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Preface

The main aim of this book is to present a unified, systematic description of
basic and advanced problems, methods and algorithms of the modern con-
trol theory considered as a foundation for the design of computer control
and management systems. The scope of the book differs considerably from
the topics of classical traditional control theory mainly oriented to the
needs of automatic control of technical devices and technological proc-
esses. Taking into account a variety of new applications, the book presents
a compact and uniform description containing traditional analysis and op-
timization problems for control systems as well as control problems with
non-probabilistic models of uncertainty, problems of learning, intelligent,
knowledge-based and operation systems — important for applications in the
control of manufacturing processes, in the project management and in the
control of computer systems. Into the uniform framework of the book,
original ideas and results based on the author’s works concerning uncertain
and intelligent knowledge-based control systems, applications of uncertain
variables and the control of complexes of operations have been included.
The material presented in the book is self-contained. Using the text does
not require any earlier knowledge on the control science. The presentation
requires only a basic knowledge of linear algebra, differential equations
and probability theory. I hope that the book can be useful for students, re-
searches and all readers working in the field of control and information
science and engineering.

I wish to express my gratitude to Dr. D. Orski and Dr. L. Siwek, my co-
workers at the Institute of Information Science and Engineering of Wro-
claw University of Technology, who assisted in the preparation of the
manuscript.

Z. Bubnicki
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1 General Characteristic of Control Systems

1.1 Subject and Scope of Control Theory

The modern control theory is a discipline dealing with formal foundations
of the analysis and design of computer control and management sys-
tems. Its basic scope contains problems and methods of control algorithms
design, where the control algorithms are understood as formal prescrip-
tions (formulas, procedures, programs) for the determination of control de-
cisions, which may be executed by technical devices able to the informa-
tion processing and decision making. The problems and methods of the
control theory are common for different executors of the control algo-
rithms. Nowadays, they are most often computer devices and systems. The
computer control and management systems or wider — decision support
systems belong now to the most important, numerous and intensively de-
veloping computer information systems. The control theory deals with the
foundations, methods and decision making algorithms needed for develop-
ing computer programs in such systems.

The problems and methods of the control theory are common not only
for different executors of the control algorithms but also — which is per-
haps more important — for various applications. In the first period, the con-
trol theory has been developing mainly for the automatic control of techni-
cal processes and devices. This area of applications is of course still
important and developing, and the development of the information tech-
nology has created new possibilities and — on the other hand — new prob-
lems. The full automatization of the control contains also the automatiza-
tion of manipulation operations, the control of executing mechanisms,
intelligent tools and robots which may be objects of the external control
and should contain inner controlling devices and systems.

Taking into account the needs connected with the control of various
technical processes, with the management of projects and complex plants
as well as with the control and management of computer systems has led to
forming foundations of modern control science dealing in a uniform and
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systematic way with problems concerning the different applications men-
tioned here. The scope of this area significantly exceeds the framework of
so called traditional (or classical) control theory. The needs and applica-
tions mentioned above determine also new directions and perspectives of
the future development of the modern control theory.

Summarizing the above remarks one can say that the control theory (or
wider — control science) is a basic discipline for the automatic control and
robotics and one of basic disciplines for the information technology and
management. It provides the methods necessary to a rational design and ef-
fective use of computer tools in the decision support systems and in par-
ticular, in the largest class of such systems, namely in control and man-
agement systems.

Additional remarks concerning the subject and the scope of the control
theory will be presented in Sect. 1.2 after the description of basic terms,
and in Sect. 1.5 characterizing interconnections between the control theory
and other related areas.

1.2 Basic Terms

To characterize more precisely the term control let us consider the follow-
ing examples:

1. Control (steering) of a vehicle movement so as to keep a required trajec-
tory and velocity of the motion.

2. Control of an electrical furnace (the temperature control), consisting in
changing the voltage put at the heater so as to stabilize the temperature at
the required level in spite of the external temperature variations.

3. Stabilization of the temperature in a human body as a result of the action
of inner steering organs.

4. Control of the medicine dosage in a given therapy in order to reach and
keep required biomedical indexes.

5. Control of a production process (e.g. a process of material processing in
a chemical reactor), consisting in proper changes of a raw material
parameters with the purpose of achieving required product parameters.

6. Control of a complex manufacturing process (e.g. an assembly process)
in such a way that the suitable operations are executed in a proper time.

7. Control (steering, management) of a complex production plant or an en-
terprise, consisting in making and executing proper decisions concerning
the production size, sales, resource distributions, investments etc., with the
purpose of achieving desirable economic effects.
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8. Admission and congestion control in computer networks in order to
keep good performance indexes concerning the service quality.

Generalizing these examples we can say that the control is defined as a
goal-oriented action. With this action there is associated a certain object
which is acted upon and a certain subject executing the action. In the fur-
ther considerations the object will be called a control plant (CP) and the
subject — a controller (C) or more precisely speaking, an executor of the
control algorithm. Sometimes for the controller we use the term a control-
ling system to indicate its complexity. The interconnection of these two ba-
sic parts (the control plant and the controller) defines a control system. The
way of interconnecting the basic parts and eventually some additional
blocks determines the structure of the control system. Figure 1.1 illustrates
the simplest structure of the control system in which the controller C con-
trols the plant CP.

control
C — CP

Fig. 1.1. Basic scheme of control system

Remark 1.1. Regardless different names (control, steering, management),
the main idea of the control consists in decision making based on certain
information, and the decisions are concerned with a certain plant. Usually,
speaking about the control, we do not have in mind single one-stage deci-
sions but a certain multistage decision process distributed in time. How-
ever, it is not an essential feature of the control and it is often difficult to
state in the case when separate independent decisions are made in succes-

sive cycles with different data. O

Remark 1.2. The control plant and the controller are imprecise terms in
this sense that the control plant does not have to mean a determined object
or device. For example, the control of a material flow in an enterprise does
not mean the control of the enterprise as a determined plant. On the other
hand, the controller should be understood as an executor of the control al-
gorithm, regardless its practical nature which does not have to have a tech-

nical character; in particular, it may be a human operator. [
Now we shall characterize more precisely the basic parts of the control
system.
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1.2.1 Control Plant

An object of the control (a process, a system, or a device) is called a con-
trol plant and treated uniformly regardless its nature and the degree of
complexity. In the further considerations in this chapter we shall use the
temperature control in an electrical furnace as a simple example to explain
the basic ideas, having in mind that the control plants may be much more
complicated and may be of various practical nature, not only technical. For
example they may be different kinds of economical processes in the case
of the management. In order to present a formal description we introduce
variables characterizing the plant: controlled variables, controlling vari-
ables and disturbances.

By controlled variables we define the variables used for the determina-
tion of the control goal. In the case of the furnace it is a temperature in the
furnace for which a required value is given; in the case of a production
process it may be e.g. the productivity or a profit in a determined time in-
terval. Usually, the controlled variables may be measured (or observed),
and more generally — the information on their current values may be ob-
tained by processing other information available. In the further considera-
tions we shall use the word “to measure” just in such a generalized sense
for the variables which are not directly measured. In complex plants a set
of controlled variables may occur. They will be ordered and treated as
components of a vector. For example, a turbogenerator in an electrical
power station may have two controlled variables: the value and the fre-
quency of the output voltage. In a certain production process, variables
characterizing the product may be controlled variables.

By controlling variables (or control variables) we understand the vari-
ables which can be changed or put from outside and which have impact on
the controlled variables. Their values are the control decisions; the control
is performed by the proper choosing and changing of these values. In the
furnace it is the voltage put at the electrical heater, in the turbogenerator —
a turbine velocity and the current in the rotor, in the production process —
the size and parameters of a raw material.

Disturbances are defined as the variables which except the controlling
variables have impact on the controlled variables and characterize an in-
fluence of the environment on the plant. The disturbances are divided into
measurable and unmeasurable where the term measurable means that they
are measured during the control and their current values are used for the
control decision making. For the furnace, it is e.g. the environment tem-
perature, for the turbogenerator — the load, for the production process —
other parameters characterizing the raw material quality, except the vari-
ables chosen as control variables.
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We shall apply the following notations (Fig. 1.2)

4D y(l) Q)
Ne) »@ .2
B 00N A RO L O

where ¥ — the i-th controlling variable, i=1,2, ..., p; y(i) — the j-th con-
trolled variable, j=1,2,...,[; 2" _ the m-th disturbance, m=1, 2, ..., r; u,
v, z denote the controlling vector (or control vector), the controlled vector

and the vector of the disturbances, respectively. The vectors are written as
one-column matrices.

u (1)
F———=
u(?) y () y
: cP : — Y P |——
u® y®
EALSS

Fig. 1.2. Control plant

Generally, in an element (block, part) of the system we may distinguish
between the input and the output variables, named shortly the input and the
output. The inputs determine causes of an inner state of the plant while the
outputs characterize effects of these causes (and consequently, of this
state) which may be observed. In other words, there is a dependence of the
output variables upon the input variables which is the “cause-effect” rela-
tion. In the control plant the controlled variables form the output and the
input consists of the controlling variables and the disturbances. If the dis-
turbances do not occur, we have the plant with the input # and the output
v. A formal description of the relationship between the variables character-
izing the plant (i.e. of the “cause-effect” relation) is called a plant model.
In simple cases it may be the function y = @(u, z). In more complicated
cases it may be e.g. a differential equation containing functions u(?), z(¢)
and y(#) describing time-varying variables. The determination of the plant
model on the basis of experimental investigations is called a plant identifi-
cation.
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1.2.2 Controller

An executor of the control algorithm is called a controller C (controlling
system, controlling device) and treated uniformly regardless its nature and
the degree of complexity. It may be e.g. a human operator, a specialized so
called analog device (e.g. analog electronic controller), a controlling com-
puter, a complex controlling system consisting of cooperating computers,
analog devices and human operators. The output vector of the controller is
the control vector # and the components of the input vector are variables
whose values are introduced into C as data used to finding the control de-
cisions. They may be values taken from the plant, i.e. # and (or) z, or val-
ues characterizing the external information. A control algorithm, i.e. the
dependence of u upon w or a way of determining control decisions based
on the input data, corresponds to the model of the plant, i.e. the depend-
ence of y upon u and z. In simple cases it is a function = ¥(w), in more
complicated cases — the relationship between the functions describing
time-varying variables w and u. Formal descriptions of the control algo-
rithm and the plant model may be the same. However, there are essential
differences concerning the interpretation of the description and its obtain-
ing. In the case of the plant, it is a formal description of an existing real
unit, which may be obtained on the basis of observation. In the case of the
controller, it is a prescription of an action, which is determined by a de-
signer and then is executed by a determined subject of this action, e.g. by
the controlling computer.

In the case of a full automatization possible for the control of technical
processes and devices, the controlling system, except the executor of the
control algorithm as a basic part, contains additional devices necessary for
the acquisition and introducing the information, and for the execution of
the decisions. In the case of a computer realization, they are additional de-
vices linking the computer and the control plant (a specific interface in the
computer control system). Technical problems connected with the design
and exploitation of a computer control system exceed the framework of
this book and belong to control system engineering and information tech-
nology. It is worth, however, noting now that the computer control systems
are real-time systems which means that introducing current data, finding
the control decisions and bringing them out for execution should be per-
formed in determined time intervals and if they are short (which occurs as
a rule in the cases of a control of technical plants and processes, and in op-
erating management), then the information processing and finding the cur-
rent decisions should be respectively quick.

Ending the characteristic of the plant and the controller, let us add two
additional remarks concerning a determined level of generalization occur-
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ring here and the role of the control theory and engineering:

1. The control theory and engineering deal with methods and techniques
common for the control of real plants with various practical nature. From
the methodology of control algorithms determination point of view, the
plants having different real nature but described by the same mathematical
models are identical. To a certain degree, such a universalization concerns
the executors of control algorithms as well (e.g. universal control com-
puter). That is why, illustrating graphically the control systems, we present
only blocks denoting parts or elements of the system, i.e. so called block-
schemes as a universal illustration of real systems.

2. The basic practical effects or “utility products” of the control theory are
control algorithms which are used as a basis for developing and imple-
menting the corresponding computer programs or (nowadays, to a limited
degree) for building specialized controlling devices. Methods of the con-
trol theory enable a rational control algorithmization based on a plant
model and precisely formulated requirements, unlike a control based on an
undetermined experience and intuition of a human operator, which may
give much worse effects. The algorithmization is necessary for the automa-
tization (the computerization) of the control but in simple cases the control
algorithm may be “hand-executed” by a human operator. For that reason,
from the control theory and methodology point of view, the difference be-
tween an algorithmized control and a control based on an imprecise ex-
perience is much more essential than the difference between automatic and
hand-executed control. The function of the control computer consists in the
determination of control decisions which may be executed directly by a
technical device and (or) by a human operator, or may be given for the
execution by a manager. Usually, in the second case the final decision is
made by a manager (generally, by a decision maker) and the computer sys-
tem serves as an expert system supporting the control process.

1.3 Classification of Control Systems

In this section we shall use the term classification, although in fact it will
be the presentation of typical cases, not containing all possible situations.

1.3.1 Classification with Respect to Connection Between Plant
and Controller

Taking into account a kind of the information put at the controller input
and consequently, a connection between the plant and the controller — one
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can consider the following cases:
1. Open-loop system without the measurement of disturbances.
2. Open-loop system with the measurement of disturbances.
3. Closed-loop system.
4. Mixed (combined) system.
These concepts, illustrated in Figs. 1.3 and 1.4, differ from each other
with the kind of information (if any) introduced into the executor of the
control algorithm and used to the determination of control decisions.

a) z b) z

Cc CcP Cc CcP

Fig. 1.3. Block schemes of open-loop control system: a) without measurement of
disturbances, b) with measurement of disturbances

C C

Fig. 1.4. Block schemes of control systems: a) closed-loop, b) mixed

The open-loop system without the measurement of disturbances has rather
theoretical importance and in practice it can be applied with a very good
knowledge of the plant and a lack of disturbances. In the case of the fur-
nace mentioned in the previous sections, the open-loop system with the
measurement of disturbances means the control based on the temperature
measured outside the furnace, and the closed-loop system — the control
based on the temperature measured inside the furnace. Generally, in sys-
tem 2 the decisions are based on observations of other causes which except
the control # may have an impact on the effect y. In system 3 called also as
a system with a feed-back — the current decisions are based on the observa-
tions of the effects of former decisions. These are two general and basic
concepts of decision making, and more generally — concepts of a goal-
oriented activity. Let us note that the closed-loop control systems are sys-
tems with so called negative feed-back which has a stabilizing character. It
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means that e.g. increasing of the value y will cause a change of u resulting
in decreasing of the value y. Additionally let us note that the variables oc-
curring in a control system have a character of signals, i.e. variables con-
taining and transferring information. Consequently, we can say that in the
feed-back system a closed loop of the information transferring occurs.

Comparing systems 2 and 3 we can generally say that in system 2 a
much more precise knowledge of the plant, i.e. of its reaction to the actions
u and z, is required. In system 3 the additional information on the plant is
obtained via the observations of the control effects. Furthermore, in system
2 the control compensates the influence of the measured disturbances only,
while in system 3 the influence on the observed effect y of all disturbances
(not only not measured but also not determined) is compensated. However,
not only the advantages but also the disadvantages of the concept 3 com-
paring with the concept 2 should be taken into account: counteracting the
changes of z may be much slower than in system 2 and, if the reactions on
the difference between a real and a required value y are too intensive, the
value of y may not converge to a steady state, which means that the control
system does not behave in a stabilizing way. In the example of the furnace,
after a step change of the outside temperature (in practice, after a very
quick change of this temperature), the control will begin with a delay, only
when the effect of this change is measured by the thermometer inside the
furnace. Too great and quick changes of the voltage put on the heater, de-
pending on the difference between the current temperature inside the fur-
nace and the required value of this temperature, may cause oscillations of
this difference with an increasing amplitude. The advantages of system 2
and 3 are combined into a properly designed mixed system which in the
example with the furnace requires two thermometers — inside and outside
the furnace.

1.3.2 Classification with Respect to Control Goal

Depending on the control goal formulation, two typical cases are usually
considered:

1. Control system with the required output.

2. Extremal control system.

We use the identical terms directly for the control, speaking about the
control for the required output and the extremal control. In the first case
the required value of y is given, e.g. the required value of the inside tem-
perature in the example with the furnace. The aim of the control is to bring
y to the required value and to keep the output possibly near to this value in
the presence of varying disturbances. More generally — the function de-
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scribing the required time variation of the output may be given. For a
multi-output plant the required values or functions of time for individual
outputs are given.

The second case concerns a single-output plant for which the aim of the
control is to bring the output to its extremal value (i.e. to the least or the
greatest from the possible values, depending on a practical sense) and to
keep the output possibly near to this value in the presence of varying dis-
turbances. For example, it can be the control of a production process for
the purpose of the productivity or the profit maximization, or of the mini-
mization of the cost under some additional requirements concerning the
quality. It will be shown in Chap. 4 that the optimal control with the given
output is reduced to the extremal control where a performance index
evaluating the distance between the vector y and the required output vector
is considered as the output of the extremal control plant.

A combination of the case 1 with the case 3 from Sect. 1.3.1 forms a
typical and frequently used control system, namely a closed-loop control
system with the required output. Such a control is sometimes called a regu-
lation. Figure 1.5 presents the simplest block scheme of the closed-loop
system with the required output of the plant, containing two basic parts:
the control plant CP and the controller C. The small circle symbolizes the

comparison of the controlled variable y with its required value y*. It is an

example of so called summing junction whose output is the algebraic sum
of the inputs. The variable &7) = y* — ¥(?) is called a control error. The
controller changes the plant input depending on the control error in order
to decrease the value of & and keep it near to zero in the presence of dis-
turbances acting on the plant. For the full automatization of the control it is
necessary to apply some additional devices such as a measurement element
and an executing organ changing the plant input according to the signals
obtained from the controller.

In the example with the furnace, the automatic control may be as fol-
lows: the temperature y is measured by an electrical thermometer, the volt-

age proportional to y is compared with the voltage proportional to y* and

the difference proportional to the control error steers an electrical motor,
changing, by means of a transmission, a position of a supplying device and
consequently changing the voltage put on the heater. As an effect, the
speed of u(¢) variations is approximately proportional to the control error,

so the approximate control algorithm is the following:

t
u(t) =k [e(t)dt.
0
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Fig. 1.5. Basic scheme of closed-loop control system

Depending on y*, we divide the control systems into three kinds:

1. Stabilization systems.

2. Program control systems.

3. Tracking systerils.

In the first case y = const., in the second case the required value changes
in time but the function y*(t) is known at the design stage, before starting
the control. For example, it can be a desirable program of the temperature
changes in the example with the furnace. In the third case the value of y (¢)
can be known by measuring only at the moment when it occurs during the
control process. For example, y*(t) may denote the position of a moving
target tracked by (7).

1.3.3 Other Cases

Let us mention other divisions or typical cases of control systems:
1. Continuous and discrete control systems.

2. One-dimensional and multi-dimensional systems.

3. Simple and complex control systems.

Ad 1. In a continuous system the inputs of the plant can change at any time
and, similarly, the observed variables can be measured at any time. Then in
the system description we use the functions of time u(¢), y(¢) , etc. In a dis-

crete system (or more precisely speaking — discrete in time), the changes of
control decisions and observations may be carried out at certain moments

t,- The moments ¢, are usually equally spaced in time, i.e.
t,41 —t, =T = const where T denotes a period or a length of an interval (a

stage) of the control. Thus the control operations and observations are exe-
cuted in determined periods or stages. In the system description we use so
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called discrete functions of time, that is sequences u,,, y,, etc. where n de-

notes the index of a successive period. The computer control systems are
of course discrete systems, i.e. the results of observations are introduced
and control decisions are brought out for the execution at determined mo-
ments. If T is relatively small, then the control may be approximately con-
sidered as a continuous one. The continuous control or the discrete control
with a small period is possible and sensible for quickly varying processes
and disturbances (in particular, in technical plants), but is impossible in the
case of a project management or a control of production and economic
processes where the control decisions may be made and executed e.g. once
a day for an operational management or once a year for a strategic man-
agement. A continuous control algorithm determining a dependence of
u(t) upon w(¢) can be presented in a discrete form suitable for the com-

puter implementation as a result of so called discretization.

Ad 2. In this book we generally consider multi-dimensional systems, i.e. u,
y etc. are vectors. In particular if they are scalars, that is the number of
their components is equal to 1 — the system is called one-dimensional.
Usually, the multi-dimensional systems in the sense defined above are
called multivariable systems. Sometimes the term multi-dimensional is
used for systems with variables depending not only on time but also e.g. on
a position [76, 77]. The considerations concerning such systems exceed the
framework of this book.

Ad 3. We speak about a complex system if there occurs more than one
plant model and (or) more than one control algorithm. Evidently, it is not a
precise definition and a system may be considered as a complex one as the
result of a certain approach or a point of view. The determination of sub-
models of a complicated model describing one real plant and consequently
— the determination of partial control algorithms corresponding to the
submodels may be the result of a decomposition of a difficult problem into
simpler partial problems. The complex control algorithms as an intercon-
nection of the partial algorithms can be executed by one control computer.
On the other hand — the decomposition may have a “natural” character if
the real complex plant can be considered as a system composed of separate
but interconnected partial plants for which separate local control com-
puters and a coordinating computer at the higher control level are de-
signed. Complex system problems take an important role in the analysis
and design of control and management systems for complex plants, proc-
esses and projects. It is important to note that a complex computer system
can be considered as such a plant.
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1.4 Stages of Control System Design

Quite generally and roughly speaking we can list the following stages in
designing of a computer control system:

1. System analysis of the control plant.

2. Plant identification.

3. Elaborating of the control algorithm.

4. Elaborating of the controlling program.

5. Designing of a system executing the controlling program.

The system analysis contains an initial determination of the control goal
and possibly subgoals for a complex plant, a choice of the variables char-
acterizing the plant, presented in Sect. 1.2, and in the case of a complex
plant — a determination of the components (subplants) and their intercon-
nections.

The plant identification [14] means an elaboration of the mathematical
model of the plant by using the results of observations. It should be a
model useful for the determination of the control algorithm so as to
achieve the control goal. If it is not possible to obtain a sufficiently accu-
rate model, the problem of decision making under uncertainty arises. Usu-
ally, the initial control goal should then be reformulated, that is require-
ments should be weaker so that they are possible to satisfy with the
available knowledge on the plant and (or) on the way of the control.

The elaboration of the control algorithm is a basic task in the whole de-
sign process. The control algorithm should be adequate to the control goal
and to the precisely described information on the plant, and determined
with the application of suitable rational methods, that is methods which are
described, investigated and developed in the framework of the control the-
ory. The control algorithm is a basis for the elaboration of the controlling
computer program and the design of computer system executing this pro-
gram. In practice, the individual stages listed above are interconnected in
such a sense that the realization of a determined stage requires an initial
characterization of the next stages and after the realization of a determined
stage a correction of the former stages may be necessary.

Not only a control in real-time but also a design of a control system can
be computer supported by using special software systems called CAD
(Computer Aided Design).
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1.5 Relations Between Control Science and Related Areas
in Science and Technology

After a preliminary characteristic of control problems in Sects. 1.2, 1.3 and
1.4 one can complete the remarks presented in Sect. 1.1 and present shortly
relations of control theory with information science and technology, auto-
matic control, management, knowledge engineering and systems engineer-
ing:

1. The control theory and engineering may be considered as part of the in-
formation science and technology, dealing with foundations of computer
decision systems design, in particular — with elaboration of decision mak-
ing algorithms which may be presented in the form of computer programs
and implemented in computer systems. It may be said that in fact the con-
trol theory is a decision theory with special emphasis on real-time decision
making connected with a certain plant which is a part of an information
control system.

2. Because of universal applications regardless of a practical nature of con-
trol plants, the control theory is a part of automatic control and manage-
ment considered as scientific disciplines and practical areas. In different
practical situations there exists a great variety of specific techniques con-
nected with the information acquisition and the execution of decisions.
Nevertheless, there are common foundations of computer control systems
and decision support systems for management [20] and often the terms
control, management and steering are used with similar meaning.

3. The control theory may be also considered as a part of the computer sci-
ence and technology because of applications for computer systems, since it
deals with methods and algorithms for the control (or management) of
computer systems, e.g. the control of a load distribution in a multi-
computer system, the admission, congestion and traffic control in com-
puter networks, steering a complex computational process by a computer
operating system, the data base management etc. Thus we can speak about
a double function of the control theory in the general information science
and technology, corresponding to a double role of a computer: a computer
as a tool for executing the control decisions and as a subject of such deci-
sions.

4. The control theory is strongly connected with a knowledge engineering
which deals with knowledge-based problem solving with the application of
reasoning, and with related problems such as the knowledge acquisition,
storing and discovering. So called intelligent control systems are specific
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expert systems [18, 92] in which the generating of control decisions is
based on a knowledge representation describing the control plant, or based
directly on a knowledge about the control. For the design and realization of
the control systems like these, such methods and techniques of the artifi-
cial intelligence as the computerization of logical operations, learning al-
gorithms, pattern recognition, problem solving based on fizzy descriptions
of the knowledge and the computerization of neuron-like algorithms are
applied.

5. The control theory is a part of a general systems theory and engineering
which deals with methods and techniques of modelling, identification,
analysis, design and control — common for various real systems, and with
the application of computers for the execution of the operations listed
above.

This repeated role of the control theory and engineering in the areas
mentioned here rather than following from its universal character is a con-
sequence of interconnections between these areas so that distinguishing be-
tween them is not possible and, after all, not useful. In particular, it con-
cerns the automatic control and the information science and technology
which nowadays may be treated as interconnected parts of one discipline
developing on the basis of two fundamental areas: knowledge engineering
and systems engineering.

1.6 Character, Scope and Composition of the Book

The control theory may be presented in a very formal manner, typical for
so called mathematical control theory, or may be rather oriented to practi-
cal applications as a uniform description of problems and methods useful
for control systems design. The character of this book is nearer to the latter
approach. The book presents a unified, systematic description of control
problems and algorithms, ordered with respect to different cases concern-
ing the formulations and solutions of decision making (control) problems.
The book consists of five informal parts organized as follows.

Part one containing Chaps. 1 and 2 serves as an introduction and pre-
sents general characteristic of control problems and basic formal descrip-
tions used in the analysis and design of control systems.

Part two comprises three chapters (Chaps. 3, 4 and 5) on basic control
problems and algorithms without uncertainty, i.e. based on complete in-
formation on the deterministic plants.

In Part three containing Chaps. 6, 7, 8 and 9 we present different cases
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concerning problem formulations and control algorithm determinations
under uncertainty, without obtaining any additional information on the
plant during the control.

Part four containing Chaps. 10 and 11 presents two different concepts
of using the information obtained in the closed-loop system: to the direct
determination of control decisions and to improving of the basic decision
algorithm in the adaptation and learning process.

Finally, Part five (Chaps. 12 and 13) is devoted to additional problems
of considerable importance, concerning so called intelligent and complex
control systems.

The scope and character of the book takes into account modern role and
topics of the control theory described preliminarily in Chap. 1, namely the
computer realization of the control algorithms and the application to the
control of production and manufacturing processes, to management, and to
control of computer systems. Consequently, the scope differs considerably
from the topics of classical, traditional control theory mainly oriented to
the needs of the automatic control of technical devices and processes. Tak-
ing into consideration a great development of the control and decision the-
ory during last two decades on one hand, and — on the other hand — the
practical needs mentioned above, has required a proper selection in this
very large area. The main purpose of the book is to present a compact, uni-
fied and systematic description of traditional analysis and optimization
problems for control systems as well as control problems with non-
probabilistic description of uncertainty, problems of learning, intelligent,
knowledge-based and operation systems — important for applications in the
control of production processes, in the project management and in the con-
trol of computer systems. Such uniform framework of the modern control
theory may be completed by more advanced problems and details pre-
sented in the literature. The References contain selected books devoted to
control theory and related problems [1, 2, 3, 6, 60, 64, 66, 68, 69, 71, 72,
73,78, 79, 80, 83, 84, 88, 90, 91, 94, 98, 104], books concerning the con-
trol engineering [5, 63, 65, 67, 85, 93] and papers of more special charac-
ter, cited in the text. Into the uniform framework of the book, original
ideas and results based on the author’s works concerning uncertain and in-
telligent knowledge-based control systems and control of the complexes of
operations have been included.



2 Formal Models of Control Systems

To formulate and solve control problems common for different real sys-
tems we use formal descriptions usually called mathematical models.
Sometimes it is necessary to consider a difference between an exact
mathematical description of a real system and its approximate mathemati-
cal model. In this chapter we shall present shortly basic descriptions of a
variable (or signal), a control plant, a control algorithm (or a controller)
and a whole control system. The descriptions of the plant presented in
Sects. 2.2-2.4 may be applied to any systems (blocks, elements) with de-
termined inputs and outputs.

2.1 Description of a Signal

As it has been already said, the variables in a control system (controlling
variable, controlled variable etc.) contain and present some information
and that is why they are often called signals. In general, we consider multi-
dimensional or multivariable signals, i.e. vectors presented in the form of
one-column matrices. A continuous signal

W)
=¥ O
+ ) )

is described by functions of time x(i)(t) for individual components. In par-
ticular x(7) for k=1 is a one-dimensional signal or a scalar. The term con-
tinuous signal does not have to mean that x(i)(t) are continuous functions
of time, but means that the values x(i)(t) are determined and may change at
any moment 7. The variables x are elements of the vector space X = Rk,

that is the space of vectors with k real components. If the signal is a subject
of a linear transformation, it is convenient to use its operational transform
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(or Laplace transform) X (s) = x(¢), i.e. the function of a complex vari-
able s, which is a result of Laplace transformation of the function x(7):

X(s)= ojx(t)e_“dl.
0

Of course, the function X(s) is a vector as well, and its components are the
operational transforms of the respective components of the vector x.

In discrete (more precisely speaking — discrete in time) control systems
a discrete signal x,, occurs. This is a sequence of the values of x at succes-
sive moments (periods, intervals, stages) n =0, 1, ... . The discrete signal
may be obtained by sampling of the continuous signal x(f). Then
x, = x(nT) where T is a sampling period. If x,, subjects to a linear transfor-
mation, it is convenient to use a discrete operational transform or Z-
transform X(z) =x,, , i.e. the function of a complex variable z, which is a re-

sult of so called Z transformation of the function x,, :

a0
X(z)= anz_".
n=0
Basic information on the operational transforms are presented in the Ap-
pendix.

2.2 Static Plant

A static model of the plant with p inputs and / outputs is a function
y=@(u) (2.1)

presenting the relationship between the output yeY = R and the input ueU
= R? in a steady state. If the value u is put at the input (generally speaking,
the decision u is performed) then y denotes the value of the output (the re-
sponse) after a transit state. In other words, y depends directly on u and
does not depend on the history (on the previous inputs). In the example
with the electrical furnace considered in Chap. 1, the function @ may de-
note a relationship between the temperature y and the voltage u where y
denotes the steady temperature measured in a sufficiently long time after
the moment of switching on the constant voltage u. Thus the function @

describes the steady-state behaviour of the plant. Quite often @ denotes the
dependency of an effect upon a cause which has given this result, observed
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in a sufficiently long time. For example, it may be a relationship between
the amount and parameters of a product obtained at the end of a production
cycle and the amount or parameters of a raw material fixed at the begin-
ning of the cycle. We used to speak about an inertia-less or memory-less
plant if the steady value of the output as a response for the step input set-
tles very quickly compared to other time intervals considered in the plant.
The function @ is sometimes called a static characteristic of the plant.
Usually, the mathematical model @ is a result of a simplification and
approximation of a reality. If the accuracy of this approximation is suffi-
ciently high, we may say that this is a description of the real plant, which
means that the value y measured at the output after putting the value u at
the input is equal to the value y calculated from the mathematical model
after substituting the same value u into @. Then we can speak about a

mathematical model ;:5(14) differing from the exact description @.

Such a distinction has an essential role in an identification problem. Usu-
ally, instead of saying a plant described by a model @, we say shortly a
plant @, that is a distinction plant — model is replaced by a distinction real
plant — plant. In particular, the term static model of a real plant is replaced
by static plant. Similar remarks concern dynamical plants, other blocks in
a system and a system as a whole.

For the linear plant the relationship (2.1) takes the form

y=Au+b

where Ae R™? , 1.e. 4 is a matrix with / rows and p columns or is / x p ma-

trix; b is one-column matrix / x 1. Changing the variables
y=y-b

we obtain the relationship without a free term. As a rule, the variables in a
control system denote increments of real variables from a fixed reference

point. The location of the origin in this point means that @(6) =0 where

0 denotes the vector with zero components. The model (2.1) can be pre-
sented as a set of separate relationships for the individual output variables:

=@,  j=1,2,..1

2.3 Continuous Dynamical Plant

Continuous plant is the term we will use for plants controlled in a time-
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continuous manner, that is systems where the control variables can change
at any time and, similarly, the observed variables can be measured at any
time. Thus a dynamic model will involve relations between the time func-
tions describing changes of plant variables. These relationships will most
often take the form of differential equations for the plants controlled con-
tinuously, or difference equations for the plants controlled discretely.
Other forms of relations between the time functions characterizing a con-
trol plant may also occur.

There are three basic kinds of descriptions of the properties of a dy-
namic system with an input and an output (control plant in our case):
1. State vector description.
2. “Input-output” description by means of a differential or difference equa-
tion.
3. Operational form of the “input-output™ description.
The last two kinds of description represent, in different ways, direct rela-
tions between the plant input and output signals.

2.3.1 State Vector Description

To represent relations between time-varying plant variables, we select a
sufficient set of variables x(l)(t), x(z)(t), s x(k)(t) and set up a mathemati-
cal model in the form of a system of first order differential equations:

w02 2D @B ,0 0 )y

2

0 @

b b 9

+2 =7 (x(l),x(z),...,x(k) M(P))

’ (2.2)
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The variables u(l), u(z), wes u®) denote input signals (control signals, in par-
ticular). Thus we consider a multi-input plant with p inputs. If we are in-
terested in the plant output variables, then the relations between the output
signals y(l), y(z), - y(D (/-output plant), x(l), x(z), e x® and u(l), u(z), e
u(p), have also to be determined:

y(l) = (x(l)’x(2)’_“’x(k);u(l)’M(Z)’_“,u(p))
y(Z) =1, (x(l) @ x®, M @) ,...,u(p)), 23)

VO Z e @0, 0,0 )y
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In practice, because of the inertia inherent in the plant, the signals u(l),
u(z), - u®?) usually do not appear in the equation (2.3). The equations

(2.2) and (2.3) can be written in a briefer form using vector notation (with
u already eliminated from the equation (2.3)):

x = f(x,u),
S (xu) } 2.4)
y=n(x)
where
) 4D y(l)
+? u?® ()
X = . > u= . > y= .
M) 4P y(/)
The sets of functions f1, f, ..., fy and 771, 1, ..., 777 are now represented by

fand 7. The function fassigns a k-dimensional vector to an ordered pair of
k- and p-dimensional vectors. The function 7 assigns an /-dimensional vec-
tor to a k-dimensional one. If u(f) = 0 for ¢ > 0 (or, in general, u(?) =
const), then the first of the equations (2.4) describes a free process

x=A(x) (2.5)

and, for a given initial condition x; = x(0), the solution of the equation
(2.5) defines the variable x(7)

x(?) = @ (xg, 1).
Under the well-known assumptions, knowledge of the function fand of the
value x(¢1) uniquely determines x(#,) for any #, > #1:

x(tp) = @ [x(1)), 11, to].

The set x(l), x(z), ey x® consists of as many mutually independent vari-
ables as necessary for a description of the plant dynamics in the form of a
system of first-order differential equations (2.2), i.e. knowledge of the val-
ues of these variables at any time #; should be sufficient to determine their
values at any subsequent instant. The variables x(l), x(z), e x are called
the state variables of the plant, vector x — the state vector, the set X of all
such vectors (xeX) — the state space, and k — the plant order. The system

of equations (2.4) is just the mathematical model described by means of
the state vector.
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The choice of state variables for a given plant can be done in infinitely
many ways. If x is a state vector of a certain plant, then the k-dimensional
vector

v=_g(x) (2.6)

where g is a one-to-one mapping, is also a state vector of this plant. The
transformation (2.6) may, for example, be linear

v=Px

where P is a non-singular matrix (i.e. det P # 0). Substituting

x=g ')

into the equations (2.4), we obtain the new equations

V= J;(v,u), }

- 2.7
y=n®). @D

The descriptions (2.4) and (2.7) are said to be equivalent. Thus different
choices of the state vector yield equivalent descriptions of the same plant.
In particular, if /= k and 7 in the equation (2.4) is a one-to-one mapping,
then y is a state vector of the plant. We say then that the plant is measur-
able, which means that knowledge of the output y at a time ¢ uniquely de-
termines the state of the plant at this time. Since we always assume that the
output signals y can be measured, it is therefore implied that, in the case of
a measurable plant, all the state variables can be measured at any time 7.

In particular, for a linear plant, under the assumption that f (6,6) =0

and 77(6) =0, the description (2.4) becomes

(2.8)

X = Ax + Bu,
y=Cx

where A4 is a k x k matrix, Bis a k x p matrix and C is a /xk matrix.

In the case of a single-input and single-output plant (p = /= 1) we write
the equations (2.8) in the form

)'c:Aerbu,}

T (2.9)

y=c X
where b and ¢ are vectors (one-column matrices). The plant with time-
varying parameters is called a non-stationary plant. Then in the description
(2.4) and in related descriptions the variable ¢ occurs:
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Xzf(x,u,t),}
y=n(x,1).

Example 2.1. Let us consider an electromechanical plant consisting of a
D.C. electrical motor driving, by means of a transmission, a load contain-
ing viscous drag and inertia (Fig. 2.1).

Fig. 2.1. Example of electromechanical plant

The dynamic properties of the system can be described by the equations:

do,,
dt

u:Lﬁ-f—r‘l'-i-Kb 5
dt
M=Ky -1,

2
720,
dr?

do,,

M:]m +Bm +K1(@m_@l),

0, = l@b
g

gK1(01 - 6,) = K)(O, — 0,),

d*e; de

I +B—L +Ky(O,-0y)=0
% L=, A0, - 03)

where u is the supply voltage, i — the current, &,, — the angular position of
the rotor, @ and @, — the angular position of the gear-wheels, @; — the
angular position of the loading shaft, M — the engine moment, 7, and /; —
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the moments of inertia of the rotor and load, respectively, B, and B; — the

friction coefficients of the rotor and load; X , K5 , L, r, K — the other pa-
rameters, g — the transmission ratio.
On introducing five state variables:

A= i, A= 6, A= @m, A= oy, A= @L
the plant equations, after some transformation, can be reduced to the form

oo rm_ Ky 3, 1
L L

HOENG)

b
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where
v= KK, B = gk K,
2 ’ 2 ’
1,,(g"K; +K») 1,,(g"K1 +K>)
2
_ gKiK, _ &Kk,
— o 3 . O
I (g"K1+K>3) I (g"K+K>)

2.3.2 “Input-output” Description by Means of Differential
Equation

The relationship between the input vector u(¢) and the output vector y(¢)
can be described by means of a differential equation

d"y dm! d d'u d" W du
y7 _i}ya_yyy):FZ( 5 ] ,...,_,Z/l).
di”  dt™ dt dr’  dt’ dt

Fi(

For the linear plant this equation becomes
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m m—1
u‘FAm_ld Y +...+A1Q+Aoy
dt™ de"! dt
v
=Bvdil +...+Bl% +Bou (2.10)
dt

where 4; (i=0, 1, ..., m — 1) are /x/ matrices, B; (j =0, 1, ..., v) are /xp ma-
trices.
In particular, for single-input and single-output plant (p =/ =1)

Y a4 rayy fagy=b,u™ . by + b .

In a non-stationary plant at least some of the coefficients a and (or) b are
functions of z.

2.3.3 Operational Form of “Input-output” Description

The relation between the input and the output plant signals can be de-
scribed by means of an operator @ which transforms the function u(7) into
the function y(#):

() = @u(n)]. (2.11)

For example, in the case of a one-dimensional linear plant (p =/ = 1) with
zero initial conditions, the formula (2.11) is

t
(0= [kt u(@)dr (2.12)
0

where k;(z, 7) is the weighting function (time characteristic) of the plant.

For linear plants with constant parameters, the type of models consid-
ered includes description by means of operational transmittance. Applying
an operational transformation to the both sides of the equation (2.10), un-
der zero initial conditions, we obtain

m-—1 . 4 .
(Us" + 3 Ais")Y(s)=( 2 Bjs/ YU(s) (2.13)
i=0 j=0

where [ is the unit matrix, and Y(s) and U(s) denote Laplace transforms of
the vectors y(7) and u(?), respectively. From the equation (2.13) we have

Y(s) = K(s) U(s)
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where

m—1 . \ .
K@) =Us"+ Y 45"y Y Bs/ .
i=0 =0

The matrix K(s) is called a matrix operational transmittance (or matrix
transfer function) of the plant. Its elements are rational functions of s. In
the case of one-dimensional plant K(s) is itself such a function, i.e.

K(s) = X(s)

U(s)

where Y(s) and U(s) are polynomials. In real systems the degree of the
numerator is not greater than the degree of the denominator. This is the
condition of so called physical existence (or a physical realization) of the
transmittance. The transmittance is related to equivalent descriptions of the
plant, namely to the gain-phase (or amplitude-phase) characteristics and
time characteristics (unit-step response and impulse response).

A gain-phase characteristic or a frequency transmittance is defined as
K(jw) for 0 £ w < oo. The graphical representation of this function on K(s)
plane is sometimes called a gain-phase plot or Nyquist plot. If
u(t) = A sinax then in the steady state the output signal y(¢) is sinusoidal as
well: y(¢) = B sin(at+ @) . It is easy to show that

Kol =2, arg K(jo) = ¢,

For example, the frequency transmittance K(j ) for

k

K(s) =
(sTy +D(sT, +1)(sT5 +1)

is illustrated in Fig. 2.2.

Let
1 for =20
u(t) =
0 for #<0.

Such a function is called a unit step and is denoted by 1(¢). The response of

the plant y(7) 4 k(?) for the unit step u(f) = 1(¢) is called a unit-step re-
sponse. Let u(f) = At). This is so called Dirac delta, i.e. in practice — very
short and very high positive impulse in the neighbourhood of #=0, for
which
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[o@yde=1.
Im K(jw)
w = © w=0

Re K(jw)

Fig. 2.2. Example of frequency transmittance

The response of the plant () 4 k;(?) for the input u(?) = &¢) is called an
impulse response. It is easy to prove that the transmittance K(s) is Laplace

transform of the function k,(¢) and ki(¢) = k(t). For the linear stationary
plant, the relationship (2.12) takes the form

t
¥ = [ki(t=t)u(@)dr.
0

For example, the plant described by the equation
Ty(t) +y(0) =k u(?)
has the transmittance

k
K(s$)= ——,
) Ts +1

the unit-step response
_t
kKfy=k(l1—e T)

and the impulse response
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t
P
ko=eT.

Such a plant is called a first order inert element (or an element with iner-
tia). It is worth recalling that the descriptions presented here are used not
only for plants but in general — for any dynamical elements or blocks with
determined inputs and outputs. Basic elements are presented in Table 2.1.

Table 2.1
Name of the element Transmittance
Inertia-less element K(s)=k
k
First order inert element K(s)=
sT +1
. . — k
Integrating element with first order inertia K(s)=——Fr—
s(sT +1)
e : L k
Differentiating element with first order inertia K(s) = ; 0
s1 +
K(s) =—————
Oscillation element s? 4205+ p
£> o

Complex blocks may be considered as systems composed of basic blocks.
Figure 2.3 presents a cascade connection and a parallel connection of two

blocks with the transmittance K;(s) and K5(s).

a) b) u Y4
K1
u K1 K2 y u + y= y 1 +y 2
u K, 2

Fig. 2.3. a) Series connection, b) parallel connection

For multi-dimensional case, in the case of the cascade connection the
number of outputs of the block K; must be equal to the number of inputs
of the block K5, and in the case of the parallel connection, both blocks
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must have the same number of inputs and the same number of outputs. For
the cascade connection

Y(s) = Kp(s)K 1 (s)U(s)-
For the parallel connection
Y(s) = [K1(s) + Ka(9)]U(s).

More details concerning the descriptions of linear dynamical blocks and
their examples may be found in [14, 71, 76, 88].

2.4 Discrete Dynamical Plant

The descriptions of discrete dynamical plants are analogous to the corre-
sponding descriptions for continuous plants presented in Sect. 2.3. The
state vector description has now the form of a set of first-order difference
equations, which in vector notation is written as follows:

Xn+1 :f(xnﬂ un)’}
Y =n(x,).

The “input-output” description by means of the difference equation is now:

F10ntms Yntm=15 -+ Yn) = F2Wptys Upiy—15 -5 Uyy).

In particular, the linear model has the form of the linear difference equa-
tion

Yrm T Am-1Vntm—1 T oo T A1 T Ay
=Byupyt By Uyt F Biugy  Bouy,
and the operational description is as follows:

Y(2)=K(z) U(z)
where K(z) denotes the discrete operational transmittance:
m—1 1 v .
K(z) ="+ Z A;iz;) (ZBjZJ).
i=1 j=1

The transmittance K(z) is an /xp matrix whose entries Kj(z) are the
transmittances of interconnections between the j-th input ant i-th output.
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The functions Y(z) and U(z) denote here the discrete operational trans-
forms (Z-transforms) of the respective discrete signals y,, and u,. The
K(®) for —n<w<n is called a discrete frequency transmittance (dis-

crete gain-phase characteristic).
We shall now present the description of a continuous plant being con-
trolled and observed in a discrete way. Consequently, we have a discrete

plant whose output y,, is a result of sampling of the continuous plant out-
put, i.e. y, = y(nT) where T is the control and observation period. The input

of the continuous plant v(¢) is formed by a sequence of decisions u,, deter-
mined by a discrete controller and treated as the input of the discrete plant.
It is a typical situation in the case of a computer control of the continuous

plant. In the simplest case one assumes that w(¢) =u,, for n7T<¢<(n+1)T.
Such a signal for one-dimensional input can be presented as an effect of

putting a sequence of Dirac impulses u,d(t—nT) at so called zero-order
hold Eq (see Fig. 2.4) with the transmittance

1 _ e—ST
Kg(s) E—

where ¢*7 denotes a delay equal to 7. It may be shown that the transmit-
tance of the discrete plant with the input u,, and the output y,, is equal to the
Z-transform of the function k;(nT) where k;(f) denotes the impulse response

of the element with transmittance Kg(s)Ko(s), and Kq(s) denotes the
transmittance of the continuous plant. It is easy to note that

kit) =k () =k (t=T) 1(+=T) (2.14)
where l;l-(t) is the impulse response of the element with the transmittance

lKO(S)-
S

un%o/o— EO Vi) KO &/oé’

Fig. 2.4. Discrete plant with zero-order hold

Example 2.2. One should determine the transmittance of the discrete plant
for the continuous plant described by the transmittance
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k
STO +1‘

Ko(s)=

It is easy to find
_t
ki(t)=kt—kTy(l1—e T0).
After substituting l;l (#) into (2.14), putting t=nT and applying Z-
transformation, we obtain
[T -Ty(1—=D))z+Ty —D(Ty +T)

K(z)=k 3
z-—=({1+D)z+D

where D = exp(—i). |
Ty

2.5 Control Algorithm

In Chap. 1 we have introduced a term controlling device or controller as
an executor of the control algorithm. Hence the control algorithm may be
considered as a description (mathematical model) of the controller. Since
the descriptions of the plant presented in the previous sections can be ap-
plied to any elements or parts with a determined input and output, then
they can be used as the basic forms of a control algorithm in these cases
when it may be presented in an analytical form, i.e. as a mathematical for-
mula. We shall often use the term controller in the place of a control algo-
rithm (and vice versa) as well as the term plant in the place of a model of
the plant. Let us denote by w the input variable of the control algorithm
(see similar notation concerning the controller in Sect. 1.2). Then a static
control algorithm has the form

u=¥(w)

and a continuous dynamical control algorithm presented by means of the
state vector xg(?) is described by a set of equations

xR (1) = frlxr (), w(D)],

u(?) = mrlxr(9)]-

Similarly, one may speak about the descriptions by means of a differential
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equation or descriptions in an operational form — analogous to those pre-
sented for a plant. For example, in technical control systems one often uses
the one-dimensional controller described by the equation

u(t) =kie(t)+kre(t) + kye(t)

or

t
u(t) =kye(t) + ky [e(t)dt + kyé(2)
0

where &(¢) denotes the control error. This is so called PID controller, or
proportional-integrating-differentiating controller. Its transmittance

UES; kl k2 + k3S

where E(s) is the Laplace transform of the function &(z).
Similarly, the forms of a discrete dynamical control algorithm are such
as the descriptions of a discrete plant presented in Sect. 2.4. This is a con-

KR (s)=

trol algorithm with a memory, i.e. in order to determine the decision #,, it
is necessary to remember the former decisions and the values w. The de-
scription of the algorithm is used as a basis for elaborating the correspond-
ing program for the computer realization of the algorithm in a computer
control system. One may say that it is an initial description of the control
program. The block scheme of the algorithm written in the form

XRu+1 = JRORm Wn) (2.15)

Up= UR(an) (2.16)
is presented in Fig. 2.5. The controlling computer determines the decisions
u, in a real-time, in successive periods (intervals) which should be suffi-

ciently long to enable the computer to calculate the decision #,, in one in-
terval. It determines the requirements concerning the execution time of the
control program. The description of the control algorithm in the form of
the difference equation is as follows:

Untm T Ap1Up+m-17T - T AUp+1 T Aoy

= by 1 Wntm-1 T T bywypy T+ bowy,.

It is more convenient to present it in the form
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Up = =Gy | Up| = ... = A] Up_pi] = A0 Uy T Dy Wy
+...t bl Wy—m—1— bO Wy—m-

This is the direct prescription for finding u,, by using the former values u
and w, and the coefficients a and b placed in the data base. The number m
determines the required length of the memory.

Introduce w, "

Pant
from plant to memory

Introduce from memory

Wn ’ XR,n

Menory

Determine xg ,
according to (2.15)

Parameters of
functions
fy and hg

Data base ﬁ

Determine decision u,,
according to (2.16)

I

Bring u,,, outfor execution
( put at plant input )

Fig. 2.5. Basic block scheme of control algorithm

2.6 Introduction to Control System Analysis

The description of the control system consists of formal models of the
parts in the system and the description of the structure, that is interconnec-
tions between the parts. For example, the description of the closed-loop
discrete control system by means of the state vector is the following

X0,n+1 :fO(xO,n sUp =Zn)a} (2 17)

Yn = UO(xO,n ),
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%
XR,n+1 ZfR(xR,naynayn)a

2.18
Up :UR(XR,n) ( )

where xg , is the state vector of the plant, xg , is the state vector of the

controller, z,, is the vector of external disturbances acting on the plant, y:
is the varying required value. Thus, in the system two basic parts are de-
termined: the plant (2.17) and the controller (2.18). If it is the control error
&= y: — ¥, which is put at the input of the plant, then the first equation in
(2.18) takes the form

XRn+1 =SROR 7+ €n)-
The control system under consideration may be treated as one dynamical

block whose state is c; =[xg,n, x{yn] and whose inputs are the distur-

bances z,, and y: . This block is described by the equations

Cpil = f(cn,zn,y;),} (2.19)

Yn = UO(XO,n)

if we consider y,, as the output of the system as a whole. The first equation
in (2.19) may be obtained via the elimination of u,, and y,, from the sets
(2.17) and (2.18), i.e. by substituting u,,=n7r(xR ,) into the first equation in

(2.17) and y,, = no(x0,,) into the first equation in (2.18). The description
of the continuous control system by means of the state vector is analogous
to that presented above for the discrete system.

The description of the control system forms a basis for its analysis. We
may consider a qualitative analysis consisting in the investigation of some
properties of the system (e.g. stability analysis) or a quantitative analysis
consisting in the determination of a response of the system for a deter-
mined input and the determination of a performance (quality) index. For
example, the analysis of the dynamical control system may consist in find-

ing the transit response y,, for the given initial state ¢, and the given func-

tions z, and y:; for n> 0. It requires to solve the set of the difference equa-
tions (2.17), (2.18). Usually, the analysis task is considered as the first
stage of a design which in a parametric case consists in choosing the val-
ues of control algorithm parameters. The results of the analysis such as de-
pendencies of the investigated property, the transient response or the per-
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formance index upon the control algorithm parameters are needed to the
proper choice of the values of these parameters.

In the case of non-linear and non-stationary (time-varying) systems,
solving the analysis problem in an analytical way may be very difficult or
impossible. Then we apply numerical methods or computer simulations,
e.g. for the investigation of the influence of the control algorithm parame-
ters on the performance index.

2.6.1 Continuous System

The operational description of the linear continuous closed-loop control
system (Fig. 2.6) is the following:

Y(s) = Ko (s)U(s) + K (s)Z(s),
U(s) = KR (s)E(s), (2.20)
E(s)=Y (s)-Y(s).

Z(f)

Pant ) y ()
Ko (s) K(s)

u(t) &(f)

Controller
KR(s)

Fig. 2.6. Block scheme of control system under consideration

The plant is described by two transmittances: Kp(s) determining the influ-

ence of u on y, and K (s) describing the influence of z on y. From the set
of equations (2.20) we obtain

Y(s) = [I+Ko($)Kr($)]  [Ko()KR($)Y () + K ()Z(s)], 2.21)
E(s) = [1 + Ko()Kr(S)] [V ()~ K ()Z(6)] (2.22)

where 7 is the unit matrix. The product Ko(s)Kg(s) a K(s) is called a
transmittance of the open-loop control system, and
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[1+K(s)] ' K(s) & Ky(s)

is called a transmittance of the closed-loop control system. For the given
functions y*(t) and z(7), under assumption of zero initial conditions, one
can find (or read from a table) the Laplace transforms Y*(s) and Z(s), de-
termine Y(s) according to the formula (2.21) or E(s) according to the for-
mula (2.22), and by applying the inverse Laplace transform to determine
the transient response y(f) or &(f). Most often we investigate the transient
response for the step inputs, i.e. for y(f) = y 1(¢) or z(¢f) = z 1(f) where y
and z denote constants, under the assumption that &¢) =0 for #<0. For
example, in the temperature control system considered in Chap. 1 we can
determine the function &(¢) for ¢ > 0, under the assumption that till the mo-
ment 7 =0 the system was in the equilibrium state (¢ = 0) and at the mo-
ment ¢ = 0 a step change of the required value occurred.

In general, we have considered the multivariable system with the matrix
transmittances and the vectors y(7), &), z(¢). In one-dimensional case, i.e.
for the plant with the single input u, the single disturbance z and the single
output y, the formulas (2.21) (2.22) take the simpler forms

Y(s) = K$)Y (5)+K(5)Z(s) 2.23)
1+ K(s) ’ '
E(s)= L= K()Z(s) . (2.24)

1+ K(s)

Let us denote by L(s) and M(s) polynomials in numerator and denominator
of K(s), respectively. From the form of the inverse transform of a function

*
rational with respect to s it follows that for a step change of z and (or) y ,

the control error is a sum of components having the form Aiesit or

A;t" e’ i” " and eventually a constant component, where s; are the roots of
the equation
L(s) + M(s) = 0.

This is so called characteristic equation of the closed-loop system. If this
equation has complex roots with imaginary parts differing from zero, then

the sum of the components Al-esit corresponding to the pair of conjugate

. . it
roots is reduced to one component having the form B; e’ sin(@;7+¢;)
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where o; = Res; . Thus, if the all roots satisfy the condition Res; < 0 then
&(t) converges to a constant (in particular, to zero) for #—oo. If the all roots
are real then in the function &) the oscillation components will not occur.

2.6.2 Discrete System

Now in the system description Z-transforms and discrete transmittances
occur. The formulas for the system are the same as (2.20)—(2.24) in which
one should put z in the place of s, having in mind that e.g. E(z) denotes
now the Z-transform of the function ¢, , Kr(z) denotes the discrete trans-
mittance of the controller etc. In particular, the formula for the control er-
ror E(z) in one-dimensional system is now written as follows:

Y (2)-K(2)Z(2)

E@="""%o

(2.25)

In order to determine &, for the given y: and z,,, one should find (or read
from a table) the Z-transforms Y *(z) and Z(z), determine E(z) according to

the formula (2.25) and by applying the inverse Z-transform determine &,,.

From the form of the inverse transform of a function rational with respect
*

to z it follows that for a step change of the disturbance z and (or) y , the

control error is a sum of components having the form A4;z;" or 4;n'z;"
where z; are the roots of the characteristic equation

L(z) + M(z) =0,
L(z) and M(z) denote polynomials in numerator and denominator of the
transmittance K(z) = Ko(2)K(z), respectively. It is easy to note that if the

all roots satisfy the condition |z; |[<1 then g, converges to a constant (in

particular, to zero) for n—»co.
We shall return to the analysis of control systems in Chaps. 5 and 10,
when a parametric optimization and a stability will be discussed.

Example 2.3. Let us consider the one-dimensional closed-loop control sys-
tem with the first-order plant and the controller I, i.e.

k k
Ko(S)=1+2T, KR(S):TR-

Let us determine the transient response &(¢) after the step change of the
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required value y*(t) = 1(#). According to the formula (2.24) for z(f) = 0 we
have

E(s) = . 2 (2.26)

where k =kpkg . If the system parameters satisfy the condition 447 <1
then the characteristic equation of the closed-loop system

s2+i+£=0
T T

has two real negative roots

—1++1-4kT

51,2 = T

and the formula (2.26) may be written in the form

1 4 A
E(s)=—(——+—2)
T s—s1 s—8
where
Alz 1+TS1 ’ A2:1+TS2 '
51752 52 =98

After the inverse transformation we obtain

&(t) = %(Aleslt + A,e™2"y.

Under the condition 44T <1, the control error £(¢) converges aperiodi-
cally (without oscillations) to zero for t —> . If 4kT >1 then &(¢) has a
sinusoidal form with the amplitude exponentially decreasing to zero for

t—oo. O

Example 2.4. Let us consider the discrete closed-loop control system with
the following transmittances of the plant and the controller:

_ ko(2+b)
z—

Ko(2) , KR<z>="—Rl, k=koky =1.

z—

Let us determine the transient response &,, after the step change of the re-
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quired value y:= 1(n). According to the formula (2.25), under the as-
sumption that there are no disturbances acting on the plant

z _ z(z—a)
L z+b (z—a)z-D+z+b
(z=D)(1+ (Z_a)(z_l))

E(z)=

(2.27)

If the system parameters satisfy the condition a’ > 4(a+ b) then the char-

acteristic equation of the closed-loop system

22 _az+a+b=0

ai\la2—4(a+b)

2

has two real roots

22 =

and the formula (2.27) may be presented in the form

Az Arz
E(z)=—"1% 4 2%
—Z] )
where
zZ1—a Zr—a
R e R S
2172 22— 7

After the inverse transformation we obtain

&y = Alzln + Azzg.

If |z, [<1 then the control error converges to zero for n—>o. O



3 Control for the Given State (the Given Output)

Chapters 3, 4 and 5 form the second part of the book (see remarks in Sect.
1.6) in which deterministic control problems and algorithms are consid-
ered. It means that we consider a deterministic control plant (i.e., the val-
ues of the output are determined by the values of the input), and the de-
scription of the plant is precisely known. The exact meaning of these terms
will be additionally explained in Sect. 6.1 where two kinds of an uncer-
tainty will be considered: uncertainty concerning the plant (i.e., the plant is
nondeterministic) and uncertainty of an expert giving the description of the
plant. When the second uncertainty does not occur, we often say about the
control with full information of the plant. For dynamical plants, this infor-
mation contains not only the knowledge of the plant description but also
the initial state and the function describing time-varying disturbances from
the initial to the final moments of the control, if such disturbances exist.

This chapter is devoted to a basic control problem (a basic decision
problem), i.e., the determination of the control for which we obtain the
given required output value for a static plant or the given value of the state
for a dynamical plant. Such a control may be executed in an open-loop or a
closed-loop system. For the dynamical plant the execution in a closed-loop
system may require the application of so called observer which determines
the values of the current states of the plant using the results of the output
measurements.

3.1 Control of a Static Plant

Let us consider a static plant described by a function
y=Xu,z) (€RY

where ueU is the input vector (or the control vector) with p compo-
nents, yeY is the output vector with / components and zeZ is a vector
of external disturbances with » components. For this plant the following
problems may be formulated:

Analysis problem: For the given function @ and the values # and z
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one should determine the value y.

Decision making (control) problem: For the given function @, the value
z and the required value y>k one should determine such a decision u that
its execution (putting at the input) gives the required output value y*.

For the determination of the control decision one should solve the equa-

tion (3.1) with respect to u, with y= y*. Under the assumption of exis-

tence and uniqueness of the solution we obtain the control algorithm in the
form of the function

u= ¥2). (3.2)

This algorithm is executed in the open-loop control system (Fig. 3.1). If
the solution does not exist, the plant is called uncontrollable. If the solu-
tion is not unique, we obtain a set of possible decisions for the given z.

For every decision from this set, the requirement y = y* will be satisfied.

z

Fig. 3.1. Open-loop control system

In particular, for the linear plant
y=Au+Bz, (3.3)

under the assumption that p =/ and A is a nonsingular matrix (i.e., the de-
terminant det 4 # 0), the control algorithm is the following

u=A"Y»"-Bz) (3.4)

where 47! denotes an inverse matrix. The control computer should then
execute the following operations:

1. Multiplication of the matrix B by the vector z.

2. Subtraction of the result of the operation 1 from y*.

3. Inverting of the matrix A.

4. Multiplication of the matrix A by the result of the operation 2.

Obtaining the solution of the equation (3.1) for y = y* may be difficult
for a nonlinear plant. Then a computational algorithm determining a se-
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quence of approximate solutions may be applied. The basic algorithm of
the successive approximation has the following form:

U =ty VK [V — Dty 2)] (3.5)

where u,, denotes the m-th approximation and K is a coefficient matrix
which should be chosen in such a way as to assure the convergence of the
sequence u,, to the solution (3.2). It is also necessary to determine the
stop of the procedure, i.e., to determine the final approximation; e.g. if the
distance between u,,.; and u,, is less than the given number, the value
a,,.1 1s assumed as a decision which is put at the input of the plant. If z
is varying in time then the formulas (3.1) and (3.2) take the form

yn = dj(um Zn)’ u}’l = T(Zl’l)7

respectively, where u,, y,, z, denote the values in the n-th moment of
the control. Then the algorithm (3.5) has the form

*
Up ] = Upm T Kly - qun,ma Z,)]

where u, ,, denotes the m-th approximation in the n-th period (the n-th in-
terval) of the control. The approximation process till the stop should not
exceed the control interval, then the convergence of the process must be
sufficiently fast.

If z is constant then the algorithm (3.5) may be executed in the closed-
loop control system (Fig. 3.2). It means that instead of putting the succes-
sive approximation into the formula (3.1) and calculating the value &X(u,,,,
z), one puts u,, at the input of the plant and measures the output y,, . The
value u,, is now the m-th approximation of the solution (3.2) and, on the
other hand, the control decision in the m-th decision interval. For the unifi-
cation of the notations for discrete-time control system, the index n is
used instead of m, as is denoted in Fig. 3.2. According to the formula
(3.5), the control algorithm in the closed-loop system is the following

Upe1 =, + K&, (3.6)

where g, = y* -V

If the model @ describes precisely the plant (and this is assumed in our
considerations in this chapter), then the value y calculated from the model
and the value measured at the output are identical. Consequently, the se-
quence u,, in the algorithm (3.5) is exactly the same as the sequence u,
in the algorithm (3.6). An advantage of the control in the closed-loop sys-
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tem consists in avoiding possible computational difficulties connected with
the determination of the value y from the model. Essential advantages
arise in the case of control based on an incomplete knowledge of the plant.
That is why in Chap. 10 we shall return to the concept presented here and
to the convergence problem.

Zn

én Un Yn y
Controller @ -

Fig. 3.2. Closed-loop control system

3.2 Control of a Dynamical Plant. Controllability

The problem analogous to that presented in Sect. 3.1, for the dynamical
plant is much more complicated and consists in the determination of a con-
trol u(f) in the continuous case or u, in the discrete case, which remove
the plant from the initial state to the given final state in a finite time inter-
val. The essential difficulty for the dynamical plant is caused by the fact
that the output value in a determined fixed moment depends not only on
the nearest input value but also on the former inputs, and the requirement
does not concern the output value but the state of the plant. As a rule, it is
an equilibrium state, i.e. when it is reached and the control is finished, the
output does not change in the next moments. Further considerations con-
cerning the control of the dynamical plants in this chapter will be limited
to discrete-time plants, and particular exact results and control algorithms
— to the linear plants. In [76, 80] one may found details concerning the
problem considered in this chapter for the dynamical plants and, in particu-
lar, properties called controllability and observability which we shall in-
troduce here.
Let us consider the discrete plant

Xpr1 =[x, uy), (3.7)
where x,, is the state vector and u,, is the input (the control) vector.

Decision making (control) problem: For the given function f, the initial

state x( and the final state x one should determine the sequence of the
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. . *
control decisions uy, uq, ... , uy_1 such thatxy=x and N <oo.

With the existence of the solution the property called controllability of
the plant is related.

Definition 3.1. The plant (3.7) is called controllable for a pair (x, x*) if
there exists a solution of the problem under consideration, i.e., there exists
a control which removes the plant from the state x; to the state X ina
finite time interval. The plant is called fully controllable if it is controllable
for every pair (x, x*). O

The general approach to the problem solution is based on the set of
equations containing the equations (3.7) for n =0, 1, ... , N— 1 and the
equation xy = x". This set should be solved with respect to uq, U, ... ,
up_1. The number N must be such that the solution exists if it is possible.
The formulation of the controllability condition and the determination of
the solution for a nonlinear plant may be very difficult. The precise ana-
lytical solution may be given for linear plants.

Let us consider a linear plant with constant parameters and a single in-
put

Xp41 = Ax, + buy,. (3.8)
Assume that A is a nonsingular matrix, i.e. det 4 # 0. Besides, let us as-
sume that x = 0 (a vector with zero components). The set of equations

used to determine the values u, uq, ... , #y_; has now the form

X+l =Ax, +bu, for nzO,l,...,N—2,} (3.9)

0 :AXN—l +bMN_1.
For N =k we have the set of k linear equations with &k unknowns. By

the successive substitutions and elimination of the variables x1, xy,... , Xj_1
from the set (3.9) we obtain

X1 =Ax0 + buo’

Xy =Axy + buy = A2x0 + Abug + buy
(3.10)
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The set of equations (3.10) may be rewritten in a vector-matrix notation
Mg, =-4%x (3.11)
where

M=14"% A% oab bl w) =T up e ]

In this notation Ak_lb, ..., Ab, b denote columns of the matrix M, T de-

notes the transposition of the matrix and g is a column-vector with

components 4, U1,..., Uj_1- From the equation (3.11) one obtains
o =M "4k x (3.12)

under the assumption det M # 0. In such a way it has been proved that
det M # 0 is a sufficient controllability condition, i.e., if this condition is
satisfied then there exists a control which in & periods (then, in a finite
time) removes the plant from the state x( to the state x LIt may be shown

that if such a control does not exist for N =k then it does not exist for
N >k, i.e., it may be proved that det M = 0 is also a necessary controlla-
bility condition in the case under consideration. Of course, we are speaking
about a full controllability because the controllability condition does not

depend on (x, x*).
The above results may be summarized in the form of the following theo-
rem:

Theorem 3.1 (controllability condition). The plant (3.8) in which
det A # 0 is fully controllable if and only if

det[ A 4A%%b .. 4b B]=0. (3.13)
O

The formula (3.12) presents the control algorithm in the open-loop sys-
tem. It shows how to determine the proper sequence of control decisions

170’ « for the given initial state and the plant parameters 4, b. Let us com-

plete the considerations with three important remarks:

Remark 3.1. It may be proved that for the multi-input plant
Xp+1 = Ax, + Bu,

under the assumption det 4 # 0, the necessary and sufficient condition of
the full controllability is as follows
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W[4 4A?B .. 4B B])=k (3.14)

where A“B (i=1,2, .., k) denote submatrices, and » denotes a rank of

the matrix, i.e. the number of linearly independent rows (columns). The
condition (3.14) presents a generalization of the condition (3.13) which

may be written in the form »(M)=+k. O

Remark 3.2. Let us note that the control may be shorter than k& periods. If
N <k then in the solution (3.12) up = tpy) = ... = uy_; = 0. If x; is such
that there exists u( for which Akxo =— bug then N =1 (see (3.8)). Gener-

ally, if x( is such that there exists a sequence uy, ..., uy_1, for which
Axg=— AN buy — AN 2buy — .. — bug

then the control contains N intervals. It may be said that x;, may be
taken to x = 0 during N periods (N < k) if Akxo belongs to
N-dimensional subspace of the vector space X generated by the basis
ANy, AN, b O

Remark 3.3. Consider the plant with external disturbances z,. Then x,,4;

= fix,, Uy, z,;) and for the linear plant with one-dimensional disturbance
Xpt1 =Ax, + bu, +cz, .

Then in the equation presented in the description of the general approach,

and in particular in the set (3.9) and in the equation analogous to (3.10) the

sequence z, z1, ..., Zy_| appears. A priori knowledge of this sequence be-
fore the determination of the decision sequence ug y_; belongs to the full

information on the plant under consideration. O

3.3 Control of a Measurable Plant in the Closed-loop
System

The control presented by the formula (3.12) may be obtained in the closed-
loop system for a measurable plant. In this case y,, = x,,, i.e. in the succes-

sive moments the state of the plant is measured. Let us treat the current
state in n-th moment as an initial state for the next part of the process. Us-
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ing (3.12), for the given x,, put in place of x( one can determine the cur-
rent decision u,, considered in place of u, i.e. the first component of the
vector u j . As a result one obtains

Uy =— W Xy (3.15)

where w; denotes the first row of the matrix M~ '4*. The formula (3.15)

presents the control algorithm in the closed-loop system and shows how to
determine the current decision u,, using the result of the measurement x,, .

In the closed-loop control system (Fig. 3.3) the control error g, = X - Xy

The assumption x= 6, introduced in Sect. 3.2 means that new vari-

ables have been introduced and the state x,, is the difference between x

and the original state x, . In other words, the origin in the state space X

has been located in the point x" . In the case under consideration we then
apply linear static controller with constant parameters u,, = wy &, which as-
sures the finite time of the control, i.e., which takes the components of the
control error to zero values in a finite time interval. The value of the con-
trol decision u,, is a linear combination of the components of the state vec-
tor x,,, and the components of the vector —w; are the coefficients in this
combination.

én Un

r W1 A,b

Fig. 3.3. Closed-loop control system for the plant under consideration

Let us note that the concept of the control in the closed-loop system pre-
sented here is in some sense analogous to the concept for the static plant
presented in Sect. 3.1. If the values of 4 and b in the model are the same
as in a real plant (as it has been assumed here) then the sequence of the
values u,, determined in real time according to the algorithm (3.15) is the
same as the sequence (3.12) forn =0, 1, ..., k&~1. In the open-loop system,
the whole sequence of the decisions u, uq, ..., #;_; should be determined
and put into memory before starting the control process. In the closed-loop
system it is sufficient to determine the current decisions u,, in real time,
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using the measurements of the result of former decisions, i.e. the state x,,.
The control algorithm in the closed-loop system is much simpler than that
in the open-loop system. After determination of the values w; by a de-
signer of the system before starting the control — finding the decisions in
successive moments is reduced to calculating the linear combination wyx,,
in which the values of the components of the vector x,, are transferred
from the plant. One should however take into account that the current deci-
sion u,, must be calculated relatively quickly, at the beginning of the »-th

interval (period) of the control process. Introducing the values from the
plant, determining the current decisions and executing them (putting at the
input of the plant) in successive control intervals means a real time con-
trol. Essential advantages of the control in closed-loop systems arise in the
case of control based on an incomplete knowledge of the plant, i.e., when
the values of 4, b accepted for the calculations by a designer differ from

the values in the real plant. We shall return to this problem in the fourth
part of the book.

Example 3.1. Let us check the controllability condition and determine the
control algorithm in the closed-loop system for the second-order plant de-
scribed by equations

oo

2 1 2
x;(7+)1 :xfz)+xfz)—un.

For our plant the matrices 4 and b are then as follows:

RN
A= , b= .
1 1 -1
Hence,
RN o
Ab = = , M=[A4b b]= .
1 1-1 0 0 -1

Since det M = -3 # 0, the plant is fully controllable. Next, one should cal-

culate
11
L 2 -1
M'=\3 3|, M= .
0 -1 -3 0

According to (3.15)
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Q)
uy = —[2 —ll{xi’m} = -2 +x?. 2
‘xl’l

3.4 Observability

Let us assume that the plant is not measurable, i.e., the result of the meas-
urement y, at the output does not determine the state in the n-th moment.

Then we have a problem of so called observation of the plant, which
consists in the determination of x,, using the results of the measurements

of the output y, in a finite time interval up to the n-th moment. It is also

an important problem for the plant without a control, described by equa-
tions

xn+1 :f(xn)a} (3 16)

Y =1(x,)
where y,, is the output vector.

