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An Introduction to Electric Circuits

John Bird

1.1 SI Units

The system of units used in engineering and science is the Systéme International d’Unités
(International system of units), usually abbreviated to SI units, and is based on the metric
system. This was introduced in 1960 and is now adopted by the majority of countries as
the official system of measurement.

The basic units in the SI system are listed with their symbols, in Table 1.1.

Derived SI units use combinations of basic units and there are many of them. Two
examples are:

e Velocity—meters per second (m/s)
e Acceleration—meters per second squared (m/s)

Table 1.1: Basic Sl units

Quantity Unit
length meter, m
mass kilogram, kg
time second, s
electric current ampere, A
thermodynamic temperature kelvin, K
luminous intensity candela, cd
amount of substance mole, mol




2 Chapter 1

Table 1.2: Six most common multiples

Prefix Name Meaning

M mega multiply by 1,000,000 (i.e., X10%)

k kilo multiply by 1,000 (i.e., X10%)
m milli divide by 1,000 (i.e., X1073)
m micro divide by 1,000,000 (i.e., X1079)
n nano divide by 1,000,000,000 (i.e., X107%)
p pico divide by 1,000,000,000,000 (i.e., X107 ")

SI units may be made larger or smaller by using prefixes that denote multiplication or
division by a particular amount. The six most common multiples, with their meaning, are
listed in Table 1.2.

1.2 Charge

The unit of charge is the coulomb (C) where one coulomb is one ampere second.

(1 coulomb = 6.24 X 10'® electrons). The coulomb is defined as the quantity of
electricity that flows past a given point in an electric circuit when a current of one ampere
is maintained for one second. Thus,

charge, in coulombs Q = It
where [ is the current in amperes and ¢ is the time in seconds.

Example 1.1
If a current of 5 A flows for 2 minutes, find the quantity of electricity transferred.

Solution
Quantity of electricity Q = It coulombs
I=5A,t=2X60=120s

Hence, Q = 5 X 120 = 600C

1.3 Force

The unit of force is the newton (N) where one newton is one kilogram meter per
second squared. The newton is defined as the force which, when applied to
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a mass of one kilogram, gives it an acceleration of one meter per second squared.
Thus,

force, in newtons F = ma

where m is the mass in kilograms and a is the acceleration in meters per second squared.
Gravitational force, or weight, is mg, where g = 9.81 m/s>.

Example 1.2
A mass of 5000 g is accelerated at 2m/s” by a force. Determine the force needed.

Solution
Force = mass X acceleration
kg m

= 5kg X 2m/s? = 10
SZ

=10N

Example 1.3
Find the force acting vertically downwards on a mass of 200 g attached to a wire.

Solution
Mass = 200g = 0.2kg and acceleration due to gravity, g = 9.81 m/s?

Force acting downwards = weight = mass X acceleration
= 0.2kg X 9.81m/s?
=1.962 N

1.4 Work

The unit of work or energy is the joule (J) where one joule is one Newton meter.
The joule is defined as the work done or energy transferred when a force of

one newton is exerted through a distance of one meter in the direction of the force.
Thus,

work done on a body, in joules W = Fs

where F is the force in Newtons and s is the distance in meters moved by the body in the
direction of the force. Energy is the capacity for doing work.
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1.5 Power

The unit of power is the watt (W) where one watt is one joule per second. Power is
defined as the rate of doing work or transferring energy. Thus,

. w
power in watts, P = 7
where W is the work done or energy transferred in joules and ¢ is the time in seconds. Thus,

energy, in joules, W = Pt

Example 1.4
A portable machine requires a force of 200N to move it. How much work is done if the
machine is moved 20 m and what average power is utilized if the movement takes 25s?

Solution
Work done = force X distance
= 200N X 20m
= 4000Nm or 4kJ
work done
Power = ———
time taken
= 20007 _ 160 3is = 160W
S
Example 1.5

A mass of 1000kg is raised through a height of 10m in 20s. What is (a) the work done
and (b) the power developed?

Solution

(a) Work done = force X distance and
force = mass X acceleration
Hence, work done = (1000 kg X 9.81m/s?) X (10 m)
= 98100 Nm
= 98.1 KNm or 98.1k]J

work done _ 9810017J

time taken 20s
= 4905 W or 4.905 kW

(b) Power = = 4905]/s
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1.6 Electrical Potential and e.m.f.

The unit of electric potential is the volt (V) where one volt is one joule per coulomb. One
volt is defined as the difference in potential between two points in a conductor which,
when carrying a current of one ampere, dissipates a power of one watt, i.e.,

watts joules/second
volts = =
amperes amperes
joules _ joules

ampere seconds  coulombs

A change in electric potential between two points in an electric circuit is called a
potential difference. The electromotive force (e.m.f.) provided by a source of energy such
as a battery or a generator is measured in volts.

1.7 Resistance and Conductance

The unit of electric resistance is the ohm (£) where one ohm is one volt per ampere. It
is defined as the resistance between two points in a conductor when a constant electric
potential of one volt applied at the two points produces a current flow of one ampere in
the conductor. Thus,

. . %4
resistance, in ohms R = 7

where V is the potential difference across the two points in volts and / is the current
flowing between the two points in amperes.

The reciprocal of resistance is called conductance and is measured in siemens (S). Thus,
. 1
conductance, in siemens G = =

where R is the resistance in ohms.

Example 1.6
Find the conductance of a conductor of resistance (a) 102, (b) 5k€2 and (c) 100 m{2.

Solution

(a) Conductance G
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(b) G=—=%S=O.ZXIO3S=0.2mS

1 10°
@) G=—=———_S=—""—5=108
R 100x1072 "~ 100

1.8 Electrical Power and Energy

When a direct current of I amperes is flowing in an electric circuit and the voltage across
the circuit is V volts, then,

power, in watts P = VI

Electrical energy = Power X time
= VIt joules

Although the unit of energy is the joule, when dealing with large amounts of energy, the
unit used is the kilowatt hour (kWh) where

1kWh = 1000 watt hour
= 1000 X 3600 watt seconds or joules
= 3,600,000 J

Example 1.7
A source e.m.f. of 5V supplies a current of 3 A for 10 minutes. How much energy is
provided in this time?

Solution
Energy = power X time and power = voltage X current.

Hence,

Energy = VIt = 5 X 3X(10 X 60)
= 9000 Ws or J
=9kJ

Example 1.8

An electric heater consumes 1.8 MJ when connected to a 250V supply for 30 minutes.
Find the power rating of the heater and the current taken from the supply.
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Solution

Energy = power X time,
time
_1.8X10%)
30X 60s

=10001J/s = 1000 W

i.e., Power rating of heater = 1kW

Hence, the current taken from the supply is 4 A.

1.9 Summary of Terms, Units and Their Symbols

Table 1.3: Electrical terms, units, and symbols

Quantity Quantity Symbol Unit Unit symbol
Length / meter m

Mass m kilogram kg

Time t second s

Velocity v meters per second m/sorms™"
Acceleration meters per second squared | m/s? or ms™2
Force newton N

Electrical charge or quantity 0 coulomb C

Electric current / ampere A

Resistance R ohm Q
Conductance G siemen S
Electromotive force E volt \

Potential difference % volt \

Work w joule J

Energy E (or W) joule J

Power P watt W
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Conductor
Two conductors Two conductors
crossing but not joined together
joined
Fixed resister Alternative symbol
for fixed resister Variable resistor
I: ||| : II——— {l—
Cell Battery of 3 cells Alternative symbol

for battery

R —
e DY =

Switch
Filament lamp Fuse
Ammeter Voltmeter Alternative fuse
symbol

Figure 1.1: Common electrical component symbols

1.10 Standard Symbols for Electrical Components

Symbols are used for components in electrical circuit diagrams and some of the more
common ones are shown in Figure 1.1.

1.11 Electric Current and Quantity of Electricity

All atoms consist of protons, neutrons and electrons. The protons, which have

positive electrical charges, and the neutrons, which have no electrical charge, are
contained within the nucleus. Removed from the nucleus are minute negatively charged
particles called electrons. Atoms of different materials differ from one another by having
different numbers of protons, neutrons and electrons. An equal number of protons and
electrons exist within an atom and it is said to be electrically balanced, as the positive and
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negative charges cancel each other out. When there are more than two electrons
in an atom the electrons are arranged into shells at various distances from the
nucleus.

All atoms are bound together by powerful forces of attraction existing between

the nucleus and its electrons. Electrons in the outer shell of an atom, however, are
attracted to their nucleus less powerfully than are electrons whose shells are nearer the
nucleus.

It is possible for an atom to lose an electron; the atom, which is now called an ion,

is not now electrically balanced, but is positively charged and is thus able to attract

an electron to itself from another atom. Electrons that move from one atom to another
are called free electrons and such random motion can continue indefinitely. However,

if an electric pressure or voltage is applied across any material there is a tendency

for electrons to move in a particular direction. This movement of free electrons,

known as drift, constitutes an electric current flow. Thus current is the rate of movement
of charge.

Conductors are materials that contain electrons that are loosely connected to the nucleus
and can easily move through the material from one atom to another.

Insulators are materials whose electrons are held firmly to their nucleus.

The unit used to measure the quantity of electrical charge Q is called the coulomb C
(where 1 coulomb = 6.24 X 10'® electrons).

If the drift of electrons in a conductor takes place at the rate of one coulomb per second
the resulting current is said to be a current of one ampere.

Thus, 1 ampere = 1 coulomb per second or 1 A = 1C/s. Hence, 1 coulomb = 1 ampere
second or 1 C = 1 As. Generally, if / is the current in amperes and ¢ the time in seconds

during which the current flows, then 7 X t represents the quantity of electrical charge in
coulombs, i.e., quantity of electrical charge transferred,

QO = I Xt coulombs

Example 1.9
‘What current must flow if 0.24 coulombs is to be transferred in 15 ms?
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Solution
Since the quantity of electricity, Q = It, then
0 024  0.24X10°3 _ 240

t 15%x1073 15 15

Example 1.10
If a current of 10 A flows for 4 minutes, find the quantity of electricity transferred.

Solution

Quantity of electricity, Q = It coulombs
I=10A;t=4X 60 = 240s

Hence, O = 10 X 240 = 2400C

1.12 Potential Difference and Resistance

For a continuous current to flow between two points in a circuit a potential difference
or voltage, V, is required between them; a complete conducting path is necessary to and
from the source of electrical energy. The unit of voltage is the volt, V.

Figure 1.2 shows a cell connected across a filament lamp. Current flow, by convention,
is considered as flowing from the positive terminal of the cell, around the circuit to the
negative terminal.

The flow of electric current is subject to friction. This friction, or opposition, is called
resistance R and is the property of a conductor that limits current. The unit of resistance

v ®
Current

flow

Figure 1.2: Current flow



An Introduction to Electric Circuits 11

is the ohm; 1 ohm is defined as the resistance which will have a current of 1 ampere
flowing through it when 1 volt is connected across it, i.e.,

potential difference

resistance R =
current

1.13 Basic Electrical Measuring Instruments

An ammeter is an instrument used to measure current and must be connected in series
with the circuit. Figure 1.2 shows an ammeter connected in series with the lamp to
measure the current flowing through it. Since all the current in the circuit passes through
the ammeter it must have a very low resistance.

A voltmeter is an instrument used to measure voltage and must be connected in parallel
with the part of the circuit whose voltage is required. In Figure 1.2, a voltmeter is
connected in parallel with the lamp to measure the voltage across it. To avoid a significant
current flowing through it, a voltmeter must have a very high resistance.

An ohmmeter is an instrument for measuring resistance.

A multimeter, or universal instrument, may be used to measure voltage, current and
resistance. The oscilloscope may be used to observe waveforms and to measure voltages
and currents. The display of an oscilloscope involves a spot of light moving across a
screen. The amount by which the spot is deflected from its initial position depends on
the voltage applied to the terminals of the oscilloscope and the range selected. The
displacement is calibrated in volts per cm. For example, if the spot is deflected 3cm and
the volts/cm switch is on 10 V/cm, then the magnitude of the voltage is 3cm X 10V/cm,
ie., 30V.

1.14 Linear and Nonlinear Devices

Figure 1.3 shows a circuit in which current / can be varied by the variable resistor R;.
For various settings of R,, the current flowing in resistor R;, displayed on the ammeter,
and the p.d. across R, displayed on the voltmeter, are noted and a graph is plotted of p.d.
against current. The result is shown in Figure 1.4(a) where the straight line graph passing
through the origin indicates that current is directly proportional to the voltage. Since the
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O,
I

R

s

Figure 1.3: Circuit in which current can be varied

p.d. pd.

0 / Y /
(a) (b)

Figure 1.4: Graphs of voltage vs. current: (a) linear device (b) nonlinear device

gradient, i.e., (voltage/current), is constant, resistance R; is constant. A resistor is thus an
example of a linear device.

If the resistor R; in Figure 1.3 is replaced by a component such as a lamp, then the graph
shown in Figure 1.4(b) results when values of voltage are noted for various current
readings. Since the gradient is changing, the lamp is an example of a nonlinear device.

1.15 Ohm’s Law

Ohm’s law states that the current / flowing in a circuit is directly proportional to the
applied voltage V and inversely proportional to the resistance R, provided the temperature
remains constant. Thus,

or V=IR o R=

~
I
X<

v
I
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Example 1.11
The current flowing through a resistor is 0.8 A when a voltage of 20V is applied.
Determine the value of the resistance.

Solution
From Ohm’s law,

1.16 Multiples and Submultiples

Currents, voltages and resistances can often be very large or very small. Thus multiples
and submultiples of units are often used. The most common ones, with an example of
each, are listed in Table 1.4.

Example 1.12
Determine the voltage which must be applied to a 2k{2 resistor in order that a current of
10mA may flow.

Solution
Resistance R = 2k = 2 X 10° = 20009

Table 1.4: Common multiples and submuiltiples of units

Prefix Name Meaning Example

M mega multiply by 1,000,000 (i.e., X10°) 2M( = 2,000,000 ohms
k kilo multiply by 1000 (i.e., X10%) 10kV = 10,000 volts

m milli divide by 1000 (i.e., X1073) 25

25mA=——A
1000

= 0.025 amperes

m micro divide by 1,000,000 (i.e., X107°) 50
50pV = ——V
1000000

= 0.00005 volts
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Current / = 10 mA
=10X1073A or 10 or 10
103 1000

=0.01A

From Ohm’s law, potential difference,

V =1IR = (0.01) (2000) =20 V

Example 1.13
A coil has a current of 50mA flowing through it when the applied voltage is 12 V.
What is the resistance of the coil?

Solution
3
Resistance R = ¥ — 12 _12x10
1 50X 1073 50
50

Example 1.14

A 100V battery is connected across a resistor and causes a current of SmA to flow.
Determine the resistance of the resistor. If the voltage is now reduced to 25V, what will
be the new value of the current flowing?

Solution

5%1073 5
=20X103 = 20k

X 3
Resistance R =¥ 100 _ 100 X10

Current when voltage is reduced to 25V,

I=K=i=é><10_3 = 1.25mA
R 20X10° 20
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Example 1.15
What is the resistance of a coil that draws a current of (a) 5S0mA and (b) 200 pA from
a 120V supply?

Solution
(a) Resistance R = v_ 120
1 50 X103
= E = w = 24002 or 2.4 k2
0.05 5
120 120

(b) Resistance R = =
200X 107¢  0.0002

- 1200000 _ 640000 2 or 600 ke2

or 0.6 M2

Example 1.16
The current/voltage relationship for two resistors A and B is as shown in Figure 1.5.
Determine the value of the resistance of each resistor.

Solution
For resistor A,

V _ 20A _ 20 _ 2000
I

R = = = =
20mA  0.02 2

= 1000 2 or 1k2

Current / mA
]

| 1
0 4 8 12 16 20 24
Voltage /uv

Figure 1.5: Current/voltage for two resistors A and B
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For resistor B,
Kz 16V _ 16 _ 16 000
1 SmA  0.005 5

R = = 3200 €2 or 3.2 k2

1.17 Conductors and Insulators

A conductor is a material having a low resistance which allows electric current to flow
in it. All metals are conductors and some examples include copper, aluminium, brass,
platinum, silver, gold and carbon.

An insulator is a material having a high resistance which does not allow electric current
to flow in it. Some examples of insulators include plastic, rubber, glass, porcelain, air,
paper, cork, mica, ceramics and certain oils.

1.18 Electrical Power and Energy
1.18.1 Electrical Power

Power P in an electrical circuit is given by the product of potential difference V and
current /. The unit of power is the watt, W. Hence,

P =V X[ watts
From Ohm’s law, V = IR.

Substituting for V in equation (1.1) gives:
P=(R) X1I
ie., P = IR watts

Also, from Ohm’s law, I = %

Substituting for / in the equation above gives:

P=VX v
R
2
1.e., P = — watts
R

There are three possible formulas that may be used for calculating power.
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Example 1.17
A 100W electric light bulb is connected to a 250V supply. Determine (a) the current
flowing in the bulb, and (b) the resistance of the bulb.

Solution

Power P = V X I, from which, current / = §

(a) Current [ = @ = & = % =04A
250 25
(b) Resistance R = — = @ = & = 62502
04 4

Example 1.18
Calculate the power dissipated when a current of 4 mA flows through a resistance of 5k¢2.

Solution
Power P = PR = (4 X 107%)72(5 X 10°)
=16 X 107°%X 5% 10°=80x 1073
= 0.08 W or 80mW
Alternatively, since / = 4 X 1073 and R = 5 X 10° then from Ohm’s law,
voltage V=IR =4 X 1073 X 5X 1073 =20V

Hence, power P =V X I =20 X 4 X 107° = 80mW
Example 1.19

An electric kettle has a resistance of 30 2. What current will flow when it is connected to
a 240V supply? Find also the power rating of the kettle.

Solution
Current, ] = — = @ =8A
30
Power, P = VI = 240 X8 = 1920 W

= 1.95kW
= power rating of kettle
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Example 1.20

A current of 5 A flows in the winding of an electric motor, the resistance of the winding
being 100 (2. Determine (a) the voltage across the winding, and (b) the power dissipated
by the coil.

Solution
Potential difference across winding, V= IR = 5 X 100 = 500V

Power dissipated by coil, P = I’R = 5% X 100
= 2500 W or 2.5kW
(Alternatively, P = V X I =500 X 5 = 2500 W or 2.5kW)

Example 1.21
The hot resistance of a 240V filament lamp is 960 (2. Find the current taken by the lamp
and its power rating.

Solution

From Ohm’s law,

current [ = K = E = % = 1A or 0.25A
R 960 96 4

Power rating P = VI = (240)[%] =60W

1.18.2 Electrical Energy
Electrical energy = power X time

If the power is measured in watts and the time in seconds then the unit of energy is
watt-seconds or joules. If the power is measured in kilowatts and the time in hours then
the unit of energy is kilowatt-hours, often called the unit of electricity. The electricity
meter in the home records the number of kilowatt-hours used and is thus an energy meter.

Example 1.22

A 12V battery is connected across a load having a resistance of 40 ). Determine
the current flowing in the load, the power consumed and the energy dissipated in
2 minutes.
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Solution

Power consumed, P = VI = (12)(0.3) = 3.6 W

Energy dissipated = power X time = (3.6 W)(2 X 60s) = 432 ] (since 1] = 1 Ws)

Example 1.23
A source of e.m.f. of 15V supplies a current of 2 A for 6 minutes. How much energy is
provided in this time?

Solution
Energy = power X time, and power = voltage X current

Hence, energy = Vi = 15 X 2 X (6 X 60)
= 10800Ws or J = 10.8kJ

Example 1.24
An electric heater consumes 3.6 MJ when connected to a 250V supply for 40 minutes.
Find the power rating of the heater and the current taken from the supply.

Solution
energy _ 3.6X1007

- =(or W) = 1500 W
time 40X 60 s

Power =

i.e., power rating of heater = 1.5kW

Hence, the current taken from the supply = 6 A
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1.19 Main Effects of Electric Current

The three main effects of an electric current are:

(a) magnetic effect
(b) chemical effect
(c) heating effect

Some practical applications of the effects of an electric current include:

Magnetic effect:  bells, relays, motors, generators, transformers, telephones,
car ignition, and lifting magnets

Chemical effect: primary and secondary cells, and electroplating

Heating effect:  cookers, water heaters, electric fires, irons, furnaces, kettles, and
soldering irons



Resistance and Resistivity

John Boyd

2.1 Resistance and Resistivity

The resistance of an electrical conductor depends on four factors, these being: (a) the
length of the conductor, (b) the cross-sectional area of the conductor, (c) the type of
material and (d) the temperature of the material.

Resistance, R, is directly proportional to length, /, of a conductor. For example, if the
length of a piece of wire is doubled, then the resistance is doubled.

Resistance, R, is inversely proportional to cross-sectional area, a, of a conductor, i.e.,
R is proportional to 1/a. Thus, for example, if the cross-sectional area of a piece of wire
is doubled, then the resistance is halved.

Since R is proportional to [ and R is proportional to 1/a, then R is proportional to l/a. By
inserting a constant of proportionality into this relationship, the type of material used may
be taken into account. The constant of proportionality is known as the resistivity of the
material and is given the symbol p (Greek rho). Thus,

. l
resistance R = p—ohms
a
p is measured in ohm meters ({2m).

The value of the resistivity is the resistance of a unit cube of the material measured
between opposite faces of the cube.
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Resistivity varies with temperature and some typical values of resistivities measured at
about room temperature are given in Table 2.1.

Note that good conductors of electricity have a low value of resistivity and good
insulators have a high value of resistivity.

Example 2.1
The resistance of a 5m length of wire is 600 §2. Determine (a) the resistance of an 8 m
length of the same wire, and (b) the length of the same wire when the resistance is 420 (2.

Solution
Resistance, R, is directly proportional to length, [, i.e., R o . Hence, 6002 oc 5m or
600 = (k)(5), where £k is the coefficient of proportionality. Hence,

600

k=——=120
5

When the length / is 8 m, then resistance
R =kl = (120)(8) = 960 Q2
When the resistance is 4202, 420 = kl, from which

Example 2.2

A piece of wire of cross-sectional area 2 mm? has a resistance of 3002. Find (a) the
resistance of a wire of the same length and material if the cross-sectional area is Smm?, and
(b) the cross-sectional area of a wire of the same length and material of resistance 750 (2.

Table 2.1: Typical resistivity values

Copper 1.7 X 1078 Qm | (or 0.017 u2m)
Aluminum 2.6 X 1078 Qm | (or 0.026pQdm)
Carbon (graphite) | 10 X 1078 Qm | (or 0.10pQ2m)
Glass 1 X 108 Qm (or 10*pQm)
Mica 1X 107" Qm | (or 107 pu2m)
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Solution
Resistance R is inversely proportional to cross-sectional area, a, i.e., R o< (1/a)

So 30092 o (1/2mm?) or 300 = (k)(1/2) from which the coefficient of proportionality,

k=300 X 2 =600
(a) When the cross-sectional area @ = S mm?
then R = (k)(1/5) = (600)(1/5) = 1202

(Note that resistance has decreased as the cross-sectional area is increased.)

(b) When the resistance is 750 €2 then 750 = (k)(1/a), from which cross-sectional area,

a= k800 0.8 mm?
750 750
Example 2.3

A wire of length 8 m and cross-sectional area 3 mm? has a resistance of 0.16 ). If the wire
is drawn out until its cross-sectional area is 1 mm?, determine the resistance of the wire.

Solution
Resistance R is directly proportional to length /, and inversely proportional to the cross-
sectional area, a, i.e., R o (I/a) or R = k(l/a), where k is the coefficient of proportionality.

Since R = 0.16,/ = 8§ and a = 3, then 0.16 = (k)(8/3) from which
k =0.16 X (3/8) = 0.06
If the cross-sectional area is reduced to {1/3} of its original area, then the length must be

tripled to 3 X 8, i.e., 24 m.

New resistance R = k (//a) = 0.06 (24/1) = 1.44 Q2

Example 2.4

Calculate the resistance of a 2km length of aluminum overhead power cable if the
cross-sectional area of the cable is 100 mm?. Take the resistivity of aluminum to be
0.03 X 107° Om.



24 Chapter 2

Solution
Length [ = 2km = 2000m; area, ¢ = 100mm? = 100 X 10~®m?; resistivity
p=0.03X107°Om
p_l _ (0.03 X 107°Qm)(2000 m)
a (100 X 107 m2)
_ 0.03X2000
100
= 0.6 2

Resistance R =

Q

Example 2.5
Calculate the cross-sectional area, in mm?, of a piece of copper wire, 40m in length and
having a resistance of 0.25 (). Take the resistivity of copper as 0.02 X 107° Om.

Solution
. pl . pl
Resistance R = — so cross-sectional area a = —
a
~(0.02X107% Qm)(40 m)
0.25Q

=32X107% m?2

=(3.2%X107%)X107° mm? = 3.2 mm?
Example 2.6

The resistance of 1.5km of wire of cross-sectional area 0.17 mm? is 150 Q. Determine the
resistivity of the wire.

Solution

) l
Resistance R = P

a

... Ra (15092)(0.17X107%m?)
so resistivity p = — = 4500
m

= 0.017 X 10=° Qm or 0.017 p2m

Example 2.7
Determine the resistance of 1200 m of copper cable having a diameter of 12 mm if the
resistivity of copper is 1.7 X 1078 Qm.
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Solution
~ 0 (12\* _ 2 _ —6 2
Cross-sectional area of cable, a = ©wr* = ’TT(7> =36mmm~* = 36t X107°m

pl _ (1.7 X107 Qm)(1200 m)
(36w X 1076 m?)

Resistance R

1.7 X 1200 X 10° Q= 1.7X12
108 X 36m 367

0.180 2

Q

2.2 Temperature Coefficient of Resistance

In general, as the temperature of a material increases, most conductors increase in
resistance, insulators decrease in resistance, while the resistance of some special alloys
remains almost constant.

The temperature coefficient of resistance of a material is the increase in the resistance
of a 1€ resistor of that material when it is subjected to a rise of temperature of 1°C.
The symbol used for the temperature coefficient of resistance is o (Greek alpha).
Thus, if some copper wire of resistance 1) is heated through 1°C and its resistance

is then measured as 1.0043 12 then o = 0.0043 Q/Q2°C for copper. The units are
usually expressed only as “per °C.” So, a = 0.0043/°C for copper. If the 12

resistor of copper is heated through 100°C then the resistance at 100°C would be

1 + 100 X 0.0043 = 1.439.

Some typical values of temperature coefficient of resistance measured at 0°C are given in
Table 2.2.

(Note that the negative sign for carbon indicates that its resistance falls with increase of
temperature.)

Table 2.2: Typical values of temperature coefficient of resistance

Copper 0.0043/°C Aluminum 0.0038/°C
Nickel 0.0062/°C Carbon —0.00048/°C
Constantan 0 Eureka 0.00001/°C
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If the resistance of a material at 0°C is known, the resistance at any other temperature can
be determined from:

Ry = Ry(1+ )

where Ry = resistance at 0°C
Ry = resistance at temperature 6°C

o = temperature coefficient of resistance at 0°C

Example 2.8

A coil of copper wire has a resistance of 100 €2 when its temperature is 0°C. Determine
its resistance at 70°C if the temperature coefficient of resistance of copper at 0°C is
0.0043/°C.

Solution

Resistance Ry = Ry (1 + o)

So resistance at 70°C, R;y = 100[1 + (0.0043)(70)]
100[1 + 0.301]
100(1.301)

= 130.12

Example 2.9
An aluminum cable has a resistance of 27 2 at a temperature of 35°C. Determine its
resistance at 0°C. Take the temperature coefficient of resistance at 0°C to be 0.0038/°C.

Solution
Resistance at 6°C, Ry = Ry(1 + o (0)

Hence resistance at 0°C, R, = L
(1+ a0)
_ 27
B [1+(0.0038)(35)]
27 27

T 140133 1133
— 23830



Resistance and Resistivity

27

Example 2.10
A carbon resistor has a resistance of 1 k2 at 0°C. Determine its resistance at 80°C.
Assume that the temperature coefficient of resistance for carbon at 0°C is —0.0005/°C.

Solution
Resistance at temperature 0°C, Ry = Ry(1 + )

i.e., Ry = 1000[1 + (—0.0005)(80)]
= 1000[1 — 0.040] = 1000(0.96)
=960 2

If the resistance of a material at room temperature (approximately 20°C), R,, and the
temperature coefficient of resistance at 20°C, o, are known then the resistance Ry at
temperature 6°C is given by:

Ry = Rypl1 + ry (8 — 20)]

Example 2.11

A coil of copper wire has a resistance of 10 §2 at 20°C. If the temperature coefficient of
resistance of copper at 20°C is 0.004/°C, determine the resistance of the coil when the
temperature rises to 100°C.

Solution
Resistance at temperature 0°C, R = Ryo[1 + (6 — 20)]

Hence resistance at 100°C,
R0 = 10[1 + (0.004)(100 — 20)]
= 10[1 + (0.004)(80)]
= 10[1 + 0.32]
= 10(1.32)
=13.2Q
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Example 2.12

The resistance of a coil of aluminum wire at 18°C is 200 ). The temperature of the wire
is increased and the resistance rises to 240 2. If the temperature coefficient of resistance
of aluminum is 0.0039/°C at 18°C determine the temperature to which the coil has risen.

Solution
Let the temperature rise to 6°

Resistance at 6°C, Ry = Ryg[1 + ay(6 — 18)]

ie., 240 = 200[1 + (0.0039)(6 — 18)]
240 = 200 + (200)(0.0039)(6 — 18)
240 — 200 = 0.78(6 — 18)
40 = 0.78(0 — 18)
% =0—-18
51.28 = 6 — 18, from which,

0 =51.28 + 18 = 69.28°C
Hence the temperature of the coil increases to 69.28°C.

If the resistance at 0°C is not known, but is known at some other temperature 0;, then the
resistance at any temperature can be found as follows:

Rl = RO (1 + 04091) and R2 = Ro(l + 04092)
Dividing one equation by the other gives:

1+ b,
1+ o0,

R,
R,
where R, = resistance at temperature 0,.

Example 2.13
Some copper wire has a resistance of 2002 at 20°C. A current is passed through the
wire and the temperature rises to 90°C. Determine the resistance of the wire at 90°C,
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correct to the nearest ohm, assuming that the temperature coefficient of resistance is
0.004/°C at 0°C.

Solution

Ryp = 2009, o = 0.004/°C

1+, (20)]
[1+ oy (90)]

Ry _
R90
Ryol1+ 900, ]

[1+ 200, ]
_200[1 + 90(0.004)]
©[1+420(0.004)]
_200[1 + 0.36]
 [1+0.08]
_200(1.36)
O (1.08)

Hence, Ry, =

= 251.85Q2

So, the resistance of the wire at 90°C is 252 ).
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Series and Parallel Networks

John Bird

3.1 Series Circuits

Figure 3.1 shows three resistors R, R, and R; connected end to end, i.e., in series,

with a battery source of V volts. Since the circuit is closed, a current / will flow

and the voltage across each resistor may be determined from the voltmeter readings V/,
V, and V;.

In a series circuit:

(a) the current [ is the same in all parts of the circuit; therefore, the same reading is
found on each of the two ammeters shown, and,

(b) the sum of the voltages V|, V, and V; is equal to the total applied voltage, V, i.e.,

V=V +V,+V,

Figure 3.1: Series circuit
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From Ohm’s law:
Vi =1IRy,V,=1IR,, V3 =IRz;and V = IR
where R is the total circuit resistance.
Since V=V, +V,+ Vs
then IR = IR, + IR, + IR;
Dividing throughout by 7 gives:
R=R +R, + R,

So, for a series circuit, the total resistance is obtained by adding together the values of the
separate resistances.

Example 3.1

For the circuit shown in Figure 3.2, determine (a) the battery voltage V, (b) the total
resistance of the circuit, and (c) the values of resistance of resistors R;, R, and R;, given
that the voltages across R, R, and R3 are 5V, 2V and 6V, respectively.

Solution
(a) Battery voltage V=V, + V, + V;
=5+2+6=13V

By A, Ra
—1 — — —

4 A N V1 I‘ Vs |‘ V3

b —

Figure 3.2: Circuit for Example 3.1
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(c) Resistance R, = - = % =125
- _Wh_2_
Resistance R, = —= = i 0.5Q
. 5 _ 6
Resistance R, = — = 1 1.5

(Check: R, + R, + Ry = 1.25+0.5+1.5=325Q0 = R)

Example 3.2

For the circuit shown in Figure 3.3, determine the voltage across resistor Rs. If the total
resistance of the circuit is 100 (2, determine the current flowing through resistor R;. Find
also the value of resistor R.

Solution
Voltage across Rz, V3 =25 — 10 —4 =11V
\% 25 C . . .
Current [ = — = m = 0.25 A, which is the current flowing in each resistor
Resistance R, = & = i =162
1 0.25
Example 3.3

A 12V battery is connected in a circuit having three series-connected resistors having
resistances of 4€2, 902 and 11 2. Determine the current flowing through, and the voltage
across the 92 resistor. Find also the power dissipated in the 11 {2 resistor.

/A4
o ——

Figure 3.3: Circuit for Example 3.2
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4Q 9Q 11Q
— ——

/ v,

|___
12V

Figure 3.4: Circuit for Example 3.3

Solution
The circuit diagram is shown in Figure 3.4.

Total resistance R =4 + 9 + 11 = 240}

Current ] = — = g = (0.5 A, which is the current in the 92 resistor.
Voltage across the 92 resistor, V; =1X 9 =05X9
=45V
Power dissipated in the 11 resistor, P = I’R = 0.5%(11)
= 0.25(11)
=2.75W

3.2 Potential Divider

The voltage distribution for the circuit shown in Figure 3.5(a) is given by:

R

i = :
R +R,

R

v, = 2
R +R,

The circuit shown in Figure 3.5(b) is often referred to as a potential divider circuit. Such
a circuit can consist of a number of similar elements in series connected across a voltage
source, voltages being taken from connections between the elements. Frequently the
divider consists of two resistors as shown in Figure 3.5(b), where:
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& R,
— )
ed | S
le— V; e Vo
@ & v

Figure 3.5: Potential divider circuit

A potential divider is the simplest way of producing a source of lower e.m.f. from a
source of higher e.m.f., and is the basic operating mechanism of the potentiometer, a
measuring device for accurately measuring potential differences.

Example 3.4
Determine the value of voltage V shown in Figure 3.6.

Solution
Figure 3.6 may be redrawn as shown in Figure 3.7, and voltage

V= o (50) =30V
6+4
Example 3.5

Two resistors are connected in series across a 24 V supply and a current of 3 A flows in
the circuit. If one of the resistors has a resistance of 2 () determine (a) the value of the
other resistor, and (b) the voltage across the 2 2 resistor. If the circuit is connected for 50
hours, how much energy is used?
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Solution

The circuit diagram is shown in Figure 3.8.

(a) Total circuit resistance R = v_2_ 80
3

Value of unknown resistance, R, = 8 — 2 = 62

(b) Voltage across 22 resistor, V; = IR, =3 X2 =6V

Alternatively, from above,

R
v, = L V=L(24)=6V
R, +R, 2+6
4Q
I 1 o T
50 V—/ 6Q ‘V
O

Figure 3.6: Circuit for Example 3.4

50 Vv—/
o t,

O

Figure 3.7: Redrawn version of Figure 3.6

R=20 Ry
—_] _
v |
y 1
1=3A I
24V

Figure 3.8: Circuit for Example 3.5
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Energy used = power X time
=VXIXt
= (24 X 3W) (50h)
= 3600 Wh = 3.6kWh

3.3 Parallel Networks

Figure 3.9 shows three resistors, R, R, and R; connected across each other, i.e., in
parallel, across a battery source of V volts.

In a parallel circuit:

(a) the sum of the currents I, I, and I5 is equal to the total circuit current, /, i.e.,
I:Il +12+I3,and

(b) the source voltage, V volts, is the same across each of the resistors.

From Ohm’s law:

% % \% \%
I =—, I,=—, I i=—andl=—
R, R, R, R
where R is the total circuit resistance.
h Ay
Ay 1
b Ao
- A

Iy
o=
/]

Figure 3.9: Parallel resistors
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Sincel=1,+1,+ 1L
thenKzK%—L%—l
T R R

Dividing throughout by V gives:
1 1
R R R, R,

This equation must be used when finding the total resistance R of a parallel circuit. For
the special case of two resistors in parallel:

l = i + L = R2 + R]
R R R RiR,
R,R
Hence, R = 1% ie. product
Rl + Rz sum

Example 3.6
For the circuit shown in Figure 3.10, determine (a) the reading on the ammeter, and
(b) the value of resistor R,.

8A A1=50
—

A
——  }+——

A3 =200
—( : —] F—s

A

i
14

Figure 3.10: Circuit for Example 3.6
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Solution

Voltage across R, is the same as the supply voltage V. Hence, supply voltage
V=8X5=40V.

(a) Reading on ammeter, /] = — = — = 2A
20
(b) Current flowing throughR, =11 —8 —2=1A
Hence, R, = V_9_ 40 (2
I, 1
Example 3.7

Two resistors, of resistance 3 {2 and 62, are connected in parallel across a battery having

a voltage of 12 V. Determine (a) the total circuit resistance and (b) the current flowing in
the 3 () resistor.

Solution
The circuit diagram is shown in Figure 3.11.

(a) The total circuit resistance R is given by:

1 1 1 1 1
R R R, 3 6
1_2+1_3
R 6 6
6
Hence,RZEZZQ
/1 R1:3Q
——
Ry =6Q
—1 11—
il——‘{i
12V

Figure 3.11: Circuit for Example 3.7
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RR, _3x6 18

Alternatively, R = = =—=20
R +R, 3+6 9
. . 12
(b) Current in the 32 resistance, [, = — = EY =4A
1

Example 3.8

For the circuit shown in Figure 3.12, find (a) the value of the supply voltage V and (b) the
value of current /.

Solution

(a) Voltage across 202 resistor = LR, = 3 X 20 = 60V; hence, supply voltage
V = 60V since the circuit is connected in parallel.

(b) Current J, :1:6—O:6A,Iz—3A
. 10
R, 60

Current/ =1, + I, + Izand hence,/ =6+ 3 + 1 =10A

1 1 1 1 1+3+6 10
Alternatively, R = == =

60 20 10 60 60
. 60
Hence, total resistance R = E =60
Current [ = — = % =10A

Figure 3.12: Circuit for Example 3.8
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Example 3.9

Given four 12 resistors, state how they must be connected to give an overall resistance of
(@) 1/4Q 1) 1Q @) 14 Q) 2)5Q

Solution
(a) All four in parallel (see Figure 3.13),

. I _1,1,1 1
Since —=-+-+-+-=
R 1 1 1 1

4 ie.,R = l

—, 1 Q
1 4

(b) Two in series, in parallel with another two in series (see Figure 3.14), since 12 and
1 Q) in series gives 22, and 2 in parallel with 22 gives:

2X2

2+2 4

(c) Three in parallel, in series with one (see Figure 3.15), since for the three in parallel,

1 1
= +-+
1 1

— ]

1
1 E, ie,R = 1 Q and 1 Q in series with 1 gives 1 =
R 1 3 3 3

(d) Two in parallel, in series with two in series (see Figure 3.16), since for the two in parallel

10
|

10
— 1+
10
—— 1+

10
— 1+

(] o

Figure 3.13: Circuit for Example 3.9(a)

Figure 3.14: Circuit for Example 3.9(b)
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Figure 3.17: Circuit for Example 3.10

X
R:u:
+

1 Q, and 1 Q, 192 and 1€ in series gives 2l Q
1+1 2 2 2

Example 3.10
Find the equivalent resistance for the circuit shown in Figure 3.17.

Solution
R;3, Ry and Rs are connected in parallel and their equivalent resistance R is given by:

The circuit is now equivalent to four resistors in series and the equivalent circuit
resistance = 1 + 2.2 + 1.8 + 4 = 9Q.
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Figure 3.18: Current division circuit

3.4 Current Division

For the circuit shown in Figure 3.18, the total circuit resistance Ry is given by:

RiR,
" R +R,
RR
and V = IR, = I|—2
R +R,

Vv I | RR R
Current I, = — = — 12| = 2 (1)

R, R (R +R, R +R,
Similarly,

Vv I | RR R
current [, = — = — 2 : (1)

R, R, (R +R, R, +R,
Summarizing, with reference to Figure 3.18:

R R
I, = Z_|\(I) and I,= L (I
R +R, R +R,

Example 3.11
For the series-parallel arrangement shown in Figure 3.19, find (a) the supply

current, (b) the current flowing through each resistor and (c) the voltage across each

resistor.
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A,=60Q
R
Ry=25Q R4:4Q
p L
R3=2Q

| |
!

