Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Mastaying Java web appleations with courage

oy
S

Yo

Jakarta ii. )
Struts

O'REILLY* Chuck Cavaness

The Book

The OReilly Struts book (title not set yet) will be available sometime in the 3rd quarter of
2002. Published by OReilly, this book covers both Struts 1.0 and 1.1. The beta or draft
chapters are being made available for download to facilitate an early public review
process for the material.

The Author

Chuck Cavaness is a Senior Technologist at the S1 Corporation. His expertise spans
server-side Java, distributed object computing, and application servers. Chuck is the most
recent moderator for the "Java in the Enterprise” discussion forum hosted by Javaworld.
He spent several years writing Smalltalk and CORBA applications, and he has taught
courses in object-oriented programming a Georgia Tech. He's written articles for
Javaworld and Informit.com. He has a so been the technical editor for many J2EE books,
including Using JavaServer Pages and Servlets (Que 2000) and Special Edition Using
Java 2 Enterprise Edition (Que 2001). Chuck earned his degree in computer science from
Georgia Tech. His current interests focus on building presentation-tier frameworks based
on the Apache Struts project.

Chuck is the co-author of Special Edition Using Enterprise JavaBeans 2.0 (Que, 2001)

and Special Edition Using Java 2 Standard Edition (Que, 2000). His next book, Struts
(O'Reilly, 2002), will be available sometime in the 3rd quarter.

Soread to you by Asmodeous <asmodeous/7@hotmail .com>




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Table of
contents

Chapter 1

[T OAUCTTON. ... e 9
Brief History Of the WED ..o 9
What @re JAVa SENVIEIS?. ... 11
JavaServer Pages TEChNOIOOY .......courieririeiririeresieee et 14
JSP Model 1 and Model 2 ArchiteCtUIES.........ooeerireireree e 16
Why is Model-View-Controller SO IMportant?........c.ccoeeveevenennieneneieseseese e 18
What iS 8 FrameWOIK?.........coiiieiiiriesesee s 20
Creation of the Struts FrameWOrK ..o 21
AREMNALIVES IO SEIULS ...ttt bbb 22

Chapter 2

INSidethe WeD Tier ..o 29
AN ArChitECIUrE OVEIVIBIW .......ovieiiiriiisieseeee et 29
The HTTP Request/ReSPONSE Phase ........cocoiiiireereeese e 34
SUTULS QN SCOPE.....eviteeeterte ettt sttt sttt b e bbbttt b et st seebesbeneenens 40
USING URL Pal@MELErS......c.oiviieieiieieie sttt sttt sttt s 42
FOrward VErsUS RETITECL.........ccciiiiice e e 42




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Chapter 3

Overview of the StrutsFrameworK ..........cccoccevvniineninnene 51
A Banking ACCOUNt EXAMPIE........coiiiiiiriiiririeeeee e 51
Looking @t the Big PICIUIe........ccviieiieiieeeie e 57
Struts Controller COMPONENES..........ciiireireretese et seeren 58
Struts Model COMPONENES.......c.eiieiiiriireeierie sttt ebe e neeneas 66
The Struts View COMPONENES......c.coiriieririeiresieesesie st 70
Multiple APPliCatiON SUPPOIT.........coveirerere ettt 81
SUMIMBIY ..ttt b e b e s e e r e bt bt b e e e e e s e e e renbeeneen e e e enne s 8l

Chapter 4

Configuring the Struts Application ..........cccocevereereninniene 83
Introduction to the Storefront APPliCatioN .........ccoeverireininere e 83
What isaWeD APPlICALTIONT?........ciiiiiiiirer e 85
The Web Application DireCtory SITUCEUME..........ooveereirireieeseeees e 86
Web Application Deployment DESCIIPLON ........coeveireirerieieesieeee e 88
Configuring the web. Xml file fOr SITUES .......oociiineece e 91
The Struts Configuration File...........oocviriinee s 101
The org.apache.struts.config Package..........ccovverireninereee s 102
SUPULS CONSOIE TOOL ...ttt et bbbt 121
Reloading the Configuration FilES.........cccuivieeieieierene e 122

Chapter 5

Struts Controller CoOmpoNents.........cceevvreereneeneseenieseenn, 123




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

The Controller MEChANISIM..........ccuiiiiiiie e 124
The ULHITIES ClaSSES. .....eiviieiirierierte ettt 151

Chapter 6

Struts M odel Components.........ccceeceveriinieieneere e, 155
LI LAY T 1 Y L 155
What iSaBUSINESS ODJECE? ..ottt 160
PEISISIENCE. ...ttt bbb 162
What does Struts Offer For the Model ..o 163
Building the Storefront MOGEL ..o e 164

Chapter 7

StrutsView Components........coceverienerinseeniesee e, 190
What eXaCY ISQVIBW? ...t 190
What @re ACHONFOMMIS?.......c.oiiriiiriirieierie ettt 197
USING ACHONEITOIS......couiiiiiitirieistesieese sttt bttt 207
Performing Presentation Validation ... 212
Using DYNamiC ACLONFOMMIS. ........oiuiiririeirerieieesie sttt 213
Looking Ahead t0 JAVaSEIVEr FaCES ........cccviriirerieeeseee et 215

Chapter 9

Extending the Struts FrameworK............ccccoceoviiiniinienne, 218
What are EXtENSION POIMNES?.........cooieirreieseinesreee s 218
General EXTENSION POINS .....occuiiieiieieeeie et 219
Controller EXENSION POINES.......c.oiiirierei et 222




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Extending View COMPONENES........ccoeiririeiririeeesie et 227
Extending the Model COMPONENES.........coeirireirerereeee e 228
Downsides to Extending the Framework.............ccccoeiininnininnceeeese e 231

Chapter 10

Exception HaNAliNg ......ccooeeiinieiiieeeeeee e 232
Java EXCEption HanliNG.......coovveiiirieiiiiertseseee s 232
System versus Application EXCEPLIONS.........ccceriereneninenenese s 237
UsSing ChaiNed EXCEPLIONS .....c.ceivirieirerieirese et 238
Exception Handling provided by SEFULS..........coeiiiriiieeeeeeseee e 241
TYING UP the LOOSE ENGS......cooviiiiiiriciriiie et 253
EXCEPLIONS iN CUSIOM TGS, ...eveuertiieiirierieresieee ettt 254
Internationalized EXception HaNdliNg ..o 254
CONCIUSION. ...ttt et sttt sttt bbb 255

Chapter 11

Using the StrutsValidator ..., 256
The Need for aValidation Framework ... 256
Installing and Configuring the Validator ...........cccooierininninieeeseee e 257
Overview of Regular EXPreSSIONS........coivirieererieeneseeesie sttt sesnens 265
Using an Act i onFor mwith the Validator..........ccocooevveieciicce e 265
Using the Validator Framework ... 269
Creating your own Validation RUIES...........cccoveiiiiice et 270
The Validator and JSP CUStOM TagS......cccveiirirrieieeseesieeseeseeseeseesre e eee e snaesneas 272
Internationalizing the Validation............ccoceeieii e 275




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Using the Validator OUtSide Of SEIULS..........coerieririeineeeee e 276

Chapter 12

Internationalization and StrUtS.........cocevereenenieneecee e 279
What iS INternationaliZation?...........oveiiireiirerrere s 280
SUPPOrt FOr TL8N 1N JAVA......eeeuiriiieierieiete ettt 281
Internationalizing your StrutS APpliCaLIONS..........ccvrerirerieririreeese e 288
Exception Handling and Internationalization...............cccveeenenncnenieieneneese e 292

G SRR RPR 293

Strutsand Enterprise JavaBeans (EJB)........c.cccceveeiennene, 293
Implementing the Storefront Service USING EJB........c.ocveieivinccneecseese e 295
INterfacing SIFULSTO EJB ..o 308

Chapter 14

USING THES . 320
Understanding TEMPIALES.......coueeririeirererre e 320
Installing and Configuring TilES........ccuviriiririerere e 326
OVENVIEW OF THES....eitiecieiiece bbb e ene 329
The TIeSTag LibIary ...t 332
USING DEFINITIONS ...ttt 340
Internationalization SUPPOrt With TIES........ccuviiririireee e 344

Chapter 16

Addressing Performance.........ccccoeeveneeninennenceseee e 346
What iS GOOd PErfOrMENCE?........cciiriiiririestese e 346




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Performance Versus Load TESHING .......cccuveiririerinirieee e 348
Performance and Stress TeSting TOOIS ......cvviriiririeieenieee e 350
Testing the Storefront APPHCALTION ........coiveirirerree s 351
Performance and Scalability GOtCha'S ........covviiririeire e 359

