
EXCEL
HACKSTM

SECOND EDITION

David and Raina Hawley

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

Excel Hacks™

by David and Raina Hawley

Copyright © 2007 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editors: Brian Sawyer and Brian Jepson
Technical Editor Tom Sgouros
Production Editor: Adam Witwer
Copyeditor: Derek Di Matteo
Proofreader: Tolman Creek Design

Indexer: Tolman Creek Design
Cover Designer: Hanna Dyer
Interior Designer: David Futato
Illustrators: Robert Romano

and Jessamyn Read

Printing History:

March 2004: First Edition.

June 2007: Second Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks
of O’Reilly Media, Inc. The Hacks series designations, Excel Hacks, the image of a trowel, and
related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was
aware of a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

Small print: The technologies discussed in this publication, the limitations on these technologies
that technology and content owners seek to impose, and the laws actually limiting the use of these
technologies are constantly changing. Thus, some of the hacks described in this publication may
not work, may cause unintended harm to systems on which they are used, or may not be consistent
with applicable user agreements. Your use of these hacks is at your own risk, and O’Reilly Media,
Inc. disclaims responsibility for any damage or expense resulting from their use. In any event, you
should take care that your use of these hacks does not violate any applicable laws, including
copyright laws.

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN-10: 0-596-52834-5
ISBN-13: 978-0-596-52834-8
[M]

http://safari.oreilly.com
mailto:corporate@oreilly.com

For our girls, Aleisha and Kate

vii

Contents

Credits . xiii

Preface . xv

Chapter 1. Reducing Workbook and Worksheet Frustration 1
1. Create a Personal View of Your Workbooks 5

2. Enter Data into Multiple Worksheets Simultaneously 8

3. Prevent Users from Performing Certain Actions 11

4. Prevent Seemingly Unnecessary Prompts 15

5. Hide Worksheets So That They Cannot Be Unhidden 19

6. Customize the Templates Dialog and Default Workbook 21

7. Create an Index of Sheets in Your Workbook 23

8. Limit the Scrolling Range of Your Worksheet 26

9. Lock and Protect Cells Containing Formulas 30

10. Find Duplicate Data Using Conditional Formatting 34

11. Find Data That Appears Two or More Times Using Conditional
Formatting 35

12. Tie Custom Toolbars to a Particular Workbook 36

13. Outsmart Excel’s Relative Reference Handler 38

14. Remove Phantom Workbook Links 39

15. Reduce Workbook Bloat 42

16. Extract Data from a Corrupt Workbook 45

Chapter 2. Hacking Excel’s Built-in Features . 48
17. Validate Data Based on a List on Another Worksheet 48

18. Control Conditional Formatting with Checkboxes 50

viii | Contents

19. Identify Formulas with Conditional Formatting 54

20. Count or Sum Cells That Meet Conditional Formatting Criteria 56

21. Highlight Every Other Row or Column 58

22. Create 3-D Effects in Tables or Cells 60

23. Turn Conditional Formatting and Data Validation On and Off
with a Checkbox 62

24. Support Multiple Lists in a ComboBox 64

25. Create Validation Lists That Change Based on a Selection from
Another List 66

26. Use Replace... to Remove Unwanted Characters 68

27. Convert Text Numbers to Real Numbers 68

28. Extract the Numeric Portion of a Cell Entry 70

29. Customize Cell Comments 71

30. Sort by More Than Three Columns 73

31. Random Sorting 74

32. Manipulate Data with the Advanced Filter 75

33. Create Custom Number Formats 79

34. Add More Levels of Undo to Excel for Windows 84

35. Create Custom Lists 84

36. Boldface Excel Subtotals 85

37. Convert Excel Formulas and Functions to Values 89

38. Automatically Add Data to a Validation List 91

39. Hack Excel’s Date and Time Features 94

40. Enable Grouping and Outlining on a Protected Worksheet 98

41. Prevent Blanks/Missing Fields in a Table 100

42. Provide Decreasing Data Validation Lists 101

43. Add a Custom List to the Fill Handle 102

Chapter 3. Naming Hacks . 105
44. Address Data by Name 105

45. Use the Same Name for Ranges on Different Worksheets 106

46. Create Custom Functions Using Names 108

47. Create Ranges That Expand and Contract 112

48. Nest Dynamic Ranges for Maximum Flexibility 118

49. Identify Named Ranges on a Worksheet 121

Contents | ix

Chapter 4. Hacking PivotTables . 124
50. PivotTables: A Hack in Themselves 124

51. Share PivotTables but Not Their Data 129

52. Automate PivotTable Creation 131

53. Move PivotTable Grand Totals 135

54. Efficiently Pivot Another Workbook’s Data 137

Chapter 5. Charting Hacks . 140
55. Explode a Single Slice from a Pie Chart 140

56. Create Two Sets of Slices in One Pie Chart 142

57. Create Charts That Adjust to Data 144

58. Interact with Your Charts Using Custom Controls 148

59. Four Quick Ways to Update Your Charts 152

60. Hack Together a Simple Thermometer Chart 157

61. Create a Column Chart with Variable Widths and Heights 160

62. Create a Speedometer Chart 164

63. Link Chart Text Elements to a Cell 171

64. Hack Chart Data So That Empty or FALSE Formula Cells Are
Not Plotted 173

65. Add a Directional Arrow to the End of a Line Series 175

66. Place an Arrow on the End of a Horizontal (X) Axis 177

67. Correct Narrow Columns When Using Dates 180

68. Position Axis Labels 181

69. Tornado Chart 184

70. Gauge Chart 186

71. Conditional Highlighting Axis Labels 188

72. Create Totals on a Stacked Column Chart 190

Chapter 6. Hacking Formulas and Functions . 193
73. Add Descriptive Text to Your Formulas 193

74. Move Relative Formulas Without Changing References 194

75. Compare Two Excel Ranges 195

76. Fill All Blank Cells in a List 197

77. Make Your Formulas Increment by Rows When You Copy
Across Columns 199

78. Convert Dates to Excel Formatted Dates 202

x | Contents

79. Sum or Count Cells While Avoiding Error Values 203

80. Reduce the Impact of Volatile Functions on Recalculation 205

81. Count Only One Instance of Each Entry in a List 206

82. Sum Every Second, Third, or Nth Row or Cell 208

83. Find the Nth Occurrence of a Value 210

84. Make the Excel Subtotal Function Dynamic 212

85. Add Date Extensions 214

86. Convert Numbers with the Negative Sign on the Right
to Excel Numbers 215

87. Display Negative Time Values 217

88. Use the VLOOKUP Function Across Multiple Tables 219

89. Show Total Time As Days, Hours, and Minutes 221

90. Determine the Number of Specified Days in Any Month 222

91. Construct Mega-Formulas 224

92. Hack Mega-Formulas that Reference Other Workbooks 226

93. Hack One of Excel’s Database Functions to Take the Place
of Many Functions 227

94. Extract Specified Words from a Text String 233

95. Count Words in a Cell or Range of Cells 234

96. Return a Worksheet Name to a Cell 236

97. Sum Cells with Multiple Criteria 239

98. Count Cells with Multiple Criteria 243

99. Calculate a Sliding Tax Scale 246

100. Add/Subtract Months from a Date 251

101. Find the Last Day of Any Given Month 253

102. Calculate a Person’s Age 255

103. Return the Weekday of a Date 256

104. Evaluate a Text Equation 258

105. Lookup from Within a Cell 259

Chapter 7. Macro Hacks . 263
106. Speed Up Code While Halting Screen Flicker 263

107. Run a Macro at a Set Time 264

108. Use CodeNames to Reference Sheets in Excel Workbooks 266

109. Connect Buttons to Macros Easily 267

110. Create a Workbook Splash Screen 268

Contents | xi

111. Display a “Please Wait” Message 270

112. Have a Cell Ticked or Unticked upon Selection 271

113. Count or Sum Cells That Have a Specified Fill Color 273

114. Add the Microsoft Excel Calendar Control to Any Excel
Workbook 274

115. Password-Protect and Unprotect All Excel Worksheets
in One Fell Swoop 276

116. Retrieve a Workbook’s Name and Path 279

117. Get Around Excel’s Three-Criteria Limit for Conditional
Formatting 280

118. Run Procedures on Protected Worksheets 282

119. Distribute Macros 283

120. Delete Rows Based on a Condition 289

121. Track and Report Changes in Excel 293

122. Automatically Add Date/Time to a Cell upon Entry 297

123. Create a List of Workbook Hyperlinks 298

124. Advanced Find 300

125. Find a Number Between Two Numbers 306

126. Convert Formula References from Relative to Absolute 310

127. Name a Workbook with the Text in a Cell 315

128. Hide and Restore Toolbars in Excel 316

129. Sort Worksheets 319

130. Password-Protect a Worksheet from Viewing 320

131. Change Text to Upper- or Proper Case 322

132. Force Text to Upper- or Proper Case 324

133. Prevent Case Sensitivity in VBA Code 328

134. Display AutoFilter Criteria 329

Chapter 8. Cross-Application Hacks . 331
135. Import Data from Access 2007 into Excel 2007 331

136. Retrieve Data from Closed Workbooks 336

137. Automate Word from Excel 344

138. Automate Outlook from Excel 349

Index . 355

xiii

0

Credits

About the Authors
David and Raina Hawley provide business applications, software, develop-
ment, consultancy, training, and tutoring in all aspects of Excel and VBA for
Excel through OzGrid Business Applications in Western Australia.

David Hawley has spent the last 15 years creating business applications
using Excel and VBA for Excel on a day-to-day basis. He produces a
monthly newsletter containing information on the use of Excel and VBA for
Excel. He runs and maintains one of the largest Excel forums in the world
on the OzGrid web site.

Raina Hawley lectures in industry and in the college education system, and
is a registered workplace assessor. Raina runs the OzGrid office, administra-
tion, consultancy, development, and training side of the business, and works
in Excel solutions alongside her husband.

David and Raina offer hundreds of Excel Add-Ins and business software
designed for data analysis in all industry areas through their web site at
http://www.ozgrid.com. The web site contains over 50,000 pages of free
Excel information. They live in Bunbury, Western Australia, with their two
children.

Contributors
The following people contributed their hacks, writing, and inspiration to
this book:

• Andy Pope is a programmer working in London. He has been using
computers since the mid ’80s. His current role involves writing custom-
ized solutions for reporting projects utilizing the MS Office products via
VBA. Andy also runs his own web site (http://www.andypope.info). His

http://www.ozgrid.com
http://www.andypope.info

xiv | Credits

contributions to the Excel community have been recognized by
Microsoft, which has awarded Andy with MVP status for the past four
years.

• Dennis Wallentin has been working as an independent Excel consultant
since the late ’80s. He utilizes MS Excel and other tools to develop pro-
fessional solutions for all sizes of companies, including the public sector
both in Sweden and internationally. He is currently focused on Visual
Studio Tools for Office System (VSTO). Dennis has a Masters in Busi-
ness and Management Accounting. He runs an English web site (http://
www.excelkb.com) and a blog (http://xldennis.wordpress.com).

Acknowledgments
First and foremost, we would like to thank our parents, Walter and Beryl
Fenlon and Mike and Marlene Hawley, for without their love and support,
we never would have made it through.

Thanks must also go to the team at O’Reilly, first and foremost Brian Saw-
yer, for all the hard work that he has put into this book. Andy Pope and
Dennis Wallentin must be thanked also for the hacks they contributed, and
we have to mention all the visitors to our web site and forum, who helped us
to identify some of the most common issues that people face.

We would also like to say a special thanks to all moderators and Oz MVPs
on our free Q/A forum who share their time and knowledge in such an
unselfish way. Finally, we must thank Aleisha and Kate, as always, our inspi-
ration. Their understanding and extra efforts to be good while the book was
in progress will be remembered!!

http://www.excelkb.com
http://www.excelkb.com
http://xldennis.wordpress.com

xv

0

Preface

Millions of Microsoft Excel users are busy creating and sharing spread-
sheets every day. Indeed, the spreadsheet has grown from a powerful conve-
nience to a transformative foundation for many businesses, driving decision-
making around the planet.

Although Excel is a critical tool, many Excel users know only about a subset
of its functionality. They utilize the pieces they need, often reusing more
complex pieces from existing templates, and don’t dive too deeply into
everything Excel has to offer. Odds are good that no single user actually
needs every feature in Excel, so this approach is pretty reasonable. At the
same time, though, it means a lot of people never get far enough along the
learning curve to see the techniques they can use to make their work much
easier.

With the release of MS Office 2007 comes a new version of Excel. There are
many changes with Excel 2007, the most obvious being the new user inter-
face. The introduction of the ribbon provides a results-oriented interface that
presents tools when you need them, in a clear and organized fashion. The
size of a spreadsheet has also been greatly increased, with the number of col-
umns now well over 16,000 and the number of rows over 1,000,000. The
total amount of memory that Excel can use has also been increased and is
limited only by the maximum available memory Windows will allow on
your PC.

Other improvements include easier use of PivotTables, conditional format-
ting and named ranges, live visual previews, predefined style galleries, table
formats, and SmartArt graphics allowing you to use more complicated
graphics in your spreadsheets. As most of us are usually required to work
across a range of applications, share workbooks, and connect with the Web,
Excel 2007 makes this much more user-friendly and easy to manage.

xvi | Preface

In this book, we have again used real-life situations for the content. Excel
2007 has been used as a base for almost all of the hacks, although most of
the hacks can be used in previous versions as well and a few are specific to
earlier versions. Differences are highlighted in the text and most of the old
menu items can still be found, just in a different place and possibly named
slightly differently.

Why Excel Hacks?
Although it’s possible to accomplish an enormous amount of work using a
relatively simple subset of Excel’s capabilities, the software offers a lot of
powerful techniques that can leapfrog your work beyond the ordinary with-
out requiring that you spend years using and studying Excel. However, most
people focus on the content they create—data and formulas, with the occa-
sional chart—so moving to more advanced levels of Excel usage seems
difficult.

There are lots of ways to take advantage of Excel’s capabilities to greatly
extend your ability to create great spreadsheets, but that don’t require years
of study. These tools, or hacks—quick and dirty solutions to problems, or
clever ways of doing things—were created by Excel users looking for simple
solutions to complex issues. The hacks in this book are designed to show
you what’s possible and how to make them work immediately.

You can benefit from these hacks in two important ways. First, you can use
the hacks directly as you build and improve your spreadsheets. Second, by
studying the hacks and possibly learning a little Visual Basic for Applica-
tions (VBA) code, you can customize the hacks to meet your needs precisely.

Getting and Using the Hacks
To save you the time and effort of typing scripts and spreadsheets by hand, all
the hacks (except those that are only a few lines long or use only the GUI) are
available for download from the authors’ web site at http://www.ozgrid.com/
BookExamples/excel-hack2-examples.htm.

You’ll undoubtedly want to cut and paste from the examples and modify
their contents to make them fit your spreadsheets more precisely. Excel
spreadsheets are tremendously diverse, and you’ll want to change things to
make them fit your work.

How to Use This Book
Although this book is divided into chapters, as described in the following
section, you can use it in a variety of different ways. One approach is to

http://www.ozgrid.com/BookExamples/excel-hack2-examples.htm
http://www.ozgrid.com/BookExamples/excel-hack2-examples.htm

Preface | xvii

think of the book as a toolbox and start by becoming familiar with the tools
in each chapter. Then, when a need arises or a problem occurs, you can sim-
ply use the right tool for the job. Or, you might decide to browse through
the book or read it from cover to cover, studying the procedures and scripts
to learn more about Excel. Some of the hacks are helpful in this area because
they contain tutorials about complex subjects or well-documented scripts.
You also might pick one chapter and see what you find useful to your cur-
rent situation or what you might find helpful in the future.

How This Book Is Organized
Whichever way you choose to use this book, you will probably want to
familiarize yourself with the contents first, so here’s a brief synopsis of each
chapter and what you’ll find:

Chapter 1, Reducing Workbook and Worksheet Frustration
Workbooks and worksheets are the primary interface to data in Excel,
but sometimes this set of giant open grids doesn’t do precisely what you
want. These hacks enable you to manage how users interact with work-
sheets, help you find and highlight information, and teach you how to
deal with debris and corruption.

Chapter 2, Hacking Excel’s Built-in Features
Excel includes many built-in features for analyzing and managing data.
However, these features often have limitations. The hacks in this chap-
ter enable you to extend and automate these features, moving beyond
the limited tasks they were designed to perform originally.

Chapter 3, Naming Hacks
Although cell references such as A2 and IV284:IN1237 are certainly use-
ful, as spreadsheets become larger, it’s often easier to reference informa-
tion by name. These hacks show you not only how to name cells and
ranges, but also how to create names that adapt to the data in your
spreadsheet.

Chapter 4, Hacking PivotTables
For many Excel users, PivotTables already seem like a complicated but
magical hack. The hacks in this chapter teach you how to get the most
out of PivotTables by showing you how to extend them and avoid the
problems that make them frustrating.

Chapter 5, Charting Hacks
Excel’s built-in charting capabilities are very useful, but they don’t
always provide the best method for viewing spreadsheet data. These
hacks teach you how to tweak and combine Excel’s built-in charting
capabilities so that you can create customized charts.

xviii | Preface

Chapter 6, Hacking Formulas and Functions
Formulas and functions are at the heart of most spreadsheets, but some-
times the way Excel handles them just isn’t quite what you want. These
hacks cover subjects ranging from moving formulas around to dealing
with datatype issues to improving recalculation time.

Chapter 7, Macro Hacks
Macros (and VBA) are Excel’s escape hatch, enabling you to build
spreadsheets that go well beyond Excel’s own capabilities or develop
spreadsheets that look more like programs. These hacks help you make
the most of macros, from managing them to using them to extend other
features.

Chapter 8, Cross-Application Hacks
Although most spreadsheets are self-contained, this chapter shows you
how you can work with other Microsoft Office applications to get infor-
mation into and out of your spreadsheets and into and out of other
programs.

Windows, Macintosh, and Earlier Excel Versions
The hacks in this book were written for Excel 2007 and were tested on pre-
vious versions of Excel for Windows and on a Macintosh using Excel 2004.
Where steps or menu options differ, the main text shows how to accom-
plish the task in Excel 2007, with instructions for “pre-2007” called out in
notes or parentheses.

Most of the differences between the Windows and Mac platform versions
are cosmetic, and most involve changes to key combinations and the occa-
sional menu. Where the key combinations differ, they are written with the
Windows modifier first, as in Alt/Command(c)-Q, which means Alt-Q for
Windows and c-Q on the Macintosh. There are a few cases, especially in
the Visual Basic Editor (VBE), where the interfaces look different and have
different menu choices, and these are explained on first encounter. There
are also a few Windows-only hacks, using the Windows registry and other
features that are supported only on Windows versions of Excel. These are
noted in the text.

Macintosh users with one-button mice should also note that holding down
the Control key while clicking is the equivalent of right-clicking. (Macin-
tosh users with two or more buttons can just right-click.) Recent models of
Apple MacBook and MacBook Pros allow you to specify a right-click by
holding two fingers on the trackpad and clicking. You must enable this in
System Preferences.

Preface | xix

Most of the hacks should work with any version of Excel from Excel 97
onward; the text will indicate when this isn’t the case. Whenever possible,
screenshots were taken using Excel 2007, but the figures are not an indica-
tor of which hacks work with which versions.

Conventions Used in This Book
The following typographical conventions are used in this book:

Plain text
Indicates cell identifiers, named ranges, menu titles, menu options,
menu buttons, and keyboard accelerators (such as Alt and Ctrl).

Italic
Indicates new terms, URLs, email addresses, filenames, file extensions,
pathnames, directories, and variables in text.

Constant width
Used for commands, options, switches, variables, attributes, keys, func-
tions, types, classes, namespaces, methods, modules, properties, param-
eters, values, objects, events, event handlers, XML tags, HTML tags,
macros, the contents of files, and the output from commands.

Constant width bold
Used to show commands or other text that should be typed literally by
the user, as well as to emphasize important lines of code.

Constant width italic
Used in examples, tables, and commands to show text that should be
replaced with user-supplied values.

↵
A carriage return (↵) at the end of a line of code is used to denote an
unnatural line break—that is, you should not enter these as two lines of
code, but as one continuous line. Multiple lines are used in these cases
due to page width constraints.

You should pay special attention to notes set apart from the text with the
following icons:

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

xx | Preface

The thermometer icons, found next to each hack, indicate the relative com-
plexity of the hack:

The following icons, found below each hack, indicate which versions of
Excel are compatible with the hack:

Works with all versions of Excel

Works with Excel 2007

Works with versions of Excel prior to 2007

Works with Excel 2003

Works with Excel 2000

Using Code Examples
This book is here to help you get your job done. In general, you may use the
code in this book in your programs and documentation. You do not need to
contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code
from this book does not require permission. Selling or distributing a CD-
ROM of examples from O’Reilly books does require permission. Answering
a question by citing this book and quoting example code does not require
permission. Incorporating a significant amount of example code from this
book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Excel Hacks,
Second Edition, by David and Raina Hawley. Copyright 2007 O’Reilly
Media, Inc., 978-0-596-52834-8.”

If you feel your use of code examples falls outside fair use or the permission
given above, feel free to contact us at permissions@oreilly.com.

beginner moderate expert

mailto:permissions@oreilly.com

Preface | xxi

Safari® Enabled
When you see a Safari® Enabled icon on the cover of your
favorite technology book, that means the book is available
online through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that
lets you easily search thousands of top tech books, cut and paste code sam-
ples, download chapters, and find quick answers when you need the most
accurate, current information. Try it for free at http://safari.oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at:

http://www.oreilly.com/catalog/9780596528348/

A collection of spreadsheet files for each individual hack is available at:

http://www.ozgrid.com/BookExamples/excel-hack2-examples.htm

Visit the official web site of the Hacks series of books:

http://www.hackszine.com

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and
the O’Reilly Network, see our web site at:

http://www.oreilly.com

http://safari.oreilly.com
http://www.oreilly.com/catalog/9780596528348/
http://www.ozgrid.com/BookExamples/excel-hack2-examples.htm
http://www.hackszine.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com

1

Chapter 1 C H A P T E R O N E

Reducing Workbook and
Worksheet Frustration

Hacks 1–16

Excel users know that workbooks are a powerful metaphor. But many users
are equally aware that dealing with workbooks can cause a huge number of
snags. The hacks in this chapter will help you avoid some of these snags
while taking advantage of some of the more effective but often overlooked
ways in which you can control your workbooks.

Before we leap into the hacks, though, it’s worth taking a quick look at
some basics that will make it much easier to create effective hacks. Excel is a
very powerful spreadsheet application, and you can do incredible things
with it. Unfortunately, many people design their Excel spreadsheets with lit-
tle foresight, making it difficult for them to reuse or update the spreadsheets
they’ve so carefully built. In this section, we provide several tips you can fol-
low to ensure that you’re creating spreadsheets that are as efficient as
possible.

The 80/20 Rule
Perhaps the most important rule to follow when designing a spreadsheet is
to take a long-term view and never assume you will not need to add more
data or formulas to your spreadsheet because chances are good that you
will. With that in mind, you should spend about 80 percent of your time
planning your spreadsheet and about 20 percent implementing it. Although
this can seem extremely inefficient in the short run, we can assure you that
the long-term gain will far outweigh the short-term pain and that the plan-
ning gets easier after you’ve done it for a while. Remember that spread-
sheets are about making it easy for users to get correct information, not just
about presenting information that looks good only once.

2 | Chapter 1, Reducing Workbook and Worksheet Frustration

Structural Tips
Without a doubt, the number one mistake most Excel users make when cre-
ating their spreadsheets is that they do not set up and lay out the data in the
manner in which Excel and its features expect. Here are, in no particular
order, some of the most common mistakes users make when setting up a
spreadsheet:

• Unnecessarily spreading data over many different workbooks

• Unnecessarily spreading data over numerous worksheets

• Unnecessarily spreading data over different tables

• Having blank columns and rows in tables of data

• Leaving blank cells for repeated data

The first three items on the preceding list add up to one thing: you should
always try to keep related data in one continuous table. Time and time again
we see spreadsheets that do not follow this simple rule and thus are limited
in their ability to take full advantage of some of Excel’s most powerful fea-
tures, including PivotTables, subtotals, and worksheet formulas. In such
scenarios, you can use these features to their full potential only when you’ve
laid out your data in a very basic table.

It is no coincidence that Excel spreadsheets can comprise 1,048,576 rows
(65,536 pre-2007) but only 16,384 columns (256 pre-2007). With this in
mind, you should set up tables with column headings going across the first
row of your table and related data laid out in a continuous manner directly
underneath their appropriate headings. If you find you are repeating the
same data over and over for two or more rows in one of these columns,
resist the temptation to use blank cells to indicate repetition.

Make sure your data is sorted whenever possible. Excel has a rich set of
lookup and reference formulas, some of which require that your data be
sorted in a logical order. Sorting also will speed the calculation process of
many functions significantly.

Formatting Tips
Moving beyond structure, formatting also can cause problems. Although a
spreadsheet should be easy to read and follow, this should rarely be at the
expense of efficiency. We are big believers in “keeping it simple.” Far too
many people spend tremendous amounts of time formatting their spread-
sheets. Although they don’t necessarily realize it, this time frequently comes
at the expense of efficiency. Often the overuse of formatting adds size to
your workbook, and although your workbook might look like a work of art

Chapter 1, Reducing Workbook and Worksheet Frustration | 3

to you, it might look terrible to someone else. Some very good universal col-
ors to consider using in your spreadsheets are black, white, and gray.

It is always a good idea to leave at least three blank rows above your table
(at least three, preferably more). These can then be used for criteria for fea-
tures such as Advanced Filter and Database functions.

People also tinker with the alignment of cell data. By default, numbers in
Excel are right-aligned and text is left-aligned, and there are good reasons to
leave it this way. If you start changing this formatting, you will not be able
to tell at a glance if the contents of a cell are text or numeric. It is very com-
mon for people to reference cells, which look like numbers but in reality are
text. If you have altered the default alignment, you will be left scratching
your head. Perhaps headings are an exception to this rule.

Format cells as text only when completely necessary. All data entered into
cells formatted as text become text, even if you meant for them to be num-
bers or dates. Worse still, any cell housing a formula that references a text-
formatted cell also will be formatted as text. Generally, you do not want for-
mula cells to be formatted as text!

Merged cells can also cause problems. The Microsoft knowledge base is full
of frequently encountered problems with merged cells. As a good alterna-
tive, use “Center across selection,” found under Home ➝ Alignment Group.
The arrow in the bottom right will display the Format dialog with the Align-
ment tab active. Use the Horizontal drop-down to select Center Across
Selection or right-click and choose Format Cells from the shortcut menu
(pre-2007, Format ➝ Cells).

Formula Tips
Another enormous mistake users often make in Excel formulas is referenc-
ing entire columns. This forces Excel to examine potentially thousands, if
not millions, of cells it otherwise could have ignored.

Assume, for example, that you have a table of data ranging from cell A1 to
cell H1000. You might decide you want to use one or more of Excel’s
lookup formulas to extract the required information. Because your table
might continue to grow (as you add new data), it is common to reference the
entire table, incorporating all rows. In other words, your reference might
look something like A:H, or possibly A1:H65536. You would use this refer-
ence so that when new data is added to the table, it will be referenced in the
formulas automatically.

This is a very bad habit to form and you should almost always avoid it. You
still can eliminate the need to constantly update your formula references to

4 | Chapter 1, Reducing Workbook and Worksheet Frustration

incorporate new data as it is added to a table by using dynamic named
ranges.

Another common problem with poorly designed spreadsheets is painfully
slow recalculation. Many people suggest that shifting calculation mode into
Manual via the Office button ➝ Excel ➝ Formulas (pre-2007, Tools ➝

Options ➝ Calculations; Mac OS X, Excel ➝ Preferences ➝ Calculation) will
solve this problem.

However, this is generally very poor advice, fraught with potential disasters.
A spreadsheet is all about formulas and calculations and the results they
produce. If you are running a spreadsheet in manual calculation mode,
sooner or later you will read some information from your spreadsheet that
will not have been updated. Your formulas might be reflecting old values
and not the updated values because when you go into manual calculation
mode, you must force Excel to recalculate by pressing the F9 key (c-= on
Mac OS X). However, it is very easy to forget to do this! Think of it this way.
If your car brakes were rubbing and slowing down your car, would you dis-
connect the brake pedal and rely on the hand brake instead of fixing the
problem? Most of us wouldn’t dream of doing this, but many people don’t
hesitate to put their spreadsheets into manual calculation mode. If you need
to run your spreadsheet in manual calculation mode, you have a design
problem. Address it properly and do not use a “Band-Aid” approach.

Array formulas are another common cause of trouble. They are best suited
to referencing single cells. If you use them to reference large ranges, do so as
infrequently as possible. When large numbers of arrays reference large
ranges, your workbook’s performance will suffer, sometimes to the point
where it becomes unusable and you are forced to run your spreadsheet in
manual calculation mode.

Excel’s database functions provide many alternatives to array formulas, as
discussed in “Sum or Count Cells While Avoiding Error Values” [Hack #79].
Also, the Excel Help offers some good examples on how you can use these
formulas on large tables of data to return results based on multiple criteria.
Another alternative that is often overlooked is the use of Excel’s PivotTable
feature, discussed in Chapter 4. Although PivotTables might seem very
daunting when first encountered, we highly recommend that you familiarize
yourself with this powerful Excel feature because once you master Pivot-
Tables, you will wonder how you survived without them!

At the end of the day, if you remember nothing else about spreadsheet
design, remember that Excel works best when all related data is laid out in
one continuous table. That should make the rest of your hacking much
easier.

Create a Personal View of Your Workbooks #1

Chapter 1, Reducing Workbook and Worksheet Frustration | 5

HACK

H A C K

#1
Create a Personal View of Your Workbooks Hack #1

Excel enables you to have multiple workbooks showing simultaneously, and
to have a customized view of your workbooks arranged in different windows.
Then you can save your view workspaces as .xlw files and use them when it
suits you.

Sometimes when working in Excel, you might need to have more than one
workbook open on your screen to make it easier to use or view data from
multiple workbooks. The next few paragraphs describe how to do this in a
neat and organized way.

First, open all the workbooks you will need.

To open more than one workbook at a time, select the Office
button ➝ Open…, press the Ctrl key (c key on the Mac)
while selecting the workbooks you want to open, and then
click Open (pre-2007, select File ➝ Open).

From any of the workbooks (it doesn’t matter which one), select Windows
➝ View ➝ Arrange All (pre-2007, select Window ➝ Arrange). If “Windows
of active workbook” is checked, uncheck it, and then select the window
arrangement you prefer and click OK.

If you select Tiled, you will be presented with your workbooks in a tiled
fashion, as shown with blank workbooks in Figure 1-1.

Selecting Horizontal gives you a view of your workbooks in a single stack,
one on top of the other, as in Figure 1-2.

Checking the Vertical option will place all your open workbooks side by
side, as shown in Figure 1-3.

Finally, as shown in Figure 1-4, selecting the Cascade option will layer all
open workbooks one on top of the other.

Once your workbooks are displayed in your preferred view, you can easily
move data between them (e.g., copy, paste, drag and drop).

If you think you might want to return to a view you created, you can save
this preferred view as a workspace. To save a workspace, simply select Win-
dows ➝ Save Workspace (pre-2007, File ➝ Save Workspace), enter the
workspace’s filename in the File Name box, and click OK. When saving
your workspace, the file extension will be .xlw rather than the standard .xlsx
of Excel 2007. To restore your Excel workspace to one full window of a par-
ticular workbook, just double-click the title bar (on the Mac, click the green

6 | Chapter 1, Reducing Workbook and Worksheet Frustration

#1 Create a Personal View of Your Workbooks
HACK

Figure 1-1. Four workbooks in a tiled view

Figure 1-2. Four workbooks in a horizontal view

Create a Personal View of Your Workbooks #1

Chapter 1, Reducing Workbook and Worksheet Frustration | 7

HACK

Figure 1-3. Four workbooks in a vertical view

Figure 1-4. Four workbooks in a cascade view

8 | Chapter 1, Reducing Workbook and Worksheet Frustration

#2 Enter Data into Multiple Worksheets Simultaneously
HACK

Zoom button in the upper left of the window) appearing on any one of your
workbooks. You can also click the Maximize button on any of the windows
in your workspace. Close your workbooks as usual when you’re finished.

Whenever you need to open those same workbooks, simply open the .xlw
file, and the view you initially set up will be magically restored for all work-
books. If you need to open just one of those workbooks, open the file as
usual. Any changes you make to the workbooks in the .xlw file will be saved
automatically as you close the workspace as a whole, or you can save work-
books individually.

If you spend a small amount of time setting up some custom views for repet-
itive tasks that require multiple open workbooks, you’ll find that these tasks
become easier to manage. You might decide to use different views for differ-
ent repetitive tasks, depending on what the task is or how you’re feeling that
day.

H A C K

#2
Enter Data into Multiple Worksheets
Simultaneously Hack #2

It’s fairly ordinary to need some data to be duplicated in multiple worksheets.
You can use Excel’s tool for grouping so that data entered in one workbook
can be entered into multiple worksheets simultaneously. But therer is also a
quicker and more flexible approach that uses a couple of lines of Visual Basic
for Applications (VBA) code.

Excel’s built-in mechanism for making data go to multiple places at once is a
feature called Group. It works by grouping the worksheets together so that
they’re all linked within the workbook.

Grouping Worksheets Manually
To use the Group feature manually, simply click the sheet into which you
will be entering the data, and press the Ctrl key (the c key on the Macin-
tosh) while clicking the Name tabs of the worksheets where you want the
data to go. When you enter data into any cells on your worksheet, they will
be entered automatically in the other grouped worksheets. Mission
accomplished.

To ungroup your worksheets, either select one worksheet that is not part of the
group, right-click any Name tab and select Ungroup Sheets, or Ctrl/c-click the
sheets you added to the group.

Enter Data into Multiple Worksheets Simultaneously #2

Chapter 1, Reducing Workbook and Worksheet Frustration | 9

HACK

When your worksheets are grouped together, you can look
up to the title bar and see the word Group in square brack-
ets. This lets you know your worksheets are still grouped.
Unless you have eagle eyes and a mind like a steel trap, how-
ever, it is highly likely that you won’t notice this or that
you’ll forget you have your worksheets grouped. For this rea-
son, we gently suggest you ungroup your sheets as soon as
you finish doing what you need to do.

Although this method is easy, it means you need to remember to group and
ungroup your sheets as needed or else you will inadvertently overtype data
from another worksheet. For example, you might want the simultaneous
entries to occur only when you are in a particular range of cells. However,
simultaneous data entries will occur regardless of the cell you are in at the
time.

Grouping Worksheets Automatically
You can overcome these shortcomings by using some very simple VBA code.
For this code to work, it must reside within the private module for the Sheet
object. To quickly go to the private module, right-click the Sheet Name tab
and select View Code. You can then use one of Excel’s sheet events—which
are events that take place within your worksheet, such as changing a cell,
selecting a range, activating, deactivating, and so on—to move the code into
the private module for the Sheet object.

In most cases, you will be taken directly to the private mod-
ule when you right-click on a workbook or worksheet and
select View Code. You can confirm that you’re in the private
module by looking at the state of the drop-down menu in the
upper left of the code window—this window is usually
labeled something like “Workbook - sheetname (Code)”. If
the drop-down menu says “Workbook” or “Worksheet,”
then you in the private module. If it says “(General),” change
it before typing in the code.

To enable grouping, first name the range of cells you want to have grouped
so that the data shows automatically on other worksheets.

Enter this code into the private module:

Private Sub Worksheet_SelectionChange(ByVal Target As Range)
 If Not Intersect(Range("MyRange"), Target) Is Nothing Then

10 | Chapter 1, Reducing Workbook and Worksheet Frustration

#2 Enter Data into Multiple Worksheets Simultaneously
HACK

 'Sheet5 has purposely been placed first as this will
 'be the active sheet we will work from
 Sheets(Array("Sheet5", "Sheet3", "Sheet1")).Select
 Else
 Me.Select
 End If
End Sub

In this code, we used the named range MyRange. (If you aren’t familiar with
named ranges, see “Address Data by Name” [Hack #44].) Change MyRange to
the range name you are using on your worksheet. Also change the three
sheet names in the code, as shown in Figure 1-5, to the sheet names you
want to be grouped. When you’re done, either click the View Microsoft
Excel tool, close the module window, or press Alt/c-Q to get back to Excel,
then save your workbook.

It is important to note that the first sheet name used in the array must be the
sheet housing the code, and thus the worksheet on which you will enter the
data.

Once the code is in place, each time you select any cell on the worksheet,
the code checks to see whether the cell you selected (the target) is within the
range named MyRange. If it is, the code will automatically group the work-
sheets you want grouped. If it isn’t, it will ungroup the sheets simply by acti-
vating the sheet you are already on. The beauty of this hack is that there is
no need to manually group the sheets and therefore run the risk of forget-
ting to ungroup them. This approach can save lots of time and frustration.

If you want the same data to appear on other sheets but not in the same cell
addresses, use code like this:

Private Sub worksheet_Change(ByVal Target As Range)
 If Not Intersect(Range("MyRange"), Target) Is Nothing Then
 With Range("MyRange")

Figure 1-5. Code for automatically grouping worksheets

Prevent Users from Performing Certain Actions #3

Chapter 1, Reducing Workbook and Worksheet Frustration | 11

HACK

 .Copy Destination:=Sheets("Sheet3").Range("A1")
 .Copy Destination:=Sheets("Sheet1").Range("D10")
 End With
 End If
End Sub

This code also needs to live within the private module of the Sheet object.
Follow the steps described earlier in this hack to get it there.

H A C K

#3
Prevent Users from Performing Certain Actions Hack #3

Although Excel provides overall protection for workbooks and worksheets,
this blunt instrument doesn’t provide limited privileges to users—unless you
do some hacking.

You can manage user interactions with your spreadsheets by monitoring and
responding to events. Events, as the term suggests, are actions that occur as
you work with your workbooks and worksheets. Some of the more com-
mon events include opening a workbook, saving it, and closing it. You can
tell Excel to run some Visual Basic code automatically when any one of
these events is triggered.

Users can bypass all these protections by disabling macros
entirely. Click the Office button and choose Excel Options
➝ Trust Center ➝ Trust Center Settings and press the Macro
Settings Button (pre-2007, Tools ➝ Macro ➝ Security). If
their security is set to “Disable all macros with notification”
(Medium in pre-2007 versions), they’ll be notified of macros
in the workbook upon opening it and will be offered the
opportunity to turn them off. A security setting of “Disable
all macros without notification” (High in older versions) will
simply turn them off automatically. On the other hand, if
using the spreadsheet requires the use of macros, users might
be more likely to have macros turned on. These hacks are a
convenience and do not provide heavy-duty data security.

On Mac OS X, you cannot control macro protection at this
level of detail. Instead, you can select Excel ➝ Preferences ➝

Security and toggle the setting “Warn before opening a file
that contains macros.”

Preventing Save As... in a Workbook
You can specify that any workbook be saved as read-only by choosing Office
button ➝ Save ➝ Tools Button ➝ General Options and enabling the “Read-
only recommended” checkbox (pre-2007, File ➝ Save As ➝ Tools [Options
on the Mac] ➝ General options in the Save options dialog). Doing so can
prevent a user from saving any changes he might make to the file, unless he
saves it with a different name and/or in a different location.

12 | Chapter 1, Reducing Workbook and Worksheet Frustration

#3 Prevent Users from Performing Certain Actions
HACK

Sometimes, however, you might want to prevent users from being able to
save a copy of your workbook to another directory or folder with or with-
out a different name. In other words, you want users to be able to save on
top of the existing file and not save another copy elsewhere. This is particu-
larly handy when more than one person is saving changes to a workbook
because you do not end up with a number of different copies of the same
workbook, saved with the same name in different folders.

The Before Save event you’ll be using has existed since Excel 97. As its name
suggests, this event occurs just before a workbook is saved, enabling you to
catch the user before the fact, issue a warning, and stop Excel from saving.

Before trying this at home, be sure to save your workbook
first. Putting this code into place without having saved will
prevent your workbook from ever saving.

To insert the code, open your workbook and choose Developer ➝ Visual
Basic, then select View ➝ Code, and double-click on ThisWorkbook in the
Project Explorer (pre-2007, right-click the Excel icon immediately to the left
of the File menu item on the worksheet menu bar, and select View Code, as
shown in Figure 1-6).

You might have to enable the Developer tab (not standard in
Excel 2007) by selecting Office button ➝ Excel Options ➝

Popular, checking the option “Show Developer tab in the
Ribbon” and clicking OK.

Figure 1-6. Quick access menu (in Excel 2003) to the private module for the workbook
object

Prevent Users from Performing Certain Actions #3

Chapter 1, Reducing Workbook and Worksheet Frustration | 13

HACK

This shortcut isn’t available on the Mac. You’ll have to open
the Visual Basic Editor (VBE) by pressing Option-F11, or by
selecting Tools ➝ Macro ➝ Visual Basic Editor. Once you’re
there, Ctrl-click or right-click This Workbook in the Projects
window.

Type the following code into the VBE, as shown in Figure 1-7, and press
Alt/c-Q to get back to Excel proper, then save your workbook:

Private Sub workbook_BeforeSave(ByVal SaveAsUI As Boolean, _
 Cancel As Boolean)
Dim lReply As Long
 If SaveAsUI = True Then
lReply = MsgBox("Sorry, you are not allowed to save this " & _
 "workbook as another name. Do you wish to save this " & _
 "workbook?", vbQuestion + vbOKCancel)
 Cancel = (lReply = vbCancel)
 If Cancel = False Then Me.Save
 Cancel = True
 End If
End Sub

Give it a whirl. Select Office button ➝ Save (pre-2007, File ➝ Save) and your
workbook will save as expected. However, select Office button ➝ Save As
(pre-2007, File ➝ Save As...) and you’ll be informed that you’re not allowed
to save this workbook under any other filename, unless you’ve disabled
macros.

Note that when you save a workbook in Excel 2007 and it
contains either macros or code, you will be prompted to
save your workbook as an Excel macro-enabled workbook
(*.xlsm) and will be unable to save in the standard Excel file
format (*.xlsx).

Figure 1-7. Code once it’s entered into the private module (ThisWorkbook)

14 | Chapter 1, Reducing Workbook and Worksheet Frustration

#3 Prevent Users from Performing Certain Actions
HACK

Preventing Users from Printing a Workbook
Perhaps you want to prevent users from printing your workbook—and
probably having it end up in a recycling bin or left on a desk somewhere in
plain sight. Using Excel’s Before Print event, you can stop them in their
tracks. Enter the following code, as before, into the VBE:

Private Sub workbook_BeforePrint(Cancel As Boolean)
 Cancel = True
 MsgBox "Sorry, you cannot Print from this workbook", vbInformation
End Sub

Press Alt/c-Q when you’re done entering the code to get back to Excel, then
save your workbook. Now each time users try to print from this workbook,
nothing will happen. The MsgBox line of code is optional, but it’s always a
good idea to include it to at least inform users so that they do not hassle the
IT department, saying there is a problem with their program!

If you want to prevent users from printing only particular sheets in your
workbook, use this similar code instead:

Private Sub workbook_BeforePrint(Cancel As Boolean)
 Select Case ActiveSheet.Name
 Case "Sheet1", "Sheet2"
 Cancel = True
 MsgBox "Sorry, you cannot print this sheet from this workbook", _
vbInformation
 End Select
End Sub

Notice you’ve specified “Sheet1” and “Sheet2” as the only cases in which
printing should be stopped. Of course, these can be the names of any sheets
in your workbook; to add more sheets to the list, simply type a comma fol-
lowed by the sheet name in quotation marks. If you need to prevent the
printing of only one sheet, supply just that one name in quotes and drop the
comma.

Preventing Users from Inserting More Worksheets
Excel lets you protect a workbook’s structure so that users cannot delete
worksheets, rearrange the order in which they appear, rename them, and so
forth. Sometimes, though, you want to prevent just the addition of more
worksheets, while still allowing other structural alterations.

The following code will get the job done:

Private Sub Workbook_NewSheet(ByVal Sh As Object)
 Application.DisplayAlerts = False
 MsgBox "Sorry, you cannot add any more sheets to this workbook", _
 vbInformation

Prevent Seemingly Unnecessary Prompts #4

Chapter 1, Reducing Workbook and Worksheet Frustration | 15

HACK

 Sh.Delete
 Application.DisplayAlerts = True
End Sub

The code first displays the message box with the message and then immedi-
ately deletes the newly added sheet when the user clicks OK from the mes-
sage box. The use of Application.DisplayAlerts = False stops the standard
Excel warning that asks users if they really want to delete the sheet. With
this in place, users will be unable to add more worksheets to the workbook.

Another way to prevent users from adding worksheets is to select Review ➝

Changes ➝ Protect Workbook, and then press the Protect Structure and
Windows button (pre-2007, Tools ➝ Protection ➝ Protect Workbook...,
ensure that the Structure checkbox is checked, and click OK). However, as
mentioned at the beginning of this hack, Excel’s worksheet protection is a
rather blunt instrument and will also prevent many other Excel features
from working.

H A C K

#4
Prevent Seemingly Unnecessary Prompts Hack #4

Excel’s chattiness can get a little old, always prompting you to confirm
actions you just asked it to perform. Quit the conversation and let Excel get
back to the action.

The types of prompts we are talking about are those that ask you whether
you want to enable macros (when you do not have any), or whether you are
sure you want to delete a worksheet. Here is how to get rid of the most com-
mon prompts once and for all.

Enabling Macros When You Don’t Have Any
Excel’s memory is like a steel trap when it comes to remembering that you
recorded a macro in your workbook. Unfortunately, its memory of macros
persists even though you might have since deleted one or more macros via
Developer ➝ Macros or Alt/Option-F8 (pre-2007, Tools ➝ Macro ➝ Mac-
ros). Reopen the workbook and you’ll still be prompted to enable macros,
even though there are none to enable.

You’ll be prompted to enable macros only if your security
level is set to “Disable all macros with notification” (Medium
in pre-2007 versions). If it’s set to “Enable all macros” (Low
in pre-2007 versions), macros are enabled without a peep; if
it’s set to “Disable all macros without notification” (High in
pre-2007 versions), macros are disabled automatically for
your protection.

16 | Chapter 1, Reducing Workbook and Worksheet Frustration

#4 Prevent Seemingly Unnecessary Prompts
HACK

When you record a macro, Excel inserts a Visual Basic module to hold your
commands and home-brewed functions. Upon opening a workbook, Excel
checks for the presence of modules, whether empty or macro-filled. Delet-
ing a workbook’s macros deletes any code within the module, not the mod-
ule itself—kind of like drinking the last of the milk, yet putting the empty
carton back in the fridge. To avoid the unnecessary macro prompt, you need
to remove the module. Here’s how to do that.

Open the VBE by selecting Developer ➝ Visual Basic under Code options or
by pressing Alt/Option-F11 (pre-2007, Tools ➝ Macro ➝ Visual Basic Edi-
tor and select View ➝ Project Explorer).

On the Macintosh and in Excel 2007, the Projects window is
always open, so you don’t need to open the Project Explorer.

You’ll see a window like the one shown in Figure 1-8.

Find your workbook in the Project Explorer and click the plus sign (+) to its
left to expose the workbook’s component parts, particularly the modules if
they are not already showing. Right-click each module in turn and choose
Remove Module from the context-sensitive menu. Decline the offer to
export the modules. Before blithely removing modules that might contain
useful code, double-click each module in turn to make certain you don’t
need them. Press Alt/c-Q as usual to get back to Excel’s spreadsheet view.

Figure 1-8. Project Explorer modules

Prevent Seemingly Unnecessary Prompts #4

Chapter 1, Reducing Workbook and Worksheet Frustration | 17

HACK

Prompting to Save Nonexistent Changes
You might have noticed that sometimes simply opening a workbook and
taking a look around is enough to trigger Excel to prompt you to save
changes to your personal macro workbook—despite the fact that you’ve
made no changes whatsoever. Whether you know it or not, you most likely
have a volatile function within your personal macro workbook.

A personal macro workbook is a hidden workbook created the first time you
record a macro (Tools ➝ Macro ➝ Record New Macro) and specify “Per-
sonal Macro Workbook” in the “Store Macro in” drop-down menu. It is
opened each time you use Excel. A volatile function (or formula) is one that
automatically recalculates each time you do almost anything in Excel,
including opening and closing either the workbook or the entire applica-
tion. Two of the most common volatile functions are the Today() and Now()
functions.

So, although you might believe you’ve made no changes to the workbook at
hand, those volatile functions running in the background might have. This
counts as a change and triggers Excel’s prompt to save said invisible
changes.

If you want Excel to stop prompting you to save changes you didn’t make,
you have a couple of options open to you. The most obvious is not to store
volatile functions within your personal macro workbook in the first place,
and to delete any volatile functions that are already there. Or, if you need
volatile functions, you can use this rather simple snippet of code to circum-
vent the check by tricking Excel into thinking your personal macro work-
book has been saved the moment it opens:

Private Sub Workbook_BeforeClose(Cancel As Boolean)
 Me.Saved = True
End Sub

This code must live in the private workbook module of your personal macro
workbook. To get there from any workbook, select View ➝ Unhide under
Window options (pre-2007, Window ➝ Unhide), select Personal.xls from
Unhide Workbook, and click OK. Visit the VBE and enter the aforemen-
tioned code. Press Alt/c-Q to get back to Excel when you’re done.

Of course, if you have a volatile function that you want to recalculate and
you want to save the changes, you need to explicitly tell Excel to do so:

Private Sub Workbook_BeforeClose(Cancel As Boolean)
 Me.Save
End Sub

This macro will save your personal macro workbook automatically each
time it is opened.

18 | Chapter 1, Reducing Workbook and Worksheet Frustration

#4 Prevent Seemingly Unnecessary Prompts
HACK

Stopping Excel’s Warning Prompts for Recorded Macros
One of the many drawbacks of recorded macros is that, although they’re
pretty good at mimicking just about any command, they tend to forget your
responses to prompts. Delete a worksheet and you’re prompted for confir-
mation; run a macro for the same and you’ll still be prompted. Let’s turn off
those prompts.

Select Developer ➝ Macros under Code options or Alt/Option-F8 (pre-2007,
Tools ➝ Macro ➝ Macros) to bring up a list of your macros. Make sure “All
Open Workbooks” is selected in the Macros In: box’s pull-down menu.
Select the macro you’re interested in and click the Edit button. Put the cur-
sor before the very first line of code—i.e., the first line without an apostro-
phe in front of it—and prepend the following:

Application.DisplayAlerts = False

At the very end of your code, append the following:

Application.DisplayAlerts = True

Your macro should look something like this:

Sub MyMacro()
'
' MyMacro Macro
' Deletes the Active worksheet
'

'
 Application.DisplayAlerts = False
 ActiveSheet.Delete
 Application.DisplayAlerts = True
End Sub

Note that you’ve turned alerts back on at the end of your macro to re-enable
standard Excel prompts while working in Excel. Leave this out, and you’ll
see no alerts at all, not even those that might have been good to include.

If your macro does not complete for any reason—a runtime
error, for instance—Excel might never get to the line of code
that turns alerts back on. If this happens, it’s probably wise
to quit and restart Excel to set things back to the way they
were.

Now you know how to use Excel without prompts. Be aware, though, that
these prompts are there for a reason. Make sure you fully understand the
purpose of a prompt before summarily turning it off.

Hide Worksheets So That They Cannot Be Unhidden #5

Chapter 1, Reducing Workbook and Worksheet Frustration | 19

HACK

H A C K

#5
Hide Worksheets So That They Cannot Be UnhiddenHack #5

Sometimes you want a place for information that users can’t read or modify.
Build a backstage into your workbook, a place to keep data, formulas, and
other minutiae consumed by, but not seen in, your sheets.

A useful practice when setting up a new Excel workbook is to reserve one
worksheet for storing information users do not need to see: formula calcula-
tions, data validation, lists, useful variables and special values, sensitive
data, and so forth. Although you can hide the sheet by selecting View ➝

Hide under Window options (pre-2007, Format ➝ Sheet ➝ Hide), it’s a good
idea to ensure that users can’t unhide it by selecting View ➝ Unhide under
the Window options (pre-2007, Format ➝ Sheet ➝ Unhide…).

You can, of course, simply protect the worksheet. However, this still leaves
it in full view—sensitive data, scary formulas, and all. Also, you can’t pro-
tect a cell linked into any of the controls available to you from the Forms
toolbar.

Instead, we’ll fiddle with the worksheet’s Visible property, making it
xlVeryHidden. Go to Developer ➝ Visual Basic or Alt/Option-F11 to get to
the VBE (pre-2007, go to Tools ➝ Macro ➝ Visual Basic Editor and make
sure the Project Explorer window is visible by selecting View ➝ Project
Explorer). Find the name of your workbook within the Project Explorer and
expand its hierarchy by clicking the + to the left of the workbook’s name.
Expand the Microsoft Excel Objects folder within to reveal all your work-
book’s worksheets.

Select the sheet you want to hide from the Project Explorer and reveal its
properties by selecting View ➝ Properties Window (or by pressing F4).
Make sure the Alphabetic tab is selected, and look for the Visible property
at the very bottom. Click the value box on the right associated with the
Visible property and select the last option, 2 - xlSheetVeryHidden, as shown
in Figure 1-9. Press Alt/c-Q to return to Excel, then save your changes. The
sheet will no longer be visible via the Excel interface and won’t appear as a
choice under View ➝ Unhide under Window options (pre-2007, Format ➝

Sheet ➝ Unhide…).

Once you have selected 2 - xlSheetVeryHidden from the
Properties window, it might appear as though your selection
had no effect. This visual bug sometimes occurs and
shouldn’t concern you; if the sheet no longer appears when
you select View ➝ Unhide under Window options (pre-
2007, Format ➝ Sheet ➝ Unhide…) you know it had the
desired effect.

20 | Chapter 1, Reducing Workbook and Worksheet Frustration

#5 Hide Worksheets So That They Cannot Be Unhidden
HACK

To reverse the process, simply follow the preceding steps, this time selecting
-1 - xlSheetVisible.

Figure 1-9. Properties window of a worksheet having its visible property set to
2 - xlSheetVeryHidden

Customize the Templates Dialog and Default Workbook #6

Chapter 1, Reducing Workbook and Worksheet Frustration | 21

HACK

H A C K

#6
Customize the Templates Dialog and Default
Workbook Hack #6

If you tend to perform the same tasks or use the same spreadsheet layouts
again and again, you can build your own Template tab into Excel’s standard
Insert Template dialog to provide a quick starting point.

Imagine you have a spreadsheet containing days of the year and formulas
summarizing various data for the days. You have formatted this spreadsheet
beautifully with your company colors, logo, and required formulas, and you
need to use it on a daily basis. Instead of reinventing the wheel (or copying
and deleting what you don’t need) each day, you can save yourself a lot of
time and trouble by creating a template.

Excel’s worksheet and workbook templates provide you with a running start
on your next project, enabling you to skip the initial setup, formatting, for-
mula building, and so on. Saving a template worksheet simply means open-
ing a new workbook, deleting all but one worksheet, and then creating the
basic template you will be using. Once you’re finished, select Office button
➝ Save As… (pre-2007, File ➝ Save As…) and choose Excel Template (Tem-
plate on Mac OS X) from the dialog’s Save As Type (Format on Mac OS X)
drop-down list. If your template is to be a workbook template—i.e., it will
contain more than one worksheet—again add a new workbook, make all the
necessary changes, select Office button ➝ Save As..., and save as an Excel
template.

Template in hand, you can create a clone at any time by either selecting the
Office button ➝ New (pre-2007, File ➝ New…; File ➝ Project Gallery on the
Mac) and selecting a workbook template, or by right-clicking the Work-
sheet tab and selecting Insert... from the context sensitive menu to insert a
new worksheet from a template. Wouldn’t it be nice, though, to have those
templates available to you right from Excel’s standard Insert Template dia-
log, or to set your preferred workbook as the default? You can, by creating
your own Template tab.

This hack assumes you have a single installation of Excel
running on your computer. If you have multiple copies or
versions of Excel installed, this may not work.

Creating Your Own Template Tab
If you have a slew of templates—workbooks, worksheets, or both—that you
use on a regular basis, you can group them together to make it easier for you
to manage them.

22 | Chapter 1, Reducing Workbook and Worksheet Frustration

#6 Customize the Templates Dialog and Default Workbook
HACK

From within any workbook, choose the Office button ➝ Save As… (pre-
2007, File ➝ Save As…). Then, from the Files of Type pop-up menu, select
Excel Template (.xltx); for older versions, select Template (.xlt). By default
Excel will select the standard Templates folder in which all your home-
grown templates are kept.

If you want to create tabs in which to store your templates, create a sub-
folder by using the New Folder button.

On Mac OS X, Excel 2004 defaults to your My Templates
directory for saving new templates, so this step is not
needed.

Now, go to the Office button, select New, and click the “My templates”
option button (for Excel 2000 and above, choose General Templates from
the New Workbook dialog that will appear; for older versions, select File
➝ New… on the worksheet menu bar). You should now see the tab you cre-
ated (named Ozgrid in the screen shot in Figure 1-10) on the dialog floating
over your screen. You also should now see your Template workbooks and
worksheets, as long as you saved them to this folder.

In Excel 2007, as a default if you do not create any tabs, your
templates are stored under “My templates” in the My Tem-
plates tab.

Figure 1-10. The Templates dialog

Create an Index of Sheets in Your Workbook #7

Chapter 1, Reducing Workbook and Worksheet Frustration | 23

HACK

Using a Custom Default Workbook
Starting Excel opens a blank default workbook called Book1 containing
three blank worksheets. This is fine and dandy if you want a clean slate each
time you start Excel. If you’re like us, however, you tend to favor one work-
book over the others. So, for us, opening Excel involves dismissing the
default workbook and searching for our regular workbook. It sure would be
handy to have that favored workbook open at the outset, ready for action.

To do so, save your default workbook (template) in the XLSTART folder
(generally found in C:\Documents and Settings\Owner\Application Data\
Microsoft\Excel\XLSTART in Windows, and in Applications/Microsoft Office
2004/Office/Startup/Excel under Mac OS X). Once you have done this, Excel
will automatically use whichever workbook(s) you have in there as the
default.

The XLSTART folder is where your personal macro work-
book is created and saved automatically when you record a
macro. The personal macro workbook is a hidden work-
book. You also can have your own hidden workbooks open
in the background if you want by opening the required
workbook, selecting View ➝ Hide under Window options
(pre-2007, Window ➝ Hide), closing Excel, and clicking Yes
to save changes to the workbook you just hid. Now place
this workbook in your XLSTART folder. All the workbooks
you hide and place within the XLSTART folder will open as
hidden workbooks each time you start Excel.

Don’t be tempted to place too many workbooks into this
folder, especially large ones, as all of them will open when
you start Excel. Too many open workbooks can greatly slow
down Excel’s performance.

Naturally, if you change your mind and decide to go back to a blank default
workbook, simply remove the appropriate workbook or workbook tem-
plate from the XLSTART folder.

H A C K

#7
Create an Index of Sheets in Your Workbook Hack #7

If you’ve spent much time in a workbook with many worksheets, you know
how painful it can be to find a particular worksheet. An index sheet available
to every worksheet is a navigational must-have.

Using an index sheet will enable you to quickly and easily navigate through-
out your workbook so that with one click of the mouse you will be taken
exactly where you want to go, without fuss. You can create an index in a few

24 | Chapter 1, Reducing Workbook and Worksheet Frustration

#7 Create an Index of Sheets in Your Workbook
HACK

ways: by hand, auto-generated by code, or as a context-sensitive menu
option.

Creating an Index Sheet by Hand
You might be tempted to simply create the index by hand. Create a new
worksheet, call it Index or the like, enter a list of all your worksheets’ names,
and hyperlink each to the appropriate sheet by selecting Insert ➝ Hyperlink
under Link options (pre-2007, Insert ➝ Hyperlink…) or by pressing Ctrl/c-
K. Although this method is probably sufficient for limited instances in which
you don’t have too many sheets and they won’t change often, you’ll be stuck
maintaining your index by hand.

Auto-Generate an Index Using VBA
An alternative is to use VBA to auto-generate the index. The following code
will automatically create a clickable, hyperlinked index of all the sheets you
have in the workbook. The index is re-created each time the sheet that
houses the code is activated.

This code should live in the private module for the Sheet object. Insert a new
worksheet into your workbook and name it something appropriate—Index,
for instance. Right-click the index sheet’s tab and select View Code from the
context menu or select Alt/Option-F11.

Enter the following Visual Basic code:

Private Sub Worksheet_Activate()
Dim wSheet As Worksheet
Dim l As Long
l = 1
 With Me
 .Columns(1).ClearContents
 .Cells(1, 1) = "INDEX"
 .Cells(1, 1).Name = "Index"
 End With

 For Each wSheet In Worksheets
 If wSheet.Name <> Me.Name Then
 l = l + 1
 With wSheet
 .Range("A1").Name = "Start" & wSheet.Index
 .Hyperlinks.Add Anchor:=.Range("A1"), Address:="", SubAddress:= _
 "Index", TextToDisplay:="Back to Index"
 End With
 Me.Hyperlinks.Add Anchor:=Me.Cells(l, 1), Address:="", _
 SubAddress:="Start" & wSheet.Index, TextToDisplay:=wSheet.Name
 End If
 Next wSheet
End Sub

Create an Index of Sheets in Your Workbook #7

Chapter 1, Reducing Workbook and Worksheet Frustration | 25

HACK

Press Alt/c-Q to get back to your workbook and then save your changes.
To make the code run, you will first need to deactivate your worksheet
(select another sheet) and select the index sheet.

Notice that in the same way you name a range of cells, the code names cell
A1 on each sheet Start, plus a unique whole number representing the index
number of the sheet. This ensures that A1 on each sheet has a different
name. If A1 on your worksheet already has a name, you should consider
changing any mention of A1 in the code to something more suitable—an
unused cell anywhere on the sheet, for instance.

Be aware that if you select the Office button ➝ Prepare ➝

Properties ➝ Document Properties ➝ Advanced Properties
([pre-2007, File ➝ Properties ➝ Summary) and enter a URL
as a hyperlink base, the index created from the preceding
code might not work. A hyperlink base is a path or URL that
you want to use for all hyperlinks with the same base address
that are inserted in the current document.

Link to the Index from a Context Menu
The third way of constructing an index is to add a link to the list of sheets as
a context-menu item, keeping it just a right-click away. We’ll have that link
open the standard workbook tabs command bar. You generally get to this
command bar by right-clicking any of the sheet tab scroll arrows on the bot-
tom left of any worksheet, as shown in Figure 1-11.

To link that tab’s command bar to a right-click in any cell, enter the follow-
ing code in the private module of ThisWorkbook:

Private Sub Workbook_SheetBeforeRightClick _
(ByVal Sh As Object, ByVal Target As Range, Cancel As Boolean)

Figure 1-11. Tabs command bar displayed by right-clicking the sheet scroll tabs

26 | Chapter 1, Reducing Workbook and Worksheet Frustration

#8 Limit the Scrolling Range of Your Worksheet
HACK

Dim cCont As CommandBarButton
 On Error Resume Next
 Application.CommandBars("Cell").Controls("Sheet Index").Delete
 On Error GoTo 0
 Set cCont = Application.CommandBars("Cell").Controls.Add _
 (Type:=msoControlButton, Temporary:=True)
 With cCont
 .Caption = "Sheet Index"
 .OnAction = "IndexCode"
 End With
End Sub

Next, you’ll need to insert a standard module to house the IndexCode macro,
called by the preceding code whenever the user right-clicks in a cell. It is
vital that you use a standard module next, as placing the code in the same
module as Workbook_SheetBeforeRightClick will mean Excel will not know
where to find the macro called IndexCode.

Select Insert ➝ Module and enter the following code:

Sub IndexCode()
 Application.CommandBars("workbook Tabs").ShowPopup
End Sub

Press Alt/c-Q to get back to the Excel interface, then save your workbook.

Now, right-click within any cell on any worksheet and you should see a new
menu item called Sheet Index that will take you right to a list of sheets in the
workbook.

H A C K

#8
Limit the Scrolling Range of Your Worksheet Hack #8

If you move around your spreadsheet a lot, or if you have data you don’t want
readers to explore, you might find it convenient to limit the visible area of
your spreadsheet to only that which has actual data.

All Excel worksheets created in Excel 2007 have a column limit of 16,384
(256, A to IV, in previous versions) and a row limit of 1,048,576 (65,536
pre-2007). More often than not, your worksheet uses only a small percent-
age of the cells available to you. A nice bit of spring cleaning limits the work-
sheet’s scrollable area to just the part containing the data you want a user to
see. You then can place data you do not want a user to see outside the scrol-
lable area. Doing this also can make it less daunting to scroll around in a
worksheet, as it is not uncommon for users to find themselves at row 50,000
and then start screaming that they are unable to find any data in a work-
sheet. You can do this by hiding rows and columns, by specifying a valid
range, or by activating only the used range.

Limit the Scrolling Range of Your Worksheet #8

Chapter 1, Reducing Workbook and Worksheet Frustration | 27

HACK

Hiding Rows and Columns
The easiest way to establish boundaries is simply to hide all the unused col-
umns and rows. On your sheet, locate the last row containing data and
select the entire row below it by clicking the row label. Press the Ctrl and
Shift keys while pressing the down arrow to select all rows beneath. Select
Home ➝ Format ➝ Hide & Unhide ➝ Hide Rows or right click and select
Hide (pre-2007, Format ➝ Row ➝ Hide) to hide them all. Do the same thing
for unused columns; find the last-used column, select the entire column to
the right of it, press the Ctrl and Shift keys while pressing the right arrow,
and then again on the Home tab, select Format ➝ Hide & Unhide ➝ Hide
Columns (pre-2007, Format ➝ Column ➝ Hide). If all went according to
plan, your useful cells should be surrounded by a moat past which you can-
not scroll.

Specifying a Valid Range
The second way to establish boundaries is to specify a valid range in the
worksheet’s Properties window. Right-click the sheet’s tab at the bottom left
of the window and select View Code from the context menu. If you are
using a version of Excel before 2007, you may need to select View ➝ Project
Explorer (Ctrl-R) on Windows to visit the Project Explorer (it is always visi-
ble on the Mac). If the Properties window isn’t visible, press F4 to make it
appear. Select the appropriate worksheet and visit the ScrollArea property
in the Properties window.

Now, from within the Project Explorer, select the worksheet you want the
scroll area limited to, and then, from the Properties window (shown in
Figure 1-12), go down to the ScrollArea property. In the associated value
field to the right, enter the preferred boundaries of your worksheet—
A1:G50, for instance.

You will be unable to scroll outside the area you have specified. Unfortu-
nately, Excel will not save this setting after you close the window. This
means you need a very simple macro to automatically set the scroll area to
the desired range by placing some code in the worksheet_Activate event.

Right-click the Sheet Name tab on which the scroll area should be limited,
select View Code, and then enter the following:

Private Sub Worksheet_Activate ()
Me.ScrollArea = "A1:G50"
End Sub

As usual, press Alt/c-Q to return to Excel proper and save your workbook.

28 | Chapter 1, Reducing Workbook and Worksheet Frustration

#8 Limit the Scrolling Range of Your Worksheet
HACK

Although you will not see a visible clue, such as the moat of the first
method, you won’t be able to scroll or select anything outside the specified
area.

Figure 1-12. Project Explorer Properties window

Limit the Scrolling Range of Your Worksheet #8

Chapter 1, Reducing Workbook and Worksheet Frustration | 29

HACK

Any macro that tries to select a range outside this scroll area
(including selections of entire rows and columns) will no
longer be able to do so. This is true particularly for recorded
macros, as they often use selections.

If your macros do select a range outside the scrollable area, you can easily
modify any existing macros so that they are not limited to a specific scroll
area while operating. Simply select View ➝ Macros under Macro options, or
Developer ➝ Macros under Code options, or Alt/Option-F8 (pre-2007,
Tools ➝ Macro ➝ Macros…), then locate your macro name, select it, and
click Edit.

Place the following line of code as the very first line of code:

ActiveSheet.ScrollArea = ""

As the very last line of code in your macro, place the following:

ActiveSheet.ScrollArea = "A1:G50"

So, your code should look something like this:

Sub MyMacro()
'
' MyMacro Macro
' Macro recorded 19/9/2007 by OzGrid.com
'

'
ActiveSheet.ScrollArea = ""
 Range("Z100").Select
 Selection.Font.Bold = True
ActiveSheet.ScrollArea = "A1:G50"
Sheets("Daily Budget").Select
ActiveSheet.ScrollArea = ""
 Range ("T500").Select
 Selection.Font.Bold = False
ActiveSheet.ScrollArea = "A1:H25"

End Sub

Our recorded macro selects cell Z100 and formats it to boldface. It then
selects the worksheet named Daily Budget, selects cell T500 on that sheet,
and un-bolds it. We added ActiveSheet.ScrollArea = "" so that any cell on
the worksheet can be selected and then the scroll area can be set back to our
desired range. When we select another worksheet (Daily Budget), we again
allow the code to select any cell on this worksheet and set the scroll area for
this worksheet back to the desired range.

30 | Chapter 1, Reducing Workbook and Worksheet Frustration

#9 Lock and Protect Cells Containing Formulas
HACK

Activating Only the Used Range
A third method, the most flexible, automatically limits the scroll area to the
used range on the worksheet within which you place the code. To use this
method, right-click the Sheet Name tab on which you want the scroll area
limited, select View Code, and enter the following code:

Private Sub Worksheet_Activate()
 Me.ScrollArea = Range(Me.UsedRange, Me.UsedRange(2,2)).Address
End Sub

Now press Alt/c-Q or click the X in the top righthand corner to get back to
Excel and save your workbook.

The preceding macro will run automatically each time you activate the
worksheet in which you placed it. However, you might encounter a prob-
lem with this macro when you need to actually enter data outside the exist-
ing used range. To avoid this problem, simply use a standard macro that will
reset your scroll area back to the full sheet. Select Developer ➝ Visual Basic
under Code options (pre-2007, Tools ➝ Macro ➝ Visual Basic Editor), then
select Insert ➝ Module, and enter the following code:

Sub ResetScrollArea()
 ActiveSheet.ScrollArea = ""
End Sub

Now press Alt/c-Q or click the X in the top-righthand corner to get back to
Excel and save your workbook.

If you want to, you can make your macro easier to run by assigning it to a
shortcut key. Select the view tab, then Macros, or press Alt/Option-F8 (pre-
2007, Tools ➝ Macro ➝ Macros…). Select ResetScrollArea (the name of
your macro), click Options, and assign a shortcut key.

Each time you need to add data outside the established bounds of your
worksheet, run the ResetScrollArea macro to readjust the borders. After you
run the macro, make any changes you were unable to make while the scroll
area was limited. When you’re finished, activate any other worksheet and
then activate the worksheet you just modified. Activation of the worksheet
will cause the code to run and limit the scroll area to the desired range.

H A C K

#9
Lock and Protect Cells Containing Formulas Hack #9

You may want to let users change cells that contain data without providing
them access to change formulas. You can keep cells containing formulas
under lock and key without having to protect your entire sheet or workbook.

When we create a spreadsheet, most of us need to use formulas of some
sort. Sometimes, however, you might not want other users to tamper/delete/
overtype any formulas you included on your spreadsheet. The easiest and

Lock and Protect Cells Containing Formulas #9

Chapter 1, Reducing Workbook and Worksheet Frustration | 31

HACK

most common way of barring people from playing with your formulas is to
protect your worksheet. However, protecting your worksheet doesn’t just
prevent users from tampering with your formulas; it also stops users from
entering anything at all. Sometimes you do not want to go this far. Three
solutions are: locking the formula cells, using data-validation on the for-
mula cells, and auto-toggling worksheet protection, although none of these
solutions is bulletproof.

Locking Formula Cells
By default, all cells on a worksheet are locked; however, this has no effect
unless worksheet protection has been applied. Here is a very easy way to
apply worksheet protection so that only formula cells are locked and
protected.

Select all cells on your worksheet, either by pressing Ctrl/c-A or by clicking
the square at the intersecting point of column A and row 1. Then select
Home ➝ Format ➝ Lock Cell (under Cells options, toggles to Lock/unlock
cells), or if you prefer you can right-click and select Format Cells and on the
Protection tab, uncheck the Locked checkbox to remove the tick (pre-2007,
select Format ➝ ➝Cells ➝ Protection and uncheck the Locked checkbox to
remove the tick). Click OK.

Now select any single cell, select Home ➝ Find & Select ➝ Go To Special or
Ctrl-G, or F5 and click Special (pre-2007, Edit ➝ Go To… ➝ Special). You’ll
see a dialog box such as that in Figure 1-13.

Figure 1-13. The Go To Special dialog

32 | Chapter 1, Reducing Workbook and Worksheet Frustration

#9 Lock and Protect Cells Containing Formulas
HACK

Select Formulas from the Go To Special dialog and, if needed, limit the for-
mulas to the subtypes underneath. Click OK. With only the formula cells
selected, under Cells options choose Format ➝ Lock Cell (pre-2007, select
Format ➝ Cells ➝ Protection, check the Locked checkbox to insert a tick),
and click OK.

Now you need to protect your sheet. Select Format ➝ Protect sheet under
the Cells options (pre-2007, Tools ➝ Protection ➝ Protect Worksheet).
Apply a password if required and click OK.

The preceding method certainly saves a lot of time and eliminates possible
errors locating formulas so that you can protect them. Unfortunately, it can
also prevent users from using certain features, such as sorting, formatting
changes, aligning text, and many others you might not be concerned with,
even when in an unlocked cell.

Data Validation
Using data validation doesn’t rely on worksheet protection at all, and
instead simply prevents accidental overtyping of formula cells.

Data validation is far from bulletproof when it comes to pre-
venting users from entering nonvalidated data into cells.
Users can still paste into a validated cell any data they want
and, in doing so, remove the validation from that cell unless
the copied cell also contains data validation, in which case
this validation would override the original validation.

To see what we mean, select any single cell, press Ctrl-G or select Home ➝

Find & Select ➝ Go to Special, or press F5 and click Special (pre-2007, Edit
➝ Go To… ➝ Special). Now select Formulas from the Go To Special dialog
and, if needed, limit the formulas to the subtypes underneath. Click OK.

With only the Formula cells selected, select Data ➝ Data Validation, under
Data Tools options (pre-2007, Data ➝ Validation). Then, select the Settings
page tab, choose Custom from the Allow: box, and in the Formula box,
enter ="", as shown in Figure 1-14. Click OK.

This method will prevent a user from accidentally overtyping into any for-
mula cells, although, as stressed in the earlier warning, it is not a fully secure
method and should be used only for accidental overtyping, etc. However,
the big advantage to using this method is that all of Excel’s features are still
usable on the worksheet.

Lock and Protect Cells Containing Formulas #9

Chapter 1, Reducing Workbook and Worksheet Frustration | 33

HACK

Auto-Toggle Worksheet Protection
This method dynamically turns worksheet protection on and off, but will
also enable you to use all of Excel’s features when you are in a cell that is not
locked. To start, ensure that only the cells you want protected are locked
and that all other cells are unlocked. Right-click the Sheet Name tab, select
View Code from the pop-up menu, and enter the following code:

Private Sub Worksheet_SelectionChange(ByVal Target As Range)
 If Target.Locked = True Then
 Me.Protect Password:="Secret"
 Else
 Me.Unprotect Password:="Secret"
 End If
End Sub

If no password is used, omit Password:="Secret". If a password is used,
change the word Secret to your password. Press Alt/c-Q or click the X in
the top-righthand corner to get back to Excel and save your workbook.

If you’re worried about your users getting into the macro
and disabling it, you can password-protect your macro by
selecting Tools ➝ VBAProject Properties, going to the Pro-
tection tab, selecting “Lock Project for Viewing”, and enter-
ing a password.

Now, each time you select a cell that is locked, your worksheet will auto-
matically protect itself. The moment you select any cell that is not locked,
your worksheet will unprotect itself.

Figure 1-14. Validation formulas

34 | Chapter 1, Reducing Workbook and Worksheet Frustration

#10 Find Duplicate Data Using Conditional Formatting
HACK

This hack doesn’t work perfectly, though it usually works
well enough. The keyword used in the code, Target, will
refer only to the cell that is active at the time of selection. For
this reason, it is important to note that if a user selects a
range of cells (with the active cell being an unlocked cell), it
is possible for him to delete the entire selection because the
target cell is unlocked and, therefore, the worksheet will
automatically unprotect itself.

H A C K

#10
Find Duplicate Data Using Conditional Formatting Hack #10

Excel’s conditional formatting is generally used to identify values in particular
ranges, but we can hack it to identify duplicated data within a list or table.
The improved functionality in Conditional Formatting in Excel 2007 makes
this hack suitable for prior versions only.

People frequently have to identify duplicated data within a list or table, and
doing this manually can be very time-consuming and error-prone. To make
this job much easier, you can hack one of Excel’s standard features, Condi-
tional Formatting.

Take, for example, a table of data with a range of A1:H100. Select the
top-left cell, A1, and drag it over and down to H100. It is important that A1
be the active cell in your selection, so don’t drag from H100 to A1. Select
Format ➝ Conditional Formatting... and, in the Conditional Formatting dia-
log box, select Formula Is from the top-left pop-up menu. In the field to its
right, enter the following code:

=COUNTIF(A1:H100,A1)>1

Click the Format tab (that’s the Format button under Mac OS X), followed
by the Patterns tab, and select a color you want applied to visually identify
duplicate data. Click OK to return to the Conditional Formatting dialog box
and click OK again to apply the formatting.

All those cells containing duplicate data should be lit up like a Christmas
tree in the color you chose, making it much easier to eyeball duplicate data
and delete, move, or alter it as appropriate.

It is vital to note that as A1 was the active cell in your selection, the cell
address is a relative reference and is not absolute (unlike your table of data,
A1:H100). By using conditional formatting in this way, Excel automati-
cally knows to use the correct cell as the COUNTIF criterion. By this we mean
that the conditional formatting formula in cell A1 will read as follows:

=COUNTIF(A1:H100,A1)>1

Find Data That Appears Two or More Times Using Conditional Formatting #11

Chapter 1, Reducing Workbook and Worksheet Frustration | 35

HACK

while in cell A2, it will read:

=COUNTIF(A1:H100,A2)>1

in cell A3, it will read:

=COUNTIF(A1:H100,A3)>1

and so forth.

H A C K

#11
Find Data That Appears Two or More Times Using
Conditional Formatting Hack #11

While Excel’s Conditional Formatting is vastly improved in Excel 2007 and
can easily take care of duplicated data, it still does not offer the facility to
identify data that appears two or more times.

If you need to identify data that appears two or more times, you can use
Conditional Formatting with as many conditions/rules as your system mem-
ory will allow (note that you can use up to three different conditions only in
versions pre-2007) and color-code each condition for visual identification.
To do this, select cell A1 (the cell in the top-left corner) and drag it down to
H100. Again, it is important that A1 is the active cell in your selection.

Now, select Home ➝ Conditional Formatting ➝ New Rule under Styles
options. For Select Rule Type, choose “Use a Formula to determine which
cells to format” and then click in the white strip under “Format values
where this formula is true.”

Pre-2007, select Format ➝ Conditional Formatting… and,
from the box containing the text Cell Value Is, select For-
mula Is. Click in the white box to the right of Formula Is.

Enter the following formula:

=COUNTIF(A1:H100,A1)>3

Click the Format button, select a color you want to apply to identify data
that appears more than three times, and click OK; or for pre-2007 versions,
go to the Patterns page tab, select a color, and click OK.

Click New Rule (on the Mac, click Add>>) and repeat the previous steps,
entering the following formula (pre-2007, use the Condition 2 box and
select Formula Is) and selecting a different color this time:

 =COUNTIF(A1:H100,A1)=3

36 | Chapter 1, Reducing Workbook and Worksheet Frustration

#12 Tie Custom Toolbars to a Particular Workbook
HACK

Instead of retyping the formula, highlight it after you have
entered it, then press Ctrl/c-C to copy, then paste where
necessary by pressing Ctrl/c-V to paste, and then change >3
to =3.

Click New Rule, repeat the steps a third time (pre-2007, from the Condition
3 box, select Formula Is), and add the following formula:

 =COUNTIF(A1:H100,A1)=2

Again, select a different color from those previously chosen. You will have
different cell colors depending on the number of times your data appears
within your table of data.