- 200V
Figure 3.19: Circuit for Example 3.11

Solution

(a) The equivalent resistance R, of R, and R; in parallel is:

The equivalent resistance Ry of R, R, and R, in series is:

R, =25+15+4=38Q

(b) The current flowing through R; and R, is 25 A. The current flowing through R,
R
s =2 |25
R, + Ry 6+2
=6.25A

The current flowing through R;
B r=|-2 |2
R, + R, 6+2

=18.75A

(Note that the currents flowing through R, and R; must add up to the total current
flowing into the parallel arrangement, i.e., 25 A.)
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Ri=25Q Ry,=15Q R;=40Q

—1 F—1 I 1 I
- Vi - Vx - Vs
/I=25A §
O= 20V —— 90

Figure 3.20: Equivalent circuit of Figure 3.19

I, Ri=150Q |, Ra=38Q

O 250V
Figure 3.21: Circuit for Example 3.12

(c) The equivalent circuit of Figure 3.19 is shown in Figure 3.20.
voltage across Ry, i.e., V; = IR; = (25)(2.5) = 62.5V
voltage across R, i.e., V., = IR, = (25)(1.5) = 37.5V
voltage across Ry, i.e., V4, = IR, = (25)(4) = 100V
Hence, the voltage across R, = voltage across R; = 37.5V
Example 3.12
For the circuit shown in Figure 3.21 calculate (a) the value of resistor R, such that the

total power dissipated in the circuit is 2.5kW, and (b) the current flowing in each of the
four resistors.

Solution
(a) Power dissipated P = VI watts, hence, 2500 = (250)(1)

ie.,l = 2500 _ 10A
250



46

Chapter 3

resistance.
The equivalent resistance of R; and R, in parallel is:

15x10 _ 150

15+10 25

The equivalent resistance of resistors R; and R, in parallel is equal to 252 — 6€2,
ie., 19Q.

There are three methods whereby R, can be determined.

Method 1
The voltage V| = IR, where R is 62, from above, i.e., V; = (10)(6) = 60V

Hence, V, = 250V — 60V = 190V = voltage across R; = voltage across R,

I; = Y. _BO_ 5A. Thus, I, = 5A also,
Ry, 38
since / = 10A
Thus, R, = -2 = 190 _ 382
1, 5
Method 2

Since the equivalent resistance of R; and R, in parallel is 192,

38R,
38+ R,

sum

e product ]

Hence, 1938 + R,) = 38R,
722 + 19R, = 38R,

722 = 38R, — 19R, = 19R,

Thus, R, = % =380

X
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Method 3

When two resistors having the same value are connected in parallel, the equivalent
resistance is always half the value of one of the resistors. In this case, since

Ry =19Q and R; = 38(), then R, = 382 could have been deduced on sight.

(b) Current I, = i I= 10 (10)
R +R, 15+10
2
=|1=110)=4A
5]( )
R 15
Current I, = l = ] (10)
R +R, 15+10
3
=|={10)=6A
5]( )

From part (a), method 1, I3 = I, = SA

Example 3.13
For the arrangement shown in Figure 3.22, find the current /..

Solution
Commencing at the right-hand side of the arrangement shown in Figure 3.24, the circuit
is gradually reduced in stages as shown in Figures 3.23(a)—(d).

From Figure 3.23(d), I = 17 =4A
4.25

I 140

1? E}: ”29 Ik

Figure 3.22: Circuit for Example 3.13
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20
! 1
2Q 1.4Q
/ Iy
17V 1.4+1.6
17V | igg ‘ |ﬁ—1.69 9Q [] =30
l 2+8 L
(@) (b)
/ 2Q T /=
9x3 _ 17V 2+2.25
17V I:I 913 2.25Q 4950

|

(c) (d)
Figure 3.23: Solution to Example 3.13, in four stages

From Figure 3.23(b), I, = [9%3} (= [%] (4)=3A

From Figure 3.22, I = [

2 R
s (11)—[10](3) 0.6 A

3.5 Relative and Absolute Voltages

In an electrical circuit, the voltage at any point can be quoted as being “with reference to”
(w.r.t.) any other point in the circuit. Consider the circuit shown in Figure 3.24. The total
resistance,

R, =30+50+5+15=1002

and current, [ = @ =2A
100
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I=2A 300 A 50Q B
200V T 50
T PY | —
s wa T

Figure 3.24: Relative voltage

If a voltage at point A is quoted with reference to point B then the voltage is written as

Vig. This is known as a relative voltage. In the circuit shown in Figure 3.24, the voltage at

Awrt.BisI X 50,i.e.,2 X 50 = 100V and is written as Vg = 100 V.

It must also be indicated whether the voltage at A w.r.t. B is closer to the positive terminal

or the negative terminal of the supply source. Point A is nearer to the positive terminal
than B so is written as Vg = 100V or Va5 = +100V or Va5 = 100V +ve.

If no positive or negative is included, then the voltage is always taken to be positive.

If the voltage at B w.r.t. A is required, then Vg, is negative and is written as
VBA = —100V or VBA =100V —ve.

If the reference point is changed to the earth point then any voltage taken w.r.t. the
earth is known as an absolute potential. If the absolute voltage of A in Figure 3.24 is
required, then this will be the sum of the voltages across the 502 and 5 €2 resistors, i.e.,
100 + 10 = 110V and is written as V, = 110V or V4 = +110V or V, = 110V +ve,
positive since moving from the earth point to point A is moving towards the positive
terminal of the source. If the voltage is negative w.r.t. earth then this must be indicated;
for example, V- = 30V negative w.r.t. earth, and is written as Vo = —30V or

Ve =30V —ve.

Example 3.14

For the circuit shown in Figure 3.25, calculate (a) the voltage drop across

the 4 k() resistor, (b) the current through the 5k{2 resistor, (c) the power developed
in the 1.5k€2 resistor, (d) the voltage at point X w.r.t. earth, and (e) the absolute
voltage at point X.
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|
1.5kQ 24V

Figure 3.25: Circuit for Example 3.14

Solution
(a) Total circuit resistance, Ry = [(1 + 4)k{) in parallel with 5k{2] in series with 1.5k(2

ie. Ry = ¥+1.5 = 4kQ

By current division, current in top branch

_o
5+1+4

X6 =3mA

Hence, volt drop across 4Kk(? resistor
=3X1073%x4x10° =12V
(b) Current through the Sk resistor

_1r4
5+1+4

X6 =3mA

(c) Power in the 1.5k{2 resistor

= I2R = (6 X 1073)2(1.5 X 103) = 54 mW
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(d) The voltage at the earth point is O volts. The volt drop across the 4k is 12V, from
part (a). Since moving from the earth point to point X is moving towards the negative
terminal of the voltage source, the voltage at point X w.r.t. earth is —12'V.

(e) The absolute voltage at point X means the voltage at point X w.r.t. earth; therefore,
the absolute voltage at point X is —12 V. Questions (d) and (e) mean the same thing.
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Capacitors and Inductors

John Bird

4.1 Introduction to Capacitors

A capacitor is an electrical device that is used to store electrical energy. Next to the
resistor, the capacitor is the most commonly encountered component in electrical
circuits. For example, capacitors are used to smooth rectified AC outputs, they are used
in telecommunication equipment—such as radio receivers—for tuning to the required
frequency, they are used in time delay circuits, in electrical filters, in oscillator circuits,
and in magnetic resonance imaging (MRI) in medical body scanners, to name but a few
practical applications.

4.2 Electrostatic Field

Figure 4.1 represents two parallel metal plates, A and B, charged to different potentials.
If an electron that has a negative charge is placed between the plates, a force will act on
the electron tending to push it away from the negative plate B towards the positive plate, A.
Similarly, a positive charge would be acted on by a force tending to move it toward the
negative plate. Any region such as that shown between the plates in Figure 4.1, in which
an electric charge experiences a force, is called an electrostatic field. The direction of

the field is defined as that of the force acting on a positive charge placed in the field. In
Figure 4.1, the direction of the force is from the positive plate to the negative plate.

Such a field may be represented in magnitude and direction by lines of electric force
drawn between the charged surfaces. The closeness of the lines is an indication of the
field strength. Whenever a voltage is established between two points, an electric field will
always exist. Figure 4.2(a) shows a typical field pattern for an isolated point charge, and
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Att+rt+t+++++++++++

Figure 4.1: Electrostatic field

(a) (b)
Figure 4.2: (a) Isolated point charge (b) Adjacent charges of opposite polarity

Figure 4.2(b) shows the field pattern for adjacent charges of opposite polarity. Electric
lines of force (often called electric flux lines) are continuous and start and finish on point
charges. Also, the lines cannot cross each other. When a charged body is placed close

to an uncharged body, an induced charge of opposite sign appears on the surface of the
uncharged body. This is because lines of force from the charged body terminate on its
surface.

The concept of field lines or lines of force is used to illustrate the properties of an electric
field. However, it should be remembered that they are only aids to the imagination.

The force of attraction or repulsion between two electrically charged bodies is
proportional to the magnitude of their charges and inversely proportional to the square of
the distance separating them,

914>

1.e., force «x —= or force = kM
d? d?
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where constant k = 9 X 10° in air.
This is known as Coulomb’s law.

Hence, the force between two charged spheres in air with their centers 16 mm apart and
each carrying a charge of +1.6uC is given by:

(1.6 X 1076)2

(16 X 1073)2
= 90 newtons

_ .9 _ 9
force—k?~(9><10)

4.3 Electric Field Strength

Figure 4.3 shows two parallel conducting plates separated from each other by air. They
are connected to opposite terminals of a battery of voltage V volts.

Therefore an electric field is in the space between the plates. If the plates are close
together, the electric lines of force will be straight and parallel and equally spaced, except
near the edge where fringing will occur (see Figure 4.1). Over the area in which there is
negligible fringing,

Electric field strength, E = gvolts/meter

where d is the distance between the plates. Electric field strength is also called potential
gradient.

>,

1
Iy

Figure 4.3: Two parallel conducting plates separated by air
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4.4 Capacitance

Static electric fields arise from electric charges, electric field lines beginning and ending
on electric charges. Thus, the presence of the field indicates the presence of equal positive
and negative electric charges on the two plates of Figure 4.3. Let the charge be +Q
coulombs on one plate and —Q coulombs on the other. The property of this pair of plates
that determines how much charge corresponds to a given voltage between the plates is
called their capacitance:

Y

capacitance C = =
Vv

The unit of capacitance is the farad F (or more usually uF = 107 % F or pF = 1072 F),
which is defined as the capacitance when a voltage of one volt appears across the plates
when charged with one coulomb.

4.5 Capacitors

Every system of electrical conductors possesses capacitance. For example, there is
capacitance between the conductors of overhead transmission lines and also between the
wires of a telephone cable. In these examples, the capacitance is undesirable but has to be
accepted, minimized or compensated for. There are other situations where capacitance is
a desirable property.

Devices specially constructed to possess capacitance are called capacitors (or condensers,
as they used to be called). In its simplest form, a capacitor consists of two plates that are
separated by an insulating material known as a dielectric. A capacitor has the ability to
store a quantity of static electricity.

The symbols for a fixed capacitor and a variable capacitor used in electrical circuit
diagrams are shown in Figure 4.4.

The charge Q stored in a capacitor is given by:
QO = I Xt coulombs

where [ is the current in amperes and ¢ the time in seconds.
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__”_

Fixed capacitor

+

Variable capacitor

Figure 4.4: Symbols for a fixed capacitor and a variable capacitor

Example 4.1
(a) Determine the voltage across a 4 uF capacitor when charged with SmC.

(b) Find the charge on a 50 pF capacitor when the voltage applied to it is 2kV.

Solution

(@ C=4pF =4 X 107°F;Q =5mC =5 X 1073C

SinceC=gthenV=Q:5><10 _5X10
14 C 4X107° 4x103

_ 5000

4

Hence, voltage = 250V or 1.25kV
(b) C =50pF =50 X 107 '?F; V = 2kV = 2000V

5X2
108

Q0 =CV =50x10"12 X 2000 =
=0.1X107°

So, charge = 0.1 pC

Example 4.2

A direct current of 4 A flows into a previously uncharged 20 pF capacitor for 3 ms.

Determine the voltage between the plates.

Solution
I=4A;C=20pF =20 X 107 °F;

t=3ms =3X103
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Q=Ir=4X3xX107°C

X 3X1073 X 109
V=g=4 3X10 :12 10 — 06X 103
C 20X 107° 20 X 103

=600V

So, the voltage between the plates is 600 V.

Example 4.3
A 5uF capacitor is charged so that the voltage between its plates is 800 V. Calculate how
long the capacitor can provide an average discharge current of 2 mA.

Solution
C=5pF=5X10"°F; V=800V;

I=2mA =2X103A
Q0=CV=5X10°x800=4x103C

Therefore, the capacitor can provide an average discharge current of 2mA for 2s.

4.6 Electric Flux Density

Unit flux is defined as emanating from a positive charge of 1 coulomb. Thus
electric flux ¥ is measured in coulombs, and for a charge of Q coulombs, the flux
U = Q coulombs.

Electric flux density D is the amount of flux passing through a defined area A that is
perpendicular to the direction of the flux:

electric flux density, D = % coulombs/meter?

Electric flux density is also called charge density, o.
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4.7 Permittivity

At any point in an electric field, the electric field strength £ maintains the electric flux and
produces a particular value of electric flux density D at that point. For a field established
in vacuum (or for practical purposes in air), the ratio D/E is a constant €, i.e.,

D

— = ¢
E 0

where ¢ is called the permittivity of free space or the free space constant. The value of ¢,
is 8.85 X 10" 2F/m.
When an insulating medium, such as mica, paper, plastic, or ceramic, is introduced into

the region of an electric field the ratio of D/E is modified:

E = 8067

where €,, the relative permittivity of the insulating material, indicates its insulating power
compared with that of vacuum:

flux density in material

relative permittivity €, = flux density in vacuum

Here, €, has no unit. Typical values of ¢, include: air, 1.00; polythene, 2.3; mica, 3-7;
glass, 5-10; water, 80; ceramics, 6—1000.

The product g4¢, is called the absolute permittivity, .

€ = g,

The insulating medium separating charged surfaces is called a dielectric. Compared with
conductors, dielectric materials have very high resistivities. Therefore, they are used to
separate conductors at different potentials, such as capacitor plates or electric power lines.

Example 4.4

Two parallel rectangular plates measuring 20cm by 40 cm carry an electric charge of
0.2 pC. Calculate the electric flux density. If the plates are spaced 5 mm apart and the
voltage between them is 0.25kV determine the electric field strength.
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Solution
Charge Q = 0.2 uC = 0.2 X 107°C;

Area A = 20cm X 40cm = 800cm? = 800 X 10~ *m?
Q 02x10°  02x10*

Electric flux density D = = = =
A 800x1074 800 X 10°
= M X 1076 = 2.5pC/m?
800

Voltage V = 0.25kV = 250V; Plate spacing, d = Smm = 5 X 10 °m

Example 4.5
The flux density between two plates separated by mica of relative permittivity 5 is
21C/m?. Find the voltage gradient between the plates.

Solution
Flux density D = 2pC/m? = 2 X 10-C/m?;

g0 = 8.85 X 107 2F/m; ¢, = 5.

D

E = Eosr,

hence, voltage gradient E = b
€0E,

_ 2X10°¢
8.85X10712 X5

= 45.2kV/m

Example 4.6

Two parallel plates having a voltage of 200V between them are spaced 0.8 mm apart.
What is the electric field strength? Find also the flux density when the dielectric between
the plates is (a) air, and (b) polythene of relative permittivity 2.3.
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Solution

(a) Forair: e, =1
E = €,¢,. Hence,

Electric flux density D = Ecg,
= (250 X 10° X 8.85 X 1072 X 1) C/m?
= 2.213 pC/m?
(b) For polythene, €, = 2.3
Electric flux density D = Ecg,
= (250 X 10° X 8.85 X 10™!2 X 2.3)C/m?
= 5.089 p.C/m?

4.8 The Parallel Plate Capacitor

For a parallel plate capacitor, as shown in Figure 4.5(a), experiments show that
capacitance C is proportional to the area A of a plate, inversely proportional to
the plate spacing d (i.e., the dielectric thickness) and depends on the nature of the
dielectric:

A
Capacitance, C = %farads

where ¢, = 8.85 X 10~ '2F/m (constant)
g, = relative permittivity
A = area of one of the plates, in m?, and
d = thickness of dielectric in m

Another method used to increase the capacitance is to interleave several plates as shown

in Figure 4.5(b). Ten plates are shown, forming nine capacitors with a capacitance nine

times that of one pair of plates.
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_d
Area A b
+0
o-
Dielectric between the plate
(@) of relative permittivity ¢, (b)

Figure 4.5: Parallel plate capacitor

If such an arrangement has n plates, then capacitance C « (n — 1).

g, A(n —1)

Thus, capacitance C = farads

Example 4.7

(a) A ceramic capacitor has an effective plate area of 4 cm? separated by 0.1 mm of
ceramic of relative permittivity 100. Calculate the capacitance of the capacitor in
picofarads. (b) If the capacitor in part (a) is given a charge of 1.2uC, what will be the
voltage between the plates?

Solution
(a) Area A =4cm? =4 X 10"*m?%

d=0.Imm=0.1 X 103m;
g0 = 8.85 X 107 2F/m; €, = 100
Capacitance C = %farads

_ 8.85X 10712 X100 X 4 X104

F
0.1X1073
_ 885X4 . 8.85x4x1017
- 1010 - 1010

= 3540 pF
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-6
C 3540x10712

Example 4.8

A waxed paper capacitor has two parallel plates, each of effective area 800 cm?. If the
capacitance of the capacitor is 4425 pF, determine the effective thickness of the paper if
its relative permittivity is 2.5.

Solution

A = 800cm? = 800 X 10™*m? = 0.08 m%;
C = 4425pF = 4425 X 107 ?F;
g0 = 8.85 X 1072F/m;e, = 2.5

€0E,A €0E,A

Since C = then d =

—12
Hence, d — B85 X102 X25X008 _ o0

4425 x 10712

So, the thickness of the paper is 0.4 mm.

Example 4.9

A parallel plate capacitor has nineteen interleaved plates each 75 mm X 75 mm separated
by mica sheets 0.2 mm thick. Assuming the relative permittivity of the mica is 5, calculate
the capacitance of the capacitor.

Solution
n=19n—1=18;

A =75X%X75=5625mm? = 5625 X 10 °m?;
g, =5;e0=8.85X 1072 F/m;
d=02mm=02X10"3m
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An—1
Capacitance C = %
_ 8.85X 10712 X 5X 5625 X 1076 X 18 8
0.2x1073

= 0.0224pF or 224nF

4.9 Capacitors Connected in Parallel and Series
4.9.1 Capacitors Connected in Parallel

Figure 4.6 shows three capacitors, C;, C, and Cs, connected in parallel with a supply
voltage V applied across the arrangement.

When the charging current / reaches point A it divides, some flowing into C;, some
flowing into C, and some into C;. Therefore, the total charge QT (=1 X ¢) is divided
between the three capacitors. The capacitors each store a charge and these are shown as
0, O, and Q5 respectively. Hence:

Or =0, +0, +0;

0O V—o
Total charge, Qr = Q1+ Qo+ Q3

Figure 4.6: Three capacitors connected in parallel
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But Or = CV, 0, = 4V, O, = G,V and Q5 = C3V. Therefore, CV = C,V + G,V + GV
where C is the total equivalent circuit capacitance,

ie,C=C +C, +C;

It follows that for n parallel-connected capacitors,

C=C+C,+Cy+---+C,
that is, the equivalent capacitance of a group of parallel-connected capacitors is the sum
of the capacitances of the individual capacitors. (Note that this formula is similar to that
used for resistors connected in series.)

4.9.2 Capacitors Connected in Series

Figure 4.7 shows three capacitors, C;, C, and C;, connected in series across a supply
voltage V. Let the voltage across the individual capacitors be V|, V,, and V3, respectively,
as shown.

Let the charge on plate “a” of capacitor C; be +( coulombs. This induces an equal but
opposite charge of —(Q coulombs on plate “b”. The conductor between plates “b” and “c”
is electrically isolated from the rest of the circuit so that an equal but opposite charge

of +Q coulombs must appear on plate “c”, which, in turn, induces an equal and opposite
charge of —Q coulombs on plate “d”, and so on.

When capacitors are connected in series the charge on each is the same.

Cy Co Cs
+Q| FO +Q) |*O +Q| 1=Q
aI b cI d e 'f
Vi Vo Vs
/ /
O 4 e}

Charge on each capacitor=Q

Figure 4.7: Three capacitors connected in series
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In a series circuit: V. =V, +V, +V;

Q then 222_,_2_,_2
G G G

Since V =

where C is the total equivalent circuit capacitance,

That is, for series-connected capacitors, the reciprocal of the equivalent capacitance is
equal to the sum of the reciprocals of the individual capacitances. (Note that this formula
is similar to that used for resistors connected in parallel.)

For the special case of two capacitors in series:

1_1 1 _G+¢

= 4+ =

Hence, C = GG [i.e., M]
G +C, sum

Example 4.10
Calculate the equivalent capacitance of two capacitors of 6 uF and 4 uF connected
(a) in parallel and (b) in series.

Solution
(a) In parallel, equivalent capacitance C = C; + C, = 6pF + 4uF = 10pF

(b) In series, equivalent capacitance C is given by:

GG
C, +C,
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This formula is used for the special case of fwo capacitors in series.

Example 4.11
What capacitance must be connected in series with a 30 uF capacitor for the equivalent
capacitance to be 12 uF?

Solution
Let C = 12F (the equivalent capacitance), C; = 30pF and C, be the unknown
capacitance.

. . .1 1 1
For two capacitors in series — = — + —
c ¢ G
Hence, 11 1_6-¢
¢, C ( CC,
cc X
and C, = ,_ 12X30

Example 4.12

Capacitances of 1pF, 3pF, 5pF and 6 pF are connected in parallel to a direct voltage
supply of 100 V. Determine (a) the equivalent circuit capacitance, (b) the total charge and
(c) the charge on each capacitor.

Solution
(a) The equivalent capacitance C for four capacitors in parallel is given by:

C=C1+C2+C3+C4
ie,C=1+3+5+6=15pF
(b) Total charge Q7 = CV where C is the equivalent circuit capacitance

ie,Qr=15X1076% 100 = 1.5 X 1073C = 1.5mC



68 Chapter 4

(c) The charge on the 1 pF capacitor

0, =C,V=1x10"°x%100

=0.1mC
The charge on the 3 pF capacitor
0,=C,V=3x%X10"°x%100

=0.3mC
The charge on the 5 pF capacitor
0;=C;V=5%X10"°x%100

=0.5mC
The charge on the 6 pF capacitor
0,=C,V=6X10"°x%100

=0.6mC
[Check: In a parallel circuit:

O0r=01+t 0+ 03+ 04
01 +0,+0;+0,=01+03+05+06
= 1.5mC = Qy]

Example 4.13

Capacitances of 3 pF, 6 uF and 12 pF are connected in series across a 350V supply.
Calculate (a) the equivalent circuit capacitance, (b) the charge on each capacitor and
(c) the voltage across each capacitor.

Solution

The circuit diagram is shown in Figure 4.8.

C1: 3“-F C2:6U~F C3=12 uF

V=350 V——
Figure 4.8: Circuit diagram for Example 4.13
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(a) The equivalent circuit capacitance C for three capacitors in series is given by:

i_1r, .1
cC ¢ C G
. 1 1.1 1 _ 4+2+1
ie., — =t -t —=—=
cC 3 6 12 12

(b) Total charge Q7 = CV, hence,

12

Or = 7 X 1076 X 350 = 600 uC or 0.6 mC

Since the capacitors are connected in series, 0.6 mC is the charge on each of them.

(c) The voltage across the 3 uF capacitor,

_ 0 _06x107?
¢ 3x10°
=200V

The voltage across the 6 uF capacitor,

0 06x1073

V=" =—"

C, 6x107°
=100V

The voltage across the 12 uF capacitor,

Q0 _06x1073

V., =
e, 12X10°6

=50V
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[Check: In a series circuit
V= V] + V2 + V3
Vi+ V,+ V3 =200+ 100 + 50 = 350V

supply voltage.]

In practice, capacitors are rarely connected in series unless they are of the same
capacitance. The reason for this can be seen from the above problem where the lowest
valued capacitor (i.e., 3 pF) has the highest voltage across it (i.e., 200 V) which means
that if all the capacitors have an identical construction they must all be rated at the highest
voltage.

4.10 Dielectric Strength

The maximum amount of field strength that a dielectric can withstand is called the
dielectric strength of the material.

1%

Dielectric strength, E, = 7’”

Example 4.14

A capacitor is to be constructed so that its capacitance is 0.2 pF and to take a voltage of
1.25kV across its terminals. The dielectric is to be mica which, after allowing a safety
factor of 2, has a dielectric strength of S0 MV/m. Find (a) the thickness of the mica
needed, and (b) the area of a plate assuming a two-plate construction. (Assume ¢, for
mica to be 6.)

Solution v v
(a) Dielectric strength, £ = —, i.e.,d = —
d E
1.25%X 103
=—————m
50 X 10°

= 0.025mm
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A

(b) Capacitance, C = S0t 2
hence, area A = C—d
€€,

_ 0.2X107° X 0.025 X107 m2
8.85X 10712 X6

= 0.09416m? = 941.6 cm?

4.11 Energy Stored

The energy, W, stored by a capacitor is given by:
W= %CV2 joules
Example 4.15

(a) Determine the energy stored in a 3 pF capacitor when charged to 400 V. (b) Find also
the average power developed if this energy is dissipated in a time of 10ps.

Solution
1 .
(a) Energy stored W = ECVZ joules
= %x3><10—6 X 4002
= E X 16X 1072
2
=0.24]

Energy _  0.24

b) Power =
®) time 10X 10°6

W = 24 kW

Example 4.16
A 12 F capacitor is required to store 4J of energy. Find the voltage to which the
capacitor must be charged.
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Solution
Energy stored W = %CV2 hence, V2 = 2?W
2w 2X4 2 X 106
and V = - | = e =
\/[ c ] v 12><1o—6] v 3
= 816.5V

Example 4.17
A capacitor is charged with 10mC. If the energy stored is 1.2] find (a) the voltage and
(b) the capacitance.

Solution
L2 0
Energy stored W = —CV* and C ==
2 v
Hence, W = l g V2 = lQV
2|1V 2

from which V = 2—W

Q0=10mC=10X1073C and W=12]J

4.12 Practical Types of Capacitors

Practical types of capacitors are characterized by the material used for their dielectric.
The main types include: variable air, mica, paper, ceramic, plastic, titanium oxide, and
electrolytic.
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Moving
plate

Spindle '

Figure 4.9: End view of variable air capacitor

Fixed
plate

Mica sheets

tal foi
(lead or aluminium)

Figure 4.10: Older construction mica capacitor

Variable air capacitors. These usually consist of two sets of metal plates (such
as aluminum) one fixed, the other variable. The set of moving plates rotate on a
spindle as shown by the end view of Figure 4.9.

As the moving plates are rotated through half a revolution, the meshing, and
therefore the capacitance, varies from a minimum to a maximum value. Variable
air capacitors are used in radio and electronic circuits where very low losses are
required, or where a variable capacitance is needed. The maximum value of such
capacitors is between 500 pF and 1000 pF.

Mica capacitors. A typical older type construction is shown in Figure 4.10.

Usually the whole capacitor is impregnated with wax and placed in a bakelite
case. Mica is easily obtained in thin sheets and is a good insulator. However,
mica is expensive and is not used in capacitors above about 0.2 uF. A modified
form of mica capacitor is the silvered mica type. The mica is coated on both
sides with a thin layer of silver, which forms the plates. Capacitance is stable
and less likely to change with age. Such capacitors have a constant capacitance
with change of temperature, a high working voltage rating and a long service life
and are used in high frequency circuits with fixed values of capacitance up to
about 1000 pF.
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tal foil N\
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Metal
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Figure 4.11: Typical paper capacitor

Caonnection Connection
7 st sV
L Ll XA

- \Cor‘xductin
Ceramic coating 9
tube (e.g silver)

Figure 4.12: Cross-section of tube of ceramic material

Paper capacitors. A typical paper capacitor is shown in Figure 4.11where

the length of the roll corresponds to the capacitance required. The whole is
usually impregnated with oil or wax to exclude moisture, and then placed in

a plastic or aluminum container for protection. Paper capacitors are made in
various working voltages up to about 150kV and are used where loss is not very
important. The maximum value of this type of capacitor is between 500 pF and
10 uF. Disadvantages of paper capacitors include variation in capacitance with
temperature change and a shorter service life than most other types of capacitor.

Ceramic capacitors. These are made in various forms, each type of construction
depending on the value of capacitance required. For high values, a tube of
ceramic material is used as shown in the cross-section of Figure 4.12. For
smaller values the cup construction is used as shown in Figure 4.13, and for

still smaller values the disc construction shown in Figure 4.14 is used. Certain
ceramic materials have a very high permittivity and this enables capacitors

of high capacitance to be made which are of small physical size with a high
working voltage rating. Ceramic capacitors are available in the range 1 pF to
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Ceramic cup

Connection

Conducting
coating

Figure 4.13: Cup construction

Ceramic
disc)

Conducting
coatings

Figure 4.14: Disc construction

0.1 pF and may be used in high frequency electronic circuits subject to a wide
range of temperatures.

Plastic capacitors. Some plastic materials such as polystyrene and Teflon can
be used as dielectrics. Construction is similar to the paper capacitor but using a
plastic film instead of paper. Plastic capacitors operate well under conditions of
high temperature, provide a precise value of capacitance, a very long service life
and high reliability.

Titanium oxide capacitors have a very high capacitance with a small physical
size when used at a low temperature.

Electrolytic capacitors. Construction is similar to the paper capacitor with
aluminum foil used for the plates and with a thick absorbent material, such
as paper, impregnated with an electrolyte (ammonium borate), separating the
plates. The finished capacitor is usually assembled in an aluminum container
and hermetically sealed. Its operation depends on the formation of a thin
aluminum oxide layer on the positive plate by electrolytic action when a
suitable direct potential is maintained between the plates. This oxide layer is
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very thin and forms the dielectric. (The absorbent paper between the plates is a
conductor and does not act as a dielectric.) Such capacitors must always be used
on DC and must be connected with the correct polarity; if this is not done the
capacitor will be destroyed since the oxide layer will be destroyed. Electrolytic
capacitors are manufactured with working voltage from 6V to 600V, although
accuracy is generally not very high. These capacitors possess a much larger
capacitance than other types of capacitors of similar dimensions due to the oxide
film being only a few microns thick. The fact that they can be used only on DC
supplies limit their usefulness.

4.13 Inductance

Inductance is the name given to the property of a circuit whereby there is an e.m.f.
induced into the circuit by the change of flux linkages produced by a current change.
When the e.m.f. is induced in the same circuit as that in which the current is changing,
the property is called self-inductance, L. When the e.m.f. is induced in a circuit by a
change of flux due to current changing in an adjacent circuit, the property is called mutual
inductance, M. The unit of inductance is the henry, H.

A circuit has an inductance of one henry when an e.m.f. of one volt is induced in it by a
current changing at the rate of one ampere per second.

Induced e.m.f. in a coil of N turns,
E=-N ﬁvolts
dt
where d® is the change in flux in webers, and dt is the time taken for the flux to change in

seconds (i.e., d®/dt is the rate of change of flux).

Induced e.m.f. in a coil of inductance L henrys,

dl
E =—L—volts

dt
where dI is the change in current in amperes and df is the time taken for the current to
change in seconds (i.e., dl/dt is the rate of change of current). The minus signs in each of
the above two equations remind us of its direction (given by Lenz’s law).
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Example 4.18
Determine the e.m.f. induced in a coil of 200 turns when there is a change of flux of
25 mWb linking with it in 50 ms.

Solution
X -3
Induced e.m.f. E = —Nﬂ = —(200) &
dt 50 X 1073
=—100volts

Example 4.19
A flux of 400 pWb passing through a 150-turn coil is reversed in 40 ms. Find the average
e.m.f. induced.

Solution
Since the flux reverses, the flux changes from +400 Wb to —400p Wb, a total change of
flux of 800 uWb

X —6
Induced e.m.f. E = —N@ = —(150) 800x10™
dt 40 <1073
_ _| 150 X800 X 103
40 X 106
Hence the average e.m.f. induced E = =3V

Example 4.20
Calculate the e.m.f. induced in a coil of inductance 12 H by a current changing at the rate
of 4 Als.

Solution

Ll

Induced e.m.f. E = — 5 = —(12)(4) = —48 volts

Example 4.21
An e.m.f. of 1.5kV is induced in a coil when a current of 4 A collapses uniformly to zero
in 8 ms. Determine the inductance of the coil.
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Solution
Change in current, dl = (4 — 0) = 4A;dt = 8ms = 8§ X 107 3s;
ﬂ = 4 = 4000 = 500 A/s;
dt  8x1073
E=15%kV =1500V
Since |E| = L[ﬂ]
dt
inductance, L = ﬂ = @ =3H

(Note that |E| means the “magnitude of E,” which disregards the minus sign.)

4.14 Inductors

A component called an inductor is used when the property of inductance is required in a
circuit. The basic form of an inductor is simply a coil of wire.

Factors which affect the inductance of an inductor include:
(i) the number of turns of wire—the more turns, the higher the inductance.

(i1) the cross-sectional area of the coil of wire—the greater the cross-sectional area
the higher the inductance.

(iii) the presence of a magnetic core—when the coil is wound on an iron core, the same
current sets up a more concentrated magnetic field and the inductance is increased.

(iv) the way the turns are arranged—a short thick coil of wire has a higher
inductance than a long thin one.

Two examples of practical inductors are shown in Figure 4.15, and the standard electrical
circuit diagram symbols for air-cored and iron-cored inductors are shown in Figure 4.16.

An iron-cored inductor is often called a choke since, when used in AC circuits, it has a
choking effect, limiting the current flowing through it. Inductance is often undesirable
in a circuit. To reduce inductance to a minimum, the wire may be bent back on itself, as
shown in Figure 4.17, so that the magnetizing effect of one conductor is neutralized by
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Figure 4.15: Two examples of practical inductors

— Y Y Y\
Air-cored inductor

—  IYYY\
Iron-cored inductor

Figure 4.16: Standard electrical symbols for air-cored and iron-cored inductors

Insulator

Wire

Figure 4.17: Wire coiled around an insulator to form an inductor
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that of the adjacent conductor. The wire may be coiled around an insulator, as shown,
without increasing the inductance. Standard resistors may be non-inductively wound in
this manner.

4.15 Energy Stored

An inductor possesses an ability to store energy. The energy stored, W, in the magnetic
field of an inductor is given by:

1
W= ELI2 joules

Example 4.22
An 8 H inductor has a current of 3 A flowing through it. How much energy is stored in the
magnetic field of the inductor?

Solution

1 1
Energy stored, W = Ele = 5(8)(3)2 = 36 joules
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John Bird

5.1 Introduction

The laws that determine the currents and voltage drops in DC networks are: (a) Ohm’s
law, (b) the laws for resistors in series and in parallel, and (c) Kirchhoff’s laws (see
Section 5.2). In addition, there are a number of circuit theorems that have been developed
for solving problems in electrical networks. These include:

(i) the superposition theorem (see Section 5.3),
(i1)) Thévenin’s theorem (see Section 5.5),
(ii1) Norton’s theorem (see Section 5.7), and

(iv) the maximum power transfer theorem (see Section 5.9).

5.2 Kirchhoff’s Laws

Kirchhoff’s laws state:

(a) Current Law. At any junction in an electric circuit the total current flowing
towards that junction is equal to the total current flowing away from the
junction, i.e., X1 = 0.

Thus, referring to Figure 5.1:
Il +12=I3+I4+150r,

Il+12_13_14_15:()
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A3

Figure 5.2: Loop showing Kirchhoff’s voltage law

(b) Voltage Law. In any closed loop in a network, the algebraic sum of the voltage
drops (i.e., products of current and resistance) taken around the loop is equal to
the resultant e.m.f. acting in that loop.

Thus, referring to Figure 5.2:
Ey— E,=1IRy + IRy, + IR;

(Note that if current flows away from the positive terminal of a source, that
source is considered by convention to be positive. Thus, moving anticlockwise
around the loop of Figure 5.2, E; is positive and E, is negative.)

Example 5.1

(a) Find the unknown currents marked in Figure 5.3(a). (b) Determine the value of e.m.f.
E in Figure 5.3(b).

Solution
(a) Applying Kirchhoff’s current law:

For junction B: 50=20+1;.1; =30 A
For junctionC: 20+ 15=16.1,=35A
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E 1.50 I 250

6V

(b}
Figure 5.3: Figures for Example 5.1

For junction D: I}, = I3 + 120
ie., 30=5L+120.1; = —90A
(i.e., in the opposite direction to that shown in Figure 5.3(a))
For junction E: I, + I3 =15
ie., I, = 15 — (—90).

I, =105A
For junction F: 120 =I5 + 40.Is = 80 A

(b) Applying Kirchhoff’s voltage law and moving clockwise around the loop of Figure
5.3 (b) starting at point A:

3+ 6+E—4=(DR2)+ (2.5 + (1.5 + (D)
=J]2+25+15+1)
1.e., 5+ E=2(7),sincel =2A
E=14-5=9V

Example 5.2
Use Kirchhoff’s laws to determine the currents flowing in each branch of the network
shown in Figure 5.4.

Solution
Procedure

1. Use Kirchhoff’s current law and label current directions on the original circuit
diagram. The directions chosen are arbitrary, but it is usual, as a starting point, to
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|E2:2V

]H=4Q
h=10

Figure 5.4: Network for Example 5.2

/1 /2

E,= 1 N
ﬂ_1 A Ll |+E272V

K Loop ooy -
’ p=40 2

n=20Q \ L=1Q

Figure 5.5: Labeling current directions

assume that current flows from the positive terminals of the batteries. This is shown
in Figure 5.5 where the three branch currents are expressed in terms of /; and I, only,
since the current through R is I} + I,.

2. Divide the circuit into two loops and apply Kirchhoff’s voltage law to each. From
loop one of Figure 5.5, and moving in a clockwise direction as indicated (the
direction chosen does not matter), gives:

E =1+, +1,)R ie,4=2I +4 +1,),
ie., 6l +4I, = 4 (5.1)

From loop 2 of Figure 5.5, and moving in an anticlockwise direction as indicated
(once again, the choice of direction does not matter; it does not have to be in the same
direction as that chosen for the first loop), gives:

E, =L+, +L)Rie,2=1+4(, +1,),
ie., 41, +51, =2 (5.2)
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Figure 5.6: Possible third loop

3. Solve equations (1) and (2) for /; and /5.

2X (1) gives: 121, +81, =8 (5.3)

3X(2) gives: 121, +151, =6 5.4
. 2

(3) — (4) gives: =71, = 2 hence, I, = —; = —0.286 A

(i.e., I, is flowing in the opposite direction to that shown in Figure 5.5.)

From (1) 61, + 4 (—0.286) = 4
61, = 4+1.144

Hence, I, = % = 0.857A

Current flowing through resistance R is,

I, +1, = 0.857 +(—0.286) = 0.571A

Note that a third loop is possible, as shown in Figure 5.6, giving a third equation that
can be used as a check:

E,—E,=1Lirp — b,
4 - 2 = 2]1 - 12
2 = 2]1 - 12
[Check: 21, — I, = 2(0.857) — (—0.286) = 2]
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Example 5.3
Determine, using Kirchhoft’s laws, each branch current for the network shown in
Figure 5.7.

Solution

1. Currents and their directions are shown labeled in Figure 5.8 following Kirchhoft’s
current law. It is usual, although not essential, to follow conventional current flow with
current flowing from the positive terminal of the source.

2. The network is divided into two loops as shown in Figure 5.8. Applying Kirchhoff’s
voltage law gives:
For loop one:
E, +E, =1,R +1,R,
ie, 16 =051, +2I, (5.5)
For loop two:

E, = LR, — (I} — L) Rs

Figure 5.7: Network for Example 5.3

{l1=h)

'LEZ 12V
F.' 20
LOOP Loop

Figure 5.8: Labelmg current directions
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Note that since loop two is in the opposite direction to current (I; — I,), the voltage
drop across R5 (i.e., (I; — 1) (R3)) is by convention negative.

Thus, 12 =21, — 5, + 1)
ie, 12=—5I+7I, (5.6)

3. Solving equations (5.1) and (5.2) to find /; and I,:

10 X (1) gives 160 = 51, + 201,

(5.6) + (5.7) gives 172 = 271, hence, I, = % =6.37A 5.7
From (1): 16 = 0.51, +2(6.37)

, _16-2637)

1 =6.52A
0.5

Current flowinginR; =1, — I, = 6.52 — 6.3
= 0.15A

Example 5.4

For the bridge network shown in Figure 5.9 determine the currents in each of the
resistors.

Solution

Let the current in the 2 € resistor be /;; then by Kirchhoft’s current law, the current in the
14 Q resistor is (I — I;). Let the current in the 322 resistor be I, as shown in Figure 5.10.
Then the current in the 112 resistor is (I — I,) and that in the 32 resistor is (I — I; + I,).

Figure 5.9: Bridge network for Example 5.4
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Applying Kirchhoff’s voltage law to loop one and moving in a clockwise direction as
shown in Figure 5.10 gives:

54 =21, +11(, - I,)
ie, 131, — 111, = 54 (5.8)

Applying Kirchhoff’s voltage law to loop two and moving in an anticlockwise direction
as shown in Figure 5.10 gives:

0=2I + 321, — 14 — I)

However, I = 8A

Hence, 0=21+321,—148—1,)

ie., 161, +321, =112 (5.9)

Equations (5.8) and (5.9) are simultaneous equations with two unknowns, /; and /,.