Chapter 18

Loggingin a Struts Application .........cccceeevevenieneninneene 361
Logging in aWebh APPliCaLiON .......c.cviiriiirirere e 361
Using the Servlet Container for LOGQiNg........coervrereririerienieerieneeesesiee st 363
Jakarta ComMmMONS LOGGING....cveveuertereeierierieiesteseeesieseesesie e esie e sse e seese s seenesnes 374
USING the 10g4) PaCKAgE.........coeeirieirerierse e 377
Using Commons Logging in JSP PagES.........ccoeririirienieeeseseeesee s 385
Creating an Email APPENGET ........ccoiiirieirereere e 387
The Performance Impact Of 1004 ........covvereiiirirree s 396
Third-Party [0g4] EXIENSIONS.........ccciiiiiirieirienieire e 397
JAVA LA LOGUING APl ..ot 397

Chapter 20

Packaging Your Struts Application..........cccveeveierinnienne 399
To Package or NOt t0 PaCKagE..........coeeririeiiirereeere s 399
Deciding on How to Package Y our AppliCation ...........ccoeeevivenieenenieieneneeseseeee 402
Packaging the Struts Application a8 aWAR ... 407
Building your Struts ApplicationS With ANt .........ccoeiririnnineeeree e 409
Creating an Automated Build ENVIroNmMent ..o 415
FTPIiNg and ReSLarting YOUI SEIVES ........couuiiriirerieieesieeee st 417




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

1

| ntroduction

The Struts open source framework was created to make it easier for developers to build
web applications based on Java Servlet and JavaServer Pages (JSP) technologies. Just
like a building must have a solid foundation from which the rest of the structure can
grow, web applications should be built with the same principle in mind. The Struts
framework provides developers a unified framework from which Internet applications
can be based upon. By using Struts as the foundation, developers are able to concentrate
on building the business logic for the application.

The Struts framework was originally created by Craig R. McClanahan and added to the
Apache Software Foundation (ASF) in 2000. The project now has several committers
from around the world and there are many developers contributing to the overall good of
the framework. The Struts framework is one of many well-known and successful Apache
Jakarta projects. Others include Ant, Log4J, Tomcat, and many more. The overall
mission of the Jakarta project is to provide commercial-quality server solutions based on
the Java platform and in an open and cooperative fashion.

Brief History of the Web

No book on web technology would be complete without a brief look at how the World
Wide Web (WWW) has become as popular asit has today. The web has come along way
since the days when the first hypertext documents were sent to others over the Internet. In
1989, when the physicists at CERN laboratory proposed the idea of sharing research
information between researchers using hypertext documents, they had no idea of how big
and essential the web would become to the daily life for much of the industrialized world.
It has now become an accepted part of our vernacular.



Administrator
By using Struts as the foundation, developers are able to concentrate
on building the business logic for the application.

Administrator
The Struts open source framework was created to make it easier for developers to build
web applications based on Java Servlet and JavaServer Pages (JSP) technologies.

Administrator
The Struts
framework provides developers a unified framework from which Internet applications
can be based upon.

Administrator
The overall
mission of the Jakarta project is to provide commercial-quality server solutions based on
the Java platform and in an open and cooperative fashion.


Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

It took a couple of years before the benefits of using the web became clear to others
outside of the CERN laboratories, but as we all know, it eventually erupted into what we
see and use today. From its beginnings, the web was designed for viewing hypertext
documents, not editing them. However, it was a natural evolution to want the ability to
also edit a document and submit the changes. In short time, the Common Gateway
Interface (CGI) was created. CGl is a standard that alows web servers to interact or
interface with external applications in such a way that hypertext pages no longer have to
be static. A CGI program can retrieve results from a database and insert those results as a
table in a hypertext document. Likewise, data entered into a hypertext page can also be
inserted into the database. This opened up infinite possibilities and in fact, started the
boon that was the Internet craze of the mid-nineties and lasts even today.

Although CGI applications are very good at what they do, there are some serious
limitations with its approach. For one thing, CGI applications are very resource-intensive.
For every request that comes from a browser, a new Operating System heavyweight
process is created to handle the request. Once the CGI script is finished executing, the
process has to be reclamed by the OS. This constant starting and stopping of
heavyweight processes is terribly inefficient. Y ou can imagine how bad the response time
might be if there are hundreds of concurrent users making requests to the same web
application. Another major limitation of CGI is that it can’t link to other stages of web
server request processing easily once it begins executing. Thisis because it’srunningin a
separate process from the web server and becomes difficult to handle things such as
authorization, workflow, and logging. Other limitations of CGl have to do with the
scripting languages available for CGI applications. Although CGI applications can be
built in many different languages, the Perl programming language has been widely used
to create web applications and in fact is still used by many Internet sites today. However,
many web devel opers wanted more out of aweb programming language.

There have been alternatives to standard CGI applications put forward. One is caled
FastCGl. FastCGl is alanguage independent extension to CGI that doesn’'t have the same
process model that standard CGI uses. It's able to create a single heavyweight process
for each FastCGI program, allowing multiple requests to run within the same process
space. However, when clients interact with the same FastCGI program concurrently, it
needs to create a pool of processes to handle each concurrent request. This is not much
better than standard CGI. Another problem with FastCGI applications is that it's only as
portable as the language in which they are written. Other solutions were provided by
mod_perl for Apache, NSAPI for Netscape, and ISAPI for Microsoft’s 1S web server.
While these solutions might offer better performance and scalability over standard CGlI
programs, they are very proprietary.

Around 1997, while the Java™ language was experiencing tremendous growth and use
by application developers, the Java Servlet technology was created. This new web
technology opened up an entirely new avenue for web developers to explore.

10



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

What are Java Servlets?

Java Servlets have become the mainstay for extending and enhancing web applications
using the Java platform. They provide a component-based, platform-independent method
for building web applications. Servlets don’'t suffer from the same performance
limitations that standard CGI applications incur. Servlets differ from the standard CGlI
threading model in that they create a single heavyweight process and allow each user
reguest to utilize a much lighter-weight thread, which is maintained by the JVM, to fulfill
the request. Many user requests can be threaded through the same instance of a servlet. A
servlet is mapped to one or more Uniform Resource Locators (URLS) and when the
server receives a reguest to one of the servlet URLS, the service method in the servlet is
invoked and responds. Because each user request is associated with a separate thread,
multiple threads or users, can invoke the service method at the same time. This multi-
threaded nature of servlets is one of the main reasons that they are much more scalable
than standard CGI applications. Since servlets are written in Java, they are also not
proprietary to a platform or OS.

Another significant advantage of being written in the Java language is that serviets are
able to exploit the entire suite of Java API's, including JDBC and EJB. This was one of
the factors in servlets becoming part of the mainstream so quickly. There was aready a
rich Java library in place for them to leverage. Characteristics such as garbage collection,
multi-threading, and the Java Collections libraries, and the other benefits of the Java
platform have propelled servlets far ahead of its peers for web devel opment.

Servlets are not executed directly by a web server. They require a serviet container,
sometimes referred to as a servlet engine, to host the servlet. This servlet container is
loosely coupled to a particular instance of a web server and together they cooperate to
service reguests. Figure 1-1 illustrates how a web server and servlet container cooperate
to service arequest from aweb browser.

11


Administrator
A
servlet is mapped to one or more Uniform Resource Locators (URLs) and when the
server receives a request to one of the servlet URLs, the service method in the servlet is
invoked and responds.

Administrator
servlet container,

Administrator
servlet engine,


Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Web Server
Request for
JEP Page
Sendet
e
Container

Browser
For static The web sermear
docurments like 22:1::3“3:31
HTML, the web e s
server will service TEP-'IP:?G 5
the request, (i

communicate.

Figure 1-1. Serving a client request

Developers are free to choose from one of many servlet containers available to host their
servlet in. They are not locked into a particular vendor or platform. Servlets can be ported
to any one of these containers without recompiling the source code or making changes to
the servlet. This leads to selecting a Best of Breed solution for web applications, which
basically means that developers and organizations are free to choose specialized products
or components from one or more companies for an application. The developers get the
best of both worlds; the best product or component for a specialized need, while at the
same time avoiding the high risk normally associated with a single solution.

There are several popular choices for servlet containers on the market. Some are
standalone servlet containers that must be connected to an external web server to work
and others provide both the web server and servlet container within the same product.
There are even a few that are integrated into application servers and provide for much
more functionality than just a servlet container. Table 1-1 lists some of the more popular
servlet containers and a URL to get more information.

Table 1-1. Available Servlet Containers

Servlet Container URL

Bluestone http://www.bluestone.com
Borland Enterprise Server http://www.inprise.com
iPlanet Application Server http://www.iplanet.com
Orbix E2A (formally iPortal) http://www.iona.com
Jetty http://www.mortbay.com
JRun http://www.allaire.com

12


Administrator
Servlet Container


Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Orion Application Server http://mww.orionserver.com

Resin http://www.caucho.com

SilverStream http://www.silverstream.com

Apache Tomat http://jakarta.apache.org/tomcat

Weblogic Application Server http://www.bea.com

WebSphere http://www-4.ibm.conm/sfotware/webservers/appserv

For a more complete listing of available serviet containers, visit Sun’'s servlet industry
momentum web site http://java.sun.com/products/servlet/industry.html.