Again, it is vital to note that as A1 was the active cell in your selection, the
cell address is a relative reference and is not absolute (unlike your table of
data, A1:H100). By using conditional formatting in this way, Excel
automatically knows to use the correct cell as the COUNTIF criterion.

In Excel 2007, your Conditions are limited only by your sys-
tem memory, whereas in pre-Excel 2007 versions, the limit is
3 Conditions.

H A C K

#12
Tie Custom Toolbars to a Particular Workbook Hack #12

Although most toolbars you build apply to just about any work you do,
sometimes the functionality of a custom toolbar applies to only one workbook
in particular. With this hack, you can tie custom toolbars to their respective
workbooks. The Quick Access Toolbar options in Excel 2007 make this hack
suitable for prior versions only.

If you’ve ever created a custom toolbar, you have no doubt noticed that the
toolbar is loaded and visible regardless of which workbook you have open.
What if your custom toolbar contains recorded macros meant only for a spe-
cific workbook? It’s probably best to tie special-purpose custom toolbars to
the appropriate workbooks to reduce both clutter and possible confusion.
You can do this by inserting some very simple code into the private module
of the workbook.

To get to this private module, right-click the Excel icon, which you’ll find at
the top left of your screen, next to File, and select View Code.

Tie Custom Toolbars to a Particular Workbook #12

Chapter 1, Reducing Workbook and Worksheet Frustration | 37

HACK

This shortcut isn’t available on the Mac. You’ll have to open
the Visual Basic Editor (VBE) by pressing Option-F11 or by
selecting Tools ➝ Macro ➝ Visual Basic Editor. Once you’re
there, Ctrl-click or right-click This Workbook in the Projects
window.

Then, enter this code:

Private Sub Workbook_Activate()
 On Error Resume Next
 With Application.CommandBars("MyCustomToolbar")
 .Enabled = True
 .Visible = True
 End With
 On Error GoTo 0
End Sub

Private Sub Workbook_Deactivate()
 On Error Resume Next
 Application.CommandBars("MyCustomToolbar").Enabled = False
 On Error GoTo 0
End Sub

Change the text MyCustomToolbar to the name of your own custom toolbar. To
get back to the Excel interface, close the module window or press Alt/c-Q,
then save your workbook. Whenever you open or activate another work-
book, your custom toolbar disappears and isn’t accessible. Reactivate the
appropriate workbook, and poof! The toolbar’s back.

You even can take this down a level, making the custom toolbar available
only to a specific worksheet within the workbook. Right-click the Sheet
Name tab of the sheet on which you want the toolbar to be accessible and
select View Code. Enter this code:

Private Sub Worksheet_Deactivate()
 On Error Resume Next
 Application.CommandBars("MyCustomToolbar").Enabled = False
 On Error GoTo 0
End Sub

Private Sub Worksheet_Activate()
 On Error Resume Next
 With Application.CommandBars("MyCustomToolbar")
 .Enabled = True
 .Visible = True
 End With
 On Error GoTo 0
End Sub

Now press Alt/c-Q or close the window to get back to Excel.

38 | Chapter 1, Reducing Workbook and Worksheet Frustration

#13 Outsmart Excel’s Relative Reference Handler
HACK

The first procedure, Worksheet_Deactivate(), will fire automatically each
time you leave that particular worksheet to activate another one. The firing
of the code changes the Enable property of your custom toolbar to False so
that it cannot be seen or displayed. The second procedure is fired each time
you activate the worksheet and sets the Enable property of your custom tool-
bar to True so that it can be made visible. The line of code that reads
Application.CommandBars("MyCustomToolbar").Visible = True simply dis-
plays your custom toolbar again, so the user can see it. Switch worksheets
and the toolbar is gone; switch back and it reappears like magic.

H A C K

#13
Outsmart Excel’s Relative Reference Handler Hack #13

In Excel, a formula reference can be either relative or absolute, but
sometimes you want to move cells that use relative references without
making the references absolute. Here’s how.

When a formula needs to be made absolute, you use the dollar sign ($) in
front of the column letter and/or row number of the cell reference, as in
A1. Once you do this, no matter where you copy your formula, the for-
mula will reference the same cells. Sometimes, however, you may have
already set up a lot of formulas that contain not absolute references, but rel-
ative references. You would usually do this so that when you copy the origi-
nal cell formula down or across, the row and column references change
accordingly.

If you already set up your formulas using only relative references, or per-
haps a mix of relative and absolute references, you can reproduce the same
formulas in another range on the same worksheet, another sheet in the same
workbook, or perhaps even another sheet in a different workbook.

To do this without changing any range references inside the formulas, select
the range of cells you want to copy and then select the Home tab ➝ Find &
Select ➝ Replace (pre-2007, Edit ➝ Replace…). In the Find What: box, type
an equals sign (=) and in the Replace With: box, type an ampersand (&). (Of
course, these could be any symbols you are sure are not being used in any of
the formulas.) Click Replace All. The equals sign in all the formulas on your
worksheet will be replaced with the ampersand sign.

You can now simply copy this range, paste it to its desired destination, select
the range you just pasted, and select the Home tab ➝ Find & Select ➝

Replace (pre-2007, Edit ➝ Replace…). This time replace the ampersand sign
with an equals sign (don’t forget to do this with the source range you just
copied). Your formulas now should be referencing the same cell references
as your originals.

Remove Phantom Workbook Links #14

Chapter 1, Reducing Workbook and Worksheet Frustration | 39

HACK

H A C K

#14
Remove Phantom Workbook Links Hack #14

Ah, phantom links. You open your workbook and are prompted to “Update
Links,” but there are no links! How can you update links when they don’t
exist?

External links are links that reference another workbook. Unexpected exter-
nal linking can occur for various reasons, many of them stemming from
moving or copying charts, chart sheets, or worksheets into another work-
book. Knowing why they’re there doesn’t always help you find them,
though. Here are a few ways to deal with the spooky phantom link problem.

First, you need to see whether you have any real external links (nonphan-
tom) that you forgot about. If you are not sure whether you have real exter-
nal links, start looking in the most obvious place: your formulas. You can do
this by ensuring no other workbooks are open and then searching for [*]
within the formulas on each worksheet. Close all other workbooks to ensure
that any formula links will include [*], where the asterisk represents a wild-
card string.

Excel 97 doesn’t provide the option of searching the entire
workbook, but you can search all worksheets in a workbook
by grouping them. You do this by right-clicking any Sheet
Name tab and choosing Select All Sheets. In later versions of
Excel, Find… and Replace... provide the option of searching
within the sheet or workbook.

Once you find the formula links, simply change the formula accordingly or
delete it altogether. Whether you change the formula or delete it depends on
the situation, and only you can decide which route to take.

You also might want to consider going to the Microsoft Office Download Cen-
ter (located at http://www.microsoft.com/downloads/Search.aspx?displaylang=en)
and downloading the Delete Links Wizard. The Delete Links Wizard is
designed to find and delete links such as defined name links, hidden name
links, chart links, Microsoft query links, and object links. However, in our expe-
rience, it does not find phantom links.

Once you’re confident there are no formula links, you need to ensure that
you don’t have any nonphantom links lurking somewhere else. To do this,
we like to start from within the Excel workbook containing the phantom
links. Select Formulas ➝ Name Manager under Defined Names options and
check in the Refers To: column to make sure none of the names are referenc-
ing a different workbook (pre-2007, select Insert ➝ Name ➝ Define and

http://www.microsoft.com/downloads/Search.aspx?displaylang=en

40 | Chapter 1, Reducing Workbook and Worksheet Frustration

#14 Remove Phantom Workbook Links
HACK

scroll through the list of names, clicking to highlight each one and looking
in the Refers To: box at the bottom).

Pre-2007 users, instead of clicking each name in the Define
Name dialog, can insert a new worksheet and select Insert
➝ Name ➝ Paste. Then, from the Paste Name dialog, click
Paste Link. This will create a list of all the names in your
workbook, with their referenced ranges in the correspond-
ing column.

Excel 2007 users can see all the names in the Define Name
dialog easily, but if you wish to paste to a workbook, select
Formulas ➝ Use in Formula ➝ Paste Names, then select the
Paste List button from the Paste List dialog.

F3 will also bring up the Paste Name dialog and works in all
versions.

If any of the names are pointing outside your workbook, you’ve found the
source of at least one link that would prompt the updating question. Now
it’s up to you to decide whether you want to change this range name to refer
only to the workbook itself or leave it as it is.

Another potential source of links is in your charts. It’s possible that your
charts have the same problem we just explained. You should check that the
data ranges and the X-axis labels for the chart aren’t referencing an external
workbook. Once again, you get to decide whether the link you’ve found is
correct.

Links also can lurk in objects, such as text boxes, autoshapes, etc. Objects
can try to reference an external workbook. The easiest way to locate objects
is to select any single cell on each worksheet and then select Home ➝ Find &
Select ➝ Go to Special or click F5 and check the Objects option, then click
OK (pre-2007, Edit ➝ Go To… ➝ Special, check the Objects option, and
click OK). This will select all objects on the worksheet. You should do this
on a copy of your workbook. Then, with all objects selected, you can delete,
save, close, and reopen your copy to see whether this has eliminated the
problem.

Finally, the last not-so-obvious place to check for real links is in the hidden
sheets that you might have cleverly created and forgotten about. Unhide
these sheets by selecting View ➝ Unhide under Window options (pre-2007,
Format ➝ Sheet ➝ Unhide). If the Unhide option on the right-click Sheet
submenu is grayed out, that means you have no hidden sheets. (If you think
there are sheets that don’t turn up in the menu, see “Hide Worksheets So
That They Cannot Be Unhidden” [Hack #5] for more information.)

Remove Phantom Workbook Links #14

Chapter 1, Reducing Workbook and Worksheet Frustration | 41

HACK

Now that you have eliminated the possibility of real links, it’s time to elimi-
nate the phantom links. Go to the haunted workbook with the phantom
links and select Data ➝ Edit Links under Connection options (pre-2007,
Edit ➝ Links…). Sometimes you can simply select the unwanted link, click
Change Source, and then refer the link back to itself. Often, though, you will
be told that one of your formulas contains an error, and you will not be able
to do this.

If you can’t take the easy way out, note to which workbook Excel thinks it is
linking (we’ll call it the well-behaved workbook). Create a real link between
the two by opening both workbooks. Go to the problem workbook and, in
any cell on any worksheet, type =. Now click a cell in the well-behaved
workbook and press Enter so that you have a true external link to the other
workbook.

Save both workbooks, but don’t close them yet. While in the problem work-
book, select Data ➝ Edit Links (pre-2007, Edit ➝ Links…) and use the
Change Source button to refer all links to the well-behaved workbook to
which you just purposely created a link. Save your workbook again and
delete the cell in which you created the true external link. Finally, save your
file.

This often eliminates the offending phantom link, as Excel now realizes you
have deleted the external link to the workbook. If this does not solve the
problem, however, try these next steps, but make sure you save a copy of
your workbook first.

The following process involves deleting data permanently.
Therefore, before you begin, create a backup copy of your
workbook. Neglecting to do so could create new problems
for you.

With the problem workbook open, delete one sheet, save, and then close
and re-open the workbook. If you are not prompted to update your missing
links, the sheet you deleted contained the phantom link. This should solve
the problem, but if it doesn’t, repeat the first step for each sheet in the work-
book. You will need to add a new sheet before you delete the last sheet, as
any workbook must have at least one sheet.

If this technique worked, here’s what you should do next. Open the copy of
your workbook (the one that still has data in it) and make another copy.
You’ve got to work with the problem worksheet (or worksheets) and use the
process of elimination to discover where the problem is in the worksheet.

42 | Chapter 1, Reducing Workbook and Worksheet Frustration

#15 Reduce Workbook Bloat
HACK

With the problem worksheet active, select a chunk of cells (about 10 x 10)
and then select Home ➝ Clear ➝ Clear All under Editing options (pre-2007,
Edit ➝ Clear ➝ All). Are you absolutely sure you saved a copy? Save, close,
and reopen the problem worksheet. If you are not prompted to update those
links, you found the problem and your reward is to redo that block of cells.
If you are prompted to update the links, continue deleting cells until you are
no longer prompted. Then redo the badly behaved cells.

We hope these techniques will save you some of the frustration that arises
when those dreaded phantom links appear in your workbooks. They’re not
easy or fun to perform, but they can get you out of trouble.

H A C K

#15
Reduce Workbook Bloat Hack #15

Ever notice that your workbook is increasing in size at an alarming rate for no
apparent reason? There are several causes of workbook bloat, and some
slimming solutions. The introduction of workbook size being limited only by
the amount of memory your system in Excel 2007 will allow should eliminate
workbook bloat; however, you may find some of the following tips handy if
you have a particularly large workbook.

Have you ever eaten so much that you can’t function properly? Workbook
bloat in Excel is much the same thing. Workbook bloat is a term for a work-
book that has had so much done to it that it has swollen to such a size that it
no longer functions correctly.

We checked out the size of a typical workbook containing a fairly large
amount of data. With data only, the workbook file size was 1.37 MB. Then
we added a pivot table referencing four entire columns for its data source
and noted that the file size increased dramatically to 2.4 MB. Add some for-
matting and your typical workbook size has blown out to almost double by
performing a few actions.

One of the more common causes of file bloat, particularly in earlier versions
of Excel, is the application of formats to entire columns or rows rather than
to just the data range in use. Another mistake is referencing entire columns
as the data source for charts and pivot tables rather than just the cells with
actual data in them. To fix these problems, you will need to eliminate all the
superfluous formatting and restrict your data source to only the useful range
of cells.

Before doing such refactoring, always make a copy of your
workbook for safekeeping.

Reduce Workbook Bloat #15

Chapter 1, Reducing Workbook and Worksheet Frustration | 43

HACK

Eliminating Superfluous Formatting
The first step in eliminating superfluous formatting is to figure out where
your worksheet’s data ends—e.g., the bottom righthand corner of your data,
if you will. Don’t rely on Find & Select ➝ Go To Special ➝ Last cell, (pre-
2007, Edit ➝ Go To… ➝ Special ➝ Last Cell), as this might take you to the
last cell containing formatting, not actual data. Having manually located the
cell you know to be your last cell containing legitimate data, highlight the
row immediately following it. While pressing the Ctrl and Shift keys, press
the down arrow on your keyboard to highlight all rows beneath that row
and select Home ➝ Clear ➝ Clear All to clear them (pre-2007, Edit ➝ Clear
➝ All).

Now apply the same logic to unwanted formatting lurking in your columns.
Locate the cell in the last column containing data and click the column
header of the column immediately to the right. Press Ctrl-Shift and the right
arrow on your keyboard to highlight all other columns to the right and then
select Home ➝ Clear ➝ Clear All under Edit options to clear them (pre-2007,
Edit ➝ Clear ➝ All).

Don’t be tempted to actually delete these rows or columns
rather than clearing them, as doing so often causes the
dreaded #REF! error in any cells of any formulas that might
reference them.

Save your workbook and take gleeful note of the change in its file size by
selecting the Office button ➝ Prepare ➝ Properties ➝ Document Properties
➝ Advanced Properties (pre-2007, File ➝ Properties… ➝ General).

Clean Up Your Macros
If you have macros, now you need to address the modules that the macro
code resides in. This is a fairly quick, painless, and straightforward process
that entails exporting all modules (this functionality is not available on Mac
OS X) and UserForms to your hard drive and then deleting the existing
modules and UserForms, pressing Save, and importing the modules you
exported.

To do this, go into the Visual Basic Editor and, from within the Project
Explorer, right-click each module and select Remove Module1 (or whatever
the name of the module happens to be). When you are asked whether you
want to export your module before removing it, say Yes, taking note of the
path.

44 | Chapter 1, Reducing Workbook and Worksheet Frustration

#15 Reduce Workbook Bloat
HACK

Do this for each module in turn, as well as for any UserForms you might
have. Don’t forget the private modules of your workbook and worksheets if
they house code as well. Once you have done all this, save the workbook.
Then, select File ➝ Import File and import each module and UserForm back
into your workbook. Following this process will create a text file of each
module and that, in turn, removes all extra baggage that the modules might
be holding.

The Web contains some free utilities that will automate this task to some
degree, but we have heard cases of these utilities making a mess of code or
even increasing file sizes. If you do use one of them, always save a backup
copy of your file first, as the developers will take no responsibility for any
loss of data.

Honing Data Sources
If, after performing the previous steps, you still believe your file size is unre-
alistically large, another possible suspect is referencing unused cells in Pivot-
Tables and PivotCharts. This is true particularly of PivotTables, as people
frequently reference all rows in order to avoid manually updating ranges as
new data is added. If this is your modus operandi, use dynamic named
ranges [Hack #47] for your data sources instead.

Cleaning Corrupted Workbooks
If you still believe your workbook is too large, it is possible that your work-
book or component sheets are corrupt. Unfortunately, determining a point
of corruption requires a manual process of elimination.

Again, we strongly advise you to save a copy of your work-
book before proceeding.

To be sure you’re not missing anything, unhide any hidden sheets by select-
ing View ➝ Unhide under Window options or right click and select Unhide
(pre-2007, Format ➝ Sheet ➝ Unhide). If this menu option is grayed out,
you have no hidden worksheets to worry about. With all your sheets visible,
start from the sheet on the far left and move one-by-one to the right. For
each in turn, delete it, save your workbook, and note its file size by selecting
the Office button ➝ Prepare ➝ Properties ➝ Document Properties drop-
down ➝ Advanced Properties (or File ➝ Properties ➝ General in pre-2007
versions). If the file size drops dramatically considering the amount of data
on that sheet, you’ve probably found your corruption.

Extract Data from a Corrupt Workbook #16

Chapter 1, Reducing Workbook and Worksheet Frustration | 45

HACK

To replace a corrupt sheet in your workbook, create a new worksheet, man-
ually select the data in the corrupt sheet, and cut (do not copy) and paste it
into the new sheet. Delete the corrupt sheet from your workbook, save, and
repeat.

By cutting rather than copying, Excel automatically will fol-
low the data to the new sheet, keeping references intact.

H A C K

#16
Extract Data from a Corrupt Workbook Hack #16

Workbook corruption can mean the loss of vital data, costing you more than
just money. This hack explores some methods that might recover your data.

Workbooks sometimes become corrupt for no apparent reason. This can
cause all sorts of problems, especially if the workbook is vital and for what-
ever reason you have no backup. Lesson 1: Always back up your data some-
where. Realistically, though, this does not always happen, and corruption
can, of course, occur right before your regularly scheduled backup.

To add to your frustration, even though you know your workbook is cor-
rupt, you sometimes might still be able to open it and even perform certain
actions in it.

If You Can Open Your Workbook
If you can open the offending workbook, before doing anything else, be sure
to save a copy of it; otherwise, you might regret it. If you have a copy, you
can always seek professional help!

Now, try opening the workbook in a later version of Excel and simply sav-
ing it again. Obviously this is not possible if you already are using the latest
version of Excel.

If this doesn’t work, try opening your workbook and saving the file in
HTML or HTM format (see the “What You Lose in HTML or HTM” side-
bar for a warning about these formats), then close the file and reopen it, this
time saving again in the format you require—e.g., .xlsx.

Finally, try opening your file and saving it in SYLK (.slk, for symbolic link)
format. Note that when you save a workbook in this format, only the active
worksheet is saved. So, you will have to do the same for each worksheet.
Reopen the file and save it in a desired format such as .xlsx.

46 | Chapter 1, Reducing Workbook and Worksheet Frustration

#16 Extract Data from a Corrupt Workbook
HACK

If You Cannot Open Your File
If your workbook is corrupt to the point that you cannot even open it, open
your spreadsheet in Microsoft Word or via the Spreadsheet viewer, which
can be downloaded from the Microsoft web site, then copy your data from
the open file (note that much of your formatting, formulas, etc, will be lost).

Next, open a new workbook and create an external link to the corrupt work-
book—e.g., ='C:\Documents and Settings\Raina\My Documents\[ChookSheet.
xls]Sheet1'!A1. Copy this link down as many rows and across as many

What You Lose in HTML or HTM
When saving in HTML or HTM format, the following features will be lost in
Excel 2007:

• New Excel 2007 features

• PivotTables and charts (they can be saved, but are lost when the file is
opened in this format again in Excel)

• VBA Projects

If you are using a pre-2007 version, the following features will be lost:

• Unused number formats

• Unused styles

• Data consolidation settings

• Scenarios

• Natural language formulas (they are converted to standard range
references)

• Custom function categories

• Strikethrough, subscript, and superscript elements

• Change History

• Customized page setup settings for charts that are embedded on a
worksheet

• List settings for ListBoxes and ComboBoxes from the Forms toolbar

• Conditional formatting that is stored on an XLM macro sheet

Also, shared workbooks in versions of Excel before Excel 2007 will no longer
be shared. The “Value (Y) axis crosses at category number” setting on the
Scale tab of the Format Axis dialog box is not saved if the “Value (Y) axis
crosses a maximum category” checkbox is checked. The “Vary colors by
point” setting in the Format Data Series dialog box is not saved if the chart
contains more than one data series.

Extract Data from a Corrupt Workbook #16

Chapter 1, Reducing Workbook and Worksheet Frustration | 47

HACK

columns as needed. Do the same for each worksheet in the workbook. If you
cannot remember any of the names of the worksheets, create any old sheet
name using the correct filename path, and Excel will display the sheet names
for you when you press Enter.

One final thing you can do is visit the OpenOffice.org web site and down-
load the free version of OpenOffice.org. Except for different names for dif-
ferent tools and commands, OpenOffice.org is very similar to Excel.
OpenOffice.org is based on the same basic spreadsheet structure as Excel,
making it simple for Excel users to use. In fact, about 96 percent of the for-
mulas used in Excel can be created and applied by using the spreadsheet in
OpenOffice.org.

To download the free version of OpenOffice.org, go to http://download.
openoffice.org/index.html and download it from the FTP site of your choice.
Then install the program. OpenOffice.org is also available for Macs.

In many cases, your Excel data can be recovered. However, no VBA code
can be recovered due to incompatibility between OpenOffice.org and Excel.

Sadly, if none of these methods works, you probably will have to pay to try
to have your workbook recovered with special software. One source where
such reputable software (for Windows) can be purchased belongs to the
authors of this book and is located at http://www.ozgrid.com/Services/
corrupt-file-recovery-index.htm.

After purchase and installation, run the ExcelFix program. Click Select File,
select a corrupt file, and then click Diagnose to recover the file. You should
now see the recovered file in the workbook viewer. Click Save Workbook to
save the workbook into a new readable file that you can open from Excel.

Also available is a demo version that does not enable you to save the file, but
all versions of the program enable you to start again and recover as many
files as you want.

http://download.openoffice.org/index.html
http://download.openoffice.org/index.html
http://www.ozgrid.com/Services/corrupt-file-recovery-index.htm
http://www.ozgrid.com/Services/corrupt-file-recovery-index.htm

48

Chapter 2C H A P T E R T W O

Hacking Excel’s Built-in Features
Hacks 17–43

Although Excel comes with a wide variety of standard features for manag-
ing and analyzing data, the boundaries of these features are often frustrat-
ing. The hacks in this chapter provide numerous ways in which you can
escape these boundaries and make Excel a much more powerful tool.

H A C K

#17
Validate Data Based on a List on Another
Worksheet Hack #17

Data validation makes it easy to specify rules your data must follow.
Unfortunately, Excel insists that lists used in data validation must appear on
the same worksheet as the data being validated. Fortunately, there are ways
to evade this requirement.

This hack provides two methods you can use to validate data based on a list
on another worksheet. The first method takes advantage of Excel’s named
ranges (which are covered in more detail in Chapter 3), and the second uses
a function call.

Method 1: Named Ranges
Perhaps the easiest and quickest way to overcome Excel’s data-validation
barrier is by naming the range where the list resides. To create a named
range, select the cells containing the list and enter a name in the Name box
that appears at the left end of the Formula bar. For the purposes of this
example, we will assume your range is called MyRange.

Select the cell in which you want the drop-down list to appear and then,
under the Data tab select Data Tools ➝ Data ➝ Validation (pre-2007, Data ➝

Validation). Select List from the Allow: field, and in the Source: box enter
=MyRange. Click OK.

Validate Data Based on a List on Another Worksheet #17

Chapter 2, Hacking Excel’s Built-in Features | 49

HACK

Because you used a named range, your list (even though it resides on
another worksheet) can now be used for the validation list.

Method 2: the INDIRECT Function
The INDIRECT function enables you to reference a cell containing text that
represents a cell address. You then can use that cell as a local cell reference,
even though it gets its data from another worksheet. You can use this fea-
ture to reference the worksheet where your list resides.

Assume your list resides on Sheet1 in the range A1:A8. Click any cell
on a different worksheet where you want to have this validation list (pick
list) appear. Then, under the Data tab, select Data ➝ Data Validation (pre-
2007, Data ➝ Validation). Choose List from the Allow: field. In the Source:
box, enter the following code:

=INDIRECT("Sheet1!A1:A8")

Ensure that the In-Cell drop-down checkbox is selected and click OK. The
list that resides on Sheet1 should appear in your drop-down validation list.

If the name of the worksheet on which your list resides contains spaces, you
need to use the INDIRECT function in the following way:

=INDIRECT("'Sheet 1'!A1:A8")

The difference here is that you type a single apostrophe immediately after
the first quotation mark and another single apostrophe immediately before
the exclamation point.

It is a good idea to always use the single apostrophe, regard-
less of whether your sheet name contains spaces. You will
still be able to reference a sheet with no spaces in its name,
and it makes it easier to make changes later.

The Pros and Cons of Both Methods
Named ranges and the INDIRECT function each have an advantage and a dis-
advantage.

The advantage of using a named range is that changes you make to the sheet
name will have no effect on the validation list. This highlights the INDIRECT
function’s disadvantage—namely, that any change you make to the sheet
name will not be reflected automatically within the INDIRECT function, so
you will have to manually change the function to correspond to the new
sheet name.

50 | Chapter 2, Hacking Excel’s Built-in Features

#18 Control Conditional Formatting with Checkboxes
HACK

The advantage of using the INDIRECT function is that the range you specify
will always be the same, whereas if you use a named range and you delete
cells/rows from your range, then the named range will adjust accordingly.

H A C K

#18
Control Conditional Formatting with Checkboxes Hack #18

Although conditional formatting is one of Excel’s most powerful features, it’s
a nuisance to turn it on and off through the ribbon. Adding checkboxes to
your worksheet that turn formatting on and off makes it much easier to read
data in any way you want, whenever you want.

Conditional formatting, a feature available since Excel 97, applies formats to
selected cells that meet criteria based on values or formulas you specify.
Although conditional formatting is usually applied based on cell values,
applying it based on formulas provides the flexibility to extend the condi-
tional formatting interface all the way to the spreadsheet grid.

Setting Up Checkboxes for Conditional Formatting
The checkboxes from the Form Controls—found under the Developer tab
by selecting Controls ➝ Insert (Forms toolbar for pre-2007 versions)—
return either a TRUE or FALSE value (checked/not checked) to their linked cell.
By combining a checkbox from the Form Controls with conditional format-
ting using the “Use a formula to determine which cells to format” option
(Formula Is in pre-2007 versions), as shown in Figure 2-1, you can turn con-
ditional formatting on and off via a checkbox.

When used in conjunction with a formula (such as the “Use
a formula to determine which cells to format” option), con-
ditional formatting automatically formats a cell whenever the
formula result returns TRUE. For this reason, any formula you
use in this hack must return either TRUE or FALSE.

To see what we mean, try this simple example, which hides data via the use
of conditional formatting and a checkbox. For this example, we will use the
range A1:A10, filled consecutively with the numbers 1-10. To obtain a
checkbox from the Form Controls, go to the Developer Tab Controls
options and select Insert (pre-2007, go to the Forms toolbar by selecting
View ➝ Toolbars ➝ Forms) and click the checkbox, then click near cell C1
on your sheet to position the check. Right-click the checkbox and select For-
mat Control ➝ Control. Type C1 in the Cell Link box, as shown in
Figure 2-2, and click OK.

Control Conditional Formatting with Checkboxes #18

Chapter 2, Hacking Excel’s Built-in Features | 51

HACK

When you select the checkbox floating over cell C1, it will return TRUE or
FALSE to cell C1. As you do not need to see these values, select cell C1 and
change the font color to white.

Figure 2-1. The Conditional Formatting dialog with the Formula option

Figure 2-2. The Format Control dialog

52 | Chapter 2, Hacking Excel’s Built-in Features

#18 Control Conditional Formatting with Checkboxes
HACK

Now select cells A1:A10, starting with A1. Select the Home tab, then
under the Styles options select Conditional Formatting ➝ New Rule. Select
the “use a formula to determine which cells to format” option—pre-2007,
go to Format ➝ Conditional Formatting..., and then select Formula Is (it will
initially read Cell Value Is). Under “Format values where this formula is
true” (in the Formula box to the right for pre-2007), type =C1. Next, click
the Format button and select white under color (pre-2007, click the Format
tab of the Conditional Formatting dialog, then the Font tab, and change the
font color to white). Click OK, then OK again.

Select your checkbox so that it is checked, and the font color of the data in
range A1:A10 will automatically change to white. Unchecking the
checkbox will set it back to normal.

Toggling Number Highlighting On and Off
The ability to automatically highlight numbers that meet certain criteria can
make it a lot easier to find the data you need in a spreadsheet.

The ability to use conditional formatting to format numbers
between certain ranges is available as a new feature in Excel
2007. However, the ability to toggle on and off via a check-
box as described in this hack is not.

To do this, start by selecting cell E1 (or any other cell you prefer) and name
this cell CheckBoxLink using the name box at the far left of the Formula
toolbar (see Figure 2-3).

Add a checkbox from the Form Controls (Forms toolbar for pre-2007) to
cell F1. Set the cell link of this checkbox to the cell CheckBoxLink by right-
clicking the checkbox and selecting Format Control… ➝ Control. Then type
CheckBoxLink in the Cell Link box and click OK.

Right-click the checkbox again, select Edit Text, and enter the words Show
Me. In column A on another worksheet, enter the numbers 25 to 2500 in

Figure 2-3. Cell E1 named CheckboxLink

Control Conditional Formatting with Checkboxes #18

Chapter 2, Hacking Excel’s Built-in Features | 53

HACK

increments of 25. Name this range Numbers and hide this sheet by selecting
View ➝ Hide under the Windows options (pre-2007, Format ➝ Sheet ➝

Hide).

To enter these numbers quickly, enter the number 25 in cell
A1. Then, right-click (Control-click on the Mac) the fill han-
dle (which appears as a small black square at the bottom
right of the selection) and, while holding down the right
mouse button, drag down to about row 100. Now release the
left mouse button, select Series from the pop-up shortcut
menu, enter 25 as the step value, and enter 2500 as the stop
value. Then click OK.

Select cell B1 of the checkboxes worksheet and name this cell FirstNum.
Select cell D1 and name this cell SecondNum. In cell C1, type the word AND.
Now, select cell B1 (FirstNum), and press the Ctrl key while selecting cell
D1 (SecondNum). Select the Data tab, go to Data Tools ➝ Data Validation
(pre-2007, Data ➝ Validation ➝ Settings), select List in the Allow: box, and
type =Numbers in the Source: box. Ensure that the In-Cell drop-down item is
checked and then click OK. This will give you a drop-down list of numbers
25 through 2500 in both cells.

In cell A1, type the heading Amount. Immediately below this, fill the range
A2:A20 with any numbers that fall between the range 25 and 2500. Select
cells A2:A20 (ensuring that you start from cell A2 and that it is your active
cell in the selection), select Home ➝ Styles ➝ Conditional Formatting ➝ New
Rule (pre-2007, Format ➝ Conditional Formatting…).

In the dialog box that appears, shown in Figure 2-4, select “Use a formula to
determine which cells to format” (pre-2007, select Formula Is; it now should
read Cell Value Is).

Then, in the “Format values when this formula is true” box (Formula box in
pre-2007 versions), type the following formula:

=AND($A2>=FirstNum,$A2<=SecondNum,CheckboxLink)

Click Format and set any desired formatting or combination of formatting.
Click OK, and then click OK again to dismiss the dialog boxes. Change the
font color for cell E1 (CheckBoxLink) to white so that True or False will not
show. From cell B1 (FirstNum), select any number and then select another
number higher than the first from cell SecondNum (D1).

Check the checkbox, and the conditional formatting you just set will be
applied automatically to the numbers that fall between the range you speci-
fied earlier. Deselect the checkbox and the formatting will revert to the
default.

54 | Chapter 2, Hacking Excel’s Built-in Features

#19 Identify Formulas with Conditional Formatting
HACK

As you can see, by using a checkbox in combination with conditional for-
matting, you can do things most people would think is possible only
through the use of VBA code.

H A C K

#19
Identify Formulas with Conditional Formatting Hack #19

Once a formula is entered into a cell, you can tell whether the cell is a static
value or a value derived from a formula only by clicking in each cell and
looking in the Formula bar, or by pressing Ctrl-~ (tilde). This hack fills that
gap with a custom function.

The VBA code in this custom function (also called a user-defined function)
enables you to identify cells that contain formulas without having to click
through 10,000 cells and examine each one.

You could select Conditional Formatting ➝ New Rule (pre-
2007, Format ➝ Conditional Formatting ➝ Formula Is) and
use =CELL("Type",A1) in the “Use a formula to determine
which cells to format” section, but you must be aware that
this is a volatile function. This means that every time you
make any changes at all in the workbook, or another work-
book while the workbook containing the conditional format-
ting is still open, it will force all the cells using the CELL
function to recalculate. These global recalculations can add
considerably to your overhead in a large spreadsheet. This
hack presents a better way.

Figure 2-4. The New Formatting Rule dialog box

Identify Formulas with Conditional Formatting #19

Chapter 2, Hacking Excel’s Built-in Features | 55

HACK

To become a clever formula hunter, start by going to the Developer tab and
selecting Code ➝ Visual Basic (pre-2007, go to Tools ➝ Macro ➝ Visual
Basic Editor) or Alt/Option-F11 and then select Insert ➝ Module. Enter the
following function into the window that appears:

Function IsFormula(Check_Cell As Range)
 IsFormula = Check_Cell.HasFormula
End Function

Close the window (press Alt/c-Q, or use the Close button in the window’s
title bar). Now this function is available in any cell on any worksheet in this
workbook when you enter the formula =IsFormula(A1). You also can
access the function by going to the Formulas tab, selecting Function Library
➝ Insert Function (pre-2007, Insert ➝ Function), selecting UserDefined from
the Category option, and choosing IsFormula from the functions displayed.

The formula returns TRUE if the reference cell houses a formula and FALSE if it
does not. You can use this Boolean result in conjunction with conditional
formatting so that all formulas are highlighted automatically in a format of
your choice.

One of the best things about using this method is that your spreadsheet’s
formula identification capabilities will be dynamic. This means that if you
add or remove a formula, your formatting will change accordingly. Here we
explain how to do this.

Select a range of cells on your spreadsheet—say, A1:J500—and incorporate
some extra cells in case more formulas are added at a later stage.

Avoid the temptation of selecting an entire worksheet, as this
can add unnecessary overhead to your spreadsheet.

With these cells selected, and with A1 the active cell of the selection, select
Home ➝ Conditional Formatting ➝ New Rule ➝ “Use a formula to deter-
mine which cells to format,” and enter the following in the “Format values
where this formula is true” box (pre-2007, Format ➝ Conditional Format-
ting… ➝ change “Cell Value Is” to “Formula Is”):

=IsFormula(A1)

Click the Format option and choose any formatting you want to use to iden-
tify formula cells. Click OK, then OK again.

56 | Chapter 2, Hacking Excel’s Built-in Features

#20 Count or Sum Cells That Meet Conditional Formatting Criteria
HACK

Sometimes, when entering formulas into conditional format-
ting, Excel will try to put quotation marks around the formu-
las after you click OK. This means Excel has recognized
what you entered as text, not as a formula. If this happens to
you, go back into the Conditional Formatting dialog, remove
the quotation marks, and click OK.

At this point, the specified formula should be applied to all cells on your
worksheet that contain formulas. If you delete or overtype a cell containing
a formula, the conditional formatting will disappear. Similarly, if you enter a
new formula into any cell within the range, it too will be highlighted.

This simple conditional formatting hack can make your spreadsheets a lot
easier to deal with when it comes time to maintain or modify them.

H A C K

#20
Count or Sum Cells That Meet Conditional
Formatting Criteria Hack #20

Once you can see the results of conditional formatting, you might want to
create formulas that reference only the data that was conditionally formatted.
Excel doesn’t quite understand this in its calculations, but it can learn.

Excel users regularly ask, “How can I do calculations on only the cells that
have a specific background color?” This question arises so often because
Excel has no standard function for accomplishing this task; however, it can
be accomplished with a custom function [Hack #113].

The only trouble with using a custom function is that it does not pick up
any formatting that is applied using conditional formatting. With a bit of
lateral thinking, however, you can achieve the same result without bother-
ing with a custom function.

Say you have a long list of numbers in the range A2:A100. You applied
conditional formatting to these cells so that any numbers that fall between
the range 10 and 20 are flagged. Now you have to add the value of the cells
that meet the criterion you just set and then specify the sum of the values
using conditional formatting. You don’t need to worry about what condi-
tional formatting you applied to these cells, but you do need to know the
criteria that were used to flag the cells (in this case, cells with values between
10 and 20).

You can use the SUMIF function to add a range of cells that meet a certain cri-
terion—but only one criterion. If you need to deal with more than one fac-
tor, you can use an array formula.

You use an array formula like this:

=SUM(IF(A2:A100>10,IF(A2:A100<20,A2:A100)))

Count or Sum Cells That Meet Conditional Formatting Criteria #20

Chapter 2, Hacking Excel’s Built-in Features | 57

HACK

When entering array formulas, don’t press Enter. Press Ctrl-
Shift-Enter. This way, Excel will place curly braces around
the outside of the formula so that it looks like this:

{=SUM(IF(A2:A100>10,IF(A2:A100<20,A2:
A100)))}

If you enter these braces yourself, it won’t work. You must
allow Excel to do it for you.

Also, note that using an array formula can slow down Excel’s
recalculations if there are too many references to large
ranges.

To read more about array formulas, visit http://www.ozgrid.com/Excel/
arrays.htm.

An Alternate Path
Alternatively, you can use a spare column (for instance, column B) to refer-
ence the cells in column A. Your reference will return results into column B
only if the value meets the conditions you set—e.g., >10, <20. To do this,
follow these steps:

Select cell B1 and enter the following formula:

 =IF(AND(A2>10,A2<20),A2,"")

Fill this formula into each cell, down to cell B100. Once the values are filled
in, you should have values in column B that are between 10 and 20.

To quickly copy a formula down to the last used row in the
column adjacent, enter the formula in the first cell (B2), rese-
lect that cell, and double-click the fill handle. You also can
do this by going to the Home tab and selecting Editing ➝ Fill
➝ Down (pre-2007, Edit ➝ Fill ➝ Down).

Now you can select any cell where you want your SUM result to appear and
use a standard SUM function to add it up. (You can hide column B if you
want so that you do not see an extra column full of the returned values of
your formula.)

The preceding methods certainly get the job done, but Excel provides yet
another function that enables you to specify two or more criteria. This func-
tion is part of Excel’s database functions, and is called DSUM. To test it, use
the same set of numbers in A2:A100. Select cells C1:D2 and name this range
SumCriteria by selecting the cells and entering the name in the name box to
the left of the Formula bar. Now select cell C1 and enter =A1, a reference

http://www.ozgrid.com/Excel/arrays.htm
http://www.ozgrid.com/Excel/arrays.htm

58 | Chapter 2, Hacking Excel’s Built-in Features

#21 Highlight Every Other Row or Column
HACK

to the first cell on the worksheet. Copy this across to cell D1, and you
should have a double copy of your column A heading. These copies will be
used as headings for your DSUM criteria (C1:D2), which you called
SumCriteria.

In cell C2, enter >10. In cell D2, enter <20. In the cell where you want your
result, enter the following formula:

 =DSUM(A1:A100,A1,SumCriteria)

DSUM is the preferred and most efficient method of working with cells that
meet certain criteria. Unlike arrays, the built-in database functions are
designed specifically for this purpose, and even when they reference a very
large range and are used in large numbers, the negative effects they have on
recalculation speed and efficiency are quite small compared to those of array
formulas.

H A C K

#21
Highlight Every Other Row or Column Hack #21

You’ve surely seen Excel spreadsheets that have alternating row colors. For
instance, odd-numbered rows might be white, while even-numbered rows
might be gray. Conditional formatting makes this easy.

Alternating colors or shading looks professional and can make data easier to
read. You can apply this formatting manually, but as you can imagine, or
might have experienced, it’s a rather time-consuming task that requires con-
stant updating as you add and remove data from the table. It also requires
infinite patience. Fortunately, conditional formatting can reduce the amount
of patience required and enhance your professional image.

We’ll assume your data occupies the range A1:H100. Select this range of
cells, starting with A1, thus ensuring that A1 is the active cell in the selec-
tion. Now select Home ➝ Conditional Formatting ➝ New Rule ➝ “Use a for-
mula to determine which cells to format,” and type the following formula in
the “Format values where this formula is true” box (pre-2007, go to Format
➝ Conditional Formatting… ➝ change “Cell Value Is” to “Formula Is”), as
shown in Figure 2-5:

=MOD(ROW(),2)

Click the Format button and choose the format you want to apply to every
second row. Click OK, and then click OK again. The format you specified
should be applied to every second row in the range A1:H100. You also
should have some patience left for the rest of the day.

If you need to apply this to columns rather than rows, use this formula
instead:

 =MOD(COLUMN(),2)

Highlight Every Other Row or Column #21

Chapter 2, Hacking Excel’s Built-in Features | 59

HACK

Although this method applies the formatting specified to every second row
or column quickly and easily, it is not dynamic. Rows containing no data
will still have the formatting applied. This looks slightly untidy and makes
reading the spreadsheet a bit more difficult. Making the highlighting of
every second row or column dynamic takes a little more formula tweaking.

Highlighting Dynamically
Again, select the range A1:H100, ensuring that A1 is the active cell. Select
Home ➝ Conditional Formatting ➝ New Rule ➝ “Use a formula to deter-
mine which cells to format,” and in the “Format values where this formula is
true” box (pre-2007, go to Format ➝ Conditional Formatting… ➝ change
“Cell Value Is” to “Formula Is”), type the following formula:

 =AND(MOD(ROW(),2),COUNTA($A1:$H1))

Note that you do not reference rows absolutely (with dollar
signs), but you do reference columns this way.

Click the dialog’s Format option and select the desired formatting, then click
OK, and OK again. Any row within the range A1:H100 that does not
contain data will not have conditional formatting applied. If you remove

Figure 2-5. New Formatting Rule dialog containing the MOD formula to specify a
format to every second row in a range

60 | Chapter 2, Hacking Excel’s Built-in Features

#22 Create 3-D Effects in Tables or Cells
HACK

data from a specific row in your table, it too will no longer have conditional
formatting applied. If you add new data anywhere within the range A1:
H100, the conditional formatting will kick in.

This works because when you supply a formula for conditional formatting,
the formula itself must return an answer of either TRUE or FALSE. In the lan-
guage of Excel formulas, 0 has a Boolean value of FALSE, while any nonzero
value has a Boolean value of TRUE. When you use the formula =MOD(ROW(),2),
it will return either a value of 0 (FALSE) or a number greater than 0.

The ROW() function is a volatile function that always returns the row num-
ber of the cell it resides in. You use the MOD function to return the remainder
after dividing one number by another. In the case of the formula you used,
you are dividing the row number by 2, so all even row numbers will return 0,
while all odd row numbers will always return a number greater than 0.

When you nest the ROW() function and the COUNTA function in the AND func-
tion, it means you must return TRUE (or any number greater than 0) to both
the MOD function and the COUNTA function for the AND function to return TRUE.
Note that COUNTA counts all nonblank cells.

H A C K

#22
Create 3-D Effects in Tables or Cells Hack #22

Whenever you see a nifty 3-D effect in a program or application such as
Excel, you are actually seeing an illusion created by specific formatting. It is
easy to create this illusion yourself by applying formatting to a cell or range
of cells. The release of Excel 2007 introduces cell styles, so you can create a
3-D effect and save it to use anytime you like.

To start off with a simple example, we’ll give a cell a 3-D effect so that it
appears raised, like a button. On a clean worksheet, select cell D5. (You’re
selecting D5 because it’s not on an edge.) Under the Cells options on the
Home tab, select Format ➝ Format Cellst ➝ Border (pre-2007, Format ➝

Cells ➝ Border). From the Line box, choose the second thickest line style.
Ensure that the color selected is black (or Automatic, if you haven’t changed
the default for this option). Now click the right-hand border and then click
the bottom border. Return to the color option and select white. The second
thickest border still should be selected, so this time click the two remaining
borders of the cell, the top border and the left border. Click the Fill tab (pre-
2007, the Patterns tab) in the Format Cells dialog and make the cell shading
gray. Click OK and deselect cell D5. Cell D5 will have a raised effect that
gives the appearance of a button. You did it all with borders and shading.

If, for fun or diversity, you want to make a cell look indented or pushed in,
select cell E5 (because it’s next to D5 and it makes the next exercise work).
Select Home ➝ Cells ➝ Format ➝ Format Cells ➝ Border (pre-2007, Format

Create 3-D Effects in Tables or Cells #22

Chapter 2, Hacking Excel’s Built-in Features | 61

HACK

➝ Cells ➝ Border) and choose the second thickest border from the line
styles, and ensure that the color is black.

Apply the formatting to the top and left border of the cell. Select white for
the color option and apply a white line to the right and bottom borders.
Click the Patterns tab and change the cell’s format to gray. Click OK. Cell
E5 should appear indented. This works even better in contrast with cell D5,
which has the raised effect.

If you are happy with the cell style you have created, select
Home ➝ Styles ➝ Cell Style ➝ New Cell Style, give your Cell
Style a name and click OK. Note that Cell Styles are saved to
the current workbook, although you can merge Styles from
other workbooks. This option is not available in versions
before Excel 2007. If you want to save a cell style in prior
versions, go to Format ➝ Style.

Using a 3-D Effect on a Table of Data
Next, we’ll experiment with this tool to see the sorts of effects you can apply
to your tables or spreadsheets to give them some 3-D excitement.

Select cells D5 and E5, and click the Format Painter tool (the paintbrush
icon) under Clipboard options on the Home tab (for pre-2007 users it’s on
the standard toolbar). While holding down the left mouse button, click in
cell F5 and drag across to cell J5, then release.

Now select cells D5:J5 and again click the Format Painter tool. While hold-
ing down the left mouse button, select cell D6 and drag it across and down
to cell J15, then release. This should produce the effect shown in Figure 2-6.

Figure 2-6. A 3-D effect applied to a range of cells

62 | Chapter 2, Hacking Excel’s Built-in Features

#23 Turn Conditional Formatting and Data Validation On and Off with a Checkbox
HACK

If you want to save your Table Style, select Home ➝ Styles ➝

Format as Table ➝ New Table Style. You cannot save a
Table Style in versions prior to Excel 2007.

We have used a fairly thick border to ensure that the effect is seen clearly;
however, you might want to make this a little subtler by using a thinner line
style. You also could use one of the other line styles to produce an even
greater effect. The easiest way to find good combinations is to use trial and
error on a blank worksheet to create the effect you want. You are limited
only by your imagination and, perhaps, your taste.

Always keep in mind that 3-D effects can enhance readabil-
ity and give spreadsheets a more professional look and feel,
but when they’re used in excess, they can have the opposite
effect. Remember, use everything in moderation.

If you want to take this a step further and apply 3-D effects automatically
and dynamically, you can combine the 3-D with conditional formatting,
automating the application of the style choices you prefer.

H A C K

#23
Turn Conditional Formatting and Data Validation On
and Off with a Checkbox Hack #23

Data validation can make it far less likely that a user will accidentally enter
incorrect data. Sometimes, however, you might need to make it easier to
enter data that otherwise would be flagged as incorrect by conditional
formatting or blocked completely by the validator.

Usually, you would enable users to enter data that otherwise would be
flagged as incorrect by removing conditional formatting and/or data valida-
tion from the cells. There is an easier way, however: you can combine a sim-
ple checkbox from the Forms toolbar with data validation.

For this example, you’ll apply conditional formatting to a range of cells so
that any data appearing more than twice is highlighted for easy identifica-
tion. We’ll assume your table of data extends from cell A1:H100. To
conditionally format this range of data so that you can identify cells with
more than two duplicates requires a few steps.

Select cell K1 and name this cell CheckBoxLink by typing the name into the
Name box to the left of the Formula bar and pressing Enter. Now click in
cell I3 and select Developer ➝ Insert ➝ Form Controls ➝ Check Box (pre-
2007, if the Forms toolbar is not already showing, right-click any toolbar
and select Forms, then click the checkbox icon).

Turn Conditional Formatting and Data Validation On and Off with a Checkbox #23

Chapter 2, Hacking Excel’s Built-in Features | 63

HACK

Right-click the checkbox and select Format Control ➝ Control. In the Cell
Link box, type the name CheckBoxLink and click OK. Select cell A1, then
drag and select a range down to cell H100. It is important that cell A1 is the
active cell in your selection. Select Home ➝ Conditional Formatting ➝ New
Rule ➝ “Use a formula to determine which cells to format,” and type the fol-
lowing in the “Format values where this formula is true” box, as shown in
Figure 2-7 (pre-2007, Format ➝ Conditional Formatting… ➝ change “Cell
Value Is” to “Formula Is”):

=AND(COUNTIF(A1:H100,A1)>1,CheckboxLink)

Click the Format option and select the format you want to be applied to
duplicated data. Click OK, then OK again.

Although the checkbox you added to the worksheet is checked, the cell link
in K1 (CheckBoxLink) will read TRUE and all cells with more than two dupli-
cates within the range A1:H100 will be highlighted. As soon as you
deselect the checkbox, its cell link (CheckBoxLink) will return FALSE, and
these cells will not be highlighted.

The checkbox gives you a switch so that you can turn conditional format-
ting on and off from the spreadsheet, with no need to return to the Condi-
tional Formatting dialog box. You can apply the same principle to data
validation when using the formula option.

Figure 2-7. Conditional Formatting dialog showing formula to conditionally format a
range to highlight duplicates

64 | Chapter 2, Hacking Excel’s Built-in Features

#24 Support Multiple Lists in a ComboBox
HACK

This works because you used the AND function. AND means two things must
occur: COUNTIF(A1:H100,A1)>2 must return TRUE, and the cell link for the
checkbox (CheckBoxLink) also must be TRUE. In other words, both conditions
must be TRUE for the AND function to return TRUE.

H A C K

#24
Support Multiple Lists in a ComboBox Hack #24

When working with multiple lists, you can force a list to change by using a
combination of option buttons plus a ComboBox.

Excel offers many ways for users to select items from a list, be they names,
products, days of the week—whatever the list is composed of. However, to
access more than one list of choices simultaneously generally requires that
you use three separate controls, such as three ComboBox controls from the
Form Controls (pre-2007, the Forms toolbar).

Instead, you can use a ComboBox in combination with option buttons (also
called radio buttons and also found on the Form Controls) to have a list
change automatically according to which option button you choose. To see
how this works, enter the numbers 1 through 7 in the range A1:A7 on a new
worksheet. In B1:B7, enter the days of the week starting with Monday and
ending with Sunday. In C1:C7, enter the months January through July.

Excel’s auto-fill features can make this task much easier.
Enter 1 in cell A1, select cell A1, press the Ctrl (c on the
Mac) key, and then left-click the fill handle. While holding
down the left mouse button and the Ctrl key simulta-
neously, drag down to row 7. Excel will fill in the numbers
for you. Next, enter Monday in cell B1 and double-click the fill
handle for this cell. Enter January in cell C1 and double-click
the fill handle for this cell. Excel will fill in the days and
months for you!

Select Developer ➝ Controls ➝ Insert ➝ Form Controls (pre-2007, View ➝

Toolbars ➝ Forms) and press Option. Then, click the spreadsheet anywhere
in three separate spots to place three option buttons on the spreadsheet.

Now, follow the same process but this time click the ComboBox option
under Form Controls and again click somewhere on the spreadsheet to
insert a ComboBox on it. Using the drag handles, size the ComboBox to a
manageable size and position the option buttons so that they’re directly
below the ComboBox.

Right-click the first option button, select Edit Text, then replace the words
Option Button 1 with the word Numbers. Use the same process for Option

Support Multiple Lists in a ComboBox #24

Chapter 2, Hacking Excel’s Built-in Features | 65

HACK

Button 2, replacing it with the word Weekdays, and for Option Button 3,
replacing it with the word Months. This is shown in Figure 2-8.

While holding down the Ctrl key, click each option button so that all three
are highlighted, then right-click and select Format Control ➝ Control (on
the Mac, you can select View ➝ Toolbars ➝ Drawing, and use the Select
Objects tool to select the group). Specify cell F1 as the cell link (make sure
it is absolute—use those dollar signs).

In cell E6, enter the following formula:

=ADDRESS(1,F1) & ":" & ADDRESS(7,F1)

Select Formulas ➝ Defined Name ➝ Define Name (pre-2007, Insert ➝ Name
➝ Define). Under Name (pre-2007, Names in Workbook), type MyRange and
in the Refers To: field, type the following:

=INDIRECT(E6)

Click OK. Right-click the ComboBox and select Format Control ➝ Control.
Make the Input range MyRange and the cell link G1, then click OK. You
should be able to select one of the option buttons, and the list within the
ComboBox should automatically reflect which option button you chose.

When setting this up for your own spreadsheet, you should use some off-
screen cells for the ComboBox links and lists. You might even want to hide
these cells from users so that your links stay where they should. Also, you
need to modify the two ADDRESS functions to reflect the cell range you are
using. In the ADDRESS functions we used in this example, 1 represents the first
row number of the lists, while 7 represents the last row number.

Figure 2-8. A multilist ComboBox controlled by option buttons

66 | Chapter 2, Hacking Excel’s Built-in Features

#25 Create Validation Lists That Change Based on a Selection from Another List
HACK

H A C K

#25
Create Validation Lists That Change Based on a
Selection from Another List Hack #25

Validation needs can vary depending on the context in which the validation is
used. However, you can create a spreadsheet in which one validation list
changes depending on what you select in another.

To make this hack work, the first thing you need to do is set up a worksheet
with some data. On a clean worksheet named Lists and located in cell A1,
type the heading Objects. In cell B1, type the heading Corresponding List. In
cells A2:A5, repeat the word Can. In cells A6:A9, repeat the word Sofa. In
cells A10:A13, repeat the word Shower. In cells A14:A17, repeat the word
Car. Then, starting with cell B2 and ending with cell B17, enter the follow-
ing words (corresponding to the Objects list): Tin, Steel, Opener, Lid, Bed,
Seat, Lounge, Cushion, Rain, Hot, Cold, Warm, Trip, Journey, Bonnet, and Boot.

In cell C1, enter the heading Validation List. Next, to create a list of unique
entries, enter the word Can in cell C2, the word Sofa in cell C3, the word
Shower in cell C4, and the word Car in cell C5.

You also can use the Advanced Filter to create a list of
unique items. Select cells A1:A17, select Data ➝ Sort & Fil-
ter ➝ Advanced (pre-2007, Data ➝ Filter ➝ Advanced Fil-
ter), and then select Unique Records Only, Filter the List in
Place. Click OK, and then select cells A2:A14 (which will
include the hidden cells). Copy and paste them to cell A18.
Select Data ➝ Filter ➝ Show All, select the list of unique
objects, and cut and paste them into cell C2. Now you’ve got
your list!

Select Formulas ➝ Defined Names ➝ Name Manager, click New (pre-2007,
Insert ➝ Name ➝ Define) and in the Name: field, type the word Objects. In
the Refers To: box, type the following formula and click OK (pre-2007, click
Add, which will allow you to add another named range as below):

=OFFSET(A2,0,0,COUNTA(A2:A20),1)

Now click the New (pre-2007, Add) button. In the Name: box, type the
name ValList, and in the Refers To: box, enter C2:C5. Click Close. Now
insert another worksheet, call it Sheet1, and roll up your sleeves as you put
this strange data to work.

With Sheet1 still active, on the Formula tab, select Define Names ➝ Name
Manager, click New (pre-2007, Insert ➝ Name ➝ Define), enter
CorrespondingList in the Name: field, and in the Refers To: field, enter this
rather lengthy formula and then click OK:

Create Validation Lists That Change Based on a Selection from Another List #25

Chapter 2, Hacking Excel’s Built-in Features | 67

HACK

=OFFSET(INDIRECT(ADDRESS(MATCH(Val1Cell,Objects,0)+1,2,,,"Lists")),0,0,COUNT
IF(Objects,Val1Cell),1)

Now click the New (pre-2007, Add) button and in the Name: box, type the
name Val1Cell. In the Refers To: box, enter D6 and click OK. Click New
again and in the Names: field type Val2Cell. In the Refers To: box, enter
E6 and again click OK. Click Close (pre-2007, click OK) to take yourself
back to Sheet1 and then select D6.

This is a long process, but you are nearly done.

Select Data Validation under Data Tools options on the Data tab, and
ensure you are on the Settings tab (pre-2007, Data ➝ Validation ➝ Settings).
Select List from the Allow: box, and in the Source: box, type =ValList.
Ensure that the In-Cell drop-down checkbox is selected and click OK.

Select cell E6 and again select Data Validation under Data Tools options on
the Data tab (pre-2007, Data ➝ Validation). Select List from the Allow: box,
and in the Source: box, type =CorrespondingList. Then, ensure that the In-
Cell drop-down box is checked, and click OK.

When applying the data validation to E6, you will get the
information message, “The source currently evaluates to an
error. Do you want to continue?” Press Yes. This message
occurs because D6 is currently blank.

Select one of the objects from the validation list in cell D6, and the valida-
tion list in cell E6 will change automatically to reflect the object you
selected.

You now have one very user-friendly validation (pick) list, shown in
Figure 2-9, whose contents will change automatically based on the item cho-
sen from the other pick list.

Figure 2-9. Two corresponding validation lists in use

68 | Chapter 2, Hacking Excel’s Built-in Features

#26 Use Replace... to Remove Unwanted Characters
HACK

H A C K

#26
Use Replace... to Remove Unwanted Characters Hack #26

When importing data or copying and pasting data from other sources into
Excel, unwanted characters appear throughout your spreadsheet. Using this
hack, you can spare yourself the trouble of removing them by hand.

Excel’s Replace... feature can help you remove unwanted characters from
your spreadsheet, but it takes a few extra steps. For instance, you can
replace cells containing unwanted characters with nothing (effectively delet-
ing them) so that they no longer exist. To do this, you need to know the
character code of the characters you want removed. All characters have a
character code, and Excel will tell you what it is if you apply the CODE func-
tion to them. The CODE function returns a numeric code for the first charac-
ter in a text string. The returned code corresponds to the character set used
by your computer.

To make this work, select one of the cells containing an unwanted charac-
ter. From the Formula bar, highlight the character and copy it to the clip-
board. Then select any unused cell (A1, for example) and paste the character
into the cell on its own.

In another cell, enter the following formula:

=CODE(A1)

This returns the character code of the unwanted character.

Select all your data, select Home ➝ Editing ➝ Find & Select ➝ Replace
(pre-2007, Edit ➝ Replace…), click the Find What: field, press the Alt or c
key, and enter 0 followed by the code number the CODE function returned. If
the code number is 163, press the Alt or c key and type 0163. Leave the
Replace With: field empty and click Replace All. This will very quickly
remove all the unwanted characters matching that character code. Repeat
these steps for each unwanted character.

H A C K

#27
Convert Text Numbers to Real Numbers Hack #27

The contents of a cell might look like numbers, especially in imported data,
but it still might be impossible to use these numbers in calculations. Here are
a few ways in which you easily can convert these “text” numbers to true
numbers.

Remember that numbers in Excel are right-aligned by default, and that text
is left-aligned by default. One easy way to identify those problematic text
numbers in a column of what you think is composed entirely of true num-
bers is to select the column, go to the Home tab, launch the Alignment
options by clicking the dialog launcher in the bottom right corner of the

Convert Text Numbers to Real Numbers #27

Chapter 2, Hacking Excel’s Built-in Features | 69

HACK

Alignment group, select Format Cells ➝ Alignment (pre-2007, Format ➝

Cells ➝ Alignment), ensure that the horizontal alignment is set to Excel’s
default of General, and click OK. Widen the column to a reasonable width,
and all true numbers will be aligned to the right while any problematic text
numbers will be aligned to the left. Dates will also be aligned to the right, as
a date’s true underlying value is nothing more than a number.

Using Paste Special
Now that you know you have numbers that are being seen as text, here is a
quick and easy way to convert them all to true numbers, making Excel con-
sider them usable for calculations. Copy any blank cell and then select your
list of numbers. Right-click, select Paste Special... and then select Values
under the Paste options. Select Add under the Operation options and click
OK.

This will change to true numbers any numbers that are being seen as text.
This happens because a blank cell has a value of 0, and when you add any
number to a number that Excel is treating as text, you will force the text
number to become a true number.

Using the TEXT Functions
You can apply this logic to some of Excel’s standard functions—in particu-
lar, Excel’s TEXT functions. Usually, when you use any of Excel’s TEXT func-
tions and the result returned is a number, Excel will still return that number
as a text value rather than as a numeric value.

Assume you have a range of cells starting from A1. Each cell contains a
dollar amount, followed by a space, then a person’s name. Using the follow-
ing formula, which combines the two TEXT functions LEFT and FIND, you can
extract this dollar value:

=LEFT(A1,FIND(" ",A1)-1)

If cell A1 contains the data $22.70 Fred, the formula’s result will be $22.70.
However, this result will be returned as text rather than as a true numeric
value; therefore, by default it will be left-aligned within the cell.

You can modify the formula so that the result is no longer a text value, but
rather, a true numeric value, by adding 0 to the value:

=LEFT(A1,FIND(" ",A1)-1)+0

This will force the dollar value returned to become a true number; there-
fore, it will be right-aligned by default. All you need to do now is format the
cell accordingly.

70 | Chapter 2, Hacking Excel’s Built-in Features

#28 Extract the Numeric Portion of a Cell Entry
HACK

H A C K

#28
Extract the Numeric Portion of a Cell Entry Hack #28

Often, you might have entries in your lists that contain both text and numbers
within them. Using a custom function, you can easily take care of this
problem, regardless of the length of the string.

Another problem that can arise regarding text and numbers occurs when
you mix text and numbers in the same cell, with no real way of extracting
the numeric portion only. In this case, you can use a custom function to
extract the numeric portion from a text string.

To create this custom function, press Alt/Option-F11, select Insert ➝ Mod-
ule, and enter the following code:

Function ExtractNumber(rCell As Range)
Dim lCount As Long, l As Long
Dim sText As String
Dim lNum As String

sText = rCell

 For lCount = Len(sText) To 1 Step -1
 If IsNumeric(Mid(sText, lCount, 1)) Then
 l = l + 1
 lNum = Mid(sText, lCount, 1) & lNum
 End If

 If l = 1 Then lNum = CInt(Mid(lNum, 1, 1))
 Next lCount

ExtractNumber = CLng(lNum)
End Function

Press Alt/c-Q to exit and save. The function will appear under User Defined
in the Paste function (Shift-F3). Use the function as shown in Figure 2-10.

In Figure 2-10, column A contains a mixture of text and numbers, column B
contains the result of using the ExtractNumber function, and column C
shows how the formula looks in column B.

Figure 2-10. Extracting the numeric portion from a text string

Customize Cell Comments #29

Chapter 2, Hacking Excel’s Built-in Features | 71

HACK

H A C K

#29
Customize Cell Comments Hack #29

Cell comments enable you to place the electronic equivalent of a sticky note
to any specified cell in a worksheet. Although many people use cell
comments, many don’t know that cell comments are customizable.

When you insert a cell comment via Review ➝ Comments ➝ New Comment
button (pre-2007, Insert ➝ Comment), by default Excel will also insert the
username for the PC being used. You can change this by selecting the Office
button ➝ Excel Options ➝ Popular (pre-2007, Tools ➝ Options ➝ General;
on the Mac, Excel ➝ Preferences ➝ General). The username will appear at
the bottom of the dialog box that opens, where you can type whatever you
want to be shown by default.

Although cell comments serve the simple purpose of displaying a message to
either yourself or another user, you can customize the cell comment so that
it better reflects your intentions.

To make this hack work, you will need to add the Change Shape button to
the Quick Access toolbar. Do this by going to the Office button ➝ Excel
Options ➝ Customize. Then, from the Choose Commands From drop-
down, select the Smart Art Tools/Format tab. Locate the Change Shape tool,
click on it, and then select Add to add to the Quick Access toolbar, fol-
lowed by OK (pre-2007, you won’t be able to add this tool, so ensure that
the Drawing toolbar is displayed by selecting View ➝ Toolbars ➝ Drawing).

Insert a cell comment into a cell by selecting the cell, going to the Review
tab, and selecting Comments ➝ New Comment (pre-2007, Insert ➝ Com-
ment). This automatically places you in Edit mode, ready to enter text into
the comment box.

Left-click the outside border of the cell comment so that you are no longer
in Edit mode. With the comment selected, select the Change AutoShape
tool from your Quick Access Toolbar (pre-2007, select Draw from the
Drawing toolbar, then Change AutoShape). You will be presented with a list
of options including Basic Shapes, Block Arrow, Flow Chart, Stars and Ban-
ners, and Callouts. Choose an option, and the cell comment will change to
the shape selected, as shown in Figure 2-11.

If you are using Excel 2007, you will notice that any shape you choose will
have a three-dimensional look. If you want to create this look in pre-2007
versions, ensure that your comment is still selected, but that you are no
longer in Edit mode. On the Drawing toolbar, click the Shadow Settings
icon shown in Figure 2-12 and choose a shadow setting for the cell
comment.

72 | Chapter 2, Hacking Excel’s Built-in Features

#29 Customize Cell Comments
HACK

Adding a Picture
Another interesting thing you can do with cell comments is use them to dis-
play pictures without impinging on any associated data. For instance, you
could insert a picture of a chart into a cell comment to better illustrate the
data in the chart without having to show the chart all the time.

To add a picture, ensure that the cell comment is selected, but that you are
not in Edit mode. Left-click and select Format ➝ Comment, (pre-2007 users
can double-click the Comment border). Select Colors and Lines from the
Format Comment dialog box. From the Color options, select Fill Effects,
and from the Fill Effects dialog, select Picture. Now browse to the picture
you want to insert into the cell comment.

Figure 2-11. A dramatically formatted cell comment

Figure 2-12. Shadow Settings options

Sort by More Than Three Columns #30

Chapter 2, Hacking Excel’s Built-in Features | 73

HACK

Extracting Comment Text
One last thing you can do to cell comments is extract the text that was
placed into a cell comment and have it appear in a cell. To do this, you need
to place a simple custom function into a standard module. Select Developer
➝ Code ➝ Visual Basic (pre-2007, Tools ➝ Macro ➝ Visual Basic Editor) or
select Alt/Option-F11, then select Insert ➝ Module and enter the following
code:

Function GetCommentText(rCommentCell As Range)
Dim strGotIt As String
 On Error Resume Next
 strGotIt = WorksheetFunction.Clean _
 (rCommentCell.Comment.Text)
 GetCommentText = strGotIt
 On Error GoTo 0
End Function

To return to Excel, either click the Close button or press Alt/c-Q, then save
your workbook. Now, in any cell, enter the following formula:

=GetCommentText(A1)

where A1 has a cell comment in it. The comment text will appear in the cell.

H A C K

#30
Sort by More Than Three Columns Hack #30

Excel’s Sort feature is limited in that it enables you to nominate no more than
three data fields by which to sort. In most cases, this is enough, but
sometimes it can be handy to sort by more than three columns of data. Here
is how you can get around this limitation.

For this example, we will assume you have related data in columns A, B, C,
D, and E, and you want to sort this data first by column A, then B, then C,
then D, and then E. To do this, you need to be able to sort backward—in
other words, sort by the last field first, and then work back to the first field.

Select columns A through E and then select Data ➝ Sort. Select the sort
order by specifying that column C be sorted first, then D, and then E. Click
Sort. Now select columns A through E and select Data ➝ Sort. This time,
sort by column A and then by B. Click Sort, and everything will be in order.
Excel will have sorted the columns by five fields instead of the usual three.

If you want to automate this task, you can use a macro that will sort the
selection and guess whether your data has column headings based on the
formatting of the first row in the selection. If headings are in boldface, Excel
will know they are column headings and will not sort them. Instead, it will
sort by the leftmost column first, through to the rightmost column, for any
number of columns up to 256.

74 | Chapter 2, Hacking Excel’s Built-in Features

#31 Random Sorting
HACK

The macro code you need to use must be placed into a standard module. To
get it there, select Tools ➝ Macro ➝ Visual Basic Editor (Alt/Option-F11),
then select Insert ➝ Module and enter this code:

Sub SortByX()
Dim l As Long

For l = Selection.Columns.Count To 1 Step -1
 Selection.Sort Key1:=Selection.Cells(2, l), _
 Order1:=xlAscending, Header:=xlGuess, Orientation:=xlTopToBottom
Next l
End Sub

To return to Excel, either close the window or press Alt/c-Q. Once you
have the hang of it, you will be able to perform much more complicated
sorts than just the standard types on offer.

H A C K

#31
Random Sorting Hack #31

You can use Excel to pick three winners—1st, 2nd, and 3rd—chosen at
random from a list in your spreadsheet. The easiest and fairest way to do this
is to use Excel’s RAND function in combination with its sorting capabilities.

Assume you have a three-column table in your spreadsheet, starting from
column B and containing Name, Age, and ID No., in that order. You can
place the RAND function in cell A2 and copy this down as many rows as
needed, all the way to the end of your table. As soon as you do this, each cell
in column A containing the RAND function will automatically return a ran-
dom number by which you can sort the table. In other words, you can sort
columns A, B, C, and D by column A in ascending or descending order, and
the three winners can be the top three names.

The RAND function is a volatile function that will recalculate automatically
whenever an action takes place in Excel—e.g., entering data somewhere
else, or forcing a recalculation of the worksheet by pressing F9. You’d better
write down your winners quickly.

However, you can use this volatility to your benefit and record a macro that
sorts data immediately after you recalculate, and force the RAND function to
return another set of random numbers. You then can attach this macro to a
button so that each time you want to draw three winners, all you need to do
is click the button and use the top three names.

For example, assume you have your data in columns B, C, and D and that
row 1 is used for headings. First, place the heading RAND in cell A1. Enter
=RAND() in cell A2 and copy down as far as needed. Then select any single
cell and select Developer ➝ Code ➝ Record Macro (pre-2007, Tools ➝

Macro ➝ Record New Macro…).

Manipulate Data with the Advanced Filter #32

Chapter 2, Hacking Excel’s Built-in Features | 75

HACK

Select columns A, B, C, and D and press F9 (to force a recalculation; on the
Mac, use c-=). Select Sort & Filter options ➝ Data ➝ Sort and sort the data
by column A. Stop recording the macro.

Next, select Controls Options ➝ Developer ➝ Insert (pre-2007, View ➝

Toolbars ➝ Forms). Select a button from the Forms toolbar and place it any-
where on the worksheet. Assign the macro you just recorded to this button
and click OK. (Change the text for the button from Button 1 to something
more meaningful, if you want.)

You can select column A and hide it completely, as there is no need for a
user to see the random numbers generated. Each time you click the button,
your data will be sorted randomly, and you can just read off the top three
names to be the winners, as shown in Figure 2-13.

The RAND function in Excel 2003 and Excel 2007 has a major
flaw. Although the Help file clearly states the random num-
ber returned will be between 0 and 1, this is not always the
case if the RAND function is used in many cells. Sometimes the
RAND function will return a number less than 0. To read
Microsoft’s take on why they changed the algorithm, visit
http://support.microsoft.com/default.aspx?kbid=828795.

H A C K

#32
Manipulate Data with the Advanced Filter Hack #32

If you are familiar with Excel’s AutoFilter tool, you also are familiar with its
limitations. If you require extensive data manipulation, using Excel’s
Advanced Filter tool is the way to go.

Although limited, AutoFilters are a useful way to display only the data that
meets particular criteria. Sometimes, however, you cannot glean the infor-
mation you need using the standard options available in AutoFilters. Excel’s
versatile Advanced Filter tool enables you to further manipulate your data.

Figure 2-13. The end result of a random sort with column A hidden

http://support.microsoft.com/default.aspx?kbid=828795

76 | Chapter 2, Hacking Excel’s Built-in Features

#32 Manipulate Data with the Advanced Filter
HACK

When you use Excel’s Advanced Filter tool, your table must be set up in a
classic table format as described at the start of Chapter 1.

When using Excel’s Advanced Filter tool, you will need a copy of your
table’s column headings somewhere above your data. You should always
leave at least three blank rows above your table of data. To ensure that your
headings are exactly the same and will remain so regardless of whether you
change your column headings, always reference the column headings with a
simple reference formula such as =A4, where A4 contains a column heading.
Copy this across for as many column headings as you have in your table.
This will ensure that the criteria headings for the Advanced Filter are
dynamic. Directly below these copied headings, place the criteria for the
Advanced Filter to use. For more details on this process, see the Excel Help
under Advanced Filters Criteria.

When using the Advanced Filter, keep in mind that two or more criteria
placed directly underneath the applicable heading use an OR statement. If
you want to use an AND statement, the column headings and their criteria
must appear twice, side by side. Figure 2-14 shows how to use the OR opera-
tor to filter your data, and Figure 2-15 shows how to use the AND operator.

Both of the preceding examples show fairly simple uses of the Advanced Fil-
ter tool and can be accomplished via AutoFilter if needed. Next we’ll pro-
vide some examples of the Advanced Filter in which the use of AutoFilter
would not be possible.

Figure 2-14. Using Advanced Filter with OR to show only those people who have a pay
rate greater than $16.00 OR less than $15.00

Manipulate Data with the Advanced Filter #32

Chapter 2, Hacking Excel’s Built-in Features | 77

HACK

It’s important to note that whenever you use a formula for
your criteria, you must not use above the criteria a heading
that is identical to the one within the table. For example, if
you have a list of numeric data in column A and the list
begins in cell A5 (with A4 being the heading), and you need
to extract all the numbers in that list that are greater than the
average, you would use criteria such as these:

=A5>AVERAGE(A5:A500)

If the criteria were placed in cell A2, the criteria range would
be A1:A2, but A1 could not contain the same head-
ing as the one the list uses. It must be either blank or a differ-
ent heading altogether.

It also is important to note that any formula you use should
return either TRUE or FALSE. The range for the Average func-
tion is made absolute by the addition of dollar signs, while
the reference to cell A5 is a relative reference. This is needed
because when you apply the Advanced Filter, Excel will see
that A5 is a relative reference and will move down the list
one entry at a time and return either TRUE or FALSE. If it
returns TRUE, it knows it needs to be extracted. If it returns
FALSE, it does not meet the criteria; therefore, it will not be
shown.

Assume that many of the names are repeated in the range A5:A500,
with A4 being the headings. Also assume that many of the headings are
repeated numerous times. You have been given the task of extracting from

Figure 2-15. Using Advanced Filter with AND to show only those people who have a
name starting with B AND ending with L

78 | Chapter 2, Hacking Excel’s Built-in Features

#32 Manipulate Data with the Advanced Filter
HACK

the list all the names that appear more than once. To do this you need to use
the Advanced Filter and the following formula as your criteria:

=COUNTIF(A5:A500,A5)>1

Once you apply the Advanced Filter to this and use the Copy to Another
Location: option, the newly created list will contain all the names that
appeared more than once in the original list (see Figure 2-16). Many of these
names will be repeated numerous times, but you can easily filter this new list
again with the Advanced Filter, this time selecting Unique Records Only (see
Figure 2-17). This will give you a list of names that appear in the list more
than once.

Advanced Filter users commonly ask how they can force
Excel to filter their data by the exact criteria they have pro-
vided. If your criterion is Dave and you perform an
Advanced Filter on a long list of names, Excel would show
not only the name Dave, but also names such as Davey,
Dave J, Dave K, etc. In other words, any name that begins
with the letters Dave, in that order, will be considered a
match for the criteria. To force Excel to find exact
matches—e.g., in this case find only the name Dave—enter
your criteria as ="=Dave".

Figure 2-16. Using Advanced Filter to extract names from a list that appear more than
once

Create Custom Number Formats #33

Chapter 2, Hacking Excel’s Built-in Features | 79

HACK

H A C K

#33
Create Custom Number Formats Hack #33

Excel comes with built-in number formats, but sometimes you need to use a
number format that is not built into Excel. Using the hacks in this section, you
can create number formats that you can customize to meet your needs.

Before you try these hacks, it helps if you understand how Excel sees cell
formats. Excel sees a cell’s format as having the following four sections
(from left to right): Positive Numbers, Negative Numbers, Zero Values, and
Text Values. Each section is separated by a semicolon (;).

When you create a custom number format, you do not have to specify all
four sections. In other words, if you include only two sections, the first sec-
tion will be used for both positive numbers and zero values, while the sec-
ond section will be used for negative numbers. If you include only one
section, all number types will use that one format. Text is affected by cus-
tom formats only when you use all four sections; the text will use the last
section.

Don’t interpret the word number to mean custom formats
applying to numeric data only. Number formats apply to
text as well.

The custom number format shown in Figure 2-18 is Excel’s standard cur-
rency format, which shows negative currencies in red. We modified it by

Figure 2-17. Using Advanced Filter on the extracted list of names to filter down to show
each name only once (Unique Records Only)

80 | Chapter 2, Hacking Excel’s Built-in Features

#33 Create Custom Number Formats
HACK

adding a separate format for zero values and another one for text. If you
enter a positive number as a currency value, Excel will format it automati-
cally so that it includes a comma for the thousands separator, followed by
two decimal places. It will do the same for negative values, except they will
show up in red. Any zero value will have no currency symbol and will show
two decimal places. If you enter text into a cell, Excel will display the words
“No Text Please,” regardless of the true underlying text.

It is important to note that formatting a cell’s value does not affect its under-
lying true value. For example, type any number into cell A1. Right-click and
go to Format Cells ➝ Number ➝ Custom, and using any format as a starting
point, type "Hello" (with the quotation marks). Then click OK.

Although the cell displays the word Hello, you can see its true value by
selecting the cell and looking in the Formula bar, or by pressing F2. If you
were to reference this cell in a formula—e.g., =A1+20— the result cell would
take on the custom format. If you were to reference cell A1 along with many
other cells that have any standard Excel format—e.g., =SUM(A1:A10)—the
result cell would still take on the custom format of cell A1. Excel is taking an
educated guess that you want the result cell formatted the same way as the
referenced cell(s). If the referenced cells contain more than one type of for-
mat, any custom format will take precedence.

This means you must always remember that Excel uses a cell’s true value for
calculations, and not its displayed value. This can create surprises when
Excel calculates based on cells that are formatted for no decimal places or
for few decimal places, for instance. To see this in action, enter 1.4 in cell A1
and 1.4 in cell A2, format both cells to show zero decimal places, and then
place =A1+A2 into a cell. The result, of course, is 3, as Excel rounds.

Excel does have an option called “Precision as Displayed,”
which you can find by selecting the Office button ➝ Excel
Options ➝ Advanced (pre-2007, go to Tools ➝ Options ➝

Calculation), but you should be aware that this option will
permanently change stored values in cells from full precision
(15 digits) to whatever format, including decimal places, is
displayed. In other words, once it’s been checked and given
the okay, there is no turning back. (You can try, but the
extra precision information is gone for good.)

Figure 2-18. Custom number format sections

$#,##0.00;[Red]$#,##0.00;0.00;"No Text Please"

Format for
positive values

Format for
negative values

Format for
zero values

Format for
text

Create Custom Number Formats #33

Chapter 2, Hacking Excel’s Built-in Features | 81

HACK

The default format for any cell is General. If you enter a number into a cell,
Excel often will guess the number format that is most appropriate. For
example, if you enter 10% into a cell, Excel will format the cell as a percent-
age. Most of the time, Excel guesses correctly, but sometimes you need to
change it.

When using Format Cells, resist the temptation to force a
left, right, or center horizontal format! By default, numbers
are right-aligned and text is left-aligned. If you leave this
alone, you can tell at a glance whether a cell is text or
numeric, as in the case of the earlier example in which cell
A1 appears to hold text, when in fact, it holds a number.

Each section of a given format uses its own set of formatting codes. These
codes force Excel to make data appear how you want it to appear. So, for
instance, suppose you want negative numbers to appear inside parentheses,
and all numbers, positive, negative, and zero, to show two decimal places.
To do this, use this custom format:

0.00_ ;(-0.00)

If you also want negatives to show up in red, use this custom format:

0.00_ ;[Red](-0.00)

Note the use of the square brackets in the preceding code. The formatting
code tells Excel to make the number red.