Observation problem for the plant without a control: For the given
functions /', 77 and the sequence y,, ¥, - Yp—(N—1), Where N < oo, one
should determine the value x,,. The sequence y,, 1, ---» Vu—(N-1), i-€. the
sequence of outputs successively measured during A intervals of observa-

tions is called an observation sequence. The relationship

X =G( Y, Yn-15 '-'aynf(Nfl)) (3.17)

is called an observation algorithm and a system (a unit) executing this al-
gorithm is called an observer. With the existence of the solution of the ob-
servation problem the property called observability of the plant is related.

Definition 3.2. The state x,, of the plant (3.16) is called observable if it
may be determined using the finite observation sequence. The plant is fully

observable if its every state is observable. [J
The general approach to the problem solution is based on the set of
equations

x; =f(xi—1),}
yi =n(x;),
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fori=n,n—1, ..., n— (N-2) and the equation
Y- (N=1) = M(Xp—(N=-1))-
This set should be solved with respect to x,, by the elimination of the vari-

ables x,,_1, ..., X,,_(y_1)- The number N must be such that the solution exists
if it is possible. Consider now the plant with the control decisions u,, de-
scribed by

Xn+1 :f(xn:un)’} (3.18)

Y =1(xp).

In this case it is easy to note that in the set of equations described above
and obtained by successive substitutions n, n — 1, ..., n — (N-1) in (3.18),
the sequence of the control decisions appears.

Observation problem for the controlled plant: For the given functions f,

1 , the sequence of control decisions u,,_y, ..., 4,_(y-1) and the observation
Sequence Y, ..., Yy—(n—1) Where N < oo, one should determine the value
X

n-
The general form of the observation algorithm is then the following:

Xn = G(un—la ey Uy (N—l), Yns s V- (N—l))9 (319)
and the control sequence occurs also in the definition of observability.
Consequently, the existence of the solution of the observation problem
may depend on the control sequence. For a single-input and single-output
plant (p = /= 1) the control and observation sequences may be presented in
the form of vectors

=T =T

Up_ 1 N-1= [Up-1 tp2 - Uy (N-1)); Y, N=Un Yn-1 - Yu-(N-D);
and the observation algorithm (3.19) has the form
Xp=G(Uy_y N_1> YN

The block scheme of the observation system is presented in Fig. 3.4.

u, Plant Yn Observer Xn
f.n G

|

Fig. 3.4. Observation system
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The formulation of the observability condition and the determination of
the observation algorithm for a nonlinear plant may be very difficult. The
precise analytical solution may be given for linear plants. Consider a linear
single-input plant with constant parameters

X1 = Axy yn=c'x, (3.20)

and assume det 4 # 0. The set of equations used to determine x,, has now
the following form:

- _ T
Xp = Axp1 Yn=C€ Xp
=4 _ T
Xn-1 = AXp2, Yn17C Xp-1,
=4 _ T
Xn— (N-2) =~ AXp— (N-1) » Yn—(N=2) = € Xp—(N-2) >

T
Yn—(N-1) T € Xp— (N-1) -

Assume N =k (the number of components of x,,). Applying the succes-
sive substitutions we obtain

_ T
yl’l_c x}’la

T _ Tl
Yn-17€C€ Xp1 = C A Xn
B R
Yn2=€C€ Xp 2= C Xn
_ T S |
Vn—(k-1) =€ Xp_(p-1)= € 4 Dy,

The above set of equations with the unknown x, may be rewritten in a

vector-matrix notation as follows:
Fuk=Mx,= M4, 3.21)

where
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T i T 4kl ]
T 4! T k-2
M=| : , M=| : (3.22)
CTA_(k_z) CTA
o1 4~ (k=1) T

In this notation the rows of the matrices M and M have been presented.
From the equation (3.21) we obtain

Xy =AM 3, (3.23)

under the assumption det M # 0. In such a way it has been proved that

det M # 0 is a sufficient condition of the full observability. It follows from
the fact that if this condition is satisfied then any state x,, may be deter-

mined by using the observation sequence containing & intervals, i.e., a fi-
nite observation sequence. It may be shown that if the solution of our
problem does not exist for N =k then it does not exist for N >k , which

means that det M # 0 is also a necessary condition of the full observability.
The above results may be summarized in the form of the following theo-
rem:
Theorem 3.2 (observability condition): The plant (3.20) in which det A= 0
is fully observable if and only if det M # 0 where the matrix M is deter-
mined in (3.22). O

Since M =M A" and det 4 = 0, it is easy to note that the condition
det M # 0 may be replaced by the equivalent condition det M # 0. In the
case under consideration the formula (3.23) presents the observation algo-
rithm which shows what operations should be performed as to determine
x, using the observation sequence. If the observation sequence with
N <k is sufficient to the determination of x,, then in the matrix M there
are zero columns for N +1,..., k.

The considerations for the controlled single-input, single-output plant

Xp41 = Ax,+ bu,, , Vp= ch,, (3.24)

are analogous but more complicated. Now the set of equations from which
x,, should be determined has the following form:
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_ T
yn_cxna

Y1 =cx, 1 =c A (x, = buy, ) = cTA_lx,, — 4 by, |,
Vpo = ch,,,z = cTA_zxn — cTA_Zbun,l — cTA_lbun,z ,
_ T
Yn-(k-1) = € Xp—(k-1)
= cTAf(kfl)xn - cTAf(kfl)bun_l - cTAflbun_(k_l) .
The above set of equations with the unknown x, may be written in the

form

;n,k: Mxn -D L_ln—l,k—l (3.25)

where D is the following matrix with k rows and (k—1) columns:

0 0 0 0
cTalp 0 0 .
D=| T4 Ta 0 . 0 (3.26)

By solving the equation (3.25) we obtain the observation algorithm
~ _
Xn = M (yn,k + Dun—l,k—l )- (3.27)

Note that the observability condition is now the same as for the plant with-

out control, i.e., det M # 0 or det M # 0. Tt may be shown that for the
multi-output plant with y,, = Cx,,, the condition of the full observability is
as follows:

cak!
cak—2
r(f . D=k (3.28)
C

It is a generalization of the condition det M # 0 for single-output plant,
which may be written in the form » (M) =k .
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3.5 Control with an Observer in the Closed-loop System

The observer may be used for the control of an unmeasurable plant in the
closed-loop system. If

ty = Hx,) (3.29)
denotes the control algorithm for the measurable plant then putting the ob-

servation algorithm (3.19) into (3.29) one obtains the control algorithm ¥
in the closed-loop system in which the output y,, is measured:

up = Y[G(uy1s s Up (N-1)} Yo > Yo (N-1))]
A —_
=¥ (un_l, vy Uy (N—l); Vs voos V- (N—l))~ (3.30)

Comparing with the control algorithm for the measurable plant let us note
that the control algorithm with the measurement of the output (which is not
a state) contains a memory and describes the determination of the current
decision u,, not only on the basis of y,,, but also the results of the former

measurements y,,_i,..., ¥, (n-1) and the former decisions u,,_y, ..., u,_(n_1)
taken from the memory. The control is performed in the closed-loop sys-
tem containing the observer (Fig. 3.5).

Yn Plant Yn | Observer | X, u, Pant | X,
f.n G f,n
T, —
u, X, ContL()IIer
v ¥

Fig. 3.5. Closed-loop control system with the observer

It is worth noting that the control can start after the determination of the
first state, i.e., after measuring y, yi, ..., yy—1 and determining xy_;. In

practical situations taking the state x( to X may be not a unique task and
may be repeated after a disturbance consisting in the change of the given
required state x" . Let us remind that x, 1s a difference between a real

state initially formulated and the state X (see Fig. 3.3). For a single-
output plant as the state variables x,, we often accept successive values of
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the output y,,, ¥,,_1, .., Vu—(k—1) OF successive values of the control error &,

En-ls s En—(k—1) 1f the required value y>k differs from zero. In such a case
there is no additional observation problem (the dependence of x,, on the
sequence y,, follows directly from the definition) and the algorithm (3.29)

is reduced directly to the algorithm with a memory for the plant with the
measured output.
Let us note that the composition of the algorithms ¥ and G leads to one

resulting control algorithm ¥ as it is denoted in the right part of Fig. 3.5.
In the computer implementation it is however worth keeping two separate
parts G and ¥, i.e., to design the control program in the form of two co-
operating parts: subprogram of the observation and subprogram of the con-
trol based on x,. It can make easier computer simulations of the system
and changes of the program parameters according to changes of the plant
parameters in an adaptive system.

For the linear plant (3.24) considered above, the control algorithm ¥
presented generally by (3.30) has a precise specific form which may be ob-
tained by substituting the observation algorithm (3.27) into the control al-
gorithm (3.15). As a result we obtain the following control algorithm in the
closed-loop system:

~ _
up==wi M " (ypp +Duyyp1) (3.31)
where wjy denotes the first row of the matrix M~ 14 ,
M=14"% 42 .. 4b b,

and the matrices M , D are defined by the formulas (3.22), (3.26), respec-
tively. After some transformations the formula (3.31) may be reduced to
the form

Up = = A Up_] == A0 Up_(k-1) + by y, T T by Yn—(k-1) » (3.32)

or

Ut o1 T W Ut g2+ oot a0 Uy = by Yy g1 T T Do Yy -

This relationship presents the control algorithm in the form of a difference
equation. It may be also presented as an operational transmittance

o+ bz + b,

k—

U(z) _ bz
Y(z) 4 ay_»z

Kp(2) = (3.33)

2+...+a12+a0
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This is a transmittance of the controller assuring the finite time of the
control process. After k intervals (in a particular case it may be a smaller
number) the control error is reduced to zero and kept at this level up to the
appearing of a disturbance which requires a new control.

Taking into account the control problem under consideration let us pay
attention to two different applications of a computer, related with a control
system:

1. A computer as a tool aiding the design of the system.

2. A computer as an executor of the control in real time.

In the first case, the computer is applied at the stage of the design and
determines the values of the coefficients in the control algorithm (3.32)
using the data A4, b, ¢ introduced at the input. Algorithm of the design and
consequently the design program consists of the following operations:

a. Determination of the matrices ]\7[ ~1 and D.
b. Determination of the matrix M ' D.

c. Determination of wy, i.e. the first row of the matrix M~ 4x,

>

d. Determination of the vector of coefficients [b,_; ... bg] b

b=-w M (3.34)

o . A —
e. Determination of the vector of coefficients [a;_ ... ag]l=a:

a=w M 'D=-bD. (3.35)

In the second case, the computer executes the control according to the
algorithm (3.32), i.e. according to the control program implemented, using

the data a and b introduced to the data base for the control plant, and the
given values u and y introduced currently in successive intervals from the
memory and from the plant. A block scheme of the control algorithm, i.e.
the procedure of the determination of the decision u,, in the n-th step is
presented in Fig. 3.6. In a similar way as for the design, the computer may
play only a role of a tool aiding or supporting the control. Then introduc-
ing the current results of the observations y,, and transferring the deci-
sions for the execution (e.g. in a management process) is performed by a
human operator. For technical plants in which y,, is a result of a meas-
urement and u,, is put at the input of the plant by special executing de-
vices, full automation is possible, i.e., the values y, are transferred di-

rectly to the control computer and the values u,, are delivered directly to
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the executing devices.

Introduce Y Yn
fromplant to memory

Rant

Introduce from memory

Yn-1> = Un. (k-1) u,

Yir = Yn(k-1)

Data base Determine

a. .., a decision
0 k-2 up, according to (3.32)

boy -+ by

Transfer decision u

u, for execution
and put into memory

Fig. 3.6. Block scheme of the control algorithm in the case under consideration

Example 3.2. Let us check the observability condition and determine the
control algorithm in the closed-loop system for the plant considered in Ex-
ample 3.1, in which

pa =)+ 202,

ie., ol = [1 2]. After substituting the numerical data we have
M = = 2 , D = =
3

1 .
T4l -3 cTap -2

Since det M = g # 0, then the plant is fully observable. Then we calculate
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> 6
fynl 7 7

r 3

7 7
and use the row w; = [2 —1] determined in Example 3.1. After substituting
the numerical data into (3.34) and (3.35) we obtain

- 9 15 — 30
b:—— — 1, a=—.
[7 7} 7

Consequently, the control algorithm (3.32) and the transmittance of the
controller (3.33) are as follows:

30 9 5
Uy = 7 Uy —7)’;7 +7yn71 ,
9z+15
Kr(z) = O
RGO =770

3.6 Structural Approach

For the plant
Xp+1 =Ax, + bu,, (3.36)
let us introduce one-to-one linear mapping
v,=Px,, detP#0, (3.37)
which reduces the equation (3.36) to the form
Vr1= Av,+ b u, (3.38)

where 4 = PAP_I, b = Pb. Such an operation means introducing new state
variables v,, in place of x,,. The descriptions of the plant (3.36) and (3.38)
are equivalent. Consider the following form of the equation (3.38) contain-
ing zeros in the respective places of the matrices Aand b :
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I A A I I
Vi+1 i 12 Vn b
= + u, (3.39)
11 — 11 -
Vi+l 0 Ay | [Va 0

where vI is a subvector of the vector v,, with k; components, vH is a
subvector of the vector v,, with k, components (k; + ky = k), A1, 412,
Ay, Ay are submatrices of the matrix A Ay = 0 (all the entries are
equal to zero), b with k| components and bI with k&, components are
subvectors of the vector b , the matrix Ay has k; rows and k; columns,
the matrix A, has k; rows and k, columns, the matrix A4, =0 has ko

rows and k; columns, the matrix 4,, has k, rows and k, columns. From
the equation (3.39) it follows

1
Vyp+l™ A11V +A12V +bun,

I I
V1= A2 vy -

It is easy to see that the control u,, has neither direct nor indirect influence
on the changes of the state vector vI. It follows from the fact that v}lIH

does not depend on v . The following theorem may be proved:

Theorem 3.3. The plant (3. 36) is fully controllable if and only if one-to-
one mapping P for which A and b have the form such as in equation
(3.38) does not exist. [

The decomposition of the state vector v,, into two subvectors means the

decomposition of the plant into two parts: part [ with state vector vI and

part II with state vector v . Assume that the first part is controllable, i.e.,
the pair 441, b' satisfies the controllability condition (3.13) in which 4 and
b are replaced by 41 and b , Tespectively (it may be shown that the exis-

tence of the second input in the form A4 v I does not change the control-

lability condition in the part under consideration). Hence, the plant (3.38)
is decomposed into controllable part and uncontrollable part.

Analogous considerations may be related to the observability. Let us
assume that the mapping (3.37) reduces the plant equation
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X = A%y yn=c'x, (3.40)
to the form
I A 0 I I
Vi+l 11 0 Vi [ = Vi
= , m=[c 0] (3.41)
11 11 11
Y+l Ay Ay Vi Vn

where ¢! is the first part of the row ¢! and Ay = 0. Then y neither di-
rectly nor indirectly depends on v 1t follows from the fact that v,Il 41

II

does not depend on v,, .

Theorem 3.4. The plant (3.40) is fully observable if and only if one-to-one
mapping P reducing the equation (3.40) to the form (3.41) does not ex-
ist. O

If the pair A4, ! satisfies the observability condition for part I then the
decomposition of the state vector v, into two subvectros presented here

means the decomposition of the plant into two parts: the observable part

with state vector v,I, and the unobservable part with state vector v,IlI . The

considerations concerning the existence of the mapping P for non-
controllability and non-observability may be presented together and
generalized for a multi-input and multi-output plant. In a general case,
there may exist such a nonsingular mapping P that the plant equation

Xp+1 = Axy + Buy, , Vn=Cxy

is reduced to the form

1l |4 0 A o |11 | B

Vi+l Vi

yI Ay Ay Ay Ay ||VU | | B2

| 21 Ayp Az Ay ||y,

_ N W, (3.42)

v 0 0 A3 0 |[|yM 0

v _ _ v _

Vatl]l | 0 0 Agz Ay [U"m 1 o
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y,=[c' 0 c™ 0] . (3.43)

o

Matrices B}, and B, are submatrices of matrix B; A1y, Ayp, A3z and Aygy

are quadratic matrices and the other matrices are rectangular with respec-
tive numbers of rows and columns. This means that in the plant under con-
sideration it is possible to distinguish four parts (Fig.3.7): controllable and

observable with the state v! , controllable and unobservable with the state

11 I

v, uncontrollable and observable with the state i , uncontrollable and

unobservable with the state vV . With the help of u,, it is possible to influ-

ence only the parts I and II, and only the parts I and III may be observed
by measuring y,, .

3.7 Additional Remarks

The analogous considerations for continuous plants are more complicated.
It may be shown that for the plant

x= Ax + Bu, y=0Cx

the controllability and observability conditions are the same as for the
respective discrete plant, i.e., they are the conditions (3.14) and (3.28),
respectively. The control algorithms in the closed-loop system analogous
to (3.15) and (3.31) are time-varying (non-stationary). It means that in a
continuous linear stationary system (i.e. the system with constant
parameters), unlike a discrete system, the finite control time is not
possible.

Let us note that the decomposition of the plant into four interconnected
parts presented above has been obtained in a quite formal way by applying
the mapping P to the equation describing the plant. It does not have
to mean that inside the plant illustrated in Fig. 3.7 there are real separate
four parts, e.g. four interconnected technical devices. The structural
description of the plant presented in Sect. 3.6 is not of constructive
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importance because it is difficult to check if a given plant is controllable
and observable by using the conditions in Theorems 3.3 and 3.4.

LU G A|;vn|||
n
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n

|
|
|
|
|
|
|
|
|
|
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|
|
|
|
|
|
|
|
|
|

Fig. 3.7. Structure of the plant under consideration

The structural approach, however, is of a certain methodological and
auxiliary importance. In particular, using the concepts of controllability
and observability as well as the decomposition described in Sect. 3.6, it is
easy to show that, in general, the different descriptions of dynamical plants
presented in Chap. 2 are not equivalent. The description using a state
vector is the most precise and fully representing the dynamical properties
of the plant (in general — the system with an input and output). It contains
the whole plant, i.e. four parts presented above. The input-output
description in the form of a differential or difference equation comprises
the observable parts. For a linear plant with constant parameters it may be
shown that the description in the form of a transmittance comprises the
controllable and observable part only. The three descriptions are then
equivalent if the plant is fully controllable and observable.

It is worth noting that the non-controllability and non-observability
conditions (reduced to the statements that the determinants of the
respective matrices are equal to zero) are very strong or crisp in this sense
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that they may be not satisfied as a result of very small changes of the plant
parameters. In other words, these conditions are very sensitive to the
changes of the plant parameters. That is why non-controllability and non-
observability are not likely to occur in practice, except the situation when a
practical plant consists of real four interconnected parts presented in Fig.
3.7, i.e., in a real plant the selected entries of the matrices 4, B and C are
precisely equal to zero as it was presented in the description (3.42), (3.43).

In all considerations concerning the dynamical plant it was assumed that
there are no external disturbances z,,. If the disturbances occur then one

should use the plant equation
Xp1 =S X, Uy 2)-

Hence, in the set of equations considered above the sequence z, zj, ...,
z 1 will appear. Consequently, to determine the decision u,, it is neces-

sary to know the whole sequence of the disturbances, i.e., not only z, ...,

z,, but also z,1|, ..., zy_;. Then, the full information on plant assumed in
our consideration for the whole second part of the book contains now
a priori (i.e. before starting the control) knowledge of the values of distur-
bances which will occur in future. Usually, if the sequence z,, is a priori

known, z,, denotes time-varying parameter of the plant with a known de-
scription. In practical considerations we use the term external disturbance
if in the n-th moment we may know only z, z1, ..., z,, (if the disturbances

are measured and stored in the memory), but we do not know the future
values of z. That is why in this chapter concerning the full knowledge of
the plant, the plants without disturbances have been considered.

Summarizing, let us note that in this chapter precise control algorithms
(3.4), (3.6), (3.12), (3.15), (3.31) and (3.32) and observation algorithms
(3.23), (3.27) have been presented. They may be used as a basis for the
development of programs for computer aided design and for real-time
computer control (direct digital control) in control systems considered in
this chapter.



4 Optimal Control with Complete Information on
the Plant

This is the second chapter of the second part of the book, devoted to the
determination of the control in the case of a complete information on the
deterministic plant. In this chapter we shall consider problems and algo-
rithms of the control which is the best in a determined sense. This sense is
formulated by so called performance (quality) index. It is worth reminding
(see the corresponding remarks in Chap. 1) that the control problem is un-
derstood here in a wide sense as a decision making problem. In the case of
discrete plants, it will be the optimization problem for the multistage deci-
sion making process which has many practical applications not only to the
control of technical systems and processes, but also to the management
(e.g. to the optimization of investment processes [20]).

4.1 Control of a Static Plant

Let us consider a static (memory-less) plant with the input (control) vector
u, the output vector y and the vector of disturbances z — described in
Sect. 3.1. Let us introduce the performance index ¢ ( y, y ) evaluating the

value y with respect to the given required value y*. For the fixed y* , the

function ¢ assigns real non-negative numbers to the values yeY, and
k *k *k * * * 2

p(y,y)=0.Usually, p(y,y)=|y—ylloro(y,y)=I[y—y | where

|- || denotes the norm of a vector. Then || y — y* || denotes the distance be-

tween the points y and y* in the space Y. The most frequently used
forms of the performance indexes are as follows:

21 (1, 7)== (y=1) =2V -y, (4.1)
i=1
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* ! i P)*
(3, y) =2 |y D7, 4.2)
i=1

o33 = max |y =y (43)
where \/a is an Euclidean norm, and ¢,, @3 are so called modular
norms. The performance index may be interpreted as a loss caused by the
fact that y differs from y*. More complicated forms of performance in-
dexes with weight coefficients for the different components of the vector
V- y* may be used. The next extension of the forms (4.1), (4.2), (4.3)
may be obtained by putting Py in the place of y into (4.1), (4.2), (4.3)

where P is a nonsingular matrix, i.e. by applying a nonsingular mapping of
the vector y. Then

* % T *

Py, y)=(y=y)R(y-y) (4.4)
where R=P'Pisa symmetric, positive definite matrix (i.e. all eigenvalues
of this matrix are positive), and ¢,, @3 are the respective norms of the vec-
tor P(y— y*). For the determined performance index, the optimal control
problem consists in the determination of the decision u =%¥(z) minimiz-
ing the value of ¢. If there are no constraints concerning the choice of u,
then the problem is reduced to the determination of u =%(z) for which
y= y* , .. to the problem considered in Sect. 3.1. The formulation and so-
lution of the optimization problem make sense if the solution of the equa-

tion y= y* with respect to u for the fixed z does not exist or the solution

does not satisfy the constraints. The formulation of the performance index
may be extended to the function ¢(y,u) containing the evaluation not only

of y but also u. Usually it is the sum of components evaluating separately
yand u:

P (3, 1) = p(») + pu(w). (4.5)

In particular, one may use so called quadratic performance index in the
form

T T
P(y, W)=y R,y+u R,u (4.6)

where R, and R, are symmetric, positive definite matrices. The absence
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of y* in the first component may denote that the quality is formulated di-

rectly for y without using y* or that y* =0, i.e. in the place of y— y* in
the formula (4.4) the new variable denoted by y has been introduced. Usu-
ally, the component ¢, (1) is interpreted as a cost of the control or the cost

of resources (energy, raw materials etc.) used for the control; the interpre-
tation of the first component is different in different practical applications.
For example, the components of the vector y may denote amounts of some

components in a product and y* — the desirable values of these compo-
nents. Then (y — y*)TRy( y - y*) denotes the evaluation of the product
quality. In other practical situations ¢,, may denote the productivity of the
production process which we want to maximize taking into account the
amount of a raw material ¢, used in the production process. For unifica-
tion we usually assume that the optimization consists in minimization of
the performance index. Then the negative value of the productivity evalua-
tion ¢,, should be put into the sum (4.5).

Different kinds of constraints may appear in the optimization problem.
Most frequently, they concern the control decisions u and are formalized
by a set of admissible values D, c U . For example, D, is a set of all val-
ues u for which ¢, (1) is not greater than the given positive number «,
i.e.

D,={uelU: ¢, u)<a}l. 4.7)

Of course, in this case ¢, is not a component of the performance index
(4.5). For example, the problem may consist in the determination of u
maximizing the productivity ¢, (y), satisfying the constraints concerning
the resources in the form ¢, (u)<ca. Frequently, the set D, has the
following form

D, = {ucU: A (1u?| < M;)} (4.8)

ieg

which means that for each i = 1, 2, ..., p, i.e. i€l,p the condition

| u® | < M; must be satisfied, i.e. the control decisions ) must lie within
the determined limits.

The general formulation of the decision problem for the static plant (i.e.
the problem of the static optimization) is as follows:
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Decision making (control) problem: For the given function @, i.e. the
model of the plant (3.1), the given function ¢(y,u) and the value z one

should determine the decision u satisfying the given constraint and
minimizing the function

P[®(u,2),u] & D(u,z). (4.9)

The result of the minimization depends on z and, in the case of the unique
solution, the optimal decision is a function of z, i.e.

u= arg min @ (u,z) 2 H2). (4.10)
u

The function (4.10) presents the control algorithm in an open-loop system

(see Fig. 3.1). It may be said that @ is a model of a static optimization
plant, i.e. the plant with the control input # and one-dimensional output

y= o (u,z) . In this formulation, the goal of the control does not consist in
reaching by y a given desirable value but in reaching the minimal value
from the set of all possible y. Sometimes in this case we speak about an
extremal control and a plant of the extremal control, which has been men-

tioned in Chap. 1. Let us assume that the function @ in the formula (4.9)
is differentiable with respect to the particular components of the vector u,
there are no constraints concerning u, and the value u = ¥(z) minimizing
the performance index is a unique point for which

grad @ (u,2) & ®(u,2) 2 w=0 4.11)
u

where w denotes the gradient of the function @ with respect to u, i.e. the
vector with components

W = oD (L{,Z)
ou®

Under these assumptions, the determination of the value # minimizing the
output y of the optimization plant is reduced to the determination of the

, 1=1,2,..,p.

decision u for the given desirable output w =0 for a substitutional plant

with the output w and the model @ , ie. to the problem considered in
Sect. 3.1. The equation (4.11) from which the control algorithm u = ¥(z)

may be determined, is analogous to the equation (3.1) for y = y*. The al-
gorithms analogous to (3.5) and (3.6) have now the forms
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Ui = Uy — KDy, 2) , (4.12)

Uyt = Uy, — Kw,,. (4.13)

For the execution of the algorithm (4.13) in a closed-loop system, it is nec-
essary to “measure” (more precisely speaking — to obtain in a proper way
adequate to a practical situation) the variables w,, at the output of the sub-

stitutional plant.

There exist different algorithms of the static optimization, i.e. algo-
rithms for the determination of successive approximations of the value u
minimizing a multivariable function, subject to constraints. We shall come
back to the static optimization problem in a closed-loop system in Chap.
10 where the control under uncertainty will be considered.

4.2 Problems of Optimal Control for Dynamical Plants

4.2.1 Discrete Plant

The formulation of the optimal control problem for dynamical plants con-
tains the determination of the plant model, the initial state, the performance
index and the constraints. Let us consider a discrete plant described by the
equation

Xn+1 :f(xn: un)~ (4-14)

Usually, the evaluation (estimation) of the control quality concerns the
state of the plant, and more precisely speaking, the state trajectory x;, x»,
..., Xy where N is a horizon of the control, i.e. the time of the control in
which the quality is estimated and in which the sequence of the control de-
cisions u, Uy, ..., #pn_1 should be determined. Usually, the performance in-
dex has the additive form

N
Oy = 2 9(x,) (4.15)

n=l
where ¢(x,) denotes the local evaluation of the single state x,,. The form
of the function ¢ is the same as in Sect. 4.1 for the evaluation of the out-

put, e.g. ¢ (x,) = x, — x*|| where x" is the given state. Then the control
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problem consists in the determination of the sequence ug, uj, ..., upn_|
minimizing Qp for the given initial state x. In a similar way as for the

static plant, the estimation of the quality may contain also the cost of the
control. Then, in the n-th moment (the n-th period of the control) the func-

tion ¢ (x,, u,_;) evaluates the state x,, and the control u,_; which gives
the state x, . Usually, this is a sum of two components evaluating sepa-

rately x,, and u,,_;:

N N N
QN = Z¢(xn7un—l) = Z¢x(xn) + Z¢u(”n—l)- (4-16)

n=l1 n=l1 n=I
This form is analogous to that in (4.5), and the practical interpretation is
similar. In the case of a quadratic performance index, ¢, and ¢, are such
as in the formula (4.6) and the second component of the sum (4.16) may be

interpreted e.g. as an energy used for the control. The constraints may con-
cern the state and the control as well. In the first case, the typical constraint

has the form xy = x*, which means that reaching the state x" at the end of

the control is required. It is a control problem with the fixed end of the tra-
jectory. If such a requirement is not stated, we speak about the free end of
the trajectory. Two kinds of the constraints in the form of inequalities may
concern the whole state trajectory:

1. A (x,€Dyx. n) > (4.17)

nel,N

N
2. Zqox(xn) <a, (4.18)

n=1
where D, , denotes a set of admissible values, in general — different for

different moments n, and «, denotes a given positive number. Of course,
in the case (4.18) the component evaluating x,, will not appear in the for-

mula (4.16). The constraints concerning the choice of the control decisions
may have the similar forms:

1. A (y€Dy ) s (4.19)

neO,N-1
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N
2. 0,(u,) < (4.20)

n=1

In the case (4.20) the component evaluating the control does not appear in
the formula (4.16). As one can see, the forms of the performance index and
the constraints should be matched in a proper way, as to keep the practical
sense of the problem. The optimization with two components presented in
the right hand side of the formula (4.16) may be called a two-criteria prob-
lem. In the formulation (4.16) we use a global criterion estimating the
state and the control as well. Other problem formulations may consist in
minimization of the first component in (4.16) and take into account the
constraint in the form of the inequality (4.20), concerning the second com-
ponent or in minimization of the second component only with the con-
straint (4.18) concerning the first component. For example, from the set of
all controls such that the state trajectory satisfies the constraint (4.18) one
should choose the control with the minimal energy.

Let us consider an important special case when in the formula (4.18) the
function ¢(x,,) is equal to 1 for all n. Then Q) = N which means that the

control horizon is not given in advance, but we want to obtain the control
time as small as possible. Of course, such a problem makes sense if an ad-
ditional requirement is taken into account. Most often, it is a fixed end of
the trajectory, i.e. xy = x". Then one should determine the time-optimal

control, i.e. the control which removes the plant from the state x; to the

state x  in minimum time. It is worth noting that such a control occurred
in Chap. 3, in the part concerning a dynamical plant. Usually, however,
there are constraints for the choice of u,, which may be not satisfied by the
control determined in Chap. 3.

Summarizing the above remarks one can formulate general optimal con-
trol problem with the additive form of the performance index, containing a
variety of special cases.

Optimal control problem
Data: a description of the plant, i.e. the function £, the initial state x;, the

required final state X (for the problem with the fixed end of the trajec-
tory), the performance index, i.e. ¢ in the formula (4.16), and constraints

if there are any.

One should determine: the sequence of optimal decisions ug, uy, ...,

up_p satisfying the constraints and minimizing the performance index, i.e.
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N
£ * .
(ug, ..., uy_j)=arg min > (X1, 1)
Ugy,..., UN n=1

Not using the word control we may say that the problem under considera-
tion consists in the determination of the optimal sequence of decisions in a
multistage decision process, or shortly, in the optimization of multistage

decision process. If the sequence u, ..., up_; denotes the execution pro-
gram for a multistage project to be planned (e.g. a business plan), then this
program must not be determined from step to step, but one should take into
account the estimation of the effect for the whole execution time and in
this way to take into account relations between the successive stages: the
state x, is not only a result of the decision u,_; but also the initial state

for the next stage.
Sometimes forms of performance indexes different than the additive
form are used, e.g.

On= o (xy) or Oy= max ¢ (x,).
nel, N
In the first case we evaluate the final effect only, having in mind that it de-

pends on the whole sequence u, ..., un_;. In this case we speak about a
terminal control.

4.2.2 Continuous Plant

In an analogous way one can formulate the optimal control problem for a
continuous plant

x=f(x, u) (4.21)

where x(¢) and u(¢) are functions of 7. Now, instead of an additive per-
formance index we use an integral performance index in the form

T T T
Or= [pCruydt= [p(x)dt+ [, (u)dt (4.22)
0 0 0

where 7' denotes a control horizon. In the case of a time-optimal control
* .

ox,uy=1, Qr=T, x(T)=x . For the continuous plant the control from

t=0 to t=T should be determined. In other words, one should determine
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a function u(¢) in the interval [0,7], which we shall denote by u(t)|g to

differ it from u(#) denoting the value u in the moment ¢.

Optimal control problem

Data: a description of the plant, i.e. the function fin (4.21), the initial state
x( , the required final state X (for the problem with the fixed end of the
trajectory) , the performance index, i.e. ¢ in the formula (4.22), and con-
straints if there are any.

One should determine: the function u*(t)|0T satisfying the constraints
and minimizing the performance index, i.e.

T
u'(0) g =arg min_ [o(r,u)de.
u(®|§ 0

Let us note that the performance index (4.22) together with the plant equa-
tion (4.21) and the initial state x, formulate a functional, i.e. a mapping

which assigns numbers QO to the functions u(t)|0T .

The determination of the optimal control may be then formulated as the
minimization of a functional, i.e. as a variational problem. However, the
direct application of methods based on a classical variational analysis may
be very difficult because of the following reasons:

1. The functional to be minimized with respect to u(t)|g is not given di-

rectly but in an indirect form by the relationship between x(¢) and u(¢) in

the form the differential equation (4.21).

2. Possible constraints in the problem should be taken into account.
Similar difficulties occur in the determination of the optimal control for

a discrete plant. Now, the determination of the discrete function u,, éu(n)
in the interval [0, N —1] is reduced to the determination of the sequence

ugy, ... , un_] Consequently, optimal control problem is reduced to the
known problem of a multivariable function minimization. However, the
size of the problem may be very large, e.g. for N =20 and the plant with
four inputs one should minimize a function with 80 variables. That is why
classical mathematical methods are rather not convenient to solve the op-
timal control problem, and special approaches to handle this problem have
been elaborated. Two of them are the most popular:
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1. A method based on a principle of optimality.
2. A method based on a maximum principle.

4.3 Principle of Optimality and Dynamic Programming

Let us consider two problems of the optimal control for the plant (4.21)
and the local performance index ¢(x,u):

1. The first problem is the same as in Sect. 4.2, i.e. consists in the

determination of wu(z) |g minimizing the performance index (4.22) for the

plant (4.21) and the initial state x;. Let us denote the result by uI(t)|g
and the trajectory obtained as a result of this control (i.e. the optimal tra-
. 1 T

jectory) by x (t)|0 .

2. The second problem consists in the determination of the control starting

at a moment ¢ between 0 and 7 , for the initial condition x() =xI(t_),
which means that the initial state lies on the optimal trajectory obtained as

a solution of the first problem. Hence, one should determine u(t)|t—T mini-
mizing
T
Or_; = [e(x.u)dt
t

for the initial state x(r) =xI(t_) and constraints the same as in the first
problem. Denote the results by

T T
W@ and  x'(0)]; .

Under some general assumptions usually satisfied in practice, the follow-
ing property of the optimal control, called the principle of optimality, may
be proved:

Principle of optimality: For te[ 7, 7]

o =0 and A0 = "0 .

It means that if the control optimal with respect to the initial state x is in-
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terrupted in the moment ¢ and starting from this moment the control opti-

mal with respect to the initial state xI(t_ ) is applied, then it will be a con-
trol the same as the control xI(t) for ¢ >t without the interruption. Then

one may continue the interrupted control knowing the current state xI(t)
only and not knowing the earlier control. The application of the principle
of optimality to a discrete plant leads to a recursive procedure called dy-
namic programming. In this procedure the calculations start from the end
and are executed step by step up to n=1. Let us consider the plant (4.15),
the performance index (4.16) and the problem without constraints, with a
free end of the trajectory. Let us put (4.14) into ¢ in (4.16) and introduce

auxiliary notations:

A
@ (xna un—l) =@ [f(xn—la un—l)a Z"n—l] = g(xn—la un—l) >

N N-1
QN: Zg(xn—lﬂun—l) = Zg(xn’un) > (4-23)
n=l1 n=0
N-1
V() = min 2. 8(xu;) -
UpsUptlses UN-T  j=p

For n=N -1 we solve the optimal control problem for the initial state
Xpy_1, .. we minimize the last component of the sum (4.23) with respect

to uy_p, with xp_; treated as a parameter:
Vi(xy-p) = min ey, tp-p)-
UN-1
As a result we obtain the relationship u}k\;_l = ¥n_1(xpn_1) , 1.e. the depend-
ence of the last optimal decision upon the current state, denoted by ¥ _;.

For two stages from the end we minimize two last components of the sum
(4.23) with respect to uy_5, taking into account the result of the former

minimization and the plant equation (4.14):

Volen2) = min  { glxnyo, un) + g1, un-1) }
UN_2UN_]

= min { g(xy_2, un-2) + Vi(xn-1) }
UN-_2
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=min { g0y, uy2) TVi[fxn, uny2)] }-
UN-2

As a result we obtain the relationship u}k\;_z = Yn_o(xpop), in general dif-
ferent than ¥),_; because the form of the function to be minimized may
differ from the form in the former step. For three stages from the end

V3(xny—3) = min { g(xy_3, un-3) + Valflxy_s, un-3)1 §,
UN-3

*
uy_3= Pn3(xn3)-

The algorithm for the determination of the optimal control may be pre-
sented as the following recursive procedure:

V() = min { gy 1) + Vvt [6s )] (4.24)
Up
n=N-1,N-2, ..., 0; Vo =0.
As the result we obtain the relationships
*
u,= ¥,(x,). (4.25)

To determine the numerical values of the control decisions wu, g, ... ,
upn_q1, it is necessary to execute the second part of calculations, from the
beginning to the end, using the given value x, and determining step by
step the values x, from the plant equation (4.14):

ug = ¥p(xo), x1 = flxg, up),
up = #(xy), xp = flxy, uy),

un—1 = Pn1(xy-p)-

In this way, a designer can find the control program ug, uy, ... , upn_q
which can be executed in the future in an open-loop control system.

The identical decision sequence may be obtained in real time, in a
closed-loop system for a measurable plant (which means that the current
values x,, can be measured and introduced into the controller). Then the

relationship u, = ¥,(x,) will denote a control algorithm or a formula for
the determination of current control decisions using the results of meas-
urement x, (Fig.4.1). As in the case considered in Sect. 3.3, the decisions
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u, determined be a designer before starting the control will be the same as

the decisions determined currently by a controller, if the plant equation
(4.14) describes precisely the real plant, which is assumed in this part of
our considerations. Then the value x,_; obtained by substituting the value

u, into the plant equation in the second part of calculations is the same as
the value x,,; measured at the output of the plant after putting the deci-

sion u,, atits input.

Rant f

Control algorithm Y’n

Fig. 4.1. Closed-loop control system with measurable plant

In an analogous way the dynamic programming may be applied to the
terminal control problem which consists in the determination of the deci-

sion sequence i, Uy, ... , #pn_] minimizing the performance index
On =¢(xy).
Let us introduce auxiliary notations:
000 = PLf (1t D] = 00y 1,y 1)

VN—n(xp) = min gxn-1,UN-1)-
Up,Upi]s-s UN-]
For n=N —1 we solve the optimal control problem for the initial state
Xn_1, 1.e. we minimize g(xy_1, upn_1) With respect to up_;, with xp_4
treated as a parameter:

Vi(xy—1)=min g(xpy_1,upn_1).
Un-1

As a result we obtain the relationship between the last optimal decision

and the current state u}k\;_l 2 Yv_1(xn_1) - For two stages from the end we
minimize Qp with respect to uy_, , taking into account the result of the
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former minimization and the plant equation (4.14):

Va(xy—2)= min  g(xy_j,uy_1) = min Vj(xy_1)
UN_2 UN-] )

= min N[ f(xy_2, uy-2)]-
UN-2
As aresult we obtain the relationship u}k\;_z =¥y_2(xy_2), in general dif-
ferent than ¥),_; because the form of the function to be minimized may
differ from the form in the former step. For three stages from the end
Vi(xy—3)=min V5[ f(xy_3,un_3)],
UN-3
*
uy-3 =¥n-3(xy-3).

The algorithm for the determination of the optimal control may be pre-
sented as the following recursive procedure:

V_p(x,)=minVy_, [ f(x,,u,)], n=N-1,N-2,..,0,

Up
Vo =g(xy-1,un-1) -
As the result we obtain the relationships
ty =¥ (5

i.e. the control algorithm in a closed-loop system (Fig. 4.1). To determine
the control program u, i, ... , up_q for the control in an open-loop system,
it is necessary to execute the second part of calculations, from the begin-
ning to the end in a similar way as in the former case with the additive per-
formance index.

Remark 4.1. The algorithm (4.25) has been obtained for the problem with
a free end of the trajectory and under the assumption that there are no con-

straints. [J

Remark 4.2. Let us note that the relationship u,, = ¥,(x,,) should be de-
termined in an analytical form presented by formulas in both cases: for the
determination of the control program in the open-loop system and for the
execution of the current control in the closed-loop system. It follows from
the assumption that x, may be any point from the whole k-dimensional
real number vector space (in general, from a continuous subspace). In a
particular case, if the set of possible states is a finite set, the relationship
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u,= %,(x,) may be determined in a form of a table giving the values u,

for all possible values x,,. O

The application of dynamic programming to more complicated cases
may be found in a reach literature on the optimal control, in particular in
the book [3] written by R. Bellman, the author of the dynamic program-
ming.

For the reasons explained at the end of Chap. 3 it has been assumed that
there are no external disturbances z, during the control process. For the

plant described by the equation
Xpt1 =S, 2,),

to determine the decisions u, according to the recursive procedure of the
dynamic programming, it would be necessary to know the sequence of dis-
turbances z,...,z,,..., zy_ . Finally, it is worth noting that (like in
Chap. 3) the control problem for the dynamical discrete plant may be con-
sidered more generally as a problem of multistage decision making. The
dynamic programming is a basic method of the optimization of multistage
decisions or — as it is sometimes called — the determination of an optimal
decision strategy.

4.4 Bellman Equation

The principle of optimality may be also applied to a continuous plant. Let
us consider the plant (4.21) and the performance index (4.22) with the lo-
cal criterion @(x,u). Introduce the following notation:

T

Vi (0] 2 VIx(o), 1= min_ [p(xu)ds
u(@®), ¢
t+At T
= min [ [p(u)dt+ [p(xu)dt ].
u(l)\tT t t+At

If the increment Af is small, it may be approximately assumed that the
function @(x,u) is constant in the interval [, t+Af]. Then, taking into ac-
count the equality
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T
min [pCeuwydt =V [x(r+A0), t+A1]
u()|,, 5, t+A?

we obtain

V[x(t), 1] = rn(lr)l {0 [x(), u(t)] + V [x(t+AD), t+AN} + O1(AD)  (4.26)
u(t

where O;(Af) denotes an error, i.e. the difference between the accurate and

approximate values. It may be proved that for Azt — 0 the error O(A?)
converges to zero faster than A¢, i.e.

lim A4 _

0. (4.27)
At—>0 At

Under the assumption that the function x(¢) is differentiable with respect

to ¢ and the function V(x, ¢) is differentiable with respect to x and ¢, these
functions may be expanded in Taylor series. If only the first terms of these
series are taken into account, we obtain the following approximate rela-
tionship

V [x(t+Af), t+At] = V [x(¢) + x(1) At), t+Af]

~ V[x(t), {] + grad’ V [x(0), 1] x(¢) At + %At (4.28)
x(¢)

where T denotes the transposition of the gradient. Substituting f{x, u) from
the plant equation in the place of x and putting (4.28) into (4.26) yields

Vx, f] = min {@ (x, u) + V(x, t) + gradT V(x, ) fix, u)At

X

+Mm} + Oy(Af) = V(x, £) + M At
+min {¢ (x, u) +grad" V(x, £) fix, u)At} + Oy(A?) (4.29)

X

where O,(Af) is the error representing all approximations. It may be shown

that the property (4.27) is also satisfied by O,(Af). After dividing of both
sides of the equation (4.29) by At and taking into account the property
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(4.27) for O,, one obtains for At — 0 the following equation, called Bell-
man equation:

_ % = min {¢ (x, u) JrgradT V(x, ) fix, u)}. (4.30)

This equation formulates the necessary condition for the optimal control
which means that the optimal control u(¢) and the respective optimal tra-

jectory x(z) satisfy the equation (4.30). More precisely speaking, if u*(t)
is an optimal control and X (¢) is an optimal trajectory then for every
t€[0, 7]
* . * T *
u =arg min {¢ (x , u) +grad V(x,t)|x:x* fx,u)} (4.31)
u

X

and

- M =@ (x*, u*) +gradT V(x,t)
ot N

e, (4.32)

If it is a priori known that the optimal control exists and is unique then it
may be determined by using the equation (4.30). Let us note that this equa-
tion does not determine directly the solution u(z), because as a result of

minimization of the right hand side of the equation (4.30) with respect to u
we may obtain the formula presenting the dependence of u upon x and V.
The dependence of « upon x might be accepted as a control algorithm in a
closed-loop system, but the dependence of u upon V introduces a signifi-
cant complication in our considerations because V(x,7) may be deter-
mined only after the determination of the optimal control u(¢) and the cor-
responding trajectory x(¢z). That is why effective determination of the
optimal control from Bellman equation is in general very difficult and it is
possible to obtain analytical results in simple cases only.

Under the assumption that the functions f'and ¢ are differentiable, the
general procedure of the determination of the control algorithm in the
closed-loop system is the following:

1. One should solve with respect to u the equation obtained as a result of
the assumption that the gradient of the function in the right hand side of
(4.30) is equal to zero vector, i.e. solve the equation

grad @ (x, u) + J,[f (x, u)] - grad V(x, )= 0 (4.33)

u X
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where
EACT I A o ® (x|
ou® ou® ou®
V) FPww)y F P
Tl wl=| ou® ou® ou'® (4.34)
oV o@D (xu) of ™ (x,u)
au(P) au(P) e au(P)

The matrix (4.34) is called a Jacobian matrix of the set of functions f (1),
f (2), .y ®, Solving the equation (4.33) with respect to u one obtains the

dependence of « upon x and V.

2. Substituting this relationship into the equation (4.30) without min one
u

obtains the differential equation with the unknown function V'(x,?).

3. Putting the solution of this equation into the relationship obtained in the
point 1, one obtains the relationship u =¥ (x).

It is worth noting that if 7 = o then for the stationary plant (4.21) V
does not depend directly on ¢. Then V(x, ) = V(x) and the left hand side of
the equation (4.30) is equal to zero.

Let us illustrate the above procedure for the linear single-input plant

X=Ax+bu (4.35)
with the quadratic performance index

Or= " Re+Suydr (4.36)
0

where R is a symmetric, positive definite matrix (see (4.6)). Assume that
there are no constraints concerning the choice of . Then we have

@ (x, u) =x Rx + % u? F(x, u)=Ax + bu, (4.37)
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grad ¢ (x, u) = w= u, J,fC,u)]= bT. (4.38)
u

u
Substituting (4.38) into (4.33) yields
u+bl grad V(x) = 0.

X

Thus,
u=—b" grad V(x). (4.39)

X

Putting the formulas (4.37) and (4.39) into the equation (4.30) we obtain
the equation with the unknown function V' (x). Let us prove that this equa-

tion is satisfied by the function

V(x)= x'Kx

where K is a properly chosen symmetric matrix. Then we have

grad V(x) = 2Kx (4.40)

X

and the equation (4.30) takes the form

0 =x"Rx +2(b Kx)* +2x " KAx — 4x"Kb - ' Kx
or

0=x"Rx +2x'Kb - b Kx +x (KA + A K)x — 4x"'Kb - b"Kx.
After proper transformation we obtain
0=x"(R—2Kb-b'K+ KA+ A K)x. (4.41)

The quadratic form in the right hand side of the equation (4.41) is equal to
zero for every x if all entries in the matrix of this form are equal to zero.
Consequently, the matrix K must satisfy the equation

R+KA+A'K=2Kb-b'K. (4.42)
Finally, according to (4.39) and (4.40), the control algorithm is as follows
u=—2b"Kx (4.43)

where K is the solution of the matrix equation (4.42). The determination of
the solution of this equation may be difficult for £ > 2 and may require the
application of proper numerical methods. Let us note that the optimal con-
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trol algorithm (4.43) is linear and stationary.

Example 4.1. Determine the algorithm of the optimal controller in the
closed-loop control system, for the integrating plant described by a trans-
mittance
Y(s) k
U(s) s(sT+1)

(4.44)

and the performance index
T 1
0= [1 O +[EW) +u® (1)}
0

where & () = y* —y(t) denotes the control error. Using (4.44) we obtain the
description of the plant in the form of the differential equation

Ty+y=ku,

and after introducing the state variables = & @ =¢ we have the fol-
lowing description

o] o biro] |0
- 1 Tk
+(2) o 7 (2 -
Then we have
0 1 0 1 0
A= 11> b=—|rl, R= (4.45)
0 = — 0 1
T T
Denote the entries of the matrix K to be found by «, £, y:
{a i }
K= . (4.46)
By

Putting (4.45) and (4.46) in the equation (4.42) gives after some
transformations

a_\/1+2k2+2J5kT T

2 ’ ﬂ_k\/?
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_T—1+\/1+2k2+2ﬁkT
2%? '

According to (4.43)

- ke Bllel o .
u—2[0 FHﬁ yiu—T(ﬂswe)-

Then, as an optimal controller we obtain PD controller with the
transmittance

U(s) _ 2k
EGs) T

Kg(s) = B+ 7).

The transmittance Kg does not depend on « . For example, for numerical

data k =242 and T=8 one obtains £ =2, y=4 and Kg(s) =\/5(1 +2s). 0

4.5 Maximum Principle

In the determination of the optimal control using Bellman equation, the
main difficulty is connected with finding the function V(x, f) satisfying the
differential equation (4.32). It may be easier and more convenient to use

another differential equation with the unknown function grad V(x, 7). Let
X

us introduce the notation

o (x, u) -i-gradT V(x, t) fix, u) 4 ﬁ(x,u,t) (4.47)

X
and determine the gradient of the function H with respect to x

grad ﬁ(x,u,t) = grad ¢ (x, u) + J [ V(x, )] f(x, u)

X X

+ [ (x, )] - grad M(x, £) (4.48)

X

where J, is Jacobian matrix of the vector function f(x,u) with respect to
x (see (4.34)), and J,, denotes the matrix of second order derivatives of
the scalar function V' (x,17), i.e.
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2
NI {M} o

o Dox)
j=l,k
If u*(t) denotes an optimal control and x*(t) is a respective optimal trajec-

tory then in every moment [0, 7] the function H (x,u*,t) takes on its

. *
maximal value for x=x . Then

,=0. (4.49)

X=X

grad ﬁ(x,u*,t)

X

Using (4.48) and (4.49), and substituting f(x,u) according to the plant
equation (4.21), we obtain

*
X=X

TV (0], _ s - X (1) =— grad p(x.u’)

* .
X=X

| f(x,u*)]‘ . - grad V(x,1)
X=X x
Let us note that
. d
Jol Vix, D] x(2) = I [grad V(X,l‘)].
X

Consequently, we obtain the following differential equation

9 arad v ()] =—grad g
dt X x X=X

*
X=X

- Jx[f(x,u*)]‘x:x* - grad V(5,0 _». (4.50)

The necessary condition for the optimal control, analogous to (4.31) and
(4.32), may be presented by two relationships:

u = arg min {¢@ (x*, u)+ glradT V(x,t)|x:x* -f(x*, u)} (4.51)
u

X

and (4.50). Let us rewrite this condition introducing the notations
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—grad V (x,1) £ y(), ~ H(xu,0) 2H(, u, v).

X

Then we have

HE, u, ) =— @ (6, u) + ¥ (0 f (v, w), (4.52)
grad H(x, u, ) = — grad ¢ (x, u) + J[f (x, )] (), (4.53)

and the relationships (4.51), (4.50) are reduced to
u = arg max H(x*, u, 1//*), (4.54)
u

v =— grad Ho: ', y') = grad o(x,u’”)

X X

*
X=X

_ Jx[f(x,u*)]‘x:x* 0. (4.55)

The formulas (4.54) and (4.55) present the basic formulation of the
maximum principle. The function H(x, u, y) is called a Hamiltonian, and
w(t) is called a vector of conjugate variables. The maximum principle

may be then formulated as follows:

If u*(t) is an optimal control and X (¢) is an optimal trajectory then

* %
for every te[0, T| the control u maximizes Hamiltonian in which w ()

is the function satisfying the differential equation (4.55).

It is worth noting that the necessary condition for the optimal control
presented in the form (4.54) and (4.55) is analogous to that presented in the
form (4.31) and (4.32) in Sect. 4.4. The maximum principle was formu-
lated by L. Pontryagin independently of the principle of optimality. The
notations used here, in particular — Hamiltonian H, were used earlier in op-
timization problems in theoretical mechanics.

The general procedure of the determination of the control algorithm
based on the maximum principle is analogous to that presented for Bell-
man equation in Sect. 4.4:

1. One should find u*(x, w) maximizing Hamiltonian. On the assumption
that the functions ¢ and fare differentiable with respect to u , it is reduced

to solving the equation
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grad H(x, u, ) =— grad o(x, u) + J,[fx, u)]w= 0. (4.56)
u u
with respect to u.
*
2. Substituting u (x, y) into the equation

v = grad (x, u) L fx, w)] v (4.57)
X
and into the plant equation (4.21), one obtains the set of differential
equations with unknown functions x(¢) and yA¢).
3. Putting the solution of this set of equations to the relationship u*(x, V)
one obtains the optimal control u*(t).

In fact, not only using Bellman equation but also using the maximum
principle we may have great difficulties in the determination of the optimal
control and, except simple cases in which the analytical solution is
possible, proper computational procedures are required to determine
successive approximations of the optimal solution. Let us note that for
finding a particular solution of the set of equations mentioned in part 2 of
the procedure, it is necessary to assume proper values ¥(0) and (7).
Usually, it is more convenient to find the control algorithm in a closed-
loop system (as in Sect. 4.4) because it is not necessary to determine the
function y(¢) in an explicit form. It is sufficient to determine the depend-
ence of w upon x from the set of equations for x(f) and y(¢), and to put

this relationship into u*(x, ). In the literature (e.g. [2, 84]) one may find

additional necessary conditions for the optimal control (except the condi-
tions presented in the basic formulation of the maximum principle given
above), which may be helpful in finding the effective solution.

Let us illustrate the application of the maximum principle using as a
typical case a linear single-input plant described by

x= Ax + bu.

For the given values x; and x" one should find the control which for
every ¢ satisfies the constraint |u(f)| < M, and removing the plant from the

state x( to the required state x in minimum time. Now ¢(x, ) = 1, and

the maximization of Hamiltonian (4.52) is reduced to the maximization of
the function

Y fx, u) =yl ax + (b,

Taking into account the constraint concerning u, one obtains
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u'= Msign(y'h). (4.58)

Hence, the optimal control is piecewise constant, equal to +M in the time
intervals in which l//T(Z)b > 0, and equal to —M in other time intervals. In

the moments when l//T(Z)b = 0, called switching moments, u*(t) changes
its value from +M to —M or inversely. For the unique determination of
u*(t) it is necessary to know the initial value u*(O) and the switching

moments. For this purpose one should solve the equation (4.57) which in
this case takes a form

w(t)=— ATy (4.59)

It is a linear differential equation and for the given initial condition y(0) it

is possible to obtain its unique solution y/*(t), and after substituting it to
(4.58), to obtain the final result u*(t) . A difficulty consists here in such a

choice of (0) that at the end of the control the given value X is
achieved. In Example 4.2 it will be shown how to avoid this difficulty, de-
termining the algorithm u = ¥ (x) in a closed-loop system. Let us note that
if all eigenvalues of the matrix 4 are real then the solution of the equation
(4.59) has an aperiodic form (without oscillations) and the number of sign
changes of the function t//T(t)b in the interval z€[0, o) is not grater than
k—1 where k is an order of the plant. Hence, in this case the number of
switches during the optimal control is smaller than k. This property is
sometimes called a switching rule.

Example 4.2. Determine a time-optimal controller in a closed-loop system
for the plant described by a transmittance

Y(s) k
%—S—z~ (4.60)

For example, y(¢) may denote the position of a moving object. This object

should be removed in minimum time to the final position y* in which the
object should be stopped. In other words, one should control the object o)
as to in minimum time achieve £=0 and &= 0 where ¢ = y yisa

control error. If the executive device is an electrical motor the velocity of
which is proportional to the input voltage u(¢) and which changes the

position y(¢), then the control plant with the input » and the output y is an
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integrating element. The great inertia of the motor and/or the moving
object may be approximately taken into account by assuming the
transmittance of a second order integrating element (4.60). Using (4.60)
we obtain the plant description in the form y =ku or

D=2 D= u (4.61)

where x(I) = &, x® =& For the practical reason, the constraint | u(¢) | < M

should be taken into consideration. According to (4.58), the optimal con-
trol takes the value +M or —M in different time intervals. If u =+M then
from the equations (4.61) we obtain

x(z)(t) =—kut + x(()z) ,

Wyn_ _kut® ) 0
X (t)——TerO t+ x5 .

This is a parametric equation describing the state trajectory for the given

x(()l) , x(()z) . Determining ¢ from the first equation and substituting it into the

second equation we obtain the trajectory equation in the form

n_ 1 2)\2 H (2
x()——sz @2+ WD 152y (4.62)

where I denotes a term depending on the initial state. For u =—-M

W1 @2 0 @

X e, () =Wxy x5 )- (4.63)
In Fig. 4.2 the families of graphs (4.62) and (4.63) for different initial
conditions are presented. The state trajectory for XD =¢and ¥ =¢ is
called a phase trajectory. That is why we say that Fig. 4.2 presents a phase
portrait of the plant in two cases: for u(¢) = const.=+M and u(¢) = const.=
—M. The arrows indicate the direction for the increasing time, i.e. for the
increasing ¢ the point [x(l)(t), x(z)(t)] moves in the direction indicated by
the arrowhead. Through every point on the plane two trajectories run: for
u=+M and u=-M.

For example, if P denotes the initial state then one should switch
u(ty=+M on, change u from +M to —M in the moment when the point
O is reached, and switch the control off (u =0) when the point (0,0) is
reached. As a result we obtain the path with minimum time, because,
according to the switching rule, one switch at most may occur (k=2).
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x()

Fig. 4.2. Phase trajectories in Example 4.2

Similarly, for the initial point P the optimal control is as follows:
u(t)=—M until the moment when Q is reached, u(f)=+M until the
moment when the point (0,0) is reached, and switching off. The bold line

in Fig. 4.2 is called a switching curve. It divides the state plane (the phase
plane) into two parts marked in the figure by +M and —M in circles. If the
point x(z) lies in the part +M then u(t)=+M and vice versa. The sign of
u has to be changed after reaching the switching curve. Such a control al-
gorithm may be presented by the formula u =% (x). Let us note that the

equation describing the switching curve is the following

oL @@
2kM
Hence,
u=Msign 1+ %LM X2 x@) = M sign (e+v) (4.64)
where
1.
v= ——|¢le¢. (4.65)

2kM
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The relationship (4.64) presents the algorithm of the optimal controller. It
consists of three elements: a differentiating element, a nonlinear static
element described by (4.65) and a switching element described by
u = M sign w where w = ¢+ v (Fig. 4.3). For the purpose of a computer
implementation it is necessary to present this algorithm in a discrete form.
If T is a control period in a discrete control then y, = y(n1), &, = ¢(nT)

and ¢ is approximately replaced by corresponding increment:

: &y —Ep
e(t)y="n"n=L

T

G-

w(t) MT— u(t) K y(0)
L

vt) T/ £ i
/]

e (t)

Fig. 4.3. Block scheme of the control system under consideration

Data base
k M, T

n
Introduce & n Pant
from plant into memory Yn
Menmory
Introduce from
memory Un
nt e
Determine decision
up, according to (4.66)
Transfer decision u,

up, for execution and put
into memory

Fig. 4.4. Block scheme of the control algorithm in the case under consideration
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Consequently, according to (4.64), the discrete control algorithm is the
following:

. 1
up, =M sign (&, + 5 & = &n1l (& — &1-1))- (4.66)
2kMT

The block scheme of the control algorithm (the program of real-time
control), i.e. the procedure of the determination of the decision u,, in the
n-th period is presented in Fig. 4.4. The remarks concerning functions of

the control computer are the same as in Sect. 3.5, referring to Fig. 3.6. O

4.6 Linear-quadratic Problem

Optimal control problem for the linear plant and quadratic performance in-
dex is shortly called a linear-quadratic problem. In Sect. 4.4, the applica-
tion of Bellman equation to such a problem with the single-input plant
(4.35) and the quadratic performance index has been considered. Now, we
shall apply maximum principle to a more general problem, with the multi-
input plant

x=Ax+ Bu

and the performance index

Or= j(xTRxx + uTRuu)dt
0

where R, and R, are symmetric, positive definite matrices. The equation
(4.56) takes now the form

—2R,u+By=0.

Hence,
1 _
u' = SR BTy . (4.67)
This is a result of the first point of the procedure described in Sect. 4.5. In

this case, the set of differential equations for y(7) and x(¢) mentioned in the
second point of this procedure is as follows:
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w=2Rx—A"y,
x = Ax + Bu.

Putting (4.67) yields

w=2Rx—A"y,

. 4.68
X = Ax +%BR;13TW. (4.68)

To obtain the control algorithm in a closed-loop system, one should deter-
mine the dependence of  upon x. Let us remind that in Sect. 4.4 for a
single-input plant we assumed V(x) = xTKx, i.e.

—grad V(x) = w=—-2Kx (4.69)
X
where K is a symmetric matrix. Now we shall prove that for the properly

chosen matrix K, the relationship = — 2Kx satisfies the set of equations
(4.68). Putting (4.69) into (4.68) and multiplying both sides of the second
equation by K, we obtain

. T
—Kx=R.x+A Kx
PR A R (4.70)
Kx = KAx— KBR; ' BT Kx.
Hence,
— (R, +A"K)x=(KA-KBR,;'BTK ) x. (4.71)

Since the equality (4.71) must be satisfied for every x, the matrix K must
satisfy the equation

R.+KA+A'K=KBR,;'BTK . (4.72)
Finally, according to (4.67) the control algorithm is as follows:
u=—Mx (4.73)
where
M=R;'B'K, (4.74)

and K is a solution of the matrix equation (4.72). It is easy to note that for a
single-input plant the equation (4.72) and the algorithm (4.73) are reduced
to the equation (4.42) and the algorithm (4.43), respectively. It is worth
noting that the results (4.72) and (4.73) for a multi-input plant might be
also obtained by applying the function V'(x) and Bellman equation. The
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matrix M should by determined by a designer before the execution of the
control. The design algorithm consists of the following operations:
1. Determination of the matrix K, i.e. solution of the equation (4.72).
2. Determination of the matrix M according to the formula (4.74).

For k> 2, finding the solution of the equation (4.72), i.e. determining
the values of the entries of K may be difficult. Since K is a symmetric ma-

)

trix, the matrix equation (4.72) denotes a set of @ nonlinear scalar

equations. Solving such a set of equations requires proper numerical (com-
putational) methods. After a determination of the numerical values of the
entries of M we obtain a concrete control algorithm for the real-time con-
trol, i.e. the relationship (4.73).

Let us consider a linear-quadratic problem for the linear non-stationary
plant

x=A(t)x + B(t)u

and the performance index

T

Or= [[x"Ry(t)x+u' R, (tyuldr.

0
Now we assume y(f) = — 2K(#)x(¢) and put — 2K (¢)x — 2K ()x in the place
of y in the set of equations (4.68). Consequently, the equations analogous
to (4.70), (4.71) and (4.72) are the following:

—Ki=R.x+A" Kx+Kx,
Kx = KAx— KBR;, ' BT Kx,

~ (R, +A'K+K)x=(KA-KBR,'BTK ) x,

K=-KA-A"K + KBR,'BTK —R,, (4.75)
respectively. In general, the control algorithm is then non-stationary

u ()= R, OB (1)K (1)

where K(¢) denotes the solution of the matrix differential equation (4.75)
which is called Riccati matrix equation. It may be shown that y(7) =0 for
every x(7"). Then, to obtain a particular solution K(¢) one should assume
the condition K(7) = 0 (zero matrix). If the matrices 4, B, R, and R, do
not depend on # and 7= oo then K(f) = const. and the differential equation
(4.75) is reduced to the algebraic equation (4.72).



5 Parametric Optimization

This is the third and the last chapter of the second part of the book, de-
voted to deterministic control problems. In comparison with the problems
presented in the previous chapter, now we shall consider the optimization
problem with restricted possibilities of decision making by a designer. We
shall assume that the form of the control algorithm has been given in ad-
vance and the designer should determine the best values of the parameters
in this form.

5.1 General Idea of Parametric Optimization

Quite often a designer accepts a determined form of the control algorithm
with unknown parameters and the problem consists in finding the values of
these parameters optimizing the control quality, i.e. minimizing the per-
formance index Q. Thus the choice of the optimal control algorithm is re-
stricted to the choice from a class of algorithms determined by the ac-
cepted form. The problem of finding the optimal values of parameters in a
given form of the control algorithm is called a parametric optimization.
For a deterministic plant and full information on this plant, one should as-
sume a determined form of the control algorithm if the absolutely optimal
algorithm (without a restriction mentioned above) is too difficult to find or
to perform. In the case of uncertainties caused by a non-deterministic be-
haviour of the plant or an incomplete information on the plant, the parame-
ters in the assumed form of the control algorithm may be changed in an
adaptation process described in Chap. 11.

Let us denote by a a vector of parameters in the control algorithm,
which should be found by minimization of Q. For example, in the linear
control algorithm considered in Sect. 5.2, the components of the vector a
may be all entries of matrices in the description of this algorithm, or only
some of them if the rest are fixed and their values are not to be chosen by a
designer. The problem of the static optimization for the control system
may be considered as a problem of the optimal control for a static plant,
presented in Sect. 4.1. The control system to be optimized may be treated
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as a static plant where Q is an output y and the vector of the parameters
a is an input. Of course, it is a discrete control with a long control interval,

sufficient for the estimation of Q. To find the optimal value a it is nec-
essary to determine the function O = @(a) and then to minimize this func-

tion with respect to a, taking into account constraints concerning a if there
are any. To obtain the function O = @(a) one should determine functions
of time describing the control process, i.e. functions used in the formula
defining Q, e.g. &¢) or g, if the integral or additive performance index
evaluates the control error. This is a problem of the control system analysis
mentioned in Sect. 2.6.

In Sects. 5.2, 5.3 and 5.4, the control analysis and the parametric opti-
mization for selected cases of linear system will be considered. It will be
shown that for linear stationary systems and quadratic performance in-
dexes it is possible to determine (@ using operational transform of time
functions included into the formula for Q (Laplace transform or Z trans-
form in a continuous or discrete case, respectively).

For nonlinear systems, in very simple special cases only it is possible to
obtain an analytical solution of differential or difference equations describ-
ing the control process and consequently, to obtain a formula for Q. Usu-
ally, for the fixed value a, only the approximate value of Q may be calcu-

lated by applying respective numerical methods. Then a" is determined by
using one of successive approximation methods mentioned in Sect. 4.1, i.e.

the successive approximations a,, of the exact result @ are determined in

a way analogous to that presented for u,, in Sect. 4.1. For example, the
algorithm analogous to (4.12) has the form

A1 = ay — Kwy,

where w,, denotes an approximate value of the gradient of O with respect
to a, in m-th step of calculations.

In the formulation and solution of the parametric optimization problem
the given assumed form of the control algorithm is used. In practice, this
form may be accepted as a result of a designer’s experience or an experi-
ence of a human operator controlling real plants. We shall return to this
problem in the third part of the book, in the considerations concerning the
control in uncertain systems. Let us note that different given a priori forms
of the control algorithm with the numerical values of parameters in these
forms may be compared by using the performance index Q which may be
calculated or obtained as a result of simulations for the known control
plant. For the given control plant and two assumed forms of the control
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algorithm, this form is better for which the minimum value of Q (i.e. the
value Q for a = a*) is smaller. In Sect. 5.5 we shall present several fre-
quently used forms of the control algorithm (or forms of a controller) in a
closed-loop system: a linear controller (in particular, PID controller) and
three nonlinear controllers (including so called fuzzy controller). Let us
note that the comparison of these controllers based on Q requires the
knowledge of the plant necessary to determine the value Q. So, a general
statement that e.g. a fuzzy controller is better than a linear PID controller
(or on the contrary) has no sense, even when the controllers with their op-
timal parameters a are compared. The result of comparison depends not
only on the controller but also on a form of the plant equation and values
of its parameters.

The parametric optimization is applied to different cases of the control
systems with different forms of the performance index. This is not always
the integral form considered above, especially with the limits of integration
0, oo, which requires a convergence to zero of a function to be integrated.
For example, in the case of two-position controller which will be presented
in Sect. 5.5, it is easy to note that &(¢) is a periodic function for ¢ greater
than a certain number. Then as a performance index Q we can use an inte-
gral of 6‘2(t) or |g(f)| for the time interval equal to the period of &(). The

amplitude of &(f) may also be used as a performance index in this case.

5.2 Continuous Linear Control System

Let us consider the parametric optimization problem for the closed-loop
control system with a linear plant

x=Agx + Bou, (5.1)

y=Cox, (5.2)

in which the following linear dynamical control algorithm (linear control-
ler) has been applied:

v=ARv— Bpy, (5.3)

u=Cgrv (5.4)

where x and v denote the state of the plant and the state of the controller,
*
respectively. In fact, the control error &£(7) =y — y(¢) is put at the input of

the controller. To simplify the notation we assume y* =0 (Fig. 5.1).
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u(t) Fant ylt) _ y=0
e
Ag:Bo Col —
&(t)
Controller
Ar Bgr Cr

Fig. 5.1. Control system under consideration

Substituting (5.2) into (5.3) and (5.4) into (5.1) one obtains the description
of the control system as a whole with the state vector ¢

¢ =Ac (5.5)

X 4o BoCr
c= , A=

v -BrCo 4g

where

Parametric optimization problem with quadratic performance index
Data: Ag, Bg, Co and a symmetric positive definite matrix R.
One should determine: controller parameters Ag, Bgr, Cr minimizing

0= T(CTRc)dl . (5.6)
0

Hence, one should determine Q as a function of AR, Bg, Cr, i.e. O(4g,
Bgr, CR), and then minimize this function with respect to Ag, Br, Cr- A
necessary condition for the existence of the integral (5.6) is lim c(¢) = 0
for t—oo. It is easy to prove that for the linear system under consideration
this is also a sufficient condition. The value Q for the data 4g, B, Co,
AR, Br, Cr and the given initial state ¢y may be determined in two ways:
by determining c¢(¢) from the equation (5.5) and then determining Q for
the function c¢(7) obtained, or directly from the definition of Q. In the sec-

ond way there is no need to solve the equation (5.5). Let us apply the sec-
ond way. We shall prove that

0= ¢4 0eco (5.7)

where Q. is a properly chosen symmetric positive definite matrix. If the
dependency of Q upon the initial state is described by the formula (5.7)
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then, for the fixed moment ¢> 0 treated as an initial moment, one may
write

0= [T (ORe(t)dt =T (D)0, c(2). (5.8)
t

Differentiating both sides of the equality (5.8) with respect to ¢ yields

—c (ORe(t) = ¢T (1) Qe () + (D0, (1)
and after substituting into (5.5)
—c"Re=c"U"0,+ 0.4) c. (5.9)
The equality (5.9) is satisfied for any c if and only if
~R=A4T0.+ 0. (5.10)

Hence, the performance index O may be determined according to the for-

mula (5.7) where Q. is a solution of the matrix equation (5.10). This is a
set of equations which are linear with respect to entries of the matrix QO
and for det 4 # 0 it is easy to obtain its solution. The problem is simpler
for the performance index

0= J(xTRxx + vTRVv)dt .
0

Then
R

x 0
0 R,
In particular, if the performance index evaluates y(¢) and u(?), i.e.

0= [("R,y+u' Ru)dt (5.11)
0

then, according to (5.2) and (5.4)
R, =CoR,Co, R,=CaR,Cy .