16 X (1) gives: 2081, — 1761, = 864 (5.10)

13X (2) gives: 2081, + 4161, = 1456 (5.11)
4) — (3) gives: 5921, = 592
12 = lA

Substituting for I, in (1) gives:

13, — 11 = 54
I NN
13

Figure 5.10: Labeling directions
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the current flowing in the 22 resistor = [; = 5A

the current flowing in the 14 ) resistor = [ — [,
=8—-5=3A

the current flowing in the 322 resistor = I, = 1A

the current flowing in the 11 resistor =1, — I, =5 — 1
=4A and

the current flowing in the 3Q resistor =1 —1I1; + I,
=8—-5+1
=4A

5.3 The superposition Theorem

The superposition theorem states:

“In any network made up of linear resistances and containing more than one source of
e.m.f., the resultant current flowing in any branch is the algebraic sum of the currents
that would flow in that branch if each source was considered separately, all other sources
being replaced at that time by their respective internal resistances.”

Example 5.5

Figure 5.11 shows a circuit containing two sources of e.m.f., each with their internal
resistance. Determine the current in each branch of the network by using the
superposition theorem.

J__E1=4V J_EZ:QV

R=40Q
n=2Q L=1Q

Figure 5.11: Circuit for Example 5.5
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Solution
Procedure:

1.

Redraw the original circuit with source E, removed, being replaced by r, only, as
shown in Figure 5.12(a).

Label the currents in each branch and their directions as shown in Figure 5.12(a) and
determine their values. (Note that the choice of current directions depends on the battery
polarity, which, by convention is taken as flowing from the positive battery terminal as
shown.) R in parallel with r, gives an equivalent resistance of:

AXT_ 80
4+1

From the equivalent circuit of Figure 5.12(b),

E _ 4
r+08 2+0.8

1

=1.429A

From Figure 5.12(a),

I, =|— b 1——(1429) 0.286 A
4+1
And,
4
I 1——1429
3441 ( )

= 1.143 A by current division

Ey4V= o Ei=4V=

[]R:4Q [] L=1Q []O_BQ
n=20 =20
(@) (b)

Figure 5.12: (a) Redrawn circuit; (b) Equivalent circuit
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3. Redraw the original circuit with source E;| removed, being replaced by r; only, as
shown in Figure 5.13(a).

4. Label the currents in each branch and their directions as shown in Figure 5.13(a) and
determine their values. r; in parallel with R gives an equivalent resistance of:

2X4

2+4

=1.3330Q

| oo

From the equivalent circuit of Figure 5.13(b)

= = 0.857TA
1.333+r, 1.333+1

I, =

From Figure 5.13(a)

J I——(0857)—0286A
2+4
4

Iy =|— ——(0857)—0571A
2+4

5. Superimpose Figure 5.13(a) on to Figure 5.12(a) as shown in Figure 5.14.

6. Determine the algebraic sum of the currents flowing in each branch.
Resultant current flowing through source 1, i.e.,
= 0.858 A (discharging)

—y
w
w
w
o~
~
—
1__»

(b)

Figure 5.13: (a) Redrawn circuit; (b) Equivalent circuit
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s la

l1 |"—"<—'T__-<'1

——d. . — )

| i /3 |

i ] Y/S |

- 2 \ 1

— - |
! % &

r

y lr’ [J :

i I o

v ! ::

! [ [

L] o == __Jr

Figure 5.14: Superimposed circuits

0.858A 0.286 A
E1:4V| 0.572 A lEzzzv
el

R=40

=249 H=1Q

Figure 5.15: Resultant currents and their directions

Resultant current flowing through source 2, i.e.,

I, — I, = 0.857 — 1.143
= —0.286 A (charging)

Resultant current flowing through resistor R, i.e.,

I, + I5 = 0.286 + 0.286
=0.572A

The resultant currents with their directions are shown in Figure 5.15.

Example 5.6

For the circuit shown in Figure 5.16, find, using the superposition theorem, (a) the current
flowing in and the voltage across the 182 resistor, (b) the current in the 8 V battery and
(c) the current in the 3V battery.
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oo o

E=8V]

1

Figure 5.16: Circuit for Example 5.6

I3

I1 _ +3 /1
E1=8V| i E1:8V|
2x18 g0

]189 []2+18

o |

(a) ! (b)

Figure 5.17: (a) Redrawn circuit; (b) Equivalent circuit

Solution
1. Removing source E, gives the circuit of Figure 5.17(a).

2. The current directions are labeled as shown in Figure 5.17(a), /; flowing from the
positive terminal of E;.

From Figure 5.17(b), I, = —L— = 8 _1e67A
1 4.8
From Figure 5.17(a), I, = i 1
S A PEET
18
= —(1.667) = 1.500 A
20
and I, = 2 I,
2+18

= i(1.667) =0.167 A
20
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3. Removing source E; gives the circuit of Figure 5.18(a), (which is the same as
Figure 5.18(b)).

4. The current directions are labeled as shown in Figures 5.18(a) and 5.18(b), I, flowing
from the positive terminal of E,:

E
From Figure 5.18(c), I, = 2 __3
242571 4.571
=0.656 A
18 18
From Figure 5.18(b), I. = |——— |1, = — (0.656
£ ®), 15 [3+18] 475 (0696
=0.562 A
3

Iy =

3
I, = —(0.656
3+18) ¢ 21( )

=0.094 A

5. Superimposing Figure 5.18(a) on to Figure 5.17(a) gives the circuit in Figure 5.19.

]3’”8:2.5719

39[ 3x18

B

Figure 5.18: (a) Step 1; (b) Step 2; (c) Step 3

\Tis) \3™ g/

| tlg‘*’/‘;)
E1:8V E2:3V

18 Q)

) S

|

Figure 5.19: Result of superimposing



DC Circuit Theory 95

6. (a) Resultant current in the 18 € resistor:
=5~ I
=0.167 — 0.094
= 0.073A
voltage across the 18 ) resistor

= 0.073 X 18 = 1.314V

(b) Resultant current in the 8V battery:
=1, + I5 = 1.667 + 0.562
= 2.229 A (discharging)

(c) Resultant current in the 3V battery:

=1, + 1, = 1500 + 0.656
= 2.156 A (discharging)

5.4 General DC Circuit Theory

The following points involving DC circuit analysis need to be appreciated before
proceeding with problems using Thévenin’s and Norton’s theorems:

(i) The open-circuit voltage, E, across terminals AB in Figure 5.20 is equal to 10V,
since no current flows through the 2 {2 resistor; therefore, no voltage drop occurs.

(i) The open-circuit voltage, E, across terminals AB in Figure 5.21(a) is the same
as the voltage across the 62 resistor. The circuit may be redrawn as shown in
Figure 5.21(b).

_ 6
E= [6+4](50)

by voltage division in a series circuit, i.e., E = 30V
20
| S A
1 .
o
oB

Figure 5.20: Example circuit
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/ 7

E ' :
~ E E

. Voo Voo
[y - -
:J r ('1".‘

——— —

(@) (b)

Figure 5.22: (a) Example circuit; (b) Second example circuit

(iii) For the circuit shown in Figure 5.22(a) representing a practical source supplying
energy, V = E — Ir, where E is the battery e.m.f., V is the battery terminal
voltage and r is the internal resistance of the battery. For the circuit shown in
Figure 5.22(b), V=E — (—Dr,ie.,V=E + Ir.

(iv) The resistance “looking-in” at terminals AB in Figure 5.23(a) is obtained by
reducing the circuit in stages as shown in Figures 5.23(b) to (d). The equivalent
resistance across AB is 7).

(v) For the circuit shown in Figure 5.24(a), the 3 2 resistor carries no current and
the voltage across the 202 resistor is 10 V. Redrawing the circuit gives Figure
5.24(b), from which,

E = i
4+6

(vi) If the 10V battery in Figure 5.24(a) is removed and replaced by a short-circuit,
as shown in Figure 5.24(c), then the 202 resistor may be removed. The reason

for this is that a short-circuit has zero resistance, and 202 in parallel with zero
ohms gives an equivalent resistance of: (20 X 0/20 + 0), i.e., 0€2. The circuit

X10=4V




DC Circuit Theory 97

180 30 30
= —— oA A
20+180
ssz ~200 50
oB B
(@) (b)
30
A A
20x%5 _ ”3;1“19
20+5"‘;lQ =70
B B
(c) (d)

Figure 5.23: (a) Stage 1; (b) Stage 2; (c) Stage 3; (d) Stage 4, solution

6 Q) 30 Q Q
A 6 3 A A
r
“200_ i4gz ’ U4_0_ L 89 40 -—
+ -oB + —oB - —oB
© (d) )
Figure 5.24: (a) Example circuit; (b) Step 1; (c) Step 2; (d) Step 3;
(e) Step 4, equivalent resistance

is then as shown in Figure 5.24(d), which is redrawn in Figure 5.24(e). From
Figure 5.24(e), the equivalent resistance across AB,

F=0%% 3 a3 =540
6x 4

(vii) To find the voltage across AB in Figure 5.25: Since the 20V supply is across
the 52 and 152 resistors in series then, by voltage division, the voltage drop
across AC,
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(viii)

(ix)

Figure 5.25: Example circuit

5
V.. =|——|@0)=5V
Ac [5+15]( )

Similarly, V., = [%}(20) —16V.

Vc is at a potential of +20V.

Vi=Ve—Viye=+20—-5=15V and

Vg =Ve—Vge=+20—16 =4V.

The voltage between AB is V, — V3 = 15 — 4 = 11V and current would flow
from A to B since A has a higher potential than B.

In Figure 5.26(a), to find the equivalent resistance across AB the circuit may
be redrawn as in Figures 5.26(b) and (c). From Figure 5.26(c), the equivalent
resistance across AB,

_ 5><15+12><3
5+15 12+3

=375+24=6.15Q

In the worked problems in Sections 5.5 and 5.7 following, it may be considered
that Thévenin’s and Norton’s theorems have no obvious advantages compared
with, say, Kirchhoff’s laws. However, these theorems can be used to analyze
part of a circuit and in much more complicated networks the principle of
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50 150

120 30

(a)

5Q
Cc
1202

(b)

15Q
D
3Q

A

50 15 Q2
D

120 30
B

Figure 5.26: (a) Example circuit; (b) Redrawn circuit; (c) Redrawn circuit

replacing the supply by a constant voltage source in series with a resistance

(or impedance) is very useful.

5.5 Thévenin’s Theorem

Thévenin’s theorem states:

The current in any branch of a network is that which would result if an e.m.f. equal
to the voltage across a break made in the branch, were introduced into the branch,

all other e.m.f’s being removed and represented by the internal resistances of the

sources.

The procedure adopted when using Thévenin’s theorem is summarized below. To

determine the current in any branch of an active network (i.e., one containing a source

of em.f):

(i) remove the resistance R from that branch,

(i)
(iii)

@iv)

determine the open-circuit voltage, E, across the break,

remove each source of e.m.f. and replace them by their internal resistances and
then determine the resistance, r, “looking-in” at the break,

determine the value of the current from the equivalent

circuit shown in Figure 5.27,i.e., I =

E
R+r
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Y~

Figure 5.27: Equivalent circuit

R3=50

A
E=8V
Ri=20Q Ro=8 0 ~—— R=100
r=6.6Q
B B
(c) (d)

Figure 5.28: Circuit for Example 5.7

Example 5.7
Use Thévenin’s theorem to find the current flowing in the 102 resistor for the circuit

shown in Figure 5.28(a).

Solution

Following the above procedure:

(1) The 1012 resistance is removed from the circuit as shown in Figure 5.28(b)

(i1) There is no current flowing in the 5{2 resistor and current /; is given by:

_ 10 _ 10 _
R +R, 2+8

I 1A

Voltage across R, = [[R, =1 X 8§ =8V
Voltage across AB, i.e., the open-circuit voltage across the break, £ = 8V
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Figure 5.29: Network for Example 5.8

(iii)) Removing the source of e.m.f. gives the circuit of Figure 5.28(c).

R R X
Resistance, r = Ry + ——2— = 5+u
R, +R, 2+8

=5+16=66Q

(iv) The equivalent Thévenin’s circuit is shown in Figure 5.28(d).

E 8 8

= = =0482A
R+r 10+66 16.6

Current I =

The current flowing in the 102 resistor of Figure 5.28(a) is 0.482 A

Example 5.8

For the network shown in Figure 5.29(a) determine the current in the 0.8 2 resistor using

Thévenin’s theorem.

Solution
Following the procedure:

(i) The 0.812 resistor is removed from the circuit as shown in Figure 5.29(b).
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Voltage across 42 resistor = 41, = (4) (1.2) = 4.8V.
Voltage across AB, i.e., the open-circuit voltage across AB, E = 4.8 V.

(iii)) Removing the source of e.m.f. gives the circuit shown in Figure 5.29(c). The
equivalent circuit of Figure 5.29(c) is shown in Figure 5.29(d), from which,

(iv) The equivalent Thévenin’s circuit is shown in Figure 5.29(e), from which,
E = 4‘8 = ﬁ
r+R 24+08 32

current [ =

I = 1.5A = current in the 0.8 2 resistor

Example 5.9
Use Thévenin’s theorem to determine the current / flowing in the 42 resistor shown in
Figure 5.30(a). Find also the power dissipated in the 4 {2 resistor.

Solution
Following the procedure:

(1) The 41 resistor is removed from the circuit as shown in Figure 5.30(b).

Figure 5.30: Circuit for Example 5.9 showing steps for solution
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(ii) Current [, = E -k _4-2_ %A
n+rn 2+1 3
2 2
Voltage across AB, E = E, —I;r; = 4 — 3 2) = 2§V

Alternatively, voltage across AB,
E = E2 -1 1

—r 2]y =02
=2 [3](1) 22V

(iii) Removing the sources of e.m.f. gives the circuit shown in Figure 5.30(c), from
which resistance,

_2X1_12

-
2+1 3

r

(iv) The equivalent Thévenin’s circuit is shown in Figure 5.30(d), from which,

E 22 83
current, [ = = =
r+R 3+4 1473

-3 0.571 A
14

= current in the 42 resistor
Power dissipated in 4 (2 resistor,
P = IR = (0.571)* (4) = 1.304W
Example 5.10

Use Thévenin’s theorem to determine the current flowing in the 3 2 resistance of the
network shown in Figure 5.31(a). The voltage source has negligible internal resistance.

Solution
(Note the symbol for an ideal voltage source in Figure 5.31(a), which may be used as an
alternative to the battery symbol.)
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Following the procedure:

(i) The 32 resistance is removed from the circuit as shown in Figure 5.31(b).

.. 2 . :
(i1) The 15 () resistance now carries no current.

(iif)

Voltage across 10 (2 resistor = l 24)
10+5

=16V
Voltage across AB, E = 16 V.

Removing the source of e.m.f. and replacing it by its internal resistance means that the
2012 resistance is short-circuited as shown in Figure 5.31(c) since its internal resistance
is zero. The 20 (2 resistance may thus be removed as shown in Figure 5.31(d).

From Figure 5.31(d), resistance,

2 10X
r=1-+ 05
3 10+5
2 50
— 1242 =50
3 15
0 50 A Q50 0 5o
. A
30| 100]| 200 <>124V E 100|| 2av QOQCDT Z+  100ll 200
24y
4 > Bo >
B
(@) (b) ()
2 Q
A 3 50 A /
fe-16v
LA 10 Q B=30Q
r=5Q
Bo— B
(d) (e)

Figure 5.31: Circuit for Example 5.10 showing steps for solution
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(iv) The equivalent Thévenin’s circuit is shown in Figure 5.31(e), from which

= current in the 3 (2 resistance.

Example 5.11
A Wheatstone Bridge network is shown in Figure 5.32(a). Calculate the current flowing in
the 32 (2 resistor, and its direction, using Thévenin’s theorem. Assume the source of e.m.f.

to have negligible resistance.

Solution
Following the procedure:

(1) The 322 resistor is removed from the circuit as shown in Figure 5.32(b).

(i) The voltage between A and C,

R
\R R,

2
(>_t+n

VA Cc

J6®=&MV

/

20 C 140
A r-=4.163Q Ao
1 32 0
D E=
ToDb 30 vl
(d) (e) {f)

Figure 5.32: Network for Example 5.11 showing steps for solution
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The voltage between B and C,

14 (54) = 4447V
14+3

RZ
R, + R,

% (E) =

The voltage between A and B = 44.47 — 8.31 = 36.16 V
Point C is at a potential of +54 V. Between C and A is a voltage drop of 8.31 V. The
voltage at point A is 54 — 8.31 = 45.69 V. Between C and B is a voltage drop of

44.47V. The voltage at point B is 54 — 44.47 = 9.53 V. Since the voltage at A is
greater than at B, current must flow in the direction A to B.

(iii) Replacing the source of e.m.f. with a short-circuit (i.e., zero internal resistance) gives
the circuit shown in Figure 5.32(c). The circuit is redrawn and simplified as shown in
Figure 5.32(d) and (e), from which the resistance between terminals A and B,

r=2><11 14X3:2+£
2+11 14+3 13 17
=1.692 +2.471 = 4.163 2

(iv) The equivalent Thévenin’s circuit is shown in Figure 5.32(f), from which,

E _ 3616 _
r+Ry  4.163+32

current, I =

The current in the 32 €2 resistor of Figure 5.32(a) is 1 A, flowing from A to B.

5.6 Constant-Current Source

A source of electrical energy can be represented by a source of e.m.f. in series with a
resistance. In Section 5.5, the Thévenin constant-voltage source consisted of a constant
e.m.f. E in series with an internal resistance r. However, this is not the only form of
representation. A source of electrical energy can also be represented by a constant-current
source in parallel with a resistance. It may be shown that the two forms are equivalent. An
ideal constant-voltage generator is one with zero internal resistance so that it supplies the
same voltage to all loads. An ideal constant-current generator is one with infinite internal
resistance so that it supplies the same current to all loads.

Note the symbol for an ideal current source (BS 3939, 1985), shown in Figure 5.33.
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+ B

Figure 5.33: Symbol for ideal current source

5.7 Norton’s Theorem

Norton’s theorem states:

The current that flows in any branch of a network is the same as that which would flow
in the branch if it were connected across a source of electrical energy, the short-circuit
current of which is equal to the current that would flow in a short-circuit across the
branch, and the internal resistance of which is equal to the resistance which appears
across the open-circuited branch terminals.

The procedure adopted when using Norton’s theorem is summarized below.

To determine the current flowing in a resistance R of a branch AB of an active network:
(i) short-circuit branch AB,

(ii) determine the short-circuit current /¢~ flowing in the branch,

(iii) remove all sources of e.m.f. and replace them by their internal resistance (or, if a
current source exists, replace with an open-circuit), then determine the resistance r,
“looking-in” at a break made between A and B,

(iv) determine the current / flowing in resistance R from the Norton equivalent network
shown in Figure 5.33, i.e.,

r
r+R

I =

ISC

Example 5.12
Use Norton’s theorem to determine the current flowing in the 102 resistance for the
circuit shown in Figure 5.34(a).
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Solution
Following the above procedure:

(i) The branch containing the 10 resistance is short-circuited as shown in
Figure 5.34(b).

(i1) Figure 5.34(c) is equivalent to Figure 5.34(b).

10
I = —=5A
sc T,

(iii) If the 10V source of e.m.f. is removed from Figure 5.34(b), the resistance “looking-
in” at a break made between A and B is given by:

2+8

(iv) From the Norton equivalent network shown in Figure 5.34(d), the current in the 102
resistance, by current division, is given by:

1.6
1.6 +5+10

(5) = 0.482 A

as obtained previously in Example 5.7 using Thévenin’s theorem.

Example 5.13
Use Norton’s theorem to determine the current / flowing in the 42 resistance shown in
Figure 5.35(a).

50 I
A | Iso=5 A
10V sc= 50
8Q ] 100 8Q lse Isc e r=1.6 Q
20 20 20 100
: B B
(@) (b) (©) (d)

Figure 5.34: Circuit for Example 5.12 showing steps
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Solution
Following the procedure:

(i) The 4 () branch is short-circuited, as shown in Figure 5.35(b).
(i1) From Figure 13.45(b), Iy =1, +1, = %—F% =4A
(ii1) If the sources of e.m.f. are removed the resistance “looking-in” at a break made
between A and B is given by:

C2X1 2

2+1 3

(iv) From the Norton equivalent network shown in Figure 5.35(c)the current in the 4 )
resistance is given by:

1=[ 2/3

—————|(4) = 0.571A
2/13)+4

as obtained previously in problems 2, 5 and 9 using Kirchhoff’s laws and the theorems of
superposition and Thévenin.

Example 5.14
Use Norton’s theorem to determine the current flowing in the 3 € resistance of the
network shown in Figure 5.36(a). The voltage source has negligible internal resistance.

Solution
Following the procedure:

(i) The branch containing the 3 € resistance is short-circuited, as shown in Figure 5.36(b).

20 1Q

Figure 5.35: Circuits for Example 5.13
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50
120 5q A 50 A
3q |[10a | |00 Dt ol |hoa|jpoo(Dlaay o] 24V []20 oQleav
24v
B B
(@) (b) (©
50

g lso=4.8 A ,_I :\% o
—r-H1OQ Hzog o []3%9
30
(i) (e} {f) °

Figure 5.36: Circuits for Example 5.14

(i) From the equivalent circuit shown in Figure 5.36(c),

2
I =—=48A
sC 5

(iii) If the 24V source of e.m.f. is removed the resistance “looking-in” at a break made
between A and B is obtained from Figure 5.36(d) and its equivalent circuit shown in
Figure 5.36(e) and is given by:

(iv) From the Norton equivalent network shown in Figure 5.36(f) the current in the 32
resistance is given by:
31
I=|—3 |48 =24,

3141243
303

as obtained previously in Example 5.10 using Thévenin’s theorem.

Example 5.15
Determine the current flowing in the 2 €2 resistance in the network shown in Figure

5.37(a).
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40 8Q 40 A 8Q 40

A
15 A 15A 15 A
63 60 20 (|70 Q—} HGQ 70 50 Ylsc
(B B
(a) (b) (c)
4Q A 80

Isc=9 A
H6Q 70 -
ls
(e)

()
Figure 5.37: Circuits for Example 5.15

Solution
Following the procedure:

(i) The 212 resistance branch is short-circuited as shown in Figure 5.37(b).
(i1) Figure 5.37(c) is equivalent to Figure 5.37(b).

(iii) If the 15 A current source is replaced by an open circuit then from Figure 5.37(d) the
resistance “looking-in” at a break made between A and B is given by (6 + 4){2 in
parallel with (8 + 7)(2, i.e.,

. (10)(15) _ 150 _

(iv) From the Norton equivalent network shown in Figure 5.37(e)the current in the 22
resistance is given by:

I = [L](% =6.75A
6+2

5.8 Thévenin and Norton Equivalent Networks

The Thévenin and Norton networks shown in Figure 5.38 are equivalent to each other.
The resistance “looking-in” at terminals AB is the same in each of the networks, i.e., r.
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If terminals AB in Figure 5.38(a) are short-circuited, the short-circuit current is given by
E/r. If terminals AB in Figure 5.38(b) are short-circuited, the short-circuit current is /..
For the circuit shown in Figure 5.38(a) to be equivalent to the circuit in Figure 5.38(b)
the same short-circuit current must flow. Thus, Iy = E/r.

Figure 5.39 shows a source of e.m.f. E in series with a resistance r feeding a load
resistance R.

From Figure 13.50, I = E __Er _|_r |E
r+R (r+R)Ir r+R)r
. r
1.e., I = 1
r+R) ¢

From Figure 5.40, it can be seen that, when viewed from the load, the source appears as a
source of current /-, which is divided between » and R connected in parallel.

A A

/.
ET sc

B B
() (b)

Figure 5.38: Equivalent Thévenin and Norton networks

A

el ’

B

Figure 5.39: Source E in series with resistance r feeding load resistance R
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Thus the two representations shown in Figure 5.38 are equivalent.

Example 5.16
Convert the circuit shown in Figure 5.41 to an equivalent Norton network.

Solution
If terminals AB in Figure 5.41 are short-circuited, the short-circuit current
10
I =—=5A
s¢ T,

The resistance looking-in at terminals AB is 2). The equivalent Norton network is
shown in Figure 5.42.

Example 5.17
Convert the network shown in Figure 5.43 to an equivalent Thévenin circuit.

—

Isc

ol

Figure 5.40: Source when viewed from load

1OVT

2Q

B
Figure 5.41: Circuit for Example 5.16
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O A
lsc = 5A

> -0 B
Figure 5.42: Equivalent Norton network

4A 4

6-} 30

. OB

Figure 5.43: Network for Example 5.17

Solution
The open-circuit voltage E across terminals AB in Figure 5.43 is given by:
E=(s5)(n=#@3) =12V.

The resistance looking-in at terminals AB is 3{2. The equivalent Thévenin circuit is as
shown in Figure 5.44.

Example 5.18

(a) Convert the circuit to the left of terminals AB in Figure 5.45(a) to an equivalent
Thévenin circuit by initially converting to a Norton equivalent circuit. (b) Determine
the current flowing in the 1.8 () resistor.

Solution

(a) For the branch containing the 12 V source, converting to a Norton equivalent circuit
gives Igc = 12/3 = 4 A and r; = 3(). For the branch containing the 24 V source,
converting to a Norton equivalent circuit gives Is-, = 24/2 = 12A and r, = 21).
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E=12VT

r=3Q

B

Figure 5.44: Equivalent Thévenin circuit

y A ’ ’ —0 A

Ere IEQZ Isc,= Isc,=

12V 24V 4A e 12A
— 1~ _
n=3Q 1.8Q 30 n=2Q
=20
. ‘ +—oB
(b)

@) B

()

A A

B B

Figure 5.45: Circuits for Example 5.18

Thus Figure 5.45(b) shows a network equivalent to Figure 5.45(a).

From Figure 5.45(b) the total short-circuit currentis 4 + 12 = 16 A,

3X2

and the total resistance is given by: —— = 1.2

3+2

Thus Figure 5.45(b) simplifies to Figure 5.45(c). The open-circuit voltage across AB
of Figure 5.45(c), E = (16)(1.2) = 19.2V, and the resistance “looking-in” at AB is
1.2€). The Thévenin equivalent circuit is as shown in Figure 5.45(d).

(b) When the 1.8 resistance is connected between terminals A and B of Figure 5.45(d)

the current / flowing is given by:

=92 _6u4a
1.2+1.8

Example 5.19

Determine by successive conversions between Thévenin and Norton equivalent networks
a Thévenin equivalent circuit for terminals AB of Figure 5.46(a). Determine the current

flowing in the 2002 resistance.
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A ’ ’ —
600 Q 2mA 600 O
10viQ vt 5mA "
200 Q ) 3kQ
2kQ
2kQ 3 kO
—oB
@ B )
1mA
C A
E = 06V
7mA| T 600Q 8.4 v] 78 VT
e H 1.2kQ
1.2kQ
1.8 kO
D °B B B
© ) (e)
Figure 5.46: Circuits for Example 5.19
Solution
For the branch containing the 10V source, converting to a Norton equivalent network gives:
10
I = —— =5mAand , = 2k
2000

For the branch containing the 6 V source, converting to a Norton equivalent network gives:

6
I, =——=2mA and , = 3k.
5¢ 3000 2

Thus, the network of Figure 5.46(a) converts to Figure 5.46(b).

Combining the 5mA and 2mA current sources gives the equivalent network of Figure
5.46(c) where the short-circuit current for the original two branches considered is 7mA
and the resistance is:

2X3

— =1.2KkQ.
2+3
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Both of the Norton equivalent networks shown in Figure 5.46(c) may be converted
to Thévenin equivalent circuits. The open-circuit voltage across CD is: (7 X 1073)
(1.2 X 10%) = 8.4V and the resistance looking-in at CD is 1.2 k2.

The open-circuit voltage across EF is (1 X 1073) (600) = 0.6V and the resistance
“looking-in” at EF is 0.6 k€2. Thus, Figure 5.46(c) converts to Figure 5.46(d). Combining
the two Thévenin circuits gives:

E=84—0.6="7.8YV, and the resistance,
r= (1.2 + 0.6) kQ) = 1.8k 2.

Thus, the Thévenin equivalent circuit for terminals AB of Figure 5.46(a) is as shown in
Figure 5.46(e).

Therefore, the current 7 flowing in a 2002 resistance connected between A and B is

given by:

_ T8 18 g
1800 +200 2000

5.9 Maximum Power Transfer Theorem

The maximum power transfer theorem states:

The power transferred from a supply source to a load is at its maximum when the
resistance of the load is equal to the internal resistance of the source.

In Figure 5.47, when R = r the power transferred from the source to the load is a
maximum.

Typical practical applications of the maximum power transfer theorem are found in stereo
amplifier design, seeking to maximize power delivered to speakers, and in electric vehicle
design, seeking to maximize power delivered to drive a motor.

Example 5.20

The circuit diagram of Figure 5.48 shows dry cells of source e.m.f. 6 V, and internal
resistance 2.5 €2. If the load resistance RL is varied from 0 to 52 in 0.5 € steps, calculate
the power dissipated by the load in each case. Plot a graph of RL (horizontally) against
power (vertically) and determine the maximum power dissipated.
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Source
{— e |
l .
I E \
|
| I
1 : [ Load
I ' | R
| ;
t i
I
! ]
Lo

Figure 5.47: When r = R, power transfer is maximum

Solution

power dissipated in R;, P = ’RL,

ie., P=(242%0) =0W

E 6

When RL = 0.5, current [ = = =
r+R, 25+05

and P = PR; = (2)*(0.5) =2W

When RL = 1.0, current [ = L =1714 A

2.5+1.0
and P = (1.714)* (1.0) = 2.94 W
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With similar calculations the following table is produced:

R | __E P = 2R(W)
r+R,

0 2.4 0
0.5 2.0 2.00
1.0 1.714 2.94
1.5 1.5 3.38
2.0 1.333 3.56
2.5 1.2 3.60
3.0 1.091 3.57
3.5 1.0 3.50
4.0 0.923 3.41
4.5 0.857 3.31
5.0 0.8 3.20

A graph of R; against P is shown in Figure 5.49. The maximum value of power is 3.60 W,
which occurs when R; is 2.5(), i.e., maximum power occurs when R; = r, which is what
the maximum power transfer theorem states.

Example 5.21

A DC source has an open-circuit voltage of 30V and an internal resistance of 1.5 (2. State
the value of load resistance that gives maximum power dissipation and determine the
value of this power.

Solution
The circuit diagram is shown in Figure 5.50. From the maximum power transfer theorem,
for maximum power dissipation,

R, =r=150

E _ 30 _
r+R,  15+15

Power P = ’R; = (10)*(1.5) = 150 W = maximum power dissipated

From Figure 5.50, current / = 10A
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36 —— =

Figure 5.49: Graph of R, vs. P

E=30 V\

]~

Figure 5.50: Circuit diagram for Example 5.21

r=15Q

Example 5.22
Find the value of the load resistor R; shown in Figure 5.51(a) that gives maximum power
dissipation and determine the value of this power.

Solution
Using the procedure for Thévenin’s theorem:

(i) Resistance R; is removed from the circuit as shown in Figure 5.51(b).

(i) The voltage across AB is the same as the voltage across the 1 €2 resistor:

Hence, E =

(15) =12V

12+3

(iii)) Removing the source of e.m.f. gives the circuit of Figure 5.51(c),
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A
15V
R 120 TV E 120
30 30
B
(a) (b)

A
E=12V

r=24Q

Figure 5.51: Circuits for Example 5.22
(iv) The equivalent Thévenin’s circuit supplying terminals AB is shown in Figure

5.51(d), from which current I = E/(r + R;).

For maximum power, R; = r = 2.4€0.

12
Th t, | = — =25A.
us, current, Y

Power, P, dissipated in load Ry,

P=PR, =(25%24) =15W
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Alternating Voltages and Currents

John Bird

6.1 The AC Generator

Let a single turn coil be free to rotate at constant angular velocity symmetrically between
the poles of a magnet system as shown in Figure 6.1.

An e.m.f. is generated in the coil (from Faraday’s laws) which varies in magnitude and
reverses its direction at regular intervals. The reason for this is shown in Figure 6.2.

In positions (a), (e) and (i) the conductors of the loop are effectively moving along the
magnetic field, no flux is cut and hence, no e.m.f is induced. In position (c) maximum
flux is cut and maximum e.m.f is induced. In position (g), maximum flux is cut and
maximum e.m.f is again induced. However, using Fleming’s right-hand rule, the induced
e.m.f is in the opposite direction to that in position (c) and is shown as —E. In positions
(b), (d), (f) and (h) some flux is cut and some e.m.f is induced. If all such positions

Figure 6.1: Coil rotates at constant angular velocity
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Figure 6.2: One cycle of alternating e.m.f produced

of the coil are considered, in one revolution of the coil, one cycle of alternating e.m.f
is produced as shown. This is the principle of operation of the AC generator (i.e., the
alternator).

6.2 Waveforms

If values of quantities that vary with time ¢ are plotted to a base of time, the resulting
graph is called a waveform. Some typical waveforms are shown in Figure 6.3. Waveforms
(a) and (b) are unidirectional waveforms, for, although they vary considerably with

time, they flow in one direction only (i.e., they do not cross the time axis and become
negative). Waveforms (c) to (g) are called alternating waveforms since their quantities are
continually changing in direction (i.e., alternately positive and negative).

A waveform of the type shown in Figure 6.3(g) is called a sine wave. It is the shape of the
waveform of e.m.f produced by an alternator and thus, the mains electricity supply is of
“sinusoidal” form.

One complete series of values is called a cycle (i.e., from O to P in Figure 6.3(g)).

The time taken for an alternating quantity to complete one cycle is called the period or
the periodic time, T, of the waveform.
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Figure 6.3: Typical waveforms

The number of cycles completed in one second is called the frequency, f, of the supply
and is measured in hertz, Hz. (The standard frequency of the electricity supply in the U.S.
1s 60 Hz and in Great Britain is S0Hz.)

T = or f=

1
T

~ =

Example 6.1
Determine the periodic time for frequencies of (a) S0 Hz and (b) 20kHz.

Solution
(a) Periodic time T = — = % = 0.02 s or 20 msv
1
(b) Periodic time T = — = ——— = 0.000 05 s or 50 ps
f 20000
Example 6.2

Determine the frequencies for periodic times of (a) 4 ms, (b) 4 ps.
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Solution
1 1 1000
a) Frequenc = = - — 250 Hz
@ Frequency f T 4x1073
(b) Frequency f = 1_ 1 _ 1000000
T 4X10°° 4
= 250,000Hz or 250kHz or 0.25MHz

Example 6.3
An alternating current completes 5 cycles in 8 ms. What is its frequency?

Solution
Time for 1 cycle = §ms = 1.6 ms = periodic time T
5

Frequency f = 1. 1 _ 1000 _ 10000
aneney T 16x1073 1.6 16
= 625Hz

6.3 AC Values

Instantaneous values are the values of the alternating quantities at any instant of time.
They are represented by small letters, i, v, e, etc. (See Figures 6.3(f) and (g).)

The largest value reached in a half cycle is called the peak value or the maximum value
or the amplitude of the waveform. Such values are represented by V,,, I, etc. (See
Figures 6.3(f) and (g).) A peak-to-peak value of e.m.f is shown in Figure 6.3(g) and is the
difference between the maximum and minimum values in a cycle.

The average or mean value of a symmetrical alternating quantity (such as a sine wave),
is the average value measured over a half cycle (since over a complete cycle the average
value is zero).

area under the curve
Average or mean value =

length of base
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The area under the curve is found by approximate methods such as the trapezoidal rule,
the mid-ordinate rule or Simpson’s rule. Average values are represented by Vyy, 1y, etc.

For a sine wave,
average value = 0.637 X maximum value
(i.e., 2/7 X maximum value)

The effective value of an alternating current is that current which will produce the same
heating effect as an equivalent direct current. The effective value is called the root mean
square (rms) value and whenever an alternating quantity is given, it is assumed to be
the rms value. The symbols used for rms values are I, V, E, etc. For a nonsinusoidal
waveform as shown in Figure 6.4 the rms value is given by:

R IR
If +iy +---+1i;

n

where 7 is the number of intervals used.

For a sine wave,
rms value = 0.707 X maximum value
(.e., 1/+/2 X maximum value)

rms value .
Form factor = —— For a sine wave, form factor = 1.11
average value

Time

Current

Figure 6.4: Nonsinusoidal waveform
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Peak factor =

maximum value

rms value

For a sine wave, peak factor = 1.41

The values of form and peak factors give an indication of the shape of waveforms.

Example 6.4
For the periodic waveforms shown in Figure 6.5 determine for each: (i) frequency,
(ii) average value over half a cycle, (iii) rms value, (iv) form factor, and (v) peak factor.

Solution

(a) Triangular waveform (Figure 6.5(a))

(1) Time for 1 complete cycle = 20ms = periodic time, 7.

Hence, frequency f = 1_ 1 _ 1000
T 20x1073 20
= 50Hz

(i) Area under the triangular waveform for a half cycle

soof Ve
150} |, 72
Voltage 0 v Al 10
L )
V) 50V1 1k Current
g '
il / A
0 10 15 20 Time 0
(ms)
10k
-200f

@

X base X height = X (10 X 107?) X 200

volt second

(b)
Figure 6.5: Waveforms for Example 6.4

16

Time (ms)
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Average value of waveform

_ area under curve _ 1 volt second
length of base 10 X 1073 second
= @ =100V
10

(iii) In Figure 6.5(a), the first 1/4 cycle is divided into 4 intervals.

v} + v} + i+ o}
4
252 4752 +1252 + 1752]

Thus, rms value = \/

-

=114.6 V

4

(Note that the greater the number of intervals chosen, the greater the accuracy
of the result. For example, if twice the number of ordinates as that chosen above

are used, the rms value is found to be 115.6V)

(iv) Form factor = rms value = 114.6 =1.15
average value 100
(V) Peak factor = aXImum value _ 200 _ 1.75

rms value 114.6 B

(b) Rectangular waveform (Figure 6.5(b))
(i) Time for 1 complete cycle = 16 ms = periodic time, T

1 1000

1
T 16X1073 16

Hence, frequency, f =

= 62.5Hz
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area under curve

i) A 1 half le =
(i1) Average value over half a cycle length of base

_ 10 X (8 X1073)
8 x 1073
=10A

R IR )
i +iy +--- i

n

=10A

(ii1) The rms value = \/

However, many intervals are chosen, since the waveform is rectangular.

(v) Peak factor = maximum value _ 10 _ 1

rms value 10

Example 6.5
The following table gives the corresponding values of current and time for a half cycle of
alternating current.

time 7 (ms) 005 10 15 20 25 3.0 35 40 45 50
currenti(A) 0 7 14 23 40 56 68 76 60 5 0

Assuming the negative half cycle is identical in shape to the positive half cycle, plot the
waveform and find (a) the frequency of the supply, (b) the instantaneous values of current
after 1.25ms and 3.8 ms, (c) the peak or maximum value, (d) the mean or average value,
and (e) the rms value of the waveform.

Solution
The half cycle of alternating current is shown plotted in Figure 6.6.

(a) Time for a half cycle = Sms. The time for 1 cycle, i.e., the periodic time, 7= 10ms
or 0.01s.

Frequency, f = — = 001 =100 Hz



Alternating Voltages and Currents

131

80
Maximum value =76 A

il
o

)

!
|
i
[
I
= A i || RMS value = 43.8 A
< {
g ( I
540 |
& / | | |Average value =35.1A
[
30} [ !
t
|
20:_ _____ :
191 |
1 {30149{63{73172 [30
! I
10F 1:9 :
10 : I
3144 y
of 1ok 20 30 /f40 t50
1.25 3.8 Time t (ms)

Figure 6.6: Half cycle of alternating current for Example 6.5

(b) Instantaneous value of current after 1.25ms is 19 A, from Figure 6.6.
Instantaneous value of current after 3.8 ms is 70 A, from Figure 6.6.

(c) Peak or maximum value = 76 A.

area under curve
(d) Mean or average value =

length of base
Using the mid-ordinate rule with 10 intervals, each of width 0.5 ms gives:

area under curve.

= (05X 10793+ 10 + 19 + 30 + 49 + 63 +
73 + 72 + 30 + 2] (see Figure 6.6)

= (0.5 X 1073)(351)
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(0.5 X 1073)(351)
5%1073

=35.1A

Hence, mean or average value =

(e) rms value
32 +10% +192 + 302 +49% +63% +

73% +72% +30% + 22
10

=\/ PI7I_ 4384
10

Example 6.6
Calculate the rms value of a sinusoidal current of maximum value 20 A.

Solution
For a sine wave, rms value = 0.707 X maximum value

=0.707 X 20 = 14.14A

Example 6.7
Determine the peak and mean values for a 240V mains supply.

Solution
For a sine wave, rms value of voltage V = 0.707 X V,,

A 240V mains supply means that 240V is the rms value,

Mean value V4, = 0.637 V,, = 0.637 X 339.5 = 216.3V

Example 6.8
A supply voltage has a mean value of 150 V. Determine its maximum value and its rms value.
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Solution
For a sine wave, mean value = 0.637 X maximum value

mean value _ 150
0.637 0.637

rms value = 0.707 X maximum value = 0.707 X 235.5
=166.5V

= 2355V

Hence, maximum value =

6.4 The Equation of a Sinusoidal Waveform

In Figure 6.7, OA represents a vector that is free to rotate anticlockwise about 0 at an
angular velocity of w rad/s. A rotating vector is known as a phasor.