You can use many different formatting codes within sections of a custom
format. Tables 2-1 through 2-5, derived from Microsoft documentation,
explain these codes. Table 2-1 lists formatting codes, Table 2-2 lists text
codes, Table 2-3 lists date codes, Table 2-4 lists time codes, and Table 2-5
lists some other miscellaneous codes.

Table 2-1. Formatting codes

Number code Description

General General number format.

0 (zero) A digit placeholder that pads the value with zeros to fill the
format.

A digit placeholder that does not require extra zeros to be
displayed.

? A digit placeholder that leaves a space for insignificant
zeros but does not display them.

% A percentage. Excel multiplies by 100 and displays the %
character after the number.

82 | Chapter 2, Hacking Excel’s Built-in Features

#33 Create Custom Number Formats
HACK

, (comma) A thousands separator. A comma followed by a place-
holder scales the number by 1,000.

E+ E- e+ e- Scientific notation.

Table 2-2. Text codes

Text code Description

$ - + / () : and blank space These characters are displayed in the number. To display
any other character, enclose the character in quotation
marks or precede it with a backslash.

\character This code displays the character you specify. Note that typ-
ing !, ^, &, '', ~, {, }, =, <, or > automatically places a
backslash in front of the character.

"text" This code displays the text between the quotes.

* This code repeats the next character in the format to fill
the column width. Only one asterisk per section of a format
is allowed.

_ (underscore) This code skips the width of the next character. This code
is commonly used as _) to leave space for a closing paren-
thesis in a positive number format when the negative num-
ber format includes parentheses. This allows both positive
and negative values to line up at the decimal point.

@ A placeholder for text.

Table 2-3. Date codes

Date code Description

M A month represented as a number without leading zeros
(1–12)

Mm A month represented as a number with leading zeros
(01–12)

Mmm A month given as an abbreviation (Jan–Dec)

Mmmm An unabbreviated month (January–December)

D A day represented without leading zeros (1–31)

Dd A day represented with leading zeros (01–31)

Ddd A weekday represented as an abbreviation (Sun–Sat)

Dddd An unabbreviated weekday name (Sunday–Saturday)

Yy A year given as a two-digit number (for example, 96)

Yyyy A year given as a four-digit number (for example, 1996)

Table 2-1. Formatting codes (continued)

Number code Description

Create Custom Number Formats #33

Chapter 2, Hacking Excel’s Built-in Features | 83

HACK

Note in particular the last kind of formatting codes listed in Table 2-5:
the comparison operators. Assume you want the custom number format
0.00_ ;[Red](-0.00) to display negative numbers in a red font and in
brackets only if the number is less than -100. To do this, use the
following:

0.00_ ;[Red][<-100](-0.00);0.00

The formatting codes [Red][<-100](-0.00) placed in the section for negative
numbers make this possible. Using this method in addition to conditional
formatting you can double the number of conditional format conditions
available from three to six.

Often, users want to display dollar values as words. To do this, use the fol-
lowing custom format:

0 "Dollars and" .00 "Cents"

This format will force a number entered as 55.25 to be displayed as 55 Dollars
and .25 Cents. If you want to convert numbers to dollars and cents, consult
these two custom functions from Microsoft: http://www.ozgrid.com/VBA/
ValueToWords.htm and http://www.ozgrid.com/VBA/CurrencyToWords.htm.

You can also use a custom format to display the words Low, Average, or
High, along with the number entered. Simply use this formatting code:

[<11]"Low"* 0;[>20]"High"* 0;"Average"* 0

Table 2-4. Time codes

Time code Description

H Hours given as a number with no leading zeros (0–23)

Hh Hours given as a number with leading zeros (00–23)

m Minutes given as a number with no leading zeros (0–59)

mm Minutes given as a number with leading zeros (00–59)

s Seconds given as a number with no leading zeros (0–59)

ss Seconds given as a number with leading zeros (00–59)

AM/PM am/pm Time of day based on a 12-hour clock

Table 2-5. Miscellaneous codes

Miscellaneous code Description

[BLACK], [BLUE], [CYAN],
[GREEN], [MAGENTA], [RED],
[WHITE], [YELLOW], [COLOR n]

These codes display characters in the specified colors.
Note that n is a value from 1 to 56 and refers to the nth
color in the color palette.

[Condition value] Condition can be <, >, =, >=, <=, or <>, while value can be
any number. A number format can contain up to two condi-
tions.

http://www.ozgrid.com/VBA/ValueToWords.htm
http://www.ozgrid.com/VBA/ValueToWords.htm
http://www.ozgrid.com/VBA/CurrencyToWords.htm

84 | Chapter 2, Hacking Excel’s Built-in Features

#34 Add More Levels of Undo to Excel for Windows
HACK

Note the use of the *. This repeats the next character in the format to fill the
column width, meaning that all the Low, Average, or High text will be
forced to the right, while the number will be forced to the left.

H A C K

#34
Add More Levels of Undo to Excel for Windows Hack #34

We all are familiar with Excel’s fabulous Undo feature, which enables a user
to undo his mistakes. Unfortunately, the default level for this is a mere 16
changes. With the hack in this section, you can change the registry so that
you can undo up to 100 mistakes.

When you use Excel’s Undo feature, and you reach undo number 16, the
first undo is replaced by the 17th, and so on. Also, as soon as you save your
workbook, the Undo Stack is wiped out, and the Undo History is lost. This
is because when you press Save, you’re actually telling Excel that you are
happy with the changes you made, so it decides for you that your Undo His-
tory is no longer required.

You might have discovered that at times having only your last 16 changes
retained in the Undo Stack is not enough. Instead of living with this, you can
change this by editing the registry, something that works only in Windows.
To do this, begin by quitting Excel completely. Select Start ➝ Run, and in
the Open box type Regedit.exe. Click OK. When Regedit starts, expand the
folder for HKEY_CURRENT_USER. Then expand the Software folder
underneath it, then the Microsoft folder, the Office folder, and the 10.0
folder. (This last folder varies for different versions. 10.0 is for Excel 2002.)
Expand the Excel folder, and finally, open the Options folder.

Select Edit ➝ New ➝ DWORD Value, enter the word UndoHistory, and press
Enter. Double-click the UndoHistory you just created, and enter a value
greater than 16 and less than 100.

Hopefully, 100 undos will be enough for even the most demanding users,
though the issue with Save clearing the Undo Stack persists.

H A C K

#35
Create Custom Lists Hack #35

By adding a custom list to Excel, you can type the first item in the list, drag it
down using the fill handle, and watch the list fill automatically.

One of Excel’s most popular time-saving features is its ability to automati-
cally increment not only numbers, but certain text as well. Excel has a cou-
ple of built-in lists, such as days of the week and months of the year.
Currently when you use the fill handle, you type the first item, then use the
fill handle to fill cells with the next item in the list, and so forth. You can
easily create your own custom list for commonly used items.

Boldface Excel Subtotals #36

Chapter 2, Hacking Excel’s Built-in Features | 85

HACK

The most flexible way to create a custom list is to enter the list contents into
a range of cells. For example, say you have a list of 100 employee names.
Enter each name, starting with cell A1 and ending with cell A100, and sort
the list, if needed. Then select the Office button ➝ Excel Options ➝ Popular
➝ Edit Custom Lists (pre-2007, Tools ➝ Options ➝ Custom Lists; on the
Mac, Excel ➝ Preferences ➝ Custom Lists). Click the collapse tool to the left
of the Import button. Using the mouse pointer, left-click in cell A1 and drag
all the way down to A100. Then click the Import button, then OK. From
this point on, the custom list will be available to all workbooks on the same
computer.

Once you create a custom list, you can turn the list upside down. To do this,
return to the column next to the custom list and place the last entry from the
list in the top cell. In the cell beneath it, place the second-to-last entry. Select
both cells and double-click the fill handle. The list you produced should be
reversed. You can sort the original list by going to the Data tab and select-
ing Sort & Filter ➝ Sort (pre-2007, Data ➝ Sort ➝ Options).

If your list is sorted and you want to turn it upside down,
you might find it easier to sort from Z to A if the list origi-
nally was sorted from A to Z.

H A C K

#36
Boldface Excel Subtotals Hack #36

Wouldn’t it be great if you could identify the subtotals in your worksheets so
that you can find them easily? With the hacks in this section, you can.

When you are working with a spreadsheet that has subtotals you created by
selecting Data ➝ Subtotals, the subtotals can be very hard to identify, mak-
ing the spreadsheet hard to read. This is true especially if you applied subto-
tals to a table of data with many columns.

Typically, the resulting subtotals appear on the right, while their associated
headings are often in the first column. As the subtotal values are not in bold-
face, it can be hard to visually align them with their row headings. You can
make these subtotals much easier to read by applying bold formatting to the
subtotal values.

To test the problem, set up some data similar to that shown in Figure 2-19.

Now add the subtotals by selecting Data ➝ Outline ➝ SubTotal Button (pre-
2007, Data ➝ Subtotals), accepting the defaults in the Subtotals dialog, and
clicking OK.

86 | Chapter 2, Hacking Excel’s Built-in Features

#36 Boldface Excel Subtotals
HACK

In Figure 2-20, the subtotal headings have been boldfaced but their associ-
ated results have not. As this table has only two columns, it is not that hard
to read and pick out the subtotal amounts.

The more columns a table has, however, the harder it is to visually pick out
the subtotals. You can solve this problem by using Excel’s conditional for-
matting. Using the table in Figure 2-19 as an example, try this before adding
your subtotals. Select cell A1:B9, ensuring that A1 is the active cell. Select
Home ➝ Styles ➝ Conditional Formatting ➝ New Rule ➝ “Use a formula to
determine which cells to format” (pre-2007, Format ➝ Conditional Format-
ting… ➝ Formula Is), and then add the following formula under “Format
values where this formula is true”:

=RIGHT($A1,5)="Total"

Figure 2-19. Worksheet data before adding subtotals

Figure 2-20. Worksheet data after subtotals have been applied

Boldface Excel Subtotals #36

Chapter 2, Hacking Excel’s Built-in Features | 87

HACK

Now click the Format button and then the Font tab, and select Bold as the
Font Style. Click OK, then OK again.

The important part of the formula is the use of an absolute reference of the
column ($A) and a relative reference of the row (1). As you started the selec-
tion from cell A1, Excel will automatically change the formula for each cell.
For example, cells A2 and B2 will have the conditional format formula
=RIGHT($A2,5)="Total", and cells A3 and B3 will have the conditional for-
mat formula =RIGHT($A3,5)="Total".

Add the subtotals, and they will look like those in Figure 2-21.

One last thing to remember is that if you remove the subtotals, the bold-
faced font will no longer apply.

Hacking the Hack
The only possible pitfall with this method is that the Grand Total appears in
the same style as the Subtotals. It would be nice to see the Grand Total for-
matted in another way so that it stands outs from the Subtotals and is identi-
fied more easily. You can do this using the same example.

Delete the previous conditional formatting rule by going to Conditional For-
matting ➝ Manage Rules, clicking on the rule, and selecting Delete Rule
(pre-2007, Format ➝ Conditional Formatting ➝ Delete).

Starting with your raw data, select cell A1:B9, ensuring that A1 is the active
cell. Now select Conditional Formatting ➝ Manage Rules ➝ New Rule ➝

Figure 2-21. Worksheet data after subtotals have been formatted

88 | Chapter 2, Hacking Excel’s Built-in Features

#36 Boldface Excel Subtotals
HACK

“Use a formula to determine which cells to format” (for pre-2007, select For-
mat ➝ Conditional Formatting… ➝ select Formula Is) and add the following
formula under “Format values where this formula is true”:

=$A1="Grand Total"

Click the Format button and then the Font tab, and select Bold as the Font
Style. Click OK, and then click New Rule to add a second format condition
(pre-2007, click Add). Select “Format values where this formula is true”
(Formula Is in older versions) and add the following formula:

=RIGHT($A1,5)="Total"

Click the Format button and then the Font tab. On this tab, select Bold
Italic as the Font Style. Select Single from Underline, click OK, and then
click OK again.

For Excel 2007 users, when Rules are added to Conditional
Formatting, they are added so that the rule you first create is
at the bottom of the list, then the next rule you create is on
top of this and so forth. This means that the last rule you
create will be applied first (the reverse is true for pre-2007
versions). For this hack you will need to change the order
that the rules are applied in, so click on the first rule that you
made (=$A1="Grand Total") and press the “Move up” button.

Next, select the SubTotal Button under Outline options on the Data tab,
(pre-2007, Data ➝ Subtotals) accept the defaults, and click OK.

Your worksheet data should now look like Figure 2-22.

You can use any format you want to make your subtotals easier to read.

Figure 2-22. Worksheet data with more prominent grand total

Convert Excel Formulas and Functions to Values #37

Chapter 2, Hacking Excel’s Built-in Features | 89

HACK

H A C K

#37
Convert Excel Formulas and Functions to Values Hack #37

Most Excel spreadsheets contain formulas. Sometimes you may want to
force only the result of a formula to occupy a cell, instead of leaving the
formula in place, where it will change if/when the data it references changes.

You can do this manually in a couple of ways, or you can use a macro that
will make the job a breeze. Let’s look at the manual methods first.

Using Paste Special
You can copy the formula results and still leave the original formulas in
place using Excel’s Paste Special tool. Assume you have formulas residing
in cells A1:A100. Select this range, select Copy (you can do this from the
Clipboard options on the Home tab or right-click), and then select the start-
ing cell for the mirror results. Select Clipboard ➝ Paste ➝ Paste Values (or
right-click and select Paste Special ➝ Values) and click OK.

If you want to override the original formulas with their results, select the for-
mula range and select Copy. With the formula range still selected, select
Paste ➝ Paste Values (or right-click and select Paste Special ➝ Values) and
then click OK.

Using Copy Here As Values Only
You also can copy formula results and still leave the original formulas in
place by using a pop-up menu that many users don’t even know exists.

Select the formula range and right-click the right or left border of the selec-
tion (in other words, anywhere on the selection border except for the fill
handle). While holding down the right mouse button (or Ctrl-clicking on a
Macintosh), drag to the destination, release the right mouse button, and
click Copy Here as Values Only from the resulting pop-up shortcut menu.

You can also override the original formulas with their results. Select the for-
mula range, then right-click the right or left border of the selection (again, any-
where in the selection except for the fill handle). While pressing the right
mouse button (or Ctrl-clicking), drag over one column to the right or left and
then back to the starting range, release the right mouse button, and click Copy
Here as Values Only from the resulting pop-up shortcut, shown in Figure 2-23.

Using a Macro
If you frequently convert cells containing formulas and functions to their
values, you can use this simple macro:

Sub ValuesOnly()
Dim rRange As Range

90 | Chapter 2, Hacking Excel’s Built-in Features

#37 Convert Excel Formulas and Functions to Values
HACK

 On Error Resume Next
 Set rRange = Application.InputBox(Prompt:="Select the formulas", _
 Title:="VALUES ONLY", Type:=8)
 If rRange Is Nothing Then Exit Sub
 rRange = rRange.Value
End Sub

To use this macro, select Developer ➝ Code ➝ Visual Basic (pre-2007, Tools
➝ Macro ➝ Visual Basic Editor) or Alt/Option-F11. While in the VBE, select
Insert ➝ Module to insert a standard module. Enter the preceding code
directly into the module. Click the window’s Close button, or press Alt/c-Q
to get back to Excel. Select Developer ➝ Code ➝ Macros (pre-2007, Tools ➝

Macro ➝ Macros) or Alt/Option-F8, select ValuesOnly, and then click
Options to assign a shortcut key to the macro. When you use the macro you
will be presented with an InputBox and asked to select a range that contains

Figure 2-23. Pop-up shortcut menu

Automatically Add Data to a Validation List #38

Chapter 2, Hacking Excel’s Built-in Features | 91

HACK

your formulas. The selected range address will show automatically in the
InputBox, and all you need to do to make the conversion is click OK.

H A C K

#38
Automatically Add Data to a Validation List Hack #38

The validation feature in Excel is great, but there is one key thing it cannot do
(without the following hack): automatically add a new entry to the list being
used as the source for the validation list. This hack allows a user to add to
the list, showing a message box and giving the user an option to Add or
Cancel. Duplicates are ignored.

If you have used validation, you know it’s a neat feature. Perhaps most
impressive is its ability to add a list to any cell from which the user can then
select. Wouldn’t it be nice if, when you enter a new name in a validated cell,
Excel automatically adds it to the list? This is possible, thanks to the follow-
ing hack.

Assume you have a list of names in the range A1:A10, as in Figure 2-24.

These names represent employees in a company. It is not uncommon for
new employees to be added to such a list, but at present, the only way to
achieve this is to add the new names to the end of the list and then select the
new names from the list in the validated cell.

To overcome this limitation, follow these steps. In cell A11, enter the follow-
ing formula and copy it down to row 20, as in Figure 2-25 (note the relative
reference of A10):

=IF(OR(D1="",COUNTIF(A1:A10,D1)),"x",D1)

Now, select Formulas ➝ Defined Names ➝ Define Name (pre-2007, Insert ➝

Name ➝ Define), and type MyNames in the Names: box. In the Refers To: box,
enter the following formula, as shown in Figure 2-26, and then click OK
(pre-2007, click Add then click OK):

=OFFSET(Sheet1!A1,0,0,COUNTA(Sheet1!$A:$A),1)

Figure 2-24. Workbook set up for validation list

92 | Chapter 2, Hacking Excel’s Built-in Features

#38 Automatically Add Data to a Validation List
HACK

Select cell D1, select Data ➝ Data Tools ➝ Data Validation (pre-2007, select
Data ➝ Validation). Choose List from the Allow: box, and in the Source:
box, type =MyNames, ensuring that the In-Cell drop-down box is checked.
Click the Error Alert page tab and uncheck the Show error alert after
invalid data is entered box. Now click OK. You’ll see the result in
Figure 2-27.

Figure 2-25. List with formula added to rows A11:A20

Figure 2-26. Making the list dynamic

Automatically Add Data to a Validation List #38

Chapter 2, Hacking Excel’s Built-in Features | 93

HACK

Right-click the Sheet Name tab and select View Code. Enter the following
code:

Private Sub Worksheet_Change(ByVal Target As Range)
Dim lReply As Long
 If Target.Cells.Count > 1 Then Exit Sub

 If Target.Address = "D1" Then
 If IsEmpty(Target) Then Exit Sub
 If WorksheetFunction.CountIf(Range("MyNames"), Target) = 0 Then
 lReply = MsgBox("Add " & Target & " to list", vbYesNo +
vbQuestion)
 If lReply = vbYes Then
 Range("MyNames").Cells(Range("MyNames").Rows.Count + 1,
1) = Target
 End If
 End If
 End If
End Sub

Close the window to get back to Excel and save your workbook. Now select
cell D1, type in any name that is not part of the list, and press Enter. Select
cell D1 again and look at the list. The new name should be part of it, as
shown in Figure 2-28.

If you want to add more than 10 names to your list, just copy the formula
down past row 20.

Figure 2-27. The list with validation added to cell D1

94 | Chapter 2, Hacking Excel’s Built-in Features

#39 Hack Excel’s Date and Time Features
HACK

H A C K

#39
Hack Excel’s Date and Time Features Hack #39

Excel’s date and time feature is great if you’re creating simple spreadsheets,
but they can cause problems for more advanced projects. Fortunately, there
are ways to get around Excel’s assumptions when they don’t meet your
needs.

Excel (by default) uses the 1900 date system. This means the date 1 Jan
1900 has an underlying numeric value of 1, and that 2 Jan 1900 has a value
of 2, and so forth. These values are called serial values in Excel, and they
enable you to use dates in calculations.

Times are very similar, but Excel treats times as decimal fractions, with 1
being the time 24:00 or 00:00. 18:00 has a numeric value of 0.75 because it
is three-quarters of 24 hours.

To see the numeric value of a date and/or a time, format as General the cell
containing the value. For example, the date and time 3/May/2007 3:00:00 PM
has a numeric value of 39205.625, with the number after the decimal repre-
senting the time, and the 39205 representing the serial value for 3/May/2007.

Adding Beyond 24 Hours
You can add times by using the SUM function (or a simple plus sign). There-
fore, =SUM(A1:A5) would result in Total Hours if A1:A5 contained valid
times. There is, however, a big “Gotcha!” Unless told otherwise, Excel will
not add past 24 hours. This is because when a time value exceeds 24 hours
(a true value of 1), it rolls into a new day and starts again. To force Excel
not to default back to a new day after 24 hours, you can use a cell format of
37:30:55 or a custom format of [h]:mm:ss.

Figure 2-28. The list after adding a new entry to cell D1

Hack Excel’s Date and Time Features #39

Chapter 2, Hacking Excel’s Built-in Features | 95

HACK

You can use a similar format to get the total minutes or seconds of a time.
To get the total minutes of the time 24:00, for instance, format the cell as
[m] and you will get 1440. To get the total seconds, use a custom format of
[s] and you get 86400.

Time and Date Calculations
If you want to use these real time values in other calculations, keep the
“magic” numbers listed in Table 2-6 in mind.

Once you are armed with these magic numbers and the preceding informa-
tion, you’ll find it’s much easier to manipulate times and dates. Take a look
at the following examples to see what we mean (assume the time is in cell
A1).

If you have the number 5.50 and you really want 5:30 or 5:30 a.m., use this:

=A1/24

and format as needed.

If it should be 17:30 or 5:30 p.m., use this:

=(A1/24)+0.5

To achieve the opposite—that is, a decimal time from a true time—use this:

=A1*24

If a cell contains the true date and the true time (as in 22/May/07 15:36) and
you want only the date, use this:

=INT(A1)

To get only the time, use this:

=A1-INT(A1)

or:

 =MOD(A1,1)

and format as needed.

Table 2-6. Magic numbers for time and date calculations

Number Meaning

60 60 minutes or 60 seconds

3600 60 secs * 60 mins

24 24 hours

1440 60 mins * 24 hours

86400 24 hours * 60 mins * 60 secs

96 | Chapter 2, Hacking Excel’s Built-in Features

#39 Hack Excel’s Date and Time Features
HACK

To find out the difference between two dates, use this:

=DATEDIF(A1,A2,"d")

where A1 is the earlier date.

This will produce the number of days between two dates. It will also accept
m or y as the result to return—that is, Months or Years. (The DATEDIF function
is undocumented in Excel 97 and is really a Lotus 123 function.)

If you do not know in advance which date or time is the earliest, the MIN and
MAX functions can help. For example, to be assured of a meaningful result,
you can use this:

=DATEDIF(MIN(A1,A2),MAX(A1,A2),"d")

Also, when working with times, you might need to account for start time
and end time, with the start time being 8:50 PM. in cell A1, and the end
time being 9:50 AM. in cell A2. If you subtract the start time from the end
time (=A2-A1), you get ######, as Excel, by default, cannot work with nega-
tive times. See “Display Negative Time Values” [Hack #87] for more on how to
work with negative times.

Alternatively, you can work around this in these two ways, ensuring a posi-
tive result:

=MAX(A1:A2)-MIN(A1:A2)

or (you may need to format the cell as a time if it defaults to a numeric
format):

=A1-A2+IF(A1>A2,1)

You can also tell Excel to add any number of days, months, or years to any
date:

=DATE(YEAR(A1)+value1,MONTH(A1)+value2,DAY(A1)+value3)

To add one month to a date in cell A1, use this:

=DATE(YEAR(A1),MONTH(A1)+1,DAY(A1))

Excel also offers some additional functions that are part of the Analysis
ToolPak. Go to the Office button ➝ Excel Options ➝ Add Ins, select the
Analysis ToolPak, and click Go. Enable the Analysis ToolPak checkbox, and
click OK (pre-2007, select Tools ➝ Add-Ins, enable the Analysis ToolPak
checkbox, and then click Yes if you are asked if you want to install it).

You can find all of these functions under the Formula tab in Functions
Library ➝ Date & Time (pre-2007, Paste Function dialog in the Function
Wizard). The functions are easy to use; the hard part is knowing they’re
available and turning them on.

Hack Excel’s Date and Time Features #39

Chapter 2, Hacking Excel’s Built-in Features | 97

HACK

By default, this Add-In is not installed in Excel 2007. To
install it, go to the Office button ➝ Excel Options ➝ Add
Ins, select the Analysis ToolPak, and click Go. Enable the
Analysis ToolPak checkbox, and click OK.

Real Dates and Times
Sometimes spreadsheets with imported data (or data that was entered incor-
rectly) end up with dates and times being seen as text and not real numbers.
You can spot this easily in Excel by widening the columns a bit, selecting a
column, right-clicking and selecting Format ➝ Cells ➝ Alignment, and then
changing the Horizontal alignment to General (the default format for cells).
Click OK and examine your dates and times closely. If any are not right-
aligned, Excel doesn’t think they are dates.

To fix this, first copy any empty cell, and then select the column and format
as any Date and/or Time format. While the column is still selected, right–
click and select Paste Special ➝ Value ➝ Add. This will force Excel to con-
vert any text dates and times to real dates and times. You might need to
change the format again. Another simple method is to reference the cell(s)
like this:

=A1+0 or A1*1

A Date Bug?
Excel incorrectly assumes that the year 1900 was a leap year. This means
Excel’s internal date system believes there was a 29 Feb 1900, when there
wasn’t! The most surprising part is that Microsoft did this intentionally, or
so they say! More information is available at http://support.microsoft.com/
default.aspx?scid=kb;EN-US;q181370.

Here are some additional good links to information on dates and times:

HOW TO: Use Dates and Times in Excel 2000
http://support.microsoft.com/default.aspx?scid=kb;en-us;Q214094#6

Text or Number Converted to Unintended Number Format
http://support.microsoft.com/default.aspx?scid=kb;en-us;Q214233

Maximum Times in Microsoft Excel
http://support.microsoft.com/default.aspx?scid=kb;en-us;Q214386

Dates and Times Displayed as Serial Numbers When Viewing Formulas
http://support.microsoft.com/default.aspx?scid=kb;en-us;Q241072

http://support.microsoft.com/default.aspx?scid=kb;EN-US;q181370
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q181370
http://support.microsoft.com/default.aspx?scid=kb;en-us;Q214094#6
http://support.microsoft.com/default.aspx?scid=kb;en-us;Q214233
http://support.microsoft.com/default.aspx?scid=kb;en-us;Q214386
http://support.microsoft.com/default.aspx?scid=kb;en-us;Q241072

98 | Chapter 2, Hacking Excel’s Built-in Features

#40 Enable Grouping and Outlining on a Protected Worksheet
HACK

Controlling and Understanding Settings in the Format Cells Dialog Box
http://support.microsoft.com/default.aspx?scid=kb;en-us;Q264372

How to Use Dates and Times in Microsoft Excel
http://support.microsoft.com/default.aspx?scid=kb;en-us;214094

Dates and times are probably one of the most confusing areas within Excel.
Armed with this information, hopefully you will understand more about
their many quirks and have an easier time dealing with them.

H A C K

#40
Enable Grouping and Outlining on a Protected
Worksheet Hack #40

In Excel 2000, Microsoft added many new levels of worksheet protection to
Excel. Unfortunately, they neglected to add one that would allow Excel users
to use Grouping and Outlining on a protected worksheet.

To enable grouping and outlining on a protected worksheet, you must first
set up grouping/outlining on your data. Highlight your data, go to Data
➝ Group ➝ Outline options, and select the drop-down to the right of Group.
Click AutoOutline (pre-2007, Data ➝ Group & Outline) to present your
data as displayed in Figure 2-29.

Next, protect your sheet using the password Secret.

To allow the use of Grouping/Outlining on a protected Worksheet, the code in
this hack makes use of Excel’s UserInterfaceOnly argument of the Protection
method (http://www.ozgrid.com/VBA/excel-macro-protected-sheet.htm), which
is normally used to keep the general Excel interface protected but allow
changes from Excel macros. The closing of the workbook, however, will set the
UserInterfaceOnly back to False. This is why we need to use the Workbook Open
event to set it to True.

Figure 2-29. Data with Outline applied

http://support.microsoft.com/default.aspx?scid=kb;en-us;Q241072
http://support.microsoft.com/default.aspx?scid=kb;en-us;Q264372
http://support.microsoft.com/default.aspx?scid=kb;en-us;214094
http://www.ozgrid.com/VBA/excel-macro-protected-sheet.htm

Enable Grouping and Outlining on a Protected Worksheet #40

Chapter 2, Hacking Excel’s Built-in Features | 99

HACK

The drawback of using the Workbook Open event is that the security settings of
your computer might not allow the code to fire on opening. To ensure it
does, set your security to Enable All Macros (pre-2007, set it to Low).

It is imperative to know that by setting your security level to
Enable All Macros (pre-2007, Low), you can leave your PC
wide open to potentially dangerous code.

To use the macro, right-click on the sheet tab, select View Code, double-
click This Workbook (pre-2007, choose the Excel icon in the top left, next
to File, and then View Code) and paste the following code:

Private Sub Workbook_Open()
 With Sheet1
 .Protect Password:="Secret", UserInterfaceOnly:=True
 .EnableOutlining = True
 End With
End Sub

Then, save the Workbook, close it, and reopen it. Even though your work-
book is protected and the Group option is grayed out, as shown in
Figure 2-30, you should be able to use the Grouping/Outline feature as
usual, because it is already applied to your data.

We have used the worksheets CodeName to reference the correct worksheet,
but you can use the tab name, or sheet index number. The use of the
worksheets CodeName is a more efficient way. Also note that we have used the
password Secret.

Figure 2-30. Protected sheet with Group option grayed out

100 | Chapter 2, Hacking Excel’s Built-in Features

#41 Prevent Blanks/Missing Fields in a Table
HACK

H A C K

#41
Prevent Blanks/Missing Fields in a Table Hack #41

You can easily manipulate the Data Validation feature of Excel to ensure that
you have no blank cells within your list.

With the aid of Data Validation, we can ensure that a table or list cannot
have blank/missing entries. For example, let’s use a simple two-column
table. Suppose you have a heading of Name in A1 and Department in B1.
Underneath these headings, you want users to fill out both the name and
their associated departments leaving neither column blank. (If you’re start-
ing with a table that has blank cells that need to be filled, see the “Fill All
Blank Cells” sidebar.)

Select A3:B100 and ensure that your selection starts from cell A3. Now,
select Data ➝ Data Tools ➝ Data Validation (pre-2007, Data ➝ Validation).
Select Custom from the Allow: drop-down list, and then add the following
formula in the Formula box:

=AND(COUNTA(A2:$A2)=ROW()-2,COUNTA($B$2:$B2)=ROW()-2)

It is very important to note the absolute reference of A2
and B2 and the relative row/absolute column of $A2 and
$B2; otherwise, you will show incorrect results.

Select the Error Alert tab and type an applicable error message that users
will see if they leave blanks in the table, as shown in Figure 2-31. Make sure
the Error style is set to Stop and click OK.

The validation applied will ensure that all entries (in the table A2:B100)
have both a name and a department by not permitting blank cells between
the filled-in names and the names being entered.

Fill All Blank Cells
As you are no doubt aware, most of Excel’s tools, PivotTables, sorting, filters,
etc, run into problems when they find a blank cell in a range of cells, so here
is a quick way to fill every blank cell with the value of the cell above.

Say you have a list of entries in column A with many blank cells. Select col-
umn A, press F5 (on some notebook compputers, such as MacBooks, you will
need to hold down the Fn key when you press F5), select Special, check the
Blanks option, and click OK. You should now have all blanks selected. Now,
press the equals sign (=), followed the Up arrow, and finally, holding down
the Ctrl key, press Enter.

Provide Decreasing Data Validation Lists #42

Chapter 2, Hacking Excel’s Built-in Features | 101

HACK

H A C K

#42
Provide Decreasing Data Validation Lists Hack #42

Wouldn’t it be useful if you could give users a list of options to select that
decreases as options are used? You can create this nifty feature with the use
of Data Validation and some Excel VBA code.

Say you have one spreadsheet that many users input into. Each of these
users needs to select an item from a validation list on the spreadsheet. After
each user has selected their items, wouldn’t it be great if the validation list
only showed what was left (the items that had not yet been selected). This
would make data entry easier and more efficient for all, and prevent dupli-
cates of data.

On any worksheet, add your list—say, in A1:A10. Now, select this range
and click in the Name box (left of the Formula bar), type the name MyList,
and press Enter. This will give you a Named Range called MyList.

Now, select the range on another worksheet where you would like the vali-
dation list to go. Right-click this sheet name tab, select View Code, and
paste the following code:

Private Sub Worksheet_Change(ByVal Target As Range)
Dim strVal As String
Dim strEntry As String
 On Error Resume Next

Figure 2-31. Displaying the Error alert tab

102 | Chapter 2, Hacking Excel’s Built-in Features

#43 Add a Custom List to the Fill Handle
HACK

 strVal = Target.Validation.Formula1
 If Not strVal = vbNullString Then
 strEntry = Target
 Application.EnableEvents = False
 With Sheet1.Range("MyList")
 .Replace What:=strEntry, _
 Replacement:="", LookAt:=xlWhole, _
 SearchOrder:=xlByRows, MatchCase:=False
 .Sort Key1:=.Range("A1"), Order1:=xlAscending, _
 Header:=xlNo, OrderCustom:=1, MatchCase:=False, _
 Orientation:=xlTopToBottom
 .Range("A1", .Range("A65536").End(xlUp)).Name = "MyList"
 End With
 End If
 Application.EnableEvents = True
 On Error GoTo 0
End Sub

Close the window to get back to Excel. Now, select Data ➝ Data Tools ➝

Data Validation (pre-2007, Data ➝ Validation), and choose Allow: ➝ List.
Then, under Source:, enter =MyList and click OK.

Now, when you select a name from the list, this name no longer appears on
the drop-down.

Notice that we have referred to the named range MyList as Sheet1.
Range("MyList"), preceding the named range with its sheet codename. We
have done so because the reference to the named range (MyList) is in the pri-
vate module of another Worksheet. Without it, Excel would assume MyList
is on the same worksheet as one where the Worksheet_Change code resides.

H A C K

#43
Add a Custom List to the Fill Handle Hack #43

Once you have created a few of your own Custom Lists, it can be hard to
remember the first item in the list that must be entered in a cell. This hack
adds the list to the Fill Handle.

Creating Excel Custom Lists via the Excel Fill Handle is a great way to
quickly get a list of numbers or text onto a worksheet. Excel has built-in
Custom Lists for Weekdays (Mon–Fri), Months (Jan–Dec) and numeric
sequences, but you can also add your own Custom Lists. With this hack,
you can add your own Custom List to the Fill Handle, to remind you which
item must be entered first in a cell.

First, you need to create your list by entering it on a worksheet. Let’s say you
have 10 names in cells A1:A10 on Sheet 1. Sort the list, if necessary. Then,
select the Office button ➝ Excel Options ➝ Popular ➝ Edit Custom Lists
(pre-2007, Tools ➝ Options ➝ Custom Lists; on the Mac, Excel ➝ Prefer-
ences ➝ Custom Lists). Click the collapse tool to the left of the Import

Add a Custom List to the Fill Handle #43

Chapter 2, Hacking Excel’s Built-in Features | 103

HACK

button. Using the mouse pointer, left-click in cell A1 and drag down to A10.
Then, click the Import button, followed by OK. From this point on, the cus-
tom list will be available to all workbooks on the same computer.

To add the list to your fill handle, right-click on your sheet name and select
View Code. Go to Insert ➝ Module and paste the following code:

Sub AddFirstList()
Dim strList As String
 strList = Application.CommandBars.ActionControl.Caption
 If Not strList Like "*...*" Then Exit Sub
 ActiveCell = Left(strList, InStr(1, strList, ".", vbTextCompare) - 1)
End Sub

Now, you need to add the following code to the private module of the work-
book object (ThisWorkbook):

Private Sub Workbook_SheetBeforeRightClick _
 (ByVal Sh As Object, ByVal Target As Range, Cancel As Boolean)
Dim cBut As CommandBarButton
Dim lListCount As Long
Dim lCount As Long
Dim strList As String
Dim MyList
 On Error Resume Next
 With Application

 lListCount = .CustomListCount
 For lCount = 1 To lListCount
 MyList = .GetCustomListContents(lCount)
 strList = .CommandBars("Cell").Controls(MyList(1) & _
 "..." & MyList(UBound(MyList))).Caption
 .CommandBars("Cell").Controls(strList).Delete
 Set cBut = .CommandBars("Cell").Controls. ↵
Add(Temporary:=True)
 With cBut
 .Caption = MyList(1) & "..." & ↵
MyList(UBound(MyList))
 .Style = msoButtonCaption
 .OnAction = "AddFirstList"
 End With
 Next lCount
 End With
 On Error GoTo 0
End Sub

To get there quickly, while in Excel proper, select Developer ➝ Code ➝

Visual Basic and double-click ThisWorkbook (pre-2007, right-click on the
Excel icon, in the upper left next to File, and choose View Code). Here’s
where you need to place the code.

104 | Chapter 2, Hacking Excel’s Built-in Features

#43 Add a Custom List to the Fill Handle
HACK

Now, each time you right-click on a cell, you will see the first...last items in
each Custom List, as shown in Figure 2-32.

When you click the option the first Custom List item goes into the active
cell. Then, you simply drag down via the Excel Fill Handle to get the rest of
the list.

Figure 2-32. Right-click menu showing custom list

105

Chapter 3 C H A P T E R T H R E E

Naming Hacks
Hacks 44–49

Probably the biggest advantage to using named ranges is that formulas
become a lot easier to read and understand, not only to you but also to oth-
ers who need to work with your spreadsheets. Using named ranges (easily
one of Excel’s most useful features), you can reference a range of cells and
give it a specific name. From that point on, you can reference the range via
the name rather than its range address. Although named ranges are power-
ful, you can go beyond the standard range names in many ways.

H A C K

#44
Address Data by Name Hack #44

Although cell numbers are at the foundation of everything Excel does, it’s
much easier to remember names, such as Item Number and Quantity, than it
is to remember cell numbers, such as A1:A100. Excel makes this easy.

Excel uses the same technique for defining named cells and named ranges:
the Name box at the left end of the Formula bar. To name a cell, select it,
type the name you want into the Name box, as shown in Figure 3-1, and
press Enter. To name a range of cells, select the range, type the name you
want for that range in the Name box, and press Enter.

The drop-down list to the right of the Name box enables you to find your
named ranges and cells again. (See “Identify Named Ranges on a Work-
sheet” [Hack #49] at the end of this chapter for more ways to locate ranges.) If
you happen to select a range precisely, its name will appear in the Name box
instead of the usual cell references.

In formulas, you can use these names in place of cell identifiers or ranges. If
you name cell E4 “date,” for instance, you could write =date instead of =E4.
Similarly, if you create a range called “quantity” in A3:A10 and want a total
of the values in it, your formula could say =SUM(quantity) rather than
=SUM(A3:A10).

106 | Chapter 3, Naming Hacks

#45 Use the Same Name for Ranges on Different Worksheets
HACK

As spreadsheets grow larger and more intricate, named cells and ranges are
crucial tools for keeping them manageable.

H A C K

#45
Use the Same Name for Ranges on Different
Worksheets Hack #45

Sometimes it would be convenient to use the same name for data in the
same place on multiple worksheets within the same workbook. Excel
requires a few extra steps to make this work.

Usually when you name a range, the name is at the workbook level, mean-
ing that one name refers to a specified range on a specified worksheet wher-
ever it is used in the workbook. Once the name has been used, it cannot be
used again to represent a range on another worksheet. There is a way
around this, however.

Assume you have a workbook with three worksheets. These three work-
sheets are simply named Sheet1, Sheet2, and Sheet3. You want to have a
named range called MyRange (or some other legitimate name) that will refer
to the range Sheet1 A1:A10 when on Sheet1, Sheet2 A1:A10 when on
Sheet2, and Sheet3 A1:A10 when on Sheet3.

To do this, activate Sheet1, select the range A1:A10, and then click in the
Name box, as you did in “Address Data by Name” [Hack #44]. Type
Sheet1!MyRange and then press Enter. Do the same for Sheet2 and Sheet3,
typing Sheet2!MyRange and Sheet3!MyRange, respectively.

From now on, when you activate any sheet and click the drop arrow on the
Name box, you should see only one occurrence of the name MyRange.

Figure 3-1. Naming a cell MyFavouriteCell

Use the Same Name for Ranges on Different Worksheets #45

Chapter 3, Naming Hacks | 107

HACK

Select this and you will be taken directly to the range A1:A10. You can
check that it works by activating any other sheet and doing the same. You
always will be taken to the range A1:A10 of that sheet.

You can do this because you preceded the name with the sheet name fol-
lowed by an exclamation mark (!). If you select Formulas ➝ Defined Names
➝ Name Manager, you will see the range names you have created (pre-
2007, go to Insert ➝ Name ➝ Define and you will see only one name: the
one that refers to the currently active sheet).

If your worksheet name includes spaces (e.g., Class List), you cannot refer to
the range Class List A1:A10 as Class List!MyRange. Instead, you must call it
'Class List'!MyRange, putting single apostrophes around the name Class
List. In fact, you can also use single apostrophes with a worksheet name
with no spaces, so it is a good idea to always use single apostrophes when
referring to worksheet names to cover all your bases.

Using Relative References
You can use a relative reference named range as well. By default, named
ranges are absolute, but you do not have to leave them this way. Try follow-
ing these steps:

1. Select cell A11 on any worksheet and then right-click and select Name a
Range (pre-2007, select Insert ➝ Name ➝ Define).

2. In the Name: box, type MyNumbers (pre-2007, the box is labeled Names
in Workbook:).

3. In the Refers To: box, type =A$1:A$10 and then click OK.

4. Now enter the number 1 in cell A1.

5. Select cell A1, move your cursor to the fill handle, and press the left
mouse button. While holding down the Ctrl key, drag down to cell A10.
(Holding down the Ctrl key with a single number will cause Excel to
create a list incremented by 1.)

6. Enter 1 in cell B1 and drag down to cell B10, without holding down the
Ctrl key this time.

7. In cell A11, enter =SUM(MyNumbers).

8. In cell B11, enter =SUM(MyNumbers).

You should get 55 and 10, respectively, because cell A11 was active when
you defined the name MyNumbers and referred the range name to A$1:A$10,
which is a relative column and absolute row named range.

108 | Chapter 3, Naming Hacks

#46 Create Custom Functions Using Names
HACK

The dollar sign ($) forces any range to be absolute.

When you use the name MyNumbers in a formula, it always will refer to the 10
cells immediately above the formula. If you use =SUM(MyNumbers) in cell A11
of another worksheet, it still will refer to cells A1:A10 on the sheet that was
active when you originally created the range name.

Simplify the summing. If you want to simplify the summing of the 10 cells,
try these steps:

1. Select cell A11 on any worksheet.

2. Right–click, select Name a Range (pre-2007, Insert ➝ Name ➝ Define),
and type MySum in the Name: box.

3. In the Refers To: box, type =SUM(A$1:A$10) and click OK.

4. Now enter the number 1 in cell A1.

5. Select cell A1, move your cursor to the fill handle, and press the left
mouse button. Hold down the Ctrl key and drag down to cell A10.

6. Enter 1 in cell B1, and drag down to cell B10 without holding down the
Ctrl key.

7. In cell A11, enter =MySum.

8. In cell B11, enter =MySum.

You will get the same results you got before, but without requiring the SUM
function. Mixing up the abgsolute and relative references and nesting a few
functions together can be very handy and can save a lot of work.

H A C K

#46
Create Custom Functions Using Names Hack #46

Although referencing data by name is convenient, it’s sometimes more
helpful to store a constant value or even a formula, especially if you’ve been
creating custom functions in VBA.

Assume you have a tax rate of 10 percent, which you need to use through-
out your workbook for various calculations. Instead of entering the value
10% (0.1) into each formula that requires this tax rate, you can enter the
word TaxRate and Excel will automatically know that TaxRate has a value of
0.1. Here are the steps:

1. Select the Formulas tab and then select Defined Names ➝ Define Name
(pre-2007, Insert ➝ Name ➝ Define).

2. Type TaxRate in the Names: box.

Create Custom Functions Using Names #46

Chapter 3, Naming Hacks | 109

HACK

3. In the Refers To: box, enter =0.1 and then click Add.

From this point on, you can enter any formula into any cell, and instead of
adding 10 percent as part of the calculation, you can use the word TaxRate.
Probably one of the biggest advantages to using this method is that if and
when your tax rate increases or decreases, and your formulas need to reflect
this new percentage, you can select the Formulas tab, choose Defined
Names ➝ Define Name (pre-2007, Insert ➝ Name ➝ Define), then select the
name TaxRate and just modify it to suit.

To take things a step further with this concept, you can use formulas as your
Refers To: range rather than a cell address or constant value. Suppose you
want to create a name that, when entered into a cell, automatically returns
the SUM of the 10 cells immediately above it. Follow these steps:

1. Select cell A11 on any worksheet, right–click, and go to Name a Range
(pre-2007, select Insert ➝ Name ➝ Define).

2. In the Name: box, type the name Total, and in the Refers To: box type
=SUM(A1:A10). Click OK.

3. Enter any 10 numbers in any column starting from row 1.

4. Now come down to row 11 of the same column and type =Total. The
name Total automatically will return the SUM of the 10 cells you just
entered in A1:A10.

If you want to create a similarly named formula that is not restricted to only
10 cells, but rather, includes all the cells directly above whatever row hap-
pens to contain =Total, follow these steps:

1. Select cell B11, go to the Formulas tab, and select Defined Names ➝

Name Manager (pre-2007, select Insert ➝ Name ➝ Define). Click the
name Total.

2. Examine the Refers To: box, which will say =SUM(B1:B10). This enables
you to create named formulas. In other words, because you did not
make the column references absolute for the original name Total, it
always will reference the column you use it in.

3. Now, click the Refers To: box and change the formula to =SUM(B$1:B10).
Click OK.

From this point on, you can select any row in any column other than row 1
and enter =Total, and you automatically will get the SUM of all the cells above
where you enter this, regardless of how many rows there are. This is because
you anchored the row number 1 by making it an absolute reference, yet left
the reference to cell B10 as a relative reference, meaning it always will end
up being the cell immediately above where you entered the named formula
=Total.

110 | Chapter 3, Naming Hacks

#46 Create Custom Functions Using Names
HACK

Using Names with Intersect
By combining this hack with the intersect operator (one of Excel’s standard,
although little known, features), it’s possible to create sophisticated lookup
functions. If you are not aware of how the intersect method works, here is a
small example to get you acquainted:

1. In cell A1, enter the heading Name, in cell B1, enter the heading Pay, and
in cell C1, enter the heading Title.

2. Enter Bill in cell A2 and Fred in cell A3.

3. Enter 10 in cell B2 and 20 in cell B3.

4. Enter Mr in cell C2 and Dr in cell C3.

5. Now, select the range A1:C3, go to the Formulas tab, and choose
Defined Names ➝ Create from Selection (pre-2007, select Insert ➝

Name ➝ Create). Ensure that both the top row and left column check-
boxes are checked, then click OK.

At this point, if you select any cell outside your table and enter =Fred Title,
you should get the correct title for the name Fred.

The space between the words Fred and Title is important, as
this is what Excel understands as the intersect operator.

Building on this concept, you can combine this capability with Excel’s
named formula capabilities to again make your spreadsheets not only easier
to use, but also much easier to read and understand, as the following exam-
ple will illustrate.

First, assume that you have a table set up on a spreadsheet in a fashion simi-
lar to that shown in Figure 3-2, and that you are using this table to create
your names in Excel.

Once you create the names for the table, you will see that Excel automati-
cally places an underscore in the spaces between two or more words. This is
because the names of named ranges cannot contain a space. Next, follow
these steps:

1. Right-click and select Name a Range (pre-2007, Insert ➝ Name ➝

Define).

2. Enter Select in the Names: box and FredsPayRate in the Names in
Workbook: box.

3. In the Refers To: box, type =Fred_Jones Pay_Rate and then click OK, as
shown in Figure 3-3.

Create Custom Functions Using Names #46

Chapter 3, Naming Hacks | 111

HACK

Figure 3-2. Shows Table and Create Names dialog

Figure 3-3. Created Name look-up

112 | Chapter 3, Naming Hacks

#47 Create Ranges That Expand and Contract
HACK

Now when you enter =FredsPayRate in any cell outside your table, the pay
rate for Fred will be returned automatically.

You might want to experiment with intersections to see how they work best
in your projects.

H A C K

#47
Create Ranges That Expand and Contract Hack #47

If you need to constantly update and add to your data, or if you work with
charts and PivotTables, you’ll want to create dynamic named ranges, which
expand and contract relative to your data.

To understand how dynamic named ranges function, first you should famil-
iarize yourself with Excel’s OFFSET function (if you haven’t already). The
OFFSET function is one of Excel’s Lookup and Reference functions.

We’ll start off with the simplest of dynamic named ranges, one that will
expand down a single column, but only as far as there are entries in that col-
umn. For example, if column A contains 10 continuous rows of data, your
dynamic named range will incorporate the range A1:A10. Follow these steps
to create a basic dynamic named range.

Under the Formulas tab, select Defined Names ➝ Define Name (pre-2007,
Insert ➝ Name ➝ Define) and type MyRange in the Names: box. In the Refers
To: box, type the following:

 =OFFSET(A1,0,0,COUNTA(A1:A100),1)

Now click Add, then OK.

When defining the range for COUNTA, resist the temptation to
include an entire column of data so that you do not force the
COUNTA function to count potentially thousands of unneces-
sary cells.

Now, provided that you have some data in column A, this named range will
incorporate all the data in continuous rows, starting from cell A1. If you
want to check a dynamic named range, you can do so in a few ways.

Unfortunately, dynamic named ranges are not available via the standard
Name box, immediately to the left of the Formula bar. Despite this, you can
click the Name box, type the name MyRange, and press Enter. Excel will auto-
matically select the range. Of course, you also can use the Go To... dialog by
going to the Home tab and selecting Find & Select ➝ Go To… under Editing
options (Ctrl/c-G; pre-2007, Edit ➝ Go To…). Enter MyRange in the Refer-
ence: box and click OK.

Create Ranges That Expand and Contract #47

Chapter 3, Naming Hacks | 113

HACK

The dynamic named range you created in the previous example nests the
COUNTA function as the Height argument in the OFFSET function.

Remember that COUNTA will count all nonblank cells. Be
aware that this also will include formulas you have in those
cells, which might be returning empty text ("").

If you have a list that contained numeric data only, and at the end of this list
you want to store text, but don’t want this text included as part of your
dynamic named range, you could replace the COUNTA function with Excel’s
standard COUNT function. COUNT counts only cells containing numeric data.

In this next example, you will use a dynamic named range to define a table
of data that you want to be dynamic. To do this, type the following func-
tion into the Refers To: box:

=OFFSET(A1,0,0,COUNTA(A1:A100),COUNTA($1:$1))

Here, the dynamic named range will expand down as many entries as there
are in column A, and across as many rows as there are headings in row 1. If
you are sure the number of columns for your table of data will remain sta-
ble, you can replace the second COUNTA function with a fixed number such as
10.

The only problem with using a dynamic named range for a table of data is
that it assumes column A will set the maximum length for the table. In most
cases, this probably will be true; however, sometimes the longest column
might be another column on the spreadsheet.

To overcome this potential problem, you can use Excel’s MAX function,
which returns the highest number in a range of cells. As an example, set up a
table in a manner similar to the one shown in Figure 3-4.

Use row 1 to store a number of COUNTA functions that are referencing down
the column and, thus, returning the number of entries in each column. Use
the MAX function for the Height argument in the OFFSET function. This
ensures that the dynamic named range for the table always will expand
down as far as the longest column in the table. Of course you can hide row
1, as there is no need for a user to see it.

In all these examples, you assumed your data will always be in continuous
rows without blank cells in between. Although this is the correct way to set
up a list or a table of data, sometimes you have no control over this.

In the next example, the list of numbers in column A also contains blank
cells. This means that if you try to use the COUNT or COUNTA function, the

114 | Chapter 3, Naming Hacks

#47 Create Ranges That Expand and Contract
HACK

dynamic named range will fall short of the real last cell containing any data.
For example, consider Figure 3-5.

In this case, although the last number in the range is actually in row 10, the
dynamic range is expanding down to row 6. This is because you used the
COUNT function to count from A1 to A100. Only six numeric entries are in
the list, so the range expands down only six rows.

To overcome this problem, use Excel’s MATCH function. The MATCH function is
used to return the relative position of an item in an array that matches a
specified value in a specified order. For example, if you use this MATCH
function:

=MATCH(6,A1:A100,0)

on the same set of numbers shown in Figure 3-5, the MATCH function will
return the number 10, representing row 10 in column A. It returns 10
because you told the function to find the number 6 in the range A1:A100.

Figure 3-4. Dynamic table of data and the Define Name dialog

Create Ranges That Expand and Contract #47

Chapter 3, Naming Hacks | 115

HACK

Obviously, when using the MATCH function as part of a dynamic named
range, the last number in the range probably is not known in advance.
Therefore, you need to tell the MATCH function to try and locate a ridicu-
lously high number in the range that would never exist and to swap the last
argument for the MATCH function from 0 to 1.

In the previous example, you told MATCH to find the exact number 6, nothing
less and nothing more. Replacing 0 with 1 tells MATCH to locate the largest
value that is less than or equal to that value.

To do this, use this formula:

=MATCH(1E+306,A1:A100,1)

To create a dynamic named range that will expand down to the last row that
contains a number (regardless of the blank cells in between), type that for-
mula into the Refers To: box of the Name Manager dialog, as illustrated in
Figure 3-6.

=OFFSET(Sheet2!A1,0,0,MATCH(1E+306,Sheet2!A1:A100,1),1)

The next logical type of dynamic named range that would flow on from this
is one that will expand down to the last text entry, regardless of any blank
cells in the list or table.

Figure 3-5. Range of numbers and Define Name dialog

116 | Chapter 3, Naming Hacks

#47 Create Ranges That Expand and Contract
HACK

To do this, replace the MATCH function with the following:

MATCH("*",A1:A100,-1)

This always will return the row number for the last text entry in range
A1:A100.

Now that you know how to do this for numeric entries and text entries, it is
only logical that you need to somehow define a dynamic named range that
will look past blank cells in a list that contains both text and numeric data.

To do this, first insert two blank rows above your list by selecting rows 1
and 2. Then, select Home ➝ Cells ➝ Insert (pre-2007, Insert ➝ Row). In the
first row (row 1), add this function:

=MAX(MATCH"*",A2:A100,-1),MATCH(1E+306,A2:A100,1))

In the cell immediately below this, type the number 1. The cell below this
must contain a text heading for your list. You added the number 1 so that
the second MATCH function does not return #N/A when or if there are no num-
bers in A3:A100. The second MATCH function will always find text because
you have a heading.

Name cell A1 MaxRow, right-click, and select Name a Range (pre-2007, Insert
➝ Name ➝ Define). Give the dynamic range a name, such as MyList, and
type the following function in the Refers To: box, as shown in Figure 3-7:

=OFFSET(Sheet1!A3,0,0,MaxRow,1)

Figure 3-6. A dynamic range extending to the last numeric entry

Create Ranges That Expand and Contract #47

Chapter 3, Naming Hacks | 117

HACK

The following list outlines other types of dynamic named ranges you might
find useful. For all of these examples, you will need to fill column A with a
mix of text and numeric entries. To do this, right-click and select Name a
Range (pre-2007, Insert ➝ Name ➝ Define). In the Names: box, type any
one-word name (for instance, MyRange). The only part that will change is the
formula you place in the Refers To: box:

Expand down as many rows as there are numeric entries
In the Refers To: box, type the following:

 =OFFSET(A1,0,0,COUNT($A:$A),1)

Expand down as many rows as there are numeric and text entries
In the Refers To: box, type the following:

=OFFSET(A1,0,0,COUNTA($A:$A),1)

Expand down to the last numeric entry
In the Refers To: box, type the following:

 =OFFSET(A1,0,0,MATCH(1E+306,$A:$A))

If you expect a number larger than 1E+306 (a 1 with 306 zeros), change
this to a larger number.

Expand down to the last text entry
In the Refers To: box, type the following:

 =OFFSET(A1,0,0,MATCH("*",$A:$A,-1))

Figure 3-7. Dynamic list for numeric and text entries containing blanks

118 | Chapter 3, Naming Hacks

#48 Nest Dynamic Ranges for Maximum Flexibility
HACK

Expand down based on another cell value
Enter the number 10 in cell B1, and then in the Refers To: box, type the
following:

=OFFSET(A1,0,0,B1,1)

Now change the number in cell B1, and the range will change accordingly.

Expand down one row each month
In the Refers To: box, type the following:

 =OFFSET(A1,0,0,MONTH(TODAY()),1)

Expand down one row each week
In the Refers To: box, type the following:

=OFFSET(A1,0,0,WEEKNUM(TODAY()),1)

This one requires that you have the Analysis ToolPak installed. You can
add it by selecting the Office button ➝ Excel options ➝ Add-ins (pre-
2007, Tools ➝ Add-Ins).

H A C K

#48
Nest Dynamic Ranges for Maximum Flexibility Hack #48

A dynamic named range that resides within another dynamic named range
can be very useful for things such as long lists of names.

For example, it’s possible to create a named range called Jnames that refers
to all the names in a sorted list beginning with the letter J.

Start with a list of names in column A, such as the ones shown in Figure 3-8,
where cell A1 is a heading and the list is sorted. Then follow these steps:

1. Select Home ➝ Defined Names ➝ Name Manager ➝ New (pre-2007,
Insert ➝ Name ➝ Define).

2. Enter Names in the Names: box and the following formula in the Refers
To: box:

=OFFSET(A2,0,0,COUNTA(A2:A1000),1)

3. Click OK, then New (pre-2007, click Add, then enter the new name).

4. Now click back into the Names: box and enter the name Jnames (J can
be any desired letter).

5. In the Refers To: box, enter the following:
=OFFSET(INDIRECT(ADDRESS(MATCH("J*",Names,0)+1,1)),0 ↵
,0,COUNTIF(Names,"J*"), 1)

where "J*" is a match for the data you want—in this case, names begin-
ning with J).

6. Click OK.

7. In the Name Manager, select Jnames and click back into the Refers To:
box where the function is. All the names beginning with the letter J will
have a marquee around them, as shown in Figure 3-8.

Nest Dynamic Ranges for Maximum Flexibility #48

Chapter 3, Naming Hacks | 119

HACK

If you want, you can create one named range for each letter of the alphabet,
but perhaps a better option is to have the named range change according to
a letter that you type into a cell on a worksheet. To do this, follow these
steps:

1. Start by simply entering any letter into any unused cell and then name
that cell Letter.

2. Now, select Data ➝ Data Tools ➝ Data Validation (pre-2007, Data ➝

Validation).

3. Select List from the Allow: box.

4. Click into the Source: box and enter A*,B*,C*, etc., until all 26 letters of
the alphabet are entered as shown in Figure 3-9. Click OK when you’re
done.

5. Now, select Formulas ➝ Defined Names ➝ Name Manager ➝ New (pre-
2007, Insert ➝ Name ➝ Define).

6. Enter Names in the Names: box and the following formula in the Refers
To: box:

=OFFSET(A2,0,0,COUNTA(A2:A1000),1)

7. Click OK, then New.

Figure 3-8. A dynamic named range within another dynamic named range

120 | Chapter 3, Naming Hacks

#48 Nest Dynamic Ranges for Maximum Flexibility
HACK

8. Click back into the Names: box and type LetterNames.

9. Then, in the Refers To: box, enter the following formula:
=OFFSET(INDIRECT(ADDRESS(MATCH(Letter,Names,0)+1,1)),0,0,COUNTIF ↵
(Names, Letter),1)

10. When you’re done, click OK, then Close.

The result will look like Figure 3-10.

You don’t have to retype the formulas from scratch for the
dynamic named ranges. Instead, while working in the Define
Name dialog, click an existing dynamic named range, over-
type the name that appears in the Names in Workbook: box,
then move down to the Refers To: box, modify as needed,
and click Add. This will not replace the original dynamic
named range, but rather, add a totally new one with the dif-
ferent name you have given it.

To test this, select a letter from the Validation drop–down menu in the cell
you named Letter, click into the Name Manager, choose LetterNames, and
click the collapse tool to the right of the Refers to: box. You should see any
data starting with the letter “L” with a marquee around it.

Figure 3-9. A validation list of letters, followed by the wildcard character

Identify Named Ranges on a Worksheet #49

Chapter 3, Naming Hacks | 121

HACK

H A C K

#49
Identify Named Ranges on a Worksheet Hack #49

Excel enables users to give meaningful names to specific ranges in their
worksheets. As the number of different named ranges on a worksheet grows,
you will need tools for identifying the areas referenced by your named
ranges.

Here are two quick methods you can use to identify the referenced ranges
for each named range.

Method 1
One quick way to identify referenced ranges is to select Formula ➝ Defined
Names ➝ Use in Formula ➝ Paste Names (pre-2007, Insert ➝ Name ➝

Paste), or press F3. In the Paste Name dialog, click OK, as shown in
Figure 3-11, and Excel will list all your names in rows, starting from your
active cell, with the names’ corresponding references in the opposite
column.

This will give you a list of all your names in the active workbook.

Figure 3-10. A dynamic named range controlled by the content of another cell

122 | Chapter 3, Naming Hacks

#49 Identify Named Ranges on a Worksheet
HACK

Although this can be handy to help you identify specific ranges, it still
requires that you either manually select the specific named range, or per-
haps use the Go To... dialog. However, once you have a list of named
ranges, you can remove all the referenced cell addresses corresponding to
the names and replace them with a simple hyperlink function.

This will enable you to create a list of all named ranges. Clicking any item
on the list will take you to the specified range. For instance, assume your list
of names resides in column A, starting from cell A1. In cell B1, enter this for-
mula:

 =HYPERLINK("[Book1.xls]"&A1,A1)

Copy this formula down as far as you need to and replace Book1.xls with
your workbook’s name.

Method 2
The second method is simple but not very well known. It was highlighted by
one of the OzGrid Excel Forum members in the “Hey! That is Cool!” section
of OzGrid.com (http://www.ozgrid.com/forum/forumdisplay.php?f=13).

All you need to do is set the zoom on your Excel worksheet to any percent-
age lower than 40—i.e., 39 percent or less. This will display all your named
ranges on the sheet for easy identification, as shown in Figure 3-12.

Figure 3-11. The Paste Name dialog

http://www.ozgrid.com/forum/forumdisplay.php?f=13

Identify Named Ranges on a Worksheet #49

Chapter 3, Naming Hacks | 123

HACK

This does not work for Dynamic Named Ranges.

Figure 3-12. Named range zoom providing easy identification of named ranges

124

Chapter 4C H A P T E R F O U R

Hacking PivotTables
Hacks 50–54

PivotTables are one of Excel’s most powerful attractions, though many peo-
ple don’t know what they do. PivotTables display and extract a variety of
information from a table of data that resides within either Microsoft Excel or
another compatible database type. PivotTables are frequently used to extract
statistical information from raw data. You can drag around the different
fields within a PivotTable to view its data from different perspectives.

The raw data for a PivotTable must be laid out in a classic
table format. Row 1 of the table must be headings, with
related data directly underneath. The data should not con-
tain blank columns or blank rows. Even if you aren’t plan-
ning to use PivotTables, keeping your raw data in this format
makes it possible for other people to analyze your data with
PivotTables.

If you have not yet delved into the world of PivotTables, you should consider
doing so. As a starting point, visit http://www.ozgrid.com/Excel/default.htm
and work your way through a free online tutorial for Excel PivotTables. To
learn more about the benefits of PivotTables as well as how you can create
hacks that make PivotTables even more flexible and powerful, read on.

H A C K

#50
PivotTables: A Hack in Themselves Hack #50

PivotTables are one of the wildest but most powerful features of Excel, an
ingenious hack themselves that may take some experimentation to figure
out.

We use PivotTables a lot when we develop spreadsheets for our clients.
Once a client sees a PivotTable, they nearly always ask whether they can cre-
ate one themselves. Although anyone can create a PivotTable, unfortunately
many people tend to shy away from them, as they see them as too complex.

http://www.ozgrid.com/Excel/default.htm

PivotTables: A Hack in Themselves #50

Chapter 4, Hacking PivotTables | 125

HACK

Indeed, when you first use a PivotTable, the process can seem a bit daunt-
ing. Some persistence is definitely necessary.

You’ll find that persistence will pay off once you experience the best feature
of PivotTables: their ability to be manipulated using trial and error and
immediately show the result of this manipulation. If the result is not what
you expect, you can use Excel’s Undo feature and have another go! What-
ever you do, you are not changing the structure of your original table in any
way, so you can do no harm.

Why Are They Called PivotTables?
PivotTables allow you to pivot data using drag-and-drop techniques and
receive results immediately. PivotTables are interactive; once the table is
complete, you can easily see how your information will be affected when
you move (or pivot) your data. This will become patently clear once you give
PivotTables a try.

Even for experienced PivotTable developers, an element of trial and error is
always involved in producing desired results. You will find yourself pivoting
your table a lot!

What Are PivotTables Good For?
PivotTables can produce summary information from a table of information.
Imagine you have a table of data that contains names, addresses, ages, occu-
pations, phone numbers, and zip codes. With a PivotTable, you very easily
and quickly can find out:

• How many people have the same name

• How many people share the same zip code

• How many people have the same occupation

You also can receive such information as:

• A list of people with the same occupation

• A list of addresses with the same zip code

If your data needs slicing, dicing, and reporting, PivotTables will be a criti-
cal part of your toolkit.

Why Use PivotTables When Spreadsheets Already Offer So Much
Analysis Capability?
Perhaps the biggest advantage to using PivotTables is the fact that you can
generate and extract meaningful information from a large table of data

126 | Chapter 4, Hacking PivotTables

#50 PivotTables: A Hack in Themselves
HACK

within a matter of minutes and without using up a lot of computer memory.
In many cases, you could get the same results from a table of data by using
Excel’s built-in functions, but that would take more time and use far more
memory.

Another advantage to using PivotTables is that if you want some new infor-
mation, you can simply drag-and-drop (pivot). In addition, you can opt to
have your information update each time you open the workbook or you can
right-click and select the Refresh option to refresh at will.

PivotCharts Extend PivotTables
Microsoft introduced PivotCharts in Excel 2000. In an instant, you can cre-
ate interactive charts that were previously impossible without using either
VBA or Excel Controls. PivotCharts are created from PivotTables, so a
PivotChart shows graphically a representation of your PivotTable. Pivot-
Charts work very similarly to the standard Excel charts, and most of the fea-
tures are available. The beauty of PivotCharts and PivotTables is that they
are interactive with each other—change something in one, and it will also be
reflected in the other.

PivotCharts are not available in Excel for the Macintosh.

Creating Tables and Lists for Use in PivotTables
When you create a PivotTable, you must organize the dataset you’re using
in a table or in a list. As the PivotTable will base all its data on this table or
list, it is vital that you set up your tables and lists in a uniform way.

In this context a table is a multi-columned set of data with data laid out
directly below the appropriate headings. A list (only one column, also with a
heading) is often referred to in the context of a table as well. The best prac-
tices that apply to setting up a list will help you greatly when you need to
apply a PivotTable to your data.

When you extract data via the use of lookup or database functions, you can
be a little less stringent in how you set up the table or list. This is because
you can always compensate with the aid of a function and probably still get
your result. Nonetheless, it’s still easiest to set up the list or table as neatly
as possible. Excel’s built-in features assume a lot about the layout and setup
up of your data. Although they offer a degree of flexibility, more often than
not you will find it easier to adhere to the following guidelines when setting
up your table or list:

PivotTables: A Hack in Themselves #50

Chapter 4, Hacking PivotTables | 127

HACK

• Headings are required, as a PivotTable uses them for field names. Head-
ings should always appear in the row directly above the data. Also,
never leave a blank row between the data and the headings. Further-
more, make the headings distinct in some way; for instance, boldface
them.

• Leave at least three blank rows above the headings. You can use these
for formulas, critical data, etc. You can hide the rows if you want.

• If you have more than one list or table on the same worksheet, leave at
least one blank column between each list or table. This will help Excel
recognize them as separate entities. However, if the lists and tables are
related to each other, combine them into one large table.

• Avoid blank cells within your data. Instead of leaving blank cells for the
same data in a column, repeat the data as many times as needed.

• Sort your list or data, preferably by the leftmost column. This will make
the data easier to read and interpret.

If you follow these guidelines as closely as possible, using PivotTables will
be a relatively easy task.

Figure 4-1 shows a well-laid-out table of data and a PivotTable in progress.

Note that many of the same dates are repeated in the Date column. In front
of this data is the Pivot Table Field List, showing the field names (or head-
ings) and the optional Areas you can drag them to.

Figure 4-1. PivotTable generated from a well-laid out table of data

128 | Chapter 4, Hacking PivotTables

#50 PivotTables: A Hack in Themselves
HACK

In pre-2007 versions of Excel, the Layout step for the data
shows the optional Page, Row, and Column fields, as well as
the mandatory Data field.

PivotTable Creation
When you create a PivotTable (by going to the Insert tab and selecting Pivot
Table; pre-2007, select Data ➝ Pivot Table Report), a dialog pops up asking
you to select either your table or range, or select an external data source. If
your table was set up correctly (i.e., headings defined in some way and no
blank rows/columns/cells) and you are clicked somewhere inside your data,
your range will be selected automatically. You will then be asked if you want
your PivotTable created in a new Worksheet or on the Existing Worksheet.

This is true for a lot of Excel’s functions and analysis tools.
Your range will be automatically selected if your data is set
up correctly—i.e., headings defined in some way and no
blank rows/columns/cells.

Users of pre-2007 versions will need to go through the more cumbersome
PivotTable and PivotChart Wizard. This Wizard guides you through the cre-
ation of a PivotTable using a four-step process, in which you tell Excel:

1. How the data is set up and whether to create an associated PivotChart
(if PivotCharts are available in that version of Excel)

2. Where the data is stored—e.g., a range in the same workbook, a data-
base, another workbook, etc.

3. Which column of data is going into which field: the optional Page, Row,
and Column fields, as well as the mandatory Data field

4. Where to put your PivotTable (i.e., in a new worksheet or in an existing
one)

You also can take many side steps along the way to manipulate the Pivot-
Table, but most users find it easier to do this after telling Excel where to put
it.

Now that you know more about PivotTables and what they do, it’s time to
explore some handy hacks that can make this feature even more powerful.

Share PivotTables but Not Their Data #51

Chapter 4, Hacking PivotTables | 129

HACK

H A C K

#51
Share PivotTables but Not Their Data Hack #51

Create a snapshot of your PivotTable that no longer needs the underlying
data structures.

You might need to send PivotTables for others to view, but for whatever rea-
son you cannot send the underlying data associated with them. Perhaps you
want others to see only certain data for confidentiality reasons, for instance.
If this is the case, you can create a static copy of the PivotTable and enable
the recipient to see only what he needs to see. Best of all, the file size of the
static copy will be only a small percentage of the original file size.

Assuming you have a PivotTable in a workbook, all you need to do is select
the entire PivotTable, copy it, right-click on a clean sheet, and select Paste
Special… ➝ Values. Now you can move this worksheet to another work-
book or perhaps use it as is.

The one drawback to this method is that Excel does not paste the PivotTa-
ble’s formats along with the values. This can make the static copy harder to
read and perhaps less impressive. If you want to include the formatting as
well, you can take a static picture (as opposed to a static copy) of your Pivot-
Table and paste this onto a clean worksheet. This will give you a full-color,
formatted snapshot of the original PivotTable to which you can apply any
type of formatting you want, without having to worry about the formatting
being lost when you refresh the original PivotTable. This is because the full-
color, formatted snapshot is not linked in any way to the original
PivotTable.

To create a static picture, format the PivotTable the way you want it and
then highlight the Pivot Table. Select Home ➝ Clipboard ➝ Paste ➝ As Pic-
ture ➝ Copy Picture, and make the selections shown in Figure 4-2 in the
Copy Picture dialog box that pops up. Then, click OK.

Pre-2007, hold down the Shift key, select Edit ➝ Copy Pic-
ture, click anywhere outside the PivotTable, and select Edit
➝ Paste.

You will end up with a fully colored and formatted snapshot of your Pivot-
Table, as shown in Figure 4-3. This can be very handy, especially if you have
to email your PivotTable to other people for viewing. They will have the
information they need, including all relevant formatting, but the file size will
be small and they won’t be able to manipulate your data. Also, they will be
able to see only what you want them to see.

130 | Chapter 4, Hacking PivotTables

#51 Share PivotTables but Not Their Data
HACK

You also can use this picture-taking method on a range of cells. You can fol-
low the preceding steps, or you can use the little-noticed Camera icon.

To use this latter method, press the Office button, select Excel Options ➝

Customize, and choose “Commands Not in the Ribbon” from the Choose
Commands From: box. Locate the camera, click it, press Add to add it to
your Quick Access toolbar, and then click OK.

In pre-2007 versions, select View ➝ Toolbars ➝ Custom-
ize…. From the Customize dialog, click the Commands tab;
from the Categories box, select Tools; and from the Com-
mands box on the right side, scroll down until you see Cam-
era. Left-click and drag-and-drop this icon onto your toolbar
where you want it to be displayed.

Figure 4-2. Copy Picture dialog in action

Automate PivotTable Creation #52

Chapter 4, Hacking PivotTables | 131

HACK

Now select a range of cells, click the Camera icon, and then click anywhere
on the spreadsheet, and you will have a linked picture of the range you just
took a picture of. Whatever data or formatting you applied to the original
range will automatically be reflected in the picture of the range.

H A C K

#52
Automate PivotTable Creation Hack #52

The steps you need to follow to create a PivotTable require some effort, and
that effort often is redundant. With a small bit of VBA, you can create simple
PivotTables automatically.

PivotTables are a very clever and potent feature to use on data that is stored
in either a list or a table. Unfortunately, the mere thought of creating a Piv-
otTable is enough to prevent some people from even experimenting with
them. Although some PivotTable setups can get very complicated, you can
create most PivotTables easily and quickly in most situations. For example,

Figure 4-3. Original PivotTable contrasted with a picture of the PivotTable

132 | Chapter 4, Hacking PivotTables

#52 Automate PivotTable Creation
HACK

two of the most commonly asked questions in Excel concern how to get a
count of all items in a list, and how to create a list of unique items from a list
that contains many duplicates. In this hack, we’ll show you how to create a
PivotTable quickly and easily that accomplishes these tasks.

Assume you have a long list of names in column A, with cell A1 as your
heading, and the heading of Column A is First Name. To find out how many
items are on the list, as well as generate a list of unique items, follow these
steps:

1. Select cell A1 (your heading) and select Insert ➝ Pivot Table (pre-2007,
Data ➝ Pivot Table Report).

2. Ensure that you have selected New Worksheet as the placement for the
Pivot table, and click OK. Your screen should look something like
Figure 4-4.

3. Now drag the First Name field to the Row labels area.

4. Click on the First Name field again and drag it to the Values area.

5. Click OK.

Figure 4-4. PivotTable Field and PivotTable Layout dialogs

Automate PivotTable Creation #52

Chapter 4, Hacking PivotTables | 133

HACK

To create a PivotTable in a pre-2007 version of Excel, follow these steps:

1. For versions of Excel prior to 2007, go to Data ➝ PivotTable and Pivot-
Chart Report (or Data ➝ PivotTable Report on Macs) to start the Pivot-
Table Wizard.

2. Before you start, make sure that you have selected a single cell within
your data. This will allow Excel to automatically detect the underlying
data it is to use next.

3. If you’re using a Windows PC, select PivotTable under “What kind of
report do you want to create?” (This question isn’t asked on
Macintoshes.)

4. Click the Next button. The PivotTable Wizard should automatically
have picked up the correct range for your data in column A and will
highlight it in your sheet.

5. If it is highlighted, click the Next button. Otherwise, use your mouse to
select the range before clicking the Next button.

6. Click the Layout button and drag to the Data area the Names field.

7. Drag the Names field again, this time into the Row area.

8. Finally, select New Worksheet as the destination of your PivotTable
Report and click the Finish button.

At this stage, you could additionally double-click the button
called Count of Product and change the “Summarize value
field by:” option to a function of your choice—e.g., Sum,
Average, etc. By default, Excel will use the COUNT function if
it’s working with text and use the SUM function if it’s work-
ing with numbers.

You should see your PivotTable on a new worksheet containing the unique
items from your list along with a count of how many times each item (name)
appears in your list.

Save Time with a Macro
What if you want to have a macro perform all those steps for you, creating a
PivotTable from any column you feed it? If you simply record a macro,
you’ll find it often works only if your data has the same heading. To avoid
this, you can create a simple macro stored in your workbook or in your per-
sonal macro workbook (described in Chapter 7), and use it to create a Pivot-
Table on any list of items. This requires that you write some generic VBA

134 | Chapter 4, Hacking PivotTables

#52 Automate PivotTable Creation
HACK

code and enter it into a standard module in your personal macro workbook
or in any other workbook.

To start, right-click on the sheet tab that contains the data table and select
View Code (on Mac, Alt/Option-F11; in pre-2007 versions, Tools ➝ Macro
➝ Visual Basic Editor). Then, choose Insert ➝ Module and enter the follow-
ing code:

Sub GetCount()
Dim Pt As PivotTable
Dim strField As String

 strField = Selection.Cells(1,1).Text
 Range(Selection, Selection.End(xlDown)).Name = "Items"

 ActiveWorkbook.PivotCaches.Add(SourceType:=xlDatabase, _
 SourceData:="=Items").CreatePivotTable TableDestination:="", _
 TableName:="ItemList"

 Set Pt = ActiveSheet.PivotTables("ItemList")
 ActiveSheet.PivotTableWizard TableDestination:=Cells(3, 1)
 Pt.AddFields RowFields:=strField
 Pt.PivotFields(strField).Orientation = xlDataField

End Sub

To return to Excel, close the Script window (or press Alt/c-Q) and save
your workbook.

Before running this code, select the heading of your list and ensure that your
list contains no blank cells.

Sorting your list will remove blank cells quickly, because
blank cells are always sorted to the bottom of a list.

The code will automatically create a named range of your list, called Items.
It will then create the PivotTable based on this named range on a new work-
sheet.

The next time you have a long list of data, you can simply select its heading
and run this macro. All the PivotTable setup work will be done in the blink
of an eye.

Move PivotTable Grand Totals #53

Chapter 4, Hacking PivotTables | 135

HACK

H A C K

#53
Move PivotTable Grand Totals Hack #53

One of the most annoying things about PivotTables is that the Grand Total
that summarizes your data always ends up at the bottom of the table,
meaning you have to scroll down just to see the figures. Move your Grand
Total up to the top where it’s easier to find.

Although PivotTables are a great way to summarize data and extract mean-
ingful information, there is no built-in option to have the Grand Total float
to the top for a quick bird’s-eye view.

Before we describe a very generic method to move the Grand Total to the
top, we’ll explain how you can accomplish this with the GETPIVOTDATA func-
tion, which is designed specifically to extract data from a PivotTable.

You can use the function like this:

=GETPIVOTDATA("Sum of Amount",B5)

or like this:

=GETPIVOTDATA("Amount",B5)

Either function will extract the data and will track the Grand Total as it
moves up, down, left, or right. We used the cell address B5, but as long as
you use any cell within the PivotTable, you always will pick up the total.

The first function uses the Sum of Amount field, while the second one uses
the Number Sold field. If your PivotTable has the Amount field in the Val-
ues area (pre-2007, in the Data area), you need to name the field Amount. If,
however, the Amount field is being used two or more times in the Values
area, you must specify the name you gave it, or the name you accepted by
default, as shown in Figure 4-5.

You can double-click these fields to change them. This issue can become
confusing if you are not up to speed with PivotTables. Luckily in Excel 2002
and later, the process is much easier, as you can have a cell fill in the argu-
ments and give the correct syntax by using the mouse pointer. In any cell,
type = (an equals sign) and then use your mouse pointer to click in the cell
currently housing the Grand Total. Excel will automatically fill in the argu-
ments for you.

Unfortunately, if you use the Function Wizard, or first type
=GETPIVOTDATA() and then click in the cell currently housing
the Grand Total, Excel makes a mess by trying to nest
another GETPIVOTDATA function within that cell.

136 | Chapter 4, Hacking PivotTables

#53 Move PivotTable Grand Totals
HACK

Probably the easiest, if least sophisticated, way to extract the Grand Total is
to use the following function:

=MAX(PivGTCol)

where the column currently housing the Grand Total is named PivGTCol.

