually orthogonal system, they
project the single quaternion frame system (see Equation 20.24)




q̇0
q̇1
q̇2
q̇3


= v(t)

1

2




0 −ω1 −ω2 −ω3
+ω1 0 +ω3 −ω2
+ω2 −ω3 0 +ω1
+ω3 +ω2 −ω1 ω0


 ·




q0
q1
q2
q3


 . (26.22)

to each of the rows of the equivalent Ṙ = R · Ω system. Thus all of the forms are
equivalent to the quaternion system

q̇ = 1

2
q � (0,ω) (26.23)

with unit-speed normalization.
Another alternative derivation is to directly differentiate

q(t) = (
cos(ωt/2),sin(ωt/2)ω̂

)
to get

q̇(t) =
(

−ω

2
sin

ωt

2
,
ω

2
cos

ωt

2
ω̂

)
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= ω

2
q � (0, ω̂)

= 1

2
q � (0,ω).

Note that the vector parts of q and (0,ω) are proportional, and so in fact the
quaternion multiplication is in this case order-independent.

The differential equations Ṙ = R · Ω and q̇ = 1
2q � (0,ω) are both consistent

with their respective constraints,

R · RT = I3 ⇒ R · ṘT + Ṙ · RT = 0

q · q = 1 ⇒ q · q̇ = 1

2
q · (q � (0,ω)

)= 0.

Thus each will maintain its constraints in the course of numerical integration up to
propagation of rounding error. Hence, the folklore that quaternions are unsuitable
for numerical integration due to the q · q = 1 constraint neglects the fact that
the rigid body equations written in terms of 3 × 3 orthogonal matrices are even
more prone to error propagation, with six constraints instead of one to preserve.
Either can be periodically corrected by renormalization, but the single quaternion
normalization is far easier to implement.

Finally, we can express the acceleration of the quaternion frame in terms of the
angular acceleration ω̇ = T/I as

q̈ = 1

2
q̇ � (0,ω) + 1

2
q � (0, ω̇)

= 1

4
q � (0,ω) � (0,ω) + 1

2
q � (0,T/I).

The first term is the radial acceleration for constant orbital motion, and the second
is the response to the external torque.
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Concepts of the Rotation Group

In this Chapter we introduce some of

27 the elementary constructs and ideas from
the theory of representations of the 3D
Euclidean rotation group. The most fun-
damental properties of representations of
the rotation group ultimately have quater-
nionic origins, although we will not at-
tempt to cover that connection in any
depth here (for comprehensive accounts,

see Edmonds [43] or Biedenharn and Louck [17,18]).

27.1 BRIEF INTRODUCTION TO GROUP
REPRESENTATIONS

The mathematics of group theory—in particular of the rotation group—is an end-
less subject, and we will not attempt any rigorous treatment here (e.g., see Alt-
mann [4], Edmonds [43], Gilmore [56], and van der Waerden [163]). However,
from a practical computational point of view there are a few concepts we would like
to present here that may ultimately be of general use in 3D graphics and modeling
methods.

Therefore, we begin with a short review of some simple concepts of group
theory. This will establish some of the language used in the following and provide
some extremely useful analogies for understanding the ways in which spherical
harmonics, a fundamental tool for analyzing systems involving 3D orientations,
can and should be used.
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We will assume that the reader has some familiarity with Fourier transforms, and
we will use the basic properties of Fourier transforms as our main pedagogical tool.
However, even before looking at Fourier transforms we need to look at ordinary
Euclidean space. Suppose we have a basis for a Euclidean space that looks like

{e} = (ê1, ê2, . . . , ên).

Then, any vector x in this space can be expressed in terms of its projections onto
the components of the basis

x = x1ê1 + x2ê2 + · · · + xnên.

Our basic tool is the dot product between any two Euclidean vectors,

x · y = x1y1 + x2y2 + · · · + xnyn,

which is independent of the basis chosen. For any particular basis, the dot product
allows each of the components in the expansion to be written as

xi = x · êi ,

where we have made implicit use of the orthonormality of the basis,

êi · êj = δij

and δij is the Kronecker delta, which is 1 if i = j and vanishes otherwise.
The basis vectors êi of Euclidean space have precise analogs in Fourier trans-

form theory, with the slight complication that instead of using constant vec-
tors the corresponding basis for expanding a function in a Fourier series is it-
self a function (but a function that “looks like” êi in terms of what it does).
Using a Fourier expansion, we can write any function in two alternative ways:
in terms of complex basis functions or in terms of real basis functions (see
http://mathworld.wolfram.com/FourierTransform.html). In the full complex form, we find
two dominant alternative forms in the literature: F(k), f (x) with normalization 1
in the signal processing literature and F̃ (k), f̃ (x) with normalization 1/

√
2π in

the modern physics literature.
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Object Euclidean Vectors Fourier Transforms Spherical Harmonics

Group Orthogonal group Translation group 3D rotations= SO(3)

Object x f (x) f (θ,φ)

Basis êi eikx Ylm(θ,φ)

Projection Dot (·) product
∫+∞
−∞ dx

∫ 2π
0 dφ

∫+1
−1 d cosθ

Coefficients xi F (k) alm

TABLE 27.1 Parallel structures between Euclidean vectors, Fourier transforms (trans-
lation group), and spherical harmonics (3D rotation group).

F(k) =
∫ +∞

−∞
f (x) e−2πikx dx,

f (x) =
∫ +∞

−∞
F(k)e+2πikx dk,

F̃ (k) = 1√
2π

∫ +∞

−∞
f̃ (x)eikx dx,

f̃ (x) = 1√
2π

∫ +∞

−∞
F̃ (k)e−ikx dk.

As summarized in Table 27.1, we can see that f (x) is like the vector x, integration
acts like the dot product, eikx acts like the basis, and F(k) is like the coefficients
xi that multiply each basis function in order to express the vector f (x) in terms of
its components. Finding the xi by taking a dot product with a basis vector is like
finding F(k) by taking the integral with eikx .

2 7 . 1 . 1 C O M P L E X V E R S U S R E A L

Because eikx is a complex function, the coefficients F(k) may in general be com-
plex (although if f (x) starts out as real it will always stay real). However, when



342 CHAPTER 27. CONCEPTS OF THE ROTATION GROUP

implementing explicit calculations or computer programs we sometimes find it
necessary to work in terms of strictly real numbers. This is accomplished in the
Fourier series by observing that every function has an even and an odd part:

f (x) = f+(x) + f−(x),

f+(x) = 1

2

(
f (x) + f (−x)

)
,

f−(x) = 1

2

(
f (x) − f (−x)

)
.

Because the Fourier basis also has an even and an odd part,

eikx = cos(x) + i sin(x),

cos(x) = 1

2

(
eikx + e−ikx

)
,

sin(x) = 1

2i

(
eikx − e−ikx

)
,

we can alternatively use two separate real bases (the cosine transform and the sine
transform) to represent any function, in the form

F(k) =
∫ +∞

−∞
f+(x)cos(2πkx)dx − i

∫ +∞

−∞
f−(x)sin(2πkx)dx, (27.1)

F̃ (k) = 1√
2π

∫ +∞

−∞
f̃+(x)cos(kx) dx + i√

2π

∫ +∞

−∞
f̃−(x)sin(kx) dx. (27.2)

2 7 . 1 . 2 W H AT I S A R E P R E S E N TAT I O N ?

This is not the whole story, but in fact only the beginning. Fourier transforms have
one more property that we will need in order to understand what is happening
with spherical harmonics and how they represent shapes in space. This property
comes from the remarkable fact that exponentials can be used to represent an im-
portant group—the group of translations in Euclidean space. What this means is
the following: suppose we have a translation T (a) in space that is implemented by
the equation

x′ = x + a.
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Then there is a change in the function

f (x′) = f (x + a) =
∫ +∞

−∞
F(k)eik(x+a) dk (27.3)

=
∫ +∞

−∞
(
eikaF (k)

)
eikx dk (27.4)

so that the old basis eikx forms a new basis that is multiplied by eika . We say that eikx is
a basis for representations of the translation group and that the action of translation
is embodied in multiplication by eika , and therefore by definition the function eika

is a representation of the group of Euclidean translations.
We note that formally one more property is required; namely, that a sequence of

translations has the correct properties,

T (a)T (b) = T (a + b),

which means that (x + a) + b = x + (a + b). This property is satisfied by

eikaeikb = eik(a+b),

and thus the exponential function intrinsically possesses the properties of the trans-
lation group under ordinary multiplication.

Note: Essentially the same algebra produces the N -dimensional Euclidean transla-
tions with x → (x1, x2, . . . , xN) and k → (k1, k2, . . . , kN), and kx → x · k.

Why is all of this important? It is important to understand these properties
and relate them to Euclidean translations because we may take two pieces of data
describing the same object, get two different Fourier series, and want to prove that they
are the same object displaced by a distance a, which should of course be of no
consequence! How can we do that?

To identify a unique object that is independent of arbitrary translations, we
must find an intrinsic description that does not depend on whether the Fourier
coefficient is F(k) or G(k) = (eikaF (k)). (Remember that F(k) is analogous to
the coefficient xi of a coordinate direction êi for ordinary Euclidean vectors.) There
are two ways to make this identification:

• Division: If we take φ(k) = F(k)/G(k), and find that |φ| = 1, the two objects
are equivalent up to a translation. However, this property will not generalize
straightforwardly to spherical harmonics, which is our next concern.
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• Multiply by the complex conjugate: The complex conjugate of eika is easily seen to
be e−ika , which corresponds to the representation of the inverse translation—
the translation T (−a) going back in the opposite direction in space. Thus,
when we multiply two complex conjugate coefficients together we undo the
translation and it cancels out. Therefore, if we compute the product with the
inverse we get what we need:

G∗(k)G(k) = F ∗(k)e−ikaeikaF (k) = F ∗(k)F (k).

For groups more complicated than the translation group, we will deal with
inverses instead of complex conjugate exponentials.

27.2 BASIC PROPERTIES OF SPHERICAL HARMONICS

Having now established a language for representing data as vectors or as func-
tions expanded in terms of basis vectors, we proceed to the technology of spher-
ical harmonics. We begin with the fundamental properties of spherical harmon-
ics, loosely following the material found at the web site http://mathworld.wolfram.
com/SphericalHarmonic.html. More technical details, including a treatment of SO(3)

representation theory, can be found in expositions such as that by Finley (see
http://panda.unm.edu/Courses/finley/p495/handouts/ in the file rotations.pdf).

A spherical harmonic Ym
l (θ,φ) satisfies the angular part of the 3D Laplacian differ-

ential equation ∇2φ(x) = 0, where we must pay particular attention to define the
coordinate system as

x = (r cosφ sinθ, r sinφ sinθ, r cosθ)

with 0 � θ � π and 0 � φ < 2π to be consistent with the standard conven-
tions. Note that this differs from conventions we use elsewhere in our treatment
of spheres. The spherical harmonics then take the form

Ym
l (θ,φ) =

√
2l + 1

4π

(l − m)!
(l + m)!P

m
l (cosθ)eimφ,

where P m
l (cosθ) is the associated Legendre polynomial.

One important property of Ym
l is the relation between the complex conjugate

and Y−m
l : (

Y ∗)m
l
(θ,φ) = (−1)mY−m

l (θ,φ).
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The analogs of the cosine and sine decomposition of the Fourier transform into
real and imaginary parts for the spherical harmonics are sometimes written as
(Y c)ml (θ,φ) and (Y s)ml (θ,φ) and defined simply as

(
Y c

)m
l
(θ,φ) =

√
2l + 1

4π

(l − m)!
(l + m)!P

m
l (cosθ)cos(mφ),

(
Y s

)m
l
(θ,φ) =

√
2l + 1

4π

(l − m)!
(l + m)!P

m
l (cosθ)sin(mφ).

With the standard chosen normalizations∫ 2π

0

∫ π

0
Ym

l (θ,φ)
(
Y ∗)m′

′l (θ,φ) dφ dθ = δll′δmm′,

∫ 2π

0

∫ +1

−1
Ym

l (θ,φ)
(
Y ∗)m′

′l (θ,φ) dφ d(cosθ) = δll′δmm′,

∫ 2π

0

∫ π

0

(
Y c

)m
l
(θ,φ)

(
Y c

)m′
′l (θ,φ) dφ dθ = δll′δmm′,

∫ 2π

0

∫ π

0

(
Y c

)m
l
(θ,φ)

(
Y s

)m′
′l (θ,φ) dφ dθ = 0,

∫ 2π

0

∫ π

0

(
Y s

)m
l
(θ,φ)

(
Y c

)m′
′l (θ,φ) dφ dθ = 0,

∫ 2π

0

∫ π

0

(
Y s

)m
l
(θ,φ)

(
Y s

)m′
′l (θ,φ) dφ dθ = δll′δmm′

we may then perform the exact analog of the determination of the coefficients of
a Euclidean vector and the Fourier coefficients by writing the representation of a
surface in the form of a radial distance parameterized by the angular coordinates
on the sphere:

x(θ,φ) = f (θ,φ)(sinθ cosφ, sinθ sinφ, cosθ). (27.5)

Although we will discuss several ways of expanding this shape function, the most
straightforward is to make either an expansion in terms of complex coefficients
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using the standard spherical harmonics or to make an even-odd expansion using
the real spherical harmonics analogous to the Fourier cosine–sine expansion:

f (θ,φ) =
∞∑
l=0

+l∑
m=−l

am
l Ym

l (θ,φ),

f (θ,φ) =
∞∑
l=0

+l∑
m=−l

[
cm
l

(
Y c

)m
l
(θ,φ) + sm

l

(
Y s

)m
l
(θ,φ)

]
.

Projection of the function f (θ,φ) onto any individual basic component should
look familiar by now, and is given by

am
l =

∫ 2π

0
dφ

∫ π

0
sinθ dθ

(
Y ∗)m

l
(θ,φ)f (θ,φ)

=
∫ 2π

0
dφ

∫ π

0
sinθ dθ(−1)mY−m

l (θ,φ)f (θ,φ),

cm
l =

∫ 2π

0
dφ

∫ π

0
sinθ dθ

(
Y c

)m
l
(θ,φ)f (θ,φ),

sm
l =

∫ 2π

0
dφ

∫ π

0
sinθ dθ

(
Y s

)m
l
(θ,φ)f (θ,φ).

Table 27.1 shows how this fits into the overall context that we began with vectors
and Fourier transforms.

2 7 . 2 . 1 R E P R E S E N TAT I O N S A N D
RO TAT I O N - I N VA R I A N T P RO P E RT I E S

Detailed descriptions of the spherical harmonic expansion and matching process
can be found in a number of places. An example of a fairly complete treatment in
the chemistry literature is that of Ritchie and Kemp [141].

We will first need the conventional expression for a specific rotation phrased in
terms of the Euler angles,



27.2 BASIC PROPERTIES OF SPHERICAL HARMONICS 347

Euler Angle Rotation (α,β, γ ) = R(α, ẑ) · R(β, ŷ) · R(γ, ẑ)

= R(γ, ĉ) · R(β, b̂) · R(α, ẑ)

=

cosα cosβ cosγ − sinα sinγ −cosγ sinα − cosα cosβ sinγ cosα sinβ

cosα sinγ + sinα cosβ cosγ cosα cosγ − cosβ sinα sinγ sinα sinβ

−sinβ cosγ sinβ sinγ cosβ


 ,

where ĉ = (cosα sinβ,sinα sinβ,cosβ) and b̂ = (−sinα,cosα,0). The quater-
nion corresponding to this sequence of rotations is

q0 = cos
1

2
(α + γ )cos

1

2
β,

q1 = sin
1

2
(γ − α)sin

1

2
β,

q2 = cos
1

2
(γ − α)sin

1

2
β,

q3 = sin
1

2
(α + γ )cos

1

2
β.

Thus, we can immediately produce the axis-angle form R(ρ, n̂) from

q = (cosρ/2, n̂ sinρ/2)

if we need it.
The spherical harmonics associated with each l form a (2l + 1)-dimensional

basis for representations of the rotation group. When this basis is acted on by or-
dinary 3D rotations R(ρ, n̂) (we write this action abstractly using the ◦ symbol),
the result is a type of generalized matrix multiplication that acts separately on each
value of l. This takes the form

R(ρ, n̂) ◦ Ym
l (θ,φ) =

∑
m′

D
(l)

m′m(α,β, γ )Ym′
l (θ,φ), (27.6)

where (see Biedenharn and Louck [17])

D
(l)

m′m(α,β, γ ) = e−im′αd
(l)

m′m(β)e−imγ (27.7)
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and

d
(l)

m′m(β) =
[
(l + m′)!
(l + m)!

(l − m′)!
(l − m)!

]1/2

min(l−m′,l+m)∑
k=max(0,m−m′)

[
(−1)k+m′−m

(
l + m

k

)(
l − m

l − m′ − k

)

× (cosβ/2)2l+m−m′−2k(sinβ/2)2k+m′−m

]
(27.8)

is the Wigner function. We finally make the connection to quaternions by noting
that the entire representation formula (Equation 27.7) can be written more gener-
ally in terms of quaternion variables [17] as

D
(j)

m′m(q) = [
(j + m′)!(j − m′)!(j + m)!(j − m)!]1/2

×
∑

s

(q0 − iq3)
j+m−s(−iq1 − q2)

m′−m+s(−iq1 + q2)
s(q0 + iq3)

j−m′−s

(j + m − s)!(m′ − m + s)!s!(j − m′ − s)! ,

(27.9)

where s ranges over the set of legal values determined by j , and j can in principle
range over either half-integer representation labels or integer representation labels
(we use l when restricting to integers only). This matrix is an explicit realization
of the quaternion algebra and has the required property of a group representation,
now exposed more clearly in terms of quaternions. The multiplication rule for

D
(j)

m′m(q) considered as a matrix Dj (q) is simply

Dj (p) · Dj (q) = Dj (p � q). (27.10)

2 7 . 2 . 2 P RO P E RT I E S O F E X PA N S I O N C O E F F I C I E N T S
U N D E R RO TAT I O N S

If we let f ′(θ,φ) represent the same spatial distribution as f (θ,φ) after a rigid
rotation by R(ρ, n̂),

f ′(θ,φ) = R(ρ, n̂) ◦ f (θ,φ), (27.11)
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then via Equation 27.6,

a′
lm =

∑
m′

D
(l)

mm′
(
q(ρ, n̂)

)
alm′ . (27.12)

This is the equivalent of the eika multiplication for Fourier transform coefficients,
and basically tells us everything we need to know about how a radial shape model
f (θ,φ) behaves under rotations.
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Spherical Riemannian
Geometry

We have already mentioned many times

28 that the principal advantage of using unit
quaternions to represent 3D orientation
frames is the fact that the topological space
of unit quaternions is the three-sphere S3

and that S3 is a simply-connected man-
ifold with a natural and elegant distance
measure or metric. We have exploited this
property in a variety of ways to facilitate

the study of particular applications. In this chapter we complete this story by writ-
ing down the standard elements of the Riemannian geometry of S3, so that when
heuristic methods provide insufficient power or insight, the rigorous mathematics
is in principle at our disposal. (For extensive treatments, see for example Gray [61],
Lee [118], or Waner [166], and especially the notes of Kajiya and Gabriel [107].)

28.1 INDUCED METRIC ON THE SPHERE

The basic element of Riemannian geometry is the concept of a distance on a man-
ifold mediated by a function of the local coordinates called the metric tensor. The
application of the metric tensor to manifolds, which may have arbitrarily complex
global structure, is of necessity local, dealing in infinitesimals, and thus intimately
involves differential geometry—the formal generalization of the familiar principles
of calculus.

Therefore, the most fundamental object we encounter in this chapter is the
infinitesimal distance element ds, which is defined in terms of a chosen local
coordinate system x = (x1, . . . , xn), the differentials in that coordinate system

351
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dx = (dx1, . . . , dxn), and the metric tensor gij (x) as

ds2 =
n∑

i=1

n∑
j=1

dxigij (x)dxj = dxigij dxj . (28.1)

In Equation 28.1, we adopt the Einstein summation convention for repeated tensor
indices. It is a standard observation that the infinitesimal length element is invariant
under reparameterization of the coordinate system, x → x′(x):

(ds′)2 = dx′ ig′
ij dx′ j = ∂x′ i

∂xm
dxmg′

ij

dx′ j

dxn
dxn

= dxmgmn(x)dxn = (ds)2. (28.2)

We now introduce the following fascinating pieces of folklore; each would of
course be the subject of entire chapters in a more extensive treatment.

• Manifolds generally require multiple local coordinate systems. In fact, a Riemannian man-
ifold is by definition a collection of local patches, like a bag of rags, each
with its own coordinate system and corresponding expression of the met-
ric tensor, together with a set of rules for sewing together the edges of the
patches to make the required global structure.

• Many metric tensors can describe one manifold. The variables of the coordinate sys-
tem can be changed almost arbitrarily, and many different metric tensors are
possible without altering the manifold. However, there are quantities deriv-
able from any of these metric tensors that are independent of any choice of
coordinate system or metric tensor. These are the topological invariants of the
manifold.