For a measurable plant (y = x) and the static control algorithm u =— Mx,
the equation (5.5) is reduced to
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5c=Ax, A:Ao—BoM

It may be proved that in this case, the result of the parametric optimization
is the same as in Sect. 4.6, i.e. the matrix M minimizing Q should be de-
termined according to the formula (4.74) where K is a solution of the ma-
trix equation (4.72). We often consider and estimate the control process
under the assumption that until the moment 7= 0 the control system was
in an equilibrium state (for the description (5.1)—(5.4) it means that the

initial state c =6) and in the moment 7= 0 the required output value has
been changed from 0 to a value y* constant during the time of the control.
Then in (5.3) we introduce &= y*— v instead of y and the description of
the control system is as follows:

0 .
¢ =Ac+ y. (5.12)
B

Under the assumption det 4 # 0 we introduce a new variable

0
c dctq! y*.
By

Consequently, (5.12) takes the form ¢ = Ac . The formulation and solu-
tion of the parametric optimization problem are then such as for (5.5) with
the initial state

—_ 71 6 S 71 6 *
co =cot4 y =4 y.
By By

Now c¢ instead of ¢ occurs in the index (5.6), and the index (5.11) has the
form

0= [(e"Ree+u" Ryu)dr. (5.13)
0

Hence, if det A # 0 then for the system (5.5) one may assume y* =0

without a loss of generality. If the control system as a whole with the input
%

vy () and the output y(¢) is controllable and observable, or (which is usu-

ally satisfied) we are interested in controllable and observable part of the
system only (i.e. we want to know the change of the output y(f) caused by
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the disturbance y*(t)), then it is sufficient to use the description with the
help of transmittances

Y(s) = Ko(9)U(s),

U(s) = Kr(5)E(s), E(s)= Y (s) - ¥(s)

where Ky is an assumed form of the controller transmittance with parame-
ters to be determined by a designer. Then

E(s) = [Ko($)Kr(s) + T Y (s)
(see (2.22)).

*

Applying an inverse transformation for Y *(s) = 2 we obtain the con-
s

trol error &(¢) in the situation considered (zero initial conditions and a step

change of the required output value). If in the index (5.13) R, = 0, i.e.
only the function &) is evaluated, then one should determine Q for the
obtained function &) and minimize @ with respect to the parameters in
the assumed form of the controller transmittance Kg. To take into account
the second component in (5.13) it is necessary to determine u(f) as an in-
verse transform of the function Kg(s)E(s). It is also possible to determine
Q directly from the functions E(s) and U(s), without finding the functions
&t) and  u(?). According to Parseval’s Theorem, if &(f) = u(f) = 0 for
t < 0 then

0- i [(ET(jo)RE(—jo) +UT jo)RU(-jo)ldo.  (5.14)

In particular, for one-dimensional plant (p =/ = 1) and the performance in-
dex evaluating &() only, we have

0= [e*(0)dt = L [lEGo) P do. (5.15)
0 2 %

Let us be reminded that the components of the vectors E(s) and U(s) are
rational functions. For such functions, the formulas for Q in the case of
small (sufficient in practice) degrees of polynomials in numerators and de-
nominators of the particular components have been determined. For exam-
ple, for
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bys® + bys + by

s3+ a2s2 +aps +ag

E(s)=

the formula (5.15) is as follows:

blagay + (b —2byby )ag + bias
2ag(ayay —ag)

o0

0= [&di= (5.16)
0

If except the disturbance y(f) = l(t)y*, the step disturbance z(f) = l(t)z*

acts on the plant, then we determine E(s) from the formula (2.24) for
£ %

Y *(s) - Y and Z(s) = =z Next, the index Q and the optimal control-
s s

ler parameters should be determined in the way described above.

Finally, let us note that, except the one-dimensional case, a practical
utility of the parametric optimization is rather limited. According to the
formulas (5.7) and (5.14), the optimal parameters of the controller in a
closed-loop system (in other words, parameters of the optimal controller)

in general depend on ¢ (for an unmeasurable plant) or on y* and z.
Consequently, they should be changed according to successive distur-
bances with different values ¢, or y and z.

Example 5.1. For the second order plant

kO
(sT; +1)(sT, +1)°

Ko(S) = T1,2 >0,

let us assume the integrating controller

Kg(s) = Ky
s

and find the optimal value kg for the requirement y*(t) = 0, the disturbance
acting on the plant z(f) = l(t)z* and the performance index (5.15). The
function E(s) is as follows:
* *
E(s) = -z Kg _ . -z ko .
s(1+KoKR)  T\Ths” +(T} +T)s“ +s+k

where k= kpkg. Then by =b, =0,
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*
2 ko m=nth 1 a0=L.
LT LT nrT nr,

b():—

After substituting of these variables into (5.16) and some transformations
we obtain

(ko) (T} + T»)

O @+ Ty kT, Ty)

It is easy to note that

I +T;
kop = arg min Q = arg max k(T} + T, — kT Ty) = L—2
opt g P 0 g pi (T 2 112) 2T,
The optimal controller parameter kg = %' The condition assuring

0
QO <m,ie. gf) > 0 for t - oo is the following:

0<k< L+ .
LT
Assume that we have the first order plant, e.g. 7, = 0. Then

0 2k

and the optimization problem without a constraint for & has no solution,
i.e. O may be arbitrary small if kg is respectively great. For the constraint

kr Sl;R (which indirectly means a constraint concerning u(¢) ), the opti-

mal parameter of the controller kg = l;R . O

5.3 Discrete Linear Control System

Considerations for the discrete plant are analogous to those for the con-
tinuous plant presented in Sect. 5.2. The relationships corresponding to the
equations (5.1)—(5.5) are now as follows:

Xn+1— AOxn + BOun:
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yl’l = Cox}’l:

Vi1 = ARV, — BRYVn,

where

Xn Ao By Cr
= , A=
Vn -BrCo  4g

Parametric optimization problem with quadratic performance index
Data: Ao, Bo, Co, R.
One should determine: controller parameters Ag, Br, Cr minimizing

o8]
0= Yt Re, .
n=0
Assume
0= c40.0 (5.17)

where Q. is a properly chosen symmetric positive definite matrix. The re-
lationships analogous to (5.8) —(5.10) are as follows:

0
_ T _ T
Qi_ ch ch = ¢ Qcci

n=i

_ Tp _ T T
Oir1 = 0i=—¢; Re;j= ¢110cCi41 — ¢ OcCis
and after substituting ¢, = Ac;

—c] Re; = ¢} (AQ.A— Qo)

and finally
~R=A4"04-0.. (5.18)

Thus, we determine Q from the formula (5.17) in which Q is a solution of
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the matrix equation (5.18).
If the description with the help of transmittances is used then for the

step disturbance y: = l(n)y* we find

E@) = [Ko@)Kr(@) + 11

Y "z
z—1
and

U(z) = Kr(2)E(2).

In a way analogous to that in the continuous case, the quadratic perform-
ance index

0= S (8 Ry, +up Ryuy,) (5.19)
n=0

may be determined directly from the functions E(z) and U(z), without de-
termining the functions ¢, and u,,. It may be proved that

0= % TEET @) REC) 4 UT MRV, (520)
VA

This is a discrete version of Parseval’s Theorem (5.14). In particular, for
one-dimensional plant and the performance index evaluating &, only

o0 1 T X
0=>¢ -5 [IEE*) P do. (5.21)
n=0 ﬂ—ﬂ'

The integral (5.21) has been determined for small degrees of polynomials
in numerator and denominator of E(z), in a similar way as the integral in
(5.15). However, the respective formulas are now much more complicated
than in the continuous case. They may be found in books devoted to the
theory of linear discrete or sampled-data control systems (e.g. [102]).

5.4 System with the Measurement of Disturbances

In Chaps. 3 and 4 we noted that if during the control process some distur-
bances act on the plant then for the determining of a proper control in an
open-loop system or a control algorithm in a closed-loop system, the
knowledge of the functions describing these disturbances is required by a
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designer before starting the control. In the case of parametric optimization
considered in this chapter, we can determine optimal parameters in the
control algorithm when the disturbances are measured. It means that for
the assumed form of the control algorithm we determine the parameters
which are optimal for the current knowledge of the disturbances, i.e. are
optimal in the situation when to determine the control decision in a fixed
moment we use the knowledge of the disturbances until this moment only
and not the knowledge of their future values. The control may be per-
formed in an open-loop system with the measurements of disturbances
(Fig. 5.2) or in a combined system in which the disturbance z as well as
the control error are put at the input of the controller. In the first case ¥(s)
should be determined from the equations

Y(s) = Ko(s)U(s) + Kz(s)Z(s), (5.22)
U(s) = Kg(s)Z(s). (5.23)
Then
Y(s) = [Ko($)Ks(s) + Kz(s)]Z(s). (5.24)
Controller u Pant $
Kg Ko Ky

Fig. 5.2. Block scheme of open-loop control system

Controller u Pant y X y
Ko Kz -

Ks1, Ks2

Fig. 5.3. Block scheme of combined control system

*

For the step disturbance z(¢) = l(t)z*, i.e. Z(s) =2 we find U(s) and Y(s)
s

according to (5.23) and (5.24), respectively and then we determine the per-
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formance index as a function of parameters of the transmittance Kg for the

given matrices R, and R,
_ LT, . T, . ,
—2— jY (Jo)R,Y(-jo)+U" (jo)R,U(-jo)ldo .

This is the performance index (5.13) under the assumption y* = 0. The op-

timal values of the parameters of Kg are obtained as a result of minimiza-
tion of Q with respect to these parameters. Let us note that if

Ks(s) =~ Ko(s) ' -Kz(s)

then y(¢#) = 0. Consequently, for R, =0, the performance index Q = 0.

Unfortunately, the transmittance of the controller Kg(s) determined in such
a way may be proved to be physically unrealizable. Then it is reasonable to
propose a physically realizable transmittance with undetermined parame-
ters, and to choose optimal values of its parameters in a way shown above.

In a particular case when the matrices K, Kz, Kg are reduced to scalar,
one-dimensional transmittances (i.e. the plant has two single inputs # and
z, and one output y), the transmittance assuring y(¢) =0 for 7> 0, i.e. the
full compensation of the influence of z on y, has the following form:

K. (S) _ LZ(S)MO(S)
Lo(s)Mz(s)

where Ly(s), Mz(s), Lo(s) and Mgp(s) denote polynomials in numerator
and denominator of the transmittances Kz(s) and Kg(s), respectively. The
transmittance Kg is physically realizable, i.e. the full compensation of the
influence of z on y is possible, if the sum of the degrees of polynomials
Ly and Mg is smaller than the respective sum for polynomials Ly and
My.

The combined system is described by the set of equations (5.22) and

Uls) = Ks1(s)Z(s) + Kso(s)E(s), E@s)=Y (s)-Y(s).  (5.25)
Then, after some transformations we obtain

E(s) = [Ko($)Ksa(s) + 1T Y (5) — [Ko($)Ks1(s) + Kz(s))Z(s)}.  (5:26)
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* *

For the step disturbances Y *(s) =L, Z(s) -z , we determine E(s) ac-
s s

cording to the formula (5.26) and U(s) according to the formula (5.25),
and next we find the performance index (5.14) which is minimized with
respect to parameters of the functions Kgq; and Kgj.

The considerations and solutions for a discrete system are analogous to
those for a continuous system. The equations for the discrete transforms
and transmittances are the same as (5.22)—(5.26) with the variable z in the
place of s, and the performance index (5.19) is calculated by using the

formula (5.20). In the case of an open-loop system y,, =0 for

Ks(z) = - Ko(2) 'Kz(2).

The full compensation may be obtained if the discrete transmittance de-
termined in such a way is physically realizable. In particular, for one-
dimensional case

_ Lz(z)Mq(2)
Lo(2)Mz(2)

where Ly, Mz, Lo and Mg denote polynomials in numerator and denomi-

Ks(2)

nator of the transmittances Kz(z) and Kp(z), respectively. The full com-
pensation is possible if the sum of the degrees of polynomials L, and M

is not greater than the respective sum for polynomials Lo and My. Let us
note that in general the considerations are concerned with multi-
dimensional system, i.e. in the equation presented above for the continuous
as well as for the discrete plant appear vectors and matrices. The problem
is considerably simplified for one-dimensional system, i.e. for a system in
which z(?), u(¢) and y(¢) are single variables (scalars). It is also worth not-
ing that in general we do not minimize Q with respect to all parameters of
the control algorithm, but only with respect to parameters which may be
chosen by a designer, with fixed values of other parameters.

5.5 Typical Forms of Control Algorithms in Closed-loop
Systems

We shall present shortly several typical forms of control algorithms often
used in closed-loop systems, with undetermined parameters. For an as-
sumed form, the optimal values of the parameters may be determined by a
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designer solving the parametric optimization problem with the complete
knowledge of the plant, or may be changed in an adaptation process which
will be considered in Chap. 11. For simplicity, let us assume that it is pos-
sible to put the state vector x(7) at the input of the controller and for sin-
gle-input and single-output plant this is a vector with the components

Doy =g0, *Po=é0), .., *Puo=Dae, (5.27)
or
(1)
£(t)
x(1) =
25D gy

where f,(kfl)(t) denotes the (k—1)-th derivative of the function &7). The
descriptions presented below concern single-output controllers.

5.5.1 Linear Controller

In the linear controller u(7) is a linear combination of components of the
vector x

u= alx(l) + azx(z) +...+ akx(k) =a'x (5.28)
where a! = [a; ay ... ag]. In the case (5.27)
u=ajetayé+..+ae®. (5.29)

The parameters aj, ay, ..., a; take a role of weight coefficients. For k=2

it is PD controller. For k>2 instead of the form (5.29), PID controller,
i.e. the form

t
u(t) = ay&t) + ar £(t) + ay [e(t)dt
0

is often used.
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5.5.2 Two-position Controller

Now
— . T
u=Msign a x,
and more generally
u= Msign(a'x + b). (5.30)
The parameter b may be called a threshold. The decision u may take two

values only: # =+M if the value a'x is greater than the threshold —b, and

u =— M otherwise. The controller (5.30) is a special case of a two-position
controller

u = M sign f(x)

where the function f{x) has a fixed form. Such a controller occurred in Ex-
ample 4.2 where

. 1 Lo
u=Msign (s+ gle).

gn (et ——rlele)
In the simplest case u = M signe , which means that the control decision
depends on the sign of the control error only, but does not depend on its
value.

5.5.3 Neuron-like Controller

The form of the controller (5.30) may be generalized to the form
u=fla'x+b) (5.31)

where f'is a fixed function of the variable a'x + b. It is useful and reason-

able to apply a complex algorithm, which is a system consisting of the
elements (5.31). In such a way one may improve possibilities of fitting the
controller to the plant because the number of parameters which may be
chosen is greater than in the simple case (5.31). These are parameters a
and b, i.e. the weights and the thresholds in all elements being parts of the
controller. Usually the structure of the controller has a multi-layer (or
multi-level) form, i.e. the elements are composed into layers, the inputs of
the first layer elements are the inputs of the controller (components of the
vector x), the inputs of successive layers are the outputs of former layers,
and the outputs of the last layer are the outputs of the whole controller
(components of the vector ). A structure of the complex controller with
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three layers and three state variables is illustrated in Fig. 5.4. For example,

in the second layer there are three elements; f;; denote the function fin the
Jj-th element of the i-th layer.

x(1) /

— f14 f21

x(2 u
f12 fao f3 —

x(3

— g [ —_| T2

Fig. 5.4. Structure of controller under consideration

5.5.4 Fuzzy Controller
In this case a control algorithm is determined by a given set of functions:

w0y =120k, }

5.32
My () 5 j=12,1 (5.32)

Each function in this set takes non-negative values and its maximum value
is equal to 1. The control algorithm is defined in the following way:

oiiu,u(u;x)du
u=Hx)= _Zs— (5.33)
I,u(u;x)du
where -
p(u; x) = max [1(u; x)], (5.34)
J

Hiu; x) = min{ g4, (u), 6(x)}, j=12,..,1, (5.35)
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2

@), ey e} (5.36)
Minimum in the formulas (5.35) and (5.36) denotes the least number from
the set in brackets. The control algorithm performed by the fuzzy control-
ler can be presented in the form of the following procedure:

1. Introducing the values x(l), x(z), ey x® from the plant.

p6) = min {2 V), 110 (x

2. Finding the number z(x) according to (5.36).

3. Determining the function 4(u; x) according to (5.35) forj=1,2, ..., /.
4. Determining the function g(u; x) according to (5.34).

5. Finding the value of u according to the formula (5.33).

In this way the relationship u = ¥(x) is determined. The block scheme of
the control algorithm (or a structure of the fuzzy controller) is presented in
Fig. 5.5. The left hand side blocks represent the given functions uniquely
determining the relationship u = ¥(x). The right hand side blocks denote
the procedure defined by the respective numbers.

Hegp = Hhe (5.36)

Moy o My (5.35)

Fig. 5.5. Block scheme of control algorithm in fuzzy controller

The controller parameters are here the parameters of the functions g in the
set (5.32). The integrals in the formula (5.33) may be calculated approxi-
mately, by using sums instead of integrals:
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o0
Dty 11ty X)
Uy~ M=%

> u(uy,)

where u,, =m-A,, and A, is sufficiently small.

The simplest versions of neuron-like controller and fuzzy controller
have been described in this section. The names of these controllers and
their interpretations will be presented in Chap. 9 for the fuzzy case and in
Chap. 12 where applications of so called neural networks in control sys-
tems will be described. In Chap. 9 we shall see that, in general, the set of

functions yx,-(x(i)) is different for different j. Consequently, the function

1(x) determined according to the formula (5.36) also depends on ;.

The forms of control algorithms wu = ¥(x) listed in 5.5.1, 5.5.2, 5.5.3
and 5.5.4 are identical for continuous and discrete systems, because we
considered memory-less controllers. It is a relationship between u and x
for every ¢ in a continuous case or for every # in a discrete case. In the
discrete case, the state variables analogous to (5.27) are as follows

WD=g, xP=g, ., xP= En—(k-1) (5.37)
or
- .
En-1
Xy =
| En—(k-1) |

It is worth noting that in the case (5.27) and in the case (5.37) as well, the
state variables of an observable part of the plant are defined.



6 Application of Relational Description of
Uncertainty

The second part of the book containing Chaps. 3, 4 and 5 has been de-
voted to control problems with full information of a deterministic plant.
Now we start considerations concerning the control under uncertainty or —
as it is often called — the control in uncertain systems. The problems of de-
cision making and control under uncertainty are very frequent in real situa-
tions and that is why methods and algorithms concerning uncertain sys-
tems are very important from the practical point of view. There exists a
great variety of definitions and formal models of uncertainties and uncer-
tain systems [52, 81, 82, 86, 96]. Analysis and decision making problems
are formulated in a way adequate to the applied description of the uncer-
tainty, i.e. so that the problem has a practical sense accepted by a user and
may be solved by using the assumed model of the uncertainty.

The third part of the book contains Chaps. 6, 7, 8 and 9 in which we
present different cases of the problem formulations and the determinations
of control algorithms based on descriptions of uncertainty given in ad-
vance, without using any additional information obtained during the con-
trol process. In this chapter, the plants and consequently, the control algo-
rithms and the uncertain control systems will be described by relations
which are not reduced to functions.

6.1 Uncertainty and Relational Knowledge Representation

As it was mentioned in the introduction to Chap. 3, there are two basic rea-
sons of the uncertainty in the decision making;:

1. The plant with a fixed input and output (a state) is non-deterministic.

2. There is no full information of the plant.

Ad 1. Let us consider a static plant with the input vector u €U and the
output vector y €Y. We say that the plant with the input # and the output
y acts (or behaves) in deterministic way, or shortly, the plant is determinis-
tic if the value u determines (i.e. uniquely defines) the value y. It means
that in the same conditions the decision u gives always the same effect y,
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or that the plant is described by a function y = &(u).

For example, let y denote the amount of a product in one cycle of a
production process and u denote the amount of a resource (e.g. the amount
of a raw material), and y = ku. It means that if the value u will be the
same in different cycles then in each cycle we obtain the same amount of
the product y = ku. If the parameter k varies in successive cycles and u,,
Yus K, denote the values in the »n-th cycle then y,, = k,u,,, which means that
the amount of the product y,, is uniquely determined by the amount of the
raw material u, and the value of the coefficient k,, or — when the se-
quence k, is determined in advance — by the index of a cycle. The coeffi-

cient k, may be treated as a second input, i.e. a disturbance z,,. In the case
when the disturbances occur in the description of the plant, we can say that
the plant with the fixed input (u, z) and the output y is deterministic if the
values (u, z) uniquely determine the value y, i.e. the plant is described by a
function y = @(u, z). Such plants have been considered in Sects. 3.1 and
4.1. As it has been shown above, a non-deterministic plant with the input
u and the output y may be proved to be a deterministic one if other inputs
which also have an influence on y are taken into account. In practice to in-
troduce or even to call them may be impossible. Consequently, for the
fixed u only a set of possible outputs may be given. In the example con-
sidered, the amount of the product may depend not only on the amount of
the raw material but also on many other variables and for the fixed u, only
the set of possible values of y may be given, e.g. in the form of the inequal-
ity cju <y < cou with the given values ¢, which means that ¢; <k <c¢j. In
different production cycles one may obtain different values y, for the

same value u,,. Hence, the different pairs (u, y,,) are possible in our plant.
A set of examples of such points is illustrated in Fig. 6.1 where the shaded
domain is a set of all possible points. Of course, the figure concerns a gen-
eral plant of this kind, in which negative values u and y are possible, i.e.
the plant described by the inequalities

culy<cou
for u>0 and
cuUy<cu
for u <0, under the assumption that ¢;, ¢, > 0.

Ad 2. The plant is deterministic but the function y = @(u) is unknown
or is not completely known. If in the known form of the function @
some parameters are unknown, we speak about parametric uncertainty.
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y y=cou

y=cqu

Fig. 6.1. Illustration of the relationship between u and y in the example under
consideration

Using terms known, unknown, uncertain etc. we must determine a subject
they are concerned with (who knows or does not know?, who is not certain
or rather not sure?). It is convenient to distinguish in our considerations
three subjects: an expert as a source of the knowledge, a designer and an
executor of the decision algorithm (controlling device, controlling com-
puter). The uncertainty caused by an incomplete knowledge of the plant
concerns the expert who formulates the knowledge, and consequently is
transferred to the designer which uses this knowledge to design a decision
algorithm.

Both reasons of the uncertainty (points 1. and 2. listed at the beginning
of this section) concern the designer: the designer’s uncertainty may be
caused by the non-deterministic behaviour of the plant (an objective uncer-
tainty as a consequence of the non-deterministic plant) or by an incomplete
information on the plant given by an expert (a subjective uncertainty or the
expert’s uncertainty). In the first case, the sets of possible values y which
may occur in the plant for the fixed u are exactly defined by the expert. In

the example considered above it means that the values c¢; and ¢, are
known.

In the case of the second kind of uncertainty y = ku. The expert, not
knowing exactly the value k, may give its estimation in the form of the

inequality c; < k < ¢y. Formally, the designer’s uncertainty is the same as
in the first case, i.e. the designer knows the set of possible values y:

ciu £y < cou for u>0. However, the interpretation is now different: pos-
sible points (u,, y,) lie on the line y = ku located between the lines y =

ciuand y=cyu in Fig. 6.1.
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Both kinds of uncertainty may occur together. It means that for the fixed
u, different values y may occur in the plant and the expert does not know

exactly the sets of possible values y, e.g. does not know the values c¢; and

¢, introduced in our example when the first kind of uncertainty was con-
sidered. In both cases of uncertainty described above we shall shortly
speak about an uncertain plant, remembering that in fact, an uncertainty is
not necessary to be a feature of a plant but it may be an expert’s uncer-
tainty. In a similar sense we speak generally about an uncertain algorithm
(uncertain decision maker, uncertain controller) and an uncertain system.
These names are used for different formal descriptions of an uncertainty,
not only for the relational description considered in this chapter.
Let us denote by

D(ucY

the set of all possible values y for the fixed u €U. In the example consid-
ered above

Dyu)={y: ciusy<cou}
independently from the different interpretations of this set. The formula-
tion of the sets Dy(u) for all values u which may occur in the plant means
the determination of the set of all possible pairs (u, y) which may appear.
This is a subset of Cartesian product UxY, i.e. the set of all pairs (u, y)
such that ueU and yeY. Such a subset is called a relation

upyé R(u, y) c UxY. (6.1)

In a special case for the deterministic plant, this is the function y = &(u),
ie.

R(u, y) = {(u,y) eUxY: (ueD,) Ay = Du)}

where D, denotes the set in which the function is defined (in particular

D,, = U). For simplicity, the plant described by the relation (6.1) we shall
call a relational plant, remembering that in fact the relational description
does not have to be a feature of the plant but is a form of the uncertainty
description. In the further considerations we shall assume that the relation
describing the plant is not reduced to a function, i.e. the plant is uncertain.
Usually, the relation (6.1) is defined by a property ¢(u, y) concerning u
and y, which for fixed values of the variables # and y is a proposition in
two-valued logic. Such a property is called a predicate. The relation R de-
notes a set of all pairs (, y) for which this property is satisfied, i.e.
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R(u,y) = {(u, y) UXY: wW[gu, »)] =1} 2 {(u, y) eUxY: o, )}

where w[@(u, y)] €{0,1} is a logical value (0 or 1 means that a sentence is
false or true, respectively). Usually the property ¢(u, y) is directly called a
relation and instead saying that (u, y) belongs to the relation R, we say that
it satisfies this relation. In our example @(u, y) = “cqu <y < cou”. The rela-
tion R(u, y) has often a form of a set of equalities and (or) inequalities
concerning the vectors u and y. Below, four examples of the description
of a relational plant are given:

1. p =2, =3 (two inputs, three outputs)

D 124 D 1 5,0 1 B =,
30D @ 4y (D@ 4 By
2.p=2,1=2
uD+ (D)=,
uD + 5@y M <o)

U@+ @ >,

@) + @) =4,

@V + @) < 4.

It is easy to show that none of the above relations is a function.
If the disturbances z €Z act on the plant then they appear in the descrip-
tion of the plant by a relation

R(u,y,z)cUxYxZ (6.2)

or the relation R(u, y; z)  Ux Y for the fixed z. In many cases an expert
presents the knowledge on the plant in the form of a set of relations

Ru,w,y,2), i=1,2,..,k (6.3)

where we W denotes the vector of additional auxiliary variables appearing
in the knowledge description. The set (6.3) may be reduced to one relation
by eliminating the variable w:



122 6 Application of Relational Description of Uncertainty

k
R(u,y,z)={(u, y,z)eUxY: \/ [(u,w,y, 2)e ﬂR,-(u,w,y,z)]}. (6.4)

weW i=1

It is then the set of all triplets (u, y, z) for which there exists w such that
(u, w, y, z) satisfies all relations R;. The formal description of the knowl-
edge of the plant differing from a traditional model (for the static plant it is
a functional model y = @(u)) is sometimes called a knowledge representa-
tion of the plant. More generally, we speak about the knowledge represen-
tation as a description of the knowledge given by an expert and concerning
a determined part of a reality, a domain, a system, a way of acting etc. In
the computer implementation, the knowledge representation is called a
knowledge base which may be treated as a generalization of a traditional
data base. The term knowledge representation is defined and understood in
different ways (not always precisely). That is why, independently of the
names used, it is so important to formalize precisely terms occurring in
concrete considerations and to formalize concrete problems based on these
terms. In the case considered in this chapter the knowledge representation
is the relation (6.1) or (6.2), and more generally — the set of relations
(6.3). This is a relational knowledge representation of the static plant under
consideration [24, 52]. In the next sections analysis and decision making
problems based on the relational knowledge representation will be de-
scribed.

6.2 Analysis Problem

Before the description of a decision problem which is a basic problem for a
designer, it is useful to present an analysis problem. For the plant de-
scribed by the model in a form of a function y = cDgu), the analysis prob-
lem consists in determination of the value y =y for the given value
u=u". In the case of the relational knowledge representation, when the re-
lation is not reduced to the function, only a set of possible values y may be
found. The information concerning u may also be imprecise and consist in
giving a set D,cU such that ueD,,. Consequently, the formulation of the
analysis problem for the plant without disturbances, adequate to the con-
sidered model of uncertainty, is the following:

Analysis problem: For the given relation R(u, y) and the set D,cU one

should determine the smallest set D, Y for which the implication
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ueD, —yeD,

is satisfied.

The term “the smallest set” means that we are interested in the informa-
tion concerning y as precise as possible. In other words, the set D), should
be such that if y does not belong to this set then in the set D,, there is no

u such that (u, y) €R(u, y). The analysis problem for the single-input and
single-output plant is illustrated in Fig. 6.2 where the shaded domain de-

notes R(u, y) and the interval D, denotes the problem solution for the
given interval D,,.

y

|
|

Fig. 6.2. Illustration of analysis problem

P —
u
DU

The general form of the analysis problem solution is the following:

Dy={yeY: v [, v) R, Y]} (6.5)

ueD,

This is then the set of all values y for which in the set D,, there exists u
such that (u, y) belongs to R. In particular, for the known value u, i.e. for
D,, = {u} (a singleton)

Dy(u)={y eY: (u,y)eR(u,y)} (6.6)

where D, (u) denotes the solution of the problem for the given value u.
Finding the solution for a concrete form of the relation R(u, y) may be
very difficult and may require special computational methods adequate for
given forms of the knowledge representations. For example, the methods
of solving the set of equalities and inequalities if the relation R(u, y) de-
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scribing the plant is defined by such a set. We shall return to this problem
in Chap. 12 in which a universal analysis algorithm for the case where the
relations (6.3) are presented in a form of logical operations will be de-
scribed. It is worth noting that the analysis problem under consideration is
a generalization of the problem presented at the beginning of this section
for a functional plant described by a function y = @(u). The properties
ueD, and y eD, may be called input and output properties, respectively.
In the analysis problem for the functional plant these properties have the
form u=u" and y= y*. In general, the analysis problem consists then in
the determination of the output property (exactly speaking, the strongest
output property with the smallest set D,) for the given input property.

If there are external disturbances z acting on the plant, and as a result of
an observation it is known that z €D, then the analysis problem is formu-
lated as follows:

For the given relation R(u, y, z) and the given sets D, and D, one

should determine the smallest set D), for which the implication
(ueD,) A (zeD;) > yeD,
or
(u,z)eD,xD,—>yeD,

is satisfied.
According to the formula (6.5) we obtain

Dy:{eriv v [(u, y, 2) €R(u, y, 2)]}. (6.7)

ueD, zeD,

Hence, D, is a set of all values y for which in the set D, there exists

such u and in the set D, there exists such z that (u, y, z) belongs to R.
For the fixed value z

Dy(z)={yeY: v [(, y, 2)€R(u, y, 2)]}. (6.8)

ueD,

Example 6.1. Consider the plant with two inputs #D and 4@ described
by the inequality

clu(l) + dlu(z) <y< czu(l) + dzu(z) (6.9)
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and the set D,, determined by the inequalities
a'V + bu? < g, (6.10)

uDz W@z . (6.11)

min °’

For example, y may denote the amount of a product obtained in a certain
production process, and u and 4 — the amounts of two kinds of raw
materials, the inequality (6.10) — the constraints concerning the cost of the
both raw materials, and the inequalities (6.11) — additional constraints
caused by technical conditions of the process. The parameters cy, ¢y, dj,

o @2

dz’ a, b, a, Umin > Ymin

have the given positive values and ¢ < ¢y, di<d>.
One should determine the set of all possible values y under the assumption
that the values #" and #® satisfy the inequalities (6.10) and (6.11).

It is easy to note that

Cul) +du® <y<y (6.12)

min

where

Ymax = max (¢ u(l) +dy U(Z))
u(l),u(z)

with the constraints (6.10) and (6.11). The determination of y,, is a sim-
ple problem of so called l/inear programming which is easy to solve with
the help of a graphical illustration. In Fig. 6.3, the shaded domain denotes
the set D, and P denotes a straight line with the equation czu(l) + dzu(z)

=y for the fixed value y. Then the point (u(l), u(z)) maximizing czu(l) +

dzu(z) lies in one of the vertexes Wy, W5, depending on the inclination of
the line P:

1.If

o _a

dy b
then the point maximizing czu(l) + dzu(z) lies in the vertex Wy, i.e.

1
FORN() 0 @ aug),
min ’ b ?



126 6 Application of Relational Description of Uncertainty

1 d 1
Vinax = Catlgly + = (= aug)) (6.13)

42

o
b W1/®

ur('r? i)n \

1
U

oM

RS

Fig. 6.3. Illustration of example

2.1f

(&) a

dy b
then the point maximizing czu(l) + dzu(z) lies in the vertex W, i.e.

_pu®
43 =, 4D = a—ou

min °

min
b

2 2
Vmax = 2 (a— bu2 )+ dyu'®) (6.14)
3. 1f
C_z_ a
dy b

then for any point (u(l), u(z)) lying in the line P between W) and W,, the

variable y takes the maximum value determined by the formula (6.13) or
(6.14) (the results obtained from these formulas are identical). For exam-

ple, for numerical data ¢y =1,¢c,=2,d1=2,dy=4,a=1,b=4, a=3,
1 _

Ui =1, ul(ﬁl)n =(0.5 we obtain
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o 1

dy 2

2

Substituting the data into the formula (6.14) gives yn.x = 4 and
YVmin = €] ugl)n +d, ur(li)n = 2, according to the formula (6.12). The set D,

is then determined by the inequality 2 <y <4. O

6.3 Decision Making Problem

It is an inverse problem to the analysis problem formulated in Sect. 6.2,
and for the plant described by the function y = @(u), it consists in deter-
mining such a decision u= u" that the respective output y = @(u*) is
equal to the given required value y*. This problem for the functional plant
has been considered in Sect. 3.1. In the relational plant it is not possible to
satisfy the requirement y = y* but it has a sense to formulate the require-
ment in the form yeD, for the fixed set D), and to find a decision u for
which this requirement is satisfied. Solving the problem consists in deter-
mining the set D,, of all possible (or acceptable) decisions, i.e. in deter-
mining all values u for which the property yeD, will be fulfilled.

Decision making (control) problem: For the given relation R(u, y) and
the set D,cY determining a user’s requirement one should find the larg-
est set D, c U such that the implication

ueD, —>yebD, (6.15)

is satisfied.
The general form of the problem solution is as follows:

D,={uelU: D(u)cD,} (6.16)

where D, () is defined by the formula (6.6). Then, D, is the set of all
such values u for which the set of possible values y belongs to the given
set D). A remark on difficulties connected with the determination of a fi-
nal solution for concrete forms of R(u,y) and D,, and on a universal al-

gorithm in the case of logical operations is now analogous to that for the
analysis problem in Sect. 6.2. Similarly as in Sect. 6.2 it is worth noting
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that the decision problem for the relational plant may be considered as a
generalization of the respective problem for the functional plant where the

input property ueD, and the output property yeD, are reduced to the
forms u=u" and y= y respectively.

The solution of the decision problem under consideration may not exist,
i.e. D, may be an empty set. Such a case is illustrated in Fig. 6.4: For the
given interval D,, the interval D,, for which the implication (6.15) could
be satisfied does not exist. It means that the requirement is too strong, i.e.
that the interval D) is too small. The requirement may be satisfied for the
greater interval D), (see Fig. 6.2). If D, = (empty set), we can say that
the plant R(u, y) is non-controllable for the requirement y €D, For exam-
ple, let D), =[y1, ;] in the example illustrated by Fig. 6.1, i.e. the property
y1 £y < yy is required by a user. It is easy to note that the solution for
1 >0 is as follows:

D[22 ]
1
and the controllability condition has the form

Nl
15 I )

If external disturbances z act on the plant and as a result of measurement it
is known that zeD, then the decision problem is formulated as follows:

For the given relation R(u, y, z) and the given sets D, and D, one
should find the largest set D,, for which the implication

(ueDy) A (zeD,) > yeD,

is satisfied.
The general form of the decision problem solution is now the following:

D,={uel: A [Dy(u, z) = D]} (6.17)

zeD,

where

Dy(u,z)={yeY: (u,y,2)eR(u,y,z)}. (6.18)
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u

Fig. 6.4. Illustration of the case when solution does not exist

It is then the set of all decisions u such that for every z belonging to D,
the set of all possible values y belongs to the given set D). One may say

that the solution D, is robust with respect to z, which means that it is not
sensitive to z, i.e. it gives a satisfying solution y for every value of the dis-
turbance z from the fixed D,. For the fixed z, the set of possible decisions

is defined by the formula (6.16) in which D, (u) should be determined ac-
cording to the formula (6.6) for the given relation R(u, y, z), i.e. the rela-
tion R(u, y; z)cUxY with the parameter z. Consequently

D,(z)={ueU: Dyu,z) c Dy} & R(z,u) (6.19)

where D\ (u, z) is defined by the formula (6.18). The formula (6.19) de-

fines a relation between z and u which has been denoted by R (z,u). This

relation may be considered as a description of a relational decision (con-
trol) algorithm in the open-loop system (Fig. 6.5) or the relational repre-
sentation of a knowledge on the control (i.e. the knowledge representation
of the controller in the open-loop system). For the functional plant the sys-
tem in Fig. 6.5 is reduced to the system presented in Fig. 3.1. It is interest-
ing and important to note that for an uncertain plant one obtains an uncer-
tain control algorithm determined by using a knowledge representation of
the plant. In the case of the relational description of uncertainty considered
in this chapter, it is the relational plant and the corresponding relational
control algorithm.
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R(z,u) Ruyz) (——

Fig. 6.5. Open-loop control system with relational plant and relational control al-
gorithm

Example 6.2. Consider the plant with two scalar inputs u, z and the single
output y, described by the inequality

cu+tz<y<2cu+z, c>0. (6.20)

Determine the set D, for the given sets D, = [z}, zp] and D), = [yy,,]. In
other words, we want to obtain the set of all control decisions satisfying
the requirement y; <y <y, for every z from the interval [zy, zp]. The set
(6.18) is now defined directly by the inequality (6.20). According to (6.17)
the set D, is then defined by the inequality

N-a o, 277
c 2¢

The solution exists if 2( y; —z1) < (¥ — zy). For the given value z the set

D, (z) is determined by the inequality
N-z o ,<¥27%
c 2c

Itis R (z,u) or the relational control algorithm in the open-loop system. [

6.4 Dynamical Relational Plant

The considerations are analogous to those for the static plant but respective
notations and calculations may now be much more complicated [22, 29,
52]. That is why the considerations in this section are limited to the sim-
plest form of the relational knowledge representation and the simplest ver-
sion of analysis and decision problems formulated for a discrete plant de-
scribed with the help of a state vector. The deterministic dynamical plant is
described by the equations
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(6.21)

Xn+l1 =f(xn7un), }
Yn :U(xn)

where x,e€X is the state vector, u, U is the control vector and y, €Y is
the output vector. As in the case of the static plant, in the description of the
relational dynamical plant the functions fand 7 are replaced by the rela-
tions

Ri(u,,x,,x cUxXxX,
I(n n n+1) } (6.22)

Ry(x,,y,) c X xY.

The relations Ry and Ry form the relational knowledge representation of
the dynamical plant. The relation Ry describes a relationship between the
state vectors x,, x,+ and the input u,, the relation Ry describes a rela-

tionship between the state vector x, and the output y,. The description
(6.21) as well as (6.22) concerns the stationary plant (the plant with con-
stant parameters). For the non-stationary plant the functions fand 7 in
the functional case and the relations Ry and Ryj in the relational case de-
pend on n. As in the static case, a typical form of the relations is presented
by a set of equalities and (or) inequalities concerning the components of
the respective vectors. The relations (6.22) have often the form

fl(un’xn)gxn-rl SfZ(xnﬁun)a }

m(xp) <y, <mp(xy), (6.23)

following from the uncertain information on the plant (6.21). The differen-
tial inequalities (6.23) denote the set of inequalities for the respective
components of the vectors.

Let D,y,, Dy, and Dy, denote sets of the vectors u,, x,, yj,, respec-
tively, i.e.

uy,eD,, c U, xy,€Dy, X, In€Dy, Y.
Analysis problem: For the given relations (6.22), the set D, and the se-

quence of sets D,,, (n=0, 1, ...) one should determine the sequence of the
smallest sets D), Y (n=1,2,...) for which the implication

(ug €Dyp) A (uy €Dy) A oo A (g EDu,nfl) —>Vn eDyn

is satisfied.
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This is a generalization for a relational case of the analysis problem for
the plant (6.21) consisting in the determination of the sequence y,, for the
given sequence u,,, the known functions fand 7, and the initial condition
xg. For the fixed #, the plant under consideration may be treated as a cas-

cade connection of two static relational plants (Fig. 6.6). The analysis
problem for the dynamical plant is then reduced to the analysis problem

for the relational plants Rj and Ry, i.e. to the problem described in
Sect. 6.2 for the static plant. As a result, according to the formula (6.5) ap-
plied successively to Ry and Ry, we obtain the following recursive pro-
cedure for n=1, 2, ....

u X+ Yo+
Ri(Up X Xp11) Ri(Xp415 Ynar) >

I,

Fig. 6.6. Relational dynamical plant

1. For the given D,,, and D,, determined in the former step, we deter-

mine Dx,n+1 uSing RI(“m Xno xn+1):

Dx,n+1 ={x,+1€X: \/ v (@5 X 1) €RY 2ty X0 X111 (6.24)

up€Dyy xp€Dyy

2. For the obtained Dy 11 we determine D), .41 using Ry(X,+1, Vy+1):

Dy,n+1 ={pr1€l: \/ [(Xp+15 Vnr1) € Ru(Xpets Yo D1} (6.25)

Xn+1 eDx,n+l

For n=0 in the formula (6.24) we use the given set D,,.

In the case of the plant with disturbances, the analysis problem and the

solving procedure are analogous, similar to (6.7) and (6.8) in the case of
the static plant.
Decision making (control) problem: For the given relations (6.22), the
set Dyo and the sequence of sets Dy, (n=1,2, ..., N) defining a user’s
requirement concerning yi, y, -.., ¥y one should determine the sequence
of sets D,,, (n=0,1, ..., N—1) for which the implication
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(g €Dyyp) A (uy €Dy1) A .o A (un—1 €D, N-1)
= (1€Dy) A(y2€D) A .. A(YNED)N)

is satisfied.

This is one of possible formulations of a control problem for the rela-
tional dynamical plant. If the requirement concerned the state x;, i.e. had
a form xyeD,y for the given set D, then the problem under considera-
tion would be a generalization of the problem described in Chap. 3 and
consisting in the determination of the control u, uq , ..., #y_; removing
the plant from the state x( to the given state x, in a finite time. To deter-
mine the sequence D,,, we may apply a decomposition consisting in the
determination of D,,, step by step starting from the end, in a similar way
as in the dynamic programming procedure presented in Chap. 4. Let us

note that in the formulation of the control problem we do not use the words
“the sequence of largest sets”. Now the set of all possible controls denotes
the set of all sequences u, uy , ..., upn_; for which the requirements are sat-
isfied. If we decide not to determine all such sequences then we may ob-
tain the solution of the control problem by applying the following recur-
sive procedure starting from #» = 0:

1. For the given D,, 11, using Ryj we determine the largest set Dy .1 for
which the implication

Xn+1 EDx,n+1 — Y+l EDy,nH

is satisfied. It is a decision problem for the plant Ry. Using (6.16) we ob-
tain

Dypr1= {Xp+1 EX Dy,n+1(xn+1) cD ,n+1} (6.26)
where
Dy, i1 (Xp+1) = {1 €Y (X1, Yne1) € R Xp1s Y1) -
2. For Dy, just determined and D,, found in the former step, using R;
we determine the largest set D,,, for which the implication
(uy €Dyp) A (X €Dyyy) = Xy €Dy i

is satisfied.
According to (6.17) we have
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Dy, = {u, €U: /\ [Dx,n-ﬁ-l(una Xp) © Dx,n+1]} (6.27)

X, €Dy,
where

Dx,rH-l(“m Xp) = Axpt1€X: (U, Xy, Xp41) € RY(Uyy Xy Xpp1) -

Example 6.3. Consider a simple case of the first order plant described by
the inequalities

ay X, + by uy <xpiy Sayx, + byuy,

C1 X1 S Vpt1 S € Xyt

Assume that xy; <xg < x02, by, by, c1, ¢y > 0. The requirement concern-
ing y, is as follows:

A (YD <y, <y (6.28)

n>1
which means that for every # the plant output is required to belong to the
constant interval | y(l), y(z)]. For the given x¢1, x¢2, y(l), y(z) and the coef-

ficients ay, ay, by, by, ¢y, cp, one should find the respective sequence of
the sets of possible control decisions. For »n = 0, according to the formula
(6.26) the set D, is defined by the inequalities

@)

Crx <y, c1 X Zy(l).
Then
o @
D)Cl = [ Y 5y—] .
‘ )

According to (6.27) for u( one obtains the following inequalities:

y(2)
apxpy +byug < ,

)
y® .

|

A

v

ayxo1 +byug
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Hence,

1 2
»I _ a1x y@ _ DX |

Dyo= ,
w0 bic by by by

For n>1 the set Dy ,+; = Dy and according to (6.27) the set D, is de-
fined by the inequalities
() ()
+byu, < 2—,
€2 €2

ap

M M
+ bl un > 4 .
9 9

a

After some transformations one obtains

(2P a-a) yP-ay)
by T b

Dun

Consequently, if

M (2
Yy a41X0] <uy < Yo @Xp

biey b byey by
and for every n >0

M ) _
ya al)SunS y(-ap)

bicy bycy

then the requirement (6.28) will be satisfied. The conditions for the exis-
tence of the solution are the following:

y(l) _91%01 < y(2) _ a2Xx02 (6 29)
bicy by bycy by '
1) (2)
Yy <X (6.30)
S| )
YWi-a) _ yP-ay) (631)

by - bycy
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If y(l) >0 and a, < 1 then the conditions (6.30) and (6.31) are reduced to
the inequality

e

y(l)

>max (a, )

where max denotes a greater number in the pair (¢, £),

_ by 1-a p-

blcl 1 —aj ’ (4]

Hence, the sets D,,, are not empty if the requirement concerning y,, is not
too strong, i.e. the ratio of y(l) to y(z) is sufficiently great. It should be

noted that the inequalities (6.29), (6.30) and (6.31) present the conditions
for the existence of the solution obtained by applying the method presented

above. The obtained solution may not contain all the sequences u, for
which the requirement is fulfilled. Then, if the conditions (6.29), (6.30)
and (6.31) are not satisfied, a sequence satisfying the requirement (6.28)

may exist. O

6.5 Determinization

Replacing an uncertain description by its deterministic representation will
be called a determinization. In our case it means replacing the relational
description by the deterministic description in the form of a function. The
determinization may concern the plant and the control algorithm as well. A
frequently used way of the determinization consists in using a mean value
of the output of an uncertain system and formulating a dependence of this
value upon the input. After finding the set of possible control decisions
(6.17) one must choose from this set and put at the input of the plant a
concrete decision. It may be a mean value defined as follows:

judu
D

T]du '
D

u =
u

Then in the computer control system (Fig. 6.7) we may distinguish a block
denoting the generation of the set D, based on the knowledge representa-



6.5 Determinization 137

tion of the plant R(u, y, z) and the result of the disturbance observation in
the form of the set D,, and a block denoting the determinization, determin-

ing one concrete decision u. For the fixed z one may apply the determini-
zation of the relational control algorithm, i.e. the mean value for the set

D,(z), defined by the formula (6.19)

Iudu
~ D, (z) A T
u(z)= —* = ¥(2). (6.32)
Idu
Dy (2)
Observation z
D,
) D, u y
Generation of .
- Determinization Rant —
decision set
Know ledge requirement
representation <
R(u, y, 2) Dy

Fig. 6.7. Structure of knowledge-based control system in the
case under consideration

In such a way, the deterministic control algorithm 517(2) is obtained. In
the case with the given required value y*, the determinization of the rela-

tional plant or the determinization of the relational control algorithm may
be applied. Let us present successively these two concepts. In the first case
we determine

—— = Au,z) (6.33)
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where the set D)(u, z) is defined by the formula (6.18). The relational
plant is then replaced by the deterministic plant described by the function
@ , for which it is possible to formulate the* decision problem so as in
Sect. 3.1, i.e. to find wu for which y=y . Then from the equation
Nu,z) = y* the deterministic control algorithm u = ¥(z) is obtained under
the assumption that for the given =z this equation has a unique solution
with respect to u.

In the second case we consider the relation R(u, y*, z), i.e. the set of all
pairs (u, z) at the input of the plant for which y = y* may occur at the out-
put, or the set of all possible inputs (u, z) when y= y*. Let us introduce
the notation

R,y 2) & Rz, u). (6.34)

It is in this case a description of the knowledge on the control or a rela-
tional control algorithm determined for the given knowledge representa-

tion of the plant and the given value y*. Of course, R (u, z) differs from
the relation R(z,u) introduced in the formula (6.19). The determinization

of the relational algorithm R, leads to the deterministic algorithm

_[ udu

ug(z)= % L 9,2 (6.35)

where
D,(2)={uelU: (u,z) € Rfz, u)}.

Thus, for the relational plant one can determine two deterministic algo-
rithms in a closed-loop system: the algorithm #(z) obtained as a result of
the determinization of the plant (Fig. 6.8) and the algorithm %z) ob-
tained as a result of the determinization of the relational control algorithm
determined by using the relational knowledge representation of the plant
(Fig. 6.9). In the first case the determinization (i.e. the liquidation of the
uncertainty) occurs just at the level of the plant, and in the second case the
uncertainty in the plant is transferred to the control algorithm. The similar
two concepts will be considered for other descriptions of uncertainty in the
next chapters. The comparison of these two frequently used ideas is so im-
portant that it is useful to present it in the form of a theorem.
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¥ (z) Pant |—

Know ledge of the plant

Determinization ——]
R(u, y, z)

Fig. 6.8. Decision making via determinization of knowledge of the plant

¥ 4(2) Plant —=

Determinization

Know ledge of the control Know ledge of the plant
Ry(z,u) R, y, )

*

y

Fig. 6.9. Decision making via determinization of knowledge of the control

Theorem 6.1. In general ¥(z) # ¥(z). O
The theorem may be proved by an example showing that in a particular
case Hz)# ¥[z) (see Example 6.4). The theorem means that the control

decisions determined in the both cases for the same z may be different. In
practice, they usually are different except special cases. In other words, for

u(z) the mean value of y in general differs from the required value y*.

Relatively simple problems and ways of decision making considered in
this chapter for uncertain plants with a relational description illustrate two
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general concepts concerning the determinization and two respective ways

of decision making under uncertainty:

1. Two concepts of the determinization:

a. Determinization of the knowledge of the plant.

b. Determinization of the knowledge of the decision making, based on the
knowledge of the plant, i.e. obtained by using the knowledge of the
plant.

2. Two ways of obtaining the knowledge of the decision making:

a. The knowledge of the decision making is determined by using the
knowledge of the plant given by an expert (a descriptive approach).

b. The knowledge of the decision making is given directly by an expert (a
prescriptive approach).

The knowledge representation concerning a fixed determined part of a re-
ality (which we called a plant) is a description of this existing reality, so it
has a descriptive (or declarative) character and presents a knowledge about
WHAT THE PLANT IS. The knowledge representation concerning the
decision making (or a decision maker) is a kind of a prescription or in-
struction, so it has a prescriptive (or imperative) character and presents a
knowledge about HOW TO ACT. In the case of the control, the prescrip-
tive approach means that the expert’s experience and knowledge concern-
ing the plant is not formulated directly in the form of a description of the
plant but indirectly in the form of a prescription describing how to control
this plant. Such an approach is widely used in so called fuzzy controllers
mentioned in Sect. 5.5 and presented more precisely in Chap. 9. It is im-
portant to have in mind that the effect of the control with the algorithm ob-
tained by using the knowledge of the control given directly by an expert
depends on the plant and can be estimated by a performance index for the
given description of the plant, as it was shown in Chap. 5 for the given
form of the control algorithm. In general, this effect is worse than the ef-
fect of the control according to the algorithm obtained by using the known
description of the plant. In the problem under consideration, the effects of
the both approaches will be the same if the knowledge representation given

by an expert is identical with R(z,u) in the formula (6.19) in the case con-

sidered in Sect. 6.3 or with Rz, #) in the case considered in this section.

Finally, let us summarize the decision making problems and their solu-
tions for the plant R(u, y, z) with the fixed z:

1. For the requirement y €D, we obtain the relational control algorithm
D,(z) or R (z,u) in the formula (6.19). As a result of the determinization

of the relational algorithm according to (6.32) we have the deterministic



6.5 Determinization 141

control algorithm u = 1z (2).

2. For the requirement formulated with the help of the given desirable
*

value y we obtain:

a. the deterministic control algorithm u = ¥(z) as a result of the deter-
minization of the plant according to (6.33)

b. the deterministic control algorithm u;= ¥[z) as a result of the deter-
minization of the relational control algorithm according to (6.35).

Example 6.4. As a result of the determinization of the plant presented in
Example 6.2, according to (6.33) we obtain

y = %cu+z= Nu, z).

Consequently, for the given value y* from the equation M (u, z) = y* we
obtain the control algorithm

*
u=¥z)= —2(y —2) .
3c
Substituting )fk into (6.20) yields the representation of the knowledge of
the decision making Rz, #) in the form of the inequality

* *
-z -z
Y SuSy
2c c

and after the determinization

*

ug= YAz) = % % ¥2). O



7 Application of Probabilistic Descriptions of
Uncertainty

In this chapter we shall assume that unknown parameters are values of
random variables, which means that they have been randomly chosen from
some sets. As a result, the control will satisfy requirements formulated
with the help of mean values, i.e. the determined requirements will be ful-
filled in the average. The plant with a probabilistic description of uncer-
tainty will be called shortly a probabilistic plant like a relational plant with
the relational description of uncertainty considered in the previous chapter.
In Sects. 7.1 and 7.2 analysis and decision problems which are called here
basic problems will be presented. Section 7.3 is devoted to the control
based on current information on the unknown parameters, being obtained
during the control process in an open-loop system, and Sect. 7.4 concerns
the case without the knowledge of probability distributions. Sections 7.5—
7.8 are concerned with a dynamical plant. In Sect. 7.5 the basic problem
for the discrete dynamical plant will be presented, and in Sects.7.6—7.8
special problems for the linear control systems very important from a prac-
tical point of view will be described. In Sect. 7.9 we shall consider a plant
with a second order uncertainty, i.e. a relational plant with random pa-
rameters.

7.1 Basic Problems for Static Plant and Parametric
Uncertainty

Let us consider the static plant
y=@(u,c) (7.1)

where ue U is the input vector, y €Y is the output vector and ceC is the
vector of unknown parameters. It is then the case of a functional plant with
a parametric uncertainty. An expert can give only the set D.c C of possi-

ble values of the unknown vector parameters c, or can give also some pref-
erences and additional evaluations for the particular values in this set. We
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shall now assume that these evaluations are presented in the form of a
probability distribution and that this distribution is known. For example,

let D.= {cj, ¢p, c3} and for each value the probability of its appearing in
the plant is given:

pi=P(c=c¢), i=1,2,3.

Such information means that the unknown parameter ¢ has been randomly
chosen (drawn) from the set of the values of ¢, this set contains m ele-

ments, m; of them having the value ¢;, and then p; =—X. For example, if
m

the set contains 500 elements with the value c¢;, 200 elements with the

value ¢, and 300 elements with the value c; then
p1=Plc=c))=05, py=Plc=cy)=02, p3=Plc=c3)=03.

These elements may be e.g. resistors with the resistance ¢ of a certain pro-
duction series for which the values p;, p,, p3 are obtained as results of
statistical investigations. We assume that the element with an unknown re-
sistance built in the plant has been chosen randomly from this series. Let
us note that the probabilities p; given by an expert are not a subjective
characteristic of his uncertainty but are an objective characteristic of the
set from which the value ¢ has been randomly chosen, known by the ex-

pert.
Formally, the assumption about the random choosing of ¢ from a deter-

mined set means the assumption that c is a value of a random variable c ,

i.e. that there exists a probability distribution. In further considerations we
shall assume that this is a continuous random variable for which there ex-
ists a probability density

dF,(c)
Cde

where F(c) = P(c < c) is adistribution function. For the given probability
density f.(c)

fc(c) =

P(ceD,)= [f.(c)de
D

c

where D, < C is a subset of the vector space C and

E(c)= [c fo(c)de (7.2)
C
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where E( ¢ ) denotes an expected value of the variable ¢ . More generally,

E[@(0)]= [@(c)f.(c)de .
¢ C

The density f.(c) characterizes a set (a population) from which the values ¢

are randomly chosen. If ¢y, ¢y, ..., ¢, denotes a sequence of the results of
independent samplings (or so called simple random sample) then for
n — o the arithmetic mean of these values converges in a probabilistic
sense to the expected value E(c). For the sequence of random variables

¢,, the probabilistic convergence can be understood in different ways. The
definitions for one-dimensional case (C =R 1) are the following:
1. The sequence ¢, is convergent to a number a stochastically (or in

probability) if, for any £ >0

lim P(lc, —a|>¢£)=0.
n—o0
2. The sequence ¢, converges to a in the r-th mean, if
lim E(|£n—a|r):0.
n—

We can also consider a convergence with probability one, which means
that the probability of the convergence to a is equal to 1, or that the se-
quence is almost always convergent to a.

In order to formulate the decision problem for the plant (7.1), let us in-

troduce the performance index @(y, y ) described in Sect. 4.1.

Decision making (control) problem: For the given value y* , the func-
tions @ and @, and the probability density f.(c) one should find the deci-

sion # minimizing the performance index

0 =E[p(y.y) = [pl@,c),y 1 fo(c)dc 2D (u). (7.3)
S C

This is a probabilistic optimization problem or the probabilistic version of

the problem considered in Sect. 4.1. The knowledge of the probability dis-
tribution (the probability density in our case) means that we have the prob-

lem with a full probabilistic information. The procedure of determining u'
consists of two operations:
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1. Determination of the integral (7.3).
2. Minimization of the function @ (u) subject to possible constraints con-

cerning the decision u.

Except simple cases, the both operations require the application of re-
spective computational method to obtain an approximate value of the inte-
gral (7.3) with a particular numerical value u, and to find the successive

approximations of the value u' minimizing the function @ (u). The re-

spective computer program consists then of two cooperating subprograms.
In one step of the subprogram determining the successive approximations

u,, of the value u , the full subprogram of calculating the integral (7.3)

for u =u,, should be executed.

For the plant
Yn= @ (uy, zy, ) (7.4)
with the disturbance z, which can be measured, the value u,=¥(z,)
minimizing
0= [p[®(uy, 2, ).y 1/(c)de (7.5)
C

is determined in each interval of the control, and the program calculating

u, described above is the program for the computer controlling the plant
in an open-loop system. A simplified block scheme of the control algo-
rithm (or real-time control program), i.e. the algorithm finding the decision
u,, in the n-th interval is presented in Fig. 7.1

The determination of u, ,+| using u,,, is performed according to a
proper recursive procedure. The condition of the stop may be e.g.:

||unm - un,m+l|| fa

where « is a given number. As it was already said, in simple cases it is
possible to obtain an analytical solution. Let us consider a linear-quadratic
problem for the plant with p inputs and the single output

_ T
y=cu,
and quadratic performance index ¢ (y, y*) =(y- y*)2 . Then we have
0 =E(ctu—y") =u"EccMu—2y B u+()’

where the operations E concern the particular entries of the matrices. The

value u" can be determined from the equation
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grad 0 =2E(c ¢ u—2y"E(c)=0

u

where 0 denotes the vector with zero components.

Zn
Introduce zp, fromplant
Hant
| m=1
Introduce U, from
memory
Unm
Determine integral
(7.5) for up, Menory
Unm+1
Determine up, m +1
and introduce into
memory
No Yes Transfer decision Up

Upm™ Un for execution

Fig. 7.1. Block scheme of control algorithm in the case under consideration

Consequently,
u” =[E(cc D E@©)y (7.6)

where E(c gT) is the matrix of the second order moments of the compo-
nents of the vector ¢, i.e. a symmetric matrix containing in the principal
diagonal the second order moments E[(g(i))z], iel,p, and the mixed

moments E[g(i) g(j )], ieﬁ, je G as other entries of the matrix. As it
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is seen, in the case considered the knowledge of the probability density
f:(c) is not needed; it is sufficient to know only the moments occurring in
the formula (7.6). In particular, for one-dimensional plant y = cu

« YE@© ¥y
W ="""5""""2. 2
E(¢®) (c)" +o¢

(7.7)

where ¢ denotes the expected value and 0'3 is the variance of the variable
c.ie. o2 =E[(c-O)*.

For the probabilistic optimization problem not only the interpretation of
the probabilistic assumption explained above but also the proper
interpretation of the result u” s very important. Nothing can be said about

the quality of the decision u applied in one individual plant but for a
sufficiently large set of the plants (7.1) with different values ¢ chosen

randomly from the set of values mentioned above, the value u" is the best
in the average. It means that if in each plant from the considered set of the
plants the decision u' s applied then the arithmetic mean of the values ¢

for all the plants from this set will be the smallest. This statement is true
under two conditions: the random choosing of the value ¢ does not change

the distribution f.(c) and the number of the plants is sufficiently great as to

accept the arithmetic mean as an approximation of the expected value.
The probabilistic optimization problem is similar for the plant

Yn = Nuy, z,) in which the disturbance z, is not measured but one may
assume that for each » the vector z,€Z is the value of a random variable
z,, described by the probability distribution f(z). It means that the values
z,, are randomly chosen from the same population characterized by the
density f,(z). In other words, these are the randomly chosen values of the
variable z with the distribution f,(z). The disturbance z, may be also
denoted by ¢,, and called a time-varying parameter of the plant. So we can
say that randomly changing disturbances act on the plant or that this is the
plant with randomly changing parameter. The sequence z, or the function
which to the moments 7 assigns the respective random variables z, is

called a discrete stochastic process. That is why in the case under consid-
eration we often speak about the plant with a stochastic disturbance.
The decision making (control) problem consists now in the determina-
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tion of the decision # minimizing

0=E(p(y.y)]= [p[@.2).y 1 (2)dz . (7.8)
z z

From both the formal and computational point of view this is the problem
identical with the minimization of the performance index (7.3) for the
plant with the constant random parameter. However, the interpretation of

the result of the probabilistic optimization is now different: the value u' s
the optimal in the average with respect to time and not in the average

with respect to a set. It means that if in the plant the decision u" constant
in the successive moments is applied then the arithmetic mean of the val-
ues ¢ for a large number of the moments (i.e. in a sufficiently large time

interval) will be minimal. However, nothing can be said about the quality

of the decision " in one particular moment.
Finally, let us pay attention to two other possibilities of the decision
problem statement for the plant (7.1) or (7.4), i.e.

y=u,z,c): (7.9)

a) One should find u" such that E(y)= y*.
b) One should find

uy = argmaley(y*;u)
u

where f,(v;u) is the probability density of the variable y for the fixed
value u. -

In the version a), for the decision u' the expected value of the output is
equal to the required value y*, and in the version b) the decision uz
maximizes the value of the probability density for y= y*. If the distribu-
tion £,(y) is symmetric, the value y maximizing f),(y) is equal to E(y).
For the plant (7.9), by solving the equation

E(y;u.2) = [@(u,z,) f(c)de £ @ (u,2) = y" (7.10)
C

with respect to u, we obtain the control algorithm in an open-loop system
u= Hz). In the second problem formulation, the control algorithm can be
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obtained as a result of maximization of the probability density ]}(y*; u,z)
with respect to u:

up =argmax @y (u, z) 4 ¥, (2) (7.11)
u

where @p(u, z) = jg,(y*; u,z) and the density f) can be obtained by using

the known function @ and the density f.(c) and applying a known way
of the determination of the distribution of a random variable which is a
function of another random variable. The functions @ and @, are the re-
sults of two ways of the plant determinization, the functions ¥ and ¥, are

the decision algorithms found by using the knowledge representation of
the plant, i.e. are based on the knowledge of the plant

KP =<, f.> (7.12)

in the version a) and b), respectively. In this case the knowledge of the
plant (KP) contains the function @ and the probability distribution f,..
The solution of the equation

Du,zc)=y (7.13)
with respect to u yields the relationship
u= @z, c) (7.14)

which together with f. may be treated as a knowledge of the decision
making (KD)

KD =<®,,f.>. (7.15)

The relationship (7.14) together with the additional characteristic of the pa-
rameter ¢ in the form of f,. may be also called a probabilistic control al-
gorithm (or a probabilistic decision algorithm) in an open-loop system,
based on the knowledge of the plant. The determinization of this algorithm
leads to two different versions of the deterministic control algorithm, cor-
responding to the versions a) and b) or (7.10) and (7.11) in the case of the
plant determinization:

a) ug =E@W;2)= [@4(z,0) f.()de R ¥y (2), (7.16)
C



7.1 Basic Problems for Static Plant and Parametric Uncertainty 151

b) Upg =argmax £, (u:z) £ ¥y, (2) (7.17)

where f,(u; z) is the probability density of the variable # which can be ob-
tained on the basis of KD.

Theorem 7.1. In general, for the plant described by KP (7.12) and for KD
(7.15),

Hz)# PL2), W(2) % P 2). O

The theorem can be proved by an example showing that in a particular
case the inequalities presented above are satisfied (see Example 7.1). The
theorem means that the control decisions # determined via the different
ways of the determinization may be different. It is worth paying attention
to the analogy between the relational plant considered in Chap. 6 and the
plant described in the probabilistic way. The knowledge of the plant
R(u,y,z) corresponds now to KP (7.12), the knowledge of the decision

making Rz, u) corresponds to KD (7.15), two concepts of the determini-

zation are analogous as well, in particular Theorem 7.1 is analogous to
Theorem 6.1.

Example 7.1. Let u,y,z€ R ! (one-dimensional variables) and
y=cutz.

Let us find the deterministic decision algorithm via the determinization of
the plant.
In the version a), according to (7.10)

E(Z;Z) = uE(E) +z= y*
and
u=¥(z)=( -2)[EQ]".

In the version b), according to (7.11)

| u |
From the equation cu+z= y* we obtain the probabilistic decision algo-
rithm @, :

S
-z 1
up= ¥(z) = argmax f,(2—>)
u
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u=dy(z,c)=2—=.

Applying the determinization of this algorithm gives two versions of the
deterministic decision algorithm.
In the version a), according to (7.16)

* -1
ug = E@u;2) = (2) = (" ~DE( ) # ¥ ().
In the version b), according to (7.17)

)Iy z|
M

upg= ¥plz) = argmaXfc( #Wp(2). O

7.2 Basic Problems for Static Plant and Non-parametric
Uncertainty

Now we shall consider an uncertainty referring to the description of the
plant as a whole and not referring to the unknown constant or time-varying
parameters in the known description, as it was considered in Sect. 7.1. For
the plant described by the relation R(u,y) presented in Sect. 6.1 we can
speak about an additional characteristic of the uncertainty which may
consist in giving some preferences or additional evaluations for different
points (u, y) in the set R(u, y) of all possible pairs («, y) which may appear
in this plant. More generally, we may accept a possibility of appearing the
pairs (u, y) not belonging to R, which means that the fact (u, y)eR(u, y) is
not certain. Assume that (u, y) are values of the pair of continuous random
variables (u, y ). The property (u, y)eR is then a random fact and its truth

is a random event characterized by the probabilities

=Pl,y)eRw,»)], py=Pl,y) &R, y)]=1-p;. (7.18)

Then, the simplest description of the uncertain plant consists in giving the
relation R(u,y) and the probabilities (7.18). The more precise or more ex-
act description consists in giving a joint probability density f(u, y) defined
in the whole set U xY . The probability density f(u,y) is an additional
characteristic of the uncertainty referring to R, under the assumption that
the points (u, y) may belong to R only, i.e. f(u,y)=0 for (u,y) eU xY — R
(a complement of the set R). If the pairs not belonging to R may occur as
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well, then the joint probability density f(u, y) characterizes the pairs (u, y)
in R and in its complement as well. Consequently, the determination of the
relation R is no more needed. Now the density f(u,y) is the knowledge

representation of the plant. This is a product of the density f,(#) and the
conditional density f,(y[u), i.e. the density of the variable y for the fixed

value u:

S, y) = filay o) (7.19)

where

_ S, y)

u(u) = ,V)dy, =t 7.20

S ij(uy)y 1yl Ty (7.20)
Y

More precisely speaking, the acting of the plant itself is described only by
the density f,(y[u) characterizing a dispersedness of possible outputs y for
the fixed value u, and f, (1) characterizes a dispersedness of possible inputs
of the plant. Knowing the distribution f(y|u) it is possible to formulate and

solve the problem of the determination of u minimizing the performance
index

Q=1;3[<0(X,y*)]= [y 1, (0 u)du.
= Y

This problem is analogous to the problem of the minimization of the index
(7.3) in the parametric case. For the plant with the disturbance z with the
known density f{u|y; z) for the fixed z, one can formulate the optimization
problem analogous to the minimization (7.5) and consisting in the deter-
mination of # = ¥(z) minimizing the performance index

Q=Elp(y.y = [o(r.y") [, (v |wsz)dy .
y Y

Let us consider now two versions of the decision problem with the given

required value y*, analogous to the versions a) and b) in Sect. 7.1.

Decision making problem for the given f{u, y; z), z and y>k :
a) One should find u for which the expected value of the output is equal to

the required value, i.e. E(y| u;z)é} is equal to y* or, according to (7.20)
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[vf . y;2)dy

Y D=y 7.21
g [/, y:2)dy ()= 72
Y

Solving the equation (7.21) with respect to # we obtain the decision algo-
rithm u =¥ (z).
b) One should determine

uy, = arg max @y, (u, z) 2 ¥ (2) (7.22)
u

where

*
* S,y ;2)
Py (u,2) = f,(y |u;2) =—"—————.
Y [ £, y;2)dy
Y
The functions @ and @, are the results of two versions concerning the

plant determinization, and # and ¥ are the decision algorithms based on
the knowledge of the plant KP =f{u, y; z) in the version a) and b), respec-

tively. Putting y>k into the function fu,y;z) we obtain the function

Au, y*; ) 4 Jud(u;z) which may be treated as the knowledge of the decision
making KD or the probabilistic decision algorithm in our case. The deter-
minization of this algorithm gives two versions of the deterministic algo-
rithm, corresponding to the versions a) and b) of the plant determinization:

jufud (u;z)du
_ * U Ag (s
a) ug =E(ul|y ;z) (o G2 ¥(z), (7.23)
U
b) Uy = argmax Dy (u,2) 2 ¥ 4 (2) (7.24)
where

Sua W3 2)

Pha(t62) =l 5 =
U
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The formulas (7.21), (7.22), (7.23) and (7.24) are analogous to the respec-
tive formulas (7.10), (7.11), (7.16), (7.17) for the parametric uncertainty. It
is worth noting that as KP and KD it is sufficient to accept f,(y|u;z) and

Ju(u|y;z), respectively. In the formulas (7.22), (7.23) and (7.24) these

probability densities should be determined as marginal densities from the
joint densities

KP=<Au,y;z)>  KD=<f,[ u;z)>.
Theorem 7.2. In general, for the plant described by KP = f{u, y; z) and for
KD = f,,u; z)
Hz) # ¥YA2), Yi(2) = Ppal2) O

It may be shown by using the result in Example 7.1. Let the density
Au, y; z) be such that

fy(ylu;z)=fc(u)i, fu(u|y;z):fc(y‘z)@
ulul )

where f.(c) is the density such as in Example 7.1. Then, according to the
result in this example

Yz)# PAz) and  Py(2)# F 2).

Let us pay attention to another decision problem which consists in the
determination of a probabilistic decision algorithm in the form of f, (u;z)
for the given required distribution f(y) and the given f,(uly;z) or f,(v[u;z)
characterizing the plant.

Decision making problem with the given z and f,(y):

1. One should find f,,(u;z) for the given £, (u|y;z).
2. Under the assumption that z is a value of a random variable, one should

determine f,,(u;z) = f,,(ulz) for the given f(z) and f,(y[u;z).
In the first case

fu@:2)= [, ] y;2) [, (»)dy, (7.25)
Y

under the assumption that the equality (7.25) cannot be satisfied for an-
other f,(y), i.e. that the integral equation
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[fu | ys2) £,y = [ fiu | y32) [, (D)dly
Y Y

with the unknown function ]_‘y (») has only one solution ]; y=0).

In the second case f,(u;z) = f,(uz) is determined by the integral equation
Ly = [[1@ 1121, (v w2 duds . (7.26)
vz

This problem is analogous to that presented in Sect. 6.3 for the relational
plant and the fixed z. The relation R(u, y; z) corresponds to the description
of the plant in the form of the probability density f,(v[u;z) or f,(uly;z) char-
acterizing a dispersedness of y for the fixed # or on the contrary. This is
the more precise information on the plant than in the relation case, and
makes it possible to replace the requirement y € D, for the given D, by

the more precise requirement in the form of the given distribution f),(y)
characterizing a dispersedness of the values which may occur at the output
of the plant. In this way, for any set D, we determine the probability that

ye D, . Consequently, the result having the form of the set of decisions

D, (z) or the relational decision algorithm (6.19) is replaced by the result

in the form f,(u;z) or by the probabilistic decision algorithm which for the
measured value z gives the probability distribution for the decision u. A
concrete, particular decision may be chosen randomly from the set U, ac-
cording to the probability distribution f,, (u;z). For the realization of such a
concept, the application of a random numbers generator is needed. One
may also perform a determinization of the probabilistic algorithm and de-
termine

u=E@;2)2¥().