After time ¢ seconds the vector OA has turned through an angle wz. If the line BC is
constructed perpendicular to OA as shown, then,

sin wt = E 1.e., BC = OB sin wt
OB

If all such vertical components are projected onto a graph of y against angle wt (in
radians), a sine curve results of maximum value OA. Any quantity that varies sinusoidally
can be represented as a phasor.

A sine curve may not always start at 0°. To show this, a periodic function is represented by
y = sin(wt + ¢), where ¢ is the phase (or angle) difference compared with y = sin wt. In
Figure 6.8(a), y, = sin(wt + ¢) starts ¢ radians earlier than y; = sin wt and is said to lead
y; by ¢ radians. Phasors y; and y, are shown in Figure 6.8(b) at the time when ¢ = 0.

wrads/s
a8
0t fo90° 180° 270°  360°
of I n 3n 21 Angle
2 W of

Figure 6.7: Rotating vector OA and plot of rotation showing resulting sine curve
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N y sinwt
L (oot + )

¥, = sin

Y,
y \w rads/s
0 64)
Y
Y, = sin(of - ¢)

, \ot
0 %
D ) o rads/s
\\
(d) Y,

¥, leads Y5 by ¢

0
y{/,H ¥ = sinot

Figure 6.8: Phase angle, leading and lagging

In Figure 6.8(c), y, = sin(wt — ¢) starts ¢ radians later than y; = sin wt and is said to log
y3 by ¢ radians. Phasors y; and y, are shown in Figure 6.8(d) at the time when ¢ = 0.

Given the general sinusoidal voltage, v = V,, sin(wt = ¢), then
(1) Amplitude or maximum value = V,,

(i) Peak-to-peak value =2V,

(iili) Angular velocity = w rad/s

(iv) Periodic time, T = 27/w seconds

(v) Frequency, f = w/2w Hz (since = 27f)

(vi) ¢ = angle of lag or lead (compared with v = V,, sin wt
Example 6.9

An alternating voltage is given by v = 282.8 sin 314 volts. Find (a) the rms voltage,
(b) the frequency and (c) the instantaneous value of voltage when t = 4 ms.
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Solution
(a) The general expression for an alternating voltage is
v =V, sin(wt = ¢).

Comparing v = 282.8 sin 314¢ with this general expression gives the peak voltage as
282.8V

The rms voltage = 0.707 X maximum value
= 0.707 X 282.8 =200V

(b) Angular velocity, w = 314rad/s, i.e. 2nf = 314

Frequency, f = 314 _ S0Hz
27
(c) When r = 4ms, v = 282.8 sin(314 X 4x107%)

= 228.2 sin(1.256) = 268.9V

[

Note that 1.256 radians = [1.256 X @]

T
= 71.96°

Hence, v = 282.8 sin 71. 96° = 268.9V

Example 6.10
An alternating voltage is given by

v = 75 sin(200wt — 0.25) volts.

Find (a) the amplitude, (b) the peak-to-peak value, (c) the rms value, (d) the periodic
time, (e) the frequency, and (f) the phase angle (in degrees and minutes) relative to
75 sin 2007z

Solution
Comparing v = 75 sin(2007z — 0.25) with the general expression v = V,, sin(wt = ¢) gives:

(a) Amplitude, or peak value = 75V

(b) Peak-to-peak value =2 X 75 = 150V
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(¢) The rms value = 0.707 X maximum value
=0.707 X 75 = 83V

(d) Angular velocity, w = 200~ rad/s

2 2
Hence, periodic time, T = 2m_2m _ 1
w 200w 100

(e) Frequency, f = T = ——=100Hz

(f) Phase angle, & = 0.25 radians lagging 75 sin 2007t

o

0.25 rads = [0.25 X @] =14.32° = 14°19’

I

Hence, phase angle = 14°19’ lagging

Example 6.11

An alternating voltage, v, has a periodic time of 0.01s and a peak value of 40 V.
When time ¢ is zero, v = —20V. Express the instantaneous voltage in the form
v =V, sin(wt = ).

Solution
Amplitude, V,, = 40V

C e . 27 )
Periodic time T = — hence, angular velocity,

w
= 2T = 2™ 500 radss
T 0

v =V, sin(wt + ¢) becomes v = 40 sin(200wt + ¢)V
When time ¢t = 0, v = —20V

ie., =20 =40 sin ¢
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so that sin ¢ = —20 _ -0.5
40

Hence, ¢ = sin”! (=0.5) = —30° = [—30 X %]rads

== rads
6

Thus, v = 40 sin

2007t — 3] v
6

Example 6.12
The current in an AC circuit at any time ¢ seconds is given by:

i = 120 sin(100w¢ + 0.36) amperes. Find:

(a) the peak value, the periodic time, the frequency and phase angle relative to
1205sin 1007,

(b) the value of the current when ¢t = 0,

(c) the value of the current when t = 8ms,

(d) the time when the current first reaches 60 A, and
(e) the time when the current is first a maximum.

Solution

(a) Peak Value = 120A

Periodic time T = 2—“ =_<T (since w = 1007T)
w 1007

= (.02 s or 20 ms

Frequency, f = 1 00 = 50Hz
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o

Phase angle = 0.36 rads = [0.36 X @]

T

= 20°38’ leading

(b) Whent = 0,i = 120sin(0 + 0.36) = 120 sin 20°38’
=49.3A

(c) Whent=8,i= 120 sin

100w i
103

+ 0.36]

= 120 sin 2.8733(=120 sin 164°38’) = 31.8A

(d) Wheni = 60 A, 60 = 120 sin(100wz + 0.36)

thus, 60 = sin(100wz + 0.36)
120

so that (10077 + 0.36) = sin~! 0.5 = 30° = grads

= 0.5236rads

Hence, time ¢ = w = 0.521ms

100w
(e) When the current is a maximum, { = 120A
Thus, 120 = 120 sin(100wz + 0.36)
= sin(100wzr + 0.36)
(1007t + 0.36) = sin"!' 1 = 90° = g rads

1.5708 rads

Hence, time t = M = 3.85ms

100T
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6.5 Combination of Waveforms

The resultant of the addition (or subtraction) of two sinusoidal quantities may be
determined either:

(a) by plotting the periodic functions graphically (see worked Examples 6.13 and
6.16), or

(b) by resolution of phasors by drawing or calculation (see worked Examples 6.14
and 6.15).

Example 6.13

The instantaneous values of two alternating currents are given by i; = 20 sin wt amperes
and i, = 10 sin(wt + w/3) amperes. By plotting i; and i, on the same axes, using the same
scale, over one cycle, and adding ordinates at intervals, obtain a sinusoidal expression for
i + iy

Solution
. . . . ™ . .
i; = 20 sin wt and i, = 10 sin | wt + — | are shown plotted in Figure 6.9.
3
' 19
30 —j . _ _ .
26.5 T <//R=205|n(ot+105|n (ot+3)
201 /
,’ iy=20 sinof
10 \\ i2:105in(mt+%)
{
A’ 9™\ 180° 270° /qem
__119 L 21 angle wt
-10
,20 3
-30}

Figure 6.9: Plots for Example 6.13



140 Chapter 6

Ordinates of i; and i, are added at, say, 15° intervals (a pair of dividers are useful
for this).

For example,
at30°i; + i, =10+ 10 = 20A
at60°,i; + i, =87+ 17.3 = 26A
at 150°,i; + i, = 10 + (—5) = 5 A, and so on.

The resultant waveform for i; + i, is shown by the broken line in Figure 6.9. It has the
same period, and frequency, as i; and i,. The amplitude or peak value is 26.5 A.

The resultant waveform leads the curve i; = 20 sin wt by 19°.

1.€.

19X | rads = 0.332 rads
180

The sinusoidal expression for the resultant i; + i, is given by:

ig =1 + i = 26.5 sin(wt + 0.332) A

Example 6.14

Two alternating voltages are represented by v; = 50 sin wt volts and v, = 100

sin(wt — ©/6)V. Draw the phasor diagram and find, by calculation, a sinusoidal
expression to represent v; + v,.

Solution

Phasors are usually drawn at the instant when time ¢t = 0. Thus, v; is drawn horizontally
50 units long and v, is drawn 100 units long lagging v; by w/6rads, i.e., 30°. This is
shown in Figure 6.10(a) where O is the point of rotation of the phasors.

Procedure to draw phasor diagram to represent v; + vy:

(i) Draw v horizontal 50 units long, i.e., Oa of Figure 6.10(b).

(i) Join v, to the end of v, at the appropriate angle, i.e., ab of Figure 6.10(b).
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vy=50V
30°

¥,=100 V

0 300

Scale:

—_
0 25 5075
Volis

Figure 6.10: Phasor diagrams for Example 6.14

(iii) The resultant vg = v; + v, is given by the length Ob and its phase angle ¢ may be
measured with respect to v;.

Alternatively, when two phasors are being added the resultant is always the diagonal of
the parallelogram, as shown in Figure 6.10(c).

From the drawing, by measurement, vg = 145V and angle ¢ = 20° lagging v;.

A more accurate solution is obtained by calculation, using the cosine and sine rules.
Using the cosine rule on triangle Oab of Figure 6.10(b) gives:

v% = V7 + V3 — 2y, cos 150°
= 502 + 1002 — 2(50)(100) cos 150°
2500 +10 000 — (—8660)

Ve = (21160) = 1455V
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100 _ 1455

sind  sin150°

from which sing = 100 sin 1507 _ 0.3436
145.5

and ¢ = sin~! 0.3436 = 20°6’ = 0.35 radians, and lags v,

Using the sine rule,

Hence, vp = v; + v, = 145.5 sin(wt — 0.35)V

Example 6.15
Find a sinusoidal expression for (i; + i,) of Example 6.13, (a) by drawing phasors, (b) by
calculation.

Solution

(a) The relative positions of i; and i, at time ¢t = 0 are shown as phasors in Figure
6.11(a). The phasor diagram in Figure 6.11(b) shows the resultant i, and iy is
measured as 26A and angle ¢ as 19° or 0.33rads leading i;.

Hence, by drawing, i, = 26 sin(wt + 0.33) A

i2:10 A
60°
= 20 A
(a)
iR
Miz o
60
=20 A
(b)
Scale:

| ————— ]
0 5 10 15 20 25
Amperes

Figure 6.11: Phasor diagrams for Example 6.15
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(b) From Figure 6.11(b), by the cosine rule:
ix =202 +10% — 2(20)(10)(cos 120°)

from which i = 26.46A

) 10 26.46
By the sine rule: —— = — 5
sing  sinl120

from which ¢ = 19.10° (i.e., 0.333rads)
By calculation i = 26.46 sin(wt + 0.333) A

An alternative method of calculation is to use complex numbers. (See Chapter 7.)

Then i, +i, = 20 sin wt + 10 sin

iy
wt +—
3

= 200 + 10/ g rad

or 20/0° +10/60°
= (20 + jO)+ (5 + j8.66)
= (25 + j8.66) = 26.46./19.106° or 26.46.£0.333 rad
= 26.46 sin(wt + 0.333)A

Example 6.16

Two alternating voltages are given by v; = 120 sin wt volts and v, = 200 sin(wt — w/4)
volts. Obtain sinusoidal expressions for v; — v, (a) by plotting waveforms, and (b) by
resolution of phasors.

Solution

(a) v; = 120 sin wt and v, = 200 sin(wt — ©/4) are shown plotted in Figure 6.12. Care
must be taken when subtracting values of ordinates especially when at least one of
the ordinates is negative. For example:

at 30°, vy — v, = 60 — (—52) = 112V
at 60°, vy — v, = 104 — 52 = 52V
at 150°, v; — v, = 60 — 193 = —133V, and so on.
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200¢
L 990 V»=200 sin (ot -%)
- }143 V1:12O sincol_
\\ 7
- /
100} R=Vitve,
/
\ !/
s/ A /
2 /
< \00° §80°\  j270°  360°
S 0 \ I 13n 27 angle ot
° \2 175
> \
-50}+ \
\
-100f \\
\
S
-150p
-200%

Figure 6.12: Voltage plots for Example 6.16

The resultant waveform, vg = v; — Vs, is shown by the broken line in Figure 6.12.
The maximum value of v is 143V and the waveform is seen to lead v; by 99° (i.e.,
1.73 radians).

By drawing, vz = v; — v,
= 143 sin(wt + 1.73) volts

(b) The relative positions of v; and v, are shown at time ¢t = 0 as phasors in Figure 6.13(a).
Since the resultant of v; — v, is required, —v, is drawn in the opposite direction to
+v, and is shown by the broken line in Figure 6.13(a). The phasor diagram with the
resultant is shown in Figure 6.13(b) where —v, is added phasorially to v;.

By resolution:

Sum of horizontal components of v; and v,
= 120 cos 0° + 200 cos 135° = —21.42

Sum of vertical components of v; and v,

= 120 sin 0° + 200 sin 135° = 141.4
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N
1

Scale:

0 50 100 150
Volts

Figure 6.13: Phasor diagrams for Example 6.16

From Figure 6.13(c), resultant

Vg = | [(-21.42)% + (141.4)2] = 143.0,

and tan ¢’ = 1414 _ tan 6.6013, from which
21.42

¢' =tan"! 6.6013 = 81°23’ and
& = 98°37' or 1.721 radians
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~ OUTPUT
INPUT L
F ’: .
Vr \ / v
0 t ||| 0 t

Figure 6.14: Half-wave rectification

—= OUTPUT
A) +

) Rvpmc

0 t

Figure 6.15: Full-wave rectification

By resolution of phasors,

Vg = V1 — vy = 143.0 sin(wt + 1.721) volts

6.6 Rectification

The process of obtaining unidirectional currents and voltages from alternating currents
and voltages is called rectification. Automatic switching in circuits is carried out by
diodes.

Using a single diode, as shown in Figure 6.14, half-wave rectification is obtained. When
P is sufficiently positive with respect to Q, diode D is switched on and current i flows.
When P is negative with respect to Q, diode D is switched off. Transformer T isolates the
equipment from direct connection with the mains supply and enables the mains voltage to
be changed.
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— — - — — Current flow when P
is positive w.r.t. Q
Current flow when Q
is positive w.r.t. P

INPUT N
q v "& \
gy ' ;| ouTpuT
| G
! ! z|mac
- afd ‘ 0 t
-
Q :
J

Figure 6.16: Bridge rectifier

Rectifier] R

| ol<+
| o‘<+
6

t

ki

. ©
QL OUTPUT
T

Figure 6.17: Smoothing output using capacitors

Two diodes may be used as shown in Figure 6.15 to obtain full wave rectification.

A center-tapped transformer 7 is used. When P is sufficiently positive with respect to Q,
diode D, conducts and current flows (shown by the broken line in Figure 6.15). When S is
positive with respect to Q, diode D, conducts and current flows (shown by the continuous
line in Figure 6.15). The current flowing in R is in the same direction for both half cycles
of the input. The output waveform is shown in Figure 6.15.

Four diodes may be used in a bridge rectifier circuit, as shown in Figure 6.16 to obtain
Jull wave rectification. As for the rectifier shown in Figure 6.15, the current flowing in
R is in the same direction for both half cycles of the input giving the output waveform
shown.

To smooth the output of the rectifiers described above, capacitors having a large
capacitance may be connected across the load resistor R. The effect of this is shown on
the output in Figure 6.17.
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Complex Numbers

John Bird

7.1 Introduction

A complex number is of the form (a + jb) where a is a real number and jb is an
imaginary number. Therefore, (1 + j2) and (5 — j7) are examples of complex numbers.

By definition, j = | —1and 2 =-1

(Note: In electrical engineering, the letter j is used to represent +— 1 instead of the letter i,
as commonly used in pure mathematics, because i is reserved for current.)

Complex numbers are widely used in the analysis of series, parallel and series-parallel
electrical networks supplied by alternating voltages, in deriving balance equations with
AC bridges, in analyzing AC circuits using Kirchhoff’s laws, mesh and nodal analysis,
the superposition theorem, with Thévenin’s and Norton’s theorems, and with delta-star
and star-delta transforms, and in many other aspects of higher electrical engineering.
The advantage of the use of complex numbers is that the manipulative processes become
simply algebraic processes.

A complex number can be represented pictorially on an Argand diagram. In Figure 7.1,
the line OA represents the complex number (2 + j3), OB represents (3 — j), OC represents
(—2 + j2) and 0D represents (—4 — j3).

A complex number of the form a + jb is called a Cartesian or rectangular complex
number. The significance of the j operator is shown in Figure 7.2. In Figure 7.2(a) the
number 4 (i.e., 4 + jO) is shown drawn as a phasor horizontally to the right of the origin
on the real axis. (Such a phasor could represent, for example, an alternating current, i = 4
sin wt amperes, when time ¢ is zero.)
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Imaginary
axis

st

C(-2,i2)

] Real
5 axis

D(-4,-/3)

Figure 7.1: The Argand diagram

The number j4 (that is, O + j4) is shown in Figure 7.2(b) drawn vertically upwards from
the origin on the imaginary axis. Multiplying the number 4 by the operator j results in an
anticlockwise phase-shift of 90° without altering its magnitude.

Multiplying j4 by j gives j?4, i.e., —4, and is shown in Figure 7.2(c) as a phasor four units
long on the horizontal real axis to the left of the origin—an anticlockwise phase-shift of
90° compared with the position shown in Figure 7.2(b). Thus, multiplying by j* reverses
the original direction of a phasor.

Multiplying />4 by j gives j*4, i.e., —j4, and is shown in Figure 7.2(d) as a phasor four
units long on the vertical, imaginary axis downward from the origin—an anticlockwise
phase-shift of 90° compared with the position shown in Figure 7.2(c).

Multiplying j*4 by j gives j*4, i.e., 4, which is the original position of the phasor shown in
Figure 7.2(a).

Summarizing, application of the operator j to any number rotates it 90° anticlockwise
on the Argand diagram, multiplying a number by j? rotates it 180° anticlockwise,
multiplying a number by j* rotates it 270° anticlockwise and multiplication by j* rotates
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Imaginary
axis

_ | Real

Imaginary
axis

j4t—

4 axis

| Real

()

it 360° anticlockwise, i.e., back to its original position. In each case, the phasor is

—j4—

4 axis

Imaginary
axis

fa k=

| _Real

0 4 axis

Imaginary
axis

ja

| Real

(d)

0 4 axis

Figure 7.2: Significance of the j operator

unchanged in its magnitude.

By similar reasoning, if a phasor is operated on by —j then a phase shift of —90° (i.e.,
clockwise direction) occurs, again without change of magnitude.

In electrical circuits, 90° phase shifts occur between voltage and current with pure
capacitors and inductors; this is the key as to why j notation is used so much in the

analysis of electrical networks. This is explained later in this chapter.
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7.2 Operations Involving Cartesian Complex Numbers
(a) Addition and subtraction

(a+jb)+(c+jdy=(@a+c)+ jb+d)
and (a+jb)—(ct+jd)=(a—c)+ jlb—d)
Thus, B+ ,j2)+2—j4)=3+2+2—j4=5—j2
and (B+j2)—-R2—j4)=3+jj2-2+j4=1+j6

(b) Multiplication

(a+ jb)(c + jd) = ac + a(jd) + (jb)c + (jb)(jd)
= ac + jad + jbc + j*bd

But j2 = —1, thus,
(a + jb)(c + jd) = (ac — bd) + j(ad + bc)
For example,

G+ /22— j4) =6—jl2+ j4— ;28
= (6— (—18) + j(—12+4)
=14+ j(-8) = 14— j8

(c) Complex conjugate

The complex conjugate of (a + jb) is (a — jb). For example, the conjugate of (3 — j2) is
(3 +j2). The product of a complex number and its complex conjugate is always a real
number, and this is an important property used when dividing complex numbers. Thus,

(a + jb)(a — jb) = a* — jab + jab — j*b>
=a* = (=b?)

= a? + b? (i.e., a real number)

For example, (1+ j2)(1—j2)=1>+22 =15
and (G- j4)3+ jd) = 32 +42 = 25
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(d) Division

The expression of one complex number divided by another, in the form a + jb, is
accomplished by multiplying the numerator and denominator by the complex conjugate
of the denominator. This has the effect of making the denominator a real number. For
example,

2+ j4 _24j4 3+ j4 _ 6+ 8+ 12+ 216
3—j4 3—j4 3+j4 32 + 42
6+ 8+ j12—16
B 25
_ —10+ 420
-

10,20 o —04+j08
25 /s

The elimination of the imaginary part of the denominator by multiplying both the
numerator and denominator by the conjugate of the denominator is often termed
rationalizing.

Example 7.1
In an electrical circuit the total impedance Zy is given by:

— ZIZZ
Z,+7,

T 3

Determine Z; in (a + jb) form, correct to two decimal places, when Z; = 5 — j3,
Z, =4+ j7and Z; = 3.9 — j6.7.

Solution
Z\Z, = (5= j3)(4+ j7) =20+ j35— j12 — j?21
=20+ j35—j12+21 =41+ j23
Z 42y =(5—j)+@+T) =9+ j4
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Z,Z, 41+ )23 (414 j23)9— j4)
Z,+Z, 9+j4  (9+ j4)9— jd)
369 — jl164 + j207 — j292
- 92 + 42
369 — j164 + j207 + 92
97

Hence,

_ 461+ j43

= 4753 + j0.443
97

Z,Z

Thus, 22 17, = (4.753+ j0.443) + (3.9 — j6.7)
Z,+Z,

= 8.65 — j6.26, correct to two decimal places.

Example 7.2
Given Z, = 3 + j4 and Z, = 2 — j5 determine in Cartesian form correct to three decimal
places:

1 1 1 1 1
@— O— ©©—*+— @—F———
2 Z, zZ, 7, (1/Z,) + (1/Z,)
Solution
1 1 3—j4 _3—j4

@ Z T34j4 GriHG-jd) 3+4

33 % 0120 jo.160
25 25 725

O 1 24j5_24js 245
O T a5 T a2 +)s  22+5 29
=2 42 - 0.069+ j0.172
29 7729

(c) ZL + ZL = (0.120 — j0.160) + (0.069 + j0.172)

1 2
= 0.189 + j0.012
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1 1
(1/Z)+(1/Zy)  0.189 + j0.012

_ 0.189 — j0.012
(0.189 + j0.012)(0.189 — j0.012)

_0.189— j0.012
©0.1892 +0.0122
_0.189— j0.012
©0.03587

_ 0189 j0.012
©0.03587 0.03587
— 5.269 — j0.335

7.3 Complex Equations

If two complex numbers are equal, then their real parts are equal and their imaginary
parts are equal. Hence, if a + jb = ¢ + jd, then a = c and b = d. This is a useful
property, since equations having two unknown quantities can be solved from one
equation. Complex equations are used when deriving balance equations with AC bridges.

Example 7.3

Solve the following complex equations:

(@) 3(a+jb)=9—j2

®) C+pH=2+H)=x+)y

(c) (a—j2b)y+ (b —j3a)=5+;2

Solution

(@) 3(a +jb) =9 — j2. Thus, 3a + j3b =9 — j2
Equating real parts gives: 3¢ = 9,i.e.,a =3

Equating imaginary parts gives:
3b=-2,ie.,b=-2/3
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®) Q+N=2+)=x+]jy

Thus, —4+72—-2+722=x+jy
=5+ j0=x+jy

Equating real and imaginary parts gives: x = =5,y =0
(©) (@a—j2b) + (b —j3a)=5+,2
Thus, (a+ b) +j(—2b—3a)=5+ 2

Hence, a+b=>5 (7.1)
and, —2b—3a =2 (7.2)
We have two simultaneous equations to solve. Multiplying equation (7.1) by 2 gives:

2a+2b =10 (7.3)

Adding equations (7.2) and (7.3) gives —a = 12,i.e.,a = —12
From equation (7.1), b = 17

Example 7.4
An equation derived from an AC bridge network is given by:

1

RR, = (R, + jwL,)|—
1Ry = (Ry + jwly) (1/R,) + (jwC)

Ry, R3, Ry and C, are known values. Determine expressions for R, and L, in terms of the
known components.

Solution
Multiplying both sides of the equation by (1/R4 + jwC,) gives:

(R,R))(1/R, + jwC,) = R, + jwL,
ie, RRy/R,+ jRRwC, =R, + jwL,

Equating the real parts gives: R, = R;R3/R,
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Equating the imaginary parts gives:

U)Lz = R1R3UJC4, from WhiCh, L2 = R1R3C4

7.4 The Polar Form of a Complex Number

In Figure 7.3(a), Z = x + jy = r cos 0 + jr sin 6 from trigonometry,

= r(cos 0 + jsin 0)

This latter form is usually abbreviated to Z = r£0, and is called the polar form of a

complex number.

r is called the modulus (or magnitude of Z) and is written as mod Z or |ZI. r is determined
from Pythagoras’s theorem on triangle OAZ:

Zl=r = V”(xz +y?2)

The modulus is represented on the Argand diagram by the distance OZ. 0 is called the
argument (or amplitude) of Z and is written as arg Z. 0 is also deduced from triangle OAZ:

arg Z =0 = tan” 'y/x.

For example, the cartesian complex number (3 + j4) is equal to »£6 in polar form, where

r=43%+42) =35 and,

0 = tan! % = 53.13°

Imaginary Imaginary

axis axis

Z 1
yr (324 42) —
r T ja r=+(3*+4%)=5
y
9 O Real o (¢ h Real
0 #4 A axis - axis
(a) {b)

Figure 7.3: Polar form of complex numbers
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Hence, (3 + j4) = 5/53.13°
Similarly, (—3 + j4) is shown in Figure 7.3(b),

where, r=.32+4%) =50 =tan"! % = 53.13°

and, 6 = 180° —53.13° = 126.87°
Hence, (—3 + j4) = 5/126.87°

7.5 Applying Complex Numbers to Series AC Circuits

Simple AC circuits may be analyzed by using phasor diagrams. However, when circuits
become more complicated, analysis is considerably simplified by using complex numbers.
It is essential that the basic operations used with complex numbers, as outlined in this
chapter thus far, are thoroughly understood before proceeding with AC circuit analysis.

7.5.1 Series AC Circuits

7.5.1.1 Pure Resistance

In an AC circuit containing resistance R only (see Figure 7.4(a)), the current I is in phase
with the applied voltage Vy as shown in the phasor diagram of Figure 7.4(b). The phasor
diagram may be superimposed on the Argand diagram as shown in Figure 7.4(c). The
impedance Z of the circuit is given by:

1,£0°

7.5.1.2 Pure Inductance

In an AC circuit containing pure inductance L only (see Figure 7.5(a)), the current /;,
lags the applied voltage V; by 90° as shown in the phasor diagram of Figure 7.5(b). The
phasor diagram may be superimposed on the Argand diagram as shown in Figure 7.5(c).
The impedance Z of the circuit is given by:

Z= VLég(Z Y900 = X, Z90° or jX;
1,20° 1,
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Imaginary
axis

Real
0 In lVH axis

(©)
Figure 7.4: (a) Circuit diagram; (b) Phasor diagram; (c) Argand diagram

where X is the inductive reactance given by:
X, = wL = 2nfL ohms
where fis the frequency in hertz and L is the inductance in henrys.

7.5.1.3 Pure Capacitance

In an AC circuit containing pure capacitance only (see Figure 7.5(a)), the current /-
leads the applied voltage V- by 90° as shown in the phasor diagram of Figure 7.5(b). The
phasor diagram may be superimposed on the Argand diagram as shown in Figure 7.5(c).
The impedance Z of the circuit is given by:

7 =Y Ve ) g0 — x so00° or —jx,
1.20° 1,
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Imaginary
axis
v, L
/ LK
I v r
i L »l  Real
0 /; axis
= I
It
(@) (b) ()

Figure 7.5: (a) Circuit diagram; (b) Phasor diagram; (c) Argand diagram

where X is the capacitive reactance given by:

_ 1

1
— ohms
wC  27fC

Xo =

where C is the capacitance in farads.

=i _ =i _ -2 _ D _ 1
wC  WwC(j) jwC jwC JjwC

Note: —jX, =

7.5.1.4 R—L Series Circuit

In an AC circuit containing resistance R and inductance L in series (see Figure 7.7(a)),
the applied voltage V is the phasor sum of Vi and V; as shown in the phasor diagram

of Figure 7.7(b). The current / lags the applied voltage V by an angle lying between

0° and 90°—the actual value depending on the values of Vi and V;, which depend on the
values of R and L. The circuit phase angle, that is, the angle between the current and

the applied voltage, is shown as angle ¢ in the phasor diagram. In any series circuit the
current is common to all components and is taken as the reference phasor in

Figure 7.7(b). The phasor diagram may be superimposed on the Argand diagram as
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Imaginary
axis

o > | Real
4 l 0 70 axis
e C

v, \ _ /Vc‘ 2
(@)

(b) ©
Figure 7.6: (a) Circuit diagram; (b) Phasor diagram; (c) Argand diagram

Imaginary
axis
/
[0 e —
A ] /VL —————— v
Va R
v
Real
L axis
VL
[ SOvE—
@ (c)

Figure 7.7: (a) Circuit diagram; (b) Phasor diagram; (c) Argand diagram
shown in Figure 7.7(c), where it may be seen that in complex form the supply voltage V
is given by:
V=V, +jV,

Figure 7.8(a) shows the voltage triangle that is derived from the phasor diagram of
Figure 7.8(b) (triangle Oab). If each side of the voltage triangle is divided by current /,
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Imaginary
axis

Vs =IR R
(@) (b) (©
Figure 7.8: (a) Voltage triangle; (b) Impedance triangle; (c) Argand diagram

then the impedance triangle of Figure 7.8(b) is derived. The impedance triangle may be
superimposed on the Argand diagram, as shown in Figure 7.8(c), where it may be seen
that in complex form the impedance Z is given by:

Z=R+jX,

For example, an impedance expressed as (3 + j4) (2 means that the resistance is 3 {2 and
the inductive reactance is 4 €2.

In polar form, Z = |Z| /¢ where, from the impedance triangle, the modulus of
impedance 1Zl= v/(R? + X?) and the circuit phase angle ¢ = tan~! (X, /R) lagging.

7.5.1.5 R-C Series Circuit

In an AC circuit containing resistance R and capacitance C in series (see Figure 7.9(a)),
the applied voltage V is the phasor sum of Vi and V- as shown in the phasor diagram

of Figure 7.9(b). The current / leads the applied voltage V by an angle lying between 0°
and 90°—the actual value depending on the values of V and V-, which depend on the
values of R and C. The circuit phase angle is shown as angle ¢ in the phasor diagram. The
phasor diagram may be superimposed on the Argand diagram as shown in Figure 7.9(c),
where it may be seen that in complex form the supply voltage V is given by:

V=V = Ve
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Imaginary
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! Ve | Real
axis

-iVe

(@) (b) (©
Figure 7.9: (a) Circuit diagram; (b) Phasor diagram; (c) Argand diagram

Imaginary
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M i R Real
‘ o ‘ : 0 axis
iy Y
vo1z NV =X ZN X PA N z
(@) (b) (©)

Figure 7.10: (a) Voltage triangle; (b) Impedance triangle; (c) Argand diagram

Figure 7.10(a) shows the voltage triangle that is derived from the phasor diagram of
Figure 7.10(b). If each side of the voltage triangle is divided by current /, the impedance
triangle is derived as shown in Figure 7.10(b). The impedance triangle may be
superimposed on the Argand diagram as shown in Figure 7.10(c), where it may be seen
that in complex form the impedance Z is given by:

Z=R— jX,.

Thus, for example, an impedance expressed as (9 — j14) (2 means that the resistance is
92 and the capacitive reactance X is 14 ).



164 Chapter 7

In polar form, Z = |Z|./¢ where, from the impedance triangle, angle, IZI = v/(R? + X2)
and & = tan"! (X/R) leading.

7.5.1.6 R-L-C Series Circuit

In an AC circuit containing resistance R, inductance L and capacitance C in series (see
Figure 7.10(a)), the applied voltage V is the phasor sum of Vi, V; and V. as shown in the
phasor diagram of Figure 7.10(b) (where the condition V; > Vis shown). The phasor
diagram may be superimposed on the Argand diagram as shown in Figure 7.10(c), where
it may be seen that in complex form the supply voltage V is given by:

V=V +jlV, =Ve)

From the voltage triangle the impedance triangle is derived and superimposing this on the
Argand diagram gives, in complex form,

Impedance Z = R+ j(X, — X.) or Z =|ZI£d

where,

ZI= |[R? + (X, — X.)?] and ¢ = tan~'(X, — X)/R

When V; = V., X; = X and the applied voltage V and the current / are in phase. This
effect is called series resonance.

Imaginary
axis
vk
i
/‘(VL’V(;) ‘‘‘‘‘
—A_L
_______ ! !
V! Real
(V, - ve) ; ;d) : Ve | axis
Ve -iv }
(b) veY ()

Figure 7.11: (a) Circuit diagram; (b) Phasor diagram; (c) Argand diagram
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7.5.1.7 General Series Circuit

In an AC circuit containing several impedances connected in series, say, Z;, Z,, Zs, ... ,
Z,, then the total equivalent impedance Z7 is given by:

Z, =72, +2,+Z;+---+Z,
Example 7.5
Determine the values of the resistance and the series-connected inductance or capacitance

for each of the following impedances: (a) (12 + j5)§2; (b) —j40€2; (c) 30£60°;
(d) 2.20 X 10°£—30°Q2. Assume for each a frequency of 50 Hz.

Solution
(a) From Section 24.2(d), for an R—L series circuit, impedance Z = R + jX;.

Thus, Z = (12 + j5) 2 represents a resistance of 122 and an inductive reactance of
5€) in series.

Since inductive reactance X; = 2rfL,

So, the inductance is 15.9 mH.

Thus, an impedance (12 + j5) €2 represents a resistance of 12 in series with an
inductance of 15.9 mH.

(b) For a purely capacitive circuit, impedance Z = —jX.
Thus, Z = —j40(2 represents zero resistance and a capacitive reactance of 40 2.

Since capacitive reactance X = 1/(2nfC),

Capacitance C = L ! F
2nfX.  27w(50)(40)
106
=——pF =79.6pF
21(50)(40)

Thus, an impedance —j40 {2 represents a pure capacitor of capacitance 79.6 pF.
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(c) 30£60° = 30(cos 60° + j sin 60°) = 15 + j25.98

Thus, Z = 30£60°Q = (15 + j25.98) () represents a resistance of 152 and an
inductive reactance of 25.98 €2 in series.

Since X; = 27fL,

X 25.
Inductance L = —L = 5.98
2nf  2m(50)
= 0.0827H or 82.7 mH

Thus, an impedance 30£60° €2 represents a resistance of 152 in series with an
inductance of 82.7 mH.

(d) 2.20 X 109 £—30° = 2.20 X 10°[cos(—30°) + j sin(—30°)]
=1.905 X 10 — j1.10 X 10°

Thus, Z = 2.20 X 106 /-30°Q
= (1.905 X 10% — j1.10 X 10°)Q

represents a resistance of 1.905 X 10°Q (i.e., 1.905M€Q) and a capacitive reactance
of 1.10 X 10 € in series.

Since capacitive reactance X = 1/27fC),
1 1

= F
27X, 2m(50)(1.10 X 106)
=2.894X10°F or 2.894nF

Capacitance C =

Thus, an impedance 2.2 X 10°2£—30° Q represents a resistance of 1.905M¢2 in
series with a 2.894 nF capacitor.

Example 7.6
Determine, in polar and rectangular forms, the current flowing in an inductor of
negligible resistance and inductance 159.2 mH when it is connected to a 250V, S0Hz

supply.
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Solution
Inductive reactance

X; =27nfL = 27w(50)(159.2 X 1073) =500
Thus, circuit impedance Z = (0 + j50)Q = 50290°Q
Supply voltage, V = 250£0°V (or (250 + jO)V)

(Note that since the voltage is given as 250V, this is assumed to mean 25020°V or
(250 + jO)V.)

Hence, current [ = V_ M = @Z(OO —90°)
Z 50/90° 50
=5/-90°A
_ V(2504 jO) _ 250(—;50)
Alternatively, = 7 0+ j50) = 150(—j50)
_ —J(50)(250) _

502

—j5A
which is the same as 5/—90°A

Example 7.7
A 3-pF capacitor is connected to a supply of frequency 1kHz and a current of
2.83/90°A flows. Determine the value of the supply voltage.

Solution
1 1
2xfC 2w(1000)(3 X 1079)
= 53.059

Capacitive reactance X, =

Hence, circuit impedance
Z = (0— j53.05)Q = 53.054-90°2
Current 7 = 2.83290° A (or (0 + j2.83)A)
Supply voltage, V = IZ = (2.83£90°)(53.054-90°)
i.e., voltage =150/0°V
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Alternatively, V = [Z = (0 + j2.83)(0 — j53.05)
= —j2(2.83)(53.05) = 150 V

Example 7.8

The impedance of an electrical circuit is (30 — j50) ohms. Determine (a) the resistance,
(b) the capacitance, (c) the modulus of the impedance, and (d) the current flowing and its
phase angle, when the circuit is connected to a 240V, 50Hz supply.

Solution
(a) Since impedance Z = (30 — j50)€Q, the resistance is 30 ohms and the capacitive
reactance is 50 ).

(b) Since X = 1/2xfC), capacitance,

1 1

€T T 2mG0)60)

= 63.66 uF

(c) The modulus of impedance,

1Z] = J(R* + XZ) = | (30% +50?)
= 58.31Q2

X
(d) Impedance (30 — j50)$2 = 58.31/tan"! TC
= 58.31/-59.04° Q2

14 240/0°
Hence, current /| = — = ————
Z  58.31/-59.04°
= 4.12/59.04° A

Example 7.9

A 200V, 50Hz supply is connected across a coil of negligible resistance and inductance
0.15 H connected in series with a 32 {2 resistor. Determine (a) the impedance of the
circuit, (b) the current and circuit phase angle, (c) the voltage across the 32 ) resistor, and
(d) the voltage across the coil.
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Solution
(a) Inductive reactance X; = 27fL = 2w(50)(0.15)
=47.19Q

Impedance Z = R + jX;
=32+ j47.)Q or 57.0/55.81°Q

The circuit diagram is shown in Figure 7.12.

Z B 57.0455.81°
i.e., the current is 3.51A lagging the voltage by 55.81°
(c) Voltage across the 32 () resistor,
Ve = IR = (3.51£-55.81°)(32£0°)
ie., Vp, =112.3/-55.81°V

(d) Voltage across the coil,
V, = IX, = (3.51£-55.81°)(47.1£90°)
ie., V, =165.3£34.19°V

The phasor sum of Vi and V7 is the supply voltage V as shown in the phasor diagram of

Figure 7.13.

v
A [}stzn
V=200V,

50 Hz

5
v, %L—QﬁH

o

Figure 7.12: Circuit diagram for Example 7.9
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V,=165.3 V.

\
\
\,

\
34.19° \
AN

55.81° // V=200V

rd
g
e

v
Va=1123V

1=351A
Figure 7.13: Phasor diagram for Example 7.9

Vi =112.34-55.81° = (63.11 — j92.89) V
V, =165.3/34.19°V = (136.73 + j92.89) V

Hence,
V=V, +V, =(63.11—-j92.89)+ (136.73 + j92.89)
= (200 + j0) V or 200£0° V, correct to three significant figures.

Example 7.10

Determine the value of impedance if a current of (7 + j16)A flows in a circuit when the
supply voltage is (120 + j200)V. If the frequency of the supply is 5 MHz, determine the
value of the components forming the series circuit.

Solution
(120 + j200) _ 233.24./59.04°

(7+ j16) 17.464/66.37°
=13.36£-7.33Q or (13.25— j1.705)Q

Vv
Impedance Z = T

The series circuit consists of a 13.25 €2 resistor and a capacitor of capacitive reactance
1.705 2.

1
27fC

Since X, =
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1
2nfXc

Capacitance C =

1
2m(5 X 10%)(1.705)
1.867 X 10°3F = 18.67 nF

7.6 Applying Complex Numbers to Parallel AC Circuits

As with series circuits, parallel networks may be analyzed by using phasor diagrams. However,
with parallel networks containing more than two branches, this can become very complicated.
It is with parallel AC network analysis in particular that the full benefit of using complex
numbers may be appreciated. The theory for parallel AC networks introduced previously is
relevant; more advanced networks will be analyzed in this chapter using j notation. Before
analyzing such networks admittance, conductance and susceptance are defined.

7.6.1 Admittance, Conductance and Susceptance

Admittance is defined as the current / flowing in an AC circuit divided by the supply
voltage V (i.e., it is the reciprocal of impedance Z). The symbol for admittance is Y.
Thus,

Vv Z

The unit of admittance is the siemen, S.

An impedance may be resolved into a real part R and an imaginary part X, giving

Z = R = jX. Similarly, an admittance may be resolved into two parts—the real part being
called the conductance G, and the imaginary part being called the susceptance B—and
expressed in complex form. Thus, admittance,

Y=G=jB
When an AC circuit contains:

(a) pure resistance, then,
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(b) pure inductance, then,

Z=jx, ad Y=4+=_L T/
VA JX1 X))

_j .

:_:—B
X, JBr

thus, a negative sign is associated with inductive susceptance, B;.