• Using the metric tensor, one can study manifolds entirely in terms of their local internal coor-
dinates. A manifold of dimension n can be studied using n local coordinates.
The commonsense picture of a manifold embedded in a higher-dimensional
coordinate system is entirely superfluous in Riemannian geometry. In other
words, although we typically picture the surface of a ball, a donut, or a pret-
zel embedded in 3D space, the surfaces themselves can be studied strictly in
2D without referring in any way to their 3D embeddings.

• Nevertheless, such embeddings can be useful. One of the conundrums of Riemannian
geometry is that although the metric tensor is not unique, we must still
somehow pick a useful one in order to perform explicit calculations. This
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can be done in practice by exploiting the following facts: (1) any Rie-
mannian manifold of dimension n can be embedded in a Euclidean space
of dimension 2n or immersed (with possible self-intersections) in dimen-
sion (2n − 1) [170,171], and (2) any embedding defines a metric, called
the induced metric,that is in fact what we typically use in practice for simple
manifolds (e.g., those described by algebraic equations).

• There are at least three very different textbook approaches to Riemannian geometry. (1) A math-
ematics text would typically define a connection ∇ that generalizes standard
calculus to provide a directional derivative on vector fields. Then, for a given
manifold M and a given metric g one takes the pair (M,g) defining a Rie-
mannian manifold and selects the unique torsion-free connection derivable
from the metric g. This is the Levi-Civita connection. (2) An alternative elegant
formulation, the differential form approach, is essentially the dual to the di-
rectional derivative approach, replacing derivatives (tangent space) by differ-
entials or exterior derivatives (cotangent space). Certain calculations can be-
come substantially simpler using this technology for practical applications of
Riemannian geometry [36,45,52]. (3) The tensor calculus approach, which
does not take advantage of the coordinate-system-independent features of
the first two approaches, requires an explicit choice of the coordinate sys-
tem and is almost universally the choice of physicists, e.g., for the study
of Einstein’s theory of general relativity. (See, for example, Misner [125],
Moller [127], or Weinberg [168].) This approach, which is less elegant but
more visualizable, will be the primary method we use to study S3.

28.2 INDUCED METRICS OF SPHERES

We now expand on the concept of the induced metric and its application to spheri-
cal geometry. In general, if one has an appropriate vector-valued function f(t) map-
ping a parameter space t of dimension n into a larger Euclidean space of dimension
m > n, f describes a surface of dimension n embedded in Rm. Because we could
actually take a piece of string and measure distances on the embedded surface, the
embedding itself can be used to define a Riemannian metric. Obtaining an explicit
parametric embedding of a surface is therefore a rather useful practical approach to
determining a Riemannian metric for a surface whose properties we wish to study.

Explicit metrics can therefore be constructed for any sphere Sn by embedding it
in Euclidean (n + 1) space, Rn+1, using the constant-radius algebraic equation
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r2 =
n∑

a=0

(
xa
)2

(28.3)

defining an n-sphere. In practice, we will normally take r ≡ 1. The induced metric
for any set of n independent variables {t i} parameterizing a sphere is simply

Induced Metric Definitiongij =
n∑

a=0

∂xa(t)

∂t i

∂xa(t)

∂tj
= ∂x(t)

∂t i
· ∂x(t)

∂tj
. (28.4)

Whatever the parameterization we choose for solving the sphere constraint (Equa-
tion 28.3), we will find that the corresponding metrics from Equation 28.4 will all
have the same invariant properties describing a sphere in Riemannian geometry.

We will explore three different classes of parametric solutions to Equation 28.3:
square-root-based solutions, trigonometric solutions, and the stereographic pro-
jection. These are defined as follows:

• Square root: The square root solutions simply solve for one dependent variable in
terms of the remaining n independent variables, as in, for example,

x0 = ±
√√√√1−

n∑
i=1

(
xi
)2

.

The patch covering the northern hemisphere corresponds to the plus (+)

sign, and the patch covering the southern hemisphere corresponds to the
minus (−) sign. Some treatments actually use all possible solutions, leading
to a set of 2(n + 1) different patches—one pair of hemispheres for each
coordinate axis in Rn+1—rather than just the northern and southern hemi-
spheres for the two solutions of the single chosen dependent variable x0.

• Trigonometric: The trigonometric solutions are of the form

x0 = cosθ1,

x1 = sinθ1 cosθ2,

x2 = sinθ1 sinθ2 cosθ3,
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...

xn−2 = sinθ1 sinθ2 . . .cosθn−1,

xn−1 = sinθ1 sinθ2 . . .sinθn−1 cosφ,

xn = sinθ1 sinθ2 . . .sinθn−1 sinφ,

with the n independent angular variables having the ranges

0 � θ1, . . . , θn−1 � π,

0 � φ < 2π.

One can verify explicitly that with these n angular variables the n + 1 func-
tions xa({θ}, φ) explicitly satisfy

∑n
a=0(x

a)2 = 1.
• Stereographic projection: Our third solution—the polar stereographic projection

from the Euclidean plane Rn—is singular at the North Pole, x0 = +1 (or
at the South Pole, x0 = −1) but is otherwise nicely behaved. Letting t =
t1, . . . , tn be the n Euclidean variables and τ2 = t · t, we have the following
map from the Euclidean plane to the sphere embedded in Rn+1 (excluding
the North Pole):

x0 = τ2 − 1

τ2 + 1
,

x = 2t
τ2 + 1

. (28.5)

This again explicitly solves (x0)2 + x · x = 1 using only n parameters. To
describe a sphere excluding the South Pole, we switch the singularity at
infinity from pole to pole by taking

x0 = 1− τ2

1+ τ2
,

x = 2t
τ2 + 1

. (28.6)

Note on hemisphere patches: The sphere must of course be described by at least two
patches, because no single coordinate system can include a regular description of
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both the northern and southern hemispheres. The polar trigonometric system fails
to be differentiable at either pole, θ1 = 0 or θ1 = π . In the following we work out
the metric, connection, and invariants for just a single patch, noting that the three
coordinate systems we examine cover all possible patches.

2 8 . 2 . 1 S1 I N D U C E D M E T R I C S

The one-sphere S1 is a trivial case, but still shows us some useful properties. We can
immediately compute (as follows) all three induced metrics from the parametric
solutions of x2 + y2 = 1.

x = x, y =
√

1− x2,

x = cosθ, y = sinθ,

x = 2t

1+ t2
, y = 1− t2

1+ t2
,

and thus

ds2 = (dx)2
(

1+ x2

1− x2

)
= dx2

1− x2
→ gxx = 1

1− x2

(
gxx = 1− x2),

ds2 = (dθ)2(sin2 θ + cos2 θ
)= (dθ)2 → gθθ = gθθ = 1,

ds2 = (dt)2
[

4(1− t2)2

(1+ t2)4
+ 16t2

(1+ t2)4

]
→ gtt = 4

(1+ t2)2

(
gtt = (1+ t2)2

4

)
.

To check that the integrals are plausibly independent despite these radically differ-
ent coordinate parameterizations, we verify (with the corresponding limits shown
in Figure 28.1) that the integrals of the length elements ds over one quadrant are
indeed identical: ∫ 1

0

dx√
1− x2

= π

2
,

∫ π/2

0
dθ = π

2
,

∫ ∞

1

2dt

(1+ t2)
= π

2
.
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FIGURE 28.1 The ranges of the alternate variable systems on S1 when we restrict integration
to the first quadrant.

2 8 . 2 . 2 S2 I N D U C E D M E T R I C S

The ordinary two-sphere, x2 + y2 + z2 = 1, is really the first nontrivial example,
although we saw that even S1 had things to teach us about the reparameterization
invariance of ds. The induced metrics on S2 are computed according to the by-
now-familiar procedure:

x = (
x, y, z =√

1− x2 − y2
)
, det[g] = 1

1−x2−y2 ,

∂x
∂x

= (
1,0,− x

z

)
,

∂x
∂y

= (
0,1,− y

z

)
, gij =

[ 1−y2

1−x2−y2
xy

1−x2−y2

xy

1−x2−y2
1−x2

1−x2−y2

]
,

x = (cosθ,sinθ cosφ,sinθ sinφ), det[g] = sin2 θ,

∂x
∂θ

= (−sinθ,cosθ cosφ,cosθ,sinφ),

∂x
∂φ

= (0,−sinθ sinφ,sinθ cosφ), gij =
[

1 0
0 sin2 θ

]
,
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x = ( 2t1
1+t2

, 2t2
1+t2

, 1−t2

1+t2
)
, det[g] = 16

(1+t2)4 ,

∂x
∂t1

= (2(1−(t1)
2+(t2)

2),−4t1t2,−4t1)

(1+t2)2 ,

∂x
∂t2

= (−4t1t2,2(1+(t1)
2−(t2)

2),−4t2)

(1+t2)2 , gij =
[ 4

(1+t2)2 0

0 4
(1+t2)2

]
.

Invariant surface areas: The S2 metrics tell us how to compute the invariant area of
a surface patch of S2 in each coordinate system from the invariant measure

√
g, the

square root of the determinant of the metric tensor itself. The area element for any
set of coordinates (s1, s2) is

d2µ = √
g ds1ds2.

Using the appropriate integration limits for the first octant of S2 (shown in Fig-
ure 28.2), we can verify that regardless of coordinate system we get the same value
of the area for the curved surface provided we use the corresponding value of

√
g:

A =
∫ ∫

dxdy√
1− x2 − y2

=
∫ 1

0

dr√
1− r2

∫ π/2

0
dθ = π

2
,

A =
∫ π/2

0
dφ

∫ π/2

0
sinθ dθ = π

2

∫ 0

1
(−d cosθ) = π

2
,

A =
∫ ∫

dt1 dt2
4

(1+ t2)2
= π

2
.

2 8 . 2 . 3 S3 I N D U C E D M E T R I C S

Finally, the case of essential interest for us is S3. Here, we find

x = (
x, y, z,w =

√
1− x2 − y2 − z2

)
,

∂x
∂x

= (
1,0,0,− x

w

)
,

∂x
∂y

= (
0,1,0,− y

w

)
,

∂x
∂z

= (
0,0,1,− z

w

)
,
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FIGURE 28.2 The first octant of S2, over which we can integrate using any of the available
coordinate systems to get the same value of the area (π/2) if we use the correct measure derived
from the induced metric.

gij =



1+ x2

w2
xy

w2
xz

w2

xy

w2 1+ y2

w2
yz

w2

xz

w2
yz

w2 1+ z2

w2


 ,

det[g] = 1
1−x2−y2−z2 ,

x = (cosθ1,sinθ1 cosθ2,sinθ1 sinθ2 cosφ,sinθ1 sinθ2 sinφ),

∂x
∂θ1

= (−sinθ1,cosθ1 cosθ2,cosθ1 sinθ2 cosφ,cosθ1 sinθ2 sinφ),

∂x
∂θ2

= (0,−sinθ1 sinθ2,sinθ1 cosθ2 cosφ,sinθ1 cosθ2 sinφ),
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∂x
∂φ

= (0,0,−sinθ1 sinθ2 sinφ,sinθ1 sinθ2 cosφ),

gij =
[1 0 0

0 sin2 θ1 0
0 0 sin2 θ1 sin2 θ2

]
,

det[g] = sin4 θ1 sin2 θ2,

x = ( 2t1
1+t2

, 2t2
1+t2

,
2t3

1+t2
, 1−t2

1+t2
)
,

∂x
∂t1

= (2(1−(t1)
2+(t2)

2+(t3)
2),−4t1t2,−4t1t3,−4t1)

(1+(t1)
2+(t2)

2+(t3)
2)2 ,

∂x
∂t2

= (−4t1t2,2(1+(t1)
2−(t2)

2+(t3)
2),−4t2t3,−4t2)

(1+(t1)
2+(t2)

2+(t3)
2)2 ,

∂x
∂t3

= (−4t1t3,−4t2t3,2(1+(t1)
2+(t2)

2−(t3)
2),−4t3)

(1+(t1)
2+(t2)

2+(t3)
2)2 ,

gij =



4
(1+t2)2 0 0

0 4
(1+t2)2 0

0 0 4
(1+t2)2


 ,

det[g] = 43

(1+t2)6 .

2 8 . 2 . 4 T O RO I DA L C O O R D I NAT E S O N S3

The three-sphere has other traditional coordinate systems that can be useful from
time to time. One of these comes from looking at S3 as a parameterized family of
tori with major and minor radii contrived to satisfy x · x = 1. These coordinates
can conveniently be viewed as a pair of complex circles,

x + iy = cosθeiα, z + iw = sinθeiβ,

or as the real coordinates

x = (cosθ cosα, cosθ sinα,sinθ cosβ,sinθ sinβ).

The induced metric in these coordinates then becomes

gij =
[1 0 0

0 cos2 θ 0
0 0 sin2 θ

]
. (28.7)
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In many ways, this is the simplest of the metrics we can choose to describe the
geometry of S3.

2 8 . 2 . 5 A X I S - A N G L E C O O R D I NAT E S O N S3

When we wish to make a direct connection to the Euler eigenvector notation for a
quaternion point on S3, we find it useful to rephrase the standard polar coordinate
system as

q0 = cos(θ/2),

q = sin(θ/2)(cosα sinβ,sinα sinβ,cosβ), (28.8)

giving us the S3 metric for the Euler eigenvector with coordinate order (θ,α,β):

gij =

1/4 0 0

0 sin2 θ
2 0

0 0 sin2 θ
2 sin2 β


 . (28.9)

2 8 . 2 . 6 G E N E R A L F O R M F O R T H E S Q UA R E - RO O T
I N D U C E D M E T R I C

For an arbitrary dimension, the induced metric of the sphere Sn can now easily be
computed from the general square-root form. It is simply

gij = δij + xixj

1− x · x
, (28.10)

gij = δij + xixj , (28.11)

where the Kronecker delta δij (see Appendix F) is 1 when i = j and 0 otherwise
(that is, it is the identity matrix). One can also express the volume measure simply
in terms of the square root of the determinant:

det[gij ] = 1

1− x · x
. (28.12)



362 CHAPTER 28. SPHERICAL RIEMANNIAN GEOMETRY

28.3 ELEMENTS OF RIEMANNIAN GEOMETRY

Given a metric gij (x), in whatever coordinate system we choose, we can take fur-
ther steps toward defining derivatives and moving paths on the sphere that are
optimal (that is, those that follow the shortest-distance route). The unique torsion-
free connection on a Riemannian manifold (M,g) is the Levi-Civita connection,
given in terms of the metric by the Christoffel symbols,

Γ k
ij = 1

2
gkl(∂igjl + ∂jgli − ∂lgij ), (28.13)

where, if gij is considered as a matrix, then gij = (gij )
−1 is its inverse. Γ k

ij allows
us to define local directional derivatives of a basis vector ∂j in the arbitrary direction
∂i using

∇∂i
∂j = Γ k

ij ∂k. (28.14)

The covariant derivative of a parameterized vector V(t) is then

∇kV
i(x) = ∂V i

∂xk
+ Γ i

jkV
j , (28.15)

and by the chain rule

DV i(t)

dt
= ∇kV

i(x)
dxk

dt
= dV i

dt
+ Γ i

jkV
j dxk

dt
. (28.16)

Curiously, whereas gij and xk transform as vectors under coordinate transforma-
tions, Γ i

jk does not, but it includes an extra term that is eventually cancelled in the
Riemannian curvature:

Γ i
jk = Γ ′a

bc

∂xi

∂x′a
∂x′b

∂xj

∂x′c

∂xk
+ ∂xi

∂x′e
∂2x′e

∂xj ∂xk
. (28.17)

The discrepancy is carefully contrived so that DV/dt transforms as a pure tensor:

DV ′a

dt
= ∂x′a

∂xi

DV i

dt
. (28.18)
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Riemann curvature tensor, Ricci tensor, and scalar curvature: To discover intrinsic properties
of a manifold, we need first to construct objects that are covariant under coordi-
nate transformations and then to construct contractions of those objects with the
metric tensor to form invariants. The Riemann curvature tensor, with four indices
(no matter what the dimension of the manifold), is formed by manipulating first
derivatives of the Christoffel symbols in such a way that all extra terms in Equa-
tion 28.17 cancel out, with the result (e.g., see Misner [125], Moller [127], and
Weinberg [168])

Ri
klm = ∂Γ i

kl

∂xm
− ∂Γ i

km

∂xl
+ Γ i

rmΓ r
kl − Γ i

rlΓ
r
km

= −Ri
kml.

An alternative useful form can be shown from the definition of Γ i
jk to be

Rjklm = gjiR
i
klm

= 1

2

(
∂2gil

∂xk∂xm
+ ∂2gkm

∂xi∂xl
− ∂2gim

∂xk∂xl
− ∂2gkl

∂xi∂xm

)
+ grs(Γr,ilΓs,km − Γr,imΓs,kl),

where

Γi,jk = gimΓ m
jk = 1

2
(∂kgij + ∂jgik − ∂igjk).

The Ricci tensor is formed by contracting two indices of the curvature with the
metric tensor

Rij = Rm
imj = gmnRminj , (28.19)

where, as always, the repeated indices are summed over the dimension of the space.
The scalar curvature—which is, at last, an invariant property of the manifold regardless
of the chosen coordinate system—is

R = gijRij = gij gmnRminj . (28.20)

28.4 RIEMANN CURVATURE OF SPHERES

Now that we have the machinery for all this, we can compute the Christoffel sym-
bols and the curvatures for the spheres up to S3 in the various coordinate systems.
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We will give representative values to illustrate the important features. When com-
plete sets of functions are required, one should employ a symbolic algebra package
to avoid algebraic mistakes.

2 8 . 4 . 1 S1

The circle S1 provides our first example, which is simple but not entirely trivial.

• Polar: Because ds2 = dθ2, Γ θ
θθ = 0, and Rθ

θθθ = 0 and the one-sphere is
obviously flat.

• Square root: With the metric given by gxx = 1/(1− x2), we find

Γ x
xx = − x

1− x2
, Rx

xxx = 0. (28.21)

• Projective: With the metric given by gtt = 4/(1+ t2)2, we find

Γ t
tt = − 2t

1+ t2
, Rt

ttt = 0. (28.22)

2 8 . 4 . 2 S2

For S2, the Christoffel symbols are no longer trivial but become a pair of 2 × 2
matrices. In polar coordinates, with variables (θ,φ),

gab =
[

1 0
0 sin2 θ

]
, gab =

[
1 0
0 1

sin2 θ

]
,

and we find

Γ θ
ab =

[
0 0
0 −cosθ sinθ

]
, Γ

φ
ab =

[
0 cosθ sinθ

cosθ sinθ 0

]
. (28.23)

We omit the Riemann tensor in favor of the Ricci tensor:

Rab =
[

Rθθ Rθφ

Rφθ Rφφ

]
=
[−1 0

0 −sin2 θ

]
.
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Thus, the scalar curvature becomes

R = gθθRθθ + gφφRφφ

= −2.

Note: If we had used the induced metric for a sphere of arbitrary radius, x · x = r2,
this would become

R = − 2

r2
. (28.24)

Observe that the sign convention for the Riemann curvature has a minus sign rel-
ative to the Gaussian curvature of classical differential geometry, and thus we have
the expected result

KGaussian Curvature= −R = + 2

r2
(28.25)

and S2 has constant positive curvature. The resulting scalar curvature is the same in
all other coordinate systems, which we leave as an exercise for the reader.

2 8 . 4 . 3 S3

Here, we work out the curvature for S3 in the Euler-eigenvector coordinates, dou-
bling the θ variable and giving it range 2π instead of 4π to avoid inconvenient
factors of 2. Thus, our S3 coordinates are

q = (
cos(θ), n̂ sin(θ)

)
= (cosθ,sinθ cosα sinβ,sinθ sinα sinβ,sinθ cosβ),

which define our preferred parameterization of quaternion space for this compu-
tation. The metric, with order of the matrix indices (θ,α,β), is thus

gab =
[1 0 0

0 sin2 θ 0
0 0 sin2 θ sin2 β

]
, (28.26)
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and thus ds2 = dθ2 + sin2 θ dβ2 + sin2 θ sin2 β dα2. We find Christoffel symbols
that are now a triple of 3× 3 matrices:

Γ θ
ab =

[0 0 0
0 −cosθ sinθ 0
0 0 cosθ sinθ sin2 β

]
,

Γ α
ab =

[ 0 0 cotθ
0 0 cotβ

cotθ cotβ 0

]
,

Γ
β
ab =

[ 0 cotθ 0
cotθ 0 0

0 0 −cosβ sinβ

]
.

Skipping again to the 3× 3 Ricci tensor, we find

Rab =
[−2 0 0

0 −2 sin2 θ 0
0 0 −2 sin2 α sin2 θ

]
.

If we contract Rab with the inverse metric

gab =
[1 0 0

0 sin−2 θ 0
0 0 sin−2 θ sin−2 α

]
, (28.27)

we again find constant positive curvature

R = gabRab = − 6

r2
= −6 (28.28)

with the standard reversed sign convention for R.

28.5 GEODESICS AND PARALLEL TRANSPORT
ON THE SPHERE

We are concerned with quaternion curves when we wish, for example, to describe
a rotating rigid body or the continuous changes in orientation of a camera frame.
Riemannian geometry provides a family of concepts that helps us to describe, ana-
lyze, and classify curves on the quaternion space S3.
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If we choose any parameterization for a curve q(t) on S3 (e.g., q · q = 1 for
all t), the metric can be used to define an essential concept: the proper length s.
s is the integrated global value of the infinitesimal ds, provided we choose a local
system x of three, not four, coordinates (e.g., (θ,α,β) or (x, y, z)):

s(t) =
∫ t

0

√
ẋigij ẋj dt.