The application of the algorithm % (z) does not, however, assure the satis-
faction of the requirement in the form of the probability distribution 7,(»).
In the prescriptive approach, KD described by an expert in the form of
Jud(u;z) will give the same result as the descriptive approach, i.e. will as-
sure the satisfaction of the requirement in the form of /,(y), if f,(u;2) is

equal to the density f,,(u;z) presented by the formula (7.25) in the first case,
or if it satisfies the equation (7.26) in the second case.
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7.3 Control of Static Plant Using Results of Observations

Let us consider a static plant
y= Mu,c)

with the unknown parameter ¢ and the known probability distribution f.(c).
Assume that it is possible to increase the initial information on the un-
known parameter in the form f.(c) as a result of current observations dur-
ing the control process and consequently, it is possible to improve succes-
sively the control decisions. Speaking about the observation we have in
mind the measuring of the parameter ¢ in the presence of random distur-
bances (random noises).
Let

Wy = h(c, z,) (7.27)

denote the result of the n-th measurement, dependent on the value of the
measured parameter ¢ (Fig. 7.2), 4 is a function determining this depend-
ence, z,, denotes the disturbance, and

Wy, =(W1, W, .., Wy,)

is a sequence of the results of measurements till the moment 7, used to the
determination of the control decision according to the control algorithm
¥, 1e.

ul’l: Tn(wn)

which should be properly designed.

|
c
h
c
w u y
n n Pant n
' I

Fig. 7.2. Block scheme of the control system under consideration

We assume that z,, is varying in a random way or, more exactly speak-
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ing, that for every n the vector z, is a value of the random variable z,
with the probability density f,(z), the same for different », and that the

variables z, are stochastically independent for different n. The latter as-
sumption means that for every » the joint density of the pair (z,, z, ;) is
equal to the product of marginal densities for z, and z, ,, i.e. is equal to

f-(z,)f>(z,+1). We shall present two ways of the determination of the

algorithm ¥, : indirect and direct approach.

7.3.1 Indirect Approach

The idea consists in a decomposition of the problem under consideration
into two easier problems:

1. Determination of the control for the known parameter c.

2. Estimation of the unknown parameter using the result of the observa-
tion.

The first problem has been considered in Chaps. 3 and 4. It consists in

finding the value u for which y= y* or, more generally, the value u which

minimizes the given performance index ¢y, y*). For the given parameter

¢, this value depends on c. Consequently, the result of this problem is the
determination of the dependence of # upon ¢, which we shall denote by H,
i.e. u=H(c). The second problem consists in the determination of the esti-
mator c,, for the parameter ¢ on the basis of w,

n=Gp(Wy)

where G,, denotes the estimation algorithm. Substituting the estimate c,,

into H in the place of ¢ gives the control algorithm ¥,
— A —
up,=H[Gy(w,)]= Fu(wy). (7.28)
If the estimator is consistent (i.e. ¢, converges in probabilistic sense to ¢

for n—>o) and H(c) is a continuous function, then u, converges to
H(c), i.e. to the decision which we would determine for the known parame-
ter c¢. Then, the control algorithm (Fig. 7.3) consists of two blocks G,, and
H, and consequently, the program in the controlling computer contains two
parts: the part determining the estimation of the unknown parameter and
the part finding the decision u for the known parameter. The composition
of these two subalgorithms leads to one control algorithm (control pro-
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gram) determining u, on the basis of w,,. Usually we try to present the
estimation algorithm in a recursive form, i.e. in the form of a formula
showing how to calculate ¢, on the basis of ¢, and w,, . Then it is nec-

essary to keep only c¢,, in the computer memory to calculate the next esti-

mation.
)
c
h
c
Controller
w, c u Y
n n n Pant n
Gn H @ —
Ny

Fig. 7.3. Control system with two blocks of control algorithm

A universal method for the determination of the estimator G under the
assumption that ¢ is a value of a random variable ¢ and with the known

distribution f,.(c) is a minimum risk method. To evaluate the quality of

the estimation, let as introduce so called /oss function L(c, c,) whose value
is equal to zero if and only if c=c¢,,, and for ¢ #c,, is positive and evalu-

ates the distance between ¢ and c¢,. Most often L(c,c,)=|c—c,| or

L(c,c,)=lc— cn||2. The expected value of the loss function
R=E[L(c,c,,)]

is called a mean risk.

Estimation problem: For the given function 4 describing the influence of
the noise on the result of the measurement w,, the given densities
fe(c), f,(z) and the loss function L, one should determine the estimation
algorithm G,(w,, ) minimizing the mean risk R.

According to the definition

R= [ [L[c,G,(w)]f (c,w,)dcdw, (7.29)
C W,
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where C is a space of vectors c, V7n is a set of all sequences W, , flc,w,)
is a joint probability density of the variables ¢ and En = (v_vl, Woseons v_vn) ;
w; =h(c,z;) . The formula (7.29) defines a functional which to the func-
tions G, assigns the numbers R. The determination of the optimal algo-
rithm G,, is then a problem of a functional minimization. It may be shown
that the optimal algorithm G,, can be obtained as a result of minimization

with respect to ¢,, of so called conditional risk
r(cy- W) = [L(c.cn) fe(e|wy)de. (7.30)
C
i.e. minimization with respect to ¢,, of the conditional expected value for
the given w,,. In the relationship (7.30), f.(c| W, ) denotes the conditional
probability density. According to Bayesian rule

Je(©) fron Wy [€)
In(Wn)

where f,,, denotes the conditional density of w, for the given ¢, and f,

fc(c|wn): (7.31)

denotes the marginal density of En Since f,,(w,,) does not depend on ¢

andc,,, it is sufficient to minimize the function

P(Cns W) W) = [L(e,€,) fo(O) fron Wy | e B F (e w,)  (7.32)
C

with respect to ¢,. Since z, are stochastically independent for different n,

the same may be said for w . Then

fwn(wn |c):wa(Wi |c) (7.33)

i=1
where f,,(wjlc) (i.e. the conditional density of the individual variable w,)
may be determined for the given function (7.27) and the known f_.(c).
The procedure of the determining of the estimation algorithm is the follow-
ing:
1. For the given & and f,. we find f,,,, according to (7.33).
2. We determine 7 (c,,,w,,) according to (7.32).
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3. We minimize r (c,,w,) with respect to ¢,, and obtain c,= G, (w,,).

The computational problems may be similar to those connected with the
determination and minimization of the integral (7.3). In simple cases it is

possible to obtain the result in an analytical form. For L(c, ¢,)) =—0(c—;,)
(Dirac delta), the risk (7.30) is reduced to

r(c,,wy)=—f.(c, |w,) .

The optimal estimate c¢,, is then the value ¢ maximizing the density (7.31),
ie.

Cp = AIEMAX £ (€) fr (W | ) & Gy (W) . (7.34)

In the above considerations we use a priori distribution f.(c) presenting
the information on ¢ before the observations have been started, and a pos-
teriori distribution f.(c|w,, ) presenting the information on c¢ after » meas-

urements. The minimum risk method in the case (7.34) may be shortly
called a maximum probability method. The name is fully justified when ¢
is a discrete random variable. In the case of a continuous random variable
under consideration, it is a method using maximum a posteriori probability
density and consisting in the determination of the estimate ¢, maximizing

this density. It is interesting and useful to compare this method with a
maximum likelihood method which is used when f,.(c) is unknown or

when there are no reasons to assume that the value ¢ has been taken ran-
domly from any set, i.e. when the probability distribution does not exist.
The maximum likelihood method consists in finding the estimate

¢, = argmax f,,,,(w,;c), (7.35)
C

i.e. the estimate maximizing so called likelihood function

Soon(Wy3€) & L(c;w,) . The form of the function f,,,,(w,;c) is the same as
Swn(Wy | €), it is then the density of wfor the fixed ¢, which cannot be

called a conditional density if ¢ is not a value of a random variable. The
comparison of the estimates (7.34) and (7.35) shows the difference be-
tween the most probable and the most likely estimation.

Example 7.2. Let us determine the control algorithm %,(w,, ) for the one-

dimensional plant y, = cu,, where c is measured with an additive noise, i.e.
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W, =c+z,. Assume that ¢ has Gaussian distribution with the expected

value ¢ and the variance o2, i.e.

1 _(0—5)2 A
fC(C)_acﬂeXp[ 207 1=N(c,o.), (7.36)

and z, has Gaussian distribution with the expected value z =0 and the
variance 0'22, Le.

2

1 z
fz(Z):Gzﬂexp(_ 2)-

207;

Assume the performance index
* * 2
e(y)=0-y)

which is reduced to the requirement y = y*. Then

*

qu(c)zy—

o
Let us find the most probable estimate c,,. For this purpose one should de-

termine £,,,,( w, |c). According to (7.33) for w;=c + z; we have

=T e b e L S o2
fwn(wnlc)—ll:[lfz(w, c) ey exp[ 207 i:Zl(w, o)*1. (1.37)

After substituting (7.36) and (7.37) into (7.34) and omitting the coeffi-
cients independent on ¢ we obtain

_ (c=0)Y 1 & )
¢, =argmin [ 5 +—22(w,~—c) ]. (7.38)
¢ 20, Oy i=l

Differentiating the function in the bracket with respect to ¢ and equating
the derivative to zero we obtain the following estimation algorithm:

n
E+(%)22Wi
¢ - "z =l (7.39)
Oc\2
1+(—)"n
z
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If the ratio of the variance of ¢ to the variance of the noise is small and the
number of measurements # is small then ¢, ~c , i.e. we accept that the

unknown parameter is approximately equal to the expected value ¢ , and
the influence of the measurement data is small. If this ratio is great then for
large n

1’1
n % LM

i.e. we accept that the approximate value of the unknown parameter is
equal to the arithmetic mean of the results of the measurement, and the

knowledge of ¢ , o, and o, does not take a role. The formula (7.39) shows
how to use both the a priori information (¢ , o, and o) and the current

information obtained as a result of the measurements (wyq, wo, ..., w,,) to de-

termine the estimate minimizing the mean risk. O

The result (7.39) can be extended to an important case of a linear multi-
input plant

Yn= cTun = clu,gl) + czu,gz) +..+ cpu,gp)

with the vector of the unknown parameters T =[cj ¢y ...c,]. The distri-
bution of the additive noise z, is Gaussian as in the previous case and the

vector ¢ has the multi-dimensional Gaussian distribution

1 1 ~ _ ~
fele) = expl-—(e~0) M7 e~ 2)]
272 (detM)?2
where ¢ is a vector of the expected values E(g(i)) and
R e LI T
j=l, ..,p

is a covariance matrix (see e.g. [14]). Let us note that for the single-input
plant considered above, the maximum likelihood method is reduced to a
least square method, i.e. to the determination of

n
, =argmin ) (w; — 0)?

¢ =1

It follows from the fact that the first component in the formula (7.38) is
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equal to zero. Consequently, in this case the most likely estimate is equal
to the arithmetic mean of the measurement results.

7.3.2 Direct Approach

Now we shall not decompose our problem and find the solution via the es-
timation of the unknown parameter but we shall determine directly the

control algorithm %, in the system presented in Fig. 7.3, minimizing the
value of the performance index q)(y,y*).

Decision making (control) problem: For the given @, 4, f,, f, and @ one

should determine the algorithm u, = %,(w, ) minimizing for every n the
probabilistic performance index

0=El(p(y .y
Y

According to the definition

o= | PADLY,, (W,).cl. ¥}/ (c. W, )dedw, . (7.40)
Cw,

The minimization of the functional (7.40) with respect to the function ¥,
may be replaced by the minimization of the conditional expected value

4, = Elp(y v o)1= [pl@ (), v 1fe(c] Wy )de
C

with respect to u,,. According to Bayesian rule and after omitting the de-
nominator in (7.31), we minimize the function

a(un > Wn) é q(un > Wn )fn (Wn) = Iq’[(p(un ,C), y*]fc (c)fwn (Wn | c)dc
C

with respect to u,, and we obtain u,= ¥, (w,).

In general, the result obtained via the indirect approach differs from the
result obtained by applying the direct method. It is then the result worse in
general, i.e. giving the value of the probabilistic performance index Q de-
fined by the formula (7.40) greater than the minimum value obtained by
applying the algorithm obtained with the help of the direct method. How-
ever, the direct method is usually much more complicated from the
computational point of view. In the linear-quadratic problems with
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putational point of view. In the linear-quadratic problems with Gaussian
distributions the both approaches give the same result.

7.4 Application of Games Theory

Let us come back to the plant
Yn= @ (uy, z,) (7.41)

in which the disturbance z, is not measured. This case has been consid-

ered in Sect.7.1 under the assumption that the distribution f(z) is given.
Then the decision problem has consisted in the determination of the con-

stant decision u minimizing the expected value of the performance index
(7.8). Let us assume now that the probability density f(z) is not known and

consequently, the determination of the decision u minimizing the index
(7.8) is not possible. Then we can apply so called game approach or, more
precisely speaking, a two-person zero-sum game theory. One player is the
controlling system generating the decision u,, (Player A) while the envi-

ronment generating the disturbance z, is treated as the other player

(Player B). The source of the disturbances is then “personificated” (con-
sidered as a person) and treated as a partner playing with a decision maker.
Let us assume that sets of possible decisions for the both partners are fi-
nite. These are the sets

U=W,a®, . aty

and
7= {Z(l), 2(2), vy Z(N)}

for the partner A and B, respectively, which means that u, e U and z,€ Z
for every n. If the elements in the sets are determined and the elements are
marked by their indexes, it is sufficient to use the indexes i=1,2, ..., M
and j=1,2,..., N where i denotes the i-th decision and j denotes the j-th
disturbance. Choosing of the values (u,, z,,) or the indexes (i,, j,) in a
successive stage is called a move. An effect of the move is the respective
value of the performance index

Oy )= LWty 2,), 51 2 Gluy, 2,) = v,
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We assume that the loss v,, of Player A is equal to the profit of Player B.
For all possible moves, i.e. all pairs (u,, z,,), the function G determines
the following table of the respective values v:

z .

u 1 2 e | J N
1 Y11 V12 vlj VIN
2 1 k) v2j VN
i Vl'l Vi2 Vl'j Vl'N
M Van Vap V]\/[j VMN

In the table v;; = G(L_l(i) ,Z ( )). In a concrete game this table may be given

directly and not by the function G as in the decision problem under consid-
eration. The value v, may denote an amount of money which Player A

pays to Player B if A has chosen the index i and B has chosen the index j.
Of course, the players do not know each other choices before making their
own choice. The above table, i.e.

M =[viliz1,2,., M
j=12,.,N

is called a payoff matrix. The game denotes a sequence of successive
moves. For the large number of moves, Player B would like the sum of
payments (his winnings) to be as great as possible, while Player B would
like this sum (his loss) to be as small as possible. Of course, Player A
would take part in the game with such rules only if the chances were not
evident, i.e. if some numbers in the payoff matrix were negative which
would mean that in fact in such a case it is Player B who pays. A strategy
of Player A is presented by a sequence of probabilities

A
(P1>P2> s PM)=P

according to which he will make the choices in the successive stages. Let
us denote by

A
(41> 92> - qN) =4
the respective strategy of Player B. A main idea of the game approach
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from Player A point of view consists in the assumption that Player B
chooses his strategy ¢ in such a way as to maximize the expected winning.
Then Player A determines his strategy p in such a way as to minimize the
expected winning of Player B (the expected payment), i.e. to minimize the
function

M N N M
max (Zpizvijq]’)z max Z(Zvijpi)q]' (7.42)
q1--94N j=1 =1 919N j=1 j=1

with respect to py, ps, ..., s, subject to constraints

/\ 3
(p;20), Y p;=1. (7.43)
i i=1

The identical constraints concerning ¢ should be taken into account for the
maximization with respect to ¢g. As it is seen from (7.42), Player A, not
knowing the strategy of Player B, chooses the strategy p in such a way as
to minimize the worst situation.

Using the game approach we can formulate the following decision prob-
lem for the plant (7.41).

Decision making (control) problem: For the given function @, the set
U and the set Z one should determine the strategy p;, po, ..., pps mini-
mizing (7.42) and satisfying the constraints (7.43) where

vy =@, 20),y]. (744)

Let us note that with the constraints concerning ¢, the result of the maxi-
mization with respect to g in (7.42) is such that g;= 1 if the coefficient at g;

is the greatest, and ¢;=0 at the other coefficients. Hence, the following
function:

M A
max(Q v pi) =V (7.45)
J =1
should be minimized with respect to py, p, ..., pjs- The minimization of V'
with the constraints (7.43) is similar to a linear programming problem. To
its solution existing iterative algorithms and respective computer programs
may be used. For the determined strategy p one may calculate the value V'
by substituting into (7.45). It will be so called guaranteed expected per-
formance index, what means that the average value v (for many repetitions
of the decision making) cannot be greater than V. A simplified scheme of
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the algorithm determining the strategy p and the value V is illustrated in

Fig. 7.4.
Data base

| Introduce data % @, 0, 0l forictM

z() for jel,N

Determine payoff matrix
7 according to (7.44)

Determine p,, ..., p,,
according to subprogram
for minimization (7.45) Result: p,, ..., p,,; V

p

Determine V according
to (7.45)

Bring the result out

Fig. 7.4. Simplified scheme of algorithm determining control strategy

The execution of the determined strategy requires two generators of
random numbers for the random choosing of the decision u,,, and a discre-
tization of the disturbance for the determination of the set Z . If z,, 1s one-
dimensional disturbance varying in the interval [, £ ] then this interval
may be divided into (m —1) equal parts with a length z and accept

z() =a+(j-Dz, j=1,2, .,m.

Consequently, the computer program will contain three blocks (Fig. 7.5):
the discretization block, the subprogram determining the strategy and the
generator of random numbers needed for the execution of the random

strategy. It is a subprogram which generates the decisions u,€ U accord-
ing to the given probability distribution py, ps, ..., pps. In the figure, the
transferring of the information on the range of variation [ &, f | is marked.

The determination of the control strategy is simplified for M =2, i.e.
fori=1,2. Thenp,=1-py,
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p1=arg minmax{vy;p +vy1(1-p), viop +vyo(1 —p),
p

o VIND T VN1 —p)} (7.46)

where max denotes the greatest number in the brackets. Finally, let us note
that the dependence of the performance index v=y (see Sect. 4.1) upon u

can be formulated directly, without using the required value y*. It means

the direct formulation of the model v, = (u,,, z,,) for an extremal control
(static optimization) plant with an input ,, and one-dimensional output to

be minimized. An example of an application of the game approach to the
determination of decisions in a production management may be found in
[20].

Subprogram

Discretization |— determining strategy

’ T Py PM

u y
. G = 11 pant |2
Generation of decision

u(

Control algorithm

Fig. 7.5. System determining and executing control strategy

Example 7.3. A relationship between a profit v and a production size u in
a certain production process may have the form

v=cu—F(u)

where c is a unit price of the product, cu is an income from the sale and F'
is so called cost function. Let us assume that the production is repeated
every day and at the beginning of the day one should plan the daily pro-

duction size #V =500 or ¥ =600 units. Every day one of two sorts of
a raw material is supplied but the quality (the sort) may be estimated after
receiving the product only. The price ¢ and a parameter of the cost func-
tion depend on the sort of the raw material. The result of the daily profit
calculation (in determined money units) is as follows:
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Sort I Sort I1
u =500 20 70
u =600 40 15

Let us denote by p the probability of the choice # = 500. If the sort I was
supplied every day then the expected profit would be

E(v)=20p +40(1 - p) =-20p + 40.
If however the sort Il was supplied then
E(v)=70p+15(1 —p)=55p + 15.

According to (7.46), the optimal value p can be obtained by solving the
equation

—20p+40=55p+15
and as a result p = % In many days of the random daily choosing of the
production sizes according to the probabilities % and %, the average daily

profit will be not less than ? +15~333. O

7.5 Basic Problem for Dynamical Plant

One of the basic problems considered in Sect. 7.1 for the static plant

Y, = Au,, z,,) consisted in the determination of the decision u" minimiz-
ing the expected value of the performance index (7.8) for the given prob-
ability density f.(z). Now we shall present an analogous problem for the

discrete dynamic plant described by the equation.
Xpt1 =X, ty, 2) (7.47)

where x, €X is the state vector, u,,€ U is the control vector and z is the vec-
tor of disturbances. We assume that z,, is a value of a random variable z, ,

the variables z, are stochastically independent for different » and have the

same probability density f,(z). Let us introduce the performance index
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N
Oy = 2 9(xp.tty1).

n=1

Problem of the control optimal in a probabilistic sense: For the given f,
X9, ¢ and f, one should determine the sequence of optimal control deci-

sions u;, ul* s s ujv_l minimizing the expected value of the index O, i.e.
® K * . N-1
(ug,uy ..., uy_1)=arg min E [ Xgx, upz,)]  (7.48)

UG5 UN-1  ZgrsZN_| n=0
where
g(x}’li u}’l’ ZV!) = go [f(x}’li u}’l’ ZV!)’ u}’l]‘

This is a probabilistic version of the optimal control problem described in
Sect. 4.2 for the deterministic discrete plant. In the formula (7.48) it has
been taken into account that x, is a random variable what follows from

the assumption that z, is a random variable.

The determination of the sequence of the optimal decisions directly
from the definition (7.48) is, in general, very difficult. One may make the
solution easier by applying dynamic programming procedure described in
Sect. 4.3 and consisting in a decomposition of the problem into separate
stages considered from the end, i.e. from n=N. As a result one obtains

the relationships u,, = ¥,(x,,) or the control algorithm in a closed-loop sys-
tem. Let us introduce the notation

VNfrz(xrz) = min {E [g(f,,l > Up, Z, )]

Uy, UN_]  Z,

N-1
+ E [ Zg(fiauiﬁziﬂxn]}'

Zpel o EN-1 =t

Forn=N-1

Vitey—1) = min | g(xy_y, uy_1,2) £(2) dz.
Un-1 z

As a result we obtain a relationship between the minimizing value ”}k\f—l

and the state xy_; , which we denote by ¥y_1, i.e.

*
uy_1= n_1(xn-1)-
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For two stages from the end

Valino) = min [ { gy, ty2, 2) + Vi[fltnoa, tin2, 2)] } fo(2) dz.
Un-2 7

As a result we obtain

*
uy_2= Pno(xy-)-

Hence, the algorithm of the determination of the optimal control may be
presented in the form of the following recursive procedure:

VN_n(x,) = min J‘ { g(xy, up, 2p)
up

+ VN*V!*][f(x}’la u}’l: Z)]];(Z) dZ }: (749)
n=N-1,N-2,..,0, Vy=0.

As a result we obtain the relationships u;: = ¥,(x,,), that is the control

algorithm in a closed-loop system for the measurable plant. Applying the
decomposition described above we have used the property that the condi-

tional probability distribution of the random variable x __, for the given u
Zn+l n

depends on x,, only, but does not depend on the former states, i.e.

Sl Xpi1 | Uy Xy e 5 X0) = Sl X1 | s X))

This property follows from the fact that the stochastic process described by
the equation

Xp+1 :f(zn > Uns Zn)

is a discrete Markov process.

The procedure (7.49) determining the multistage decision process opti-
mal in a probabilistic sense may be called a probabilistic version of dy-
namic programming. In a similar way as in deterministic situations, the al-
gorithm may be obtained analytically in simple cases only. Most often it is
necessary to apply numerical successive approximation procedures. The
determination of the multistage decision process with the probabilistic de-
scription of uncertainty has numerous practical applications not only to the
control of technological processes but also in a management, in particular
to the determination of a business plan, to the planning of investments pro-
cesses etc. [20].

In a way analogous to that in Sect. 4.3, one may present the determina-



7.5 Basic Problem for Dynamical Plant 173

tion of the multistage decision process for the terminal control, i.e. the de-
termination of the decision sequence minimizing the expected value of the
performance index

On =0(xn)=g(xN_1,UN_1,ZN—-1)-

Let us introduce the notation

Vy_n(x,)= min E [g(EN_lauN—lazN_lﬂxn]'
Upsos UNZ1  Zysens ]

For n=N -1
Nxy_p)=min [gCey_j,uy_1,2)f.(2)dz.
UunN-1 7

As a result we obtain the relationship

*
uy-1 =¥y-1(xy-1).
For two stages from the end

Va(xn_p) = min [V[f(xy_a,uy_p.2) [z (2)dz,
unN-2 7

*
uy_2 =¥n_2(xy_2).

Consequently, the algorithm of the determination of the optimal control
may be presented in the form of the following recursive procedure:

Vn—n(xy) =min [Vy_, [ (oyuy, 2112 (2)d2
un Z

n=N-1,N-2,..0; Vo =g(xy_1,un—_1,2) .

As a result we obtain the relationships u: =¥,(x,), thatis the control al-
gorithm in a closed-loop system.

It is worth noting that in the cases considered in this section it is not
possible to obtain concrete values of the control decisions u), uy, ..., 4y _;
by applying the second series of calculations from the beginning to the end
as it was described in Sect. 4.3. It is caused by the presence of the distur-
bance z, in the plant equation, which makes it impossible to determine

X, for the given x,, and u,,.
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7.6 Stationary Stochastic Process

For dynamical plants with a random parameter ¢ one may apply the para-
metric optimization in a way similar to that presented in Chap. 5. Now the
performance index Q = @(c, a) is a function of the unknown plant parame-
ter ¢ and the parameter a in the control algorithm, which is to be deter-
mined. The problem is then reduced to a static probabilistic optimization
and consists in the determination of the value ¢ minimizing the expected
value E[®@(c,a)]. It is possible to apply another approach consisting in the

determination of the control algorithm for the fixed ¢ treated as a known
parameter. Consequently, ¢ will appear as a parameter in the control algo-
rithm. Such an algorithm with the random parameter ¢ may be called a
random control algorithm in the case under considerations, or shortly — a
random controller in an open-loop or closed-loop system. The determinis-
tic algorithm may be obtained as a result of the determinization consisting
in the determination of the decision equal to the expected value of the con-
troller output. We shall return to this concept in Chap. 8.

The problem is much more complicated if the incomplete knowledge of
the plant concerns unknown time-varying disturbances which are not
measured and are assumed to be random disturbances. In the next sections
we shall consider a special probabilistic optimization problem for dynami-
cal plants, namely an optimization problem for linear closed-loop control
system with constant parameters and stationary random disturbances. For
this purpose the basic information concerning a stationary stochastic proc-
ess will be shortly presented. Let us consider a variable x(¢) € X (in gen-
eral, a vector variable) varying randomly. In every moment ¢ the value x(¢)
is assumed to be a value of a random variable x(7) characterized by a prob-
ability distribution, in general depending on ¢. It means that for different ¢
the corresponding value x(¢) is chosen randomly from different sets charac-
terized by different probability distributions. In the further considerations
we shall assume that there exists a probability density, as for the static
plant in the previous sections. As it was already mentioned, a function as-

signing to the variable 7 a corresponding random variable x(?) is called a

stochastic process. That is why a concrete function x(¢) is called a realiza-
tion or an observation of the stochastic process. A more general descrip-
tion of x () is given by a joint probability density of the random variables

x(1)=x;, x(f)= x5, ..., x(¢,)= x, in selected n moments, which we
denote by f,,(x1, x2, ..., X5 1, 12, ..., t,,). A stochastic process x (7) is called
stationary if this probability density depends only on the distances be-
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tween the points xy, ..., x,, and does not depend on their location on the axis
of the time, i.e. for any 7

T 15 X205 vy X3 11T, BT, oy 8,1 0) = f1(X15 X0, ey X35 5 B2y oes 1)

In particular, f;(x) =f(x) does not depend on . We may say that the statis-
tical properties of the stationary process are constant in time. For example,
if in the case of one-dimensional process, using many observed realiza-
tions we shall determine the arithmetic mean of the value x observed in the
same moment #, or having one long realization we shall determine the
arithmetic mean of the values x(f) in many moments #{, #5, ..., t,,, then these
mean values will be approximately equal. In general, the mean value with
respect to a set, 1.e.

X =E@)= [xf(x)dx
X
is equal with probability 1 to the mean value with respect to time

_ 1k
x= lim — [x(t)dt
T—o0 2T
-T
(except in very special cases rather not occurring in practice). This is so
called ergodic property which is also satisfied for functions of the vari-
ables xy, xp, ..., x,,. If the stationary stochastic process is an object of linear
transformations (in other words, the stationary stochastic signal is put at an
input of a linear dynamical system), its description in the form of so called
correlation functions and spectral densities are more convenient than the
description in the form of the probability densities. Let us define these de-
scriptions for a one-dimensional process x (¢). An autocorrelation function

of the process x(7) is defined as follows:

Ry () =E[x;-x,]1= [ [xixp/f5(x;,x:7)dx dx; (7.50)
—00 —00

where x| = x(f), xy =x(¢ + 7). According to the ergodic property
1 T
Ry (r) = lim — [x()x(t+ 7)dt. (7.51)
T—ow 2T _T

In the further considerations we shall assume E( x )= 0. Then, according to
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(7.50), the value of the autocorrelation function for the fixed 7is a covari-
ance (a correlation moment) of the random variables x, and x,, i.e.isa

measure of a correlation between two values x(¢) and x(¢+ 7 ). Then

lim R, (r)=0.
T—>©0
According to the definition, R, (7) = R, (—7) and
T
. A_
R (0)= lim L [x*()dr =%
T—o00 2T _T

The number X2 is called a mean-square value of the signal x(f). Using a
power interpretation we may say that this is a value proportional to the
power of the signal. Frequently used simple examples of the autocorrela-
tion functions are as follows (Fig. 7.6):

[ZT2

R (t)=ce®" , R, (1)= el

A spectral density S, () of the process x(7) may be defined as Fourier

transformation of the autocorrelation function

Se(@) = [Ry(r)e 1%dr . (7.52)

—00

Ryx(7) R xx(7)

T T

Fig. 7.6. Examples of autocorrelation functions
The descriptions R,(7) and S, (@) are equivalent and
1% ~
R, (7)= e [S (@)’ dev . (7.53)
s
—00

Using the definition (7.52) and the property R, (7) = R, (-7), it is easy to
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note that S, (@)= S,,(—w) and that S, (») has real values. According to
(7.51) and (7.53)

1% 1
¥ =— [ Sp(@do==[S, (0)do. (7.54)
2n T

—00

Ot—,S

The formula (7.54) shows how to determine the mean-square value using
the spectral density. Applying the power interpretation one may say that
the integral of the spectral density (7.54) is proportional to the power of
the signal or that S, (@) presents a power distribution in a frequency do-

main. The signal with the autocorrelation function R,,(7) = cd(7) (Dirac

delta) is called a white noise. 1t is a fully random signal with no correlation
between the neighbour values x for an arbitrarily small 7 # 0. According to

(7.52), for the white noise S, = const = c¢. It is then a signal with an infi-
nitely great power, which may be approximated by so called practical
white noise for which R(7) is a very short and very high impulse in the
neighbourhood of 7 =0 and S, (@) is constant in the large interval of w
starting from v =0.

For two stationary stochastic processes x(7) and y (t) let us introduce a

cross-correlation function Ry,(7) and a corresponding spectral density:

T
Ry (1) = E[)_c(t)z(t +17)]= Tlim % Jx(t)y(t +7)dr,
-2l 3

Sy(j@)= [Ry (D)e 1" dr. (7.55)

—00

It is easy to note that R, (7) = Ry,(—7) and the values of S,,(j®) do not
have to be real. The presented descriptions may be generalized for the vec-
tor signals x(¢) and y(?). In this case

T

Ry (2) =E[x(0)x" (1 +7)] = lim 2i [x@xT (@t +1)dz,
T

S 2T

T
Ryy(0) = Elx(0)y " (1 + 7)1 = Tliﬁm@%_ jT x0T (¢ + o)z
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Now the autocorrelation function R, (7) is a matrix. In its principal di-

agonal there are the autocorrelation functions of the components of the
vector x and outside the diagonal — the cross-correlation functions of the
different components, i.e.

Rel(7)=[R (i), () (D] =12,k
i=1,2

J=12,

where x) is the i-th component of the vector x with £ components. The
matrix R,)(7) has a similar form. If the pairs of the different components
of the vector x(#) are uncorrelated then R,,(7) is a diagonal matrix. In the
multi-dimensional case under consideration, the spectral densities S,.,.(j®)
and S),(jw) are matrices defined by the formulas (7.52) and (7.55), respec-

tively, where multiplying by ¢ 7197 and integrating refer to the particular
entries of the matrix R,,(7) and R,,(7). Considerations concerning one-
dimensional and multi-dimensional correlation functions and their applica-

tion in an identification problem for control plants may be found e.g. in
[14, 100].

7.7 Analysis and Parametric Optimization of Linear
Closed-loop Control System with Stationary
Stochastic Disturbances

Let us consider a continuous, one-dimensional linear stationary system
with two inputs x(7) and z(¢), and the output y(¢), described by the transmit-
tances

Y(s) = K (s)X(5)+ Ko (5)Z(s). (7.56)

Assume that x(¢) and z(¢) are realizations of stationary stochastic processes.
Consequently, after passing a transit process caused by putting x(¢) and z(¢)
at the input, the response y(7) is also a realization of a stationary stochastic
process. For such a system, the analysis problem cannot consist in the de-
termination of the response y(¢) for the given functions x(¢) and z(¢), but it

can consist in the determination of the mean-square value }2 for the given

correlation functions of the inputs and the given transmittances of the sys-
tem.

Analysis problem for the dynamical system: For the given K;(s), K>(s),
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R.(D), R,(D), R..(7) one should find 32.

Instead of the correlation functions one may use the equivalent descrip-
tions in the form of the respective spectral densities. It may be shown that
the relationship between the spectral densities of the inputs and the output
is the following:

S (@) =|K1 (j0)| Sy (@) +|K2 (j0)| S ()
+ Ky (=i @)K (j0)Sy. (jo) + K (j0) K5 (—j0)S (o). (1.57)

If the processes x(¢) and z(f) are uncorrelated then only the first and the
second components will occur in the formula (7.57). According to the for-
mula (7.54) we find

=2

1
yo=—\|5,(o)do. (7.58)
T

O-—.S

In typical cases the spectral density is a rational function of w® and may
be presented in the form
Gp(w)

Y (7.59)
H ,(0)H ,(-)

Syy (@)=

where
_ 2p-2 2p—4
Gp(a))—boa)p +b16()p + .t bpfla

H,(w)= aga + ala)p_l +..tap,

and all zeros of the polynomial H,(w) lie in the upper half-plane. The inte-

grals (7.58) for the function (7.59) have been found for small degrees p.
The results for p =1, 2, 3 are the following:

ap b
by “ht gzl 7.60
11:_j2 , =] , (7.60)
apay 2apa;
apab
—a2b0+a0b1—0a7;2
Iy=—] (7.61)

2ap(agaz — ajay)

where /,, denotes the integral (7.58) for the spectral density (7.59).
The method of the analysis for the dynamical system presented above
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may be applied to the analysis and the parametric optimization of the lin-

ear closed-loop control system (Fig.7.7) with the stationary stochastic dis-
*

turbances y () and z(¢), in which the plant and the controller are described

by the transmittances K (s) and Kp (s), respectively, i.e.

Y(s) = Ko()U(s) + Kz(s)Z(s),

Uls) = Kr(s)E(s)

where
E(s) =Y (s) - Y(s).
Hence,
E(s) = K{(9)Y (5) + K5(5)Z(s)
where
1
K = Ko kR )’
= Kz(s)
Y NEY AT}

z(t)

y(® y (0

Rant 7@

u t) £(f) £ (0

Controller

Fig. 7.7. Scheme of control system under consideration

Analysis problem for the closed-loop control system: For the given
Ko(s), Kz(s), Kr(s), Ry*y* (1), R (1), Ry*z (7) one should find the mean-

square control error & 2.
The closed-loop control system may be treated as a dynamical system
%
with the inputs y (¢) and z(¢), and the output &¢). Then, according to (7.58)
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22 =L s _(w)dw
T

S 38

where S () should be determined according to the formula (7.57) with

y>k in the place of x and with ¢ in the place of y .

In a similar way as in deterministic cases considered in Chap. 5, the
analysis may be used as the first stage of the parametric optimization of the
control system. If we assume a determined form of the controller transmit-

tance Kg(s; a) where a is a vector of parameters, then as a result of the

analysis we have the dependence of the performance index & 24 O upon a.

Then the design of the controller consists in the determination of the value
*

a minimizing the function Q(a). If the function Q(a) is differentiable

with respect to a then a’ may be determined from the equation
gradQ(a) =0 (7.62)
a

under the assumption that d isa unique solution of the equation (7.62) and

that in this point the function Q(a) takes its local minimum.

The analysis problem for the dynamical system with two inputs x, z and
one output y may be generalized for a multi-dimensional system with the
input vector x and the output vector y, described by the relationship

Y(s) = K(s)X(s)
where K(s) denotes a matrix transmittance. Then
S0 = KGOSk (o)

where S, (jo) and S,,(jw) denote matrix spectral densities. Now the mean-
square value of the output

T
_ . 1
¥ =yly=lim — [y (@0)y@adt
T—w 2T _T

and according to (7.54)

o 1%
y2 =— .[Syy (w)dw
To
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where §yy (@) denotes the sum of entries in the principal diagonal of the
matrix S, (@) . The generalization for a multi-dimensional dynamical sys-

tem presented above may be used to the analysis and the parametric opti-
mization of multi-dimensional closed-loop control system considered as a
specific dynamical system, in a way similar to that used for the one-
dimensional system illustrated in Fig. 7.7.

Example 7.4. Let us determine &2

(Fig. 7.7) where

in the closed-loop control system

ko

KO(S):STH , KR(s) = kg,
2a
T () P —
Y (0? +a*)o*

It is easy to prove that y* (¢) is a result of integrating a signal with auto-
correlation function

R(7) = e_a‘r‘ .

Assume that the disturbance z(7) is a white noise, i.e. S, (®w) = c,

Ry*z (7) = 0. Assume that z(¢) is an additive noise added to y* (?) . Then

K7(s) = Ko(s)KR(s)-

Applying the formula (7.57) for )fk and £ we obtain

. . 2
1 e (Ko (jo)KR (jo)|
. . 2 2 2\ .2 . . 2 7
1+ Ko(jo)Kg (jo)| (@ +a)o”  |l+Ko(jo)Kg (jo)|

S ()=

The first term S ég (w) after substituting Ko and Kg may be presented in
the form

I 2a(a*T? +1)

Sep(@0)=———

Hi(0)H3(-w)

where
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Hy(@) =jTa’ — aTe’ —j(a+ o+ ok, k = kokg.

In a similar way, the second term Sgg (@) may be reduced to the form

S ()= — <
O i (@) o)
where
Hy(w) =—Ta)2+ja)+ k.
Using the formula (7.58) for & and the formulas (7.60), (7.61) in order to

determine the integrals of the both terms, after some transformations we
obtain

EZ:Tk+1+£ O
20%k 2

7.8 Non-parametric Optimization of Linear Closed-loop
Control System with Stationary Stochastic
Disturbances

For the linear stationary system (Fig. 7.7) with stationary stochastic distur-
bances, the non-parametric optimization is sometimes called a synthesis of
an optimal controller and consists in the determination of a linear control-
ler minimizing a mean-square control error. As in the case of analysis, we
shall start with a more general problem concerning the optimization of a
linear dynamical system. Let us assume that a signal x(¢) is a realization of
a stationary stochastic process and we want to obtain a signal which will
be a result of a linear transformation of the signal x(7), determined by a
transmittance H(s), i.e. we want to obtain a signal v(¢) such that V(s) =
H(s)X(s). For example, H(s) = s means that we want to differentiate the
signal x(7). If the transmittance H(s) is physically realizable (a degree of
the numerator is not greater than a degree of the denominator) and the sig-
nal x(7) is available without a noise then it is sufficient to put x(¢) at the in-
put of a system described by H(s) and to obtain v(¢) at the output. If H(s) is
not realizable and (or) only the signal with a stationary stochastic noise
x(#) + z(?) is available then we can try to determine such a transmittance
K(s) that the signal x(¢) + z(¢) put at the input of a system described by
K(s), gives at the output the signal w(¢) which is the best approximation of



184 7 Application of Probabilistic Descriptions of Uncertainty

v(f) , minimizing the mean-square error (Fig. 7.8). It is so called Wiener’s
problem. The typical and the most frequently considered cases of this
problem are the following:

1. Filtration
H(s)=1, ie. v(¢) = x(?).

2. Differentiation
H(s)=s, ie. v()= x(7).
3. Prediction
H(s)= e, ie. w()=x(1+T)

where 7> 0.

x(t)

H(s) .
()
\ c(0)
xozo [, o %;

Fig. 7.8. Illustration of the approximation problem under consideration

Optimization problem for the dynamical system: For the given H(s),
R (1), R,,(7), R,(7) one should determine the transmittance K(s) mini-
mizing the mean-square approximation error & % where e(®)=v(t)—w(r).
The given functions determine a functional which assigns the numbers
&2 to the functions K(s). By applying a variatonal calculus to the minimi-

zation of this functional one may show that the result should satisfy the
following integral equation:

o0
Ry (2) = [Rypy(z = Dki(A)dA, 720 (7.63)

0
where m(f) = x(¢) + z(¢), and k,(?) is the impulse response of the system to
be determined, i.e. K(s) is the Laplace transform of the function &;(¢). The
integral equation (7.63) with the unknown function k;(:) is called a Wie-
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ner-Hopf equation. It may be shown that its solution in the form of the fre-
quency transmittance K(jw) satisfying the realizability condition is as fol-

lows:
o0 o0 .
K(jw)= ; [er1ar Mejw’dw (7.64)
2 (jo) = Pr(jo)
where
#1(o) Yo @) = Sy o), (7.65)

Y (o) = ¥i(—jw), all poles and zeros of the function ¥(jw) lie in the up-
per half-plane. The presentation of §,,,, in the form (7.65) is always possi-
ble because S,,,,(®) is a real rational function and S, (®) = S,,;,(—®).

Consequently, for each pole (zero) of this function there exist three other

poles (zeros) lying symmetrically with respect to the both coordinate axes.
In the filtration problem S,,,, = Sy + Syz Sy = Syx + S22+ Sz + S5y Let

us note that

L 5@ jong, & g

2n T P (jo)

—00

is an inverse Fourier transform of the function Svm—@, and
7 (jo)

- ot 1 A

[Bt)e 1 dt = B(jw)

0

is the Fourier transform of the function £(¢) for # > 0. Consequently, in or-
der to determine B(jw) and then to determine

B(jw)
#1(jo)

K(jo) =

Svm(@)
#(jo)
tions and take into account only the fractions corresponding to the poles in
the upper half-plane.

according to (7.64), one should present as a sum of partial frac-

Optimization problem for the closed-loop control system: For the given
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Ko(s), Kz(s), Ry*y* (7), R(7), Ry*z(r) in the system presented in

Fig. 7.7, one should determine the transmittance Kr(s) minimizing the

mean-square control error & 2,
Without loss of generality one may assume that z(7) is an additive noise

added to y*(t), i.e. Ky =—-KpKg. Then it is not the control error ¢ but the
signal e = y* + z — y that is put at the input of the controller. Denote by

z () a disturbance acting on the plant according to the transmittance K,
(as in the analysis problem in Sect. 7.7). The disturbance z (¢) may be re-

placed by the disturbance z(7) added to y>k , and

Z(S) _ KZ(S)
Ko (s)KR (s)

The closed-loop control system with the input y* + z and the output y may

Z(s).

be treated as a filter. Consequently, we can determine the transmittance of
the closed-loop system as a whole

Ko(9)KR(s) A K(s) (7.66)
1+ Ko (s)KR () '

in the same way as the transmittance of an optimal filter in the problem
considered in the first part of this section. Then, from the equation (7.66)
for the given transmittances K (s) and Kq(s) one should determine Kg(s),
i.e. such transmittance of the controller that the control system as a whole
acts as an optimal filter. It is worth noting that in some cases the transmit-
tance Kr(s) determined in this way may be unrealizable. The considera-
tions for multi-dimensional systems with matrix correlation functions and
matrix spectral densities are similar but much more complicated. Analo-
gous problems and methods may be formulated and applied for discrete
systems in which discrete correlation functions

1 N
R..(m)= lim X, X
o () Now 2N+1n:Z_:N” mem

and discrete spectral densities

. w .
Syx (e]a)) = Z Ry (m)e_me

m=—o0
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occur. Wide considerations concerning the analysis and optimization prob-
lems for linear systems with stationary stochastic disturbances may be
found e.g. in [100] and for discrete systems also in [102].

Example 7.5. Let us consider the control system with the plant Kq(s) = kg
and the stationary stochastic input y*(t) + z(¢). Assume that

b

L A7l

R+« «(r)=—e
Yy 2 2
z(?) is a white noise, i.e. S,,(7) = ¢, the signals y* and z are uncorrelated.

One should find the optimal controller Kg(s) minimizing the mean-square
control error.
Using Fourier transformation of the function Ry*y* yields

S« x =

In the case under consideration m(z) = y* O +z@), v(t)= y*(t) (the filtra-
tion problem) and

1
Son =8 * x = ,
R
1 W1+c2 +joe)W1+c? - joc)
Smm:S**+Szz: 5 +c = - - .
oy o +1 (+jo)(1-jw)
Then
2 .
. Vi+c” +joc
5Ul(Ja)):—.J-
1+ jw
Consequently

Sum (@) _ 1 I U N c
P1(-00) (14 joni+c? —joc cVl+c? 1HI0 (142 Zjme

).

In the above expression only the first fraction corresponds to the pole in
the upper half-plane (0 =j), i.c.
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1
(c+\/l+c2)(1+ja))

B(jo)=

and the optimal transmittance of the closed-loop control system as a whole
is the following:

_ B(s) _ 1
) (o142 )W1+e? +50)

K(s)

Solving the equation (7.66) with respect to Kr(s) for the given Kp(s), we
obtain

kr
K - _"R
R(S) sT +1

where

i
ko =
S kole 1+ A1 e? 1]

T c(c+\/1+cz)

_(c+\/1+cz)\/1+cz—1‘

2

In this way it is possible to determine the transmittance of the optimal con-

troller if
(c+Vl+c2Wl+e? >1

i.e. if ¢ is sufficiently large. O

7.9 Relational Plant with Random Parameter
Let us turn back now to the static plant with the input #€ U and the output
yeY, and let us consider a relational plant described by the relation

R(u, y; c) c UxY

where ¢ is an unknown parameter. Assume that ¢ is a value of a random
variable ¢ described by the probability density f,.(c). This is a case of so
called second order uncertainty or two-level uncertainty. The first (lower)
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level denotes the uncertainty concerning the plant and described by the re-
lation R which is not a function. For example, for one-dimensional case
the description

cu<y<2cu (7.67)

means that the plant is non-deterministic and for the same value u, differ-
ent values y satisfying the inequality (7.67) may occur at the output. In our
consideration ¢ is an unknown parameter which means an expert’s uncer-
tainty (see remarks in Sect. 6.1). This is the second uncertainty level de-
scribed here by the probability distribution f,.(c). Hence, the relational

plant with a random parameter is a plant with the second order uncertainty,
where a plant uncertainty is described in a relational way and an expert un-
certainty is characterized in a probabilistic way. The second description
means that the parameter ¢ in the plant has been randomly chosen from
the set of values C described by the probability density f.(c) or that the

plant has been randomly chosen from the set of plants with different values
¢ in the relation R. If the relation R(u,y;c) is reduced to the function

y = @(u, c) then for the fixed u the output y is a value of the random vari-
able y=®(u,c) and the analysis problem may consist in the determina-

tion of the probability density /), (y;u) for the fixed u. If R is not a func-
tion, such a formulation of the analysis problem is not possible. Now, for
the fixed u the set of possible outputs

Dy(u; c) = {yeY: (u, y)eR(u, y; ©)}
may be found (see (6.6)). Consequently, # does not determine a random
variable y but a random set D)(u; ¢ ). Then the analysis problem for the

given y may consist in the determination of the probability that this value
may occur at the output of the plant. The problem may be generalized for

a set of output values A, c Y given by a user.

Analysis problem: For the given R, f.(c ), u and A, one should determine
A
P[A, € Dyfu; ©)] £ p(A,, u), (7.68)

L.e. the probability that every value y belonging to the set A, given by a
user may appear at the output of the plant.
Let us note that

P[A, € Dy(u; €)] = PLc €D(Ay, w)] (7.69)
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where
D(Ay, u) = {ceC: Ay, Dy(u; )}
Consequently,
pA, )= [fu(c)de. (7.70)
De (A ,u)

In particular for A, = {y} (a singleton), the probability that the given value
y may appear at the output of the plant is the following:

pra) = [fo(c)de
D¢ (y,u)
where

Dy, u) = {ceC: yeDy(u; c)}.

Decision making (control problem): For the given R, f.(c) and D,, formu-
lated by a user one should determine the decision u' maximizing the prob-
ability

P[Dy(u; ¢) < D] 2 p(u). (7.71)

This is one of possible formulations of the decision problem, consisting in
the determination of the decision " maximizing the probability that the
set of possible outputs belongs to the given set D,, i.e. that y not belonging

to D), will not appear at the output. Another version of the decision prob-
lem is presented in [52]. Since

PIDy(u;¢) < Dy] = P[c DD, u)] (7.72)
where
DDy, u) = {ceC: Dyu;c) D)}
then
u = arg max jfc (c)dc. (7.73)
" D.(Dy.u)

The above considerations can be extended for the plant described by the
relation R(u, y, z; ¢) where z is the disturbance which is measured. Then,

for the given R, f.(c), z and D), the decision making problem consists in
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finding the decision # maximizing the probability

PIDyu,z; ¢)= D] 2 plu, 2)
where

D\(u,z; c)={yeY: (u,y,2)eR(u, y, z; ©)}.

In the way similar to that for the plant without the disturbances, we shall
determine u = ¥(z), i.e. the control algorithm in an open-loop system. It
will be a control algorithm determined directly by using the knowledge of

the plant KP = <R, f. >, i.e. a control algorithm based on the knowledge of
the plant. For the fixed ¢ and z, in the same way as in (6.19) one can de-
termine the largest set D,(z; ¢) for which the implication

ueD,(z; ¢) > yeD,

is satisfied. Since ueD,(z; ¢) and D\(u, z; ¢) € D,, are equivalent proper-
ties, the relationship # =%(z) may be also obtained by maximization of
the probability

PlueD,(z;c)] = [f.(c)de
DC
where

De=DJD,, u,z) = {ceC:ueD,(z, c)}.

Such a way of obtaining the decision u =%(z) or the decision " in the

case without disturbances, makes it possible to present a more understand-
able practical interpretation of the result: This is a decision which with the
greatest probability belongs to the set of decisions D,, for which the re-

quirement y € D,, is satisfied. It is worth noting that it is not a probability
that y € D,, because the properties v € D, and y € D,, are not equivalent.
Then the implication inverse to ueD,— yeD, may not be satisfied and
consequently, for y the probability distribution f),(y) does not exist, i.e. y
is not a value of a random variable under the assumption that R is not a

function.

Example 7.6. Let us determine the optimal decision u" for one-
dimensional plant and the following data:
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cus<y<2cu, uz0, D,=[y¥l N,

de ™ for ¢>0

fc(c) =

In this case the set D.(D,,,u) is determined by the inequality

R4l <c< y_z.
u 2u
Then
Y2
i Y1 Y2
p)= [ fo(c)de = exp(~1=L) - exp(-A=2).
u 2u
P4t
u
From the equation
dp() _
du

after some transformations we shall obtain

A2 - )

u' = argmax p(u) = 2
u 11’1y2 — 11’12y1



8 Uncertain Variables and Their Applications

In Chap. 7 we assumed that values of unknown quantities (parameters or
signals) were values of random variables, i.e. that they had been chosen
randomly from determined sets and the descriptions of the uncertainty had
a form of probability distributions. Now we shall present the applications
of two non-probabilistic descriptions of uncertainty, given by an expert
and characterizing his (or her) subjective opinions on values of the un-
known quantities. These will be descriptions using so called uncertain
variables and fuzzy variables. We shall assume in the first case that values
of the unknown quantities are values of uncertain variables, and in the sec-
ond case that they are values of fuzzy variables. Consequently, we shall
speak about uncertain plants and uncertain control algorithms in the first
case, and about fuzzy plants and fuzzy control algorithms in the second
case. In the wide sense of the word an uncertain system is understood in
the book as a system containing any kind and any form of uncertainty in its
description (see remarks on the uncertainty in Chaps. 6 and 7). In a narrow
sense, an uncertain system is understood as a system with the description
based on uncertain variables. In this sense, such names as “random, uncer-
tain and fuzzy knowledge” or “random, uncertain and fuzzy controllers”
will be used. Additional remarks will be introduced, if necessary, to avoid
misunderstandings.

This chapter concerns the first part of non-probabilistic descriptions of
the uncertainty and is devoted to the applications of uncertain variables to
analysis and decision making in uncertain control systems. The applica-
tions of fuzzy variables will be presented in Chap. 9. Foundations of the
uncertain variables theory and their applications to analysis and decision
making in uncertain systems may be found in two books [43, 52] and in a
lot of papers [26, 32-37, 41, 44, 47, 51, 55, 56].

8.1 Uncertain Variables

Let @ €£2 denote an element of a certain set (2 for which the function
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x=g(w) a Xx(w) determines the value of a certain numerical feature as-

signed to the element @w. For example, {2 is a determined set of persons
and x(w) denotes the age of the person , or (2 is a set of resistors and

x(w) denotes the resistance of the resistor @. Let us assume that the ex-
pert does not know the exact value of x for the fixed given @, but using
some information concerning x and his experience, he gives different ap-
proximate values xi, xp, ..., x,, of x and for each of them presents a de-
gree of certainty v(x;) that x; is an approximate value of the feature x .
The estimation v(x;) will be called a certainty index that x is approxi-

mately equal to x;.

For example, the expert looking at the person @ characterizes the age
of ® as follows: v(46) = 0.3, v(47) = 0.6, v(48) = 0.7, v(49) = 0.7,
v(50) = 1.0, v(51) = 0.9, v(52) = 0.8, v(53) = 0.5; which means: “® is ap-
proximately 46 years old” with the certainty index 0.3, “®@ is approxi-
mately 47 years old” with the certainty index 0.6 etc.

Let us note that the sentence “Xx is approximately equal to x” for the
fixed x is not a proposition in two-valued logic, i.e. it is not possible to say
whether it is true (its logic value is equal to 1) or false (its logic value is
equal to 0). Two-valued propositional logic deals with propositions (¢,
o, ...) whose logic values w(a)e{0,1}, and the logic values of negation
—a, disjunction @pvay, and conjunction @A, are defined by using

w(a), w(aq) and w(e). The set {0,1} with the definitions of the operations
mentioned above is called a two-valued logic algebra.

In multi-valued logic we consider the propositions for which the logic
value w(a)€[0,1], i.e. may be any number from the set [0,1]. The opera-
tions in the set of logic values may be defined as follows:

wa)=1-w(a),
w(aq v ay)=max{w(a;), w(as)}, (8.1)

w(a Aay)=min{w(a)),w(ay)}

where max (min) denotes the greater (the less) from the values in the
brackets. It is easy to note that the definitions (8.1) are the same as the
known definitions of the operations —, v, A in two-valued logic algebra.
So the algebra [0,1] with the definitions (8.1) is an extension of two-valued
logic algebra to the set [0,1]. In Sect. 6.1 a predicate in two-valued logic
has been defined. In multi-valued logic a predicate is such a property ¢(x)
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concerning the variable xeX, which for a fixed value x is a proposition in
multi-valued logic, i.e. w[@(x)]€[0,1] for every x. If w[e@(x)]e {0,1} for
every x then ¢(x) will be called a crisp property. Otherwise, ¢(x) will be
called a soft property. There exist different interpretations of the logic
value in multi-valued logic. In our considerations w[@(x)] denotes a de-
gree of the expert’s certainty that for the fixed x the property ¢(x) is satis-
fied. It will be denoted by v[@(x)] and called a certainty index of the prop-
erty ¢(x).

Now we shall present formal definitions of two versions of an uncertain
variable (in general — a vector uncertain variable). Let X R¥ denote real

number vector space and g: 2 — X denote a function x = 2(w) 4 x(w)

where )?g R and )?QX

Let us introduce two soft properties:
1. The property “x = x” which means: “x is approximately equal to x”.
The equivalent formulations are the following: “x is an approximate value
of x” or “x belongs to a small neighbourhood of x ”. This is a soft prop-
erty in X. Denote by /4(x) the logic value of this property

Ww(x 2x) = v(x =x) 2 hx)
and assume that

max h(x)=1.
xeX

2. The property “Xx €D,” where D, X, which means: “an approximate
value of x belongs to D,” or “x approximately belongs to D,”. This is a
soft property of a family of sets D,, generated by “x = x” and the crisp

property “xeD,”. The variable x will be called an uncertain variable. the
complete definition contains /4(x) and the definitions of the certainty in-
dexes V(X €D,), W(x €D,), W(x ED|vX €D,), W(x €D|AX €D,) where
Dy, Dy cX [36,37,52].

Definition 8.1 (uncertain variable). An uncertain variable x is defined by
the set of values X, the function A(x)=v(x = x) (i.e. the certainty index
that x = x, given by an expert) and the following definitions:

max h(x) for D, #O

WEED,)=] xeD, (82)
0 for D, =0,
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v(x€D,)=1-v(x€D,), (8.3)
V()_CEDlV)_CEDz):maX{V()_CEDl),V()_CEDz)}, (84)

v(x € Dy AX € Dy)
_{min (v(x € D)), W(x €D,)} for DyNDy #J

0 for D,~D, =@ . (&9

The function /4(x) will be called a certainty distribution. O
In particular, two cases can occur: the discrete case when X = {x}, x»,

..., X;;,} and the continuous case when A(x) is a continuous function.

In the definition of the uncertain variable not only the formal description
but also its interpretation (semantics) is important. The semantics are pro-
vided in the following: for the given w it is not possible to state whether
the crisp property “xeD,” is true or false because the function g(w) and
consequently the value of x corresponding to @ are unknown. The exact
information, i.e. the knowledge of the function g is replaced by the cer-
tainty distribution /%(x), which for the given @ characterizes the different
possible approximate values of x(®) . The expert giving the function /4(x)
in this way determines for the different values x his degree of certainty
that x is approximately equal to x. The certainty index may be given di-
rectly by an expert or may be determined when x is a known function of
an uncertain variable y described by a certainty distribution /,(y) given by
an expert.

Using the definitions (8.2)—(8.5) one may prove the following theorem
concerning the property v(x € D,) [52].

Theorem 8.1.
W(x €DyUDy) =max {w(x €Dy), (X €D,)}, (8.6)
W(x €DyNDy) <min {W(X €D;), W(x €Dy)}, (8.7)
WX ED)2WX D) =1-v(x ED,) (8.8)

where D, is a complement of D,,ie. D,=X-D,. 0O
It is worth noting that the certainty index v of the property “x ap-
proximately belongs to the complement of D,” may be greater than the

certainty index v of the property “x does not belong approximately to D,”
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or “an approximate value of x does not belong to D,”.
We shall define now another version of the uncertain variable called a
C-uncertain variable. In this version the logic value w(x € D,) denoted by

v 1s defined in another way.

Definition 8.2 (C-uncertain variable). A C-uncertain variable x is defined
by the set of values X, the function A(x)=v(x = x) given by an expert and
the following definitions:

vc()_cEDx)zé[xn;%x h(x)+1—- max h(x)], (8.9)
x xeD,

ve(X D) =v. (X ED,), (8.10)

V(X ED|VXED,y)=v (XD UDy) , (8.11)

V(X ED| AXED,y)=v (X Dy N Dy) . (8.12)

O

According to (8.2) and (8.3)
V(X €Dy) = %[V()_c ED)+ WX & D,)]
=%[v(7c ED)+1-w(x €D, (8.13)

In the formulation of w(x €D,), the certainty index of the property

x €D, is defined “in a positive way”, and in the formulation of

WX & Ex) 2 v, (X €D,) — is defined “in a negative way” as a certainty
index that x does not belong approximately to the complement of D,. The
certainty index v, is defined “in a complex way” taking into account the
both properties “x €D,” and “X ¢ Bx ” which are equivalent for C-
uncertain variable (see (8.10)).

For example, if max [A(x): xeD,] = 0.8 and max [A(x): xe Ex] =1
(Fig. 8.1) then w(x €D,) = 0.8, v(XxED,) =1 - w(x ED,) = 0,
v(x €D,)=0.4.

Thus, in the definition of v.(x €D,) the values of A(x) in the set Ex
are also taken into account. It is also worth noting that in the case of C-
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uncertain variable the logic operations (negation, disjunction and conjunc-
tion) correspond to the operations in the family of sets D, (complement,
union and intersection). On the other hand, one should note that the cer-
tainty indexes v, for disjunction and conjunction are not determined by
v{(x €D;) and v.(x €D,), i.e. the determination of these indexes cannot

be reduced to the operations in sets of the indexes v (x € D,).

h(x)

Fig. 8.1. Example of certainty distribution

The theorem presenting relationships between the operations for v,
analogous to Theorem 8.1, is as follows:

Theorem 8.2.

VC(J_C ED1UD2) 2 max {VC(J_C EDl), VC(J_C EDz)},
V(X ED;NDy) < min {v(X EDy), v(X EDy)},

V(X €Dy)=1—-v (X EDy). O

The formula (8.9) or (8.13) can be presented in the form

v(X €D,)
1 | . )
—max h(x)=—v(x €D,) if max A(x)=1
_ | 2xeDy 2 xeD, (8.14)

1 —~ 1 = .
l-—max A(x)=v(xeD,)——v(xeD,) otherwise.
)CEB 2
X
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In particular, for D, = {x} (a singleton), the function v.(x = x) 4 h(x)
may be called a C-certainty distribution. It is easy to note that in a continu-

ous case A (x) = %h(x), and in a discrete case

%h(xl-) if maxh(x)=1
he(x) = (8.15)
1 ——max A(x) otherwise.
X#X;

The C-certainty distribution %.(x) does not determine the certainty index
v/ x €D,). In order to determine v, one should use A(x) given by an ex-
pert and apply the formula (8.9) or (8.13). For the uncertain variable one
can define a mean value M(x) in a similar way as an expected value for a
random variable. In the discrete case

m o _
M(x) = D x;h(x;)
i=1
where

h(x;) :—mh(xi) :

2 h(x;)
J=1
In the continuous case

M(x) = [xh(x)dx,
X
() =—0)_
[h(x)dx
X
under the assumption that the respective integrals exist. For C-uncertain
variable the definition of M, (x) is identical, with /.(x) instead of A(x). It

is easy to note that in the continuous case M, = M.

Let us now consider a pair of uncertain variables
(x,y)=<X xY,h(x,y)> where h(x,y)=v[(x,y)=(x,y)] is given by
an expert and is called a joint certainty distribution. Then, using (8.1) for
the disjunction in multi-valued logic, we have the following marginal cer-
tainty distributions:
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he(x)=v(x =x)= max h(x,y), (8.16)
yeY
h,(M)=v(y=y)= ma;;h(x,y)- (8.17)

If the certainty index v[x(@)=x] given by an expert depends on the
value of y for the same @ (i.e. if the expert changes the value /4, (x)

when he obtains the value y for the element @ “under observation”) then
h,(x|y) may be called a conditional certainty distribution. The variables

X,y are called independent when
he(x]3) = e (), Iy (%) =y (7).
Using (8.1) for the conjunction in multi-valued logic we obtain
h(x,y)=v(x =x Ay =y) =min{hy(x), hy,(y |x)}
=min{hy, (), by (x[ )} (8.18)

Remark 8.1. The definitions of two versions of the uncertain variables
are based on the definitions of so called uncertain logics described in [43,

52]. O

Example 8.1. Let X= {1, 2, 3,4, 5, 6, 7} and the respective values of A(x)

be (0.5, 0.8, 1, 0.6, 0.5, 0.4, 0.2), i.e. A(1) = 0.5, h(2) = 0.8 etc. Using
0.8

(8.15) we obtain A(1) = 025, he(2) = 04, h(3) = 1-== = 06,

h(4)=0.3, h (5)=0.25, h(6)=0.2, h(7)=0.1.
Let

D={1,2,4,5, 6}, D,={3,4,5}.

Then DyUD,= {1,2,3,4,5,6), DinDy= {4, 5}, v(x €D;) = max {0.5,
0.8,0.6,0.5,0.4} =08, W(x €D,y) =1, v(x €DyuUD,)=max {0.5,0.8, 1,
0.6,0.5,0.4} =1, w(x €Dyvx €D,;)=max {0.8, 1} =1, v(x € D;"\Dy)
=max {0.6,0.5} =0.6, v(x € DjAx €D,)=min {0.8,1} =0.8.
Using (8.14) we have
v(x €Dq) = %v()_c eD;)=0.4,

— o~ 1~ .
vi(x €Dy)=1- Ev(x eDz):1—¥ =0.6,
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VC()_C EDI\/)_C EDz):VC()_C ED]UDz): 1- % =0.9,
— — ~ -~ 0.6
v(x €eDiAXx €Dy)=v(x €DiNDy) = > =0.3.

In the example considered, for D; as well as for D, we have
v x €D)=max h,(x) for xeD. Let D= {2,3,4}. Now
v(x €D)=1- % =0.75

and

max /.(x) =max {0.4,0.6,0.3} =0.6 <v,. |

8.2 Application of Uncertain Variables to Analysis and
Decision Making (Control) for Static Plant

Now let us consider shortly decision making problems using uncertain
variables, analogous to the problems considered in Sects. 7.1, 7.2 and 7.9
for the static plant with a probabilistic description of uncertainty. The deci-
sion problems will be preceded by a short presentation of the analysis
problems.

8.2.1 Parametric Uncertainty

Let us consider a plant described by a function
y=Du, z,c)

where zeZ is a vector of the disturbances which can be measured (see
(7.9)) and ceC is an unknown vector parameter which is assumed to be a
value of an uncertain variable with the certainty distribution #4.(c) given
by an expert. Consequently, » is a value of an uncertain variable

y=®u,z, c).
Analysis problem: For the given @, h.(c), u and z find the certainty dis-
tribution £,,(y) .

According to (8.2)

hy(ysu,2)=v(y =y)=v[c € Do(y;u,z)]=  max  h.(c)  (8.19)
ceD.(y;u,z)
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where
D.(y;u,z)={ceC:®D(u,z,c)=y}.
Having %,,(y;u,z) one can determine the mean value

M, (Vsu,2) = [yh, (ysu2)dy-[ [hy (v;u,2)dv] ™ 2 @y(u,z)  (8.20)
Y Y

(for the continuous case) and

y = arg max hy, (yiu,z),
yeY

i.e. such a value y that h,(y;u,z)=1.1If @ as a function of ¢ is one-to-
one mapping and ¢ = @_1(u,z,y) then
-1

hy(ysu,z)=he[@ " (u,z,)] (8.21)

and y=®(u,z,c) where ¢ satisfies the equation 4.(c)=1. It is easy to

note that y =y, where

Ve =argmax g, (v;u,z)
yeY

and h,, is a certainty distribution for the C-uncertain variable.
Decision problem: For the given @, h.(c), z and 3"
I. One should find « 2 u, maximizing v(y = y*).

IL. One should find u 2 up, such that M, (y) = y* .
In version I

u, =argmax®,(u,z) 2 ¥,(z) (8.22)
uelU

where @,(u,z) = hy(y*;u,z) and h, is determined according to (8.19).
The result u,, is a function of z if u,, is a unique value maximizing @, for
the given z.
In version II one should solve the equation
Dy (u,z)=y" (8.23)

where the function @), is determined by (8.20). If equation (8.23) has a
unique solution with respect to u for the given z then as a result one ob-
tains uy, = ¥} (z) . The functions ¥, and ¥ are two versions of the deci-
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sion algorithm # = ¥ (z) in an open-loop decision system. It is worth not-
ing that u,, is a decision for which v(y = y*) =1.
The functions @,, @, are the results of two different ways of deter-

minization of the uncertain plant, and the functions ¥,, ¥, are the re-
spective decision algorithms based on the knowledge of the plant (KP):

KP=<®,h. >. (8.24)
Assume that the equation

D(u,z,c)= y*
has a unique solution with respect to u:

ul @,(z,0). (8.25)

The relationship (8.25) together with the certainty distribution /4.(c) may
be considered as a knowledge of the decision making (KD):

KD=<®,,h, >, (8.26)

obtained by using KP and y* . Equation (8.25) together with 4, may also

be called an uncertain decision algorithm in the open-loop decision sys-
tem. The determinization of this algorithm leads to two versions of the de-
terministic decision algorithm ¥, corresponding to versions I and II of

the decision problem:

Version I.
U,y =argmax hy, (u;2) = ¥,4(2) (8.27)
uelU
where
h,(u;z)= max h.(c) (8.28)
ceD.(u;z)
and
D.(u;z)={ceC:u=Dy(z,c)}.
Version II.

Upg =M, (i1:2) & ¥pa(2). (8.29)

The decision algorithms ¥,; and ¥, are based directly on the

knowledge of the decision making. Two concepts of the determination of
deterministic decision algorithms are illustrated in Figs. 8.2 and 8.3. In the
first case (Fig. 8.2) the decision algorithms ¥,(z) and ¥j(z) are ob-

tained via the determinization of the knowledge of the plant KP. In the
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second case (Fig. 8.3) the decision algorithms ¥,;(z) and ¥,,(z) are
based on the determinization of the knowledge of the decision making KD
obtained from KP for the given y*. The results of these two approaches
may be different.

Y. ——= Pant |——>

KP

Determinization ¥——
<@,hy >

Fig. 8.2. Decision system with determinization — the first case

z
z Uqg y
Yad: ¥bd Rant ——
Determinization
y KD KP
<®q.hy> <@, hy>

Fig. 8.3. Decision system with determinization — the second case
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Theorem 8.3. For the plant described by KP in the form (8.24) and for KD
in the form (8.26), if there exists an inverse function ¢ = o (u,z,y) then
Y, (2)=¥4(2).
Proof: According to (8.21) and (8.27)
hy (v su,2) = ho [0 (2,7,
y (32) = h[@7 (w2, ).
Then, by using (8.22) and (8.27) we obtain ¥,(z)=¥,,(z). O

Example 8.2. Let u, y,c, z eR' and
y=cu+z.
Then
M, (y)=uM.(c)+z

and from the equation M, ()= y* we obtain

*

y —z
up =¥p(2) =———.
M, (c)
The uncertain decision algorithm is
y =

u=Qy(z,c)=

and after the determinization
Upg =¥pa(2)=(y" — M. ) =¥ (2). O
This very simple example shows that the deterministic decision algo-
rithm ¥}, (z) obtained via the determinization of the uncertain plant may
differ from the deterministic decision algorithm ¥);(z) obtained as a re-
sult of the determinization of the uncertain decision algorithm.

8.2.2 Non-parametric Uncertainty

Now we shall present a non-parametric decision problem analogous to that
described in Sect. 7.2 for the probabilistic description of uncertainty. Con-
sider a static plant with input vector u €U, output vector y€Y anda

vector of external disturbances z €Z, and assume that (u, y,z) are values
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of the uncertain variables (u,y,z) . The plant is described by
KP=<h,(ylu,z)>
where %), (y|u,z) is a conditional certainty distribution given by an ex-

pert. The decision problem consists in finding an uncertain decision (con-
trol) algorithm in the form of #,(u|z) for the required A)(y) given by a
user.

Decision (control) problem: For the given KP=<h,(y[u,z)> and
h,(y) required by a user one should determine 7, (u|z).

The determination of 4, (u|z) may be decomposed into two steps. In
the first step, one should find the function 4, (u,z) satisfying the equa-
tion

h,(y)= max min{h,, (u,z), h,(ylu,z)} (8.30)
uel,zeZ

and the conditions for a certainty distribution:

uelU zeZ ue
In the second step, one should determme the function 4, (u|z) satisfying
the equation

h,,(u,z) =minth,(z),h, (u|z)} (8.31)
where
h,(z) =mal>]< hy, (u,z), (8.32)

and the conditions for a certainty distribution:

/\ Ahu(mz)zo, A max i, (u|z) =1.

uelU zeZ zez ueU

The solution may be not unique. The function #,(«|z) may be consid-
ered as a knowledge of the decision making KD =<#, (u|z)> or an un-
certain decision algorithm (the description of an uncertain controller in
the open-loop control system). Having /4, (u |z) , one can obtain the deter-
ministic decision algorithm ¥(z) as a result of the determinization of the
uncertain decision algorithm 4, (u|z). Two versions corresponding to the
versions presented in Sect. 7.2 are the following:
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Version I.
u, =argmaxh, (ulz) 2 ¥, (z). (8.33)
uelU
Version I1.
up =M, (u|2) = [uh,, (u|2)du [ jhu(u|z)du]‘1 B¢, (2). (8.34)
U U

The deterministic decision algorithms ¥,(z) or %,(z) are based on the
knowledge of the decision making KD =<h,(u|z)>, which is deter-
mined from the knowledge of the plant KP for the given # y(»).

Theorem 8.4. The set of functions 4, (u|z) satisfying equation (8.31) is
determined as follows:
o (] 2) = {: h,,(u,z) for (u,z)¢ D(u,z) (8.35)
2 hy,,(u,z) for (u,z)eD(u,z) (8.36)
where
D(u,z)={(u,z)eUxZ: h,(z)=h,,(u,z)}.