Although servlets are great at what they do, it became apparent very quickly that
hardcoding HyperText Markup Language (HTML) output in a servlet as a response to a
request had some serious limitations. First and foremost, it was very hard to make
changes to the HTML because for every change, a recompilation of the servlet had to
take place.

Secondly, supporting different languages is difficult to do because the HTML is
hardcoded. Determining the user’s language, region, and optional variant and then
displaying the output is not easily accomplished. Many web applications built with
servlets avoid the entire issue of Internationalization” (118N) by having different servlets,
one for each supported Locale.

Finally, because HTML was embedded within the servlet, this caused a problem with
responsibilities. Web designers build HTML pages. They are not usually experienced
Java programmers, let alone skilled at object oriented design and programming. On the
other hand, Java programmers should do what they do best and this typically isn't
HTML. Although many developers have been crossed-trained in both skill sets, these are
two fields that are better left separated. By mixing HTML within the servlet itself, it
becomes very hard to separate the duties. Regardless of the skill set of the developers, it
becomes very difficult to separate the lines of development with this approach. Even
when a developer has the necessary skills to perform both functions, modifications to the
page layout meant recompilation, which adds to development time.

Obvioudly, servlet programming is such a broad topic; it can't be covered in great detail
here. If you fed that you need more information on Java Servlet technology, a great
source of material is Jason Hunter's Java Serviet Programming, 2™ edition book
published by OReilly. You can also find more information on the following web site:
http://java.sun.com/products/serviet/index.html.

The Servlet specification can be downloaded from the Sun serviet site at
http://java.sun.com/products/serviet/download.html.

" Internationalization is commonly referred to as 118N because the word begins with the letter I,
ends with the letter N and contains 18 charactersin between.

13



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

JavaServer Pages become the next step in the linear progression of developing web
technologies based on the Java platform. The introduction of JSP pages as they are
commonly referred to, help to aleviate the serviet limitations mentioned earlier and
opened up many new doors for web developers. Unfortunately, it produced just as many
uncertainties as well.

JavaServer Pages Technology

The first thing to understand about JavaServer Pages technology is that it's a natural
extension to the servlet technology. In fact, after some pre-processing by atranslator, JSP
pages end up being nothing more than a Java servlet. Thisis a point that many developers
have a hard time understanding in the beginning. JSP pages are text documents that have
a jsp extension and contain a combination of static HTML and Extensible Markup
Language (XML) like tags and scriptlets. The tags and scriptlets encapsulate the logic
that generates the content for the page. The jsp text files are pre-processed and are turned
into .java files. At this point, a Java compiler compiles the source and creates regular
servlet byte code that can be loaded and ran as a servlet.

The trandator that turns the jsp file into a .java file takes care of the tedious work in
creating a Java servlet from the JSP page. Figure 1-2 illustrates how a JSP page is
trandated and compiled into a servlet.

~—Web Container oo \

Request for
JSF Page The JSP
e
[ Sendet . N
Contginer JSP Container Container
translates the
JSP file into & .
Browser Java Class file, HelloWorld java

/

Figure 1-2. A JSP page istranslated and compiled into a Java Serviet

HelloWord. class

JSP technology has become an extremely popular solution for building web applications
using the Java platform.

JSP offers several advantages over its competitors:

14



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

JSP is a specification, not a product. Vendors are alowed to build competing JSP
containers, which helpsin choosing a“ Best of Breed” approach.

JSP pages are compiled, not interpreted. This leads to better performance and more
efficient processing.

JSP pages support both scripting and access to the full Java language. JSP pages can
a so be extended through the use of custom tags.

JSP is an integral part of the J2EE suite of APIs and is compatible and
complimentary with all included technologies.

JSP pages share the "Write Once, Run Anywhere™" characteristics of Java
technology.

One of the limitations of hardcoding HTML inside of servliets mentioned in the previous
section is the problem of separating page design and application logic programming
responsibilities. This separation is easier to accomplish with JSP pages because HTML
designers are free to create web pages with whatever tools they are accustomed to. When
they are comfortable with the page layout, JSP developers are then able to insert JSP
scriptlets and custom tags and save the file with a .jsp extension. That's pretty much all
there is too it. When it comes time to change either the page layout or page logic, the
developer would modify the portion of the JSP page necessary and allow the JSP page to
automatically be recompiled. For HTML developers, many of today’s popular tools are
capable of working with JSP and custom tags.

15



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

JSP Scriptletsor Tag Libraries?

There are many developers who believe custom tags should be used in JSP
pages, rather than scriptlets or expressions. Therationaleis:

Scriptlets mix logic with presentation
Scriptlets break the separation of roles
Scriptlets make JSP pages difficult to read and maintain

Custom tags on the other hand centralize code in one place and help maintain
the separation of responsibilities. They also support the concept of reuse because
the same tag can be inserted into multiple pages, while having the
implementation reside in a single location. There's no redundancy or copy-and-
paste programming like there is with JSP scriptlets.

Together, JSP pages and servlets combine for an attractive alternative to other types of
dynamic web programming. Because they are both based on the Java language, they offer
platform independence, extensibility into the enterprise, and most importantly, ease of
development.

You can find more information about the JavaServer Pages technology at Sun JSP site:
http://java.sun.com/products/jsp. The JavaServer Pages specification can be downloaded
from http://java.sun.conVproducts/jsp/download.html.

JSP Model 1 and Mode 2 Architectures

The early JSP specifications presented two approaches for building web applications
using JSP technology. These two approaches were described in the specification as JSP
Model 1 and Model 2 architectures. Although the terms are no longer used in the JSP
specification, their usage throughout the web tier development community is still widely
used and referenced.

The two JSP architectures differed in several key areas. The major difference was how
and by which component the processing of a request was handled. With the Model 1
architecture, the JSP page handles al of the processing of the request and is also
responsible for displaying the output to the client. Thisis better seen in Figure 1-3.

16




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

~—Web Container =
User
Action 2
<JSP> f ~
(View} Java Beans
(Model)
_ System
Browser - Response

Figure 1-3. JSP Model 1 Architecture

Notice that in Figure 1-3 there is no servlet involved in the process. The client request is
sent directly to a JSP page, which may communicate with JavaBeans or other services,
but ultimately the JSP page selects the next page for the client. The next view is either
determined based on the JSP selected or parameters within the client’s request.

In direct comparison to the Model 1 approach, in the Model 2 architecture, the client
request is first intercepted by a servlet, most often referred to as a Controller serviet. The
servlet handles the initial processing of the request and also determines which JSP page
to display next. This approach isillustrated in Figure 1-4.

~—Web Container ™
Servlet
User _ | | (Controller) ——
Action S 2
4 L Y
,EL T Java Beans Data
Y 3 (Model)

- System <JSP>
Browser Response (View)

Figure 1-4. JSP Model 2 Architecture

As you can see from Figure 1-4, in the Model 2 architecture, a client never sends a
request directly to a JSP page. The controller serviet acts as sort of a traffic cop. This
allows the servlet to perform front-end processing like authentication and authorization,
centralized logging, and possibly help with Internationalization. Once processing of the
request has finished, the serviet directs the request to the appropriate JSP page. How
exactly the next page is determined can vary widely across different applications. For
example, in simpler applications, the next JSP page to display may be hardcoded in the
servlet based on the request, parameters, and current application state. In other more
sophisticated web applications, a workflow/rules engine may be used.

17



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

As you can see, the main difference between the two approaches is that the Model 2
architecture introduces a controller servlet that provides a single point of entry and also
encourages more reuse and extensibility than Model 1. With the Model 2 architecture,
there is also a clear separation of the business logic, presentation output, and request
processing. This separation is often referred to as a Model-View-Controller (MVC)
pattern. While the Model 2 architecture might seem overly complicated, it can actually
simplify an application greatly. Web applications built using the Model 2 approach are
generally easier to maintain and can be more extensible than comparable applications
built around the Model 1 architecture.

All of this doesn't mean that applications built using the Model 1 approach are
incorrectly designed. The Model 1 architecture might be the best decision for smaller
applications that have simple page navigation, no need for centralized features, and are
fairly static. However, for more larger enterprise-size web applications, it would be more
advantageous to utilize the Model 2 approach.

Why is M odel-View-Controller So Important?

Model-View-Controller is an architectural pattern that by it self has nothing to do with
web applications directly. As we saw from the previous section, the JSP Modedl 2
approach is clearly about separating responsibilities in a web application built using
Servlet and JSP technologies. Allowing a JSP page to handle the responsibilities of
receiving the request, executing some business logic, and then determining the next view
to display can really make for an unattractive JSP page, not to mention the problems this
entanglement causes for maintenance and extensibility. By having components within a
web application that have very clear and distinct responsibilities, the development and
mai ntenance on an application can be made more efficient. Thisis aso true for software
development as awhole.