(c) pure capacitance, then,

1 J

1
Z  —jXe (=X

Z=—jX, and Y =

thus, a positive sign is associated with capacitive susceptance, B¢

(d) resistance and inductance in series, then,

1 1

Z=R+jX, and Y=—=—

Z R+jX,

_ (R—jX,)

R2+X%
R X R X
ie., Y = -7 L or = —j L
R+x: ‘R+x2 ze 7 ize

Thus, conductance, G = R/1Z|? and inductive susceptance, B, = —XL/|Z|?

(Note that in an inductive circuit, the imaginary term of the impedance, Xj, is
positive, whereas the imaginary term of the admittance, B;, is negative.)

(e) resistance and capacitance in series, then,

1_ 1 _ R+jXc
Z R-jX. R>+X2

Z=R—-jX, and Y =
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. R . Xc
Le., Y = +j or
R>+ X2 " R*+X2
X
1z 1ZI?

Thus, conductance, G = R/Z|? and capacitive susceptance, BC = XC/|Z|?

(Note that in a capacitive circuit, the imaginary term of the impedance, X, is
negative, whereas the imaginary term of the admittance, B, is positive.)

(f) resistance and inductance in parallel, then,

1, 1 _ X +R
R jX,  (R(X,)

1
z

R)Y(jX
from which, Z = (R)(jX;) [i.e. product]

R+ jX; sum
4 .
and,Y—l=R X, _ R +JXL
Z JRX, JRX, JRX,
X, R (X)) R
or, Y = l — L
R X,
Thus, conductance, G = 1/R and inductive susceptance, B; = —1/Xj.

(g) resistance and capacitance in parallel, then,

7 = (R)(—JjX¢) [i.e. product]
sum

R— jX, ’

1_R-jX._ R iXc
Z —jRX. —jRX. —jRX,
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e y=—_41l__ O 1
—JjXe R (—jXco)(j) R

(7.1)

Thus, conductance, G = 1/R and capacitive susceptance, B¢ = I/X¢
The conclusions that may be drawn from sections (d) to (g) above are:
(i) that a series circuit is more easily represented by an impedance,

(i1) that a parallel circuit is often more easily represented by an admittance especially
when more than two parallel impedances are involved.

Example 7.11

Determine the admittance, conductance and susceptance of the following impedances:
(@) —j5 (b) (25 + j40)Q2 (c) (3 — j2)2 (d) 50£40° 2.

Solution

(a) If impedance Z = —j5(), then,
11 __ J
Z —j5 (=G S
=j02S or 0.2£90°S

admittance ¥

Since there is no real part, conductance, G = 0, and capacitive susceptance,
B = 0.28.

(b) If impedance Z = (25 + j40) (2 then,

Admittance Y = 1_ 1 _ 25-j40
Z Q5+ j40) 25 407
__» _ 40

_ = (0.0112 — j0.0180) S
2225 2225

Thus, conductance, G = 0.0112 S and inductive susceptance, By = 0.0180S.
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(¢) If impedance Z = (3 — j2)(}, then,
1 _ 1 _ 3+ 2
Z (B—j2) 3*+2?2

admittance Y =
= [i + ji]s or (0.231 +0.154)S
13 13
Thus, conductance, G = 0.231 S and capacitive susceptance, B = 0.154S
(d) If impedance Z = 50/40° (2, then,
1 120°

1
7 50/40°  50./40°
L 40° = 0.02/-40°S or

admittance Y =

W

0
(0.0153 —;0.0129)S

Thus, conductance, G = 0.0153 S and inductive susceptance, By = 0.0129 S.

Example 7.12

Determine expressions for the impedance of the following admittances: (a) 0.004230°S

(b) (0.001 —;0.002) S (c) (0.05 + j 0.08)S.

Solution
(a) Since admittance Y = 1/Z, impedance Z = 1/Y.

Hence, impedance Z = ! __ 140
0.004430°  0.0044£30°

=250/-30°Q or (216.5 —j125)Q
1
(0.001 — j0.002)
_0.001+ j0.002
~(0.001)2 + (0.002)?
_0.001 + j0.002

~0.000005
(200 + j400) Q2 or 447.2 £63.43° Q2

(b) Impedance Z =
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(c) Admittance Y = (0.05 + j0.08) S = 0.094/57.99°S

1
0.0094£57.99°
= 10.64£—57.99° Q or (5.64 — j9.02) 2

Hence, impedance Z =

Example 7.13

The admittance of a circuit is (0.040 + j0.025) S. Determine the values of the resistance
and the capacitive reactance of the circuit if they are connected (a) in parallel, (b) in
series. Draw the phasor diagram for each of the circuits.

Solution
(a) Parallel connection

Admittance Y = (0.040 + j0.025) S, therefore conductance, G = 0.040S and
capacitive susceptance, B = 0.025S. From equation (7.1) when a circuit consists of
resistance R and capacitive reactance in parallel, then ¥ = (1/R) + (j/X¢).

Hence, resistance R = — = ; =25
G 0.040
. 1 1
and capacitive reactance X, = — = —— = 40}
B,  0.025

The circuit and phasor diagrams are shown in Figure 7.14.
(b) Series connection

Admittance Y = (0.040 + j0.025) S, therefore,

Impedance Z = L
Y  0.040 + j0.025
0.040 — j0.025

" (0.040)% + (0.025)
= (17.98 — j11.24)Q)

Thus, the resistance, R = 17.98 {2 and capacitive reactance, X, = 11.24 (2.
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<\

(a)
Figure 7.14: (a) Circuit diagram; (b) Phasor diagram
ot
! )
Vs /
Vh R=17.98 Q
v
4
Ve
_|-XC ~11.24 O
(o Vc‘ —————— 4
(a) (b)

Figure 7.15: (a) Circuit diagram; (b) Phasor diagram

The circuit and phasor diagrams are shown in Figure 7.15.

The circuits shown in Figures 7.14(a) and 7.15(a) are equivalent in that they take the same
supply current / for a given supply voltage V; the phase angle ¢ between the current and
voltage is the same in each of the phasor diagrams shown in Figures 7.14(b) and 7.15(b).

7.6.2 Parallel AC Networks

Figure 7.16 shows a circuit diagram containing three impedances, Z;, Z, and Z3
connected in parallel. The potential difference across each impedance is the same, i.e.,
the supply voltage V. Current I} = V/Z,, I, = V/Z, and I = V/Z;. If Z7is the total
equivalent impedance of the circuit then I = V/Z; . The supply current, I = I} + I, + I3
(phasorially).
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o—

or total admittance, Yr =Y, + Y, + V3
In general, for n impedances connected in parallel,
Y=Y, +Y,+Y;+---+Y, (phasorially)

It is in parallel circuit analysis that the use of admittance has its greatest advantage.

7.6.2.1 Current Division in AC Circuits

For the special case of two impedances, Z; and Z,, connected in parallel (see Figure 7.17),

The total impedance, Z = Z,Z,/(Z, + Z,) (i.e., product/sum).
From Figure 7.17,

22,
Z,+7,

supply voltage, V = 1Z, =1

Also, V=17 (and V = 1,Z,)
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o |

Figure 7.17: Two impedances connected in parallel

ZZ
Thus, 1,7, =1|-—"2—
Z,+Z,
. Z,
1.e., current [, =1
Z,+2Z,
. Z,
Similarly, current 7, = I
Z,+7,

Note that all of the above circuit symbols infer complex quantities either in Cartesian or
polar form.

The following problems show how complex numbers are used to analyze parallel AC networks.

Example 7.14
Determine the values of currents /, I; and I, shown in the network of Figure 7.18.

Solution
Total circuit impedance,

— 54 (8)(jo) _ 5 (j48)(8 — j6)
8+ j6 82 + 62
j384 + 288

100
= (7.88 + j3.84)Q) or 8.77/25.98°Q

Zy

=5+
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/

5040°<>T 8Q 2j6 0

Z, 8.77/25.98°

Current /, :1[ j6 ]

8+ j6
= (5.70/—25.98°) ﬂ
10/36.87°
=3.42/27.15°A
8
Current [, =1 -
8+ j6
= (5.70/—25.98°) M—O
10£36.87°

= 4.56/—62.85° A

[Note: I = I, + 1, = 3.42/27.15° + 4.56 /—62.85°
= (3.043 + j1.561) + (2.081 — j4.058)
= (5.124 — j2.497)A
= 5.70 /—25.98° A]

Example 7.15
For the parallel network shown in Figure 7.19, determine the value of supply current /
and its phase relative to the 40 V supply.
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f ]
Iy R Iy
Ri=50Q R2=30Q
40V,
50 Hz R;=8Q
X, =120 TXc~ 4Q
L |
Figure 7.19: Parallel network for Example 7.15
Solution
Impedance Z; = (5 + j12)Q2, Z, = (3 — j4)(2 and Z; = 82 Supply current
I = ¥ _ VY, where Z; = total circuit impedance, and Y, = total circuit admittance.
Zy

Y, =Y, +Y, +Y,
11,1 1 1

=—+—+— 1 +—
Z, 7, Z, (5+j12) (3—j4) 8
. L

_5-j12 3+j4 1

24122 32+42 8
(0.0296 — j0.0710) + (0.1200 + j0.1600) + (0.1250)

i.e., Y7 = (0.2746 + j0.0890)S or 0.2887£17.96°S

Current [ = VY, = (40£0°)(0.2887.£17.96°)
= 11.55217.96° A

Hence, the current 7 is 11.55A and is leading the 40V supply by 17.96°.

Alternatively, current = I} + 1, + L4

40£0° _ 40£0°
5+ )12 13/67.38°
= 3.077/—67.38° A or (1.183 — j2.840) A

Current I, =
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40£0° _  40£0°
3—j4  5/-53.13°

Current I, = = 8/53.13°A

or (4.80 + j6.40) A

Current I; = M =5/0°A or (5+j0)A
; 8£0°
Thus, current I = I), + I, + 4
= (1.183 — j2.840) + (4.80 + j6.40) + (5 + jO)
=10.983 + j3.560 = 11.55£17.96° A, as previously obtained.

Example 7.16

An AC network consists of a coil, of inductance 79.58 mH and resistance 182, in parallel
with a capacitor of capacitance 64.96 pF. If the supply voltage is 250/0°V at 50Hz,
determine (a) the total equivalent circuit impedance, (b) the supply current, (c) the circuit
phase angle, (d) the current in the coil, and (e) the current in the capacitor.

Solution
The circuit diagram is shown in Figure 7.20.

Inductive reactance, X; = 2wfL = 21(50)(79.58 X 1073)
=250

Hence, the impedance of the coil,

Zeon = (R+ jX;) = (18 + j25)Q or 30.81/54.25°Q)

O—> y
‘} ICOlL
le
18 Q2
250£0°V,
79.58 mH
o ’e

Figure 7.20: Circuit diagram for Example 7.16
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1
2nfC

Capacitive reactance, X, =

1
 2m(50)(64.96 X 10-6)
=490

In complex form, the impedance presented by the capacitor Z¢ is —jX, i.e., —j49€2 or
49/—-90° (.

(a) Total equivalent circuit impedance,

7 = Zeo X
T
Zeow T Z¢

L.

product
sum

_(30.81£54.25°)(49.£ —90°)
(18 + j25) + (—j49)
_(30.81£54.25°)(49.£ —90°)
B 18 — j24

_ (30.81£54.25°)(49£ —90°)

304 —53.13°
= 50.324(54.25° — 90° — (—53.13%))

= 50.32/17.38° or (48.02 + j15.03) Q2

(b) Supply current [ = v _ %
Z;, 50.32/£17.38°

=4.97/-17.38° A
(¢) Circuit phase angle = 17.38° lagging, i.e., the current I lags the voltage V by 17.38°.

Vo 250£0°
COL ™ Zon  30.81/54.25°
= 8.11/-54.25° A

V. 250£0°

Z.  49/-90°
5.10£90° A

(d) Current in the coil, |

(e) Current in the capacitor, /.



This page intentionally left blank



Transients and Laplace Transforms

John Bird

8.1 Introduction

A transient state will exist in a circuit containing one or more energy storage elements (i.e.,
capacitors and inductors) whenever the energy conditions in the circuit change, until the new
steady state condition is reached. Transients are caused by changing the applied voltage or
current, or by changing any of the circuit elements; such changes occur due to opening and
closing switches. In this chapter, such equations are developed analytically by using both
differential equations and Laplace transforms for different waveform supply voltages.

8.2 Response of R-C Series Circuit to a Step Input
8.2.1 Charging a Capacitor
A series R-C circuit is shown in Figure 8.1(a).

A step voltage of magnitude V is shown in Figure 8.1(b). The capacitor in Figure 8.1(a) is
assumed to be initially uncharged.

From Kirchhoff’s voltage law, supply voltage,

V=v.+v, (8.1)
d
Voltage vg = iR and current | = Cﬂ, SO, Vg = CREC
dt dt
Therefore, from equation (8.1)
d
V=v.+ CRi (8.2)

dt
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C R
Vc' Vg ] Ai
[
switch  \_/
"4
(@) (b)

Figure 8.1: (a) Series R-C circuit; (b) Step voltage of magnitude V

This is a linear, constant coefficient, first order differential equation. Such a differential
equation may be solved (find an expression for voltage v.) by separating the variables.

Rearranging equation (8.2) gives:

d
V—v.=CREC
dt
and de _V—ve
dt CR
from which, dve = ﬁ
V—-v. CR
and integrating both sides gives f dve _ rdt
V—=vec CR

t
H —In(V—-v.)=—+k
ence, ( c) CR

where £ is the arbitrary constant of integration.

dve

(To integrate f v
— Ve

8.3)

make an algebraic substitution, u = V — vc—see Engineering

Mathematics or Higher Engineering Mathematics, J.O. Bird, 2004, 4th edition, Elsevier.)

When time ¢t = 0, v = 0, hence, —In V = £.

t
Thus, from equation (8.3), —In(V —v.) = C_R —InV
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Rearranging gives:

t
InV—-—In(V—v,)=—
( c) CR
\% t .
In = —— by the laws of logarithms
V—ve. CR
1e., v _ e/CR
V—=v.
and Vove _ 1 _ o~ 1ICR
%4 et/CR
V —v, = Ve R
V= Ve IR =y,
i.e., capacitor voltage, v, = V(1 — e /CR) (8.4)

This is an exponential growth curve, as shown in Figure 8.2.
From equation (8.1),
w =V v

=V — [V — e "CR)] from equation (8.4)

=V =V + Ve R

i.e., resistor voltage, v, = Ve /CR (8.5)



188 Chapter 8

Vp= Ve~ vCR

»
>

0 t

Figure 8.3: Exponential decay curve of Equation 8.5

This is an exponential decay curve, as shown in Figure 8.3.

dve

In the circuit of Figure 8.1(a), current i = &

d
Hence, i = CE[V(I — ¢ CR)] from equation (8.4)

ie., d [V Ve 1ICR]

\ — (V) —t/CR

—t/CR

<l

So, current, i = — e YCR

1%
where R is the steady state current, /.

This is an exponential decay curve as shown in Figure 8.4.

(8.6)

After a period of time, it can be determined from equations (8.4) to (8.6) that the voltage
across the capacitor, v, attains the value V, the supply voltage, while the resistor voltage,

Vg, and current i both decay to zero.

Example 8.1

A 500nF capacitor is connected in series with a 100kS? resistor and the circuit is
connected to a 50V, DC supply. Calculate (a) the initial value of current flowing,
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i<

»
>»

0 t

Figure 8.4: Exponential decay curve of Equation 8.6

(b) the value of current 150 ms after connection, (c) the value of capacitor voltage 80 ms
after connection, and (d) the time after connection when the resistor voltage is 35 V.

Solution

: P s
(a) From equation (8.6), current, [ = z e

Initial current, i.e., when t = 0,

io :Keo =K=L=0.5mA
R R 100X%x103

P — v —t/CR :
(b) Current, 1 = E e so, when time t = 150ms or 0.15s,

0 £—0-5/(500X107°)(100X10%)
100 X 10°

(0.5X1073)e™® = (0.5X 1073)(0.049787)
= 0.0249 mA or 24.9 pA

(c) From equation (8.4), capacitor voltage, vo = V(1 — ¢ /CR)

When time t = 80ms,

_ -3 -3 3
VC — 50(1—6 80X107°/(500X1073 X100X10 ))

= 50(1 — e~ %) = 50(0.7981)
=3991V



190 Chapter 8

(d) From equation (8.5), resistor voltage, vy = Ve V/CR
When v = 35V,

then 35 = 50 (500X1079X100X10%)

. 2 — ,—1/0.05
ie., 50
and lnﬁ -
50 0.05
from which, time t = —0.05In 0.7

= 0.0178s or 17.8 ms

8.2.2 Discharging a Capacitor

If after a period of time the step input voltage V applied to the circuit of Figure 8.1 is
suddenly removed, by opening the switch, then

from equation (8.1), Vg Tve=0
dv
or, from equation (8.2), CR a’_tc +ve =0
. . av, -1
Rearranging gives: —C =y
d  CR €
and separating the variables gives: dﬁ __dr
Ve CR
. . . . opedy dt
and integrating both sides gives: f 2C = [ 2
Ve CR
from which, Inv, =— L +k (8.7)
CR

where k& is a constant.
Attime ¢ = 0 (i.e., at the instant of opening the switch), ve = V
Substituting ¢ = 0 and v = V in equation (8.7) gives:

InV=0+k%
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Substituting k£ = In V into equation (8.7) gives:

t
Inv, = ——+1nV
¢ C

R
and Inve —InV = _
CR
mle __ .t
|% CR
and Yo _ ¢~ 1/CR
\%
from which, ve = Ve IR (8.8)

That is, the capacitor voltage, v, decays to zero after a period of time, the rate of decay
depending on CR, which is the time constant, T. Since vg + v = 0 then the magnitude of
the resistor voltage, v, is given by:

VR = Ve_t/CR (89)
and since i = De _ Ci(ve—t/CR)
dt dt

= _L —t/CR
(CV)[ CR]e

i.e., the magnitude of the current,

V
i=— ¢ IR 8.10
R 10

Example 8.2

A DC voltage supply of 200V is connected across a 5 pF capacitor as shown in

Figure 8.5. When the supply is suddenly cut by opening switch S, the capacitor is left
isolated except for a parallel resistor of 2 M(2. Calculate the voltage across the capacitor
after 20s.
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L R
[ ]
TAAATA L
73 Vg

O/C m
Switch U
"4

Figure 8.6: Series R-L circuit

Solution
From equation (8.8), vo = Ve ¢k

After 20s, v, = 200e~20/(5X1070X2X10%) = 7()()¢—2
= 200(0.13534)
=27.07V

8.3 Response of R-L Series Circuit to a Step Input
8.3.1 Current Growth

A series R-L circuit is shown in Figure 8.6. When the switch is closed and a step voltage
V is applied, it is assumed that L carries no current.

From Kirchhoff’s voltage law, V = v; + vz
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di .
Voltage v, = Ld_ and voltage vp = iR
t
di .
Hence, V =L—+IiR (8.11)
dt
This is a linear, constant coefficient, first order differential equation.
Again, such a differential equation may be solved by separating the variables.
Rearranging equation (8.11) gives: di _ ViR
dt L
from which, di = ﬁ
V—iR L
di dt
and = [=
f V —iR L
1 : t
Hence, ——In(V—iR)=—+k (8.12)
R L

where k is a constant.
di
V —iR

(Use the algebraic substitution # = V — iR to integrate f
Attime r = 0, i = 0, thus, —l InV=0+k%
R

Substituting k = — 1 In V in equation (8.12) gives:
R

“Lw-imy =L - Ly
R L R
L 1 . t
Rearranging gives: E[an —In(V —iR)] = I
and In 4 _ R
V —iR L
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o< ™

\/

0 t

Figure 8.7: Exponential growth curve of Equation 8.13

Hence, — = eRiL

V —iR

V—iR _ 1 _ ..
and \% o eRt/L -¢

V — iR = Ve RiL

V — Ve RIL = R
H— v —Rt/L

and current, i = E (1—e )

This is an exponential growth curve as shown in Figure 8.7.

The voltage across the resistor in Figure 8.6, vy = iR

Hence, v, = R %(l — e RYLY)| from equation (8.13)

ie., Ve = V(1 — e RiL)

which again represents an exponential growth curve.

di
The voltage across the inductor in Figure 8.6, v; = L o

(8.13)

(8.14)
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d LV d

: Vv
1.€., v, = LE\E(I — e—Rt/L) = ?Z[l — e—Rt/L]
_Lv 0— _R e RIL| = Lv Ee—Rt/L
R L R (L
ie., v, = Ve Ri/L (8.15)

Example 8.3

A coil of inductance 50 mH and resistance 5¢2 is connected to a 110V, DC supply.
Determine (a) the final value of current, (b) the value of current after 4 ms, (c) the value of
the voltage across the resistor after 6 ms, (d) the value of the voltage across the inductance
after 6ms, and (e) the time when the current reaches 15 A.

Solution
(a) From equation (8.13), when 7 is large, the final, or steady state current i is given by:
i= v_ % = 22A

(b) From equation (8.13), current, i = %(1 — e RiL)

When 1 = 4 ms, i = 110 (1 — o(-(GX4X10")/50x10 )
5

= 22(1 — e 049) = 22(0.32968)
=17.25V

(c) From equation (8.14), the voltage across the resistor,
v = V(1 — e RiL)
When 7 = 6ms, v, = 1101 — e(-(9)(6X1079)/50%107%) )
=110(1 —¢79%0) = 110(0.45119)
= 49.63V
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(d) From equation (8.15), the voltage across the inductance, v, = Ve /L

When ¢t = 6ms,
v, = 110e(~(5)(6X1073)/50X1073) = 11(e—0-60

= 6037V
(Note that at r = 6ms, v; + vg = 60.37 + 49.63 = 110V = supply voltage, V))
(e) When current i reaches 15A,
15 = %(1 — ¢ RILY) from equation (8.13)

110

1.e., 15 = — (1 — ¢ 51(50x107))
5
15 i =1 — o100
110
and e 1007 =1— s
110
Hence, —100¢ = In|1— s
110

and time, ¢ = ;ln 1—E
—100 100

= 0.01145sor 11.45 ms

8.3.2 Current Decay

If after a period of time the step voltage V applied to the circuit of Figure 8.6 is suddenly
removed by opening the switch, then from equation (8.11),

. . di di iR
Rearranging gives: [ — = —jR or— = — —
dt dt L
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Separating the variables gives: a__R dt

i L

and integrating both sides gives:

di R

— = ——dt
S5l

Ini =— 5t +k
L

At t = 0 (i.e., when the switch is opened),
, Vv
i=1|= 2’ the steady state current

thenln/ =0+ k&

Substituting k = In [ into equation (8.16) gives:
Ini =- 5t + In/
L

Rearranging gives: Ini—Inl = — %t

—Rt/L —Rt/L

. \%
and current, i=le or —e

i.e., the current i decays exponentially to zero.

From Figure 8.6, v = iR = R [%e‘R’/L] from equation (8.17)

So, vg = Ve RiL

(8.16)

(8.17)

(8.18)
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5A S

CONNIE

Figure 8.8: Circuit for Example 8.4

di d(V
dt dt | R

The voltage across the coil, v, = L— = L—| — e‘R”L] from equation (8.17)

The magnitude of vy is given by:
v, = Veth/L
Both vz and v; decay exponentially to zero.

Example 8.4

(8.19)

In the circuit shown in Figure. 8.8, a current of 5 A flows from the supply source. Switch

S is then opened. Determine (a) the time for the current in the 2 H inductor to fall to

200mA and (b) the maximum voltage appearing across the resistor.

Solution

(a) When the supply is cut off, the circuit consists of just the 102 resistor and the 2H coil in
parallel. This is effectively the same circuit as Figure 8.6 with the supply voltage zero.

) .V
From equation (8.17), current i = = e RilL

In this case % = 5A, the initial value of current.

When i = 200mA or 0.2 A,
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1P SES

Figure 8.9: L-R-C circuit

0.2 = 5e~1072
02

1.€., e

5
thus, ln% = —5¢

and time, t = — é In % = (0.644 s or 644 ms

(b) Since the current through the coil can only return through the 102 resistance, the
voltage across the resistor is a maximum at the moment of disconnection, i.e.,

vg = IR = (5)(10) = S0V

8.4 L-R-C Series Circuit Response

L-R-C circuits are widely used in a variety of applications, such as in filters in
communication systems, ignition systems in automobiles, and defibrillator circuits in
biomedical applications (where an electric shock is used to stop the heart, in the hope that
the heart will restart with rhythmic contractions).

For the circuit shown in Figure 8.9, from Kirchhoff’s voltage law,

V=v, +tvp +v, (8.20)
] d
v, = Lﬂ andi = Ci, hence,
dt dt
d 2
v, = Li De | = LC d”ve
dr dt dr?
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Hence, from equation (8.20):

2
d=ve

V=LC
dr?

cre®e 21
t

This is a linear, constant coefficient, second order differential equation. (For the solution
of second order differential equations, see Higher Engineering Mathematics).

To determine the transient response, the supply voltage, V, is made equal to zero,

) d%v dv
ie., LC—E+RC—SE+v,. =0 8.22
dr? da € (8.22)

A solution can be found by letting v = Ae™, from which,

dve dv
— Y = Amemt and _C — Am2eml
dt dr?

Substituting these expressions into equation (8.22) gives:
LC(Am? e™)+ RC(Ame™ )+ Ae™ = 0

ie., Ae™ (m*LC +mRC+1)=0
Thus, ve = Ae™ is a solution of the given equation provided that

m?*LC +mRC+1=0 (8.23)

This is called the auxiliary equation.

Using the quadratic formula on equation (8.23) gives:

_ —RC = |[(RC)* — 4(LC)(D)]
B 2LC
—RC + [(R2C? — 4LC)
2LC
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i.e.,

—RC \/ R2C? —4LC
m= *
2LC (2LC)?

__ R, R2C?  4ALC
2LV |412C?  412C?
R RY 1

= —_— i - -
2L 2L LC

This equation may have either:

(8.24)

(i) two different real roots, when (R/2L)*> > (1/LC), when the circuit is said to be
overdamped since the transient voltage decays very slowly with time, or,

(ii) two real equal roots, when (R/2L)> = (1/LC), when the circuit is said to be critically
damped since the transient voltage decays in the minimum amount of time without
oscillations occurring, or,

(iii) two complex roots, when (R/2L)*> < (1/LC), when the circuit is said to be
underdamped since the transient voltage oscillates about the final steady state value,
the oscillations eventually dying away to give the steady state value, or,

(iv) if R = 0in equation (8.24), the oscillations would continue indefinitely without any
reduction in amplitude—this is the undamped condition.

Damping is discussed again in Section 8.8.

Example 8.5

A series L-R-C circuit has inductance L = 2mH, resistance R = 1k{2 and capacitance,

C = 5F. (a) Determine whether the circuit is over, critical or underdamped. (b) If C = 5nF,
determine the state of damping.

Solution
RY 100 [ o1om
@ || = = = 6.25 X 1010
2L 2(2%X1073) 16
9
1 1 _10° s

LC  (2X1073)(5x105) 10
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2
Since, R > 1 the circuit is overdamped.
2L LC

(b) When C = SnF,L = ! = 10!
LC  (2X1073)(5%1079)

2
. R 1 .
Since, | — | < —— the circuit is underdamped.
2L LC

Example 8.6
In the circuit of Example 8.5, what value of capacitance will give critical damping?

Solution

RY 1
For critical damping: | = | = —

2L LC
from which, capacitance,

1 1 412 4L
C = = = = —_—
R 2 L R2 LR2 R2
L\, 412
42X 1073)

=222~ 7 =8%10" For 8nF
(103)2

8.4.1 Roots of the Auxiliary Equation
With reference to equation (8.24):
(i) when the roots are real and different, say m = « and m = 3, the general solution is:

Ve = Ae™ + BeP! (8.25)

R \/ RY 1
where, oo = ——+ —| ——
2L 2L LC
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(i) when the roots are real and equal, say m = « twice, the general solution is

v. = (At + B)eo! (8.26)

where @ = ——
2L

(iii) when the roots are complex, say m = o = j[3, the general solution is

ve = e*{Acos(t + Bsin 3t} (8.27)

2
1 (R
LC (2L
To determine the actual expression for the voltage under any given initial condition, it
is necessary to evaluate constants A and B in terms of v and current i. The procedure is

the same for each of the above three cases. Assuming in, say, case (iii) that at time t = 0,
ve = vg and i(=C(dv /dt)) = i, then substituting in equation (8.27):

R
where oo = —— and 3 = 8.28
¥ 3 \/ (8.28)

vy = €’{A cos 0 + Bsin 0}

ie,vy=A (8.29)

Also, from equation (8.27),
d
% = ¢™[—ABsin 3¢ + B3 cos 3¢] + [A cos 3¢ + Bsin 3t](ce™) (8.30)

by the product rule of differentiation.

When 7 = o,dg—c — ¢0[0 + BB]+[Al(ae®) = B + oA
t

dve _

Hence, at t = 0,i, = C(BB + A)

From equation (8.29), A = vy hence iy = C(Bf + awy)
= CBB + Cawy,

from which, =% ——9 8.31
8 (8.31)
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Example 8.7

A coil has an equivalent circuit of inductance 1.5H in series with resistance 90 2. It is
connected across a charged 5 pF’ capacitor at the moment when the capacitor voltage is
10 V. Determine the nature of the response and obtain an expression for the current in
the coil.

Solution
[i]z [0 T _ R B
2L 2(1.5) LC (1.5(5%X1079)
=1.333 X103

2
Since R < 1 the circuit is underdamped.
2L LC

From equation (8.28),

R
2L 2(1.5)
2
and 3 = é—[%]

:\/ [1.333 X 10° —900] = 363.9

With vy = 10V and iy = 0, from equation (8.29), vy = A = 10

and from equation (8.31),

iy —Cavy _ 0— (5% 1076)(=30)(10)

B = =
B (5% 107)(363.9)
=390 _ 8044
363.9

Current, | = C ddi , and from equation (8.30),
t

i = C{e 3 [—10(363.9) sin B¢ + (0.8244)(363.9) cos ]
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+ (10 cos 3¢ + 0.8244 sin 31)(—30e739)}
= C{e 3%[—3639 sin 3¢ + 300 cos 3¢ — 300 cos 3¢ — 24.732 sin 3]}
= Ce 3 [—3663.732 sin (3¢]
= —(5%X1079)(3663.732)e 3 sin (3¢

i.e., current,i = — 0.018 ¢ 3" sin 363.9¢ amperes

8.5 Introduction to Laplace Transforms

The solution of most electrical problems can be reduced ultimately to the solution

of differential equations and the use of Laplace transforms provides an alternative
method to those used previously. Laplace transforms provide a convenient method for
the calculation of the complete response of a circuit. In this section and in Section 8.6,
the technique of Laplace transforms is developed and then used to solve differential
equations. In Section 8.7, Laplace transforms are used to analyze transient responses
directly from circuit diagrams.

8.5.1 Definition of a Laplace Transform

The Laplace transform of the function of time f(¢) is defined by the integral
j; > et f(t)dt where s is a parameter

There are various commonly used notations for the Laplace transform of f(¢) and these

include L{f ()} or L{f (1)} or L(f) or Lf or f (s).

Also the letter p is sometimes used instead of s as the parameter. The notation used in this
chapter will be f(¢) for the original function and £{f(r) }for its Laplace transform,

ie, L(FN) = [T e f(r)de (8.32)

8.5.2 Laplace Transforms of Elementary Functions

Using equation (8.32):

e*Sl ©

(i) when f(t) =1, %{1} = fo Fest(l)dt =

)

0
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— Lo — o0
s
S [0—1]
s
1 .
= — (provided s > 0)
s

(i) when f(6) = K, F{k} = k(1) = k[%] _

E from (i) above
s

(iii) when f(f) = e, ${ew} = fo o5 (e )dt

= f e~ 6=Ddt from the laws of indices

—(s—a)

—(s—a)

e—(s—a)t e

0

L _0-1

(provided s > a)

(iv) when f(t) = t, ${t} = fo et dt

to—st et 70
= — [
—s -s 0
te st e—st > . .
= — by integration by parts
—g —52
0
ooe*s(oo) e*s(oo) eO
= — — 0 —_
—s 52 §2

www.newnespress.com
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=(0-0)—

O—L] since (.0 X 0) =0
52

1
2

(provided s > 0)
s

(v) when f(f) = cos wt,
Flcoswt} = j;)oc e’ coswt dt

e*s[ R
= | ———(wsin wt — 5 cos wt) by integration by parts twice
52 4+ w? 0
= — § -~ (provided s > 0)
s+ w

A list of standard Laplace transforms is summarized in Table 8.1 below. It will not
usually be necessary to derive the transforms as above—but merely to use them.

The following worked problems only require using the standard list of Table 8.1.

Example 8.8
Find the Laplace transforms of:

(@) 1+2¢— %t“
(b) 502t — 3¢t
Solution

(a) §E{1+2t—%t4} = P} + 2%(1) —%55{#*}

:l+2 L]_l i] from 2, 7 and 9 of Table 8.1
s 2 3|44t

:l+i_l 4X3X2X1

s 5?3 $

1,28

s 52 s
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Table 8.1: Standard Laplace transforms

o0
Time function f{t) Laplace transform L{f{(t)} = f() e S f(t)dt
1. 0 (unit impulse) 1
2. 1 (unit step function) 1
s
3. e (exponential function) 1
s—a
—sT
4. unit step delayed by T e’
s
S. Sin wt (sine wave) w
s +w?
s
6. t i
cos wt (cosine wave) KR
. . 1
7. t (unit ramp function) ")
2!
2
8 t 5
n!
9. "'(n=12,3.) g
s
10. cosh wt
2 — 2
w
11. inh wt
sinh w ERE
12. et d
(5 — a)n+1
w
13. e~ sin wt (damped sine wave
I (damped sine wave) (s +a)p? +uw?
14. e~ cos wt (damped cosine wave) sa
(s +a)? +u?
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Table 8.1: (Continued)

Time function f{t) Laplace transform L{f(t)} = j;)oo e S f(t)dt

w

15. e sinh wt _—
(s +a)? —w?

Ss+a

16. e " cosh wt e
(s +a)? —u?

(b) L{56* — 3e™ !} = 5%{e*} — 3%{e '}

(1 I
=515=2) 35— 1] from 3 of Table 8.1
5 3

s—2 s+1
_S(s+D)—3(s—2)
=2 +D

25+ 11

s2—5—2

Example 8.9
Find the Laplace transform of 6 sin 3t — 4 cos 5t.

Solution
P{6sin 3t — 4 cos 5t} = 6L {sin 3t} — 4% {cos 5t}
= 6[L] - 4[;] from 5 and 6 of Table 8.1
s? +32 5% + 52
18 45
s2+9 s2+425

Example 8.10
Use Table 8.1 to determine the Laplace transforms of the following waveforms:

(a) astep voltage of 10V which starts at time ¢ = 0,
(b) astep voltage of 10V which starts at time ¢ = 5s,
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(c) aramp voltage which starts at zero and increases at 4 V/s,

(d) aramp voltage which starts at time t = 1s and increases at 4 V/s.

Solution
(a) From 2 of Table 8.1,

P10} = 10£{1} = 10[1] _10

s s
The waveform is shown in Figure 8.10(a).

(b) From 4 of Table 8.1, a step function of 10V which is delayed by # = 5 is given by:

—sT —5s
10["’ ]= 10["’ ] 10 s

N N N

This is, in fact, the function starting at ¢t = 0 given in part (a), i.e., (10/s) multiplied

by e*T, where T is the delay in seconds.

The waveform is shown in Figure 8.10(b).
(c) From 7 of Table 8.1, the Laplace transform of the unit ramp, £{t} = (1/5%)

Hence, the Laplace transform of a ramp voltage increasing at 4 V/s is given by:

4%{1) = ;12

The waveform is shown in Figure 8.10(c).

(d) As with part (b), for a delayed function, the Laplace transform is the undelayed
function, in this case (4/s) from part (c), multiplied by e 7 where 7T in this case is
1s. The Laplace transform is given by:

e

The waveform is shown in Figure 8.10(d).
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v A v
10 10
0 i 0 5 t
(a) (b)
v
4l

Figure 8.10: Waveforms for Example 8.10

Example 8.11
Determine the Laplace transforms of the following waveforms:

(a) an impulse voltage of 8 V, which starts at time ¢ = 0,

(b) an impulse voltage of 8V, which starts at time t = 2,

(c) asinusoidal current of 4 A and angular frequency 5 rad/s which starts at time ¢t = 0.
Solution

(a) An impulse is an intense signal of very short duration. This function is often known
as the Dirac function.

From 1 of Table 8.1, the Laplace transform of an impulse starting at time ¢t = 0 is
given by £{6} = 1, hence, an impulse of 8 V is given by: 8£{6} = 8.

This is shown in Figure 8.11(a).

(b) From part (a) the Laplace transform of an impulse of 8 V is 8. Delaying the impulse
by 2s involves multiplying the undelayed function by e 7 where T = 2s.

Hence, the Laplace transform of the function is given by: 8¢ %

This is shown in Fig. 8.11(b).
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VA VA

8 | 8 |

0 R 2 >
(a) (b)

A o
3
ol ¥
~Y

(c)
Figure 8.11: Graphs for Example 8.11

(¢) From 5 of Table 8.1, ¥{sin wt} = v
52 + w2

When the amplitude is 4 A and w = 5, then

33{4sinwt}=4[ > ]= 20

sz +52 s2 +25
The waveform is shown in Figure 8.11(c).

Example 8.12
Find the Laplace transforms of:

(a) 2t%™

(b) 4e’ cos 5t.
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Solution
(a) From 12 of Table 8.1,

PR214ed} = 2P {1}

41
- (s — 3)41
24 X3X2X1) 48
(-3 (-3

(b) From 14 of Table 8.1,
Pl4e3 cos 5t} = 4¥P{e’" cos 5t}
s—3
4(s — 3) _ 4(s—3)
2 —65+9+25) s*—6s+34

Example 8.13
Determine the Laplace transforms of:

(a) 2 cosh 3¢,
(b) e % sin 3t.

Solution
(b) From 10 of Table 8.1,

s 2s
P{2cosh3t} = 2% cosh3t =2 =
{ } s —32 s2-9
(¢) From 13 of Table 8.1,
Ple 2 sin 3t} = 3 = 3
(s+2)2+3> s2+4s+4+9
3

s2+4s+13
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8.5.3 Laplace Transforms of Derivatives
Using integration by parts, it may be shown that:

(a) for the first derivative:

L D) = sE{fD} = £(0)

or SB{Q} = s¥{y} — y(0) (8.33)
dx

where y(0) is the value of yatx = 0
(b) for the second derivative:
L0} = s> LD} — sf(0) — f(0)

dZy 2 !
or ¥ —51=S F{y} — sy(0) — y'(0) (8.34)
dx

where y'(0) is the value of (dy/dx) at x = 0

Equations (8.33) and (8.34) are used in the solution of differential equations in
Section 8.6.

8.5.4 The Initial and Final Value Theorems

The initial and final value theorems can often considerably reduce the work of solving
electrical circuits.

(a) The initial value theorem states:

limit [ f(£)] = limit [sL{f()}]

t—0 §—®

Thus, for example, if f(f) = v = Ve CR and if, say,
V =10 and CR = 0.5, then
fty=v=10e"*

L{f(D} = 10[;] from 3 of Table 8.1
s+2

_ N
sE{f(D} = 10[s+2]
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From the initial value theorem, the initial value of f(¢) is given by:

10

=10(1) =10
+2 M

(b) The final value theorem states:

limit [ f(1)] = limit [s£{f(1)}]

t—© §—00

In the above example of f() = 10e” %, the final value is given by:

0

0+2

10 =0

The initial and final value theorems are used in pulse circuit applications where the
response of the circuit for small periods of time, or the behavior immediately the switch
is closed, are of interest. The final value theorem is particularly useful in investigating the
stability of systems (such as in automatic aircraft-landing systems) and is concerned with
the steady state response for large values of time ¢, i.e., after all transient effects have died
away.