Proof: From (8.31) it follows that

A A [h2(2) 2 Iy (u,2)].

uelU zeZ
If h,(z)>h,,(u,z) then, according to (8.31), h,,(u,z)=h,(u|z). If
h,(z)=h,,(u,z),1.e. (u,z) € D(u,z) then h,(u|z) = h,,(u,z). O
In general, the solution of the problem in the second step is not unique,
i.e. we can choose any function 4, (u|z) satisfying the condition (8.36)

for (u,z) €D(u,z), such that

A max h,, (u|z)=1.

zez uelU
For the fixed z, the set

D,(z)={u el :(u,z) eD(u,z)}
is a set of values » maximizing h,,(u,z). If D,(z)={u(z)} (a single-
ton), then

u(z) = argmaxh,,, (u,z)
uelU
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and h,(ulz) =1, ie.

hy,,(u,z) for u=#u(z)

h, (u|z) :{ (8.37)

1 for u=u(z).

It is easy to note that A, (u|z) determined by (8.37) is a continuous func-
tion for every zeZ if and only if

A [h,(2) =1],

zeD,
1.€.
/\ [max h,,, (u,z) =1] (8.38)
zeD, uelU
where

D, ={zeZ :v h,,(u,z) #0} .
uelU
If the condition (8.38) is satisfied then /(u|z)=h,,(u,z) . In this case , ac-
cording to (8.33) the decision u, does notdepend on z and the decision
up (8.34) does not depend on z if wuy =u,. It is worth noting that if
D, (z) 1is a continuous domain, we may obtain a continuous function

h,(u|z) and the decisions u,, u;, dependingon z.

Remark 8.2. The distribution /,,(y[u,z) given by an expert and/or the

result 4, (u|z) may not satisfy the condition max/ =1 (see Example 8.3).
The normalization in the form

o (| z) = —Tu@12) (8.39)

maxh,, (u|z)
uelU

is not necessary if we are interested in the deterministic decisions u, and

uy, , which are the same for %, and Zu . O

In a way analogous to that for the probabilistic description (Sect. 7.2),
we may formulate two versions of the non-parametric decision problem for

the deterministic requirement y = y>k :
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Version I.

ug =maxh, (v |u,z) 2, (2).
uelU

Version I1. uy, -] ’{_’b(z) is a solution of the equation
[yh, v lwzydy [ [h, (ylu,2)dy) " ="
Y Y
The deterministic algorithms #,(z) and ¥}(z) are based on the deter-
minization of the plant and, in general, differ from the algorithms ¥, (z)
and %} (z) in (8.33) and (8.34), obtained via the determinization of the un-

certain decision algorithm 4, (u|z) .

Example 8.3. Consider a plant with u, y,z€ R ! , described by the condi-
tional certainty distribution given by an expert:

hy(ylu,z)=—(y—d)* +1-u—(b-2) (8.40)
for
1 1
0<u<—, b—ESZSb,

~fl—u—(b-z)+d<y<l-u—(b-z) +d,

and £, (y|u,z) =0 otherwise.

hy(y)
1 ,,,,,,,,,,,

|

|

|

|

|

|

|

|

i
c - 1 c c+1 y

Fig. 8.4. Parabolic certainty distribution

For the certainty distribution required by a user (Fig. 8.4):

—(y—c)2+1 for c-1<y<c+1
otherwise ,

7y (7) ={

one should determine the uncertain decision algorithm in the form
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hy(u|z)=hy, (u,2) .
Let us assume that >0, ¢>1 and

c+1<d<c+2. (8.41)

Then the equation

hy,(y)=hy(y|u,z)
has a unique solution y(u,z), which is reduced to the solution of the equa-

tion
—(y=0)? +l=—(y-d)? +1-u—(b-2)
and
d> - vu+b-z 1 u+b—z
y(u,z) = =—(d+c+ ). (8.42)
2(d—c) 2 d-c

Using (8.42) and (8.41) we obtain

huz (u | z)= huz (u,z) = hy[y(u’z)]

(a’—c)2 +u+b—z

-
2(d—C) 1 1
= OSUS—’ b——SZSb
2 2

P 1 for u<l-[(d—c)-1* =(b-2),

0 otherwise -

The values of 4, (u,z) may be greater than zero (i.e. the solution of our
decision problem exists) if for every z

1-[(d—-¢)-1> =(b—2)>0. (8.43)

Taking into account the inequality
0<h—z< 1 ,
2
and (8.41), we obtain from (8.43) the following condition:

1
d—c<l+—.
V2
Note that the description (8.40) given by an expert and the solution
h,(u|z)=h,,(u,z) do not satisfy the condition max/ =1 (see Remark

82). O
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8.3 Relational Plant with Uncertain Parameter

Let us consider the plant such as in Sect. 7.9, i.e. described by the relation
R(u, y; c) c UxY

with an unknown parameter ceC which is assumed to be a value of an un-
certain variable ¢ with the certainty distribution %.(c) given by an expert.
As in Sect. 7.9 let us introduce the set of possible outputs for the given u

D\(u; )= {yeY: (u,y) eR(u, y; c)}. (8.44)

Analysis problem: For the given R, 4.(c), u and A, c Y one should de-
termine

VA, E Dy )] 2 g(dy,w), (8.45)

Le. the certainty index that every value y belonging to the set A, given by
a user may appear at the output of the plant. In other words, this is the cer-
tainty index that for the given u the approximate set of possible outputs

contains all values from the set A, or that the set of possible outputs ap-

y’
proximately contains the set A,,.
Let us note that

v[A, c Dy(u;c)]=v[c EDC(Ay, u)] (8.46)
where

DAy, u)={ceC: A, c D\(u; c)}.
Then

g, u)= max h.(c). (8.47)
ceD.(Ay,,u)

In particular, for A, ={y} the certainty index that the given value may
appear at the output of the plant is the following:

gy, u)y= max h.(c)

ceD.(y,u)
where
D(y,u)={ceC: yeD/(u;c)}.

The formulas (8.45), (8.46) and (8.47) are analogous to the formulas
(7.68), (7.69) and (7.70) for the probabilistic description.
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Decision making problem: For the given R, /.(c) and D,,c Y formulated
by a user one should determine the decision u' maximizing

VIDy(w;¢) E D] 2 v(u) (8.48)

where D, (u; ¢) is defined by the formula (8.44).

It is one of possible formulations of a decision problem, consisting in
the determination of the decision u" giving the greatest certainty index
that the approximate set of possible outputs (i.e. the set of possible outputs
for an approximate value of ¢ ) belongs to the given set D,, or that the set

of possible outputs approximately belongs to D). Since

V[Dyu;¢) € D)) =v[c €DDy,u)]= max  hc) (8.49)
ceD,. (Dy ,u)

where
DDy, u)= {ceC: D(u;c)c D, }
then

u'= arg maxv(u) = arg max max h(c). (8.50)
u u ceD.(Dy,u)

The formulas (8.48), (8.49) and (8.50) are analogous to the formulas
(7.71), (7.72) and (7.73) for the probabilistic description. It is worth noting
that the solution may be not unique, i.e. we may obtain the set of decisions

D, (8.50). Denote by ¢ the value maximizing 4., i.e. h.(c )= 1. Then
D,={ucU: ¢ eD.D,,u)} (8.51)
and for every ueD,, the maximum value of the certainty index v(u) = 1.

Hence, to determine D, it is not necessary to know the form of 4.(c) but

it is sufficient to know ¢ only. If ¢ is considered as C-uncertain variable
then one should determine v according to the formula (8.49) and

max k() 2V (8.52)
ceD.(Dy,u)

where BC (Dy,u) is a complement of the set D (D,, u). Then, according
to (8.13)

v[Dy(u, ¢) E D)1= v EDAD,, u)] =%(v 1=V 2 vw)  (8.53)

and
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u:= arg max v [D(u, ¢) c Dy].
u

Now the knowledge of 4.(c) is necessary to determine the optimal deci-
sion.

The above considerations can be extended to the plant described by the
relation R(u, y, z; ¢) where the disturbance z can be measured.

Decision making problem: For the given R, s.(c), z and D, one should
determine » maximizing

v[Dy(u, z; ¢ ) c Dy] 4 D(u, z)

where Dy(u, z;c)={yeY: (u,y,z) €R(u, y, z; c)}. In the same way as for
the plant without the disturbance we determine the control algorithm in an
open-loop system in the form of the set of optimal decisions D,(z) de-
pendent on z. For every ueD,(z) the certainty index @(u, z) = 1. In the
case of a unique solution, the control algorithm is reduced to the function
u= ¥(z). This is a control algorithm based on the knowledge of the plant
KP=<R, h,>.

For the fixed ¢ and z one can solve the decision problem such as in

Sect. 6.3, i.e. determine the largest set D,(z; ¢) such that the implication
ueD,(z; ¢) > yeD, is satisfied. According to (6.19)

Dy(z;¢) = {ueU: Dyu,z;c) = Dy} 2 E(z,u;c) .

Then we can find the decision
uy=arg max v[u< D, (z¢)] 2 ¥(2) (8.54)
u

where
vlue D, (z;c)]1=v[c €D, Dy, u,z)]= max hJo),
celicg

DDy, u, z) = {ceC: ueD,(z; c)}.

In a similar way as in the former case, we can obtain not one decision
uy; =%¥(z) but the set of decisions, maximizing the certainty index in
(8.54). Let us note that ¥(z) is a decision algorithm (a control algorithm
in an open-loop system) based on the knowledge of the decision making
KD=<R, h. >. The relation R or the set D,[(z; ¢) is an uncertain control
algorithm in our case. For a concrete measured z, it is the set of all possi-
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ble control decisions or the set of all « for which the requirement is satis-
fied. It is easy to note that now u; = u for every z, i.e. ¥(z) =¥z). This
equality follows from the fact that the properties ueD,(z; ¢) and
D\(u, z; ¢) < D, are equivalent. Consequently, the certainty indexes that
these properties are approximately satisfied are identical. This remark pro-
vides a clearer interpretation of the decision # = u; or the decision u
(8.50) in the case without disturbances: This is a decision which with the
greatest certainty index belongs approximately to the decision set D,, for
which the requirement yeD, is satisfied. When the standard version of an

uncertain variable (i.e. not C-uncertain variable) is applied, this greatest
certainty index is equal to 1. It is worth noting that we cannot determine

and maximize directly a certainty index that y approximately belongs D,
because the properties ueD, and yeD, are not equivalent, i.e. the impli-
cation inverse to ueD,, — yeD,, may not be satisfied. In other words, for
¥ the distribution /() does not exist, i.e. y is not a value of an uncertain
variable.

More details on uncertain variables and their applications to analysis
and decision making in uncertain systems may be found in [36, 37, 43, 52].

Example 8.4. Consider the plant such as in Example 7.6 in Sect. 7.9 and
assume that the value of an unknown parameter c is a value of an uncer-
tain variable with the triangular certainty distribution presented in Fig. 8.5.
One should determine the decision u .

h (c)
1 ,,,,,,,,,
RV

Fig. 8.5. Example of certainty distribution
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In this case

DDy, u) = [2L, 227, ¢=

1
u’ 2u 2

By applying the index v (a standard version) we obtain the following set
D,, of the decisions u' (8.53):

Dy={ueU: ¢ e [2L 221} = [2 221 =2y, 5]
u 2u c 2c

For every decision from this set, the certainty index that this decision be-
longs to the set of decisions for which the requirement y€[y;, y5] is satis-
fied — is equal to 1. Let us assume now that ¢ is C-uncertain variable and

determine v.(#). In order to find it we determine w(u) according to the
formula (8.49):

Y2

7 fOI‘ u Zyz
1

for 2y1Su<y,

w(u) = .
2(1—%) for y;Su<2y

0 for u<y,

. 1 . . -
The case u > y», i.e. ;—2 SE has been illustrated in Fig. 8.5. In a similar
way we determine v(u) according to the formula (8.52):
1 for u>y,
2-22 for y1+y—2£u£y2
— _ u 2
v(u) = 2y b
71 for 2y1S u Syl-i-?z

1 for u<2y,

According to (8.53), after some transformations we obtain

Y2

2u
ve(u)=41-2L for y1£u§y1+y72
u

for u 2y1+y72

0 for u<y;

and
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u: =arg max v (u).

For example, for y; =2 and y, = 12 we obtain u*e[4, 12], v=1 in the
first case and u: =38, v.=0.75 in the second case. The function v.(u) is

illustrated in Fig. 8.6. O

()
1

0.75 |

Fig. 8.6. Illustration of relationship v.(u)

8.4 Control for Dynamical Plants. Uncertain Controller

The description based on uncertain variables can be used to control prob-
lems for a dynamical plant in a way analogous to that for the dynamical
plant with a probabilistic description. In particular, one can consider a mul-
tistage decision problem (a control of a discrete dynamical plant) analo-
gous to that described in Sect. 7.5, in which the certainty distribution %.(z)

will occur in the place of f,(z) and an expected value E( Q) will be re-

placed by a mean value M(Q ).

In this section the considerations will be limited to two basic problems
for a dynamical plant with a parametric uncertainty, analogous to the prob-
lems mentioned at the beginning of Sect. 7.6 for the probabilistic case. For
the plant with an uncertain parameter ¢ one may apply the parametric op-
timization in a way similar to that presented in Chap. 5. Now, the perform-
ance index Q=@(c, a) is a function of the unknown parameter ¢ and the
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parameter « in the control algorithm, which is to be determined. The
closed-loop control system is then considered as a static plant with the in-
put a, the output Q and the unknown parameter c, for which we can for-
mulate and solve the decision problems described in Sect. 8.2.1. The con-
trol problem consisting in the determination of a (in general, a vector
parameter) may be formulated as follows.

Control problem: For the given models of the plant and the controller

find the value a" minimizing M(é) , i.e. the mean value of the perform-

ance index.
The procedure for solving the problem is then the following:
1. To determine the function Q = @(a,c).

2. To determine the certainty distribution #,(q;a) for § using the func-

tion @ and the distribution /4,.(c) in the same way as in the formula (8.19)
for y.

3. To determine the mean value M(§ ;a).

4.To find a” minimizing M(@;a).

In order to apply the second case of the determinization, corresponding
to the determination of ¥ for the static plant (see Sect. 8.2.1), it is neces-
sary to find the value a(c) minimizing Q = @(a,c) for the fixed c. The
control algorithm with the uncertain parameter a(c) may be considered as

a knowledge of the control in our case, and the controller with this parame-
ter is an uncertain controller in the closed-loop system. To obtain the de-
terministic control algorithm, one should substitute M(a) in place of a(c)

in the uncertain control algorithm, where the mean value M(a) should be
determined by using the function a(c) and the certainty distribution
h.(c).

Assume that the state of the plant x(¢) is put at the input of the control-
ler. Then the uncertain controller has a form

u=¥(x,c)

which may be obtained as a result of non-parametric optimization, i.e. ¥

is the optimal control algorithm for the given model of the plant with the
fixed c and for the given form of a performance index. Then

ug =MG;x) 2, (x)

where M(u ;x) is determined by using the distribution
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h,(u;x)=v[ceD,(u;x)]= max h.(c)
ceD.(u;x

and
D.(u;x)={ceC:u=¥(x,c)}.

Example 8.5. The data for the linear control system under consideration
(Fig. 8.7) are the following:

Ko (s;c0)

C
(ST +1)(sTy +1)°

KR(S;a)=£,
S

z(t)=0for t<0, z(f)=1for >0, h.(c) has a triangular form presented
in Fig. 8.8.

Ko(s;c) %

E=-y
u
KRr(s;a)

Fig. 8.7. Closed-loop control system

hyc)

b-d b b+d ¢

Fig. 8.8. Example of certainty distribution

In Example 5.1 we determined the function Q= @(c,a) for the optimiza-

tion problem considered and we found the optimal parameter of the con-
troller
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LT,
The uncertain controller is then described by
alc) «
KR (s)= ae) _&

s cs
The certainty distribution #,(a) is as follows:

a T +T
“ a=-1""2
c

0 for O0<a< a
+d
ba—a+1 for Sasg
h (a)= da b+d b
a
M+l for _Sag a
da b b—d
0 for <a<ow.

From the definition of a mean value we obtain

ad(d? +2b%)

M(@) = -

2% 1n
b —d?

Finally, the deterministic controller is described by

KR q(s)= Mia)-

(8.55)

(8.56)

|

To apply the first approach described in the previous section, it is neces-
sary to find the certainty distribution for Q using the function Q = @(c,a)

determined in Example 5.1, and the distribution /4.(c), then to determine

M(§ ;a) and to find the value a minimizing M(é; a) . It may be shown

that @ # M(a) given by the formula (8.56).

Example 8.6. Let us consider the time-optimal control of the plant with
Ko (S;C)ZCS_2 (Fig. 8.9), subject to constraint |u(¢)|< M . It is well
known that the optimal control algorithm u = ¥ (x,c) is the following:

le| e
u(t) = Msgn(e + ——
(?) gn( 2M)

C
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where x=[¢,¢]. For the given h.(c) we can determine h,(u;¢,¢),
which is reduced to three values vy =v(w =M), v, =v(u=-M),
v3 =v(u =0). Then

ug (£) = M(ut) = M(v) —vy) (v +vy +v3) 7.

= | Kotsie) |- =0=0

£ %t &
$
7

Fig. 8.9. Example of control system

It is easy to see that

vi = max h.(c), vy = max h.(c)
ceD,y ceD.y
where
D, ={cicsgne>—|&|6QM | e)'},
D, ={c:esgne<—| &M |e)}
and
—lele
vy =h .
3 c( 2 Me )

Assume that the certainty distribution of ¢ is the same as in Example 8.5.
For £>0, £<0 and cg <b it is easy to obtain the following control al-

gorithm
M for dSb—cg
uy =M(u) = u b—cg

— % for d>b-c
3d —2(b—c,) &

where ¢, =(é)2(2M8)_1. For example, for M =05, ¢=-3, ¢=1,

b=16 and d =10 we obtain u,; =02. O



9 Fuzzy Variables, Analogies and Soft Variables

This chapter concerns the second part of non-probabilistic descriptions of
the uncertainty. The first part of the chapter presents the application of
fuzzy variables to non-parametric problems for a static plant, analogous to
those described for random and uncertain variables. In Sect. 9.1, a very
short description of fuzzy variables (see e.g. [52, 75, 81, 82, 95]) is given
in the form needed to formulate our problems and to indicate analogies for
non-parametric problems based on random, uncertain and fuzzy variables.
These analogies lead to a generalization in the form of soft variables and
their applications to non-parametric decision problems. The considerations
are completed with a presentation of a fuzzy controller in a closed-loop
control system and with some remarks concerning so called descriptive
and prescriptive approaches.

9.1 Fuzzy Sets and Fuzzy Numbers

Let us consider a universal set X and a property (a predicate) ¢ (x) defined
on a set X, i.e. a property concerning the variable xe€ X . If ¢(x) is a

crisp property, then for the fixed value x the logic value
wle(x)] € {0, 1} and the property ¢ (x) defines a set

D,={xeX:wlp(®]=1}2 {xe X:p(x)}

(see Sect. 8.1). If @(x) is a soft property then, for the fixed x, @(x)
forms a proposition in multi-valued logic and w[¢@(x)] €0, 1]. The logic
value w[@(x)] denotes the degree of truth, i.e. for the fixed x the value
wl[@(x)] shows to what degree the property ¢(x) is satisfied. The deter-
mination of the value w[@(x)] for every x € X leads to the determination
of a function

1 X S[0,1], e wlp(x)]2ux).

In two-valued logic
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A
u(x)=1(x)€{0,1}
and the set D, is defined by the pair X, /(x):

D, =<X,I(x)>={xeX:I(x)=1}. 9.1

The function w(x)is called a membership function and the pair
< X, u(x)> is called a fuzzy set. This is a generalization of the function

I(x) and the set (9.1), respectively. To every element, the membership
function assigns the value u(x) from the set [0, 1]. In practical interpreta-

tions it is necessary to determine the property @(x) for which the mem-

bership function is given. We assume that the membership function is
given by an expert and describes his/her subjective opinions concerning
the degree of truth (degree of satisfaction) of the property @(x) for the

different elements x € X . For example, let X denote a set of women living
in some region. Consider two properties (predicates):
1. ¢(x)=“the age of x is less than 30 years”.

2. @(x)="“x is beautiful”.

The first predicate is a crisp property because for the fixed woman x the
sentence @(x) is true or false, i.e. w[p(x)]€{0,1}. The property ¢(x)
determines the set of women (the subset D, < X') who are less than 30

years old. The second predicate is a soft property and
wlp(x)]= u(x)€[0,1] may denote a degree of beauty assigned to a

woman x by an expert. The property ¢(x) together with the function
#(x) determines the set of beautiful women. This is a fuzzy set, and for
every x the function g(x) determines a degree of membership to this set.
In the first case (for the crisp property @(x) ) the expert, not knowing the
age of the woman x, may give his/her estimate x(x)e[0,1] of the property
@(x). Such an estimate is not a membership function of the property
@(x) but a value of a certainty index characterizing the expert’s uncer-

tainty. Such a difference is important for the proper understanding of fuzzy
numbers and their comparison with uncertain variables, presented in
Sect. 9.3. We may say that the estimate z(x) is a membership function of

the property “it seems to me that x is less than 30 years old”, formulated
by the expert.

Let us consider another example: the points x on a plane are red to dif-
ferent degrees: from definitely red via different degrees of pink to defi-
nitely white. The value u(x) assigned to the point x denotes the degree of



9.1 Fuzzy Sets and Fuzzy Numbers 223

red colour of this point. If the definitely red points are concentrated in
some domain and the further from this domain they are less red (more
white), then the function u(x) (the surface upon the plane) reaches its
maximum value equal to 1 in this domain and decreases to 0 for the points
far from this domain.

According to (8.1), for the determined X and any two functions
1 (X), i (x) (i.e. any two fuzzy sets)

1 (X)V 4y (x) = max {4 (x), (%)}, 9.2)
(X)) A g (x) = min{zy (x), g (%)}, (9.3)
=y (%) =1= gy (x). (9.4)

These are definitions of the basic operations in the algebra of fuzzy sets
< X, u(x)>. The relation

Hy(x) < p1p (%)
denotes the inclusion for fuzzy sets, which is a generalization of the inclu-
sion I;(x)<1,(x), i.e. Dy < D,,. It is worth noting that except (8.1)
one considers other definitions of the operations v and A in the set [0, 1],
and consequently — other definitions of the operations (9.2) and (9.3).
If X is a subset of R! (the set of real numbers) then the pair

<X, u(x)> 2% is called a fuzzy number. In further considerations x will
be called a fuzzy variable to indicate the analogy with random and uncer-

tain variables, and the equation x = x will denote that the variable x takes
a value x. The function g(x) is now the membership function of a soft

property ¢(x) concerning a number. The possibilities of the formulation

of such properties are rather limited. They may be the formulations con-
cerning the size of the number, e.g. for positive numbers, “x is small”, “x is

L INT3

very large” etc. and for real numbers, “x is small positive”, “x is large
negative” etc. Generally, for the property “x is d ”, the value u(x) de-

notes to what degree this property is satisfied for the value x = x . For the
interpretation of the fuzzy number described by u(x) it is necessary to

determine the property @ (x) for which u(x) is given. One assumes that

max u(x)=1.
xXe

Usually one considers two cases: the discrete case with
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X ={x1,x3,...,x,,} and the continuous case in which x(x) is a continu-

ous function. In the case of fuzzy variables the determinization is called a
defuzzification. In a way similar to that for random and uncertain numbers,

it may consist in replacing the uncertain variable x by its deterministic
representation

X = argmax (x)
xe

on the assumption that x isa unique point such that ,u(x*) =1, or by the

mean value M(x). In the discrete case

D xu(x;)
M(X) = l:;— (9.5)
D u(x;)

i=1
and in the continuous case

Oj.x,u(x)dx
M(x) = _z— (9.6)

[ ()

—o0
on the assumption that the respective integrals exist.

Let us consider two fuzzy numbers defined by sets of values X < Rl,
Y c R' and membership functions . (x), u,(y), respectively. The
membership function g, (x) is the logic value of the soft property
@y (x)="“if x=x then x is d,” or shortly “x is d|”, and u,(y) is the
logic value of the soft property ¢, (y)="* yisd,”, ie.

W[@x(x)]:/ux(x)r W[@y(y)]:/uy(y)

where d| and d, denote the size of the number, e.g. ¢, (x)=“x is
small”, ¢, (y)=*“y is large”. Using the properties ¢, and ¢, we can
introduce the property ¢, — ¢, (e.g. “if x is small, then y is large”)

with the respective membership function

A
wlpy > @, 1=u,(y|x),
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and the properties
Py V @y and @, A, =0 Ao, o 0,]
for which the membership functions are defined as follows:
wlgy v, 1=max{u (x), u,(»)},
Wiy A@y 1= min{u, (0, ey (v 2} 2 2, (x,7). 9.7)
If we assume that
Py ANy 20, 1=0, Aoy, > )]
then
My (x,y) =minf{u (x), g, (v | x)} = min{z, (), g (x| y)}. (9-8)
The properties ¢,, ¢, and the corresponding fuzzy numbers X, y are
called independent if
wloy Ay 1= py, (x,y) = min{u, (x), 1, (¥)} -
Using (9.8) it is easy to show that

,ux(x)zmaxluxy(xay)a 9.9)
yeY

1y (y) = max iy, (X, ) . (9.10)
xeX

The equations (9.8), (9.9) and (9.10) describe the relationships between
Uy s Hy, Hyy, Hy(x|y) as being analogous to the relationships (8.18),

(8.16), (8.17) for uncertain variables, in general defined in the multi-
dimensional sets X and Y . For the given x,,(x,y), the set of functions

ty,(y|x) is determined by equation (9.7) in which

Hx (x)= max fy,, (x,»).
yeY

Theorem 9.1. The set of functions ,(y | x) satisfying equation (9.7) is
determined as follows:

1 1%) = Hyy(x,y) for (x,y)e&D(x,y) ©.11)

4 > pyy, (x,y) for (x,y)e D(x,y) '

where

D(x,p) =1(x, ) € X XY 1 41, (X) = iy, (X, ) -
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Proof: From (9.7) it follows that

A A [ty (x) 2 g1y, (3, 9] -

xeX yeY
If u(x)> py,(x,y) then, according to (9.7), sy, (x,y)=p,(y|x). If

Uy (x) = Hyy (x,y),1e. (x,y) € D(x,y) then Hy (y[x)= Hyy (x,y). O

In particular, as one of the solutions of equation (9.7), i.e. one of the
possible definitions of the membership function for an implication we may
accept

Hy (¥ [%) = pyy (%, ) - (9.12)
If p,, (x,y) =min{u, (x), 1, (y)} then according to (9.12)
ty (y [x) =min{u, (x), 1, (¥)}
and according to (9.7)
My (Y |x)=py,(y).
Except ¢, (x) = ¢, () (i.e. the property ¢, (y) under the condition ¢, ),
we can consider the property ¢, (y) for the given value x=x (i.e. the

property ¢, (y) under the condition Xx=x):

w2 nAu 9
x=x—2>0,(»)7" =%, (»|x7,

and the membership function of this property

Wloy (9] 1= wiE = x > 0, (1] = Wil = x A @, (D] Ay (¥) > 0, (]}
= min {ge, (x) A gty (3|00} = pigy (3, ).
Then p,,(x,y) may be interpreted as a conditional membership function
of the property ¢, (y) for the given x, determined with the help of the

property ¢, (x). Such an interpretation is widely used in the description of

fuzzy controllers in closed-loop systems.
It is worth noting that, according to (9.11), we may use the different
functions x,(y|x) for the given x,,(x,y) and, consequently, for the

fixed
My (x) = max f,,, (x,»)
yeY
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and

Hy (¥) = max Hxy (x,¥).
xeX
In other words, the membership function of the implication

wlgy (x) = @, ()] = w1y, (y]x)

may be defined in different ways.
For the fixed x, the set

Dy (x)={yeY:(x,y) € D(x,y)}
is a set of values x maximizing u,,(x,y). If D, (x)= {y*(x)} (a single-
ton), then

%
¥’ (x) = argmax g1, (x, )
yeY
and p,(»" [x)=1,ie.

Uyy(x,y) for  y#y (x)

. (9.13)
for y=y (x).

;uy(y|x):{

It is easy to note that 4, (y[x) determined by (9.13) is a continuous func-

tion for every x € X if and only if

A [a4x (x) =1],

xeDy
ie.
A [max sy, (x, ) =1] 9.14)
xeDy yeY
where

D, = {xeX:v My (x, ) # 05

yeY
If the condition (9.14) is satisfied then u,,(y [x) = 1), (x, ).
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9.2 Application of Fuzzy Description to Decision Making
(Control) for Static Plant

9.2.1 Plant without Disturbances

The description concerning the pair of fuzzy variables may be directly
applied to a one-dimensional static plant with single input # € U and single

output yeY (U,Y Rl) . The non-parametric description of uncertainty
using fuzzy variables may be formulated by introducing two soft proper-
ties ¢, (u) and ¢, (y). This description (the knowledge of the plant KP)

is given by an expert in the form of the membership function
W[wu - q’y] :,uy(y |u).

For example, the expert says that “if u is large then y is small” and gives
the membership function u,(y|u) for this property. In this case the
analysis problem may consist in the determination of the membership
function u,(y) characterizing the output property ¢, for the given
membership function g, (#) characterizing the input property. The deci-

sion problem may be stated as an inverse problem, consisting in finding
@, (u) for a desirable membership function x,(y) given by a user. From

a formal point of view, the formulations of these problems and the respec-
tive formulas are similar to those for random variables (see Sect. 7.2) and
for uncertain variables (see Sect. 8.2.2).

The essential difference is the following:
The descriptions in the form of f,, () or A, (u), and in the form of f, (y)

or hy,(y), are concerned directly with values of the input and output, re-
spectively, and the descriptions in the form of s, (u) and x,(y) are con-

cerned with determined input and output properties, respectively. In par-
ticular, in the decision problem the functions f,(y) or %,(y) describe

the user’s requirement characterizing directly the value of the output, and
the function () required by the user characterizes the determined out-

put property ¢, (y). Consequently, the solution ,(u) concerns the de-

termined input property ¢, (u), and not directly the input value u as in the
case of f,,(u)or h, (u).
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Analysis problem: For the determined properties ¢, (), ¢,(y), the
given KP=<y,(y|u)> and p,(u) find the membership function

Hy(y).
According to (9.10) and (9.7) with u in place of x

sy () = maxmin {1, (u). 1, (3 |} ©9.15)
ue
We can also formulate the analysis problem for the given input: Find
Hyy (u, y) = wle,, () |u] = min{z, (), 1), (v [u)} .

Having 44,,(u,y), one can determine the value of y maximizing

My (u,y) or the conditional mean value for the given u:
00
[yt (. )by
ol _ —0
M(y [u) ===
[ty (. )ty

—o0

Decision problem: For the determined properties ¢, (u), ¢,(y), the
given KP=<u,(ylu)>and u,(y) find the membership function
Pu(u).

To find the solution one should solve equation (9.15) with respect to the
function g, (u) satisfying the conditions for a membership function:

/\ Hy (u) 20, max s, (u) =1.
uel

uelU

The membership function g, (x) may be called a fuzzy decision. The de-
terministic decision may be obtained via a determinization which consists
in finding the value #, maximizing the membership function g, («) or the

mean value uj, = M(u).
Assume that the function

My (u, y) = min{g, (u), 1y, (y [u)}
for the given y takes its maximum value at one point

u(y) = argzneagmin{ﬂu (u), p1y, (v |10)} -
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Theorem 9.2. For the continuous case (i.e. continuous membership func-
tions), assume that:
1. The function g, («) has one local maximum for

u = arg max 4, (u)
uelU

and it is a unique point such that g, (u*) =1.
2. For every yeY the membership function ,(y|u) as a function of u
has at most one local maximum equal to 1, i.e. the equation
ty(ylu)=1
has at most one solution

() = argmax e, (y |u).
uelU
Then
u(y)=arg max 1, (y|u)

ueD, (y

where D, (y) is a set of values u satisfying the equation

gy () = g1, (y 1) . O
The proof of Theorem 9.2 may be found in [52]. The procedure for the
determination of g, (u) for the fixed u is the following:
1. To solve the equation

My (u) = 1, (y |u)
with respect to y and to obtain a solution y(u) (in general, a set of solu-
tions D, (u)).

2. To determine

My () = i, [y @)l =y, [y(u) [u]. (9.16)
3. To prove whether
Uy (y)= max u,(y|u) 9.17)
ueDy, ()

where 5u () is a set of values u satisfying the equation
Moy () = 1, (v u) .
4. To accept the solution g, (1) = 1, (u) for which (9.17) is satisfied.

Remark 9.1. The same considerations concerning non-parametric analysis
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and decision problems may be presented for the description based on un-
certain variables with the distributions # instead of the membership func-
tions g The same remark concerns the plant with the disturbances, de-

scribed in the next section. [

Example 9.1. Consider a plant with u,y € Rl, described by the member-
ship function

) 1 1

-4(y - +1 for u——<y<u+—

py (y|uy={ "4~ R T
0 otherwise .

For the membership function required by a user (Fig. 9.1)

2 for c—\/ESySc—l
—-(y—o)y +2
(=) or c+1§y§c+\5
py () = 9.18)
1 for c¢—-1<y<c+1
0 otherwise ,

one should determine the fuzzy decision in the form of the membership
function g, (u).

ﬂy(}/)
1, JE— JE—

c—-~2 c-1 c+1 c+J2 y

Fig. 9.1. Example of the membership function

The solution of the equation

has the following form:
1. For

c—1<u<c+1

equation (9.19) has one solution:
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y(u)=u.
2. For

2—%<u<c—l or c+1<u<c+\/5+%
equation (9.19) is reduced to the equation
4y-u)® -(y—c)* +1=0
which has one solution such that 7, (y)>0:
du—c+ \/X
3

)= 4u—c—\/X
3

2—l<u<c—1
2
for c+1<u<c+\/§+%

where

A=4(u—-c)’ +3.
3. Otherwise, equation (9.19) has no solution such that 7, (y)>0.
Then, according to (9.16) and (9.18)

4u — 4c+\/_

(——— ) +2 for c— 2—1Suﬁc—l
3 2

1 for c—1<u<c+l1

4y — 4c\/_

Hy () = iy, [y ()] =
(—— 3 ) +2 for c+1£u£c+\/5+%

0 otherwise.
O
Remark 9.2. The properties ¢, () and ¢, (y) considered in the example

may be introduced by using additional descriptions. For example, if

—4(y—u)2+l for u—%SySLH—%

1
u)= and u>—
Hy (y |u) 5

0 otherwise
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and ¢>+2 +% , then we can say that
@, (1) = “u is medium positive”,
@, (y) ="y is medium positive”
and u,(y|u) is a membership function of the property:
@y () > @, (y) =“If u is medium positive then y is medium positive”.
If we introduce a new variable v =u—c with the respective constraint

then

Py () > @, (y) ="if | u | is small then y is medium positive”. |

9.2.2 Plant with External Disturbances

Consider a static plant with single input # €U, single output y €Y and

single disturbance ze Z (U,Y,Z Rl) . Now the non-parametric descrip-
tion of uncertainty using fuzzy variables may be formulated by introducing
three soft properties: ¢, (u),.(z) and ¢, (y). This description is given

by an expert in the form of the membership function
wley Ap, > @)1= 1, (y|u,z),
i.e. the knowledge of the plant
KP=<p,(ylu,z)>.
For example, the expert says that “if # is large and Z is medium then y is

small” and gives the membership function z,(y|u,z) for this property.

For such a plant the analysis and decision problems may be formulated as
extensions of the problems described in the previous section.

Analysis problem: For the given KP=<u,(y|u,z)>, u,(u|z) and
4 (z) find the membership function ().
According to (9.10) and (9.7)

u,(y)= max  fy (y,u,z) (9.20)
€

uel,ze

where
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My (y,u,z2)=wlp, np, Ap, ]
ie.
py (p,2) = min{ g, (u,2), 11, (v |u,2)} 9:21)
Putting
Hyz (u,z) = min{ g, (2), 1, (u | 2)} (9.22)
and (9.21) into (9.20) yields

py()=arg max min{u (2),4,(u] 2,y (V|02)} . (9.23)

uel,ze

Decision problem: For the given KP=<y ,(y|u,z)> and u,(y) re-
quired by a user one should determine g, (u|z) .

The determination of x,(u|z) may be decomposed into two steps. In
the first step, one should find the function g, (u,z) satisfying the equa-
tion

/uy(y): max 7 min{ﬂuz(”sz),ﬂy(ﬂ u,z)} (9.24)

uelU,ze

and the conditions for a membership function:

A A Myz (u,2) 20, max Myz (u,z) =1.
V4

uelU zeZ uel,ze
In the second step, one should determine the function g, (u| z) satisfying
the equation
Hyz (u,2) = min{u, (2), 1, (u] 2)} (9.25)

where
Uz (z) = max 4, (u,z),
uelU

and the conditions for a membership function:

A A (| 2)20, A ma;ﬂu(u|2)=1-

uelU zeZ zeZ UE
The solution may not be unique. The function g, (u| z) may be considered

as a knowledge of the decision making KD =< g, (u|z)> or a fuzzy deci-

sion algorithm (the description of a fuzzy controller in the open-loop con-
trol system). It is important to remember that the description of the fuzzy
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controller is concerned with the determined input and output properties,
ie.

ty(ulz)=w @, (2) > @, u)]
where the properties ¢, (z) and ¢, (#) have been used in the description
of the plants. Having g, (u|z), one can obtain the deterministic decision
algorithm ¥(z) as a result of the determinization (defuzzification) of the

fuzzy decision algorithm g, (u|z). Two versions corresponding to ver-
sions I and Il in Sect. 8.2.2 are the following:

Version I.
A
u, =argmax i, (u|z) = ¥,(z).
uelU
Version II.
~ 1A
up =M, (i1 2) = [upt, (u|2)du [ [p, (u|2)du 17V =¥(2).  (9.26)

U U

Using u,(u|z) or pu,,(u,z) with the fixed z in the determination of u, or
up , one obtains two versions of #(z). In the second version the fuzzy
controller has the form KD =<w[¢,(u)|z]>=< u,.(u,z) > and the sec-
ond step with equation (9.25) is not necessary. Both versions are the same
if we assume that p,(u|z)= u,,(u,z). Let us note that in the analogous
problems for random variables (Sect. 7.2) and for uncertain variables
(Sect. 8.2.2) it is not possible to introduce two versions of KD considered
here for fuzzy numbers. It is caused by the fact that ,, (u,z) and
M, (u|z) do not concern directly the values of the variables (as probability
distributions or certainty distributions) but are concerned with the proper-
ties ¢, , ¢, and

oz U, 2) = W@y ~@. 1, (] 2) = wlp, > @,]1=wlp, | 9]
The deterministic decision algorithms ¥,(z) or ¥,(z) are based on the
knowledge of the decision making KD =< yu(u|z)>, which is deter-
mined from the knowledge of the plant KP for the given g, (y). It is

worth noting that the deterministic decision algorithms ¥,(z) or ¥(z)

have no clear practical interpretation.

From a formal point of view the considerations in this section are the
same as in Sect. 8.2.2 for uncertain variables. Then we can repeat here
Theorem 8.4 and the next considerations including Remark 8.2 with
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W)y py,(¥), (2), pyr(u,z), py,(ul|z), py,(¥|u,z) in place of
) By (9) s (23 By (u,2), By (u|2), By (]u,2), respectively.
Let us note that the condition

A [u,(z)=1]

zeD,
corresponding to the condition (8.38) means that ¢_(z) is reduced to a
crisp property “ze D, ”.

The considerations may be extended to the multi-dimensional case with
vectors u, y, z. To formulate the knowledge of the plant one introduces
soft properties of the following form: ¢,;(j) = “u s d;”  ¢,()) =
«z() s a’j 7, gayi(j) = “y(i) 18 dj ” where u(i),z(i),y(i) denote the
i-th components of u, z, y , respectively. The determinization of the fuzzy

algorithm may be made according to versions I and II presented for the
one-dimensional case. In particular, version Il consists in the determination

of M(ﬁ(i) ) for the fixed z and each component of the vector u, using the

membership functions uui(u(i),z) or 4, w® |z) where

P (D, 2) = 08X {11, (1,2), 11, (2,2)svees 1 (m,2)}

and p,,;(j,z) corresponds to ¢,;(j)= “ul® is d;”.

Example 9.2. Consider a plant with u, y, ze R' described by the follow-
ing KP:

“If u is small non-negative and z is large but not greater than b (i.e. b—z
is small non-negative) then y is medium”. Then

@, (u)=“u is small non-negative”,

@, (z)="“z is large, not greater than b7,

@, (y)="y is medium”.

The membership function w[g, A, — ¢, ] is as follows:

py(yluz)==(y—d)* +1-u—(b-2)
for
1

, b——<z<b,
2

N | —
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—J1—u—(b—z)+d<y<yl-u—(b—2z)+d

and /4, (y |u,z) =0 otherwise.

For the membership function required by a user

ﬂy(y)={

one should determine the fuzzy decision algorithm in the form
1, (u|2) = iz (u,2).
Let us assume that »>0,c >1 and

—(y—c)2+1 for c—1<y<c+1

0 otherwise,

c+1<d<c+2.
Then the equation ), (y)=p,(y|u,z) has a unique solution which is
reduced to the solution of the equation
—-)+l=—(y-d) > +1-u—(b-2).

Further considerations are the same as in Example 8.3, which is identical
from the formal point of view. Consequently, we obtain the following re-
sult:

Huz (u,z) = Hy (u | z)

_[(d—c)2+u+b—z]2+1 for u<l-[(d—-c)—1]* —(b-2)
B 2(d -0 O<u<t, b-L<z<p
2 2
0 otherwise -

By applying the determinization (defuzzification) we can determine the
deterministic decision algorithm in an open-loop decision system:
A
U, =argmax u, (u|z) = ¥,(z)
uelU

or
~ A
up =M, (] 2)2 ¥(2). 0

Remark 9.3. The description ,(y | u,z) given by an expert and the solu-

tion g, (u|z) = p,,(u,z)do not satisty the condition max x =1. The nor-

malization in the form analogous to (8.39) is not necessary if we are inter-
ested in the deterministic decisions u, or u;, which are the same for

4, (u|z) and the normalized form g, (u|z). O
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9.3 Comparison of Uncertain Variables with Random and
Fuzzy Variables

The formal part of the definitions of a random variable, a fuzzy number
and an uncertain variable is the same: < X, u(x)>, thatisaset X and a
function u:X—)R1 where 0< p(x) for every xe X . For the fuzzy

number, the uncertain variable and for the random variable in the discrete
case, p(x)<1. For the random variable the property of additivity is re-

quired, which in the discrete case X ={xy,x5,...,x,,} is reduced to the
equality z(xy)+ u(xy)+ ...+ u(x,,)=1. Without any additional descrip-
tion, one can say that each variable is defined by a fuzzy set < X, z(x) > .

In fact, each definition contains an additional description of semantics
which discriminates the respective variables. To compare the uncertain
variables with probabilistic and fuzzy approaches, take into account the

definitions for X c R', using 2, v and g(w)=x(w) introduced in
Sect. 8.1. The random variable x is defined by X and probability distri-
bution u(x)=F(x) (or probability density f(x)=F'(x) if this exists)
where F(x) is the probability that x <x. In the discrete case
u(x;)= p(x;)=P(x =x;) (probability that x = x; ). For example, if € is
a set of 100 persons and 20 of them have the age x(w)=30, then the

probability that a person chosen randomly from 2 has x =30 is equal to
0.2. In general, the function p(x) (or f(x) in a continuous case) is an

objective characteristic of 2 as a whole and /,,(x) is a subjective charac-
teristic given by an expert and describes his or her individual opinion of
the fixed particular w.

To compare uncertain variables with fuzzy numbers, let us recall three
basic definitions of the fuzzy number in a wide sense of the word, that is
the definitions of the fuzzy set based on the number set X = R'.

1. The fuzzy number x(d) for the given fixed value d € X is defined by
X and the membership function x(x,d), which may be considered as a
logic value (degree of truth) of the soft property “if x = x then x=d ”.

2. The linguistic fuzzy variable x is defined by X and a set of member-
ship functions g;(x) corresponding to different descriptions of the size of
x (small, medium, large, etc.). For example, z(x) is a logic value of the

soft property “if x = x then x is small”.
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3. The fuzzy number x(@) (where @ € £2 was introduced at the beginning
of Sect. 8.1) is defined by X and the membership function g, (x), which

is a logic value (degree of possibility) of the soft property “it is possible
that the value x is assigned to @”.

In the first two definitions the membership function does not depend on
; in the third case there is a family of membership functions (a family of

fuzzy sets) for we 2. The difference between x(d) or the linguistic
fuzzy variable x and the uncertain variable x(w) is quite evident. The
variables x(®) and Xx(w) are formally defined in the same way by the
fuzzy sets < X, u,,(x)> and < X,h,(x)>, respectively, but the interpre-
tations of x,(x) and 4, (x) are different. In the case of the uncertain
variable there exists a function x = g(w), the value x is determined for
the fixed @ but is unknown to an expert who formulates the degree of
certainty that x(w) = x for the different values x € X . In the case of x(w)
the function g may not exist. Instead we have a property of the type “it is
possible that P(w,x)” (or, briefly, “it is possible that the value x is as-
signed to @”’) where P(w,x) is such a property concerning @ and x for
which it makes sense to use the words “it is possible”. Then g, (x) for

fixed @ means the degree of possibility for the different values x € X
given by an expert. The example with persons and age is not adequate for
this interpretation. In the popular example of the possibilistic approach
P(w,x)= “John (w) ate x eggs at his breakfast”.

From the point of view presented above, x(w) may be considered as a
special case of x(w) (when the relation P(w,x) is reduced to the function
g ), with a specific interpretation of x,,(x)=h,(x). A further difference
is connected with the definitions of w(x€D,), w(xgD,),
w(xeDyvxeDy) and w(xeDyAxeD,). The function

w(x €D,) 4 m(D,) may be considered as a measure defined for the fam-

ily of sets D,, < X . Two measures have been defined in the definitions of

the uncertain variables: v(x € D) a m(D,) and v.(x €D,) £ m.(D,).
Let us recall the following special cases of monotonic non-additive meas-
ures (see for example [81]) and their properties for every Dy, D, .

1. If m(D,) is a belief measure, then
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m(D; U Dy)z2m(Dy)+m(Dy)—m(DyNDy).
2.1f m(D,) is a plausibility measure, then
m(D; N Dy)<m(Dy)+m(Dy)—m(Dy v D,).
3. A necessity measure is a belief measure for which
m(Dy A Dy) = min {m(Dy),m(Dy)}.
4. A possibility measure is a plausibility measure for which
m(D; U Dy) =max {m(D;),m(D,)}.

Taking into account the properties of m and m, presented in Sect. 8.1, it

is easy to see that m is a possibility measure, that m,, 8- V(XED,) isa
necessity measure and that m, is neither a belief nor a plausibility meas-

ure.
The interpretation of the membership function u(x) as a logic value w

of a given soft property P(x), thatis u(x)=w[P(x)], is especially impor-
tant and necessary if we consider two fuzzy numbers (x,y) and a relation
R(x,y) or a function y = f(x). Consequently, it is necessary if we formu-

late analysis and decision problems. The formal relationships (see for ex-
ample [95])

1y () = max [ (x): £ (x) = 7]
for the function and
Hy(y) = ij[ﬂx(X) ((x,y)€R]

for the relation do not determine evidently P,(y) for the given P, (x). If
Uy (x)=w[P.(x)] where P (x)= “if x=x then x=d”, then we can
accept that  u,(y)=w[P,(¥)] where P,(y)= “if y=y then
¥ = f(x)” in the case of the function, but in the case of the relation P, (y)
is not determined. If P, (x)="“if x = x then x is small”, then P, (y) may
not be evident even in the case of the function, for example y =sinx. For
the uncertain variable g, (x)=h,(x)=v(x=x) with the definitions
(8.2)—(8.5), the property P, (y) such that u,(y)=v[P,(y)] is deter-
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mined precisely: in the case of the function, u,(y)=4,(y)= v(y=y)
and, in the case of the relation, x,(y) is the certainty index of the prop-
erty P,(y)="there exist x such that (x,y) ER(x,y)”.

Consequently, using uncertain variables it is possible not only to formu-
late the analysis and decision problems in the form considered in Chap. 8,
but also to define precisely the meaning of these formulations and solu-
tions. This corresponds to the two parts of the definition of the uncertain
variable mentioned in Sect. 8.1 after the Definition 8.1: a formal descrip-
tion and its interpretation. The remark concerning ® in this definition is
also very important because it makes it possible to interpret precisely the
source of the information about the unknown parameter x and the term
“certainty index”.

In the theory of fuzzy sets and systems there exist other formulations of
analysis and decision problems (see for example [75]), different from those
presented in this chapter. The decision problem with a fuzzy goal is usu-

ally based on the given ,(y) as the logic value of the property “ y is

satisfactory” or related properties.

The statements of analysis and decision problems in Chap. 8 for the
system with the known relation R and unknown parameter ¢ considered
as an uncertain variable are similar to analogous approaches for the prob-
abilistic model and together with the deterministic case form a unified set
of problems. For y =®(u,c) and given y the decision problem is as fol-
lows:

1. If ¢ is known (the deterministic case), find » such that @(u,c)=y .

2. If ¢ is a value of random variable ¢ with given certainty distribution,
find u, maximizing the probability that y = y (for the discrete variable),

or find u such that E(y,u)=y where E denotes the expected value of

y.
3. If ¢ is a value of uncertain variable ¢ with given certainty distribution,
find u, maximizing the certainty index of the property y =y, or find u

such that M |, (u) = y where M denotes the mean value of V.

The definition of the uncertain variable has been used to introduce a C-
uncertain variable, especially recommended for analysis and decision
problems with unknown parameters because of its advantages mentioned
in Sect. 8.1. Not only the interpretation but also a formal description of the
C-uncertain variable differ in an obvious way from the known definitions
of fuzzy numbers (see Definition 8.2 and the remark concerning the meas-
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ure m, in this section).

9.4 Comparisons and Analogies for Non-parametric
Problems

To indicate analogies and differences between the descriptions based on
random, uncertain and fuzzy variables let us present together basic non-
parametric problems (i.e. the problems based on the non-parametric de-
scriptions), discussed in Sects. 6.3, 7.2, 8.2.2 and 9.2.2. The general ap-
proach to the decision problem is illustrated in Fig. 9.2, for a static plant
with input vector # €U , output vector y €Y and vector of external dis-

turbances z e Z . The knowledge of the decision making KD is deter-
mined from the knowledge of the plant KP and the requirement concern-
ing y, given by a user. The deterministic decision algorithm u,; = #(z) is

obtained as a result of the determinization of KD . For simplicity, we shall
recall only the mean value as a result of the determinization.

z
z Uqg y
' Pant —
Determinization
requirement
KD — KP

Fig. 9.2. General idea of the decision system under consideration

A. Relational system
The knowledge of the plant KP has the form of a relation

R(u,y,z)y)cUxY xZ,

which determines the set of possible outputs for the given # and z:
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Dy(u,z)={yeY:(u,y,z)eR}. (9.27)

Analysis problem: For the given D, (u,z), D, cU and D, cZ one

should determine the smallest set D,, Y for which the implication

(ueD,)A(zeD,)>yeD,

is satisfied.
According to (6.5) and (9.27)

p,= U UD,ws2). (9.28)

ueD, zeD,

Decision problem: For the given D, (u,z) and D,, required by a user one
should determine the largest set D, (z) such that for the given z the
implication
ueD,(z)>yeD,
is satisfied.
According to (6.19)

D,(z)=tueU:D,(u,z)= D, } = R(z,u). (9.29)

The knowledge of the decision making KD =< R (z,u) > has been called a

relational decision algorithm (the description of a relational controller in
the open-loop control system). The determinization in the form of a mean
value gives the deterministic decision algorithm

uy = judu- [ Idu ]_1 2 Yi(2).
D, (2) D, (2)
The deterministic decision algorithm %, (z) is based on the knowledge of

the decision making KD, which is determined from the knowledge of the
plant KP (reduced to D, (u,z)), for the given D,, .

B. Description based on random variables
The knowledge of the plant has the form of a conditional probability den-
sity

u,z)>. (9.30)

KP:<fy(y

Analysis problem: For the given KP=<jf,(y|u,z)>, fu(u|z) and

J/>(z) find the probability density f)(y):
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L= [L@ %21, (5|uz)dude. (9:31)
U Z

Decision problem: For the given KP=<fy(y|u,z)> and f)(y) re-

quired by a user one should determine f,, (u| z).

The determination of £, (u|z) may be decomposed into two steps. In

the first step one, should find the function f,,, (u,z) satisfying the equation

fyM = [ [fuz.2) (3| u,2)du dz (9.32)

U Z
and the conditions for a probability density:

/\ /\ fuZ(U,Z)ZO, J. quz(u,z)du dz=1.
U 7z

uelU zeZ

In the second step, one should determine the function f,, (u| z):

_ Suz(U,2)
fu(MIZ)——j e (9.33)
U

The knowledge of the decision making KD = < f,, (u| z)> has been called

a random decision algorithm (the description of a random controller in the
open-loop control system). The deterministic decision algorithm

ug = [uf,(ul2)du = ¥y (2)
U

is based on KD determined from KP, for the given f),(»).

C. Description based on uncertain variables
The knowledge of the plant has the form of a conditional certainty distri-
bution given by an expert:

KP=<h,(y|u,z)>. (9.34)

Analysis problem: For the given KP=<h,(y|u,z)>, h,(u[z) and
h.(z) find the certainty distribution 7%, (y) .
According to (8.30)
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h,(y)= max Zmin{hz(z),hu(u|z),h (v|u,z)}. (9.35)

uelU,ze

Decision problem: For the given KP=<h,(y

u,z)> and h,(y) re-
quired by a user one should determine A, (u|z) .

According to (8.30) and (8.31), the determination of 4, (u|z) may be
decomposed into two steps. First, one should find the function 4, (u,z)
satisfying the equation

h,(y)= max Zmin{huz(u,z), h,(v|u,z)} (9.36)

uelU,ze

and the conditions for a certainty distribution

/\ /\ huz(u,z)ZO, max huz(u,z)zl.
V4

uelU zeZ uel,ze

Then, one should determine the function %, (u |z) satisfying the equation
o (u,2) = min{ max h, (u,2),h, (] 2) } 9.37)
uelU

and the conditions for a certainty distribution. The knowledge of the deci-
sion making KD =<#, (u| z)> has been called an wuncertain decision

algorithm (the description of an uncertain controller in the open-loop con-
trol system). The deterministic decision algorithm

1A
ug = [uh,u|2)du [ [h,(u|2)du]" =¥, (2)
U U
is based on KD determined from KP, for the given 4, (y) .

D. Description based on fuzzy variables
For the determined soft properties ¢, (1), ¢.(z) and ¢, (y), the knowl-

edge of the plant has the form of a membership function

KP=<u,(ylu,z)>. (9.38)

Analysis problem: For the given KP=<pu, (y|u,z)>, p,(u|z) and
u(z) find the membership function 1, (y).

The solution is given by the formula (9.23).
Decision problem: For the given KP=<yu,(y|u,z)> and u,(y) re-

quired by a user one should determine g, (u|z).
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Two steps of the solution are described by the formulas (9.24) and
(9.25). The deterministic decision algorithm

ug = [upt, () 2)du [ [, (u|2)du ] 2 ¥y(2)
U U
is based on the fuzzy decision algorithm (the description of a fuzzy control-
ler in the open-loop control system) KD = < 4, (1 |z) >, and is determined

from KP for the given 4, (y) with ¥, inplace of ¥,, ¥.

Remark 9.4. In special cases of the decision problem considered in Sects.
8.2.2 and 9.2.2, when the solution in the first step in the form of 4, (u,z)

or u,,(u,z) is not unique, the distribution /,(z) or u,(z) may be given

apriori. [

The different cases of KP are described by (9.27), (9.30), (9.34), (9.38)
and the respective results of the analysis problem are given by (9.28),
(9.31), (9.35), (9.23). The solution of the decision problem (9.29) corre-
sponds to the solution in two steps described by (9.32) and (9.33) for the
random variables, by (9.36) and (9.37) for the uncertain variables, and by
(9.24) and (9.25) for the fuzzy variables. The essential differences are the
following:

1. Cases A, B are based on the objective descriptions of KP, and cases C,
D are based on the subjective descriptions given by an expert.

2. The descriptions in cases B, C are concerned directly with values of
(u,y,z), and the description in case D is concerned with determined prop-

erties of (u,y,z).

9.5 Introduction to Soft Variables

The uncertain, random and fuzzy variables may be considered as special
cases of a more general description of the uncertainty in the form of soft
variables and evaluating functions [50, 52], which may be introduced as a
tool for a unification and generalization of non-parametric analysis and
decision problems based on the uncertain knowledge representation. The
definition of a soft variable should be completed with the determination of
relationships for the pair of soft variables.

Definition 9.1 (soft variable and the pair of soft variables). A soft variable

x=<X ,g(x)> is defined by the set of values X (a real number vector
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space) and a bounded evaluating function g: X — R™, satisfying the fol-
lowing condition:

jxg(x) < o0
X
for the continuous case and

o0
D xig(x;) <o
i-1

for the discrete case.

. . 4
Let us consider two soft variables x =< X, g, (x) >, 3// =<Y.,g,(»)>
and the variable ()Vc,}/) described by g,,(x,y): X xY — R™. Denote by
g,(y|x) the evaluating function of 3// for the given value x (the condi-

tional evaluating function). The pair (%,3//) is defined by g,, (x,y) and

two operations:

&y (1, 0) =01[gx (%), 8, (¥ [X)], 9:39)
8x (x) = 02 [gxy (xa y)] 5 (9-40)
i.e.
Ol:DngDgy%Dg,xyﬂ OZIDg,xy%Dg,x

where Dyy, Dg,(x) and D, ., are sets of the functions g (x),

g,(y|x) and g,,(x,y), respectively. The mean value M(E/c) is defined

in the same way as for an uncertain variable (see Sect.8.1), with g, (x) in

place of /4, (x). O

The evaluating function may have different practical interpretations. In
the random case, a soft variable is a random variable described by the

probability density g(x)= f(x) or by probabilities g(x;)=P(x =x;). In
the case of an uncertain variable, g(x)=/(x) is the certainty distribution.

In the case of the fuzzy description, a soft variable is a fuzzy variable de-
scribed by the membership function g(x)= u(x)=w[@(x)] where w de-

notes a logic value of a given soft property ¢(x). In general, we can say
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that g(x) describes an evaluation of the set of possible values X,
characterizing for every value x its significance (importance or weight).

This description presents a knowledge concerning the variable X, which
may be given by an expert describing his / her subjective opinion, or may
have an objective character such as in the case of a random variable.

The non-parametric decision (control) problems considered for random,
uncertain and fuzzy variables may be written together and generalized by
using soft variables. For the plant with ueU, yeY and zeZ we as-

sume that (u,y,z) are values of soft variables (%,}/,Z) and the knowledge
of the plant has the form of a conditional evaluating function

KP=<g,(ylu,z)>.

Decision problem: For the given KP=<g, (y|u,z)> and g,(y) re-
quired by a user one should determine g, (u| z).

The determination of g, (u| z) may be decomposed into two steps. In
the first step, one should find the evaluating function g, (u,z) satisfying
the equation

2y(1)=02{0[ g4:(,2),2,(y|1,2)] } .
In the second step, one should determine the function g, (u| z) satisfying
the equation
8 (1,2)=01[ g.(2),8,(u| 2)]

where

gZ(Z)ZOz[guZ(U,Z)] .

The function g, (u| z) may be called a knowledge of the decision making
KD=<g, (u| z)> or a soft decision algorithm (the description of a soft

controller in the open-loop control system). Having g, (u| z) one can ob-

tain the deterministic decision algorithm as a result of the determinization
of the soft decision algorithm. Two versions of the determinization are the
following:

Version 1.

u, = arg max gu(u|z)é ¥,(2).
uelU



9.6 Descriptive and Prescriptive Approaches. Quality of Decisions 249

Version I1.

up =M(zv4|z)= jugu(u|z)du-[ jgu(u|z)du ]_1 2 ¥ (2).
U U

The deterministic decision algorithms ¥,(z) or ¥,(z) are based on the
knowledge of the decision making KD =< g, (u| z)> determined from the
knowledge of the plant KP for the given g, (y) .

9.6 Descriptive and Prescriptive Approaches. Quality of
Decisions

In the analysis and design of knowledge-based uncertain systems it may be
important to investigate a relation between two concepts concerning two
different subjects of the knowledge given by an expert, which have been
mentioned in Sect. 6.5 and Sect. 7.2 [39, 52]. In the descriptive approach
an expert gives the knowledge of the plant KP, and the knowledge of the
decision making KD is obtained from KP for the given requirement. This
approach is widely used in the traditional decision and control theory. The
deterministic decision algorithm may be obtained via the determinization
of KP or the determinization of KD based on KP. Such a situation is illus-
trated in Figs. 6.8 and 6.9 for the relational description and in Figs. 8.2 and
8.3 for the formulation based on uncertain variables. In the prescriptive

approach the knowledge of the decision making KD is given directly by
an expert. This approach is used in the design of fuzzy controllers where
the deterministic control algorithm is obtained via the defuzzification of
the knowledge of the control given by an expert. The descriptive approach
to the decision making based on the fuzzy description may be found in
[75].

Generally speaking, the descriptive and prescriptive approaches may be
called equivalent if the deterministic decision algorithms based on KP and

KD are the same. Different particular cases considered in the previous
chapters may be illustrated in Figs. 9.3 and 9.4 for two different concepts
of the determinization. Fig. 9.5 illustrates the prescriptive approach. In the

first version (Fig. 9.3) the approaches are equivalent if ¥ (z) = S;d(z) for
every z. In the second version (Fig. 9.4) the approaches are equivalent if
KD =KD . Then ¥,;(z)=%¥,(z) forevery z.
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z
z u
I'd Pant
requirement Deterministic
plant model
Determinization KP K—— Expert

Fig. 9.3. Illustration of descriptive approach — the first version

z
V4 ud
Yy Rant
Determinization
requirement
———= KD K—— KP K— Expert

Fig. 9.4. Illustration of descriptive approach — the second version

Let us consider more precisely version I of the decision problem de-
scribed in Sect. 8.2.1. An expert formulates KP =< @,A,. > (the descrip-
tive approach) or KD =< (Ed,hc > (the prescriptive approach). In the first
version of the determinization illustrated in Fig. 8.2, the approaches are
equivalent if ¥,(z)=¥,,;(z) for every z, where ¥,(z) is determined by
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(8.22) and Sgad(z) is determined by (8.27) with cl_id(z,c) instead of
@ ,(z,c) obtained as a solution of the equation

D(u,z,c)= y* . (9.41)
In the second version of the determinization illustrated in Fig. 8.3, the ap-

proaches are equivalent if the solution of equation (9.41) with respect to u
has the form @,;(z,c), i.e.

D[Dy(z,c)z.c]=y" .

For the non-parametric problem described in Sect. 8.2.2 only the second
version of the determinization may be applied.

The similar formulation of the equivalency may be given for the random
and fuzzy descriptions presented in Chap. 7 and in this chapter, respec-
tively. The generalization for the soft variables and evaluating functions
described in Sect. 9.5 may be formulated as a principle of equivalency.

Principle of equivalency: If the knowledge of the decision making KD
given by an expert has the form of an evaluating function g, (x|z) and

€u(u|z) € Dy, (z) where Dy, (z) is the set of all solutions of the decision

problem presented in Sect. 9.5, then the decision algorithm based on the
knowledge of the decision making given by an expert is equivalent to one

of the decision algorithms based on the knowledge of the plant. [
For the non-parametric cases described together in Sect. 9.4, descriptive
and prescriptive approaches are equivalent if:

1. j}u (u]z) given by an expert satisfies equation (9.31).
2. l_zu (u|z) given by an expert satisfies equation (9.35).
3. w,(u|z) given by an expert satisfies equation (9.23).
4. g,(u|z) given by an expert satisfies equation

gy(y) :02{01 [ OI(gz(Z):gu(u|Z))’gy(y |u,z)] } .

It is worth noting that the determination of the decision algorithm ¥
based on KD means the solution of the analysis problem for the unit (the

plant) described by KD and for the given input of this unit: z in the open-
loop system and x in the closed-loop system. It may be useful to present

together the determinizations of KD in non-parametric cases for static
plants in an open-loop system (see Fig. 9.5).
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A. Description based on random variables
For the given f,, (u|z) one should determine

g =BG |2) = [ufy(u] 2)du 2y (2).

U
z
V4 . ad
Yy Pant
Determinization
requirement _
— > KD K—— Expert

Fig. 9.5. Illustration of prescriptive approach

B. Description based on uncertain variables
For the given 4,,(u | z) one should determine

g =M(u|z)= [uh,(u|2)du-[ [, (u,z)du]™" 2¥,(2).
U U

C. Description based on fuzzy variables (U = Rl)
In this case we can consider two versions (see Sects. 9.1 and 9.2):
1. For the given u,(u|z)=w[p,(z) > ¢, (u)] one should determine

e 0] e8]
_ ~ _ _ 1A =
iy =M(@|2) = [utg,(u|2)du-[ [@,(n2)da] " & ¥y(z).  (9.42)
—00 —00
2. For the given
/_luz (u,z) = W[é =Z>Qy (u)] = min{/_lz (Z)a/ju (u | Z)}
one should determine

iy =M |2) = Jufiy: (] 2| [Tz (u|2)du] ' 2 Fy(2).  (9.43)

—00 —00
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Cases 1 and 2 are equivalent if z,(u|z) =, (u|z).
Instead of the mean value E or M we can use the value of # maximiz-
ing the distribution, e.g. in case A

uy =argmax ]_‘u (u] z).
uel

Denote by a the vector of parameters in the description given by an ex-
pert. They may be parameters in f, (u|z), h,(u|z) or u,(u|z). Conse-
quently, the deterministic decision algorithm u; = ¥_’d(z,a) depends on a.

Then the problem of a parametric optimization consisting in choosing a
minimizing the performance index (, and the problem of adaptation con-
sisting in adjusting a to a , may be considered (see Sect. 11.4).

The cases corresponding to A, B, C may be listed for the dynamical
plant with x instead of z. Note that the description for the fuzzy variables
is concerned with a simple one-dimensional case. In the next section we
shall present it for a multi-dimensional case in the closed-loop system.

Different approaches to the determination of the deterministic decision
(control) algorithm, based on different formal descriptions of the uncer-
tainty (and including descriptive and prescriptive approaches) may be veri-
fied and compared by evaluating the quality of decisions based on an un-
certain description and applied to a concrete deterministic plant with a
known description. Consider a plant described by a function y = @(u,z)
and introduce the performance index evaluating the quality of the decision
u for the given z

0u,2)=(y -y (y=y") =@,z -y ' [@u,2)-y"]

where y* denotes a desirable value of the output. Assume that the func-

tion @ (i.e. the exact deterministic description of the plant) is unknown,
(u,y,z) are values of uncertain variables (u,y,z) and a user presents the

requirement in the form of a certainty distribution /4, (y) in which
argmaxh,(y) = y*.
y

If u; =¥(z,a) is the deterministic decision algorithm obtained as a result
of a determinization of the uncertain decision algorithm /4, (u|z) obtained
from KP or given directly by a user, then

0(2) =[@(¥(z,a),2)~ y 1T [@(¥(z,a),2) - "]

>

@ (z) (9.44)
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where a is the vector of parameters in the certainty distribution %, (y|z)
(in the descriptive approach) or directly in the certainty distribution
h,(u|z) (in the prescriptive approach). For the given z, the performance
index (9.44) evaluates the quality of the decision u; based on the uncer-
tain knowledge and applied to the real plant described by @ . To evaluate
the quality of the algorithm ¥,; for different possible values of z, one can
use the mean value

M(0)= [qh,(9)dg-[ [h,(q)dg]™" (9.45)
0 0

where £,(g) is the certainty distribution of é =@ (z) which should be

determined for the given function @ and the certainty distribution
h,(z) =maxh,,(u,z),
uelU

and h,,(u,z) is the distribution obtained in the first step of the decision
problem solution (see (8.30) in Sect. 8.2.2). In the prescriptive approach
h,(z) should be given by an expert. The performance index (9.44) or
(9.45) may be used in:

1. Investigation of the influence of the parameter a in the description of
the uncertain knowledge on the quality of the decisions based on this
knowledge.

2. Comparison of the descriptive and prescriptive approaches in the case
when A, (u|z) and h,(u|z) have the same form with different values of

the parameter a.
3. Parametric optimization and adaptation, when

a = argminQ(a)
a

is obtained by the adaptation process consisting in step by step changing of
the parameters of the controller in an open-loop decision system with a
simulator of the plant described by the model @ .

The considerations for fuzzy controllers are analogous, with

uy(luz), m(z) and g(ulz) in place of hy(y|uz), hy(z) and
hy(u|z).
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9.7 Control for Dynamical Plants. Fuzzy Controller

Let us consider the closed-loop control system with a dynamical plant
(continuous- or discrete-time) in which the state x is put at the input of the

controller. In the simple one-dimensional case the knowledge KD (or the
fuzzy controller) given by an expert consists of two parts:
1. The rule

Py (x) > @, (u) (9.46)

with the determined properties ¢, (x) and ¢, (u): “xis d,” and “u is
d,”, ie “if x=x then xis d,” and “if u=u then uis d,” (see
Sect. 9.1).
2. In the first version corresponding to (9.42) for the open-loop system —
the membership function g, (u|x) of the property (9.46). In the second
version corresponding to (9.43) — the membership function g, (u|x) and
the membership function g, (x) of the property ¢, (x), or directly the
membership function

Hy (1, %) = WX = x > @, ()] = min {1, (x), 41, (u| %)} (9:47)

Then the deterministic control algorithm (or deterministic controller) is
described by the following procedure:

1. Put x at the input of the controller.

2. In the first version, determine the decision

ug = [ gt (u|x)du-[ [pr, (u|x)du]™ .

In the second version, for the given g, (u|x) and g, (x) determine
My (1, x) according to (9.47) and find the decision

o0 o0
ug = [ gt x)du [ [t (,x)da] ™"
—o0 —0
Instead of the mean value we can determine and use the decision u
maximizing the membership function g, (u|x) or u,, (u,x).
Let us present the extension of the second version to the controller with
k inputs x(l),x(z) ,...,x(k) (the components of the state vector x ) and one
output u.The description of the fuzzy controller (6) given by an expert

has a form analogous to that for the fuzzy description of a multi-
dimensional static plant (see Sect. 9.2.2) and contains two parts:
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1. The set of rules
1 2
21N AP A ngj (B 5 0, (1), 9.48)
ji=12,..,N
where N is a number of rules, jS(x(i)) =«x s d;” and @, (u)=
“u is dj ”, d]l
9.2.2. The meaning of the rules (9.48) is then as follows:

and d ; denote the size of the numbers as in Sects. 9.1 and

IF (x is d ;) AND () is d ;) AND ... AND (x*) is d ;)
THEN uis d;.

For example (k=3)

(x(l) is small positive) A ( @ s large negative) A ( x3) is small negative)
— u is medium positive.

2. The matrix of the membership functions
/lxji(x(i))ZW[Cﬂﬁ(x(i))], il k
j=L2,.,N
and the sequence of the membership functions
ﬂuj(u|x(1),x(2),..., x(k))7 j:1727"'9N

for the properties (9.48).
The deterministic controller (i.e. the deterministic control algorithm

obtained as a result of the determinization of KD ) is described by the
following procedure:

1. Put x at the input of the controller.

2. Find the sequence of values

. 1 2 .
() = min gy (6D, g1y (2 s g (U j=12,0N
3. From each rule determine the membership function

Mo, j (@, X) = w[E =x > is d ;]=min{ g (), (u] )},
j=12,.,N.

4. Determine the membership function g, (x) of the property
(x=x)> wisd))v(uisdy)v..v(uisdy).
Then
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My, (x) = max {:uux,l (u,x), Hux 2 (u,x), ..., Hux, N (u,x)} .
5. Determine the decision u,; as a result of the determinization (defuzzifi-

cation) of p,(x):

A —
Ugq =argmax i, (x) = ¥,q(x)
u

or
Upg = [usty ()t [ [ g1, (x)du] ™ & Py (x) .

In a discrete case the integrals are replaced by the sums (see (9.5)). For
simplicity, it may be assumed that the membership function of the implica-
tion (9.48) does not depend on x . Then

(] x) 2 2y (1)
and
My, (U, x) = wlx=x—>uis d;]= min{ﬂxj(x),!_luj(”)} .

The relations between 4,7, u; and g,,,; are illustrated in Fig. 9.6.

Hyjs My j - - 7ﬁuj(u)
1 Hux,j(U)

Hxj [

Fig. 9.6. Example of 1,; and u,,, ;

If for a single-output continuous dynamical plant xTz[g(t),é(t),...,

g(k_l)(t)] (where &(7) is the control error put at the input of the control-
ler), then the properties in the rules and the corresponding membership
functions concern the control error and its derivatives. If u is a vector (in
the case of a multi-input plant) then the knowledge given by an expert and
the procedure of finding the decision are for each component of u the
same as for one-dimensional u considered above. There exist different
versions and modifications of fuzzy controllers described in the literature
(e.g. [62]). To characterize the fuzzy controllers based on the knowledge
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of the control given by an expert, the following remarks should be taken
into account:

1. In fact, the control decisions u,; are determined by the deterministic
controller ¥,; in the closed-loop control system.