The MVC pattern is categorized as a design pattern in many software design books.
Although there is usually much disagreement on the precise definition of the pattern,
there are some fundamental ideas.

The MV C pattern has three key components:

The Model Component
Responsible for the business domain state knowledge

The View Component
Responsible for a presentation view of the business domain

The Controller Component
Responsible for controlling flow and state of the user input

18



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Normally with the MV C pattern, there’s a form of event notification that takes place to
notify the view when some portion of the model changes. However, since a browser in a
typical web application has a stateless connection, the notification from the model to the
view can't easily occur. Of course, an application could perform some type of push action
to push data changes all the way to a client; but this doesn't and probably shouldn’t
happen in most web applications. A user can close at a browser anytime and there isn’t
warning or notification sent to the server. There's a great deal of overhead necessary to
management remote clients from the server side. This type of behavior is overkill for
typical B2C and B2B web applications.

With standard web applications, a client must perform another reguest back to the server
to learn about any changes to the model. For example, if a user is viewing the pricing
information for an item and at the same time, the administrator changes the price for that
item, the user isn't going to know this until they refresh the page or place the item into
their shopping cart.

TheMVC Model

Depending on the type of architecture of your application, the model portion of the MVC
pattern can take many different forms. In a two-tier application, where the web tier
interacts directly with a data store like a database, the model classes may be a set of
regular Java objects. These objects may be populated manually from a result set returned
by a database query or they can even be instantiated and populated automatically by an
Object-to-Relational Mapping (ORM) framework like TopLink or CocoBase.

In a more complex enterprise application where the web tier communicates with an EJB
server for example, the model portion of the MVC pattern might be Enterprise
JavaBeans. Although the EJB 2.0 Specification made some improvements in performance
through the use of local interfaces, there can still be a significant performance impact if
the web tier attempted to use entity beans directly as the model portion of the application.
In many cases, JavaBeans are returned from Session beans and used within the web tier.
These JavaBeans are commonly referred to as value objects and are used within the views
to build the dynamic content.

TheMVC View

The views within the web tier MV C pattern typically consist of HTML and JSP pages.
HTML pages are used to serve static content, while JSP pages can be used to serve both
static and dynamic content. Most dynamic content is generated in the web tier. However,

" Web applications are considered statel ess because the browser doesn’t typically maintain an open
socket to the web server. However, a web application may still maintain session data for a user or
even store data within the browser on behalf of the user.

19



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

some applications may require the need for client-side JavaScript. This does not interface
or infringe upon the MV C concept.

[Editors. This section istoo short and | will need to discuss this alittle more. Chapter 7 is
dedicated to discussing what Struts offers in the way of View Components. This section
should just discuss it from a generic web application point of view. Any feedback is
appreciated for this section]

TheMVC Controller

The controller portion of the web tier MVC design is generaly a Java serviet. The
controller in aweb tier application performs the following duties:

Intercepts HT TP requests from aclient.
Tranglates the request into a specific business operation to perform.
Either invokes the business operation itself or delegates to a handler.

Helps to select the next view to display to the client.

o W dp R

Returnsthe view to the client.

The Front Controller pattern, which is part of the J2EE Design Patterns , describes how a
web tier controller should be implemented. Since all client requests and responses go
through the controller, there is a centralized point of control for the web application. This
aides in maintenance and when adding new functionality. Code that would normally need
to be put in every JSP page can be put in the controller servlet, since it processes all
reguests. The controller also helps to decouple the presentation components (views) from
the business operations, which also aids devel opment.

What isa Framework?

| have been throwing the word framework around in this chapter without having really
defined what exactly it is or how it adds value in software development. In its ssimplest
form, aframework is a set of classes and interfaces that cooperate to solve a specific type
of software problem. A framework has the following characteristics:

A framework is made up of multiple classes or components, each of which may
provide an abstraction of some particular concept

The framework defines how these abstractions work together to solve a problem

" The J2EE Design Patterns can be found at http: //java.sun.com/blueprints/patter ns/index. html

20



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

The framework components are reusable

A good framework should provide generic behavior that can be utilized across many
different types of applications.

There are many interpretations of what constitutes a framework. Some might consider the
classes and interfaces provided by the Java language a framework, but it's really a
library. There's a subtle, but very distinct difference between a software library and a
framework. With a software library, your application is the main code that executes and it
invokes routines on the library. With a framework, it contains the executing routines and
invokes operations onto your extensions through inheritance and other means. The places
where the framework can be extended are known as extension points. A framework is
commonly referred to an “upside-down” library because of the alternate manner in which
it operates. Figure 1-5 illustrates the subtle differences.

Framework Library 2
Library 1
Apslication 1 Application 2
Extensions Extensions Main Application
Application 3
Extensions
LIsing a Framewoark Lising a Library

Figure 1-5. A framework has subtle differencesfroma library

Creation of the Struts Framewor k

By now you should have a foundation for JSP and Servlet technology and you should
also understand the benefits that the Web MV C design and JSP Model 2 architecture adds
to a web application. This section provides a little background and history on the Struts
framework, which is an implementation of all of these ideas. This section will not leap
into any technical details of the framework; that's saved for the later in the book. I nstead,
this section will describe the conditions under which the framework itself was created
and how it has evolved over the past couple of years.

As was aready mentioned, the Struts framework was created by Craig R. McClanahan
and donated to the ASF in 2000. Craig is deeply involved in the expert groups for the

21



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Servlet and JSP specifications and has written a large portion of the Tomcat 4.0
implementation. He also speaks at various conferences, such as JavaOne and ApacheCon.

Since Struts was first created, there have been several committers to join the Struts
bandwagon, and even more developers that have volunteered their time and effort to
increase the value of the framework and keep it moving forward. The framework has
already gone through several beta releases and a couple of General Availability (GA)
releases and although there have been many new features added, the framework hasn’t
strayed far from the core idea.

The Struts group always welcomes new participants to the project. Any developer
wishing to contribute to the project only need to volunteer their time and knowledge and
that's al there isto it. To become a contributor, it's recommended that you first join the
Struts User mailing list. If you like what you see there, then take a look at the Struts
Developers mailing list. Thisis the best way to get started and become familiar with the
direction of the framework. You should read the mailing list guidelines first before
joining. You can find the guidelines at http://jakarta.apache.org/site/mail.html.

After reading the guidelines, you can join one or more of the Apache project mailing
lists, including Struts, from the URL: http://jakarta.apache.org/site/mail 2.htm.

The main project web site for Struts is located at http://jakarta.apache.org/struts. For
more information on downloading and installing Struts, see Appendix B.

Alternativesto Struts

Before we get too far into the Struts framework discussion in the coming chapters, we
should talk about what alternatives are available to using Struts. Since Struts is an
implementation of the Model 2 approach, you can safely assume that there are other
implementations available. The problem in trying to compare any two software products
in general is that feature sets are rarely ever the same. It's sometimes like trying to
compare “apples’ with “apples that have wheels’. The goal of the two may be the same,
but one may have features that are missing from the other.

Comparison between web application frameworks is made worse because many are open
source and have a tendency to vanish as quickly as they appear. That’s in no way saying
that open source projects are any more or less volatile than their well-funded
counterparts. It's true however, that you must be careful when choosing an open source
framework on which to base you entire project. Make sure that you have a copy of the

" A committer is a developer who provides expert direction and advice to steer the Struts
framework on the correct course. A committer has the ability to modify the source code repository
and can cast votes that affect the future of the framework.

22



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

source code, in case you ever have to take ownership in the complete maintenance of the
framework. It's always a valuable experience to compare feature sets of software
products, open source or not, when choosing any framework or component for an
application.

Because there are so many approaches to outputting a presentation view to a client, it's
very difficult to categorize the different approaches. The goal of this section is to briefly
introduce some other close and maybe not so close aternatives to Struts. Because
versions and features may change with each new release, you should do your own
research for the solution(s) that you are interested in. This list of alternatives is by no
means exhaustive. However, it will provide a launching pad for you to perform your own
research about alternatives.

The other point to make before we list the aternatives is that only solutions based on or
around the Java platform are listed. It's assumed that you know Microsoft offers a
competing technology based on Active Server Pages (ASP) technology, for example.
Although the goal of ASP is similar to JSP, ASP or ASP+ is not compared here. That's
better left for a book on JSP and Servlets. Even more so, the Struts framework goes way
beyond what is offered by JSP alone and comparing ASP or other similar technologies
would be the wrong comparison.

[Editors. | have done as much research on each of these technologies as time and
documentation has allowed. If you have used one or more of these, and have significant
prons and/or cons, please feel free to include them and | will update the section. I’ ve tried
to be fair, but was unable to really give any one afull test-drive.