You also can use the LARGE and SMALL functions to extract from a PivotTable
a host of figures according to their size. The following formula, for instance,
extracts the second largest figure from a PivotTable:

=LARGE(PivGTCol,2)

You can add some extra rows immediately above the start of the PivotTable
and place these formulas there so that you can see this type of information
instantly, without having to scroll to the bottom of your PivotTable.

Figure 4-5. The Amount field used twice and named Sum of Amount in one case and
Number Sold in the other

Efficiently Pivot Another Workbook’s Data #54

Chapter 4, Hacking PivotTables | 137

HACK

H A C K

#54
Efficiently Pivot Another Workbook’s Data Hack #54

Use data residing in another workbook as the source for your PivotTable.

When creating a PivotTable in Excel, you have lots of options for your data
source. By far the easiest and most powerful approach is to use data that
resides within the same workbook. Unfortunately, for whatever reason, this
is not always possible or feasible. Perhaps the data that resides in another
workbook is entered daily, for instance, and the users entering the data
should not see the PivotTable.

Using a dynamic named range will greatly decrease the refresh time needed
for your PivotTable to update. As you cannot reference a dynamic named
range from another workbook, this also means you prevented the PivotTa-
ble from referencing perhaps thousands of blank rows and causing the file
size to increase substantially. This way, you can pull in data from another
workbook, and then base your PivotTable on the data in the same work-
book rather than referencing it externally. Let’s walk through the steps.

1. In the workbook that will contain your PivotTable, insert a new work-
sheet and call it Data.

2. Open the workbook containing the data to be referenced, and ensure
that the worksheet containing the data is the active sheet. In any spare
cell on this worksheet, enter this formula:

=IF(A1="","",A1)

where A1 is the very first heading of your data table.

3. Select cell A1. Then cut it, activate your original workbook, and paste
cell A1 in cell A1 on the Data sheet. This will give you the reference to
the other workbook.

4. Copy this cell across as many columns as there are headings in your
data source.

5. Select Formulas ➝ Defined Names ➝ Define Name on (pre-2007, Insert
➝ Name ➝ Define).

6. Type PivotData in the Names: field and type the following in the “Refers
to:” box:

=OFFSET(A1,0,0,COUNTA($A:$A),COUNTA($1:$1))

7. Click OK.

8. Next, to insert some code that will run each time the workbook is
opened, right-click on the sheet tab and select View Code.

138 | Chapter 4, Hacking PivotTables

#54 Efficiently Pivot Another Workbook’s Data
HACK

9. Then, double-click This Workbook (pre-2007, go to the Excel icon
located at the top left corner of the screen next to the File menu option,
right–click, and select View Code) and enter the following code:

Private Sub Workbook_Open()
 With Worksheets("Data")
 .Range("2:1000").Clear
 .Range("1:1").AutoFill .Range("1:1000")
 .Range("2:1000") = .Range("2:1000").Value
 End With
End Sub

Right-clicking on the Excel icon isn’t available in Excel 2007
or on a Mac. On a Mac, you’ll have to open the VBE by
pressing Option-F11 or by selecting Tools ➝ Macro ➝ Visual
Basic Editor. Then, Ctrl-click This Workbook in the Projects
window.

10. Finally, to return to Excel, close the script window or press Alt/c-Q,
then save your workbook.

The code in Step 9 includes only 1,000 rows of data. The number you spec-
ify in the .Range statement should always be greater than the number of
rows you believe you will need. In other words, if your table in the other
workbook contains 500 rows, specify a few hundred more than that to
accommodate any growth in the original table.

Avoid using an extremely high row number (like 10,000,
unless you actually have that much data), as this will greatly
impact how quickly the code runs and the data updates.

At this point you are ready to check your macro. Save the workbook, close
it, and then reopen it, making certain that you enable macros. The code you
added will fire automatically and will copy the formulas in row 1 on the
Data sheet, then automatically convert all but row 1 into values only. This
will leave you with a copy of your original data source, which will update
each time you open the workbook.

If you wanted to, you could hide this sheet by right-clicking and selecting
Hide from the shortcut menu, or by using the method described in “Hide
Worksheets So That They Cannot Be Unhidden” [Hack #5].

Now, to base a PivotTable on this dynamic named range, select anywhere
within the PivotTable, select Pivot Table from the Insert tab, and type
=PivotData under Select a Table or Range.

Efficiently Pivot Another Workbook’s Data #54

Chapter 4, Hacking PivotTables | 139

HACK

In pre-2007 versions, select the Wizard option from the Piv-
otTable toolbar. Click the Back button until you reach Step 1
of the Wizard. Select the first option, Microsoft Excel List or
Database, click Next, and in Step 2, type =PivotData (the
name of the dynamic named range). Then click Finish.

You will not experience the lag that often occurs when a PivotTable is refer-
encing an external data source because now the data itself is stored within
the same workbook. As an added bonus, because you can use a dynamic
named range, the PivotTable is dynamic without having to reference heaps
of blank rows, and the file is kept to a manageable size.

140

Chapter 5C H A P T E R F I V E

Charting Hacks
Hacks 55–72

Charts are one of Excel’s most popular features, giving spreadsheets visual
power beyond mere calculations. Although Excel’s chart capabilities are
impressive, many times you’ll want to go beyond the basic functionality pro-
vided by the software’s built-in Chart Gallery to create charts that are more
responsive to changes in data, or you simply will want to go beyond the
range of options Excel most obviously provides. The hacks in this chapter
enable you to do all of this and more.

H A C K

#55
Explode a Single Slice from a Pie Chart Hack #55

Although pie charts are excellent visual aids, sometimes you want to
emphasize a particular piece of the pie. Separating it from the rest gives it
more attention.

The default option on an exploded pie chart is to explode all the slices
simultaneously and for the same distance. With a couple of mouse clicks,
you can explode one slice at a time.

To begin, set up a basic pie chart such as the one shown in Figure 5-1.

Next, click the pie chart once to select it, and then click again on the slice
you want to explode. Drag the selected slice of pie away from the center of
the chart, and you will see the exploded effect shown in Figure 5-2.

Dragging the single slice will leave the other slices unaffected. You can
repeat this for other slices if you want. This technique also works just as well
with a 3D pie, although the size of the pie chart shrinks when you drag a
slice. To make the pie 3-D, click the chart, go to the Design tab, select

Explode a Single Slice from a Pie Chart #55

Chapter 5, Charting Hacks | 141

HACK

Change Chart Type under Type options, and click the 3-D pie (pre-2007,
right-click on the chart, select Chart Type, and then press the 3-D Pie icon).

If you want to explode all the slices at the same time, simply click the pie to
select it and drag away from the center, after which all the slices will have
the exploded effect shown in Figure 5-3. The further you drag the slices, the
smaller they will get.

The reverse also works if you want to “unexplode” your pie. Simply click a
piece of pie and drag toward the middle to put it all back together again.

—Andy Pope

Figure 5-1. Simple pie chart set up from worksheet data

Figure 5-2. Simple pie chart with exploding slice

142 | Chapter 5, Charting Hacks

#56 Create Two Sets of Slices in One Pie Chart
HACK

H A C K

#56
Create Two Sets of Slices in One Pie Chart Hack #56

Most people think pie charts are limited to a single set of values, but here is
a way to create a pie chart based on two columns of values.

It is a bit tricky to see two series of values charted on separate axes within
one chart, but the effect is well worth the effort. To see how this works, first
create a basic pie chart. Put some data in the range B1:C5, and then select
that range, go to the Insert tab, select Charts ➝ Pie, and click the first pie
chart.

In pre-2007 versions, click the Chart Wizard button in the
toolbar. In Step 1 of the Wizard, under Chart Type, select
the first pie chart. Now work your way through the Chart
Wizard, making any changes you need. When you reach
Step 4, make sure you place the chart as an object in the cur-
rent worksheet.

You’ll get the chart shown in Figure 5-4.

Next, select the pie chart, and choose Design ➝ Data ➝ Select Data. Under
Legend Entries (Series) click the Add button. Click in Series Name: and
select cell C1, and then click in Series Values: and select cells C2:C5. Click
OK.

In pre-2007 versions, right-click the pie chart, and select For-
mat ➝ Source Data ➝ Series. Click Add to add another
series. Select cell C1 for the Name and cells C2:C5 for the
Values, then click OK.

Figure 5-3. 3-D pie chart with exploding slices

Create Two Sets of Slices in One Pie Chart #56

Chapter 5, Charting Hacks | 143

HACK

Note that, at this stage, your chart looks no different!

OK, now we need to plot onto the secondary axis. To do this, go to the For-
mat tab and on the far left under Current Selection options, click the drop-
down menu and select Series ‘Pie 1’ from the list. Click the Format Selec-
tion option immediately below the drop-down and then select the Second-
ary Axis option and click OK.

In pre-2007 versions, double-click the pie itself again to
select it, select Format Data Series, go to the Axis tab, and
plot the series on the secondary axis. Click OK.

Again, the pie chart still looks the same on the surface, but it isn’t the same
underneath.

Select the pie, and while pressing the left mouse button, drag out from the
center, then release the left mouse button. This will create the exploded
effect you are looking for, as shown in Figure 5-5.

By exploding the pie, you will not only separate the two axes, revealing the
second pie chart, but also compress the pie chart plotted on the secondary
axis, allowing you to see both charts.

Figure 5-4. Pie chart set up from worksheet data

144 | Chapter 5, Charting Hacks

#57 Create Charts That Adjust to Data
HACK

Now, select each slice of pie in turn and drag them back to the center of the
pie, producing the chart shown in Figure 5-6. Remember that two slow
clicks will highlight an individual piece of the pie.

Join all the pieces of the pie again, and you will have a fully functional pie
chart plotting two series of data on separate axes. Now you can color and
format accordingly.

—Andy Pope

H A C K

#57
Create Charts That Adjust to Data Hack #57

Your charts can include and plot new data automatically, the moment you
add the data to your spreadsheet.

If you use dynamic named ranges in lieu of range references, your chart will
plot any new data the moment you add it to your worksheet. To see how
this works, begin with a clean worksheet and set up some data similar to
that shown in Figure 5-7.

To create the chart and make it dynamic, you need to add two named
ranges. One of the named ranges is for the category labels (Dates) and the
other is for the actual data points (Temperature).

Figure 5-5. Pie chart with exploded secondary axis

Create Charts That Adjust to Data #57

Chapter 5, Charting Hacks | 145

HACK

If you are unsure as to how to insert a dynamic named
range, check out “Create Ranges That Expand and Con-
tract” [Hack #47], which discusses this in full.

Figure 5-6. Completed pie chart containing two pies

Figure 5-7. Data to be charted

146 | Chapter 5, Charting Hacks

#57 Create Charts That Adjust to Data
HACK

Create a dynamic named range called TEMP_DATES for the dates in column A
by selecting Formulas ➝ Defined Names ➝ Define Name (pre-2007, choose
Insert ➝ Name ➝ Define). Enter this formula:

=OFFSET(A1,1,0,COUNTA($A:$A)-1,1)

Notice the -1 immediately after the COUNTA argument. This ensures that the
heading is not included in the named range for that particular series.

This example references the entire column A as the COUNTA
argument ($A:$A). In older versions of Excel, it is often good
practice to restrict this range to a much smaller group of
cells, so as not to add unnecessary overhead to calculations.
In other words, you could be forcing Excel to look in thou-
sands of cells unnecessarily. Some of Excel’s functions are
smart enough to know which cells are dirty (contain data),
but some functions are not. However, this is slightly less nec-
essary with more recent versions of Excel, as Excel has
improved its handling of large ranges.

Next, for the Temperature readings in column B, set up another dynamic
range called TEMP_READINGS, using this formula:

=OFFSET(B2,0,0,COUNTA($B:$B)-1,1)

Now you can create the chart using the dynamic named ranges you created
in lieu of cell references.

Highlight the data (range A1:B11) select Insert ➝ Charts ➝ Column.
Click the first chart sub-type (2D Clustered Column Chart). Now, under
Chart Tools, choose Design ➝ Data ➝ Select Data. Under Legend Entries
(Series), select Temperature and press the Edit button. Replace the Series
Values: with the following formula:

=Sheet1!TEMP_READINGS

Click OK.

Now, back in the Select Data Source Dialog, press the Edit button under
Horizontal (Category) Axis Labels and replace the Axis Label Range: with
the following:

=Sheet1!TEMP_DATES

Click OK and make any further changes you like to your chart.

In pre-2007 versions, insert these formulas in Step 2 of the
Chart Wizard on the Series tab in the “Value:” box
(=Sheet1!TEMP_READINGS) and the “Category (X) axis labels:”
box (=Sheet1!TEMP_DATES).

Create Charts That Adjust to Data #57

Chapter 5, Charting Hacks | 147

HACK

The result will look like Figure 5-8.

It is very important to include the Sheet name of your work-
book in your formula references. If you don’t, you will not
be able to enter the named range in your formula.

Once this chart is set up, every time you include another entry in either col-
umn A (Dates) or column B (Temperature), it will be added to your chart
automatically.

Plotting the Last x Number of Readings
Another type of named range that you can use with charts is one that picks
up only the last 10 readings (or whatever number you nominate) in a series
of data. Try this using the same data you used in the first part of this hack.

For the dates in column A, set up a dynamic named range called TEMP_DATES_
10DAYS that references the following:

=OFFSET(A1,COUNTA($A:$A)-10,0,10,1)

For readings in column B, set up another dynamic named range called TEMP_
READINGS_10DAYS and enter the following:

=OFFSET(Sheet1!A1,COUNTA(Sheet1!$A:$A)-10,1,10,1)

If you want to vary the number of readings (e.g., to 20), change the last part
of the formula so that it reads as follows:

=OFFSET(Sheet1!A1,COUNTA(Sheet1!$A:$A)-20,1,20,1)

Figure 5-8. Chart created with dynamic named ranges in lieu of static range references

148 | Chapter 5, Charting Hacks

#58 Interact with Your Charts Using Custom Controls
HACK

Using dynamic named ranges with your charts gives you enormous flexibil-
ity and will save you loads of time tweaking your charts whenever you make
an additional entry to your source data.

—Andy Pope

H A C K

#58
Interact with Your Charts Using Custom Controls Hack #58

To make your chart truly interactive, you can use one or more dynamic
ranges in your chart and then use either a scrollbar or a drop-down menu to
reveal the figures your readers want to peruse.

As you saw in the previous hack, you can use dynamic named ranges to add
flexibility to your charts. But you also can use dynamic named ranges to cre-
ate interfaces controlling which data the chart plots. By linking dynamic
named ranges to custom controls, you enable users to change the chart data
by using the control, which simultaneously will update the data in the work-
sheet or vice versa.

Using a Dynamic Named Range Linked to a Scrollbar
In this example, you will use a scrollbar to reveal monthly figures over a 12-
month period. The scrollbar is used to alter the number of months reported.
The scrollbar’s value also is used in a dynamic range, which in turn is used
as the data source of the chart.

To begin, set up some data similar to that shown in Figure 5-9.

Figure 5-9. Worksheet data for dynamic chart linked to scrollbar

Interact with Your Charts Using Custom Controls #58

Chapter 5, Charting Hacks | 149

HACK

Create a dynamic named range by selecting Formulas ➝ Defined Names ➝

Define Name (pre-2007, Insert ➝ Name ➝ Define). Type SALES_PERIOD in the
Name: box. In the Refers To: box, type the following:

=OFFSET(B5,0,0,C5,1)

By using the OFFSET function, you can use cell C5 to force the referenced
range for SALES_PERIOD to expand both up and down as the number in C5
changes. In other words, changing the number in C5 to the number 5
would force the range to incorporate B5:B10.

If you do not want the user to see cell C5, you can take this a
step further and hide the contents of C5 by right-clicking
it and selecting Format Cells ➝ Custom. Enter the format
;;;, and then click OK. In Figure 5-9, the contents of cell C5
are hidden.

Create a chart (a line chart or a column chart works best). Now go to the
Design tab, choose Data ➝ Select Data, choose Product XYZ Sales for 2007,
and press Edit. Change the Series Values to read:

='<Your workbook name here>'!SALES_PERIOD

Doing this will make your chart dynamic.

In pre-2007 versions, do this in Step 2 of the Chart Wizard.
Select the Series tab by changing the Formula Reference in
the Values: box.

Once you have created your chart, you will need to insert a scrollbar. Go to
the Developer tab and choose Controls ➝ Insert (pre-2007, select View ➝

Toolbars ➝ Forms, which will bring the Forms toolbar onto the screen).

Click the scrollbar icon to select it. Once you have inserted a scrollbar, select
it and move it over your chart. Now right-click it and select Format Con-
trol, change the minimum value to 1, change the maximum value to 12, and
set the cell link to C5. The resulting chart will look like that shown in
Figure 5-10.

To alter the chart, use the arrows on the scroll bar, drag the slide bar (grey
button) on the scrollbar, or enter a number directly into cell C5 (e.g., enter-
ing 5 in C5 will show the data in the chart of January–May).

Using a Dynamic Named Range Linked to a Drop-Down List
Another variation is to link to a drop-down list. Starting with some data
such as that shown in Figure 5-11, you will add a dynamic range that will be

150 | Chapter 5, Charting Hacks

#58 Interact with Your Charts Using Custom Controls
HACK

used as a data source for the chart. The dynamic range will be linked to a
drop-down list you can use to view one student’s test results from those of a
group of students. You will use the drop-down list to select the name of the
student whose results you want to view.

Set up some data as in Figure 5-11, then type the formula =AVERAGE(B6:B11)
in cell B12 and copy it across to cell F12, as shown in the figure.

Figure 5-10. Dynamic chart linked to scrollbar

Figure 5-11. Worksheet data for dynamic chart linked to a drop-down list

Interact with Your Charts Using Custom Controls #58

Chapter 5, Charting Hacks | 151

HACK

Create a dynamic range by selecting Formulas ➝ Defined Names ➝ Define
Name (pre-2007, Insert ➝ Name ➝ Define), and typing STUDENTS in the
Name: field. In the Refers To: box, type the following:

=OFFSET(A5,G6,1,1,5)

Create another dynamic range called STUDENT_NAME, and in the Refers To:
box, type the following:

=OFFSET(A5,G6,0,1,1)

The use of the cell reference G6 in the OFFSET formula forces the refer-
enced ranges for STUDENTS and STUDENT_NAME to expand both up and down as
the number in G6 changes.

Now, create a clustered column chart using the range A11:F12. Go to the
Design tab, select Data ➝ Select Data ➝ Frank, and press Edit. Change the
Series Name to read:

='<enter in your workbook name here>'!STUDENT_NAME

Click in Series Values: and change it to read:

='<enter in your workbook name here>'!STUDENTS

In pre-2007 versions, make theses changes in Step 2 of the
Chart Wizard.

At this point, you need to insert a ComboBox, so select Developer ➝ Con-
trols ➝ Insert. Select the ComboBox, right-click it, enter A6:A:11 for the
input range and enter G6 for the cell link (pre-2007, first display Forms
Toolbar View ➝ Toolbars).

To finish, place the CONCATENATE function in an empty cell, such as cell B4,
like this:

 =CONCATENATE("Test Result for ",INDEX(A6:A11,G6))

Clicking the downward-pointing arrow on the ComboBox shown in
Figure 5-12 will change the name of the student and show his test results.

In our example file, the control is floating over the chart, If you move the
chart, the control stays put. In Excel 2007, the control does not disappear
behind the chart when the chart has focus, which is what happens in Excel
2003.

—Andy Pope

152 | Chapter 5, Charting Hacks

#59 Four Quick Ways to Update Your Charts
HACK

H A C K

#59
Four Quick Ways to Update Your Charts Hack #59

Although creating new charts is wonderful, updating them to reflect new
circumstances can take a lot of effort. You can reduce the amount of work
needed to change the data used by a chart in a number of ways.

Using Drag-and-Drop
You can add data to an existing series or create a completely new data series
by simply dragging and dropping data onto a chart. Excel will try to decide
how to treat the data, which might mean adding to any existing data series
when you really wanted a new series. You can, however, get Excel to dis-
play a dialog box, which lets you to determine which action you want to
use.

Try setting up some data such as that shown in Figure 5-13.

Using the Chart Wizard, create a clustered column chart for the range
A1:D5 only, producing the result shown in Figure 5-14.

Figure 5-12. A completed dynamic chart linked to a drop-down list

Four Quick Ways to Update Your Charts #59

Chapter 5, Charting Hacks | 153

HACK

Highlight the range A6:D6, right-click the selection border, press the right
mouse button, and drag onto the chart. When you release the mouse but-
ton, the Paste Special menu will pop up, as shown in Figure 5-15.

Figure 5-13. Data for clustered column chart

Figure 5-14. Clustered column chart created with range A1:D5 only

Figure 5-15. Clustered column chart showing Paste Special dialog

154 | Chapter 5, Charting Hacks

#59 Four Quick Ways to Update Your Charts
HACK

Select the Columns option and then click OK. This will add the May data
series to the chart, as shown in Figure 5-16.

The Paste Special dialog takes care of most of the actions you need in order
to use this nifty trick.

Using the Formula Bar
You also can update your chart by using the Formula bar. When you select a
chart and click a data series within it, look at the Formula bar and you will
see the formula Excel uses for the data series.

Called a SERIES function, the formula generally uses four arguments,
although a bubble chart requires an additional fifth argument for [Size].

The syntax (or order of structure) of the SERIES function is as follows:

=SERIES([Name] , [X Values] , [Y Values] , [Plot Order])

So, a valid SERIES function could appear as follows, and as shown in
Figure 5-17:

=SERIES(Sheet1!B1,Sheet1!A2:A5,Sheet1!B2:B5,1)

In Figure 5-17 the first part of the reference, Sheet1!B1, refers to the name,
or the chart title, which is “2007.” The second part of the reference,
Sheet1!A2:A5, refers to the X values, which in this case are the months.
The third part of the reference, Sheet1!B2:B5, refers to the Y values,
which are the values 7.43, 15, 21.3, and 11.6. Finally, the last part of the for-
mula, the 1, refers to the plot order, or the order of the series. In this case,
there is only one series, so this series can only take the value 1. If there were
more than one series, the first series would take the number 1, the second
series would take the number 2, and so forth.

Figure 5-16. Clustered column chart with May data series added

Four Quick Ways to Update Your Charts #59

Chapter 5, Charting Hacks | 155

HACK

To make changes to the chart, simply alter the cell references in the For-
mula bar.

Besides using cell references, you can enter explicit values, known as array
constants, into your charts (see Excel Help for full details). To achieve this,
add curly brackets ({}) around the X and Y values, as shown in the follow-
ing formula:

=SERIES("My Bar",{"A","B","C","D"},{1,2,3,4},1)

In the previous SERIES formula, A, B, C, and D would be the X values, while
1, 2, 3, and 4 would be their corresponding Y values.

By using this method, you can create or update a chart without having to
store data in cells.

Dragging the Bounding Area
If your chart data contains continuous cell references, you can easily extend
or reduce the data in the series by dragging the bounding area to a desired
point. Slowly click the data series you want to either extend or reduce. After
two slow clicks, black square(s) or handles will appear around the outside of
the series (or in the middle if you’re using a line chart). All you need to do is
click a square and drag the bounding area in the direction required, as
shown in Figure 5-18.

If you either extend or reduce the series data, as shown in Figure 5-19, the
original source data as well as the axis labels (if set to Auto) also will alter to
reflect the changes you made.

This is great for testing scenarios, when you want to explore what the results
of different data sets will be.

Figure 5-17. A clustered column chart with the Formula bar highlighted

156 | Chapter 5, Charting Hacks

#59 Four Quick Ways to Update Your Charts
HACK

Using Paste Special
If you want to add extra data to a chart, you can copy the data and, using
the Paste Special Function, you can decide whether to view the series as a
new series, new point, or in columns or rows, as shown in Figure 5-20.

Note that Paste Special is not available from the right-click menu when
using this method.

—Andy Pope

Figure 5-18. A highlighted bounding area for a chart series

Figure 5-19. A highlighted bounding area for a chart series after it is expanded

Hack Together a Simple Thermometer Chart #60

Chapter 5, Charting Hacks | 157

HACK

H A C K

#60
Hack Together a Simple Thermometer Chart Hack #60

Excel doesn’t provide a thermometer chart. If you want one, you’ll have to
construct it.

By creating a basic clustered column chart that compares values across cate-
gories, and then manipulating the various chart elements, you can create a
visual, workable thermometer chart with little effort.

Set up some data, such as that shown in Figure 5-21, and then create a basic
clustered column chart, charting the data in rows. We used the range B3:C4.

Remove the legend and the gridlines (click them to highlight them, then
press Delete), and format the Temperature Data Series to the Secondary

Figure 5-20. Copying additional data into a chart using Paste Special

Figure 5-21. Series data and creation of basic clustered column chart

158 | Chapter 5, Charting Hacks

#60 Hack Together a Simple Thermometer Chart
HACK

axis. To do this, select the series and choose Chart Tools ➝ Format ➝ Cur-
rent Selection ➝ Format Selection ➝ Secondary Axis (pre-2007, right-click
on the temperature bar, select Format Data Series ➝ Axis, and choose the
Secondary Axis option). Your chart should look like the chart in
Figure 5-22.

Format both the Primary (on the left) and Secondary (on the right) axes by
highlighting each axis in turn, right-clicking, and selecting Format Axis (pre-
2007, select the Scale tab). Set the Minimum to 0, the Maximum to 100, the
Major Unit to 10, and the Minor Unit to 5. You’ll see the chart shown in
Figure 5-23.

Format the Case data series to white, format the Temperature series to red,
and format the Plot Area to white. At this point, the thermometer chart
should be taking shape.

Reduce the Gap Width property for both columns by right-clicking and
selecting Format Data Series ➝ Series Options. Finally, remove the X axis
(highlight the axis and click Delete) and then size and position to suit.

As Figure 5-24 demonstrates, by fiddling around a bit with Excel’s existing
chart features, you can come up with a thermometer chart that looks great
and works well.

—Andy Pope

Figure 5-22. Two series plotted on the Y2 axis

Hack Together a Simple Thermometer Chart #60

Chapter 5, Charting Hacks | 159

HACK

Figure 5-23. Case series on Y1 axis, temperature series on Y2 axis, both axes formatted
identically

Figure 5-24. Completed thermometer chart

160 | Chapter 5, Charting Hacks

#61 Create a Column Chart with Variable Widths and Heights
HACK

H A C K

#61
Create a Column Chart with Variable Widths and
Heights Hack #61

Wouldn’t it be nice to create a column chart whose columns can vary in
width and height? Then, as you plot your data into the columns, the columns’
width and height cleverly adjust themselves simultaneously.

Excel doesn’t provide this feature directly, but by hacking an XY scatter
chart you can create a very effective variable width column chart. XY scatter
charts are used to compare values; therefore, they provide a perfect base on
which to start creating a variable width column chart.

Figure 5-25 shows a variable width column chart that charts the percent
share versus cost for the following expenses: gas, electricity, water, food,
travel, and other. The X axis (the axis along the bottom of the chart) shows
the percentages (%), while the Y axis (the axis on the left-hand side) shows
the cost ($).

To create this chart, set up some data such as that in Figure 5-25, select
Insert ➝ Charts ➝ Scatter. Select the first chart subtype: the Scatter with only
markers. Insert an Axis label for the Primary Vertical Axis (Value (Y) axis),
by selecting Chart Tools ➝ Layout ➝ Labels ➝ Axis Titles ➝ Primary Verti-
cal Axis Title. When the Axis Title box appears, type Cost ($). (In pre-2007
versions, use the Chart Wizard to create the Scatter chart, and ensure the
chart is created with the columns option selected and is set as an object.)

Figure 5-25. XY scatter chart set up from range D2:E8

Create a Column Chart with Variable Widths and Heights #61

Chapter 5, Charting Hacks | 161

HACK

You can use Ctrl-~ (which is the same on the Mac) to show
you the correct formulas to place in the cells. You also could
select the Office button ➝ Excel Options ➝ Advanced, and
choose “Show formulas in cells instead of their calculated
result.” Pre-2007 users should choose Tools ➝ Options... ➝

View (Views under Excel ➝ Preferences on Mac OS X) and
check Formulas under Window options.

Now it’s time to play around with the chart to create columns. First, remove
the legend and gridlines (highlight them, then click Delete) and ensure your
plot area has no fill.

A plot area with no fill is the default for Excel 2007, but
users of earlier versions must format the plot area to no fill
by clicking the gray background, right-clicking, and select-
ing Format Plot Area. Under Area, select None.

Highlight the X axis and right-click to get to the Format Axis dialog (pre-
2007, press Scale). Under Axis Options (Scale on the Mac), set the Mini-
mum to 0 and the Maximum to 1. Also make sure to change the Major Tick
Mark type to None and the Axis Labels to None (pre-2007, Tick Mark
options are found on the Patterns tab [“Colors and Lines” on the Mac]),
then click OK.

The scatter chart will look something like that shown in Figure 5-26.

Figure 5-26. Modified scatter chart

162 | Chapter 5, Charting Hacks

#61 Create a Column Chart with Variable Widths and Heights
HACK

The next step is to create the lines for the columns so click on the chart and
under Chart Tools, select the Layout tab. Then choose the Error Bars
option, followed by More Error Bars. Under Display, select Both. Choose
Custom ➝ Specify Value and set the Positive Error Value to H2:H7 and the
Negative Error Value to G2:G8. Click OK, then Close.

In pre-2007 versions, you make changes to the Error bars by
double-clicking on the data points to bring up the Format
Data Series dialog. Under both the X and Y Error Bars, set
the “custom - range” to:

=Sheet1!F2:F8=Sheet1!F2:F8

Under the Y Error Bars, set the “custom + range” to:

=Sheet1!H2:H7

(Replace Sheet1 with the name of your sheet if it’s different.)
You must also set the X Error Bars to “Minus” under the
Display section, and the Y Error Bars to “Both.”

This will give you the vertical sides of the column, and yes, your chart looks
a bit weird at the moment and has horizontal lines on it as well. Let’s change
that. Click on one of the horizontal lines and select Chart Tools ➝ Layout ➝

Analysis ➝ Error Bars ➝ More Error Bars. This time, select Display ➝ Minus.
Select Custom ➝ Specify Value and set the Negative Error Value to F2:F8.
Click OK, then Close.

Now that all the hard work is done, it’s time to tidy up a bit and add some
labels. First, under the Format Data Series dialog, choose Marker ➝ None
(pre-2007, select Patterns) to display the results shown in Figure 5-27.

Figure 5-27. XY scatter chart manipulated to produce variable width column chart

Create a Column Chart with Variable Widths and Heights #61

Chapter 5, Charting Hacks | 163

HACK

If you want to use labels, you need to download John Walkenbach’s Chart
Tools, available from http://j-walk.com/ss/excel/files/charttools.htm. Part of
this add-in is designed specifically for data labels. It enables you to specify a
worksheet range for the data labels for a chart series.

Unfortunately, Walkenbach’s Chart Tools add-in doesn’t
seem to work on Excel for the Macintosh, even after extrac-
tion from its EXE distribution.

Before you use Chart Tools, you must add a new data series to provide X-
axis labels for the chart. So, highlight the chart and choose Design ➝ Data ➝

Add to add another series. Under “Series X values,” highlight the range I3:
I8; under “Series Y values,” select J3:J8. Again, format the series to have no
marker.

To add a new series in pre-2007 versions, right-click and
select Source Data ➝ Series. Press Add to add a new series.

Now it’s time to use Walkenbach’s add-in. Make sure you have highlighted
your chart, and then select AdIns ➝ JWalk Chart Tools AddIn (pre-2007,
Chart ➝ JWalk Chart Tools). When the dialog box pops up, type K3:K8 for
the data label range. Ensure that you have the Create Links to the Label
Cells box checked and click OK.

To add yet another new data series to provide column labels for the chart,
select Data ➝ Design ➝ Select Data ➝ Add. Under “Series X values,” high-
light the range I3:I8; under “Series Y values,” select J3:J8. Again, format the
series to have no marker.

To add a new series in pre-2007 versions, highlight the chart,
right-click, and select Source Data ➝ Series. Press Add to
add a new series.

Again, use Walkenbach’s add-in. This time, highlight Series 3 and link the
data labels to A3:A8. The result will look like Figure 5-28.

The fantastic thing about this type of chart is that the bars will either expand
or contract up the Y axis and along the X axis when the entries in the %
Share or the Cost ($) columns change. Pretty nifty.

—Andy Pope

http://j-walk.com/ss/excel/files/charttools.htm

164 | Chapter 5, Charting Hacks

#62 Create a Speedometer Chart
HACK

H A C K

#62
Create a Speedometer Chart Hack #62

You can create a really impressive, workable speedometer (or “speedo”)
chart, complete with moving needle, by using a combination of doughnuts
and pie charts. The added touch is that you can control the speedometer via
a scrollbar.

Excel’s Charts offers many different designs, but not, unfortunately, a speed-
ometer chart. A speedometer chart provides a slick way to represent data.
With the tools in this hack, you can create a speedometer chart and add a
scrollbar that will alter the chart and change the data in the worksheet
simultaneously.

The first thing you need to do is to set up some data, such as that shown in
Figure 5-29, and create a doughnut chart. Doughnut charts work a bit like
pie charts, but they can contain multiple series, whereas a pie chart cannot.

Press Alt/Control-~ to show the actual formulas on the worksheet. You also
can select the Office button ➝ Excel Options ➝ Advanced and check the
“Show formulas in cells instead of their calculated result” option under
“Display options for this Workbook” (pre-2007, select Tools ➝ Options…;
on a Mac, use Excel ➝ Preferences...) to see the formulas, though that’s a
longer process.

Now, highlight the range B2:B5, go to the Insert tab, and select Charts ➝

Other Charts. Under Doughnut, select the first chart subtype to create your
chart. As in Figure 5-30, your chart will be placed as an object in the work-
sheet in which it is created, which is Excel’s default. Ensuring your chart is
an object will make it easier to work with as you are setting up the
speedometer.

Figure 5-28. Completed variable width column chart

Create a Speedometer Chart #62

Chapter 5, Charting Hacks | 165

HACK

In pre-2007 versions, create the doughnut chart by using the
Chart Wizard. In Step 1 of the Wizard, select the Standard
Types tab (this should be the default anyway). Then, under
Chart Type, select the first doughnut. Click the Next button
to go to Step 2 of the Wizard, and make sure your data is
charted in columns. Click the Next button to proceed to
Step 3. You can make changes in Step 3 if you need to, but
they aren’t necessary for this hack. Click Next to go to Step
4, and make sure the chart ends up as an object in the cur-
rent worksheet (again, this is the default).

Figure 5-29. Data set up for speedometer chart

Figure 5-30. Basic doughnut chart

166 | Chapter 5, Charting Hacks

#62 Create a Speedometer Chart
HACK

Highlight the doughnut chart, slowly double-click the largest slice to select
it, and then right-click and select Format Data Point (pre-2007, then click
Options). Set the angle of this slice to 90 degrees.

Now, click to highlight each of the other slices in turn, then right-click your
right mouse button to get back to the Format Data Point dialog and color
the other three bands as required. The doughnut chart should look like the
one in Figure 5-31.

You need to add another series (Series 2) of values to form the slots for the
dial labels, so again highlight the chart and select Design ➝ Data ➝ Select
Data ➝ Add. Then, under Series values, select the range C2:C13 and click
OK.

To add a new series in pre-2007 versions, right-click, select
Source Data, and then select the Series tab. Click the Add
button to create a new series.

Click the Add button again to add a third series (Series 3) to create the nee-
dle, and under Series values, select the range E2:E5. Your result should look
like Figure 5-32.

At this point, the speedometer is starting to take shape. If you want to add
labels to the speedometer, you can download a tool for adding them for free
from John Walkenbach’s Chart Tools site, at http://j-walk.com/ss/excel/files/
charttools.htm.

Figure 5-31. Doughnut chart with 90% angle and no color or border on the first slice

http://j-walk.com/ss/excel/files/charttools.htm
http://j-walk.com/ss/excel/files/charttools.htm

Create a Speedometer Chart #62

Chapter 5, Charting Hacks | 167

HACK

Part of this add-in, which unfortunately works only on Windows, is
designed specifically for data labels. It enables you to specify a worksheet
range for the data labels for a chart series. Walkenbach’s add-in also con-
tains the features described in the following list:

Chart Size
Enables you to specify an exact size for a chart, or enables you to make
all charts the same size.

Export
Enables you to save charts as .gif, .jpg, .tif, or .png files.

Picture
Converts a chart to a picture (color or grayscale).

Text Size
Freezes the size of all text items in a chart. When the chart is resized, the
text elements will not change size.

Chart Report
Generates a summary report for all charts, or a detailed report for a sin-
gle chart.

Use the add-in to format Series 2 to display data labels using the range D2:
D13. Again, highlight Series 2, and then right-click to bring up the Format
Data Series dialog. Press Fill and check No Fill; then press Border Color and
check No Line (pre-2007, click the Patterns tab, set the area and border of
this slice to None, and then click OK).

Figure 5-32. Doughnut chart with multiple series

168 | Chapter 5, Charting Hacks

#62 Create a Speedometer Chart
HACK

Your chart should look like that shown in Figure 5-33.

Highlight Series 3, and select Design ➝ Type ➝ Change Chart Type. Select
the first Pie chart and click OK (pre-2007, right-click your mouse button and
select Chart Type).

Yes, it looks strange when you see it in Figure 5-34. But rest assured, if the
pie chart overlays the doughnut chart, you have done this correctly.

Figure 5-33. Improved speedometer chart, with labels added

Figure 5-34. Speedometer chart overlaid with a pie chart

Create a Speedometer Chart #62

Chapter 5, Charting Hacks | 169

HACK

Next you need to reduce the size of the pie chart you just laid over the
doughnut. To do this, explode it and reassemble the smaller slices. Click on
Series 3 and, holding the left mouse button down, drag outwards; this will
explode the pie and make it smaller. Resize the slices (remember, two slow
clicks to select an individual slice), to make your chart look like Figure 5-35.

Now, select the whole pie, right-click it, and choose Format Data Series
(pre-2007, click the Options tab). Change the Angle of the first slice to 90
degrees.

Change the Border and the Area to none for all slices except the third slice,
which needs to have a fill of Black. This will produce the chart shown in
Figure 5-36.

If you want to add a legend, highlight the chart, double-click it, and select
Layout ➝ Labels ➝ Legend (pre-2007, right-click and select Chart ➝ Data
Labels ➝ Legend Key).

This produces the speedometer in Figure 5-37. Now move, size, and edit the
chart as required.

Now that the speedometer chart is built, you need to create a scrollbar and
make the scrollbar and chart talk to each other. Choose Developer ➝ Con-
trols ➝ Insert.

In pre-2007 versions, right-click the gray area at the top of
the screen and select Forms, bringing the Forms toolbar onto
the screen. Then, right-click the toolbar area of the screen
and select Control Toolbox.

Figure 5-35. Pie chart exploded and resized

170 | Chapter 5, Charting Hacks

#62 Create a Speedometer Chart
HACK

Click the scrollbar icon to select it, and draw the scrollbar on your work-
sheet. Once you have inserted and sized your scrollbar, select it and move it
onto your chart. Right-click it, and select Format Control to display the For-
mat Control dialog. Click the Control tab and choose cell F3 as the linked
cell, and set the Maximum value to 100 and the Minimum value to 0. When

Figure 5-36. Speedometer chart with only the third series of pie chart showing color

Figure 5-37. Speedometer chart showing legend

Link Chart Text Elements to a Cell #63

Chapter 5, Charting Hacks | 171

HACK

you close the Properties dialog and move the scrollbar onto the chart, you’ll
see something that looks like Figure 5-38.

Clicking the arrows or dragging the slide bar will alter the speedometer, but
remember this also will change the data on the worksheet to which it is
linked.

—Andy Pope

H A C K

#63
Link Chart Text Elements to a Cell Hack #63

When creating and using charts repeatedly, it is handy to know how to link
some of a chart’s text elements (e.g., titles and labels) directly to a cell. This
means that if and when your underlying data changes, your chart data and its
text elements will always be in harmony.

The chart text elements you can link to a cell are the chart title, the primary
and secondary X-axis titles, the primary and secondary Y-axis titles, and the
series data labels.

To see how this is done, you will link the title of a chart to a cell. To begin,
set up some data such as that shown in Figure 5-39. Go to the Insert tab,
and select the first chart (2D clustered column) under Columns (pre-2007,
use the Chart Wizard). Now, click cell A17 and type Age of Employees.

The next step is to establish a link between the chart title and the cell. So,
select the chart title (Age, in this case), then go to the Formula bar, type =

Figure 5-38. Final speedometer chart

172 | Chapter 5, Charting Hacks

#63 Link Chart Text Elements to a Cell
HACK

(an equals sign), click cell A17, and press Enter. Note that if you are refer-
encing a cell on another sheet, you will have to type the sheet name fol-
lowed by an exclamation mark (!), then the cell reference.

The same process works for data labels, but you need to select an individual
data label before linking it to a cell. Your results should look like
Figure 5-40.

This smart hack will make your chart text elements and chart data stay in
harmony. Plus, it can save you time when creating charts.

—Andy Pope

Figure 5-39. Clustered column chart with title created automatically

Figure 5-40. Clustered column chart with title linked to cell A17

Hack Chart Data So That Empty or FALSE Formula Cells Are Not Plotted #64

Chapter 5, Charting Hacks | 173

HACK

H A C K

#64
Hack Chart Data So That Empty or FALSE Formula
Cells Are Not Plotted Hack #64

When plotting data that results from a formula, Excel treats cells with
formulas that return nothing ("") or FALSE as though they have a value of 0,
which can result in some ugly charts. Your chart can suddenly drop off,
leaving you with a chart that no longer accurately paints the picture you are
trying to convey. These hacks keep these cells from being plotted.

You can prevent empty ("") and FALSE formula cells from being plotted in
two very easy ways: by hiding rows or columns, and by having cells return a
value of #N/A.

Hiding Rows or Columns
Set up some data as shown in Figure 5-41, create a line chart highlighting
the range A1:B12, and see what it looks like with a mixture of FALSE and
empty ("") results from your formula.

The chart in Figure 5-41 is plotting Sales Figures by Month. This means that
if the current month is April, the chart will plot eight months of data as 0.
To avoid this, simply hide rows 5:12 (May:Dec). Excel will not plot hidden
rows, and thereby will produce the result shown in Figure 5-42. To hide
these rows, select them, and then right-click and select Hide.

Using #N/A to Plot Blank Cells
Using the previous method works if you are trying to hide rows in a
sequence. However, if you have a gap or a 0 value in your data range, as
shown in Figure 5-43, your data will either show the gap or show 0, making
your chart look odd.

Figure 5-41. Data with line chart plotting empty or FALSE values

174 | Chapter 5, Charting Hacks

#64 Hack Chart Data So That Empty or FALSE Formula Cells Are Not Plotted
HACK

In this case, hiding rows will also result in hiding the row label, further
skewing your data, as shown in Figure 5-44.

An easy way around this is to type =NA() in the blank cells, or, if you are
using a formula, try using #N/A instead of using "" or 0 if the formula is
FALSE.

Using one of these methods to show the error message #N/A as in Figure 5-45
will force Excel to ignore the cell, thereby making your chart much more
user-friendly and easier to understand and ensuring your trend is not
adversely affected.

Figure 5-42. Data with rows 5 through 12 hidden, and a chart plotting January through
April figures only

Figure 5-43. Data with B5and B8 showing no value and B10 showing a zero value

Add a Directional Arrow to the End of a Line Series #65

Chapter 5, Charting Hacks | 175

HACK

—Andy Pope

H A C K

#65
Add a Directional Arrow to the End of a Line SeriesHack #65

Create an arrow that automatically adjusts to point in the direction suggested
by the last two points in the data series, making it easy to visualize which
way you are going.

When you create a line chart in Excel, you can easily change the data point
markers to suit your purpose. However, if you want to place a directional
arrow at the end of your line chart, the steps are slightly more involved.

First, set up some data, as shown in Figure 5-46, and create a normal line
chart on the data in range A1:B9.

Select the data points once, to highlight all the points. We only want to
highlight the last data point, so click on this point once more to remove
highlighting from the rest of the points, as shown in Figure 5-47.

Figure 5-44. Chart with rows 5, 8 and 10 hidden

Figure 5-45. Chart with B5, B8 and B10 showing #N/A,

176 | Chapter 5, Charting Hacks

#65 Add a Directional Arrow to the End of a Line Series
HACK

Right-click on the data point and select Format Data Point ➝ Line Style.
Then, under Arrow Settings, select the drop–down menu for End Type,
choose the second arrow, and press Close. The finished chart should look
like Figure 5-48.

If you use a line chart with data points identified, you can
remove the data point formatting by highlighting the last
point, right-clicking, selecting Format Data Point ➝ Marker
Fill, and setting it to No Fill, then selecting Marker Line
Color and setting it to No Line.

Figure 5-46. Standard Line Chart

Figure 5-47. Last data point in the line series is selected

Place an Arrow on the End of a Horizontal (X) Axis #66

Chapter 5, Charting Hacks | 177

HACK

The chart will automatically update if the data changes. Try clicking in cell
B9 and changing the contents from 7 to 2. Notice that your arrow will
change direction from pointing upward to pointing downward.

—Andy Pope

H A C K

#66
Place an Arrow on the End of a Horizontal (X) Axis Hack #66

As a variation on the previous hack, you can also place an arrow on the end
of a horizontal (X) or vertical (Y) axis.

To place an arrow on the end of an axis, you first need to create a dummy
data point. Set up some data as shown in Figure 5-49. The actual chart data
is in the range A1:B6. The values in A10:B10 are for positioning the dummy
data point.

Figure 5-48. Finished chart with arrow styling

Figure 5-49. Data to be used in the chart

178 | Chapter 5, Charting Hacks

#66 Place an Arrow on the End of a Horizontal (X) Axis
HACK

Although this hack works for all versions of Excel, the
instructions are much simpler in Excel 2007.

In Excel 2007
To continue in Excel 2007, you can ignore the values in A10:B10. All you
need to do is right-click on the Horizontal (X) axis and select Format Axis.
Then, under Line Style, select the drop-down arrow for End Type under
Arrow Settings and choose the desired arrow. Figure 5-50 shows the results
of selecting the stealth arrow.

In Older Excel Versions
Accomplishing the same effect in versions of Excel prior to 2007 is much
more of a hack. Follow these steps.

1. Highlight the range A1:B6, select the Chart Wizard, and create a Line
chart using the first chart subtype.

2. Right-click and select Source Data ➝ Series ➝ Add. Give the series the
name Axis Arrow.

3. Set the range of the Series X Values to A10 and the Series Y Values to
B10, and press OK.

4. Now, we need to change the Chart Type of the Axis Arrow data series
to XY Scatter, markers only. Select the Axis Arrow series, right-click,

Figure 5-50. Line chart with stealth arrow on horizontal (x) axis

Place an Arrow on the End of a Horizontal (X) Axis #66

Chapter 5, Charting Hacks | 179

HACK

select Chart Type, and choose the first subtype under (XY) Scatter. Your
chart should now look like Figure 5-51.

5. To format the chart to display Value data labels, right-click and select
Chart options ➝ Data Labels.

6. Check the Value box, and click OK.

7. Edit the data label for the Axis Arrow (scatter) series, replacing the
number 1 with the number 4.

8. Keep the data label selected and change the font to Marlett via the For-
matting toolbar. When you do this, you will get a right arrowhead, as
shown in the completed chart shown in Figure 5-52.

Increase the font size to suit your chart (the one in Figure 5-52 is 40 points).
Also, adjust the label position to center it over the data point if necessary.

Figure 5-51. Created line chart with Axis Arrow series plotted as a scatter chart

Figure 5-52. The finished chart with arrow as axis pointer

180 | Chapter 5, Charting Hacks

#67 Correct Narrow Columns When Using Dates
HACK

You can adapt the same technique for the Y axis by making the Y Value
B10 and the X value A10 in the first step, but you will substitute the
number 4 for the lowercase letter t.

—Andy Pope

H A C K

#67
Correct Narrow Columns When Using Dates Hack #67

When you create a chart, Excel will attempt to interpret your data. This
usually works great. However, sometimes the result is not the desired one,
especially if the category labels are dates. If Excel gets it wrong, this can
result in columns that are very narrow and look rather odd.

The reason for this is that Excel is treating the X-axis as a Time series rather
than categorical data. Therefore each column only occupies the space for a
single day, which results in narrow columns.

To see what we mean, set up some data as in Figure 5-53, and create a sim-
ple column chart of the data range A1:B9.

To fix the columns, follow these steps:

1. Select the horizontal (X) axis.

2. Click either the Layout or Format tab on the Chart Tools contextual
tab.

3. Click the Format Selection item on the Current Selection group. This
will display the Format dialog.

4. Select Axis Options from the list.

Figure 5-53. Simple column chart created using range A1:B9

Position Axis Labels #68

Chapter 5, Charting Hacks | 181

HACK

5. Check the Text axis option under Axis Type (pre-2007, right-click the
chart and select Chart Options ➝ Axes, then check the Category
option). Figure 5-54 shows the results.

By changing the Axis option to Text, the columns return to their normal
thickness.

—Andy Pope

H A C K

#68
Position Axis Labels Hack #68

Change how or where your axis labels are displayed by moving their position
from the default.

When you create a bar chart, the position of your axis labels is automati-
cally determined. However, depending on your chart requirements, you
might want to change how or where your labels are displayed. To make your
chart more professional, here are two methods you can use to change how
your labels are set. The second method also reverses a series.

Changing Label Position
When you create a bar chart with both positive and negative values, the bars
are formed to the left or to the right of the axis. Because negative value series
created in a bar chart will be colored and formed to the left of your X axis,
they will hide the axis labels. Using this method, you can reformat where
your labels are positioned.

Set up some data as shown in Figure 5-55, and create a basic bar chart on
the range A1:B6.

Figure 5-54. Simple column chart with Axis changed to Text

182 | Chapter 5, Charting Hacks

#68 Position Axis Labels
HACK

As you can see, the negative value columns obscure the axis labels. Let’s
change this.

Select the horizontal (X) axis, right-click, and select Format Axis (or press
Ctrl-1 to display the Format Axis dialog). Select Axis Options from the list,
and choose Low from the Axis labels drop-down menu (pre-2007, select the
axis, right-click, choose Format Axis ➝ Colors and Lines, and check Low
under Tick mark labels).

Your labels should now be set to the left of all the bars in your chart, as
shown in Figure 5-56.

Figure 5-55. Basic bar chart created on range A1:B6

Figure 5-56. Basic bar chart with Axis labels set to Low

Tornado Chart #69

Chapter 5, Charting Hacks | 183

HACK

Reversing Label Order
When creating a bar chart, sometimes you’ll want to reverse the order in
which both the series and the labels are displayed. Using this simple
method, you can reorder the series ensuring the corresponding labels move
with the series.

Create a bar chart using some data, as shown in Figure 5-57.

Select the (X) axis and press Ctrl-1 to display the Format Axis dialog (or
right-click to get there). Under Axis Options, select “Categories in reverse
order” and “At maximum category” and click Close (pre-2007, select “At
maximum category” and “Value (y) axis crosses at maximum category” and
click OK). Your chart should now be reversed, labels and all, as shown in
Figure 5-58.

—Andy Pope

H A C K

#69
Tornado Chart Hack #69

A tornado chart (also known as a population pyramid) is not standard in Excel
2007, but you can easily create one by manipulating a simple bar chart.

A tornado chart displays two sets of data in a bar chart, with the two series
emanating from a shared vertical axis. One of the series goes to the left, the
other to the right.

First, set up some data as shown in Figure 5-59, and then follow these steps.

Figure 5-57. Data and basic bar chart formed automatically

184 | Chapter 5, Charting Hacks

#69 Tornado Chart
HACK

Create a basic bar chart by selecting the data in A1:C5, choosing Insert
➝ Charts ➝ Bar, and clicking the first chart sub-type—the clustered 2D bar
(pre-2007, use the Chart Wizard).

Select the Male series and move it to the secondary axis by right-clicking,
and selecting Format Data Series ➝ Series Options ➝ Secondary Axis (pre-
2007, double-click the Male series, select the Axis tab, and check Secondary
axis).

Now, highlight the primary horizontal axis (the one at the bottom), right-
click, select Format Axis ➝ Axis Options (pre-2007, select Scale), and for-
mat as follows:

• Fixed Minimum value of –1

Figure 5-58. Bar chart with labels and series reversed

Figure 5-59. Simple bar chart created from A1:C5

Tornado Chart #69

Chapter 5, Charting Hacks | 185

HACK

• Fixed Maximum value of 1

• Fixed Major Unit of 0.25

Your chart should look like Figure 5-60.

Highlight the secondary horizontal axis, right-click, select Format Axis ➝

Axis Options (pre-2007, select Scale), and format as follows:

• Fixed Minimum value of –1

• Fixed Maximum value of 1

• Fixed Major Unit of 0.25

• Values in reverse order

• Major Tick Marks type is None

• Axis Labels is None

Finally, to remove the negative horizontal axis labels, we can apply a cus-
tom number format to the axis. Highlight the axis, right-click and select for-
mat Axis. Select Number ➝ Custom under the category menu. Enter the
number format 0%;0%.

The end product will be a completed tornado chart that cleverly displays
your charted data, as shown in Figure 5-61.

—Andy Pope

Figure 5-60. Tornado chart taking shape

186 | Chapter 5, Charting Hacks

#70 Gauge Chart
HACK

H A C K

#70
Gauge Chart Hack #70

Wouldn’t it be nice if you could create a chart with a custom marker that you
could use to display data in a smart, visually appealing way?

This hack creates a line chart with a custom marker using the pentagon
shape, flipped horizontally.

Click in cell A2 and enter the word Gauge. Then, click in B2 and enter the
number 3. Select cells A2:B2 and choose Insert ➝ Chart ➝ Line. Click on the
first chart with visual data points; i.e., the 2-D line with markers (pre-2007,
use the Chart Wizard). Your chart should look similar to Figure 5-62.

Now, we need to add a shape to the sheet that we want to use for the gauges
pointer. For this hack, we’ll use the pentagon shape, flipped horizontally.

Select Insert ➝ Illustrations ➝ Insert ➝ Shapes ➝ Block Arrows (pre-2007,
Insert ➝ Picture ➝ AutoShapes ➝ Block Arrows), choose the pentagon
shape, and draw a pentagon on your worksheet somewhere. Now, flip the
pentagon on its side so the arrow is facing left, as shown in Figure 5-63. Do
this by selecting the green circle (rotate tool) and dragging in the required
direction.

Select the shape and copy it using Ctrl-C. Select the line series and paste the
shape from the clipboard using Ctrl-V. As shown in Figure 5-64, the data
series marker will take on the shape of the flipped pentagon and will move
up and down in relation to the value in B2.

Figure 5-61. Completed tornado chart

Gauge Chart #70

Chapter 5, Charting Hacks | 187

HACK

You might want to change the vertical (Y) axis options Maxi-
mum and Minimum to get a better look, because the axis is
created automatically.

—Andy Pope

Figure 5-62. Created chart showing data point

Figure 5-63. Pentagon shape created and rotated to point left

188 | Chapter 5, Charting Hacks

#71 Conditional Highlighting Axis Labels
HACK

H A C K

#71
Conditional Highlighting Axis Labels Hack #71

A snazzy trick would be to highlight X-axis category labels in a certain color
when the data drops below a certain range. You can do this by creating a
clustered column, then adding the data labels of two extra data series and
plotting these extra series as lines.

Let’s say you’ve created a chart and you want to show horizontal (X) axis
value labels in red when your data drops below 25 and in blue when the
data is above 25. Here is how you can do this.

Set up a spreadsheet like in Figure 5-65, which shows the data and formulas
used to build the chart. The actual data for the column chart is in the range
C3:C14. The formula in columns D and E test the data value and either out-
put a zero or #N/A depending on the value typed in column C, and there-
fore determining whether a red or blue label should be displayed. Then
complete the following steps.

Using this data will highlight horizontal (X) axis labels in red
when the monthly data drops below 25.

1. First we need to create the basic chart, so highlight the data in C3:C14
and go to the Insert tab.

2. Under Chart options, select Columns and choose the first column chart
(pre-2007, use the Chart Wizard; Insert ➝ Chart).

3. Go to the Layout tab and choose Series Red Label from the drop-down
menu under the current selection.

Figure 5-64. Completed chart with pentagon as marker

Conditional Highlighting Axis Labels #71

Chapter 5, Charting Hacks | 189

HACK

4. Select Design ➝ Type ➝ Change Chart Type (pre-2007, right-click on
the Red Label series and select Chart Type).

5. Select a Line chart from the menu presented.

6. Repeat Steps 1–5 for the Blue Label series.

In pre-2007 versions, highlight the series, right-click, and
select Chart Type.

7. Once again, go to the Layout tab, and select Series Red Label from the
drop-down menu.

8. Choose Labels ➝ Data Labels ➝ More Data Label Options (pre-2007,
double-click on the series and select Data Labels).

9. Check Category under Label Options.

10. Repeat Steps 7–9 for the Blue Label series.

In Step 9, make sure that Value is not selected under Cate-
gory name.

11. Yet again, go to the Layout tab, and select Series Red Label from the
drop-down menu.

12. Select Data Labels ➝ Below (pre-2007, right-click on the data series,
select the Alignment tab, and change the Label Position to Below).

13. Repeat Steps 11 and 12 for the Blue Label series.

Figure 5-65. Data and formulas used to build chart

190 | Chapter 5, Charting Hacks

#72 Create Totals on a Stacked Column Chart
HACK

14. Highlight your original horizontal (X) axis, right-click your mouse, and
select Format Axis (pre-2007, double-click the horizontal axis and select
the Patterns tab).

15. Under Axis Options, set the Major tick mark style to None and the Axis
Labels to None. This will clear the original axis.

16. Highlight the Red Labels data labels and go to the Home tab (pre-2007,
use the Formatting toolbar).

17. Under Font, change the Font color to Red

18. Repeat Steps 16 and 17 with the Blue Labels, formatting the font color
to blue.

Your final chart, with conditional highlighting, should look like Figure 5-66.

—Andy Pope

H A C K

#72
Create Totals on a Stacked Column Chart Hack #72

Display the totals of stacked categories above the columns in a chart.

When you create a stacked chart, you can’t normally show the total of each
category in an easily distinguishable way. This hack allows you to show the
totals of each category above the stacked columns of a chart.

Before you begin, you’ll need to set up some data to work with, as shown in
Figure 5-67.

Create a stacked column chart on the range A1:E7 by highlighting the range
and selecting Insert ➝ Charts ➝ Columns (pre-2007, select the Chart Wiz-
ard tool from the standard toolbar and in Step 1 of the Wizard under Chart

Figure 5-66. Chart with labels highlighted

Create Totals on a Stacked Column Chart #72

Chapter 5, Charting Hacks | 191

HACK

Type). Choose Column, then select the second chart subtype (the stacked
column chart). Your chart will appear as an object in your worksheet.

Select the Total series and then select Type ➝ Change Chart Type (pre-2007,
click the chart to select it, then go to Chart ➝ Chart Type), choose Line, and
click on a line chart with no markers. Click OK. Your chart should look like
Figure 5-68.

Now, you need to place some labels in your chart, so select the line series,
right-click, and select Add Data Labels (pre-2007, right-click, choose For-
mat Data Series ➝ Labels ➝ Show Value, and click OK). You should now
have labels for your series, probably to the right, which is not the clean fin-
ish we are looking for.

Figure 5-67. Data used to create the stacked column chart

Figure 5-68. Stacked Column chart with total series shown as line

192 | Chapter 5, Charting Hacks

#72 Create Totals on a Stacked Column Chart
HACK

Select the data labels again, right-click and select Format Data Labels ➝

Label Options ➝ Label Position ➝ Above, and then click Close (pre-2007,
right-click on one of the total numbers, and select Format Data Labels ➝

Alignment and set the Label Position to Outside End; on the Mac, set the
Label Position to Above).

Now we will get rid of the line and leave only the value labels showing.
Select the line again, right–click, and select Format Data Series ➝ Line Color
➝ No Line ➝ Close (pre-2007, right-click and select Format Data Series,
select Patterns ➝ Line ➝ None ➝ OK; on the Mac, go to “Colors and Lines”
and under “Line color,” select “No line” and click OK).

Finally, remove the legend entry for the Total series. Two slow clicks on the
legend border will enable you to click inside the Legend. Delete the Total
series. Your chart should now look like the one in Figure 5-69.

This enables you to now show your totals as well as your data without caus-
ing confusion.

—Andy Pope

Figure 5-69. Final stacked column chart showing totals above columns

193

Chapter 6 C H A P T E R S I X

Hacking Formulas and Functions
Hacks 73–105

Formulas and functions provide the logic that powers spreadsheets. Manag-
ing programming logic is always a challenge, but keeping track of program-
ming logic across multiple cells, sheets, and workbooks can be particularly
difficult, especially as spreadsheets grow and are reused. What’s more, the
formula and function capabilities built into Excel might not always be what
you want, further complicating the situation. Fortunately, there are a lot of
ways you can keep your formulas and functions sane.

H A C K

#73
Add Descriptive Text to Your Formulas Hack #73

Excel’s named ranges and cell comments can help clarify formulas, but
sometimes you want to put documentation into the formula itself. With the
hacks in this section, you can add descriptive text to your formulas quickly
and easily.

Even when you have written various formulas and functions yourself, com-
ing back to them at a later date often requires that you follow cell references
to try to figure out what the formulas are doing. It would be great if you
could simply add to the end of your formula some text that wouldn’t inter-
fere with the result, but would give you the information you require at a
later stage.

The problem, of course, is that the moment you add or incorporate text into
part of a formula, the result will no longer be numeric and cannot be used in
further calculations. Excel does, however, provide one often-overlooked
function that you can use to add descriptive text to formulas or functions.

Say you have the following formula in cell A11:

=SUM(A1:A10)*B1

Assume A1:A10 houses various numeric results that represent totals for
a particular month, and B1 contains a percentage value that represents a

194 | Chapter 6, Hacking Formulas and Functions

#74 Move Relative Formulas Without Changing References
HACK

tax rate. You could add some descriptive text to the formula using Excel’s N
function:

=SUM(A1:A10,N("Values for April"))*B1+N("Tax Rate for April")

Now you can determine what the formula is being used for simply by select-
ing this cell and looking in the Formula bar. The N function always will
return a value of 0 for any text, and so does not interfere with the formula’s
result in any way.

H A C K

#74
Move Relative Formulas Without Changing
References Hack #74

In Excel, a formula reference can be either relative or absolute. Sometimes,
however, you might want to reproduce the same formulas somewhere else in
your worksheet or workbook, or on another sheet.

When a formula needs to be made absolute, type $ (a dollar sign) in front of
the column letter and/or row number of the cell reference, as in A1 (or
you can use the F4 key (c-T on the Mac) to toggle through the different
types of reference style). Once you do this, no matter where you copy your
formula, it will reference the same cells.

Sometimes, however, you might set up a lot of formulas that contain not
absolute references, but relative references. You would usually do this so
that when you copy the original cell formula down or across, the row and
column references change accordingly.

Yet other times you might set up your formulas using a mix of relative and
absolute references, and you want to reproduce the same formulas in
another range on the same worksheet, another sheet in the same workbook,
or perhaps another sheet in another workbook.

You can do all these things without changing any range references inside the
formulas by following these steps:

1. Select the range of cells you want to copy.

2. Go to the Home tab and choose Editing ➝ Find & Select ➝ Replace
(pre-2007, Edit ➝ Replace…).

3. In the Find What: box, type = (an equals sign).

4. In the Replace With: box, type & (an ampersand), or any other symbol
you are sure is not being used in any of the formulas.

5. Make sure the “Match Entire cell contents” option is not enabled, and
click Replace All.

6. All the formulas will appear on your worksheet with an & in place of an
=, so you can now copy your cells to any locations you wish.

Compare Two Excel Ranges #75

Chapter 6, Hacking Formulas and Functions | 195

HACK

7. After moving the cells, select Home ➝ Editing ➝ Find & Select ➝

Replace (pre-2007, Edit ➝ Replace...). This time, replace the & with an =.

When you’re done, your formulas will reference the same cell references as
the originals.

H A C K

#75
Compare Two Excel Ranges Hack #75

Spotting the differences between two large tables of data can be a very time-
consuming task. Fortunately, there are at least two ways in which you can
automate what would otherwise be a very tedious manual process.

The two methods you will use are methods we have used in the past when
we received an updated copy of a spreadsheet and we needed to identify
which cells in the updated copy differed from the ones in the original copy.
Both methods save hours of tedious manual checking and, more impor-
tantly, eliminate the possibility of mistakes.

For the following examples, we copied the newer data onto the same sheet
as the older data beforehand. Figure 6-1 shows how the data is presented as
two ranges. Note that for easier viewing, we boldfaced the cells in Table 2
that are not the same as their counterparts in Table 1.

Method 1: Using True or False
The first method involves entering a simple formula into another range of
the same size and shape. The best part about this method is that you can
add the formula in one step without having to copy and paste.

Figure 6-1. Two ranges to be compared

196 | Chapter 6, Hacking Formulas and Functions

#75 Compare Two Excel Ranges
HACK

To compare the ranges shown in Figure 6-1 we will array-enter a formula.
First, select the range E1:G7, starting from cell E1 (which ensures that E1 is
the active cell in the selection). With this range selected, click in the For-
mula bar and type the following and then press Ctrl-Enter:

=A1=A9

By pressing Ctrl and Enter at the same time, you are enter-
ing the relative reference formula into each cell of the selec-
tion. This is the standard method of entering a formula into
an array of cells and having their references change appropri-
ately, and is referred to as array-entering a formula.

The range E1:G7 should be filled with True (the same) and False (not the
same) values.

If your two sets of data reside on different worksheets, you can use a third
worksheet to store the True/False values simply by array-entering the for-
mula. For example, assuming the second table of data is on Sheet2 and
starts in cell A9, and the original table of data is on Sheet1 and starts in cell
A1, on a third worksheet you can array-enter this formula:

=Sheet1!A1=Sheet2!A9

You might find it useful to adjust your zoom downward
when working with large amounts of data.

Method 2: Using Conditional Formatting
Using conditional formatting is often preferred, as it is easier to make any
needed changes once the comparison is made. However, with this method,
both sets of data must reside on the same worksheet, which should entail
only a simple copy and paste.

Again, assuming we’re comparing the two ranges from Figure 6-1, select the
range A1:C7, starting from cell A1. This ensures that A1 is the active cell in
the selection.

With this range selected, select Home ➝ Styles ➝ Conditional Formatting ➝

New Rule, choose “Use a formula to determine which cells to format” (pre-
2007, Format ➝ Conditional Formatting… ➝ Select Formula Is), and under
“Format values where this formula is true:” type the following formula:

=NOT(A1=A9)

Click the Format button, shown in Figure 6-2, and choose the format with
which you want to highlight the differences.

Fill All Blank Cells in a List #76

Chapter 6, Hacking Formulas and Functions | 197

HACK

Click OK and all the differences will be formatted according to the format
you chose.

When or if you make any changes to your data, the cells’ format will auto-
matically revert back to normal if the cell content is the same as the cell in
the other table.

H A C K

#76
Fill All Blank Cells in a List Hack #76

Often, many people will leave a blank cell if the data for that cell is the same
as the cell above it. Visually this makes lists easy to read, but structurally it is
not a good idea. With the hacks in this section, you can fill all blank cells in a
list quickly and easily.

Many of Excel’s functions are designed to be used on lists. For most of these
functions to work correctly, lists should not contain any blank cells, and col-
umn headings should be formatted differently from the data in the list.

When setting up data in Excel, it is good practice to ensure that all cells
within a list are occupied. However, many lists are set up in a similar man-
ner to the one shown in Figure 6-3.

Whereas prices are repeated in the Cost column, the types of fruits in the
Fruits column are not. As discussed at the beginning of Chapter 1, this will
create many problems when using features such as Subtotals and Pivot-
Tables. In most cases, Excel expects your related data will be set up in a con-
tinuous list or table, with no blank cells.

Figure 6-2. Conditional formatting dialog

198 | Chapter 6, Hacking Formulas and Functions

#76 Fill All Blank Cells in a List
HACK

You can fill blank cells in a list by using a formula or by using a macro.

Method 1: Filling Blanks via a Formula
Say you have a list of entries in column A similar to Figure 6-3, and within
the list you have many blank cells. Here is a quick and easy way to fill those
blanks with the values of the cells above them.

Select all the data in column A, and then select Home ➝ Editing ➝ Find &
Select ➝ Go To Special (pre-2007, Edit ➝ Go To…or hit Ctrl-G and choose
Special). Check the Blanks option and click OK. At this point, you have
selected only the empty cells within the list. Press the equals key (=), then
the up arrow key. Holding down the Ctrl key, press Enter.

You can quickly convert formulas to values only by selecting column A in its
entirety. Right-click and select Copy (Ctrl-C), right-click again and select
Paste Special…, check the Values checkbox, and then click OK.

Method 2: Filling Blanks via a Macro
If you will be filling in blank cells frequently, you should consider handling
this via a macro. The following macro makes this a breeze. To use it, select
Alt/Option-F11, then select Insert ➝ Module and enter the following code:

Sub FillBlanks()
Dim rRange1 As Range, rRange2 As Range
Dim lReply As Integer

 If Selection.Cells.Count = 1 Then
 MsgBox "You must select your list and include the blank cells", _
 vbInformation, "OzGrid.com"
 Exit Sub
 ElseIf Selection.Columns.Count > 1 Then
 MsgBox "You must select only one column", _
 vbInformation, "OzGrid.com"
 Exit Sub
 End If

Figure 6-3. Worksheet list set up with blank cells

Make Your Formulas Increment by Rows When You Copy Across Columns #77

Chapter 6, Hacking Formulas and Functions | 199

HACK

 Set rRange1 = Selection

 On Error Resume Next
 Set rRange2 = rRange1.SpecialCells(xlCellTypeBlanks)
 On Error GoTo 0

 If rRange2 Is Nothing Then
 MsgBox "No blank cells Found", _
 vbInformation, "OzGrid.com"
 Exit Sub
 End If

 rRange2.FormulaR1C1 = "=R[-1]C"

 lReply = MsgBox("Convert to Values", vbYesNo + vbQuestion, "OzGrid.com")
 If lReply = vbYes Then rRange1 = rRange1.Value
End Sub

After entering this code, close the window to get back to Excel, and then
save your workbook. Now go to the Developer tab and select Code ➝ Mac-
ros or Alt/Option-F8 (pre-2007, Tools ➝ Macro ➝ Macros ➝ FillBlanks ➝

Run) or use Options to assign a shortcut key.

H A C K

#77
Make Your Formulas Increment by Rows When You
Copy Across Columns Hack #77

Excel’s automatic incrementing of cell references works well most of the
time, but sometimes you might want to override how it works.

You might want to reference a single cell, such as cell A1, and then copy this
reference across columns to the right. Naturally, this results in the formula
reference changing to =B1, =C1, =D1, etc, which is not the desired result. You
want the formula to increment by rows rather than columns—that is, =A1,
=A2, =A3, etc.

Unfortunately, there is no option in Excel that lets you do this. However,
you can get around this by using the INDIRECT function with the ADDRESS
function nested inside.

Perhaps the best way to explain how to create the required function is to use
an example with predictable results. In cells A1:A10, enter the numbers 1
through 10 in numerical order. Select cell D1, and in this cell enter the
following:

=INDIRECT(ADDRESS(COLUMN(A:A),1))

As soon as you enter this, the number 1 should appear in cell D1. This is
because the formula references cell A1.

200 | Chapter 6, Hacking Formulas and Functions

#77 Make Your Formulas Increment by Rows When You Copy Across Columns
HACK

If you copy this formula across the column to the right, cell E1 will contain
the number 2. In other words, although you are copying across columns, the
formula reference is incrementing by rows, as shown in Figure 6-4.

This method is especially useful when a spreadsheet has
headings going down rows in one column, and you want to
create a dynamic reference to these row headings across
other columns.

If you keep copying this to the right, cell F1 will contain the number 3, cell
G1 will contain the number 4, etc. This is a fairly straightforward process if
you are referencing only a single cell. Many times, however, you will need to
reference a range of cells that is being used in the argument for a function.

We’ll use the ever-popular SUM function to demonstrate what we mean.
Assume you receive a long list of numbers, and your job is to sum the col-
umn of numbers in a running total fashion, like this:

 =SUM(A1:A2), =SUM(A1:A3), =SUM(A1:A4)

The problem occurs because the results need to be dynamic and to span
across 100 columns on row 1 only, not down 100 rows in another column
(as often would be the case).

Naturally, you could manually type such functions into each individual cell,
but this would be very time-consuming. Instead, you can use the same prin-
ciple as the one that you used when referencing a single cell.

Figure 6-4. The result of copying cell D1 to cell E1

Make Your Formulas Increment by Rows When You Copy Across Columns #77

Chapter 6, Hacking Formulas and Functions | 201

HACK

Fill the range A1:A100 with the numbers 1 through 100 in numeric order.
Enter 1 into cell A1, select cell A1, hold down the Ctrl key, left-click, and
drag down 100 rows with the fill handle.

Select cell D1 and enter this formula:

=SUM(INDIRECT("A1:" &ADDRESS(COLUMN(A:A),1)))

This will give you a result of 1, which is the sum of cells A1:A1. Copy this
formula across to cell E1 and you will get a result of 3, which is the sum of
cells A1:A2. Copy to cell F1 and you will get a result of 6, which is the sum
of cells A1:A3, and so forth, as shown in Figure 6-5.

The volatile COLUMN function caused the last cell reference to increment by 1
each time you copied it across to a new column. This is because the COLUMN
function always returns the column number (not letter) of the cell that
houses it unless you reference a different cell.

Alternatively, you can use the Paste Special… ➝ Transpose feature in Excel.
Add the formula =SUM(A1:$A2) to cell B1 (note the relative row absolute
column reference to $A2), and then copy this formula down to cell B100 (a
double-click on your fill handle will do this). With B1:B100 selected, copy,
select cell D1 (or any cell that has 100 or more columns to the right), and
then right-click and select Paste Special… ➝ Transpose. If you like, you can
delete the formulas in B2:B100.

Figure 6-5. The result of copying cell D1 to cell F1

202 | Chapter 6, Hacking Formulas and Functions

#78 Convert Dates to Excel Formatted Dates
HACK

H A C K

#78
Convert Dates to Excel Formatted Dates Hack #78

Dates imported from other programs frequently cause problems in Excel.
Many people manually retype them, but there are easier ways to solve the
problem.

Let’s look at some of the date formats you might encounter and how to con-
vert them to standard Excel dates.

As Figure 6-6 shows, the formulas in column B convert the data in column
A to three results in column C, all of which follow the U.S. date format of
mm/dd/yy.

The format of the data in column A must be text and your
PC must be set to American dates for this to work.

Figure 6-7 shows the same approach at work, except that the cells in col-
umn C were formatted with the European date format of dd/mm/yy, so use
this if your PC is set to European dates.

Hopefully, these nifty formulas will take some of the stress out of working
with imported dates.

Figure 6-6. Date formats converted to valid dates (U.S. format)

Figure 6-7. Date formats converted to valid dates (European format)

Sum or Count Cells While Avoiding Error Values #79

Chapter 6, Hacking Formulas and Functions | 203

HACK

H A C K

#79
Sum or Count Cells While Avoiding Error Values Hack #79

Error values are useful warnings, but sometimes you need to do calculations
despite the errors. Choosing functions that tolerate errors will let you do this.

When a range of cells contains one or more error values, most formulas that
reference that range of cells also will return an error. You can overcome this
frustration by using the DSUM function.

Assume you have a long list of numbers for which you need to get the sum
total. However, one of the cells, for whatever reason, is returning the #N/A
error.

Set up some data such as that shown in Figure 6-8.

To generate the #N/A error, enter the formula =NA() in cells A2 and B2. Cell
A12 uses a standard SUM function that sums cells A2:A11, and because cell
A2 has the #N/A error, the SUM function also returns #N/A. The range D1:
D2 has been named Criteria and is used as the last argument in the DSUM
function, which resides in cell B12.

The syntax for the DSUM function (and all the database functions) is as
follows:

=DSUM(database,field,criteria)

The database argument identifies the range of cells that comprise the list or
database. Within the database range, rows of related information are treated
as records, while columns of data are treated as fields. The first row con-
tains labels for all the columns.

Figure 6-8. Data set up to generate #N/A error message

204 | Chapter 6, Hacking Formulas and Functions

#79 Sum or Count Cells While Avoiding Error Values
HACK

The field argument indicates which column is used in the function. The
column can be identified by name using the labels at the top of the column,
or it can be identified by position. The first column is 1, the fourth column
is 4, and so on.

The criteria argument identifies a range of cells containing conditions. The
range used for the criteria must include at least one column label plus at
least one cell below the column label that specifies a condition for the col-
umn.

So, in cell B12, enter the following formula:

=DSUM(B1:B11,B1,Criteria)

You should get the result of 45, which is the sum of cells B3 to B11. B1 and
B2 are ignored, even though they are included in the range, as shown in
Figure 6-9.

If the data you want to sum will likely contain a variety of different kinds of
errors, you might need to consider using the DSUM function with a wide range
of criteria to accommodate the possible errors. However, it is always best to
address the error at the source and eliminate it whenever possible rather
than work around it.

Figure 6-9. Using the DSUM function to ignore a number of different errors

Reduce the Impact of Volatile Functions on Recalculation #80

Chapter 6, Hacking Formulas and Functions | 205

HACK

Excel has a rich set of database functions, and you can use any one of them
in the same way. Consider using the same method for DCOUNT, DCOUNTA, DMAX,
DMIN, DPRODUCT, etc.

H A C K

#80
Reduce the Impact of Volatile Functions on
Recalculation Hack #80

Volatile functions, which must be recalculated almost every time the user
performs an action in Excel, can waste an enormous amount of time.
Although volatile functions are too useful to discard entirely, there are ways
to reduce the delays they create.

A volatile function is simply a function that will recalculate each time any
action is performed in Excel, such as entering data, changing column
widths, etc. (One of the few actions that will not trigger a recalculation of a
volatile function is changing a cell’s formatting, unless you do this via Paste
Special... ➝ Formats.)

Probably the most well-known of all volatile functions are the TODAY and the
NOW functions. Because the TODAY function returns the current date, and the
NOW function returns the current date and time, it is vital that both of them
recalculate often. If you have a worksheet that contains many volatile func-
tions, however, you could be forcing Excel to perform many unnecessary
recalculations on a continuous basis. This problem can worsen when you
have volatile functions nested within nonvolatile functions, as the formula as
a whole will become volatile.

To see what we mean, assume you have a worksheet that is using the TODAY
function in a 20-column-by-500-row table. This will mean you have 10,000
volatile functions in your workbook when a single one could accomplish the
same job.

Rather than nesting 10,000 TODAY functions within each cell of your table, in
most cases you can simply enter the TODAY function into an out-of-the-way
cell, name it TodaysDate (or just use the cell identifier) or another applicable
name, and then reference TodaysDate in all your functions.

A quick and easy way to do this is to select the entire table
and then select Find & Select ➝ Replace….. under Editing
options on the Home tab (pre-2007, go to Edit ➝ Replace...)
and replace TODAY() with TodaysDate in all your formulas.

You will now have one TODAY function in place of the 10,000 you would have
had otherwise.

206 | Chapter 6, Hacking Formulas and Functions

#81 Count Only One Instance of Each Entry in a List
HACK

As another example, say the first 500 rows of column B are filled with a rela-
tive formula such as =TODAY()-A1, and the first 500 rows of column A have
different dates that are less than today’s date. You are forcing Excel to recal-
culate the volatile TODAY function 499 times more than necessary each time
you do something in Excel! By placing the TODAY function in any cell and nam-
ing the cell TodaysDate (or something similar), you can use = TodaysDate-A1.
Now Excel needs to recalculate only the one occurrence of the TODAY func-
tion, resulting in a much lower performance hit.

H A C K

#81
Count Only One Instance of Each Entry in a List Hack #81

When you have a large list of items, you might want to perform a count on
the items without counting entries that appear multiple times. With this hack,
you can count each unique entry only once.

There are a few different ways to make this hack work, depending on which
version of Excel you’re using and how you want to go about it. First we dis-
cuss a method for pre-2007 versions of Excel, followed by an alternative that
works in Excel 2007 as well as older versions, and finally a method that uses
a pivot table.