To compute derivatives of q(t) with respect to the more meaningful parameter s,
there is a trick: we take

dx
ds

= dx/dt

ds/dt
= dx

dt

(
gij

dxi

dt

dxj

dt

)−1/2

.

The local curvature vector of the curve x(s) is computable using the covariant
derivative:

Ki = D

ds

(
dxi

ds

)
= d2xi

ds2
+ Γ i

jk

dxj

ds

dxk

ds
. (28.29)

Note: Because the indices on vectors refer to local coordinates in S3, there are only
three of them, corresponding to our chosen independent variables. These are not
the Euclidean coordinates q = (q0, q1, q2, q3) obeying q · q = 1 but the three cho-
sen independent local parameters, such as (θ,α,β).

A geodesic is a particular path with vanishing curvature vector, and thus is a solution
to the differential equation

d2xi

ds2
+ Γ i

jk

dxj

ds

dxk

ds
= 0, (28.30)

or in terms of the arbitrary unnormalized curve parameter t ,

d2xi

dt2

ds

dt
− dxi

dt

d2s

dt2
+ Γ i

jk

dxj

dt

dxk

dt

ds

dt
= 0. (28.31)

It can be shown that the geodesic between two points has the minimal value of the
total path length

s(a, b) =
∫ b

a

√
gij

dxi

dt

dxj

dt
dt. (28.32)
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FIGURE 28.3 The geodesic arc on a sphere equator passing through two points a and b. The
minimal-length path is the solid arc, and the dashed arc is the maximal total path.

On a sphere, the geodesics are arcs on great circles, which give both the minimal dis-
tance between two points and the maximal distance through the entire space passing
through the two points (as indicated in Figure 28.3).

28.6 EMBEDDED-VECTOR VIEWPOINT
OF THE GEODESICS

Although the traditional Riemannian geometry approach to describing the sphere
in terms of intrinsic coordinates—with just n coordinate parameters describing
points and curves on Sn—correctly gives all properties required, it is not easy
to visualize. As an alternative, it is sometimes useful to return to the Euclidean
embedding space in which we have focused our description of unit quaternions.
The approach of Barr et al. [15] chooses this approach in contrast with that of



28.6 EMBEDDED-VECTOR VIEWPOINT OF THE GEODESICS 369

FIGURE 28.4 The tangent vector T at a point on an embedded sphere.

Kajiya and Gabriel [107], which adopted the standard local coordinate approach
outlined in this chapter.

The elementary concept is to take the full unit-length four-vector q(t) describ-
ing the quaternion curve, with q · q = 1, and let the curve derivatives also be four-
vectors, having directions that exist in R4, outside S3 itself. Because d(q · q)/dt =
2q · q̇ = 0, the first derivative

q̇ = cT

is necessarily in the tangent direction T perpendicular to the quaternion vector q

from the origin to the sphere’s surface.
The analog of the acceleration d2x/(ds)2 of the curve, which we used to de-

fine the equations of a geodesic in intrinsic coordinates, now has components that
need to be projected carefully back to the surface of the sphere. We use our by-
now-standard Gram–Schmidt procedure to subtract the component of the acceler-
ation q̈(t) that is in the direction q(t) itself. The result is the corrected tangential
acceleration A(t), constructed so that A(t) · q = 0 and is therefore tangent to the
spherical hypersurface. We see that

A(t) = q̈(t) − q(t)(q · q̈) (28.33)

explicitly satisfies A · q = 0. The relationship between q, q̇, q̈, and A is shown
graphically in Figures 28.4 and 28.5. If we are given only two boundary points,
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FIGURE 28.5 Tangent and acceleration vectors computed at a point on a curve embedded in a
sphere.

q(a) and q(b), the path with vanishing tangential acceleration A(t) will coincide
with the great-circle geodesics in intrinsic coordinates.

In the more realistic case in which we require both keyframe control of a path
and specified angular velocity, we see that specifying a minimal path is not enough
because the derivatives can be discontinuous at the keyframes. We must also provide
a principle for minimizing discontinuities in both path-shape and angular-distance
sampling intervals. The path shape can be controlled either with the method of Barr
et al.,

minimize
∫ t1

t0
A · Adt =

∫ t1

t0

∣∣q̈ − q(q · q̈)
∣∣2 dt, (28.34)

using extrinsic coordinates q(t) or by using intrinsic sphere coordinates, minimiz-
ing ∫ t1

t0

∣∣ẍ(t)
∣∣2 dt. (28.35)
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In each case, the locations of the anchor points as three-vectors {xi} or four-vectors
{qi = q(xi )} constrain the variation.

Finally, the value we have been denoting by s(t), with ds2 = dxigij (x)dxj ,
is exactly the angular distance between sampled points on the quaternion curve.
Thus, one should achieve exactly the same level of control over the angular velocity
by manipulating the proper distance in intrinsic coordinates as

s(i, i + 1) =
∫ ti+1

t i

√
dxj

dt
gjk

dxk

dt
dt, (28.36)

or in extrinsic Euclidean coordinates using the quaternion values themselves:

s(i, i + 1) = 2 cos−1(qi · qi+1). (28.37)
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These concluding chapters address briefly several ways in which it is known
that the properties of quaternions can be generalized. Although quaternions are
extremely unique, and are of particular relevance to the understanding and mod-
eling of everyday life because of their relationship to 3D orientation frames, new
insights into the nature of quaternions can be gained by investigating what happens
when we attempt to generalize them.

These topics are definitely optional, and are intended for readers with advanced
interests. However, many readers may find it very interesting to see how, in the Clif-
ford algebra chapter, the true origin of the “square root” formula for 2D rotations

R2 =
[

a2 − b2 −2ab

2ab a2 − b2

]
,

written in terms of the half angles with a = cos(θ/2) and b = sin(θ/2), is shown
to be an inevitable result of the 2D Clifford algebra and not an arbitrary invention.
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The Relationship of 4D
Rotations to Quaternions

29
29.1 WHAT HAPPENED IN THREE DIMENSIONS

In three dimensions, there were many ways to deduce the quadratic mapping from
quaternions to the 3× 3 rotation matrix belonging to the group SO(3) and imple-
menting a rotation on ordinary 3D frames. The one most directly derived from the
quaternion algebra conjugates “pure” quaternion three-vectors vi = (0,Vi ) and
pulls out the elements of the rotation matrix in the following way:

3∑
j=1

R(q)ij vj = q � vi � q−1.

We easily find that the quadratic relationship between R3(q) and q = (q0, q1, q2, q3)

is

R3 =




q2
0 + q2

1 − q2
2 − q2

3 2q1q2 − 2q0q3 2q1q3 + 2q0q2

2q1q2 + 2q0q3 q2
0 − q2

1 + q2
2 − q2

3 2q2q3 − 2q0q1

2q1q3 − 2q0q2 2q2q3 + 2q0q1 q2
0 − q2

1 − q2
2 + q2

3


 . (29.1)

377
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29.2 QUATERNIONS AND FOUR DIMENSIONS

In the 4D case, which we should really regard as the more fundamental one because
it includes the 3D transformation as a special case, we can find the induced SO(4)

matrix by extending quaternion multiplication to act on full four-vector quater-
nions vµ = (v0,V)µ and not just three-vectors (“pure” quaternions) v = (0,V) in
the following way:

3∑
ν=0

Rµνvν = q � vµ � p−1.

Working out the algebra, we find that the 3D rotation matrix R3 is just the degen-
erate p = q case of the following 4D rotation matrix:

R4 =




q0p0 + q1p1 + q2p2 + q3p3 q1p0 − q0p1 − q3p2 + q2p3

−q1p0 + q0p1 − q3p2 + q2p3 q0p0 + q1p1 − q2p2 − q3p3

−q2p0 + q0p2 − q1p3 + q3p1 q1p2 + q2p1 + q0p3 + q3p0

−q3p0 + q0p3 − q2p1 + q1p2 q1p3 + q3p1 − q0p2 − q2p0

q2p0 − q0p2 − q1p3 + q3p1 q3p0 − q0p3 − q2p1 + q1p2

q1p2 + p1q2 − p0q3 − q0p3 q1p3 + p1q3 + p0q2 + q0p2

q0p0 + q2p2 − q1p1 − q3p3 q2p3 + q3p2 − q0p1 − q1p0

q2p3 + q3p2 + q1p0 + p0q1 q0p0 + q3p3 − q1p1 − q2p2


 . (29.2)

One may check that Equation 29.1 is just the lower right-hand corner of the de-
generate p = q case of Equation 29.2. An implementation of Equation 29.2 is
presented in Table 29.1.

We may take this form and plug in

p0 = cos(φ/2), p = m̂ sin(φ/2)

to get a new form of the 4D orthogonal rotation matrix parameterized in terms of two
separate three-sphere coordinates:

R4 = [A0 A1 A2 A3], (29.3)
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QQTo4DRot[p_List,q_List] :=
Module[{q0 = q[[1]], q1 = q[[2]], q2 = q[[3]], q3 = q[[4]],

p0 = p[[1]], p1 = p[[2]], p2 = p[[3]], p3 = p[[4]]},
{{p0*q0 + p1*q1 + p2*q2 + p3*q3,

p1*q0 - p0*q1 - p3*q2 + p2*q3,
p2*q0 + p3*q1 - p0*q2 - p1*q3,
p3*q0 - p2*q1 + p1*q2 - p0*q3},

{(-(p1*q0) + p0*q1 - p3*q2 + p2*q3),
(p0*q0 + p1*q1 - p2*q2 - p3*q3),
(-(p3*q0) + p2*q1 + p1*q2 - p0*q3),
(p2*q0 + p3*q1 + p0*q2 + p1*q3)},

{(-(p2*q0) + p3*q1 + p0*q2 - p1*q3),
(p3*q0 + p2*q1 + p1*q2 + p0*q3),
(p0*q0 - p1*q1 + p2*q2 - p3*q3),
(-(p1*q0) - p0*q1 + p3*q2 + p2*q3)},

{(-(p3*q0) - p2*q1 + p1*q2 + p0*q3),
(-(p2*q0) + p3*q1 - p0*q2 + p1*q3),
(p1*q0 + p0*q1 + p3*q2 + p2*q3),
(p0*q0 - p1*q1 - p2*q2 + p3*q3)}}]

TABLE 29.1 Mathematica code for the 4× 4 orthogonal rotation matrix in terms of
a double quaternion.

where

A0 = 1

2




C+ + C− + m̂ · n̂(C− − C+)

−m−
23C− + m−

23C+ + m+
1 S− + m−

1 S+
−m−

31C− + m−
31C+ + m+

2 S− + m−
2 S+

−m−
12C− + m−

12C+ + m+
3 S− + m−

3 S+


 ,

A1 = 1

2




−m−
23C− + m−

23C+ − m+
1 S− − m−

1 S+
C+ + C− + (m1n1 − m2n2 − m3n3)(C− − C+)

m+
12C− − m+

12C+ + m−
3 S− + m+

3 S+
m+

31C− − m+
31C+ − m−

2 S− − m+
2 S+


 ,
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A2 = 1

2




−m−
31C− + m−

31C+ − m+
2 S− − m−

2 S+
m+

12C− − m+
12C+ − m−

3 S− − m+
3 S+

C+ + C− + (−m1n1 + m2n2 − m3n3)(C− − C+)

m+
23C− − m+

23C+ + m−
1 S− + m+

1 S+


 ,

A3 = 1

2




−m−
12C− + m−

12C+ − m+
3 S− − m−

3 S+
m+

31C− − m+
31C+ + m−

2 S− + m+
2 S+

m+
23C− − m+

23C+ − m−
1 S− − m+

1 S+
C+ + C− + (−m1n1 − m2n2 + m3n3)(C− − C+)


 .

Here, C± = cos1
2(φ ± θ), S± = sin 1

2(φ ± θ), m±
i = (mi ± ni), and m±

ij =
(minj ± mjni).

Shoemake-style interpolation between two distinct 4D frames is now achieved
by applying the desired SLERP-based interpolation method independently to a set
of coordinates q(t) on one three-sphere, and to a separate set of coordinates p(t)

on another. The resulting matrix R4(t) gives geodesic interpolations for simple
SLERPs, and smooth interpolations based on infinitesimal geodesic components
when the spline methods of Chapter 25 are used in tandem on both quaternions of
the pair at the same time.

Controls: A three-degree-of-freedom controller can in fact be used to generalize the
two-degree-of-freedom rolling-ball controller [66] from 3D to 4D orientation con-
trol [34,72]. This 4D orientation control technique can be used with a 3D tracker
or 3D haptic probe to carry out interactive view control or to specify keyframes
for 4D double-quaternion interpolations. As pointed out by Shoemake [151], the
Arcball controller can also be adapted with complete faithfulness of spirit to the 4D
case, in that one can pick two points in a three-sphere to specify an initial 4D frame
and then pick two more points in the three-sphere to define the current 4D frame.
Note that Equation 29.2 gives the complete 4D rotation formula. Alternatively, one
can replace the 4D rolling ball or virtual sphere controls described at the beginning
by a pair (or more) of 3D controllers as noted by Hanson [66].



Quaternions and the Four
Division Algebras

It is clear from the stories of William

30 Rowan Hamilton that quaternions were
discovered because he persisted in asking
the question “What generalizes the com-
plex numbers.” Therefore, it is appropriate
to continue our study of quaternions by
asking the question “What do we discover
when we attempt to generalize quater-
nions?” The answers fall into several cate-

gories. Some features, such as the algebraic properties of quaternions, have very
limited generalizability to other dimensions. Other features, such as the con-
structability of double-valued parameterizations of Euclidean rotations (the spin rep-
resentations) generalize to all dimensions. In this chapter we look at the properties
that are very specific to quaternions, and which in fact show that there are only
four possible algebraic systems of a certain type, of which quaternions are one.

30.1 DIVISION ALGEBRAS

We now place quaternions in their unique context as one of only four possible
examples of an object known as a division algebra or a division ring. A division algebra is a
system of numbers having the following properties:

• Addition: The first fundamental property of a division algebra is that there
must exist a standard set of commutative and associative addition rules.

• Multiplication: There must in addition be a multiplication rule that is distrib-
utive with respect to addition. However, commutativity of multiplication is

381
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relaxed for the quaternions, and associativity of multiplication is relaxed for
the octonions.

• Division: The distinguishing, and most restrictive, property of a division al-
gebra is that every nonzero element has a multiplicative inverse.

There is a remarkable relationship between the division algebras and some very old
theorems about n-dimensional vectors. n-dimensional real vectors can be arranged
to form algebras in many ways, but division (the multiplicative inverse for nonzero
vectors) exists only for n = 1,2,4 for associative systems and only for n = 8 for
nonassociative systems. This can be rephrased in yet another way. Hurwitz [101]
examined algebras with norms and showed that requiring the norm of a product
to be the product of the norms

|x � y| = |x||y|
gives a constraint that can only by satisfied by real numbers, complex numbers,
quaternions, and octonions. Further related interesting results were discovered by
Bott and Milnor [122] using modern mathematical technology, again drawing the
conclusion that only for dimensions 1, 2, 4, and 8 can there exist finite-dimensional
real division algebras. These algebras of course correspond exactly to real numbers,
complex numbers, quaternions, and octonions, whose properties we shall now
systematically explore in turn.

3 0 . 1 . 1 T H E N U M B E R S Y S T E M S W I T H D I M E N S I O N S
1, 2, 4, A N D 8

The four possible algebraic number systems are as follows.

• Reals: R denotes the real numbers with ordinary addition, subtraction, mul-
tiplication, and division, with the trivial multiplication algebra

(u) � (v) = (uv),

where juxtaposition denotes multiplication and division is defined by u/v.
• Complex numbers: C denotes the complex numbers, with the commutative

multiplication algebra

(u0, u1) � (v0, v1) = (u0v0 − u1v1, u0v1 + u1v0).
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A new operation, conjugation, is defined as (u0, u1) = (u0,−u1), and the
norm-squared is the nonzero part remaining when a number is multiplied
by its conjugate:

|u|2 = (u0)
2 + (u1)

2.

Here, technically, we have extracted the scalar value of the norm from the
algebra using u � ū = (|u|2,0). With these definitions, complex division is
defined by the order-independent (commutative) relation

u

v
= u �

v̄

(v0)2 + (v1)2
= u � v̄

|v|2

= (u0v0 + u1v1,−u0v1 + u1v0)

(v0)2 + (v1)2
.

• Quaternions: Q, also often written as H, formally denotes the quaternions
with the noncommutative multiplication algebra for u = (u0, u1, u2, u3) =
(u0,u) we have used throughout:

(u0, u1, u2, u3) � (v0, v1, v2, v3) =




u0v0 − u1v1 − u2v2 − u3v3

u1v0 + u0v1 + u2v3 − u3v2

u2v0 + u0v2 + u3v1 − u1v3

u3v0 + u0v3 + u1v2 − u2v1




= (u0v0 − u · v, u0v + v0u + u × v).

Conjugation is defined by (u0, u1, u2, u3) = (u0,−u1,−u2,−u3) or
(u0,u) = (u0,−u), and the norm-squared by |u|2 = (u0)

2 + (u1)
2 +

(u2)
2 + (u3)

2 = (u0)
2 + u · u. Here, again, we implicitly extract the scalar

value from u � ū = (|u|2,0). Quaternion division is noncommutative, and is
defined by the (order-dependent) relations

u/v = u � v̄/|v|2

and

v\u = v̄ � u/|v|2.
• Octonions: O denotes the octonions, which have eight components:

u = (u0, u1, u2, u3, u4, u5, u6, u7) = (u0,u).
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Octonions possess a noncommutative, nonassociative multiplication algebra
of the form

(u0, u1, u2, u3, u4, u5, u6, u7) � (v0, v1, v2, v3, v4, v5, v6, v7)

=




u0v0 − u1v1 − u2v2 − u3v3 − u4v4 − u5v5 − u6v6 − u7v7

u1v0 + u0v1 + u2v4 − u4v2 + u5v6 − u6v5 + u3v7 − u7v3

u2v0 + u0v2 + u3v5 − u5v3 + u6v7 − u7v6 + u4v1 − u1v4

u3v0 + u0v3 + u4v6 − u6v4 + u7v1 − u1v7 + u5v2 − u2v5

u4v0 + u0v4 + u1v2 − u2v1 + u5v7 − u7v5 + u6v3 − u3v6

u5v0 + u0v5 + u2v3 − u3v2 + u6v1 − u1v6 + u7v4 − u4v7

u6v0 + u0v6 + u3v4 − u4v3 + u7v2 − u2v7 + u1v5 − u5v1

u7v0 + u0v7 + u4v5 − u5v4 + u1v3 − u3v1 + u2v6 − u6v2




= (
u0v0 − u · v, u0v + v0u + Ω(u,v)

)
,

where the mapping function Ω is defined by the explicit equation proceed-
ing. Conjugation can be abbreviated as (u0,u) = (u0,−u), and thus the
norm-squared becomes |u|2 = (u0)

2 + u · u. That this algebra is nonasso-
ciative can be verified by comparing (for example) products of octonions
containing only single nonzero elements, such as

(u1 � v2) � w3 = (uv)4 � w3

= −(uvw)6,

u1 � (v2 � w3) = u1 � (vw)5

= +(uvw)6,

where we use the obvious notation u1 = (0, u,0,0,0,0,0,0), (uv)2 =
(0,0, uv,0,0,0,0,0) (and so on) for octonions containing only a single
nonzero element.

Interestingly, this apparently daunting algebra can be reconstructed with-
out much trouble by drawing the circle shown in Figure 30.1, with the
imaginary octonion variables (1,2,3,4,5,6,7) forming a cyclic ring. Then
each of the seven triples (1,2,4), (2,3,5), (3,4,6), (4,5,7), (5,6,1),
(6,7,2), (7,1,3)—assembled by taking two successive elements and skip-
ping one—forms a quaternion subalgebra. This of course has a close analogy
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FIGURE 30.1 Construction of the nonassociative octonion algebra from seven interleaved non-
commutative quaternion algebras.

to the three successive complex subalgebras (1) = i, (2) = j, (3) = k em-
bedded within the quaternion algebra.

Disappointingly, as previously noted [101,122], this succession of constructions
does not extend beyond octonions, and thus these four number systems are basi-
cally all we have to work with.

3 0 . 1 . 2 PA R A L L E L I Z A B L E S P H E R E S

There are many peculiar properties of space that seem closely related to the unique-
ness of the four number systems (R,C,Q,O). Classic results in geometry have
shown, for example, that only three spheres—S1, S3, and S7—are parallelizable. Par-
allelizability means, roughly, that if you look at two slices through a diameter of the
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sphere all tangent vectors on the two slices must be independent. On the nonpar-
allelizable sphere S2, for example, any two slices through the opposite poles will
have parallel tangents on the equator. Because for the three nonreal number sys-
tems of dimension N = 2,4,8 the parallelizable spheres are SN−1, we can expect
a deep connection to the uniqueness of the four division algebras and their Hopf
fibrations, which we discuss next. Far-reaching generalizations of these results were
discovered by Milnor [122], who went on to discover that S7 has additional un-
usual properties that had not previously been suspected [110,124].