I’m expecting this section to generate a great deal of positive and negative feedback as
everyone tries to get in their favorite framework. | understand that and ready for it. |
promise to update these sections during author review with the latest information that |
can find and sample.

If you fedl that | should just list each onein arow of atable and skip the commentary, let
me know and if the majority agrees, then I'll changeit.

chuck

1

Building your own framework

At first, it might seem strange to see “ Building your own framework” as an alternative to
Struts. Why in the world would you want to build something like this from scratch, when
it already exists in many different forms? The answer is the same reason the other open-
source or commercial products are started. The available selection of products might just
not be close enough to the desired framework and the decision is to build it in-house.
Other times, the decision is completely out of the developer’s hands and there’ s not much
of achoice. It's happened to al of us, at one time or another.

23



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

There's a concept in software development called “The Not Invented Here Syndrome”.
It's where a software devel opment team refuses to use a particular technology or software
component that they didn’t create themselves. In many cases, locating and eliminating
dependencies is the correct course of action. If your application depended on a third-party
framework and that framework stopped being supported, that's a problem. Every
software package that an organization buys or gets from a third-party introduces more
risk into a project. Often, this additional risk is necessary. However, this is not always
true.

The best advice that one can give regarding building your own framework is to be honest
and ask yourself several questions.

1. Have | taken the time to inspect what's available and build a prototype using the
framework?

2. What does my application need that doesn’'t exist in one of the available
frameworks?

3. For anything that | need that isn’'t available in one of the frameworks, can | extend
the framework or find it from another source and add it?

4. Do | know as much about building this type of framework as the number of
developers that have been working on the available ones?

Depending on honest answers to these questions, you might find that building your own
framework isn't the best decision. A good guideline that many in the software
development industry agree with is that if it pertains to your core business, then build it in
house. If the software component is not directly related to your business, but is a generic
type of framework, then go get it from somewhere else. Play to your developer's
strengths and minimize their weaknesses.

Barracuda

The Barracuda presentation framework is a type of Model 2 architecture similar to
Struts, but seems to go a step further and provides a model event notification mechanism
Unlike with a strictly JSP approach, the Barracuda framework touts to have created a
template engine component, which is supposed to allow for more flexibility and
extensibility. The framework leverages code-content separation provided by the XMLC
approach of creating user interfaces. XMLC is a Java-based compiler that uses either an
HTML or XML document and creates Java classes that can recreate the document when
executed. The generated Java classes can be used to insert dynamic content into the
document at runtime by manipulating Document Object Model (DOM) interfaces. The
separation of markup and application logic alows for web designer to focus on markup
and programmers to focus on coding.

Arguably, the one downside to using a framework similar to this one is that it might be a
little steeper learning curve for developers, although one can argue that Struts is no walk

24



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

in the park. The involvement of XMLC and the fact that Java classes are created from
HTML or XML documents might confuse less experienced devel opers.

The Barracuda framework has recently been released 1.0. Y ou can find more information
on the Barracuda presentation framework at the URL :

http://barracuda.enhydra.org

Cocoon

Stefano Mazzocchi founded the Cocoon project in January 1999 as an open source
project under the ASF. The goa of Cocoon is to help the separation of content style,
logic, and management functions for an XML based web site. Cocoon leverages XML,
XSLT, and SAX technologies to help create, deploy, and maintain XML server
applications. Cocoon is currently at release 2.0. Most types of data sources, including
RDBMS, LDAP, File Systems, are supported. More information on Cocoon can be found
at the URL.:

http://xml.apache.org/cocoon

EXpresso

The Expresso framework from Jcorporate is an application development framework that
provides a component framework for developing database-driven web applications. The
Expresso framework can be integrated into Struts and adds capabilities for security,
Object-to-Relational Mapping (ORM), background job handling and scheduling, and
many other features. Expresso can be classified as a companion product to Struts, rather
than a competitor. It is currently asrelease 4.0

More information on the Expresso framework can be found at the following URL:

http://mawwv.jcor porate.com

Freemarker, Velocity, and WebMacro

These three products are grouped together because they all represent similar types of
template engines.

Freemarker isan open source HTML template engine for Java servlets. Y ou store HTML
in templates, which eventually get compiled into template objects. These template objects
then generate HTML dynamically, using data provided by servlets. It uses its own
template language and claims speeds approaching static HTML pages. The software is
free and licensed under the GNU Library Public License. It is currently at release 2.0.

25



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Velocity is a Java-based template engine that is similar in many ways to Freemarker.
Velocity is another Jakarta project similar to Struts.

Velocity's is capable of performing more functionality than just dynamic content for web
sites. It can generate SQL, PostScript, and XML from templates, for example. It can be
used either as a standalone utility for generating source code and reports, or as an
integrated component of other systems. Velocity also provides template services for the
Turbine web application framework. Many other frameworks either support the Velocity
scripting syntax or actually depend on it.

WebMacro is an open source Java servlet framework that claims to be used by several
large Internet web sites like AltaVista.com. The WebMacro framework uses a lightweight
scripting language that allows separation of how a page looks from the logic. WebMacro
can be ran in standalone mode or hooked in with a servlet container. It's currently at
release 1.0.

Y ou can find more information on each of these three products from the web sites listed
in Table 1-2.

Table 1.2. Template Engine URL’s

Product URL

Freemarker http://freemarker.sourceforge.net
Velocity http://jakarta.apache.org/velocity
WebMacro http://www.webmacro.org

Maverick MV C Framework

The Maverick MV C framework offers the ability to render views using JSP, the Velocity
scripting language, or Extensible Stylesheet Language Transformations (XSLT) directly.
Maverick is a MV C type architecture, but actually provides a view template mechanism.
It relies on one of the three scripting languages mentioned. One neat feature of Maverick
is that it can use reflection on your JavaBeans in the presentation layer to create a DOM
interface so that no XML generation or parsing is required. This alows for a little less
clutter and probably better performance when using XSLT to generate the views.

Y ou can find more information on the Maverick framework at the URL :

http://mav.sour ceforge.net

Sitemesh

SteMesh is basically a web page layout and integration system that aids is creating web
sites that need a consistent look and feel. What SiteMesh does is to intercept requests to

26



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

any web page, whether it's static or dynamically generated and parse the content and
generates afinal page. This processis based on the well-known Decorator™ pattern.

SiteMesh is built with Servlet, JSP, and XML technologies, which makes it appropriate
for J2EE applications. However it claims to aso be easy to integrate with other web
technologies such as CGI. More information on SiteMesh can be found at the URL :

http: //mwww.opensymphony.convsitemesh

Jakarta Turbine

Turbine is a servlet-based framework that is also an open source Jakarta project.
Currently, there isn't a great deal of documentation, however it does seem similar to
Struts with a few mgjor differences. For one thing, it doesn't seem to be coupled to JSP.
The focus seems to be to provide a collection of reusable components. There is a very
large set of components included with the framework, but they are quite disparate. It
seems to present more of a component library, but with the lacking documentation, it's
hard to get a good feel on the complete architecture.

More information on Turbine can be found at the URL :

http://jakarta.apache.org/turbine

WebWork

WebWork is a small web application framework that utilizes something called Pull
Hierarchical Model View Controller (HMVC). With a standard MV C design, changes
made to the model are sort of pushed to the view. In the case of WebWork, the views sort
of pull the data when they need it. Another interesting point is that WebWork doesn’t
seem to betied to a servlet; therefore it can support other types of clients like Swing.

More information on the WebWork framework can be found at the URL :

http: //sour cefor ge.net/proj ects/webwor k

JavaServer Faces

At the time of this writing, there is a Java Specification Request (JSR) to create a new
Javatechnology called JavaServer Faces. The specification defines the architecture and a

" The Decorator pattern is a structural design pattern mentioned in the book “ Design Patterns’
written by Gamma, Helm, Johnson, and Vlissides, affectionately known as the GangOfFour.

27



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

set of APIsfor the creation and maintenance of Java server web applications. Theideais
to create a standard set of JSP tags and Java classes that help developers create complex
HTML forms and other Graphical User Interface (GUI) components based on Servlet
and JSP technologies. 118N and input validation seems to be a big part of the intended
support.

JavaServer Faces will be a specification and not an actual implementation. It will define a
set of standard APIs and vendors will be able to create their own implementations and
therefore, developers will have more than a single implementation to choose from.

The JSR indicates that they are aware that other projects like Struts, have already
addressed many of the problems that this specification attempts to solve and that the JSR
is aimed at creating a standard that will help unify the fragmented area. You'll have to
keep you eye on this specification as it may have a huge impact on Struts and the entire
web application area as awhole.

More information on the specification can be found at the URL.:

http: //Amww.jcp.org/jsr/detail/127.jsp

28



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

2

Inside the Web Tier

This chapter describes the physical and logical aspects of designing and utilizing a web
tier for your applications. It discusses the close relationship that exists between the
architectural tiers and the responsibilities that each play in the overal application.
Special focus will be given to the web tier, which alows an application to communicate
and interoperate with clients over the web.