Before Excel 2007
Consider the list in Figure 6-10, which has been sorted so that you can see
multiple entries easily.

Figure 6-10. Range of sorted names

Count Only One Instance of Each Entry in a List #81

Chapter 6, Hacking Formulas and Functions | 207

HACK

A normal count on this list (using COUNTA) would result in the names Bill W,
Dave H, Fran T, Frank W, and Mary O being counted more that once. The
DCOUNTA function offers an alternative that is very efficient and easy to
modify.

The syntax of the DCOUNTA function is as follows:

DCOUNTA(database,field,criteria),

The arguments for this function are the same as those for the
DSUM function described in “Convert Dates to Excel Format-
ted Dates” [Hack #78].

Building on the preceding list, in cell D1 enter the word Criteria (or any
heading that is not the same as the field or column heading). Below this, in
cell D2, enter this formula:

=COUNTIF(A2:A2,A2)=1

Note the combination of relative (A2) references and absolute (A2) refer-
ences! These are vital to the criteria working.

Now, in the cell where you want your result shown, enter this function:

=DCOUNTA(A1:A100,1,D1:D2)

This will use the criteria to exclude duplicates and give you the result you
need, which is 11, as there are 11 unique names.

Excel 2007
If you tried the previous steps in Excel 2007, you would get the answer of 2,
which is incorrect. Try this, which also works in pre-2007 versions.

In any cell to the right of your list, place the following array formula:

 =SUM(1/COUNTIF(A2:A17,A2:A17))

Press Ctrl-Shift-Enter to enter this formula as an array. This will return the
correct results from the range A2:A17.

Using a Pivot Table
To use a pivot table to glean the same results, select Insert ➝ Pivot Table and
drag the word Names down to the row labels area (this is called Data Items
in older versions). This will produce a list of unique names from the list.
You could then use a formula like this:

=COUNTA(A3:A15)-2

208 | Chapter 6, Hacking Formulas and Functions

#82 Sum Every Second, Third, or Nth Row or Cell
HACK

The -2 takes care of the two labels that the pivot table
produces.

You could also drag the Names field to the Values area of the Pivot Table
Field list, thereby creating a count of the names in the range A2:A17.

H A C K

#82
Sum Every Second, Third, or Nth Row or Cell Hack #82

Every now and then you might want to sum every second, third, fourth, etc,
cell in a spreadsheet. Now you can, with the following hack.

Excel has no standard function that will sum every nth cell or row. How-
ever, you can accomplish this in a number of different ways. All these
approaches use the ROW function and the MOD function.

The ROW function returns the row number of a single cell reference:

ROW(reference)

The MOD function returns the remainder after number is divided by divisor:

MOD(number,divisor)

Nest the ROW function within the MOD function (to supply the number argu-
ment), divide it by 2 (to sum every second cell), and check to see whether
the result is 0 (zero). If it is, the cell is summed.

You can use these functions in numerous ways—some of them producing
better results than others.

Using an Array Formula
You could use an array formula to SUM every second cell in the range
A1:A10; for example:

=SUM(IF(MOD(ROW(A1:A10),2)=0,A1:A10,0))

Because this is an array formula, you must enter it by pressing Ctrl-Shift-
Enter. Excel will add the curly brackets so that it looks like this:

{=SUM(IF(MOD(ROW(A1:A10),2)=0,A1:A10,0))}

You must let Excel add the curly brackets, as adding them
yourself will cause the array formula to fail.

Although this will do the job, it is not good spreadsheet design to use this
method. It is an unnecessary use of an array formula. To make matters
worse, it has the volatile ROW function nested within it, making the whole

Sum Every Second, Third, or Nth Row or Cell #82

Chapter 6, Hacking Formulas and Functions | 209

HACK

array formula volatile. This means the formula would constantly recalculate
whenever you are working in the workbook. This is a bad way to go!

Using SUMPRODUCT
Here’s another formula you can use, which is a slightly better choice:

=SUMPRODUCT((MOD(ROW(A1:A10),2)=0)*(A1:A10))

You should, however, be aware that this formula will return #VALUE! if any
cells in the range contain text rather than numbers. This formula, although
not a true array, also will slow down Excel if too many instances of it are
used, or if those instances reference a large range.

Fortunately, there is a much better way that is not only more efficient, but
also far more flexible.

Using DSUM
Using the DSUM function is perhaps the best choice. For this example, we
used the range A1:A10 as the range for which we need to sum every nth cell.

Enter the word Criteria in cell E1. In cell E2, enter this formula:

=MOD(ROW(A2)-C2,C2)=0

Select cell C2 and then select Data ➝ Data Tools ➝ Data Validation (pre-
2007, Data ➝ Validation). Select List from the Allow: box, and in the
Source: box, type: 2,3,4,5,6,7,8,9,10. Ensure that the In-Cell drop-down
box is checked and click OK.

Using the MOD function will omit row 1, hence the validation
list starts from 2.

In cell C1, enter SUM every.... In any cell after row 1, enter this formula:

=DSUM($A:$A,1,E1:E2)

In the cell directly above where you entered the DSUM function, enter this:

 ="Summing Every " & C2 &
CHOOSE(C2,"st","nd","rd","th","th","th","th","th","th","th") & " Cell"

Now all you need to do is choose the desired number from cell C2 and the
DSUM function will do the rest.

As you can see from Figure 6-11, you can use one DSUM function to sum each
cell at the interval you specify. The DSUM function is a far more efficient
formula than an array formula or the SUMPRODUCT function. Although setup
can take a little more time, it’s really a case of a little pain for a lot of gain.

210 | Chapter 6, Hacking Formulas and Functions

#83 Find the Nth Occurrence of a Value
HACK

H A C K

#83
Find the Nth Occurrence of a Value Hack #83

Excel’s built-in lookup functions can do some pretty clever stuff, but
unfortunately Excel has no single function that will return the nth occurrence
of specified data. Fortunately, there are ways to make Excel do this.

You can use Excel’s lookup and reference functions on a table of data to
extract details corresponding to a specified value. Perhaps the most popular
of these Excel functions is VLOOKUP. Although VLOOKUP is great for finding a
specified value in the leftmost column of a table, you cannot use it to find
the nth occurrence in the leftmost column.

You can, however, use a very simple method to find any specified occur-
rence you choose when using VLOOKUP, or one of the other lookup functions.

For this example, we will assume you have a two-column table of data, with
column A housing first names and column B their corresponding ages, as
shown in Figure 6-12.

You can use a VLOOKUP function to extract a person’s age based on his name.
Unfortunately, some names occur more than once. You want to be able to
look up the name Dave and have the VLOOKUP function find not the first
occurrence, but rather, subsequent occurrences of the name. Here is how
you can do this (remember, in this example, data is in columns A and B).

First, select column A in its entirety by clicking the letter A at the column
head. Then, right-click and select Insert to insert a blank column (which will
become column A). Click in cell A2 (skipping A1 because B1 is a heading),
and enter this formula:

=B2&COUNTIF(B2:B2,B2)

Copy this down as many rows as you have data in column B (click back in
cell A2 and double-click the fill handle). You will end up with names such as
Dave1, Dave2, Dave3, etc., as shown in Figure 6-13. Note the absolute refer-
ence to B2 in the COUNTIF function and the use of a relative reference for
all references. This is vital to the function working correctly.

Figure 6-11. Possible end result with formatting

Find the Nth Occurrence of a Value #83

Chapter 6, Hacking Formulas and Functions | 211

HACK

If you haven’t guessed already, now you can use column A as the column to
find the nth occurrence of any name.

Click in cell D2 and enter in the following formula:

=VLOOKUP("Dave3",A1:C100,3,FALSE)

Figure 6-12. Data setup for VLOOKUP

Figure 6-13. Data with VLOOKUP formula added to column A

212 | Chapter 6, Hacking Formulas and Functions

#84 Make the Excel Subtotal Function Dynamic
HACK

The formula will return the age for the third occurrence of the name Dave,
as shown in Figure 6-14.

You can, of course, hide column A from view, as you do not need to see it.

You also can use the names in column A as the Source range for a list in
another cell by selecting Data ➝ Data Tools (pre-2007, Data ➝ Validation ➝

List). Then reference the cell housing this list in your VLOOKUP function.

H A C K

#84
Make the Excel Subtotal Function Dynamic Hack #84

Although SUBTOTAL is one of Excel’s most convenient functions, you
sometimes want to choose the function it uses, or apply it to data that can
expand and contract.

You use the SUBTOTAL function in Excel to perform a specified function on a
range of cells that have had AutoFilters applied to them. When the AutoFilter
has been applied, the SUBTOTAL function will use only the visible cells; all hid-
den rows are ignored. The operation it performs depends solely on the num-
ber (between 1 and 11) that you supply to its first argument, Function_num.
For example:

=SUBTOTAL(1,A1:A100)

Figure 6-14. Data with second VLOOKUP formula added to column D

Make the Excel Subtotal Function Dynamic #84

Chapter 6, Hacking Formulas and Functions | 213

HACK

will average all visible cells in the range A1:A100 after AutoFilters have been
applied. If all rows in A1:A100 are visible, it will simply average them all and
give the same result as:

=AVERAGE(A1:A100)

The number for the first SUBTOTAL argument, Function_num, and its corre-
sponding functions are as shown in Table 6-1.

Because you need to use only a number between 1 and 11, you can have one
SUBTOTAL function perform whatever function you choose. You even can
choose from a drop-down list that resides in any cell. Here is how to do this.

Add all the function names, in the same order as in Table 6-1, to a range of
cells. For this example, we will use D1:D11. With this range selected, click
the Name box (the white box on the left of the Formula bar) and type the
name Subs. Then click Enter.

Select column D in its entirety and then right-click and select Hide. Now,
select Developer ➝ Controls ➝ Insert ➝ Form Controls (pre-2007, View ➝

Toolbars ➝ Forms), click the ComboBox control, and then click cell C2.

Use the size handles to size the ComboBox so that it can display the longest
function name—i.e., AVERAGE.

To have your ComboBox automatically snap to the size of
the column and row it resides in, hold down your Alt key at
the same time as you size the ComboBox.

Table 6-1. SUBTOTAL function numbers and their corresponding functions

Function_Num Function

1 AVERAGE

2 COUNT

3 COUNTA

4 MAX

5 MIN

6 PRODUCT

7 STDEV

8 STDEVP

9 SUM

10 VAR

11 VARP

214 | Chapter 6, Hacking Formulas and Functions

#85 Add Date Extensions
HACK

Right-click the ComboBox and choose Format Control, then the Control
tab. In the Input range, type Subs. In the Cell-Link box, type C2. Now
change the drop-down lines to 11. In cell G1, enter this formula:

=IF(C2="","","Result of "&INDEX(Subs,C2))

In cell G2, enter this formula:

=IF(C2="","",SUBTOTAL(C2,A4:A100))

where A4:A100 is the range on which the SUBTOTAL should act.

Now all you need to do is select the required SUBTOTAL function from the
ComboBox and the correct result will be displayed, as shown in Figure 6-15.

H A C K

#85
Add Date Extensions Hack #85

Excel’s date formats consist of many different formats that you can use to
display a date. However, one format that has always been lacking in Excel—
and still does not exist—is the ability to display a date as 15th October 2007.
You can make Excel do this if you need it.

The use of the “th” after the digits 15 is the one format Excel does not have.
To make matters even worse, as far as we are aware, it is not possible to set a
custom format to display the date in this manner. Although most people
simply accept that this is not possible, here is a way you can accomplish it.

On a clean worksheet, starting in cell A1, make the following entries: A1=st,
A2=nd, A3=rd, A4:A20=th, A21=st, A22=nd, A23=rd, A24:A30=th,
A31=st.

Name this range Extensions and then right-click and select Name a Range
(pre-2007, users Insert ➝ Name ➝ Define), and in the Names in Workbook:
box, type MyToday. In the “Refers to”: box, enter the following formula:

=TEXT(TODAY(),"dddd d")&INDEX(Extensions,DAY(TODAY()),1) & TEXT(TODAY(),"
mmmm yyyy")

Click Add, then OK.

Figure 6-15. An adjustable SUBTOTAL

Convert Numbers with the Negative Sign on the Right to Excel Numbers #86

Chapter 6, Hacking Formulas and Functions | 215

HACK

Now, in any cell, simply enter =MyToday, and the current date always will dis-
play with the format Thursday 16th October 2007, or whatever date it hap-
pens to be.

If you would rather not use cells on a worksheet to store date extensions (th,
st, rd, nd), you can use the CHOOSE function to house them. To do this, right-
click, go to Names in Workbook (pre-2007, Insert ➝ Name ➝ Define), and
enter the word TheDay in the Names in Workbook: box.

In the “Refers to:” box, enter this formula:

=THEDAY(TODAY())

Click OK. Right-click again, go back to the Names in Workbook: box and
enter the word MyToday2.

In the “Refers to:” box, enter the following formula, and click Add:

=TEXT(TODAY(),"dddd
d")&IF(TheDay=31,"st",IF(TheDay=30,"th",CHOOSE(TheDay,"st","nd","rd","th",
"th","th","th","th","th","th","th","th","th","th","th","th","th","th","th",
"th","st","nd","rd","th","th","th","th","th","th")))&TEXT(TODAY()," mmmm
yyyy").

After you click OK, you can enter =MyToday2 into any cell in which you want
to display this format of date.

The date returned by the use of either of these functions will
not be a true numeric date as far as Excel is concerned; it will
simply be a text entry, meaning you will not be able to refer-
ence the cell housing it in any formula that expects numeric
data.

H A C K

#86
Convert Numbers with the Negative Sign on the
Right to Excel Numbers Hack #86

Have you ever had to work with imported negative numbers that have the
negative sign on the right? SAP is one such program that does this with
negative numbers—e.g., 200- instead of -200. Changing these by hand so
that Excel understands them can be a hassle, but it doesn’t need to be.

Say you have a long list of numbers you just imported and some of them are
those so-called negative numbers. Your job is to convert these to valid nega-
tives that Excel will recognize. For the purposes of this exercise, you will use
the range A1:A100. In cell B1, enter this formula:

=SUBSTITUTE(IF(RIGHT(TRIM(A1))="-",RIGHT(TRIM(A1))&A1,A1),"-","",2)+0

Enter this as many cells down the column as needed and then copy them
and select cell A1. Right-click and select Paste Special… ➝ Values to remove

216 | Chapter 6, Hacking Formulas and Functions

#86 Convert Numbers with the Negative Sign on the Right to Excel Numbers
HACK

the formula and retain the values only. Figure 6-16 shows a before-and-after
example (A1:A7 represents before).

To give you an idea of how the formula works, enter the following formula
in any cell where A1 has the text 200-:

=RIGHT(TRIM(A1),1)&A1

You will end up with -200-.

The TRIM function simply ensures that there are no space characters in the
cell. As you end up with -200-, you need to remove the second occurrence of
the negative sign. This is what the SUBSTITUTE function is doing. You told it
to substitute the second occurrence of - with "" (empty text). The result
returned is actually text (as that is what the SUBSTITUTE function returns), so
you simply use +0, and Excel will convert it to a number.

If you need to do this frequently, you should consider a macro to make the
job easier. Here is one that will do the task at hand. It has been optimized
for speed:

Sub ConvertMirrorNegatives()
Dim rCell As Range
Dim rRange As Range
Dim lCount As Long
Dim lLoop As Long

'Ensure they have the data selected and display a message if they _
 don't, then exit the macro.
If Selection.Cells.Count = 1 Then
 MsgBox "Please select the range to convert", vbInformation
 Exit Sub
End If

'Set a variable to ONLY text cells, e.g., 200-
On Error Resume Next
Set rRange = Selection.SpecialCells(xlCellTypeConstants, xlTextValues)

'If our variable returns Nothing, there are no incorrect negatives _
 so display a message, then exit the macro

Figure 6-16. Before and after moving the negative sign

Display Negative Time Values #87

Chapter 6, Hacking Formulas and Functions | 217

HACK

If rRange Is Nothing Then
 MsgBox "No mirror negatives found", vbInformation
 On Error GoTo 0
 Exit Sub
End If

'Count just how many cells are like 200- and pass this number _
 to a variable to control how many loops are needed.
lCount = WorksheetFunction.CountIf(Selection, "*-")
'Set a variable to the first cell in the selection
Set rCell = Selection.Cells(1, 1)

 'Loop only as many times as there are incorrect negatives
 For lLoop = 1 To lCount
 'At each loop set a variable to the cell housing *-
 'The asterisk is a wildcard character
 Set rCell = rRange.Find(What:="*-", After:=rCell, _
 LookIn:=xlValues, LookAt:=xlPart, _
 SearchOrder:=xlByRows, SearchDirection:= _
 xlNext, MatchCase:=False)
 'Use the standard Replace feature to replace the negative sign _
 with nothing. In other words, we remove it.
 rCell.Replace What:="-", Replacement:=""
 'Multiply the cell by -1 to convert it to a negative number
 rCell = rCell * -1
 Next lLoop

On Error GoTo 0
End Sub

To use this macro, press Alt/Option-F11 or right-click the sheet tab and
select View Code (pre-2007, go to Tools ➝ Macro ➝ Visual Basic Editor).
Now, select Insert ➝ Module and paste in the preceding code. Close the
window to return to Excel, save your workbook, press Alt-F8, and then
select ConvertMirrorNegatives. Click Options and assign a shortcut key.
Now when you have to convert those imported negatives to true negatives
that Excel will recognize, simply select the figures and use your shortcut key.

H A C K

#87
Display Negative Time Values Hack #87

Sometimes you want to display negative time values, but Excel will only
display ######. There are several ways to escape this problem.

If you enter the time 12:00:00 (midday) into any cell and then format it as
General, you will see that it has a numeric value of 0.5. Similarly, enter the
time 24:00:00 in any cell. Look in the Formula bar and you will see that
Excel shows 1/1/1900 12:00:00 AM.

Excel sees dates and times as nothing more than numbers. In the case of a
date, by default Excel considers 1 January 1900 to have a numeric value of

218 | Chapter 6, Hacking Formulas and Functions

#87 Display Negative Time Values
HACK

1; 2 January 1900 a numeric value of 2; and so forth. Times are seen as deci-
mals, with the exception of midnight, which has a numeric value of 1 (see
“Hack Excel’s Date and Time Features” [Hack #39] for full details). Because of
this, Excel has real trouble coping with the notion of negative time.

Here are three methods to get Excel to display negative time values.

Method 1: Changing Excel’s Default Date System
One quick and easy way to display negative values is to simply press the
Office button, go to Advanced (pre-2007, Tools ➝ Options ➝ Calculation;
on the Mac, Excel ➝ Preferences... ➝ Calculation), and check the “Use 1904
date system” checkbox. Enter 5:00:00 AM in cell A2. In cell A3, enter 6:00:00
AM. In cell A4, type =A2-A3.

You will get the result of -1:00, but only if you checked the 1904 date sys-
tem checkbox as described.

The 1904 date system is also called Macintosh dates and
times.

Now you will be able to subtract times from each other and have the result
displayed as a negative time value.

Be aware that doing this will cause Excel to change the start-
ing dates from which all cells are calculated from 1 January
1900 to 2 January 1904. Changing this option will affect
only the workbook in which you make the change.

If changing Excel’s default date system to the 1904 date system is likely to
cause problems within the workbook for other time calculations, you need
to use another method that will change the appearance of a cell housing a
negative value.

Method 2: Using the TEXT Function
The second method requires the use of the TEXT function. To begin, enter
5:00:00 AM in cell A2. In cell A3, enter 6:00:00 AM. In cell A4, type the
following:

=TEXT(MAX(A2:A3)-MIN(A2:A3),"-H::MM")

With this nested formula, you are subtracting A3 from A2 to give a positive
time value. Then you are formatting the cell using the TEXT function so that
it shows a negative time. Using the combination of the MAX and MIN functions
ensures that you are always subtracting the earlier time from the later time.

Use the VLOOKUP Function Across Multiple Tables #88

Chapter 6, Hacking Formulas and Functions | 219

HACK

You need to be aware that the result returned is actually a
text value, not a numeric value, in case you intend to use the
result in another formula.

Method 3: Using a Custom Format
One final way you can display negative times, without changing to the 1904
date system and still returning a true numeric value, is to select Home ➝

Cells ➝ Format Cells tab, or right-click and go to Format Cells (pre-2007,
Format ➝ Cells). Select the Custom option under Category and use a Cus-
tom format of -h:mm.

This method works only if you always want a negative time value displayed.
It also requires that you always subtract the earlier time from the later time.
This means all times returned really will be positive and will only appear
negative.

So, by using any one of these three methods, you will be able to display neg-
ative times. Just remember that there are pitfalls to each of them, so always
use them with these pitfalls in mind.

H A C K

#88
Use the VLOOKUP Function Across Multiple Tables Hack #88

Although VLOOKUP itself is very handy, it is restricted to looking in a
specified table to return a result, which sometimes is not enough. You can
escape this limitation with the INDIRECT function.

Sometimes you might need to use a single VLOOKUP formula to look in differ-
ent tables of data in a spreadsheet. One way in which you can do this is to
nest several VLOOKUP functions together, telling them to look into a specified
table depending on a number that you enter into another cell. For instance:

=IF(A1=1,VLOOKUP(B1,Table1,2,FALSE),IF(A1=2,VLOOKUP(B1,Table2,2,FALSE),""))

In this formula, you tell the VLOOKUP function to look in the named range
Table1 if A1 contains the number 1 (IF(A1=1, VLOOKUP(B1,Table1,2,FALSE)),
and to look in the named range Table2 if A1 contains the number 2
(IF(A1=2,VLOOKUP(B1,Table2,2,FALSE)).

As you can imagine, the formula will become very large and unwieldy if you
use more than two nested IF functions. The following formula, for instance,
uses only five nested functions, but it is very daunting!

=IF(A1=1,VLOOKUP(B1,Table1,2,FALSE),IF(A1=2,VLOOKUP(B1,Table2,2,FALSE),
IF(A1=3,VLOOKUP(B1,Table2,3,FALSE),IF(A1=4,VLOOKUP(B1,Table4,2,FALSE),
IF(A1=5,VLOOKUP(B1,Table5,2,FALSE),"")))))

220 | Chapter 6, Hacking Formulas and Functions

#88 Use the VLOOKUP Function Across Multiple Tables
HACK

Although the formula will return the desired results, you can make the for-
mula a lot shorter, add more than five conditions, and end up with a for-
mula that is very easy to manage.

Assume you have 12 different tables set up on a spreadsheet, each represent-
ing a different month of the year. Each table is two columns wide and con-
tains the names of five employees and five corresponding amounts. Each
table has been named according to the month that it represents—i.e., Janu-
ary’s data has a named range of January, February’s data has a named range
of February, and so on, as shown in Figure 6-17.

Once your data tables are set up, follow these steps:

1. Select cell A1.

2. Select Data ➝ Data Tools ➝ Data Validation (pre-2007, Data ➝

Validation).

3. Ensure you are on the Settings tab, and select List from the Allow: box.

4. In the Source: box, type each month of the year, separating each with a
comma.

Figure 6-17. Twelve tables, each representing a month of the year

Show Total Time As Days, Hours, and Minutes #89

Chapter 6, Hacking Formulas and Functions | 221

HACK

5. It is vital that your named ranges for each table are the same as the
month names you used in the validation list. Click OK.

6. Select cell B1 and set up a validation list as explained earlier, this time
using the names of each employee (if the employee names are too large
to type, simply reference a range of cells containing them for the
source). Click OK.

7. In cell A2, enter this formula:
=VLOOKUP(B1,INDIRECT(A1),2,FALSE)

At this point, if you select the required month from the list in cell A1 and the
required employee name from the list in cell B1, then the formula in cell A2
will return the corresponding amount for that person for that month.

There are a few advantages to using this approach. If you are
not familiar with the INDIRECT function, it is used to read the
contents of a cell as a range address rather than as text. As
you named 12 different ranges, each representing a month of
the year, the formula using the INDIRECT function reads the
word January as a range reference rather than as a text
string.

If you use a pre-2007 version of Excel, another advantage to
using a formula with the INDIRECT function is that you can
escape Excel’s restriction of having only seven levels of
nested functions.

H A C K

#89
Show Total Time As Days, Hours, and Minutes Hack #89

When you add hours in Excel, you can have the result return as total hours
and minutes, but unfortunately, not as days, hours, and minutes. Displaying
that will take some extra work.

For example, if the total time was equal to 75 hours, 45 minutes, and 00 sec-
onds, the total generally would be displayed as 75:45:00, proving the result
cell is custom-formatted as [h]:mm:ss, which then allows for hours greater
than 24. Although this is certainly the correct result, it means you must
manually calculate how many days, hours, and minutes the total represents.
This can be time-consuming and error-prone.

Assume you have a list of valid times in cells A1:A10. In cell A11, you
have a regular SUM function that is summing up the total hours—i.e.,
=SUM(A1:A10). If the total of this sum is to exceed 24 hours, the result
cell housing the SUM function should be formatted as [h]:mm. Assume the
result of this total is 306:26:00, which, of course, represents 306 hours
and 26 minutes. However, this does not tell you how many days/hours/
minutes this total represents.

222 | Chapter 6, Hacking Formulas and Functions

#90 Determine the Number of Specified Days in Any Month
HACK

To have the result shown in days, hours, and minutes, use this formula:

=INT(A11) &" Days " & INT(MOD(A11,INT(A11))*24) & " Hours and " &
MINUTE(A11) & " Minutes"

Provided that cell A11 has the value of 306:26:00, the result of this formula
is 12 days, 18 hours, and 26 minutes.

Let’s look at how this works. If you are not familiar with how Excel stores
and uses dates and time, you should first read and understand “Hack
Excel’s Date and Time Features” [Hack #39].

Select the formula result cell and then click the fx sign to the left of the For-
mula bar (pre-2007 and Mac, click the equals sign). Click the first occur-
rence of INT from the Formula bar. This function will return the whole
number 12 from the value 12.76805556. This is how many days there are.

Next you need to determine how many hours remain after taking off 12
days. Click the second INT function from the Formula bar. Here you are
using MOD(A11,INT(A11)) to return the remainder of 12.76805556 divided by
12, which is 0.76805556 (the number of minutes represented as a decimal
number). Now you need to multiply that by 24 (which is 18.433333) to
return a number that will represent the minutes. As you want only the whole
number (18), we have nested the formula MOD(A11,INT(A11))*24 into the INT
function.

Click the MINUTE function from within the Formula bar. The function will
return 26 from the serial number 12.76805556.

As the result returned from the MINUTE function will never be a numeric
value, it is wise to at least keep the original SUM function, which returns the
total as hours in a cell, so that it can be referenced and used in further calcu-
lations if needed. The row that houses the total as hours can, of course, be
hidden.

H A C K

#90
Determine the Number of Specified Days in Any
Month Hack #90

When you’re creating calendar-related applications, especially payroll
applications, you sometimes need to know how many times a given day of
the week appears in a particular month.

Although Excel has many date and time functions, at the time of this writ-
ing, it does not have a date and time function that will, for example, tell you
how many Mondays are in the month of January in the year 2007. You
could use a very deeply nested set of Excel’s date and time functions to fig-
ure this out, but unfortunately, as you can imagine, this would be very cum-
bersome and awkward to reproduce.

Determine the Number of Specified Days in Any Month #90

Chapter 6, Hacking Formulas and Functions | 223

HACK

This is a case in which VBA can simplify a complicated task. Instead of fum-
bling with complex functions, you can write a custom function that will do
the same thing, and all you need to do is input the day and date for which
you want a count.

You can use the following function to determine how many days are in any
specified month. For example:

=HowManyDaysInMonth("1/12/07","wed")

will return 4, as there were four Wednesdays in the month of December in
2007. (Note that the date format should match your local settings—12/1/07
in the United States, for instance. The date format in the example is from
Australia.)

Similarly, the following function:

=HowManyDaysInMonth("1/12/07","thu")

will return 4, as there were four Thursdays in the month of December in
2007.

To use this custom function in a workbook, you must first place the follow-
ing code into a standard module, so open the workbook into which you
want to place the code and press Alt/Option-F11, or else right-click on the
Sheet tab and select View Code (pre-2007, Tools ➝ Macro ➝ Visual Basic
Editor). Then select Insert ➝ Module and paste in the following code:

'The Code
Function HowManyDaysInMonth(FullDate As String, sDay As String) As Integer
Dim i As Integer
Dim iDay As Integer, iMatchDay As Integer
Dim iDaysInMonth As Integer
Dim FullDateNew As Date

iMatchDay = Weekday(FullDate)
 Select Case UCase(sDay)
 Case "SUN"
 iDay = 1
 Case "MON"
 iDay = 2
 Case "TUE"
 iDay = 3
 Case "WED"
 iDay = 4
 Case "THU"
 iDay = 5
 Case "FRI"
 iDay = 6
 Case "SAT"
 iDay = 7
 End Select

224 | Chapter 6, Hacking Formulas and Functions

#91 Construct Mega-Formulas
HACK

 iDaysInMonth = Day(DateAdd("d", -1, DateSerial _
 (Year(FullDate), Month(FullDate) + 1, 1)))
 FullDateNew = DateSerial(Year(FullDate), Month(FullDate), iDaysInMonth)
 For i = iDaysInMonth - 1 To 0 Step -1
 If Weekday(FullDateNew - i) = iDay Then
 HowManyDaysInMonth = HowManyDaysInMonth + 1
 End If
 Next i
End Function

Close the window to return to Excel, then save your workbook.

Now simply enter the function into any cell as shown earlier, and Excel will
return a number that represents how many times the specified day occurred
in the specified month.

H A C K

#91
Construct Mega-Formulas Hack #91

Mega-formulas—a formula within a formula, within a formula—are enough
to send even the most seasoned Excel veteran running for the hills. With a
little forethought and by working step by step toward the formula you need,
however, you can tame those complex mega-formulas without fear.

Does the very thought of having to make sense of, let alone construct,
nested formulas fill you with dread? Some of those cells, so chock-full of
complex functional gobbledygook, make us feel a little faint too. But with a
little forethought and a step-by-step approach, you’ll be creating mega-for-
mulas without fear. And maybe, just maybe, you’ll even be able to read and
understand them again later.

The trick is to build up your formulas, bit by bit, using Excel’s standard
functions. Use one function per cell, obtaining individually manageable
results, and then nest them together to yield the result you need. Here’s an
example of such a process in action.

Say you’ve been given a long list of people’s names, each consisting of first,
middle, and last names—one full name per cell. Your job is to write a for-
mula in the adjacent column to extract only the person’s last name.

What you’re after, then, is the start of the last name—the third word—in
the cell. Actually, what you’ll be looking for is the position of the second
space character in the cell. Excel has no standard built-in function to auto-
matically locate the second space character in a cell, but you can bring the
FIND function to bear in such a way that it does what you need it to do.

Type the name David John Hawley (or any three-word name) into cell A1. In
cell C1, enter this function:

=FIND(" ",A1)

Construct Mega-Formulas #91

Chapter 6, Hacking Formulas and Functions | 225

HACK

The FIND function finds one text string (find_text) within another text string
(within_text), and returns the number of the starting position of find_text
from the first character of within_text.

Here is the syntax:

=find(find_text, within_text, start_num)

This will find the starting position of the first space character in cell A1 as
you have told it to find " " (a space) in cell A1. In the case of David John
Hawley, it will return a value of 6. But it’s the second space you’re after, not
the first. What you’ll do is use the number returned by the formula in C1 as
the starting point for another FIND function in search for the second space
character. So, in cell C2, enter the following:

=FIND(" ",A1,C1+1)

Notice you’ve passed the FIND function a third argument this time, the ini-
tial position found by C1 (6, in this example), plus 1; this will serve as the
starting point for the FIND function to find a space. The value returned will
be the position of the second space character.

With that in hand, you want the next function to grab all characters thereaf-
ter until the end of the string of text. Use the MID function, which is designed
to extract a range of characters from a string. In cell C3, enter the following:

=MID(A1,C2+1,256)

The MID function returns a specific number of characters from a text string,
starting at the position you specify, based on the number of characters you
specify. Here is its syntax:

MID(text, start_num, num_chars)

This tells the MID function to extract 256 characters from cell A1, starting
with the first character after the second space in the string of text. You used
256 simply to ensure that regardless of the length (assuming it’s less than
256 characters), you get the person’s entire last name.

With all the parts in hand, it’s time to build out the whole thing: a nested
formula you’d have cringed at just a few minutes ago. Basically, you simply
replace all cell references (except A1) within the functions with the formula
in those cells. You do this via the use of cut and paste working within the
Formula bar.

Click cell C2, and in the Formula bar, highlight the function and copy the
entire FIND function except for the =, like this:

FIND(" ",A1,C1+1)

226 | Chapter 6, Hacking Formulas and Functions

#92 Hack Mega-Formulas that Reference Other Workbooks
HACK

Press Enter to leave the cell, which will place you into cell C3. With cell C3
selected, in the Formula bar, highlight the reference to cell C2 and paste the
FIND function (Ctrl-V) that you just copied in its place. Press Enter. Your
function in cell C3 should now be as follows:

=MID(A1,FIND(" ",A1,C1+1)+1,256)

Now you need to replace the reference to cell C1 with the function that
resides in cell C1. Select cell C1, highlight the formula from the Formula
bar, omitting the =, click Copy, then press Enter twice to get back to cell C3.
While in cell C3, highlight C1 in the Formula bar and paste the FIND func-
tion you just copied. Press Enter.

Now all you need to do is cut cell C3 and paste it into cell B1, then delete
the formulas left over in cells C1 and C2. You should now end up with a
final formula like this:

=MID(A1,FIND(" ",A1,FIND(" ",A1)+1)+1,256)

Following this concept, you should be able to see how you can build mega-
formulas using a variety of Excel’s functions. All you need to do is first plan
a way that you will achieve it and then use individual cells to obtain the
results needed. Finally, replace all cell references with the functions that are
housed within them.

In pre-2007 versions, if you have more than seven levels of
nested functions, you’ll also want to use the INDIRECT func-
tion, described in “Display Negative Time Values” [Hack #87].

Excel 2007 allows up to 64 levels of nested functions.

H A C K

#92
Hack Mega-Formulas that Reference Other
Workbooks Hack #92

Excel formulas get pretty complicated when a mega-formula references
another workbook. Not only do you need to include cell references, but also
you must include workbook names or sheet names, and even the full path if
the referenced workbook is closed. There are several ways to simplify what
can be a complex process.

Writing such formulas from scratch can become unwieldy quickly. In this
hack, we will show you a quick and easy way that enables you to construct
these formulas without the need for workbook names and file paths. The
method is so simple it is often overlooked.

Let’s first ensure that you use the correct means to reference cells and work-
sheets. When writing a formula, it is always a good idea to never type cell
references, sheet names, or workbook names because this can introduce

Hack One of Excel’s Database Functions to Take the Place of Many Functions #93

Chapter 6, Hacking Formulas and Functions | 227

HACK

incorrect syntax and/or typos. Most people at an intermediate level should
be using only their mouse pointer to reference cells, sheets, and workbooks.
This certainly goes a long way toward preventing syntax errors and typos,
but if you have ever done this with a nested function, you know the formula
quickly becomes unwieldy and is very difficult to follow.

For instance, take a look at this formula:

=INT(SUM('C:\Ozgrid Likom\Finance\SoftwareSales\[Regnow.xls]Product
Sales'!C2:C2924))

It is a pretty straightforward SUM function nested with the INT function. As it
references cells from a closed workbook, the entire path is included along
with the cell references, worksheet name, and workbook name. However, if
you need to nest some additional functions within this one, it will soon
become very difficult to write.

Here is a quick way to write mega functions that reference external work-
books. The trick is to simply write the function in the workbook that you
will be referencing in any spare cell. If you are going to be referencing only
one worksheet in this workbook, it is best to use a cell on this worksheet.

First, using the method shown in “Determine the Number of Specified Days
in Any Month” [Hack #90] that explained an easy way to nest functions, sim-
ply develop the formula in any spare cell in the workbook that it will end up
referencing. Once you have the desired result, cut the formula from the cell,
activate the workbook in which the result should reside, select the appropri-
ate cell, and paste.

Excel does all the hard work for you by including the workbook names and
any sheet names. When/if you need to add or modify the formula, simply
open the referenced workbook, cut the formula from the original work-
book, and paste it into the referenced workbook. Then make your changes
and cut and paste back to where it came from.

H A C K

#93
Hack One of Excel’s Database Functions to Take the
Place of Many Functions Hack #93

Excel’s database functions (e.g., DSUM, DCOUNT) can take the place of
potentially thousands of functions, thereby reducing both recalculation time
and workbook space.

When using Excel’s database functions, you can specify many different crite-
ria. You might, for example, want to sum amounts in column A where the
corresponding amount in column B is greater than 100 and the correspond-
ing value in column C is less than 40. If, however, you want to sum amounts
where corresponding values in column B are less than 50, you need to use

228 | Chapter 6, Hacking Formulas and Functions

#93 Hack One of Excel’s Database Functions to Take the Place of Many Functions
HACK

another function and a different range of criteria. It would be much easier if
you had a single function and could easily and quickly change the criteria! If
you have never used Excel’s database functions before, we strongly recom-
mend that you familiarize yourself with them, as they are very good for
extracting statistical information from an Excel database or table.

To see how this works, set up your data as shown in Figure 6-18. Keep the
column headings the same, but the data that resides in it can be any ficti-
tious data. Name this table of data, including all column headings, AllData.
Name the sheet Data.

Insert another worksheet and call this worksheet Results. In cell A2, enter
the following formula:

=Data!A1

Copy this across to cell F2 so that you have a mirror image of your table
headings. In cell A3, enter any name that exists in your table on the data
sheet, such as John D. Then, in cell B3, enter the following formula:

=DGET(AllData,B2,A2:A3)

Copy this formula across to cell F3 and format cells C3:F3 in the required
format.

To quickly copy cells such as this without formatting, select
the cell, right-click the fill handle, and drag across as far as
needed while holding down the right mouse button. Then
select Fill Without Formatting.

Figure 6-18. Proposed data

Hack One of Excel’s Database Functions to Take the Place of Many Functions #93

Chapter 6, Hacking Formulas and Functions | 229

HACK

The corresponding data should be extracted out of the table for the name
you entered into cell A3. This is just a simple example of how you can use
the DGET function to extract relevant information.

If you get the #NUM! error, it means you have two or more
identical names in your Name column.

At this point, most people would follow the same concept for all names for
which they need information extracted from the table. However, this effort
is unnecessary.

As you are always referencing cell A3 for the name, it would make a lot more
sense in most cases if you could simply have a drop-down list in cell A3 con-
taining all the names that are in the table. You can use Excel’s standard vali-
dation feature to create such a list. However, as the original list of names
resides on another worksheet, you cannot reference the list in the same way
as you would a list residing on the same sheet—i.e., a standard range refer-
ence. You can overcome this easily by naming the Name column in the origi-
nal table, then using that name as the list source for the validation.

As most tables are not static—in other words, data is usu-
ally continuously added and removed—you should consider
using a dynamic named range for the Names column. See
“Create Ranges That Expand and Contract” [Hack #47] for
more details on this.

Click back onto the Data sheet and, with any cell selected, select Formulas
➝ Defined Names ➝ Define Name (pre-2007, Insert ➝ Name ➝ Define). In
the Names: box, enter Names. In the Refers To: box, type the following for-
mula, and click Add:

=OFFSET(A2,0,0,COUNTA(A2:A1000),1)

Click the Results worksheet, select cell A3, and then select Data ➝ Data
Tools ➝ Data Validation (pre-2007, Data ➝ Validation). Select List from the
Allow: box, and in the Source: box, type the following:

=Names

Ensure that the In-Cell drop-down checkbox is checked and then click OK.
Now you can select any name from the list in cell A3, and your data to the
right will display the appropriate information automatically.

230 | Chapter 6, Hacking Formulas and Functions

#93 Hack One of Excel’s Database Functions to Take the Place of Many Functions
HACK

Using DCOUNT to Filter on Two Criteria
You can take this to another level and use the DCOUNT function to extract a
count of people that have a full cost greater than a number you specify, and
a percent paid less than a number you specify.

To do this, first you need to create a dynamic named range for both the Full
Cost column and the Percent Paid column. Click back on the Data sheet and
go to the Formulas tab. Select Defined Names ➝ Define Name (pre-2007,
Insert ➝ Name ➝ Define) and enter FullCost in the Names: box. In the
Refers To: box, type the following formula, and click OK:

=OFFSET(C2,0,0,COUNTA(C2:C1000),1)

Repeat for the Percent Paid column by going back to the Define Name dia-
log and in the Names: box entering PercentPaid. In the Refers To: box, type
the following formula and click OK:

=OFFSET(E2,0,0,COUNTA(E2:E1000),1)

Activate the Results sheet, select cell A11, and then select Data ➝ Data Tools
➝ Data Validation (pre-2007, Data ➝ Validation). Select List from the Allow:
box and enter =FullCost in the Source: box. Click OK.

Select cell B11, and then select Data ➝ Data Tools ➝ Data Validation (pre-
2007, Data ➝ Validation). Select List from the Allow: box and enter
=PercentPaid in the Source: box. Click OK.

In cell A12, enter the following:

=Data!C1

Select cell B12, and enter the following:

=Data!E1

Select cell A13, and enter the following:

=">"&A11

Select cell B13, and enter the following:

="<"&TEXT(B11,"0%")

In cell A15, enter the following:

=DCOUNT(AllData,A12,A12:B13)

Select any Full Cost amount from cell A11 and any percent paid amount
from cell B11, and the DCOUNT function will give you a count of all the peo-
ple who meet those criteria. For instance, if you select 65 and 100 percent,
you will be extracting a count of people that have a Full Cost greater than 65
and a Percent Paid less than 100.

Hack One of Excel’s Database Functions to Take the Place of Many Functions #93

Chapter 6, Hacking Formulas and Functions | 231

HACK

As you can see, you can use this one DCOUNT function to extract any combina-
tion of criteria for the Full Cost and Percent Paid columns. With a little
more work, you can take this to yet another level and make the comparison
operators used in the criteria interchangeable.

Making the Comparison Operators Interchangeable
To make the comparison operators used in the criteria interchangeable, fol-
low these steps:

1. First, create a list of comparison operators that you can use in a valida-
tion list. Scroll across to an out-of-the-way column on the Results sheet,
and on any row in that column, enter the heading Operators.

2. Below the heading and moving down one cell at a time, enter =, >=, >, <,
and <=, as shown in Figure 6-19.

3. To name this range, select the heading and all operators below it and
then select Formulas ➝ Defined Names ➝ Create from Selection (pre-
2007, Insert ➝ Name ➝ Create).

4. Ensure that Top Row Only is selected, and click OK. Excel automati-
cally will name the range based on the heading— in this case,
Operators.

5. Select cell G7 and enter the heading Select a Criteria.

6. With cells G7 and H7 selected, center this across by right-clicking and
selecting Format Cells, clicking the Alignment tab, and from the Hori-
zontal Text Alignment box, selecting Center Across Selection.

7. Select cells G8 and H8, select Data ➝ Data Tools ➝ Data Validation
(pre-2007, Data ➝ Validation).

8. Select List from the Allow: box.

9. In the Source: box, type =Operators.

10. Ensure that the In-Cell drop-down box is checked and click OK.

11. Click back on the Data sheet and select Formulas ➝ Defined Names ➝

Define name.

Figure 6-19. Comparison operators

232 | Chapter 6, Hacking Formulas and Functions

#93 Hack One of Excel’s Database Functions to Take the Place of Many Functions
HACK

12. In the Names: box, type Dates.

13. In the Refers To: box, type the following formula and click OK:
=OFFSET(B2,0,0,COUNTA(B2:B1000),1)

14. Select cell G7, copy it, and paste it into cell G9.

15. Change the word Criteria to Date.

16. Select cells G10:H10 and then select Data ➝ Data Tools ➝ Data Valida-
tion (pre-2007, Data ➝ Validation).

17. Select List from the Allow: box.

18. In the Source: box, enter =Dates.

19. Ensure that the In-Cell drop-down box is checked and click OK.

20. Select cell G11, and enter the following:
=Data!B1

21. Copy that formula across to cell H11.

22. Select cell G12, enter the following formula, and copy it across to cell
H12:

=G8&TEXT(G10,"dd/mm/yy")

You should use the date format applicable to your particular
region.

23. In cell F13, enter the word Result and center it across the selection, with
F13 and G13 selected.

24. In cell H13, enter the following function:
=DSUM(AllData,Data!C1,G11:H12)

The end result should look like Figure 6-20, which, for the sake of demon-
stration, has all formulas displayed.

Figure 6-20. Worksheet showing correct formulas and headings

Extract Specified Words from a Text String #94

Chapter 6, Hacking Formulas and Functions | 233

HACK

At this point you can hide rows 11 and 12, as you do not need to see them.
You will end up with a simple-to-use table that looks like Figure 6-21, which
has had formatting applied for ease of reading.

By using this principle, you can easily have either one or a few database
functions doing the work of what usually would require hundreds.

For a working example of this exercise, as well as similar examples, visit
http://www.ozgrid.com/download/default.htm and click the heading DFunc-
tionsWithValidation.zip.

H A C K

#94
Extract Specified Words from a Text String Hack #94

Even though Excel is not specifically designed for text, you still might often
have many words as data in your spreadsheets. Excel has a powerful and
useful Text formula/function that we can use to extract words from a string of
words or, put another way, parse out specific words from a text string of
words.

In this hack, we’ll show how to extract the last word, the first word, and the
nth word from a string of text.

Getting the Last Word
To return the last word in a string of text, try this. In cell A2, type in the text
Our main business focus is Excel spreadsheets. Now, click in cell B2 and
type the following function:

=MID(SUBSTITUTE(A2," ","^",LEN(A2)-LEN(SUBSTITUTE(A2,"
",""))),FIND("^",SUBSTITUTE(A2," ","^",LEN(A2)-LEN(SUBSTITUTE(A2,"
",""))))+1,256)

This formula uses a combination of the MID function (to return a specific
number of characters from a text string, starting at the position you specify,
based on the number of characters you specify), the SUBSTITUTE function (to
replace specific text in a text string), and the LEN function (to return the
actual number of characters in the text string) to get the result,
spreadsheets, in cell B2.

Figure 6-21. Worksheet with final interface

http://www.ozgrid.com/download/default.htm

234 | Chapter 6, Hacking Formulas and Functions

#95 Count Words in a Cell or Range of Cells
HACK

Note the use of ^. This is used to replace the necessary space
character of the text string in A2. If your text includes ^, then
choose another character that is not part of the text string.

Getting the First Word
If you want to return the first word from a text string, still using the text Our
main business focus is Excel spreadsheets in cell A2, enter in the following
function in cell B3:

=LEFT(A2,FIND(" ",A2)-1)

This formula will display the word Our in cell B3, by using a combination of
the LEFT function (to return the first character or characters in a text string,
based on the number of characters you specify) and the FIND function to
locate one text string within a second text string, and return the number of
the starting position of the first text string from the first character of the sec-
ond text string.

Get the Nth Word
To take this a step further, you can use a formula to extract the exact word
that you want from a text string. We will extract the fourth word. Again
using the previous example, click in cell B3 and enter in the following
formula:

=MID(MID(MID(SUBSTITUTE(A2," ","^",3),1,256),FIND("^",SUBSTITUTE(A2,"
","^",3)),256),2,FIND(" ",MID(MID(SUBSTITUTE(A2,"
","^",3),1,256),FIND("^",SUBSTITUTE(A2," ","^",3)),256))-2)

This last one can seem a bit overwhelming. The four occurrences of the
number 3 determine that we parse out the fourth word. In other words, to
get the fifth word, all occurrences of the number 3 would need to be
changed to the number 4. If we wanted the second word, we would change
all occurrences of the number 3 to the number 1.

This formula should display the word is in cell B3.

H A C K

#95
Count Words in a Cell or Range of Cells Hack #95

Unlike the Word Count feature in Microsoft Word, Excel does not give us a
readymade way to find out the number of words in a cell or a range of cells
containing text. However, with the help of the SUBSTITUTE function/formula
and the LEN function/formula we can easily work this out.

To get a word count of any cell or range of cells, we’ll use a combination of
SUBSTITUTE and LEN function/formulas.

Count Words in a Cell or Range of Cells #95

Chapter 6, Hacking Formulas and Functions | 235

HACK

SUBSTITUTE
The SUBSTITUTE function is used to replace specific text in a text string with a
different string of text. The syntax for the SUBSTITUTE function is as follows:

=SUBSTITUTE(text,old_text,new_text,instance_num)

where new_text replaces old_text in a text string.

To see it in action, type the text Sales Data in cell A1. In cell B1, type the fol-
lowing function:

=SUBSTITUTE(A1, "Sales", "Cost")

Cell B1 will display the result Cost Data, replacing the old text, Sales, with
the new text, Cost.

LEN
The LEN function is used to return the number of characters in a text string.
The syntax for LEN is:

=LEN(text)

To see how this works, we will continue with the previous example, with
the words Sales Data in cell A1. In cell B2, enter the following function:

=LEN(A1)

You will get the result of 10, because the text entry Sales Data in cell A1 has
nine text characters and one space contained in it.

Putting It Together
Now, to find out the number of words in the cell, we can use a combination
of the LEN and SUBSTITUTE functions.

Again, using the previous example, with the text Sales Data in cell A1, click
in cell B3 and enter the following function:

=LEN(A1)-LEN(SUBSTITUTE(A1," ",""))+1

The LEN function will return the number of characters within the text Sales
Data (10) and the SUBSTITUTE function substitutes the spaces between words
with nonspaces, and so would return 9. The number of spaces (0) will
always be 1 less than the number of words. The use of +1 takes care of this.
Using this function will display the result of 2, because there are two words
in cell A1.

236 | Chapter 6, Hacking Formulas and Functions

#96 Return a Worksheet Name to a Cell
HACK

Hacking the Hack
Be aware that, when using the previous method, superfluous spaces are also
counted and may give misleading results. To ensure accuracy, we can sim-
ply nest the TRIM function/formula in the first LEN.

To take this a step further, if you had text entries in a range of cells, you
could use a combination of the LEN, TRIM, SUBSTITUTE, and ROWS functions to
work this out. In cells F1:F5 place a mixture of text entries, with differing
amounts of words in the cells, as in Figure 6-22.

In cell G2, enter the following formula:

=LEN(TRIM(F1&F2&F3&F4&F5))-LEN(SUBSTITUTE(F1&F2&F3&F4&F5," ",""))+ROWS(F1:F5)

Using the previous example, this nested function will return 23, because
there are 23 words in the range F1:F5. Again, the LEN function will return the
number of characters within the text, the SUBSTITUE function substitutes
spaces between words with nonspaces, and the ROW function returns the
number of the row in a specified range. Using the TRIM function nested
within the LEN function ensures all spaces are removed from our text except
for single spaces between words.

H A C K

#96
Return a Worksheet Name to a Cell Hack #96

Sometimes, you might want to use a worksheet name in a cell as a variable
and also use that worksheet name in a formula. This would enable you to
switch worksheet names and have one single formula able to return results
from all worksheets.

This hack shows how you can display the entire path of your worksheet in a
cell using the CELL function. Then, a combination of the MID and FIND func-
tions extracts only the worksheet name from the full pathname, allowing
you to use it in formulas.

Create a List of Worksheet Names
Creating a list of worksheet names is relatively easy using the CELL function/
formula. In any existing saved workbook already loaded with data, create a

Figure 6-22. Spreadsheet showing LEN, TRIM, SUBSTITUTE, and ROWS functions

Return a Worksheet Name to a Cell #96

Chapter 6, Hacking Formulas and Functions | 237

HACK

new worksheet named Worksheets, and add the heading Names to A1. Now,
in cell A2 enter the following formula:

=CELL("filename",Sheet1!A1)

where Sheet1 is the name of the first worksheet in your workbook (exclud-
ing the one we just added and named Worksheets).

This formula will return the file path, workbook name, and worksheet
name. We will pull out what we need (the worksheet name) soon.

Now, copy this formula down as many rows as you have worksheets.
Change each occurrence of Sheet1 to the names of your other worksheets.
Leave !A1 as is.

We referenced A1 (can be any cell) on each specific sheet, so that our CELL
formulas/functions change when/if the worksheet name changes. Also, if no
worksheet is specified (e.g., =CELL("filename",A1)), the worksheet name will
always be the current active worksheet. This will be an issue when we refer-
ence the list from another worksheet, because the CELL function will return
the worksheet name of the worksheet housing the formula unless a cell ref-
erence is supplied.

Extract Worksheet Names Only
Now we have found out what the file and path of our worksheet is we can
extract the actual worksheet name.

In B2, enter the following formula:

="'"&MID(A2,FIND("]",A2)+1,256)&"'!"

In the previous example, this formula returns ''Sheet1''!.

Note the use of the two single apostrophes in the result. This allows for
worksheet names that have spaces in their name. It’s unnecessary for work-
sheet names without spaces, but it doesn’t do any harm to cover your
bases—that is, should you change the worksheet name to include a space.

Copy the previous formula down to reference all the data in Column A. In
B1, enter the heading Worksheet Names. Highlight/select B1 down until the
last formula row in Column B. Now, select Formulas ➝ Defined Names ➝

Create from Selection (pre-2007, Insert ➝ Name ➝ Create). Ensure only Top
Row is checked and click OK. Excel will create the named range Worksheet_
Names, omitting cell B1.

Use the List in Formulas
Add another new worksheet, named Formulas, to use for the formulas we
will add. Let’s say you are doing a VLOOKUP and/or SUM on a worksheet (any

238 | Chapter 6, Hacking Formulas and Functions

#96 Return a Worksheet Name to a Cell
HACK

worksheet except the one housing the formulas and worksheet names) and
you need variable worksheet names. Select A1 (any cell) and go to Data ➝

Data Options ➝ Data Validation (pre-2007, Data ➝ Validation). Select List
from the Allow: box, type =Worksheet_Names in the Source: box, and click
OK. With this cell still selected, click in the Name Box (left of formula bar),
type SheetNames, and press Enter.

Now, add the following VLOOKUP and INDIRECT function in cell A4:

=VLOOKUP("Sales",INDIRECT(SheetNames&"A1:G7"),2,FALSE)

Make sure you have chosen a worksheet name from the list
in the named range SheetNames.

In cell A7, enter the following SUM and INDIRECT function:

=SUM(INDIRECT(SheetNames&"B1:B7"))

Make the Range Address Variable
You might want to make the range references in the formulas variable,
depending on which worksheet is chosen from your list in the named range
SheetNames.

Go back to the Worksheets worksheet you added, and enter the name Range
in C1. In C2 downward, add range references that you want to correspond
to each worksheet name. For example, A1:G7 might correspond to Sheet1 in
B2 and so would go in C2, G9:M15 might correspond to Sheet2 in B3 and
so would go in C3, and so on, as shown in Figure 6-23.

You can use range names in place of cell addresses.

Select C1 and highlight down until the last formula row in Column C. Now,
select Formulas ➝ Defined Names ➝ Create from Selection (pre-2007, Insert
➝ Name ➝ Create). Ensure that only Top Row is checked and click OK.
Excel will create the named range Range, omitting C1. Select B1:C<last row>

Figure 6-23. Spreadsheet showing names, worksheet names, and ranges

Sum Cells with Multiple Criteria #97

Chapter 6, Hacking Formulas and Functions | 239

HACK

(don’t start from A1), click in the Name Box (left of formula bar), type
MyTable, and press Enter.

Come back to the worksheet (Formulas) you added the range name
SheetNames to, and delete the formulas you created in cells A4 and A7.

In the cell next to this (B1), add the following formula:

=VLOOKUP(SheetNames,MyTable,2,FALSE)

Click back in this formula cell, and name it RangeLook. Use the two formulas
that follow in place of the previous VLOOKUP and SUM formulas.

In cell A4 type the following formula:

=VLOOKUP("Sales",INDIRECT(SheetNames&RangeLook),2,FALSE)

In cell A7, type the following formula:

=SUM(INDIRECT(SheetNames&RangeLook))

Now, depending on which worksheet is selected from your list in the named
range SheetNames, the corresponding range on the worksheet selected will be
displayed in cell B1, and therefore the displayed range will be used in the
calculations in A4 and A7.

Should you wish, you can use Data Validation to list the range name =Range
and change ranges at will.

H A C K

#97
Sum Cells with Multiple Criteria Hack #97

The most efficient method to sum cells based on multiple criteria is to use a
PivotTable. However, if you are not familiar with PivotTables (check out
Chapter 4 to see how they can make your spreadsheet life much easier), or
your data is not set up in a contiguous list (which is required to create a
PivotTable), as an alternative you could use either of these three methods to
get the same results.

There are many times you might need to sum cells based on multiple crite-
ria. If you are not already aware, the Excel SUMIF formula/function can only
check to see if specified cells meet one condition. This means that if we wish
to sum multiple criteria, we will need to use another method.

SUMIF
Let’s first have a look at how the SUMIF function works to meet one condi-
tion. Here’s the syntax for the SUMIF function:

=SUMIF(range,criteria,sum_range)

Let’s say you have a spreadsheet with two columns of numbers in cells A1:
A10 and B1:B10. Click in cell C1 and enter in the following formula:

=SUMIF(A1:A10,">20",B1:B10)

240 | Chapter 6, Hacking Formulas and Functions

#97 Sum Cells with Multiple Criteria
HACK

In this example, the range to be examined is A1:A10. The criterion used is
>20 (greater than 20) and the sum_range is B1:B10. So, using this method
will sum all numeric cells in the range B1:B20 for which the corresponding
row in A1:A10 is greater than 20.

If you omit the last optional argument (sum_range) the SUMIF function sums
all cells in the range A1:A10 that are greater than 20. Click in cell D1 and
enter in the following formula:

=SUMIF(A1:A10,">20")

The criteria argument is in the form of a number, expres-
sion, or text that defines which cells will be summed. For
example, criteria can be expressed as 20, "20", "=20", ">20",
"North", or "N*".

So, if you need to sum a range of cells where corresponding cells (on the
same row) meet two or more conditions, you can no longer use SUMIF.
Instead, you can use, in order of their efficiency:

1. DSUM

2. SUMPRODUCT

3. SUM with an IF function nested and entered as an array formula

DSUM
For these examples, we have used the named range DataTable, which refers
to the range A2:E25 in Figure 6-24.

DSUM adds the numbers in a column of a list, or database, that match criteria
you specify. For example, the following formula sums all cells in B2:B25 that
meet the criteria in the named range Criteria, as shown in Figure 6-25:

=DSUM(DataTable,B2,Criteria)

The top row of the Criteria range has exact copies of the headings in the
DataTable range. The reference to cell B2 tells the DSUM formula to sum the
numbers in B2:B25 that meet the criteria. We could replace the reference to
B2 with the text Quantity or the number 2, because the Quantity column is
the second column in the table.

The criteria text Bourbon and Vodka, under the criteria table heading
Description, tells DSUM that either Bourbon or Vodka is a match. The same
principle is used for Alcohol Content—i.e., High or Low. The DSUM formula
sees this as an OR condition.

Sum Cells with Multiple Criteria #97

Chapter 6, Hacking Formulas and Functions | 241

HACK

Note the repetition of the date under Use By Date. This is necessary when
using more than two rows, because DSUM sees a blank cell as a wildcard char-
acter and could throw out erroneous results. If we wanted to sum only data
that lies between two dates, we would need have two Use By Date headings
in our Criteria range and use >7-Apr-2007 below one of these headings and
<7-Jun-2007 under another. DSUM sees this as an AND condition.

Figure 6-24. DataTable named range

Figure 6-25. Criteria named range

242 | Chapter 6, Hacking Formulas and Functions

#97 Sum Cells with Multiple Criteria
HACK

SUMPRODUCT
An alternative to DSUM would be to use the SUMPRODUCT function. This func-
tion multiplies corresponding values in the given ranges and returns the sum
of those products.

As with the first DSUM example, this formula sums all Quantity values for
which the corresponding Use By Date is greater than 7-Apr-2007, the
Description is either Vodka or Bourbon, and the Alcohol Content is High or
Low:

=SUMPRODUCT((A3:A25="Vodka")*(C3:C25>VALUE("7-Apr-2007"))*(E3:
E25="High")*(B3:B25))+SUMPRODUCT((A3:A25="Bourbon")*(C3:C25>VALUE("7-Apr-
2007"))*(E3:E25="Low")*(B3:B25))

Note how the range for each column of the table starts at row 3 and not row
2. This is because SUMPRODUCT returns the result of each criteria check as TRUE
(has a value of 1) or FALSE (has a value of 0). So, in the first row check (if we
used row 2), the formula would look like this:

=SUMPRODUCT((0)*(0)*(0)*("Quantity"))+SUMPRODUCT((0)*(0)*(0)*("Quantity"))

The result of multiplying a text string is always an error. This formula would
cause the result of the SUMPRODUCT to return #VALUE!

SUM and IF
Now try this one. The following formula does the same thing as the preced-
ing two examples. However, this is an array formula and must be entered by
pressing Ctrl-Shift-Enter:

=SUM(IF(A2:A25="Bourbon",IF(C2:C25>VALUE("7-Apr-2007"),IF(E2:E25="Low",B2:
B25)))+SUM(IF(A2:A25="Vodka",IF(C2:C25>VALUE("7-Apr-2007"),IF(E2:
E25="High",B2:B25)))))

You must enter array formulas by pressing Ctrl-Shift-Enter.
Excel will add curly brackets at the start and end of your for-
mula. If you try to insert them yourself, your array formula
will not work correctly.

It is important to know that using SUM and IF or SUMPRODUCT over a large
number of cells will cause a noticeable slowdown in Excel’s recalculation
time.

The DSUM is far more efficient in this regard and, as mentioned at the begin-
ning of this hack, a pivot table would be even more efficient, and take up
virtually no recalculation time at all. Pivot tables require your data to be set
up in a certain way (no gaps, field names highlighted in some way).

Count Cells with Multiple Criteria #98

Chapter 6, Hacking Formulas and Functions | 243

HACK

However, if your data is not set up in a list, or you are unfamiliar with pivot
tables, or can’t get your head around them, these are great alternatives.

H A C K

#98
Count Cells with Multiple Criteria Hack #98

PivotTables are ideal for counting cells with multiple criteria (check out
Chapter 4 to see how powerful and easy to use they can be), but if
PivotTables aren’t your thing, or your data is not set up in the format a
PivotTable requires, here are a two alternatives, the second more efficient
than the first.

Counting cells with multiple criteria can also be achieved in a few different
ways. Let’s start with array formulas, which are the least efficient but the
easiest to do.

Array Formulas
Excel array formulas are powerful and useful formulas that allow more com-
plex calculations than standard formulas. You can tell an array formula at a
glance because it is encased in braces ({}). The one drawback is that they
take up more memory than traditional formulas. Excel’s Help defines them
like this:

An array formula can perform multiple calculations and then return either a
single result or multiple results. Array formulas act on two or more sets of
values known as array arguments.

Before we look at a few examples of array formulas, we need to bear in mind
three fundamentally important rules:

• Each argument within an array must have the same number of rows
and/or columns.

• You cannot add the braces ({}) that surround an array yourself; press-
ing the key combination of Ctrl-Shift-Enter will do this for you.

• You cannot use an array formula on an entire column.

Let’s assume you have a set of data, set up as shown in Figure 6-26.

You have data in columns A:D down to row 20, with the first row of all col-
umns a heading. Column A is Name, B is Age, C is Male/Female (M/F), and D
is Wage.

Let’s say you want to count the occurrences of people with the name Dave,
who are older than 20, male, and earn more than $500. Click in cell F2 and
enter the following formula:

=SUM(((A2:A20="Dave")*(B2:B20>20)*(C2:C20="M")*(D2:D20>500)))

244 | Chapter 6, Hacking Formulas and Functions

#98 Count Cells with Multiple Criteria
HACK

Press Ctrl-Shift-Enter to enter as an array formula. You should get the result
of 3, because there are three people named Dave in the list that are older
than 20, male, and earn more than $500.

Now, let’s say you want to count the number of people who are between 21
and 29 years old and who have a wage between $301 and $399.

You can use a formula like this:

=SUM((B2:B20>20)*(B2:B20<30)*(D2:D20>300)*(D2:D20<400))

Again, remember to press Ctrl-Shift-Enter to enter as an
array formula.

You should get a result of 2, because there are two people between 21 and
29 years old who have a wage between $301 and $399.

Figure 6-26. Data set

Count Cells with Multiple Criteria #98

Chapter 6, Hacking Formulas and Functions | 245

HACK

Although these examples use the SUM function, the results are counted and
not summed. This is because the SUM function sums the results of the multi-
plication of TRUE (has a value of 1) and FALSE (has a value of 0). So, any row
that has a FALSE value will result in the value of 0. Since including 0 in the
multiplication always yields a result of 0, one FALSE means a result of 0. If all
are TRUE, then the formula ends up being SUM(1*1*1*1), which of course
always equals 1.

SUMPRODUCT
The more efficient way to gain the same result is by using the SUMPRODUCT
function. It uses the same principle described in the previous section for
arrays, but you do not need to enter SUMPRODUCT via Ctrl-Shift-Enter.

Using the same criteria we used for the previous array formula, let’s again
count the occurrences of people with the name Dave, who are older than 20,
male, and earn more than $500.

Click in an empty cell and enter the following formula:

=SUMPRODUCT((A2:A100="Dave")*(B2:B100>20)*(C2:C100="M")*(D2:D100>500))

And again you will get the result of 3.

To find the number of people between 21 and 29 years old, with a wage
between $301 and $399, use this formula:

=SUMPRODUCT((B2:B100>20)*(B2:B100<30)*(D2:D100>300)*(D2:D100<400))

And you will again get the result of 2.

To use the same data to sum values based on multiple criteria, you can use
the SUM function with the IF function nested within it. Since we have mean-
ingful numbers only in column D (Wage), this will be the column we sum.

The criteria we will use to sum values in column D will be the occurrences of
people with the name Dave who are older than 20, male, and earn more
than $200 and less than $400. Click in any cell and enter the following
formula:

=SUM(IF(A2:A100="Dave",IF(B2:B100>20,IF(C2:C100="M",IF(D2:D100>200,IF(D2:
D100<400,D2:D100))))))

Again, you can use SUMPRODUCT to do the same thing like this:

=SUMPRODUCT((A2:A100="Dave")*(B2:B100>20)*(C2:C100="M")*(D2:D100>200)*(D2:
D100<400)*(D2:D100))

Using the SUMPRODUCT function is more efficient.

246 | Chapter 6, Hacking Formulas and Functions

#99 Calculate a Sliding Tax Scale
HACK

H A C K

#99
Calculate a Sliding Tax Scale Hack #99

Here are four solutions for the difficult problem of calculating tax payable or
commission earned on a sliding scale.

Trying to calculate tax payable or commission earned on a sliding scale can
be quite complicated. This hack provides four ways to make the process a
little easier. The first uses the IF function/formula and the SUM function/for-
mula and the second uses a Vlookup function to derive results. The last two
alternatives use custom functions.

The formula for the custom function uses named ranges to
make the formula easier to read and modify if necessary.

Using IF/SUM
The first approach we will look at uses a combination of the IF and SUM
functions. To make the hack easier to read and understand, Figure 6-27
shows a table with cell names next to their named cells. The formula that
follows will use only the grey cells in the table. The columns to the left of the
grey columns merely provide descriptions of those cells.

Each cell in column F (Taxable Amount) is the result of subtracting the tax
scale in column B from the previous tax scale above. For example, the
$13,000.00 total in row 15 (Level1TaxAmount) is derived by subtracting
Level2Tax in row 16 ($25,000) from Level1Tax in row 15 ($12,000). That is:

=Level2Tax-Level1Tax

Here’s the formula used in cell B3 and copied down to B11 to work out tax
payable:

Important Warning
The overuse of either array formulas or SUMPRODUCT with multiple criteria will
result in a dramatic slowdown in Excel’s calculation and recalculation. Basi-
cally, it comes down to the total number of cells being used in the arrays
and/or SUMPRODUCTs.

If you are going to be counting or summing a large number of cells, we would
advise strongly to use the appropriate Dfunction (database function), which
are designed specifically for the job of using multiple criteria when you have
an overly large number of cells.

Calculate a Sliding Tax Scale #99

Chapter 6, Hacking Formulas and Functions | 247

HACK

=IF(A3>Level4Tax,SUM((A3-
Level4Tax)*Level4TaxRate,Level3TaxAmount*Level3TaxRate,Level2TaxAmount*Level
2TaxRate,Level1TaxAmount*Level1TaxRate),IF(A3>Level3Tax,SUM((A3-
Level3Tax)*Level3TaxRate,Level2TaxAmount*Level2TaxRate,Level1TaxAmount*Level
1TaxRate),IF(A3>Level2Tax,SUM((A3-
Level2Tax)*Level2TaxRate,Level1TaxAmount*Level1TaxRate),IF(A3>
Level1Tax,SUM((A3-Level1Tax)*Level1TaxRate),0))))

As we have done in this formula, if you prefer, the key numbers in your data
(such as the Scales in column B) can become named constants (a named con-
stant is a value that is given a user-friendly name) as opposed to named
ranges (a block of cells that is given a user-friendly name). For example, to
create the named constant Level1Tax, select Formulas ➝ Defined Names ➝

Define Name (pre-2007, Insert ➝ Name ➝ Define). Type Level1Tax in the
Name: box type and =12000 in the Refers to: box, and click OK.

The beauty of using a named constant is twofold: it makes your formulas
more friendly, and if you want to change the constant you only need to
change it in one place, rather than wherever it occurs throughout your
workbook.

Using a VLOOKUP Formula
There is another method you could use to get the same results: by using the
VLOOKUP function/formula. Some users, if they are familiar with VLOOKUP, may
find this method easier to maintain, because it doesn’t use as many nested
functions as the previous formula. However this method relies on precalcu-
lating quick deductions, shown in G14:G18 in Figure 6-28, and placing them
at the end of the white and grey table used in the previous section.

Figure 6-27. Table of information used to calculate sliding tax scale

248 | Chapter 6, Hacking Formulas and Functions

#99 Calculate a Sliding Tax Scale
HACK

In this table, we’ve placed the following VLOOKUP formula in cell G3 to calcu-
late the “Quick deductions.”

=A3*VLOOKUP(A3,B14:G18,3)-VLOOKUP(A3,B14:G18,6)

Next we create the actual function to work out the tax payable. We can go
one step further toward simplifying this function by using named formulas (a
named formula is a formula/function that has been given a user-friendly
name, which can be then be used to nest within other formulas or on its
own) for each tax level calculation. We have done this in the following
calculation.

Not only does this formula simplify the calculation, but
again, if you want to alter your named formula you only
need to change it in one area (i.e., the Name Manager).

Here is the formula used in cell B21 and below:

=IF(A1>Level4Tax,Level4TaxCalc,IF(A1>Level3Tax,Level3TaxCalc,IF(A1>
Level2Tax,Level2TaxCalc,IF(A1>Level1Tax,Level1TaxCalc,0))))

Here are the steps to create this function and the named formulas contained
within it. Create named ranges, or named constants that will hold the fig-
ures needed. Place your Gross pay in cell A1 and below.

Select cell B1 and go to Formulas ➝ Defined Names ➝ Name Manager
(pre-2007, Insert ➝ Name ➝ Define). Select New and in the Names: box
type Level1TaxCalc. Then, in the Refers to: box type =SUM((A1-
Level1Tax)*Level1TaxRate) and click OK.

Figure 6-28. Table of information showing quick deductions in G14:G18

Calculate a Sliding Tax Scale #99

Chapter 6, Hacking Formulas and Functions | 249

HACK

Note how we have referred to cell A1. This now makes the
named formula (Level1TaxCalc) always look on the same
row in the immediate column to the left for the gross pay.

We need to create three more named formulas. From the Name Manager, select
New and in the Names: box type Level2TaxCalc. Then, in the Refers to: box,
type =SUM((A1-Level2Tax)*Level2TaxRate,Level1TaxAmount*Level1TaxRate) and
click OK.

Select New, and In the Names: box type Level3TaxCalc Then, type =SUM((A1-
Level3Tax)*Level3TaxRate,Level2TaxAmount*Level2TaxRate,Level1TaxAmount
*Level1TaxRate) in the Refers to: box and click OK.

Finally, for the last time, again select New. In the Names: box type
Level4TaxCalc. Then, in the Refers to: box, type =SUM((A1-
Level4Tax)*Level4TaxRate,Level3TaxAmount*Level3TaxRate,Level2TaxAmount
*Level2TaxRate,Level1TaxAmount*Level1TaxRate). Click OK ➝ Close to close
the Name Manager.

Using a Custom Function
The two previous methods get their results from deeply nested formulas
using a combination of standard functions, named ranges, named constants
and named formulas. As an alternative, you could use either one of the fol-
lowing custom Excel functions—or user-defined functions (UDF)—that have
been written to calculate tax based on a sliding scale. The first one is based
entirely on the built-in method (shown first in this hack) and requires
named ranges, or constants. The second is more self-contained and requires
no named ranges or constants.

Method 1. The first UDF contains named ranges and named constants,
which house the information required to make the UDF work.

To insert the code, right-click on the sheet name and select View Code, or
press Alt-F11 (pre-2007, Tools ➝ Macro ➝ Visual Basic Editor), and then
select Insert ➝ Module and paste the following code:

Function TaxPayable(Amount As Currency) As Currency

Select Case Amount
 Case Is > Range("Level4Tax")
 TaxPayable = ((Amount - Range("Level4Tax")) * Range("Level4TaxRate")) + _
 Range("Level3TaxAmount") * Range("Level3TaxRate") + _
 Range("Level2TaxAmount") * Range("Level2TaxRate") + _
 Range("Level1TaxAmount") * Range("Level1TaxRate")

250 | Chapter 6, Hacking Formulas and Functions

#99 Calculate a Sliding Tax Scale
HACK

 Case Is > Range("Level3Tax")
 TaxPayable = ((Amount - Range("Level3Tax")) * Range("Level3TaxRate")) + _
 Range("Level2TaxAmount") * Range("Level2TaxRate") + _
 Range("Level1TaxAmount") * Range("Level1TaxRate")

 Case Is > Range("Level2Tax")
 TaxPayable = ((Amount - Range("Level2Tax")) * Range("Level2TaxRate")) + _
 Range("Level1TaxAmount") * Range("Level1TaxRate")

 Case Is > Range("LowTax")
 TaxPayable = ((Amount - Range("Level1Tax")) * Range("Level1TaxRate"))

 Case Else
 TaxPayable = 0
 End Select

End Function

Now click in any cell and type:

 =TaxPayable(A2)

Where TaxPayable is the name of the UDF and cell A2 contains the gross
amount that you want to work out the tax payable on.

Method 2. The second UDF contains its information hardcoded into the
UDF rather than relying on the information being contained in named
ranges or constants.

To insert the code, right-click on the sheet name and select View Code, or
press Alt-F11 (pre-2007, Tools ➝ Macro ➝ Visual Basic Editor), and then
select Insert ➝ Module and paste the following code:

Function Tax_Payable(Amount As Currency, L1_Tax As Currency, _
L1_Tax_Rate As Currency, L1_Taxable_Amount As Currency, _
Optional L2_Tax As Currency, Optional L2_Tax_Rate As Currency, _
Optional L2_Taxable_Amount As Currency, Optional L3_Tax As Currency, _
Optional L3_Tax_Rate As Currency, Optional L3_Taxable_Amount As Currency, _
Optional L4_Tax As Currency, Optional L4_Tax_Rate As Currency) As Currency

Select Case Amount
 Case Is > L4_Tax
 Tax_Payable = (Amount - L4_Tax) * L4_Tax_Rate + L3_Taxable_Amount * ↵
 L3_Tax_Rate + _
 L2_Taxable_Amount * L2_Tax_Rate + L1_Taxable_Amount * L1_Tax_Rate

 Case Is > L3_Tax
 Tax_Payable = (Amount - L3_Tax) * L3_Tax_Rate + L2_Taxable_Amount * ↵
L2_Tax_Rate + _
 L1_Taxable_Amount * L1_Tax_Rate

Add/Subtract Months from a Date #100

Chapter 6, Hacking Formulas and Functions | 251

HACK

 Case Is > L2_Tax
 Tax_Payable = (Amount - L2_Tax) * L2_Tax_Rate + L1_Taxable_Amount * ↵
L1_Tax_Rate

 Case Is > L1_Tax
 Tax_Payable = (Amount - L1_Tax) * L1_Tax_Rate

 Case Else
 Tax_Payable = 0
 End Select

End Function

Now click in any cell and type:

 =Tax_Payable(A2,12000,22%,13000,25000,30%,7000,32000,38%,13000,45000,45%)

Where Tax_Payable is the name of the UDF and cell A2 contains the gross
amount that you want to work out the tax payable on.

Armed with this information, you can use one of these four methods to cal-
culate tax payable or commission earned on a sliding scale.

H A C K

100
Add/Subtract Months from a Date Hack #100

Excel is well suited to work with dates, but adding and subtracting months
from specific dates can be a problem, since months have different numbers
of days. Thankfully, Excel provides a couple solutions to this problem.

It’s common to want to use Excel to add an arbitrary number of months to a
specific date. For example, if cell A1 houses the date 31-Aug-2007, you
might want to add (or subtract) one month to that date. Because not all
months have the same number of days, there will always be dispute over the
number of days to use to represent a month. This hack presents two ways
that take care of that problem.

EDATE
The first method we’ll use requires the EDATE function/formula, which is a
standard function in Excel 2007.

In previous versions of Excel, EDATE is a part of the Excel
Analysis Toolpak. To make sure the Analysis Toolpak is
installed, select Tools ➝ Add-ins and check Analysis
Toolpak).

252 | Chapter 6, Hacking Formulas and Functions

#100 Add/Subtract Months from a Date
HACK

Here’s how to can use the EDATE function to add one month to the date in
A1 (31-Aug-2007).

First, click in cell A1 and type in the date 31-Aug-2007. Then, click in B1 and
enter in the following formula:

=EDATE(A1,1)

This formula yields a result of 30-Sep-2007, rather than 31-Sep-2007,
because there are only 30 days in September.

To subtract month from the same date, you can use this formula:

=EDATE(A1,-1)

This yields the result 31-Jul-2007. This means that by using EDATE you are
adding or subtracting a calendar month to your date. This may or may not
be what you’d expect, depending on how many days you define a month as
having.

Without EDATE
The other method you could use will sometimes yield a result that’s differ-
ent from the result EDATE provides. Again, ensure you have the date 31-Aug-
2007 in cell A1. Click in B2 and enter in the following formula:

=DATE(YEAR(A1),MONTH(A1)+1,DAY(A1))

Using this formula returns the result of 1-Oct-2007, even though A1 houses
the date 31-Aug-2007, because of the syntax of the DATE function:

DATEDIF(Year,Month,Day)

This function contains the following variables:

Year
Microsoft Excel interprets the year argument according to the date sys-
tem you are using. By default, Excel for Windows uses the 1900 date
system; Excel for the Macintosh uses the 1904 date system. Our for-
mula has returned 2007.

Month
A positive or negative integer representing the month of the year from 1
to 12 (January to December). Our formula has returned September,
which is the month from cell A1, plus 1.

Day
A positive or negative integer representing the day of the month from 1
to 31. If Day is greater than the number of days in the month specified,
that number of days is added to the first day in the month. Our formula
has returned 31.

Find the Last Day of Any Given Month #101

Chapter 6, Hacking Formulas and Functions | 253

HACK

Because no date of 31 September 2007 exists, Excel has returned 1-Oct-
2007.

Remember, EDATE gave the result as 30-Sep-2007.

As you can see, there are differences between the two methods you can use
when adding or subtracting months from a date. Choose which one suits
your needs best but be aware both methods will not always yield the same
result. It depends on how you determine a “month.”

H A C K

101
Find the Last Day of Any Given Month Hack #101

Dates can tricky to work with, and finding the last day of a given month can
be a challenge.

Like adding or subtracting months from a specific date [Hack #100], another
common request Excel users have is to work out the last day of any given
month. This hack provides a few ways to do this. The first two use standard
formulas, the third uses a function contained in the Analysis Toolpak, and
the last one uses code.

Using Formulas
Let’s suppose A1 houses the date 23-Jun-2007 and you want to have Excel
reference this cell and return the date of the last day of June 2007. This fol-
lowing function returns 30-Jun-2007:

=DATE(YEAR(A1),MONTH(A1)+1,0)

This is because the function adds one month to the date in A1 (June
becomes July) and uses 0 for the day, which forces Excel to return the last
day of the previous month.