30.2 RELATION TO FIBER BUNDLES

Quaternions and the rest of the four number systems are also closely related to four
classic constructions of fiber bundles, including and generalizing the Hopf fibra-
tion of S3 (e.g., see Artin [6] and Eguchi et al. [45]). Although a detailed treatment
of fiber bundles is also beyond the scope of this book, these constructions are sim-
ple enough for us to include here along with some abbreviated explanations. They
are intimately related to the structure and peculiar interesting properties of quater-
nions, and thus merit a brief mention. For a more detailed computer-graphics-
oriented treatment see, for example, Shoemake [152].

A fiber bundle is a geometric construction with two parts: a base manifold and a
fiber. Think of any small piece of the base manifold as a shag rug, and the fibers
as pieces of thread attached to specific points in the backing of the rug. If nothing
much interesting happens, this is a trivial bundle, with each piece of the total bundle
looking like a direct product of the space of the fiber with the space of the backing.
However, interesting fiber bundles have more structure. They can have nontrivial
base manifolds, and the fibers themselves can be sewn to their neighboring fibers
in interesting ways, generating spaces you would not be able to identify as similar
to a shag rug unless you looked only at a very small patch at a time.

We remark that there is a vast technology in classical differential geometry that
includes carefully defining the global manifold properties of a fiber bundle by as-
sociating appropriate transition functions to local patches (which are often group
elements), as well as involving the assignment of connections and associated cur-
vatures. The latter is intimately related to Yang–Mills theory and Einstein’s theory of
gravitation (e.g., see Drechsler and Mayer [38], Eguchi et al. [45], Weinberg [168],
and many other references in the physics literature). The generalized Hopf fibration
builds a complete fiber bundle “by hand” out of the following fairly trivial ideas:
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1 Define the square length of the N real variables. Let u = (u1, . . . , uN) be a generic
vector. As noted, the square length of a vector in any of the division algebras
is obtainable from the conjugate multiplication

|u|2 = u � ū =
N∑

i=1

(ui)
2

for any of the four number systems, with N = (1,2,4,8).
2 Make a (2N − 1)-sphere from the constant-length sum of two squares. Now let a and

b be two separate N -vectors. Use these to create a (2N − 1)-sphere S2N−1

embedded in R2N . By definition, the equation

|a|2 + |b|2 = 1

describes this unit sphere, and we continue to allow only dimensions N =
(1,2,4,8).

3 Construct an (N + 1)-vector in SN from quadratic forms. One can combine the 2N

variables contained in a and b (constrained to lie on a point in S2N−1) into
a list of N + 1 quadratic expressions v that, when considered as a Euclidean
(N +1)-vector, has unit length and thus describes a point in SN . This list of
quadratic forms exists only because of a deep correspondence to each of the
four algebras, as we shall illustrate in a moment.

4 Identify total space, base space, and fiber. The entire fiber bundle is the sphere S2N−1,
and the quadratic form gives the base space SN . The fiber is basically what
is left over; namely, the set of points in S2N−1 that all generate exactly the
same point in SN when the quadratic form is evaluated.

30.3 CONSTRUCTING THE HOPF FIBRATIONS

We now give the details for the construction of the “classic” Hopf fibrations for
each of the four division algebras in turn.

3 0 . 3 . 1 R E A L : S0 fiber+ S1 base= S1 bundle

The construction of the simplest of all Hopf fibrations takes two numbers from R

(namely, x1 and x2), puts them on a circle, and then constructs a two-vector of
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quadratic forms (v0, v1) using the difference of the squares and the only other
available quadratic object, the product of the two original numbers:

(x1)
2 + (x2)

2 = 1,

S1 Circle is full space,

v0 = (x1)
2 − (x2)

2,

v1 = 2x1x2,

(v0)
2 + (v1)

2 = (
(x1)

2 + (x2)
2
)2 = 1,

A different S1, half the full space, is the base space. (30.1)

Here it is essential to observe that although the circle equations for v and x appear
identical there are two points on the circle (x1)

2+ (x2)
2 = 1 corresponding to each

point in (v0)
2 + (v1)

2 = 1, the base space. The full space is a double covering of
the base space, and that two-element double corresponds to the group of multipli-
cation by −1. Figure 30.2 illustrates the full space, the base space, and the fiber’s
two points in the full space corresponding to a single point in the base. Note that
although we have drawn the full space folded over to make the fibers line up that
does not alter the fact that the full range of θ in the parameterization of x1 and x2

must still be used.

Details: The parametric solution (x1, x2) = (cosθ,sinθ) of the circle equation
we started with describes the full bundle. From this, the projection to the base
space can immediately be written using the double-angle formulas as (v0, v1) =
(cos2θ,sin2θ). Thus, each point in the base space has two points (θ and θ + π)
in the bundle. The fiber is therefore two points (or S0) and the bundle is nontrivial
because it is a single continuous curve (as shown in Figure 30.2), not two curves
(as would result from the structure S0 × S1). This is a bundle that is essentially
the boundary of a Mobius band, and is the most perfect nontrivial example of a
principal bundle imaginable.

Rigorous relation to Clifford algebra: The expression for (v0, v1) given previously is one
column of the SO(2) rotation matrix that comes directly from the Clifford algebra
of R2, as we shall see in Chapter 31. The entire matrix, interestingly, gives all
possible choices of the vectors of quadratic forms that could be chosen for the real
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FIGURE 30.2 Construction of the S1 Hopf fibration, whose full bundle can be seen as the
boundary of a Mobius band and whose fiber at each point of the base circle consists of the two
points (S0) at θ and θ + π .

Hopf fibration. This matrix should already be familiar to the reader:[
(x1)

2 − (x2)
2 −2x1x2

2x1x2 (x1)
2 − (x2)

2

]
.

3 0 . 3 . 2 C O M P L E X : S1 fiber+ S2 base= S3 bundle

The construction, as follows, takes two numbers from C (i.e., z1 = x1 + iy1 and
z2 = x2 + iy2).
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|z1|2 + |z2|2 = 1,

S3 is full space,

v0 = |z1|2 − |z2|2,
v1 = 2(x1x2 − y1y2),

v2 = 2(x1y2 + x2y1),

(v0)
2 + (v1)

2 + (v2)
2 = (|z1|2 + |z2|2

)2 = 1,

S2 is base space. (30.2)

Notes: Instead of having single points projected to the same point of the base space
in (v0, v1, v2), this map has entire circles—the fiber of the U(1) Principal bun-
dle characterizing the classic Hopf fibration. If one parameterizes S3 using the
Clifford torus—(|z1|2 = cos2 θ, |z2|2 = sin2 θ) embedded in S3 symmetrically at
θ = π/4—the diagonal lines on the torus corresponding to constant sums of angles
map to the S2 base space. There is no dependence on the differences of toroidal
angles, and that forms the required projection from the S1 fiber to single points in
the base.

The vector (v0, v1, v2) of quadratic forms given previously is one column of the
SO(3) rotation matrix derivable from the Clifford algebra of R3, or equivalently
from quaternions. The rows and columns of this matrix give all possible choices
for the quadratic forms of the S3 Hopf fibration:


x2

1 + y2
1 − x2

2 − y2
2 −2x1x2 − 2y1y2 2y1y2 + 2x1x2

2y1x2 + 2x1y2 x2
1 − y2

1 + x2
2 − y2

2 2x2y2 − 2x1y1

2y1y2 − 2x1x2 2x2y2 + 2x1y1 x2
1 − y2

1 − x2
2 + y2

2


 .

3 0 . 3 . 3 Q UAT E R N I O N : S3 fiber+ S4 base= S7 bundle

The quaternion construction, as follows, takes two numbers from Q (i.e., q =
(q0, q1, q2, q3) and p = (p0,p1,p2,p3)) and builds an S7:

|q|2 + |p|2 = 1,

S7 is full space,
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v0 = |q|2 − |p|2,
v1 = q0p0 − q1p1 − q2p2 − q3p3,

v2 = q0p1 + q1p0 + q2p3 − q3p2,

v3 = q0p2 + q2p0 + q3p1 − q1p3,

v4 = q0p3 + q3p0 + q1p2 − q2p1,

(v0)
2 + (v1)

2 + (v2)
2 + (v3)

2 + (v4)
2 = (|q|2 + |p|2)2 = 1,

S4 is base space. (30.3)

Notes: The v vector describes a point in S4, but projects the three parameters of
an entire S3 to a single point, making the fiber S3 at each point. The column
(v0, v1, v2, v3, v4) is essentially one column of an SO(5) rotation matrix, each
row or column of which produces an alternative arrangement of the fibration’s
quadratic map.

3 0 . 3 . 4 O C T O N I O N : S7 fiber+ S8 base= S15 bundle

The octonion construction takes from O the numbers

q = (q0, q1, q2, q3, q4, q5, q6, q7), p = (p0,p1,p2,p3,p4,p5,p6,p7),

constructs an S15, and assembles the nine-vector quadratic form:

|q|2 + |p|2 = 1,

S15 is the full space,

v0 = |q|2 − |p|2,
v1 = q0p0 − q1p1 − q2p2 − q3p3 − q4p4 − q5p5 − q6p6 − q7p7,

v2 = q1p0 + q0p1 + q2p4 − q4p2 + q5p6 − q6p5 + q3p7 − q7p3,

v3 = q2p0 + q0p2 + q3p5 − q5p3 + q6p7 − q7p6 + q4p1 − q1p4,

v4 = q3p0 + q0p3 + q4p6 − q6p4 + q7p1 − q1p7 + q5p2 − q2p5,

v5 = q4p0 + q0p4 + q1p2 − q2p1 + q5p7 − q7p5 + q6p3−q3p6,

v6 = q5p0 + q0p5 + q2p3 − q3p2 + q6p1 − q1p6 + q7p4 − q4p7,
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v7 = q6p0 + q0p6 + q3p4 − q4p3 + q7p2 − q2p7 + q1p5 − q5p1,

v8 = q7p0 + q0p7 + q4p5 − q5p4 + q1p3 − q3p1 + q2p6 − q6p2,

(v0)
2 + (v1)

2 + (v2)
2 + (v3)

2 + (v4)
2 + (v5)

2 + (v6)
2 + (v7)

2 + (v8)
2,

= (|q|2 + |p|2)2 = 1,

S8 is the base space. (30.4)

Notes: The v vector describes a point in S8, but projects the seven parameters of
an entire S7 to a single point, making the fiber S7 at each point. The elements
of (v0, v1, v2, v3, v4, v5, v6, v7, v8) form one column of an SO(9) rotation ma-
trix, each row or column of which describes an alternative form of the projection
creating the Hopf fibration.

Remark: Octonions lead to another interesting fundamental algebra called the Jordan
algebra, which closely resembles the algebra of the Pauli matrices used in quater-
nion constructions—except that it uses a 3× 3 Hermitian matrix of octonions.

Summary: Table 30.1 summarizes the results of the Hopf fibrations following natu-
rally from all four division algebras.

Domain No. Vars. Base Space Fiber (Group) Full Space

R N = 1 S1 S0 = Z2 Double cover of S1

C N = 2 S2 S1 = U(1) S3

Q N = 4 S4 S3 = SU(2) S7

O N = 8 S8 S7 S15

TABLE 30.1 Hopf fibrations of division algebras.



Clifford Algebras

The quaternion-based formalism for han-

31 dling and visualizing rotations works well
in dimensions 2, 3, and 4 because in these
dimensions the Spin group (the double
covering of the orthogonal group) has
simple topology and geometry. It would
be natural to expect that this simplicity
continues to hold for rotations in any di-
mension, and that all of our 3D intuitions

about labeling frames, interpolating frames, and simple frame-to-frame distance
measures continue to be valid. Unfortunately, that is not the case: quaternions are
quite unique to 3D, and only a serendipitous accident of topology allows an exten-
sion even to 4D.

On the other hand, there is a mathematical formalism that treats N -dimensional
rotations in a very general way. Clifford algebras [8,117] are the basis of the standard
mathematical approach to the group theory of orthogonal transformations in RN ,
the Euclidean space of N real dimensions. What happens is that Clifford algebras
successfully specialize to the case of quaternions for N = 3, but the elegant features
of the quaternion framework for 3D rotations do not generalize directly to higher di-
mensions.

Just as quaternions double cover the 3D rotations and provide a natural square
root for all standard structures of the orthogonal group, we shall see that Clifford
algebras embody double coverings for all N -dimensional orthogonal rotations, and
that these coverings correspond to the Spin groups in arbitrary dimensions.

Furthermore, the Clifford-algebra approach provides additional depth to our
understanding of dimensions 2, 3, and 4. We can get a better feel for which prop-
erties are accidents of the low dimension and which are general and extensible

393
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concepts. In fact, it is only by studying the Clifford algebra for two dimensions that
we finally come full circle to a rigorous understanding of the heuristic argument
that led us to consider the half-angle formulas for 2D rotations. From the Clifford
algebra, we will see that the 2D half-angle formulas are not simply a superfluous
algebraic manipulation but embody the mathematical core of all rotations.

Although there are many applications for Clifford algebras beyond those we will
treat here (e.g., see Ablamowicz et al. [1] or Dorst et al. [37]), these are beyond
our scope and we will focus exclusively on the exploitation of Clifford algebras for
rotations.

31.1 INTRODUCTION TO CLIFFORD ALGEBRAS

The motivation to study Clifford algebras comes from the need to understand
quaternions in a larger context. As we follow the path through complex numbers
and 2D rotations to quaternions and 3D rotations, questions such as the following
puzzle us.

• Is 2D special? Are there properties of 2D frames that cannot be found in other
dimensions?

• Is 3D special? Are there properties of 3D frames that cannot be found in other
dimensions?

• What properties are only found in low dimensions? If 2D and 3D are special for some
reason, what properties do they have that are lost in higher dimensions, and
why?

• What properties are universal? What properties do 2D and 3D rotations possess
that in fact continue to have clear analogs in higher dimensions, and why?

What we shall see is that Clifford algebras do indeed provide higher-dimensional
analogs of the quadratic forms we used in 2D and 3D to construct rotations in
Euclidean space. Unhappily, the fact that complex numbers and quaternions are
the only nontrivial associative division rings gives them unique and unduplicatable
properties enabling the analysis and visualization of 2D and 3D rotations. (4D ro-
tations, as noted in a previous chapter, also work fairly well due to the lucky coin-
cidence that 4D rotations decompose into a pair of 3D rotations.)

The second major feature we will note about Clifford algebras is that the ob-
jects that are analogous to quaternions correspond to famous but nonintuitive
mathematical structures, the Spin representations and their corresponding bases,
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the spinors. The square-root-like properties we have seen throughout our treat-
ment of 2D and 3D rotations with half-angle formulas and quaternions are the
precise properties that generalize to the Spin groups in higher dimensions. Curi-
ously, whereas Clifford discovered the conceptual machinery for the Spin groups,
the really interesting relationships to spin 1/2-elementary particles came much later
(e.g., see Wigner [173]).

31.2 FOUNDATIONS

The fundamental Clifford algebra defined on an N -dimensional space is based on
the properties of the chosen metric gij and a set of basis elements ei , i = 1, . . . ,N .
What this means informally is that points in the N -dimensional space are described
abstractly by a set of basis vectors ei , i = 1, . . . ,N , and real numbers vi , and thus
a vector looks like a sum of weights over the basis:

V =
∑

i

viei .

The length of a vector is computed from the inner product with the metric:

‖V ‖2 = 〈V,V 〉 =
∑
ij

vigij vj .

The metric can in general be a function of the spatial position, but to handle the
group theory of rotations in flat Euclidean space we will need only gij = δij , the
identity matrix in Euclidean space. Technically, one must pay attention to the upper
and lower indices more carefully than we do here, but this makes no difference for
flat Euclidean spaces.

The unique feature Clifford discovered was that if the algebraic product of the basis
vectors is assigned a particular nonintuitive multiplication rule, a vast number of
other useful properties result. Clifford algebras are based on this multiplication
rule:

Clifford Product eiej + ej ei = −2gij . (31.1)
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Because ei for a Euclidean space obeys (ei)
2 = −1, we need the concept of the

conjugate variable,

(ei)
† = −ei . (31.2)

If there are multiple basis elements the conjugate reverses their order, for example,

(eiej )
† = (−ej )(−ei) = ej ei, (31.3)

and so on.

Algebra = all possible products: In the context of Clifford algebras, the fundamental re-
lation eiej + ej ei = −2gij is the Clifford product, whereas the Clifford algebra (or the
geometric algebra) is the space Cl(N) of all possible products. If the basis {ei} has
dimension N , the dimension of the space of all possible products Cl(N) is 2N .
A related important splitting is the space of all even products and the space of all odd
products, each of which, including the identity and the volume element

∏
i ei , has

the same dimension 2N−1.
This is all there is to the abstract form of the Clifford algebra. Physicists should

immediately recognize these formulas as those obeyed by the Pauli matrices and the
Dirac matrices. That is, although the algebra is abstract it has concrete realizations
using matrices. For example, the Pauli matrices σ times −√−1 = −i represent
quaternions as q = q0I2 − iq · σ , where

σ1 =
[

0 1
1 0

]
,

σ2 =
[

0 −i

i 0

]
,

σ3 =
[

1 0
0 −1

]
,

I2 =
[

1 0
0 1

]
.

The matrices σ obey the algebra

σjσk = δjk + iεjklσl, (31.4)
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where εjkl is the totally antisymmetric pseudotensor. (See Appendix F.) Thus, we
reproduce the Clifford algebra by identifying ek with −iσk :

ej ek + ekej = i2σjσk + i2σkσj = −2δjk. (31.5)

With the Pauli matrices producing the 3D algebra, the Euclidean Dirac matrices
reproduce the 4D algebra. We see that the explicit choice of the 4 × 4 Euclidean
Dirac matrices

γ1 =
[

0 σ1
σ1 0

]
,

γ2 =
[

0 −iσ2
iσ2 0

]
,

γ3 =
[

σ3 0
0 −σ3

]
,

γ4 =



1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1




gives the algebra

γjγk = δjk + (i/2)εjkmn[γm,γn]. (31.6)

Again, identifying ek with iγk we find that we have an explicit realization of the
4D Euclidean Clifford algebra:

ej ek + ekej = i2γjγk + i2γkγj = −2δjk. (31.7)

3 1 . 2 . 1 C L I F F O R D A L G E B R A S A N D RO TAT I O N S

The geometry of Clifford algebras has some interesting properties. As we shall see,
it is almost like the “square root of a square root” in its relationship to rotations.

The Clifford algebra implements reflections: Our first step is to define a bare unit vector using
the basis of the Clifford algebra, and then see what happens when we transform it
by Clifford multiplication in ways analogous to those we used for quaternions. An
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FIGURE 31.1 Clifford algebra conjugation results in a reflection about 〈A,X〉 = 0.

initial bare unit vector is

A =
∑

aiei, (31.8)

where

‖A‖ =√〈A,A〉 =
√∑

(ai)2 = 1.

Introducing an arbitrary vector, V = ∑
viei (which does not have to be a unit

vector) we define the Clifford conjugate operation as

A ∗ V ∗ A = V − 2A〈A,V 〉,

where ‖A‖ = 1 is critical. This is just a reflection of the component of V lying in the
direction of A about the plane

〈A,X〉 = 0.

Thus, we can visualize the action of Clifford conjugation with a unit vector A as
the transformation of the vector V into the vector V ′,

V ′ = A ∗ V ∗ A = V − 2A〈A,V 〉,

with the effect shown in Figure 31.1.
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Pairs of Clifford reflections: Now let B =∑
biei be another vector with ‖B‖ = 1. Repeat-

ing the Clifford multiplication rule,

V ′′ = B ∗ V ′ ∗ B

= A ∗ B ∗ V ∗ B ∗ A

= V ′ − 2B〈B,V ′〉
= V − 2A〈A,V 〉 − 2B

〈
B,V − 2A〈A,V 〉〉.

This can be shown to be a proper rotation of the vector V as

V ′′ = A ∗ B ∗ V ∗ B ∗ A =
∑
ij

Rij vj ei,

where Rij is an orthonormal matrix of unit determinant. One can see how this
comes about from the representation of the double reflection in Figure 31.2.

Two Clifford reflections therefore result in a proper rotation of the vector V as

V ′′ = A ∗ B ∗ V ∗ B ∗ A = R · V, (31.9)

where Rij is an orthonormal matrix of unit determinant. The full symbolic form
of the matrix takes the form (remembering that we have substituted ‖A‖ = 1 and
‖B‖ = 1)

R =




1− 2A2
1 − 2B2

1 + 4A2
1B

2
1 + 4A1A2B1B2

−2A1A2 + 4A1A2B
2
1 − 2B1B2 + 4A2

2B1B2

−2A1A2 + 4A2
1B1B2 − 2B1B2 + 4A1A2B

2
2

1− 2A2
2 + 4A1A2B1B2 − 2B2

2 + 4A2
2B

2
2


 (31.10)

Because any rotation of this type can be transformed into a local 2D coordinate sys-
tem, we can take A = (cost1,sint1), B = (cost2,sint2) and compute the amount
of the rotation. Substituting the 2D expressions for A and B into the 2D form of
the matrix, we find [

cos2(t2 − t1) −sin2(t2 − t1)

sin 2(t2 − t1) cos2(t2 − t1)

]
. (31.11)
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FIGURE 31.2 Clifford algebra rotation graph.