The Struts framework is based on the Java Servlet Technology and to a lesser extent,
JavaServer Pages, and therefore is dependent on a web container. For Struts devel opers,
understanding how the web container processes client requests is fundamental to having a
deeper understanding of the framework itself. This chapter illustrates the various
components that are part of the web container and what each component’s responsibilities
are.

An Architecture Overview

This section presents a high-level architecture view for a Struts application. Although this
section shows an architecture for an enterprise application, not all applications written
using Struts will be of this size and makeup. However, this type of application does allow
us to present many facets of how Struts applications may be configured.

Many applications, and J2EE application especially, can be described in terms of their
tiers. The application’s functionality is separated across these tiers, or functional layers,
to provide separation of responsibility, reuse, improved scalability, and many other
benefits. The separation of tiers may be a physical separation, where each one is located
on a separate hardware resource, or the separation may be purely logica. In this case,
one or more tiers are collocated on the same hardware resource, and the separation exists

29



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

in terms of software. Figure 2-1 illustrates the tiers that may be used by a typical Struts
application.

. - - - I ; Ry
(" Client Tier ) 4 Middle Tier N EIS Tier
= 1
Firewsll r JNDI,
I[ web ! IS,
[ Container [ Javahall -
| Web T |
|| (Serviets, | EJB
J5P Pages,
H e sy | ] Container F—
Web ahXML l\ :
Service or
Foars S0AF i" | ﬂ (RDEMS,
: £ ERP,
| VLV' Legacy Apps,
| | CRMj}
Weab Tier |
REIIHEP_ = >
) —

_z' ' _J
Figure 2-1. Functional Application Tiers

Not every Struts application will contain all of the tiers illustrated in Figure 2-1. For
many smaller applications, the Middle tier may consist primarily of a web container that
interacts directly with a database in the Enterprise Information Systems (EIS) tier.

30



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

What is a Container?

There are many different types of containers. There are EJB Containers, Web
Containers, servlet containers, and so on. In general, containers provide a
hosting environment for software components to run in. Containers provide
genera services that can be used by the components within the environment,
without the need or worry of being required by the component developer. A
Web Container allows servlets, JSP components, and other Java classes to be
deployed and executed within the container. Services like JNDI, connection
pooling, and transaction services, can be configured at the container level, and
the component developers don’t have to worry about the management of these
resources, similar to the way in which EJB containers manages Security,
transactions, and bean pooling.

When using the services provided by a container, component developers may
have to give up some control of the environment to the container, in trade for
important services that the developers don’t have to worry about building.
Third-party vendors, who must follow certain guidelines that are explicitly laid
out in public specifications, build these containers. Although each vendor is
allowed to implement certain portions of the container in a proprietary manner,
they must follow the specification to ensure that portability can be achieved by
the developer.

TheClient Tier

The Client tier provides a means for a user to interact with the application. This
interaction may be through a web browser, or it could also be programmatic through a
web services interface. Regardless of the type of client, the interaction includes
submitting a request and receiving some type of response from the Middle tier.

In the case of the Struts framework, the most common type of client is a web browser.
However, it is also possible to have clients like wireless devices and Java Applets.

TheWeb Tier

Figure 2-1 shows the Middle tier as an aggregate of the Web tier plus some type of
application server component. In the case of Figure 2-1, an EJB container is shown.
These two tiers are often combined and many application servers include Web tier
functionality.

31



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

The Web tier provides the ability for the client tier to communicate and interact with
application logic that resides in other tiers. In more traditional web applications, it's not
uncommon for some or al of the application logic to reside in this tier. In larger,
enterprise-scale applications, the Web tier acts as a trandator and maps HTTP requests
into service invocations on the Middle tier.

The Web tier is also responsible for managing screen flow based on application and user
state. The Web tier communicates with either a database, or in the case of an enterprise
application, an application server. The Web Tier is the glue that binds client applications
to the core backend business systems.

The components that reside in the Web tier allow developers to extend the basic
functionality of a web service. In the case of Struts, it does this by utilizing framework
components that run in a servlet container.

TheMiddleTier

The Middle tier is often referred as the “application tier” or “server”. Thisis due in part
to the fact that there is often an application server within this tier. Not al Struts
applications have an application tier. This is especially true for small web applications.
Many small projects choose to forgo using a large application server and communicate
directly with a database or some other data store. When an application server is present,
the Web tier communicates to it using some variation of RMI. In the case where an EJB
server is present in the application tier, the communication protocol is RMI over 11OP.

32



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

RMI Over 110P

Remote Method Invocation (RMI) allows methods to be invoked on remote
objects. Java's implementation of RMI is known as Java Method Remote
Protocol (JRMP) has been around for quite some time and is specifically
designed for Java-to-Java remote communications.

One of the issues with Java’'s version of RMI is that a VM must be running on
both the client and server for it to be used. With the number of so-called legacy
applications that are written in languages such as C++, Java needed a way to
communicate with these systems. Thisis where RMI over 11OP helps out.

Internet Interoperability Protocol (I10OP) was designed to allow distributed
components to communicate with one another using TCP/IP. 1I1OP is language
and platform independent.

So, by using RMI on top of IIOP, Java can communicate with applications
written in many other different languages and on various platforms. RMI/I1OP
as it is often written, is required for all EJB servers to support and exists in the
EJB and J2EE specifications.

When included, the application tier might provide a more scalable, fault tolerant, and
highly available architecture. This of course, depends on many different factors. One of
the main purposes of using an application tier is to separate the responsibilities of
presentation from that of the model and the business rules for the application. Today,
many web applications are using EJB servers for their application tier. They may not be
utilizing all aspects of the J2EE architecture, like EJBs, but there are other benefits that
can be leveraged from a J2EE server.

The Enterprise Information System Tier (EIS)

The Enterprise Information System (EIS) tier contains data and services that are used
throughout the enterprise. It provides access to enterprise resource such as databases,
mainframes, Customer Relationship Management (CRM) applications, and resource
planning systems.

The middle tier communicates with components in the EIS tier using protocols that are
specific to that resource. For example, to communicate with a relational database, the
Middle tier will normally use a JDBC driver. For Enterprise Resource Planning (ERP)

33



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

systems, a proprietary adapter is used, although some ERP systems and other enterprise
resources are starting to support a more web service-like access approach.

Wher e does Struts Fit In?

After briefly examining these different tiers, it's important to understand which tier the
Struts framework exists in. As illustrated in Figure 2-2, the Struts framework resides in
the Web Tier.

) . ) ) I : ™~
(" Client Tier N 4 Middle Tier ) EIS Tier
— = 1
Firewal F—
[ JNDI,
I} weo IMS,
| Container | JavaMail -
e e 4
oy
| | Container Drivers
I
sWeT:r EOXML l\ (Serviets, |
Pese |\ SOAPTY| JSP Pages, ﬁ
[| HTML 2RaL} | | (RDEMS,
o & ERP,
l ‘q—v" Legacy Apps,
| N CRM)
Web Tier |
lel'ﬁzp_ - >
) _—

_J " vy
Figure 2-2. The Struts framework is used within the Web Tier

Struts applications are hosted by a web container and can make use of services provided
by the container, like handling requests via the HTTP and HTTPS protocol. This frees
developers up to focus on building applications that solve a business problem.

The HTTP Request/Response Phase

To better understand how the web server and servlet container work together to service
clients, this section discusses the protocol for a HTTP request and response, from the
time a client request is received until the server returns a response. This discussion is
necessary because Struts makes heavy use of the request and response objects throughout
the framework and a thorough understanding of the round-trip process will help to make
things more clear for discussions later in the book.

Although the browser is only one possible type of client that can be
used with Struts, it is certainly the most common. More and more
developers are starting to use Struts for wireless applications and even

34



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

some interaction with web services, however the web browser remains
the prominent client.

There are two types of HTTP messages, the request and the response. HTTP is based on a
request/response model. The browser opens a connection to a server and makes a request.
The server processes the client’ s request and returns a response. Figure 2-3 illustrates this
process.

1:HTTP Wab Container
Request
Web Browser 2:Process
FHTTE Request
Respanse

Figure 2-3. The HTTP request/response model

Both types of messages consist of a start line, zero or more header fields, and an empty
line, which indicates the end of the message headers. Both message types may aso
contain an optional message body.

The format and makeup of the request and response messages are very similar, but there
are afew differences. We'll discuss each one separately.

The HTTP Request

The start line of an HTTP request is known as the Request - Li ne. It's always the first
line of the request message and it contains three separate fields:

An HTTP method
A Universal Resource Identifier (URI)

An HTTP Protocol Version

Although there are several HT TP methods for retrieving data from a server, the two used
most often are GET and POST. The GET method requests a specified resource from the
server, indicated by the request URI. If the URI is a data producing resource, like a
servlet, the data will be returned within the response message. Although the GET
message can pass information in the query string, the POST method is used to explicitly
pass data to the server that can be used for processing by the request URI.