2. The deterministic control algorithm %, has a form of the procedure
presented in this section, based on the description of the fuzzy controller
(i.e. the knowledge of the control E) given by an expert (Fig. 9.7).

3. The deterministic control algorithm u; =¥,;(x,a) where a is the vec-
tor of parameters of the membership functions in KD - may be consid-
ered as a parametric form of a deterministic controller. This form is deter-

mined by the forms of rules and membership functions in KD , 1.e. is pro-
posed indirectly by an expert.
4. The parametric form wu,; =¥;(x,a) is proposed in a rather arbitrary

way, not reasoned by the description of the plant. Besides, it is a rather
complicated form (in comparison with traditional and given directly para-
metric forms of a deterministic controller) and the decisions u,; may be
very sensitive to changes of forms and parameters of the membership func-
tions in KD

5. It is reasonable and recommended to apply the parametric optimization
described in Chap. 5 and adaptation presented in Sect. 11.4, to achieve the

value a" optimal for the accepted form ¥, i.e. for the forms of rules and

membership functions in KD given by an expert.

Rant

Ug X

Deterministic controller
Ya

Fuzzy controller
KD

Fig. 9.7. Control system based on fuzzy controller
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Chapters 10 and 11 form the fourth part of the book, which is devoted to
control under uncertainties, as the former part. Unlike the third part con-
taining Chaps. 6, 7, 8 and 9, now we shall consider two concepts of using
information obtained during the control process in a closed-loop system: to
the direct determination of control decision (Chap. 10) and to step by step
improving of a basic decision algorithm in an adaptation and learning
process (Chap. 11).

10.1 General Problem Description

In Chaps. 7 and 8 we considered control plants with unknown parameters
with the description of the uncertainty in the form of probability distribu-
tions or certainty distributions. These have been the descriptions of a pri-
ori information on the unknown parameters, i.e. the information known at
the stage of a design, before starting the control process. Only in Sect. 7.3
we considered a case when the information on the unknown parameter was
obtained during the control process and was used to current modifications
of control decisions. Obtaining the information had there a direct character
and consisted in a direct observation of the unknown parameter ¢, more
precisely — in the measurement of this parameter with the presence of ran-
dom noises. As a result, the information on the parameter ¢ could be for-
mulated in an explicit form (directly and precisely), i.e. in the form of a

priori probability density f.(c) and a posteriori probability density
J(c| w,,). Now we shall consider a concept consisting in obtaining the in-

formation on the plant during the control process in an indirect way, via
observations of control results in a closed-loop control system. In such a
case, it is important to use effects of the earlier control decisions for the
determination of the proper next decisions and to design the closed-loop
system in such a way as to assure the convergence of the control process to
the values required. This is the main idea of the design and the perform-
ance of a feed-back system. Let us note that obtaining the information as a
result of the direct observation of the unknown parameters does not require
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a simultaneous control, i.e. has a passive character, while obtaining the in-
formation by the observations of control results requires a variation of the
plant input, i.e. has an active character.

Let us present more precisely the above concept for a static plant

y=™u), uel, ye Y,
described in Sect. 3.1. Finding the solutlon u" of the equation y = Au) for

the determination of the decision u=u" satisfying the requirement y = y

may be obtained by using the successive approximation method, according
to the algorithm

1 =y K [y — Duy)] (10.1)

where u,, is the n-th approximation of the solution, K is the matrix of coef-
ficients whose values should be chosen in such a way that u, Su for
n — oo, The algorithm (10.1) may be executed in the closed-loop control
system (Fig. 10.1). It means that the substituting of the approximation u,
into the formula @ and calculating the value @(u,,)) is replaced by putting

the value u,, at the input of the plant and measuring the output y,,. Then, u,,
is now the control decision in the #-th period of the control and, according
to (10.1), the control algorithm in the closed-loop system is a follows:

Uyt = U, +Ke, (10.2)

where &, = y* -y, denotes the control error. Consequently, the control sys-
tem as a whole is a discrete dynamical system described by the equation
uy+1 = F(u,) where

Flity) =ty + K[y — Du)].

‘n Un Plant Yn y

Controller > -
n

Fig. 10.1. Closed-loop control system with static plant

The value " satisfying the equation ¥ =F(u) may be called an equilibrium

state of the system and the property u,, — u" for n— o may be called a
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stability of the equilibrium state or shortly — a stability of the system. So,
instead of speaking about the convergence of the approximation process in

an approximation system in which the successive approximations u,, are
executed starting with the initial value #, one can speak about the stability
of the control system, meaning the convergence of u,, to the equilibrium
state u*, i.e. the returning to the equilibrium state. The initial state u # u'

is an effect of a disturbance which acted before the moment #» and removed
the system from the equilibrium state.

In the further considerations we shall use the term stability, remember-
ing that the stability conditions under consideration have a wider meaning
and may be used as convergence conditions in an approximation system
containing a plant of approximation and an approximation algorithm. This
is a uniform approach to convergence problems in different systems realiz-
ing recursive approximation processes, such as a computational system de-
termining successive approximations of a solution, a system of identifica-
tion, control, recognition, self-optimization seeking an extremum,
adaptation etc. [8].

Let us assume now that an unknown parameter ¢ occurs in the function
@, i.e. y= Au, c) where in general c is a vector (ce(C), and note that the
exact knowledge of the value c is not necessary for the determination of

the solution of the equation y* = @(u) by the successive approximation

procedure (10.1) with any initial value u, or for the satisfaction of the sta-
bility condition in the respective control system with any initial state (see
the remark at the end of Sect. 3.1). In other words, by the proper choosing
of K, the property of the convergence (stability) can be satisfied for a set of
different values c. Then, for the proper choosing of the matrix K, the exact
knowledge of ¢ is not required; it is sufficient to know the set of all possi-
ble values c. So, the matrix K assuring the convergence may be determined
for an uncertain plant with the description of the uncertainty in the form of
a set of all possible values c.

For example, let in the one-dimensional case y = cu. Then according to
(10.1)
U, =u, —kcu, =(-kc)u,
where u,= un—u*. Hence, the inequality |1—kc| <1, or 0 <kc<2 is the
necessary and sufficient condition of the convergence of u,, to 0 for any

ug. If it is known that the unknown parameter c€(0, ¢ ] then this condition

will be fulfilled for every ke(O,%), i.e. every k satisfying the inequality
c
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0<k<%.
c

The above considerations may be generalized for the dynamical plant in
the closed-loop control system

X0+l = Jo(xon» uy), Yn =10 (xOn)’} (10.3)

YR, n+1 = JR (XRn> Vi) u, =nR (XRy)

where x(y,, is the state vector of the plant, xg,, is the state of the controller,
u,, is the input vector of the plant and y,, is the output vector of the plant.

By substituting u,, = 7r(xg,) into fo and y, = no(xp,) into fr, the set of
equations (10.3) may be reduced to one equation

Xpt1 = F(x,), X,eX= RF (10.4)

{ }
n
R}’l

is the state vector of the control system. The solution xéxe of the equa-

where

tion x = F(x) is called an equilibrium state. Let us assume that the system
described by (10.4) has one and only one equilibrium state.

Definition 10.1 (stability). The system (10.4) (or its equilibrium state x, )
is called globally asymptotically stable in the domain D, c X if and only

if lim x, =x, foreveryxpeD,. O
n—0

In the further considerations we shall speak only about asymptotic sta-
bility. Sometimes, the system globally stable for D,=X is called totally
stable. For practical reasons, for the system (10.4) with the fixed input u,,
and output y, , i.e. described by the equation

Xn+1 ™= F(xm L_ln )a ;rz = 7]()(?”)
we introduce a property called input-output stability. This property means
that if u, >u for n— o then y, — n(xe)é} where x, is the equilib-
rium state for u,, = const. =u , i.e. is a solution of the equation x = F(x,u ).

In other words, if a disturbance u,, —u acting at the input is converging to
0 then the response at the output is converging to the value y correspond-
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ing to the equilibrium state. In the next considerations we shall assume that
X, = 0, #=0 and y =0 . The input-output stability depends on the equa-
tions describing the system and on the choice of the pair (u,,, y, ). If the
system is stable in the sense determined in Definition 10.1 for D, = X then
the property of the input-output stability is satisfied for any disturbance u,,

converging to 0. The inverse theorem is true if the system is fully control-
lable and observable, i.e. the disturbance u,, can remove the system from
the equilibrium state and it can be observed by measuring y,, .

In the next text, speaking about input-output stability we shall use the
term stability only, which means that we shall speak only about the stabil-
ity of the controllable and observable part of the system, or that we shall
assume full controllability and observability of the system as a whole. Let
us assume that until the moment » = 0 the control system was in the equi-

librium state (the control error &, = 0 forn< 0) and in the moment n=10 a
step disturbance z, =z-1(n) was put at the plant (which means that

z,=const=z for n>0) and/or the required value of the plant output

changed: y:; = f* -1(n) ( y: =0 forn< 0). The stability of the control sys-
tem (exactly speaking, input-output stability) means that as a result of the
action of the controller, the control error ¢, converges to a constant value
&y, 10 particular to 0.

For the static plant described by y =@®(u) it is not possible to satisfy
the requirement y = y* by putting directly the proper decision u" at the in-
put as it was presented in the case of the full information on the plant in
Sect. 3.1, but it is possible to achieve the value u" as a result of step by step

approximation process in a stable closed-loop control system with the con-
trol algorithm (10.2). Similarly, for the system (10.3) it is not possible to
achieve a required state of the plant in a finite time as it was described in
Chap. 3 in the case of the full information on the plant, but it is possible to
achieve it for n — oo, and practically after a sufficiently long time, such
that after this time the distance Hxn—x*” is already less than the given
small number.

Analogous terms and definitions are applied to a continuous dynamical
closed-loop control system described by the equations

Yo = folro (. u],  ¥(1)=nol¥o (r)],} 105)
SO0 = flwr 0, O} () =ng[xp (O]
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ie.
x(t) = F[x()] (10.6)
where
| x0®)
0= LCR (f)}

is the state of the control system and the equilibrium state x =x, is a solu-
tion of the equation F(x)= 0. In the stable control system, the control er-
ror &¢) caused by a step disturbance converges to a constant value &, in

particular to 0. The designing of the closed-loop control system with the
plant containing an unknown parameter ¢ and with an assumed form of the
controller containing a parameter a consists in the choice of the value a
such that for every value ¢ from the set of all possible values, the system is
stable. The requirement of the system stability replaces now the require-
ment of the minimization of the performance index considered in Chap. 5
which is possible to satisfy with the full information on the plant, i.e. with
the knowledge of c. It is a parametric design problem as well as an optimi-
zation problem considered in Chap. 5 but with a weaker requirement
caused by the incomplete information on the plant. As a result, usually a
solution of the problem is not unique, i.e. one obtains a set of values a
which together with the value c satisfy the stability condition for the given
forms of the plant model and the control algorithm. In order to determine
this set, it is necessary to determine the stability condition concerning

(c,a).

10.2 Stability Conditions for Linear Stationary System

10.2.1 Continuous System

Let the system (10.6) be the linear and stationary system (i.e. with constant
parameters)

x()=Ax(f),  xeX=RE. (10.7)

For the given initial condition x(0) =x( one can find the concrete solution
of the equation (10.7)
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x(H)= eAtxo. (10.8)
By using (10.8), the following theorem may be proved:
Theorem 10.1. The system (10.7) is stable if and only if

A Resi<o (10.9)
iel,k
where s; are eigenvalues of the matrix 4, i.e. the roots of the characteristic
equation
det(4 —s)=0. (10.10)
O
The property x(¢) — 0 for (10.8) does not depend on xg, then (10.9) is
the condition of the global stability for D, =X. The equation (10.10) may
be presented in the form

1

sf+ a1+ L+ ays+ag=0. (10.11)

Consequently, the system is stable if and only if the roots of the linear al-
gebraic equation (10.11) are all located in the left half-plane of the s-plane.
The condition may be proved without solving the equation (10.11), by ap-
plying so called Hurwitz criterion. For this purpose we consider the fol-
lowing k-th degree determinant:

ap_y 1 0 0 0 0 0 .. 0
ap_3 dp_»o ar_q aj 0 0 0 ... 0
Akz ak_5 ak_4 ak_3 ak_2 ak_l ak 0o .. 0 0

0 0 0 0 0 0 0 .. 0 g

All the roots of the equation (10.11) lie in the left half-plane if and only if
all principal subdeterminants (minors) Aj, Ay, ..., A; with the form
ajp_1 1 0

ajp_1 1

Ay =ap, A= s M=l apy apy a |

Ap-5 Adg—4 93

ap_3 dp-2

etc., are positive. The stability analysis may be based on transmittances.
For one-dimensional closed-loop control system (see (2.24))
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Y (s)

B = ko)

where the function K(s)=Kgr(s)Ko(s) is a transmittance of an open-loop
control system. For y*(t)= y*'l(t), the form of &) is determined by the
characteristic roots of the closed-loop system, i.e. the roots of the charac-
teristic equation

L(s)+ M(s)=0

where L(s) and M(s) denote the polynomials in the numerator and the de-
nominator of the transmittance K(s), respectively. The location of all char-
acteristic roots of the closed-loop system in the left half-plane is a suffi-
cient and necessary stability condition. It follows directly from the forms
of components (addends) of the function &£(7), corresponding to the real
roots or to the pair of the complex roots (conjugate to each other) of the
equation L(s) + M(s) =0.

It is worth noting that the function K(s) may be considered as a mapping
transferring all roots of the equation K(s)+ 1=0 from s-plane into one
point (-1, jO) in K(s)-plane, and transferring the half-axis jo for 0 < @<
into the graph of the frequency transmittance K(jw). Then, instead to inves-
tigate the location of the roots of equation K(s) + 1 =0 with respect to axis
jw in s-plane, one can investigate the location of the point (-1, jO) with re-
spect to the graph of K(jw) in K(s)-plane. Since K(jw) is symmetric with
respect to real number axis, i.e. K(—jw) and K(jw) are conjugate to each
other, it is sufficient to investigate the location of the point (-1, jO) with re-
spect to K(jw) for 0 < @< co. From these considerations so called frequency
stability criterion or Nyquist criterion follows. In the simple case, under
the assumption that all poles of K(s) (i.e. roots of the equation M(s) =0) lie
in the left half-plane of s-plane, the control system is stable if and only if
the graph of K(jw) for 0 <@w< o does not encircle the point (-1, jO).

10.2.2 Discrete System

Stability conditions for the discrete linear system are analogous to those
for the continuous system. The solution of the equation

X1l = Ax), (10.12)
has the following form:

x, = A"x.
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By using this solution, the following theorem may be proved:

Theorem 10.2. The system (10.12) is stable if and only if

A [2il <1 (10.13)

iel,k
where z; are the roots of the equation
det(4 —z)=0. (10.14)
O
This is a global stability condition for D, = X. After transformations the
equation (10.14) takes the form (10.11) with the unknown z instead of s. In
order to determine the condition that all the roots of this equation satisfy

the property (10.13), i.e. lie inside the circle with radius 1 in z-plane — one
may apply the transformation

w+1
z=

w—1

which transfers the left half-plane in w-plane into the circle with the radius
1 in z-plane. Substituting this expression in the place of z, after some trans-
formations we obtain the k-th degree linear algebraic equation with the un-
known w, for which we may apply Hurtwitz criterion.

For one-dimensional closed-loop system with the transmittance of the
open-loop system K(z) =Kgr(2)Kp(z), the condition (10.13) concerns the
roots of the equation

Lz)+M(z)=0

where L(z) and M(z) denote the polynomials in the numerator and the de-
nominator of K(z), respectively. The function K(z) transfers all roots of the
equation K(z) + 1 =0 from z-plane into one point (—1, jO) in K(z)-plane, and
the circle & for —n < @< 7 into the graph of the discrete frequency trans-
mittance K(eja'). Thus, the discrete form of Nyquist criterion may be ap-
plied. In the simplest case, under the assumption that all roots of the equa-
tion M(z) =0 lie inside the circle with radius 1, the control system is stable
if and only if the graph of K(eja') does not encircle the point (-1, jO).

Example 10.1. Let us determine the stability condition for the closed-loop
control system with the following transmittances of the plant and of the
controller
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kr

__ko _ ke
Ko(s) KRr(s) 6Tyt D)

Ty +1)°
The characteristic equation of the closed-loop system is as follows:
k+s(sTy+1) (sTy + 1) =T Tps” + (T + Tp)s*> +s+k=0

where k= kpkg is an amplification factor of the open-loop system. Then
we have

:T1+T2 1 k

2 > T T o

1 > 4 .
nT, nT, nrn

Applying Hurwitz criterion, i.e. the inequalities A >0, Ay >0, A3>0, we
obtain ay >0, ajay —ag >0, agA, >0 or ap> 0. Since 77,7, > 0, the stabil-
ity condition is the following:

11
0<k<—t—. (10.15)

h T
The condition £ >0 is evident because it means that the feed-back must be
negative. The right-hand side of (10.15) means that the amplification fac-
tor should be sufficiently small and that for too great values of 7 and (or)

T, the stability limit £ = TL+TL may be exceeded. Having the condition
1 2

(10.15), for the given numerical data k, T, T, we can prove whether the

system is stable.

The application of this condition in the designing of the controller con-
sists in the proper choice of the values kp and 7, by a designer (see re-
marks in Sect. 10.1). If the exact values of the plant parameters are un-
known but it is known that kg < kg max and 77 < T,y then one should

choose such values kg and 7, that the condition

1(1+L)

kR<
kO,max Tlmax T2

is satisfied. The condition (10.15) can be also obtained by applying Ny-
quist criterion. For this purpose one should find the value @ from the
equation ImK(jw) =0 and use the condition ReK(j @ ) > -1, what is illus-
trated in Fig. 10.2. After some transformation we obtain
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—kTT,

ReKGw )=
(o) 717,

and consequently the condition (10.15). O

Im K(j )

Re K(jw)

Fig. 10.2. Example of frequency transmittance

Example 10.2. Let us determine the stability condition for the discrete
closed-loop control system in which the plant and the controller are de-
scribed by the equations

_ 1
Ynt1 = Wp= kOurH-l: S+l = k_ (urH-l - un),
R
respectively. The discrete transmittances are then as follows:
koz krz
Ko@=—-2=,  Kr@@)=—"=.
z—-« z—

The equation L(z) + M(z) =0 is here the following:
Z+aiztag=0 (10.16)
where

a+1 a

ay= — , a .
L k+1

o +1 .
Substituting z= W—l we obtain
W —

(1+ay +agw’ +2(1 —ag)w+ 1 —aj +ag=0.
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For the 2-nd degree equation, the conditions in Hurwitz criterion are satis-
fied if the coefficients in this equation are positive. Hence,
ap<1l, ap>a;—-1, ay>-a;-1 (10.17)
and after some transformations it gives the following stability condition:
k>max{0, a—1,-2(a+ 1)}.
Consequently, k>0 if | | <1 (the plant is stable), k>-2(a+ 1) if a<-1,
and k> a—1 if a>1. For example, if it is known that 1 < ¢<7 and kg >3

then the designer should choose kg >2. O

10.3 Stability of Non-linear and Non-stationary Discrete
Systems

A general method of the determination of sufficient stability conditions for
non-linear and non-stationary (time-varying) discrete systems is based on
so called principle of contraction mapping [7, 10, 12]. The function F in
the formula (10.4) is called a contraction mapping if for any two vectors x,
xeX

[F(x)=F) I<[l x —x]|
and ||-|| denotes a norm of the vector. If F(x) is a contraction mapping then

the equation x = F(x) has one and only one solution (so called fixed point
of the mapping F) equal to the limit of the recursive sequence (10.4). Let
us consider the non-linear and non-stationary system

X1 = Flen xy) (10.18)

where c¢,€C is a vector of time-varying parameters. If the system is sta-
tionary then the equation (10.18) is reduced to (10.4). Let us present
(10.18) in the form

x¥) =Fi(c,,x,), i=1,2,..k

n+1
and assume that the functions F; have the following form:
S ()
Fi(crl: xn) = Zalj (Cn:xn) xnj P

Jj=1
1.€.
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X1 = A(C s X ) X (10.19)

where the matrix 4(c,, x,, ) = [a;1(c;, x, )]eRka. According to the earlier
assumption about the solution of the equation x = F(x), for every ceC the
equation x = A(c, x)x has the unique solution x, = 0 (the equilibrium
point). For the linear system

X+l = A(cn)xn

and for the stationary system

X+l = A(xn)xn-

It is convenient to formulate the principle of contraction mapping for
F(x) = Ax by using a norm of the matrix. A norm of the matrix || 4 || for the
determined norm of the vector || x || is defined as follows:
Ax
141 = max LA rexc e =y, (1020)
xely d
Hence, it is the maximum ratio of the length of the vector Ax to the length
of the vector x, for different vectors x with the same length. The following
norms are most frequently used:

L||x|= VxTx (Euclidean norm)

A
HA] =114 1=y Amax (AT 4) (10.21)

where A« is the maximum eigenvalue of the matrix A'4.
2.1f

_ 0]
X||—= max [ x
x| 1Sisk| | (10.22)
or
koo
EIEDIES (10.23)
i=1
then
A k
Al =14]; = max a |,
1Al =114 1sl~skj§1| i | (10.24)
A k
4] =4 lo= max > |a;], (10.25)

s/=ki=)
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respectively.
The following theorems are based on [7, 12].

Theorem 10.3. If there exists a norm || -|| such that

/\ /\ [ A(cn,x)[[<1 (10.26)

n>20 xeX
then the system (10.19) is globally stable for D, = X, i.e. is totally sta-
ble. O

Theorem 10.4. If there exists a norm ||-|| and a non-singular matrix

Pe Rka such that

A A I P~ A(c,, x)P| <1 (10.27)

nz0 xeX
then the system (10.19) is totally stable. O

Theorem 10.5. Denote by 4;(4)=4;(c,,x) the eigenvalues of the matrix
A (i=1,2,..,k).If A(c,,x) is a symmetric matrix and

/\ A max |4;(c,,x)|<1 (10.28)

n>0 xeX !

then the system (10.19) is totally stable.

Theorem 10.3 follows from the fact that under the assumption (10.26)
A(c,,x)x is a contraction mapping in X. The condition (10.27) is obtained
by introducing the new state vector v, = P_lxn and using Theorem 10.3
for the equation

-1
Vpr1 =P A(c,,x,)Pv,.

Theorem 10.5 may be easily proved (see [12]) by using the norm (10.21).
If 4 is a symmetric matrix then A, (ATA) =max | 4;(A4) |2 .
i

— 1A "
Remark 10.1. For the norm |||, and (P 1)TP 1=Q, the condition

(10.27) is reduced to the following statement. If there exists a positive
definite matrix Q such that
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A A A" (¢, )0A(c,, x) -0 <0

n>0 xeX

then the system (10.19) is totally stable. [
Condition (10.26) may be presented in the form

A A Alc,,x) e A (10.29)

n>0 xeX

where 4 isasetof kxk matrices A defined as
A= {A:| 4| <1}. (10.30)

We shall also use another form of the stability condition (10.26)

A ¢, <D, (10.31)

n>0

where

D.={ceC: A | ACex)||<1}. (10.32)

xeX
Conditions (10.27) and (10.28) may be presented in an analogous form
with ||P_1AP|| or max |A;(A4)| instead of || 4| in (10.30) and with
i

[ P_lA(c,x)P|| or max | 4;(c,x)| instead of || A(c,x)| in (10.32).
l

Theorem 10.5 shows that if A(c,,,x) is a symmetric matrix then for the

non-linear and non-stationary system one may apply the condition such as
for a linear and stationary system.

Let us note that Theorems 10.3, 10.4, 10.5 formulate sufficient stability
conditions only. The satisfaction of these conditions assures a monotonic
convergence of || x,, || to 0, which is not necessary for the stability. When
the condition (10.26) will not be satisfied, we do not know whether the
system is stable. For the different norms, different particular sufficient
conditions (10.26) may be obtained, and by a proper choice of the matrix P
one can try to obtain a weaker condition (10.26). We can use the basic
condition (10.26) in two ways:

1. We try to determine the total stability condition for the parameters of the
system, and consequently — for the control parameters a. If it is not possi-
ble to choose the value a as to satisfy the condition (10.26), we try to de-

termine the domain of global stability D, for the fixed a.
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2. We determine the global stability domain D,, i.e. such a set D, contain-
ing the equilibrium state 0 that if xo€Dy then x,, > 0. Let us note that if
XNE Ex where
D, = {xeX: /\ [ A(cp, x) <1}
n=N
then || xy41 || <l xn |- On the other hand, if xy € D, then x,, converges to
0 for n> N. The set D, is then the maximum domain determined by the

inequality || x || £ d and contained in the domain Ex , 1.e.
D, ={xeX: || x| <d}

for the maximum d such that

A (x eD,).

[xll<d

The convergence problem is more complicated when the output of the
plant in a closed-loop system is measured with a random noise z,,. In such
a case one can apply so called stochastic approximation algorithm which
for the static plant y = @ (u) considered in Sect. 10.1 takes the form

*
Upt] = Uyt 7/}10} - yn)

where y,=y,+z,is the result of the output measurement. Under some
very general assumptions concerning the function @ and the noise z,,,

usually satisfied in practice — it can be proved that such a process in a
probabilistic sense (see Sec. 7.1) converges to u , i.e. to the solution of the

equation @ (u) = y*, if 7, > 0 for every n, the sequences y, converges to 0
and satisfies the conditions

o0 o0 )
Zyn:oo, Zyn<oo,
n=0 n=0

In order to assure the convergence of the approximation process so called
degressive feed-back [9, 11] should be applied, i.e. a feed-back acting

weaker and weaker (with less and less 3,) for increasing n. The conditions
presented above are satisfied by the sequence y,, =7 The stochastic ap-
n

proximation is widely applied in approximation processes for control and
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identification as well as adaptation and learning which will be described in
Chap. 11. More precise information on the stochastic approximation and
its applications may be found in [14, 103].

Example 10.3. Let us consider a one-dimensional feed-back control sys-
tem with a continuous plant consisting of a non-linear static part described
by the function w= @u) and the linear dynamical part described by the
transmittance

ko
s(s+1)

The plant is controlled in a discrete way via zero-order hold (Fig. 10.3),

Ko(s) =

u(?) = kr &), u,, = u(nT) where T is a sampling period (see the description
of a continuous plant controlled in a discrete way, presented in Chap. 2). It

is easy to show that, choosing the state variables xf,l)I y(nT) =—&(nT),

x,(qz) = y (nT), one obtains the following equation:

{xﬁil}z{l—gex&”)(r—ne*) (1—e‘T>} {xﬁ”}

SO —gxMya-eT) T AP
where
| 0 % for u=#0
g(x)) = g(u) = “

kokr lim % for u=0.

u—>0 U

Un | 1. sT] v(f) o )| kg ¥(t) Ofort>0
s s(s+1) -
u(t) &(f)
kr

Fig. 10.3. Block scheme of the control system under consideration

Applying the condition (10.26) with the norm (10.24) yields
|1 - kokp g@)(T— 1+ )|+ (1 - <1,
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| kokg gy (1 —e Ty [+e T <1

and finally

T T

l—-e l+e

< b
kokg (T—1+¢™) kokp (T—1+¢7T) (10.33)
-l<g(u)<l,

(u) <

under the assumption that 77— 1 + ¢ T>0. The inequalities (10.33) deter-
mine the bounds g; and g, for g(u). If g; < g(u) < g, for every u, i.e. the

characteristic w= @ (u) lies between the lines w=gju and w=gyu
(Fig. 10.4) then the system is totally stable. Sometimes in this case we use
the term absolute stability condition, i.e. the condition concerning the
whole set of non-linear characteristics. If the given characteristic w = @ (u)
is located between the lines mentioned and it is known that
ko min < ko < ko max then the choice of kg satisfying the condition

T T

l1+e l1+e

— - <hr < —
glkO,min(T_1+e ) ngO,max(T_l+e )

assures the stability. It is also a condition for a non-stationary system under

the assumption that for every n > 0

kO,min < kO,n < kO,maX' U
w w=gou
w=@ (U)
w=g qu
u

Fig. 10.4. Characteristic of static non-linear element
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10.4 Stability of Non-linear and Non-stationary
Continuous Systems

Let us assume that the continuous system
x= Fle(0), x(1)] = A[e(), (D) ]x(2) (1034)

has one equilibrium state x, =0, ie. for every ceC the equation
A(c, x)x = 0 has the unique solution x, = 0. The considerations are now

analogous to those for a discrete case. The requirement || x,+1 || <|| X, ||
may be replaced by the requirement for || x(7) || to be a decreasing function
of ¢. If it is a differentiable function then we may determine the condition
assuring for every ¢ > 0 the inequality

d||x(@)|l <0 (10.35)
dt ’
i.e.

[zrad || x || L= 1" - 5(0) = [grad || x || ;=) 1" ALc(@), x(@)x() <0 - (10.36)

The requirement that || x(¢) || is a differentiable function restricts the choice
of the norm || x ||. It is however worth noting that instead of a norm one
may use any function V(x) assigning non-negative real number to a vector
x and satisfying the following properties:

1.Vx)=0<x=0.
2. For every sequence x,, such that || x,, || = oo, the sequence V(x,)) — .

Of course, || x || is a function V(x) for any norm. Now the inequalities
(10.35) and (10.36) take the forms

drix] _, (10.37)
dt ’
[grad ¥ (x)]" Ale(t), x]x < 0 (10.38)

X
under the assumption that the function V(x) is differentiable with respect to
x. If for every ¢ the condition (10.37) is satisfied then for # — oo the value

converges to 0, and consequently x(¢) — 0. Then the following theorem,
analogous to Theorem 10.3, is true.

Theorem 10.6. If there exists a function V(x) such that the inequality
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(10.38) is satisfied for every 7 > 0 and every x€.X then the system (10.34) is

globally stable for D, =X. O

Consequently, theorems analogous to Theorems 10.4 and 10.5 are also
true. In the first case, in the place of 4 in (10.38) Plap occurs, and in the
second case the property | Ai(c,, x)|<1 is replaced by the inequality
Red;[c(f), x] <0, i.e. the condition is the same as for a linear stationary sys-
tem. The function V(x) satisfying for every ¢ the condition (10.37) is called
a Lyapunov function, and the respective method of the stability analysis is
called the second Lyapunov method (the first Lyapunov method concerns

the investigation of a local stability, based on a linear approximation). The
approach described in Sect. 10.3 may be called the second Lyapunov

method in a discrete form, with the function V(x) equal to || x || or (]| x ||)2 .
If V(x) = xTQx where Q is a positive definite matrix then

[grad V' (x)]" Ax=2x"04x =x" (04 + AT O)x.

X

Thus, if there exists a positive definite matrix Q such that for every >0
and every xeX the matrix

QA[c(t), x] + A [e(0), x10 (10.39)

is negative definite then, according to Theorem 10.6 the system is globally
stable for D, = X. This condition is analogous to the condition in Remark
10.1 for the discrete case.

10.5 Special Case. Describing Function Method

Let us consider a special case of a closed-loop control system, namely one-
dimensional system containing two parts: a non-linear static part with the

characteristic v= @(¢) and a linear dynamical part described by the trans-
mittance K(s) (Fig. 10.5).
In order to apply the second Lyapunov method one can introduce the

state vector in the form xT=[g, £, a‘k_l)] where &1 denotes the
(k—1)-th derivative of &(¢) and k is the order of the plant. Frequently, as a
Lyapunov function in this case one chooses
+0
V) =x"0x+ [@(s)de.
0
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y(®) Ofort>0

K(s)

wt) &(f)

Fig. 10.5. Control system with static non-linear part

Then
grad V' (x) =20x + a(x)
X
where a(x) is a zero vector except the first component equal to @(x(l)).
The condition (10.38) takes now the form

X1[QA(c, x) + A, )0Tx + D V)ywy(c, )x <0 (10.40)

where ¢ denotes a parameter of the transmittance K(s) and w;(x, ¢) denotes
the first row of the matrix 4(c, x) which should be determined by transfer-
ring the initial description of the system into the description using the state
vector. As a result we may obtain a condition concerning CD(x(l)), ie. d&).

The using of the condition (10.40) may be difficult in more complicated
cases and may not give an effective result, i.e. the total stability condition.
That is why in this case one often applies an approximate method consist-
ing in a harmonic linearization and called a describing function method.
Let us assume that the system under consideration is not stable and there
occur oscillations in the system, i.e. &(¢), v(f), y(f) are periodic functions.
Assume that &(7) is approximately equal to Asinw?, expand the function
v(f) = A(Asinw?) in Fourier series and take into account the first term (a
fundamental harmonic) only

v(f) = v(f) = Bsin(w t + ¢).

The approximation is acceptable if the linear dynamical part is a low pass
filter (what usually occurs in practice) and the higher harmonics of v(f) are
much smaller than the fundamental one. If the signal v;(¢) at the input of

the part K(s) is sinusoidal then the signal at the output y(¢) =—&(¢) is also
sinusoidal with the amplitude B| K(jw) | and the phase ¢+ arg K(j®). Then

B|K(jo) |sinfot+ ¢+ arg K(jw)] =—-Asinw ¢ = Asin(@ ¢ + T).
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Consequently,
Bl K(jw)|=A4, ¢@t+argK(jow)=mr,
what may be written in the form
K(jw)J)=-1 (10.41)

where

J4)= %ei‘/’ (10.42)

is called a describing function of the element @; |J(A4)| is a ratio of the am-
plitude of the first harmonic of the output signal to the amplitude of the si-
nusoidal input signal, and arg J(4)=¢ is the phase of the output with re-

spect to the input. If the relationship between ¢and v is a function v= @ (&)
(i.e. ¢ uniquely defines v) then ¢=0. The phase @+ 0 if so called histere-
sis occurs in the non-linear element, which means that the value v depends
not only on ¢ but also on whether the fixed value ¢ has been achieved by
increasing or decreasing of &(f). The equality (10.41) defines the condition
for the existence of oscillations in our system. In fact (10.41) contains two
equations: for |J(4)| and arg J(A4) or for real and imaginary parts. From
these equations one can find the approximate values of @ and 4 for the os-
cillations.

For the linear static element v=@(¢) =ke the describing function
J(4)=k. Then the condition for the oscillations (10.41) takes the form

K (jow) + 1 =0 where K (jo) = kK(j ) is the frequency transmittance of the
open-loop control system. This form corresponds to the stability limit (see
Nyquist criterion in Sect. 10.2), i.e. the system is stable if K(jw) does not

encircle the point (—%, jO). In the non-linear system, the point —% is

“expanded” to the curve _J;A' In the linear system the amplitude of

possible oscillations is not determined by a description and parameters of
the system but depends on initial conditions. In the non-linear system the
amplitude of the oscillations called a /imit cycle depends on the description
and parameters of the system. Substitution of @(¢) by J(A4) may be treated
as a kind of a linearization of the non-linear element for the fixed 4, con-
sisting in omitting the higher harmonics.
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Im

7 A

Fig. 10.6. Illustration of describing function method

Let us consider the graphs of K(jw) and —ﬁ presented in Fig. 10.6

where the arrow in the second curve indicates increasing of 4, i.e. if 4 is
increasing then the respective point is moving in the direction indicated by
the arrow. As it is illustrated in the figure, the condition (10.41) may be
satisfied for two pairs (4, w), i.e. two limit cycles corresponding to the in-
tersection points I and II. It can be proved that only one of these cycles is
stable, i.e. may exist after disappearing of a disturbance removing the sys-
tem from this cycle. In an approximate way it may be explained as fol-
lows: If in the state (oscillation regime) Il a transit disappearing distur-
bance causes a small increase of the amplitude, the point of the curve

—ﬁ will not be encircled by the graph of K(jw), then the system will
be stable, the amplitude of the oscillations will decrease and the oscilla-
tions will return to the limit cycle II. The similar return will occur in the
case of a transit decrease of the amplitude because the point of the curve

_ J(lA)- will be encircled by the graph of K(jw) and the amplitude will in-

crease after disappearing of a disturbance. If in the state (oscillation re-
gime) I a transit disappearing disturbance causes a small increase of the

amplitude, the point of the curve —ﬁ will be encircled by the graph of

K(jw), then the system will be unstable, the amplitude of the oscillations
will increase and the system will remove to the state II. If the disturbance
causes a small decrease of the amplitude, the amplitude will continue to
decrease and the oscillations will disappear.
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The situation may be summarized as follows:
1. The system is stable for small disturbances (such that their effect, i.e. the
initial state for the further process, is sufficiently near to the equilibrium
state), and is unstable for the greater disturbances. Then the limit oscilla-
tions corresponding to the point II will occur in the system.
2. The system is totally stable if the graph of K(jw) does not encircle the

curve — ﬁ (the case indicated by the broken line in Fig. 10.6).

As an illustration of the describing function method let us analyze the
stability of three-position control system in which the signal v may take
three values only: v=D for ¢> M, v=-D for e<—M, v=0 for | ¢| < M. The

lie in

values of J(A) are now real positive, the points of the curve —

the negative real half-axis, the function J(4) =0 for 4 < M, then it increases
and after taking the maximum converges to 0 for 4 — co. To determine the
stability condition it is sufficient to find the maximum of this function. Af-
ter finding the amplitude of the first harmonic one can determine

2D

maxJ(4)=——.
A A4) M

Thus, the system is totally stable if the point

1
max J(A4)
A
lies on the left from the point in which the graph K(jw) intersects the
imaginary axis, i.e.
M

—>—-ReK(jo
2D (jo)

and @ can be find by solving the equation ImK(jw) = 0.

10.6 Stability of Uncertain Systems. Robustness

Let us recall that according to the concept described in Sect.10.1, stability
conditions are defined in order to choose parameters of the control algo-
rithm (the controller) assuring stability of the system for every plant from a
determined set of plants including the plant considered. In this case, the
determination of the set of possible plants means the description of an un-
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certainty. The choice of a suitable control algorithm assuring the stability
for every plant from the determined set means the designing of a stable
control system for an uncertain plant or a stabilization of the system. Usu-
ally the considered design task is a parametric problem, i.e. one should de-
termine suitable parameters a in a given form of the control algorithm. As
a rule, one does not obtain a unique value a but a set of possible values
such that for every a from this set and every plant from the set of possible
plants the system is stable. In general, the description of the uncertainty
may have a non-parametric form of the set of possible plants, or a paramet-
ric form of the set of possible values of a plant parameter ¢ in a given form
of the plant model.

Usually, the feature consisting in satisfying by a system a certain prop-
erty for a fixed set of its elements (and in the parametric formulation — for
a fixed set of values of parameters) is called a robustness, and the system
is called robust. The main idea of a robust system design is as follows: A
designer wants to design the system satisfying a determined property W
(e.g. stability, controllability, observability). The satisfaction of this prop-
erty depends on an existing system parameter ceC and on a parameter
a<€A which is to be chosen by the designer. The sufficient condition of this

property is formulated in the form of a set D, .c 4 x C:
(a,0)eD, . —> W.

The designer knows the set D,. of all possible values of ¢ (i.e. the descrip-
tion of the uncertainty in this case). Then the designer should determine

the largest set D, A4 such that for every ae D, and every ceD, the suffi-

cient condition (a, ¢) € D, . is satisfied. Hence,

D, = {ae4: /\ [(aac)EDa,c]}-

ceD,

Such a procedure can be applied in the task of designing the stable system
with the uncertain plant, considered in this section. The uncertainty may
concern the function A(c,x) and the sequence c,. In general, it may be

/\ /\ A(c,,x) €A, (10.43)

n>0 xeX

formulated as

where 4, is a given set of the matrices A e R Then the general con-
dition of the total stability for the uncertain system corresponding to
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(10.26) is 4, A and may be expressed in the following way.
Theorem 10.7. If || A||<1 for every AeA, then the system is globally

stable for D, =X . O
When the function A(c,x) is known and the uncertainty concerns only

the sequence c,,, it may be formulated as
/\ c, €D, (10.44)
n=0

where D.c C is a given subset of C.

Theorem 10.8. If D, ch where BC is determined by (10.32), i.e. if

/\ A | A(c,x) || <1 (10.45)

ceD, xeX

then the system is globally stable for D, =X . O

The theorem follows immediately from (10.31), (10.32) and (10.44).
The conditions corresponding to (10.27) and (10.28) have the analogous
form.

For simplicity let us denote A(c,,,x,,) by 4,,.In the case of an additive

uncertainty A, = A+ Zn, Le.
Xpe = (A+4,)x,. (10.46)

The uncertainty concerns the matrix Zn and is formulated by one of the
three forms denoted by (10.47), (10.48) and (10.49):

A A AT <4y, (10.47)

n>0 xeX

where A;, is a given non-negative matrix (i.e. all entries of 4,, are non-

negative) and Z,T is the matrix obtained by replacing the entries of Zn by

A A 14, 18 (10.48)

n>0 xeX

their absolute values,
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A A max | 4;(4,)|<f (10.49)

n>0 xeX !

where S and E are given positive numbers. The inequalities (10.47),
(10.48) and (10.49) define the set 4, in (10.43) for the cases under con-
sideration.

Lemma 1. If 4 and B are quadratic matrices with non-negative entries

(some of the entries are positive) and 42> B (i.e. a;>b; foreach i and
j) then || A||>]| B]| for the norm (10.21), (10.24) and (10.25).

Proof: For (10.24) and (10.25) the lemma follows immediately from the
definition of the norm. Denote

— A
x = arg max. (|| Ax[ly:f} xll=1)

xXe

1.€.,
| 4lla=I 4x || (10.50)
where

k k k k .
1 Ax (5= (anx M + apx® + .+ ayx®)? =33 Y ayayx DD
i=1 i=1l=1=1
(10.51)

Suppose that there exist / and ; such that x >0 and ¥“)<0. Then
from (10.51) under the assumption about the entries of 4

| Ax |l >[] Ax I (10.52)

where P =x® for i#j and P=-x9 for i=j. From (10.52) we
see that x does not maximize || Ax||,.Hence

A D x> (10.53)

l,j
and from (10.51) it follows that the norm (10.50) is an increasing function

of its entries, which proves the lemma. [

Theorem 10.9. Assume that 4 has distinct eigenvalues. Then the system
(10.46) with the uncertainty (10.47) is globally stable for D, = X if

a+ (MY ayMmt <1 (10.54)
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where ||-|| is one of the norms (10.21), (10.24), (10.25), M is the modal
matrix of A4 (i.e. the columns of M are the eigenvectors of A) and

a =max |4;(4)].
i

Proof: Let us use Theorem 10.4 with P = M and the equality M am =
diag[ 4 (4), 23 (A),... A4 (4)]. Then

I MY A+ A)M =M AM + M7 A, M ||[<a+| M7 4,M||. (10.55)
It is easy to see that for any matrices 4 and B

(AB)" < A"B™. (10.56)
It is known that for any matrix A4

Al A7) (10.57)

For the norms (10.24) and (10.25) the equality || 4| =|| A" | follows di-

rectly from the definitions of the norms. Then, using (10.55), (10.56),
(10.57) (or the equality for the norms ||- ||y, ||-|l, ), Lemma 1 and (10.47),

we obtain
MY A+ A)M || < a+|(MT 4, M) || < a+|[((M™Y 4y, M™ .

Finally, using Theorem 10.4 yields the desired result. O

The result (10.54) and the other conditions described in this section
have been presented in [27, 38]. It has been shown that by using
Theorem 10.4 based on the general principle of the contraction mapping
it is possible to obtain a more general result than conditions presented
earlier in the literature, for special cases of non-linear and time-varying
systems.

Corollary 1. Assume that A has distinct eigenvalues and all eigenvalues

of (M™1Y" 4;,,M™ are real. Then the system (10.46) with the uncertainty
(10.47) is globally stable for D, = X if

a+/1max[(M_1)+AMM+]<1 (10.58)

where A, is the maximum eigenvalue of (M ~1)* Ay, M™ .

Proof: Let N be a diagonal matrix with real positive entries. Then MN is
also the modal matrix of A. It is known that
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inf | N7 Ay MON (= A (M) Ay M7 (10.59)

Condition (10.58) follows from (10.54) and (10.59). O
Theorem 10.10. If A4 is a symmetric matrix and
a+|| Ay <1 (10.60)

then the system (10.46) with the uncertainty (10.47) is globally stable for
D, =X.
Proof: 1If A is a symmetric matrix then

| Al,= max |4(4)] = a. (10.61)
l

Using (10.61), (10.57) and Lemma 1 we obtain

[ A+ Ay < Al +l Ay ll2 € @+l 4, [l <+ Ay Iz -
Finally, using Theorem 10.3 yields the desired result. O

Theorem 10.11. If there exists a non-singular matrix Pe R¥* such that
(P~ (4 + 4y PT <1 (10.62)

where ||-]| is one of the norms (10.21), (10.24) and (10.25), then the sys-
tem (10.46) with the uncertainty (10.47) is globally stable for D, = X .

Proof: Using (10.57) (or the equality for the norms || |;, ||*|ls ), (10.56)
and Lemma 1, we obtain

I P A+ AP < (P AT+ 4P| < [(PTHT (AT + 4P .

Consequently, (10.62) implies the inequality || P_l(A + Zn )P||<1 and ac-

cording to Theorem 10.4 the system is globally stable for D, =X . O

In particular we can apply diagonal positive matrix P. If P = [ (identity
matrix) then (10.62) becomes

A"+ Ay <1 (10.63)

Other theorems and more details concerning the stability of uncertain sys-
tems may be found in [27, 38, 52].

Example 10.4. Let in (10.46) and (10.47) k=2,
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ap +b 0 ayii ayna
A = . AM = s

ay +b apxp ayol  ap

arys a1 » a22,b>0.
Applying the condition (10.63) with the norm || ||; yields

apptbtayntayg, <1,
ay tbtaynitaptayy <l
and finally

b <1—max {(a;] +apmy +apyn2), (a1 +ax +aym; +aym)}i- (10.64)

Let us now apply the condition (10.54) with the norm |-|;. We have
H(A)=ay1+b, H(A)=ary, Amax(A)=max (aj; +b,ayy). It is easy to

show that

1 0

M=

K 1

with
any +b
an +b— b))
1s a modal matrix of 4 and
(M—1)+ AMM+
api1 t a2 apm2
= . (10.65)
2
ayrrlsl+ayna |s” +aymn +apmn | sl ayra | s|+apmn

Suppose that a;;2a,, , 1.e. a=ay;+ b. Applying (10.54) we obtain
b<1-ayy —max{[ayn+2apnz][apn |5
2
+apna (s +Is)+apar +apn(si+D]}. (10.66)

Since s depends on b, the final condition for 4 may be very compli-
cated. To show that the condition (10.66) may be more conservative than
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(10.64) assume that a,=a;;—ay, , i.e. s =1. Then (10.64) and (10.66) be-
come

b<1—ay —max {ay+ap2, ayz1+ayan} , (10.67)

b<1—a11 —(aM11+2aM12 +aM21+2aM22) . (1068)

Let us now use condition (10.58). The eigenvalues of the matrix (10.65)
are

A= GMLL tapyma(+[sD+apyn
’ 2

N \/[aMll +apa (14| s )+ agn]* +4e
o 2

(10.69)

where

2 2
e=ayna(s|” =|sD)+apmaana +apnrapn(sl-D)—apymiap
and condition (10.58) becomes

b<1-aj —Ama (10.70)

where A, is obtained by putting + in the numerator of (10.69). To
compare it with (10.67) and (10.68) let us put s =1. Then

e=day12ap21 —AM119M22 -

If e>0 and aM11+2aM12 >dpmi then

Amax Z api1+2apn2 +aynn > ayoy Hayn

and the condition (10.68) is more conservative than (10.67). The condition
(10.68) may be more conservative than (10.70) but is easier to obtain.
When ay;n1=ay2,=0 (10.68) and (10.70) give the same result.

For numerical data ay;=04, a;=03, ay=0.1, ayq;=0.1,
ayi2= 01, aym1= 0.1 and aymon = 0.05 we obtain

from condition (10.63), i.e. from (10.64): b<04,
from condition (10.54), i.e. from (10.66): b<0.1,
from condition (10.58), i.e. from (10.70): b <0.24.
For a;1=0.65 from (10.64) we obtain b < 0.15; positive b satisfying
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condition (10.54) or condition (10.58) does not exist.
The obtained conditions for » may be applied to different forms of the
matrix A(c,,x, ). Let us list the typical cases.
1. Linear time-varying system
ajg+b+ cg) cgz)

Xn+l =

ay +b+ 0513) a + c,(q4)

with the uncertainties

/N 10® [<apn) A (2 < apm)

n=>0
A (e 1<aym) A (P 1<aym)l.

=[c{ (1 ’(72) 61(73) 01(74)]_

2. Non-linear system

Nowc =

e ) _ (a1 +b)x(1)+F(1)(x(l))+F(l)( (2))

Xp+1™

¥ = (a3 +D)x D+ apx® + FP D)+ FP ()

Xp+1™

with the uncertainties

A Fl(l)(x(l)) F1(2)(x(1))
o (F—pm—=an) A (F—g—|Sam2), (1071
—o<x"/ <o X X
A Fz(l)(x(z)) F(2)( (2))
o (s am2) » (T <ayqy). (10.72)
—0<x) <o X
For x =0 one should put
im £
x—>0 X

under the assumption that the limit exists.
3. Non-linear time-varying system

MO (ar +b)x(1)+F(1)(c(1) (1))+F(l) (c(z) (2))’

Xp+1™
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D)= (ay +b)x+ aypx P+ FP (e 1)+ B2 (el 1)

with the uncertainties analogous to the statements (10.71) and (10.72)
which should be satisfied for every »n > 0. For example

ANVANEN

n=0 —oo<x(l)<oo

FO D0

x(l) SaMll) (1073)

means that the function Fl(l) (c(l),x(l)) and the sequence cg) are such
that (10.73) is satisfied, e.g. the function

cOp—exp(=2xM]  for xV =0
FED (D D) -

Dexp2xMy-1] for M <0

and the sequence cg) such that

/\

n>0

satisfy the condition (10.73). For the function
Fl(l) (c(l) ,x(l)): c(l)F1 (x(l)) if

A EXE2 A

720 e oo

1 1
ES |350M11

El (x(l))

<5
MO

and y-0 =ay,; then the condition (10.73) is satisfied. [

10.7 An Approach Based on Random and Uncertain
Variables

Consider a non-linear time-varying system described by
X, = A(c,,b,x,)x, (10.74)
where x,, € X is the state vector, c¢,, € C is the vector of time-varying pa-

rameters, be B is the vector of constant parameters; X :Rk, C and B
are real number vector spaces. The matrix
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Acpsb,x,) =[a;(cp.b,x,)] € RFE

Assume that for every ce C and be B the equation x = A(c,b,x) has a

unique solution x, =0 (the vector with zero components). According to
Definition 10.1, the system (10.74) (or the equilibrium state x, ) is globally

asymptotically stable in D, c X iff x, converges to 0 for any xp €D, .
Assume now that the parameters ¢, and b are unknown and the uncer-
tainties concerning c,, and b are formulated as follows:
L. /\ (c,eD,) (10.75)
n=0

where D, is a givensetin C.

2. bis a value of random variable b described by the probability density
Jfp(b), and f5(b) is known.

Denote by P, the probability that the uncertain system (10.74), (10.75)
is globally stable for D, = X . The problem considered here consists in the
determination of an estimation of P, [38, 51]. Let W(b) and V(b) de-

note properties concerning b such that W(b) is a sufficient condition and
V(b) is a necessary condition of the global asymptotic stability for the sys-
tem (10.74), (10.75), i.e.

W(b) — the system (10.74), (10.75) is globally stable for D, =X,
the system (10.74), (10.75) is globally stable for D, =X — V(b).

Then
P, < K <P, (10.76)
where
Py= [fyb)db, P,= [f,(b)db, (10.77)
Dy, Dpy,

Dy, ={b e B: W(b)}, Dy, ={b e B: V(b)},

P,, is the probability that the sufficient condition is satisfied and P, is the
probability that the necessary condition is satisfied. In general, D, < Dy,

and Dy, — Dp,, may be called a “grey zone”, which is a result of an addi-
tional uncertainty caused by the fact that W(b) # V(b). The condition V(b)
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may be determined as a negation of a sufficient condition that the system is
not globally stable for D, = X', i.e. such a property V,,.¢(b) that

Vieg(b) — there exists ¢, satisfying (10.75)
such that (10.74) is not globally stable for D, =X . (10.78)

To estimate the probability P, according to (10.76), it is necessary to de-

termine the conditions W(b) and V(b). The sufficient conditions for the
uncertain system under consideration may have forms presented in the
previous section, based on a general form (10.26). It is not possible to de-
termine an analogous general necessary condition V' (b) or a sufficient

condition of non-stability V., (). Particular forms of necessary condi-

tions are presented in [52].
Let us consider one of the typical cases of uncertain systems (10.74),
(10.75), when

Dcz{ceC:A [A(b)< A(c,b,x)< A(D)]},  (10.79)
xeX

A(b) and A (b) are given matrices and the inequality in (10.79) denotes
the inequalities for the entries:

gl.j(b)ﬁal-j(c,b,x)saij(b). (10.80)
The definition (10.79) of the set D, means that if ¢, satisfies (10.75)
then for every n>0

A(b) < A(c,,b,x,) < A(D).

If we introduce the notation
A(b) = %[é(b) +Ab)],  A(c,b,x) = A(b)+ A(c,b, x)
then the inequality in (10.79) may be replaced by
AT (¢,b,x) < Ay (b) (10.81)

where A4 " is the matrix obtained by replacing the entries of A by their ab-
solute values and 4,,(b) = A (b) — A(b). Then the inequality (10.81) cor-
responds to the form (10.47) with A4,,(b) in place of A4,,. Consequently,
we can use the sufficient conditions (10.54) and (10.63):
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a(b)+ || M~ (BT Ay (DM * () || <1
where a(b) = max | 4;[A(b)]|, and
147 (b)+ Ay (B) [ <1

which for A(b) > 0 (all entries of A(b) are non-negative) is reduced to

| Ab)||I<1. (10.82)

Under the assumption A(b) > 0 it may be proved (see [52]) that if the
system (10.74), (10.75) is globally stable for D, = X then

k
V[ D a;(b)<1]. (10.83)
J i=1

The considerations for the description based on uncertain variables are
analogous to those presented for random variables. Assume that b is a
value of an uncertain variable b described by the certainty distribution
hy,(b) given by an expert. Denote by v, the certainty index that the uncer-

tain system (10.74), (10.75) is globally stable for D, = X . The problem
considered here consists in the determination of an estimation of v, . Using

the sets Dy, and D, introduced above, one obtains

Vi SVg SVg
where
v, = max hy(b), Ve = max hy, (),
be wa be va
vy, is the certainty index that the sufficient condition is satisfied and v, is

the certainty index that the necessary condition is satisfied. Precisely
speaking, they are the certainty indexes that the respective conditions are
satisfied for approximate value of b, i.e., are “approximately satisfied”.
Choosing different sufficient and necessary conditions we may obtain dif-
ferent estimations of v, . For example, if we choose the condition (10.82)

with the norm ||- ||, (see (10.25)) and the negation of (10.83), then

max hy(b)<v, < max hy(b),
be Dy, beDy,

where
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k
Dy, ={beB:A [> a;(b)<1]},
j o=l

k
Dy,, :B_Db,neg: Db,neg :{bEB:/\ [Z‘_’lj(b)zu}
J i=1

More details on this subject are presented in [38, 45, 51, 52].

10.8 Convergence of Static Optimization Process

The convergence (stability) conditions presented in the previous sections
may be also applied to the static optimization process for the plant y = &(u)
with a single output, described in Sect. 4.1 and called an extremum search-

ing process or extremal control (in Sect. 4.1 the notations y and @ have

been applied to differ from the control plant with the required output). The
convergence of the extremum searching process may be also called the
stability of the closed-loop extremal control system. Assume that the func-
tion y = M(u) iz differentiable with respect to # and has one local minimum
in the point # (the considerations for the maximum are analogous), and

that this is a unique point in which

grad®(u) & o)L w=0

u
(see 4.11). Then one may apply the optimization algorithm (4.13), i.e. the
control algorithm in the closed-loop system for a substitutional plant
w= @ (u) and the given output w =0.If u" =0 and the description of
the substitutional plant may be presented in the form w= A (u) u then, ap-
plying (4.13) we obtain the description of the closed-loop system

1 =ty — K A (), = A, (10.84)

where A(u,))=1-K A (u,). If y=uTPu where P is a symmetric positive
definite matrix then the substitutional plant is linear w=2Pu and for the
linear stationary system (10.84) with the matrix 4 =/— 2KP one can apply
the stability condition: The extremum searching process (4.13) converges

tou =0 ifand only if all eigenvalues of the matrix /— 2KP lie inside the
circle with radius 1. Using this condition and the information on an uncer-
tain plant in the form of a set of possible matrices P, one can define a set
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of the matrices K such that for every K belonging to this set the searching
process is convergent. For the non-linear and (or) the non-stationary plant
the condition (10.26) or related conditions presented in Sect. 10.6 may be
applied.

In order to apply the algorithm (4.13) in the closed-loop control system
it is necessary to obtain at the output of the substitutional plant the values
w,, 1n successive periods n. It is possible to obtain approximate values of

the components of the vector w,, replacing the components of the gradient
by the ratio of increments obtained as results of trial steps. Then we use
the algorithm (4.13) in which in the place of w,, we put the approximate
value of the gradient, with the following i-th component:
(i) o Py +0;) Py —5;)
wy,’ = ,
201'

where p is a number of inputs, J; is a vector with zero components except

the i-th component equal to o; and o; is a value of the trial step for the i-th
input. Finally, the extremum searching algorithm for the current interval »n
(and consequently, the program for a real-time controlling computer) is the
following:

1. For the successive i =1, 2, ..., p put at the plant input (or execute) the de-
cision u,, with the components

L_l(j)z u’(1j) for j#i
n u;(qj)+o-i forj:i’ j:l,2,...,p,

measure and put into memory the output value y,,_; ;.

2. For the successive i = 1, 2, ..., p put at the plant input the vector u,, with
the components

E}gj): u,(qji) for j#i
ul) —o; forj=i, j=12,..,p,

measure and put into memory the output value ;n—l, i

3. Find the next decision according to the formula (4.13) in which

W}(qi) _ ;n—l,i _JN}n—l,i .
20'1'

As it can be seen, the determination of one decision u,, requires 2p trial
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steps, each of them consists in a trial changing of the i-th input
(i=1,2,...,p) and observing of the result in the form y, ;; or y, ;.
One should take into account that the extremum searching process may be
long and the execution of the trial steps must be acceptable in practice. In
order to determine the convergence condition, for the given function @ one
should find the function w= @ (u) (in the same way as in the former con-
siderations) and present it in the form w = A (u) u.

If the plant output is measured with random noises, to the extremum
searching process the stochastic approximation algorithm mentioned at the

end of Sec. 10.3 can be applied. In the case of a gradient method this is the
following algorithm:

Upt] = Up— TuWn

where w,, denotes the gradient of the function @ with respect to u, and ,
is a sequence of coefficients presented in Sect. 10.3. For the approach with
trial steps, the values of these steps should decrease in successive » and
converge to zero for n — oo ( see [10, 103]).



11 Adaptive and Learning Control Systems

11.1 General Concepts of Adaptation

The present chapter as well as the previous one are devoted to problems
connected with obtaining information on the plant (or decreasing an uncer-
tainty concerning the plant) during the control process. Unlike the ap-
proach presented in Chap. 10, we shall now assume that there exists al-
ready a basic control algorithm and the additional information is used to
gradual improving of this algorithm. As a rule, it is a parametric approach,
i.e. improving consists in step by step changing of parameters a in the ba-
sic algorithm. The improving is needed in order to adapt the basic control
algorithm to the control plant. That is why such a control is called an adap-
tive control (more generally, an adaptive decision making). The adaptation
is reasonable when, because of an uncertainty, a designer could not design
the basic algorithm so as it would perform in an optimal way (more gener-
ally, determined requirements would be satisfied) for the concrete plant
and disturbances, or when the plant is varying and data accepted by a de-
signer in some time differ from the current data.

Consequently, the control algorithm in an adaptive system consists of
two parts: the basic algorithm and the algorithm of adaptation, i.e. the pro-
cedure improving the basic algorithm. In other words, in the adaptive con-
trol system two levels may be distinguished (Fig. 11.1): the lower level
with the basic controller (the executor of the control algorithm) directly re-
ceiving the data from the plant and determining the control decision u, and
the upper level at which the adaptator (the executor of the adaptation algo-
rithm) acts. The levels are called a basic control level and an adaptation
level, respectively, and the two-level system in which the upper level im-
proves the performance of the lower one — is sometimes called a two-layer
system. Into the basic controller as well as into the adaptator, the results of
the observation of the plant and (or) the environment in which the plant
acts are introduced (in Fig. 11.1, for the basic control device they are the
current values of y and z). However, they are not obligatorily to be the
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same data (as it is indicated in the figure). Besides, the data for the basic
controller usually are introduced more frequently than the data introduced

|
| Adaptator :
|
| a |
| y |
| Basic control |

algorithm
| z |
| |
4 — — R A |

u
Control plant
cP y

g

Fig. 11.1. Illustration of basic adaptation concept

into the adaptator because usually the adaptator acts much more slowly
than the basic controller, i.e. the period of the basic control is short in
comparison with the period of improving the basic control. The general
idea of the adaptation presented here may be additionally characterized by
the following remarks:

1. In the case of a parametric uncertainty concerning the plant parameter c,
the idea of the adaptation is connected with the parametric optimization
concept presented in Chap. 5. Now, it is not possible to find the optimum
value of the parameter a because the parameter ¢ is unknown. It is possible
however to adapt this algorithm to the plant by changing the parameter a
currently during the control process.

2. From the adaptator level point of view, the adaptive system may be
treated as a control system in which the basic control system is a plant with
the input a, and the adaptator determining the decisions a is a controller.
The same adaptive system may also be treated as a control system with the
basic control plant CP and a controller (a controlling system) consisting of
two interconnected parts marked in Fig. 11.1: the basic controller and the
adaptator. Thus, it is a control system with the plant CP and a complex
control algorithm being a composition of two subalgorithms and using the
information introduced to determine the decisions u.
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3. One may try to determine directly the complex control algorithm. The
concept of adaptation means a decomposition of this problem into two
subproblems: the determination of the basic control algorithm (or only the
determination of the values of parameters in the given form of this algo-
rithm as it was discussed in Chap. 5) and the determination of the adapta-
tion algorithm. Such a decomposition may be motivated by the fact that, as
a rule, the subproblems are easier to solve and by other reasons which will
be presented in Sect. 11.2.
4. Even if the complex algorithm is obtained via the decomposition, it can
be executed in a coherent form as one computer control program. Some-
times, however, it may be reasonable to keep the separation of the subalgo-
rithms (i.e. the basic control algorithm and the adaptation algorithm). They
can be two cooperating subprograms implemented in one controlling com-
puter or in two separate computers, or the program in computer adaptator
improving the performance of a conventional controller at the lower level,
as it occurs in practice, in the case of automatic control systems with plants
being technical devices or industrial processes. A practical separation of
the algorithms also occurs when the basic controller acted without im-
provements in the past and at some time an adaptator was inserted into the
system. Sometimes it is worth keeping the separation because of reliability
reasons: faults of the adaptator do not have to cause the break of the con-
trol, although the quality of the control may be decreasing at some time.
Let us note that if the separation of the subalgorithms is liquidated or is not
observable “from outside” then it will be possible to state that this is an
adaptive system knowing how the system was composed (came into exis-
tence) but not by observing the final effect of this composition.
5. The basic problem of an adaptive control system design consists in the
determination of the adaptation algorithm for the given existing basic con-
trol algorithm. In this chapter we shall present shortly the problem of the
adaptation algorithm design for fixed forms of the basic algorithms, deter-
mined or described in the previous chapters.
6. All the remarks, concepts and algorithms of the adaptation concerning
here the control, one may generally refer to decision making problems tell-
ing about methods and algorithms of the adaptive decision making and
adaptive decision systems.

Various described and realized ideas of the adaptation most often can be
reduced to one of two basic concepts:
a. Adaptation via identification.
b. Adaptation via adjustment of system parameters.
Let us explain them for a problem most frequently considered, in which
the aim of changes of the parameter a in the control algorithm is to achieve
a minimum of the performance index Q, and these changes are needed be-
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cause the plant parameter ¢ is changing. The first concept consists in a
successive identification of the control plant (see [14]) and using the result
in the form of the current value c,, (as a rule, the approximate value of the
real plant parameter c) to the determination of the value a,,. By m the in-
dex of a successive period of adaptation has been denoted (usually it is a
multiple of the basic control period denoted here by »), and a,, denotes
the value of @ minimizing the performance index Q for ¢ =c,,. For the ba-
sic control system treated as a control plant with the output Q,,, input a,,
and a disturbance c,,, this concept means a control in an open-loop system
(Fig. 11.2). The second concept means an extremal control of the plant
mentioned above in a closed-loop system (Fig. 11.3), i.e. changing a,, as a

result of observations of the former changes, i.e. the process of minimum
O searching by a suitable change of a.

°m °m

Adaptator Basic control system ——

Fig. 11.2. Adaptation via identification in open-loop system

’m

( Adaptator Basic control system

Fig. 11.3. Adaptation via adjustment in closed-loop system

The second part of the title of this chapter, i.e. a learning control system, is
more difficult to define precisely and uniquely. This difficulty is caused by
a great variety of different definitions, concepts and methods for which the
term /earning is used. Generally and roughly speaking, the learning proc-
ess consists in a gradual improving (increasing) of an initial knowledge,
based on additional information given by a trainer or obtained as a result of
observations. For different methods of algorithmization and computeriza-
tion of learning processes, developed in the first period mainly for needs of
a classification and recognition — a common term machine learning has
been used (see e.g. [89]). Generally and roughly speaking one can say that
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adaptive control systems are systems in which a control learning process is
performed. Thus, in wide sense of the word, every adaptive system is a
learning system. In a more narrow sense, the term learning control system
is understood in a different way. Usually, this term is used when in the
control system at least one of the following features occurs:

1. The improvement of the control occurs as a result of the trainer’s per-
formance imitating.

2. In the adaptive system there is a third level (learning level) which im-
proves the performance of the second level (adaptation level).

3. A knowledge representation of the plant (KP) or of the decision making
or control (KD) differs from conventional mathematical models.

A short characteristic of learning control systems presented in Sects. 11.5
and 11.6 concerns the systems having the third feature mentioned above,
i.e. systems with a knowledge representation, in which the learning process
consists in step by step knowledge validation and updating and using the
results of updating to the determination of current control decisions. They
are then adaptive systems containing a knowledge representation consid-
ered as a generalization or a modification of traditional functional models.
The first feature, i.e. learning with a trainer, may occur in such a system as
well.

11.2 Adaptation via Identification for Static Plant

The value of the control algorithm parameter a to be determined by a de-
signer depends on the plant parameter ¢ (in general, a and ¢ are vector pa-
rameters). Let us denote this relationship by H, i.e. a= H(c). If the value

¢ is known then the respective value a may be calculated by the designer.
Otherwise, the designer can only give the relationship H in the form of a
formula or a computational procedure. Such a relationship has been con-
sidered for the static plant in Sect. 7.3 (see (7.28) and Fig. 7.3). In Chap. 5
we considered the determination of such relationship as a result of minimi-
zation of the performance index Q. In this case, the dependency of O upon
cand u, i.e.

Q= dc, a)

is a description of the adaptation plant, or the plant of the extremal control
mentioned in the previous section. The relationship a = H(c) is obtained
as a result of minimization of the function @ with respect to a, with the
fixed c. In Sect. 7.3 it has been assumed that ¢ is directly measured with
noises and the estimation of ¢ is put into the formula a = H(c) in the place
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of c¢. Now we consider a case when the estimation of ¢ is determined as a
result of the plant identification, i.e. using a sequence of successive meas-
urements of the plant input and output. What is more, it does not have to
be an estimate of the unknown parameter in the known plant description,
based on input and output measurements with noises — but the best pa-
rameter in a model accepted as an approximate description of the plant.
Then the identification consists in the determination of the optimal model
parameter ([17]). The value c,, in a certain moment m is determined by
using a sequence of measurement results, according to an identification al-
gorithm G, properly designed. By substituting the current value ¢, into

the relationship 4 we obtain the value a,, = H(c,,) in the successive m-th
adaptation period.

Figure 11.4 illustrates the concept of the adaptation via identification
more precisely than Fig. 11.2. The adaptator consists of two parts: the iden-
tifier executing an identification algorithm and the part determining the
current value a,, = H(c,,) which is introduced into the basic control algo-
rithm, i.e. is set in the basic controller.

|
|
|
Identifier 1
G |
1
R —
m
Un Yn
Basic control algorithm Pant

Fig. 11.4. Block scheme of system with adaptation via identification

Figure 11.4 presents the adaptation for a closed-loop system, but the con-
cept described is general and may be applied to basic systems with differ-
ent structures. Its essence consists in the fact that the difficult problem of
determining directly the parameter a,, based on observations of previous
plant inputs and outputs is decomposed into two simpler problems: the de-
termination of the identification algorithm G and the designing algorithm
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H. Thus, the identification problem is separated here in a similar way as
the estimation problem of the parameter ¢ based on its direct observation
was separated in Sect. 7.3.

Nevertheless, designing the adaptation system with the decomposition
mentioned above may be connected with some difficulties concerning the
determination of the length of the adaptation period (how frequently one
should determine new values of ¢ and improve a), and concerning the con-
vergence of ¢,, to the unknown value ¢ under the assumption that c is con-

stant during the identification process, and consequently the convergence
of a,, to a = H(c). The main reason of these difficulties is the fact that the
identification is performed in a control system, in a specific situation when
the plant inputs may not be changed in an arbitrary way but are determined
by the basic controller updated as a result of the previous identification.
Usually the formalisms describing the control process in the adaptive sys-
tem are so complicated that an analytical investigation of the adaptive
process convergence and the adaptive control quality is not possible and
computer simulations should be applied.

The problems described above are relatively simple for static plants in
which making the decision # considered in Sect. 3.1 is evaluated in one pe-
riod. Hence, the period of the evaluation and improving of the control (i.e.
adaptation period) may be equal to the period of the basic control, and if
the plant is stationary, all previous values # and y from the beginning of
the control may be used for the identification, that is for the determination
of ¢, . In this case, it is convenient to present the identification algorithm

as a recursive procedure finding ¢, on the basis of ¢,_; and the current

results of the (#, y ) measurements.
Let us consider a one-dimensional plant for which a linear model y= cu

is accepted. If one assumes an identification quality index in the form
n—1 )
QI, n= Z(J’z’ —cu;)
i=1
then the optimal value of ¢, minimizing QO , is
n—1
Z”iyi
cp= i=1

n—1 ’
>ui
i=l1

(11.1)

This is the identification algorithm showing how to find ¢, on the basis of
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(u1, 1), (U2, 2), -y (U,_1, Vy—1)- It can be presented in the recursive form

n-2
Zuiyz' +Up_1Yn-1 o b i
cp= i=1 — “n-1%-1 n—1Yn-1 , (11.2)
"2 o b, +u>
Z u; +u,_ n—1 n—1
i=1
by=b, 1+ uty, n=2,3, .., (11.3)

with the initial conditions ¢; =5 = 0. The relationship (11.2) can be also
presented in another form:

2

u,_ u, _
Cn:Cn—l(l_ n 12 )+ n 1y}’121 .
bn—l +uy, bn—l +uy,

Then

Cn=Cn1t V1( Y1 — Cp1tip-1) (11.4)
where

U, _
Pot = — (11.5)
bn—l +uy,

For the sequence y,, the recursive formula can be also given without using
b,,. The form (11.4) is connected with the known concept of the identifica-
tion with a reference model, where the correction of the model parameter ¢
depends on the difference between the plant output y,_; and the model
output y, = c,_1u,_1. Let us note that the coefficient y,, converges to zero

for n — oo . The correction is then performed in a system with degressive
feed-back mentioned in Chap. 10. *

For the requirement y = y* # 0, the relationship H is reduced to u - ,
and the algorithm of the control with adaptation is the following:

*n—l 5
% Yy Zui
Y i=1
C

Un = n—1

n
Zuiyi
i=1
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The recursive form of this algorithm is determined by the relationships
*

u, :y_’ (11.2) and (11.3), or (11.4), (11,5) and (11.3), which can be re-
c}’l
placed by one relationship describing the dependency of y, upon y,_; and

u,_1. A question arises whether this control process is convergent and to
what limit, if it is. For this purpose one should distinguish the case
Y, = cpuy, + z, (i.e. ¢ is the parameter to be estimated in the linear plant in
which the output is measured with a noise) and the case when c is the pa-
rameter in the model y = cu, which has to approximate a real plant. In the

first case ¢, may be convergent to ¢ and consequently, y, may be con-

% ..
vergent to » . In the second case the limit of the sequence ¢,, may not ex-
ist and a definition of a value of ¢ optimal for a real plant to which ¢,

might converge is not unique and it is not always formulated.