Or, you can hardcode the date as shown here:

=DATE(YEAR("22-Jun-2007"),MONTH("22-Jun-2007")+1,0)

Again you will get the result 30 June 2007.

Using EOMONTH
There is a slightly shorter method, but it requires the Analysis Toolpak. To
install it, select the Office button ➝ Excel Options ➝ Add-Ins, ensure that
the Manage box displays Excel Add-Ins, and press Go button (pre-2007,
select Tools ➝ Add-Ins and check Analysis Toolpak).

254 | Chapter 6, Hacking Formulas and Functions

#101 Find the Last Day of Any Given Month
HACK

Then, you can use the EOMONTH function as shown here:

=EOMONTH(A1,0)

EODATE returns the last serial number of the last day of the month before or
after a specified number of months, so in this case it will return 30 June
2007.

EODATE will only work if the Analysis Toolpak is installed on
your PC, so if you email a spreadsheet to someone who does
not have the Analysis Toolpak installed, EODATE will return
#NAME.

Using a Custom Function
The following custom function will return the last specified day of any given
month (for example, the last Monday of the month). To use it, right-click on
your sheet name and select View Code (or Alt-F11). Then, select Insert ➝

Module and paste the following code:

Function LastDayOfMonth(Which_Day As String, Which_Date As String) As Date
Dim i As Integer
Dim iDay As Integer
Dim iDaysInMonth As Integer
Dim FullDateNew As Date

Which_Date = CDate(Which_Date)

 Select Case UCase(Which_Day)
 Case "SUN"
 iDay = 1
 Case "MON"
 iDay = 2
 Case "TUE"
 iDay = 3
 Case "WED"
 iDay = 4
 Case "THU"
 iDay = 5
 Case "FRI"
 iDay = 6
 Case "SAT"
 iDay = 7
 End Select

 iDaysInMonth = Day(DateAdd("d", -1, DateSerial _
 (Year(Which_Date), Month(Which_Date) + 1, 1)))

 FullDateNew = DateSerial(Year(Which_Date), Month(Which_Date), iDaysInMonth)

 For i = 0 To iDaysInMonth

Calculate a Person’s Age #102

Chapter 6, Hacking Formulas and Functions | 255

HACK

 If Weekday(FullDateNew - i) = iDay Then
 LastDayOfMonth = FullDateNew - i
 Exit For
 End If
 Next i

End Function

Press the Close button to return to Excel proper, then save your workbook.

Then, click in cell C6 and enter the following formula:

=LastDayOfMonth(Which_Day,Which_Date)

where Which_Day is a text abbreviation of any day (e.g., Sat) and Which_Date
is a text representation of any valid date (e.g., 10-Oct-2007, 10-10-2007, etc).

For example, use the following formula to calculate the last Monday in
October 2007:

=LastDayOfMonth("Mon","10/10/2007")

This function will return 29-Oct-2007.

H A C K

102
Calculate a Person’s Age Hack #102

A little-known function can return the age of any person in years, months,
and days.

This nifty hack makes life a little easier for anyone who wants to calculate a
person’s exact age, and all it takes is the DATEDIF function.

Here’s the syntax:

DATEDIF(Start_Date,End_Date,Unit)

Valid Units are "M" (returns months), "D" (returns days), "Y" (returns years),
"YM" (returns number of months in year), "YD" (returns the number of days
in the year), and "MD" (returns the number of days in the month).

To use the function, click in cell A1 and type your birthday in a true Excel
date format. Then, click in cell B1 and enter the following formula:

=DATEDIF(A1,TODAY(),"Y") & " Years, " & DATEDIF(A5,TODAY(),"YM") & " Months,
" & DATEDIF(A1,TODAY(),"MD") & " Days"

If you had the date 31-Dec-65 in cell A1, and today’s date were 31 October
2007, your formula would return 41 years, 10 months, and 0 days. The
Start_Date is the birthday in A1, the End_Date is TODAY() (or 31 October
2007 in this case). The units pull out the portion of the date that we are
looking for.

256 | Chapter 6, Hacking Formulas and Functions

#103 Return the Weekday of a Date
HACK

Now, although this works, it is good spreadsheet design to have only one
occurrence of any volatile function in a spreadsheet (in this case, the volatile
function is TODAY()) and to reference it as needed.

So, instead of calling this function within the formula itself, place the for-
mula =TODAY() in any cell and press Enter. Then, name this cell Today by
clicking in the Name box above column A, typing in Today, and pressing
Enter.

Now, whenever you need today’s date, simply reference it by calling on the
named cell Today, as in the following formula:

=DATEDIF(A1,TODAY,"Y") & " Years, " & DATEDIF(A1,TODAY,"YM") & " Months, " &
DATEDIF(A1,TODAY,"MD") & " Days"

Remember, using names makes your formulas easier to read
and understand, both for you and for other people that
might use them.

H A C K

103
Return the Weekday of a Date Hack #103

When finding the weekday associated with any date, most of us would rather
see it returned as a name of the day, rather than as a number (the default).

This hack shows how to extract the weekday of any date by using the WEEKDAY
function. By default, the day is given as a whole number, ranging from 1
(Sunday) to 7 (Saturday). However, this is often meaningless, and we usually
would rather see the weekday returned as a name, such as Monday/Mon,
Tuesday/Tue, and so on.

Get the Weekday as a Number
Before getting to the name of the day, we’ll need to begin by extracting the
number of the weekday. Here’s the syntax for the WEEKDAY function:

WEEKDAY(serial_number,return_type)

Let’s say you want to return the weekday number of 31-Jul-2007. The
serial_num is any valid date (in this case 31-Jul-2007) and the return_type is
a number that refers to the type of return value. The result you are looking
for will determine the return_type that you will use; refer to Table 6-2.

Table 6-2. WEEKDAY function’s return type and result

return_type Day of week

1 or omitted Numbers 1 (Sunday) through to 7 (Saturday)

2 Numbers 1 (Monday) through 7 (Sunday)

3 Numbers 0 (Monday) through 6 (Sunday)

Return the Weekday of a Date #103

Chapter 6, Hacking Formulas and Functions | 257

HACK

We will use the default function by omitting the return_type. Click in cell
A1 and type in a valid Excel date, such as 31-Jul-2007 (which is a Tuesday).
Then, click in cell B1 and enter the following formula:

=WEEKDAY(A1)

This formula will return the number 3, which equates to Tuesday, which is
the day of the week that 31 July 2007 is.

An alternative would be to hardcode the date like this:

=WEEKDAY("31 Jul 2007")

Return the Weekday as Weekday Name
Remember, the WEEKDAY formula shown in the previous section only returns
the weekday as a number. There are at least two ways we can use formulas
to force Excel to show the actual name of the weekday.

The first method is perhaps the simplest, and all you need to do is apply a
custom number format of DDD or DDDD. Again using 31-Jul-2007 as an exam-
ple, select the date cell, right-click, go to Format Cells, and then choose
Number tab ➝ Custom. Enter the custom format DDD under Type and click
OK. You will get Tue in your cell.

Another, probably safer way is to reference the date cell (e.g., =A1) and for-
mat this cell with a custom number format of DDD or DDDD. The big advan-
tage to this method is that it leaves our true underlying date as a valid Excel
date.

Return the Weekday as Weekday Text
If you won’t be using the weekday that is returned in any further calcula-
tions, you can use either of the formulas that follow (TEXT or WEEKDAY with
CHOOSE) to return the weekday of a date as text.

The first formula uses TEXT and assumes you have a valid date, such as 31-
Jul-2007, in cell A1:

=TEXT(A1,"DDDD")

Given 31-Jul-2007 in cell A1 it will return Tuesday. Or you could hardcode
the date like this:

=TEXT("31 Jul 2007","DDDD")

Alternatively, you could use a combination of the WEEKDAY and CHOOSE func-
tions to get the same result:

=CHOOSE(WEEKDAY(A1),"Sunday","Monday","Tuesday","Wednesday","Thursday",
"Friday","Saturday")

258 | Chapter 6, Hacking Formulas and Functions

#104 Evaluate a Text Equation
HACK

Again, you could also hardcode the date like this:

=CHOOSE(WEEKDAY("31 July 2007"),"Sunday","Monday","Tuesday",
"Wednesday","Thursday","Friday","Saturday")

All of these formulas will return the same result: Tuesday. But remember that
the underlying value of your cell will still be 31-Jul-2007, even though your
cell reads Tuesday.

H A C K

104
Evaluate a Text Equation Hack #104

By using an old Excel4 macro function called EVALUATE in a special way, you
can easily evaluate text equations (an equation formatted as text and
interpreted as such by Excel) as actual calculations.

Sometimes you might want to evaluate an equation that is formatted and
interpreted as text by Excel, such as 21+69+89+25+31. If these numbers
were typed into a cell with no equals (=) sign, Excel would read them as text
and they would be treated as such with regards to calculation. But with this
hack, we can get Excel to evaluate the equation anyway.

Set up your spreadsheet like the one shown in Figure 6-29, ensuring that
none of your formulas have an equals sign (=). This will ensure that Excel
treats them as text.

In our example, we want to leave the original cell contents intact and use
Column B to return the result of the equations.

Click in cell B1 and try the usual suspect of = "="&A1. You will see that the
results in B1 only show =21+69+89+25+31, rather than evaluating the for-
mula. We need to apply the EVALUATE function to get the results we want.

Again, click in cell B1 and enter the following formula:

=EVALUATE(A1)

Figure 6-29. Mixture of text equations

Lookup from Within a Cell #105

Chapter 6, Hacking Formulas and Functions | 259

HACK

Excel won’t like this and will return the error message “That function is not
valid.” But we can force it to be valid. Click in cell B1 and select Formulas
➝ Defined Names ➝ Define Name (pre-2007, Insert ➝ Name ➝ Define). In
the Names: box, type Result (or any valid range name), and type
=EVALUATE($A1) in the Refers to: box. Click OK.

You must select cell B1 and used a relative row reference for
$A1.

Now click in cell B1, enter =Result, and copy down to B5.

You will get the results shown in Figure 6-30.

EVALUATE even follows the rules of parentheses.

H A C K

105
Lookup from Within a Cell Hack #105

Usually, in order to use one of Excel’s lookup functions, you are required to
lookup from within a table of cells in a worksheet. This hack shows how to
perform a lookup on a small number of items, without leaving the cell.

Let’s assume you have a changing value in A1 and want to return a result to
B1 that varies based on the value in A1. For example, keeping it simple, say
you have a validation list in cell A1 that a user can choose from any one of
either Cat, Dog, Mouse, Horse or Rabbit. Based on their choice, we want to
display a different result in B1.

First, set up a validation list. In cell G1, type in the word Cat, type Dog in G2,
Mouse in G3, Horse in G4, and Rabbit in G5. Then, click in cell A1 and select
Data ➝ Data Tools ➝ Data Validation (pre-2007, Data ➝ Validation). Select
List from the Allow: box, highlight G1:G5 in the Source: box, and click OK.

Figure 6-30. Results of using EVALUATE function as a named range

260 | Chapter 6, Hacking Formulas and Functions

#105 Lookup from Within a Cell
HACK

CHOOSE and MATCH
Now, to perform a lookup from within a cell, we’ll use a combination of the
CHOOSE function nested with the MATCH function. In B1, enter the following
formula:

=CHOOSE(MATCH(A1,{"Cat","Dog","Mouse","Horse","Rabbit"},0),"Cat Food","Dog
Food","Mouse Food","Horse Food","Rabbit Food")

Click back in cell A1 and make a selection from the validation list. Once
you have chosen a value from Cat, Dog, Mouse, Horse, or Rabbit, you
will see the results, shown in Figure 6-31. The use of
{"Cat","Dog","Mouse","Horse","Rabbit"} in the MATCH formula is know as
an array constant, not be confused with array formulas.

Keeping It Clean and Global
The main problems with the formula in the previous section are its length
and, most importantly, the fact that editing the lookup values or the array
constant would require doing each cell individually, or using the Find and
Replace option, if possible. This is where we can use range names or, specifi-
cally named constants (key values we have given friendly names to). How-
ever, once we’ve done that, we can no longer use the CHOOSE Function. We’ll
then need to use the INDEX function instead.

Try this. First, select Formulas ➝ Defined Names ➝ Define Name (pre-2007,
Insert ➝ Name ➝ Define). Enter the word Pet in the Names: box and
={"Cat","Dog","Mouse","Horse","Rabbit"} in the “Refers to:” box, and click
OK. Now, create another defined name using PetFood in the “Names:” box,
={"Cat Food","Dog Food","Mouse Food","Horse Food","Rabbit Food"} in the
“Refers to:” box, and click OK.

Now, click in cell B2 and enter the following formula:

=INDEX(PetFood,MATCH(A1,Pet,0))

If you need to edit the named constants PetFood or Pet, you can now do so
in one location and the result will flow through the entire workbook.

Figure 6-31. Result of picking dog from validation list in A1

Lookup from Within a Cell #105

Chapter 6, Hacking Formulas and Functions | 261

HACK

Lookup Scale
So far, we have only looked up text values. However, you’ll often need to
lookup numbers that match a scale. That is, all results between 0 and 99.99
should return one result, while those between 100 and 199.99 another, and
so on. Let’s say you need to match the sales amount by person to determine
their commission percentage.

Set up some data in cells A1:A12, as shown in Figure 6-32.

Select Formulas ➝ Defined Names ➝ Define Name (pre-2007, Insert ➝

Name ➝ Define). Type Commission in the Names: box and ={0,0.1,0.2,0.
3,0.4,0.5,0.6,0.7,0.8,0.9,1} in the Refers to: box, and click OK.

Now, create another named range called Sales, enter
={0,100,200,300,400,500,600,700,800,900,1000} in the Refers to: box and
click OK. Click in cell B2 and enter in the following formula:

=INDEX(Commission,MATCH(A1,Sales,1))

Figure 6-32. Data showing sales amounts

262 | Chapter 6, Hacking Formulas and Functions

#105 Lookup from Within a Cell
HACK

Press Enter and copy down to cell A12. This will return a percentage
between 0 and 100, based on the Sales $ value in A1. Your results will look
like those shown in Figure 6-33.

In this hack’s example, both of the array constants (entered
in the Refers to: box) are in ascending order and we have
used 1 for the optional Match_type argument for the MATCH
function. If you use descending order, Match_type must be -1.

Figure 6-33. Results of using formula

263

Chapter 7 C H A P T E R S E V E N

Macro Hacks
Hacks 106–134

Macros make it wonderfully easy to automate repetitive tasks in Excel, but
the way they’re created and the facilities for using them are sometimes prob-
lematic. Fortunately, Excel is flexible enough that you can fix those prob-
lems and create new features with a minimum of effort.

H A C K

106
Speed Up Code While Halting Screen Flicker Hack #106

When you record macros from within Excel, the code it generates often
produces screen flicker, which not only slows down your macro, but also
makes the macro’s activity look very disorganized. Fortunately, you can
eliminate screen flicker while at the same time speeding up your code.

One drawback with recorded macros in Excel is that the code produced is
often very inefficient. This can mean macros that should take a matter of
seconds to complete often take a lot longer and look very unsightly. Also,
when you write macros using the macro recorder, all keystrokes are
recorded, whether they are meant to be or not. This means that if you make
an error and then correct it, the keystrokes required to complete those
actions also will be recorded in your macro code.

If you have played around a bit with macros or dabbled in VBA code, you
might have heard of the Application.ScreenUpdating property. By setting
ScreenUpdating to False at the start of a macro, you will not only stop the
constant screen flicker associated with a recorded macro, but also speed up
the macro’s execution. The reason this method speeds up code is because
Excel no longer needs to repaint the screen whenever it encounters com-
mands such as Select, Activate, LargeScroll, SmallScroll, and many others.

To include Application.ScreenUpdating = False at the beginning of your
existing macro, select Developer ➝ Code ➝ Macros (pre-2007, Tools ➝

264 | Chapter 7, Macro Hacks

#107 Run a Macro at a Set Time
HACK

Macro ➝ Macros) or press Alt/Option-F8. Select your macro, click the Edit
button, and enter the following code:

'
' a Macro
' Macro recorded 1/01/2007 by OzGrid.com
'

'
Application.ScreenUpdating = False
'YOUR CODE
Application.ScreenUpdating = True
End Sub

Note how you set ScreenUpdating back to True on completion. Although
Excel will set this back to True whenever focus is passed back to Excel (in
other words, when your macro finishes), in most cases it pays to play it safe
and include the code at the end.

In some cases, you might find that ScreenUpdating is set back to True before
your recorded macro completes. This can happen with recorded macros that
use the Select command frequently. If this does happen, you might need to
repeat the line Application.ScreenUpdating = False in other parts of your
macro.

H A C K

107
Run a Macro at a Set Time Hack #107

Many times it would be great to run a macro at a predetermined time or at
specified intervals. Fortunately, Excel provides a VBA method that makes this
possible.

The Application.OnTime method can make macros run automatically, once
you’ve done some setup. Suppose you have a macro that you want to run
each day at 15:00 (3:00 p.m.). First you need to determine how to kick off
the OnTime method. You can do this using the Workbook_Open event in the pri-
vate module of the Workbook object.

In Windows, the fastest way to get to the private module of the Workbook
object is to press Alt/Option-F11 and double-click ThisWorkbook (pre-2007,
right-click the Excel icon next to File and select View Code). On a Macin-
tosh, open the VBE and then open the module for the Workbook object
from the Project window. Enter the following code:

Private Sub Workbook_Open()
 Application.OnTime TimeValue("15:00:00"), "MyMacro"
End Sub

Run a Macro at a Set Time #107

Chapter 7, Macro Hacks | 265

HACK

MyMacro should be the name of the macro you want to run. It should reside
in a standard module and contain the OnTime method, as follows:

Sub MyMacro()
 Application.OnTime TimeValue("15:00:00"), "MyMacro"
'YOUR CODE

End Sub

This will run the procedure MyMacro at 15:00 each day, so long as Excel is
open.

Now suppose you want to run MyMacro at 15-minute intervals after opening
your workbook. Again you will kick it off as soon as the workbook opens,
so press Alt/Option-F11 and double-click ThisWorkbook (pre-2007, right-
click the Excel icon next to File and select View Code). Enter the following
code:

Private Sub Workbook_BeforeClose(Cancel As Boolean)
 Application.OnTime dTime, "MyMacro", , False
End Sub

Private Sub Workbook_Open()
 Application.OnTime Now + TimeValue("00:15:00"), "MyMacro"
End Sub

In any standard module (accessed by selecting Insert ➝ Module), enter the
following code:

Public dTime As Date
Sub MyMacro()
dTime = Now + TimeValue("00:15:00")
Application.OnTime dTime, "MyMacro"

'YOUR CODE
End Sub

Note how you pass the time of 15 minutes to the public variable dTime. This
is so that you can have the OnTime method cancelled in the Workbook_
BeforeClose event by setting the optional Schedule argument to False. The
Schedule argument is True by default, so by setting it to False, you are tell-
ing Excel to cancel the OnTime method that is set to run at a specified time.

If you didn’t pass the time to a variable, Excel would not know which OnTime
method to cancel, as Now + TimeValue("00:15:00") is not static, but becomes
static when passed to a variable. If you didn’t set the optional Schedule argu-
ment to False, the workbook would open automatically every 15 minutes
after you close it and run MyMacro.

266 | Chapter 7, Macro Hacks

#108 Use CodeNames to Reference Sheets in Excel Workbooks
HACK

H A C K

108
Use CodeNames to Reference Sheets in Excel
Workbooks Hack #108

Sometimes you need to create a macro that will work even if the sheet
names that it references change.

If you have recorded a macro in Excel that references a specific sheet in your
workbook, you know the code will continue to work only if the sheet name
remains the same. For example, if your worksheet is named Budget, and the
code in your macro reads Sheets("Budget").Select and then you change the
worksheet name, the macro will no longer work. This is because the macro
recorder generates code based on the sheet’s tab name or on the name you
see when working in Excel.

To overcome this limitation, you have two options, the first of which is to
use index numbers. A sheet’s index number is determined by its position in
the workbook. The leftmost sheet will always have an index number of 1,
the next worksheet immediately to the right will always have an index num-
ber of 2, and so on. Excel VBA enables you to specify any sheet by using its
index number, but unfortunately Excel does not use this method when you
record a macro.

Also, although using an index number such as Sheets(3).Select is a better
option than using Sheets("Budget").Select, the sheet’s position in the
workbook could change if you add, remove, or move sheets.

Instead of using index numbers, savvy VBA coders use CodeNames. Each
sheet in a workbook is given a unique CodeName that does not change even
when that sheet is moved or renamed, or when any other sheets are added.
You can see a sheet’s CodeName only by going into the VBE (press Alt/
Option-F11) and then displaying the Project window if necessary (select
View ➝ Project Explorer or press Ctrl-R).

In Figure 7-1, the CodeName for the sheet with a tab name of Budget is
Sheet3. A sheet’s CodeName is always the name that appears outside the
parentheses when you look in the Project Explorer. You can reference this
sheet with VBA code in the workbook by using Sheet3.Select, as opposed
to Sheets("Budget").Select or Sheets(3).Select.

If your workbook is already full of VBA code (recorded or written) that does
not use CodeNames, you can change the code at the project level (all code in
all modules in the workbook) by selecting Edit ➝ Replace… while in the
VBE.

The only time you cannot use a sheet’s CodeName is when
you reference a sheet that is in a workbook different from the
one in which the code resides.

Connect Buttons to Macros Easily #109

Chapter 7, Macro Hacks | 267

HACK

H A C K

109
Connect Buttons to Macros Easily Hack #109

Instead of giving every button its own macro, it’s sometimes more convenient
to create a single macro that manages all the buttons.

Users generally prefer to run macros via either a shortcut key or a button
they can simply click, instead of having to hunt through menus and dialog
boxes. The most popular way to access a button is from the Forms toolbar,
available by selecting Developer ➝ Controls ➝ Insert (pre-2007, View ➝

Toolbars ➝ Forms). These buttons, in our opinion, are the best choice for
running macros, especially recorded macros, because recorded macros often
require the user to be on a specific worksheet when the macro is run. Sim-
ply put, recorded macros always use ActiveSheet if you recorded the macro
without changing sheets. This means that if the user is not on the required
worksheet (in other words, the same one you were on when recording), the
recorded macro will often “bug out” and/or make changes on the wrong
sheet. By using a button on a worksheet, you can force the user to navigate
to that worksheet button to set the right conditions for the macro before
clicking it.

Why a button from the Forms toolbar and not the Control
Toolbox toolbar? Buttons are almost always used to detect a
mouse click and then run a specified macro. You should use
a command button from the Control Toolbox toolbar only
when you need to determine other events such as double-
clicks, right-clicks, and so on. The controls on the Control
Toolbox toolbar are known as ActiveX controls, and using
them to only run a macro adds unnecessary overhead to
Excel, especially if you use a lot of buttons. It is akin to using
a sledgehammer to bang in a nail.

When you have a lot of buttons in a workbook and each button is used to
run a specified macro, you can attach the macros to the buttons by right-
clicking the button border and choosing Assign Macro. Then find the cor-
rect macro in the Assign Macro dialog, as shown in Figure 7-2.

Figure 7-1. CodeNames and sheet names in the VBE Project window

268 | Chapter 7, Macro Hacks

#110 Create a Workbook Splash Screen
HACK

Because each button is usually used to run a different macro, often you must
scroll through the entire macro list to find the correct one. There is a really
simple way you can assign all the buttons to the same macro but still have
each button run a different macro.

Place the following code into any standard module. Press Alt/Option-F11
and create a new module by selecting Insert ➝ Module and then entering the
following code:

Sub WhichButton()
 Run Application.Caller
End Sub

Now you need to give each button the same name as the macro it should
run. To name a button from the Forms toolbar, simply left-click it, then
replace the name shown in the Name box (at the left of the Formula bar)
with the name of the macro the button should run. Do the same for all but-
tons. Now, if you named a button Macro1 and then assigned it to the macro
WhichButton, when clicked it will run the macro Macro1.

H A C K

110
Create a Workbook Splash Screen Hack #110

Splash screens provide that extra bit of polish to an application—not to
mention that they keep you entertained while the application loads. Why
shouldn’t a spreadsheet do the same?

You can use Excel’s VBA capabilities to create a splash screen for any work-
book; you’ll find the process is easier than you might imagine it would be.

Figure 7-2. Print button highlighted and Assign Macro dialog active, with macro
highlighted

Create a Workbook Splash Screen #110

Chapter 7, Macro Hacks | 269

HACK

To create a splash screen that shows for 5 to 10 seconds when a workbook
opens, then closes itself automatically, start by pressing Alt/Option-F11, to
open the VBE. Then select Insert ➝ UserForm. If the Control toolbox is not
showing, select View ➝ Toolbox to view it.

From the toolbox, left-click the Label control (you can hover your mouse
pointer over each control to display its name). Left-click anywhere on the
UserForm to insert the label. Using the size handles, drag out the label so
that you can type some brief text into it. With the label still selected, left-
click again. If the label is not selected, slowly double-click it. You should
now be in Edit mode and should be able to highlight the default caption
Label1.

Within that label, enter the text My Splash Screen. To change other proper-
ties of the label (e.g., font size, color), ensure that the label is selected and
then press F4 or select View ➝ Properties Window. Then change the
required property in the Label Controls Property window. Now double-click
the UserForm (not the label) and then select Initialize from the Procedure
box at the top right of the screen, as shown in Figure 7-3.

Within this procedure, enter the following:

Application.OnTime Now + TimeValue("00:00:05"), "KillForm"

Your code for the UserForm should look like this:

Private Sub UserForm_Initialize()
 Application.OnTime Now + TimeValue("00:00:05"), "KillForm"
End Sub

Next, select Insert ➝ Module, and enter the following code.

Sub KillForm()
Unload UserForm1
End Sub

Note that UserForm1 is the default name of the newly inserted
UserForm; if your UserForm has another name, you will
need to substitute in the code.

Figure 7-3. Procedure drop-down box for the various events of the UserForm object

270 | Chapter 7, Macro Hacks

#111 Display a “Please Wait” Message
HACK

Now all you need is some code in the private module of the Workbook
object (ThisWorkbook). In the Project Explorer, you should see the name of
your workbook. Expand the folders branching off the bottom of the work-
book until you see ThisWorkbook. Double-click ThisWorkbook to expose its
private module.

In the private module of the ThisWorkbook object, enter the following:

Private Sub Workbook_Open()
 UserForm1.Show
End Sub

Close the window to get back to Excel. Save and close the workbook, and
reopen it to see your splash screen in action. Figure 7-4 shows an example.

Just remember that the splash screen should show for only a short period of
time and should contain brief but relevant text. Showing it for longer than
10 seconds might annoy users.

H A C K

111
Display a “Please Wait” Message Hack #111

Have you ever had one of those macros that seem to take forever to
complete? If this is a problem with your macro, you can have Excel display a
“Please Wait” message to the user.

Most users expect code to run and complete almost instantaneously. Sadly,
this doesn’t always happen. Recorded macros in particular generally take
much longer to complete than well-written VBA code. To add to the prob-
lem, Excel VBA code is generally slower than a lot of other types of code.

Fortunately, you can use a bit of extra code to create a “Please Wait” mes-
sage so that users know the code is running and Excel has not locked up on
them! Unfortunately, one of the more popular ways to let users know code
is running is via the use of an Excel progress meter.

Figure 7-4. Example splash screen in action

Have a Cell Ticked or Unticked upon Selection #112

Chapter 7, Macro Hacks | 271

HACK

There are two problems with this method. First, the progress meter can slow
down your code even more, compounding the issue. Second, your slow code
must be caused by a loop, and you cannot use the macro recorder to create a
loop.

We prefer using VBA code, such as the following DoIt macro, which uses a
rectangle found in Insert ➝ Illustration ➝ Shapes:

Sub DoIt()
Application.ScreenUpdating = True
 With Sheet1.Shapes("Rectangle 1")
 .Visible = msoTrue = (Not .Visible)
 End With
'Forces TextBox to show while code is running
Sheet2.Select
Sheet1.Select
End Sub

To use this code, add a rectangle from the Drawing toolbar to any sheet in
the appropriate workbook. While the rectangle is selected, click in the
Name box and name the rectangle Rectangle1 (if it’s not already called that).

Enter the text you want displayed while your code is running, and format,
position, and size the rectangle as desired. Enter the preceding DoIt macro
into a standard module of your workbook. If necessary, change Sheet1 in the
code to the CodeName of the sheet on which you placed Rectangle1. (For
more information on CodeNames, see “Use CodeNames to Reference Sheets
in Excel Workbooks” [Hack #108].) Then select Developer ➝ Code ➝ Macros or
Alt/Option-F8 (pre-2007, Tools ➝ Macro ➝ Macros) and run DoIt from
within Excel. This will hide Rectangle1 completely.

At the very start of the slow code, place the following:

Run "DoIt"
Application.ScreenUpdating = False

The use of Application.ScreenUpdating = False stops screen flicker and
speeds up macros. At the very end of the slow code, simply place the code
Run "DoIt". Then run your macro as usual.

H A C K

112
Have a Cell Ticked or Unticked upon Selection Hack #112

Sometimes it’s difficult to make choices with checkboxes. Fortunately, you
can simplify this process using a basic bit of code.

You can use Excel workbooks to collect data for surveys. Usually you do
this by offering users a number of answers to choose from and placing a
checkbox next to each choice. Users then check the appropriate check-
boxes. The problem with using this method, though, is that your workbook
soon can end up with hundreds of checkboxes.

272 | Chapter 7, Macro Hacks

#112 Have a Cell Ticked or Unticked upon Selection
HACK

Instead, you can use some very simple VBA code to tick any cell within a
specified range as soon as it’s selected. If the cell within the specified range is
ticked already, the code will remove it. The trick to the code is the use of the
letter “a” in a cell whose font is set to Marlett. When it’s time to add up the
results, simply use the COUNTIF function to count the occurrences of the let-
ter “a”, like this:

=COUNITIF(A1:A$100,"a")

The following code examples work only on the range A1:A100, but you can
modify them easily to suit any range. To use the code, activate the work-
sheet on which the ticks should be displayed, right-click the Sheet Name
tab, and select View Code. Paste in either CODE 1 (if you want the cell
ticked when it’s selected) or CODE 2 (if you want the cell ticked when it’s
double-clicked):

'CODE 1 - tick cell with selection

Private Sub Worksheet_SelectionChange(ByVal Target As Range)
 If Target.Cells.Count > 1 Then Exit Sub
 If Not Intersect(Target, Range("A1:A100")) Is Nothing Then
 Target.Font.Name = "Marlett"
 If Target = vbNullString Then
 Target = "a"
 Else
 Target = vbNullString
 End If
 End If
End Sub

'CODE 2 - tick cell with double-click

Private Sub Worksheet_BeforeDoubleClick(ByVal Target As Range, Cancel As
Boolean)
 If Not Intersect(Target, Range("A1:A100")) Is Nothing Then
 Cancel = True 'Prevent going into Edit Mode
 Target.Font.Name = "Marlett"
 If Target = vbNullString Then
 Target = "a"
 Else
 Target = vbNullString
 End If
 End If
End Sub

Once the desired code is in place, simply close the window to get back to
Excel and save your workbook. If you need to see whether the cell is
checked, just examine its contents.

Count or Sum Cells That Have a Specified Fill Color #113

Chapter 7, Macro Hacks | 273

HACK

H A C K

113
Count or Sum Cells That Have a Specified Fill
Color Hack #113

Using a bit of code, you can easily SUM or COUNT cells whose fill color was
specified manually.

Every now and then, it’s convenient to SUM or COUNT cells that have a speci-
fied fill color that you or another user have set manually, as users often
understand paint colors more readily than named ranges. To do this, first
open the workbook where you want to COUNT or SUM cells by a fill color. Go
into the VBE by selecting Alt/Option-F11 and then select Insert ➝ Module
to insert a standard module. In this module, type the following code:

Function ColorFunction(rColor As Range, rRange As Range, Optional SUM As
Boolean)
Dim rCell As Range
Dim lCol As Long
Dim vResult

lCol = rColor.Interior.ColorIndex

 If SUM = True Then
 For Each rCell In rRange
 If rCell.Interior.ColorIndex = lCol Then
 vResult = WorksheetFunction.SUM(rCell) + vResult
 End If
 Next rCell
 Else
 For Each rCell In rRange
 If rCell.Interior.ColorIndex = lCol Then
 vResult = 1 + vResult
 End If
 Next rCell
End If

ColorFunction = vResult
End Function

Close the window to get back to your worksheet, and save your workbook.

Now you can use the custom function ColorFunction in formulas such as
this:

=ColorFunction(C1,A1:A12,TRUE)

to sum the values in the range of cells A1:A12 that have the same fill
color as cell C1. The function will sum in this example because you used
TRUE as the last argument for the custom function.

To count the cells that have the same fill color as cell C1, you can use this:

=ColorFunction(C1,A1:A12,FALSE)

274 | Chapter 7, Macro Hacks

#114 Add the Microsoft Excel Calendar Control to Any Excel Workbook
HACK

or:

=ColorFunction(C1,A1:A12)

By omitting the last argument, the function automatically defaults to using
FALSE as the last argument. Now you easily can SUM or COUNT cells that have a
specified fill color, as shown in Figure 7-5.

H A C K

114
Add the Microsoft Excel Calendar Control to Any
Excel Workbook Hack #114

If you want to ensure that users enter dates correctly, the Excel Calendar
Control can make things easier for both you and the users of the
spreadsheet. With this hack, you can add the Calendar Control to any Excel
workbook.

Unless a date is entered correctly, Excel won’t recognize it as valid. This
sometimes means you cannot perform calculations with figures that look
like dates but aren’t. It also means any charts or PivotTables based on these
dates will not be valid. Although the use of Excel’s very versatile validation
feature (described in Chapter 2) can help with this, it is far from bulletproof.

With this hack, you can add the Calendar Control to any Excel workbook:

1. To start, open the workbook for the calendar.

2. It is a good idea to use your Personal.xls file for this, in which case you
should first select View ➝ Window ➝ Unhide (pre-2007, Window ➝

Unhide). If this option is grayed out, it means you do not have a
Personal.xls file yet. You can create one easily by recording a dummy
macro:

Figure 7-5. Using the custom ColorFunction to count by fill color

Add the Microsoft Excel Calendar Control to Any Excel Workbook #114

Chapter 7, Macro Hacks | 275

HACK

a. Select Developer ➝ Code ➝ Record Macro (pre-2007, Tools ➝

Macro ➝ Record New Macro).

b. Choose Personal Macro Workbook from the Store Macro In: box.

c. Then click OK, select any cell, and stop recording. Excel will create
your Personal.xls file automatically.

3. Next, press Alt/Option-F11 and then select Insert ➝ UserForm from
within the VBE. This should display the Control toolbox (if it doesn’t,
select View ➝ Toolbox).

4. Right-click the Control toolbox and select Additional Controls. Scroll
through the list until you see the Calendar Control 12.0 checkbox (the
number will differ depending on the version of Excel you are using).
Check the checkbox and click OK.

5. Click the calendar that is now part of the toolbox and then click the
UserForm you inserted earlier.

6. Using the size handles on both the UserForm and the Calendar Con-
trol, size the UserForm and Calendar Control to a reasonable size, as
shown in Figure 7-6.

7. Make sure the UserForm is selected (as shown in Figure 7-6) and then
select View ➝ Properties Window (F4).

8. Select Caption from the Properties window and replace UserForm1 with
the word Calendar.

Figure 7-6. Inserted Calendar Control

276 | Chapter 7, Macro Hacks

#115 Password-Protect and Unprotect All Excel Worksheets in One Fell Swoop
HACK

9. Now select View ➝ Code (F7), and in the private module, add the fol-
lowing code:

Private Sub Calendar1_Click()
 ActiveCell = Calendar1.Value
End Sub

Private Sub UserForm_Activate()
 Me.Calendar1.Value = Date
End Sub

10. Select Insert ➝ Module, and in the public module, place this code:
Sub ShowIt()
 UserForm1.Show
End Sub

11. Close the window to return to Excel, then save your workbook.

12. Press Alt/Option-F8 and then select ShowIt.

13. Click Options, assign a shortcut key, and you’re done.

Just press your shortcut key, and the calendar will show with today’s date as
the default. Click any date and it will be inserted into the active cell.

H A C K

115
Password-Protect and Unprotect All Excel
Worksheets in One Fell Swoop Hack #115

Sadly, there is no standard feature in Excel that will enable you to protect and
unprotect all worksheets in one go; however, some simple code can make it
happen.

Excel provides protection that you can add to an Excel worksheet by select-
ing Review ➝ Changes ➝ Protect Sheet (pre-2007, Tools ➝ Protection ➝ Pro-
tect Sheet). You can also supply a password so that another user cannot
unprotect the worksheet and gain access unless he knows the password.

Sometimes, though, you want to password-protect and unprotect all work-
sheets in a workbook in one step, because protecting and unprotecting each
worksheet individually is a huge nuisance. Here is how you can simplify this
task.

1. Open the workbook to which you want to apply the code.

Alternatively, select Windows ➝ View ➝ Unhide to unhide your
Personal.xls file and make it available to any workbook. If this option is
grayed out, it means you do not have a Personal.xls file yet. You can cre-
ate one easily by recording a dummy macro:

a. Select Developer ➝ Code ➝ Record Macro (pre-2007, Tools ➝

Macro ➝ Record New Macro).

b. Choose Personal Macro Workbook from the Store Macro In: box.

Password-Protect and Unprotect All Excel Worksheets in One Fell Swoop #115

Chapter 7, Macro Hacks | 277

HACK

c. Click OK, select any cell, and stop recording. Excel will create your
Personal.xls file automatically.

2. Next, press Alt/Option-F11 and select Insert ➝ UserForm. This should
display the Control toolbox. If it doesn’t, select View ➝ Toolbox.

3. From the toolbox, select a TextBox (indicated as ab|). Click onto the
UserForm to add the TextBox to the UserForm. Position it in the top
left of your form and size it to your preference.

4. Ensure that the textbox is still selected and then select View ➝ Proper-
ties (F4). From the Properties window of the textbox, scroll down until
you see PasswordChar, and in the white box on the right, enter an
asterisk (*).

5. From the toolbox, select a CommandButton and then click the UserForm
and position it in the top right of your form.

6. With the CommandButton still selected, select View ➝ Properties (F4).
From the Properties window of the CommandButton, scroll down until
you see Caption, and in the white box on the right, enter the caption OK.
If you are using Excel 97, also scroll down until you see TakeFocusOn-
Click, and set this to False.

7. Now select the UserForm and, from its Properties window, find Caption
and change it to Protect/Unprotect all sheets. Your form should look
like that shown in Figure 7-7.

Figure 7-7. UserForm inserted in the VBE

278 | Chapter 7, Macro Hacks

#115 Password-Protect and Unprotect All Excel Worksheets in One Fell Swoop
HACK

8. Select View ➝ Code (F7) and enter the following code exactly as shown:
Private Sub CommandButton1_Click()
Dim wSheet As Worksheet
 For Each wSheet In Worksheets
 If wSheet.ProtectContents = True Then
 wSheet.Unprotect Password:=TextBox1.Text
 Else
 wSheet.Protect Password:=TextBox1.Text
 End If
 Next wSheet
 Unload me
End Sub

The code loops through all worksheets in the active workbook. If one is
protected, it unprotects it using the password entered into the text box.
If the worksheet is already unprotected, it protects it using the pass-
word entered into the text box.

9. Now select Insert ➝ Module and enter this code, which is used to
launch the UserForm:

Sub ShowPass()
 UserForm1.Show
End Sub

10. Close the window to get back to Excel, then save your workbook.

11. Press Alt/Option-F8, select ShowPass, and then click Options and assign
a shortcut key. This will unprotect all worksheets that are protected and
protect all worksheets that are unprotected.

12. Remember to save your workbook.

As this macro does not ask you to confirm your password,
you should be very sure of what you type. Otherwise, you
may find that typos lock you out of your spreadsheets.

If you’re protecting the contents only from yourself, the following macro lets
you perform the same tasks with a blank password instead:

Option Explicit

Sub Protect_Unprotect()
Dim wSheet As Worksheet

For Each wSheet In Worksheets
 With wSheet
 If .ProtectContents = True Then
 .Unprotect Password:=""
 Else
 .Protect Password:=""
 End If

Retrieve a Workbook’s Name and Path #116

Chapter 7, Macro Hacks | 279

HACK

 End With
Next wSheet

End Sub

Although it’s not very secure, it’s definitely convenient.

H A C K

116
Retrieve a Workbook’s Name and Path Hack #116

Every now and then you might want a cell to return the name of a workbook,
or even the workbook’s filename and path. With this hack, it’s easy to
retrieve a workbook’s name and path.

The three user-defined functions we explain in this section place the name of
a workbook into a cell, or the workbook’s filename and path into a cell. The
first two examples, MyName and MyFullName, do not take any arguments. The
last one, SheetName, is used in place of nesting the MID and other functions
inside the CELL function to get the sheet name, a process that commonly
would require the following unwieldy formula:

=MID(CELL("filename",A1),FIND("]",CELL("filename",A1))+1,255)

As you can see, this requires quite a bit of typing for such a simple result,
which is why we initially developed the SheetName custom function.

To use this user-defined function, press Alt/Option-F11, select Insert ➝

Module, and paste in the following code:

Function MyName() As String
 MyName = ThisWorkbook.Name
End Function
Function MyFullName() As String
 MyFullName = ThisWorkbook.FullName
End Function
Function SheetName(rAnyCell)
 Application.Volatile
 SheetName = rAnyCell.Parent.Name
End Function

Save the function and close the window. The function will appear under
User Defined in the Insert Function dialog (Shift-F3).

You can use the functions as shown in Figure 7-8. They take no arguments.
The formulas in column A are shown for demonstration purposes only and
have no effect on the result.

In cell A4 in Figure 7-8, we also placed the standard CELL
function that returns a workbook’s name, file path, and
active sheet name. The CELL function is a standard function
that will return information about the current operating sys-
tem—in other words, information on formatting, location,
and contents of a workbook.

280 | Chapter 7, Macro Hacks

#117 Get Around Excel’s Three-Criteria Limit for Conditional Formatting
HACK

H A C K

117
Get Around Excel’s Three-Criteria Limit for
Conditional Formatting Hack #117

You can use VBA to hack conditional formatting to use more than three
criteria on your data. In fact, you can use the code to apply virtually an
unlimited number of criteria.

Excel has a useful feature named conditional formatting (described in
Chapter 2). You can find it by selecting Format ➝ Conditional Formatting...
on the worksheet menu bar. Conditional formatting enables you to format a
cell based on its content. For example, you can change to a red background
all cells whose value is greater than 5 but less than 10. Although this is
handy, Excel supports only up to three conditions, which sometimes is not
enough.

If you want to set more than three conditions, you can use Excel VBA code
that is fired automatically whenever a user changes a specified range. To see
how this works, say you want to have six separate conditions in the range
A1:A10 on a particular worksheet. Set up some data such as that shown in
Figure 7-9.

Figure 7-8. Functions and their result

Figure 7-9. Data setup for conditional formatting experiment

Get Around Excel’s Three-Criteria Limit for Conditional Formatting #117

Chapter 7, Macro Hacks | 281

HACK

Save your workbook, then activate the worksheet, right-click its Sheet Name
tab, select View Code, and enter the following code:

Private Sub Worksheet_Change(ByVal Target As Range)

Dim icolor As Integer
If Not Intersect(Target, Range("A1:A10")) is Nothing Then
 Select Case Target
 Case 1 To 5
 icolor = 6
 Case 6 To 10
 icolor = 12
 Case 11 To 15
 icolor = 7
 Case 16 To 20
 icolor = 53
 Case 21 To 25
 icolor = 15
 Case 26 To 30
 icolor = 42
 Case Else
 'Whatever
End Select
 Target.Interior.ColorIndex = icolor
End If

End Sub

Close the window to get back to your worksheet, then save your workbook.
Your results should look like Figure 7-10.

Figure 7-10. What data should look like once the code is entered

282 | Chapter 7, Macro Hacks

#118 Run Procedures on Protected Worksheets
HACK

The background color of each cell should have changed based on the num-
ber passed to the variable icolor, which in turn passes this number to
Target.Interior.ColorIndex. The number that is passed is determined by
the line Case x To x. For example, if you enter the number 22 in any cell
within the range A1:A10, the number 15 is passed to icolor, and then
icolor (now having a value of 15) is passed to Target.Interior.ColorIndex,
making the cell gray. Target is always the cell that changed and, thus, fired
the code.

H A C K

118
Run Procedures on Protected Worksheets Hack #118

Excel macros are a great way to save time and eliminate errors. However,
sooner or later you might try to run your favorite Excel macro on a worksheet
that has been protected, with or without a password, resulting in a runtime
error. Avoid that problem with the following hack.

If you have ever tried to run an Excel macro on a worksheet that’s been pro-
tected, you know that as soon as the worksheet is encountered, your macro
probably won’t work and instead will display a runtime error.

One way to get around this is to use some code such as the following to
unprotect and then protect your worksheet:

Sub MyMacro()

Sheet1.Unprotect Password:="Secret"

'YOUR CODE

Sheet1.Protect Password:="Secret"
End Sub

As you can see, the code unprotects Sheet1 with the password Secret, runs
the code, and then password-protects it again. This will work, but it has a
number of drawbacks. For one, the code could bug out and stop before it
encounters the Sheet1.Protect Password:="Secret" line of code. This, of
course, would leave your worksheet fully unprotected. Another drawback is
that you will need similar code for all macros and all worksheets.

Another way to avoid this problem is to use UserInterFaceOnly, which is an
optional argument of the Protect method that you can set to True. (The
default is False.) By setting this argument to True, Excel will allow all Excel
VBA macros to run on the worksheets that are protected with or without a
password.

However, if you use the Protect method with the UserInterfaceOnly argu-
ment set to True on a worksheet and then save the workbook, the entire
worksheet (not just the interface) will be fully protected when you reopen
the workbook. To set the UserInterfaceOnly argument back to True after the

Distribute Macros #119

Chapter 7, Macro Hacks | 283

HACK

workbook is opened, you must again apply the Protect method with
UserInterfaceOnly set to True.

To avoid this hassle, you need to use the Workbook_Open event, which is fired
as soon as the workbook is opened. Because this is an event of the Work-
book object ThisWorkbook, you must place the following code in the private
module of ThisWorkbook. To do this, press Alt/Option-F8 and double-click
on ThisWorkbook (on Macs, open the Workbook object from the Projects win-
dow of the VBE). Then enter the following code:

Private Sub Workbook_Open()
'If you have different passwords
'for each worksheet.

Sheets(1).Protect Password:="Secret", UserInterFaceOnly:=True
Sheets(2).Protect Password:="Carrot", UserInterFaceOnly:=True

'Repeat as needed.
End Sub

Close the window to get back to your worksheet, and save your workbook.
The preceding code is good if each worksheet on which you want your mac-
ros to operate has a different password, or if you do not want to protect all
worksheets. You can set the UserInterfaceOnly argument to True without
having to unprotect first.

If you want to set the UserInterfaceOnly argument to True on all worksheets
and they have the same password, you can use the following code, which
must be placed in the same place as the preceding code:

Private Sub Workbook_Open()
Dim wSheet As Worksheet

 For Each wSheet In Worksheets
 wSheet.Protect Password:="Secret", _
 UserInterFaceOnly:=True
 Next wSheet
End Sub

Now, each time you open the workbook, the code will run and will set the
UserInterfaceOnly property to True, allowing your macros to operate while
still preventing any user changes.

H A C K

119
Distribute Macros Hack #119

Although you can distribute a macro along with a workbook, if you want to
distribute only the macro’s functionality, an Excel add-in is the way to go.

An Excel add-in is nothing more than an Excel workbook that was saved as
an add-in by selecting the Office button ➝ Save As… ➝ Microsoft Excel

284 | Chapter 7, Macro Hacks

#119 Distribute Macros
HACK

Add-in (*.xlam); however, in pre-2007 versions, select File ➝ Save As… ➝

Microsoft Excel Add-in (*.xla).

Once it’s saved and reopened, the workbook will be hidden and can be seen
only in the Project Explorer via the VBE. It is not hidden in the same way as
the Personal.xls file, as this can be seen (and made visible) via View ➝

Unhide (pre-2007, Windows ➝ Unhide).

Once you have completed the workbook you want to use as an add-in, you
need to save a copy of it. You can save it to any location you want, but make
sure to note where you placed it.

Open any workbook, and on the Office button, select Excel Options ➝ Add-
Ins (pre-2007, Tools ➝ Add-Ins), make sure Add-Ins is showing in the Man-
age: box, and press Go. Click Browse, locate your add-in from where you
saved it, select it, and then click OK.

Ensure that your add-in is in the Add-Ins Available: box and that the box is
checked. Then click OK to install the add-in. You can save most code to an
Excel add-in without too many changes. There are a few issues worth con-
sidering, however:

• The ThisWorkbook object will always refer to the add-in, not to the user’s
workbook. Use the ActiveWorkbook object instead.

• You cannot refer to sheets in the ActiveWorkbook with CodeNames.

• You should always put ribbons, etc, back to the way the user had them
originally. There is nothing worse than an add-in that changes all your
Excel settings without your knowledge.

• Always include some sort of error handling (yes, most add-ins will cause
errors at some time).

• Be very aware that the user might have many sorts of protection applied.
Never use code to unprotect any part of the user’s workbook. Simply
display a message asking the user to unprotect.

• Make full and good use of the worksheet you have in the add-in. We use
the worksheet(s) to store user settings.

• Holding down the Shift key will not prevent add-in workbook events
from running (holding down the Shift key will prevent a normal Excel
file from running, however).

• If you need to look at or work with the add-in workbook again (e.g., to
incorporate updates or modifications), go into the VBE while the add-in
is installed and, from the Properties window, select the IsAddin prop-
erty and set it to False. Saving the workbook as an add-in sets this prop-
erty to True.

Distribute Macros #119

Chapter 7, Macro Hacks | 285

HACK

• Apply protection to the modules of your add-in by selecting Tools
➝ VBAProject Properties ➝ Protection.

Once you have installed an add-in in Excel 2007, you can select the Add-Ins
tab, then right-click on your add-in and select Add to Quick Access Tool-
bar. This will add an icon to the toolbar, which when clicked will display the
add-in name for selection.

Add a Menu Item
If you aren’t using Excel 2007, you won’t have the Quick Access Toolbar
option, so once you have created your add-in, you will need to make the
macros within it easy for the user to run. This is best achieved by using the
Workbook_AddinInstall and Workbook_AddinUnInstall events in the private
module of the ThisWorkbook object. Simply double-click ThisWorkbook for the
*.xla file, and Excel will take you into the private module where the code is
placed, as shown in Figure 7-11.

Here is a simple example of the code:

Option Explicit
Dim cControl As CommandBarButton
Private Sub Workbook_AddinInstall()

On Error Resume Next 'Just in case
 'Delete any existing menu item that may have been left.
 Application.CommandBars("Worksheet Menu Bar").Controls("Super Code").Delete
 'Add the new menu item and set a CommandBarButton variable to it

Figure 7-11. Project Explorer with ThisWorkbook selected for an add-in named Number
Manager.xla

286 | Chapter 7, Macro Hacks

#119 Distribute Macros
HACK

 Set cControl = Application.CommandBars("Worksheet Menu Bar").Controls.Add
 'Work with the Variable
 With cControl
 .Caption = "Super Code"
 .Style = msoButtonCaption
 .OnAction = "MyGreatMacro" 'Macro stored in a Standard Module
 End With
On Error GoTo 0

End Sub

Private Sub Workbook_AddinUninstall()

 On Error Resume Next 'In case it has already gone.
 Application.CommandBars("Worksheet Menu Bar").Controls("Super Code).Delete
 On Error GoTo 0

End Sub

This is all the code you’ll need to add a single menu item (called Super
Code) to the end of the existing worksheet menu bar as soon as the user
installs the add-in via Tools ➝ Add-Ins. When the Super Code menu item is
clicked, a macro (that is within a standard module of the add-in) is run.
Remember that the preceding code must be placed in the private module of
ThisWorkbook for the add-in.

If you want the Super Code menu item added, say, before the format menu
item, you can use this code:

Option Explicit
Dim cControl As CommandBarButton

Private Sub Workbook_AddinInstall()

Dim iContIndex As Integer
 On Error Resume Next 'Just in case
 'Delete any existing menu item that may have been left.
 Application.CommandBars("Worksheet Menu Bar").Controls("Super Code").Delete
 'Pass the index of the "Format" menu item number to a variable.
 'Use the FindControl method to find its Index number. ID number _
 is used in case of customization
 iContIndex = Application.CommandBars.FindControl(ID:=30006).Index
 'Add the new menu item and set a CommandBarButton variable to it.
 'Use the number passed to our Integer variable to position it.
 Set cControl = Application.CommandBars("Worksheet Menu Bar") _
 .Controls.Add(Before:=iContIndex)
 'Work with the Variable
 With cControl
 .Caption = "Super Code"
 .Style = msoButtonCaption
 .OnAction = "MyGreatMacro" 'Macro stored in a standard module

Distribute Macros #119

Chapter 7, Macro Hacks | 287

HACK

 End With
 On Error GoTo 0
End Sub

You would not have to change the Workbook_AddinUninstall() code in this
case.

In these examples, all the menu item code is in Workbook_AddinInstall and
Workbook_AddinUnInstall. This is not a problem when the code is adding
only one menu item. However, if you will be adding more than one item
(and perhaps even submenus), you should place the menu item code in a
procedure (or two) inside a standard module. Use some code such as this:

Private Sub Workbook_AddinInstall()
 Run "AddMenus"
End Sub

Private Sub Workbook_AddinUninstall()
 Run "DeleteMenu"
End Sub

In the standard module, put some code such as this:

Sub AddMenus()
Dim cMenu1 As CommandBarControl
Dim cbMainMenuBar As CommandBar
Dim iHelpMenu As Integer
Dim cbcCutomMenu As CommandBarControl

 '(1)Delete any existing one. We must use On Error Resume next _
 in case it does not exist.
 On Error Resume Next
 Application.CommandBars("Worksheet Menu Bar").Controls("&New Menu").Delete

 '(2)Set a CommandBar variable to the worksheet menu bar
 Set cbMainMenuBar = _
 Application.CommandBars("Worksheet Menu Bar")

 '(3)Return the index number of the Help menu. We can then use _
 this to place a custom menu before it.
 iHelpMenu = _
 cbMainMenuBar.Controls("Help").Index

 '(4)Add a control to the "Worksheet Menu Bar" before Help.
 'Set a CommandBarControl variable to it
 Set cbcCutomMenu = _
 cbMainMenuBar.Controls.Add(Type:=msoControlPopup, _
 Before:=iHelpMenu)

 '(5)Give the control a caption
 cbcCutomMenu.Caption = "&New Menu"

288 | Chapter 7, Macro Hacks

#119 Distribute Macros
HACK

 '(6)Working with our new control, add a sub control and _
 give it a caption and tell it which macro to run (OnAction).
 With cbcCutomMenu.Controls.Add(Type:=msoControlButton)
 .Caption = "Menu 1"
 .OnAction = "MyMacro1"
 End With

 '(6a)Add another sub control and give it a caption _
 and tell it which macro to run (OnAction)
 With cbcCutomMenu.Controls.Add(Type:=msoControlButton)
 .Caption = "Menu 2"
 .OnAction = "MyMacro2"
 End With
 'Repeat step "6a" for each menu item you want to add.

 'Add another menu that will lead off to another menu
 'Set a CommandBarControl variable to it
 Set cbcCutomMenu = cbcCutomMenu.Controls.Add(Type:=msoControlPopup)
 ' Give the control a caption
 cbcCutomMenu.Caption = "Ne&xt Menu"

 'Add a control to the sub menu just created above
 With cbcCutomMenu.Controls.Add(Type:=msoControlButton)
 .Caption = "&Charts"
 .FaceId = 420
 .OnAction = "MyMacro2"
 End With

 On Error GoTo 0
End Sub

Sub DeleteMenu()
 On Error Resume Next
 Application.CommandBars("Worksheet Menu Bar").Controls("&New Menu").Delete
 On Error GoTo 0
End Sub

When using the OnAction property, it is possible that you may encounter
problems if there is a macro in the user’s workbook that has the exact same
name as a macro that resides in your add-in. To play it safe, it is often a
good idea to use a method like this:

 With cbcCutomMenu.Controls.Add(Type:=msoControlButton)
 .Caption = "&Charts"
 .FaceId = 420
 .OnAction = ThisWorkbook.Name & "!MyMacro2"
 End With

Delete Rows Based on a Condition #120

Chapter 7, Macro Hacks | 289

HACK

By doing this, you ensure that Excel knows which macro you want run
when the user clicks the button. With these snippets of code, you’ll find it
easy to distribute and use macros to their fullest potential.

H A C K

120
Delete Rows Based on a Condition Hack #120

Use specific criteria to delete rows from your worksheet, with or without the
AutoFilter feature.

One question we are often asked is: “How can I delete rows from my Excel
worksheet based on a specified criteria or condition?” There are a number of
ways you can do this, and this hack presents the two fastest. The first (using
the AutoFilter) is the fastest by far.

Both examples are based on your data being in a contiguous
range with the criteria/condition you’re looking for in the
relative column of the table you specify. The first row of your
table should be headings.

With AutoFilter
Let’s assume you have some data in a table, set up like Figure 7-12, and you
have applied an AutoFilter in column E to show Administration, Finance,
and Maintenance Departments only.

Figure 7-12. Table set up with Auofilter applied in column E

290 | Chapter 7, Macro Hacks

#120 Delete Rows Based on a Condition
HACK

Now, let’s say you want to delete all rows with the word Finance in the
Department column (Column E). Right-click on the sheet tab, select View
Code, and enter in the following code:

Sub DeleteRowsFastest()
Dim rTable As Range
Dim lCol As long
Dim vCriteria

On Error Resume Next
 'Determine the table range
 With Selection
 If .Cells.Count > 1 Then
 Set rTable = Selection
 Else

 Set rTable = .CurrentRegion
 On Error GoTo 0
 End If
 End With

 'Determine if table range is valid
 If rTable Is Nothing Or rTable.Cells.Count = 1 Or WorksheetFunction. ↵
CountA(rTable) < 2 Then
 MsgBox "Could not determine you table range.", vbCritical, "Ozgrid.com"
 Exit Sub
 End If

 'Get the criteria in the form of text or number.
 vCriteria = Application.InputBox(Prompt:="Type in the criteria that ↵
matching rows should be deleted. " _
 & "If the criteria is in a cell, point to the cell with your mouse ↵
pointer", _
 Title:="CONDITIONAL ROW DELETION CRITERIA", Type:=1 + 2)

 'Go no further if they Cancel.
 If vCriteria = "False" Then Exit Sub

 'Get the relative column number where the criteria should be found
 lCol = Application.InputBox(Prompt:="Type in the relative number of the ↵
column where " _
 & "the criteria can be found.", Title:="CONDITIONAL ROW DELETION COLUMN ↵
NUMBER", Type:=1)

 'Cancelled
 If lCol = 0 Then Exit Sub

 'Remove any existing AutoFilters
 ActiveSheet.AutoFilterMode = False

 'Filter table based on vCriteria using the relative column position ↵
stored in lCol.

Delete Rows Based on a Condition #120

Chapter 7, Macro Hacks | 291

HACK

 rTable.AutoFilter Field:=lCol, Criteria1:=vCriteria

 'Delete all rows that are NOT hidden by AutoFilter.
 rTable.Offset(1, 0).SpecialCells(xlCellTypeVisible).EntireRow.Delete

 'Remove AutoFilters
 ActiveSheet.AutoFilterMode = False
 On Error GoTo 0
End Sub

Close the window to get back to your worksheet, and then save your work-
book. Now, select any single cell in your table and select Developer ➝ Code
options ➝ Macros (pre-2007, Tools ➝ Macros) or press Alt/Option-F8.

To run the code, select the macro name DeleteRowsFastest() and press Run.
You will be asked to select your criteria by clicking a cell within your table,
so select a cell in column E (Departments) containing the word Finance and
click OK. Then, you will be asked which column in the table your criteria
resides in. Enter the number 5 as the criteria, because Finance resides in the
fifth column of the table. Click OK. Once you have made both selections,
the code will run and will remove all rows with the desired criteria in them.

The code will remove the AutoFilters after deleting the
required rows.

Without AutoFilter
Using the previous code is the fastest and cleanest way to delete rows based
on criteria. It is also the most useful way, because most times you would
want to remove data after an AutoFilter has been applied.

But if you don’t have AutoFilters applied to your table, you can use the fol-
lowing code to do the same thing.

Right-click on the sheet tab, select View Code, and enter the following code:

Sub DeleteRowsSecondFastest()
Dim rTable As Range
Dim rCol As Range, rCell As Range
Dim lCol As Long
Dim xlCalc As XlCalculation
Dim vCriteria

On Error Resume Next
 'Determine the table range
 With Selection
 If .Cells.Count > 1 Then
 Set rTable = Selection
 Else

292 | Chapter 7, Macro Hacks

#120 Delete Rows Based on a Condition
HACK

 Set rTable = .CurrentRegion
 On Error GoTo 0
 End If
 End With

 'Determine if table range is valid
 If rTable Is Nothing Or rTable.Cells.Count = 1 Or WorksheetFunction. ↵
CountA(rTable) < 2 Then
 MsgBox "Could not determine you table range.", vbCritical, "Ozgrid.com"
 Exit Sub
 End If

 'Get the criteria in the form of text or number.
 vCriteria = Application.InputBox(Prompt:="Type in the criteria that ↵
matching rows should be deleted. " _
 & "If the criteria is in a cell, point to the cell with your mouse ↵
pointer", _
 Title:="CONDITIONAL ROW DELETION CRITERIA", Type:=1 + 2)

 'Go no further if they Cancel.
 If vCriteria = "False" Then Exit Sub

 'Get the relative column number where the criteria should be found
 lCol = Application.InputBox(Prompt:="Type in the relative number of the ↵
column where " _
 & "the criteria can be found.", Title:="CONDITIONAL ROW DELETION COLUMN ↵
NUMBER", Type:=1)

 'Cancelled
 If lCol = 0 Then Exit Sub

 'Set rCol to the column where criteria should be found
 Set rCol = rTable.Columns(lCol)
 'Set rCell to the first data cell in rCol
 Set rCell = rCol.Cells(2, 1)

 'Store current Calculation then switch to manual.
 xlCalc = Application.Calculation
 Application.Calculation = xlCalculationManual

 'Loop and delete as many times as vCriteria exists in rCol
 For lCol = 1 To WorksheetFunction.CountIf(rCol, vCriteria)
 Set rCell = rCol.Find(What:=vCriteria, After:=rCell, LookIn: ↵
=xlValues, _
 LookAt:=xlWhole, SearchOrder:=xlByRows, SearchDirection:=xlNext, _
 MatchCase:=False).Offset(-1, 0)
 rCell.Offset(1, 0).EntireRow.Delete
 Next lCol

 'Put back calculation to how it was.
 Application.Calculation = xlCalc
 On Error GoTo 0
End Sub

Track and Report Changes in Excel #121

Chapter 7, Macro Hacks | 293

HACK

Close the window to get back to your worksheet, and then save your work-
book.

Now, select any single cell in your table and select Developer ➝ Code ➝

Macros (pre-2007, Tools ➝ Macros) or press Alt/Option-F8. To run the
code, select the macro name DeleteRowsSecondFastest() and press Run.

H A C K

121
Track and Report Changes in Excel Hack #121

To overcome the limitations of the Track Changes feature, you can employ
some help from Excel VBA and Excel’s Change Events feature.

If you want to track any changes that either you or someone else has made
to your data, you can use Excel’s Track Changes feature, under Review ➝

Changes (pre-2007, Tools ➝ Track Changes). However, by doing it this way
this function has a couple of drawbacks. When Track Changes is enabled,
you are forced to share the workbook, whether you want to or not. Also,
Track Changes makes many standard Excel features unavailable. We can
easily conquer this problem with some code.

Be aware that this code is designed to track and record user
changes only one cell at a time.

Track Changes on a Particular Worksheet
For this to work, you need to have a workbook with two worksheets. Sheet1
contains the data to which you want to track and record any changes made,
such as in Figure 7-13. Sheet 2 will contain a list of the tracked changes
when we run the code.

To track user changes on a single worksheet, place the following code in the
Private module of the worksheet where you would like changes tracked and
logged (remember, we have used Sheet1). To get there easily, right-click on
the sheet name tab, choose View Code, and paste the following code:

Dim vOldVal 'Must be at top of module
Private Sub Worksheet_Change(ByVal Target As Range)
Dim bBold As Boolean

If Target.Cells.Count > 1 Then Exit Sub
On Error Resume Next

 With Application
 .ScreenUpdating = False
 .EnableEvents = False
 End With

294 | Chapter 7, Macro Hacks

#121 Track and Report Changes in Excel
HACK

 If IsEmpty(vOldVal) Then vOldVal = "Empty Cell"
 bBold = Target.HasFormula
 With Sheet2
 .Unprotect Password:="Secret"
 If .Range("A1") = vbNullString Then
 .Range("A1:E1") = Array("CELL CHANGED", "OLD VALUE", _
 "NEW VALUE", "TIME OF CHANGE", "DATE OF CHANGE")
 End If

 With .Cells(.Rows.Count, 1).End(xlUp)(2, 1)
 .Value = Target.Address
 .Offset(0, 1) = vOldVal
 With .Offset(0, 2)
 If bBold = True Then
 .ClearComments
 .AddComment.Text Text:= _
 "OzGrid.com:" & Chr(10) & "" & Chr(10) & _
 "Bold values are the results of formulas"
 End If
 .Value = Target
 .Font.Bold = bBold
 End With

 .Offset(0, 3) = Time
 .Offset(0, 4) = Date
 End With
 .Cells.Columns.AutoFit
 .Protect Password:="Secret"
 End With
 vOldVal = vbNullString

Figure 7-13. Data to be tracked

Track and Report Changes in Excel #121

Chapter 7, Macro Hacks | 295

HACK

 With Application
 .ScreenUpdating = True
 .EnableEvents = True
 End With

On Error GoTo 0
End Sub

Private Sub Worksheet_SelectionChange(ByVal Target As Range)
 vOldVal = Target
End Sub

Now double-click on Sheet2 in the VBA Project window. Ensure Sheet2 has
a Sheet CodeName of Sheet2, which will be shown next to Name in the Proper-
ties window of the VBE. This worksheet should also be set to xlVeryHidden
by selecting it from the drop-down menu next to Visible in the Properties
window of the VBE. This will make sure that other users are not able to
modify the report.

The code also protects Sheet2 with the password Secret. While worksheet
protection is applied to Sheet2, Excel’s worksheet protection is rather weak,
so hiding of the sheet is an added measure, especially if you lock the Visual
Basic Editor, which will ensure macro code is not visible to end users and to
a point protects your intellectual property.

Exit the VBE and save your workbook.

Next time you open your workbook and make any changes to Sheet1, the
changes will be recorded in Sheet2, in the format shown in Figure 7-14.
Remember, though, you can only unhide Sheet2 by setting the Visible prop-
erty of Sheet2 to xlSheetVisible.

Track Changes on All Worksheets in One Workbook
Using similar code, you can also track changes on all worksheets in a given
workbook. Like the previous example, this code places the tracked changes
on Sheet2 of the workbook. Sheet2 must therefore have a codename of
Sheet2 and should be set to xlVeryHidden.

Figure 7-14. Sheet2 showing record of changes to Sheet1

296 | Chapter 7, Macro Hacks

#121 Track and Report Changes in Excel
HACK

However, this code must be placed in the Workbook module (ThisWorkbook) of
the workbook. Right-click on the sheet name tab, choose View Code, dou-
ble-click on ThisWorkbook in the Project window of the VBE, and paste the
following code:

Dim vOldVal 'Must be at top of module

Private Sub Workbook_SheetChange(ByVal Sh As Object, ByVal Target As Range)
Dim bBold As Boolean

If Target.Cells.Count > 1 Then Exit Sub
On Error Resume Next

 With Application
 .ScreenUpdating = False
 .EnableEvents = False
 End With

 If IsEmpty(vOldVal) Then vOldVal = "Empty Cell"
 bBold = Target.HasFormula
 With Sheet2
 .Unprotect Password:="Secret"
 If .Range("A1") = vbNullString Then
 .Range("A1:E1") = Array("CELL CHANGED", "OLD VALUE", _
 "NEW VALUE", "TIME OF CHANGE", "DATE OF CHANGE")
 End If

 With .Cells(.Rows.Count, 1).End(xlUp)(2, 1)

 .Value = "'" & Sh.Name & "'!" & Target.Address
 .Offset(0, 1) = vOldVal
 With .Offset(0, 2)
 If bBold = True Then
 .ClearComments
 .AddComment.Text Text:= _
 "OzGrid.com:" & Chr(10) & "" & Chr(10) & _
 "Bold values are the results of formulas"
 End If
 .Value = Target
 .Font.Bold = bBold
 End With

 .Offset(0, 3) = Time
 .Offset(0, 4) = Date
 End With
 .Cells.Columns.AutoFit
 .Protect Password:="Secret"
 End With
 vOldVal = vbNullString

 With Application

Automatically Add Date/Time to a Cell upon Entry #122

Chapter 7, Macro Hacks | 297

HACK

 .ScreenUpdating = True
 .EnableEvents = True
 End With

On Error GoTo 0

End Sub

Private Sub Workbook_SheetSelectionChange(ByVal Sh As Object, ByVal Target
As Range)
 vOldVal = Target
End Sub

Again, exit the VBE and save and close your workbook.

When you open your workbook, make sure you enable macros to run the
code, and any changes you make to any of the worksheets in the workbook
will be tracked and recorded on Sheet2 in the same format as Figure 7-14,
except that this code will also record the sheet name as well as the cell refer-
ence in column A.

H A C K

122
Automatically Add Date/Time to a Cell upon Entry Hack #122

Enter a static date, or date and time, into a corresponding cell after data is
entered into other cells.

You can easily automate the insertion of date/time information into a cell by
using the TODAY() or NOW() function, but if the date entered must be static,
you’ll need this hack.

Let’s suppose you’ve set up some data and you want the current date
entered into column B when data is entered in column A in the same row.

Add the following code to the Private module of the worksheet that will
store the data and corresponding date. To quickly get there from Excel,
right-click on the sheet name tab, choose View Code, and paste the follow-
ing code:

Private Sub Worksheet_Change(ByVal Target As Range)
 If Target.Cells.Count > 1 Then Exit Sub
 If Not Intersect(Target, Range("A2:A100")) Is Nothing Then
 With Target(1, 2)
 .Value = Date
 .EntireColumn.AutoFit
 End With
 End If
End Sub

Exit the VBE and save your workbook.

298 | Chapter 7, Macro Hacks

#123 Create a List of Workbook Hyperlinks
HACK

Now, test it by adding any data to any cell in the range A2:A100. You will
see the current date appear in the corresponding cell of B2:B100, as shown
in Figure 7-15.

To get both the current date and time use .Value = Now as opposed to .Value
= Date. For only the time, use .Value = Time. If you want to hardcode the
date in only a few instances, you can use the Ctrl-: shortcut (hold down the
Ctrl key and press the colon key).

H A C K

123
Create a List of Workbook Hyperlinks Hack #123

Use a bit of Excel VBA macro code to create a list of hyperlinked Excel
workbook names on any Excel worksheet.

Using the code in this hack, you can get Excel to create a list of all hyper-
linked files in an Excel workbook, which is a great tool if you have a large
workbook with many hyperlinks in it and you want to see at a glance where
the hyperlinks go. If you prefer, you can even restrict the list of hyperlinks to
a specific workbook by specifying the workbook name in the part of the
code that reads .Filename = "Book*.xls".

This hack also works with Excel versions 2000–2003.

The code uses the MsoFileType constant msoFileTypeExcelWorkbooks and is
therefore restricted to Excel workbooks only (a .MSO file is a Microsoft
Office file type), but you could adapt the code to record any of the follow-
ing MsoFileType constants:

msoFileTypeAllFiles
msoFileTypeBinders

Figure 7-15. All entries in column A result in today’s date being shown in column B

Create a List of Workbook Hyperlinks #123

Chapter 7, Macro Hacks | 299

HACK

msoFileTypeCalendarItem
msoFileTypeContactItem
msoFileTypeCustom
msoFileTypeDatabases
msoFileTypeDataConnectionFiles
msoFileTypeDesignerFiles
msoFileTypeDocumentImagingFiles
msoFileTypeExcelWorkbooks
msoFileTypeJournalItem
msoFileTypeMailItem
msoFileTypeNoteItem
msoFileTypeOfficeFiles
msoFileTypeOutlookItems
msoFileTypePhotoDrawFiles
msoFileTypePowerPointPresentations
msoFileTypeProjectFiles
msoFileTypePublisherFiles
msoFileTypeTaskItem
msoFileTypeTemplates
msoFileTypeVisioFiles
msoFileTypeWebPages
msoFileTypeWordDocuments

The Code
To insert the code, right-click on your worksheet name, select View Code,
go to Insert ➝ Module, and paste the following:

Remember to change the file paths to suit your own
environment.

Sub HyperlinkXLSFiles()

Dim lCount As Long

Application.ScreenUpdating = False
Application.DisplayAlerts = False
Application.EnableEvents = False

'On Error Resume Next
 With Application.FileSearch
 .NewSearch

 'Change path to suit

300 | Chapter 7, Macro Hacks

#124 Advanced Find
HACK

 .LookIn = "C:\OzGrid Likom\Testings\"
 .FileType = msoFileTypeExcelWorkbooks

 ' .Filename = "Book*.xls"
 If .Execute > 0 Then 'Workbooks in folder
 For lCount = 1 To .FoundFiles.Count 'Loop through all.
 ActiveSheet.Hyperlinks.Add Anchor:=Cells(lCount, 1), ↵
Address:= _
 .FoundFiles(lCount), TextToDisplay:= _
 Replace(.FoundFiles(lCount), "C:\OzGrid Likom\ ↵
Testings\", "")
'Change path to suit
 Next lCount
 End If
 End With

 On Error GoTo 0

 Application.ScreenUpdating = True
 Application.DisplayAlerts = True
 Application.EnableEvents = True

End Sub

Exit and return to Excel proper, and save your workbook.

Running the Hack
To run the code, make sure you have a clean worksheet. Then, select Tools
➝ Macros or press Alt/Option-F8, select the macro, and press Run.

Ensure the active worksheet at the time of running the code
is clean, to avoid overwriting existing data.

As shown in Figure 7-16, a list of hyperlinks will be created for you to copy,
paste, change, or do whatever you like with!

H A C K

124
Advanced Find Hack #124

Allow a user to specify more than one item to locate with the Find feature by
using some code and a UserForm.

The standard Excel Find feature is great for locating matching cells. How-
ever, by default, it cannot be used to locate, say, three matching cells on the
same row within a table. This hack removes this limitation of the Find fea-
ture, allowing the user to specify more than one item to locate.

Advanced Find #124

Chapter 7, Macro Hacks | 301

HACK

If you have a large table of data (say, A1:H1000), you might want to find a
specific row in that table where three or more items exist.

The number of items can be greater or smaller than three,
but we’ll use three for this example.

The UserForm
To begin, you’ll need to create a UserForm. Right-click on the sheet tab and
select View Code, or press Alt/Option-F11. Then, select Insert ➝ UserForm
and insert three ComboBoxes (named ComboBox1, ComboBox2, and
ComboBox3) from the Controls toolbox that pops up (select View ➝ Tools
if it doesn’t). Place them vertically on the left side of UserForm with
ComboBox1 at the top and ComboBox3 at the bottom. Set the Enabled
property of ComboBox2 and ComboBox3 to False.

Figure 7-16. List of created hyperlinks

302 | Chapter 7, Macro Hacks

#124 Advanced Find
HACK

Now for some labels. Insert five labels, again from the Controls toolbox,
named Label1 (positioned above ComboBox1), Label2 (positioned above
ComboBox2), Label3 (positioned above ComboBox3), Label4 (positioned
above Label1), and Label5 (anywhere for now). Change the Caption prop-
erty of Label4 to read “Select up to 3 fields” and “Matching Rows. Double
click to go there” for Label5.

From the Controls toolbox, insert two CommandButtons: CommandButton1
and CommandButton2. Change the Caption property to “Find” for
CommandButton1 and “Close” for CommandButton2. Position both of
these at the top right of the UserForm.

Now, underneath the Find and Close buttons, insert a ListBox (named
ListBox1) and place Label5 above it. Make the ListBox1 the same width as
Label5, but make it as long as your UserForm will allow.

Your form should look like Figure 7-17.

The Code
That’s all you need to create the form. Now, it’s time to add the all-impor-
tant code. Double-click the UserForm and add this code:

Option Explicit

'Module Level Variables
Dim rRange As Range
Dim strFind1 As String
Dim strFind2 As String
Dim strFind3 As String

Figure 7-17. UserForm showing Controls

Advanced Find #124

Chapter 7, Macro Hacks | 303

HACK

Private Sub ComboBox1_Change()
 'Pass chosen value to String variable strFind1
 strFind1 = ComboBox1
 'Enable ComboBox2 only if value is chosen
 ComboBox2.Enabled = Not strFind1 = vbNullString
End Sub

Private Sub ComboBox2_Change()
 'Pass chosen value to String variable strFind1
 strFind2 = ComboBox2
 'Enable ComboBox3 only if value is chosen
 ComboBox3.Enabled = Not strFind2 = vbNullString
End Sub

Private Sub ComboBox3_Change()
 'Pass chosen value to String variable strFind1
 strFind3 = ComboBox3
End Sub

Private Sub CommandButton1_Click()
'Procedure level variables
Dim lCount As Long
Dim lOccur As Long
Dim rCell As Range
Dim rCell2 As Range
Dim rCell3 As Range
Dim bFound As Boolean

 'At least one value, from ComboBox1 must be chosen
 If strFind1 & strFind2 & strFind3 = vbNullString Then
 MsgBox "No items to find chosen", vbCritical
 Exit Sub 'Go no further
 ElseIf strFind1 = vbNullString Then
 MsgBox "A value from " & Label1.Caption _
 & " must be chosen", vbCritical
 Exit Sub 'Go no further
 End If

'Clear any old entries
On Error Resume Next
ListBox1.Clear
On Error GoTo 0

'If String variable are empty pass the wildcard character
If strFind2 = vbNullString Then strFind2 = "*"
If strFind3 = vbNullString Then strFind3 = "*"

'Set range variable to first cell in table.
Set rCell = rRange.Cells(1, 1)
'Pass the number of times strFind1 occurs
lOccur = WorksheetFunction.CountIf(rRange.Columns(1), strFind1)

304 | Chapter 7, Macro Hacks

#124 Advanced Find
HACK

 'Loop only as many times as strFind1 occurs
 For lCount = 1 To lOccur
 'Set the range variable to the found cell. This is then also _
 used to start the next Find from (After:=rCell)
 Set rCell = rRange.Columns(1).Find(What:=strFind1, After:=rCell, _
 LookIn:=xlValues, LookAt:=xlWhole, SearchOrder:=xlByRows, _
 SearchDirection:=xlNext, MatchCase:=False)
 'Check each find to see if strFind2 and strFind3 occur _
 on the same row.
 If rCell(1, 2) Like strFind2 And rCell(1, 3) Like strFind3 Then
 bFound = True 'Used to not show message box for no value found.
 'Add the address of the found cell and the cell on the _
 same row but 2 columns to the right.
 ListBox1.AddItem rCell.Address & ":" & rCell(1, 3).Address
 End If
 Next lCount

If bFound = False Then 'No match
 MsgBox "Sorry, no matches", vbOKOnly
End If
End Sub

Private Sub CommandButton2_Click()
'Close UserForm
Unload Me
End Sub

Private Sub ListBox1_DblClick(ByVal Cancel As MSForms.ReturnBoolean)
'Check for range addresses
If ListBox1.ListCount = 0 Then Exit Sub
'GoTo doubled clicked address
Application.Goto Range(ListBox1.Text), True
End Sub

Private Sub UserForm_Initialize()
'Procedure level module
Dim lRows As Long

'Set Module level range variable to CurrentRegion _
of the Selection
Set rRange = Selection.CurrentRegion
 If rRange.Rows.Count < 2 Then ' Only 1 row
 MsgBox "Please select any cell in your table first", vbCritical
 Unload Me 'Close Userform
 Exit Sub
 Else

 With rRange
 'Set Label Captions to the Table headings
 Label1.Caption = .Cells(1, 1)
 Label2.Caption = .Cells(1, 2)
 Label3.Caption = .Cells(1, 3)

Advanced Find #124

Chapter 7, Macro Hacks | 305

HACK

 'Set RowSource of ComboBoxes to the appropriate columns _
 inside the table
 ComboBox1.RowSource = .Columns(1).Offset(1, 0).Address
 ComboBox2.RowSource = .Columns(2).Offset(1, 0).Address
 ComboBox3.RowSource = .Columns(3).Offset(1, 0).Address
 End With
 End If
End Sub

Private Sub UserForm_Terminate()
'Destroy Module level variables
Set rRange = Nothing
strFind1 = vbNullString
strFind2 = vbNullString
strFind3 = vbNullString
End Sub

Finally, insert a Module (Insert ➝ Module) and paste the following code:

Sub ShowForm()
On Error Resume Next
UserForm1.Show
On Error GoTo 0
End Sub

Exit from the VBE and save your workbook.