8.6 Inverse Laplace Transforms and the Solution of
Differential Equations

Since from 2 of Table 8.1, £{1} = 1 then,
s

-fy-

where £~ ! means the inverse Laplace transform. Similarly, since from 5 of Table 8.1,

w
s2 +w

Plsinwt} = % then £! i

= sin wt

s +w 2 }

Finding an inverse transform involves locating the Laplace transform from the right-
hand column of Table 8.1 and then reading the function from the left-hand column. The
following worked problems demonstrate the method.
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Example 8.14
Find the following inverse Laplace transforms:

—1 1
@ &£ {sz +9}

PEEN

Solution

]
@ {s2+9} . is2+32}

1 3
=_$71
3 {s2+32}

and from 5 of Table 8.1,

5 1y
2383 from 3 of Table 8.1

Example 8.15
Determine the following inverse Laplace transforms:

(@) $-1 {s%}
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.13
o[l

N

Solution

(a) From 8 of Table 8.1, ¥£~! {%} =12
s

Hence, 7! {i} = 3551{ 2 } = 3¢2

$3 =
(b) From 9 of Table 8.1, if s is to have a power of 4 then n = 3.

|
Thus, £~ {%} =ie, ! {%} =7
N Ky

Hence, $£7! % =l££*1 6 =lt3
2 4 2

Example 8.16
Determine

1 s
@ & {sz +4}

4 4s
o |5t

Solution

s s
Pl =7% 1 —
@ {s2+4} {s2+22}

= 7 cos 2t from 6 of Table 8.1

_ 4s B S
® £ l{s2—16}:4§£ 1{s2—42}

= 4 cosh 4¢ from 10 of Table 8.1
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Example 8.17

Find ¥7! { 2 }
(s —3)

Solution

|
From 12 of Table 8.1, %! {”—} = eatyn

Thus, $-1 {;} = ieattn

(S _ a)n+1

2
(s —3)°

Hence, ¥-! 2 =291 1
(s—3) (s—3y

=2

and comparing with $-1 { } shows that n = 4 and a = 3.

i€3tl‘4
41

— i e3tt4
12

Example 8.18
Determine

1 3
@ £ {sz —4s+13}

2(s+1) }

b) £!
®) {s2+2s+10

Solution

—1 3 _ 1 3
@ {s2—4s+13} * {(s—2)2+32}

= ¢* sin 3t from 13 of Table 8.1
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s24+2s+10 (s +1)?% +32
= 2e~" cos 3t from 14 of Table 8.1

) gg—l{ 2s+1) }:gg_l{ 2(s +1) }

Note that in solving these examples, the denominator in each case has been made into a
perfect square.

8.6.1 Use of Partial Fractions for Inverse Laplace Transforms

Sometimes the function whose inverse is required is not recognizable as a standard
type, such as those listed in Table 8.1. In such cases it may be possible, by using partial
fractions, to resolve the function into simpler fractions which may be inverted on sight.
2s—3
s(s —3)
However, using partial fractions:

For example, the function F(s) = cannot be inverted on sight from Table 8.1.

s(s—3) s s-3 (s — 3)

2s —3 _A+ B :A(s—3)+Bs

from which 2s — 3 = A(s — 3) + Bs
Letting s = 0 gives: —3 = — 3A from which A =1

Letting s = 3 gives: 3 = 3 B from which B = 1
2s—3 1+ 1

s(s —3) B s s—3

Thus,se—l{zs_3}=§£—l{l+ ! }
s(s —3) s (s—3)

=1 + ¢* from 2 and 3 of Table 8.1

Hence,

Partial fractions are explained in Engineering Mathematics and Higher Engineering
Mathematics. The following worked problems demonstrate the method.

Example 8.19

Determine ¥! 4TS
s2—s5—2
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Solution

4s—5 _ _4s-5 _ A ., B

2—s5—2 (s—=2G+1) (5—2) (s+1D
A+ D+ B(s—2)
R

Hence,4s —5=A(s + 1) + B(s — 2)
When s = 2,3 = 3A from which, A = 1
Whens = — 1, =9 = — 3B from which, B =3

Hence, 31{“—_52}5581{ ! + 3 }

2 s—2 s+1

§F—5—
oo o
s—2 s+1

= ¢% + 3¢~ from 3 of Table 8.1

Example 8.20
3452+ 125+
Find 91 3s s 125 +2
(s —3)(s+1)>3
Solution
353 + 52 +125+12 A B C D
= + + +
(s—3)(s+1)3 s—3 s+1 (s+1D? (s+1)3

A1+ BB t1p = FCE=IE+D+DG=3)

(s =3)(s+1)

Hence, 35> + 2+ 12s + 2 = A(s + 1) + B(s — 3)(s + 1)?

+ C(s — 3)(s + 1) + D(s — 3)
When s = 3, 128 = 64A from which A = 2
When s = —1, —12 = —4D from which D = 3
Equating s° terms gives: 3 = A + B from which B = 1
Equating s terms gives: 1 = 34 — B + C from which C = —4
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3 +52+125+2
Hence, 55_1{3S 5 o }

(s =3)(s+1)°

i R S
s—3 s+1 (s+12  (s+1)

=2e3 + et —4e 't + %e"t2 from 3 and 12 of Table 8.1.

Example 8.21
552 +8s—1
Determine £! SRl
(s +3)(sz+1)
Solution
5s2+8s—1 _ A +Bs—l—C

(s+3)(2+1D s+3 s2+1
_ A2+ 1D+ (Bs+C)(s+3)
(s +3)(s2 + 1)

Hence, 55> + 85 — 1 = A(s>+ 1) + (Bs + O)(s + 3)
When s = —3,20 = 10A from whichA = 2

Equating s° terms gives: 5 = A + B from which B = 3
Equating s terms gives: 8 = 3B + C from which C = —1
Hence,

o1 552 +8s—1 _ g 2 +3s—1
(s +3)(sz +1) s+3  s2+1

— g1 2 Ll 3s _ g 1
s+3 s2+1 s2+1

= 2¢73' + 3 cost — sin ¢ from 3, 6 and 5 of Table 8.1.

8.6.2 Procedure to Solve Differential Equations by Using Laplace Transforms

(i) Take the Laplace transform of both sides of the differential equation by applying the

formulae for the Laplace transforms of derivatives (i.e., equations (8.33) and (8.34) and,

where necessary, using a list of standard Laplace transforms, such as Table 8.1.
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(ii) Put in the given initial conditions, i.e., y(0) and y’(0).
(iii) Rearrange the equation to make £{y} the subject.

(iv) Determine y by using, where necessary, partial fractions, and taking the inverse of
each term by using Table 8.1.

This procedure is demonstrated in the following problems.

Example 8.22
Use Laplace transforms to solve the differential equation:

2
2 s 3,
dx? dx

given that when x = 0, y = 4 and ? =17
X

Solution
() 255{%} + 555{%} — 3%y} = {0}
22 Ly} — sy(0) = y'(0)] + S[s£{y} — ¥(0)] — 3%{y} = 0
From equation (8.33) and (8.34)
(i) y(0) =4 andy’ (0) =9
Thus,
25>y} —4s — 91+ S[sL{y} — 41— 3%L{y} = 0

1.€.,

252P{y} —8s — 18 + 5sL{y} —20 —3L{y} = 0

(iii) Rearranging gives: (2s% + 55 — 3)¥{y} = 8s + 38

85 + 38
fe, Py} = 30
W= s —3
85 + 38
iv =91
)y {2s2+5s—3}
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8s + 38 8s + 38
Let =
252 +55s—3  (2s—D(s+3)
A B
= -
2s—1 s+3

A +3)+B(2s—1)
@25 —D(s+3)
Hence, 8s +38 = A(s +3) + B(2s — 1)
When s = %, 42 = 3%A from which, A = 12
When s = —3, 14 = —7B from which, B = —2
8s +38
252 + 55 — 3}

_ga| 12 2
25—1 s+3

_ 1] 12 _g_l{ 2}
2s— 1) s+3

Hence, y = 6eV?* — 2¢73 from 3 of Table 8.1.

Hence, y = $£7! {

Example 8.23
Use Laplace transforms to solve the differential equation:
2
Y 6D 13y =0
dx? dx
: dy
given that whenx = 0,y =3 and — =7
dx
Solution

Using the above procedure:
2

@ 2192 el DL 3% = #0)
dx? dx

Hence, [s2£{y} — sy(0) — y'(0)] + 6[s£{y} — y(0)] + 13%L{y} = 0
from equations (8.33) and (8.34)
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(i) y(0) =3

and y'(0) =7

Thus, s2L{y} —3s — 7+ 6sL{y} —18 +13¥L{y} = 0

(iii) Rearranging gives: (s> + 65 +13)£{y} = 35 + 25

3s +25
ie., Ly} = ——m—
Le 1) s2+6s+13
3s +25
o]
) s2+6s+13}
— g 3s +25 — g1 3(s+3)+16
(s +3)? +22 (s +3)? +22
— g 3(s+3) Lo 8(2)
(s+3)?+22 (s+3)* +22

= 3¢73" cos 2¢ + 8¢~ sin 2¢ from 14 and 13 of Table 8.1.

Hence,

Example 8.24

A step voltage is applied to a series C-R circuit. When the capacitor is fully charged
the circuit is suddenly broken. Deduce, using Laplace transforms, an expression for the
capacitor voltage during the transient period if the voltage when the supply is cutis V

volts.

Solution

y = e ¥(3 cos 2t + 8 sin 2f)

From Figure 8.1, vy + v = 0 when the supply is cut,

i.e.,
ie., c—<
dt
d
1.€., CR

iR+v.=0
R+v, =0
C+ =O
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Using the procedure:

1 §E{CR dd"tc } + £{v.} = Z{0}

ie., CR[sL{v.} —vyl+L{v,} =0

(i) vo =V, hence, CR[s%{v.} —V]+£{v.} =0

(iii) Rearranging gives: CRs£{v,} —CRV + £{v.} =0
ie., (CRs + D&{v.} = CRV

R
hence, Flv,.} = _CRV_
(CRs +1)
) CRV
iv) Capacitor voltage, v.= $£~!
) P £ Ve {CRs-Fl}
B 1
= CRVY! 1
CR|s+ —
CR
_CRV 4] 1
TR
CR

i.e., v, = Ve=CR a5 previously obtained in equation (8.8).

Problem 8.25
A series R-L circuit has a step input V applied to it. Use Laplace transforms to determine
an expression for the current i flowing in the circuit given that when time r = 0, i = 0.

Solution
From Figure 8.6 and equation (8.11),

dt
Vg T v, =V becomesiR+L— =v
dt
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Using the procedure:

1) 2L{iR) +§EiL ﬁ} =LV}
dt

<

i.e., RE{i} + L[sL{i} — i(0)] =

N

(i1) i(0) = 0,hence, R¥{i} + Ls&{i} = v
s
. . LV
(iii) Rearranging gives: (R + Ls)¥{i} = —
s

ie., Fli} = v

s(R + Ls)

(iv) i=2! «[—V }
s(R+ Ls)
ot \% :é_'_ B :A(R+Ls)+Bs
s(R+Ls) s R+Ls s(R + Ls)

Hence, V = A(R + Ls) + Bs
When s = 0,V = AR from which, A = %

When s = —E,V =B —5 from which,
L L

Hence, £~! v
s(R + Ls)

_ g1 V/_R+ —VL/R
) R+ Ls

gV
Rs R(R+ Ls)
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R\s £+s
L
R 5 s+§
L

So current | = %(1 — e Rt/L)y as previously obtained in equation (8.13).

Example 8.26

If after a period of time, the switch in the R-L circuit of Example 25 is opened, use
Laplace transforms to determine an expression to represent the current transient response.
Assume that at the instant of opening the switch, the steady-state current flowing is I.

Solution
From Figure 8.6, v; + vg = 0 when the switch is opened,

ie., Lﬂ+iR =0
dt

Using the procedure:

. di .

@) §B{L—} + £{iR} = £{0}

dt
ie., L[sE{i} —iy] + RL{i} =0

(ii) iy = I, hence, L[s£{i} — I + RL{i} =0

(iii) Rearranging gives: Ls*{i} — LI + R¥{i} = 0
ie., (R + Ls) P{i) = LI

and Fli} = L
R+ Ls




228 Chapter 8

(iv) Current, i = $7! _H
R+ Ls

= LI$!

s+ —

i.e., i = Ie"RD from 3 of Table 8.1.

Since I = %theni Y e RiIL g previously derived in equation (8.17).
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Frequency Domain Circuit Analysis

lzzat Darwazeh
Luis Moura

9.1 Introduction

In this chapter, we present the main electrical analysis techniques for time-varying signals.
We start by discussing sinusoidal alternating current (AC) signals and circuits. Phasor
analysis is presented and it is shown that this greatly simplifies this analysis since it allows
the introduction of the generalized impedance. The generalized impedance allows us to
analyze AC circuits using all the circuit techniques and methods for DC circuits discussed
previously. In section 9.3, we extend the phasor analysis technique to analyze circuits
driven by nonsinusoidal signals. This is done by first discussing the Fourier series, which
presents periodic signals as a sum of phasors. The Fourier series is a very important tool
since it forms the basis of fundamental concepts in signal processing such as spectra

and bandwidth. Finally, we present the Fourier transform, which allows the analysis of
virtually any time-varying signal (periodic and nonperiodic) in the frequency domain.

9.2 Sinusoidal AC Electrical Analysis

AC sinusoidal electrical sources are time-varying voltages and currents described by
functions of the form:

v, (1) = V, sin(wr) 9.1)
i.(t) = I sin(wr) 9.2)

where V, and I, are the peak-amplitudes of the voltage and of the current waveforms,
respectively, as illustrated in Figure 9.1. Here w represents the angular frequency, in radians/
second, equal to 2r/T where T is the period of the waveform in seconds. The repetition rate
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v T v, 1Vl (is(n)

(Frequency 1/T)

(a)
Figure 9.1: (a) AC voltage (current) waveform versus time; (b) AC voltage (current)

waveform versus phase

of the waveform, that is the linear frequency, is equal to //T in hertz. The quantity (wr) is
an angle, in radians, usually called the instantaneous phase. Note that w7 corresponds to 27
rad. Here we interchangeably use the terms voltage/current sinusoidal signal or waveform,
to designate the AC sinusoidal quantities.

By definition, all transient phenomena (such as those resulting, for example, from
switching-on the circuit) have vanished in an AC circuit in its steady-state condition.
Thus, the time origin in equations 9.1 and 9.2 can be “moved” so v, (¢) and i, () are
equally well described by cosine functions, that is:

v, (1) =V, cos(wr) 9.3)
i.(1) = I cos(wt) 04

Any signal varying with time is effectively an AC signal. We limit our definition of an
AC signal here to a sinusoidal signal at specific frequency. This is particularly helpful to
calculate impedances at specific frequencies as will be seen later in this chapter.

While the choice of the absolute time origin is of no relevance in AC analysis, the relative
time difference between waveforms, which can also be quantified in terms of phase
difference, is of vital importance. Figure 9.2(a) illustrates the constant phase difference
between a voltage waveform and a current waveform at the same angular frequency w. If any
two AC electrical waveforms have different angular frequencies, w; and w,, then the phase
difference between these two waveforms is a linear function of time; (w; — w,)%. Assuming a
time origin for the voltage waveform we can write the waveforms of Figure 9.2(a) as:

v, (t) = V, sin(wr) 9.5)
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Figure 9.2: Phase difference (¢ = /3) between an AC voltage and an AC current
(a) The current lags the voltage (b) The voltage leads the current

i (f) = I sin(wt — &) (9.6)

where ¢ = w/3. In this situation, it is said that the current waveform /ags the voltage
waveform by ¢. In fact, the current waveform crosses the phase axis (point A) later than
the voltage waveform. On the other hand, if we choose the time origin for the current
waveform, as illustrated in Figure 9.2(b), we can write these waveforms as follows:

v, (1) =V, sin(wt + ¢) 9.7
i, (1) = I sin(wr) 9-8)

and it is said that the voltage waveform /eads the current waveform.

9.2.1 Effective Electrical Values

By definition, the effective value of any voltage waveform is the DC voltage that, when
applied to a resistance, would produce as much power dissipation (heat) as that caused
by that voltage waveform. If we represent the AC voltage waveform by V, sin(wf) and the
effective voltage by V.4, then we can write:

f ﬁf ——fTV(t)

V2'2
=1fﬁiﬂ%92w 9.9)
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Figure 9.3: Voltage AC waveform and its corresponding effective voltage

The last equation can be written as follows:

% V2 _
1 Ve T — l_Sle cos(2wr) gt
T R T R YO 2
& VZ = V—Sz t— Lsin(2wt) ' (9.10)
Toor| 2w 0
Since w = 27/T the last equation can be written as:
V2
2 —_s
Vi = 5 9.11)

or Ve = V/V 2 = 0.707 V. Figure 9.3 illustrates the effective voltage of an AC voltage
waveform.

In a similar way it can be shown that the effective value of a sinusoidal current with peak-
amplitude [ is I = I,/'V 2. The effective value of a sinusoidal voltage and/or current is
also called the root-mean-square (RMS) value.

Example 9.1

Show that the effective value of a triangular voltage waveform, like that shown in Figure
9.4, with peak amplitude V,is V3= V/V 3.
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Figure 9.4: Triangular voltage waveform and its corresponding effective voltage

Solution
Following the procedure described above we can write:

1 o1V 1 o7 v2(0)
Tfo R Tfo R

Looking at Figure 9.3, we see that the triangular waveform is symmetrical. Therefore, it
is sufficient to consider the period of integration from ¢ = 0 to ¢ = T/4, giving

Vi 4 maV24e

= — dt
R T 0 T2R
2 T/4
<~ Veﬁ‘ = ‘15243 ﬁ
R RT* |3
VZ
& Vi=-2 9.12
G == 9.12)

thatis, V,;; = V,/4/3 = 0.577V,.

9.2.2 |-V Characteristics for Passive Elements

We now study the AC current-voltage (I-V) relationships for the main passive elements.
We use cosine functions to represent AC currents and voltages waveforms. However, the
same results would be obtained if sine functions were used instead.
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Figure 9.5: Voltage and current in a resistance

A

9.2.2.1 Resistance

Assuming a current, i(f) = I, cos(wf) passing through a resistance R, the voltage
developed across its terminals is, according to Ohm’s law:

ve(t) = Ri(t)

= RI, cos(wt)

=V, cos(wt) 9.13)
With,
V. =RI, (9.14)

Dividing both sides by V' 2 we obtain the RMS (or effective) value for the AC voltage as:

1
V. =R+
eff \/E
= Rlxﬁ- (9.15)

where I, is the RMS (or effective) value for the AC current. From equation 9.13 and
Figure 9.5 we observe that the voltage and the current are in phase, that is, the phase
difference between the voltage and the current is zero.
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9.2.2.2 Capacitance

If a current, i(f) = I, cos(wt) passes through a capacitance C, the voltage developed across
its terminals is:

e = = [liwd+v,, 9.16)

Note that since we are assuming steady-state conditions in the AC analysis we may set
the initial condition V., = 0, that is:

ve(t) = % [ 1, cos(wr di (9.17)

Performing the integration we obtain:

1
v (1) = —sin(wt
c(®) C (wr)

I, iy
= coS|wt — —
wC 2

=V, cos[wt —~ g] (9.18)

Where,

v =L (9.19)

wC

In terms of RMS magnitudes we have:

= X1, (9.20)

where I, . = I,/V 2. The quantity X = (wC)~is called the capacitive reactance and
is measured in ohms. It is important to note that the amplitude of v (¥) is inversely
proportional to the capacitance and the angular frequency of the AC current. From
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4i(0)

Figure 9.6: Voltage and current in a capacitor

equation 9.18 and Figure 9.6 we observe that the voltage waveform lags the current
waveform by w/2 radians or 90 degrees.

9.2.2.3 Inductance

When a current, i(f) = I, cos(wf) passes through an inductance L, the voltage developed
across its terminals is given by:
i(t)

v, (t) = L—=
(1) i

= —Lwl sin(wt) dt

= Lwl cos

iy
wt +—
2

=V, Cos[wt +g (9.21)

with V; = Lw I. In terms of RMS values we have:
V,eﬁ = ngﬁWL
=X, Ixe/f 9.22)

where Ix,f =1/ V2. The quantity X; = wL is called the inductive reactance, which is
also measured in ohms. Note that now the amplitude of the voltage v; () is proportional
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Figure 9.7: Voltage and current in an inductor
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Figure 9.8: V. /I g versus w for passive elements

to the inductance and the angular frequency of the AC current. From equation 9.21 and
Figure 9.7 we observe that the voltage waveform leads the current waveform by /2
radians or 90 degrees.

Figure 9.8 illustrates the ratio V /1,4 versus the frequency, w, for the three passive
elements discussed above. It is interesting to note that at DC (w = 0) the capacitor
behaves as an open-circuit and the inductor behaves as a short-circuit. On the other
hand, for very high frequencies (w — 0) the capacitor behaves as a short circuit and the
inductor behaves as an open circuit.

9.2.2.4 A Note About Voltage Polarity and Current Direction in AC Circuits

Although voltages and currents in AC circuits continuously change polarity and direction
it is important to set references for these two quantities. The convention we follow in
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this book is illustrated above. When the current flows from the positive to the negative
terminal of a circuit element it is implied that the current and voltage are in phase for a
resistor as in Figure 9.5; the current leads the voltage by 90 degrees for a capacitor as in
Figure 9.6 and lags by the same amount for an inductor as in Figure 9.7.

9.2.2.5 Kirchhoff’s Laws

Kirchhoft’s laws can be applied to determine the voltage across or the current through any
circuit element. However, we must bear in mind that the voltages and the currents in AC
circuits will, in general, exhibit phase differences when capacitors or inductors are present.

Example 9.2
Determine the amplitude of the current i(7) in the RL circuit of Figure 9.9. Also,
determine the phase difference between this current and the voltage source.

Solution
Since the circuit contains an inductor, we expect that the current will exhibit a phase
difference, ¢, with respect to the source voltage. The current i(f) can be expressed as
follows:

i(t) = I cos(wt + ¢) (9.23)

This current flows through the resistance inducing a voltage difference at its terminals
that is in phase with i(7):

v (1) = Ri(1)
= RI_ cos(wt + &) (9.24)

iy (100Q)
) VVW—" +
Vg(t)

<ji> (2 mH) vi(f)

vs(t) = V;cos(wt)

Ve=4V
w = 20 krad/s

Figure 9.9: RL circuit
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On the other hand, the flow of i(¢) through the inductor causes a voltage difference across
its terminals that is in quadrature with i(¢), as expressed by equation 9.21:

v, (£) = X, I, cos|wt + b+ g (9.25)
with X; = wL. According to Kirchhoff’s voltage law we can write:
V() = ve(®) + v (1)
= Rl cos(wt + o)+ X, I, cos|wt+ ¢+ g]
= RI cos(wt + &)+ X, I cos(wt + ) cos [g]
. |
— X, I, sin(wt + ¢) sin [E
= RI, cos(wt + ) — X, I, sin(wt + ) (9.26)
The last equation can be written as follows:
V. cos(wt) = \|R? + X} cos(wt + & + 1) 9.27)
where,
X
= tan”! | =E 9.28)
o= ] (

In order for equation 9.27 to be an equality, the amplitude and the phase of the cosine
functions on both sides of this equation must be equal. That is:

[VS - JR+x21,

Wt = Wt + b+ (9.29)
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Solving the last set of equations in order to obtain /; and ¢ we have:

V.
] = s

VR + 212

= 37mA (9.30)

6=

= —0.38 rad (—2.18°) 9.31)

9.2.3 Phasor Analysis

In principle any AC circuit can be analyzed by applying Kirchhoff’s laws with the
trigonometric rules, as in the Example 9.2 above. However, the application of these
trigonometric rules to analyze complex AC circuits can be a cumbersome task. Fortunately,
the use of the complex exponential (the phasor) and complex algebra, provides a
considerable simplification of AC circuit analysis.

From Euler’s formula, a cosine alternating voltage waveform can be represented using the
complex exponential function as follows:

J(Wi+¢) 4 p—j(wi+o)
V. cos(wr + 6) = V, < 2"’ (9.32)

where we can see that the voltage expressed by equation 9.32 is the addition of two
complex conjugated exponential functions (phasors). Note that either of these two
complex exponential functions carries all the phase information, wt and ¢, of the voltage
waveform. In fact, the simplicity of analysis using phasors arises from each AC voltage
and current being mathematically represented and manipulated as a single complex
exponential function. However, in order to obtain the corresponding time domain
waveform we must take the real part of the complex exponential waveform. Thus, the
voltage waveform of equation 9.32 can be expressed as:

V. cos(wt + &) = Real [V, e/(1T)] (9.33)

In order to illustrate that phasor analysis is similar to AC analysis using trigonometric
rules, we reconsider the current-voltage relationships for the passive elements using the
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o, t) R
+ V(jo, 1) -

Figure 9.10: Complex V-I relationship for a resistance

complex exponential representation. We determine the voltage developed across each
element when an AC current, i(f), flows through them, i(#) being expressed by its complex
exponential representation, /(jw,?), as follows:

i(t) = Real [I(jw,1)] (9.34)

I(jw,1) = I el (9.35)

9.2.3.1 Resistance

The complex voltage (see also Figure 9.10) across the resistance terminals is determined
by applying Ohm’s law to the phasors representing the voltage across and the current
flowing through the resistance, that is:

Ve(jw,t) = RI(jw,t)

= Rl e/ (9.36)
Taking the real part of Vi(jw,t) we obtain the corresponding voltage waveform;
vep(t) = RI, cos(wt) 9.37)
This equation is the same as equation 9.13.

9.2.3.2 Capacitance

Assuming a complex representation for the current flowing through a capacitor, I(jw,?),
the complex voltage across the capacitance is given by:

1 pt
Vel = = [y 1Gwndr (9.38)

S P (9.39)

JjwC
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I(jo, 1)
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V(jo, t)

Figure 9.11: Complex V-I relationship for a capacitance

1
= — I(jw,t
aC (Jw, 1)

(9.40)

The quantity (jwC) ™! is called the capacitive (complex) impedance. This impedance can
be seen as (—j) times the capacitive reactance X = (wC)~! discussed in section 9.2.2.
Note that (—j) accounts for the —90° phase difference between the voltage and

the current.

Taking the real part of V(jw,f) we obtain the corresponding voltage waveform at the

capacitor terminals:

v~ () = Real LI el dt
C . X
jwC

= Real

Ly it gy
wC *

where we used the following equalities:

—j = e im2

Now v (f) can be written as:

(1) Ly cos| wr — =
% =X Wt — —
¢ wC 2

(9.41)

(9.42)

Note that equation 9.42 is the same as equation 9.18.
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I(jw, t) Z = jolL
Endie's's N

+ V(jo, t) -

Figure 9.12: Complex V-I relationship for an inductance

9.2.3.3 Inductance
Assuming a complex representation for the current flowing through the inductor, I(jw,?),
the complex voltage across the inductance is given by:

. dl(jw,t)
V,(jw,t) = L ———=
L(] ) d
= ij]xejwt (943)
= jJwLI(jw,1) (9.44)

The quantity Z = jwL is called the inductive (complex) impedance. This impedance can
be seen as j times the inductive reactance X; = wL discussed in section 9.2.2. Note that
now j accounts for the 90° phase difference between the voltage and the current. Taking
the real part of V; (jw,t) we obtain

ve(t) = Real [ jwLl /%]

= Real [wL] e/(wIT™/2)]

= I, wL cos (9.45)

iy
wt + —
2

We note again that equation 9.45 is the same as equation 9.21.

9.2.4 The Generalized Impedance

The greatest advantage of using phasors in AC circuit analysis is that they allow for
an Ohm’s law type of relationship between the phasors describing the voltage and the
current for each passive element:

vGen _

1Got) (9.46)
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I(jo, 1) V4
e —

+ V(jo, )

Figure 9.13: Symbol of the general impedance

where Z is called the generalized impedance:

e 7 = R for aresistance
Z = (jwC)~! for a capacitance
e 7 = jwL for an inductance

The generalized impedance concept is of great importance since it permits an
extrapolation of the DC circuit analysis techniques discussed earlier to the analysis of
AC circuits. For example, this means that we can apply the Nodal analysis technique to
analyze AC circuits as illustrated by the next example. Figure 9.13 shows the symbol
used to represent a general impedance.

Example 9.3

Using the phasor analysis described above, determine the amplitude and phase of
the current in the circuit of Figure 9.9 and show that the results are the same as those
obtained in Example 9.2.

Solution
The phasor describing the current can be written as follows:

I(jw,1) = [,e/1T) (9.47)
Applying Kirchhoff’s voltage law, we can write:
V.elt = RI e+ + joLl e/(+o) (9.48)

or,

Vel = (R+ jwL)l e+ (9.49)



Frequency Domain Circuit Analysis 245

The impedance R + jwL can be expressed in the exponential form as follows:

(el
R+ jwL = JR? +212¢ %) (9.50)

Hence, equation 9.49 can be written as:

. J
Vel = \R> + W] e

In order for equation 9.51 to be an equality, the amplitude and the phase of the complex
voltages on both sides of this equation must be equal. That is:

V, = VR2 + W22,

wt=wr+ao+V (9.52)

wt+o+ta.n’1[£
R

(9.51)

Solving, we have:

P A
VR? + W22
= 37mA (9.53)
0=
= —0.38 rad (—21.8°) (9.54)

Note that these values are equal to those obtained in Example 9.2.

9.2.4.1 The Rotating and the Stationary Phasor

The concept of the rotating phasor arises from the time dependence of the complex
exponential which characterizes AC voltages and currents. Let us consider the phasor
representation for an AC voltage as shown below:

V(jw,1) =V, el @110 (9.55)

This rotating phasor can be represented in the Argand diagram, as illustrated in Figure
9.14(a). Note that each instantaneous value for the rotating phasor (that is its position in
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Imaginary axis

Angular velocity & Imaginary axis
ot+d
Vsin(ot + $) RN S—— Real
: t | Real Vs sin(¢) I <—¢> _ axis
< ' T Lad . Ll
Vi cos(wt +¢) XIS V, cos(d)
(@ (b)

Figure 9.14: The complex phasor represented in the Argand diagram (a) Instantaneous value

of the rotating phasor; (b) The stationary phasor

the Argand diagram) is located on a circle whose radius is given by the voltage amplitude,
V,, with an angle wt + ¢ at each instant of time. Each position in this circle is reached by
the phasor every 2m/w seconds.

The rotating phasor described by equation 9.55 can be decomposed into the product of a
stationary (or static) phasor with a rotating phasor as expressed by the equation below:

V(jw.t) = V,el® X el (9.56)

Static phasor Rotating phasor

=V, X el (9.57)

where Vg represents the static phasor. In the rest of this chapter, and unless stated
otherwise, static phasors are represented by capital letters with capital subscripts.

In AC circuits where currents and voltages feature the same single tone or angular
frequency, w, both sides of the equations describing the voltage and current relationships
contain the complex exponential describing the rotating phasor, exp(jwt), as illustrated

by equations 9.48, 9.49, and 9.51 of Example 9.3. Thus, the phasor analysis of an AC
circuit can be further simplified if we apply Ohm’s law and the concept of the generalized
impedance to only the static phasor to represent AC voltages and currents. Note that this
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mathematical manipulation is reasonable since, in AC circuits, what is important is to
determine the amplitude and the relative phase difference between the AC quantities, both
described by the static phasor. In the rest of this chapter, a phasor will mean a static phasor.

Example 9.4

Determine the amplitude and phase of the current in the circuit of Figure 9.9 using the
static phasor concept described above and show that the results are the same as those
obtained in Example 9.2.

Solution
The static phasor describing the current can be written as follows:

Iy = 1./ (9.58)
while the static phasor describing the source voltage can be written as:

Vg = Vsejo
=V, (9.59)

Applying Kirchhoff’s voltage law we can write:

Ve = (R+ juwL)lg (9.60)

0
R (9.61)

Jjtan
=R2 +W2I2%e
that is,

v e
VR? + w22

wL
—itan~!| Y=
— Vr Jtan [R]

= —e
NR? + W22

=37.0X103¢ 7938 A

Iy =

Note that this result is equivalent to those obtained in Examples 9.2 and 9.3.
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9.2.4.2 Series and parallel connection of complex impedances

As mentioned previously, the concept of the generalized impedance greatly simplifies the
analysis of AC circuits. It is also important to note that the series of various impedances
Zy, k = 1,2,... N, can be characterized by an equivalent impedance, Z,,, which is the sum
of these impedances:

N
z, = l;zk (9.62)

For example, in the circuit of Figure 9.9 we observe that the impedance of the resistance
is in a series connection with the impedance of the inductor. An equivalent impedance for
this connection can be obtained by adding them:

Z,, =R+ jul (9.63)

The real part of an impedance is called the resistance while the imaginary part of the
impedance is called the reactance.

For a parallel connection of various electrical elements it is sometimes easier to work
with the inverse of the complex impedance, the “admittance,” Y:

Y = 9.64)

1

Z

The parallel connection of admittances Y;, k = 1,2,..., N, can be characterized by an
equivalent admittance, Y,,, which is equal to their sum:

N
Y, = Sy, (9.65)
k=1
It follows that the parallel connection of two impedances Z; and Z, can be represented by

an equivalent impedance Z,, given by:

_ %%

= 9.66
‘4 Z+z, 060
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Example 9.5

Consider the AC circuit represented in Figure 9.15(a). Determine the amplitude and
the phase of the voltage across the resistance R,. Then, determine the average power
dissipated in R,.

Solution

v,1(#) and i (f) can be expressed in their phasor representations as follows:

v, (1) = Real [V e/ ]
Vg = Vslej%
i,(t) = Real [I,e/*]

Iy, = Ie

where we have used the following equality: sin(wf) = cos(w? — ©/2). The impedances
associated with the two inductances and two capacitances are calculated as follows:

ZLI = ijl |w:5><103rad/s
= j1509
ZL2 = ij2 |w=5><103rad/s
=j500Q
1
ZC‘ - jwC
JPC | =5%10% radss
=—j66.70
1
c, .
PTG | 0t rads
——j200Q

From Figure 9.15(a) we observe that the impedance associated with the capacitance
C, is in a parallel connection with the resistance R;. We can determine an equivalent
impedance for this parallel connection as follows (see equation 9.66):

Zc, Ry
Zc, + R,
32— j19.50

ZCZ Rl
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Ly
(30 mH)
R; (120 Q) G
G | | (10 uF) (3 uF) L
(10 mH)
Vs1(t) = Vg cos(wt + m/4)
iso(t) = Isp sin(wt)
Ry
w = 5 krad/s (1000)
Vgy =7V
ISZ =25mA
(@)
ZL1
——— VT —
le (j150 Q)
Ze,n, c
VS1 VX | |
=] v
I
I (120 Q) I /
(—j66.7 Q) l D
Vs1 Isp

(100 + j50 Q)

(b)

Figure 9.15: (a) AC circuit; (b) Equivalent circuit represented as complex impedances

www.newnespress.com
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Also, we can see that R, is in a series connection with the inductance L,. The equivalent
impedance for this connection can be calculated as shown below:

Zpy, =R+ 7,
= 100+ j50Q

Figure 9.15(b) shows the reduced AC circuit with the various impedances associated with
the inductances and capacitances as well as the phasor currents and phasor voltages at
each node referenced to node 0. Applying Kirchhoff’s current law, we can write:

I, +1g, =1,
Io+1,=1,

These can be rewritten after applying Ohm’s law to the various impedances as shown
below:

Vo, =V V, =V,
S1 X +1g, = X Y
ZCZR] CI
VSI_VY+VX_VY — Yy
ZLI ZC] ZRZLZ

Solving in order to obtain Vy, we have:

Va(Zy +Ze, ¥ Zeg) T Z 1o Zcop,

Vy =Zp,
2 ZR2L2(ZL1 -I-ZCl +ZC2R1)+ZLI(ZC2R1 +ch)

Substituting complex values in the last equation we obtain:
V, = 3.5¢/23V
The current that flows through R, is I, given by:

Vy

I, =
ZRZLZ

=32X1073e/180A
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and the voltage across the resistance R, is given by:
Vi, = Ryl
= 32¢/180

That is, the AC voltage across the resistance R, has a peak amplitude of 9.2 V. The phase
of this voltage is 1.80 rad (103°).

The average power dissipated by R, can be calculated:

_ L oprr o,
Py, Y ft vy (D) dt 9.67)

with 7= 27/w = 1.3 X 1073 = 1.3 ms. ¢, is chosen to be zero. Vg (f) can be obtained
from its phasor value as follows:

Vg, () = Real [Vy e/ ]
= Real [3.2 ¢/1:80¢/w]
= 3.2 cos(wt +1.80) V

The average power dissipated by R, can be calculated as shown below:

322

T
2
Ve, = mfo cos?(wt + 1.80) dt

It is left to the reader to show that the Pyy,, is equal to:

It is important to note that the average power dissipated in the resistance can also be
calculated directly from the phasor representation of the current flowing through and the
voltage across R, as follows:

Real[VRzl;z] = —Real [V;ZIRZ] (9.68)

N | —



Frequency Domain Circuit Analysis 253

- 1Vl 9.6
>k (9.69)
1

= §|IR2|2R2

= 0.05W 9.70)

where the current flowing through R; is Iz, = Ip.

9.2.4.3 Thévenin and Norton Theorems

Thévenin and Norton equivalent AC circuits can be obtained in a way similar to that
described for DC resistive circuits. The main difference is that now the Thévenin equivalent
AC circuit comprises an ideal AC voltage source in series with a complex impedance as
shown in Figure 9.16(a). The Norton equivalent AC circuit is constituted by an ideal AC
current source in parallel with a complex impedance as illustrated in Figure 9.16(b).

Example 9.6
Consider the AC circuit represented in Figure 9.17(a). Determine the Thévenin equivalent
AC circuit at the terminals X and Y.

Solution

Figure 9.17(b) shows the equivalent circuit for the calculation of the open-circuit voltage
between terminals X and Y. Firstly, the impedances for the capacitance and inductance are
calculated for w = 10* rad/s, as shown below:

Z, = ij|w:104rad/s
= /400 Q
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1
Ze = JF w=10%rad/s

= —j10009

The phasor associated with the voltage v,(f) is Vg = 3 ¢ /™ V.

Note that the impedance associated with the capacitance is in a parallel connection with
the resistance. We can replace these two impedances by an equivalent impedance given by:

_ ZCR
Z.+R
= 400 — j 8009 (9.71)

ZRC

The voltage between terminals X and Y can be obtained from the voltage impedance
divider formed by the impedances Zz and Z; as follows:

zZ C
Vin = Vs VA I:-Z
RC L

=47 /10V

Figure 9.17(c) shows the equivalent circuit for the calculation of the Thévenin impedance,
where the AC voltage source has been replaced by a short-circuit. From this figure, it

is clear that the impedance Z; is in a parallel connection with Z,.. Hence, Z;, can be
calculated as follows:

ZrcZy

Z = o—_—
" Zee 27,

=200+ 6009

Figure 9.17(d) shows the Thévenin equivalent circuit for the circuit of 9.17(a). The
Thévenin voltage vy,(f) can be determined from its phasor, V7, as follows:

v, (1) = Real [V ejwt]w=104radls
=47 COS(104t —-1.0)V
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. X
X
(0.1 wF) zZ Zpe
- 1400 Q 400 — j800 )
2 kQ) 0] ) ( J )
o R
Y
Y N
d * (0
ZTh
X
Zry
(200 + j600 ()
Zpc Vi
(400 — j800 ) _
(4.7e7710V)
Y
(b) (d)

Figure 9.17: (a) AC circuit; (b) Calculation of the Thévenin voltage; (c) Calculation of the
Thévenin Impedance; (d) Equivalent Thévenin circuit

9.2.5 Maximum Power Transfer

Whenever an AC signal is processed by an electrical network containing at least one
resistance there is loss of power in the resistances. Since it is often important to ensure
that this loss is minimal we consider the conditions which ensure maximum power
transfer from two adjacent parts of a circuit. For this purpose we consider the circuit
shown in Figure 9.18 where the section of the circuit providing the power is modeled
as an AC voltage source with an output impedance Zg and the section where the power
is transmitted is modeled as an impedance Z;. We assume that the source impedance Zg
has a resistive part given by RS and a reactive part described by j X. Similarly, the load
impedance has a resistive component, R; and a reactive component given by j X;. The
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vs(f) = Vscos(wt)

Source Load

Figure 9.18: Circuit model to derive maximum power transfer

current /g supplied by the source is given by:

V.
I =—5— (9.72)
Z, +Zg
and the average power dissipated in the load, P, is given by (see equation 9.70):
s
P, =—=—R
L 5 L
v K 9.73
2 (Ry+R )+ X, +X,)? ©.73)

From the last equation, we observe that the value of X; which maximizes the average
power in the load is such that it minimizes the denominator, that is:

X, ==X (9.74)
Under this condition the average power in the load is given by:
v: R
p =Y R 9.75)
2 (Ry+R,)?
In order to find the value of R; that maximizes the power in the load we calculate
dP;/dR; and then we determine the value of R; for which dP;/dR; is zero:

dP, V2 (Ry+R,)—2R
— L= S L L (9.76)
dR, 2 (Ry+R))
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Clearly, the value for R; which sets dP;/dR; = 0 is:

R, = Ry 9.77)
Hence, the maximum average power delivered to the load is:
V2
= 9.78
Lmax SRL ( )

It is clear that maximum power transfer occurs when Z, = Z.

9.3 Generalized Frequency Domain Analysis

The analysis presented in the previous sections can be considered as a particular case of
frequency domain analysis of single frequency signals. As discussed previously, those
single frequency signals can be expressed in terms of phasors which, in turn, give rise to
phasor analysis. It was seen that phasor analysis allows the application of Ohm’s law to
the generalized impedance associated with any passive element considerably simplifying
electrical circuit analysis.

The analysis of circuits where the signal sources can assume other time-varying (that is
non-sinusoidal) waveforms can be a cumbersome task since this gives rise to differential-
integral equations. Therefore, it would be most convenient to be able to apply phasor
analysis to such circuits. This analysis can indeed be employed using the Fourier
transform, which allows us to express almost any time varying voltage and current
waveform as a sum of phasors.

For reasons of simplicity, before we discuss the Fourier transform we present the Fourier
series, which can be seen as a special case of the Fourier transform.

The term signal will be used to express either a voltage or a current waveform and we use
the terms signal, waveform or function interchangeably to designate voltage or current
quantities, which vary with time.