In other words, the rotation of the reflected vector is twice the angle between the
pair of reflection directions,

A · B = cos(t2 − t1), (31.12)

V ′′ · V = cos
(
2(t1 − t2)

)
, (31.13)

consistent with what we observe in Figure 31.2.

3 1 . 2 . 2 H I G H E R - D I M E N S I O NA L C L I F F O R D A L G E B R A
RO TAT I O N S

We do not get anything given to us easily in the Clifford algebra world. Although
the construction works perfectly in higher dimensions (in that any elementary ro-
tation is ultimately a rotation in a 2D subplane), one may need more than a single
(A,B) pair to exhaust all possible rotational degrees of freedom in the larger di-
mensions. One can work out a comparison between the necessary degrees of free-
dom and the available parameters in successive pairs of N -dimensional unit vectors
(An,Bn) to generate the synopsis outlined in Table 31.1. In summary, the basic
idea is as follows.



31.2 FOUNDATIONS 401

N Pairs Params. Unit + Other Constraints Freedom

2 1 2∗ 2= 4 2+ 1= 3 1

3 1 2∗ 3= 6 2+ 1= 3 3

4 1 2∗ 4= 8 2+ 0= 2 6

5 2 4∗ 5= 20 4+ 6= 10 10

6 2 4∗ 6= 24 4+ 5= 9 15

7 2 4∗ 7= 28 4+ 3= 7 21

8 2 4∗ 8= 32 4+ 0= 4 28

9 3 6∗ 9= 54 6+ 12= 18 36

10 3 6∗ 10= 60 6+ 9= 15 45

11 3 6∗ 11= 66 6+ 5= 11 55

12 3 6∗ 12= 72 6+ 0= 6 66

13 4 8∗ 13= 104 8+ 18= 26 78

14 4 8∗ 13= 112 8+ 13= 21 91

. . . . .

N p = �N
2 � 2p ∗ N p(2p + 1) N(N−1)

2

TABLE 31.1 Number of conjugate unit vectors needed to construct a full N(N−1)
2 -

degree-of-freedom SO(N) rotation group element using the Clifford conjugate double-
reflection construction.

• 2D: There are two 2D unit vectors (A,B), and hence two free parameters
left due to ‖A‖ = 1, ‖B‖ = 1. However, 2D rotations have only one free
parameter. From the explicit example given previously, the two apparent free
parameters (t1, t2) do not appear independently in the resulting rotation
matrix, but only the combination (t2 − t1). Thus, only one independent
parameter survives.

• 3D: Two 3D unit vectors (A,B) have four independent degrees of freedom,
which could be parameterized using A = (cost1 cosp1,sint1 cosp1,sinp1),
B = (cost2 cosp2,sint2 cosp2,sinp2), and thus (t1,p1, t2,p2) would be
the parameters. Extracting the explicit linear dependence among the para-
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meters is difficult, but the matrix is easily confirmed to be orthogonal using
the dimension-independent algebraic calculation cited previously. An SO(3)

matrix has only three independent parameters, and thus one of the four vari-
ables in (A,B) can be eliminated. Another approach would be to find an
inverse map from the four parameters to the four quaternion variables. Then
the q · q = 1 constraint would alternatively eliminate the extra freedom.

• 4D: Four dimensions presents a new phenomenon. Because two 4D unit vec-
tors (A,B) have six independent parameters, and SO(4) has six parameters,
the parameterizations must be equivalent.

• 5D: Five and higher dimensions give another requirement. Because two 5D
unit vectors (A,B) have eight independent parameters, and SO(5) has 10
degrees of freedom, the Clifford conjugate construction must be supple-
mented by two more variables—giving a total of four, (A1,B1,A2,B2), or
16 parameters. Six of these must be eliminatable, because only 10 degrees
of freedom exist in the constructed matrix.

• 6D: Six dimensional orthogonal rotation matrices have 15 parametric de-
grees of freedom, whereas four Clifford reflection unit vectors (A1,B1,A2,

B2) supply 20. Five are therefore eliminatable.

31.3 EXAMPLES OF CLIFFORD ALGEBRAS

Now that we see the basic process for generating rotations using the Clifford al-
gebra, we will proceed to study several of the lower-dimensional cases in detail,
exposing the truly remarkable fact that even our simplest 2D rotation example in
classical geometry is truly only “natural” in some sense when we use the half-angle
reformulation!

3 1 . 3 . 1 1 D C L I F F O R D A L G E B R A

We begin with the very simplest, but not entirely trivial, case of a single dimension.
N = 1, and thus

e1e1 = −1.

One might think this was the complex numbers, because we recall that the imag-
inary number i obeying i2 = −1 was the fundamental quantity enabling us to
define complex number systems. In fact, this is true, because the full basis includes
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the identity and therefore with (1, e1) and (e1)
2 = −1 we can indeed represent all

complex numbers.
The second thing one might think is that now we can use the N = 1 basis to

represent 2D rotations, as we did in earlier chapters. However, be careful: there is
only one dimension, and thus if we are to represent rotations as double reflections
the only possible reflection is x → −x. This is not enough to do 2D rotations! Complex
numbers in fact have two equivalent bases, and the natural treatment of 2D rotations
is given by the N = 2 algebra, which maps back to an equivalent N = 1 Clifford
algebra, the complex numbers, more or less by accident.

3 1 . 3 . 2 2 D C L I F F O R D A L G E B R A

2D space in the Clifford algebra framework is described by the two elements
(e1, e2) obeying the algebra

e1e1 = −1,

e1e2 + e2e1 = 0,

e2e2 = −1.

The full technology of the Clifford algebra now depends on producing an exhaus-
tive list of all possible products until additional factors reduce to something already
in the list. For N = 1, this was trivial—just the list containing the identity and the
basis, (1, e1). When we start multiplying all possible N = 2 products, however, we
find one new feature, a fourth component. The four-component basis

(1, e1, e2, e1e2)

exhausts all possible Clifford products for N = 2.
Here again we are led into temptation. Because e1e2e1e2 = −1, we could simply

take

xi = e1,

xj = e2,

xk = e3 ≡ e1e2
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and identify this basis with the quaternions (1,xi ,xj ,xk) . To check, we see that with
the previous identification,

−1 = xixi = xj xj = xkxk,

xixj = xk,

xj xk = xi ,

xkxi = xj ,

which is precisely the quaternion basis algebra.

Where is the 2D rotation?: Again, we must be careful; there are only two dimensions,
and thus there are insufficient degrees of freedom to do 3D rotations! The true basis
of rotations in each dimension comes from the even part of the family of all Clifford
products, which for N = 2 reduces to

Complex Numbers Emerge(1, e1e2)

And what is e1e2? We can identify it exactly as the value of i, with i2 = −1, which
we used throughout our treatment of 2D rotations to condense the 2D matrix form
into an algebra. Now everything fits into its proper place, as we see next.

3 1 . 3 . 3 2 D RO TAT I O N S D O N E R I G H T

To perform a 2D rotation using a Clifford double reflection, we take a general
element of the even basis of the algebra:

R = a + be1e2, (31.14)

R† = a − be1e2. (31.15)

Note that although a standard rotation matrix is 2×2, this is an element of the alge-
bra with only two elements (and in fact only one is independent, as we see in a mo-
ment). The action of the even Clifford algebra rotation on the (odd-dimensional)
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vector V = v1e1 + v2e2 can now be written as

R ∗ V ∗ R† = V ′ = v′
1e1 + v′

2e2. (31.16)

Because V ′ is the result of the rotation acting on the 2D vector V , we can easily
show that [

v′
1

v′
2

]
=
[

a2 − b2 −2ab

2ab a2 − b2

][
v1
v2

]
.

This is a rotation provided the determinant is unity, or

det

[
a2 − b2 −2ab

2ab a2 − b2

]
= (

a2 + b2)2 = 1, (31.17)

and hence

a2 + b2 = 1, (31.18)

and a and b correspond to a (cos,sin) pair.

What is i?: What we have previously called i = √−1 is really i = e1e2, and with
for example a = cosα, b = sinα we have

R = ee1e2α (31.19)

= eiα (31.20)

= cosα + i sinα (31.21)

as the Clifford algebra form of the standard 2D rotation.
Finally, we see that

a2 − b2 = cos2 α − sin2 α ≡ cos(2α), (31.22)

2ab = 2 cosα sinα ≡ sin(2α), (31.23)

and thus the half-angle formula—which seemed an arbitrary manipulation when
we introduced it—is mandatory! Our apparently artificial 2D transformation writ-
ten in terms of half angles was not so silly after all; no other procedure generalizes to N

dimensions. The Clifford algebra for N = 2 automatically produces

R2(a, b) =
[

a2 − b2 −2ab

2ab a2 − b2

]
,
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where a2 + b2 = 1, and we have the solution

a = cosα = cos(θ/2),

b = sinα = sin(θ/2)

or

R2(a, b) =
[

cos2α −sin 2α
sin 2α cos2α

]

=
[

cosθ −sinθ

sinθ cosθ

]
.

3 1 . 3 . 4 3 D C L I F F O R D A L G E B R A

The 3D case is of course a little trickier. Here, we start from the set (e1, e2, e3) and
the algebra

e1e1 = −1,

e1e2 + e2e1 = 0, e2e2 = −1,

e1e3 + e3e1 = 0, e2e3 + e3e2 = 0, e3e3 = −1. (31.24)

Then the full list of all Clifford products starting from the set {ei} is 8-dimensional:

1

e1 e2 e3

e2e3 e3e1 e1e2

e1e2e3

(31.25)

To relate this to the double reflections, which are the proper rotations, we again
need to select the even part. (The odd part corresponds to improper rotations—
those that contain a reflection and that cannot be reexpressed as a rotation.)

The basis of rotations in the Clifford algebra therefore consists of four compo-
nents,

(1, e2e3, e3e1, e1e2), (31.26)
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which—having the benefit of hindsight from knowing the title of this book—we
may deduce are the quaternion basis of the 3D rotations. We may identify these four objects
either as simply the vector basis of the list of elements of the abstract quaternion
algebra we have used throughout, or as the Pauli matrices

(I2,−iσx,−iσy,−iσz),

or as the extended complex numbers used to define Hamilton’s original quaternion
basis:

(1, i, j,k).

3 1 . 3 . 5 C L I F F O R D I M P L E M E N TAT I O N
O F 3 D RO TAT I O N S

Finally, we are ready for the “right” way to do 3D Euclidean rotations—a method
that generalizes to all dimensions and that allows us to obtain some insight into
where our 3D quaternion methods in fact are generalizable and where they are
too unique to generalize. Proper 3D rotations using the Clifford algebra framework
are now characterized simply by writing down the most general four-vector in the
even subset of the available 3D Clifford algebra components,

R = q0 + q1(e2e3) + q2(e3e1) + q3(e1e2), (31.27)

and requiring that the corresponding 3×3 matrix be normalized with determinant
one. The resulting action is simply

R ∗ V ∗ R† =
4∑

i=1

v′
iei , (31.28)

where the coefficients of vi in v′
i are precisely our old friend, the quadratic quater-

nion map

R3 =

q2

0 + q2
1 − q2

2 − q2
3 2q1q2 − 2q0q3 2q1q3 + 2q0q2

2q1q2 + 2q0q3 q2
0 − q2

1 + q2
2 − q2

3 2q2q3 − 2q0q1

2q1q3 − 2q0q2 2q2q3 + 2q0q1 q2
0 − q2

1 − q2
2 + q2

3


 .
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31.4 HIGHER DIMENSIONS

As one might expect, higher dimensions are much more complicated, and do not
work out as neatly—except for a convenient accident in N = 4, which allows a
double-quaternion form [69] (described in detail in Chapter 29). Note that Clif-
ford algebras in dimensions greater than eight essentially repeat many fundamental
properties. Clifford algebras obey a periodicity theorem that allows the construction of
all algebras if you know the first eight very well.

The rank two Clifford subalgebras generate the rotational Lie algebra—the in-
finitesimal rotations. When exponentiated, these generate all other possible even
elements, and from there we get the Clifford algebra form of the Lie group.

To get some idea of what is going on in general, we can do a little counting.
First, with each basis (e1, e2, . . . , eN) and its algebra eiej + ej ei = −2δij we see
that there is essentially a Pascal’s triangle of possible elements—for a total of N + 1
different lengths of elements from 0 to N—and that the first element is the identity,
the second is the complete set of N(N − 1)/2 pairs, and the last is the volume
element

∏
i ei . The total number of even-element pairs is precisely the same as the

number of independent values of an N ×N orthogonal matrix, N(N − 1)/2. This
is the number of elements in the Lie algebra of the rotation group, equivalent to the
set of basis matrices from which all other matrices in the group can be constructed
by exponentiation.

When all possible two-component elements are multiplied together, the result is
a certain number of additional even elements. For SO(2) and SO(3), there are no
other even elements besides the identity, and this is why these rotation groups are very special.
For SO(4), the additional element is the volume, e1e2e3e4. This plays the role of a
“second identity” and allows the construction of two complete quaternion algebras
that relate the eight even elements in 4D to a pair of unit quaternions. For SO(5),
there are the usual 10, plus the identity, plus the five four-element forms that lack
one element, for a total of 16. For SO(6), there are the usual 15 plus 17 more, for
a total of 32. We can easily see that for SO(N) the elements include the identity,
the usual N(N − 1)/2 pairs, and the remaining even elements, always giving the
total number of even elements = 2N−1.

It is interesting to compare two relations. First consider the N × N rotation ma-
trices and how many independent degrees of freedom there are in the matrices, as
summarized in Table 31.2. Then, in contrast, consider all even elements of each
Clifford algebra compared to the number of possible free parameters represent-
ing a rotation by exponentiation of the two-element algebra (as summarized in
Table 31.3).
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Matrix Elements Orthogonality Elements − Constraints =
Dim. N Constraints Total DOF = N(N − 1)/2

2 4 3 1

3 9 6 3

4 16 10 6

5 25 15 10

6 36 21 15

7 49 28 21

8 64 36 28

. . . .

N N2 N(N+1)
2

N(N−1)
2

TABLE 31.2 Relation between orthogonal N × N matrices and actual degrees of
freedom.

By analogy with our treatment of matrix logarithms in Chapter 18, we may
consider the two-component Clifford algebra elements to be identified with the
logarithms of rotations in N dimensions, now expressed abstractly as a Clifford
algebra rather than concretely as a set of matrices:

logRN =
∑
i<j

qij eiej . (31.29)

The construction of the SO(N) rotation matrix RN is basically the same, as

R ∗ V ∗ R† =
4∑

i=1

v′
iei , (31.30)

where the matrix RN is obtained from comparing the coefficients in

v′ = RN · v,
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Dim. Pairs Total Even Necessary The Constraint
Constraints

2 1 2 1 S1: a2 + b2 = 1

3 3 4 1 S3: q2
0 + q2

1 + q2
2 + q2

3 = 1

4 6 8 2 Double S3: q · q = 1,p · p = 1

5 10 16 6 ??

6 15 32 17 ??

7 21 64 43 ??

8 28 128 100 ??

. . . . .

N N(N−1)
2

2N−1 2N−1 − N(N−1)
2 ??

TABLE 31.3 Relation between even Clifford algebra elements and the degrees of freedom
of orthogonal N × N matrices. (We do not have neat forms for the constraints for
N > 4.)

where we impose the requirement that the matrix have unit determinant.
Finally, we examine also the number of degrees of freedom versus required

constraints that are realized in the group compared to the algebra. The even Clifford
algebra has precisely the correct number of generators for the rotation group in
question, but when iterated the number of Clifford elements becomes much larger
and some knowledge of the constraints is useful to define the degrees of freedom.
This information is summarized in Table 31.4.

31.5 PIN(N ), SPIN(N ), O(N ), SO(N ), AND ALL THAT. . .

The Spin representations of the orthogonal groups follow from the remaining ele-
ments of the Clifford algebra Cl(N). A top-level summary of the structure follows.
The key concept is that transformations with no preceding S can have a negative
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N Dim. Dim. Constraints
(even Clifford) (rotations) (the difference)

1 1 0 1

2 2 1 1

3 4 3 1

4 8 6 2

5 16 10 6

6 32 15 17

7 64 21 43

8 128 28 100

. . . .

N 2N−1 N(N−1)
2

2N −N2+N
2

TABLE 31.4 N -dimensional degrees of freedom after iterating the even Clifford alge-
bra, and the implied number of constraints on the resulting rotation coefficients.

determinant and be sign-reversing. If there is a preceding S, the group is “special,”
which means it has determinant plus one and cannot be sign-reversing.

• Pin(N): G is “Pin” if it is a general reflection. G includes all elements of
Cl(N).

• Spin(N): G is “Spin” if it is a general rotation. G includes only even elements
of Cl(N).

• O(N): G ∗ V ∗ G† is “O” if G is in Pin and result is a vector reflection.
• SO(N): G ∗ V ∗ G† is “SO” if G is in Spin and result is a vector rotation.

We will not pursue these concepts further here, but refer the interested reader
to detailed treatments such as those of Atiyah et al. [8] and Lawson and Michel-
sohn [117].
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Conclusions

We bring our mathematical composition

32 to a close by repeating the theme intro-
duced in Chapter 4, whose brevity and el-
egance we now see is deceptively simple.
From the fundamental relations

p � q = (p0,p1,p2,p3) � (q0, q1, q2, q3)

=



p0q0 − p1q1 − p2q2 − p3q3
p1q0 + p0q1 + p2q3 − p3q2
p2q0 + p0q2 + p3q1 − p1q3
p3q0 + p0q3 + p1q2 − p2q1




=



p0 −p1 −p2 −p3
p1 p0 −p3 p2
p2 p3 p0 −p1
p3 −p2 p1 p0






q0
q1
q2
q3




= (p0q0 − p · q, p0q + q0p + p × q),

p · q = (p0,p1,p2,p3) · (q0, q1, q2, q3)

= p0q0 + p1q1 + p2q2 + p3q3

= p0q0 + p · q,

q̄ = (q0,−q1,−q2,−q3)

= (q0,−q),

413
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q � q̄ = (q · q,0)

q · q = (q0)
2 + (q1)

2 + (q2)
2 + (q3)

2

= (q0)
2 + q · q = 1,

we have found an enormous number of questions that can be asked and properties
that can be computed by exploiting the power of the quaternion frame. We have
found ways to interpolate, ways to optimize, ways to extract information from
data, and new ways to reinterpret old concepts using quaternions. Many unusual
technologies have been uncovered and applied, and we have been able to construct
visualizations—namely, quantitative visual representations that assist our insights—
for nearly all of them.

A handful of questions remain without completely satisfactory answers. For ex-
ample, there is some uncertainty as to what a Bernstein polynomial basis might
be on a sphere, or what the proper analogs of linear fractional transformations or
NURBS (Nonuniform Rational B-Splines) might be. Another problem is that al-
though certain joint systems of interest are described by just three degrees of free-
dom (and are therefore accessible to quaternion technology) many complex natural
and synthetic joint systems are not. How do we find and exploit a topological space
with a well-defined quaternion-like distance measure that extends to the degrees of
freedom of an entire functional system instead of just one three-degree-of-freedom
joint? Can further study of the geometry of spinors and spin representations lead to
new pictures that assist our understanding in the way the belt trick helped us relate
quaternions to real experience? There are many open problems that must be solved
both to deeply understand quaternions themselves and to extend their features to
more complete domains. We hope that what we have presented here can provide
the framework upon which the solutions to problems such as these can be built.
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The following appendices serve to summarize a number of the principal mathe-
matical approaches and formulas in the main text in a single, easy-to-locate place.
They also provide a selection of useful supplementary material that did not have a
clear context elsewhere.
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Notation

If the reader is conversant with the con-

A ventions of 3D vector notation and has
used complex variables, this appendix
should be elementary and can be skipped.
Nevertheless, for anyone who might ben-
efit from a quick summary, or who might
be accustomed to substantially different
notational conventions from the author,
the summary presented here may be es-

sential in order to follow some of the notation in the main body of the book.
In particular, the explanations of basic quaternion notation in Chapter 4 depend
strongly on the notation given here.

A.1 VECTORS

A vector x is a set of real numbers we typically write in the form

x = (x, y) (A.1)

for two-dimensional (2D) vectors, and as

x = (x, y, z) (A.2)

for three-dimensional (3D) vectors. Technically, we should treat this notation as a
shorthand for a column vector because we are thinking in the back of our minds
of multiplying these vectors by rotation matrices to transform them to a new ori-

419
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entation. That is, in proper matrix notation

x = xx̂ + yŷ

= x

[
1
0

]
+ y

[
0
1

]

=
[

x

y

]

for 2D vectors and

x = xx̂ + yŷ + zẑ

= x

[1
0
0

]
+ y

[0
1
0

]
+ z

[0
0
1

]

=
[

x

y

z

]

for 3D vectors.