Running the Hack
To test the code, click inside your table of data and run the code, or you can
attach it to a shortcut key, a button, or assign it to a toolbar.

Shortcut key. Attaching the code to a shortcut key is easily done by selecting
Developer ➝ Macros (pre-2007, Tools ➝ Macros ➝ Macros...) ➝ Options.

Button. If you prefer, you can attach the macro to a button. To add to a but-
ton, just insert a button onto your worksheet, right-click it, select Assign
Macro, and then double-click on your macro name to attach it to the
button.

Toolbar. To add a macro to the Quick Access Toolbar, select the drop-down
menu to the right of the Quick Access Toolbar, and choose More Com-
mands. Under Choose Commands From, select Macros, click on your
macro name (in this case, ShowForm), and select Add. The Modify button at
the bottom of the Quick Access Toolbar pane allows you to change the but-
ton if you like. Click OK when you’ve finished.

306 | Chapter 7, Macro Hacks

#125 Find a Number Between Two Numbers
HACK

In pre-2007 versions, right-click your toolbar, select Custom-
ize ➝ Commands ➝ Macros ➝ Custom Button and drag to
your toolbar. When you do this, the Modify Selection but-
ton will become active, allowing you to change button style
if desired. Click Close when finished.

In Figure 7-18, we have attached the ShowForm macro to a button and called
it Find.

Try it and you will see how easy and useful it can be to identify your speci-
fied criteria.

H A C K

125
Find a Number Between Two Numbers Hack #125

Enhance Excel’s Find feature to search for the first occurrence of a number
that falls between two specified numbers.

Like all Microsoft Office applications, Excel has a Find feature to help locate
a specified value or text string in a range, worksheet, or workbook. How-
ever, no such feature exists to find the first occurrence of a number that is
between an arbitrary minimum and a maximum number. This hack pro-
vides some Excel VBA macro code to do just that.

Many people would go with a loop to get a number between
a nominated range, but that can be extremely slow and hor-
ribly inefficient if the worksheet contain thousands of used
cells. The method in this hack makes use of the SpecialCells
method to check numeric cells only.

Figure 7-18. Advanced Find in action

Find a Number Between Two Numbers #125

Chapter 7, Macro Hacks | 307

HACK

The code works in the same way as the standard Find feature does. That is,
it searches all cells on the worksheet if only a single cell is selected or only
the selected cells if more than one cell is selected.

It searches by rows, locating and selecting the first cell that has a value
between (not equal to) the specified minimum and maximum.

For this example, let’s begin with some data, as shown in Figure 7-19.

The Code
Right-click on the sheet tab of the worksheet and select View Code ➝ Insert
➝ Module. In the new module, paste the following code:

Sub GetBetween()
Dim strNum As String
Dim lMin As Long, lMax As Long
Dim rFound As Range, rLookin As Range
Dim lFound As Long, rStart As Range
Dim rCcells As Range, rFcells As Range
Dim lCellCount As Long, lcount As Long
Dim bNoFind As Boolean

 strNum = InputBox("Please enter the lowest value, then a comma, " _
 & "followed by the highest value" & vbNewLine & _
 vbNewLine & "E.g. 1,10", "GET BETWEEN")

 If strNum = vbNullString Then Exit Sub
 On Error Resume Next
 lMin = Left(strNum, InStr(1, strNum, ","))

Figure 7-19. Data of mixed numbers in range A1:J17

308 | Chapter 7, Macro Hacks

#125 Find a Number Between Two Numbers
HACK

 If Not IsNumeric(lMin) Or lMin = 0 Then
 MsgBox "Error in your entering of numbers, or Min was a zero", ↵
vbCritical, "Ozgrid.com"
 Exit Sub
 End If

 lMax = Replace(strNum, lMin & ",", "")
 If Not IsNumeric(lMax) Or lMax = 0 Then
 MsgBox "Error in your entering of numbers, or Max was a zero", ↵
vbCritical, "Ozgrid.com"
 Exit Sub
 End If

 If lMax < lMin Then
 MsgBox "Min is greater than Max", vbCritical, "Ozgrid.com"
 Exit Sub
 End If

 If lMin + 1 = lMax Then
 MsgBox "No scope between Min and Max", vbCritical, "Ozgrid.com"
 Exit Sub
 End If

 If Selection.Cells.Count = 1 Then
 Set rCcells = Cells.SpecialCells(xlCellTypeConstants, xlNumbers)
 Set rFcells = Cells.SpecialCells(xlCellTypeFormulas, xlNumbers)
 Set rStart = Cells(1, 1)
 Else
 Set rCcells = Selection.SpecialCells(xlCellTypeConstants, ↵
xlNumbers)
 Set rFcells = Selection.SpecialCells(xlCellTypeFormulas, ↵
xlNumbers)
 Set rStart = Selection.Cells(1, 1)
 End If

 'Reduce down range to look in
 If rCcells Is Nothing And rFcells Is Nothing Then
 MsgBox "Your Worksheet contains no numbers", vbCritical, "ozgrid. ↵
com"
 Exit Sub
 ElseIf rCcells Is Nothing Then
 Set rLookin = rFcells.Cells 'formulas
 ElseIf rFcells Is Nothing Then
 Set rLookin = rCcells.Cells 'constants
 Else
 Set rLookin = Application.Union(rFcells, rCcells) 'Both
 End If

 lCellCount = rLookin.Cells.Count
 Do Until lFound > lMin And lFound < lMax And lFound > 0
 lFound = 0

Find a Number Between Two Numbers #125

Chapter 7, Macro Hacks | 309

HACK

 Set rStart = rLookin.Cells.Find(What:="*", After:=rStart, ↵
LookIn:=xlValues, _
 LookAt:=xlWhole, SearchOrder:=xlByRows, _
 SearchDirection:=xlNext, MatchCase:=True)
 lFound = rStart.Value
 lcount = lcount + 1
 If lCellCount = lcount Then
 bNoFind = True
 Exit Do
 End If
 Loop

 rStart.Select

 If bNoFind = True Then
 MsgBox "No numbers between " _
 & lMin & " and " & lMax, vbInformation, "Ozgrid.com"
 End If
 On Error GoTo 0
End Sub

Close the VBE, return to Excel proper, and save your workbook.

Running the Hack
To run the code, press Alt/Option-F8, select the macro, and press Run. The
GETBETWEEN dialog will pop up (as shown in Figure 7-20) and ask you to
“Please enter the lowest value, then a comma, followed by the highest value.”
Enter 1,10 and click OK. The number 2 will be highlighted because the num-
ber 2 is the first cell that has a value between (not equal to) the specified min-
imum (1) and maximum (10).

Figure 7-20. GETBETWEEN dialog showing the lowest value and highest value

310 | Chapter 7, Macro Hacks

#126 Convert Formula References from Relative to Absolute
HACK

This code will not locate a zero value.

H A C K

126
Convert Formula References from Relative to
Absolute Hack #126

Change absolute formula references to relative references, vice versa, or a
mix of absolute and relative columns and rows.

Wouldn’t it be nice if you could easily convert your Excel formula refer-
ences from absolute to relative and/or relative to absolute? Using the two
methods in this hack, you can. You can even convert to a mix of relative
row/absolute column references or absolute row/relative column references.

The fastest way works on less complicated formulas, but you’ll need the sec-
ond with mega and/or array formulas.

Less Complicated Formulas
Using the following code is the fastest method, but it can cause problems
when used with more complicated formulas.

As with any code, always save your workbook before run-
ning the code.

The code. Right-click on your sheet tab and select View Code (pre-2007,
Tools ➝ Macro ➝ Visual Basic Editor) or press Alt/Option-F11. To insert the
following code into a standard module, select Insert ➝ Module:

Sub MakeAbsoluteorRelativeFast()
'Written by OzGrid Business Applications
'www.ozgrid.com

Dim RdoRange As Range
Dim i As Integer
Dim Reply As String

 'Ask whether Relative or Absolute
 Reply = InputBox("Change formulas to?" & Chr(13) & Chr(13) _
 & "Relative row/Absolute column = 1" & Chr(13) _
 & "Absolute row/Relative column = 2" & Chr(13) _
 & "Absolute all = 3" & Chr(13) _
 & "Relative all = 4", "OzGrid Business Applications")

 'They cancelled

Convert Formula References from Relative to Absolute #126

Chapter 7, Macro Hacks | 311

HACK

 If Reply = "" Then Exit Sub

 On Error Resume Next
 'Set Range variable to formula cells only
 Set RdoRange = Selection.SpecialCells(Type:=xlFormulas)

 'determine the change type
 Select Case Reply
 Case 1 'Relative row/Absolute column
 For i = 1 To RdoRange.Areas.Count
 RdoRange.Areas(i).Formula = _
 Application.ConvertFormula _
 (Formula:=RdoRange.Areas(i).Formula, _
 FromReferenceStyle:=xlA1, _
 ToReferenceStyle:=xlA1, ToAbsolute:=xlRelRowAbsColumn)
 Next i

 Case 2 'Absolute row/Relative column
 For i = 1 To RdoRange.Areas.Count
 RdoRange.Areas(i).Formula = _
 Application.ConvertFormula _
 (Formula:=RdoRange.Areas(i).Formula, _
 FromReferenceStyle:=xlA1, _
 ToReferenceStyle:=xlA1, ToAbsolute:=xlAbsRowRelColumn)
 Next i

 Case 3 'Absolute all
 For i = 1 To RdoRange.Areas.Count
 RdoRange.Areas(i).Formula = _
 Application.ConvertFormula _
 (Formula:=RdoRange.Areas(i).Formula, _
 FromReferenceStyle:=xlA1, _
 ToReferenceStyle:=xlA1, ToAbsolute:=xlAbsolute)
 Next i

 Case 4 'Relative all
 For i = 1 To RdoRange.Areas.Count
 RdoRange.Areas(i).Formula = _
 Application.ConvertFormula _
 (Formula:=RdoRange.Areas(i).Formula, _
 FromReferenceStyle:=xlA1, _
 ToReferenceStyle:=xlA1, ToAbsolute:=xlRelative)
 Next i

 Case Else 'Typo
 MsgBox "Change type not recognised!", vbCritical, _
 "OzGrid Business Applications"
 End Select

 'Clear memory
 Set RdoRange = Nothing
End Sub

312 | Chapter 7, Macro Hacks

#126 Convert Formula References from Relative to Absolute
HACK

Now, click the top-right X (or press Alt/c-Q) to get back to Excel proper,
and then save your workbook.

Running the hack. To run the code, select the range of cells you want to
change, press Alt/Option-F8, select the macro name, and click Run. A dia-
log will pop up, giving you four options, as shown in Figure 7-21.

Depending on the result you are looking for, you will make a selection of 1,
2, 3, or 4, then click OK and your formula will be converted to comply with
your selection.

There is no “Undo” option after you have run this macro.

Mega or Array Formulas
This method is slightly slower, but it’s less likely to cause problems with
more complicated code.

The code. Enter the following code by right-clicking on your sheet tab and
selecting View Code (pre-2007, Tools ➝ Macro ➝ Visual Basic Editor) or
pressing Alt/Option-F11, then selecting Insert ➝ Module and pasting this
code:

Sub MakeAbsoluteorRelativeSlow()
 'Written for www.ozgrid.com
 'By Andy Pope
 'www.andypope.info/

Figure 7-21. Dialog showing choices of absolute/mixed/relative references

Convert Formula References from Relative to Absolute #126

Chapter 7, Macro Hacks | 313

HACK

 Dim RdoRange As Range, rCell As Range
 Dim i As Integer
 Dim Reply As String

 'Ask whether Relative or Absolute
 Reply = InputBox("Change formulas to?" & Chr(13) & Chr(13) _
 & "Relative row/Absolute column = 1" & Chr(13) _
 & "Absolute row/Relative column = 2" & Chr(13) _
 & "Absolute all = 3" & Chr(13) _
 & "Relative all = 4", "OzGrid Business Applications")

 'They cancelled
 If Reply = "" Then Exit Sub

 On Error Resume Next
 'Set Range variable to formula cells only
 Set RdoRange = Selection.SpecialCells(Type:=xlFormulas)

 'determine the change type
 Select Case Reply
 Case 1 'Relative row/Absolute column

 For Each rCell In RdoRange
 If rCell.HasArray Then
 If Len(rCell.FormulaArray) < 255 Then
 rCell.FormulaArray = _
 Application.ConvertFormula _
 (Formula:=rCell.FormulaArray, _
 FromReferenceStyle:=xlA1, _
 ToReferenceStyle:=xlA1, ToAbsolute:=xlRelRowAbsColumn)
 End If
 Else
 If Len(rCell.Formula) < 255 Then
 rCell.Formula = _
 Application.ConvertFormula _
 (Formula:=rCell.Formula, _
 FromReferenceStyle:=xlA1, _
 ToReferenceStyle:=xlA1, ToAbsolute:=xlRelRowAbsColumn)
 End If
 End If
 Next rCell

 Case 2 'Absolute row/Relative column
 For Each rCell In RdoRange
 If rCell.HasArray Then
 If Len(rCell.FormulaArray) < 255 Then
 rCell.FormulaArray = _
 Application.ConvertFormula _
 (Formula:=rCell.FormulaArray, _
 FromReferenceStyle:=xlA1, _
 ToReferenceStyle:=xlA1, ToAbsolute:=xlAbsRowRelColumn)
 End If
 Else

314 | Chapter 7, Macro Hacks

#126 Convert Formula References from Relative to Absolute
HACK

 If Len(rCell.Formula) < 255 Then
 rCell.Formula = _
 Application.ConvertFormula _
 (Formula:=rCell.Formula, _
 FromReferenceStyle:=xlA1, _
 ToReferenceStyle:=xlA1, ToAbsolute:=xlAbsRowRelColumn)
 End If
 End If
 Next rCell

 Case 3 'Absolute all
 For Each rCell In RdoRange
 If rCell.HasArray Then
 If Len(rCell.FormulaArray) < 255 Then
 rCell.FormulaArray = _
 Application.ConvertFormula _
 (Formula:=rCell.FormulaArray, _
 FromReferenceStyle:=xlA1, _
 ToReferenceStyle:=xlA1, ToAbsolute:=xlAbsolute)
 End If
 Else
 If Len(rCell.Formula) < 255 Then
 rCell.Formula = _
 Application.ConvertFormula _
 (Formula:=rCell.Formula, _
 FromReferenceStyle:=xlA1, _
 ToReferenceStyle:=xlA1, ToAbsolute:=xlAbsolute)
 End If
 End If
 Next rCell

 Case 4 'Relative all
 For Each rCell In RdoRange
 If rCell.HasArray Then
 If Len(rCell.FormulaArray) < 255 Then
 rCell.FormulaArray = _
 Application.ConvertFormula _
 (Formula:=rCell.FormulaArray, _
 FromReferenceStyle:=xlA1, _
 ToReferenceStyle:=xlA1, ToAbsolute:=xlRelative)
 End If
 Else
 If Len(rCell.Formula) < 255 Then
 rCell.Formula = _
 Application.ConvertFormula _
 (Formula:=rCell.Formula, _
 FromReferenceStyle:=xlA1, _
 ToReferenceStyle:=xlA1, ToAbsolute:=xlRelative)
 End If
 End If
 Next rCell

 Case Else 'Typo

Name a Workbook with the Text in a Cell #127

Chapter 7, Macro Hacks | 315

HACK

 MsgBox "Change type not recognised!", vbCritical, _
 "OzGrid Business Applications"
 End Select

 'Clear memory
 Set RdoRange = Nothing
End Sub

Running the hack. Click the top-right X (or press Alt/c-Q) to get back to
Excel proper, and then save your workbook.

Again, to run the code, select the range of cells you want to change, press
Alt/Option-F8, select the macro name, and click Run. The dialog shown
previously in Figure 7-21 will pop up, again enabling you to make your
selection as required.

If you want to change only one formula, you could toggle
through the four reference types a formula can use by select-
ing the cell that housing the formula, clicking in the For-
mula bar, then clicking inside the reference part of your
formula (e.g., A1, A1) and pressing F4. Each press of F4
will toggle the reference type.

H A C K

127
Name a Workbook with the Text in a Cell Hack #127

When you save your workbook, use the text of a selected cell as your
filename.

It’s quite common for Excel users to want to save an Excel file with a file-
name that corresponds to the text in a worksheet cell. This can be done with
the help of a small amount of code inserted into a module.

Click in cell C1 on the worksheet and enter some text to save. We will use
the codename Sheet1.

The Code
Open the Visual Basic Editor by selecting Developer ➝ Code ➝ Visual Basic,
or right-clicking on the sheet name and selecting View Code (pre-2007,
Tools ➝ Macros ➝ Visual Basic Editor), or pressing Alt/Option-F11.

Select Insert ➝ Module and paste the following code:

Sub SaveAsCell()
Dim strName As String

On Error GoTo InvalidName
 strName = Sheet1.Range("C1")
 ActiveWorkbook.SaveAs strName

316 | Chapter 7, Macro Hacks

#128 Hide and Restore Toolbars in Excel
HACK

Exit Sub
InvalidName: MsgBox "The text: " & strName & _
 " is not a valid file name.", vbCritical, "Ozgrid.com"
End Sub

Now, click the top-right X (or press Alt/c-Q) to get back to Excel proper,
and then save your workbook.

Running the Hack
Click anywhere on your worksheet and select Alt/Option-F8. Then, select
the SaveAsCell macro from the dialog, click Run, and your workbook will
automatically be saved as Sheet1. If you had a name other than Sheet1 in cell
C1, the code will still work and your workbook will be saved as that name.
The only time the code will fail is if you have an invalid filename in cell C1,
as shown in Figure 7-22.

H A C K

128
Hide and Restore Toolbars in Excel Hack #128

Attach a custom toolbar to your spreadsheet that doesn’t get in the way of
the end user’s settings for other spreadsheets when yours is closed.

One of the most exciting parts of Excel is the customizability of its output to
end users. For example, you might build your own custom toolbar to dis-
tribute it with your spreadsheets. However, the golden rule of when/if to
change any part of Excel is to make sure everything for the user goes back to
how it was when the user closes your specific spreadsheet—in other words,
restore the user’s settings!

There are many ways to do this, some of which are extremely complicated
(often unnecessarily). This hack provides a cleaner, less complicated way.

Figure 7-22. Dialog box generated if invalid filename entered in C1

Hide and Restore Toolbars in Excel #128

Chapter 7, Macro Hacks | 317

HACK

Attaching Your Toolbar to the Workbook
Let’s assume you have created a custom toolbar called MyToolbar and, for
some purpose, want to hide all of Excel’s built-in toolbars from the user, dis-
playing only MyToolbar.

Before starting, it is vital that you attach your custom tool-
bar to the workbook that will be using it. This will also stop
users from being able to make changes stick and will ensure
an error-free process.

Here’s how to attach a custom toolbar that takes care of these requirements:

1. Open the workbook that should display the custom toolbar.

2. Right-click on any gray, unused part of any toolbar and select
Customize.

3. On the Toolbars page, check MyToolbar (or the applicable name), to
make it visible.

4. Select Attach, drag your tool toolbar from the Attach Toolbar dialog,
and press Copy.

5. Press OK, then Cancel, and you’re done!

You should now be aware that any changes made to your custom toolbar
will not stick (between closing and reopening the workbook it’s attached to,
unless you first (before any changes) go back to the Attach Toolbar dialog,
select your toolbar, this time from the right side (Toolbars in workbook),
and press Delete. Then, make any changes needed and follow Steps 1
through 5 again.

Coding the Toolbar Show and Restore
The two following macros will display your toolbar (MyToolbar), remove all
native toolbars and, most importantly, restore them for the user when your
spreadsheet is closed.

To insert a standard module, right-click on the sheet name, select View
Code ➝ Insert ➝ Module to insert a Standard Module, and paste the follow-
ing code:

Sub RemoveToolbars()
 On Error Resume Next
 With Application
 .DisplayFullScreen = True

318 | Chapter 7, Macro Hacks

#128 Hide and Restore Toolbars in Excel
HACK

 .CommandBars("Full Screen").Visible = False
 .CommandBars("MyToolbar").Enabled = True
 .CommandBars("MyToolbar").Visible = True
 .CommandBars("Worksheet Menu Bar").Enabled = False
 End With
 On Error GoTo 0
End Sub

Then, insert another module with the following code:

Sub RestoreToolbars()
 On Error Resume Next
 With Application
 .DisplayFullScreen = False
 .CommandBars("MyToolbar").Enabled = False
 .CommandBars("Worksheet Menu Bar").Enabled = True
 End With
 On Error GoTo 0
End Sub

You aren’t quite finished yet! You still need to make sure that both macros
run at the correct time, so you’ll have to place a Run statement in the
Workbook_Activate and Workbook_Deactivate procedures of the Workbook
object (ThisWorkbook). Right-click on the Excel icon (on the top left, next to
File on the worksheet menu bar), select View Code, and insert the following
code:

Private Sub Workbook_Activate()
 Run "RemoveToolbars"
End Sub

Private Sub Workbook_BeforeClose(Cancel As Boolean)
 On Error Resume Next
 Application.CommandBars("MyToolbar").Delete
End Sub

Private Sub Workbook_Deactivate()
 Run "RestoreToolbars"
End Sub

Note the deletion of the custom toolbar when the workbook closes. This is
what prevents any changes from sticking unless you have first deleted it (as
shown previously), made the changes, and then attached it again.

Do not run the Application.CommandBars("MyToolbar").
Delete when the custom toolbar is not attached.

Sort Worksheets #129

Chapter 7, Macro Hacks | 319

HACK

H A C K

129
Sort Worksheets Hack #129

One of the most commonly used functions in Excel, sorting is usually
performed on a list, table, or range of cells, but you can take things a step
further and sort your worksheets as well.

By using some code in an Excel workbook, or an Excel Add-In, you can sort
all sheets in the active workbook, making it easier to locate sheets when you
have many in your workbook.

The Code
Open the workbook for which you want to sort the sheets. Press Alt/Option-
F11 to open the Visual Basic Editor, and insert a module by selecting Insert
➝ Module and entering the following code:

Sub SortSheets()
Dim lCount As Long, lCounted As Long
Dim lShtLast As Long
Dim lReply As Long

lReply = MsgBox("To sort Worksheets ascending, select 'Yes'. " _
& "To sort Worksheets descending select 'No'", vbYesNoCancel, _
"Ozgrid Sheet Sort")
If lReply = vbCancel Then Exit Sub

lShtLast = Sheets.Count

If lReply = vbYes Then 'Sort ascending
 For lCount = 1 To lShtLast
 For lCount2 = lCount To lShtLast
 If UCase(Sheets(lCount2).Name) < UCase(Sheets(lCount).Name) Then
 Sheets(lCount2).Move Before:=Sheets(lCount)
 End If
 Next lCount2
 Next lCount
Else 'Sort descending
 For lCount = 1 To lShtLast
 For lCount2 = lCount To lShtLast
 If UCase(Sheets(lCount2).Name) > UCase(Sheets(lCount).Name) Then
 Sheets(lCount2).Move Before:=Sheets(lCount)
 End If
 Next lCount2
 Next lCount
End If

End Sub

Close the window to get back to your worksheet and save your workbook.

320 | Chapter 7, Macro Hacks

#130 Password-Protect a Worksheet from Viewing
HACK

Running the Hack
To run the code, click in any worksheet, press Alt/Option-F8, select the
macro, and press Run. You will be asked if you want to sort your sheets in
ascending (A – Z) or descending order (Z – A), as shown in Figure 7-23.

H A C K

130
Password-Protect a Worksheet from Viewing Hack #130

Keep prying eyes from viewing a worksheet, unless they have the password.

With the aid of some Excel VBA code placed the Private module of the
workbook object, you can protect a worksheet from viewing by anyone who
doesn’t know the password you select. The code stops after three failed
attempts. A runtime error will occur, you will not be able to view the work-
sheet, and it does not mask the password entry. You’ll need to close and
reopen the workbook to try again.

This method is far from secure and should not be used if the
worksheet contains highly sensitive information. It only
enhances the general worksheet protection and uses the
UserInterfaceOnly option of the Protect method. You
should also protect/lock Excel VBA code.

The code in this hack makes use of the worksheet’s CodeName. The
Workbook_Open procedure ensures that the workbook does not open with the
unviewable worksheet being active.

Figure 7-23. Dialog box presented when running macro to sort worksheets in ascending
or descending order

Password-Protect a Worksheet from Viewing #130

Chapter 7, Macro Hacks | 321

HACK

The Code
Right-click on the sheet tab, select View Code, double-click on
ThisWorksheet, and insert the following code:

Dim sLast As Object

Private Sub Workbook_Open()
 'Ensure Sheet1 is not the active sheet upon opening.
 If Sheet1.Name = ActiveSheet.Name Then Sheet2.Select
End Sub

Private Sub Workbook_SheetActivate(ByVal Sh As Object)
Dim strPass As String
Dim lCount As Long

 If Sh.CodeName <> "Sheet1" Then
 'Set sLast variable to the last active sheet _
 This is then used to return the user to the _
 last sheet they were on if password is not known _
 or they Cancel.
 Set sLast = Sh

 Else
 'Hide Columns
 Sheet1.Columns.Hidden = True
 'Allow 3 attempts at password
 For lCount = 1 To 3
 strPass = InputBox(Prompt:="Password Please", Title: ↵
="PASSWORD REQUIRED")
 If strPass = vbNullString Then 'Cancelled
 sLast.Select
 Exit Sub
 ElseIf strPass <> "Secret" Then 'InCorrect password
 MsgBox "Password incorrect", vbCritical, "Ozgrid.com"
 Else 'Correct Password
 Exit For
 End If
 Next lCount

 If lCount = 4 Then 'They use up their 3 attempts
 sLast.Select
 Exit Sub
 Else 'Allow viewing
 Sheet1.Columns.Hidden = False
 End If
 End If
End Sub

322 | Chapter 7, Macro Hacks

#131 Change Text to Upper- or Proper Case
HACK

The password used in this code is Secret.

Running the Hack
Save and close your workbook and reopen it. To run the code, enable your
macros and then try selecting Sheet1. A blank screen and a dialog will
appear, asking you for the required password. Remember, you only get three
shots at it!

H A C K

131
Change Text to Upper- or Proper Case Hack #131

When using a built-in Excel function is impractical, you can use a custom
macro to change any existing text to uppercase or proper case.

Excel already has two functions that change text to uppercase (all caps), or
proper case (capitalizing the first letter of every word). Let’s say we have the
words hong kong disneyland in cell A1. The existing functions that can be
used to change text are:

=UPPER(A1)
Converts all text in cell A1 to uppercase (all caps), giving the result of
HONG KONG DISNEYLAND

=PROPER(A1)
Converts all text in cell A1 to proper case which would give the result
Hong Kong Disneyland

These functions work well when referring to cells that house the text, but
there are many instances when using the worksheet function approach is not
practical, such as with massive amounts of data. We can fix this with the use
of some simple code that displays a message box asking if we would like to
convert to uppercase or proper case.

The Code
Right-click on your sheet tab, select View Code (or press Alt/Option-F11),
insert a module by selecting Insert ➝ Module, and enter the following code:

Sub ConvertCase()
Dim rAcells As Range, rLoopCells As Range
Dim lReply As Long

 'Set variable to needed cells
 If Selection.Cells.Count = 1 Then
 Set rAcells = ActiveSheet.UsedRange

Change Text to Upper- or Proper Case #131

Chapter 7, Macro Hacks | 323

HACK

 Else
 Set rAcells = Selection
 End If

 On Error Resume Next 'In case of NO text constants.
 'Set variable to all text constants
 Set rAcells = rAcells.SpecialCells(xlCellTypeConstants, xlTextValues)

 If rAcells Is Nothing Then
 MsgBox "Could not find any text."
 On Error GoTo 0
 Exit Sub
 End If

 lReply = MsgBox("Select 'Yes' for UPPER CASE or 'No' for Proper Case.", _
 vbYesNoCancel, "OzGrid.com")
 If lReply = vbCancel Then Exit Sub

 If lReply = vbYes Then ' Convert to Upper Case
 For Each rLoopCells In rAcells
 rLoopCells = StrConv(rLoopCells, vbUpperCase)
 Next rLoopCells
 Else ' Convert to Proper Case
 For Each rLoopCells In rAcells
 rLoopCells = StrConv(rLoopCells, vbProperCase)
 Next rLoopCells
 End If

End Sub

Click the X at the top-right side of the Visual Basic editor to close and return
to Excel, and then save your workbook.

The code uses the STrConv function to convert the text. The StrConv func-
tion can take many forms, so if you want to convert to lowercase, for
instance, you can substitute either vbUpperCase or vbProperCase in the code
with vbLowerCase or any of the alternatives in the following list:

vbUpperCase
Converts the string to uppercase characters

vbLowerCase
Converts the string to lowercase characters

vbProperCase
Converts the first letter of every word in the string to uppercase

vbWide
Converts narrow (single-byte) characters in the string to wide (double-
byte) characters

324 | Chapter 7, Macro Hacks

#132 Force Text to Upper- or Proper Case
HACK

vbNarrow
Converts wide (double-byte) characters in thestring to narrow (single-
byte) characters

vbKatakana
Converts Hiragana characters in the string to Katakana characters

vbHiragana
Converts Katakana characters in the string to Hiragana characters

vbUnicode
Converts the string to Unicode using the default code page of the sys-
tem (not available on the Macintosh)

vbFromUnicode
Converts the string from Unicode to the default code page of the sys-
tem (not available on the Macintosh)

See the Excel VBA help for specifics.

Running the Hack
To run the macro, press Alt/Option-F8, select the macro name, and press
Run.

The macro will run and display a message box that asks if you wish to
change existing text to either uppercase or proper case, and depending on
user selection the code will convert the text.

If you run the macro with only a single cell selected, it will
work on the entire worksheet. If you run the macro with
more than one cell selected, it will work on only your
selection.

H A C K

132
Force Text to Upper- or Proper Case Hack #132

Restrict all future entries in a spreadsheet or range of cells to uppercase or
proper case only.

Rather than convert the existing contents of a spreadsheet to either upper-
case or proper case [Hack #131], you can restrict all future entries to either
uppercase or proper case for a range of cells or an entire spreadsheet.

With some VBA code in the Private module of the Worksheet object, you
can force any text entered to be uppercase (all caps), or proper case (capital-
izing the first letter of each word). This hack presents four Excel VBA proce-
dures that will do the trick. The first two restrict the forcing of uppercase to
a specified range on the worksheet, and then the entire worksheet. The last
two procedures do the same but force text to be entered as proper case.

Force Text to Upper- or Proper Case #132

Chapter 7, Macro Hacks | 325

HACK

The Code
To insert one of the procedures, right click on the sheet tab, select View
Code, and enter the procedure you require.

It is very important that you insert one and one only proce-
dure to prevent erroneous results.

Uppercase. If you want to force all future text in your worksheet to upper-
case, but restrict the range, you can use the following procedure, which will
force uppercase text in cells A1:B20 only:

Private Sub Worksheet_Change(ByVal Target As Range)

''
'Forces text to UPPER case for the range A1:B20
''

If Target.Cells.Count > 1 Or Target.HasFormula Then Exit Sub

 On Error Resume Next
 If Not Intersect(Target, Range("A1:B20")) Is Nothing Then
 Application.EnableEvents = False
 Target = UCase(Target)
 Application.EnableEvents = True
 End If
 On Error GoTo 0

End Sub

If, however, you want to force uppercase entry throughout your worksheet,
use this procedure instead:

Private Sub Worksheet_Change(ByVal Target As Range)

''
'Forces all text to UPPER case
''

If Target.Cells.Count > 1 Or Target.HasFormula Then Exit Sub

 On Error Resume Next
 Application.EnableEvents = False
 Target = UCase(Target)
 Application.EnableEvents = True
 On Error GoTo 0

End Sub

326 | Chapter 7, Macro Hacks

#132 Force Text to Upper- or Proper Case
HACK

Proper case. If you want to force all future text in your worksheet to proper
case (capitalized first letter), but restrict the range, you can use the follow-
ing procedure, which will force proper case text in cells A1:B20 only:

Private Sub Worksheet_Change(ByVal Target As Range)

''
'Forces text to Proper case for the range A1:B20
''

If Target.Cells.Count > 1 Or Target.HasFormula Then Exit Sub

 On Error Resume Next
 If Not Intersect(Target, Range("A1:B20")) Is Nothing Then
 Application.EnableEvents = False
 Target = StrConv(Target, vbProperCase)
 Application.EnableEvents = True
 End If
 On Error GoTo 0

End Sub

If you want all entries throughout your worksheet to be proper case, use the
following procedure:

Private Sub Worksheet_Change(ByVal Target As Range)

''
'Forces all text to Proper case
''

If Target.Cells.Count > 1 Or Target.HasFormula Then Exit Sub

 On Error Resume Next
 Application.EnableEvents = False
 Target = StrConv(Target, vbProperCase)
 Application.EnableEvents = True
 On Error GoTo 0

End Sub

Once you have inserted the required procedure, click the top-right X (or
press Alt/c-Q) to get back to Excel proper, and then save your workbook.

Running the Hack
To run the required procedure (we are using the first as an example), just
enter text in any cell in the range A1:B20, and any entry you make will be
forced to uppercase, as shown in Figure 7-24.

Force Text to Upper- or Proper Case #132

Chapter 7, Macro Hacks | 327

HACK

Hacking the Hack
To take things a step further, you can use the following Excel VBA code in
an ActiveX TextBox control to force text within a textbox into uppercase or
proper case. To do this, you must first insert the TextBox, so select Devel-
oper ➝ Controls ➝ Insert, select the TextBox tool under ActiveX Controls,
and draw a textbox on your spreadsheet.

With the textbox selected, double-click it and place this procedure to force
text to uppercase:

Private Sub TextBox1_Change()
 On Error Resume Next
 TextBox1 = UCase(TextBox1)
 On Error GoTo 0
End Sub

or this procedure to force text to proper case:

Private Sub TextBox1_Change()
 On Error Resume Next
 TextBox1 = StrConv(TextBox1, vbProperCase)
 On Error GoTo 0
End Sub

Exit the VBE and save your workbook.

Now, any text that you try to enter into the textbox will be forced to either
upper or proper case.

This code can also be used in a textbox on a userform.

Figure 7-24. Entries in the range A1:B20 forced to uppercase

328 | Chapter 7, Macro Hacks

#133 Prevent Case Sensitivity in VBA Code
HACK

H A C K

133
Prevent Case Sensitivity in VBA Code Hack #133

Keep Excel from distinguishing between capital and lowercase letters in your
text.

By default, Excel VBA code is case sensitive and uses what is known as
binary comparisons. This means that it sees Cat and cat as two different
words. There are many times, however, where you would like Excel VBA
not to use binary comparisons like this (e.g., when counting entries) and you
would like it to see Cat and cat as the same. You can do this easily in at least
two different ways.

Ucase Function
The Ucase function can compare text in a range of cells, allowing us to write
a macro that compares text case-insensitively. Here is one that displays a
message box if it encounters any cell in A1:A10 of the active sheet contain-
ing any case variation of the word CAT.

The code. To insert the code, press Alt/Option-F11, select Insert ➝ Module,
and paste the following:

Sub CompareText()
Dim rCell As Range

 For Each rCell In Range("A1:A10")
 If UCase(rCell) = "CAT" Then
 MsgBox rCell.Address & " has " & rCell & " in it"
 End If
 Next rCell
End Sub

Exit the VBE and return to Excel and save your workbook.

Running the hack. To run the macro, select Developer ➝ Macros (pre-2007,
Tools ➝ Macro ➝ Macros...), select CompareText from the list, and click
Run. So if you had the word CAT (uppercase) in cells A1:A9 and the word cat
(lowercase) in A10, the macro would display a message box for each
instance of the word “cat,” regardless of what case it is entered in.

Option Compare Text
The other method eliminates case sensitivity for all procedures (or macros)
in a specified module. This means that if you have 20 macros in a module,
each doing something different, running this code removes case-sensitivity
from all macros. This means that if we have the word CAT entered in 20

Display AutoFilter Criteria #134

Chapter 7, Macro Hacks | 329

HACK

macros doing different things, it will always be seen without regard to case
sensitivity.

We do this by placing the words Option Compare Text at the very top of the
module we want to make case insensitive. This will ensure that any proce-
dures placed within the same module as the procedure in the following sec-
tion will no longer be case sensitive.

The code. To insert the code, press Alt/Option-F11, select Insert ➝ Module
and paste the following:

Option Compare Text

Sub OptionCompareText()
Dim rCell As Range

 For Each rCell In Range("A1:A10")
 If rCell = "CAT" Then
 MsgBox rCell.Address & " has " & rCell & " in it"
 End If
 Next rCell
End Sub

Exit the VBE and return to Excel and save your workbook.

Running the hack. To run the macro select Developer ➝ Macros (pre-2007,
Tools ➝ Macro ➝ Macros...), select OptionCompareText from the list, and
click Run.

To make all procedures within the Module case sensitive again we would
replace Option Compare Text with Option Compare Binary.

H A C K

134
Display AutoFilter Criteria Hack #134

Use a custom function to display the criteria used for any column in a table
with an AutoFilter applied.

Excel’s AutoFilter is one of its most useful features, but one small drawback
is that it’s hard to tell the criteria being applied to the data at a glance. A
custom function can display the criteria being used for each column of the
table that has had an AutoFilter applied.

Let’s say you have some data set up in a table and you have applied AutoFil-
ters. First, you need to ensure that you have at least two rows above the
table. Then, right-click on your sheet tab, select View Code (or press Alt/
Option-F11), select Insert ➝ Module, and paste the following code:

Function AutoFilter_Criteria(Header As Range) As String
Dim strCri1 As String, strCri2 As String

330 | Chapter 7, Macro Hacks

#134 Display AutoFilter Criteria
HACK

 Application.Volatile

 With Header.Parent.AutoFilter
 With .Filters(Header.Column - .Range.Column + 1)

 If Not .On Then Exit Function

 strCri1 = .Criteria1
 If .Operator = xlAnd Then
 strCri2 = " AND " & .Criteria2
 ElseIf .Operator = xlOr Then
 strCri2 = " OR " & .Criteria2
 End If

 End With
 End With

 AutoFilter_Criteria = UCase(Header) & ": " & strCri1 & strCri2
End Function

Close the window to get back to your worksheet and save your workbook.

Now to add the custom function to each cell two rows above the column
heading. Click in cell B1, enter the following formula, and press Enter:

=AutoFilter_Criteria(B3)

Then, copy across to D3. Your data should something like Figure 7-25.

As you change the selection criteria via the AutoFilter switches in columns
B, C, and D, the formula results in B3:D3 that show the criteria you selected
will change accordingly, thus allowing you to always see at a glance the cri-
teria used in your filter.

Remember that if you do not have AutoFilters applied, you
will have nothing in these cells.

Figure 7-25. Data showing criteria selection in B3:D3

331

Chapter 8 C H A P T E R E I G H T

Cross-Application Hacks
Hacks 135–138

With the ever-increasing usage of computers in our society, it is fast becom-
ing necessary for most people to use a combination of applications in their
work. Microsoft Office 2007’s enhanced capabilities for cooperation
between its applications makes combining Excel with Word, Access, and
Outlook easier than before. The hacks in this chapter cover some of the
most common problems.

H A C K

135
Import Data from Access 2007 into Excel 2007 Hack #135

VBA can be used to import data into Excel from an Access database, but
Access 2007 has undergone some major, important changes that effect how
we create connections to Access 2007 databases and also how we work with
the Access 2007 Objects Model.

To communicate with Access 2007 databases via VBA, the preferable
method is to use Data Access Objects (DAO), which is the object model
written specifically for Access. It’s an object library with a collection of data-
base objects.

This hack works with Excel 2007, Access 2007, Windows
XP, and Windows Vista.

For the purpose of this hack, we will use the database file Northwind 2007.accdb
(a database created and stored in Access 2007 that can be used for test
purposes).

332 | Chapter 8, Cross-Application Hacks

#135 Import Data from Access 2007 into Excel 2007
HACK

If you installed Office 2007 via a downloadable link, you
may need to download the Northwind 2007 example file
from the Microsoft web site: http://office.microsoft.com/en-
us/templates/TC012289971033.aspx.

The code we will use does the following:

1. Connect to the database (in this case Northwind 2007.accdb).

2. Send a Structured Query Language (SQL) question order to populate a
recordset with the required records. A recordset can be thought of as a
container used to hold a set of records from a database table, which is
then copied and imported into Excel.

3. Close the connection to the database.

4. Display a message stating that the data successfully transferred.

The first step is to set a reference to the new library (Microsoft Office 12
Access Database Engine Object Library). In the Visual Basic Editor, go to
Tools ➝ References…, locate and check the Microsoft Office 12 Access Data-
base Engine Object Library in the list, and then click OK and exit the VBE.

The following code example shows a few possible approaches to retrieve
data in a flexible way:

Retrieve a whole table’s data
Tables in databases can contain a great number of records, so you
should retrieve all records only when necessary and if the table is rela-
tively small. For this purpose, the example we are using is a table
recordset type and only a table name can be the source.

Retrieve a selected group of data based on SQL queries
This is the most common approach, in which we create an SQL query
that includes a specific WHERE clause to retrieve the wanted records. In
the example, we use the snapshot recordset type. A snapshot-type
recordset is static, which means it is not editable and therefore it can
only be read.

SQL is a powerful language, which we can use to create very
complex questions, but it’s beyond the scope of this hack to
delve into it deeper.

For more on SQL, see SQL Hacks by Andrew Cumming and
Gordon Russell (O’Reilly).

http://office.microsoft.com/en-us/templates/TC012289971033.aspx
http://office.microsoft.com/en-us/templates/TC012289971033.aspx

Import Data from Access 2007 into Excel 2007 #135

Chapter 8, Cross-Application Hacks | 333

HACK

Execute a stored report in the database
Instead of creating the SQL question in VBA, we can create and save the
question in the Access 2007 database and then execute it from Excel
2007. Here we use the forward recordset type, which is efficient and
allows us to move forward in the recordset (if this is what we require).

The Code
To insert the code, right-click on the worksheet name, go to View Code,
select Insert ➝ Module in the VBE and enter the following:

Option Explicit
'A reference via Tools | References... to Microsoft Office 12 Access
Database Engine Object Library
'must be set in order to get the below code to work properly.

Sub Import_Data_Access_2007()

'The pathway to and the name of the database.
Const stDB As String = "c:\Northwind 2007.accdb"

'The table to be retrieved all data from.
Const stWholeTable As String = "Shippers"

'The SQL query with one condition.
Const stSQL As String = "SELECT Company,City FROM Shippers " & _
 "WHERE [Country/Region]='USA'"

'The name of the stored report that will be executed.
Const stStoredReport As String = "Order Summary"

'A general error handling routine.
On Error GoTo Error_Handling

'Variables for the DAO objects.
'The database object.
Dim db As DAO.Database
'The table defintion variable for a saved table object.
Dim tdf As DAO.TableDef
'The recordset object.
Dim rs As DAO.Recordset

'Variables for the Excel objects.
Dim wbTarget As Workbook
Dim wsOrders As Worksheet
Dim wsShippers As Worksheet
Dim wsProducts As Worksheet
Dim rnOrders As Range
Dim rnShippers As Range

334 | Chapter 8, Cross-Application Hacks

#135 Import Data from Access 2007 into Excel 2007
HACK

Dim rnProducts As Range
Dim lnCounter As Long

'Instantiate the Excel objects.
Set wbTarget = ActiveWorkbook

With wbTarget
 Set wsOrders = .Worksheets(1)
 Set wsShippers = .Worksheets(2)
 Set wsProducts = .Worksheets(3)
End With

Set rnOrders = wsOrders.Range("A2")
Set rnShippers = wsShippers.Range("A2")
Set rnProducts = wsProducts.Range("A2")

'Instantiate the DAO objects and at the same time create
'a connection to the database and populate the 1st recordset.
Set db = OpenDatabase(stDB)
Set tdf = db.TableDefs(stWholeTable)
Set rs = tdf.OpenRecordset(dbOpenTable)

'To avoid that the screen flicker during dataprocessing.
Application.ScreenUpdating = False

'Populate the first row in the target worksheet with fieldnames.
For lnCounter = 0 To rs.Fields.Count - 1
 'The array of fieldnames is 0-based which we need to consider when
 'populating the worksheet.
 wsShippers.Cells(1, lnCounter + 1).Value = rs.Fields(lnCounter).Name
Next lnCounter

'Copy the retrieved records.
rnShippers.CopyFromRecordset rs

'Clear the recordset variable.
Set rs = Nothing
'Instantiate and populate the 2nd recordset.
Set rs = db.OpenRecordset(stSQL, dbOpenSnapshot)

'Populate the first row in the target worksheet with fieldnames.
For lnCounter = 0 To rs.Fields.Count - 1
 'The array of fieldnames is 0-based which we need to consider when
 'populating the worksheet.
 wsProducts.Cells(1, lnCounter + 1).Value = rs.Fields(lnCounter).Name
Next lnCounter

'Copy the retrieved records.
rnProducts.CopyFromRecordset rs

'Clear the recordset variable.
Set rs = Nothing
'Instantiate and populate the 3rd recordset.

Import Data from Access 2007 into Excel 2007 #135

Chapter 8, Cross-Application Hacks | 335

HACK

Set rs = db.OpenRecordset(stStoredReport, dbOpenForwardOnly)

'Populate the first row in the target worksheet with fieldnames.
For lnCounter = 0 To rs.Fields.Count - 1
 'The array of fieldnames is 0-based which we need to consider when
 'populating the worksheet.
 wsOrders.Cells(1, lnCounter + 1).Value = rs.Fields(lnCounter).Name
Next lnCounter

'Copy the retrieved records.
rnOrders.CopyFromRecordset rs

'Close the objects.
rs.Close
db.Close

MsgBox "All data has been successfully transfered.", vbOKOnly

'Make sure that it only exist one exit point in the procedure.
ExitSub:
'Release the objects from memory.
Set rs = Nothing
Set tdf = Nothing
Set db = Nothing
Exit Sub

Error_Handling:
MsgBox "Error number: " & Err.Number & vbNewLine & _
 "Description: " & Err.Description, vbOKOnly
Resume ExitSub

End Sub

Now, close down the VBE, return to Excel, and save your workbook.

Running the Hack
To run the code, select Developer ➝ Macros, highlight Import_Data_
Access_2007 in the list, and click Run. You will see the required recordset
populate your Excel spreadsheet, as shown in Figure 8-1.

Armed with this code, you can comfortably connect to an Access database
from within Excel 2007 and import any information you require.

The code as is assumes the Northwind 2007.accdb test file is
saved to your C: drive. If you have saved it somewhere else,
you will need to put the full pathname in the code.

—Dennis Wallentin

336 | Chapter 8, Cross-Application Hacks

#136 Retrieve Data from Closed Workbooks
HACK

H A C K

136
Retrieve Data from Closed Workbooks Hack #136

Use VBA and a database approach to populate a workbook with data
retrieved from closed workbooks. The same technique can be applied to
Word and Access.

It’s common for Excel users to consolidate data from several other work-
books into one main workbook. By using an approach combining VBA and
a database, we can retrieve data from workbooks without opening them.
There are several techniques you could use to do this, including links and
query tables, but these techniques tend to be difficult to maintain and time
consuming to update when working with a larger number of workbooks.

By contrast, the approach in this hack offers the following advantages:

• The underlying workbooks do not need to be open in order to
retrieve data from them.

• The code is easier to maintain, because it is in the main workbook.

• It consumes resources only when the code is being executed.

• It forces Excel to create an identical structure for all involved work-
books.

A database approach comes with some general requirements to consider
when designing the main workbook and the underlying workbooks. All
worksheets (including the main worksheet) need to have the same design
and setup:

Figure 8-1. Data called from Access 2007 via VBA for Excel Code

Retrieve Data from Closed Workbooks #136

Chapter 8, Cross-Application Hacks | 337

HACK

• The data needs to be in an identical table structure, with identical
names for each column in use.

• Each column needs to have only one data type—for instance, inte-
ger or string.

• All cells in each row must have values; i.e., the value #Null! cannot
exist.

• An identical name for the worksheets can be used to increase the
simplicity when creating the code.

Excel 2007 and Windows Vista
With Office 2007, Microsoft introduces a new data provider, Microsoft.ACE.
OLEDB.12.0, which makes it possible to connect to Microsoft Access 2007
databases (file extension .accdb) and to Microsoft Excel 2007 workbooks
(file extension .xlsx). When used with Microsoft Excel 2007, the workbooks
are treated as database sources. In this hack, the data provider is used to
connect to the underlying closed workbooks and is part of the connection
string shown in this example:

"Provider=Microsoft.ACE.OLEDB.12.0;" & _
"Data Source=c:\Test\Data.xlsx;" & _
"Extended Properties=""Excel 12.0;HDR=YES"""

The first extended property in the connection string does not explicitly refer
to Excel 2007, which has the version number 12; rather, it’s an indication
that the provider works with version 2007 and later versions of Excel.

The second extended property, HDR, indicates whether the tables in the
underlying worksheets have column names (field names) or not. In general,
it’s highly recommended to use column names in the first row in the table,
so the value of this property should be set to YES.

Windows Vista comes with a new version of the Microsoft ActiveX Data
Objects library 6.0, which can be used with Excel 2007. This external library
is used to create a recordset that holds the retrieved data from each underly-
ing workbook and from which the data is copied into the main workbook.

When the connection has been established with an underlying workbook,
we need to help Excel to both locate and select the required data. This is
done via SQL statements. These statements can be rather complex, depend-
ing on the specific requirements. For our purpose, we set focus on the
options we have to locate the data.

To select all data in one worksheet, we can use the following SQL
expression:

"SELECT * FROM [WorksheetName$]"

338 | Chapter 8, Cross-Application Hacks

#136 Retrieve Data from Closed Workbooks
HACK

The $ sign indicates that the worksheet exists.

To select all data in one range, we could use either of two alternatives.
Here’s how to use select data explicitly, using a range address:

"SELECT * FROM [WorksheetName$A2:A10]"

And here’s how to use a named range (where the range name is unique for
the workbook):

"SELECT * FROM [NamedRange]"

If we want to retrieve a value from only one cell, then we still need to refer to
a range, like so:

"SELECT * FROM [WorksheetName$A2:A2)"

If we use a range name, it must cover a range, like A2:A2:

"SELECT * FROM [NamedRange]"

In our example, all workbooks are identical and all of them are placed in the
same folder: C:\Products. A worksheet with the name Summary exists in all
workbooks, and the range name ProductData refers to the range A2:D6, as
shown in Figure 8-2.

The code. In the workbook into which you want to import all of your data
(let’s call it the final workbook), right-click, select View Code to take you to
the VBE, select Insert ➝ Module, and paste the following code:

Option Explicit

'A reference to Microsoft ActiveX Data Objects Library 6.0 must be
'set via Tools ➝ References...

Sub Retrieve_Data_Closed_Workbooks()
'Constant variable that holds the directory.
Const Con_stPath As String = "C:\Products\"
'The SQL statement string variable which only include the name for the range

Figure 8-2. One of the identical workbooks, showing data

Retrieve Data from Closed Workbooks #136

Chapter 8, Cross-Application Hacks | 339

HACK

'that contain the data in each worksheet and workbook.
Const Con_stSQL As String = "SELECT * FROM [ProductData]"

'The ADO Recordset variable.
Dim rst As ADODB.Recordset
'The connection string variable.
Dim stCon As String

'String variable that holds the located Excel files.
Dim stFile As String
'Variable to temporarily store the present calculation mode.
Dim xlCalc As Excel.XlCalculation
'Variable for this workbook.
Dim wbBook As Workbook
'Variable for the target worksheet.
Dim wsTarget As Worksheet
'Variable to get the last used row in the target worksheet
Dim lnLastRow As Long

'General error handling.
On Error GoTo Error_Handling

'Temporarily change some settings to increase the performance.
With Application
 'Store the calculation mode.
 xlCalc = .Calculation
 'Temporarily set the calculation mode to Manual.
 .Calculation = xlCalculationManual
 'In case any Events procedures exist.
 .EnableEvents = False
 'To avoid that the screen is flickering during the process.
 .ScreenUpdating = False
End With

'Instantiate the workbook variable.
Set wbBook = ThisWorkbook
'Instantiate the worksheet variable.
Set wsTarget = wbBook.Worksheets(1)

'Instantiate the Recordset object.
Set rst = New ADODB.Recordset

'Get the first Excel file.
stFile = Dir(Con_stPath & "*.xlsx", 7)

'Iterate through the collection of Excel files,
'open a connection to each file and retrieve the wanted data,
'copy the retrieved data to the target worksheet
'and close the connection.
Do While stFile <> ""
 'Create the connection string.
 stCon = "Provider=Microsoft.ACE.OLEDB.12.0;" & _

340 | Chapter 8, Cross-Application Hacks

#136 Retrieve Data from Closed Workbooks
HACK

 "Data Source=" & Con_stPath & stFile & ";" & _
 "Extended Properties=""Excel 12.0;HDR=YES"""

 'Open the connection and execute the SQL statement.
 rst.Open Con_stSQL, stCon, adOpenForwardOnly, adLockReadOnly, adCmdText

 With wsTarget
 'The assumption here is that it will not be more then 500 rows.
 lnLastRow = .Range("A500").End(xlUp).Row
 'Copy the retrieved data into the first empty row in target worksheet.
 .Range("A" & lnLastRow + 1).CopyFromRecordset rst
 End With

 'Empty the connection variable.
 stCon = Empty
 'Close the recordset.
 rst.Close
 'Get the next Excel file.
 stFile = Dir()
Loop

MsgBox "All the data has successfully been retrieved!", vbOKOnly

'Make sure that it only exist one exit point in the procedure.
ExitSub:
'Release variable from the memory.
Set rst = Nothing
'Reset the settings.
With Application
 .Calculation = xlCalc
 .EnableEvents = True
 .ScreenUpdating = True
End With

Exit Sub

Error_Handling:
MsgBox "Error number: " & Err.Number & vbNewLine & _
 "Description: " & Err.Description, vbOKOnly
Resume ExitSub

End Sub

Close down the VBE and return to Excel and save your workbook.

Running the hack. To run the code, select Developer ➝ Macros. Highlight
Retrieve_Data_Closed_Workbooks in the list, and click Run.

When you do this, the data in range A2:D6 (which we have given the name
of ProductData) in each closed workbook will be pasted into your final work-
book in the range A2:D16, as shown in Figure 8-3.

Retrieve Data from Closed Workbooks #136

Chapter 8, Cross-Application Hacks | 341

HACK

Windows XP
You can use the previous method with Windows Vista and Excel 2007, but
if you’re running Windows XP and Excel 2003, you’ll need to use a slightly
different technical approach. Specifically, you’ll need to use the external
library, Microsoft ActiveX Data Objects 2.8 or a previous version. In addi-
tion, the connection string differs by including Excel 8 in the first extended
property, as shown here:

Provider=Microsoft.Jet.OLEDB.4.0;" & _
"Data Source=" c:\Test\Data.xls;" & _
"Extended Properties=""Excel 8.0;HDR=YES"""

The first extended property’s value does not explicitly refer to Excel 97,
which has the version number 8; rather it’s an indication that the data pro-
vider works with version 97 to version 2003 of Excel.

The code. To insert the code, right-click on your sheet tab and select View
Code to take you to the VBE. Then, select Insert ➝ Module, and paste in the
following:

Option Explicit

'A reference to Microsoft ActiveX Data Objects Library 2.8 and earlier
'must be set via Tools ➝ References...

Figure 8-3. Final workbook showing result of importing the same data range in three
different workbooks

342 | Chapter 8, Cross-Application Hacks

#136 Retrieve Data from Closed Workbooks
HACK

Sub Retrieve_Data_Closed_Workbooks()
'Constant variable that holds the directory.
Const Con_stPath As String = "C:\Products\"
'The SQL statement string variable which only include the name for the range
'that contain the data in each worksheet and workbook.
Const Con_stSQL As String = "SELECT * FROM [ProductData]"

'The ADO Recordset variable.
Dim rst As ADODB.Recordset
'The connection string variable.
Dim stCon As String

'String variable that holds the located Excel files.
Dim stFile As String
'Variable to temporarily store the present calculation mode.
Dim xlCalc As Excel.XlCalculation
'Variable for this workbook.
Dim wbBook As Workbook
'Variable for the target worksheet.
Dim wsTarget As Worksheet
'Variable to get the last used row in the target worksheet
Dim lnLastRow As Long

'General error handling.
On Error GoTo Error_Handling

'Temporarily change some settings to increase the performance.
With Application
 'Store the calculation mode.
 xlCalc = .Calculation
 'Temporarily set the calculation mode to Manual.
 .Calculation = xlCalculationManual
 'In case any Events procedures exist.
 .EnableEvents = False
 'To avoid that the screen is flickering during the process.
 .ScreenUpdating = False
End With

'Instantiate the workbook variable.
Set wbBook = ThisWorkbook
'Instantiate the worksheet variable.
Set wsTarget = wbBook.Worksheets(1)

'Instantiate the Recordset object.
Set rst = New ADODB.Recordset

'Get the first Excel file.
stFile = Dir(Con_stPath & "*.xls", 7)

'Iterate through the collection of Excel files,
'open a connection to each file and retrieve the wanted data,

Retrieve Data from Closed Workbooks #136

Chapter 8, Cross-Application Hacks | 343

HACK

'copy the retrieved data to the target worksheet
'and close the connection.
Do While stFile <> ""
 'Create the connection string.
 stCon = "Provider=Microsoft.Jet.OLEDB.4.0;" & _
 "Data Source=" & Con_stPath & stFile & ";" & _
 "Extended Properties=""Excel 8.0;HDR=YES"""

 'Open the connection and execute the SQL statement.
 rst.Open Con_stSQL, stCon, adOpenForwardOnly, adLockReadOnly, adCmdText

 With wsTarget
 'The assumption here is that it will not be more then 500 rows.
 lnLastRow = .Range("A500").End(xlUp).Row
 'Copy the retrieved data into the first empty row in target worksheet.
 .Range("A" & lnLastRow + 1).CopyFromRecordset rst
 End With

 'Empty the connection variable.
 stCon = Empty
 'Close the recordset.
 rst.Close
 'Get the next Excel file.
 stFile = Dir()
Loop

MsgBox "All the data has successfully been retrieved!", vbOKOnly

'Make sure that it only exist one exit point in the procedure.
ExitSub:
'Release variable from the memory.
Set rst = Nothing
'Reset the settings.
With Application
 .Calculation = xlCalc
 .EnableEvents = True
 .ScreenUpdating = True
End With

Exit Sub

Error_Handling:
MsgBox "Error number: " & Err.Number & vbNewLine & _
 "Description: " & Err.Description, vbOKOnly
Resume ExitSub

End Sub

Close down the VBE, return to Excel, save your workbook, and give it a try.

344 | Chapter 8, Cross-Application Hacks

#137 Automate Word from Excel
HACK

Running the hack. To run the code, select Developer ➝ Macros, highlight
Retrieve_Data_Closed_Workbooks in the list, and click Run.

When you do this, the data in range A2:D6 (which we have given the name
of ProductData) in each closed workbook will be pasted into your final work-
book in the range A2:D16, as shown previously in Figure 8-3.

Remember that the code relies on all workbooks being
stored in the same directory—in this case, C:\Products.

—Dennis Wallentin

H A C K

137
Automate Word from Excel Hack #137

Import and update a table and chart from Excel into Word, and create a
report for the user to comment on.

Say you have a Word-based report (Weekly Report.docx in the folder C:\
Reports) that you distribute on a weekly basis. It contains a table and a chart
from an Excel workbook, as shown in Figure 8-4, and you want to import
and update the Word report regularly. This hack shows how to use VBA for
Excel to transfer the table and the chart, automating the report in Word.

In order to get a smooth technical solution, the first thing we need to do is
to create two bookmarks in our Word report. The first bookmark will be
used to insert the table, and the second will be used for the chart object. You
can do this easily in Word by selecting Insert ➝ Links ➝ Bookmark. We have
used the names XLChart and XLTable. Ensure you have saved and closed the
Word report (with bookmarks in it) in the folder C:\Reports.

In our code, we’ll copy the table in the normal way, but for the chart we
need to create a temporary image file, paste it into the Word report, and
finally delete it. When the data has been transferred from Excel to Word, the
Word report will be opened and the transferred data will be displayed for
checking and saving purposes.

This hack works with Excel 2007, Excel 2003, Word 2007,
Word 2003, Windows Vista, and Windows XP.

The Code
In the workbook that contains the table and the chart, right-click on the
sheet tab and select View Code. Then, select Insert ➝ Module and paste the
following code:

Automate Word from Excel #137

Chapter 8, Cross-Application Hacks | 345

HACK

Option Explicit

'A reference to the Microsoft Word 12.0 Object Library must be
'set via the Tools | References... in the VB Editor.

'For Office 2003 a reference needs to be set to Microsoft Word 11.0.

Sub Update_Word_Report()
'The pathway to the Word report file and its name.
Const stReport As String = "c:\Reports\Weekly Report.docx"

'A general error handling.
On Error GoTo Error_Handling

'Variables for Word.
Dim wdApp As Word.Application
Dim wdDoc As Word.Document
Dim wdRange As Word.Range

'Variables for Excel.
Dim wbSource As Workbook
Dim wsSheet As Worksheet

Figure 8-4. Table and chart in Excel workbook to be imported into Word document

346 | Chapter 8, Cross-Application Hacks

#137 Automate Word from Excel
HACK

Dim rnTable As Range
Dim chObject As ChartObject

'Instantiate the Excel variables.
Set wbSource = ActiveWorkbook
Set wsSheet = wbSource.Worksheets(1)

With wsSheet
 'A range name for the table is in use.
 Set rnTable = .Range("ReportTable")
 'A customized chart name is in use.
 Set chObject = .ChartObjects("ReportChart")
End With

'Instantiate the Word variables.
Set wdApp = New Word.Application
Set wdDoc = wdApp.Documents.Open(stReport)

'The first bookmark where the table will be inserted at.
Set wdRange = wdDoc.Bookmarks("xlTable").Range

'It's necessary to delete any existing table before
'inserting the new report table. If it does not exist an error will be ↵
generated
With wdDoc.InlineShapes(1)
 .Select
 .Delete
End With

'In order to avoid screen flickering.
Application.ScreenUpdating = False

'Copy the table.
rnTable.Copy

'Paste the table at the bookmark in the Word document.
With wdRange
 .Select
 .PasteSpecial Link:=False, _
 DataType:=wdPasteMetafilePicture, _
 Placement:=wdInLine, _
 DisplayAsIcon:=False
End With

'Save the Word document.
wdDoc.Save

'The second bookmark where the chart will be inserted at.
Set wdRange = wdDoc.Bookmarks("xlChart").Range

'Export the chart object to a GIF file in the same folder as the workbook. ↵
chObject.Chart.Export Filename:=ThisWorkbook.Path & "\Chart.gif", ↵
FilterName:="GIF"

Automate Word from Excel #137

Chapter 8, Cross-Application Hacks | 347

HACK

'Delete the existing chart object.
With wdDoc.InlineShapes(2)
 .Select
 .Delete
End With

With wdRange
 .Select
 'Insert the chartobject into the bookmark.
 .InlineShapes.AddPicture _
 Filename:=ThisWorkbook.Path & "\Chart.gif", _
 LinkToFile:=False, _
 SaveWithDocument:=True
End With

'Save the Word document.
wdDoc.Save

With Application
 'Release Excel from the "cut copy" mode.
 .CutCopyMode = False
 .ScreenUpdating = True
End With

'Make the document available for the user.
wdApp.Visible = True

'Delete the temporary GIF file.
Kill ThisWorkbook.Path & "\Chart.gif"

'Make sure that it only exist one exit point in the procedure.
ExitSub:
'Release objects from memory.
Set wdRange = Nothing
Set wdDoc = Nothing
Set wdApp = Nothing
Exit Sub

Error_Handling:
 'If a table or a chart object does not exist and when trying to
 'remove it it will generate an error with the number 5941.
 If Err.Number = 5941 Or Err.Number = 91 Then
 Resume Next
 Else
 MsgBox "Error number: " & Err.Number & vbNewLine & _
 "Description: " & Err.Description, vbOKOnly
 Resume ExitSub
 End If
End Sub

Close down the VBE, return to Excel, and save your workbook.

348 | Chapter 8, Cross-Application Hacks

#137 Automate Word from Excel
HACK

Running the Hack
To run the code, select Developer ➝ Macros, highlight Update_Word_Report
in the list, and click Run. The table and chart from the Excel workbook will
be imported into the closed Word report and the Word report will be
opened and displayed, as shown in Figure 8-5.

The clever thing about this hack is that you don’t even need Word open in
order to import, update, and save information from Excel.

—Dennis Wallentin

Figure 8-5. Word report showing imported table and chart from Excel workbook

Automate Outlook from Excel #138

Chapter 8, Cross-Application Hacks | 349

HACK

H A C K

138
Automate Outlook from Excel Hack #138

Distribute weekly reports via Outlook, adding each worksheet in the
workbook to an outgoing email.

One of the more common tasks for Excel users is report distribution. This
hack shows how to leverage Outlook for automatic emailing of Excel work-
sheets, even creating a standard message in the body of the email.

This hack works with Excel 2007, Excel 2003, Windows
Vista, and Windows XP.

In our workbook, we want to email a valid recipient list (a list of email
addresses), which is predefined in column A in each worksheet, as shown in
Figure 8-6.

The first thing we need to do is to set a reference to the new library
(Microsoft Outlook 12.0 Object Library). In the Visual Basic Editor, go to
Tools ➝ References…, locate and check the Microsoft Outlook 12.0 Object
Library in the list, and then click OK and exit the VBE.

If you are running Outlook 2003, you need to check
Microsoft Outlook 11.0 Object Library instead.

Figure 8-6. Excel spreadsheet with a list of email recipients in column A

350 | Chapter 8, Cross-Application Hacks

#138 Automate Outlook from Excel
HACK

The Code
Right-click on the sheet name, select View Code ➝ Insert ➝ Module, and
paste the following code:

Option Explicit

'A reference to Microsoft Outlook 12.0 Object Library must be set
'via the command Tools | References...

'If running Microsoft Outlook 2003 then replace the reference of 12.0 to
'11.0

'Make sure that the recipients exist in Outlook's Address book.

Sub Send_Mail_Outlook()
'A folder to temporarily store the created Excel workbooks in.
Const stPath As String = "c:\Attachments"

'The subject for all e-mails.
Const stSubject As String = "Weekly report"

'The message in the bodies of the outgoing e-mails.
Const stMsg As String = "The weekly report as per agreement." & vbCrLf & _
 "Kind regards," & vbCrLf & _
 "Michael"

'Variables for Outlook.
Dim olApp As Outlook.Application
Dim olNameSpace As Outlook.Namespace
Dim olInbox As Outlook.MAPIFolder
Dim olNewMail As Outlook.MailItem
Dim lnCounter As Long

'Variables for Excel.
Dim wbBook As Workbook
Dim wsSheet As Worksheet
Dim lnLastRow As Long

'Variable that holds the list of recipients for each worksheet.
Dim vaRecipients As Variant
'Variable that flag if the list of recipients only include one recipient.
Dim bFlag As Boolean
'Variable which holds each worksheet's name.
Dim stFileName As String
'Variable for each created workbook's path and name.
Dim stAttachment As String

'Set the flag to false.
bFlag = False

'General error handler.
On Error GoTo Error_Handling

Automate Outlook from Excel #138

Chapter 8, Cross-Application Hacks | 351

HACK

'Freeze the screen so it will not flicker during execution.
Application.ScreenUpdating = False

'If Outlook is already open then the variable is instantiated to the
session.
Set olApp = GetObject(, "Outlook.Application")

'If Outlook is not running we here intantiate a new session for it.
If olApp Is Nothing Then
 Set olApp = New Outlook.Application
 'Get Outlook's work area.
 Set olNameSpace = olApp.GetNamespace("MAPI")
 'Access and display the Inbox folder.
 Set olInbox = olNameSpace.GetDefaultFolder(olFolderInbox)
 'Make Outlook visible.
 olInbox.Display
End If

'Instantiate the workbook's variable.
Set wbBook = ThisWorkbook

'Loop through the collection of worksheets in the workbook.
For Each wsSheet In wbBook.Worksheets

 With wsSheet
 'Retrieve the worksheet's name.
 stFileName = .Name
 'Locate the last used row in column A.
 lnLastRow = .Cells(.Rows.Count, "A").End(xlUp).Row
 'Set the flag to true if the list only includes one recipient.
 If lnLastRow = 1 Then bFlag = True
 'Grab the list of recipients.
 vaRecipients = .Range("A1:A" & lnLastRow).Value
 'Copy the worksheet to a new workbook.
 .Copy
 End With

 'Here we convert all formulas (and links) to fixed values.
 'The active sheet is the worksheet in the new created workbook.
 With ActiveSheet.UsedRange
 .Copy
 .PasteSpecial Paste:=xlValues
 End With

 'Clear the clipboard.
 Application.CutCopyMode = False

 'Create the full path and name of the workbook.
 stAttachment = stPath & "\" & stFileName & ".xlxs"

 'Save and close the temporarily workbook.
 With ActiveWorkbook
 .SaveAs Filename:=stAttachment

352 | Chapter 8, Cross-Application Hacks

#138 Automate Outlook from Excel
HACK

 .Close
 End With

 'Create the new e-mail.
 Set olNewMail = olApp.CreateItem(olMailItem)

 'Manipulate the main properties of the outgoing e-mail.
 With olNewMail
 'Set a flag for the e-mail degree of importance.
 .Importance = olImportanceHigh
 .Subject = stSubject
 'Add the list of recipients.
 If bFlag = True Then
 'Add the only recipient.
 .Recipients.Add vaRecipients
 Else
 For lnCounter = LBound(vaRecipients) To UBound(vaRecipients)
 .Recipients.Add vaRecipients(lnCounter, 1)
 Next lnCounter
 End If
 'Make sure that the recipients exist in the Address book.
 .Recipients.ResolveAll
 'Add the message.
 .Body = stMsg
 'Add the attachment.
 With .Attachments
 .Add stAttachment
 .Item(1).DisplayName = stFileName
 End With
 'Save the e-mail.
 .Save
 'Send the e-mail, i e place it in the outbox.
 .Send
 End With

 'Delete the temporarily workbook.
 Kill stAttachment

Next wsSheet

'Make sure that it only exist one exit point in the procedure.
ExitSub:
'Release objects from memory.
Set olNewMail = Nothing
Set olInbox = Nothing
Set olNameSpace = Nothing
Set olApp = Nothing
Exit Sub

Error_Handling:
 'If not Outlook is running then we need to resolve the error message in
 'order to continue.
 If Err.Number = 429 Then

Automate Outlook from Excel #138

Chapter 8, Cross-Application Hacks | 353

HACK

 Resume Next
 Else
 MsgBox "Error number: " & Err.Number & vbNewLine & _
 "Description: " & Err.Description, vbOKOnly
 Resume ExitSub
 End If
End Sub

Close down the VBE, return to Excel, and save your workbook.

Running the Hack
To run the code, select Developer ➝ Macros, Highlight Send_Mail_Outlook in
the list, and click Run. Each sheet in your workbook will be emailed to the
list of recipients in column A with a standard message, as shown in the
Figure 8-7.

When you run the code, due to Outlook’s security model, you may get two
security messages, as shown in Figures 8-8 and 8-9, which ask you to make a
decision. Since we have initiated the process, we can allow access to Out-
look, enabling it to send the emails and the worksheet attachments.

Figure 8-7. Email message with Sheet1 attached

Figure 8-8. A possible Outlook error message

354 | Chapter 8, Cross-Application Hacks

#138 Automate Outlook from Excel
HACK

There are tools (both free and commercial) that can eliminate these mes-
sages. One free tool is Express ClickYes, which you can download from
http://www.contextmagic.com/express-clickyes/. If you prefer to manage it
with VBA, you can use the commercial Outlook Redemption tool at http://
www.dimastr.com/redemption/.