9.3.1 The Fourier Series

The Fourier series is used to express periodic signals in terms of sums of sine and
cosine waveforms or in terms of sums of phasors. A periodic signal, with period 7, is by
definition a signal that repeats its shape and amplitude every T seconds, that is:

x(t = kT)=x@), k=12,.. 9.79)
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s(t), X(t)a

\iv—* '

() (b)

Figure 9.19: Periodic waveforms (a) Sine; (b) Rectangular; (c) Triangular

Examples of periodic waveforms are presented in Figure. 9.19 where we have drawn a
sine wave, a periodic rectangular waveform, and a periodic triangular waveform. From this
Figure it is clear that the waveforms repeat their shape and amplitude every T seconds.

In order to show how the Fourier series provides representations of periodic waves

as sums of sine or cosine waves we present, in Figure 9.20(a), the first two non-zero
terms (sine waves) of the Fourier series for the periodic rectangular waveform of Figure
9.19(b). Figure 9.20(b) shows that the sum of these two sine waves starts to resemble the
rectangular waveform. It will be shown that the addition of all the terms (harmonics) of a
particular series converges to the periodic rectangular waveform. In a similar way, Figure
9.20(c) represents the first two non-zero terms of the Fourier series of the triangular
waveform. Figure 9.20(d) shows that the sum of just these two sine waves produces a
good approximation to the triangular waveform.

Since sine and cosine functions can be expressed as a sum of complex exponential
functions (phasors), the Fourier series of a periodic waveform x(#) with period 7 can be
expressed as a weighted sum, as shown below:

x() =Y C, e 1! (9.80)

n=—o

where the weights or Fourier coefficients, C,, of the series can be determined as follows:

C, = % i) YT e P 9.81)
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Figure 9.20: (a) The first two non-zero terms of the Fourier series for the periodic

~o

rectangular waveform; (b) The sum of first two non-zero terms of the Fourier series as an
approximation to the periodic rectangular waveform; (c) The first two non-zero terms of the
Fourier series for the periodic triangular waveform; (d) The sum of first two non-zero terms

of the Fourier series as an approximation to the periodic triangular waveform

Here 1, is a time instant that can be chosen to facilitate the calculation of these
coefficients.

The existence of a convergent Fourier series of a periodic signal x(¢) requires only that the
area of x(¢) per period to be finite and that x(¢) has a finite number of discontinuities and

a finite number of maxima and minima per period. All periodic signals studied here and
are to be found in any electrical system satisfy these requirements and, therefore, have a
convergent Fourier series.

From equation 9.80 we observe that the phasors which compose the periodic signal x(¢) have
an angular frequency 27mn/T which, for || > 1 is a multiple, or harmonic, of the fundamental
angular frequency w = 27/T. Note that, for n = 0 the coefficient Cj is given by:

1 pe+1
C, = - ft T i (9.82)
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This equation indicates that C, represents the average value of the waveform over its
period T and represents the DC component of x(#).

As an example, we determine the Fourier series of the periodic rectangular waveform
shown in Figure 9.19(b). Using equation 9.81 with ¢, = 0 we can write:

1 T —iogn
_ J2mt
C, = —Tfo x(t)e T dt

1 pm2  _inpn T o
= Jj2nzt _ j2mlt
T ( 0 Ae 7T dt + m( A)e /7T dt) (9.83)
where A is the peak amplitude. The last equation can be written as follows:
772 T
c _ 1| AT oirmtt| L TAT jana
T|—j2mn 0 —j2Tn -
_ A (eij'n'leg _1)+ —A (eij-n%T _eij'n%%)
—j27n —j27n
— 2A (1 _ e—jﬁl’l) (984)
j2Tn
where we have used the following equality:
e 2 =1 n=0,£1,x2,+3... (9.85)
However, we note that:
i — -1 ifn==1,%x3,%5,..
I ifn=0%2%4%6,. . ©.86)
and, therefore, the coefficients given by equation 9.84 can be written as follows:
A 2 ifn==x1,%£3,%£5,...
C - _ >< 2 b b
L— {o ifn=0+2%+4%6,.. ©-87)
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Note that for n = 0 the last equation cannot be determined as the result would be a non-
defined number; 0/0. Hence, Cy must be determined from equation 9.82:

1 p12 1 p1
C0_7fo Adt—FfmAdr—o (9.88)
confirming that the average value of x(¢) is zero as is clear from Figure 9.19(b). From the
above, equation 9.87, can be written as follows:

.Z—A if |n| is odd
Co =qJmn (9.89)
0 if |n| is even

It is clear that all even harmonics of the Fourier series are zero. Also, we observe that
C, = C,, afact that applies to any real (non-complex) periodic signal. The coefficients

—n>

C, can be written, in a general form, using the complex exponential form as follows:
C, =|C,le/ < (9.90)

and equation 9.80 can be written as follows:

00 o .
x()= Y |C, |2 4G (9.91)
n=—oo
foe) Jj2nltt+j Z(C,) + —j2ntt—j Z(C,)
=G, + > 2lc, | =
n=l1 2
L n
=C,+ 212|CH|COS[2’K?t + Z(Cn)] 9.92)

Expressing the coefficients C,, of equation 9.89 in a complex exponential form (see also
equation 9.90) we have:

24 _ix
e /2 if|n|is odd
C =1{tn

0 if |n| is even (9.93)
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Hence, x(f) can be written, using equation 9.92, as shown below:

< 44
x(r) = > ——cos
n=1 TN
(n odd)

-2 9.94
T 2 (' )

Figure 9.20(a) shows the first and the third harmonics of the rectangular signal as:

4A 1 T
t)=—cos|2n—t— — 9.95
x, (1) - ”‘TT 2] (9.95)
4A 3 0y
t)=—cos|2m—t— — 9.96
% (1) RIi [ﬁT 2] ( )

from which Figure 9.20(b) was derived.

Example 9.7

Determine the Fourier series of the periodic triangular waveform, y(#), shown in Figure
9.19(c).

Solution

From Figure 9.19(b) we observe that the average value of this waveform is zero. Hence,
Cy = 0. Using equation 9.81 with 7, = 0 we can write:

1 g1 s
_ j2mlt
C, = Jo ye 2Tt ar

A

T/4 4At _ir-n
f/ 2T gy

o T
Ty [2A - ﬂ] eI gy
T/4 T

T 4 At _ 71'2“%[
+f3T/4[T 4A]e dt] (9.97)
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with A representing the peak amplitude of the triangular waveform. Solving the integrals
the coefficients can be written as follows:

A

C =
w2n?

n

(26_/'“% —1- ze—jﬂ% + g2 (9.98)

Using the result of equation 9.85 we express the coefficients C, as follows:

c =24

n
m2n?

e I (1— emi™) (9.99)

and using the result of equation 9.86 we can write these coefficients as:

wn? (9.100)

A4 o™ if |n is odd
C =
0 if |n| is even

From equation 9.92 the Fourier series for the triangular periodic waveform can be written as:

x©  8A n vz}
1) = cos|2m—t— — 9.101
=3 = [“T 2} (9.101)
(n 0dd)

Figure 9.20(c) shows the first and the third harmonics given by:

8A 1 T
t) = —cos|2n—t — — 9.102
3 == [“T 2] (9.102)
8A 3 3w
t)= ——cos|2mt—t— — 9.103
B0 =35 [“T 2] (9.103)

Figure 9.20(d) clearly shows that the sum of these two harmonics, y(¢) + y5(?),
approximates the triangular periodic signal.

9.3.1.1 Normalized Power

The instantaneous power dissipated in a resistance R with a voltage v(¢) applied to its
terminals is v?(¢)/R, while the instantaneous power dissipated caused by a current i(?) is
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i2(H)R. Since signals can be voltages or currents it is appropriate to define a normalized
power by setting R = 1(). Then, the instantaneous power associated with a signal x(¢) is
equal to:

p(t) = x2(1) (9.104)

Thus, if x(¢) represents a voltage, the instantaneous power dissipated in a resistance R is
obtained by dividing p(7) by R while if x(¢) represents a current, the instantaneous power
dissipated in that resistance R is obtained by multiplying p(¢) by R. It is also relevant to
define a normalized average power (once again, R = 1)) by integrating equation 9.104
as follows:

P, = % I} "2t dr (9.105)

Example 9.8
Determine an expression for the average power associated with the periodic rectangular
waveform shown in Figure 9.19(c).

Solution
The average power associated with the periodic rectangular waveform is the normalized
average power (R = 12), which can be determined according to equation 9.105, that is:

T/2 ) T . )
fo A dt+fT/2( A) dt)

1
Py = ?(
= AZ(Watts) (9.106)

where A is the amplitude of the waveform.

9.3.1.2 Parseval’s Power Theorem

Parseval’s theorem relates the average power associated with a periodic signal, x(¢), with
its Fourier coefficients, C,:

1 pt+7 5 P 0 5
?fto xX2(t)ydr = C? + 5 2/C,| (9.107)

n=1
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The proof of this theorem can be obtained as follows: The Fourier series indicates that
x(t) can be seen as a sum of a DC component with sinusoidal components as indicated by
equation 9.92. The average power associated with x(#) can be seen as the addition of the
average power associated with the DC component with the average power associated with
each of these components. It is known that the average power associated with a DC signal
is the square of the amplitude of that DC signal. Also, it is known that the average power
associated with a sinusoidal component is equal to half the square of its peak amplitude.
Since the amplitude of each Fourier component of x(7) is equal to 2|C,| then the average
power associated with each of these AC components is equal to:

2
P, :@Wm’ =
n 2
=@2lc,D)?:, n=1 (9.108)

and the total average power of x(¢) is:

Py =C}+>2|C,P (9.109)

n=l1

Example 9.9

Show that the fundamental and the third harmonic of the Fourier series of the periodic
rectangular waveform, shown in Figure 9.19(c), contain approximately 90% of the power
associated with this waveform.

Solution

According to equation 9.106 the power associated with the rectangular periodic
waveform with amplitude +A is A”W. From equation 9.108 the power associated with
the fundamental component and the third harmonic of the Fourier series of the periodic
rectangular waveform can be calculated as follows (see also equation 9.89):

2 2
p:z[ﬁ] +z[%]
T 31

= 0.942(W)



266 Chapter 9

9.3.1.3 Time Delay

If a periodic signal x(#) has a Fourier series with coefficients C,, we can obtain the Fourier
series coefficients, C ,’l, of a replica of x(¢) delayed by T seconds,

i.e., x(t — 1) with |t| < T7/2, as follows:

C, =[x —me P (9.110)

o

using the change of variable t' = ¢t — T, we can write:

dt = dt’
t=t,;t'=¢ —7T
t=t,+T;t' =1t —7+T

and equation 9.110 can be written as:

’ t,+T —idmny —iomn
Cn — j;yo x(t’)e ]Z'NTtdtre j2ngT
o

=C, e Pt ©.111)
where 7, = 1, — 7. Note that the delay T adds an extra linear phase to the Fourier series
coefficients C,,.

9.3.2 Fourier Coefficients, Phasors, and Line Spectra

Each phasor that composes the Fourier series of a periodic signal can be seen as the
product of a static phasor with a rotating phasor as indicated below:

IC.| pI2TFITIZC,) — C, ei4(C) /2Tt (9.112)
Hﬁ_J

| — -
Static phasor Rotating phasor

Comparing this equation with equation 9.56 we can identify each complex coefficient,
C,, as the static phasor corresponding to a rotating phasor with angular frequency

w = 27n/T. The phasor (static and rotating components), which is shown in Figure
9.21(a) can be represented in the frequency domain by associating its amplitude, |C,|,
and its phase, £ (C,), with its angular frequency w = 2wn/T (or with its linear frequency
f = n/T). This gives rise to the so called line-spectrum, as illustrated in Figure 9.21(b).
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Figure 9.21: (a) Phasor; (b) Line spectrum of a phasor

This frequency representation consists of two plots; amplitude versus frequency and
phase versus frequency.

Since the Fourier series expresses periodic signals as a sum of phasors we are now

in a position to represent the line spectrum of any periodic signal. As an example, the
line spectrum of the periodic square wave with period T can be represented with C,
given by equation 9.89. Figure 9.22 shows the line spectrum representing the
fundamental component, the third and the fifth harmonics for this waveform. As
mentioned previously, all the frequencies represented are integer multiples of the
fundamental frequency w = 27n/T. The spectral lines have a uniform spacing of 27/T.

It is also important to note that the line spectrum of Figure 9.22 has positive and negative
frequencies. Negative frequencies have no physical meaning and their appearance is

a consequence of the mathematical representation of sine and of cosine functions by
complex exponentials because these trigonometric functions (sine and cosine) are
represented by the sum of a pair of complex conjugated phasors (see equation 9.92). We
also note that the line spectrum has been plotted as a function of the angular frequency

w = 27f. However, we frequently plot line spectra versus the linear frequency f = w/(27).

9.3.3 Electrical Signal and Circuit Bandwidths

We discuss now the concepts of signal and electrical system bandwidths. In order
to do so we consider the RC circuit of Figure 9.23 which is driven by a
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Figure 9.22: Line spectrum of the rectangular waveform

R
MW= -
"
v(t)
v,
2 T(_C) _ mvﬁ,”
(T=1s) (V,=1V) —I , |_| ,Et;
(z=9 2T -T < T 2T

Figure 9.23: (a) Periodic voltage applied to an RC circuit; (b) The periodic voltage v(t)

square-wave voltage v(¢) as shown in Figure 9.23(b). This voltage waveform can be
expressed as:

= 3V, rect[t_kT] 9.113)
T

k=—00
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where V, (V) is the amplitude and T is the period. 7/T is called the duty-cycle of the
waveform and is equal to 1/2 in this case. The function rect (#/7) is defined as follows:

rect oL _%<%<%
T 0, elsewhere (9.114)

The Fourier coefficients for v(7), V, , can be obtained from equation 9.81 where 7, is
chosen to be —77/2, that is: ’

1 T/2 4 —j2nlt
Vo = — % t|— e’ dt
s, T ffT/2 o Tec [T]e T

— 1 T/2 —j2nlt
= ?f_mvae T dr

__1v, [ej2ﬁ;'_t}’r/2
—jT21U’l -1/2

TN 2j
_ ﬁsm[ﬁﬁT] (9.115)
TN T

Vi = — (9.116)
n T T
= YaT ine [ﬂ] (9.117)
T T
where the function sinc(x) is defined as follows:
) A sSin(mx)
sinc (x) = (9118)

TX
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Since 7/T = 1/2, equation 9.117 can be further simplified to:

\% n
V. = —%sinc | — 9.119
Sn 2 2] ( )

It is left to the reader to show that the DC component of v (?), V , is equal to
V.TIT =V,2.

The voltage signal vy(¢) can be written as follows:

v () =3 %sine [g]eﬂ“;’ (9.120)

n=—oo

Once again, it is left to the reader to show that the periodic square waveform of Figure
9.19(b) can be seen as a particular case of the rectangular waveform of Figure 9.23(b)
when 1/T = 1/2. Hint, assume that the average (or DC) component is zero and use a delay
of 7/4.

The signal bandwidth is a very important characteristic of any time-varying waveform
since it indicates the spectral content and, of course, its minimum and maximum
frequency components. From equation 9.120 we observe that the spectrum and therefore
the bandwidth of the periodic square wave is infinite. However, it is clear that very high
order harmonics have very small amplitudes and its impact on the series can be neglected.
So a question arises; where do we truncate the Fourier series in order to determine the
significant bandwidth of the signal? The criteria to perform such a truncation can vary
depending on the application. One of these can be stated as the range of frequencies
which contain a large percentage of the average power associated with this signal. For
example, if this criterion defines this percentage as 95% of the total, then the bandwidth
for the signal of Figure 9.23(b) is 3/T. In fact |V > + 2|V >+ 2V P = 095X V2
where V2/2 is the total average power associated with this signal. It is also important to
realize that the signal bandwidth is a measure of how fast a signal varies in time. In order
to illustrate this idea we consider Figure 9.24(a) where we see that the addition of higher
order harmonics increases the “slope” of the reconstructed signal and that it varies more
rapidly with time.

Now that we have determined the Fourier components of the input voltage signal, v(?),
of the circuit of Figure 9.23(a) we are in a position to determine the output voltage v.().
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Figure 9.24: Rectangular periodic waveform (a) Approximation by the various components;

(b) Line spectrum of the approximation

This voltage can be determined using the AC phasor analysis, discussed in section 9.2.3,
and then applying the superposition theorem to all the voltage components (phasors) of
the input signal v(?).

The voltage phasor at the terminals of the capacitor, Vi, is determined using phasor
analysis. This voltage can be obtained noting that the impedance associated with the
capacitor and the resistor form an impedance voltage divider. Thus V- can be expressed

as follows:
Z
= <y (9.121)
¢ 7z +R S

where Z, = (jwC) ™! is the impedance associated with the capacitor. We can write:

N (9.122)
1+ jwRC

VC N
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If we divide the phasor which represents the circuit output quantity, V, by the phasor
which represents the circuit input quantity, Vs, we obtain the circuit transfer function
which, for the circuit of Figure 9.23(a), can be written as follows:

1
Hwy=—" 12
) 1+ jwRC ©.123)
or
1
Hf)y= —— 124
) 1+ j2« fRC © )

The transfer function of a circuit is of particular relevance to electrical and electronic
circuit analysis since it relates the output with the input by indicating how the amplitude
and phase of the input phasors are modified. Figure 9.25 shows the magnitude (on a
logarithmic scale) and phase of H(f), given by equation 9.124, versus the frequency f,

I
—~
~
-
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Loy »

I
I
-1 ! / N
10772 22w RC=10s |
] | : f(Hz)
] ! ! N
T ||||||||I T ||||||Ii T ill_lllll T T TTTTTr T T TTTTTr >
1072 1071 100 : o 107 102 108
fs S A A
ZH(f
(rad()) p0°2 101 () (3)(3) 10! 102 10°
Ll L LI L L1 L1111l 1 III:IIIII L1 L1 =
' : f(Hz)
~0.5
710_
715_

Figure 9.25: Magnitude and phase of the transfer function of the RC circuit of Figure 9.23
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also on a logarithmic scale, for various values of the product RC. RC is called the time
constant of the circuit. Close inspection of the transfer function H(f) allows us to identify
two distinct frequency ranges. The first is for 2nfRC << 1, that is for f << (2rRC)" .
Over this frequency range we can write:

H(f)=1 forf << (2wRC)™! (9.125)

indicating that the circuit does not significantly change the amplitudes or phases of those
components of the input signal with frequencies smaller than (2wRC) ™.

The second frequency range is identified as 2wfRC >>1. Now we can write:

H(f) = ; for f >> (2nRC)™! (9.126)
j2 C

7f R

indicating that the circuit significantly attenuates the amplitudes of those components

of the input signal with frequencies larger than (2tRC)~!. The attenuation of these high
frequency components means that the circuit preferentially allows the passage of low-
frequency components. Hence, this circuit is also called a low-pass filter. The frequency
f. = (2=RC) ! is called the cut-off frequency of the filter and it establishes its bandwidth.
A more detailed discussion of the definition of circuit bandwidth is presented in section
9.3.5. Note that for frequencies f >> f,. this circuit introduces a phase shift of —m/2.

We are now in a position to apply the superposition theorem in order to obtain the output
voltage. This can be effected by substituting the phasor Vg in equation 9.124 by the sum
of phasors (Fourier series) which represents the square wave and by evaluating the circuit
transfer function at each frequency f = n/T. That is:

Vcn = [H(f)]f::?z X VSn
b
1+ j2nfRC

1
P——
1+ 2% RC ™

i=

(9.127)
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where the phasors Ve are the coefficients of the Fourier series representing the voltage
v.(t) and the phasors VS are the coefficients representing the periodic square voltage
vy(t). The phasors V¢ can be written as:

1 \% n
V., = —————4ginc|— Vv 9.128
“ 1+ j2r2RC 2 [2] V) ©.128)

which can also be written in the complex exponential form as:

( j(%—%)—] tan~ (27r 1 RC)
Yo for |n| odd
_| \/ 1+(Zm RC)
Ve, = T (9.129)
% forn=20
0 for |n| even and |n| > 1

Figure 9.25 shows that if the low-pass filter features a time constant such that

2wRC = 10s, corresponding to f, = 0.1 Hz, all frequency components of the input
signal, with the exception of the DC component, are severely attenuated. Although for
27RC = 1s (f. = 1Hz) the fundamental frequency component is slightly attenuated, all
higher order harmonics are considerably attenuated. This implies that for both situations
described above the output voltage will be significantly different from the input voltage.
On the other hand, for 2rRC = 0.1s (f. = 10Hz) the fundamental, the third and the fifth
order frequency components are hardly attenuated although higher-order harmonics suffer
great attenuation. Note that, for this last situation ( f, = 10Hz), the significant bandwidth
of the input voltage signal does not suffer significant attenuation. This means that the
output voltage is very similar to the input voltage.

Since the Fourier coefficients of v.(f) are known, this voltage can be written using
equation 9.92, that is:

& 2
Z Yo cos[ZW;ter)n

o m\/ 1+ (% RC)

V(1) =

V— 9.130)
2 ©.
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ﬂ_ﬂ_tan—1(2wﬂRC) for n odd
=17 772 T
@ {0 for n even ©.131)

Figure 9.26 illustrates the output voltage v.(¢) for the three time constants discussed
above. As expected, for the two situations where 2tRC = 10s and 2wRC = 1s the output
voltage v.(¢) is very different from the input voltage due to the filtering effect of the input
signal frequency components. However, for 27RC = 0.1 s the output voltage is very
similar to the input signal since the main frequency components are not significantly
attenuated.

It is also interesting to note that the effect of filtering all frequency components

(2wRC = 10s) of the square voltage waveform results in a near-triangular periodic
waveform, such as that of Figure 9.19(c), with an average value (DC component) equal to
the DC value of the input square wave input voltage (see next example).

The waveforms of v.(¢) illustrated in Figure 9.26 can be interpreted as the repetitive
charging (towards V) and discharging (towards 0) of the capacitor. At the higher cut-
off frequency (2mRC = 0.1s) the capacitor can charge and discharge in a rapid manner
almost following the input signal. However, as the cut-off frequency (or bandwidth) of
the filter is decreased the charging and discharging of the capacitor takes more time. It is
as if the output voltage is suffering from an “electrical inertia” which opposes to the
time-variations of that signal. In fact, the bandwidth of a circuit can actually be viewed
as a qualitative measure of this “electrical inertia.”

Vol(t) (V)

A

t(s)

(©)
Figure 9.26: Waveforms for v(t) (a) 2nRC = 0.1s; (b) 2wRC = 1s; (c) 2wRC = 10s
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Example 9.10

Consider the circuit of Figure 9.23(a). Show that if the cut-off frequency is such that
f. << T~ ! then the resulting output voltage is a near-triangular waveform as shown in
Figure 9.26(a).

Solution
If 27RC)~' << T~! this means that:

27wnRC

>1 n=l (9.132)

and we can write the Fourier coefficients of the output voltage, expressed by equation
9.128, as follows:

v
.—“sinc(%) ifn#0
Ve = ]ZZ%RC (9.133)
n Va . B
> ifn=20
This equation can be written in exponential form as follows:
Jar =L if || is odd
Ve, = % ifn=0 (9.134)
2
0 if || is even and |n| > 0

Comparing the last equation for |n| odd with equation 9.100 for || odd, we observe that

they are similar in the sense that they exhibit the same behavior as |n| increases (note the
existence of the term 1/ in both equations). The difference lies in the amplitude and in
the average value for the output triangular waveform which now is V, = 2.

9.3.4 Linear Distortion

Linear distortion is usually associated with the unwanted filtering of a signal while
non-linear distortion is associated with nonlinear effects in circuits. To illustrate linear
distortion let us consider the transmission of a periodic signal y() through an electrical
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channel with a transfer function H(f). The output signal, z(?), is said undistorted if it is

a replica of y(¢), that is if z(¢) differs from y(#) by a multiplying constant A, representing
an amplification (A > 1) or attenuation (A < 1), and a time delay, t,. Hence, z(f) can be
written as:

(1) = Ay(t —t,) (9.135)

The relevant question is: What must H(f) be in order to have such a distortionless
transmission? To answer this we assume that y(f) has a Fourier series given by:

Y=Y Cy e idr (9.136)

n=—oo

From equation 9.135 and from the time delay property of Fourier series (see equation
9.111) we can write the Fourier coefficients of z(¢) as follows:

C, = AC, /*™r (9.137)

7

From equation 9.127 we can determine H(f) as follows:

[H()],_, = “,
Dl =
_ 2L
= Ae/"Trl (9.138)
that is,
H(f) = Ael> (9.139)

Figure 9.27 shows the magnitude and the phase of this transfer function. From this
Figure we conclude that a distortionless system must provide the same amplification (or
attenuation) to all frequency components of the input signal and must provide a linear
phase shift to all these components.

The application of a sequence of rectangular pulses to an RC circuit illustrates what
can be considered as linear distortion. Now, let us consider the transmission of those
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Figure 9.27: Magnitude and phase of a transfer function of a distortionless system

same pulses through an electrical channel that is modeled as the RC circuit of Figure
9.23(a). From the discussion above we saw that if the cut-off frequency of the RC circuit
is smaller than the third harmonic frequency of the input signal, then the output signal

is significantly different from the input signal. Severe linear distortion occurs since the
various frequency components of the input signal are attenuated by different amounts
and suffer different phase shifts. However, if the cut-off frequency of the RC circuit is
larger than the third harmonic frequency then the output signal is approximately equal

to the input signal, as illustrated by Figure 9.26(c). This is because the most significant
frequency components of the input signal are affected by the same (unity) gain. Note that,
in this situation, the phase shift is zero indicating that there is no delay between the input
and output signals.

9.3.5 Bode Plots

In the previous section we saw that the complex nature of a transfer function, H(f)

(or H(w)), implies that the graphical representation of H(f) requires two plots; the
magnitude of H(f), |H(f)|, and the phase of H(f), £ H(f), versus frequency, as illustrated
in Figure 9.25.

Often, it is advantageous to represent the transfer function, |[H(f)|, on a logarithmic scale,
given by:

|Hyg (f)| = 20 log,, [H(f)| (dB) (9.140)
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Here, |Hgg(f)| and frequency are represented on logarithmic scales. The unit of the
transfer function expressed in such a logarithmic scale is the decibel (dB).

The main advantage of this representation is that we can determine the asymptotes of
the transfer function which, in turn facilitate its graphical representation. Note that the
logarithmic operation also emphasises small differences in the transfer function which,
if plotted in the linear scale, would not be so clearly visible. In order to illustrate this we
again consider the transfer function of the RC circuit of Figure 9.23, given by:

1
Hf)= ——— 141
f) 1+ j27fRC © )

We can express this as:

1

1+ janfRC
1

J1+@wrrOy

= 20 log,, (1) — 20 log, (1 + (27fRC)?):

= —10 log,, (1 + (2nfRC)?) (9.142)

|HdB(f)| = 20 log),

= 20 log,

We can now identify the two asymptotes of | Hyg(f)|, noting that:

1+ @2nfRC? =1 if 2nfRC << 1 (9.143)
1+ @27fRC)? = (2nfRC)?  if 2wfRC >> 1 (9.144)
Hence, we can write:

|HdB(f)| = —10 log,, ()

~— 3 1
~0dB if f << 5 lo (9.145)

|H 5 (/)] = —10 log,,(27fRC)?

= —20 log,,(21fRC)  if f > 5L

(9.146)
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The phase of H(f) is given by:
ZH(f) = e/ tan”'2n/RO) (9.147)

and it can also be approximated by asymptotes:

. | 1
0 lff<ﬁ><2w1ec

ZH(f) = =7 log,,2nfRC) — ?f 10><21ﬂRc <f< 271126‘ (9.148)
2

Figure 9.28(a) shows | H s (f)| versus the frequency. In this figure we also show the
corresponding values of | H(f)|. A gain of —20dB (corresponding to an attenuation of
20dB) is equivalent to a linear gain of 0.1 (or an attenuation of 10 times).

The two asymptotes given by equations 9.145 and 9.146 are represented in Figure
9.28(a), by dashed lines. Since the X-axis is also logarithmic the asymptote given by
equation 9.146 is represented as a line whose slope is —20 dB/decade. A decade is a
frequency range over which the ratio between the maximum and minimum frequency

is 10. Note that this slope can be inferred by inspection of Figure 9.28(a) where we
observe that for f = (2mRC) ! the asymptote given by equation 9.146 indicates 0dB.
From this figure we observe that these two asymptotes approximately describe the entire
transfer function. The maximum error, A, between H( f)and the asymptotes occurs at the
frequency f = (2rRC)~!. It is given by:

A = _20 loglo (ZﬂfRC)f:(zﬂRc)—l - |HdB (f)lf:(27rRC)‘1
= 0+10 log,;,(2)
= 3dB

The circuit or system bandwidth is very often defined as the range of positive frequencies
for which the magnitude of its transfer function is above the 3 dB attenuation value.

This 3dB value is equivalent to voltage or current output to input ratio of 1/ 2 = 71%
(see Figure 9.28(a)) or, alternatively, output to input power ratio of 50%. Hence, the
bandwidth for the RC circuit is from DC to f = (2rRC) !, the cut-off frequency.
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Figure 9.28: Magnitude and phase of the transfer function of the RC circuit of Figure 9.23

(solid lines) and asymptotes (dashed lines)

Figure 9.28(b) shows the angle of the transfer function, Z H(f), and also its asymptotes

given by equation 9.

148. From this figure we observe that for frequencies smaller than

one tenth of the cut-off frequency the phase of the transfer function is close to zero.
At the cut-off frequency f = (2wRC) ! the phase of the transfer function is —x/4 and for
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frequencies significantly greater than this, the phase of the transfer function tends
to —7/2.

9.3.5.1 Poles and Zeros of a Transfer Function

In general, a circuit transfer function can be written as follows:

(1 + j2mfiz )1+ j2rfizy)...(1+ j2rfiz,)
I+ j2xflp )1 + j27flp,)... (A + j27flp,,)

H(f)=A (9.149)

Each z;, I = 1, ..., n, is called a zero of the transfer function, and, for j2nf = —z, the
transfer function is zero. Each p;, i = 1, ...,m, is called a pole of the transfer function. At
Jj27f = —p; the transfer function is not defined since H( jp,/(27)) — = oo depending on the
sign of the DC gain, A. For a practical circuit m = n and m, the number of poles, is called
the order of the transfer function.

This representation of a transfer function is quite advantageous when all the poles and
zeros are real numbers since, in this situation, it greatly simplifies the calculation of
|Hgg(f)]. In fact, if all the poles and zeros of H( f) are real numbers we can write:

2
|Hyg (f)| = >_10log,, 1+ ﬂ] (9.150)

i=1

= > 10log,, |1+

i k=1 P

2

Let us consider the CR circuit of Figure 9.29. Note the new positions of the resistor and
capacitor. It can be shown that the transfer function of this circuit, Hp(f) = Vg/Vs, can
be written as:

__j2nfRC
Hep(f) T+ j2nfRC (9.151)

Relating this transfer function with equation 9.149 we observe that Hcz( f) has one pole,
equal to (RC)™!, and a zero located at the origin. Since the pole and the zero are real
numbers, we can use equation 9.150 to determine |HCRdB (f)| as follows:

|HCRdB(f)| = 20 log,,(27fRC) — 10 log,,(1 + (2mfRC)?) (9.152)
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+

Figure 9.29: CR circuit

We can identify the two asymptotes of | HCRdB( )| (see also equations 9.143 and 9.144)

which are given by:

|Hep, ()] =20 log,,2nfRC) dB  if f << 5L

|HCRdB(f)| = O dB’ lf f = zﬂlRC

The phase of Hcg(f) is given by:

s

LHp(f) = ol 5= tan™! 2fRC)
and it can also be approximated by asymptotes:

: A s 1
if f < 15X 5ke

1 10
10X27RC f < 2nRC

10
f = 2wRC

ZHg(f) =

— 5 10g,,27fRC)

S KA vA

(9.153)

(9.154)

(9.155)

(9.156)

Figure 9.30(a) shows the magnitude, in dB, of this transfer function given by equation
9.152 and the asymptotes given by equations 9.153 and 9.154. We observe that this

circuit attenuates frequencies smaller than the cut-off frequency, f. = (2®RC) ™!,

while it passes the frequency components higher than f,. Hence, this circuit is called a
high-pass filter. Note that, in theory, the bandwidth of this filter is infinity, although

in practice unwanted circuit elements set a maximum operating frequency to this

circuit.
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Figure 9.30: Magnitude and phase of the transfer function of the CR circuit of
Figure 9.29 (solid lines) and asymptotes (dashed lines)

Figure 9.30(b) shows the phase of the transfer function. The three asymptotes for
this phase given by equation 9.156 are also shown. At frequencies smaller than

f= (2rRC10)~! the circuit imposes a phase of 7/2 while at frequencies higher than
f=10(2wRC) ! the circuit does not change the phase.
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Figure 9.31: (a) RLC circuit; (b) AC equivalent circuit

9.3.5.2 Signal Filtering as Signal Shaping

Signal filtering can act as signal shaping as illustrated in Example 9.10 where a triangular
waveform was obtained from the low-pass filtering of a square wave. This shaping is
accomplished using at least one energy storage element in an electronic network, that is by
using capacitors or inductors. Capacitive and inductive impedances are frequency dependent
and different frequency components of a periodic signal suffer different amounts of attenuation
(or amplification) and different amounts of phase shift giving rise to modified signals.

To further illustrate this idea, let us consider the circuit of Figure 9.31 where a square-
wave voltage is applied (see Figure 9.19(b)). The purpose of this circuit is to reshape the
input signal in order to obtain a sine wave voltage.

The output voltage, v.(7), is the voltage across the capacitor and inductor. Since the input
voltage v,(f) can be decomposed as a sum of phasors the voltage v (f) can be determined
using AC phasor analysis together with the superposition theorem. We start by calculating
the voltage at the output, V,, using phasor analysis. Since the capacitor is in a parallel
connection with the inductor we can determine an equivalent impedance,

Z,7
L= Lrtc (9.157)
Z, + 7,
with,
Zo = (9.158)
jwC

Z, = jul (9.159)
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that is:
JwL

7 = J
e 1 —wLe

(9.160)

From Figure. 9.31(b) we observe that Z; - and the resistor form an impedance voltage
divider. Thus the voltage V) can be expressed as follows:

VvV, = ZLC
o S
Z;c TR
jwL
1-w?LC
JjwlL
1-wLC TR

_ JwL
R(— w?LC) + jwL ° (9.161)

The transfer function is, therefore,

JwL

Hp (W) = 9.162
e () R(1— W2LC) + jwL 0162
Clearly, this can also be written as:
j2Tf L
Hpge (f) = L - (9.163)
R+ (j2rf)*LC) + j2rfL

The two poles of Hg; (f) can be determined by setting the denominator of equation 9.163
to zero and solving this equation in order to obtain j2f, that is:

R(1+ (j2nf)*LC) + j2nfL = 0 (9.164)
and since L2 — 4LCR? < 0 we obtain:

—L = jJJALCR? — I?

2RLC

Jj2rf, = i=12 (9.165)
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The two poles of the transfer function are obtained from the last equation (see also
equation 9.149) as:

p; = —Jj27f;
p— . 2_ 2
:+L+]\[4LCR L =12 (9.166)
2RLC

The two poles given by the last equation are complex conjugated. This means that we
cannot apply equation 9.150 and we must determine | H RLC,, (/)| using the standard
procedure, that is:

j2wf L
H =201
Hruc,, (PI1= 20 1ogig RA—Q2nf)?LC)+ j2xf L
= 20 log,,(2nf L) — 10 log,, [R2(1 — (21f)2L C)? + (2nf L)?] (9.167)

Figure 9.32 shows a plot of |H RLCy, (/)| This figure indicates that the RLC

circuit does not attenuate the component f= (27r\/_ C) ! = 1kHz since

|H RLC,, (2mJLC)™ )| = 0 dB. However, it attenuates all frequency components around
this frequency. Thus, this circuit is called a band-pass filter. The (3 dB) bandwidth of this
circuit is 22 Hz centered in 1 kHz. For band-pass filters the Quality Factor, Q, is defined as
the ratio of the central frequency, f,, to its bandwidth, BW, that is

o

C= Bw

(9.168)

The quality factor is a measure of the sharpness of the response of the circuit. A high
quality factor indicates a high frequency selectivity of the band-pass filter. For this
circuit the quality factor is Q = 45. Note that the third and the fifth harmonics suffer an
attenuation greater than 40dB resulting from the frequency selectivity of the circuit. This
means that these frequency components have an amplitude (at least) 100 times smaller at
the output of the circuit compared to its original amplitude at the input of the circuit.

We are now in a position to apply the superposition theorem to obtain v,(#). This can
be effected by substituting the phasor Vg in equation 9.163 by the Fourier series which
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Figure 9.32: Magnitude of the transfer function of the RLC circuit of Figure 9.31

represents the periodic square wave and by evaluating the transfer function of the circuit,
Hyo(f), at each frequency of these phasors, that is:

Vo, = [HRLC(f)]f:¥ X Vs

j2maL
= 2 . VS
R(1—4m22 LC) + j2m &L

(9.169)

where the phasors V,, are the coefficients of the Fourier series representing v,(7) and
the phasors Vg are the coefficients of the Fourier series representing v(7). Clearly, Vg
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Figure 9.33: Spectral representations of: (a) magnitude of v (t); (b) phase of v,(t);
(c) magnitude of v,(t); (d) phase of v,(t)

coincide with C, given by equation 9.87. However, the units for these coefficients are
volts. The phasors V; can be written as:

n
j2n—L
r 24 (V) for |n| odd
T (9.170)

Vo n? n. i
| RA—4r2 Loy + jonliL !
( p )t T

0 for |n| even

Figures 9.33(a) and 9.33(b) show the magnitude and the phase of the spectral components
of v(#), respectively, while Figures 9.33(c) and 9.33(d) show the magnitude and the phase
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Voltage (V)

Figure 9.34: v((t) and v,(t)

of the components of v,(t), respectively. It is clear that the fundamental component

(at f = 1/T) is present in the output voltage but that higher order harmonics are severely
attenuated. Comparing Figures 9.33(b) and 9.33(d) it is also clear that the circuit changes
the phase of the higher order harmonics of the input signal.

The voltage v,(f) can now be written using equation 9.92 as:
vt =3 2V, |COS[2’TY¥Z +angle (V,, )] (9.171)

n=1

(n odd)

Since the harmonics, at frequencies higher than the fundamental, are strongly attenuated,
we can write v,(f) as:

1
v, (1) = 2|V0]|cos [2’TY ?t + angle (Vol)]

~Aeoslan LT (9.172)
By T 2

Finally Figure 9.34 shows v(¢) and v,(¢) given by equation 9.171. From this figure it is
clear that the output voltage is a sine wave corresponding to the fundamental component
of the input periodic voltage signal v(t).

9.3.6 The Fourier Transform

In the previous section we have seen that the Fourier series is a very powerful signal
analysis tool since it allows us to decompose periodic signals into a sum of phasors.
Such a decomposition, in turn, allows the analysis of electrical circuits using the AC
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Figure 9.35: Periodic voltage rectangular waveform
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Figure 9.36: The Fourier transform of a rectangular pulse

phasor technique with the superposition theorem. While the Fourier series applies only to
periodic waveforms, the Fourier transform is a far more powerful tool since, in addition
to periodic signals, it can represent non-periodic signals as a “sum” of phasors. In order
to illustrate the difference between the Fourier series and the Fourier transform we

recall the Fourier series of a rectangular waveform like that depicted in Figure 9.35 with
amplitude V, and duty-cycle 7/T . Figure 9.36(a) shows the waveform and its correspond
dent line spectrum (magnitude). If we now increase the period 7" (maintaining T and the
amplitude constant) we observe that the density of phasors increases (Figure 9.36(b) and
9.36(c)). Note that the amplitude of these phasors decreases since the power of the signal
decreases. If we let the period tend to infinity this is equivalent to having a non-periodic
signal, that is, we have a situation where the signal v(¢) is just a single rectangular pulse.
In this situation, the signal spectrum is no longer discrete and no longer constituted

by equally spaced discrete phasors. Instead the spectrum becomes continuous. In this
situation, the spectrum is often referred to as having a continuous spectral density.
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The procedure described above, where the period 7T is increased, can be written, in
mathematical terms, as follows:

V@)= Jim 37, el?mr! (9.173)

n=—oo

n
T
where we indicate the explicit dependency of the Fourier coefficients V, on the discrete
frequency n/T. The last equation can be written as shown below:

v(n) = lim > TV, [%J eSS 9.174)

n=—oo

where Af = 1/T . Equation 9.174 can be written as follows:

vty = [T V(f) e df (9.175)

The discrete frequencies are described by the discrete variable, n/T. This variable tends
to a continuous variable, f, describing a continuous frequency when 7' — . V(f), the
(continuous) spectrum or the spectral density of v(#), can be calculated as follows:

V(f)= lim TV, [ﬁ] (9.176)
T—oo T
_ 772 Ciomn
= lim fmz v(t) e I3 dr (9.177)
Where we chose ¢, = —T/2. Finally, the last equation can be written as:
V() = [~ vy e 2 dr 9.178)

A sufficient condition (but not strictly necessary) for the existence of the Fourier
transform of a signal x(¢) is that the integral expressed by equation 9.178 has a finite value
for every value of f.