A.2 LENGTH OF A VECTOR

The length of a Euclidean vector is computed from the Pythagorean theorem, gen-
eralized to higher dimensions. Several equivalent notations are common for the
squared length of a Euclidean vector. Examples are

‖u‖2 = u2 = u · u = x2 + y2

in 2D and

‖u‖2 = u2 = u · u = x2 + y2 + z2

in 3D. The inner product (or dot product) notation is generalized to arbitrary pairs
of vectors in the following. The length of the vector u is then the square root of its
squared length, and is typically written using double vertical bars as

‖u‖ =
√

x2 + y2
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in 2D and

‖u‖ =
√

x2 + y2 + z2

in 3D.

A.3 UNIT VECTORS

A unit vector û is the vector that results when we divide a (nonzero) vector u =
(x, y) or u = (x, y, z) by its Euclidean length, ‖u‖. That is,

û = u
‖u‖ ,

and we see that obviously the Euclidean length of û is one, or “unity,” and hence
the terminology unit vector.

A.4 POLAR COORDINATES

As a basis for some of the concepts we use to understand both complex variables
and quaternions, we note that the Cartesian coordinates defined in Equations A.1
and A.2 have alternative forms based on their magnitude ‖u‖, which we write as
a radius r = ‖u‖. Then the 2D polar form of a Euclidean vector uses elementary
trigonometry to express the components in terms of r and the angle θ between the
vector u and the x̂ axis; namely,

u = (x, y) = (r cosθ, r sinθ).

This is a point on a circle of radius r . A 3D polar coordinate then becomes a point
on a sphere of radius r , expressible in terms of trigonometric functions as

u = (x, y, z) = (r cosθ cosφ, r sinθ cosφ, r sinφ).

Beyond 2D, there are various alternatives for polar coordinates, and quaternions
will be expressed in several equivalent 4D polar coordinate systems.
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A.5 SPHERES

Spheres are labeled by the dimension of the space that results if you cut out a bit
of the sphere in every direction around the North Pole and flatten it out. A circle
then has dimension one, and a balloon dimension two (an exploded balloon can
be flattened like a sheet of paper). Thus, a circle is the one-sphere S1, a balloon is
a two-sphere S2, and so on. Now that we know some sample equations for polar
coordinates, we can start from there and define a sphere mathematically as a set of
points that all lie at a fixed radius from the center. The circle, or one-sphere S1,
embedded in two dimensions then obeys the equation

‖u‖2 = x2 + y2 = r2 constant (A.3)

and the “ordinary sphere” (or two-sphere S2) embedded in three dimensions
obeys the equation

‖u‖2 = x2 + y2 + z2 = r2 constant. (A.4)

We saw in Chapter 4 that quaternions obey the equation of the hypersphere—the
three-sphere, written formally as S3.

A.6 MATRIX TRANSFORMATIONS

In our context, matrices are rectangular arrays of real numbers. We will typically
deal with square matrices. A square matrix R acting by right-multiplication on a
vector x produces a new vector x′ as follows:

x′ = R · x

=
[

r11 r12
r21 r22

][
x

y

]
=
[

xr11 + yr12
xr21 + yr22

]

=
[

x′
y′
]

for the 2D case and
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x′ = R · x

=
[

r11 r12 r13
r21 r22 r23
r31 r32 r33

][
x

y

z

]
=
[

xr11 + yr12 + zr13
xr21 + yr22 + zr23
xr31 + yr32 + zr33

]

=
[

x′
y′
z′

]

for the 3D case.

A.7 FEATURES OF SQUARE MATRICES

Matrices in general are rectangular arrays of numbers. Square matrices are used
to transform vectors into similar vectors, and thus have unique features. The two
features we will need to use on occasion are the trace, which is the sum of the
diagonal elements,

TraceR ≡ tr R =
n∑

i=1

rii ,

so that in 2D

TraceR ≡ tr R = r11 + r22

and in 3D

TraceR ≡ tr R = r11 + r22 + r33.

The other frequently encountered property is the determinant. Determinants in gen-
eral have elegant expressions in terms of totally antisymmetric products, for which
we refer the interested reader to Appendix F. For the special cases of square 2D and
3D matrices, the determinant can be given explicitly. In 2D we write

DeterminantR ≡ detR = r11r22 − r12r21

and in 3D we write

DeterminantR ≡ detR = r11r22r33 − r11r23r32

− r12r21r33 + r12r23r31

+ r13r21r32 − r13r22r31.
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A.8 ORTHOGONAL MATRICES

An orthogonal matrix is a square matrix whose transpose is its own inverse. What
this means is that if we let I2 and I3 be the 2 × 2 and 3 × 3 identity matrices,
respectively, where

I2 =
[

1 0
0 1

]
and

I3 =
[1 0 0

0 1 0
0 0 1

]
,

if the superscript T denotes the transposed matrix and RN is an orthogonal N ×N

matrix, then

R2 · (R2)
T = I2

and

R3 · (R3)
T = I3.

A.9 VECTOR PRODUCTS

There are two products of vectors that concern us because they have particularly
useful properties when we transform the component vectors by applying an or-
thogonal matrix R. As before, we use the notation xi = (xi, yi) for 2D vectors and
xi = (xi, yi, zi) for 3D vectors.

A . 9 . 1 2 D D O T P RO D U C T

In 2D, the first of these is the inner product (or dot product),

x1 · x2 = x1x2 + y1y2,

which is invariant under the action of orthogonal matrix multiplication:
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x′
1 · x′

2 = Rx1 · Rx2

= x1RT Rx2

= x1Ix2

= x1 · x2.

The dot product may be thought of as the generalization of the squared Euclidean
length to a pair of vectors. It can be shown that in any dimension the dot product
is invariant under the action of orthogonal matrices and is proportional to the cosine
of the angle between the two vectors:

x1 · x2 = ‖x1‖‖x2‖cosθ12.

A . 9 . 2 2 D C RO S S P RO D U C T

The concept of the 2D cross product is unconventional, but in retrospect extremely
natural from the point of view of N -dimensional geometry (e.g., see Hanson [67]).
Here, we can simply define the 2D cross product as the procedure that generates a new
vector c that is perpendicular to a given 2D vector x:

c = ×x

= det

[
x x̂
y ŷ

]
= (−y, x).

One can easily verify that c · x = 0.

A . 9 . 3 3 D D O T P RO D U C T

In 3D, a construction analogous to the 2D case yields the invariant dot product,
again proportional to the cosine:

x1 · x2 = x1x2 + y1y2 + z1z2 = ‖x1‖‖x2‖cosθ12.

A . 9 . 4 3 D C RO S S P RO D U C T

The cross product in 3D is defined as
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c = x1 × x2

= det

[
x1 x2 x̂
y1 y2 ŷ
z1 z2 ẑ

]

= (y1z2 − y2z1, z1x2 − z2x1, x1y2 − x2y1),

where now we find that c is perpendicular to each of the component vectors:

c · x1 = c · x2 = 0.

The magnitude of the 3D cross product is proportional to the sine of the angle between
the vectors and is thus equal to the area of the parallelogram defined by the two
vectors in the plane they span:

Area of Parallelogram= ‖c‖ = ‖x1‖‖x2‖sinθ12.

A.10 COMPLEX VARIABLES

Complex variables were once thought to be so unnatural that they became known
as imaginary numbers—because, presumably, there was no way they could be con-
nected with reality. In fact, nothing could be further from the truth. Quantum
mechanics—the best theoretical description yet developed to predict wide ranges
of important, very real, physical processes—depends in essential and inescapable
ways on complex numbers. Perhaps a more traditional concrete example is the fact
that quadratic algebraic equations cannot be solved for all ranges of their parame-
ters unless complex numbers are allowed. The essence of complex numbers thus
comes directly from examining the two equations

z2 = +1,

z2 = −1

and attempting to solve them. The only way we can solve both of these innocent-
looking equations is to invent a new object, the pure “imaginary” number i, which
is endowed with the remarkable property that

i2 = −1 ⇒ i = √−1.
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The solutions of the pair of equations previously introduced are thus

z = ±1,

z = ±i,

respectively. With some effort, one can show that by including i in our world we
can miraculously express the solution of any algebraic equation of one variable. If
we allow only real variables, this is no longer possible.

We can represent a general complex number z—which can be an arbitrary com-
bination of a real part x and an imaginary part proportional to i = √−1—in the
following alternative ways (note that one of these choices is actually a 2×2 matrix):

z = x + iy,

z = r cosθ + ir sinθ,

z =
[

x −y

y x

]
= r

[
cosθ −sinθ

sinθ cosθ

]
. (A.5)

We note that the complex identity

eiθ = cosθ + i sinθ

is one of the most fundamental equations in all of mathematics, and is often re-
ferred to as “Euler’s identity.” With this identity, we take the polar coordinate ex-
pression just given and reexpress it as

z = r cosθ + ir sinθ = reiθ .

The algebra of complex multiplication follows from any of the formulas shown
in Equation A.5, either by explicitly using i2 = −1 or from matrix multiplication.
Thus, for example,

z1z2 = (x1 + iy1)(x2 + iy2)

= (x1x2 − y1y2) + i(x1y2 + x2y1),

z1z2 = r1e
iθ1r2e

iθ2

= r1r2e
i(θ1+θ2)

= r1r2 cos(θ1 + θ2) + ir1r2 sin(θ1 + θ2),
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z1z2 =
[

x1 −y1
y1 x1

]
·
[

x2 −y2
y2 x2

]

=
[

x1x2 − y1y2 −(x1y2 + x2y1)

x1y2 + x2y1 x1x2 − y1y2

]
,

z1z2 =
[

x1 −y1
y1 x1

][
x2
y2

]

=
[

x1x2 − y1y2
x1y2 + x2y1

]
.

Thus, we see that all of these forms are exactly equivalent to the more abstract
statement that the complex multiplication algebra is defined by associating the complex
product of two pairs of real numbers with a third pair constructed from their ele-
ments as follows:

z1 � z2 = (x1, y1) � (x2, y2) =
[

x1
y1

]
�

[
x2
y2

]
= (x1x2 − y1y2, x1y2 + x2y1)

=
[

x1x2 − y1y2
x1y2 + x2y1

]
.



2D Complex Frames

The basic 2D rotation matrix changing the

B axes by an angle θ and its interpolation in
terms of a local frame on a curve, with
tangent vector T and normal vector N,
may be defined as

R2 =
[

cosθ −sinθ

sinθ cosθ

]
= [T̂ N̂]. (B.1)

A double-valued quaternion-like parameterization of the 2D frame may be written
in the form

R2 =
[
a2 − b2 −2ab

2ab a2 − b2

]
. (B.2)

We can easily verify that if (a, b) is a point on S1 embedded in R2 (i.e., a2 + b2

= 1) this is an orthonormal parameterization of the frame, and furthermore that θ

is related to (a, b) by the half-angle formulas:

a = cos
θ

2
, b = sin

θ

2
.

If desired, the redundant parameter can be eliminated locally by using projective
coordinates such as c = b/a = tan(θ/2) to get the unconstrained single-parameter
form

R2 = [T̂ N̂] = 1

1+ c2

[
1− c2 −2c

2c 1− c2

]
. (B.3)

429
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If we now define W1 = [
a −b
b a

]
and W2 = [−b −a

a −b

]
, and take derivatives with re-

spect to θ , we may write

T̂′ = 2W1 ·
[
a′

b′

]
, (B.4)

N̂′ = 2W2 ·
[
a′

b′

]
. (B.5)

Taking explicit derivatives of the trigonometric forms, we see that

a′ = −b

2

dθ

dt
, (B.6)

b′ = +a

2

dθ

dt
. (B.7)

If we allow proper-distance rescaling (e.g., to convert the time scale t to an arc-
length or proper-distance scale τ(t)), we need to introduce the following two no-
tions.

• Geometric curvature: This is the intrinsic, reparameterization-independent cur-
vature describing the bending of the curve in space, which is the same at
any point in space regardless of any locally chosen parameters or coordinate
system:

κ(t) = dθ

dt
.

• Parametric velocity: This is the intrinsic velocity or rate of change of the spatial
distance with respect to a particular parameterization:

v(t) = dτ(t)

dt
.

We may now express the right-hand side of the 2D frame equations as

T̂′ = W1 ·
[

0 −κ

+κ 0

]
·
[
a

b

]
= +vκN̂
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and

N̂′ = W2 ·
[

0 −κ

+κ 0

]
·
[
a

b

]
= −vκT̂.

Matching terms and multiplying by WT
i = W−1

i , we find that the equation[
a′

b′

]
= 1

2
v

[
0 −κ

+κ 0

]
·
[
a

b

]
(B.8)

contains both the frame equations T̂′ = +κN̂ and N̂′ = −κT̂, but is an intrinsically
simpler system with two variables and one constraint, replacing the classic system
with four variables and three constraints.

If we take the angular range 0→ 4π instead of 0→ 2π , we have a 2:1 quadratic
mapping from (a, b) to (T̂, N̂) because (a, b) ∼ (−a,−b) (see Equation B.2).
Equation B.8 is the square root of the frame equations (note the factor of (1/2)). The
curvature matrix is basically g−1dg, with g = W1, and is an element of the Lie
algebra for the 2D rotation spin group with the explicit form[

a b

−b a

][
a′ −b′

b′ a′

]
=
[
aa′ + bb′ −ab′ + ba′

ab′ − ba′ aa′ + bb′

]

=
[

0 − θ ′
2

+ θ ′
2 0

]
.

Here, aa′ + bb′ = 0 due to the constraint a2 + b2 = 1, and

ab′ − ba′ = cos
θ

2

[
θ ′

2
cos

θ

2

]
− sin

θ

2

[
−θ ′

2
sin

θ

2

]

= θ ′

2
,

giving the identification vκ = θ ′ when we pull out the factor of 1/2 (as in Equa-
tion B.8).

Alternatively, we may write

dθ

dt
= dτ

dt

dθ

dτ
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and

v(t) =
∣∣∣∣dx(t)

dt

∣∣∣∣,
v2 = ds2

dt2
= dx(t) · dx(t)

dt2
.

The actual group properties in (a, b) space follow from the multiplication rule
(easily deduced from the formulas for the trigonometric functions of sums of an-
gles)

(a, b) � (ã, b̃) = (aã − bb̃, ab̃ + bã),

which is in turn isomorphic to complex multiplication with (a, b) = a + ib = eiθ/2.
This is no surprise, in that SO(2) and its double-covering spin group are subgroups
of the corresponding 3D rotation groups, and complex numbers are a subset of the
quaternions.

An alternative approach to the entire 2D orientation system is in fact to represent
a particular frame by the unit-length complex variable z, where

z = (
cos(θ/2),sin(θ/2)

)= eiθ/2,

and the action of a rotation on the frame by

R(θ ′) · z = eiθ ′/2eiθ/2 = ei(θ ′+θ)/2.

The frame derivatives then become

Ṙ(θ) = i
θ̇

2
R(θ)

= iv
κ

2
R(θ).

Replacing commutative complex arithmetic by noncommutative quaternion arith-
metic leads almost immediately to hypotheses for the corresponding expressions
for 3D frames and rotations in terms of quaternions.



3D Quaternion Frames

We next outline the basic features for 3D

C orientation and quaternion frames, fol-
lowing the pattern now established in Ap-
pendix B for 2D orientation and complex
numbers. A quaternion frame is a unit
four-vector q = (q0, q1, q2, q3) = (q0,q)

with the following features.

C.1 UNIT NORM

If we define the inner product of two quaternions as

q · p = q0p0 + q1p1 + q2p2 + q3p3, (C.1)

the components of a quaternion frame obey the constraint

q · q = (q0)
2 + (q1)

2 + (q2)
2 + (q3)

2 = 1 (C.2)

and therefore lie on S3, the three-sphere embedded in 4D Euclidean space R4.

C.2 MULTIPLICATION RULE

The quaternion product of two quaternions p and q is defined to give a positive
cross product in the vector part, and may be written as

p � q = (p0q0 − p · q,p0q + q0p + p × q),
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or more explicitly in component form as

p � q =




[
p � q

]
0[

p � q
]
1[

p � q
]
2[

p � q
]
3


=




p0q0 − p1q1 − p2q2 − p3q3

p1q0 + p0q1 + p2q3 − p3q2

p2q0 + p0q2 + p3q1 − p1q3

p3q0 + p0q3 + p1q2 − p2q1


 . (C.3)

This rule is isomorphic to left-multiplication in the group SU(2), the double cover-
ing of the ordinary 3D rotation group SO(3). What is more useful for our purposes
is the fact that it is also isomorphic to multiplication by a member of the group of
orthogonal transformations in R4, given by

p � q = Pq =




p0 −p1 −p2 −p3

p1 p0 −p3 p2

p2 p3 p0 −p1

p3 −p2 p1 p0







q0

q1

q2

q3


 , (C.4)

where P is an orthogonal matrix, PT · P = I4, and detP = (p ·p)2 = 1. Because P
has only three free parameters, it does not itself include all 4D rotations. However,
we may recover the remaining three parameters by considering transformation by
right-multiplication to be an independent operation, resulting in a similar matrix
but with the signs in the lower right-hand off-diagonal 3× 3 section reversed:

q � p = P̄q =




p0 −p1 −p2 −p3

p1 p0 p3 −p2

p2 −p3 p0 p1

p3 p2 −p1 p0







q0

q1

q2

q3


 . (C.5)

This observation reflects the well-known decomposition of the 4D rotation group
into two 3D rotations (e.g., see Hanson [66]).

If two quaternions a and b are transformed by multiplying them by the same
quaternion p, their inner product a · b transforms as

(p � a) · (p � b) = (a · b)(p · p) (C.6)
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and is therefore invariant if p is a unit-quaternion frame representing a rotation.
This also follows trivially from the fact that the matrix P is orthogonal.

The inverse of a unit quaternion satisfies q � q−1 = (1,0) and is easily shown to
take the form q−1 = (q0,−q). Hence, like complex numbers quaternions permit
the inverse to be constructed by conjugation of the “imaginary” part:

q̄ = q−1 = (q0,−q).

The relative quaternion rotation t transforming between two quaternions may be
represented using the product

t = p � q−1 = (p0q0 + p · q, q0p − p0q − p × q).

This has the convenient property that the zeroth component is the invariant 4D
inner product p · q = cos(θ/2), where θ is the angle of the rotation in 3D space
needed to rotate along a geodesic from the frame denoted by q to that given by p.
In fact, the 4D inner product reduces to

p � q−1 + q � p−1 = (2q · p,0),

whereas the 3D dot product and cross product arise from the symmetric and anti-
symmetric sums of quaternions containing only a three-vector part:

p � q ≡ (0,p) � (0,q) = (−p · q,p × q),

p � q + q � p = −2p · q = (−2p · q,0),

p � q − q � p = 2p × q = (0,2p × q).

C.3 MAPPING TO 3D ROTATIONS

Every possible 3D rotation R (a 3 × 3 orthogonal matrix) can be constructed
from either of two related quaternions, q = (q0, q1, q2, q3) or −q = (−q0,−q1,

−q2,−q3), using the quadratic relationship Rq(V) = q � (0,V) � q−1, written
explicitly as

R =




q2
0 + q2

1 − q2
2 − q2

3 2q1q2 − 2q0q3 2q1q3 + 2q0q2

2q1q2 + 2q0q3 q2
0 − q2

1 + q2
2 − q2

3 2q2q3 − 2q0q1

2q1q3 − 2q0q2 2q2q3 + 2q0q1 q2
0 − q2

1 − q2
2 + q2

3


 . (C.7)
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The signs here result from choosing the left-multiplication convention RpRq(V) =
Rpq(V) = (p � q) � (0,V) � (p � q)−1. Algorithms for the inverse mapping from
R to q require careful singularity checking, and are detailed (for example) in Niel-
son [132], Shoemake [148], Shuster [153], and Shuster and Natanson [154].

The basic algorithm for finding the vector part of a quaternion follows from
examining

R − RT =




0 −4q0q3 4q0q2

+4q0q3 0 −4q0q1

−4q0q2 4q0q1 0




and searching for the largest value, and then normalizing to find n̂ from q. If θ ≈ 0,
one extracts the value of n̂ from the largest difference of the off-diagonal terms. The
rotation angle, even if zero or close to zero, follows reliably from the trace:

trR = 1+ 2 cosθ

= 1+ 2
(
cos2(θ/2) − sin2(θ/2)

)
= 4 cos2(θ/2) − 1,

(q0)
2 = cos2(θ/2) = 1

4
(trR + 1).

The analog of Equation C.7 of the projective coordinates for 2D rotations noted
in Equation B.3 is obtained by converting to the projective variable c = q/q0 =
tan(θ/2)n̂ and observing that

(q0)
2 = (q0)

2

(q0)2 + q · q
= 1

1+ q · q/(q0)2
= 1

1+ ‖c‖2
.