Comparing the concept of a control with the adaptation described above
with the concept of a control described at the beginning of Chap. 10, it is
worth noting that we can consider two control processes for the same
plant:

1. The control process based on the plant model, in which successive con-
trol decisions are determined on the basis of comparison of the plant and
the model outputs in the previous period.

2. The control process in which successive control decisions are deter-
mined directly on the basis of comparison of the plant output with a re-
quired value.

It is not possible to answer uniquely the question which control process
is better. The above difficulties and doubts arisen in a rather simple exam-
ple considered here show that the application of the adaptation via identifi-
cation without a deep formal analysis or simulations may give not pre-
cisely defined and sometimes poor effects of using rather complicated
control algorithms.

The considerations concerning the adaptation via identification can be
extended for the multi-input and single-output plant with the linear model

y= cTu, u, c eRP.
The generalization of the identification algorithm (11.1) is the relationship
T -1 T
Cn = Y —1 Un—l ) Un1 Yn—l

where
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Up1=luy uy oo uy 1], Y1 =[y1 ¥2 o Yuil

denote the matrices of the measurement results; Y,,_; is a one-row matrix.
The formulas and transformations analogous to (11.2), (11.3), (11.4) and
(11.5) are now the following:

T T -1 T
= Up2Up_ny Ty quy_1 1 (U2 Yy_p Tt 1Yp1)
T -1
=By tupquy_y) (Bpo1Cp1 T tp1 Yn-1) (11.6)

B,=B, |ty jul_|, n=p+1,p+2,.., (11.7)

- n _ T
cp—O, Bp_Up—lUp—lﬂ

_ T -1 T -1
Cn= [I_ (Bn—l + Up—1 un—l) ]cn—l + (Bn—l + Up—1 un—l) Up—1Vn-1-

Then

T
Cn = Cp1 t Vo1 (Vp—1 — Cp_ytp-1) (11.8)

where
= (B, + ot (11.9)
Yno1 = (Bpo1 T upg un—l) Uy. :

The algorithm (11.8), frequently and in a rather complicated way described
in the literature (e.g. [66]) has a substantial negative feature limiting its
usefulness in the concept of adaptation presented here: The correction of p
parameters (components of the vector c¢) is based on one scalar value, that
is on the difference y,,— y, . It is worth noting that in this case the basic
control algorithm is not unique, i.e. there exist infinitely many solutions of
the equation alu= y*. Returning to the identification one can say that it
would be more reasonable to correct ¢ after a successive sequence of the
input and output measurements, containing p individual measurements
(see [9, 11]).

Let y, = cTu+ z,, where z,, is a random noise. The identification prob-
lem is now reduced to the estimation problem, that is to the determination
of an estimate ¢, of the unknown parameter c¢. Then finding ¢, means

determining a successive approximation of the value
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¢ =arg min E[(y, — c'u,)],
C

that is a successive approximation of the value ¢ satisfying the equation

E[ grad (v, — ¢ u,)] = 0.

c

The application of stochastic approximation method (see Sect. 10.7) yields
the following recursive identification algorithm:
= T
Cn=Cn1t Vn-1Up(Vp1— Cpytin-1) (11.10)

where the scalar coefficient y, converges to zero and satisfies other con-

vergence conditions of the stochastic approximation process. The algo-
rithm (11.10) has then the form (11.8) in which y,_; =y,_ju,, . It means

that in the case where y,, = cTu+ z,, and under the conditions of stochastic
approximation convergence, in the algorithm (11.8) one may put the ma-
trix }7;_11[ in the place of (B,,_; + u,_ ”;—1 ). The algorithm is then much
simpler and the convergence is assured but if the procedure (11.8) and

(11.9) is convergent, it can give a better identification quality and conse-
quently, a better adaptive control quality.

11.3 Adaptation via Identification for Dynamical Plant

Let us consider a one-dimensional linear stationary discrete plant described
by the difference equation

Yotm T A1 Yntm -1+ o T A1 Vi1 T A0Yn = by U1 T
+biuysy +boup,
ie.
Yn= bm—l Uy .ot bl Up—m+1 + bO Up—m — Am-1Vn-1— -
— AN Vn-m+1 —A0Vn-m -
This equation may be written in the form
v, =clw, (11.11)

where



310 11 Adaptive and Learning Control Systems

T_
¢ =[by1 byo - by by ap aya .. ay agl,
T _
Wy =luy1 Uy o Uy —Vul —Vn2 o Vueml

Consequently, in order to identify the parameters c, that is to estimate their
values in the known plant description or to determine their values in the
model approximating the plant — one may apply the same algorithm as for
identification of a static plant with the input w,, and the output v,,. Then,
one may apply recursive algorithms (11.6), (11.8) or (11.10) in which one
should put w,, in the place of u,, and y,, in the place of v,,. If as a result
of the parametric designing of the system with a fixed parameter a one ob-
tains the formula a = H(c), then the application of an adaptation period
equal to a basic control period leads to changing the parameters of a basic
control algorithm according to the formula a,, = H(c,;). When the parame-
ter ¢ is constant during the identification and the control corrections, and
the recursive sequence c,, converges to ¢, then (under the assumption that
H is a continuous function, which has been assumed in previous consid-
erations as well) a,, converges to the value of a, for which the requirement
assumed in a designing stage is fulfilled. In particular, in a parametric op-
timization problem considered in Chap. 5, a,, converges to the value
minimizing the performance index O = @(c, a).

All the remarks and doubts concerning the convergence of an adaptation
process and the quality of an adaptive control discussed in the previous
section refer to the process mentioned above as well. For a dynamical
plant, a concept of the choice of the adaptation interval as a sufficiently
large multiple of the basic control interval is justified and frequently de-
scribed. This means that the determination of a new parameter a,, is not
performed in every control period by using y, —y,, but in a period suffi-
ciently long to estimate a quality of the control with a constant parameter
a,_1, or, more precisely speaking, to determine the control performance
index as a sum of local indexes for particular control periods within one
adaptation period. In this case

n=Nm

On= 200 (11.12)

n=(N-1)m+1

where using N means that one adaptation period contains N basic control
periods, ¢,, is a value of ¢, for » = Nm, i.e. the value determined at the
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end of the (m—1)-th adaptation period, a,, = H(c,,) and is constant during
the m-th adaptation period. Now, the basic control process and the process
of the improvement of the control are separated in time, in such a sense
that the improvement is performed in every N periods of the basic control.
To design an adaptive control algorithm the knowledge of the recursive
identification algorithm and the procedure H (i.e. the procedure of a para-
metric design with a fixed parameter ¢) is needed. It is also necessary to
investigate the convergence of an identification process in the control sys-
tem under consideration, for which simulations may be useful.

More details on different cases of the adaptation via identification may
be found in [66].

11.4 Adaptation via Adjustment of Controller Parameters

This concept consists in the application of a suitable extremum searching
algorithm (extremal control) to the minimization of O = @(c, a), that is to
a basic control system considered as a static optimization plant with the
input a,, and output Q,, (Fig. 11.3). Such an adaptive system is usually
called a self-adjusting or self-tuning control system. The value
O, = Nc, ay,) is defined by the formula (11.12) or by another formula
corresponding to another definition of the performance index estimating
the control during N periods. We assume that the value of the parameter ¢
is constant during an adjustment process and if a convergence condition is
satisfied, a,, converges to the value a=H(c) minimizing the perform-
ance index QO = @(c, a). To the determination of an adjustment algorithm,
known algorithms of the extremal control in a closed-loop system can be
used. Under some assumptions, one may apply the gradient algorithm

Ayt] = ay— Kwy, (11.13)

where
w,, = grad Q(c,a) | a=a,,
a

or the algorithm with trial steps (see Sect. 10.7), i.e. the algorithm (11.13)
in which the i-th component of the vector w,, is as follows

@ _ O(c, am + 51) - 0(c, Am — 51)

20'l'

Wi



312 11 Adaptive and Learning Control Systems

where o; is the vector with zero components except the i-th component
equal to o; (the value of trial step). The matrix K denotes the matrix of

coefficients in the adjustment algorithm which are to be chosen by a de-
signer in such a way as to assure the convergence of the adjustment proc-
ess. For this purpose, the convergence conditions described in Chap. 10
and the stochastic approximation algorithm in the case of the searching
process with noises can be applied [10]. It should be noted that the func-
tion Q = @(c, a) may be very complicated and may not satisfy the as-
sumptions necessary to apply the algorithms mentioned above, in particu-
lar — it may have many local extrema. Then, to determine a step by step,
one can apply so called genetic algorithm. The main idea of this approach
is the following: at each step not a single “candidate” a,,, as a possible ex-

tremizing (minimizing) value but a set of such candidates is evaluated, and
a way of decreasing this set in the successive steps is given.

To apply the gradient algorithm it is necessary to know the formula
0 = dAc, a), i.e. the performance index should be presented in an analyti-
cal form as a function of ¢ and a. Such functions for linear systems and
quadratic performance indexes have been considered in Chap. 5. An im-
portant advantage of the adjustment algorithm with trial steps is that the
knowledge of the function @ is not required and the adjustment process is
performed during the control of a real plant or its simulator by the basic
control algorithm being adjusted. The algorithm with trial steps has to be

applied not only when the function @ and consequently, the function a,, =

H(c,,) (i.e. the extremal control algorithm in an open-loop system) are dif-
ficult to determine, but also when this determination is not possible. Such a
situation occurs when the form of the control algorithm with undefined pa-
rameters is less or more arbitrary given as a universal form which by ad-
justing may be adapted to concrete plants from a wide class, or as a form
describing more or less reasoned expert’s knowledge on the control. It
concerns mainly a neuron-like controller mentioned in Chap. 5, which will
be described more precisely in the next chapter, and a fuzzy controller in
which parameters of membership functions are treated as the components
of the vector a. An adaptive fuzzy controller (or an adaptive fuzzy control
algorithm) denotes then a fuzzy controller with the parameters adjusted
during the control process.

Finally, let us note that the adaptation process consisting in the adjust-
ment with trial steps may be very long. To determine and perform one ba-
sic step it is necessary to perform 2p trial steps where p is a number of pa-
rameters to be adjusted, which requires 2p adaptation periods, sufficiently
long to estimate a quality control within one such period. That is why a
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simulator of the plant should be used (if it is possible) to generate the rela-
tionship a,, = H(c,,) in a form of a table containing a sequence of differ-

ent values c,, and a sequence of corresponding values a,, obtained as a

result of the adjustment using the simulator. This table forms a data base in
a computer executing an adaptive control of a real plant. The adaptive
program consists of the following parts:

1. Determination of ¢, according to a recursive identification algorithm.

2. Finding in the table mentioned above the value c,, for which || Cop — Em”

is the smallest for a given form of the norm.
3. Putting a,,, corresponding to c¢,, into a basic control algorithm.

Such an adaptation process is sometimes called an adaptation with learn-
ing. In this case obtaining the table by using the simulator may be consid-
ered as an effect of learning. In other words, this is a combination of a
concept of adaptation via identification in an open-loop system with a con-
cept of adjustment adapting the control algorithm to the plant simulator.
This concept as well as other ideas concerning the adaptation we present in
a rather descriptive informal way because, in principle, designing the con-
trol program consists here in designing of subprograms according to the
algorithms described in a formal way in the previous chapters or in other
books devoted to identification and static optimization.

11.5 Learning Control System Based on Knowledge of
the Plant

According to the remark at the end of Sect. 11.1, this section concerns
plants described by a knowledge representation in the form of relations
with unknown parameters. The learning process consists here in step by
step knowledge validation and updating [25, 26, 28-31, 42, 52, 53]. At
each step one should prove if the current observation “belongs” to the
knowledge representation determined before this step (knowledge valida-
tion) and if not — one should modify the current estimation of the parame-
ters in the knowledge representation (knowledge updating). The results of
the successive estimation of the unknown parameters are used in the cur-
rent determination of the decisions in a learning decision making system.
This approach may be considered as an extension of the known idea of ad-
aptation via identification for the plants described by traditional mathe-
matical models (see e.g. [14]). We shall consider two versions of learning
systems. In the first version the knowledge validation and updating is con-
cerned with the knowledge of the plant (i.e. the relation R describing the
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plant), and in the second version — with the knowledge of the decision
making (i.e. the set of decisions D, ). In both versions the learning algo-

rithms based on the knowledge validation and updating will be presented.
Consider a static plant described by a relation

R(u,y;c)cUxY (11.14)

where ¢ e C is a vector parameter (a vector of parameters). As it was said
in Chap. 6, the relation R may by described by a set of equalities and/or
inequalities concerning the components of « and y, e.g.

T 2 (11.15)

u u+y2Sc

where u is a column vector, ¢ and y are one-dimensional variables, or

alu SySbTu

where a, b are vectors of parameters, i.e. ¢ = (a, b). As a solution of the de-
cision problem for the given D), <Y (see Sect. 6.3) we obtain a set of de-
cisions

Dy(c)={uelU: D,(u;c)cD,} (11.16)
where

Dy (u;c)={yeY:(u,y) € R(u,y;c)}

is a set of possible outputs for the given u, and D, (c) is the largest set
such that the implication €D, — y€ D, is satisfied. For example, if in

2 2

the case (11.15) we have the requirement y“ <a“ then the solution

D, (c) is determined by the inequality

cz—az SuTuécz.

For the further considerations we assume that R(u, y;c) for every c e C is
a continuous and closed domain in U xY . Assume now that the parameter
¢ in the relation R has the value ¢ =c¢ and c is unknown.

11.5.1 Knowledge Validation and Updating

Let us assume that the sequence of observations



11.5 Learning Control System Based on Knowledge of 315

(u];yl), (u2’y2), s (unﬂyn): /\ [(uiﬁyi) € R(U:yag)]

iel,n

is available and may be used for the estimation of ¢ . For the value u; at
the input, the corresponding value y; is “generated” by the plant. The
greater the variation of (u;,y;) inside R, the better the estimation that may
be obtained. Let us introduce the set

Dc(”):{CEC3/\[(ui’yi)ER(”ay;c)]}- (11.17)

It is easy to note that D, (n) is a closed set in C. The boundary A4.(n) of
the set D,.(n) may be proposed as the estimation of ¢ . In the example
(11.15) the set D.(n)=[cpin,n,*) and A.(n)={cpin,} (a singleton)

where

Cominn = MaX (] 1 + 7). (11.18)
l

For one-dimensional u, the estimation of ¢ is illustrated in Fig. 11.5.
Assume that the points (u;,y;) occur randomly from R(u,y;c) with

probability density f(u,y), i.e. that (u;,y;) are the values of random
variables (u,y) with probability density f(u,y).

Theorem 11.1. If f(u,y)>0 for every (u,y)e R(u,y;c) and for every
c#c R(u,y;c)# R(u,y;c) then 4.(n) converges to {c} with probabil-

ity 1.
Proof: From (11.17)

D.(n+1)= {CEC:/\ [, ;) € R(u, ;)] A (415 V5 41) € R(u, y30)}.

iel,n

Then D.(n+1)c D.(n), which means that D.(n) is a convergent se-

quence of sets. We shall show that D, = D, with probability 1, where

D.=lim D.(n)={ceC: A [(u;,y;) e R(u,y;0)]}, (11.19)

iel,oo
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D, ={ceC:Ru,y;c) < R(u, y;c)}. (11.20)

y

(9}

min

Fig. 11.5. Illustration of the estimation in example under consideration

Assume that D, # BC , 1le. there exists ceD, such that
R(u,y;E)gR(u,y;E) . There exists then the subset of R(u, y;c)

R(u, ;&) - R(u, y,6) 2 Dp (1121)

such that for every iel,Too (u;,y;) & Dp . The probability of this property
is the following:
lim p"2p,

n—»0
where

p=Pl@.y)eUxY=Dpl= [f(u,y)dudy .
UxY~-Dp

From the assumption about f(u,y) it follows that p<1 and P, =0.
Then D, = BC with probability 1. From (11.19)
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lim A, (n)24,

n—®
where 4. is the boundary of D,.. Using the assumption about R it is easy
to note from (11.20) that Zc ={c} where A_c is the boundary of Bc. Then
with probability 1
lim 4.(n)=4, = {c}. O

n—»o0

The determination of 4,.(n) may be presented in the form of the follow-

ing recursive algorithm:
1. Knowledge validation. Prove if

A [y, y,) € R(u, y;0)]. (11.22)
ceD,(n-1)
If yes then D.(n)=D.(n—1) and 4.(n)=4.(n—-1). If not then one
should determine the new D.(n) and 4.(n), i.e. update the knowledge.
2. Knowledge updating.

D.(n)=fceDo(n=1): (u,,7,) € R(u,y;c)} (11.23)
and 4.(n) is the boundary of D.(n).Forn=1

D.(D)={ceC: (u;,y1)eRu,y;c)}.

The successive estimations may be used in current updating of the solution
of the decision problem in the open-loop learning system, in which the set
D, (c,) is determined by putting ¢, in (11.16), where ¢,, is chosen ran-
domly from 4.(n). For the random choice of ¢, a generator of random
numbers is required.

11.5.2 Learning Algorithm for Decision Making in Closed-loop
System

The successive estimations of ¢ may be performed in a closed-loop learn-
ing system where u; is the sequence of the decisions. For the successive
decision u,, and its result y, , knowledge validation and updating should
be performed by using the algorithm presented in the first part of this sec-
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tion. The next decision u,_ | is based on the updated knowledge and is
chosen randomly from D, (c,,) . Finally, the decision making algorithm in

the closed-loop learning system is the following:
1. Put u,, at the input of the plant and measure y, .

2. Prove the condition (11.22), determine D.(n) and 4.(n). If (11.22) is

not satisfied, then knowledge updating according to (11.23) is necessary.
3. Choose randomly c,, from 4.(n).

4. Determine D, (c,) according to (11.16) with c=¢,, .

5. Choose randomly u,,,; from D, (c,,) .

For n =1 one should choose randomly #; from U and determine D, (1) . If
for all n< p the value u,, is such that y, does not exist (i.e. u,, does not
belong to the projection of R(u, y;c) on U), then the estimation starts from
n=p.If D,(c,) is an empty set (i.e. for c=c, the solution of the deci-
sion problem does not exist) then u,; should be chosen randomly from

U. The block scheme of the learning system is presented in Fig. 11.6. For
the random choice of ¢, and u,, the generators G| and G, are required.

The probability distributions should be determined currently for 4.(n) and
Dy (cy) -

D D,,(c u,
y Knowlgdge—bqsed u(Cn-1) Gy n Pant |7
decision making
Know ledge
representation
R, y;c)
Cn4 o
c
n Ac( n) Kpovy ledge Yn
Menory Gq = validation and
updating

Fig. 11.6. Learning system based on the knowledge of the plant

Assume that the points ¢, are chosen randomly from 4.(n) with prob-
ability density f,,(c), the points u,, are chosen randomly from D, (c,,_;)
with probability density f, (u|c,_;) and the points y, “are generated”
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randomly by the plant with probability density f),(y |u,;c) from the set
Dy(usc)={yeY:(u,y) € R(u,y;c)} where u=u, and c= ¢ . It means
that (c;,u;,1,v;+1) are the values of random variables (¢;,u;,1,Vit1)

with probability density f,;(c;)- fy (i1 |€1) - fy i1 [ 72150).

11.6 Learning Control System Based on Knowledge of
Decisions

In this version the validation and updating directly concerns D, (c), i.e.

the knowledge of the decision making. When the parameter ¢ is unknown
then for the fixed value u it is not known if u is a correct decision, i.e. if
ue D, (c) and consequently y e D, . Our problem may be considered as a

classification problem with two classes. The point u should be classified
toclassj=1if ue D,(c) and to classj =2 if u ¢ D, (c) . Assume that we

can use the learning sequence

. . LA
(U15J1)s W25 J2)s +evs Uy j) =Sy

where j; €{L,2} are the results of the correct classification given by an ex-
ternal trainer or obtained by testing the property y; € D, at the output of

the plant. Let us assume for the further considerations that D, (c) is a con-

tinuous and closed domain in U, and consider the approaches analogous to
those presented in the previous section.

11.6.1 Knowledge Validation and Updating

Let us denote by u; the subsequence for which j; =1,1i.e. u; € D, (c¢) and

by u; the subsequence for which j; =2, and introduce the following sets
in C:

Ec(n)z {ceC:u; € D,/(c) forevery u;in S}, (11.24)

éc(n):{ceC:ﬁi eU-D,(c) forevery u;in S,}. (11.25)

It is easy to see that Bc and bc are closed sets in C. The set
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_— A~ A_
D (n) "D, (n)=4.(n)
may be proposed as the estimation of ¢ . For example, if D, (c) is de-

scribed by the inequality u u < ¢ then

D.(n) = [Cmin,n ,0), D.(n)= [Oacmax,n ), A.(n)= [cmin,n 7cmax,n)
where
2 —T— 2 AT A
Cmin,n = Maxu; u;, Cmax,n = MINU; U;.
i i

Assume that the points u; are chosen randomly from U with probability
density f(u).

Theorem 11.2. If f(u)>0 for every u U and D, (c)# D, (c) for every
¢ #c then Zc (n) converges to {c} with probability 1 (w.p.1).

Proof: In the same way as for Theorem 11.1 we can prove that

lim D,(n)=D,, lin D.(n)=D, (11.26)
n o0

n—»o0

w.p.1 where

D.={ceC:D,(c)cD,(c)}, D.={ceC:D,(c)cD,()}. (11.27)

From (11.26) one can derive that Zc (n) converges to BC mbe éZc (the
boundary of BC) w.p.1. Using the assumption about D,, it is easy to note
that 4, ={c}. O

The determination of Zc (n) may be presented in the form of the follow-
ing recursive algorithm:

If j, =1 (uy, =uy).
1. Knowledge validation for u,, . Prove if

A [u, €D, (c)].

ceBc (n-1)

If yes then BC (n)= Bc (n—1). If not then one should determine the new
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5C (n), i.e. update the knowledge.
2. Knowledge updating for u,,

D.(n)={ceD,(n-1):u, € D,(c)} .

Put D,(n)=D,(n-1).
If j, =2 (u,=1,).

3. Knowledge validation for #,,. Prove if
/\ [MHEU_Du(C)]-
ceD.(n-1)

If yes then lA)C (n)= lA)c (n—1). If not then one should determine the new

bc (n), i.e. update the knowledge.
4. Knowledge updating for u,,

D.(n)={ceD.(n-1):u, eU-D,(c)}.

Put D,(n)=D,.(n-1) and A,(n)=D,(n)"D,(n).

For n=1, if uy = u; determine
D,(1)={ceC:u eD,(c)},
if 4 = u; determine
D.()={ceC:uy eU-D,(c)}.

Ifforall i<p w;=u; (oru;=u;), put D,(p)=C (or D,(p)=C).

11.6.2 Learning Algorithm for Control in Closed-loop System

The successive estimation of ¢ may be performed in a closed-loop learn-
ing control system where u; is the sequence of the decisions. The control
algorithm is as follows:

1. Put u,, at the input of the plant and measure y,, .

2. Introduce j, given by a trainer.

3. Determine Zc (n) using the estimation algorithm with knowledge vali-
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dation and updating.
4. Choose randomly c,, from 4.(n), put c, into R(u,y;c) and determine
D, (c), or put ¢, directly into D,(c) if the set D, (c) may be deter-

mined from R in an analytical form.
5. Choose randomly u,, | from D, (c,).

At the beginning of the learning process u; should be chosen randomly

from U. The block scheme of the learning control system in the case when
¢, 1s put directly into D, (c) is presented in Fig. 11.7, and in the case

when D, (c,) is determined from R(u,y;c,) is presented in Fig. 11.8.

The blocks G; and G, are the generators of random variables for the ran-

dom choosing of ¢,, from ZC (n) and u, from D,(c, ), respectively.

D Know ledge- D u y
"Y1 based decision U Do) Go |14 Pant | =
making
jr -1
Un
Know ledge
. Memory
representation Trainer
R y;c)
Ch Un
AAn Know ledge ;
Gq o) validation and In
updating

Fig. 11.7. Learning control system in the first version

Assume that the points c¢,, are chosen randomly from Zc (n) with prob-
ability density f.,(c) and the points u, are chosen randomly from
D, (c,,_1) with probability density f, (u|c,_1),1.e. (¢;,u;,q) are the val-

ues of random variables (c;,u;,;)-

Theorem 11.3. If

A A Jei(€)>0, /\ /\ f,]c)>0 (11.28)

i ced. (i) ceC ueD,(c)

and for every ¢ # ¢
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D, (c)#D,(c) (11.29)

then Zc (n) convergesto {c} w.p.l.

D Know ledge- D, (c u
Y | pased decision | 2ulr-1) Gy |14 Pant | o
making
T N
Know ledge
representation
R, y;c) Trainer
Un
Cn-1
Cn Zc( n) Know ledge in
Merory Gq validation and
updating

Fig. 11.8. Learning control system in the second version

Proof:  From (11.24) it is easy to note that Bc(n+1)QBC (n), which
means that Bc (n) is a convergent sequence of sets. We shall show that
D, =D, w.p.l. where

D, = lim D,(n)

n—»0

and D, is defined in (11.27). Assume that D, # D, i.e. there exists
ce D, suchthat D, (c) & D, (c). There exists then the subset of D, ()

D,(©)-D,(¢) 8 Dp

such that u; ¢ Dp for every u; in S, . The probability of this property is
the following:

A
llm le :Poo
n—>0 i=1
where

pi=P@; eU-Dg)= " [fu(u)du,
U-Dp
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Jui@ = [fy]e)f(e)de. (11.30)

4c ()
Since ¢ e ZC (i) for every i then from (11.28) and (11.30) it follows that
Jui(w)>0 for every ue D,(c) and consequently f,;(u)>0 for every

ueDp. Thus, p; <1 foreveryiand P, =0.Then D, =BC w.p.1. In the
same way it may be proved that

lim D,(n)=D,, w.p.1

n—»o0
where zSc is defined in (11.27). Consequently, Zc (n) converges w.p.1 to
Bc m[)c = A_c (the boundary of D,). Using (11.29) it is easy to note that
d.={c}. O

Remark 11.1. Let us note that the decisions in a closed-loop learning sys-
tem may be based on j, given by an external trainer, i.e. j, =1 if

u,€D,(c) and j, =2 if u, ¢ D,/(c), or may be obtained by testing the
property y, € D,,. In this case,

if y, € Dy, then j, =2 and u, ¢ D,(c),

if y, €D, then j, =1 and u, eﬁu(E)
where
D,(€)={ucU:D,(€)nD, 2}
and
Dy(c)={yeY:(u,y)eR(u,y;c)}.

Consequently, in (11.24) and in the first part of the recursive algorithm
presented in Sect. 11.6.1 for u,,, one should use 5M (¢) instead of D, (c).
It is worth noting that Theorem 11.3 concerns the case with an external

trainer. [

Example 11.1. Consider the single-output plant described by the inequal-
ity
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OSySéuTPu
c

where P is a positive definite matrix. For the requirement y <y we obtain

D,(0)={ueU: u"Pu<cy}. (11.31)
According to (11.24) and (11.25)

Bc (n) = [cmin,n ,0), D.(n)=[0, Cmax,n ), d.(n)= [cmin,n > Cmax,n )

where
—1 —T o —1 . AT pn
Cminp =V -Maxy; Pu;, Cmax,n =V MmNy, Pu; .
i i

The decision making algorithm in the closed-loop learning system is the
following:
1. Put u,, at the input, measure y,, .

2. Introduce j,, given by a trainer.

3.For j,=1(u, =u,), prove if

1, T
Uy Pun < Cmin,n-1 -

5
If yes then cpin = Cmin,n—1 - If nOt, determine new cpyip

—1 T
Cminn =)V  Up Pu,.

Put Cmax,n = Cmax,n—1-
4.For j,=2(u, =u,), prove if
—1 T
Yy u, Pu, 2 Cmax,n—1"*
If yes then cpax = Cmax, n—1- If nOt, determine new ¢y,

——1_ T
Cmax,n =V  Up Pu,, .

Put Cmin,n = Cmin,n—1> Ac (n)= [Cmin,n > Cmax,n ).
5. Choose randomly ¢,, from Zc (n) and put ¢ =¢,,_; in (11.31).

6. Choose randomly u,, from D, (c,). O
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The example may be easily extended for the case when D, (c) is a do-
main closed by a hypersurface F(u)=c for one-dimensional ¢ and a given

function F. The simulations showed the significant influence of the shape
of D, (c) and the probability distributions f.(c), f,(u|c), on the con-
vergence of the learning process and the quality of the decisions.
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12.1 Introduction to Artificial Intelligence

One of the important functions which may be performed by a computer is
replacing or supporting a human being in solving difficult problems for
which a knowledge and an intelligence is required. The computerization of
problem solving which requires not only a determined knowledge but also
a proper reasoning process is often informally and imprecisely called an
artificial intelligence. Its products are intelligent computer systems of dif-
ferent kinds, including intelligent control systems [10, 101]. The artificial
intelligence is usually understood as a set of problems, methods, tools and
techniques connected with the computerization mentioned above.

There exists a great variety of definitions and meanings of the terms ar-
tificial intelligence and intelligent systems, very frequently used nowa-
days. Independently of the different names, concrete precisely defined
problems and methods formulated under these names are important. A set
of names, problems, methods and practical products in this area has been
changing during several decades of its development. Similarly, we can
speak about changes of a role of a computer (more precisely speaking of a
software system implemented in a suitable device) as a tool supporting a
human being in his mental works: from a tool for computing via a tool for
problem solving according to a program precisely developed by a designer
and a tool for information storing and processing to a role of computer ex-
pert, i.e. a tool for a knowledge-based problem solving with the application
of reasoning (see corresponding remarks in [18, 20]).

At present, the following problems and methods are usually included in
the artificial intelligence area:

1. Computerization of logical operations; in particular, algorithmization
and computerization of inference processes.

2. Decision making under uncertainty defined in different ways, with the
use of a prediction, solution searching algorithms and a formulation of
multi-variant solutions.
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3. Application of so called genetic algorithms to the computerization of a
solution searching for a class of optimization problems.

4. Algorithmization and computerization of learning processes.

5. Application of so called neural networks (or artificial neuron networks)
as a universal tool for problem solving with learning in a wide class of
computational problems.

6. Knowledge-based problem solving in so called expert systems [18, 92].

The concepts and areas mentioned above are interconnected in different
ways and all of them may concern a single individual intelligent system,
e.g. a system in which a knowledge-based decision making under uncer-
tainty, with the application of a learning process can occur.

The problems, methods and algorithms concerning the control with
knowledge representations, with non-probabilistic descriptions of the un-
certainty and with the application of learning processes described in the
previous chapters could be considered under the name intelligent control
systems. Their location in the previous chapters was reasoned by a deter-
mined composition of the book. In this chapter we shall present shortly
problems of the control with a logical knowledge representation and the
application of neural networks in control systems, i.e. the topics perhaps
most typical for intelligent control systems. These topics could be pre-
sented earlier as well: the control with the logical knowledge representa-
tion in Chap. 6 and neural networks in Chap. 11 in connection with the ad-
aptation and learning processes.

The short description of the intelligent systems in the first part of this
chapter may be treated only as a part of a very wide area concerned with
intelligent and expert control systems. The second part of this chapter is
devoted to selected problems of complex control systems with traditional
models and with knowledge representations.

12.2 Logical Knowledge Representation

In Chapter 6 we considered a plant described by a relation R(u, y) with the
input vector ueU= RP and the output vector yeY= R’ For such a
plant the input property ¢, (u)=“ueD,” and the output property
@,(y)=“yeD,” have been introduced and the analysis and decision making
problems have been considered. It has been assumed that the relation R as

well as the properties ¢, ¢, or the sets D,,, D), are described with the help
of a set of equalities and (or) inequalities concerning the components of
the vectors u and y, and auxiliary additional variables (components of the
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vector we W) used in the knowledge representation. It has been also men-
tioned that for such a knowledge representation, solving of both problems
may be very difficult, not possible to be presented in the form of a univer-
sal algorithm and may require individual approaches. We shall now con-
sider a plant described by a relation which may be presented with the help
of logical formulas composed of so called simple formulas and logical op-
erations: or, and, not, if ... then. The simple formulas are elementary prop-
erties concerning the variables wu, y, w. In the simple formulas the logical
operations mentioned above and quantifiers may occur as well, but in the
knowledge representation the simple formulas are treated as undivided
units, “blocks” used in building the knowledge description.
Let us introduce the following notation:
l. ej(u) — simple formula (i.e. simple property) concerning u,

j=L2,..,n;,eg o, (u)="“u us2”.
. Oy (u,w,y) — simple formula concerning u, wand y, r=1,2,...,n, .
. @y (y) —simple formula concerning y, s =1,2,...,n3.

2
3
4. ay = (a1, %y, ) — subsequence of simple formulas concerning
u
5

- Oy = (1,025 Uyyp, ) — subsequence of simple formulas concern-
ing u, wand y.
6. ay, =(a,1,0y2,...,0y,; ) — subsequence of simple formulas concerning

y.

7. a(u,w,y) 2 (a1,a,....a,) =(a,,a,,a),) — sequence of all simple
formulas in the knowledge representation, n = n; + n, + n3.
8. F;(ax) —the i-th fact given by an expert. It is a logic formula composed
of the subsequence of « and the logic operations: v — or, A —and, — — not,
——if..then, i=1,2,..k.

For example Fil=a ray > ay, F=a3va, where

al :“uTu Sz ”,

oy = “the temperature is low or yT y<37,
a3 — (13 yTy > WTW,” a4 — (13 yTy — 4 ”.

9. F(a)=F(a) AR (@) A... AN Fi ().

10. F, (e, ) — input property, i.e. the logic formula using ¢, .

1. F\(a))

12. a,, €{0,1} —logic value of the simple property «,,,, m=1,2,....n.

— output property.
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13. a=(ay,a,,...,a,) — zero-one sequence of the logic values.

14. a,(u), a,,(u,w,y), a, (v) — zero-one subsequences of the logic val-
ues corresponding to &, (u), a,,(u,w,y), a,(y).

15. F(a) — the logic value of F(«).

We used a uniform term facts for all formulas F;. In the literature, F;

in the form of implications are often called production rules. All facts
given by an expert are assumed to be true, i.e. F(a)=1.

The description
<a,F(a)> 2KP

may be called a logical knowledge representation of the plant. For illustra-
tion purposes let us consider a very simple example:

u:(u(l)’u@)) , y:(y(l),y(z)), weR!,

a,) = «uyD 1@ 50 C, Oy = “uy(D 59 7,

oy = “y(2) < y(l) "y, = “y(l) +y(2) =47,

oy = “uM 244 y(z) <07, an="* u® > y(l)”,

Fl=aynay > ayvaay,, Fy=(annapn)vian a-a,),

Fo=anva,, Fy=-a,.
After substituting a in the place of ¢, the forms Fj(a),

F(a)=F(a,.a,,a,) are algebraic expressions in two-valued logic alge-

bra. The expressions F'(a) have the same form as the formulas F (&), e.g.

Fl(aul’awl’awbayl) =y NGyl > ay VYV dy) .
The logic formulas Fj(a), F,(«,) and F)(a,) are special forms of the

relations introduced in Sects. 6.1 and 6.2. Now the relation (6.3) has the
form

Ri(u,w,y)={(u,w,y)eUxW xY : FJla(u,w,y)]=1}, (12.1)

i=12,..,k.

For example, if in one-dimensional case Fi(a), )= a; —> a, and
o(u,y)="“u +y2 >4”, ap(u,y) ="y <2u”, then such a fact defines a set of

points lying inside the circle u’ + y2 <4 or below the line y=2u. Then an

expert says that in our plant may appear only the pairs (u, y) belonging to
this set. The logical knowledge representation is then a specific form of a
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relational knowledge representation, consisting of the relations R; which
after elimination of w may be reduced to one relation

R(u,y) = {(u,y)e UxY: v [(u, w, v)eR (1, w, V)N ... O Riu, w, ¥)]}
welW

or

R(u,y) = {(u,y)eUXYiv [F(a)=11}.

weW
The input and output properties may be expressed as follows:

ueD,, yeD,
where
D,={uelU: F,la,(u)]=1}, (12.2)
D,={yeY: F,a,(y)]=1}. (12.3)
For example, let
oy = oy ="upy>2uy”, o= oy ="uy > 4uy”,

o3 = a3 = "up <up<3uy”
and
= (o n=ayn) v ay;s.
Then
F, =%u; <upy<4u;”.
The description with F(a), F,(a,), F)(a,) may be called a descrip-
tion on the logical level. The expressions F(a), F,(a,) and Fy(a,) de-

scribe logical structures of the plant, the input property and the output
property, respectively. The description at the logical level is independent
of the particular meaning of the simple formulas. In other words, it is
common for the different plants with different practical descriptions but
the same logical structures. At the logical level our plant may be consid-
ered as a relational plant with input a,, (a vector with n; zero-one compo-

nents) and output @, (a vector with n3 zero-one components), described

by the relation



332 12 Intelligent and Complex Control Systems

F(ay,a,,a,)=1 (12.4)

(Fig. 12.1). The input and output properties for this plant corresponding to
the properties u € D, and y € D), for the plant with input u and output y

are as follows:
a,eS, cS,, a,€8,cS,
where Eu , S ) are the sets of all zero-one sequences q,,, a v respectively,

and

Sy={a, €S, F,(a,)=1}, S,={a,e8,: F(a,)=1}. (12.5)

a
U | Relational plant L
F(ay, aW,ay) =1

Fig. 12.1. Plant at logical level

12.3 Analysis and Decision Making Problems

The analysis and decision making problems for the relational plant de-
scribed by the logical knowledge representation are analogous to those for
the relational plant in Sect. 6.2. The analysis problem consists in finding
the output property for the given input property and the decision problem
is an inverse problem consisting in finding the input property (the deci-
sion) for the required output property.

Analysis problem: For the given facts F(«) and input property F,(«,,)
find the best property F),(«,) such that the implication

F(a,)—>Fy(ay) (12.6)

is satisfied.
If it is satisfied for F; and F,, and Fy; — F);, then F); is better
than F, . The property F) is then the best if it implies any other property
for which the implication (12.6) is satisfied. The best property F) corre-

sponds to the smallest set D, in the formulation presented in Sect. 6.2.
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Decision problem: For the given F(a) and F),(«,) (the property re-

quired by a user) find the best property F, (e, ) such that the implication
(12.6) is satisfied.
If it is satisfied for F,; and F,,, and F,, — F,;, then F,; is better

than F,,. The property F, is then the best if it is implied by any other
property for which the implication (12.6) is satisfied. The best property F,,

corresponds to the largest set D,, in the formulation presented in Sect. 6.2.

Remark 12.1. The solution of our problem may not exist. In the case of
the analysis it means that there is a contradiction between the property
F,(a,) and the facts F(a,,a,.a,), ie. the sequence g, such that

F,(a,)~nF(ay,a,,a,)=1 does not exist. In the case of the decision
making it means that the requirement £, is too strong. The existence of

the solution will be explained in the next section. O

Remark 12.2. Our problems are formulated and will be solved on the
logical level. Consequently they depend on the logical structures (the
forms of Fand F), or F,) but do not depend on the meaning of the simple
formulas. The knowledge representation KP and the problem formulations
may be extended for different variables, objects and sets (not particularly
the sets of real number vectors) used in the description of the knowledge.
For instance, in the example in the previous section we may have the fol-
lowing simple formulas in the text given by an expert:

a,, = “operation O; is executed after operation O, ”,

a,» = “temperature is low”,

a,, = “pressure is high”,

a,,» = “humidity is low”,

a, ="state S occurs”,

@,y = “quality of product is sufficient™.

Then the facts F| and F, in this example mean:

F} =“If operation O; is executed after operation O, and pressure is high

then state S occurs or humidity is not low”.
F, =“Temperature is low and humidity is low or quality is sufficient and

operation Oy is not executed after operation O, ”. O

Remark 12.3. The possibilities of forming the input and output properties
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are restricted. Now the sets D,, and D, may be determined by the logic

formulas F,(,) and F)(a, ) using the simple formulas ¢, and ¢, from
the sequence of the simple formulas « used in the knowledge representa-
tion. O

12.4 Logic-algebraic Method

The solutions of the analysis and decision problems formulated in
Sect. 12.3 may be obtained by using the so-called logic-algebraic method
[18, 19, 23, 24, 25, 52]. Let us denote by A the set of all zero-one se-

quences a=(ay, a, a,). A set S, A and a formula F(a) are said to be
equivalent if aeS, <> F(a)=1,1.e. S,={acAd: F(a)=1}. In this case one
may say that F(a) is determined by S,,.

For example, if a=(ay,ap,a3) and S,={(1,1,0),(1,0,1)}, then

Flo)=(agrnaopr—-o) V(o A—ap A o).

The sets S, and S y in (12.5) are equivalent to F,(¢,) and F (&), respec-

tively. Let us denote by R(a,, ay,a,) the set equivalent to F(ay, a, a,).
Then

R(ay, ay, ay) = {(ay, ay, ay): Flay, ay, ay) = 1}. (12.7)

Consequently, the analysis problem is reduced to the equivalent problem
for the relational plant with the input «, and the output «,, described by
the relation (12.7).
Equivalent analysis problem: For the given relation (12.7) and the given
set S, one should determine the smallest set S, satisfying the implication
ay €S, —> ay€S,, i.e. the implication F, — F),.

Taking into account the equivalent formulation stated above, it is easy to
show that the analysis problem is reduced to solving the following alge-
braic equation:

Flay,ay,ay,)=1 (12.8)
with respect to a,,, where

F(ay.a,,a,)=F,(a,) AF(a,.a,,a,).
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Now F(a,.a,.a,), F,(a,) and F,(a,) are algebraic expressions in
two-valued logic algebra. If S, is the set of all solutions then F), is de-
termined by S,, ie. a,€S, > F,(a,)=1. For example, if
a, =(a,,a,7,ay,3) and S, =1{(1,1,0),(0,1,0)} then
Fy(a),)=(ay rayp A—ay3) Vv (may Aoy A —ay3).

The set of solutions S, (i.e. the set of all sequences @), for which there
exists a=(ay,a,,) such that the equality (12.8) is satisfied) determines the
output property F)(a,) to be defined. Let us order all sequences
a=(a, ay) and denote by a the i-th sequence. The block scheme of the
algorithm generating the solution S, 1s illustrated in Fig. 12.2. The result
S, should be presented in the form F,(«, ) and transformed to the sim-

plest form by using the known rules of logic-algebra.
Let us consider now the decision making problem and introduce two
sets of the algebraic equations

F(au,aw,ay)zl} F(au,aw,ay)zl}

12.9
F,(a,)=1 F,(a,)=0 ( )

Denote by S,,; and S,, the sets of all solutions with respect to «,, of the
first and the second set of equations, respectively.

Theorem 12.1. The solution F), of the decision making problem is deter-
mined by the set S,=S,,; —S,».

Proof: If F\,=1 then a,€S,; hence a,€S,. If F},=0 then q,€S,; hence
a,£S,. Consequently, a, €S, <> F,=1 and S, is the largest set of elements

a,, such that the implication
(ay€S,) A Fla) > F\(a))

is satisfied. O

It is worth noting that the solution D,, of the decision problem for the
plant described by a relation R(u,y), considered in Chap. 6 can be pre-
sented as follows:

Du: {MEUZ (ueDul)/\(ueEDuz)} :Dul_DuZ (12.10)

where
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Dulz{uEU: \/ [(“aJ’)ER]},

yeDy
(12.11)

D,y ={ucU: \/ [(u,y) € R]}.

yeY-D,

Introduce a(i)

i — i+

Y
i
Introduce all)

Sy
/ Al
a(}) SRS Y,

Bring out Y

Fig. 12.2. Block scheme of algorithm generating the solution of analysis problem
Y —Yes, N—No

The sets S, S,1, S,,» introduced here correspond to the sets D,, in (12.10)
and Dy, D,, in (12.11), respectively. Thus, the determination of the for-

mula £, is reduced to the generation of the sets of solutions of the equa-
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tions (12.9). The algorithm generating the decision F, is in a certain sense
analogous to the former algorithm in the analysis problem and consists in
the following: if the successive a? satisfies the first set in (12.9) then its

part az(j) is included into S,; ;1 and if a” satisfies the second set in

(12.9) then al(j ) is included into Sy2.i-1 (Fig. 12.3). The result S, should be
presented in the form F}, (¢, ) and simplified if necessary.

The generation of the set Sy, in the analysis problem requires the testing
of all sequences a =(a,,a,,,a,) and the execution time may be very long

for the large size of the problem. The similar computational difficulties
may be connected with the solution of the decision problem. The genera-
tion of S, (and consequently, the solution £, ) may be much easier when

the following decomposition is applied:

Fu ANF :1?1(50,51)/\E(El,az)A...AFN(EN_l,EN) (1212)
where ag =a,,, F, is the conjunction of all facts from F containing the

variables from a, a; is the sequence of all other variables in Fj, F, is

the conjunction of all facts containing the variables from a;, a, is the se-
quence of all other variables in 172 etc. As a result of the decomposition

the following recursive procedure may be applied to obtain §0 =8,

§m—1 = {‘_lm—l € Sm—l : \/ [Fm (Em—lﬂam) =1]} (12.13)

Ay €Sy

where S, is the set of all @,,, m=N,N —1,..,1, Sy =Sy .
In such a way, the testing of all sequences a =(a,,a,,,a,) for k facts

can be replaced by the testing of the significantly shorter sequences
(ay,_1.a,,) for N successive subsets of the facts, and in these subsets the
number of the facts to be tested may be much smaller than the number of
all possible facts. Additional decreasing of the execution time in compari-
son with the direct method (without a decomposition) can be obtained by
the application of a parallel processing in a multiprocessor system.

The recursive procedure (12.13) has two interesting interpretations.

A. System analysis interpretation
Let us consider the cascade of relational elements (Fig. 12.4) with input
a,, output a,_; (zero-one sequences), described by the relations
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introduce  a()

N ‘ Y
i
Introduce

Q
a{l) oS,

i =i+ 1

1,i-1

v |

Introduce
i
a(u) to S

u2,i-1

S
Y / N Determine
j<2n ——
and bring out

Sui= Suri~ Suzi

Fig. 12.3. Block scheme of algorithm generating the decision, N —No, Y — Yes
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F,(@y,_1,a,)=1 (m=N,N—-1,.,1). Then S, _, is the set of all possi-

ble outputs from the element [;m and §0 is the set of all possible outputs
from the whole cascade.

ay = avq | =
Fn Fr-1 F

Fig. 12.4. Relational system

B. Deductive reasoning interpretation
The set S,,_; may be considered as the set of all elementary conclusions

from Fy A...AF, ,and §0 is the set of all elementary conclusions from
the facts F,, AF .

A similar approach may be applied to the decision problem. To deter-
mine S,; and S,, we may use the recursive procedure (12.13) with F in

(12.12) instead of F;, A F' and with ag = (a,,a,) . After the generation of

§O from (12.13) one can determine S, and S, in the following way:

Sur=Hay : \/ [(au’ay)ego]},

ayeSy

Suz =1ay : \/ [(auaay) Ego]}

a,eS,-S,
where
S,={a, €8, F,(a,)=1}
and §y isthesetofall a,.
The algorithm generating the decision F,(c,) is then as follows:
1. Generation of the set §0 using the recursive procedure.
2. Testing of all sequences (a,,a),) in §0: if in the successive (a,,a))
the part a,, satisfies the equation £, (a,)=1 then g, should be included

into §,,1, otherwise a,, should be included into S, .
3. Determination of S, =S,; —S§,, and F,.

The main idea of the logic-algebraic method presented in this section
for the generation of the solutions consists in replacing the individual rea-
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soning concepts based on inference rules by unified algebraic procedures
based on the rules in two-valued logic algebra. The results may be consid-
ered as a unification and generalization of the different particular reason-
ing algorithms for a class of systems with the logical knowledge represen-
tation for which the logic-algebraic method has been developed. The logic-
algebraic method can be applied to the design of complex knowledge-
based computer systems [52].

Example 12.1 (analysis). The facts F are the following:
R=(asvoa)>ay, F=(orag)vaas, F=(agra)—>a,
Fy=(ag rmag)vas, Fs=ag—>(aanag), Fg=0y—>(maqnae),
Fr=(asnap)vay, a,=(ag,ay).

It is not important which simple formulas from «;—ag are «, and
which fact from the set { F|,F,, Fy, F5,Fg } (not containing ay) is the
input property. It is easy to see that
Fi(ag,ay) = F3(ay,az,a9) A Fy(az,a3,a10), @ =(ay,az,a3) ,

Fy(ay,ay) = Fi(ay,a3,a4) A Fy(ay,a3,a7) A Fg(as,a4,a6),
ap =(ag,a6,a7)
Fy(ay,a3) = Fy(ay,as,a7) A Fs(ay,a6,a3) , a3 =(as,ag).

In our case N =3, Sy ={(1,1),(1,0),(0,1),(0,0)}. According to (12.13)
one should put successively the elements of S into F'3 and determine all
0-1 sequences (ay,ag,a7) such that F'3 =1. These are the elements of

§2. In a similar way one determines §1 and finally §0 ={(0,1),(1,1)}.
Then F), =(—ag Aajg) V(a9 Aajg) =ayg. U

Example 12.2 (decision making). The facts /' in the knowledge represen-
tation KP are the following:
Flzal/\(a4v—|a6), F2 :((Z2A(Z4)—)(Z6, F3 =0y V03 Vos,
Fy=a4 n(azVv—as), Fs=(a4 n—ay) > ay, a, =(a,a),
oy = (a6’ 067) .

Now EO :(auaay)z(alaaZaa6aa7)7 1-71 :Fl /\FZ AFS’ }_72 =F3 /\F4a
(31 =day, 52 = ((13,(15).

Using  (12.13)  (two  steps  for m=2,1) we obtain
§0 ={(1,L,1,1),(1,1,1,0), (1,0,1,1),(1,0,0,1)} . We can consider the differ-
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ent cases of F, (&g, 7). It is easy to see that for F, = ag v a7 we have
Sy, ={(L1),(L0),(0,D}, S, ={L1,(L0)}, S,, is an empty set,
Sy=8, and F,=(aqra)v(agr—ap)=ap. If F,=ag then
F,=aynay, if F,=a; then F, =ajrn—ay, if F,=agAa; then
S,1=3S,2, S, 1s an empty set and the solution F,, does not exist.

The formulas o and the facts may have different practical sense. For

instance, in the second example u,y,ceR1 and: a;=“u<3c”,

2% <1 ”, a3 = “pressure is high ”, a4 = “ humidity is low ”,

Oy = “u
a5 = “temperature is less than wu+y+c”, ag= “y2 +(c—0.5)2

<0257, a7 =“—c<y<c” for a given parameter c. For example, the
fact F, means that: “if u?+c* <1 and humidity is low then

y2 +(c—0.5)2 <0.257, the fact F5 means that: “humidity is not low or
pressure is not high or temperature is less than u+y+c¢ ”. The required

output property F, =g is obtained if F, =ajrnay, ie. if u<3c and

u2+02£1. O

12.5 Neural Networks

Let us return to the concept of an adjusted reference model presented in
Sect. 11.2. In that section the identification consisting in the adapting of
the model y=@®(u,c) to the plant represented by the sequence of the
measurement results

(ulayl): (u25y2)a ees (unayn) (1214)

has been considered. The adapting has consisted in successive changes of
the values of the vector parameter ceC on the basis of current measure-
ment results. The parametric problem of the approximation of the se-
quence (12.14) by the function @ with a given form, consisting in a proper
choice of the value ¢, may have also other practical applications. The
function @ may denote an approximate computation algorithm and the
values y; in the sequence (12.14) may denote correct (exact) computation

results for the given wu;. In particular, the function @ may denote a pro-
posed form of a static decision algorithm calculating decisions y for the
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given u, with unknown parameters c. In this case y); may denote a se-

quence of decisions optimal in a certain sense for the given u;. The source
of the data (12.14) may have different interpretations. In the case of the
identification they are the results of a real plant observations. In the case of
the computation algorithm (decision algorithm) y; may denote the results
obtained by applying an exact algorithm if it exists or the correct decisions
given by a decision maker for the known u;. The choice of proper values
c in the first case means the best approximation of the exact algorithm by
the approximate computation algorithm @, and in the second case — means
the best approximation of the decision maker, i.e. the identification of the
decision maker. Independently of different terms and interpretations for
various concepts in this area, we can speak generally about an approxima-
tion problem and about the convergence of an approximation process in
the case of recursive algorithms determining the changes of c¢. One can
speak about a unified common approach to investigations of recursive al-
gorithms of control, identification, recognition, adaptation, learning, ad-
justment etc. — as approximation algorithms based on uniform approxima-
tion methods [8, 103] (see remarks in Sect. 10.1).

In the further considerations @ will be called an approximation algo-
rithm, the sequence (12.14) — a learning sequence, a source of the results

y; for the given u; — a trainer, and a process of changing ¢ — a learning

process, as in the second part of Chap. 11. Denote by ¢(y,y) 2 an index
of the approximation quality for the fixed y, which is to be minimized.
Then the changes of ¢ mean an extremal control (a static optimization)
for the plant with the input c¢, the output v and the model
_ A
v=0(y,y)=o[Pu,c),y] =Glc,u,y).

The gradient algorithm in a closed-loop system for the fixed u and y, or
the learning algorithm is as follows

Cntl = Cp— Y Wp (12.15)

where

e=c, =J[@(u,0)]

W, = grad G(c,u, y) e, -gradp(y,y).  (12.16)
c Yy

In the formula (12.16) J denotes Jacobian matrix for the set of functions
@, i.e. the functions y(’)= <D(’)(u, ¢) for components of the vector y (see

Sect. 4.5). In particular, for o(y, »)=(y -») (¥ —y) we obtain
grad(y,y)=2(y —y). In comparison with the algorithm used in
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Sect. 10.8, the simplest version with the single coefficient y instead of the
matrix K has been presented here. Because of the reasons mentioned in
Sect. 10.8, the algorithm with trial steps is usually applied, and for assuring
the convergence despite variation of the points (u, ), i.e. when (u,,y,) is
put in the place of (u,y) in (12.15) and (12.16) — the stochastic approxima-
tion algorithm with a decreasing coefficient y, can be applied.

Let us consider a complex executor of the algorithm @, consisting of
two connected parts: x= @;(u,d) and y= @,(x, ). In other words, the ex-

tremal control plant with the input ¢ =(d, e¢) is a cascade connection of the
two parts. Then the task of the minimization

min G(c, u, y) = min p{ D[ P (u, d), e], y}
c d,e

may be decomposed into two stages. In the first stage, as a result of mini-
mization

. A
min p[Py(x, e), y] = v(x, )
e

we obtain the relationship e= ¥5(x, y). In the second stage, as a result of
minimization

. A
m;n W[ @(u,d),y] = vi(u,y)

we obtain the relationship d= ¥(u, y). Such an approach may be general-
ized for any number of units in a cascade connection. As a result of the de-
composition a multistage minimization starting from the end, i.e. from the
unit with the output y may be applied. Tt is an old and widely known way

of the decomposition for multistage decision problems (see dynamic pro-
gramming in Sect. 4.3). We shall return to this idea in Sect. 12.8 when the
control of a complex plant with the cascade structure will be described. For
the approximation problem and the complex approximation algorithm with
a cascade structure considered here, such a decomposition means a learn-
ing process consisting in adjusting of the units successively from the end.
A neural network announced in the title of this section is a system per-
forming the complex algorithm @ with a cascade structure, in which sepa-
rate units have a specific form, convenient for building and using. This
form appeared for the first time several decades ago as so called classify-
ing network in classification and pattern recognition problems. Consider an
object represented by a vector of features ue U, which should be classified
to one of two classes. The classification (or recognition) problem in this
case may consist in the determination of a hypersurface (a surface in a
three-dimensional case) dividing the space U into two parts. In the sim-
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plest case it is a discriminating hyperplane wlu+b=0where wis a vec-

tor of coefficients and b is a one-dimensional parameter. The classifica-
tion algorithm is then as follows:

¥ =sign(w'u+b) (12.17)
where y=+1 and y=-1 denote the first and the second class, respec-

tively. The algorithm should be completed by the statement to which class
an object with u lying on the discriminating hyperplane should be classi-
fied. The components of the vector w are called weight coefficients (or
shortly — weights) and the parameter b is called a threshold. In order to in-
crease the classification abilities one can use a complex system composed
of the elements (12.17), i.e. with separate linear classifiers.

The algorithm may be generalized by introducing the form

y=fiwu+b) (12.18)
where [ is a function which assigns real numbers y to real numbers

wlu + b. The approximation algorithm @ with a cascade structure may be

composed of the elements (12.18) in such a way that each part (called a
layer) inside this cascade contains a set of the elements (12.18) the inputs
of which are outputs of the elements from the former layer and the outputs
of which are inputs of the elements from the next layer. The components
of the vector u are the inputs of the first layer and the components of the
vector y are the outputs of the last layer. A specific terminology is used
here: the element (12.18) is called an artificial neuron (or shortly — a neu-
ron), the algorithm @ is called a neuron-like algorithm, and the multi-
layer system described above, i.e. the executor of the algorithm @ is called
a neural network (or artificial neuron network, or shortly — neuron net-
work). Most often the term “executor of the algorithm” is used instead of
the “algorithm” itself as it has occurred already many times in the book
(e.g. a controller and a control algorithm) and as it has occurred here in the
case of the neuron. The above terminology is justified by some associa-
tions with a set of neurons in a living organism. The learning process con-
sists here in a proper changing of the vector ¢ the components of which
are all the weights and the thresholds in the all neurons. The method of pa-
rameters ¢ adjustment in successive layers starting from the end is called
here a back propagation method. It is worth noting that similar recursive
procedures starting from end and concerning other problems have similar
names, e.g. an inference algorithm starting from the end and used for solv-
ing problems based on a logical knowledge representation is sometimes
called a backward procedure.

A simple example of a neural network with three layers in which neu-
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rons are marked by triangles is illustrated in Fig. 12.5.

—
4
u -
—
he—

Fig. 12.5. Example of neural network

A network with a great number of layers and neurons has the following
abilities and advantages important for the application in control systems:

1. It can approximate with a high degree of accuracy various algorithms
from a wide class of computation algorithms (including decision algo-
rithms) via an adjustment (adapting) to a concrete algorithm by a learning
process.

2. It enables to replace an analytical determination of an exact problem
solving algorithm by solutions given by a trainer and imitates the trainer’s
acting as a result of a learning process. In this case an exact algorithm may
not exist.

3. It can be computerized not only by a software but also by a hardware as
a net of artificial neurons, i.e. as a neurocomputer in which the execution
of a program is replaced by a signal processing in the net.

In the next section a brief review of different possible applications of
neural networks in control systems will be presented. Wide descriptions of
neural networks and their applications may be found in the books [61, 87,
97, 106].
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12.6 Applications of Neural Networks in Control Systems

Numerous concepts concerning the neural networks applications in control
systems may most often be reduced to several basic ideas [21, 87] which
we shall characterize in this section. They do not require a precise theoreti-
cal analysis and their abilities in specific cases are usually investigated by
simulations. It follows from the main idea and a character of an approach
applied here that a control algorithm or its modifications are not deter-
mined analytically by using a given description of the plant but are as-
sumed in the form of a universal neuron-like algorithm. The quality of the
control for the given plant description cannot be investigated analytically
either, because of a very complicated form of the neuron-like algorithm @.
From this point of view the situation is similar to that described for a fuzzy
controller. The basic ideas will be explained here for a static neuron-like
algorithm considered in Sect. 12.5, although it is possible to build and use
neural networks with memory, convenient for dynamical systems model-
ling. The explanation will consist in the specification of a role of the neu-
ron-like algorithm (its place in the control system) and data used in a learn-
ing algorithm.

12.6.1 Neural Network as a Controller

The neuron-like algorithm may be applied as a control algorithm. In this
version the input of the neural network is the state of the plant x (in a
closed-loop system) or a disturbance acting on the plant (in an open-loop
system) and the output of the network is the control decision u put at the
input of the plant. Then, the neuron-like algorithm takes a role of a control
algorithm with a given form in which undetermined parameters c¢ (the
weights and thresholds) should be adapted to the plant in an adaptation
process (see Sect. 11.4) called a learning process in this case. A simple ex-
ample of such algorithm in a closed-loop system, i.e. of a neuron-like con-
troller has been given in Sect. 5.5. Three basic ways of learning are used:
1. Learning based on an evaluation of a quality index.

2. Learning with an exact algorithm as a generator of the learning se-
quence.

3. Learning with an external trainer (an expert) as a generator of the learn-
ing sequence.

The ways 1 and 3 are analogous to the corresponding concepts described
for learning systems in Chap. 11. The way 1 is illustrated by Fig. 12.6
where NA denotes the neuron-like algorithm, L is the learning algorithm
and W denotes the determination of the quality index. It is a typical con-
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cept of an adaptation via the adjustment of controller parameters, described
in Chap. 11 and consisting in changing the parameters c¢ based on a peri-
odical evaluation of the quality index Q.

u
— Fant W

Fig. 12.6. Control system with neuron-like algorithm and learning based on qual-
ity evaluation

The ways 2 and 3 are illustrated in Fig. 12.7 where LSG denotes Learning
Sequence Generator.

u X
Rant
u X
v < | NA
u
c
— L
u
X
LSG

Fig. 12.7. Learning with a generator of learning sequence

In the case 2, the learning sequence generator is an executor of an exact
control algorithm. It means that for the given plant description the exact
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control algorithm has been determined but it is too complicated to be used
for a steady control and it is used during a learning process only. After fin-
ishing this process the neural network acts approximately as the exact al-
gorithm.

Finally, in the case 3 the decisions u for varying data x are given by
an expert taking a role of a trainer. Unlike in the prescriptive approach de-
scribed formerly for fuzzy controllers, now the expert does not give a de-
scription of the knowledge on how to control but he himself proposes con-
crete control decisions. This is an essential difference between the neuron-
like and fuzzy controllers.

12.6.2 Neural Network in Adaptive System

A neural network may be a part of an adaptator in an adaptive control sys-
tems with the adaptation via identification (see Sects. 11.2 and 11.3). One
can consider two cases of such an application of the neural network:

1. Neural network as a plant model used in the identification process.

2. Neural network as an approximate designing algorithm.

Ad 1. As a learning sequence, a sequence of the measured input and output
values of the plant is used here to successive changes of the values of
weights and thresholds in the network. The application of this concept in
the adaptive control system is rather limited. It follows from the fact that in
this case the plant model is not presented in an analytical form with the pa-
rameters ¢ the current values of which obtained as a result of the identifi-
cation might be put into the designing algorithm « = H(c) considered in
Chap. 11. It is however possible to use the neural network as a model re-
placing a real plant during the process of adaptation via adjustment of con-
troller parameters. Then, during the adjusting process the basic controller
would not control a real plant but its model in the form of the neural net-
work, and would be adapted to this model. It is worth noting that such a
concept would be rather complicated, as it contains two learning processes:
the adaptation of the network to a real plant and the adaptation of the basic
controller to the network.

Ad 2. In this case the neural network takes a role of a neuron-like algo-
rithm approximating the exact designing algorithm « = H(c), i.e. in the

successive adaptation periods c¢,, is determined as a result of the current
identification by a traditional identifier and is put at the input of the neural
network which finds the approximate values a,, of the parameters in the

basic control algorithm. In this case three ways of the learning may be in-
dicated as in Sect. 12.6.1: the learning based on the evaluation of the qual-
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ity index and the learning with a generator of the learning sequence (Fig.
12.8) in the form of an exact algorithm or in the form of a trainer-expert.
The second way means that the exact designing algorithm a = H(c) has
been determined but is too complicated to a steady use and it is used dur-
ing the learning process only. The third way means that in the learning

process for the successive values c,, an expert gives the values a,, of the
basic control algorithm, accepted as correct values.

Cm Cm
u, Yn Learning
Identification sequence
generator
a
c m
up, Yn m
Fant bm
NA L
a, 5m
Up Basic control Yn
algorithm
m

Fig. 12.8. Scheme of adaptive control system with neuron-like algorithm NA;
b,, — varying parameters of algorithm NA

12.7 Decomposition and Two-level Control

Usually a decomposition of a problem means its division (or partition) into
interconnected simpler problems. Most often a solution of a problem ob-
tained via the decomposition is an approximate solution only in compari-
son with the exact solution obtained by a direct approach. Different kinds
of a decomposition occurred already several times in our considerations.
For example, the problem of the determination of a control decision for a
plant with unknown parameter, considered in Sect. 7.3, has been decom-
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posed into two problems: an estimation of the unknown parameter and the
determination of the decision for the known parameter. The determination
of a multistage decision process by using the dynamic programming
method presented in Sect. 4.3 has meant a decomposition with respect to
time, i.e. a division of the problem into the determination of decisions in
the successive stages. The main idea of the adaptive control has consisted
in a partition of the control algorithm into two parts: the basic algorithm
and the algorithm improving the performance of the basic algorithm. Fi-
nally, in this chapter we have applied a decomposition of a set of facts in
the logical knowledge representation, which has given a recursive proce-
dure for solving analysis and decision making problems. The decomposi-
tion is not always reasoned by computational aspects, which has already
been mentioned in the connection with an adaptive control and which will
be mentioned in this chapter as well.

We shall now present shortly a decomposition of the static optimization
problem (or the extremal control problem). This decomposition leads to a
two-level control or the partition of the control algorithm into two partial
algorithms executed at two levels of the control. A decomposition of the
partial algorithms into subalgorithms leads to a multi-level control system.
Let us note that the decomposition of the determination of a control algo-
rithm may lead to the decomposition of the control, i.e. of executing of the
partial algorithms. The separate execution of the partial algorithms may be
reasoned not only by the limited abilities of the executors but also by reli-
ability aspects.

Let us consider the static multi-input plant y = @(u, z) in which the con-
trol decision u and the external disturbance z are vectors and y is a single
value which is to be minimized. A direct solution gives the control algo-
rithm in an open-loop system

u" =arg mind(u,z)2¥(2). (12.19)
u

Let us divide the vector u into two subvectors uq, uy and consider two op-
timization problems

up =arg mind (uy,uy,z)2 Hy(uy,z), (12.20)
up

Uy =arg min®@[Hy(uy,2)u,2]2 Hy (2) (12.21)
up

Substituting (12.21) into (12.20) we obtain the control algorithm u'= H2).

The decomposition of the problem (12.19) into the problems (12.20) and
(12.21) does not have to be a computational operation only but may mean

the decomposition of the algorithm ¥ into two partial algorithms H; and
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H,, executed in a two-level control system (Fig. 12.9), in which after in-
troducing z, an executor at the upper level finds u, according to the algo-
rithm H, and next, an executor at the lower level finds u;. The decisions

u; and u, can be transformed to the input of the plant by the both execu-

tors, respectively as it is shown in Fig. 12.9 or by the lower level executor
if only this executor directly controls the plant. In the case of incomplete

knowledge of the plant the algorithms H; and H, cannot be determined in

advance by a designer but the values uik and uz are found step by step in

the successive approximation process with the participation of the plant,
i.e. in the process of the extremal control in a closed-loop system (see
Sect. 10.8).

V4
Hy
V4
Hy
U1 U2
z y
Rant e

Fig. 12.9. Simple scheme of two-level control system

Then in one step of the successive approximation procedure at the upper
level, the whole control process determining the value u; for the given

current value u, is executed at the lower level. Of course, the value z has
to be constant during the searching of the extremum (uik and u; ). The
problem becomes more complicated if there is a constraint ueD,, which

cannot be divided into two independent constraints for «; and u,. Possible
trials of a decomposition in this case give a control differing from the con-
trol (12.19).

The presented concept has a practical sense (except the computational
aspect) mainly when the upper level operations are slow in comparison
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with fast operations of the lower level, or when the plant has a complex
structure. Assume that z=(zj,z,) and the period of changing z, (upper
level period) is a multiple of the period of changing z; (lower level pe-
riod). Denote by z; ,, the value z; in the m-th upper period and by zy ,,,

the value z; in the n-th lower period inside the m-th upper period; n =1, 2,
..., N where N is a number of the lower periods in one upper period. The
control from the upper level will be slow (exactly speaking, constant dur-
ing one upper period) in the following cases:

1. u; does not depend on z;. Then
ut gnn = H1 QU ms 20 mns Zo,m)s U2, m = Ho(22,)-
2. In the algorithm H, we put zj ,,; in the place of zj ,,,, i.e.
Uy m = Ho(z1 1> 22.m)s

that is the changes of z; ,,, at the upper level are not taken into account.
3.

Upm ™ Hy( Zlm > ZZ,m)
where zj ,, is the mean value of the previous observations. The modifica-

tion of this approach may consist in the minimization by the upper level of
the mean value of the quality index y,,,,.

Let us now assume that the plant y = @(u, z) is a complex system con-
sisting of M+K ordered units. The outputs yq, v, ..., vy, of the units 1, 2,
..., M are the outputs of the system as a whole, i.e. y= (1,2, ---, Y1), and
the outputs of the other units are the inputs of at least one of the units in

the first part. The units of the first part may be called partial or local
plants. The other units present the connections between the local plants.

Let us denote the inputs of the local plants by uq = (111, u12, .., #13), and
the inputs of the other units by uy = (uy1, o, ..., k). The local plants are
described by the relationships

v = @.(uy;, U, 2), i=1,2,.., M.

Of course, not all components of the vector u; and (or) not all components
of the vector z must occur in a single local plant. For the complex plant we
introduce a global quality index y = F(yy,y,...,¥),) Which is a function
of the local indexes y;,y»,...,v; and which should be minimized. It may
be e.g. the sum of the local indexes with weight coefficients. The plant
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with the input u = (u;, u,) and the output y, described by the equation

- A
y= F[¢1 (ull,uz,z),...,diM (MlM,Mz,Z)]Z@(ul,Mz,Z) (1222)

is called a global plant. For this plant, the concept of the decomposition
described above may be applied, that is, according to the notations intro-

duced here, one may accept u; as the lower level decisions and u, as the
upper level decisions. Then, according to (12.20) and (12.21)

u; =arg mind;(uy;,ur,2) = H;(up,z),  i=1,2,..,M, (12.23)

uyi

uy =arg minF[Hy(uy,2), Hyttg, 2 Hyy (3, 2)] = Hy(2). (12.24)
up

The formula (12.23) denotes a local optimization or the optimization of the
local plants at the lower level for the fixed value u,, and the formula
(12.24) denotes a global optimization at the upper level. A block scheme

of the two-level control system is presented in Fig. 12.10 where for sim-
plicity, interconnections between the plants are not marked. The variables
u, are sometimes called coordinating variables and the control at the up-
per level is called a coordination of the local controls. The coordinating
variables may also occur in the constraints for u if it is not possible to di-
vide this constraint into independent constraints for the individual local
plants. The decomposition becomes much more complicated when it is not
possible to divide the control decisions u into two parts u; and u, de-
scribed above. Eventual trials of a decomposition lead then to solutions
which are sometimes called approximate although in many cases it is diffi-
cult to evaluate an effect of this approximation. Various problems, cases
and methods concerned with a decomposition, multi-level control and re-
lated problems of complex control systems are described in [64].
Additionally, let us pay attention to three problems:

1. Sometimes the control decisions for individual plants in a complex plant
mean amounts of resources or sizes of tasks assigned to these plants (see
Chapter 13), and the sum of these resources or the sizes of tasks is fixed.
Then one can apply so called aggregation, i.e. the partition of the set of
plants into subsets treated from the upper level as units (as a whole). Then
the upper level control consists in the distribution of resources or tasks
among the subsets and the lower level control consists in the distribution
of the quantities obtained form the upper level among individual plants in
the subset.
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V4
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Fig. 12.10. Two-level control system with local plants

2. The period (interval) in which the optimal decisions u = ¥(z) are deter-
mined and executed may be long, e.g. it may be one cycle in a multi-cycle
production process. If at the beginning of the cycle the decisions u are set
indirectly with the help of some variables v (e.g. u is a temperature set by
a voltage v in an electric heater) then the value u may change during the
cycle because of varying disturbances. Then it is better to set u as a re-
quired value of a controller (e.g. a temperature controller) which during a
cycle will change v in order to stabilize u. Consequently, we have two-
level control system with a long period of the static optimization at the up-
per level and a short period of the control (or with a continuous control) at
the lower level. The outputs of the upper level control algorithm (i.e. of the
optimizer), or the components of the vector u are required values of local
controllers installed in the process considered. The decomposition has here
a natural character, i.e. the lower problem of the control and the upper
problem of the static optimization are solved independently.