The Universal Resource Identifier (URI) identifies the resource that should process the
request. For the purposes of this discussion, it can either be an absolute path or arelative
one. A request with aninvalid URI will return an error code, typically a 404.

35



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

The HTTP request protocol version is simply an identifier to the server of which version
of the HTTP specification the request conforms to. The following example illustrates the
request line for asample GET request.

| GET /index. htm HTTP/ 1.0

Y ou can actually execute this example by opening up a telnet session to a server running
aweb server. You must specify the host name and port number of the web server, such
as:

| tel net |ocal host 80

Y ou can then type the GET command. Y ou will need to press enter twice after issuing the
command; once for the end of the request line and then the other return isto let the server
know you are finished with the request. Assuming there’s afile called index.html in the
root directory, you will see the HTML response returned. Actually, you will always see a
response. It just may not be the one that you expected. We'll talk more about using the
telnet application to interact with a web server when we discuss redirects and forwards
later in this chapter.

As mentioned, the HTTP request may also contain zero or more header fields. Request
header fields allow the client to pass additional information about the request and also the
client itself, to the server. The format of a header field, for request and responses, is the
name of the header field, following by a colon “:” and the value. If multiple values are
specified for a single header field, they must be comma-separated. Table 2-1 shows some
of the more commonly used request headers.

Table 2-1. Common HTTP Request header fields

Name Purpose

Accept Used to indicate the media types, which are acceptable for the
response. If no Accept header field is present, the server can
safely assume that the client accepts all mediatypes. An
example of an Accept header valueis “image/gif, image/jpeg”.

Accept - Char set Used to indicate what character sets are acceptable for the
response. If the Accept - Char set header isnot present in
the request, the server can assume that any character set is
acceptable. The 1SO-8859-1 character set can be assumed to
be acceptable by all user agents.

Accept - Encodi ng This header isvery similar to the Accept header field, except
that it further restricts the content-coding values, which are
acceptable by the client. An example of an Accept -

Encodi ng header value is*“compress, gzip”.

Accept - Language Used to indicate which languages the client would prefer to
have the response in. An example of an Accept - Language
header valueis “en-us, de-li, es-us”.

36



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Cont ent - Encodi ng It helpsindicate what encoding mechanism has been applied
to the body of the message and therefore what decoding must
be used to get the information. An example of a Cont ent -
Encodi ng header valueis“gzip”.

Cont ent - Type Used to indicate the media type of the body sent to the
recipient. An example of aCont ent - Type header is
“text/html; charset=1SO-8859-1".

Host Used to indicate the host and port number of the resource
being requested, as obtained from the original URL. An
example of the Host request header is “www.somehost.com”.

Ref er er The Ref er er request header field alows the client to specify
the address (URI) of the resource from which the request URI
was obtained. It is mainly used for maintenance and tracking
purposes.

User - Agent TheUser - Agent request header field contains information
about the client that originated the request. It's mainly used for
statistical purposes and tracing of protocol violations. An
example of aUser - Agent is“Mozilla/4.0 (compatible;
MSIE 6.0; Windows NT 5.0)".

The message body for a request is used to carry data that is associated with the request to
the server. The data that is included within the body is different from the values used by
the header fields both in terms of format and content. The header fields can be viewed as
meta-data about the message body.

TheHTTP Response

Once the server has received and processed the request, it must return an HT TP response
message back to the client. The response message consists of a status line, zero or more
header fields, followed by an empty line. It may also have an optional message body,
similar to the request message.

The first line of the HTTP response message is known as the status line. It consists of the
HTTP protocol version that the response conforms to, followed by a numeric status code
and its textual explanation. Each field is separated by a space. An example response
status line is shown here:

| HTTP/ 1. 1 200 K

The status code is a 3 digit numeric value that corresponds to the result code of the
server's attempt to satisfy the request. The status code is for programmetic applications,
while the reason text is intended for human readers. The first digit of the status code
defines the category of the resulting code. Table 2-2 provides the allowed first digits and
the corresponding category.

37



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Table 2-2.Satus Code Categories

Numeric Value M eaning

100-199 Informational — Request has been received, continuing to
processit.

200-299 Success — The action was successfully received, understood,
and accepted.

300-399 Redirection — Further action must be taken in order to
complete the request.

400-499 Client Error — The request contains bad syntax or cannot be
fulfilled.

500-599 Server Error — The server failed to fulfill an apparently valid
request.

There are quite afew status codes that have been defined. They are also extensible, which
allows applications to extend the behavior of the server. If a client application doesn’t
recognize a status code that has been returned by the server, it can assume the type of
response status by using the first digit of the returned status code. Table 2-3 lists some of
the most common response status codes.

Table 2-3. Common HTTP Response Satus Codes

Code M eaning
200 OK—The request has succeeded.
302 Moved Temporarily —The request resides temporarily under a

different URI. If the new URI is alocation, the location header field in
the response will give the new URL. Thisistypically used when the
client is being redirected.

400 Bad Request—The server couldn’t understand the request due to
malformed syntax.

401 Unauthorized—T he request requires authentication and/or
authorization.

403 Forbidden—The server understood the request, but for some reason is
refusing to fulfill it. The server may or may not reveal why it has
refused the request.

404 Not Found—The server has not found anything matching the request
URI.

500 Internal Server Error—The server encountered an unexpected condition

which prevented it from fulfilling the request.

The header fields in the response are similar in format to those found in the request
message. They allow the server to pass additional information to the client, which cannot
be placed in the status line. These fields give information about the server and about
further access to the URI contained within the request. After the last response header,

38



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

which is followed by an empty line, the server can insert the response message body. In
many cases, the response message body is HTML output. Figure 2-4 illustrates an
example response;

| GET /hello.htm HITP/ 1.0

mmand Prompt - telnet

HITF-/1.8 288 OK
Server: Resins2.8.5
ETag: "AAAAOxiweE4'
Last—-Modified: Mon. 84 Mar 2882 19:12:35 GMT
Expires: Mon, B84 Mar 2082 19:12:46 GHMT
Content-Type: text html
Content—Length: 189
: Mon,. B4 Mar 2082 19:12:49 GMI

<html>
<head>{title>Hello HTML File{/title>{~ head>

<hody>

Hello from the servert

Connection to host lost.

Press any key to continue...

Figure 2-4. An example HTTP response message

HTTPversusHTTPS

You've obviously noticed that the request and response message text shown in the
previous examples have al been standard readable text. This is fine for some cases,
however it also means that computer hackers can as well. When you need to ensure the
integrity and privacy of information that is sent over a network, especially an open one
like the Internet, one of the options is to use the HTTPS protocol, rather than standard
HTTP.

HTTPS is normal HTTP wrapped by a Secure Sockets Layer (SSL). SSL is a
communication system that ensures privacy when communicating with other SSL-
enabled applications. It's really just a protocol that runs on top of the TCP/IP layer. It
encrypts the data through the use of symmetric encryption and digital certificates. An
SSL connection can only be established between a client and server when both systems
are running in SSL mode and are able to authenticate each other.

The fact that the SSL layer encrypts the transmitted data has no impact on the underlying
request and response message. The encryption and subsequent decryption on the other
side occurs after the message is constructed and is decoupled from the HTTP portion of

the message.

Chapter 14 deals with security in a Struts application. HTTPS and SSL will be covered
more thoroughly there.

39



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Struts and Scope

The Struts framework utilizes various shared resource areas to store objects. The shared
resource areas all have alifetime and visibility rule that defines the scope of the resource.
This section discusses these resources, their scopes, and how the framework utilizes
them.

Request Scope

Each time a client issues an HTTP reguest, the server creates an object that implements
the javax.servlet. http. HtpServl et Request interface. Among other things, this
object contains a collection of key/value attribute pairs that can be used to store objects
for the lifetime of the request. The key of each pair isa St r i ng and the value can be any
type of Obj ect . The methods to store and retrieve objects into and out of the Request
scope are:

public void setAttribute( String name, Cbject obj );
public (bject getAttribute( String nane );

Request-scope attributes can be removed using the renoveAttribute() method,
however, because the scope of the attribute is only for the lifetime of the request, it is not
as important to remove them as it is for other request-scope attributes. Once the server
fulfills a request and a response is returned to the client, the request, and therefore the
attributes are no longer available to the client and may be garbage collected by the VM.

The Struts framework provides the ability to store JavaBeans into the request, so that they
can be used by presentation components like JSP pages. This makes it much easier to get
access to JavaBeans data, without having to do manual cleanup of removing the objects
later. The web container will take care of it for you. There’'s seldom a need to remove
objects from request scope. As you can see, the visibility of objects stored at the request
level is only for resources that have access to that request. Once the response has been
returned to the client, the visibility is gone. Objects that are stored in one request are not
visible to any other client request.