Example 9.11

Consider the single square voltage pulse shown in Figure 9.36. Show that the Fourier
transform of this pulse is the same as that obtained from equation 9.176, which is derived
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from the Fourier series of a periodic sequence of rectangular pulses (see equation 9.117),
when T — 0.

Solution
Using equation 9.178 we can write:

e t N
V(f) = fioc v, rect[:] e 2t
= [Ty e g
—7/2 4
Va ej'“fT — efjﬁf'r

—Jj2rf 2j
=V, Tsinc(fT)

(9.179)
From equation 9.176 we can write:
V(f)=limTV |2
T —o n T
= lim T YaT sinc[ﬂ]
T—o T
=V, Tsinc(f T) (9.180)

where n/T — fas T — oo,

From the above it should be clear that the Fourier transform, V (f), represents a
density of phasors which completely characterize v(¢) in the frequency domain. Such
a representation is similar to the Fourier series coefficients in the context of periodic
signals. However, it is important to note that while the unit of the voltage phasors
(Fourier coefficients), V,, is the volt, the unit of the spectral density, V (f), is volt/hertz
(or volt X second). v(¢) and V ( f), as given by equations 9.175 and 9.178 respectively,
from the so-called Fourier transform pair:

vr) & V(f) (9.181)

where 3 denotes the Fourier integral operation.
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9.3.6.1 Linearity

The Fourier transform is a linear operator. Given two distinct signals x;(f) and x,(f)
with Fourier transforms X ( f) and X,( f), respectively, then the Fourier transform of
¥(£) = ax;(t) + bxy(¢) is given by:

V() = [ lax, () + bxy (0] e 72 dr
aX, () + bX, (f) (9.182)

9.3.6.2 Duality

Another important property of Fourier transform pairs is the so-called duality. Let us
consider a signal x(¢) with a Fourier transform represented by X(f). If there is a signal
() = X(¢) then its Fourier transform is given by:

Y(f) = [ X() e 2" dt

= [ X@0) &> D1 dr 9.183)

and, according to equation 9.175 we have that:

Y(f) = x(=f) (9.184)
that is:
X(t) & x(=f) (9.185)

Example 9.12
Use the duality property of Fourier transform pairs to calculate the Fourier transform of
y(t) = Asinc(tm).

Solution
From equation 9.179 and from equation 9.185 we can write:

Y(f) = érect[i] (9.186)
M il

Note that the rectangular function is an even function, that is rect(—f) = rect(f).
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9.3.6.3 Time Delay

If a function x() has a Fourier transform X(f)) then the Fourier transform of a delayed
replica of x(¢) by a time T, x(¢ — T), is given by:

Bt =D = [ x(t—m)e 2" dr (9.187)

using the change of variable ' = t — T we can write:

dt = dt'
t — —o5t — —®©

t— ot — ©

and equation 9.187 can be written as:

Slx@— 1) = f:c x(t") e 2V dt' =2 T
= X(Pe (9.188)

Note that the delay T causes an addition of a linear phase to X(f). If T is negative this
means that the signal is advanced in time and the linear phase added to the spectrum has a
positive slope. It is worth noting the similarity between the delay property of the Fourier
transform with the delay property of the Fourier series (see equation 9.111).

9.3.6.4 The Dirac Delta Function

The Dirac delta function, 8(¢) can be visualized as an extremely narrow pulse located at

t = 0. However, the area of this pulse is unity which implies that its amplitude tends to
infinity. A common way of defining this function is to start with a rectangular waveform
with unity area, such as that depicted in Figure 9.37(a), which can be expressed as follows:

t
T

z(t) = lrect[ (9.189)

T

with T = 1. If we now decrease the value of T, as shown in Figures 9.37(b) and (c), we
observe that the width of the rectangle decreases while its amplitude increases in order to
preserve unity area. When we let T tend to zero we obtain the Dirac delta function:

§(r) = lim - rect [i] (9.190)

=0T T
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which is depicted in Figure 9.37(d). Note that:
[ swdr =1 (9.191)

The area is represented by the bold value next to the arrow representing the delta
function. An important property of the Dirac delta function is called the sampling
property which states that the multiplication of this function, centered at #,, by a signal
v(t) results in a Dirac delta function centered in ¢, with an area given by the value of v(¢)
att =t,, thatis:

V() X o(t —t,) = v(t,) X o(t—1t,) (9.192)

We emphasize that the area of v(f) X 8(t — ¢,) is equal to v(¢,), that is:
[~ vy xde—1,) = v,) (9.193)

Figure 9.38 illustrates this last property expressed by equations 9.192 and 9.193.

b z(t) Pz(t) tz(t) 3(t)
1 1

T=1 7=0.5 T=0.25 70

i J:

(a) (b) () (d)
Figure 9.37: Rectangular function (a) T = 1; (b) T = 0.5; (¢) T = 0.25; (d) T — 0

(Dirac delta function)

.
~V
X
S
~V
|

&+ -
~

Figure 9.38: lllustration of the sampling property of the Dirac delta function
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9.3.6.5 The Fourier Transform of a DC Signal

Let us calculate the Fourier transform of a DC signal, w(¢), with amplitude A. According
to equation 9.178 this transform would be given by:

W)= [~ Ae 2 dr (9.194)

However, the definite integral cannot be determined because it does not converge for any
value of f. The calculation of this Fourier transform requires the following mathematical
manipulation. We express the DC value as follows:

w(t) = ling) Assinc(tn) (9.195)
T]*)

Figure 9.39(a) illustrates equation 9.195 where we observe that as 1 — 0, w(¢) — A.
Taking the Fourier transform of w(¢), expressed by equation 9.195, we obtain:

wH=[" lim A sinc(rn) e=i2Tt gy (9.196)

Since the integrand is a continuous function, we can change the order of the limit and the
integral, that is:

W(f) = 1irr(1) f_i Asinc(tm) e 72V dt (9.197)
n—
From equation 9.186 we can write W( f) as follows:
W(f) = lim érect [i] (9.198)
n—0 n n
AW(f)
1 A/Mm
n—0

g
(a) (b)

Figure 9.39: (a) Representation of the DC value w(t) = A; (b) Fourier transform of w(t)
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This equation is, by definition (see equation 9.190), the Dirac delta function multiplied by
A (see also Figure 9.39(b)), that is:

W(f) = Ad(f) (9.199)

This type of mathematical manipulation yields what is called the generalized Fourier
transform and it allows for the calculation of Fourier transforms of a broad class of
functions such as that illustrated in the next example.

Example 9.13
Determine the Fourier transform of the unit-step function depicted in Figure 9.40.

Solution

The unit-step function is defined as follows:

1 ift =0
u(t) = ! (9.200)
0 elsewhere

This function can also be seen as the addition of a DC value of 1/2 with the signum
function multiplied by a factor 1/2, as illustrated by Figure 9.40, and can be written as:

1 1
u(t) = — + —sign(¢ (9.201)
(1) 513 gn(7)
where the signum function, sign(z), is defined as:
ien(?) 1 iftr=0 9.202)
sign(?) = .
£ 1 ifr<0

The Fourier transform of u(¢) is the addition of the Fourier transform of a DC value
(discussed above in detail) with the Fourier transform of the signum function. We need a

u(t) A Al
1 2S|gn(t)

=

v
Il

v

+
~v

Figure 9.40: Unit-step function as the addition of a constant value with the signum function
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mathematical manipulation so that the calculation of the transform of the signum function
converges to its correct value. Figure 9.41 shows that sign(¢) can also be written as
follows:

1—e‘i) et ifr=0
sign(?) = lim

.203
a—0 e3—1> e! ifr <O © )

with oo > 0. Figure 9.41 shows equation 9.203 for o = 0.5, 0.1 and 0.02. From this figure
it is clear that as « tends to zero, equation 9.203 tends to equation 9.202.

The Fourier transform of the signum function can now be calculated as follows:

Sign(f) = lim fo (ei - l)e(” eIV dt + lim oo(1 - eiﬁ)e“’ e 2 dt
a—0Y ™ 0

a—0

0

= lim 1 + aen e~ J2nft
a=0|| = 2jnf o =2jnfa+1
+ lim a e_K _ 1 e—at—jZ'nft
a=0|| a2 +2jnfa+1  o+2jnf)
0
1
= E (9.204)

Figure 9.41: The signum function obtained from equation 9.203. o = 0.5, 0.1 and 0.02
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where we have used the following equalities:

lim es =0  fort <0, (o > 0)

a—0

lim ex =0 fort >0, (a>0)

a—0

Using equations 9.201, 9.199 and 9.204, we can write the Fourier transform of the unit

step function as follows:

_1 L
U(f) = 8(f) + - Sign(f)
! (9.205)
jonf '

The generalized Fourier transform also allows us to perform the calculation of the Fourier
transforms of periodic functions. Let us consider, for example, a periodic voltage signal,

v(t) with period T, which has a Fourier series such that:

o(f) +

1
2

vty =SV, el *r! (9.206)

n=—o

The Fourier transform of v(¢), V(f), can be related to its Fourier series coefficients, V,, as

follows:
V()= [ vye 2 de

oo}
R A
—o0

n=—o

ZOC: anoo eI o2 gy

n=—oo

= SV, [ e (9.207)

n=-o0
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This integral can be related to the Fourier transform of a DC quantity. According to
equation 9.199 we have:

[T 1x e 2 dr = 5(f) (9.208)

and, therefore, the integral of equation 9.207 can be calculated as:

[7 el gy = 6[ f- %] (9.209)

Finally, equation 9.207 which represents the spectrum of the periodic waveform v(¢) can
be expressed as:

V(f) = Z V6[f— ] (9.210)

which is a discrete series of phasors as expected.
Example 9.14

Determine the spectrum V(f) of the periodic voltage waveform, v(¢) of Figure 9.35 with
T=1T/3.

Solution
From equations 9.117 and 9.210 we can write V(f) as follows:

V(f) i%smc[T] [f— ]

n=—o

= i V3 smc[3]6[f—E (9.211)

n=—o T

9.3.6.6 Rayleigh’s Energy Theorem

This theorem states that the energy, E,, of a signal x(¢) can be calculated from its
spectrum X( f) according to the following equation:

E, = [ x@2di=[" [X(f)Par 9.212)
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»
»

0 t

Figure 9.42: Causal exponential

Example 9.15

Determine the energy of the causal exponential, w(#) shown in Figure 9.42, using
Rayleigh’s energy theorem. (A causal signal x(#) is any signal that is zero for ¢ < 0.)
Then, show that this result is the same as that obtained from the integration of w(1).

Solution
The causal exponential w(?) of Figure 9.42 can be written as:

ot fort=0
w(r) =1° of (9.213)
0 elsewhere

where o > 0. Hence, the spectrum of w(#) can be calculated as:

W) = [~ wnye 2" dr

= foc eicteijzﬂft dl'
0
o

1

e—j27rft
—0 — j27f

0

1
= ot jonf (9.214)
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From equation 9.212 the energy of w(#) can be calculated as follows,

e 1
Ew = f_‘” o2 + (27f)? 4
Ltanfl [ﬂ]
¥y

02 o).
_ A fr w1 (9.215)
o2w|2 2 20

The energy can also be calculated according to:

E, = [~ wt)dt

w

= fw e 29t gy
0
— I e 20t
—20 0
1
= % (9.216)

This result is the same as that given by Rayleigh’s energy theorem.

9.3.7 Transfer Function and Impulse Response

The transfer function, H(w) or H(f), of a circuit has been introduced in section 9.3.3
where we saw that it can be obtained from phasor analysis, more specifically by
evaluating the ratio of the phasor of the output signal with that of the input signal for all
frequencies, w or f = w/(27). There are four fundamental types of transfer functions:

e Voltage transfer function: In this situation both input and output phasors are
voltages. The transfer function represents a voltage gain (or voltage attenuation
if this gain is less than one) versus the frequency. This transfer function is
dimensionless.
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e Current transfer function: Both input and output phasors are currents. Hence,
the transfer function represents a current gain (or current attenuation if this gain is
less than one) versus the frequency. This transfer function is also dimensionless.

e Impedance transfer function: In this situation the input phasor is a current
while the output phasor is a voltage. Note that now the gain versus the frequency
has units of ohms. This transfer function is usually called transimpedance gain.

e Admittance transfer function: The input phasor is a voltage while the output
phasor is a current. Now the gain versus the frequency, represented by this
transfer function, has units of siemens. This transfer function is usually called
transconductance gain.

From the discussion about the Fourier series we have concluded that knowledge of the
transfer function of a circuit allows the calculation of the spectrum of the output signal
for a given periodic input signal, using equation 9.127. In similar way, the spectrum of
the output signal, X,(f), for a given input signal with X;(f) can be calculated as:

X,(f) = H(f) X X;(f) (9.217)

Taking the inverse Fourier transform of X, ( /) and X;(f) we obtain the time domain
representation for the output and input signals respectively. We can also take the inverse
Fourier transform of the transfer function, H( f), which is defined as the circuit impulse
response represented by A(f). The impulse response of a circuit is the circuit response
when a Dirac delta function (with unit area) is applied to this circuit.

Example 9.16

Determine the impulse response of the circuit of Figure 9.43.

Figure 9.43: Impulse response of an RC circuit
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Solution

The impulse response can be obtained calculating the inverse Fourier transform of the

transfer function H(f) which is given by equation 9.124:

1

H(f):1+j2nch

From Example 9.15 we know that:

1 % e fort=0
o+ j2nf & 0 elsewhere

Since H(f) in equation 9.218 can be written as:

1 1
H(f)= =X 7—7—
RC 45+ j2nf
h(?) is given by:
1, % >
h(r) = RC € fort =0

0 elsewhere

This equation can also be written as:

N
h(t) = RC e rcy(t)

where u() represents the unit step function defined by equation 9.200.

From a theoretical point-of-view the impulse response /(f) of a circuit is obtained

(9.218)

(9.219)

(9.220)

(9.221)

(9.222)

applying a Dirac delta function, as illustrated in Figure 9.43. It should be clear to the
reader that, in a practical situation, it is not possible to apply a Dirac delta pulse to a
circuit to observe its impulse response; first because extremely narrow pulses with infinite
amplitude are physically impossible to create and secondly because if this were possible
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the circuit would most certainly get damaged with the application of such a pulse!
Hence, the application of a Dirac delta pulse should be understood as a mathematical
model or abstraction which helps us to identify /(7). However, as we show in Example
9.17, if we apply a narrow pulse whose bandwidth is much greater than that of the circuit
then the output is a very good estimate of its impulse response, A(%).

Example 9.17

Show that if we apply a finite narrow pulse, whose bandwidth is much greater than the
circuit bandwidth then the output produced by the circuit is a good estimate of its impulse
response, h(f).

Solution

Let us consider a circuit with a transfer function H(f) with maximum frequency fj, as
illustrated in Figure 9.44. If we apply to the circuit a narrow rectangular pulse, x;(?),
such that:

T

x:(t) = A rect [1] (9.223)

with T << fAjll then the spectrum of x;(¢), that is X;(f) = A7 sinc (fT), is nearly constant
in the frequency range —f3; < f << fy, as shown in Figure 9.44. The output spectrum

X, (f)is:

Xo = Xz(f) H(f)
=ATH(f) (9.224)

Taking the inverse Fourier transform the output signal is x,(f) =~ ATh(?).

A~ sinc(fr)

/X

—fu fm

Figure 9.44: A narrow pulse applied to a circuit. Frequency domain representation
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9.3.8 The Convolution Operation

The time domain waveform for x,(¢), in equation 9.217, can be obtained by calculating
the following inverse Fourier transform:

x, (0 = [T HOX(f) e df (9.225)

Since the input signal, in the time domain, is represented by x;(¢), this can be written as:

x, (1) = f-O; H(f) f_"; x,(\)e/2INAN /21 df (9.226)
X; ()

Changing the order of integration this equation can be written as follows:

x, (0= [T x00 [T H(f) eV Ndf dX (9.227)

h(t—X\)

(This change of the order of integration is possible whenever the functions are absolutely
integrable. The variety of signals of interest and their corresponding spectra obey this
requirement. For more details, see Oppenheim/Willsky, Signals and Systems, listed in the
references at the end of this chapter.)

Because H(f) has an inverse Fourier transform represented by A(f), then x(¢) can be
calculated as:

x5, 0= [T xOVhE=N) d (9.228)

This represents the convolution operation between x(¢) and Ah(t). This operation is also
represented as follows:

X, (1) = x; (1) * h(z) (9.229)
with * indicating the convolution operation. It can be shown that:

x;(2) * h(t) = h(t) * x;(t) (9.230)
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W Ay

vi(t)

CI‘D C—— V() (r=159)

(@) (RC=0.25s) (b)_

°
v

(S
(S
~

Figure 9.45: Square voltage pulse, v{(t), is applied to an RC circuit

In order to understand the convolution operation we consider the RC circuit of Figure 9.45
where now a single square voltage pulse, v (?), is applied to its input. The output voltage
v,(f) can be determined according to equation 9.228. However, we shall evaluate v,(¢) by
first approximating the input square pulse by a sum of (NV + 1) Dirac delta functions, as
illustrated in Figure 9.46. Now v,(¢) is approximated by the following expression:

v (1) = N—Zé[ 2 l]

1k 0
N —
;ZS[H-N Zk] (9.231)
12 2N

Note that the sum of the areas of the (N + 1) delta functions is equal to the area of the
rectangular pulse, AT = 1. Using equation 9.228 the voltage at the output of the RC
circuit, v,(f) is given by:

v, ()= [T vkt =X dx (9.232)

L N-2% ]h(t NN 9.233)

S A

where A(?) is given by equation 9.222 with RC = 0.2s. From equation 9.193 we can write
this as,

N -5

v, (1) = LZe

N+157

Y ]u[t-l- N_Zk] (9.234)



(1) (V
AV( /() 4 V(1) (V)

(N+1)~"
N+1=6

05 05 t(s) 05 . t(s)

4 vi(t) (V)
4 v,(1) (V)
(N+ 1)1
N+1=21
~05 05 £(s) -05 05 £(s)
(b)
A vi(t) (V) A v,(t) (V)
! N— 17
—05 05 £(5) 05 0.5 £(s)

(©)
Figure 9.46: lllustration of the convolution operation with the input voltage signal in the
circuit of Figure 9.45 being approximated as a sum of (N + 1) Dirac delta functions
(@QQN+1=6;(b)N+1=21;(c) N — =
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This equation is shown in Figure 9.46 with (N + 1) = 6, (N + 1) = 21 and N — o0. From
Figure 9.46(a) (N + 1 = 6) it is clear that the result of the convolution between v(f)

and A(f) can be seen as a weighted sum of the impulse response A(f) induced by each of
the Dirac delta functions which approximates the input signal v,(¢). By increasing N

we increase the number of delta functions and, of course, we increase their density in

the time interval 7. If N — o then v,(¢) “becomes” the rectangular pulse as shown in
Figure 9.45(c) and v,(¢) is now a smooth waveform. Note the similarity of v,(#) obtained
now, when the input voltage is a single rectangular pulse, with the output voltage when
the input voltage is a periodic sequence of rectangular pulses (see also Figures 9.23

and 9.26).

Figure 9.47 illustrates the computation of v,(¢) given by equation 9.232. According to the
definition of h(f) we can write:

1 TN
% fort—X=0
-z =1rc® " " (9.235)

0 forr—A <0

and since RC = 0.2 we have:

-50-N) <
nie—x) = 1€ or A (9.236)
0 for X\ >

Figure 9.47(a) illustrates the integrand of equation 9.232 for t = —0.75s. Note the
inversion of A(—0.75 — X\) in the X\ axis. In this figure it is clear that the product of
h(—0.75 = X) with v; (\) is zero and, accordingly, v,(—0.75) = 0. In fact, the output
voltage is zero until > —0.5s as illustrated by Figure 9.47(b). For —0.5 < ¢ < 0.5 the
output voltage can be obtained from the following expression:

v =5[" SNy, —05=1<05 (9.237)

_ 5[16—5<z—x>]’ , —05=1<05
5 —0.5

=1—¢ 30103, —05=r<05 (9.238)
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© ~15 10 05 Jo o5 1o 15 10 ~os o o5 10 15
h
5.0
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Figure 9.47: lllustration of mathematical convolution
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Figures 9.47(c), (d) and (e), illustrate the calculation of equation 9.237 for r = —0.25,
t = 0 and r = 0.25, respectively. For t = 0.5 the output voltage can be obtained from the
expression indicated below (see Figures 9.47(f) and 9.47(g)):

v (1) =5 ff’;s ¢S gy, £=0.5
0.5
— 5[l ,—50—X
- 5[38 s >]_O_5, t=0.5
= ¢ 51705 _ p=51405) 4= (.5 (9.239)

From the above we can write v () as follows:

0 fort < —0.5
v, (1) = {1 — e 30H05) for—0.5=1<0.5
¢=51705) — o=S(405)  for 1 = 0.5 (9.240)

Example 9.18

Determine the waveform resulting from the convolution of two identical rectangular
waveforms x(7) and x,(¢) with amplitude A = 1 and width T = 1s.

Solution
According to the definition of a rectangular waveform (see also equation 9.114) we can
write x;(\) as:

, =< AL
x]()\) — 2 T 2
0, elsewhere (9.241)
that is,
, =l<x<i
x(\) = 2 2
0, elsewhere (9.242)

and x,(¢# — X\) can be written as:

= R e P}
2 T 2 (9.243)

0, elsewhere

A,
X (t—N) = {
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that is,
L r=1<X<r+]

Xy (t—=N) = (9.244)
0, elsewhere

The convolution of x,(¢) and x,() is given by:

OE INETONRACEPNIDN (9.245)

Figure 9.48(a) shows the functions whose product forms the integrand of equation 9.245
for t = —1s, that is, this Figure shows x;(\) and x,(—1 —\). From this Figure it is clear
that the product of these two functions is zero and so is the result of its integration. Note
that for t = —1 the product of x;(X\) with x,(f — \) is zero. Figures 9.48(b), (c) and (d)
indicate that for the time interval —1 <<t = 1 the two functions overlap. This overlap is
maximum for ¢ = 0 as shown by Figure 9.48(c). For the time interval, —1 <t = 0, we
can write equation 9.245 as follows:

t+0.5
o= [ dn —1<1=0 ©.246)
=r+1, —1<r=0

X(=1-N 49 Xo(—05-)\)  41.0 410
™~ \ Xo(—\)
x1(\) ' x1(\) (overlapped) %1 (\)
A (s) X (s) A (8)
2 1 o 1 2 2 1 o 1 2 I
(a) (b) (c)
41,0 (05 ) 410 ng(:)?\) 10 triang(t)
XN N xi() |
A (s) A () o)
—2 1 o 1 2 -2 1 o 1 2 —2 1 o 1 2 7

Figure 9.48: Convolution of two identical rectangular waveforms
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For the time interval 0 < ¢t < 1 the overlap of the two functions decreases as illustrated
by Figure 9.48(d) for + = 0.5. For this time interval we can write equation 9.245 as
follows:

0.5
YO = [ s 0<r<I (9.247)

=1—1, 0<r<1

For t = 1 there is no overlap between x;(\) and x,(—1 — X\) and y(?) is again zero. From
the above we can write y(f) as:

0 ifr=—1
1+t if -1<r=0

1) = ! (9.248)
11—t ifo<i<1
0 ifr=1

Figure 9.48(f) shows that y(7) represents a triangle. In fact equation 9.248 defines the
triangular function, triang(7).

The discussion presented above reveals, once again, the advantage of analyzing circuits
and signals in the frequency domain. While time domain analysis involves the calculation
of convolution integrals using the circuit impulse response and the time domain signal,
the frequency domain involves the multiplication of the circuit transfer functions

with the signal spectrum (or signal Fourier transform) which is, by far, a more simple
mathematical operation.

This is a consequence of the convolution theorems:

X030 5 XX Y() (9.249)
X0 X 30 8 X(f)*¥(f) (9.250)

These two theorems state that the convolution of two functions in the time domain
corresponds to multiplication of its Fourier transforms in the frequency domain while
multiplication of two functions in the time domain corresponds to convolution of its
Fourier transforms in the frequency domain.
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Digital Electronics

Clive Maxfield

10.1 Semiconductors

Most materials are conductors, insulators, or something in-between, but a special class
of materials known as semiconductors can be persuaded to exhibit both conducting and
insulating properties. The first semiconductor to undergo evaluation was the element
germanium (chemical symbol Ge). However, for a variety of reasons, silicon (chemical
symbol Si) replaced germanium as the semiconductor of choice. As silicon is the main
constituent of sand and one of the most common elements on earth (silicon accounts for
approximately 28% of the earth’s crust), we aren’t in any danger of running out of it in
the foreseeable future.

Pure crystalline silicon acts as an insulator; however, scientists at Bell Laboratories in
the United States found that, by inserting certain impurities into the crystal lattice, they
could make silicon act as a conductor. The process of inserting the impurities is known as
doping, and the most commonly used dopants are boron atoms with three electrons

in their outermost electron shells and phosphorus atoms with five.

If a pure piece of silicon is surrounded by a gas containing boron or phosphorus and
heated in a high-temperature oven, the boron or phosphorus atoms will permeate the
crystal lattice and displace some silicon atoms without disturbing other atoms in the
vicinity. This process is known as diffusion. Boron-doped silicon is called P-type
silicon and phosphorus-doped silicon is called N-type (Figure 10.1).

Because boron atoms have only three electrons in their outermost electron shells, they

can only make bonds with three of the silicon atoms surrounding them. Thus, the site
(location) occupied by a boron atom in the silicon crystal will accept a free electron with
relative ease and is therefore known as an acceptor. Similarly, because phosphorus atoms
have five electrons in their outermost electron shells, the site of a phosphorus atom in the
silicon crystal will donate an electron with relative ease and is therefore known as a donor.
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Boron gas
P-type silicon
—_— P
Pure silicon
Phosphorus gas
N-type silicon
R N

Figure 10.1: Creating P-type and N-type silicon

+ve +ve +ve
Doesn't Does Does
ﬂl; conduct ALconduct AI;conduct +ve and —ve indicate
positive and negative

voltage sources,
respectively (for
example, they could be
wires connected to the
terminals of a battery)

Pure P-type N-type
| silicon | silicon | silicon

—ve —ve —ve

Figure 10.2: Pure P-type and N-type silicon

10.2 Semiconductor Diodes

As was noted above, pure crystalline silicon acts as an insulator. By comparison, both
P-type and N-type silicon are reasonably good conductors (Figure 10.2).

When things start to become really interesting, however, is when a piece of silicon is
doped such that part is P-type and part is N-type (Figure 10.3).

The silicon with both P-type and N-type conducts electricity in only one direction; in
the other direction it behaves like an OPEN (OFF) switch. These structures, known as
semiconductor diodes, come in many shapes and sizes; an example could be as shown in
Figure 10.4. (Note that the “semiconductor” portion of semiconductor diode was initially
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+ve +ve
Doesn't Does
conduct conduct
N-type | P-type |
silicon silicon
P-type N-type
silicon silicon

Semiconductor |
—ve . —ve
diode

Figure 10.3: Mixing P-type and N-type silicon

Approximate actual size
(a) (b)
Figure 10.4: Diode: Component and symbol (a) Diode component; (b) Symbol

used to distinguish these components from their vacuum tube-based cousins.
As semiconductors took over, everyone started to just refer to them as diodes.)

If the triangular body of the symbol is pointing in the classical direction of current flow
(more positive to more negative), the diode will conduct. An individually packaged diode
consists of a piece of silicon with connections to external leads, all encapsulated in a
protective package (the silicon is typically smaller than a grain of sand). The package
protects the silicon from moisture and other impurities and, when the diode is operating,
helps to conduct heat away from the silicon.

Due to the fact that diodes (and transistors as discussed below) are formed from solids—
as opposed to vacuum tubes, which are largely formed from empty space—people started
to refer to them as solid-state electronics.

10.3 Bipolar Junction Transistors

More complex components called transistors can be created by forming a sandwich out
of three regions of doped silicon. One family of transistors is known as bipolar junction
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Collector Collector Collector Collector
Silicon Silicon
Symbol Symbol
N P
Base Base
P N
Base Base
N P
(a) Emitter Emitter (b) | Emitter Emitter

Figure 10.5: Bipolar junction transistors (BJTs); (a) NPN bipolar junction transistor;
(b) PNP bipolar junction transistor

transistors (BJTs) of which there are two basic types called NPN and PNP; these names
relate to the way in which the silicon is doped (Figure 10.5).

In the analog world, a transistor can be used as a voltage amplifier, a current

amplifier, or a switch; in the digital world, a transistor is primarily considered to be a
switch. The structure of a transistor between the collector and emitter terminals is
similar to that of two diodes connected back-to-back. Two diodes connected in this

way would typically not conduct; however, when signals are applied to the base
terminal, the transistor can be turned ON or OFF. If the transistor is turned ON, it

acts like a CLOSED switch and allows current to flow between the collector and the
emitter; if the transistor is turned OFF, it acts like an OPEN switch and no current flows.
We may think of the collector and emitter as data terminals, and the base as the control
terminal.

As for a diode, an individually packaged transistor consists of the silicon, with
connections to external leads, all encapsulated in a protective package (the silicon

is typically smaller than a grain of sand). The package protects the silicon from
moisture and other impurities and helps to conduct heat away from the silicon when the
transistor is operating. Transistors may be packaged in plastic or in little metal cans
about a quarter of an inch in diameter with three leads sticking out of the bottom
(Figure 10.6).
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e -
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Figure 10.6: Individually packaged transistor (photo courtesy of Alan Winstanley)

Drain Drain Drain Drain
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Figure 10.7: Metal-oxide semiconductor field-effect transistors (MOSFETs)
(a) NMOS field-effect transistor; (b) PMOS field-effect transistor

10.4 Metal-Oxide Semiconductor Field-Effect Transistors

Another family of transistors is known as metal-oxide semiconductor field-effect
transistors (MOSFETs) of which there are two basic types called n-channel and
p-channel; once again these names relate to the way in which the silicon is doped
(Figure 10.7).

In the case of these devices, the drain and source form the data terminals and the gate
acts as the control terminal. Unlike bipolar devices, the control terminal is connected to a
conducting plate, which is insulated from the silicon by a layer of non-conducting oxide.
In the original devices the conducting plate was metal—hence, the term metal-oxide.
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Figure 10.8: Resistor-switch circuit (a) Circuit; (b) Waveform

When a signal is applied to the gate terminal, the plate, insulated by the oxide, creates an
electromagnetic field, which turns the transistor ON or OFF—hence, the term field-effect.

Now this is the bit that always confuses the unwary, because the term channel refers to
the piece of silicon under the gate terminal, that is, the piece linking the drain and source
regions. But the channel in the n-channel device is formed from P-type material, while
the channel in the p-channel device is formed from N-type material.

At first glance, this would appear to be totally counterintuitive, but there is reason behind
the madness. Let’s consider the n-channel device. In order to turn this ON, a positive
voltage is applied to the gate. This positive voltage attracts negative electrons in the
P-type material and causes them to accumulate beneath the oxide layer where they form
a negative channel—hence, the term n-channel. In fact, saying “n-channel” and “p-
channel” is a bit of a mouthful, so instead we typically just refer to these as NMOS and
PMOS transistors, respectively.

This chapter concentrates on MOSFETS, because their symbols, construction, and
operation are easier to understand than those of bipolar junction transistors.

10.5 The Transistor as a Switch

To illustrate the application of a transistor as a switch, first consider a simple circuit
comprising a resistor and a real switch (Figure 10.8).
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Figure 10.9: Resistor-NMOS transistor circuit (a) Circuit; (b) Waveform

The labels Vpp and Vg are commonly used in circuits employing MOSFETS. At this
point we have little interest in their actual values and, for the purpose of these examples,
need only assume that Vpp is more positive than Vg.

When the switch is OPEN (OFF), V1 is connected via the resistor to Vjp,; when

the switch is CLOSED (ON), V7 is connected via the switch directly to Vis. In this
latter case, Vo takes the value Vgg because, like people, electricity takes the path of
least resistance, and the resistance to Vg through the closed switch is far less than the
resistance to Vpp through the resistor. The waveforms in the illustration above show

a delay between the switch operating and Vr responding. Although this delay is
extremely small, it is important to note that there will always be some element of delay
in any physical system.

Now consider the case where the switch is replaced with an NMOS transistor whose
control input can be switched between Vpp and Vg (Figure 10.9).

When the control input to an NMOS transistor is connected to Vg, the transistor is
turned OFF and acts like an OPEN switch; when the control input is connected to Vpp,
the transistor is turned ON and acts like a closed switch. Thus, the transistor functions
in a similar manner to the switch. However, a switch is controlled by hand and can only
be operated a few times a second, but a transistor’s control input can be driven by other
transistors, allowing it to be operated millions of times a second.
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10.6 Gallium Arsenide Semiconductors

Silicon is known as a four-valence semiconductor because it has four electrons available
to make bonds in its outermost electron shell. Although silicon is the most commonly
used semiconductor, there is another that requires some mention. The element gallium
(chemical symbol Ga) has three electrons available in its outermost shell and the element
arsenic (chemical symbol As) has five. A crystalline structure of gallium arsenide (GaAs)
is known as a I1I-V valence semiconductor and can be doped with impurities in a similar
manner to silicon.

In a number of respects, GaAs is preferable to silicon, not the least of which is that GaAs
transistors can switch approximately eight times faster than their silicon equivalents.
However, GaAs is hard to work with, which results in GaAs transistors being more
expensive than their silicon cousins.

10.7 Light-Emitting Diodes

On February 9, 1907, one of Marconi’s engineers, Mr. H.J. Round of New York, NY, had
a letter published in “Electrical World” magazine as follows:

A Note on Carborundum
To the editors of Electrical World:

Sirs: During an investigation of the unsymmetrical passage of current through a contact
of carborundum and other substances a curious phenomenon was noted. On applying a
potential of 10 volts between two points on a crystal of carborundum, the crystal gave out
a yellowish light.

Mr. Round went on to note that some crystals gave out green, orange, or blue light.
This is quite possibly the first documented reference to the effect upon which special
components called light-emitting diodes (LEDs) are based.

Sad to relate, no one seemed particularly interested in Mr. Round’s discovery, and nothing
really happened until 1922, when the same phenomenon was observed by O.V. Losov in
Leningrad. Losov took out four patents between 1927 and 1942, but he was killed during
the Second World War and the details of his work were never discovered.



Digital Electronics 325

N
N

Figure 10.10: Symbol for a LED

In fact, it wasn’t until 1951, following the discovery of the bipolar transistor, that
researchers really started to investigate this effect in earnest. They found that by creating
a semiconductor diode from a compound semiconductor formed from two or more
elements—such as gallium arsenide (GaAs)—light is emitted from the PN junction, that
is, the junction between the P-type and N-type doped materials.

As for a standard diode, a LED conducts electricity in only one direction (and it emits
light only when it’s conducting). Thus, the symbol for an LED is similar to that for a
normal diode, but with two arrows to indicate light being emitted (Figure 10.10).

A LED formed from pure gallium arsenide emits infrared light, which is useful for
sensors, but which is invisible to the human eye. It was discovered that adding aluminum
to the semiconductor to give aluminum gallium arsenide (AlGaAs) resulted in red light
humans could see. Thus, after much experimentation and refinement, the first red LEDs
started to hit the streets in the late 1960s.

LEDs are interesting for a number of reasons, not the least of which is that they are
extremely reliable, they have a very long life (typically 100,000 hours as compared to
1,000 hours for an incandescent light bulb), they generate very pure, saturated colors, and
they are extremely energy efficient (LEDs use up to 90% less energy than an equivalent
incandescent bulb).

Over time, more materials were discovered that could generate different colors. For
example, gallium phosphide gives green light, and aluminum indium gallium phosphite
can be used to generate yellow and orange light. For a long time, the only color missing
was blue. This was important because blue light has the shortest wavelength of visible
light, and engineers realized that if they could build a blue laser diode, they could
quadruple the amount of data that could be stored on, and read from, a CD-ROM or DVD.

However, although semiconductor companies spent hundreds of millions of dollars
desperately trying to create a blue LED, the little rapscallion remained elusive for more
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Figure 10.11: Switch representation of a 2-input AND function (a) Circuit; (b) Truth table

than three decades. In fact, it wasn’t until 1996 that the Japanese electrical engineer Shuji
Nakamura demonstrated a blue LED based on gallium nitride. Quite apart from its data
storage applications, this discovery also makes it possible to combine the output from a
blue LED with its red and green cousins to generate white light. Many observers believe
that this may ultimately relegate the incandescent light bulb to the museum shelf.

10.7.1 Primitive Logic Functions

Consider an electrical circuit consisting of a power supply, a light, and two switches
connected in series (one after the other). The switches are the inputs to the circuit and the
light is the output. A truth table provides a convenient way to represent the operation of
the circuit (Figure 10.11).

As the light is only ON when both the a and b switches are CLOSED (ON)), this circuit
could be said to perform a 2-input AND function. In fact, the results depend on the way
in which the switches are connected; consider another circuit in which two switches are
connected in parallel (side by side) (Figure 10.12).

In this case, as the light is ON when either a or b are CLOSED (ON)), this circuit could
be said to provide a 2-input OR function.!! In a limited respect, we might consider that
these circuits are making simple logical decisions; two switches offer four combinations
of OPEN (OFF) and CLOSED (ON), but only certain combinations cause the light to be
turned ON.
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Figure 10.12: Switch representation of a 2-input OR function (a) Circuit; (b) Truth table

Logic functions such as AND and OR are generic concepts that can be implemented in a
variety of ways, including switches as illustrated above, transistors for use in computers,
and even pneumatic devices for use in hostile environments such as steel works or
nuclear reactors. Thus, instead of drawing circuits using light switches, it is preferable
to make use of more abstract forms of representation. This permits designers to specify
the function of systems with minimal consideration as to their final physical realization.
To facilitate this, special symbols are employed to represent logic functions, and truth
table assignments are specified using the abstract terms FALSE and TRUE. This is
because assignments such as OPEN, CLOSED, ON, and OFF may imply a particular
implementation.

10.8 BUF and NOT Functions
The simplest of all the logic functions are known as BUF and NOT (Figure 10.13).

The F and T values in the truth tables are shorthand for FALSE and TRUE,

respectively. The output of the BUF function has the same value as the input to the
function; if the input is FALSE the output is FALSE, and if the input is TRUE the output
is TRUE. By comparison, the small circle, or bobble, on the output of the NOT symbol
indicates an inverting function; if the input is FALSE the output is TRUE, and if the input
is TRUE the output is FALSE.
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Figure 10.14: Two NOT functions connected together in series

As a reminder that these abstract functions will eventually have physical realizations, the
waveforms show delays between transitions on the inputs and corresponding responses
at the outputs. The actual values of these delays depend on the technology used to
implement the functions, but it is important to note that in any physical implementation
there will always be some element of delay.

Now consider the effect of connecting two NOT functions in series (one after the other)
as shown in Figure 10.14.

The first NOT gate inverts the value from the input, and the second NOT gate inverts it
back again. Thus, the two negations cancel each other out (sort of like “two wrongs do
make a right”). The end result is equivalent to that of a BUF function, except that each
NOT contributes an element of delay.
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Figure 10.15: AND, OR, and XOR functions

10.9 AND, OR, and XOR Functions
Three slightly more complex functions are known as AND, OR, and XOR (Figure 10.15).

The AND and OR representations shown here are the abstract equivalents of our original
switch examples. In the case of the AND, the output is only TRUE if both a and b are
TRUE; in the case of the OR, the output is TRUE if either a or b are TRUE. In fact, the
OR should more properly be called an inclusive-OR, because the TRUE output cases
include the case when both inputs are TRUE. Contrast this with the exclusive-OR, or
XOR, where the TRUE output cases exclude the case when both inputs are TRUE.

10.10 NAND, NOR, and XNOR Functions

Now consider the effect of appending a NOT function to the output of the AND function
(Figure 10.16).
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Figure 10.17: NAND, NOR, and XNOR functions

This combination of functions occurs frequently in designs. Similarly, the outputs of the
OR and XOR functions are often inverted with NOT functions. This leads to three more
primitive functions called NAND (NOT-AND), NOR (NOT-OR) and NXOR (NOT-XOR).
However, in practice the NXOR is almost always referred to as an XNOR (exclusive-
NOR) (Figure 10.17).
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Figure 10.19: Forming an AND from two NANDs

The bobbles on their outputs indicate that these are inverting functions. One way to
visualize this is that the symbol for the NOT function has been forced back into the
preceding symbol until only the bobble remains visible.

Of course, if we appended a NOT function to the output of a NAND, we’d end up back
with our original AND function again. Similarly, appending a NOT to a NOR or an
XNOR results in an OR and XOR, respectively.

10.11 Nota Lot

And that’s about it. In reality there are only eight simple functions (BUF, NOT, AND,
NAND, OR, NOR, XOR, and XNOR) from which everything else is constructed. In fact,
some might argue that there are only seven core functions because you can construct a
BUF out of two NOTs, as was discussed earlier.

Actually, if you want to go down this path, you can construct all of the above functions
using one or more NAND gates (or one or more NOR gates). For example, if you connect
the two inputs of a NAND gate together, you end up with a NOT