3. For an uncertain complex plant one can apply the approaches described
for a single uncertain plant, in particular one can apply an adaptation via
identification. In this case a decomposition of the identification is impor-
tant. The concept of so called global identification of a complex plant with
a given structure has proved to be useful in this case [14, 16].
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12.8 Control of Complex Plant with Cascade Structure

The control of a complex plant with determined local plants and corre-
sponding local decision algorithms does not always have to be a two-level
control. Let us consider a static plant with a cascade structure (i.e. a series
connection of local plants) presented in Fig. 12.11 where the local plants
are described by the relationships

Yi= Ouj, i1, Zj)s i=2,3,..,M, (12.25)
1= Di(uy, z1).
u1 u2 U,- Upm
Y1 | Y2 i i M Y
o, , o, oy,
29 % % Zm

Fig. 12.11. Plant with cascade structure under consideration

In general, the all variables occurring here are vectors. This is a case of a
complex production process, frequently met in practice, in which a product
obtained in the i-th unit is used as a raw material in the next unit. The qual-

ity index Qjs of the complex plant may concern y;, only, i.e.
Oy= ©(yp), or may be the sum of local quality indexes

M
Ou = 2.0;()-
i-1

The quality evaluation may also contain the control decision u and the dis-
turbance z. Then QOu,= @(ypp upp zpy) OF

M
Oy = 2.0 (yiu;.z;). (12.26)

i=l1

Decision making (control) problem: For the given @, z;, ¢; (i=1,2, ...,
M) or ¢ one should find the control decisions uy, uy, ..., uy,.
Let us consider the quality index in the form (12.26). Substituting
(12.25) yields
M M-1

On = 2.0 @i (up, i 1,2 u;,2 1= Y gi (U1, ¥iZix1)
i-1 i=0
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where

&iit1, Vis Zi+1) = Qi1 [ D1 (Wi 15 Vis Ziv1)s Uit 15 Zi1 -

Let us note that this is a multistage decision problem similar to that in the
case of an optimal control for a discrete dynamical plant considered in
Sect. 4.3. The index i of a successive local plant corresponds to the suc-
cessive moment n for the dynamical plant and, in a way similar to that
presented in Sect. 4.3, the problem solving may be decomposed and per-
formed successively starting from the end, i.e. one can apply a recursive
procedure called dynamic programming in Sect. 4.3.
Let us introduce the notation

M

Vi —i(VisZig15Zig2 s 20 ) = min zgj(”ﬁl:yjazjﬂ)'
Up Uit UM j=j

For the last plant we determine

* . A

upy =arg ming 1 (Upg,Yar—1-2m )= (Y pr-1-211)
Uy

and

MiOsm=152m) =81 Y120 ) Y —15201 1-
For i=M-1

Vo(Ypr—2-2pm-1-2p) = min {gpr o (upr 1, Yar—2,207-1)
UN—1UM

+ @y WprsYar—1-2y) = min {gyr o (WUpr_1,Yar—2-2p37-1)
Upr—1

NPy upr—1>ypr—2-2m-1)2m 13-

As a result of the minimization we obtain
* A
upr 1=y 1(Vm—2-20m-1-20m)
and
Voai—2s 2p-15 2m) = Vo [ Py (Ui, Y35 20-2)> ZM-15 Zml-
Continuing this procedure we determine successively

* .
u; = 51/1 (yi—h Zijy Zj4]s +oes ZM) 1 :M—2, ceny 2,

*
up = ¥ (21, 22, - Zp)

The control is then executed by local controllers with the control algo-

rithms %;. At their inputs, except the disturbances the value of the output
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from the preceding plant is put as well (Fig. 12.12). The control is exe-
cuted successively in time, starting from the beginning, i.e. the decisions

uy, Uy, ..., uyy are successively determined and executed.

Zm M M
7, : ¥, ¥
Z-
Z4 !
U1 ul. UM
1 Vi Yj YM-1 Ym
@, @, =
2 i m

Fig. 12.12. Control system for the plant with cascade structure

For the quality index Oy, = @y Upp zpy) We apply the analogous re-
cursive procedure. Let us introduce the notation

V=i (VisZig1oenZp )= min @(yar,upr,2zpr).
Uj,..,.Upr

For the last plant we determine

* . A
uy =arg min@[@yr (ups, Var—1-20 )ssg -2 1=V —1,201)
U

and
MiOm=12m) = @y [PrVpr 1520 s Y =152 0 D Uag s Zas -
For i=M-1

Vo(ym—2,2m—1-2p) = min Vi[@yr_1(upr—1,Ya-2-Z0-1)5Z 01 )-
Upr—1

As a result of the minimization we obtain
%
up—1 = Py (V2 21, Z2m)-
Continuing this procedure we determine the all local control algorithms
U; = FiVits Zis Zitls oor Z00)s i=M-1,M-2,..2,

*
uy = Pi(zy, 225 oo Zpy)-
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12.9 Control of Plant with Two-level Knowledge
Representation

Components of an uncertain complex control plant may be described in the
form of a knowledge representation differing from traditional functional
models (see Sect. 6.1). Then the analysis and decision making problems
based on a complex or distributed knowledge arise. The description of the
distributed knowledge contains knowledge representations of separate
parts and the description of the systems structure. To the determination of
control decisions one may apply a direct approach or a decomposition
leading to separate control algorithms for particular parts. The decomposi-
tion may also concern the process of the knowledge validation and updat-
ing, described in Chap. 11. To characterize the problems occurring in this
area, let us consider a plant with the two-level structure (Fig. 12.13) de-
scribed in the form of a relational knowledge representation [28, 33, 40].
In a production system, products of the lower level units may be raw

materials for the upper level unit. The components of the vectors y, y1, v,
..., ¥y may denote features of the products at the upper and the lower
level, respectively, and u, ..., u); may denote features of raw materials
used at the lower level, which can be chosen as control decisions. The

components of the vectors z, zy, ..., z; denote other variables which for
the fixed inputs can influence the set of possible outputs in the separate
units.

z y
R —
Y4 y2/ M
V4 Z V4
1 2
Ry |2 R, M) Ry,
uq ‘ uy /PUM

Fig. 12.13. Complex plant with two-level knowledge representation

The knowledge representations for the upper and the lower level are the
following

R3,Y1,V2, s Vg3 2) CYXY X Yo X X Yy X Z, (12.27)

Ri(ui,yi, Zl')C []l'X YZ'XZZ" i= 1,2, ,M (1228)
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where U, Z and Y denote the respective vector spaces. The decision prob-

lem for the complex plant as a whole can be formulated in such a way as in
Chap. 6.

Decision making (control) problem: For the given R; Ry, ..., Rys; z; zq,
- Zy and the set D), Y determining a user’s requirement one should find
the largest set D, — U such that the implication

ueD, - yeD,

is satisfied.
To apply a direct approach to the problem solving it is needed to deter-

mine the relation Ié(u, v,z) where
u=(up,..uy) e, U=U;xUyx..xUy,
Z =(21, s Z)f5 2) eZ, Z=Zl X Zy X .. X Lyyx Z.
The relation f?(u, ¥,z) can be obtained via the elimination of the variables
V15 woos VM-

R(,y,7) = {(u,y, 2)e Ux Y x Z ; V [(y, 75 2) € R(3,732)]
yeY

A /\(uiayiazi)ERi(uiayiazi)}
iel, M
where
¥ =(y1. Y2 ym) €Y
Then, according to (6.19) and (6.18)

D,={uelU: Dyu, z)c D)}

R(z,u) (12.29)
where

Dyu, z)={yeY: (u,y, z) € I%(u,y,E) I8
The relation R (z,u) is a relational control algorithm for our plant in an
open-loop control system.

If the determination of R and (or) a direct execution of the control ac-

cording to the algorithm R are too difficult, one can apply a decomposi-
tion of our problem into two levels, and at the lower level — into particular
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plants of this level. Then, for the upper level we determine the largest set
D,cY for which the implication

ye Ey —>yeD,
is satisfied, i.e. we solve the known decision problem for the plant at the

upper level, described by the relation (12.27). Then we approximately de-

compose the set By into the separate sets D); < Y; for the particular vari-

ables y; or, more precisely speaking, we determine the sets Dyq, ..., D)y

in such a way that the set Dy; x Dy x ... x D)y 4 5y is the largest set
satisfying the relation

D, =Dy x..xDyyc D,.

Of course, the determination of the sets Dy; so that the set 5y satisfies the
above condition is in general not unique. The second stage concerns the
lower level and consists in the determination for the particular plants of the
largest sets D,,;  U; satisfying the implication

MI'GDW' —> Vi EDyi ,

by using the relation (12.28).
Using the known way presented by the formulas (6.19) and (6.18) we
find

A —
Dy;=A{u;eU;: Dyu;, z;) = Dy} = Ri(z;,u;) (12.30)
where

D\fu;, z)) = {yi€Y;: (u;, v, z) €R(uy, vy, 27) -
In such a way we obtain the local relational control algorithms (12.30) for
the particular plants at the lower level. It is worth noting that the substitu-

tion of the algorithms (12.29) by the algorithms (12.30) fori =1, ..., M
gives in general a worse effect in the sense that

D,y x Dy x...x D,y D,

is in general smaller than the set (12.29), i.e. as a consequence of the de-
composition we may obtain a smaller set of possible decisions.

The presented approach can be also applied to the relations with un-
known parameters considered as values of random variables or uncertain
variables, to the logical knowledge representation and to the learning proc-
ess in which the knowledge validation and updating can concern the
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knowledge of the plant as a whole or the distributed knowledge [28, 40,
53].

Finally, let us note that the control of a complex plant may concern the
plant with components described by different forms of a knowledge repre-
sentation, including traditional mathematical models. Then problems of a
uniform approach to the analysis and control with a possible decomposi-
tion for plants with a hybrid knowledge representation arise.
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Now we shall present basic problems and control algorithms for a specific
control plant, namely for an operation system or a complex of operations.
It may be a complex of technical operations in a production system (in a
manufacturing process) or a complex of computational operations in a
computer system. Control problems for the operation systems are con-
cerned with a design of control systems for so called discrete manufactur-
ing processes considered as a complex of technical operations (e.g. control
of an assembly process) and with a control of multicomputer or multiproc-
essor systems. The problems of the control of operation systems have also
an important role in a design of management systems, in particular, for a
project management.

13.1 General Characteristic

By a complex of operations (or operation system) in a wide sense of the
word we call a complex system composed of operations, i.e. some activi-
ties which are characterized by an initial moment, a final moment and a
duration time. In “input-output” system, a system structure is determined
by the interconnections between the components (the parts) of the system,
i.e. outputs of some parts are inputs of others. In a complex of operations,
a system structure is defined by time interrelations and successions of the
moments, i.e. some operations cannot start until the other ones are fin-
ished. The structure of the complex may be described in the form of a
graph, in which branches denote the operations and nodes denote the start-
ing and finishing moments. For example the graph presented in Fig. 13.1
means that the operations O3 and O4 may start after finishing the opera-

tion Oy, and the operation O5 may start after finishing the operations O,
and Oj. The node W; denotes the starting moment and the node W, —

the finishing moment of the whole complex.

The operation usually consists in performing (executing) a determined
task which requires certain resources. Among them one can distinguish
basic resources called executors (e.g. tools needed to perform technical
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operations) and additional resources (e.g. fuel or additional materials nec-
essary to perform a technical operation). Roughly and generally speaking a
control of the complex of operations consists in distributed in time assign-
ing of resources to tasks or on the contrary, satisfying determined require-
ments, in particular — optimizing a quality index, e.g. minimizing the exe-
cution time of the complex or the amount of resources used for the
execution of the complex, with different kinds of constraints. Most often
we consider the following control functions, interconnected in one system:
1. Control of tasks and resources distribution (or allocation).

2. Control of a succession of operations (scheduling problems).

3. Control of a service of tasks.

4. Control of the execution process for individual operations.

Fig. 13.1. Example of complex operation structure

In the control of operation system problems, the operation is considered
as a whole from the upper level of the control, e.g. it is one cycle of a pro-
duction process. In point 4 we take into account that during an execution
of one operation the control is required, e.g. the temperature control during
one cycle of a production process.

Generally formulated control problems for a complex of operations may
have various practical applications depending on a practical character of a
real complex. For a complex of production or service operations with a
technical character, they are problems concerning a control of so called
discrete manufacturing processes and (or) of service operations, e.g. the
control of an assembly process, of processing of elements in a production
of tools and machines, control of a transport, a diagnostic process, storing
of materials etc. In the case of computational and decision operations they
are problems concerning the control of performing complex computation
and decision algorithms by a computer system, that is problems connected
with the design of computer operating systems.
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From the general control theory point of view, the complexes of opera-

tions are specific control plants in which the relationship between the out-
put y and the input u (or the plant model) may have a special form, and
in which specific control goals and constraints can occur. Most often the
operations and complexes of operations may be treated as static plants.
Sometimes, however, in a sequence of operations (e.g. in the assembly
process considered in Sect. 13.6), relations between the successive stages
in the sequence can occur and consequently, the whole complex should be
considered as a dynamical plant. It is worth reminding that speaking about
a control we have in mind a decision making which may be a single opera-
tion or may be distributed in time.
The methods and algorithms of the operation systems control are based on
general methods and algorithms developed in the area called operational
researches, strictly connected with a control and management sciences. To
operational researches and their application to control and management a
wide literature is devoted (e.g. [4, 105]). In some cases presented in the
next sections, the considerations will be limited to problem formulations
only, in such a form to which known and widely described algorithms can
be applied. For example, the algorithm for solving classical transportation
problem and the algorithms in integer programming and in related prob-
lems reduced to this programming.

13.2 Control of Task Distribution

This section is concerned with the control of the complex of parallel opera-
tions containing unknown parameters in the relational knowledge
representation. The complex of parallel operations is considered here as a
specific control plant. The control consists in a proper distribution of the
given size of a task taking into account the execution time of the whole
complex. It may mean the distribution of raw material in the case of a
manufacturing process or a load distribution in a group of parallel
computers. In the deterministic case where the operations are described by
functions determining the relationship between the execution time and the
size of the task, the optimization problem consisting in the determination
of the distribution that minimizes the execution time of the complex may
be formulated and solved (see e.g. [13]).

In order to formulate and solve the task distribution or allocation prob-
lem it is necessary to introduce models of individual operations. For our
purpose it is sufficient to handle static models formulating the relationship
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between the execution time and the size of the task assigned to the opera-
tion

Ti=olupc), i=1,2,..k (13.1)

where 7; denotes the execution time of the i-th operation, u; is the size of
the task assigned, c; is a vector of parameters and k is a number of opera-

tions in the complex. Of course, all the names one can apply to the opera-
tion or to the executor of the operation, speaking about the model of the
executor, the execution time of a task assigned to the executor etc. The
functions (13.1) are increasing functions of u; and ¢;(0, ¢;) = 0. Under the
assumption that all operations start in the same time, the moment of finish-
ing the whole complex is the moment of finishing the last operation. Then
the execution time of the complex

T'= max T;=max{@(u, c1), P2(u2, ¢2),
1

A
s Qg )} = Au, ) (13.2)
where u! = [ty uy ... uple U is a control vector, T = y is the control
plant output and ¢ = [¢] ¢y ... ¢] is the matrix of parameters. The set

U  R¥ is determined by the constraints

k
A u; >0, Yuj=U (13.3)

i i=1

where U is the total size of the task to be distributed among the operations.
The parameters ¢ =z may be also treated as disturbances which can be
measured and which can change in successive periods or cycles of the con-
trol in which the successive global task to be distributed appears. The
complex of parallel operations may be considered as a specific decision
(control) plant (Fig. 13.2) with the input vector u# and a single output
y =T, described by the function @(u,c) determined according to (13.2).
The problem of the time optimal distribution considered here is then the
problem of static optimization to which all methods described in former
chapters can be applied, regardless the specific terms and the form of the
plant model. However, the special form of the model (13.2) and the con-
straints (13.3) require additional considerations concerning this problem.
Let us assume that U may be divided in any way to uy,..., u}, 1.e. u; € R'.
Then we speak about the problem with a continuous division of the total
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size U, distinguishing it from a discrete division where U and u; denote
numbers of some elementary tasks.

uq Fant
U 4 y=T

— Allocation up - —

s

k

Fig. 13.2. Complex of parallel operations as a decision plant

Decision making (control) problem: For the given functions ¢;, parame-

ters ¢; (i€ 1,k ) and the value U one should determine the distribution u
minimizing the execution time (13.2) subject to constraints (13.3).

It is easy to show that if all operations start at the same time then u
satisfies the following equation:

T(u) =Ty () =..= Ty (uy) = Tpin -

That is why the optimal distribution or allocation problem in this case is

often called a load balancing problem. From the property of u" mentioned
above, the algorithm of the optimal distribution determination follows:
1. From the equations (13.1) one should determine the relationships
-1
up=@; (T;,c;). (13.4)

2. One should solve the equation
k
>0 (T.e)=U (13.5)

i=l1

with respect to 7.

3. One should substitute the solution of this equation T AT min 1nto (13.4)
and in such a way find the optimal distribution

* -1 A
ujp = @i (Tinin.¢;) = Fi(o). (13.6)
Consider as an example the following models of the operations:
u?
Ti=—, a>0, ¢>0. (13.7)

¢
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According to (13.4)
1

ui= (i) .

Then the equation (13.5) takes the form

1 1
T cl-a =U.
i=1
From this equation we obtain
Ua
Tin = 1
ko=
o
(ch' )a
i=l1
and
1 KoL
ui=cf U =W, =1,k (13.8)

i=l1
The set of relationships (13.8) may be presented in a unified form
U= o).

In particular, for the linear models (a =1), the optimal distribution is as
follows:

* k -1
up =¢; U (Xe) -
i=1
For more complicated models (13.1) it is not possible to obtain a result in
analytical form and for finding the optimal distribution suitable numerical
methods should be used. As it was already said, the determination of the
decision u may be repeated in successive cycles. In these cycles the val-
ues ¢; may change because they depend on features of the global tasks
which appear at the beginning of the cycle (e.g. on properties and parame-
ters of a raw material which influence the time of the material processing
in a production process) and on executors productivity which may change
in the successive cycles as well. If by ¢,, = (¢1,, caps --o» Ciy) We denote a

vector of parameters c¢; in the n-th cycle then the determination of the con-
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trol decisions will consist in finding the distribution u; =[uy, Uy - Upyl
minimizing the time 7 of this cycle for the given ¢, . In more complicated
cases the values ¢, must be determined by using the measurement results

of the respective variables characterizing the global task and the executors
(Fig. 13.3). These variables or directly the parameters ¢, take a role of

disturbances in an open-loop control system. For the models (13.7), the
control algorithm %(c) is defined by the formula (13.8).

Controller

B

Cn

¥ (c)
R

Un

Globaltask [ Distribution

Ukn Rk

Fig. 13.3. Control system for task distribution, B — block determining c,,

For the complex of operations as a specific control plant with the input
u and the output y =T, other problems and algorithms described in previ-
ous chapters can be considered. If ¢=z is a random disturbance with a
known probability distribution, one can state and formulate a static optimi-
zation problem considered in Chap. 7 and consisting in the determination

of the distribution u~ minimizing the expected value of the execution time
T, that is

O=E(T)= [max ¢;(u;,z)) f,(2)dz (13.9)
Z 1
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where z = (zy, 2, ..., z). Assume that the random variables z, are inde-

pendent for different i. Then it is more convenient to handle probability
distributions in the form of the distribution function

Fi(Zi):P(EiSZi) (1310)
where P denotes the probability that the random variable z; takes a value

not greater than z;. Knowing (13.10) and the relationship 7', = ¢(u;, z,),
one can determine the distribution function Fj; (4) for the random variable
T ;s e

Fr (D =PT,<A.

Consequently, the formula (13.9) becomes

© k
Q=E(max T )= [Ad(]Fr(A).
0 i=1
The relationship Q(uy, uy, ..., u;) can be obtained in an analytical form for
special probability distributions only. It will be shown in an example of an
analogous problem for the resource distribution, which will be presented in
the next section.
If the parameters of the control plant ¢; are unknown, the control in a

closed-loop system or extremal control presented in Chap. 10 can be ap-
plied. Then the convergence condition for the minimum searching process

(i.e. the convergence of u,, to u*) should be determined and satisfied.

Since the function @ (13.2) describing the plant is not differentiable with
respect to u, the gradient method is useless and in practice the method of
trial steps, that is a step by step correction of the distribution u,, based on

the evaluation of current execution time in the n-th period should be ap-
plied.

Distribution or allocation problems, both for the task distribution de-
scribed in this section and for resource allocation which will be presented
in the next section, can be much more complicated, connected with a de-
composition and multilevel control, and concerned with an adaptive con-
trol using the methods and algorithms of so called global identification of
the complex of operations [13, 14, 15, 17, 57, 59].

Finally, let us consider shortly a case of a discrete distribution and as-
sume that the global task is a set of N identical undividable elementary
tasks with the size u, . For example, it may be a set of identical portions of

a raw material to be distributed among devices processing the material or a
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set of identical elementary programs to be distributed among computers
[46]. Now U = N - u, and u; = n; - u, where n; denotes the number of
elementary tasks assigned to the i-th executor. If the number of all
elementary tasks is large and u, is small then one can solve the problem for

a continuous distribution, i.e. find u; € R' as it has been presented above,

and then find #; such that »; - u, is the nearest to the value u;k . If such an

approximation is not acceptable, the problem from the beginning should be
treated as a discrete one, as it will be presented in Sect. 13.4.

13.3 Control of Resource Distribution

The problem of resource distribution or allocation in a complex of parallel
operations is analogous to that of task distribution considered in the previ-

ous section. Let #; in (13.1) denotes the amount of a resource assigned to
the i-th operation (or to the i-th executor). We assume that ¢; are decreas-
ing functions of u; and ¢@,(u;, ¢;) — o for u; — 0. The decision making or
control problem is the same as in Sect. 13.2, i.e. one should find the distri-
bution ul* s e uz minimizing the execution time (13.2) subject to con-
straints (13.3). As in the former case, when the optimal distribution is ap-
plied then 7| = T, = ... = T}, = Tjpin- The algorithm generating the optimal
allocation is the same as in Sect. 13.2, i.e. it consists of steps in which the
formulas (13.4), (13.5), (13.6) occur.

As an example let us consider the following models of the operations,
analogous to the models (13.7):

T;= C—(i, a>0, ¢;>0.
According to (13.4)
-, (13.11)
Solving the equation (13.5) we obtain
L
(X
_ _i=l

Tmin -

Ua
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and after substituting 7; = Ty, into (13.11) we have the optimal distribu-
tion algorithm
L L
* -1
u; = cia U (Zcia) = Y¥o).
i=1
The time-optimal resource distribution is more complicated for more com-
plex structures of the complex of operations (differing from the parallel

structure), e.g. such as presented in Fig.13.1. Under the assumption that the
same kind of a resource is assigned to each operation, one should now de-
termine the values of u? for each operation so as to minimize the execu-
tion time of the whole complex and that the sum of u; for all operations
executed at the same time is equal to U. The considerations concerning this
problem are limited here to a basic idea and a sketch of a procedure giving
the optimal distribution.

Let us consider a structure described by a graph which has one initial
node (i.e. there are no branches ending in this node) and one final node
(i.e. there are no branches starting from this node). Assume that this is a
graph without cycles, plane and connective, which means that for each pair
of nodes there exists a path connecting these nodes. Let us order the nodes
in such a way that the later node has the greater index, e.g. as it is shown in
Fig. 13.1. The execution time of the whole complex may be divided into
separate intervals by the moments corresponding to the nodes. Then one
can introduce the following sets:

1. O; — the set of indexes of the operations which may be executed in the /-

th interval, j =1, 2, ..., m. In the example in Fig. 13.1 we have three inter-
vals: from 1 to 2 (j=1), from 2 to 3 (j=2), and from 3 to 4 (j=3);

le {172}’ QZZ {273’4}’ Q3: {4’5}
2. P; — the set of indexes of the intervals in which the i-th operation may
be executed. In the example Py = {1}, P,={1,2}, P3=1{2}, P4,=1{2,3},
Ps={3}.

Let u; be a flow intensity of a resource supplied to the i-th operation

(e.g. energy, fuel, material, a financial resource etc.) which is assumed to
be constant during the execution of the operation. The constraint concern-
ing u; is then as follows:

A ( Du;=U) (13.12)

jelm ier
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which means that the sum of u; for all operations executed in the j-th in-

terval should be equal to the total value U. In order to find u" it would be
necessary to determine the model of the plant, i.e.

T= @ (uy, o, .., ) (13.13)

where k£ denotes the number of operations in the complex and for simplic-
ity the parameters ¢ are omitted, and then the function (13.13) should be
minimized with the constraint (13.12). Unfortunately, for the given struc-
ture and the given functions ¢,(u;), the function (13.13) cannot be pre-
sented in an analytical form, by a formula convenient for the minimization.
There exist however algorithms enabling to obtain the value 7 for the
given values u; and consequently, for the given 7;. They are algorithms
determining so called critical path [105], i.e. such a path connecting the
initial and final nodes for which the sum of the times 7; for the operation
on this path is the greatest. This sum is equal to the execution time 7 of the
whole complex. The general procedure for the determination of the opti-
mal resource distribution consists in finding successive approximations of

the solution. For the given approximation of the optimal allocation u" one
determines the critical path and the corresponding time 7, and on this basis
one corrects the approximation and finds the next one. The successive ap-
proximation process can be performed in a closed-loop control system
where the control computer using the current values 7; determines the
next approximation of the optimal distribution.

The problem is modified if a transfer of resources between operations
during their execution is possible and acceptable. Denote by x;(f) one-
dimensional operation state at the moment ¢ and introduce operation mod-
els determining the relationship between the velocity of the state changes
and the value u; :

x;= Ofu)).
Let x; denote so called operation size, which means that the operation is

finished when the state x? is reached. If u; is constant and x;(0) = 0 then
*
X;j A *
T, =——=0;(u;,x; ). 13.14
1 @l (ul) qol( 1 1 ) ( )

Let us divide x; into parts x;; executed in the separate intervals of the set

P;. Then the complex described can be considered as a sequence of sub-



374 13 Control of Operation Systems

complexes with a parallel structure, executed in the separate time intervals.
In the j-th interval the parts of operations belonging to the set Q; are exe-
cuted. Consequently, our problem may be decomposed into two subprob-
lems:

1. The optimization of the subcomplexes of parallel operations in the suc-
cessive time intervals using the formulas (13.14) with constraints (13.12).

As a result we obtain the functions u;(x;) and T, (x;) where u; de-

notes an optimal distribution in the j-th subcomplex, x;

all ieQ, Y_}min (x ;) 1s the minimal execution time of the j-th subcomplex.

is a set of Xji for

2. Minimization of 7" with respect to all x;;, i.e. finding )?; (G=1,..,m)

which minimize

M=z

Tr= ijin(;cj)
j=1

and satisfy the constraints

A( inj:xf)

iel,lk jeQ;

which means that the whole size of each operation will be executed in the
successive intervals. Referring to Sect. 12.7 one can say that this is another
example of decomposition which in this case consists in the division of the
execution time of the whole complex into time intervals and consequently,
in the decomposition of the complex into a sequence of subcomplexes. The
variables x;; take here a role of coordinating variables.

If ¢=z is a random disturbance with a known probability distribution
then we may formulate the problem of the determination of a resource dis-
tribution minimizing the expected value of T [17, 57]. For the complex of
parallel operations the problem solving is analogous to that for the case of
a task distribution. Knowing the distribution function (13.10) one should
determine Q (13.9), i.e.

ok

Q=E(max T,)= [Ad([]Fir(A) = Quy, us, ... up). (13.15)
0 i=1

The determination of the function (13.15) and its minimization subject to

the constraints (13.3) may be connected with great computational difficul-

ties and it is possible to obtain an analytical solution in simple cases only.
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Example 13.1. Let us determine the resource distribution optimal in a
probabilistic sense for two operations with the models

z 2z
T =1, T,=—2
u up
where the random variables z, and z, have the same exponential prob-
ability density
f2) =ae”

for z>0 and f(z) =0 for z <0. According to (13.15), after substituting
up = U — uy and some transformations we obtain

U+ 3u12
au;(U —u))(U +uy) '

Q:

Equating to zero the derivative of Q with respect to u; gives the equation
3uf + 66Ut —~U* =0.

A unique root of this equation satisfying the constraint 0 < #; < U is the

following
uy = U‘%ﬁ ~1.

uy =U—uy =U(1- %ﬁ—l). O

Then

13.4 Control of Assignment and Scheduling

In the problem of a discrete task distribution considered at the end of
Sect. 13.2, the size u; of the task assigned to the i-th executor has been re-
duced to a number of elementary tasks, which can be obtained by rounding
off the result of a continuous distribution. If the total number of elementary
tasks is not large, such an approximation may be not acceptable and the
problem from the beginning should be considered as a discrete one. Then
one should find the numbers of elementary tasks ny, n,, ..., n; minimizing
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the execution time of the global task
T=max {ny7y, nym, ..., N7}

and satisfying the constraint n; + n, + ... + n, = N where N is a total num-
ber of elementary tasks to be distributed, »; is a number of elementary
tasks assigned to the i-th executor and 7; is an execution time of an ele-

mentary task by the i-th executor. The problem of minimization of a func-
tion with respect to variables which may take only integer values is called
an integer programming, and in the case when the variables may have only
the values 0 or 1 — a zero-one programming. Many problems from the area
of operational researches are reduced to so called combinatorial problems
in which one should choose a decision from a finite set of possible deci-
sions. Consequently, a combinatorial problem is reduced to the integer
programming for which suitable algorithms (such as branch and bound al-
gorithm and its different modifications) and corresponding computer pro-
grams have been developed. They may be found in the literature cited in
Sect. 13.1 and will not be presented here. The next considerations will be
limited to formulations of basic assignment and scheduling problems for
which the known algorithms may be applied.

Let us return to the problem of task distribution among executors and
consider a set of tasks Z = {Z;, Z», ..., Z);}. Unlike the case mentioned
formerly, the tasks do not have to be identical. That is why in this case we
do not speak about a distribution of the tasks among the executors but
about an assignment of the determined tasks to the executors from the set
R={Ry, Ry, ..., R;}. For the fixed ordering of the tasks and the executors
it is more convenient to handle the set of task indexes J= {1, 2, ..., M} and
the set of executor indexes / = {1, 2, ..., k}. If the execution time is as-
sumed as a quality index (as in former considerations), the problem con-
sists in a partition of the set J into separate subsets assigned to the particu-
lar executors and the optimal partition is a partition minimizing the
execution time for the whole set of the tasks. Denote by 7;; the execution
time of the j-th task by the i-th executor and introduce the numbers
c¢;;€1{0,1} determining the assignment, i.e. ¢;; = 1 if the j-th task is assigned
to the i-th executor and ¢;; = 0 otherwise. The matrix
A

[7j)i=1,..k
J=lM

z (13.16)

is a matrix of data necessary for the problem solution and the zero-one ma-
trix
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A

[ejilizt,. P

Wk
j=l...M

denotes a decision to be determined. Using the terms introduced in the
previous sections we can say that the entries of this matrix are the compo-
nents of the control vector u. The working time of the i-th executor, i.e.
the time needed for the execution of all tasks assigned to this executor is
the following

M
j=1

Decision making (assignment) problem: For the given matrix 7 one
should find the matrix P minimizing

T=max {T}, T», ..., Ty} (13.18)
subject to constraints

¢;j €{0,1} for every (i, /)

k
/\ Yy =1). (13.19)

jel,M i=l1

and

The constraint (13.19) means that each task should be assigned to one and
only one executor. The above problem may be also called a problem of
task assignment control. The determination and realization of the decisions
may be repeated in successive cycles of the operations performing. At the
n-th period (i.e. in the n-th cycle of the task execution) a controlling com-
puter finds the assignment matrix P, on the basis of the data 7, intro-

duced, and in practice — finds a set of the pairs (i, /) for which ¢;; = 1. The
control is more complicated if the execution times for the successive sets
of tasks are not given directly but should be calculated by using the given
functions 7;(z) where z is a parameter of disturbances, i.e. variables influ-

encing the execution time 7;;. For example, they may be sizes or properties
(features) of the j-th element which is to be an object of a manufacturing
operation, or it may be number evaluating a complexity of an operation in-
fluencing the execution time in a case of a project management. Then the

control program consists in the calculation of the matrix z;, on the basis of

the data z, introduced and next the determination of the matrix P,,. For an
uncertain plant, the control can be performed in a closed-loop system in
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which for the fixed z a successive approximation process for the determi-

nation of P, on the basis of the evaluation of the execution time 7, is re-
alized, as it has been mentioned in Sect. 13.2 in the cases of a task distribu-
tion.

Now let us consider the case with different kinds of the executors, i.e.

assume that for each task j, a set /; < I of the indexes of executors able to
execute this task is determined. In such a way, the sets J; < J of the in-

dexes of tasks which may be executed by the i-th executor (i =1, ..., k) are
determined as well. Then into the formula (13.18) one should put

T;= Yrje;. ielk (13.20)
JeJ;
i.e. the summing is performed for all jeJ;. Instead of the constraint (13.19)
we have now

A (Dci=D. (13.21)

jeLM  iel j
The formulas (13.17) and (13.19) are special cases of the formulas (13.20)
and (13.21), respectively.

Essential complications occur when we should take into account some
succession constraints for the task executions, formulated with the help of
a set of pairs (/, /)e JxJ where the pair (/, /) means that the /-th task should
be executed after the j-th task. Then the decision problem under considera-
tion is often called a task scheduling problem. Its solution means the de-

termination of the partition of the set J into the subsets J ; assigned to the
i-th executor and the determination of the succession of the execution for
the tasks from the set J; in each executor, with taking into account the

succession constraints. To describe these constraints, it iS convenient to in-
troduce starting moments for individual tasks. Consequently, the finishing
moments obtained by adding the execution time to the starting moments
are determined as well. The succession of the task execution is defined by

a sequence of task indexes in particular sets J i » 1.e. by so called permuta-
tion. This is one-to-one mapping m = F(j) which to each je J, ; assigns
me J, ; where m determines the succession, e.g. if F(4) =2 then the task
with the index 4 will be executed as the second in a sequence.

Decision making (scheduling) problem: For the given matrix 7 and the
set of pairs (J, /) € JxJ defining the succession constraints one should find
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the decision in the form of
<J;,F> for i=1,2,..,k

Of course, the sets J. ; can be presented in the form of a zero-one matrix
P, as previously. One should note that there is an interconnection between
the determination of J; and F; which cannot be performed independently.

The problem of task scheduling control will be presented more precisely
for an important case when the task means an execution of a certain opera-
tion on a certain object. Let us assume that we have a set of objects (ele-

ments) {Sy, Sy, ..., Sy} and for each of them a sequence of operations Oy,
0Oy, ..., O should be executed successively by the executors Ry, Ry, ..., R.
It means that the object is entering the executor R which performs the op-
eration Oy, then is leaving the executor R and entering the executor R,
which performs the operation O, etc. Quite often in this case we use a term
servicing or processing channel instead of an executor and we say that the

object enters the servicing channel R; where the operation O; is per-
formed. The problem consists in the following: For the known execution
times of all operations for each object, one should find the succession of
putting the objects at the input of the sequence of the servicing channels,
minimizing the execution time of the all operations for the all objects.

It is convenient to identify the tasks in the set Z by two indexes: z;; de-
notes the i-th operation executed on the j-th object; i=1, ..., k;j=1, ..., V.
The succession constraint means that for each j the tasks z; form a se-

quence of tasks executed in the succession zy, zpj, ..., ;. The entries 7;; in

the matrix (13.16) denote the execution times of the i-th operation for the
Jj-th object. The succession of putting the objects at the input of the servic-
ing channel sequence is determined by a permutation m = F(j), as in the

former considerations, e.g. if /(4) = 2 then the object S4 will be put as the
second in the succession. The decision making problem can be then stated

as follows: For the given matrix ¢ one should find the permutation F for
which the execution time of all operations is the smallest.

For the given permutation F let us introduce the notation S; = gm (i.e.
this permutation defines a succession of the objects §1 , §2 s ey gN) and
7jj = Tip, - Denote by #;,, the starting moment of the i-th operation for the

m-th object (i.e. for the object §m ) or the moment of putting the m-th ob-
ject into the i-th executor. The global execution time is then
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T=t4N+ Tiy
and since 7y, is given, the problem is reduced to the minimization of #;y.
Let us note that two-index sequence ¢, fori=1,2, ..., kandm=1,2,..,N
is described by the following difference equation:
tim = MAX {ti 1y + Tist s L1 + i1 }- (13.22)
It means that the moment ¢;,, does not have to precede the finishing mo-

ment of the operation for the m-th object in the previous executor, equal to
ti,m+ Ti—1p and the finishing moment of the operation for the (m-1)-th

object in the i-th executor equal to #;,, | + 7; ,,_1 . The initial conditions

for the difference equation (13.22) are as follows:

m—1
tl,l =0, tl,m = Z;I,/ for m>1,
=1 (13.23)

i-1
i1 =271 for i>1.
/=1

The problem under consideration is then reduced to the determination of
such a succession F which minimizes the solution #; of the equation
(13.22) with the initial conditions (13.23). The determination of F can be
presented as a zero-one problem by introducing the matrix P = [c;s] with
N rows and N columns, in which ¢;; = 1 if the object Sy is introduced into
the sequence of the executors directly after the object S;, and ¢;; = 0 other-

wise. It is easy to note that there is one and only one unit in each row and
in each column of the matrix P. Choosing the matrix P is subject to con-

straints
AR i
(chjzl), (chjzl).
J s=1 K j=1

A block scheme of the system controlling the scheduling in a successive
cycle is illustrated in Fig. 13.4. At the beginning of the n-th cycle, the

block B; determines the execution times 7, using the measured values of
the parameters characterizing the set of objects S, which has appeared in
this cycle for an execution and the current values of the executors parame-
ters which can influence the values of the entries of the matrix 7. Then the
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block B,, using a suitable algorithm of a zero-one programming for the

scheduling problem under consideration, determines the decision P,, defin-
ing a succession of the objects entering the sequence of the executors.

Tn \V
B> B4
Pn
S, 8w
S Ri Re [= -+ = R«

Fig. 13.4. Control system for scheduling in a case under consideration

The case under consideration may have different practical interpreta-
tions. In a production process Oj, O, ..., O; may denote successive pro-
duction operations performed on objects forming the set S, e.g. assembly

operations. Then R; is a sequence of devices or processing channels per-
forming these operations. In the case of a project management Oy, O, ...,

O, may denote successively performed operations in a complex project,
e.g. S may be a set of designs (of the same kind) to be elaborated, in which
the same sequence of operations is defined, and R; denotes a designer or a

designing group performing only one from these operations. In a computer
system, S may denote a set of computation tasks (programs) divided into
successively executed partial tasks and R; are processors in a multiproces-
sor system with a parallel processing. If each processor can execute each
partial task then the execution time can be additionally decreased by put-
ting a successive partial task to one of the processor free at the moment.
The problems described above have been concerned with the control of
a succession of operations. The control of a service of tasks mentioned in
Sect. 13.1 will occur when the set S is not given in advance but the objects
are arriving at the input of the system (most often at random moments) and
are waiting in a waiting line. The control decisions may consist in defining
an index of the objects which should be taken from the queue at the mo-
ment when one of the servicing channels is free and ready to admit the ob-
ject. Related situations occur in so called admission control in computer
networks (see e.g. [99]). Generally speaking they are problems considered
in an area of queuing and mass service systems which are not described
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here. Their importance in the control theory and engineering (especially
oriented for the control of computer systems) shows deep and essential
connections between the control science and other related areas such as
operational researches.

13.5 Control of Allocation in Systems with Transport

The control of a complex of operations is getting complicated when differ-
ent functions should be taken into account simultaneously, e.g. the control
of an allocation (task and/or resource distribution) and a service or the con-
trol of a task scheduling and a traffic of executors and/or of objects of
technical operations, under the assumption that executors or objects may
remove in so called flexible manufacturing system [42, 74]. From this wide
area let us take for the consideration a case of the allocation control with
taking into account a transport of raw materials and products in a produc-
tion system (Fig. 13.5).

Stores of
transport products
plan
Controlling allocation Production
system units
transport
plan

Stores of raw
material

Fig. 13.5. Simplified scheme of the system under consideration

The system consists of & production units working in parallel and produc-
ing the same kind of a product, raw material stores from which the raw
material is transported to the production units, and product stores to which
the product is transported from the production units. The controlling sys-
tem is performing three functions: the control of the raw material transport,
of the raw material distribution among the units and of the product trans-
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port. As a quality index in one production cycle one may introduce the
sum of three components [54, 58]

Q=01+ +03
where O denotes the cost of the raw material transport, O, is the cost pro-
portional to the production time in one cycle, and Q3 is the cost of the
product transport. The value of a production time (and consequently, the
value ;) depends on the distribution of the total amount of the raw mate-
rial U among the units, and if the transport was not taken into account we
would determine the optimal distribution uy, ..., u; as it has been pre-

sented in Sect. 13.2. The minimization of 0| means the determination of
such amounts of the raw material transported from the individual stores to
the individual units, i.e. such a transport plan that the global transportation
cost is minimal under the assumption that the sum of the raw materials
which can be taken from the stores is equal to U. Similarly, the minimiza-
tion of Q3 means the determination of such amounts of the product trans-
ported from the individual units to the individual stores that the global
transportation cost is minimal. The separate minimization of Q) and Q3 is
called a transportation problem for which there exist suitable algorithms
and computer programs [105]. However, the minimization of the global
cost Q could not be decomposed into independent minimization of Q1, Q»,
(3 because these problems are interconnected: O, depends on the values

uy, Uy, ..., U which at the same time are data for both transportation prob-

lems. One should then find directly (without a decomposition) the deci-
sions uT ,uz, ey uz and the transport plans for the raw material and the

product — minimizing the global quality index Q. It may be obtained by
applying a suitable computation algorithm or by realizing successive ap-
proximate control decisions in a closed-loop control system.

The problem is much simpler in the case of one raw material store and
one product store, and is reduced to the determination of the optimal dis-
tribution #" taking into account the transport cost. Let us introduce the fol-
lowing notation concerning one cycle containing the transport of the raw
material, the distribution of the raw material among the units, obtaining the
product and the transport of the product to the stores:

T; — the production time in the i-th unit,
u; — the amount of the raw material assigned to the i-th unit,

v; — the amount of the product obtained from the i-th unit,
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¢; — the unit cost of the raw material transport,
¢; — the unit cost of the product transport.
Assume that

Ty =i (u;), i=12,..k,
k k R
O =2 ciujs 03=2.¢vis (13.24)
i=1 i=1
vi=dl-ul-, Q2 :p.T’
where T = max {Ty, T», ... , T;} is the production time of the global

amount of the product. Then the problem consists in finding the values
uik , u; yeens uz minimizing the cost

Q(ula Uz, -ee s Uk) = Ql + QZ + Q3

subject to constraints (13.3). Hence, it is a task allocation problem taking
into account the cost of the transport. Introducing this cost may signifi-

cantly change the distribution optimal with respect to O, or T only. For ex-
ample, when only 7T is taken into account, the value u; for a unit with a
great productivity will be great in comparison with the values of u for
other units, however taking into account (J; may cause a significant de-
crease in u; if the transport of the raw material to this unit is expensive.
According to (13.24)
k
Oy, ugs - ) =p- X[ ()] + D.Cill (13.25)
i=1
where ¢; =¢; +d,¢; . The optimal distribution u; , u5, ..., u; minimizing
the function (13.25) with the constraints (13.3) may be obtained in an ana-
lytical form in simple cases only. Let us consider two production units and
linear relationships between 7;and u;:

T1=k1u1, T2=k2u2.
The optimal distribution minimizing 7=max{7}, 7>} is the following
(see (13.8) for a=1):

kU kU
u :k—’ Uy = .
1+k2 kl +k2

Substituting u, = U—uy to the function (13.25) yields
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A
O =max{kyuy, kpy(U—uy)} +cruytey(U—uy) =Fuy).

An analysis of this function leads to the following rules for the determina-
tion of uik :

1. If F(uy) is an increasing function for uq < u; then uik =0.

2. If F(uy) is a decreasing function for #; < u; and is an increasing func-
tion for u; > u; then uik =uy.

3. If F(u;) is a decreasing function for u; > u; then u' =U.

From these rules we obtain the following algorithm of the optimal distribu-
tion taking into account the transport cost, in which the notation ¢; —cy) =c¢
has been introduced:

1.If c—ky>0 then u; =0, uy="U.

2.If c—ky<0 and c+k; >0 then u =iy, us=1>.

3.0f c+k; <0 then uy =U, uy=0.

4.1f c—ky=0 then uik is any value from the interval [0, u;].

The block scheme of the control algorithm is presented in Fig. 13.6.

Until now we have assumed that three parts of the cycle (raw material
transport, production and product transport) are separated in time, i.e. the
distribution is executed after obtaining the global amount of the raw mate-
rial from the stores and the production in each unit starts at the same time.
These operations, however, can be organized in the other way: the produc-
tion in a unit starts immediately after receiving the raw material and the
product is taken from the unit directly after finishing the production proc-
ess. Then, the whole system can be treated as a complex of £ parallel op-
erations, each of them consisting of the raw material transport, the produc-
tion and the product transport. Consequently, the problem is reduced to the

time-optimal task distribution considered in Sect. 13.2, i.e. to the determi-
nation of the decisions ur , u; R u;t minimizing

T=max{7_"1,7_"2,..., 7_"k}

where 7_"l denotes the sum of production time and the time of both trans-
portations, i.e.

T; = p(uy) + cju;
where ¢; =¢; +d;c; as formerly, and ¢;, ¢; denote the transport times for
a unit of the raw material and the product, respectively, under the assump-



386 13 Control of Operation Systems

tion that the transport time is proportional to an amount of a material. In

particular, for the linear models T; = k; u;, according to (13.8) for =1 the
control algorithm is as follows:

k
ui = U e H™, =12,k
i=1
where e,—=k,-+c,-.

Introduce data

c, ki, ko, U
N T u =
U2 =U
N T
N T by =t
Uy = Uy
u =U
uy =
uy isany value €[0, ]
U2 =U - U1

Fig. 13.6. Scheme of the control algorithm in one cycle

13.6 Control of an Assembly Process

In a traditional assembly process, the sequence of assembly operations
executed in successive stages is given in advance, and the control consists
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only in a controlling of technical actions necessary to perform assembly
operations. An essential decision making problem arises when in succes-
sive stages the assembly operations are chosen currently, based on a rec-
ognition of the current state of an assembly object. If these operations are
executed by an intelligent assembly robot, its basic functions at one stage
are the following: the recognition of the object state based on the results of
observations, the choice of a corresponding operation from a set of opera-
tions given for this stage, and the execution of this operation. The decision
problem described here and consisting in a choice of a sequence of opera-
tions in the assembly process may be considered as a specific example of a
multistage decision process described in Sect. 4.3 in connection with dy-
namic programming application [41, 52].

Let us introduce the following notations:
Sn = {Su1> Sz, - Suk, + — the set of possible object states at the n-th
stage,
s, € {1, 2, ..., k,} — the set of indexes indicating the possible states at the
n-th stage,
Ou = {O0n1> O, s Opyy,, + — the set of possible operations at the n-th
stage,
1, € {1,2, .., m,} —the set of indexes indicating the possible operations at
the n-th stage,
v,, — the vector of the observation (measurement) results at the n-th stage.
The components of the vector y,, denote features of the assembly object,
i.e. variables characterizing the current effect of the assembly process and
used to the evaluation of the assembly quality. They may be e.g. dimen-

sions or sizes evaluating the precision, accuracy or tolerance in the place-
ment and fastening of elements. Assume that the recognitions of the state

s, on the basis of y,, are correct and performed according to a known rec-
ognition algorithm
Sp = Gp(yn)-

Assume also that the relationship between the state s,,, the next state s,
and the current operation

Spt1 =SuSns 1)

is known. This relationship is given in the form of table (matrix) where the
index s, is written in the row with index s,, and the column with index

/,,. Let us introduce a performance index ¢,(s,) evaluating the state s,
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with the help of a non-negative number ¢,(s,) so that this number is as
less as the current effect of the assembly is better.

Assembly control problem: For the given sets s, /, and the functions
G, fn forevery n =0, 1, ..., N, one should determine the control algorithm
in a closed-loop system /, = EI_’,,( ¥,)» which minimizes the global quality
index evaluating the whole N-stage assembly process:

N
QN = Z (Dn(sn)-

n=1

In order to apply dynamic programming in a way similar to that presented
in Sect. 4.3, let us introduce the notation:

A
0u(Sn) = Pulln(Sn-1> Li-D] = &n(Sp-15 Li-1)

N N-1
QN: Z gn(sn—laln—l): Z gn(snaln) (13-26)
n=1 n=0
N-1
VN-n(s) = min Z En (Snaln)-
no sl s IN =y

The g, is presented in the form of a table containing the number

vy, 4 2,.(8,, 1) 1n the row with index s,, and the column with index /,,.
For n=N -1 we minimize the last component of the sum (13.26) with
respect to /,, and as a result we obtain /y_; = Fy_j(spy_1), i.e. the relation-
ship between the last optimal decision and the state sp_;. Let us note that
the minimization of gp._; with respect to /_; is an integer programming
problem. It should be solved for all sy_je{l, 2, ..., ky_1}. Since usually
the numbers of possible operations and states are not great for each sy_q it
is possible to determine gp_; for each /y_; and to choose /y_; for which
gn-1 1s minimal. As a result, the relationship /n_; = Pn_1(sp_1) 1S ob-
tained in the form of a table giving for each state sy_; the corresponding
decision /p_;. Next, one should determine the relationship

Vitsn-1) = Vilfv-2(sn-2, In-2)]

in the form of a table containing the number V; in the row with index
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sy and the column with index /p_,. This table is obtained in such a way
that for the pair (sy_», Iy_o) we take sp_; from the table fy 5, Iy from
the table ¥y_; and vp_; from the table gy_;. At the next step we find the
relationship /y_, = ¥y_(sy_p) by minimization

Imin {en2(sn-2, In-2) + Vilva(sa2, In-2)]}-
N2

Continuing this procedure we finally obtain the table /= ¥(s(). The al-

gorithm for the determination of ¥, can be presented in the form of the
following recursive procedure:

VN-n(Sp) = Hllin {20(Sn> L) + V1 LS 1135

n

n=N-1,N-2,..,0; V,=0.
As a result we obtain the relationships

L,="P(s), n=0,1,.,N-1,
and after substituting the formula s,=G,(y,), we have the relationships

L= PGy = Zy(¥p)

determining the control algorithm in a closed-loop system.

The algorithm for the determination of the tables %, may be called an
algorithm for a control system design. It can be written as follows:
1. Using the tables g, and Vj_,_; taken from the memory, determine the
table ¥, in the following way: for each index s,, = 1, 2, ..., k,, find the in-
dex [, for which the sum of numbers corresponding to the pair of indexes
(8, 1,) 1s the smallest.
2. Using the tables f,_; and g, taken from the memory and the table ¥,
which has been determined, find the table V.,
3. Introduce the tables ¥, and V)_,, into the memory.

The way of finding the tables ¥, and V)_, has been described above
for n =N — 1. In the data base of a computer executing the above algo-
rithm (Fig. 13.7) one should put the tables f,, and the tables g, obtained
from f, for the given functions ¢, defining the way of the performance

index calculation. The determined tables should be put into the data base
of a controlling computer.
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Data
base

Determine table
¥n

VN-n-1

Menory

n—n-1

Determine table
VN-n

Introduce

Y, VN-n into memory

T N
n>0

Fig. 13.7. Simplified block scheme of algorithm for control system design

Bring tables

'{/0 , -, PN-1 out

Fig. 13.8. Scheme of control system for assembly process under consideration

Assembly Yn State recognition
fn sn= Gn(yn)
Flnding of sn
operation
In=%¥n(sp)

The algorithm of a real-time control (Fig. 13.8) is the following:
1. Introduce the measurement results y,,.

2. Determine the index of a current state s,,= G,(1,).
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3. From the table %, read over the index of an assembly operation /,, and
bring it out for the execution.

13.7 Application of Relational Description and Uncertain
Variables

For uncertain complexes of operations one can apply the methods de-
scribed in the former chapters for control of uncertain plants, in particular
— methods and algorithms based on a relational knowledge representation,
on descriptions using uncertain and fuzzy variables and on the knowledge
validation and updating in a learning process [30, 34, 42, 46, 48, 49, 52].
Now we shall describe shortly the distribution problems based on a rela-
tional knowledge representation in the form of a set of inequalities, and on
a description with uncertain variables.

Consider an uncertain complex of operations described by a set of ine-
qualities

T, <9 (u;) (13.27)

where ¢; is a known function, increasing in the case of tasks and decreas-

ing in the case of resources. The inequalities (13.27) together with the
function 7' =max{7}, 75, ..., I} } form a relational knowledge representa-

tion R(u,y) in our case. For a user’s requirement 7 <« or T €[0,c] one
can formulate the decision problem in a way described in Sect. 6.3.

Decision problem: For the given ¢; (i=1,2,...,k) and a one should find
the largest set D, U such that the implication
ueD, >Tel0,a]

is satisfied, where the set U is determined by the constraints (13.3).
Then
D, ={uel7:DT(u)g[0,a]} (13.28)
where D7 (u) is the set of possible values 7' for the fixed u, i.e. Dy (u) is
determined by the inequality

T <maxe;(u;).
i

Consequently,
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D, ={ueU: /\ [;(u;) <al}. (13.29)

ielk
For o(u;) = cju;

k
Duz{ueRk:(ZuizU)/\A (u; 20)A(cu; <)} .

i=1 iel,k
It is easy to note that the solution exists (i.e. D,, is not an empty set) if

a>T" where T" is the minimal execution time obtained for the optimal

allocation " . In this case u" e D,,. For example, if k=2 and

a> CICZU _ *

T
c)p+cy
then D, is determined by equality #, =U —u; and inequality f<u; <o
where
p==, s=U-2.
9 )

Let us consider a complex of parallel operations described by the ine-
qualities

Ty <@i(up,x;),  i=12,..k (13.30)

where u; is the size of a task assigned to the i-th operation, x; € R'isa
parameter and ¢; is a known increasing function of u;. The parameter x;
is unknown and is assumed to be a value of an uncertain variable x; de-
scribed by a certainty distribution /,;(x;) given by an expert. Now the re-
lational knowledge representation, consisting of (13.30) and the relation-
ship 7' =max(7}, 75, ..., T} ), is completed by the functions 4,;(x;). We

assume that xy,x,,...,x; are independent uncertain variables, i.e.
hx (x) = m.inhxi (xi)
1

where x =(xy,X5,...,x; ). The largest set of decisions D, (x) depends on
x and is determined by (13.29) with ¢; (u;,x;) in place of ¢;(u;). The de-
scription of the complex is analogous for the resource allocation problem.
Then u; is the amount of a resource assigned to the i-th operation, ¢; is a

decreasing function of u; and U denotes the total amount of the resource
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to be distributed.
According to the general formulation of the decision problem presented
in Sect. 8.2, the allocation problem may be formulated as an optimization

problem consisting in finding the optimal allocation u" that maximizes the
certainty index of the soft property: “u approximately belongs to D, (x)”
or “the set of possible values T approximately belongs to [0,a]” (i.e. be-
longs to [0,c] for an approximate value of x).

Optimal allocation (decision) problem: For the given ¢;, h,; (i€ I,_k),
U and « find
u' = arg max v(u)
uelU
where

() = v {Dy(u;%) E[0,a]} = v(T(u,X) < @). (13.31)
The soft property “ Dy (u;x) C[0,a]” is denoted here by “T'(u,x) <a”,

and D7 (u;x) denotes the set of possible values T for the fixed u, deter-
mined by the inequality

T < max@; (u;,x;) .
1

According to (13.31)
v(u) = v{[Ty(uy, %)) S @] ATy (r, X2) S @] A . ATy (g, x5 ) < ]}
Then

u =argmaxminv;(u;) (13.32)
uelU i

where

vi () =v[T;(u;, ;) < al=v[p;(u;, %;) < ] = v[X; € Dy (u;)],

1
Dyj(ui) ={x; € R i (uj, x;) < ot

Finally
vi(u;)=  max  hy(x;) (13.33)
xj €Dy (u;
and
u*:argmai( min  max A (x;). (13.34)
uelU i xjeDy;(u;)

The value v;(u;) denotes the certainty index that in the i-th operation an
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approximate value of the execution time is less than « . The procedure of
finding the optimal allocation u" is then the following:
1. To determine v;(u;) using (13.33).

2. To determine u~ according to (13.32), subject to constraints (13.3).
Assume that ¢;(u;,x;) is an increasing function of x;. Then the set

D,;(u;) is determined by the inequality x; < x;(u;) where x;(u) is the

solution of the equation

p;i(u;,x;)=a (13.35)
and
v,-(ul-)z max hxi(x,-) . (1336)
x; <% (u;)

In many cases an expert gives the value x? and the interval of the ap-
proximate values of Xx;: x;-k —d; <x; Sx;k +d;. Then we assume that
h,;(x;) has a triangular form presented in Fig. 13.9 where d; < x; . Letus
consider the relation (13.30) in the form 7; <x;u; where x; >0 and u;

denotes the size of a task. In this case, using (13.36) it is easy to obtain the
following formula for the functions v;(u;):

a
1 for Uy < —
X
l « * a a
vi(u))=9—(—-x;)+1 for —<u;<— (13.37)
di u; X; x; —d;
a
0 for U 2 — .
Xi _di
hi
1 = —
x,-* - d; x; x; +d; X

Fig. 13.9. Example of certainty distribution
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For the relations 7; < x;u; ! where u; denotes the size of a resource, the

1

functions v;(u;) have an analogous form, with #; ~ in place of u; :

*
0 for u; < Xi —di

a

* *

1 * )Cl' _di )Cl'

vi(u,-)z Z(aui —X; )+1 for TSH,‘ S; (1338)

! *

1 for u; >x
(04

Example 13.2. Let us consider the task allocation for two operations. In
the maximization problem (13.32) the decision ur may be found by solv-

ing the equation v;(u1)=v,(U —u;) and u; = U—ur . Using (13.37), we
obtain the following result:

1. For
%
U(xl dl)(xz —dy) (13.39)
dl +)C2 —d2
v(u) =0 for any u;.
2. For
U(xl dl)(xz dy) Uxy x;
<g<—172 (13.40)
dl +X2 d2 X1 +)C2
uik is a root of the equation
%
_— — [ —X
( x1) d2 U—u, 2)
satisfying the condmon
a _ a
—<u < ,
Xy x| —dy
and v(u' ) =v(u]).
3. For
k%
PELLIEoN (13.41)
X1 + X2

v(u*) =1 for any u; satisfying the condition



396 13 Control of Operation Systems

o o
U——*Sul S—*.
%) X1

For example, if U=2, a=2, xik:2, x;:3, dy =d, =1 then using

(13.40) yields u; =125, uy =0.75, v(u' )=0.6.
The result is simpler under the assumption

% *
X1 Xy A
——=—==vy. 13.42
4 d, y ( )
Then in the case (13.42)
* Ux; * Uxil<
Uy =—— %> Uy =% %>
X] +Xp X] +Xxp

V(") =) = (L 1= 2R g (13.43)

dl up U)Cl Xy
The formula (13.43) shows that v(u*) is a linear function of the parameter

y characterizing the expert’s uncertainty. O

The determination of the control decision " may be difficult for £ >2
because of great computational difficulties. To decrease these difficulties
we can apply the decomposition of the complex into two subcomplexes
and consequently obtain a two-level control system (Fig. 13.10). This ap-
proach is based on the idea of decomposition and two-level control pre-
sented for the deterministic case [13]. At the upper level the value U is di-
vided into U; and U, assigned to the first and the second subcomplex,

respectively, and at the lower level the allocation uD , u?) for the sub-
complexes is determined. Let us introduce the following notation:
n, m — the number of operations in the first and the second complex, re-

spectively, n+m =k,

T (1), T3 _ the execution times in the subcomplexes, i.e.

7D —max(7,75,...T,), TP =max(T,,1,Tys 2+ Tysm)

u® , u?® _ the allocations in the subcomplexes, i.e.

l/l(l) :(ul,...,u,,), M(Z) :(“n+1:""un+m)'
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U

Distribution of U

among
subcomplexes
Uq Uo
Allocation in Allocation in
subconplex 1 subcomplex 2
u( u @
Subcomplex Subcomplex
1 2

Fig. 13.10. Two-level control system

The procedure of the determination of u" is then the following:
1. To determine the allocation u(l)*(U 1) u(z)*(U ») and the certainty in-

dexes v(l)*(Ul), v(z)*(Uz) in the same way as u' , v" in the first part of
this section where the direct approach has been applied, with U; and U,
in place of U.

2. To determine U f , U ; via the maximization of
WT2a)=v[(TD Za) A (T® Z )] 2 (U, U>).
Then

Uy .Uy) =arg max min{v""(U1),v®" (U,)}
Up,Uz

with the constraints: Uy, 20, U +U, =U.
3. To find the values of u(l)*, u®* and v’ putting Ul* and U; into the

results u(l)*(Ul), u(z)*(Uz) obtained in point 1 and into v(U;,U,) in
point 2.
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13.8 Application of Neural Network [21]

Let us pay attention to the possibility of using a neuron-like algorithm as
an approximate control algorithm for the task distribution in a complex of
parallel operations described in Sect. 13.2. For the operation models
(13.7), the exact control algorithm determining the distribution u on the
basis of the measurement result z=c is given by the formula (13.8). For
more complicated operation models (13.1) this algorithm can be presented
in the form of a computational procedure. The simplest neuron-like algo-
rithm for the execution of these computations has the form of one-layer net
with single neurons for the individual operations in the complex
(Fig. 13.11). The algorithm of a single neuron with the input

$115512 ---» 51 k1 18 here the following:

Yi=lwisit T wipsip + o w18 -1 T 1, i=1,2,..k (13.44)
where
_q ) _Ci11 _%+ _%k
Sitl=—8Sp=—", ""Si,l'—l =_1—1 ,Sii——l ""’Si,k—l = . (1345)

1 1 1 1 1
The elements e marked in the scheme of the control system are blocks de-
termining the decisions u;= y; ' The form (13.44) is reasoned by the
form of the algorithm (13.8) obtained for the model (13.7) which may be
an acceptable approximation of the dependency of T; upon u; for real op-

erations. It is easy to note that for the positive values w; 1, w; 2, ..., W; j—1

the dependency of u;= y; ! upon c¢q, ¢, ..., ¢ 1s identical with the exact
algorithm (13.8) for &= 1. The block B denoted in the figure determines

the values s; 1, 5,2, ..., 5; y—1 according to (13.45). It is worth noting that to
apply correctly the neuron-like algorithm in our case, it is necessary to take
into account the form of a control plant model and consequently to process
initially the values ¢, c;,..., ¢ introduced in the control algorithm and to
process the outputs of the neurons by the blocks e.

For changing the weights in the neuron-like algorithm presented, one
can apply a learning process and concepts of learning mentioned in
Sect. 12.6. In particular an exact algorithm (if it exists) may be used as a
generator of a learning sequence, or an adjustment process based on the
current evaluation of the execution time of whole complex 7 may be ap-
plied. In order to improve the accuracy of the approximation one may ap-
ply multi-layer networks, having in mind that it may result in the increas-
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ing of the time of learning. The neuron-like algorithms may be also used in
other control systems with a control plant being a complex of operations,
e.g. in a resource distribution system.

S11 Y Uy
e
1, k-1
. . T
B ' ) Comrplex of
operations
k1 Yk Uy
e
SkkA /

Fig. 13.11. An example of control system with one-layer neural network



Conclusions

The book has presented a uniform description of basic control problems,
methods and algorithms for different cases concerning the information on
the control plant and for different ways of obtaining and using the knowl-
edge of the plant during the control process. The division of the subject
into five parts presented in Sect. 1.6 is more clear and understandable after
reading the whole text. Part two containing Chaps. 3, 4 and 5 has been
devoted to deterministic control problems, i.e. to considerations for deter-
ministic plants, under the assumption that the plant description in the form
of a function for the static case and in the form of a difference (differen-
tial) equation (or an equivalent form) for the dynamical case — is exactly
known. Part three consisting of Chaps. 6, 7, 8 and 9 has been concerned
with different formal descriptions of a priori uncertainty and with control
problems formulated adequately to the model of the uncertainty taken into
consideration. The uncertainty has been caused by the non-deterministic
behaviour of the plant and (or) the uncertainty of an expert formulating the
knowledge of the plant. In Chap. 6 we have considered the plant described
in the form of a relational knowledge representation, and in Chaps. 7, 8, 9
we have presented the control problems for the plants with the description
of the uncertainty using random, uncertain and fuzzy variables, respec-
tively. Analogies and relations between formulations and solutions of the
decision problems based on different descriptions of the uncertainty have
been indicated, and different interpretations of the models and results in
spite of their formal similarities have been discussed. It is worth noting
that different cases of the uncertainty may occur in a single system. In par-
ticular, it may be so called second order uncertainty, that is the uncertainty
concerning parameters occurring in a basic model of the uncertainty. Such
cases have been presented in Chaps. 7 and 8 where the relational knowl-
edge representation with unknown parameters has been considered.

Part four consisting of Chaps. 10 and 11 has been concerned with the
uncertain control systems as well, but unlike the considerations in Part
tree, we have described the control problems with using the information
obtained in a closed-loop system. Two concepts have been considered: us-
ing the evaluations of the control effects to the direct determination of the
next control decisions (Chap. 10) and to the improvement of the basic con-
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trol algorithm in the adaptation and learning processes (Chap. 11). In both
cases, the convergence problem for the approximation process executed in
a closed-loop control system is of a significant importance. In the case of
the first concept, it is the stability problem, widely developed and de-
scribed in the literature.

Part five containing Chaps. 12 and 13 has been devoted to selected
problems important in practical situations, namely the applications of se-
lected artificial intelligence methods (neural networks and logical formulas
processing), complex control systems and the control of complexes of op-
erations treated as specific control plants consisting of interconnected ac-
tivities.

The uniform and compact description of various control problems and
methods presented in the book may be considered as a basis for studying
more advanced and specific problems which may be put into the frame-
work given in the book (as it was said in Sect. 1.6). Precise formulas and
algorithms presented for particular cases can be directly used for the de-
velopment of corresponding computer programs or may be useful in de-
veloping control algorithms and programs in more complicated situations
occurring in the design of computer control and management systems, and
more generally — the design of decision support systems.

Characterizing present and future directions and perspectives of the
modern control theory one should take into account the following aspects:
1. Various technical and non-technical plants and processes can be consid-
ered as subjects of decision making (control and management). They are
not only continuous technological processes but also so called flexible
manufacturing systems and processes, complex systems, organizations and
projects as management plants, and computer systems as specific decision
plants. In many cases like these, even advanced methods and results of the
traditional control theory are proved to be useless. They can be applied
with good results e.g. to the control of continuous chemical reactors, but
they cannot be used e.g. to the transport or traffic control, to the control of
an assembly process or the control of computational process and data
processing in a multiprocessor computer system.

2. In many practical situations, traditional mathematical models of control
plants are proved to be insufficient or useless and it is necessary to develop
algorithms for solving difficult problems based on different forms of the
plant knowledge formulated by experts. Quite often this is incomplete and
imprecise knowledge, sometimes not presented in the form of formulas
and numbers but in the form of a linguistic description of facts and rules.

3. As a rule, modern control and management systems may be considered
as specific information systems containing computers for determining the
decisions or for supporting the decision making process. They are often so
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called expert systems in which the computer-expert solves a problem on
the basis of a knowledge representation, using a reasoning procedure [18,
92].

4. Nowadays, distinguishing between decision problems for control and
management is not necessary and not possible. The same concerns distin-
guishing between information science and control science which may be
treated as interconnected disciplines based on two fundamental areas: sys-
tem engineering and knowledge engineering.

Taking into account the above remarks, one should indicate the follow-
ing interconnected directions of the future development of the modern con-
trol theory treated as a part of the information and computer science deal-
ing with foundations of the design of computer decision systems for the
needs of control and management (see remarks in Sect. 1.5):

1. Problems of uncertain control systems using different forms of knowl-
edge representations.

2. Developing artificial intelligence methods and the design of intelligent
control systems with the application of a prediction, the algorithmization
of reasoning, logic formulas processing, learning processes, neural net-
works, evolutionary programming etc.

3. Applications of advanced operational research methods to the control of
complex manufacturing and computational operations, and to the man-
agement of complex organizations and projects.

4. Developing formal foundations of a diagnosis and reliability of control
systems.

5. Problems of complex control systems, in particular — hybrid systems
with various forms of knowledge representations for different parts of the
complex plants and consequently, with different formulations of partial
control problems adequate to the forms of the knowledge representation
and to the models of uncertainty.

6. Developing the knowledge exploration and discovering problems and
the concepts of decision making based on so called distributed knowledge
(see [28, 40, 53]), oriented towards the needs of control and management
systems.

There are different important and interesting technical problems con-
nected with the design, building and exploitation of computer control and
management systems. They exceed the framework of the control theory
and have not been presented in this book.



Appendix

Operational Transforms

An operational transform or Laplace transform of the function x(¢) deter-
mined for 7>0 is defined as a function of a complex variable s, assigned
to the function x(¢) according to the following formula:

o0
X(s)= [x()edt & Lix(r)} .

0
Such a mapping is called an operational transformation (Laplace transfor-
mation), the transformation of the function X(s) into the function x(¢) is
called an inverse operational transformation and its result x(¢) — an inverse
Laplace transform of X(s). The most important properties of this transfor-
mation are the following:
1. For any functions x;(¢) and x,(#) for which there exist Laplace trans-

forms, and for any real numbers ¢; and c,
Licix (1) + cpx3 ()} = 1. X1 (5) + 2 X5 (5)

where X;(s) and X,(s) are Laplace transforms of the functions x; ()
and x,(¢), respectively.
2. For any function x(#) for which there exists Laplace transform X(s)

L{x(1)} = sX (s) - x(0) .

Under the condition x(0)=0, differentiating of the function x(¢) corre-
sponds to multiplying X (s) by s. That is why the variable s is called a

differential operator.
A linear differential equation for one-dimensional functions x(z) and

()
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@y s a0yt api) + agx(r)
= by D)+ by + b0+ by (o) (1)

in the operational transforms “language” takes the form of an algebraic
equation. For zero initial conditions

ST X(8) + apy_ys" T X () + ..+ apsX (s) + ag X (s)
=bys'Y(s) + by_ys' VY (5) + o+ bysY(s)+ by Y (s)

and

l -1
bis' +b;_1s" +...+Dis+ by Y(s).

X(s)= (D2)

m—1

s +a,_ 1"+ +as+ag

To solve the differential equation (D1) one should determine X(s) accord-
ing to the formula (D2) and then determine or read over from suitable ta-
bles the inverse transform x(7). If X(s) is a rational function of s (i.c. is a
ratio of two polynomials) then it is convenient to present X(s) as a sum of
so called partial fractions and read from the tables the inverse transforms
for the separate components. The list of the Laplace transforms for the
most frequently used functions is presented in Table D1.

Procedures of handling the operational transformations in solving dif-
ferential equations and in related problems are called an operational calcu-
lus.

Table D1
x(7) X(s)
o(1) 1
1() 1
S
1
t 2
S
tk_l 1
(k=1)! sk
e—a t !
S+a
1—¢ %! =
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k-1 at k-1
e o)
. @
sinw t 5
s+ w
s
cosmt e
e “sinwt %
+a) +w
e “cosmt %
s+a) +w

A discrete operational transform or Z-transform of the discrete func-
tion x, determined for n>0 is defined as a function of a complex variable

z, assigned to the function x, according to the following formula

X(z)= ixnz_” 27, 0x,}.
n=0

Such a mapping is called a discrete operational transformation or Z-
transformation, the transformation of the function X(z) into the function

Xy, is called an inverse discrete operational transformation and its result x,,
— an inverse Z-transform. The most important properties of this transfor-
mation are the following:

1. For any functions x;, and x,, for which there exist Z-transforms, and

for any real numbers ¢; and ¢,
Tzicixy, +caXon) =1 X1(2) + €2 X (2)

where X|(z) and X,(z) are Z-transforms of the functions x;,, and x,,,,

respectively.
2. For any function x,, for which there exists Z-transform X(z)

Tz{xps1} =2X(2) — 2x¢.

Under the condition x¢=0, shifting of the function x,, corresponds to mul-
tiplying X(z) by z. That is why the variable z is called a shift operator.
A linear difference equation for one-dimensional functions x, and y,
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Xp+m T Am-1Xn+m—1 .- T A X411 + apXy
=byyps1 + b1 Vpi e by +boyy (D3)

in the operational transforms “language” takes the form of an algebraic
equation. For zero initial conditions

z"X(2)+ am_lzm_lX(z) +..+azX(2) + agX(2)
=bz' Y (2)+ b2 7Y (2) + o+ b2V (2) + By Y (2)

and

b/Zl + bl_lzl_l

+"'+blz+b() Y(Z)

X(z)= (D4)

zZ"+ am_lzm_1 +..+az+ag

To solve the difference equation (D3) one should determine X{(z) accord-
ing to the formula (D4) and then determine or read from the suitable tables

the inverse transform x,,. If X(z) is a rational function of z then, after pre-
senting it in the form of a sum of partial fractions, we obtain x, as a sum
of inverse transforms for the partial fractions, read from the tables. The list

of Z-transforms for the most frequently used functions is presented in Ta-
ble D2.

Table D2
Xy, X(2)
1(n) :
z—1
4
§ (z-1)°
b Z2 +Zz
n 3
(z-1
n z
a z—a
zZ
; s
na (z— 0!)2
zsinw
sin wn

22 —2zcosw +1
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22 —zZCOSw

coswn -
z° —2zcosw +1
zo sSin @
n .
a’ sinon
22 _2zacosw +
2
; z° —zacosw
a’” coswn

22 —2zacosw + a2
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