We then find the three-parameter form of the rotation matrix with no constraints:

R = 1

1+ ‖c‖2




1+ c2
1 − c2

2 − c2
3 2c1c2 − 2c3 2c1c3 + 2c2

2c1c2 + 2c3 1− c2
1 + c2

2 − c2
3 2c2c3 − 2c1

2c1c3 − 2c2 2c2c3 + 2c1 1− c2
1 − c2

2 + c2
3


 . (C.8)
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C.4 ROTATION CORRESPONDENCE

When we substitute q(θ, n̂) = (cosθ
2, n̂ sin θ

2) into Equation C.7, where n̂ · n̂ = 1
is a unit three-vector lying on the two-sphere S2, R(θ, n̂) becomes the standard
matrix for a rotation by θ in the plane perpendicular to n̂. The quadratic form
ensures that the two distinct unit quaternions q and −q in S3 correspond to the
same SO(3) rotation. The explicit form of R(θ, n̂) is

R(θ, n̂) =




c + (n1)
2(1− c) n1n2(1− c) − sn3 n3n1(1− c) + sn2

n1n2(1− c) + sn3 c + (n2)
2(1− c) n3n2(1− c) − sn1

n1n3(1− c) − sn2 n2n3(1− c) + sn1 c + (n3)
2(1− c)


 ,

(C.9)

where c = cosθ , s = sinθ , and n̂ · n̂ = 1. For example, choosing the quaternion
q = (cosθ

2,0,0,sin θ
2) yields the rotation matrix

R =




cosθ −sinθ 0

sinθ cosθ 0

0 0 1


 ,

producing a right-handed rotation of the basis vectors x̂ = (1,0,0) and ŷ =
(0,1,0) around the ẑ axis.

C.5 QUATERNION EXPONENTIAL FORM

Just as the 2D rotation implemented in terms of complex variables has an expo-
nential form, there is a way to write the 3D rotations in terms of exponentials
of quaternions. We can write the following exponential and expand it in a power
series to find a quaternion expression corresponding exactly to the complex ex-
pression for 2D rotations:

ei·n̂θ/2 = cos(θ/2) + i · n̂ sin(θ/2)

= q0 + i · q

= q0 + iq1 + jq2 + kq3.
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Here, the three components of i = (i, j, k) are the quaternion imaginaries of
Hamilton’s original notation (Chapter 1), obeying i2 = j2 = k2 = ijk = −1. As
a consequence, for each individual component—say just the i component with
q2 = q3 = 0—we recover precisely eiθ/2eiθ/2 = eiθ , and we see again that eiθ/2 is
literally the square root of the original complex representation of this 2D subset of
the 3D rotations.



Frame and Surface Evolution

D
D.1 QUATERNION FRAME EVOLUTION

Using Equation C.7, we can express all 3D coordinate frames in the form of quater-
nions. If we assume that the columns of Equation C.7 are the vectors (T̂, N̂1, N̂2),
respectively, one can explicitly express each vector in terms of the matrices

[W1] =




q0 q1 −q2 −q3

q3 q2 q1 q0

−q2 q3 −q0 q1


 , (D.1)

[W2] =




−q3 q2 q1 −q0

q0 −q1 q2 −q3

q1 q0 q3 q2


 , (D.2)

[W3] =




q2 q3 q0 q1

−q1 −q0 q3 q2

q0 −q1 −q2 q3


 , (D.3)
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with the result that T̂ = [W3] · [q], N̂1 = [W1] · [q], and N̂2 = [W2] · [q], where
[q] is the column vector with components (q0, q1, q2, q3). Differentiating each of
these expressions and substituting[

T̂′(t) N̂′
1(t) N̂′

2(t)
]

= [
T̂(t) N̂1(t) N̂2(t)

]
v(t)




0 −ky(t) +kx(t)

+ky(t) 0 −kz(t)

−kx(t) +kz(t) 0


 , (D.4)

one finds that factors of the matrices [Wi] can be pulled out and a single universal
equation linear in the quaternions remains:


q ′

0

q ′
1

q ′
2

q ′
3


= v

2




0 −kx −ky −kz

+kx 0 −kz +ky

+ky +kz 0 −kx

+kz −ky +kx 0


 ·




q0

q1

q2

q3


 . (D.5)

The first occurrence of this equation we are aware of is found in the work of
Tait [162]. Here, v(t) = ‖x′(t)‖ is the scalar magnitude of the curve derivative
if a unit-speed parameterization is not being used for the curve. One may consider
Equation D.5 in some sense to be the square root of the 3D frame equations. Alterna-
tively, we can deduce directly from Rq(V) = q � (0,V) � q−1, dq = q � (q−1 � dq)

and (q−1 � dq) = −(dq−1 � q) that the 3D vector equations are equivalent to the
quaternion form

q ′ = 1

2
vq � (0, kx, ky, kz) = 1

2
vq � (0,k), (D.6)

(
q−1)′ = −1

2
v(0,k) � q−1, (D.7)

where k = 2(q0 dq − qdq0 − q × dq), or, explicitly,

k0 = 2(dqxqx + dqyqy + dqzqz + dq0q0) = 0,

kx = 2(q0dqx − qxdq0 − qydqz + qzdqy),

ky = 2(q0dqy − qydq0 − qzdqx + qxdqz),
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kz = 2(q0dqz − qzdq0 − qxdqy + qydqx).

Here, k0 = 0 is the diagonal value in Equation D.5. The quaternion approach to the
frame equations exemplified by Equation D.5 (or Equation D.6) has the following
key properties.

• q(t) · q ′(t) = 0 by construction. Thus, all unit quaternions remain unit
quaternions as they evolve by this equation.

• The number of equations has been reduced from nine coupled equations
with six orthonormality constraints to four coupled equations incorporat-
ing a single constraint that keeps the solution vector confined to the three-
sphere.

D.2 QUATERNION SURFACE EVOLUTION

The same set of equations can be considered to work on curves that are paths in a
surface, thus also permitting a quaternion equivalent to the Weingarten equations
for the classical differential geometry of surfaces. Explicit forms permitting the
recovery of the classical equations follow from reexpressing those equations,

DUN̂ × DVN̂ = K(U × V), (D.8)

DUN̂ × V + U × DVN̂ = 2H(U × V), (D.9)

with U = xu · ∇ and V = xv · ∇, in quaternion form.
The Weingarten curvature equation is essentially the cross product of two deriv-

atives of the form of Equations D.6 and D.7. Because the cross product is obtainable
from a quaternion multiplication of two pure vectors, we can find our way to the
formula by replacing the parameter t on a curve by a pair of parameters (u, v)

corresponding to the motion of a frame on a surface along two separate curves.
When the frame equations for the two curves are multiplied together in the fol-
lowing way, the cross product needed to derive the Weingarten equations appears
immediately.

qu � q−1
v = −1

4
q � (0,a) � (0,b) � q−1

= −1

4
q � (−a · b,a × b) � q−1
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= −1

4

[−a · bÎ + (a × b)xT̂1 + (a × b)yT̂2 + (a × b)zN̂
]
. (D.10)

Here, Equation 21.12 defines the quaternion frame vectors—N̂ ≡ (0, N̂) = q �

(0, ẑ) � q−1, and so on—and we have introduced the identity element Î = (1,0) =
q � (1,0) � q−1 as a fourth quaternion basis vector. The mean curvature equation
has only one derivative and a free vector field. An expression producing the right
combination of terms is

T̂1 � q � q−1
u + T̂2 � q � q−1

v

= −1

2
q � (−x̂ · a − ŷ · b, x̂ × a + ŷ × b) � q−1

= −1

2

[−(ax + by)Î + bzT̂1 − azT̂2 + (ay − bx)N̂
]
. (D.11)

Projecting out the N̂ component of these equations recovers the scalar and mean
curvatures:

K = det

[
+ay(u, v) −ax(u, v)

+by(u, v) −bx(u, v)

]
= axby − aybx,

H = 1

2
tr

[
+ay(u, v) −ax(u, v)

+by(u, v) −bx(u, v)

]
= 1

2
(ay − bx).



Quaternion Survival Kit

This appendix summarizes the essential

E quaternion utilities (Tables E.1 through
E.7) needed to implement many of the
concepts presented in the book. Selected
programs are duplicated in the text as ap-
plicable.
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double MIN_NORM = 1.0e-7;

void
QuaternionProduct
(double p0, double p1, double p2, double p3,
double q0, double q1, double q2, double q3,
double *Q0, double *Q1, double *Q2, double *Q3)
{ *Q0 = p0*q0 - p1*q1 - p2*q2 - p3*q3;

*Q1 = p1*q0 + p0*q1 + p2*q3 - p3*q2;
*Q2 = p2*q0 + p0*q2 + p3*q1 - p1*q3;
*Q3 = p3*q0 + p0*q3 + p1*q2 - p2*q1;

}

double
QuaternionDot
(double p0, double p1, double p2, double p3,
double q0, double q1, double q2, double q3,
{return(p0*q0 + p1*q1 + p2*q2 + p3*q3); }

void
QuaternionConjugate
(double q0, double q1, double q2, double q3,
double *Q0, double *Q1, double *Q2, double *Q3)
{ *Q0 = q0;

*Q1 = -q1;
*Q2 = -q2;
*Q3 = -q3;

}

void
NormalizeQuaternion
(double *q0, double *q1, double *q2, double *q3)
{double denom;
denom =

sqrt((*q0)*(*q0) + (*q1)*(*q1) + (*q2)*(*q2) + (*q3)*(*q3));
if(denom > MIN_NORM) { *q0 = (*q0)/denom;

*q1 = (*q1)/denom;
*q2 = (*q2)/denom;
*q3 = (*q3)/denom; }

}

TABLE E.1 Elementary C code implementing the quaternion operations of Equa-
tions 4.1 through 4.3, and forcing unit magnitude as required by Equation 4.4. In this
straight C-coding method, we return multiple values as results only through pointers such
as double *Q0.
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typedef struct tag_Quat { double w, x, y, z; } Quat;

typedef struct tag_Point { double x, y, z; } Point;

void QuatMult(Quat *q1, Quat *q2, Quat *res)
{res->w =

q1->w * q2->w - q1->x * q2->x - q1->y * q2->y - q1->z * q2->z;
res->x =
q1->w * q2->x + q1->x * q2->w + q1->y * q2->z - q1->z * q2->y;
res->y =
q1->w * q2->y + q1->y * q2->w + q1->z * q2->x - q1->x * q2->z;
res->z =
q1->w * q2->z + q1->z * q2->w + q1->x * q2->y - q1->y * q2->x;

}

double QuatDot(Quat *q1, Quat *q2)
{return(
q1->w * q2->w + q1->x * q2->x + q1->y * q2->y + q1->z * q2->z);

}

void ConjQuat(Quat *q, Quat *qc)
{ qc->w = q->w;

qc->x = - q->x; qc->y = - q->y; qc->z = - q->z; }

double MIN_NORM = 1.0e-7;

void UnitQuat(Quat *v)
{double denom =

sqrt( v->w*v->w + v->x*v->x + v->y*v->y + v->z*v->z );
if(denom > MIN_NORM){ v->x /= denom;

v->y /= denom;
v->z /= denom;
v->w /= denom; } }

double ScalarQuat(Quat *q) { return (q->w); }

void VectorQuat(Quat *q, Point *v) {
v->x = q->x;
v->y = q->y;
v->z = q->z; }

TABLE E.2 An alternative quaternion code kit corresponding to Equations 4.1
through 4.4. The use of structures and pointers reduces the overhead for transmission
of argument values compared to the version in Table E.1.
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MatToQuat(double m[4][4], QUAT * quat)
{

double tr, s, q[4];
int i, j, k;

int nxt[3] = {1, 2, 0};

tr = m[0][0] + m[1][1] + m[2][2];

/* check the diagonal */
if (tr > 0.0) {

s = sqrt (tr + 1.0);
quat->w = s / 2.0;
s = 0.5 / s;
quat->x = (m[1][2] - m[2][1]) * s;
quat->y = (m[2][0] - m[0][2]) * s;
quat->z = (m[0][1] - m[1][0]) * s;

} else {
/* diagonal is negative */
i = 0;
if (m[1][1] > m[0][0]) i = 1;
if (m[2][2] > m[i][i]) i = 2;
j = nxt[i];
k = nxt[j];

s = sqrt ((m[i][i] - (m[j][j] + m[k][k])) + 1.0);

q[i] = s * 0.5;

if (s != 0.0) s = 0.5 / s;

q[3] = (m[j][k] - m[k][j]) * s;
q[j] = (m[i][j] + m[j][i]) * s;
q[k] = (m[i][k] + m[k][i]) * s;

quat->x = q[0];
quat->y = q[1];
quat->z = q[2];
quat->w = q[3];

}
}

TABLE E.3 Basic C programs for manipulating quaternions, part I.
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QuatToMatrix(QUAT * quat, double m[4][4])
{

double wx, wy, wz, xx, yy, yz, xy, xz, zz, x2, y2, z2;

/* calculate coefficients */

x2 = quat->x + quat->x;
y2 = quat->y + quat->y;
z2 = quat->z + quat->z;
xx = quat->x * x2; xy = quat->x * y2; xz = quat->x * z2;
yy = quat->y * y2; yz = quat->y * z2; zz = quat->z * z2;
wx = quat->w * x2; wy = quat->w * y2; wz = quat->w * z2;

m[0][0] = 1.0 - (yy + zz); m[0][1] = xy - wz;
m[0][2] = xz + wy; m[0][3] = 0.0;

m[1][0] = xy + wz; m[1][1] = 1.0 - (xx + zz);
m[1][2] = yz - wx; m[1][3] = 0.0;

m[2][0] = xz - wy; m[2][1] = yz + wx;
m[2][2] = 1.0 - (xx + yy); m[2][3] = 0.0;

m[3][0] = 0; m[3][1] = 0;
m[3][2] = 0; m[3][3] = 1;

}

TABLE E.4 Basic C programs for manipulating quaternions, part II.
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/* Adapted from Graphics Gems Module: GLquat.c */
void
slerp(Quat *q1, Quat *q2, double alpha, int spin, Quat *qOut)
{

double beta; // complementary interp parameter
double theta; // angle between A and B
double sin_t, cos_t; // sine, cosine of theta
double phi; // theta plus spins
int bflip; // use negation of B?

// cosine theta = dot product of A and B
cos_t = QuatDot(q1,q2);

// if B is on opposite hemisphere from A, use -B instead
if (cos_t < 0.0) {

cos_t = -cos_t;
bflip = 1;

} else
bflip = 0;

/* if B is (within precision limits) the same as A,
* just linear interpolate between A and B.
* Can’t do spins, since we don’t know what direction to spin.
*/
if (1.0 - cos_t < 1e-7) {

beta = 1.0 - alpha;
} else { /* normal case */

theta = acos(cos_t);
phi = theta + spin * M_PI;
sin_t = sin(theta);
beta = sin(theta - alpha*phi) / sin_t;
alpha = sin(alpha*phi) / sin_t;

}

if (bflip)
alpha = -alpha;

/* interpolate */
qOut->x = beta*q1->x + alpha*q2->x;
qOut->y = beta*q1->y + alpha*q2->y;
qOut->z = beta*q1->z + alpha*q2->z;
qOut->w = beta*q1->w + alpha*q2->w;

UnitQuat(qOut);
}

TABLE E.5 Basic C programs for quaternion SLERPs, part I.
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void
CatmullQuat(Quat *q00, Quat *q01, Quat *q02, Quat *q03,

double t, Quat *qOut)
{ Quat q10,q11,q12,q20,q21;

slerp( q00, q01, t+1, 0, &q10 );
slerp( q01, q02, t, 0, &q11 );
slerp( q02, q03, t-1, 0, &q12 );

slerp( &q10, &q11,(t+1)/2, 0, &q20 );
slerp( &q11, &q12, t/2, 0, &q21 );

slerp( &q20, &q21, t, 0, qOut );
}

void
BezierQuat(Quat *q00, Quat *q01, Quat *q02, Quat *q03,

double t, Quat *qOut)
{ Quat q10,q11,q12,q20,q21;

slerp( q00, q01, t, 0, &q10 );
slerp( q01, q02, t, 0, &q11 );
slerp( q02, q03, t, 0, &q12 );

slerp( &q10, &q11, t, 0, &q20 );
slerp( &q11, &q12, t, 0, &q21 );

slerp( &q20, &q21, t, 0, qOut );
}

void
UniformBSplineQuat(Quat *q00, Quat *q01, Quat *q02, Quat *q03,

double t, Quat *qOut)
{ Quat q10,q11,q12,q20,q21;

slerp( q00, q01, (t+2.0)/3.0, 0, &q10 );
slerp( q01, q02, (t+1.0)/3.0, 0, &q11 );
slerp( q02, q03, t/3.0, 0, &q12 );

slerp( &q10, &q11, (t+1.0)/2.0, 0, &q20 );
slerp( &q11, &q12, t/2.0, 0, &q21 );

slerp( &q20, &q21, t, 0,qOut);
}

TABLE E.6 Basic C programs for quaternion SLERPs, part II.
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qprod[q_List,p_List] :=
{q[[1]]*p[[1]] - q[[2]]*p[[2]] - q[[3]]*p[[3]] - q[[4]]*p[[4]],
q[[1]]*p[[2]] + q[[2]]*p[[1]] + q[[3]]*p[[4]] - q[[4]]*p[[3]],
q[[1]]*p[[3]] + q[[3]]*p[[1]] + q[[4]]*p[[2]] - q[[2]]*p[[4]],
q[[1]]*p[[4]] + q[[4]]*p[[1]] + q[[2]]*p[[3]] - q[[3]]*p[[2]]}

/; Length[q] == Length[p] == 4

QuatToRot[q_List] :=
Module[{q0= q[[1]], q1=q[[2]], q2 = q[[3]], q3 = q[[4]]},
Module[{d23 = 2 q2 q3, d1 = 2 q0 q1,

d31 = 2 q3 q1, d2 = 2 q0 q2,
d12 = 2 q1 q2, d3 = 2 q0 q3,
q0sq = q0^2, q1sq = q1^2, q2sq = q2^2, q3sq = q3^2},

{{q0sq + q1sq - q2sq - q3sq, d12 - d3, d31 + d2},
{d12 + d3, q0sq - q1sq + q2sq - q3sq, d23 - d1},
{d31 - d2, d23 + d1, q0sq - q1sq - q2sq + q3sq}} ]]

makeQRot[angle_:0, n_List:{0,0,1}] :=
Module[{c = Cos[angle/2], s = Sin[angle/2]},
{c, n[[1]]*s, n[[2]]*s, n[[3]]*s}//N]

RotToQuat[mat_List] := Module[{q0,q1,q2,q3,trace,s,t1,t2,t3},
trace = Sum[mat[[i,i]],{i,1,3}];
If[trace > 0, s = Sqrt[trace + 1.0]; q0 = s/2; s = 1/(2 s);

q1 = (mat[[3,2]] - mat[[2,3]])*s;
q2 = (mat[[1,3]] - mat[[3,1]])*s;
q3 = (mat[[2,1]] - mat[[1,2]])*s,
If[(mat[[1,1]] >= mat[[2,2]]) && (mat[[1,1]] >= mat[[3,3]]),

(* i=0, j = 1, k = 2 *)
s = Sqrt[mat[[1,1]] - mat[[2,2]] - mat[[3,3]] + 1.0];
q1 = s/2; s = 1/(2 s);
q0 = (mat[[3,2]] - mat[[2,3]])*s;
q2 = (mat[[2,1]] + mat[[1,2]])*s;
q3 = (mat[[1,3]] + mat[[3,1]])*s,

If[(mat[[1,1]] < mat[[2,2]]) && (mat[[1,1]] >= mat[[3,3]]),
(* i=1, j = 2, k = 0 *)

s = Sqrt[mat[[2,2]] - mat[[3,3]] - mat[[1,1]] + 1.0];
q2 = s/2; s = 1/(2 s);
q0 = (mat[[1,3]] - mat[[3,1]])*s;
q3 = (mat[[3,2]] + mat[[2,3]])*s;
q1 = (mat[[2,1]] + mat[[1,2]])*s,

(* Else: i=2, j = 0, k = 1
(mat[[1,1]] < mat[[2,2]]) && (mat[[1,1]] < mat[[3,3]]) *)

s = Sqrt[mat[[3,3]] - mat[[1,1]] - mat[[2,2]] + 1.0];
q3 = s/2; s = 1/(2 s);
q0 = (mat[[2,1]] - mat[[1,2]])*s;
q1 = (mat[[1,3]] + mat[[3,1]])*s;
q2 = (mat[[3,2]] + mat[[2,3]])*s]]];

{q0,q1,q2,q3}/Norm[{q0,q1,q2,q3}]

TABLE E.7 Basic Mathematica programs for manipulating quaternions.



Quaternion Methods

This appendix presents a family of miscel-

F laneous algorithms and methods we have
found useful from time to time.

F.1 QUATERNION LOGARITHMS AND EXPONENTIALS

If we parameterize a quaternion in a simplified way (with 0� θ < 2π) to cover the
entire S3 as q(θ, n̂) = (cosθ,sinθ n̂), we can show using the quaternion algebra
that this parameterization of S3 follows from the exponential series

exp(0, θ n̂) = (cosθ,sinθ n̂).

The logarithm of a structure is the object that, when exponentiated, produces the
generic structure. Hence, we must have

logq = log(cosθ,sinθ n̂) = (0, θ n̂).

Raising a quaternion to a power is defined via the exponential power series as well:

qt = et logq = e(0,tθ n̂)

= (costθ, n̂ sintθ).

451
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F.2 THE QUATERNION SQUARE ROOT TRICK

Quaternion square roots are often needed in various calculations, and there are
several approaches of varying elegance. The most obvious is simply to express the
quaternion in eigenvector coordinates and take half the total rotation:

q(θ, n̂) =
(

cosθ
2, n̂ sin θ

2

)
,

p = √
q iff p � p = q,

p =
(

cosθ
4, n̂ sin θ

4

)
.