—Dennis Wallentin

Figure 8-9. Another possible Outlook error message

http://www.contextmagic.com/express-clickyes/
http://www.dimastr.com/redemption/
http://www.dimastr.com/redemption/

355

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

{ } braces, 57, 243
[] square brackets, 81
' apostrophe

allows for worksheet names with
spaces, 237

with INDIRECT function, 49
* asterisk, 84, 277
$ dollar sign

Average function made absolute
with, 77

for absolute formulas, 38, 194
force ranges to be absolute, 108
reference columns absolutely

with, 59
= equal sign, for copying cells to any

location, 194
() parentheses, 266
" quotation marks

around formulas, 56
removing around formulas, 56

; semicolon, for separating sections of a
cell, 79

[*] to search for real external links, 39
_ underscore, 110

Numbers
1900 date system, Excel’s default

system, 94
3-D effects

3-D pie, 140
3-D Pie icon, 141
applying automatically and

dynamically, 62

data tables, 61
tables or cells, 60

80/20 Rule for planning spreadsheets, 1

A
A1 cell (Start name), 3
absolute column, 100
absolute references

absolute column, 100
cells, moving using relative references

without making the references
absolute, 38

converting from relative to, 310–315
converting references from relative to

absolute, 312
dollar sign ($), average function

made absolute with, 77
dollar sign ($) for absolute

formulas, 38
dollar sign ($), forces ranges to be

absolute, 108
dollar sign ($), reference columns

absolutely with, 59
F4 key, toggles through different

absolute formulas, 194
formulas for, 38

.accdb, 337
Access database

Data Access Objects (DAO), 331
execute a stored report in the

database, 333
forward recordset, 333

356 | Index

Access Database (continued)
import data into Excel

2007, 331–335
Northwind 2007.accdb, 331
recordset, 332
retrieve a selected group of data

based on SQL queries, 332
retrieve tables in databases, 332
snapshot recordset, 332
static recordset, 332
Structured Query Language

(SQL), 332
Activate command, 263
ActiveSheet, 267
ActiveWorkbook, 284
ActiveX Controls, 267, 327
ActiveX TextBox, 327
Add, 71
add-ins

adding labels to charts, 166
Add-Ins, 97
Add-Ins available: box

(Add-Ins), 284
Browse button (Add-Ins), 284
Calendar Control, 274
Chart Report, 167
Chart size, 167
Chart Tools, 163
CommandButton, 277
distributing macros, 283
dynamic named ranges for new data

in tables, 4
EOMONTH, 253
error handling, 284
Excel Calendar Control, 274
Excel Options ➝ Add-Ins, 284
Export, 167
File ➝ Save As… ➝ Microsoft Excel

Add-in (*.xla), 284
IsAddin property, 284
Label, 269
legend, 169
menu item, adding

(pre-2007), 285–289
Office button ➝ Save As… ➝

Microsoft Excel Add-in
(*.xlam), 283

Picture, 167
protecting, 285
Super Code, 286
Text Size, 167

TextBox, 277
ThisWorkbook, 284
toolbars and, 284
Tools ➝ Add-Ins

installing add-ins, 286
viewing add-ins, 284

Workbook_AddinUnInstall, 285
Additional Controls (Controls

toolbox), 275
ADDRESS functions, 65
Advanced Filter

data manipulation, 75
pre-Excel 2007 versions, 66

Alignment tab, 3, 69
All Open Workbooks, 18
Allow: box (Data Validation), 32
Alt/Control-~, shows actual formulas

on the worksheet, 164
Alt/c-Q, 10, 55
alternating row colors, 58
alternating row colors dynamically, 59
alternative paths, 57
Alt/Option-F11, 55, 70
Alt/Option-F8, to bring up macro

list, 18
Amount field, 135
Analysis ToolPak, 96, 118
AND function, 60, 64
apostrophe ('), 237
Application.OnTime method, 264, 265
Application.ScreenUpdating

property, 263, 271
arguments

COUNTA argument, 146
criteria argument, identification of

cells with conditions, 204
database argument, identification of

cell ranges, 203
field argument, indicates columns in

functions, 204
Height argument, 113
Schedule argument, 265
SUBTOTAL argument, 213
summing cells by fill color, 274
UserInterfaceOnly, 98, 282

Arrange All, 5
arrays

array formula, to SUM every second
cell in the range, 208

array formulas, 56

Index | 357

array formulas, slows
recalculations, 57

array formulas, using { } braces, 57
braces { }, 243
converting references from relative to

absolute, 312
Ctrl-Enter, 196
Ctrl-Shift-Enter, 57, 208, 244
curly brackets ({ }), inserted

manually causes formulas to
fail, 208

Enter, avoid when entering array
formulas, 57

formulas, 243
formulas in spreadsheets, 4
formulas, overusing, 246
multiple arrays and large reference

ranges in spreadsheets, 4
arrows

directional, 175
placing on the end of an

axis, 177–180
Assign Macro dialog box, 267
asterisk (*), 84, 277
At maximum category, 183
auto-fill features in Excel, 64
AutoFilter tool, 289–291

creating a custom function for, 329
limitations of, 75

auto-generate indexes, 24
AutoOutline, 98
axis

Axis Label Range, 146
axis labels, changing position of, 181
Axis Options, 161

B
Basic Shapes, 71
Before Print, 14
Before Save, 12
blank cells

filling in using macros, 198
filling with cell values, 100
for repeated data, 2

blank columns and rows in tables of
data, 2

blank default workbook, restoring, 23
blank entries in tables, 100
Blanks option, 198
Block Arrow, 71

boldface
boldface for column headings, 73
using to identify subtotals, 85

Border, 60
Border Color, 167
bounding area, extend or reduce by

dragging, 155
braces ({ }), 57, 243
Browse button (Add-Ins), 284
built-in lists, 84
built-in number formats,

customizing, 79
buttons, 268

assigning buttons to macros, 268
attaching a code to a button, 305
macros for managing several buttons

with a single button, 267

C
Calculation, 80
calculations, avoiding error values, 203
Calendar Control, 274
Callouts, 71
Camera icon, 130
Caption property, 275, 277, 302
Cascade option, layering workbooks on

top of each other, 5
case sensitivity in VBA Code,

preventing, 328
Categories in reverse order, 183
Category option, 55
CELL function, 279, 280
Cell-Link box, 214
cells

= equal sign, for copying cells to any
location, 194

;;;, for hiding cell contents, 149
3-D effects in cells, 60
A1 cell (Start name), 3
based on fill color, 273
blank cells, avoid within data, 127
blank cells, filling in a list, 197
blank cells, filling in using

macros, 198
blank cells for repeated data, 2
blank cells, removing quickly, 134
Blanks option, 198
calculations, avoiding error

values, 203
cell comments, adding pictures, 72

358 | Index

cells (continued)
cell comments, customizing

content, 71
cell comments, extracting text, 73
CELL function, 236, 279
Cell Style, 61
cell style, saving in pre-Excel 2007

versions, 61
cell styles, 60
Cell Value Is, 63
Cell Value Is for pre-Excel 2007

versions, 52
Cell-Link box, 214
center across selection for merged

cells, 3
checkboxes, creating ticked or

unticked upon selection, 271
conditional formatting, 280
containing formulas, locking and

protecting, 30
converting text numbers to real

numbers, 68
counting cells with specified fill

color, 273
counting with multiple criteria, 243
counting words in a cell or range of

cells, 234
criteria argument, identification of

cells with conditions, 204
Ctrl-~, shows correct formulas for

cells, 161
Ctrl-Enter, 196
data sources, removing unused

cells, 44
database argument, identification of

cell ranges, 203
date and time, automate insertion of

information into a cell, 297
dirty (contain data), 146
DSUM, adds numbers in a column of

a list, 240
empty cells, prevent plotting of, 173
Format Cells, 3
formatted as text, avoiding, 3
formatting as text only when

necessary, 3
formatting selected cells, 50
formulas, identifying cells with

conditional formatting
quickly, 54

In-Cell drop-down checkbox, 49, 67
Last cell, 43
Lock Cell, 31
merging, 3
=NA(), for plotting blank cells, 174
#N/A, for plotting blank cells, 174
New Cell Style, 61
numbers and text, mixing in the same

cells, 70
recalculations, global, 54
reference cell addresses, 49
relative references, moving cells

without making references
absolute, 38

SaveAsCell, 316
searches, 307
second space character in a cell,

locating automatically, 224
semicolon (;) for separating sections

of a cell, 79
Show formulas in cells instead of

their calculated result, 161
SpecialCells, 306
subtotals, 85
sum cells, based on multiple

criteria, 239
sum cells, with specific fill

colors, 273
sum every nth cell or row, 208
sum or count cells with conditional

formatted data, 56
sum or counting while avoiding error

values, 4
SUMIF function, 239
SUMPRODUCT function, 242
text elements, linking to a cell, 171
ticking, 272
ticking upon selection, 271, 272
Use a formula to determine which

cells to format option, 50, 54,
86, 88

using Lookup function within a
cell, 259

volatile functions, 54
workbooks, naming with the text in a

cell, 315
worksheet name, using in a cell, 236

Cell Value Is, 63
Cell Value Is for pre-Excel 2007

versions, 52

Index | 359

center across selection for merged
cells, 3

Change AutoShape, 71
Change Shape button, 71
Change Shape tool, 71
characters

extracting a range of characters from
a string, 225

second space character in a cell,
locating automatically, 224

Chart ➝ Data Labels ➝ Legend
Key, 169

Chart Tools ➝ Format ➝ Current
Selection ➝ Format Selection
➝ Secondary Axis, 158

Chart Tools ➝ Layout ➝ Analysis ➝

Error Bars ➝ More Error
Bars, 162

Chart Tools ➝ Layout ➝ Labels ➝ Axis
Titles ➝ Primary Vertical Axis
Title, 160

Chart Type, 141
charts

;;;, for hiding cell contents, 149
-1, omits heading in the named

range, 146
3-D pie, 140
3-D Pie icon, 141
Alt/Control-~, shows actual

formulas on the
worksheet, 164

arrows, placing on the end of an
axis, 177–180

At maximum category, 183
Axis Label Range, 146
axis labels, changing position of, 181
Axis Options, 161
bar chart, displaying two sets of

data, 184
bar chart labels, 182
Border Color, 167
bounding area, extend or reduce by

dragging, 155
bubble charts, 154
Categories in reverse order, 183
Change Chart Type, 141
Chart Report, 167
Chart Size, 167
Chart Tools, 146
downloadable Chart Tools, 163

Chart Type, 141
column charts with variable widths

and heights, 160–163
column lines, 162
narrow columns, correcting when

using dates, 180
columns, creating, 161
columns, hiding, 173
customizing controls, 148
COUNTA argument, 146
Current Selection options, 143
data point formatting, removing, 177
Design tab, 140
directional arrows, 175
doughnut charts, 164–166
dragging and dropping data, 152
drop-down list, linking to dynamic

named range, 149
dynamic named ranges, 144
empty cells, prevent plotting of, 173
End Type, 176
Error bars, 162
Error Bars option, 162
Export, 167
FALSE formula cells, prevent plotting

of, 173
Fill, 167
fill-less plot area, 161
adding flexibility to, 148
Format Axis dialog, 161
Format Plot Area, 161
Format tab, 143
Formula bar, 154
Gap Width, 158
Gauge chart, 186
gridlines, removing, 161
horizontal axis labels, removing, 185
Horizontal (Category) Axis

Labels, 146
include new data

automatically, 144–147
making interactive, 148
invalid dates and, 274
labels, changing the position of, 182
labels, reversing order of, 182
legend

adding, 169
removing, 161

Legend Entries (Series), 142
links, finding and deleting, 39

360 | Index

charts (continued)
Male series, 185
Maximum settings, 161
Minimum settings, 161
More Error Bars, 162
=NA(), for plotting blank cells, 174
#N/A, for plotting blank cells, 174
Negative Error Value settings, 162
No Fill, 167
OFFSET function, 149
Outside End, 192
Paste Special Function, 156
Picture, 167
exploded pie chart, 140
pie chart, creating two sets of slices in

one, 142–144
pie chart, creation of, 140
pie charts, 140
plot new data

automatically, 144–147
Positive Error Value setting, 162
readings, plotting the last x number

of, 147
rows, hiding, 173
scenarios, testing, 155
scrollbar, 170
scrollbar, inserting, 149
scrollbar, linking to dynamic named

range, 148–151
Select Data Source Dialog, 146
SERIES function, 154
Series X values, 163
Sheet name, for entering named

range in formulas, 147
Show formulas in cells instead of

their calculated result, 164
speedometer chart, 164–171
stacked chart, displaying totals

of, 190
Temperature Data Series, 157
text elements, linking to a cell, 171
Text size, 167
thermometer chart, 157–158
Tick mark labels, 182
tornado chart (population

pyramid), 184–186
Type options, 141
unexplode pies, 141
updating quickly, 152

Value (y) axis crosses at maximum
category, 183

Walkenbach, John, downloadable
Chart Tools for adding labels
to charts, 166

X-axis category labels, highlight with
color, 188–190

XY scatter chart, 160
Charts ➝ Other Charts, 164
checkboxes

Check Box, 62
checkbox icon for pre-Excel 2007

versions, 62
CheckBoxLink, 52
CheckBoxLink, changing font color

of, 53
creating ticked or unticked upon

selection, 271
numbers, highlighting with toggle on

and off via a checkbox, 52–54
setting up for conditional

formatting, 50
uses for, 271

Choose Commands From, 71
Choose Commands From: box, 130
CHOOSE function, 257, 260
Clear All, 42
Clipboard options, 61
Close button, 55
code

attaching a code to a button, 305
attaching a code to a shortcut

key, 305
case sensitivity in VBA Code, 328
CODE function, 68
Code options, 18
color-code for visual

identification, 35
creating an advanced Find

feature, 300–306
exceeding the conditional formatting

three-criteria limit, 280
IndexCode, 26
list of date and time codes, 82
list of miscellaneous codes, 83
loops causing slow code, 271
performance of, 270
range changes and, 280
speeding up, 263
speeding up results in macros, 263

Index | 361

Super Code, 286
user’s workbook, never use code to

unprotect workbooks, 284
View Code, 9
Visual Basic code, running

automatically, 11
Code ➝ Macros, 199
CodeName

ActiveWorkbook and, 284
Edit ➝ Replace, for changing to

CodeNames, 266
referencing worksheets via, 266
to references specific sheets, 266
VBE (Visual Basic Editor), 266

codes
list of formatting codes, 81
list of text codes, 82

collapse tool, 85
ColorFunction custom function, 273
colors

Border Color, 167
color-code for visual

identification, 35
ColorFunction custom function, 273
Colors and Lines, 72
conditional formatting, 34
for data identification, 35
fill, 273
icolor, 282
summing cells by fill color, 274
Vary colors by point, 46

columns
absolute column, 100
avoid referencing entire, 3
blank columns in tables of data, 2
blanks, filling in columns, 198
boldface for column headings, 73
column charts with variable widths

and heights, 160–163
COLUMN function, 201
column limits, 26
column lines, creating, 162
columns, creating, 161
deleting, avoiding the #REF!

errors, 43
DSUM, adds numbers in a column of

a list, 240
file bloat, 42
formatting, eliminating

extraneous, 43

Hide Columns, 27
hiding, 26, 173
incrementing cell references by rows

across columns, 199–201
Names column, use dynamic range

names, 229
#NUM! error, returned with two or

more identical names in name
column, 229

#REF! error, 43
Refers To: column, 39
narrow columns, correcting when

using dates, 180
ComboBox, changing lists with, 64
CommandButton, 277
Commands Not in the Ribbon, 130
comments

cell comments, customizing content
of, 71

cell comments, extracting text, 73
Comment border for pre-Excel 2007

versions, 72
Comment for pre-Excel 2007

versions, 71
Comments, 71
New Comment, 71

CompareText, 328
comparison operators, use

interchangeably, 231–233
conditional formatting

color coding for visual
identification, 35

colors, 34
Conditional Formatting dialog

box, 34
Conditions for pre-Excel 2007

versions, 36
controling with checkboxes, 50
criteria limits, 280
for comparing ranges, 196
for finding duplicate data, 34
identifying cells with, 54
sum or count data cells, 56
three-criteria limit, code for

exceeding the limit, 280
turning on and off with a

checkbox, 62
turning on and off with a switch, 63

Conditions for pre-Excel 2007
versions, 36

362 | Index

Controls ➝ Insert, 149
Controls toolbox (UserForm)

buttons and, 267
for running macros, 269
Label control (Controls

toolbox), 269
to create a splash screen, 269

converting
dates and times to real numbers, 97
dollar values, displaying as

words, 83
Excel dates to formatted dates, 202
functions to values, 89
negative (right-aligned) numbers to

Excel numbers, 215
numbers to dollars and cents, 83
references from relative to

absolute, 310–315
text numbers to real numbers, 68

copy
Copy (Ctrl-C), 198
copy formula results, 89
Copy Here as Values Only, 89
Copy to Another Location

option, 78
COUNT cells, 273
COUNT function

named ranges, 113
Count of Product, 133
COUNTA argument, 146
COUNTA function

counts all nonblank cells, 113
defining the range of, 112
dynamic highlighting, 60

COUNTIF function, 272
criteria

conditional formatting limits, 280
filtering two or more in a table, 230
identification of cells with

conditions, 204
Ctrl key

create incremented lists by 1, 107
for grouping worksheets manually, 8

Ctrl-~, shows correct formulas for
cells, 161

Ctrl-C (copy), 187
Ctrl/c-K, insertion of hyperlinks, 24
Ctrl-Enter, 196
Ctrl-G, 32, 198
Ctrl-R (View Project Explorer), 266

Ctrl-Shift-Enter, 57, 208, 242, 244
Ctrl-V (paste), 187
curly brackets ({ }), 208
Current Selection options, 143
Custom, 80
Custom ➝ Specify Value, 162
custom functions

and conditional formatting, 56
ColorFunction, 273
for sliding tax scale

calculations, 249–251
SheetName, 279
workbook name/path, 279

Custom Lists for Months, 102
Custom Lists for pre-Excel 2007

versions, 85
Custom Lists for Weekday, 102
custom toolbar, deleted when workbook

closes, 318
Customize, 71
Customize ➝ Commands ➝ Macros ➝

Custom Button, 306
customized toolbars, 37
customizing cell contents, 71

D
DAO (Data Access Objects), 331
data

blank cells for repeated data, 2
blank rows in tables of data, 2
conditional formatted cells, 56
data fields, sorting more than three

fields, 73
data manipulation with Advanced

Filter tool, 75
data matches, finding in Excel, 78
data sources, removing unused

cells, 44
data tables, 3-D effects, 61
data tables, defining as dynamic, 113
Data Tools, 32, 48
data validation, 32, 48

turning on and off with a
checkbox, 62

turning on and off with a
switch, 63

database argument, identification of
cell ranges, 203

Index | 363

database functions for setting up
lists, 126

database functions, replacing other
functions with, 227–229

excluding duplicate data in lists,
excluding, 207

deleteting data permanently, 41
dragging and dropping data, 152
duplicated data for pre-Excel 2007

versions, 34
duplicated in multiple worksheets, 8
dynamic named ranges for new data

in tables, 4
Excel Help for large data tables with

multiple criteria, 4
extract statistical information from

raw data, 124
extraction from corrupt

workbooks, 45
finding duplicates, 34
flagged as incorrect, 62
identifying data that appears two or

more time, 35
import from an Access

database, 331–335
incorporating in continuous

rows, 112
keeping related data in one

continuous table, 2
lookup functions for setting up

lists, 126
pivot data for immediate results, 125
raw data, 124
removing duplicates, 62
spreading over different tables

unnecessarily, 2
spreading over many different

workbooks unnecessarily, 2
spreading over numerous worksheets

unnecessarily, 2
tables with multiple criteria, 4
validation list and decreasing list of

options, 101
workbooks, saving before deleting

data permanently, 41
Data ➝ Data Options ➝ Data

Validation, 238
Data ➝ Data Tools, 212
Data ➝ Data Tools ➝ Data

Validation, 209, 230

Data ➝ Data Validation, 32
Data ➝ Edit Links, 41
Data ➝ PivotTable, 133
Data ➝ PivotTable Report, 133
Data Access Objects (DAO), 331
Data Labels ➝ Below, 189
Data Series ➝ Data Labels ➝ Value, 191
date and time

1900 date system, Excel’s default
system, 94

adding and subtracting months from
specific dates, 251

additional information links for, 97
Analysis ToolPak, 96
automate insertion of information

into a cell, 297
Calendar Control and, 274
CHOOSE formula, 257
converting to real numbers, 97
Date & Time, 96
current date, and NOW

function, 205
date, and NOW function, 205
date and time calculations, 95
date and time features, 94
date bugs, 97
date codes, list of, 82
date extensions, adding, 214
DATE function, 252
DATEDIF function, 96
Day variable, 252
dd/mm/yy, date format, 202
decimal fractions, treated as time, 94
default date system, changing, 218
Display Negative Time Values, 96
EDATE function, 251
EOMONTH, finding the last day of

any given month, 253
European date format, 202
Excel dates, convert to formatted

dates, 202
finding the last day of any given

month, 253–255
manipulating with magic

numbers, 95–96
MAX function, 96
MIN function, 96
Month variable, 252
negative time values, displaying, 217

364 | Index

date and time (continued)
negative times, displaying using a

custom format, 219
number of specified days in any

month, determining, 222
setting numeric values, 94
starting dates, 218
SUM function for adding time

beyond 24 hours, 94
TEXT formula, 257
time codes, list of, 83
time, treated as decimal fractions, 94
total time, show as days, hours, and

minutes, 221
“Use 1904 date system”

checkbox, 218
.Value = Now, 298
showing a weekday as a

number, 256
showing a weekday as weekday

name, 257
showing the weekday as weekday

text, 257
finding the weekday associated with

any date, 256
WEEKDAY formula, 257
WEEKDAY function, 256, 257
Year variable, 252

DATEDIF function, 255
DCOUNT function, 230
dd/mm/yy, date format, 202
decimal fractions, treated as time, 94
default date system, changing, 218
default workbook, customizing, 23
default workbook, restoring to a blank

default, 23
defined name link, finding and

deleting, 39
Defined Names, 66
Defined Names ➝ Create from

Selection, 110
Defined Names ➝ Define Name, 108
Defined Names ➝ Name Manager, 109
Defined Names option, 39
Delete for pre-Excel 2007 versions, 87
Delete Links Wizard, 39
Delete Rule, 87
deleteting data permanently, 41
Design ➝ Data ➝ Add, 163
Design ➝ Data ➝ Select Data, 142, 146

Design ➝ Type ➝ Change Chart
Type, 168, 189

Design tab, 140
Developer, 12
Developer ➝ Code ➝ Record

Macro, 275
Developer ➝ Controls ➝ Insert, 169,

267
Developer ➝ Controls ➝ Insert ➝ Form

Control, 213
Developer ➝ Macros, 18, 29
Developer ➝ Macros, highlight Import_

Data_Access_2007, 335
Developer ➝ Macros, highlight

Retrieve_Data_Closed_
Workbooks, 340

Developer ➝ Macros, highlight
Retrieve_Data_Closed_
Workbooks, 344

Developer ➝ Macros, highlight Send_
Mail_Outlook, 353

Developer ➝ Macros, highlight Update_
Word_Report, 348

Developer ➝ Macros or
Alt/Option-F8, 15

Developer ➝ Visual Basic, 16, 30
Developer tab, 50
Dfunction (database function), 246
directional arrows, 175
Disable all macros with notification, 11
Display Negative Time Values, 96
Display options for this Workbook, 164
DoIt macro, 271
dollar sign ($)

Average function made absolute
with, 77

for absolute formulas, 38
force ranges to be absolute, 108
reference columns absolutely

with, 59
dollar values, displaying as words, 83
double-clicking

ticking cells upon selection, 272
.xla file, 285

doughnut charts, 164–166
dragging and dropping data, 152
Drawing, 71
Drawing toolbar, 71, 271
drop-down list, linking to dynamic

named range, 149

Index | 365

DSUM function, 57, 203, 209
dTime, 265
duplicate data, removing, 62
duplicated data for pre-Excel 2007

versions, 34
DWORD Value, 84
dynamic formula identification, 55
dynamic named range

adding new data to tables, 4
expand and contract, 112
Name box, 112
PivotTable, 138
to decrease refresh time, 137
types of dynamic named range

examples, 117

E
Edit ➝ Copy ➝ Picture, 129
Edit ➝ Go To…, 198
Edit ➝ Paste, 129
Edit ➝ Replace, 266
Edit Custom List, 85
Edit mode, 72
Edit mode and pre-Excel 2007

versions, 71
Editing ➝ Find & Select ➝ Replace, 194
Enable, 38, 99
Enable All Macros, allows for dangerous

code infiltration, 15, 99
Enabled property, 301
End Type, 176
Enter, avoid when entering array

formulas, 57
entries with text and numbers, 70
EOMONTH, 253
equals key (=), 198
Error Alert tab, 92, 100
Error bars, 162
Error Bars option, 162
error handling, add-ins and, 284
error values, 203
European date format, 202
EVALUATE function, 258
Events, 11
Excel

2007, new changes in Excel, xv
automate comparisons for ranges

in, 195

automate Outlook from
Excel, 349–354

automate Word from
Excel, 344–348

converting negative (right-aligned)
numbers to Excel
numbers, 215

dates, convert to formatted
dates, 202

default date system, changing, 218
Excel Help for large data tables with

multiple criteria, 4
ExcelFix program, 47
finding exact data matches, 78
OpenOffice.org, 47
PivotTable feature, 4
PivotTables online tutorial, 124
placing on the end of an axis in Excel

2007, 177–180
placing on the end of an axis in older

versions of, 177–180
sheet events, 9
True or False, using to compare

ranges, 195
View Microsoft Excel tool, 10

Excel Calendar Control, 274
Excel icon (View Code), 264, 283
Excel Options ➝ Add-Ins, 284
Excel Options ➝ Customize, 130
exploded pie chart, 140
Export, 167
Express ClickYes, 354
extended property, 337
extensions, adding date extensions, 214
extract numeric portions of cell

entries, 70
extracting a range of characters from a

string, 225

F
F4 key, 194, 269
F5, 32
F7 (View ➝ Code), 276
F9 key when recalculating

spreadsheets, 4
FALSE formula cells, 173
FALSE value, 50
field argument, indicates columns in

functions, 204

366 | Index

File ➝ Import File, 44
File ➝ Save As… ➝ Microsoft Excel

Add-in (*.xla), 284
File Name box, 5
files, unable to open, 46
Fill, 167
fill colors, 273
Fill Effects, 72
Fill Handle, 102
Fill Handle, adding Custom Lists, 102
Fill Without Formatting, 228
Filter the List in Place, 66
filtering, two or more criteria in a

table, 230
Find feature

button, attaching a code to a
button, 305

Caption property, 302
creating an advanced Find

feature, 300–306
Enabled property, 301
finding a name between two

numbers, 306–310
finding data matches in Excel, 78
GETBETWEEN, 309
shortcut key, attaching code to

a, 305
SpecialCells, 306
UserForm, 301

Find featureQuick Access Toolbar, 305
FIND function, 69, 224
Find What, 68
Find What: box, 38, 194
First Name field, 132
Flow Chart, 71
Font Style, 87
Font tab, 87
Form Controls, 50, 52, 62, 64
Format ➝ Cells, 219
Format ➝ Cells ➝ Protection, 31
Format ➝ Conditional Formatting, 34,

280
overcoming limitations, 280

Format ➝ Conditional Formatting… ➝

Select Formula Is, 196
Format ➝ Protect sheet, 32
Format ➝ Source Data ➝ Series, 142
Format Axis ➝ Axis Options, 185
Format Axis ➝ Patterns, 182
Format Axis dialog, 161

Format Cells, 3
Format Data Labels ➝ Alignment, 192
Format Data Labels ➝ Label Options ➝

Label Position ➝ Above, 192
Format Data Point ➝ Line Style, 176
Format Data Series ➝ Line Color ➝ No

Line ➝ Close, 192
Format Data Series ➝ Series Options ➝

Secondary Axis, 185
Format Painter tool, 61
Format Plot Area, 161
Format tab, 71, 143
Format values where this formula is

true, 58, 63, 88
formats

built-in number formats,
customizing, 79

color coding, 34
color coding for visual

identification, 35
Conditional Formatting dialog

box, 34
eliminating superfluous formats, 43
finding duplicate data, 34
Format dialog, 3
Format tab (Format button on Mac

OS X), 34
Format values where this formula is

true, 55, 58, 86
formatting cells as text only when

necessary, 3
formatting codes, list of, 81
formatting, eliminating

extraneous, 43
tips for spreadsheets, 2
Use a formula to determine which

cells to format option, 50, 86
Forms for pre-Excel 2007 versions, 62,

75
Forms toolbar, buttons and, 268
Forms toolbar for pre-Excel 2007

versions, 50, 52
Formula ➝ Defined Names ➝ Use in

Formula ➝ Paste Names, 121
Formula bar, 80, 154
formula cells, accidentally

overtyping, 32
Formula Is in pre-Excel 2007

versions, 50

Index | 367

formulas
$ dollar sign, for absolute

formulas, 194
absolute formula, 38
Alt/Control-~, shows actual

formulas on the
worksheet, 164

and cells formatted as text,
avoiding, 3

array formulas, to SUM every second
cell in the range, 208

cells containing formulas, locking
and protecting, 30

CHOOSE formula, 257
columns, filling blanks in, 198
converting references from relative to

absolute, 310–315
converting to values, 89
copying quickly, 57
dollar sign ($) for absolute

formulas, 38
dynamic identification, 55
EDATE formula, 251
Excel ranges, automate

comparisons, 195
F4 key, toggles through different

absolute formulas, 194
Find What: box, 194
finding the last day of any given

month, 253–255
Format values where this formula is

true, 58
formula cells, accidentally

overtyping, 32
Formula Is in pre-Excel 2007

versions, 50
and headings, 77
highlight automatically in custom

formats, 55
identifying cells with conditional

formatting quickly, 54
incrementing cell references by rows

across columns, 199–201
macro for converting to values, 89
Match Entire cell contents

option, 194
mega-formulas,

constructing, 224–226
mega-formulas, converting references

from relative to absolute, 312

mega-formulas, referencing another
workbook, 226

N function, 194
Refers To:, 109
relative formulas, 38
relative formulas with references,

moving, 194
Replace With: box, 194
reproduce in another range on the

same worksheet, 194
text, adding descriptive text, 193
TEXT formula, 257
tips for spreadsheets, 3
Use a formula to determine which cells

to format option, 50, 54, 86
using { } braces, 57
using lists, 237
value derived from a formula,

determining, 54
VLOOKUP function, using across

multiple tables, 219–221
WEEKDAY formula, 257

Formulas ➝ Defined Names ➝ Create
from Selection, 231, 238

Formulas ➝ Defined Names ➝ Define
Name, 146, 149, 151, 229,
261

Formulas ➝ Defined Names ➝ Name
Manager, 107

Formulas ➝ Defined Names ➝ Name
Manager ➝ New, 119

forward recordset, 333
Function Library, 55
Function Wizard pre-Excel 2007

versions, 96
functions

ADDRESS functions, 65
AND function, 60, 64
blank cells, deleting from lists, 197
CELL function, 236, 279
CHOOSE function, 260
CODE function, 68
ColorFunction, 273
COLUMN function, 201
COUNT function, 113
COUNTA function, 112, 113
custom function, 56
custom functions, create by using

names, 108

368 | Index

functions (continued)
custom functions, for sliding tax

scale calculations, 249–251
database functions, replacing other

functions with, 227–229
DATE function, 252
DATEDIF function, 96, 255
DCOUNT function, 205
DCOUNT function, filtering with

two criteria, 230
DCOUNTA function, 205
Dfunction (database function), 246
DMAX function, 205
DMIN function, 205
DPRODUCT function, 205
DSUM function, 57, 209
DSUM function, error values, 203
DSUM function, use with a variety of

error values, 204
EDATE function, 251
EVALUATE function, 258
field argument, indicates columns in

functions, 204
FIND function, 69, 224
finding the last day of any given

month, 254
Function Library, 55
Function Wizard pre-Excel 2007

versions, 96
functions, converting to values, 89
GETPIVOTDATA function, 135
IF function, for sliding tax scale

calculations, 246
IF functions, 219
INDIRECT function, 49, 221
Insert Function, 55
INT function, 222
LEFT function, 69
LEFT function, to return first

character or characters in a
text string, 234

LEN function, to return the number
of characters in a text
string, 235

Lookup and Reference
functions, 112

macro for converting to values, 89
MATCH function, 114–116, 260
MAX function, 96
MID function, 225

MIN function, 96
MINUTE function, 222
MOD function, 60, 208, 209
MyFullName, 279
MyName function, 279
N function, 194
nested functions, 226
nonvolatile functions, nested withing

volatile functions, 205
NOW, 205
Now(), 17
OFFSET function, 112, 113
Paste Special Function, 156
RAND function, 74
RAND function, major flaw in, 75
ROW() function, 60, 208
SheetName function, 279
SMALL functions, to extract figures

from PivotTables, 136
STrConv function, 323
SUBSTITUTE function, 216
SUBSTITUTE function, for counting

words in a cell or range of
cells, 235

SUBTOTAL function, 212
SUBTOTAL function, making it

dynamic, 212
SUM function, 57
SUM function, adding time beyond

24 hours, 94
SUM function, error values, 203
SUM function for adding time

beyond 24 hours, 94
SUM function, for sliding tax scale

calculations, 246
SUM function, simplify summing

with use of, 108
SUMIF function, 56, 239
SUMPRODUCT function, 242, 245
TEXT function, 69, 218
TODAY, 205
Today(), 17
TRIM function, ensures no space

characters in a cell, 216
TRIM function, nesting to remove

superfluous spaces in
counting, 236

user-defined functions (UDF), 54,
249

Index | 369

using Lookup function within a
cell, 259

VLOOKUP function, 210–212
volatile functions, 17, 54, 60

recalulations, reducing when
using volatile functions, 205

WEEKDAY function, 256

G
Gap Width, 158
Gauge chart, 186
General, 71, 81
General for pre-Excel 2007 versions, 71
GETBETWEEN, 309
GETPIVOTDATA function, 135
global recalculations, 54
Go To Special dialog, 32
Grand Total, 87, 135
gridlines, removing, 161
Group, 98, 99
Group feature, using manually, 8
grouping worksheets, 98
grouping worksheets automatically, 9

H
hacks (quick and dirty solutions to

problems) downloads, xvi
headings

-1, omits heading in the named
range, 146

boldface for column headings, 73
required for PivotTables, 127
row headings, dynamic

references, 200
using formulas with, 77

Height argument, 113
hidden name links, finding and

deleting, 39
Hide, 19, 138
Hide & Unhide, 27
Hide Rows, 27
hiding, 27

columns in charts, 173
finding and deleting hidden name

links, 39
Hide, 19
Hide & Unhide, 27
Hide Columns, 27
hiding cell contents, 149

rows, 27
rows in charts, 173
toolbars, hiding and restoring, 316
Unhide, 19
Unhide under Window options, 17
workbooks, 283
worksheets, keeping hidden from

unseen users, 19
hiding workbooks, 283
HKEY_CURRENT_USER, 84
Home ➝ Cells ➝ Format Cells, 219
Home ➝ Cells ➝ Insert, 116
Home ➝ Clear ➝ Clear All, 42
Home ➝ Conditional Formatting ➝

New Rule, 35
Home ➝ Defined Names ➝ Name

Manager ➝ New, 118
Home ➝ Editing ➝ Find & Select ➝ Go

To Special, 198
Home ➝ Editing ➝ Find & Select ➝

Replace, 195
Home ➝ Find & Select ➝ Go to

Special, 32, 40
Home ➝ Format ➝ Lock Cell, 31
Home ➝ Styles ➝ Conditional

Formatting ➝ New Rule, 196
Home tab ➝ Find & Select ➝

Replace, 38
Horizontal alignment, 97
horizontal axis labels, removing, 185
Horizontal (Category) Axis Labels, 146
Horizontal for viewing workbooks in a

single stack, 5
HTML features lost for pre-Excel 2007

versions, 46
HTML, lost features when saving in

HTML, 46
hyperlinks

avoid using URLs as a base, 25
Ctrl/c-K for insertion of, 24
Hyperlink, 24
hyperlink base for pre-Excel 2007

versions, 25
hyperlinked index, creating, 24

I
icolor, 282
IF functions, 219
Import button, 85

370 | Index

Import File, 44
In-Cell drop-down checkbox, 49, 67
index of sheets, 23
indexes

auto-generate, 24
hyperlinked index, creating, 24
index numbers, 266
index sheet, creating manually, 24
IndexCode, 26
linking from a context menu, 25
linking indexes from a context

menu, 25
worksheets and, 266

INDIRECT function, 49, 221
Initialize, 269
Initialize event, 269
Insert, 75
Insert ➝ Chart ➝ Line, 186
Insert ➝ Charts ➝ Columns, 146, 190
Insert ➝ Charts ➝ Scatter, 160
Insert ➝ Illustration ➝ Shapes, 271
Insert ➝ Illustrations ➝ Insert ➝ Shapes

➝ Block Arrows, 186
Insert ➝ Links ➝ Bookmark, 344
Insert ➝ Module, 26, 134, 217
Insert ➝ Module, creates a new

module, 268
Insert ➝ Module (VBE)

accessing standard modules, 265
adding Calendar Control, 276
assigning buttons to macros, 268
password protecting

worksheets, 278
summing cells by fill color, 273

Insert ➝ Name ➝ Create, 231, 238
Insert ➝ Name ➝ Define, 39, 107, 146,

261
Insert ➝ Pivot Table, 132
Insert ➝ UserForm, 269, 275
Insert ➝ UserForm, opens the VBE, 269
Insert Function, 55
Insert tab, 128
Inset ➝ Picture ➝ AutoShapes ➝ Block

Arrows, 186
INT function, 222
intersect operator, 110
IsAddin property, 284

K
keys, attaching a code to a shortcut

key, 305
keystrokes, macro recorder and, 263

L
labels

add-ins, 269
changing the position of, 182
Label control (Controls

toolbox), 269
Label Controls Property

window, 269
reversing order of, 182

Labels ➝ Data Labels ➝ More Data
Label Options, 189

LARGE function, 136
LargeScroll command, 263
Last cell, 43
Layout ➝ Labels ➝ Legend, 169
Layout button, 133
LEFT function, 69, 234
left-align text in spreadsheets, 3
left-aligned text, avoid changing, 81
legend, 169

removing, 161
Legend Entries (Series), 142
LEN function, 235
LetterNames, 120
Line box, 60
Lines, Colors and, 72
lists

adding data automatacally to a
validation list, 91

blank cells, filling in a list, 197
changing with options buttons and

ComboBox, 64
containing numeric data only, 113
creating a list of workbook

hyperlinks, 298–300
creating custom lists, 84
creating unique items in, 66
Ctrl key, create incremented lists by

1, 107
custom lists for Months, Weekdays

and numeric sequences, 102
Custom Lists for pre-Excel 2007

versions, 85

Index | 371

data, excluding duplicate data in
lists, excluding, 207

database functions for setting up
lists, 126

entries, counting multiple entries
only once, 206

Filter the List in Place, 66
guidelines for creating tables or

lists, 126
lookup functions for setting up

lists, 126
multiple lists, 64
PivotTables, to produce unique

names in lists, 207
turning sorted lists upside down, 85
user-friendly validation (pick) list, 67
validation list and decreasing list of

options, 101
validation lists, changing based on

another selected list, 66
with formulas, 237

Lock Cell, 31
long-term planning of spreadsheets, 1
Lookup and Reference functions, 112
Lookup functions, 259
lookup functions, creating, 110
loops

cannot be created with the macro
recorder, 271

causing slow code, 271
getting a number between a

nominated range, 306
macro recorders and, 271
password protecting

worksheets, 278

M
Macintosh, accessing private

modules, 283
macros

ActiveSheet, 267
ActiveX Controls and, 267
Alt/Option-F8, to bring up macro

list, 18
Application.OnTime method, 264
Application.ScreenUpdating

property, 263
assigning buttons to, 268
checkboxes, creating ticked or

unticked upon selection, 271
code, speeding up results in, 263

CodeNames to references specific
sheets, 266

converting negative (right-aligned)
numbers to Excel
numbers, 216

counting cells with specified fill
color, 273

Disable all macros with
notification, 11

displaying messages, 271
distributing, 283
DoIt macro, displays please wait

message, 271
dTime, 265
eliminating screen flicker, 263
Enable All Macros, 15
enabling deleted macros, 15
Excel Calendar Control, 274
distributing a macro’s

functionality, 283
using an index number, 266
index numbers and, 266
Macro Settings Button, 11
Macros under Code options, 18
managing several buttons with a

single button, 267
OnTime method, 264
Personal.xls file and, 274
please wait message, displaying, 270
protected worksheets and, 282
recorded macros, 18
Run statement, 318
running, 264, 271
running at predetermined times, 264
Schedule argument, 265
screen flicker, 263
ScreenUpdating property, 263
Select command, 264
selecting a range outside scrollable

areas, 29
volatile functions, avoid storing in

personal macros, 17
Warning Prompts, stopping, 18
workbook splash screen, 268
Workbook_BeforeClose event, 265
workbooks, personalizing, 23
workbooks, retrieving name and path

of, 279
worksheets, password-protect and

unprotect with one
application, 276–279

372 | Index

Male series, 185
Manage Rules, 87
manual calculation mode for

spreadsheets, 4
Marlett font, 272
Match Entire cell contents option, 194
MATCH function, 114–116, 260
MAX function, 96, 113
Maximize button, 8
mega-formulas, constructing, 224–226
memory conservation with

PivotTables, 126
menu item, adding (pre-2007), 285–289
messages, displaying, 270
Microsoft

Microsoft Access 2007
databases, 337

Microsoft ActiveX Data Objects
2.8, 341

Microsoft ActiveX Data Objects
library 6.0, 337

Microsoft Excel 2007
workbooks, 337

Microsoft folder, 84
Microsoft Office 12 Access Database

Engine Object Library, 332
Microsoft Office Download

Center, 39
Microsoft query link, finding and

deleting, 39
Microsoft Word, automate from

Excel, 344–348
Microsoft.ACE.OLEDB.12.0, 337

MID function, 225, 279
MIN function, 96
MINUTE function, 222
miscellaneous codes, list of, 83
missing fields in tables, 100
MOD function, 60, 208, 209
modules

accessing, 265
Module, 55
protecting add-ins, 285

More Error Bars, 162
MsgBox, 14
MsoFileType constants, 298
msoFileTypeAllFiles, 298
msoFileTypeBinders, 298
msoFileTypeCalendarItem, 298
msoFileTypeContactItem, 298

msoFileTypeCustom, 299
msoFileTypeDatabases, 299
msoFileTypeDataConnectionFiles, 299
msoFileTypeDesignerFiles, 299
msoFileTypeDocumentImagingFiles, 299
msoFileTypeExcelWorkbooks, 299
msoFileTypeJournalItem, 299
msoFileTypeMailItem, 299
msoFileTypeNoteItem, 299
msoFileTypeOfficeFiles, 299
msoFileTypeOutlookItems, 299
msoFileTypePhotoDrawFiles, 299
msoFileTypePowerPointPresentations, 299
msoFileTypeProjectFiles, 299
msoFileTypePublisherFiles, 299
msoFileTypeTaskItem, 299
msoFileTypeTemplates, 299
msoFileTypeVisioFiles, 299
msoFileTypeWebPages, 299
msoFileTypeWordDocuments, 299
multiple lists, changing with options

buttons and ComboBox, 64
MyFullName function, 279
MyName function, 279

N
N function, 194
=NA(), for plotting blank cells, 174
#NA, for plotting blank cells, 174
Name box (Formula bar), 268
Name Manager, 39, 66
Name tab, 8
named constants, 260
named range

address data by names, 105
advantages of using, 49
apostrophe (') around names, 107
COUNT function, 113
counting all nonblank cells with

Counta, 113
creating, 48
Ctrl key, create incremented lists by

1, 107
custom functions, create by using

names, 108
data, incorporating in continuous

rows, 112
data tables, defining as dynamic, 113
Defined Names, 107

Index | 373

disadvantages of using, 49
dollar sign ($), force ranges to be

absolute, 108
drop-down list, linking to, 149
dynamic named range, 112
types of dynamic named range

examples, 117
dynamic named ranges, 112
Height argument, 113
identifying named ranges, 121
intersect operator, 110
LetterNames, 120
long lists of names, using dynamic

names for, 118–120
lookup functions, creating, 110
MATCH function, 114–116
MAX function, 113
Name a Range, 107, 108, 116
name a range of cells, 105
Name box, 105
Name Manager, 107
names refer to specified range on a

specified worksheets, 106
naming a cell, 105
OFFSET function, 112, 113
range address, making it

variable, 238
ranges, expanding or

contracting, 112
Refers To:, 109
Refers To: box, 107
relative references, 107
scrollbar, linking to dynamic named

range, 148–151
underscore (_), 110
use of exclamation mark (!), 107
use of zoom, 122
using formulas as your Refers

To:, 109
using meaningful names for specific

ranges, 121
using names in place of cell

identifiers or ranges, 105
using the same name for ranges on

different worksheets, 106
workbook level names, 106
worksheet name and including

spaces, 107
names

macro recorders and, 266
Name, 65

Names in Workbook for pre-Excel
2007 versions, 65

retrieving for workbooks, 279
workbooks and, 279

Names column, use dynamic range
names, 229

Negative Error Value, 162
Negative Numbers, 79
nested functions, 226
New, 66
New Cell Style, 61
New Comment, 71
New Rule, 35, 88
New Worksheet, 132
Next button, 133
No Fill, 167
No Text Please message, 80
Northwind 2007.accdb, 331
Now(), 17
NOW functions, 205
#NUM! error, returned with two or

more identical names in name
column, 229

Number Sold field, 135
numbers, 68

and text, mixing in the same cells, 70
Average, High, or Low headings,

displaying with numbers, 83
built-in number formats,

customizing, 79
converting dates and times to, 97
converting negative (right-aligned)

numbers to Excel
numbers, 215

converting to dollars and cents, 83
counting cells with specified fill

color, 273
Ctrl key, create incremented lists by

1, 107
DSUM, adds numbers in a column of

a list, 240
entries, counting multiple entries

only once, 206
extracting numeric portions of cell

entries, 70
finding a name between two

numbers, 306–310
highlighting, 52
highlighting with toggle on and off

via a checkbox, 52–54
index numbers, 266

374 | Index

numbers (continued)
lists containing numeric data

only, 113
lookup numbers on a scale, 261
macro to convert negative

(right-aligned) numbers to
Excel numbers, 216

magic numbers for manipulating
dates and times, 95

Number, 80
number formats, customizing, 79
number formats for text and

numbers, 79
numeric value, setting for date and

time, 94
right-aligned numbers, avoid

changing, 81
SUM function, simplify summing

with use of, 108
sums, simplify, 108
showing a weekday as a

number, 256
numeric sequences, custom lists

for, 102
numeric value, setting for date and

time, 94

O
object links, finding and deleting, 39
Objects folder, 19
Office button ➝ Excel ➝ Formulas, 4
Office button ➝ Excel Options ➝

Add-Ins, 253
Office button ➝ Excel options ➝

Add-ins, 118
Office button ➝ Excel Options ➝

Advanced, 161
Office button ➝ New, 21
Office button ➝ Open, 5
Office Button ➝ Prepare ➝ Properties ➝

Document Properties ➝

Advanced Properties, 25, 43
Office button ➝ Prepare ➝ Properties ➝

Document Properties
drop-down ➝ Advanced
Properties, 44

Office button ➝ Save ➝ Tools Button ➝

General Options, 11
Office button ➝ Save As, 13

Office button ➝ Save As… ➝ Microsoft
Excel Add-in (*.xlam), 283

Office folder, 84
OFFSET function, 112, 113, 149
OnAction property, 288
OnTime method, 264
OnTime method (Application), 264,

265
OpenOffice.org, free version of, 47
Option, 64
option buttons (radio buttons), 64
Option Compare Text, 329
Options, to assign shortcut keys, 199
Outline, 85
Outlook, automate from

Excel, 349–354
Outlook Redemption tool, 354
Outlook’s security model, 353
Outside End, 192

P
parentheses (), 266
password protection, 276, 282, 320
password Secret, always avoid using, 98
PasswordChar property, 277
passwords, 33, 320
Paste, 89
Paste Function dialog box

(Shift-F3), 279
Paste Name dialog, 40
Paste Special, 69, 89
Paste Special Function, 156
Paste Special… ➝ Transpose, 201
Paste Special… ➝ Values, 129
Paste Values, 89
pathnames, retrieving, 279
paths, alternative, 57
Patterns ➝ Line ➝ None ➝ OK, 192
Patterns page tab for pre-Excel 2007

versions, 35
Patterns tab, 34, 61
personal macro workbook, 17, 23, 276

creating Personal.xls file, 274, 276
Personal.xls file, 274, 276, 283
phantom links, finding and deleting, 41
phantom workbook links, removing, 39
Picture, 72, 167
pictures, adding to cell comments, 72
pie charts, 140

Index | 375

PivotCharts, 126
PivotTable feature, 4
please wait message, displaying, 270
plot areas, fill-less, 161
Pope, Andy, 192
Popular, 71, 85
Positive Error Value, 162
Positive Numbers, 79
Precision as Displayed option, 80
printing workbooks, preventing, 14
private modules

macro ease of use and, 285
Private module, 324
protected workbooks, 283
Workbook_Open event, 264

Procedure box (VBE), 269
procedures, running, 282
progress meters, 270
Project Editor (VBE), 283
Project Explorer (VBE), 16

splash screens, 270
prompting to save nonexistent

changes, 17
prompts, preventing unnecessary

prompts, 15
proper case text, 322–327
Properties Window, 19, 275
Protect method, 282, 283
Protect Workbook, 15
Protect Worksheet, 32
protected worksheets, 98, 282
Protection, 31
Protection method, 98

Q
Quick Access Toolbar, 305
Quick Access toolbar, 71
quotation marks (")

around formulas, 56
removing around formulas, 56

R
RAND function, 74
RAND function, major flaw in, 75
range address, 238
ranges, VBA code and, 280
raw data, 124
Read-only recommended, 11
real numbers, 68

recalculation speeds of spreadsheets, 4
recalculations, global, 54
recalulations, slowing with array

formulas, 57
recorded macros, 18

performance of, 270
recordset, 332
Refers To: box, 40, 107
Refresh option, 126
Regedit, 84
relative references

converting to absolute
references, 310–315

formulas and, 194
relative row, 100
Replace, 68
Replace for removing unwanted

characters, 68
Replace With: box, 38, 194
ResetScrollArea, 30
restore workspace, 5
Review, 71
Review ➝ Changes ➝ Protect Sheet, 276
Review ➝ Changes ➝ Protect

Workbook, 15
ribbon, results-oriented interface, xv
ribbons, 284
right-aligned numbers, avoid

changing, 81
right-aligned numbers in

spreadsheets, 3
right-clicking Excel icon, 264
ROW function, 208
rows

AutoFilter, 289–291
blank rows in tables of data, 2
colors of, alternating, 58
and columns, hiding, 27
deleting, avoiding the #REF!

errors, 43
deleting in worksheets without

AutoFilter, 291–293
deleting rows in worksheets with

specified criteria or
conditions, 289–293

dynamic colors, 59
headings, dynmaic references, 200
Hide & Unhide, 27
Hide Rows, 27
hiding, 26, 173

376 | Index

rows (continued)
incorporating data in continuous

rows, 112
incrementing cell references by rows

across columns, 199–201
leave at least three blank rows above

tables, 3
left-align text in spreadsheets, 3
relative row, 100
right-aligned numbers in

spreadsheets, 3
ROW() function, 60
scrolling range limit, 26
sum every nth cell or row, 208

Run statement, 318
running

macros, 264, 271
procedures, 282

runtime errors, 282

S
Save As, preventing in workbooks, 11
Save Workspace, 5
SaveAsCell, 316
saving workbooks, before deleting data

permanently, 41
scales, look up numbers on, 261
scenarios, testing, 155
Schedule argument (OnTime

method), 265
screen flicker, 263, 263

Application.ScreenUpdating
property, 263

ScreenUpdating, setting to false to
prevent, 263

ScreenUpdating, setting to true, 264
ScreenUpdating

Application.ScreenUpdating
property, 263

macro for ScreenUpdating
property, 263

ScreenUpdating property
(Application), 263, 271

setting to false to prevent screen
flicker, 263

setting to true, 264
Script window, 134
scroll area, limiting to used range on

worksheets, 30

ScrollArea, 27
scrollbars

inserting, 149
linking to dynamic named

range, 148–151
for speedometer charts, 170

searches, and cells, 307
security

Disable all macros without
notification, 11

Enable All Macros, 15
Select command, 263, 264
Select Data Source Dialog, 146
Select Home ➝ Clipboard ➝ Paste ➝ As

Picture ➝ Copy Picture, 129
Select Number ➝ Category ➝

Custom, 185
semicolon (;) for separating sections of a

cell, 79
SERIES function, 154
Series X values, 163
Shadow Settings, 71
sheet events, 9
Sheet Name tab, 9

accessing View Code, 281
Sheet object, 9
SheetName custom function, 279
SheetName function, 279
Shift key, prevents normal files from

running, 284
Shift-F3, 279
shortcuts

assigning, 278
shortcut key, attaching code to

a, 305
shortcut keys, using Options to

assign, 199
Show Developer tab in the Ribbon, 12
Show formulas in cells instead of their

calculated result, 161, 164
ShowPass, 278
Single, 88
single apostrophe ('), with INDIRECT

function, 49
size handles, 213
SMALL functions, 136
SmallScroll command, 263
Smart Art Tools, 71
snapshot recordset, 332
Software folder, 84

Index | 377

sorting
more than three data fields,

automating with a macro, 73
Sort, 73
sort, random sorting, 74
sorted lists, turning lists upside

down, 85
sorting more than three data

fields, 73
tables, 127
worksheets, 319

Source: box, 231
SpecialCells, 306
speedometer chart, 164–171
Spreadsheet viewer, 46
spreadsheets

[*] to search for real external
links, 39

3-D effects, 61
80/20 Rule for planning

spreadsheets, 1
Alignment tab, 3
All Open Workbooks, 18
Alt/c-Q for closing module

window, 10
Alt/Option-F8, to bring up macro

list, 18
array formulas, 4
arrays, multiple arrays and large

reference ranges, 4
Before Print, 14
Before Save, 12
blank cells for repeated data, 2
blank columns and rows in tables of

data, 2
blank default workbook,

restoring, 23
Cascade option, layering workbooks

on top of each other, 5
cells containing formulas, locking

and protecting, 30
cells, moving with relavite references

without making absolute
references, 38

center across selection for merged
cells, 3

chart links, finding and deleting, 39
Clear All, 42
code for creating customized

toolbars, 37

code for creating hyperlinked
index, 24

code for linking indexes from a
context menu, 25

Code options, 18
columns, avoid referencing entire, 3
Conditional Formatting dialog

box, 34
conditional formatting for finding

duplicate data, 34
conditional formatting, turning on

and off with a switch, 63
conditions, color coding for visual

identification, 35
Ctrl key for grouping worksheets

manually, 8
Ctrl/c-K, insertion of hyperlinks, 24
data duplicated in multiple

worksheet, 8
data, finding duplicates, 34
data, identifying data that appears

two or more time, 35
data sources, removing unused

cells, 44
data, spreading over different tables

unnecessarily, 2
data, spreading over many different

workbooks unnecessarily, 2
data, spreading over numerous

worksheets unnecessarily, 2
Data Tools option, 32
Data Validation, 32
data validation, 32
data validation, turning on and off

with a switch, 63
default workbook, customizing, 23
defined name link, finding and

deleting, 39
Defined Names option, 39
Delete Links Wizard, 39
deleteting data permanently, 41
Developer, 12
Disable all macros with

notification, 11
dollar sign ($) for absolute

formulas, 38
dynamic named ranges when adding

new data to tables, 4
Enable, 38
Enable All Macros, 15

378 | Index

spreadsheets (continued)
Events, 11
Excel Help for large data tables with

multiple criteria, 4
ExcelFix program, 47
Excel’s PivotTable feature, 4
F9 key when recalculating, 4
File Name box, 5
files, unable to open, 46
Format Cells, 3
Format dialog, 3
Format tab (Format button on Mac

OS X), 34
formatting cells as text only when

necessary, 3
formatting, eliminating superfluous

formats, 43
formatting tips, 2
formula cells, accidentally

overtyping, 32
formula tips, 3
formulas, absolute, 38
formulas and cells formatted as text,

avoiding, 3
formulas, relative, 38
Go To Special dialog, 32
Group feature, using manually, 8
hidden name links, finding and

deleting, 39
Hide, 19
Hide & Unhide, 27
Horizontal for viewing workbooks in

a single stack, 5
HTML, lost features when saving in

HTML, 46
Hyperlink, 24
hyperlinks
hyperlinks, avoid using URLs as a

base, 25
Import File, 44
index, auto-generate, 24
index of sheets, 23
index sheet, creating manually, 24
IndexCode, 26
indexes, linking from a context

menu, 25
keep related data in one continuous

table, 2
Last cell, 43

leave at least three blank rows above
tables, 3

left-align text, 3
Lock Cell, 31
long term planning for, 1
macro, enabling deleted macros, 15
Macro Settings Button, 11
Macros, 18
macros, selecting a range outside

scrollable areas, 29
manual calculation mode, 4
Maximize button, 8
merged table cells, merging, 3
Microsoft query link, finding and

deleting, 39
MsgBox, 14
Name Manager, 39
Name tab, 8
New Rule, 35
Now(), 17
object links, finding and deleting, 39
Objects folder, 19
OpenOffice.org, free version of, 47
passwords, 33
Paste Name dialog, 40
Patterns tab, 34
personal macro workbook, 17, 23
phantom links, finding and

deleting, 41
phantom workbook links,

removing, 39
Project Explorer, 16
prompting to save nonexistent

changes, 17
prompts, preventing unnecessary

prompts, 15
Properties Window, 19
Protect Workbook, 15
Protect Worksheet, 32
protected worksheets, grouping

on, 98
protected worksheets, outlining

on, 98
Protection, 31
Read-only recommended, 11
recalculation speeds, 4
recorded macros, 18
reproduce another sheet in the same

workbook, 194
ResetScrollArea, 30

Index | 379

restore workspace, 5
right-aligned numbers, 3
rows and columns, hiding, 27
Save As, preventing in

workbooks, 11
Save Workspace, 5
saving workbooks, before deleting

data permanently, 41
scroll area, limiting to used range on

worksheets, 30
ScrollArea, 27
sheet events, 9
Sheet Name tab, 9
Sheet object, 9
sheets, repairing corrupted

sheets, 44
Show Developer tab in the

Ribbon, 12
Spreadsheet viewer, 46
structural tips for setting up and

laying out spreadsheets, 2
template tab, 21
templates, 21
templates, grouping, 21
ThisWorkbook, 12
tiled view, 5
Today(), 17
toolbars, customizing, 36
Trust Center, 11
Trust Center Settings, 11
Ungroup Sheets, 8
Unhide, 19
Unhide under Window options, 17
updated values, 4
users, bypassing limited access, 11
users, limiting privileges, 11
users, preventing from inserting

worksheets, 14
VBA code for grouping worksheets

automatically, 9
versus PivotTables, 125
Vertical option places workbooks

side by side, 5
View Code, 9
View Microsoft Excel tool, 10
Visible property, 19
Visual Basic code, running

automatically, 11
Visual Basic Editor (VBE), 13
volatile functions, 17

warning prompts, stopping, 18
Workbook bloat, 42
workbook customization, 5
workbooks, extracting data from

corrupt workbooks, 45
workbooks, opening more than one

at a time, 5
workbooks, prevent printing of, 14
workbooks, reducing the size of, 42
workbooks, repairing corrupted

workbooks, 44
workbooks, saved as read-only, 11
workbooks showing muliple ones

simultaneously, 5
worksheet protection,

auto-toggling, 33
worksheet_Activate, 27
worksheets, grouping

automatically, 9
worksheets, grouping manually, 8
worksheets, keeping hidden

worksheets unseen from
users, 19

worksheets, limiting scrolling
range, 26

worksheets, specify a valid range, 27
worksheets, ungrouping, 8
workspace, 5
XLSTART folder, 23
xlVeryHidden, 19
.xlw extension for saving

workspace, 5
SQL (Structured Query Language), 332
square brackets ([]), 81
stacked chart, displaying totals of, 190
standard toolbar for pre-Excel 2007

versions, 61
Stars and Banners, 71
static recordset, 332
static value, determining, 54
Store macro in: box (Record

Macro), 274, 276
stored values, permanently changing

with Precision as Displayed
option, 80

STrConv function, 323
structural tips for setting up and laying

out spreadsheets, 2
Structured Query Language (SQL), 332

380 | Index

Styles merging from other
workbooks, 61

SUBSTITUTE function, 216, 235
subtotals

boldface, using for identification, 85
identifying in worksheets, 85
SubTotal Button, 85, 88
SUBTOTAL function, 212
SUBTOTAL function, making it

dynamic, 212
Subtotals, 85
Subtotals, identifying Grand Total

from, 87
Subtotals pre-Excel 2007

versions, 85
SUM cells, 273
SUM function, 57
SUM function, adding time beyond 24

hours, 94
SUMIF function, 56
Summarize value field by, 133
summing

based on fill color, 273
calculating a person’s exact age, 255
calculating sliding tax scales, 246
calculations, avoiding error

values, 203
counting cells with multiple

criteria, 243
custom functions, for sliding tax

scale calculations, 249–251
DATEDIF function, 255
DSUM function, adding numbers in a

column of a list, 240
DSUM function, 209
DSUM function, error values, 203
finding the nth occurrence of a

value, 210
IF functions, for sliding tax scale

calculations, 246
SUBTOTAL function, 212
SUM and IF, slowing down

recalculations, 242
sum cells, based on multiple

criteria, 239
sum every nth cell or row, 208
SUM function, error values, 203
SUM function, simplify summing

with use of, 108

SUM functions, for sliding tax scale
calculations, 246

Sum of Amount field, 135
sum or counting cells while avoiding

error values, 4
sum totals, and error values, 203
SUMIF function, 239
SUMPRODUCT function, 209, 242,

245
SUMPRODUCT, overusing, 246
SUMPRODUCT, slows down

recalculations, 242
VLOOKUP function/formula, for

sliding tax scale
calculations, 247

showing a weekday as a
number, 256

showing a weekday as a weekday
name, 257

SUMPRODUCT function, 209
Super Code, 286
Super Code menu items, 286

T
Table Style, 62
tables

3-D effects, 61
blank cells, avoid within data, 127
Camera icon, 130
columns, 127
comparison operators, use

interchangeably, 231–233
Count of Product, 133
database functions for setting up

lists, 126
dynamic named range based

PivotTable, 138
dynamic named range, to decrease

refresh time, 137
Existing Worksheet, 128
extract statistical information from

raw data, 124
First Name field, 132
generate and extract data while

conserving memory, 126
GETPIVOTDATA function, 135
Grand Total, moving to top of the

table, 135
Grand Totals, 135–136

Index | 381

guidelines for creating tables or
lists, 126

headings, 127
Hide, 138
high row numbers, avoid using, 138
Insert tab, 128
invalid dates and PivotTables, 274
LARGE functions, to extract figures

from PivotTables, 136
Layout button, 133
leave at least three blank rows above

in spreadsheets, 3
list, creating, 126
lookup functions for setting up

lists, 126
macro, creating PivotTables

with, 133
Names column, use dynamic range

names, 229
New Worksheet, 132
Next button, 133
#NUM! error, returned with two or

more identical names in name
column, 229

pivot data for immediate results, 125
pivot data from another

workbook, 137
PivotChart Wizard for pre-Excel

2007 versions, 128
PivotCharts, 126
PivotCharts, unavailable for

Macintosh in Excel, 126
PivotTable, automate creation

of, 131–133
PivotTable creating, 128
PivotTable for pre-Excel 2007

versions, 128
PivotTables, classic table formats

required, 124
PivotTables, formatting and color

coding, 129
PivotTables online tutorial, 124
PivotTables, restricting shared

data, 129
PivotTables, to produce unique

names in lists, 207
PivotTables versus spreadsheets, 125
preventing blank entries and missing

fields in, 100

producing summary information
from a table, 125

range selected automatically, 128
raw data, 124
recordset, 332
Refresh option, 126
retrieve tables from databases, 332
rows, 127
SMALL functions, to extract figures

from PivotTables, 136
sorting, 127
static picture of PivotTables, 129
Summarize value field by, 133
tables, creating, 126
Values area, 132
View code, 134
VLOOKUP function, using across

multiple tables, 219–221
“What kind of report do you want to

create?” for Windows
PCs, 133

TakeFocusOnClick property, 277
Target.Interior.ColorIndex, 282
tax scales, calculating, 246
Temperature Data Series, 157
template tab, 21
templates, 21
templates, grouping, 21
text

changing to upper- or proper
case, 322–324

extract a specified word from a text
string, 234

extracting from a cell, 73
first word from a text string,

returning, 234
forcing to upper- or proper

case, 324–327
last word in a string of,

returning, 233
LEFT function, to return first

character or characters in a
text string, 234

left-aligned numbers, avoid
changing, 81

LEN function, to return the number
of characters in a text
string, 235

list of text codes, 82

382 | Index

text (continued)
number entries and, extracting

numeric portions of cells, 70
numbers and, mixing in the same

cells, 70
STrConv function, 323
text equations, evaluation of, 258
TEXT function, 218, 257
text numbers, converting to real

numbers, 68
Text Size, 167
text string, extracting specified words

from, 233
text string, extracting the numeric

portion, 70
showing the weekday as weekday

text, 257
TEXT function, 69
Text Size, 167
Text Values, 79
TextBox, 277, 327
thermometer chart, 157–158
ThisWorkbook, 12

add-ins, 284
macro ease of use and, 285
pre-2007 Excel, 99
private module, 264, 283
Workbook_Open event, 264, 283

Tick mark labels, 182
ticking cells, 272
Tile button, 5
tiled view of spreadsheet, 5
TODAY function, 17, 205
toolbars

attaching to a workbook, 317
coding Restore, 317
coding Show, 317
creating a custom toolbar, 317
custom toolbars, 37
customizing, 36
displaying, 317
hiding and restoring, 316
native toolbars, removing, 317
pre-Excel 2007 versions and, 36

Tools ➝ Add-Ins, 253
installing add-ins, 286
viewing add-ins, 284

Tools ➝ Macro ➝ Macros ➝ FillBlanks ➝

Run, 199

Tools ➝ Macro ➝ Macros
(Alt/Option-F8), 263

adding Calendar Control, 276
password protecting

worksheets, 278
running macros, 271

Tools ➝ Macro ➝ Record New
Macro, 274, 275, 276

Tools ➝ Macro ➝ Visual Basic
Editor, 13, 19, 37, 134, 217,
223

Tools ➝ Macro ➝ Visual Basic Editor
(Alt/Option-F11), 266

assigning buttons to macros, 268
retrieving workbook name/path, 279
splash screens, 269
summing cells by fill color, 273

Tools ➝ Options ➝ Calculation, 218
Tools ➝ Protection ➝ Protect

Sheet, 276
Tools ➝ Protection ➝ Protect

Workbook, 15
Tools ➝ References…, 332
Tools ➝ VBAProject Properties ➝

Protection, 285
tornado chart (population

pyramid), 184–186
Track Changes, 293
tracking changes, track, report, and

overcome limits to, 293
TRIM function, 216, 236
True or False, using to compare

ranges, 195
TRUE value, 50
true value for calculations, 80
Trust Center, 11
Trust Center Settings, 11
Type ➝ Change Chart Type, 191
Type options, 141

U
Ucase function, 328
UDF (user defined functions), 249
UDF (user-defined functions), 54
Underline, 88
underscore (_), 110

Index | 383

Undo
adding up to 100 mistakes to the

Undo feature, 84
Undo History, 84
Undo Stack, 84

unexplode pies, 141
Ungroup Sheets, 8
ungrouping worksheets, 8
Unhide, 19
Unhide under Window options, 17
Unique Records Only, 66, 78
unprotecting worksheets, 282
unwanted characters, removing, 68
updated values in spreadsheets, 4
uppercase text, 322, 324–327
URLs, avoid using as a hyperlink

base, 25
“Use 1904 date system” checkbox, 218
Use a formula to determine which cells

to format option, 50, 54, 55,
58, 88

UserDefined, 55
UserForm (VBE), 301

splash screens, 269
UserInterfaceOnly argument, 98, 282,

283
UserInterfaceOnly option, 320
users

bypassing limited access, 11
limiting privileges, 11
prevent printing of workbooks, 14
preventing from inserting

worksheets, 14
restoring settings, 316
user-defined functions (UDF), 54,

249
user-friendly validation (pick) list, 67
worksheets, keeping hidden

worksheets unseen from
users, 19

V
valid recipient list, 349
validation

validating data, 48
Validation, 48
validation list, decreasing list of

options, 101

validation lists, adding data
automatically to, 91–93

validation lists, changing based on
another selected list, 66

.Value = Now, 298
value derived from a formula,

determining, 54
#VALUE!, returned if cells contain

text, 209
Value (y) axis crosses at maximum

category, 183
Values area, 132
values, finding the nth occurrence of a

value, 210
VBA (Visual Basic for Applications)

auto-generate indexes, 24
code for grouping worksheets

automatically, 9
code performance, 270
data, sending to multiple places, 8
Excel, incompatibility with, 47
OpenOffice.org, incompatibility

with, 47
ticking cells upon selection, 272
VBA code, unrecoverable due to

incompatibility, 47
VBA Projects, HTML and HTM

formats, 46
worksheet index numbers and, 266

VBE (Visual Basic Editor)
CodeNames and, 266
hidden workbooks, 283
splash screens, 269

vbFromUnicode, 324
vbHiragana, 324
vbKatakana, 324
vbNarrow, 324
vbProperCase, 323
vbUnicode, 324
vbUpperCase, 323
vbWide, 323
Vertical option places workbooks side

by side, 5
View ➝ Code, 12
View ➝ Code (F7), 276, 278
View ➝ Macros, 29
View ➝ Project Explorer, 19
View ➝ Project Explorer (Ctrl-R), 266

384 | Index

View ➝ Properties (F4)
adding Calendar Control, 275
password protecting

worksheets, 277
splash screens, 269

View ➝ Properties Window, 19, 269
View ➝ Toolbars ➝ Customize…., 130
View ➝ Toolbars ➝ Forms, 149, 213,

267
View ➝ Toolbox, 269
View ➝ Unhide, 17, 40
View Code

code for creating customized
toolbars, 37

code to specifying a specific
worksheet in a custom
toolbar, 37

conditional formatting, 281
grouping worksheets

automatically, 9
index, auto-generating, 24
pre-Excel 2007 versions, 99
protected worksheets, 283
ranges, activating only the used

ranges, 30
running macros, 264
Save As, preventing in a

workbook, 12
ticking cells upon selection, 272
valid ranges, establishing boundaries

to, 27
worksheet protection, auto-toggle

for, 33
View Microsoft Excel tool, 10
Visible property, 19
Visual Basic code, running

automatically, 11
Visual Basic Editor (VBE)

code for customizing toolbars, 36
code to prevent users from printing a

workbook, 14
menus, quick access to, 13
pre-Excel 2007 versions, 55
prompts, preventing unnecessary, 16
worksheet protection, 19

VLOOKUP function, 210–212
VLOOKUP function, using across

multiple tables, 219–221

volatile functions
COLUMN function, 201
nonvolatile functions, nested withing

volatile functions, 205
Now(), 17
personal macro workbook, avoiding

storing in, 17
RAND function, 74
RAND function, major flaw in, 75
recalculating, 17
recalulations, reducing when using

volatile functions, 205
ROW() function, 60
spreadsheets, 17
Today(), 17
Use a formula to determine which

cells to format, 54

W
Walkenbach, John

downloadable Chart Tools for adding
labels to charts, 166

web site for downloadable Chart
Tools, 163

warnings
array formulas, overusing, 246
error values, 203
SUMPRODUCT, overusing, 246
warning prompts, stopping, 18

WEEKDAY function, 256, 257
“What kind of report do you want to

create?” for Windows
PCs, 133

Window ➝ Unhide
Personal.xls file, 274, 276
viewing hidden workbooks, 283

Window ➝ View ➝ Arrange, 5
Windows ➝ Save Workspace, 5
Windows ➝ View ➝ Unhide, 276
Windows of active workbook, 5
Windows XP, retrieve data from closed

workbooks, 341–344
word-based reports, 344
Workbook Open, 98
Workbook_AddinInstall event, 285,

287
Workbook_AddinUnInstall, 285
Workbook_AddinUninstall(), 287

Index | 385

Workbook_AddinUnInstall event, 285,
287

Workbook_BeforeClose event, 265
Workbook_Open event, 264, 283
workbooks

ActiveWorkbook, 284
All Open Workbooks, 18
attaching a toolbar to, 317
blank default workbook,

restoring, 23
Calendar Control, 274
Cascade option, layering workbooks

on top of each other, 5
code, never use to unprotect user’s

workbook, 284
CodeName and, 266
creating a list of hyperlinks, 298–300
customization of, 5
customizing default workbooks, 23
data extraction from corrupt

workbooks, 45
Display options for this

Workbook, 164
Excel Calendar Control, 274
hiding, 283
Horizontal for viewing workbooks in

a single stack, 5
macro workbooks, personalizing, 23
retrieving name and path of, 279
naming with the text in a cell, 315
opening more than one at a time, 5
personal macro workbook, 17
prevent printing of, 14
Protect Workbook, 15
reducing the size of, 42
repairing corrupted workbooks, 44
reproduce another sheet in another

workbook, 194
retrieve data from closed

workbooks, 336–344
retrieving names/paths, 279
Save As, preventing in

workbooks, 11
saved as read-only, 11
saving workbooks, before deleting

data permanently, 41
showing muliple workbooks

simultaneously, 5
splash screen, 268
ThisWorkbook, 12

track changes on all worksheets in a
given workbook, 295

tracking changes in a specific
workbook, 293–295

Vertical option places workbooks
side by side, 5

Windows of active workbook, 5
Workbook bloat, 42
Workbook_AddinUninstall(), 287
Workbook_Open event, 283
workbooks names for pre-Excel 2007

versions, 40
worksheets

Alt/Control-~, shows actual
formulas on the
worksheet, 164

AutoFilter, 289–291
avoid selecting entire worksheet, 55
code for worksheet protection, 33
Ctrl key for grouping worksheets

manually, 8
data duplicated in multiple

worksheets, 8
data, spreading over numerous

worksheets unnecessarily, 2
deleting rows with specified criteria

or conditions, 289–293
Existing Worksheet and tables, 128
grouping manually, 8
grouping worksheets

automatically, 9
index numbers and, 266
keeping hidden worksheets unseen

from users, 19
limiting scrolling range, 26
macro recorders and, 266
named ranges, identification of, 121
password protection for, 276
password-protect and unprotect with

one application, 276–279
Private module, 324
protect from viewing without a

password, 320
Protect Worksheet, 32
referencing via CodeName, 266
retrieving names, 279
rows, deleting in worksheets without

AutoFilter, 291–293
running procedures on protected

worksheets, 282

386 | Index

worksheets (continued)
scroll area, limiting to used range on

worksheets, 30
sorting, 319
specify a valid range, 27
track changes on all worksheets in a

given workbook, 295
tracking changes in a specific

workbook, 293–295
ungrouping, 8
unprotecting, 282
UserInterfaceOnly, 282
users, preventing from inserting

worksheets, 14
VBA code for grouping worksheets

automatically, 9
Worksheet and tables, 128
worksheet name, using in a cell, 236
worksheet names, creating a list

of, 236
worksheet names, extracting, 237
worksheet_Activate, 27
worksheets protection with

auto-toggling, 33

xlSheetVisible, 295
xlVeryHidden, 295

worksheets, referencing via
CodeName, 266

workspace, 5
workspace, restoring, 5

X
X-axis category labels, highlight with

color, 188–190
.xla extension, 283, 285
xlSheetVisible, 295
XLSTART folder, 23
.xlsx, 337
xlVeryHidden, 19, 295
.xlw extension for saving workspace, 5
XY scatter chart, 160

Z
Zero Values, 79

Colophon
The tool on the cover of Excel Hacks is a trowel. The trowel shown is the
type that is generally used in everyday gardening tasks such as removing
stones from dirt, planting, and removing weeds.

The cover image is from the Stockbyte Work Tools CD. The cover font is
Adobe ITC Garamond. The text font is Linotype Birka; the heading font is
Adobe Helvetica Neue Condensed; and the code font is LucasFont’s
TheSans Mono Condensed.

	Excel Hacks 2nd Edition
	Contents
	Credits
	About the Authors
	Contributors
	Acknowledgments

	Preface
	Why Excel Hacks?
	Getting and Using the Hacks
	How to Use This Book
	How This Book Is Organized
	Windows, Macintosh, and Earlier Excel Versions
	Conventions Used in This Book
	Using Code Examples
	Safari® Enabled
	How to Contact Us

	Reducing Workbook and Worksheet Frustration
	The 80/20 Rule
	Structural Tips
	Formatting Tips
	Formula Tips
	Create a Personal View of Your Workbooks
	Enter Data into Multiple Worksheets Simultaneously
	Grouping Worksheets Manually
	Grouping Worksheets Automatically

	Prevent Users from Performing Certain Actions
	Preventing Save As... in a Workbook
	Preventing Users from Printing a Workbook
	Preventing Users from Inserting More Worksheets

	Prevent Seemingly Unnecessary Prompts
	Enabling Macros When You Don’t Have Any
	Prompting to Save Nonexistent Changes
	Stopping Excel’s Warning Prompts for Recorded Macros

	Hide Worksheets So That They Cannot Be Unhidden
	Customize the Templates Dialog and Default Workbook
	Creating Your Own Template Tab
	Using a Custom Default Workbook

	Create an Index of Sheets in Your Workbook
	Creating an Index Sheet by Hand
	Auto-Generate an Index Using VBA
	Link to the Index from a Context Menu

	Limit the Scrolling Range of Your Worksheet
	Hiding Rows and Columns
	Specifying a Valid Range
	Activating Only the Used Range

	Lock and Protect Cells Containing Formulas
	Locking Formula Cells
	Data Validation
	Auto-Toggle Worksheet Protection

	Find Duplicate Data Using Conditional Formatting
	Find Data That Appears Two or More Times Using Conditional Formatting
	Tie Custom Toolbars to a Particular Workbook
	Outsmart Excel’s Relative Reference Handler
	Remove Phantom Workbook Links
	Reduce Workbook Bloat
	Eliminating Superfluous Formatting
	Clean Up Your Macros
	Honing Data Sources
	Cleaning Corrupted Workbooks

	Extract Data from a Corrupt Workbook
	If You Can Open Your Workbook
	If You Cannot Open Your File

	Hacking Excel’s Built-in Features
	Validate Data Based on a List on Another Worksheet
	Method 1: Named Ranges
	Method 2: the INDIRECT Function
	The Pros and Cons of Both Methods

	Control Conditional Formatting with Checkboxes
	Setting Up Checkboxes for Conditional Formatting
	Toggling Number Highlighting On and Off

	Identify Formulas with Conditional Formatting
	Count or Sum Cells That Meet Conditional Formatting Criteria
	An Alternate Path

	Highlight Every Other Row or Column
	Highlighting Dynamically

	Create 3-D Effects in Tables or Cells
	Using a 3-D Effect on a Table of Data

	Turn Conditional Formatting and Data Validation On and Off with�a�Checkbox
	Support Multiple Lists in a ComboBox
	Create Validation Lists That Change Based on a Selection from Another List
	Use Replace... to Remove Unwanted Characters
	Convert Text Numbers to Real Numbers
	Using Paste Special
	Using the TEXT Functions

	Extract the Numeric Portion of a Cell Entry
	Customize Cell Comments
	Adding a Picture
	Extracting Comment Text

	Sort by More Than Three Columns
	Random Sorting
	Manipulate Data with the Advanced Filter
	Create Custom Number Formats
	Add More Levels of Undo to Excel for Windows
	Create Custom Lists
	Boldface Excel Subtotals
	Hacking the Hack

	Convert Excel Formulas and Functions to Values
	Using Paste Special
	Using Copy Here As Values Only
	Using a Macro

	Automatically Add Data to a Validation List
	Hack Excel’s Date and Time Features
	Adding Beyond 24 Hours
	Time and Date Calculations
	Real Dates and Times
	A Date Bug?

	Enable Grouping and Outlining on a Protected Worksheet
	Prevent Blanks/Missing Fields in a Table
	Provide Decreasing Data Validation Lists
	Add a Custom List to the Fill Handle

	Naming Hacks
	Address Data by Name
	Use the Same Name for Ranges on Different Worksheets
	Using Relative References
	Simplify the summing

	Create Custom Functions Using Names
	Using Names with Intersect

	Create Ranges That Expand and Contract
	Nest Dynamic Ranges for Maximum Flexibility
	Identify Named Ranges on a Worksheet
	Method 1
	Method 2

	Hacking PivotTables
	PivotTables: A Hack in Themselves
	Why Are They Called PivotTables?
	What Are PivotTables Good For?
	Why Use PivotTables When Spreadsheets Already Offer So Much Analysis Capability?
	PivotCharts Extend PivotTables
	Creating Tables and Lists for Use in PivotTables
	PivotTable Creation

	Share PivotTables but Not Their Data
	Automate PivotTable Creation
	Save Time with a Macro

	Move PivotTable Grand Totals
	Efficiently Pivot Another Workbook’s Data

	Charting Hacks
	Explode a Single Slice from a Pie Chart
	Create Two Sets of Slices in One Pie Chart
	Create Charts That Adjust to Data
	Plotting the Last x Number of Readings

	Interact with Your Charts Using Custom Controls
	Using a Dynamic Named Range Linked to a Scrollbar
	Using a Dynamic Named Range Linked to a Drop-Down List

	Four Quick Ways to Update Your Charts
	Using Drag-and-Drop
	Using the Formula Bar
	Dragging the Bounding Area
	Using Paste Special

	Hack Together a Simple Thermometer Chart
	Create a Column Chart with Variable Widths and Heights
	Create a Speedometer Chart
	Link Chart Text Elements to a Cell
	Hack Chart Data So That Empty or FALSE Formula Cells Are Not�Plotted
	Hiding Rows or Columns
	Using #N/A to Plot Blank Cells

	Add a Directional Arrow to the End of a Line Series
	Place an Arrow on the End of a Horizontal (X) Axis
	In Excel 2007
	In Older Excel Versions

	Correct Narrow Columns When Using Dates
	Position Axis Labels
	Changing Label Position
	Reversing Label Order

	Tornado Chart
	Gauge Chart
	Conditional Highlighting Axis Labels
	Create Totals on a Stacked Column Chart

	Hacking Formulas and Functions
	Add Descriptive Text to Your Formulas
	Move Relative Formulas Without Changing References
	Compare Two Excel Ranges
	Method 1: Using True or False
	Method 2: Using Conditional Formatting

	Fill All Blank Cells in a List
	Method 1: Filling Blanks via a Formula
	Method 2: Filling Blanks via a Macro

	Make Your Formulas Increment by Rows When You Copy Across�Columns
	Convert Dates to Excel Formatted Dates
	Sum or Count Cells While Avoiding Error Values
	Reduce the Impact of Volatile Functions on Recalculation
	Count Only One Instance of Each Entry in a List
	Before Excel 2007
	Excel 2007
	Using a Pivot Table

	Sum Every Second, Third, or Nth Row or Cell
	Using an Array Formula
	Using SUMPRODUCT
	Using DSUM

	Find the Nth Occurrence of a Value
	Make the Excel Subtotal Function Dynamic
	Add Date Extensions
	Convert Numbers with the Negative Sign on the Right to�Excel�Numbers
	Display Negative Time Values
	Method 1: Changing Excel’s Default Date System
	Method 2: Using the TEXT Function
	Method 3: Using a Custom Format

	Use the VLOOKUP Function Across Multiple Tables
	Show Total Time As Days, Hours, and Minutes
	Determine the Number of Specified Days in Any Month
	Construct Mega-Formulas
	Hack Mega-Formulas that Reference Other Workbooks
	Hack One of Excel’s Database Functions to Take the Place of�Many�Functions
	Using DCOUNT to Filter on Two Criteria
	Making the Comparison Operators Interchangeable

	Extract Specified Words from a Text String
	Getting the Last Word
	Getting the First Word
	Get the Nth Word

	Count Words in a Cell or Range of Cells
	SUBSTITUTE
	LEN
	Putting It Together
	Hacking the Hack

	Return a Worksheet Name to a Cell
	Create a List of Worksheet Names
	Extract Worksheet Names Only
	Use the List in Formulas
	Make the Range Address Variable

	Sum Cells with Multiple Criteria
	SUMIF
	DSUM
	SUMPRODUCT
	SUM and IF

	Count Cells with Multiple Criteria
	Array Formulas
	SUMPRODUCT

	Calculate a Sliding Tax Scale
	Using IF/SUM
	Using a VLOOKUP Formula
	Using a Custom Function
	Method 1
	Method 2

	Add/Subtract Months from a Date
	EDATE
	Without EDATE

	Find the Last Day of Any Given Month
	Using Formulas
	Using EOMONTH
	Using a Custom Function

	Calculate a Person’s Age
	Return the Weekday of a Date
	Get the Weekday as a Number
	Return the Weekday as Weekday Name
	Return the Weekday as Weekday Text

	Evaluate a Text Equation
	Lookup from Within a Cell
	CHOOSE and MATCH
	Keeping It Clean and Global
	Lookup Scale

	Macro Hacks
	Speed Up Code While Halting Screen Flicker
	Run a Macro at a Set Time
	Use CodeNames to Reference Sheets in Excel Workbooks
	Connect Buttons to Macros Easily
	Create a Workbook Splash Screen
	Display a “Please Wait” Message
	Have a Cell Ticked or Unticked upon Selection
	Count or Sum Cells That Have a Specified Fill Color
	Add the Microsoft Excel Calendar Control to Any Excel�Workbook
	Password-Protect and Unprotect All Excel Worksheets in�One�Fell�Swoop
	Retrieve a Workbook’s Name and Path
	Get Around Excel’s Three-Criteria Limit for Conditional�Formatting
	Run Procedures on Protected Worksheets
	Distribute Macros
	Add a Menu Item

	Delete Rows Based on a Condition
	With AutoFilter
	Without AutoFilter

	Track and Report Changes in Excel
	Track Changes on a Particular Worksheet
	Track Changes on All Worksheets in One Workbook

	Automatically Add Date/Time to a Cell upon Entry
	Create a List of Workbook Hyperlinks
	The Code
	Running the Hack

	Advanced Find
	The UserForm
	The Code
	Running the Hack
	Shortcut key
	Button
	Toolbar

	Find a Number Between Two Numbers
	The Code
	Running the Hack

	Convert Formula References from Relative to Absolute
	Less Complicated Formulas
	The code
	Running the hack

	Mega or Array Formulas
	The code
	Running the hack

	Name a Workbook with the Text in a Cell
	The Code
	Running the Hack

	Hide and Restore Toolbars in Excel
	Attaching Your Toolbar to the Workbook
	Coding the Toolbar Show and Restore

	Sort Worksheets
	The Code
	Running the Hack

	Password-Protect a Worksheet from Viewing
	The Code
	Running the Hack

	Change Text to Upper- or Proper Case
	The Code
	Running the Hack

	Force Text to Upper- or Proper Case
	The Code
	Uppercase
	Proper case

	Running the Hack
	Hacking the Hack

	Prevent Case Sensitivity in VBA Code
	Ucase Function
	The code
	Running the hack

	Option Compare Text
	The code
	Running the hack

	Display AutoFilter Criteria

	Cross-Application Hacks
	Import Data from Access 2007 into Excel 2007
	The Code
	Running the Hack

	Retrieve Data from Closed Workbooks
	Excel 2007 and Windows Vista
	The code
	Running the hack

	Windows XP
	The code
	Running the hack

	Automate Word from Excel
	The Code
	Running the Hack

	Automate Outlook from Excel
	The Code
	Running the Hack

	Index