However, there is also a more elegant algebraic approach, motivated by the obser-
vation that if x is the cosine of an angle, the cosine of 1/2 the angle is

y =
√

1+ x√
2

= 1+ x√
2(1+ x)

.

Letting q = (q0,q), and noting the relation

(q0)
2 = 1− q · q,

we can use the half-angle formula to motivate an algebraic solution to p � p = q

of the form

p = 1+ q√
2(1+ q0)

,

where 1+ q = (1+ q0, qx, qy, qz) = (1+ q0,q). Because

(1+ q) � (1+ q) = (
(1+ q0)

2 − q · q,2(1+ q0)q
)

= (
2q0(1+ q0),2(1+ q0)q

)
= 2(1+ q0)q,

the identity p � p = q follows at once.
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F.3 THE â → b̂ FORMULA SIMPLIFIED

We frequently use the knowledge that a unit vector (direction) â can be aligned
with another unit vector (direction) b̂ by applying the rotation matrix R(θ, n̂)

with

cosθ = â · b̂,

sinθ = ‖â × b̂‖,

n̂ = â × b̂

‖â × b̂‖ = â × b̂
sinθ

.

(We can normally restrict 0< θ < π so sinθ > 0.)
The corresponding quaternion

r(â, b̂) =
(

cos
θ

2
, n̂ sin

θ

2

)

can be simplified if we let z = cosθ = â · b̂ and recall that

cos
θ

2
=
√

1+ z

2
,

sin
θ

2
=
√

1− z

2
,

sinθ = 2 cos
θ

2
sin

θ

2
.

Then

r(â, b̂) =
(

cos
θ

2
, â × b̂

sin θ
2

2 cosθ
2 sin θ

2

)

=
(

cos
θ

2
, â × b̂

1

2 cosθ
2

)

=
(√

1+ z

2
,

√
1

2(1+ z)
â × b̂

)
.
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F.4 GRAM–SCHMIDT SPHERICAL INTERPOLATION

To find an interpolated unit vector that is guaranteed to remain on the sphere, and
thus preserve its length of unity, we first assume that one vector (say, q0) is the
starting point of the interpolation. To apply a standard rotation formula using a
rigid length-preserving orthogonal transformation in the plane of q0 and q1, we
need a unit vector orthogonal to q0 that contains some portion of the direction q1.
Defining

q′
1 = q1 − q0(q0 · q1)

|q1 − q0(q0 · q1)| ,
we see that by construction

q′
1 · q0 = 0,

q′
1 · q′

1 = 1,

where we of course continue to require q0 · q0 = 1. The denominator of this ex-
pression has the curious property that

∣∣q1 − q0(q0 · q1)
∣∣2 = 1− 2 cos2 φ + cos2 φ

= sin2 φ,

where we define cosφ = q0 · q1. Note that because we have imposed 0 � φ < π ,
the sine is always nonnegative, and we can replace |sinφ| by sinφ, which we will
find convenient in the following. When φ = 0, there is no interpolation to be done
in any event.

Referring to the graphical construction shown in Figure 10.6, we next rephrase
the unit-length-preserving rotation using the angle tφ—where 0 � t � 1 takes us
from a unit vector aligned with q0 at t = 0 to one aligned with q1 at t = 1. Our
new orthonormal basis can now be used to express the interpolation as:

q(t) = q0 costφ + q′
1 sintφ

= q0 costφ + (q1 − q0 cosφ)
sintφ

sinφ

= q0
costφ sinφ − sintφ cosφ

sinφ
+ q1

sintφ

sinφ
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= q0
sin(1− t)φ

sinφ
+ q1

sintφ

sinφ
. (F.1)

This is the SLERP formula, which guarantees that

q(t) · q(t) ≡ 1

by construction. The SLERP interpolator rotates one unit vector into another, keep-
ing the intermediate vector in the mutual plane of the two limiting vectors while
guaranteeing that the interpolated vector preserves its unit length throughout and
therefore always remains on the sphere. The formula is true in any dimension whatso-
ever because it depends only on the local 2D plane determined by the two limiting
vectors.

F.5 DIRECT SOLUTION FOR SPHERICAL
INTERPOLATION

Let q be a unit vector on a sphere. Assume that q is located partway between
two other unit vectors q0 and q1, with the location defined by some constants c0
and c1:

q = c0q0 + c1q1. (F.2)

As shown in Figure 10.7, q must partition the angle φ between q0 and q1
(where cosφ = q0 · q1) into two subangles, φ0 and φ1, where cosφ0 = q · q1
and cosφ1 = q · q0 and φ = φ0 + φ1. The labeling is chosen so that φ0 = φ

makes q = q0, and φ1 = φ makes q = q1. No matter what the dimension of
the unit-length qs, taking two dot products reduces this to a solvable linear sys-
tem:

q · q0 = cosφ1 = c0 + c1 cosφ,

q · q1 = cosφ0 = c0 cosφ + c1.

Using Cramer’s rule, we immediately find c0 and c1:

c0 =
det

[
cosφ1 cosφ
cosφ0 1

]
det

[
1 cosφ

cosφ 1

]
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= cosφ1 − cosφ0 cosφ

1− cos2 φ
,

c1 =
det

[
1 cosφ1

cosφ cosφ0

]
det

[
1 cosφ

cosφ 1

]
= cosφ0 − cosφ1 cosφ

1− cos2 φ
.

Making the substitution φ = φ0 + φ1, we find

c0 = (cosφ1 sinφ0 + cosφ0 sinφ1)sinφ0

sin2 φ

= sinφ0

sinφ

= sint0φ

sinφ
,

c1 = (cosφ1 sinφ0 + cosφ0 sinφ1)sinφ1

sin2 φ

= sinφ1

sinφ

= sint1φ

sinφ
,

where we have defined t0 = φ0/φ and t1 = φ1/φ to obtain a partition of unity,
t0 + t1 = 1. Choosing, for example, t0 = 1− t and t1 = t , we recover the standard
SLERP formula:

q(t) = q0
sin(1− t)φ

sinφ
+ q1

sintφ

sinφ
. (F.3)

Thus, the SLERP formula can be verified in a number of ways.
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F.6 CONVERTING LINEAR ALGEBRA TO QUATERNION
ALGEBRA

The equation describing a linear Euclidean interpolation

x(t) = a + t (b − a) (F.4)

transforms into the quaternion relation

q(t) = a
(
a−1b

)t
(F.5)

when we apply the following simple rules.

• Convert sums to products.
• Convert minus signs to products with the inverse.
• Convert multiplicative scale factors to exponents.

Because quaternions are not necessarily commutative, however, one must be careful
about the order of multiplication. The order given in Equation F.5 will generally
provide consistent results.

F.7 USEFUL TENSOR METHODS AND IDENTITIES

At various points in the text, we make use of some elegant formulas from linear
algebra that are commonly used in mathematics and physics—for example, for
group theoretical calculations, Maxwell’s equations, and so on—but less often seen
in the computer science literature. Here, we tabulate a few of these objects and
some useful properties.

F . 7 . 1 E I N S T E I N S U M M AT I O N C O N V E N T I O N

A shortcut attributed to Albert Einstein eliminates the need for large numbers of
awkward summation symbols in complex tensor equations. It is rumored that Ein-
stein was encouraged by his printer’s typesetter, who wanted to simplify his job
for Einstein’s extremely complex mathematical formulas. The convention is simple:
unless otherwise noted, any repeated index is assumed to be summed over its allowed values. Thus, we
have
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AiB
i ≡

3∑
i=0

AiB
i,

AijAik ≡
3∑

i=0

AijAik,

AijkB
imn ≡

3∑
i=0

AijkB
imn,

AijkB
ijn ≡

3∑
i=0

3∑
j=0

AijkB
ijn,

AijkB
ijk ≡

3∑
i=0

3∑
j=0

3∑
k=0

AijkB
ijn,

and so on.

F . 7 . 2 K RO N E C K E R D E LTA

The Kronecker delta, δij , is essentially a fancy way of writing the identity matrix as

δij = 0 if i �= j,

δij = 1 if i = j

or

Identity Matrixij = δij .

F . 7 . 3 L E V I - C I V I TA S Y M B O L

The Levi-Civita symbol—εij , εijk , εijkl , and so on—is totally antisymmetric in
its indices, and although it appears to be a Euclidean tensor in general it behaves
differently under reflections than a tensor does. It is in fact a pseudotensor, and thus its
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alternate name is “the totally antisymmetric pseudotensor.” The Levi-Civita symbol
is defined as follows.

εijk... = 0 [If any two indices are equal],

εijk... = +1 [If the indices are in cyclic order],

εijk... = −1 [If the indices are in anticyclic order].

One of the many useful properties of the Levi-Civita symbol is that it can be used
to write down an algebraic equation for a determinant. For example, using the
Einstein summation convention we see that

det

[
a11 a12
a21 a22

]
= 1

2
εilεjmaij alm

= a11a22 − a12a21

for any 2D matrix. In general, the Levi-Civita symbol can be used the same way for
any dimension, and thus

det[A] = 1

N !εi1i2...iN εj1j2...jN
. . . εn1n2...nN

ai1j1...n1ai2j2...n2 . . . aiN jN ...nN
,

where there are N factors of the matrix elements a... and of the Levi-Civita symbols.
Finally, partial sums of Levi-Civita symbols result in determinants of Kronecker

deltas, giving rise to a generalization of some familiar identities from 3D linear
algebra such as

(A × B) · (C × D) = A · C − B · D,

which follows from the two definitions

(A × B)i = εijkAj Bk,

εijkεilm = det

[
δjl δjm

δkl δkm

]
.

All possible relations of this type follow from the generic form

εi1i2...iN εj1j2...jN
= det




δi1j1 δi1j2 . . . δi1jN

δi2j1 δi2j2 . . . δi2jN

...
...

. . .
...

δiN j1 δiN j2 . . . δiN jN


 .
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Quaternion Path Optimization
Using Surface Evolver

The Surface Evolver system (Brakke [22])

G is a very sophisticated optimization pack-
age that has been in active use by the sci-
entific and mathematics community for
well over a decade and is still actively
maintained by its developer, Ken Brakke,
at Susquehanna University. The Surface
Evolver can handle a number of issues
specifically related to quaternion opti-

mization. The symmetry group option

symmetry_group "central_symmetry"

identifies the quaternion q with −q if desired during the variation to prevent re-
flected double traversals (such as those depicted in Figure 22.5) from varying in-
dependently. The system also supports metrics such as the pull-back metric on the
sphere

ds2 =
∑
i,j

dxi dxj r−4(r2δij − xixj

)
to compute distances directly on the three-sphere. Computation using this met-
ric, however, is very slow. Thus, in practice we have used the Euclidean R4 chord
approximation, which works quite well for closely spaced samples and is much
faster. Yet another alternative proposed by Brakke (private communication) is to
use periodic coordinates on S3 of the form

(x1 = sinr coss, x2 = sinr sins, x3 = cosr cost, x4 = cosr sint)
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and to vary directly on an R3 space with (x = r, y = s, z = t) and the metric (see
Equation 28.7): 


1 0 0

0 sin2 x 0

0 0 cos2 x


 .

To use the Evolver for large numbers of “sliding ring” sample points on a curve,
it may be necessary to locate the parameter #define BDRYMAX 20 in skeleton.h,
set it to the desired (large) value, and recompile. One must also remember to set
space_dimension 4 when working with the quaternion hypersphere S3 in R4. To
set up the constraint equations, it is necessary to write a piece of code (similar to
the following Mathematica fragment) to define the boundary constraints for each
fixed vector (tangent or normal) and the chosen initial quaternion frame.

Do[ringeqn = Qprod[makeQfromVec[veclist[[i]],P1],
q0list[[i]]]//Chop;

Write[file, "boundary ",i," parameters 1"];
Write[file, "x1: ", CForm[ ringeqn[[2]]]];
Write[file, "x2: ", CForm[ ringeqn[[3]]]];
Write[file, "x3: ", CForm[ ringeqn[[4]]]];
Write[file, "x4: ", CForm[ ringeqn[[1]]]],
{i,1,Length[veclist]}]

Note that because the Surface Evolver displays only the first three coordinates we
have moved the scalar quaternion to the end. The Surface Evolver will then display
our preferred projection automatically.



Quaternion Frame Integration

Classical differential geometry texts pres-

H ent a time-honored method of finding
the shape of a curve given a specification
for its curvature and torsion throughout
the curve along with its initial conditions.
For example, an excellent modern treat-
ment that is very compatible with the phi-
losophy of this book, and especially the
Mathematica-friendly computational phi-

losophy we often exploit for visualization, is that of Alfred Gray [61].
Table H.1 shows the code for the traditional method of solving the differential

equation, as implemented by Gray. Using the quaternion frame methods of Chap-
ter 20, we are led to the much more compact program (shown in Table H.2), which
is also slightly more general in that we accommodate a wider class of possible frame
transport definitions. Accounting for a change-of-sign convention between the two
approaches, the results shown in Figure H.1 are exactly identical to the results pub-
lished in Gray’s book. The following are calls to the quaternion frame program
shown in Table H.2.

qplot3dx[{-Abs[#1] &, 0.3 &, 0 &},
{0, {0, 0, 0}, {1, 0, 0, 0}}, {-10, 10},
Axes -> None, AxesLabel -> {x, y, z}, PlotPoints
-> 500]

qplot3dx[{-1.3 &, .5 Sin[#1] &, 0 &},
{0, {0, 0, 0}, {1, 0, 0, 0}}, {0, 4 Pi},
Axes -> None, AxesLabel -> {x, y, z}, PlotPoints ->
200].
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plotintrinsic3d[{kk_,tt_},
{a_:0,{p1_:0,p2_:0,p3_:0},

{q1_:1,q2_:0,q3_:0},
{r1_:0,r2_:1,r3_:0}},
{smin_:10,smax_:10},opts___] :=

ParametricPlot3D[Module[
{x1,x2,x3,t1,t2,t3,n1,n2,n3,b1,b2,b3},
{x1[s],x2[s],x3[s]} /.

NDSolve[{x1’[ss] == t1[ss],
x2’[ss] == t2[ss],
x3’[ss] == t3[ss],
t1’[ss] == kk[ss] n1[ss],
t2’[ss] == kk[ss] n2[ss],
t3’[ss] == kk[ss] n3[ss],
n1’[ss] == -kk[ss] t1[ss] + tt[ss] b1[ss],
n2’[ss] == -kk[ss] t2[ss] + tt[ss] b2[ss],
n3’[ss] == -kk[ss] t3[ss] + tt[ss] b3[ss],
b1’[ss] == -tt[ss] n1[ss],
b2’[ss] == -tt[ss] n2[ss],
b3’[ss] == -tt[ss] n3[ss],
x1[a] == p1, x2[a] == p2, x3[a] == p3,
t1[a] == q1, t2[a] == q2, t3[a] == q3,
n1[a] == r1, n2[a] == r2, n3[a] == r3,
b1[a] == q2*r3 - q3*r2,
b2[a] == q3*r1 - q1*r3,
b3[a] == q1*r2 - q2*r1},

{x1,x2,x3,t1,t2,t3,n1,n2,n3,b1,b2,b3},
{ss,smin,smax}]]//Evaluate,
{s,smin,smax},opts];

TABLE H.1 The Mathematica program plotintrinsic3d[curvature,
torsion, initial conditions] used in Gray [61] to plot a curve given its
initial conditions and curvatures as input parameters.
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qplot3dx[{k1_, k2_, k3_},
{sz_:0, {xz1_:0, xz2_:0, xz3_:0},
{qz0_:1, qz1_:0, qz2_:0, qz3_:0}},
{smin_:0, smax_:1},
opts___] :=

ParametricPlot3D[
Evaluate[

Module[{x1, x2, x3, q0, q1, q2, q3},
{x1[s], x2[s], x3[s]} /.

NDSolve[
{ q0’[ss] ==

(1/2)*(-k2[ss] q1[ss] - k3[ss] q2[ss] + k1[ss] q3[ss]),
q1’[ss] ==

(1/2)*(k2[ss] q0[ss] - k1[ss] q2[ss] + k3[ss] q3[ss]),
q2’[ss] ==

(1/2)*(k3[ss] q0[ss] + k1[ss] q1[ss] + k2[ss] q3[ss]),
q3’[ss] ==

(1/2)*(-k1[ss] q0[ss] - k3[ss] q1[ss] - k2[ss] q2[ss]),
x1’[ss] == q0[ss]^2 + q1[ss]^2 - q2[ss]^2 - q3[ss]^2,
x2’[ss] == 2 q1[ss] q2[ss] + 2 q0[ss] q3[ss],
x3’[ss] == 2 q3[ss] q1[ss] - 2 q0[ss] q2[ss],
x1[sz] == xz1, x2[sz] == xz2, x3[sz] == xz3,
q0[sz] == qz0, q1[sz] == qz1, q2[sz] == qz2, q3[sz] == qz3},
{x1, x2, x3, q0, q1, q2, q3},
{ss, smin, smax} ] ] ],
{s, smin, smax}, opts]

TABLE H.2 The Mathematica quaternion frame program that is exactly equivalent
to the much more complex standard frame method implemented in Table H.1.
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(a) (b)

FIGURE H.1 The results of the calls to the quaternion frame program in Table H.2 generate
exactly the same results as those shown in Gray [61], using the program in Table H.1.



Hyperspherical Geometry

Our quaternion analysis has made essen-

I tial use of the properties of the three-
sphere S3 and its spherical geometry.
Spheres themselves exist in all dimen-
sions, and have a list of similar proper-
ties that may help to answer some general
questions about the special case S3 that
has been so important to us, and to place
it in a useful general context.

I .1 DEFINITIONS

A sphere SN is most naturally defined as the embedding of the constant-radius
equation in (N + 1)-dimensional Euclidean space RN+1:

(x1)
2 + · · · + (xN)2 + (xN+1)

2 = r2.

A hypersurface element, or solid-angle integral, of a hypersphere SN is [47,166]

ΩN = 2π(N+1)/2

�(1
2(N + 1))

.

The volume of a ball BN of radius r is found by integrating shells of the surface
element of the sphere SN out to the desired radius to give the volume:

V
(
BN+1)=

∫ r

0
ΩNrN dr = ΩN

rN+1

N + 1
.
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A table of these values follows. (Note: �(1) = 1, �(1/2) = √
π , �(3/2) =

(1/2)
√

π , and in general α�(α) = �(α + 1). Thus, for example, n! = �(n + 1)

for nonnegative integers n.)

N -Sphere Dim. ΩN -Solid Angle Ball dimension Volume of ball

0 2 B1 2r

1 2π B2 πr2

2 4π B3 4πr3

3

3 2π2 B4 π2r4

2

4
8π2

3 B5 8π2r5

15

5 π3 B6 π3r6

6

6
16π3

15 B7 16π3r7

105

7
π4

3 B8 π4r8

24

8
32π4

105 B9 32π4r9

945

9
π5

12 B10 π5r10

120

10
64π5

945 B11 64π5r11

10395

.

.

.
.
.
.

.

.

.
.
.
.

N

2π(N+1)/2

�( 1
2 (N+1)) BN+1 r(N+1)

N+1
2π(N+1)/2

�((N+1)/2)

I .2 METRIC PROPERTIES

The metric on a sphere can be defined in a number of forms, depending on the
choice of embedding coordinates and the resulting induced metric. For each em-
bedding, one obtains volume element, a line element, a connection, and an equa-
tion for geodesic paths within the spherical manifold.

• Polar coordinates: 0 � xn < 2π , whereas all others are 0 � xk � π . If you
switch cos(xk) and sin(xk), the range is −π/2� xk � π/2.
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y1 = r cosx1,

y2 = r sinx1 cosx2,

y3 = r sinx1 sinx2 cosx3,

...

yn−1 = r sinx1 sinx2 sinx3 sinx4 . . .cosxn−1,

yn = r sinx1 sinx2 sinx3 sinx4 . . .sinxn−1 cosxn,

yn+1 = r sinx1 sinx2 sinx3 sinx4 . . .sinxn−1 sinxn.

• Diagonal elements of induced metrics:

g11 = r2,

g22 = r2 sin2 x1,

g33 = r2 sin2 x1 sin2 x2,

...

gnn = r2 sin2 x1 sin2 x2 . . .sin2 xn−1.

• Line elements from induced metrics:

ds2 = r2(dx1)
2,

ds2 = r2(dx1)
2 + sin2 x1(dx2)

2,

ds2 = r2(dx1)
2 + sin2 x1

(
(dx2)

2 + sin2 x2(dx3)
2),

...

(dsN)2 = r2(dx1)
2 + sin2 x1

(
(dx2)

2 + sin2 x2
(
(dx3)

2

+ · · · + sin2 xN−1(dxN)2) . . .).
• Line elements from hemisphere-embedding coordinates:

ds2 = dx · dx + (x · dx)(x · dx)

1− x · x
.
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• Stereographic projection: The SN metric induced from the stereographic projec-
tion in RN+1

x′ = (2x,1− |x|2)
1+ |x|2

is

gij = 2δij

|x|2 + 1

and the oriented volume element is

dΩN =
(

2

|x|2 + 1

)N

dx1 ∧ dx2 ∧ · · · ∧ dxN,

where we use standard differential form notation (e.g., see Flanders [52]).
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