Session Scope

The next higher level of visibility is session scope. The web container will create an
object that implements the j avax. servlet. http. H t pSessi on interface to
identify a user across multiple page requests. The user’s session will persist for a period
of time that is based on how frequent the user makes a request. This allowed inactivity
time is configurable through the application deployment descriptor. It may also be
prematurely destroyed by calling thei nval i dat e() method on the session object.

The session also alows for a collection of objects to be stored based on a key/value pair
schema, similar to the request object. The only difference between this one and the one

40



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

provided by the request is the duration of the objects. Since sessions exist across multiple
requests, objects stored in the session scope live longer than those at the request level.
The Struts framework uses session attributes quite extensively. An example of an object
that may be stored as a session attribute is the Local e object for the user. This allows
the entire framework access to the user's locale to perform localized behavior. Objects
stored in one user’s session are not visible to users with a different session.

There is no synchronization provided by container for the session
object. If multiple threads attempt to access an object stored in the
session and modify the value, it's up to the developer to provide
synchronization. There is no automatic synchronization provided by the
session. Although the need to synchronize access to the session is quite
low, you must realize that the developer has the responsibility to
protect the resources. Scenarios where multiple threads might access
the session at the same are if your application uses frames, or if you
have a process takes a long time to complete. Both of these situations
could cause more than one thread to attempt to access the same session
attribute.

Application Scope

An even higher level of visibility and duration comes with objects stored at the
application scope level. These are objects that are visible to all client and threads of the
current web application. They live until they are programmatically removed or until the
application is terminated.

The server creates an object that implements the
javax. servl et . Servl et Cont ext interface for each and every web application
that isinstalled within the container. The Ser vl et Cont ext object allows objects to be
stored and retrieved exactly like they are done for the request and session scopes, with the
one difference being that the objects are visible to the entire application and persist for
the lifetime of the application. The Struts framework uses application scope to store
JavaBeans that need to be visible to all users. Normally, objects are stored in this scope
during application startup and remain there until the application exits.

Page Scope

The last scope to discuss has to do exclusively with JSP pages and is referred to as page
scope. Objects with page scope are only accessible within the JSP page that they are
created. Once the response is sent to the client or the page forwards to another resource,
the objects ae no longer availablee The objects are stored in  the
j avax. servl et.] sp. PageCont ext object for each page.

41



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Every JSP page has an implicit object reference named pageCont ext that can be used
to store and retrieve page-level objects. It includes the same get Attri bute() and
set Attribute() methods that the other scopes offer and function in the same
manner.

Using URL Parameters

Request’ parameters are strings that are sent with the client request to the server. The
parameters are inserted into the Ht t pSer vl et Request object from the URI query
string and data that is sent in a POST method. The parameters are formatted as key/value
pairs.

URL parameters are only available via the get Par anet er () method when a POST
method is used. If the HTTP method is a GET, the only way the server can gain access to
the parameters included in the query string is by parsing the String returned from the
get Pat hl nf o() or get Request URI () methods.

URL parameters play an important role in all web applications and the Struts framework
is no exception.

Forward ver sus Redirect

It's often necessary to share control of a request by more than a single component. One
servlet may be responsible for authenticating and authorizing a client, while it’s the job of
adifferent servlet to retrieve some data for the user. This sharing of control of arequest is
accomplished in several different ways. Two of which, we want to discussin this section.

There are several important differences between how a web container processes a
forward request versus a redirect. Since the Struts front controller servlet, which was
discussed in Chapter 1, will always perform one or the other for a typical request, it's
important that you understand these differences and the impact that each mechanism will
have on your application.

How a Redirect Works

When a sendRedi rect () method is invoked, it causes the web container to return a
response back to the browser with information that a new URL should be requested.
Because the browser issues a completely new request, any objects that are stored as

" URL parameters are often referred to as query or request parameters.

42



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

request attributes before the redirect occurs, will be lost. This is one of the biggest
differences between a forward and redirect. Figure 2-5 illustrates why this occurs.

1:HTTP .
Raquast o Web Container

¥ 302 Response Returnad
Web Browser

Y

4: Mew Reguest Sent

SHTIP
Response

&

Figure 2-5.A redirect causes the browser to issue a new request

Because of the extra round-trip that occurs, a redirect is slower than using a forward.
Example 2-1 provides an example servlet that performs a redirect for a JSP page called
result.jsp, when arequest isissued for the servlet.

Example 2-1. A Java serviet that performs a redirect when it receives a regquest

package comoreilly. struts. chapter2exanpl es;

inport java.io.|CException;

i nport javax.servlet. Servl et Exception;

inmport javax.servlet.http. HtpServlet;

inport javax.servlet.http. HtpServl et Request;
i nport javax.servlet.http. HtpServl et Response;
i nport javax. servl et. Request D spat cher;

/**
* Performa redirect for the page "redirect.jsp"
*/
public class RedirectServlet extends HtpServlet {

throws Servl et Exception, | CException{
redirect( request, response );

}

throws Servl et Exception, | CException{
redirect( request, response );

}

/**

* to themduring a redirect.

*/

protected void redirect (HtpServl et Request req, HtpServl et Response resp)
throws Servl et Exception, | CException{
log( "Arequest arrived for " + req.getServletPath() );

/1 Put some objects into request scope

43

public void doGet (HtpServl et Request request, HtpServl et Response response)

public void doPost (HtpServl et Request request, HtpServl et Response response)

* Set a few URL paraneters and objects for the request to see what happens




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

req.setAttribute( "firstNane", "John" );
reg.setAttribute( "lastNane", "Doe" );

String context Pat h
String redirectStr

reg. get Cont ext Pat h() ;
context Path + "/result.] sp?user nane=f oo&passwor d=bar";

log( "redirecting to " + redirectStr );

/1 A ways call the encodeRedirect UL met hod when perfoning a redirect
resp. sendRedi rect ( resp. encodeRedi rect URL(redirect Str) );

}

}

When the servlet in example 2-1 receives either a GET or POST request, it calls the
redirect () method and passes the HITPServl et Request and
HTTPSer vl et Response objects to it. The method sets two St r i ng objects into the
reguest so that it can be demonstrated that they will not be available after the redirect. It
creates a String that will become the URL that the client is told to make a new request
for. After the encodeRedi rect URL() method is called and passed the redirect
string, the sendRedi r ect () method isinvoked on the response object.

All URLs passed to the sendRedi r ect () method should be ran
through the encodeRedi r ect URL() method so that the Session 1D
can be included if the browser doesn’t support cookies and session
tracking needs to occur. The Struts framework performs this step
automatically in the Request Processer during normally action
processing.

The JSP page that the servlet will redirect to is shown is example 2-2.

Example 2-2. A simple JSP page that a client isredirected to when calling the
RedirectServiet from example 2-1

<htm >

<head>

<title>Struts Redirect/Forward Exanple</title>
</ head>

<body>
<i ng src="i mages\tontat - power. gi f">
<pbr>
<%
String firstName = (String)request.getAttribute( "firstName" );
if ( firstName == null ){
firstName = "Not found in request";
}

String lastNane = (String)request.getAttribute( "l ast Nane" );
if ( lastNane == null ){

lastName = "Not found in request”;
}




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

%

<b>Fi rst Nane: </ b> <%first Nanme%<br >
<b>Last Nane: </ b> <%l ast Nane%<br >

</ body>
</htm >

When you enter the URL for this servlet in a browser:
http://local host: 8080/serviet/com.oreilly.struts.chapter 2exampl es.RedirectServiet

The browser output will look like the onein Figure 2-6.

/4 struts Redirect,/Forward Example - Microsoft Internet Explorer o ] 4
J File Edit  Wiew Faworites Tools  Help ﬁ
| at Q >
Back, Farward Stop Refresh Home Search
J Address Iﬂj http: fflocalhost: 5050 servlet/conm . areilly . struts, chapter 2examplas, Redirect Servlet j
=
Powered by
k_
TOMCAT
First Name: Mot found in request
Last Name: Not found in request
[
|§| Done l_ l_ l_ Local intranet S

Figure 2-6. The output page when the RedirectServiet is called

You'll notice that the first name and last name arguments that were set in the servlet were
not found in the request. This is because a second request was actually issued for this
page. Fortunately, we can peek behind the scenes and observe what’ s taking place.

Let's look at the HTTP response that comes back to the client when the
Redi r ect Ser vl et isreguested. We can see this using a standard telnet session. Since
an HTTP connection uses a simple network socket to communicate with the server, we
can partially simulate the interaction between a browser and a server using the telnet
application. You can establish a connection to a web server using telnet by connecting to
the port that the server islistening on, usually port 80 or in the case of Tomcat 8080.

|tel net |ocal host 8080
Y ou can do this from the command line, whether you're using a DOS shell or Unix. The

telnet session will aert you if it's unable to connect to a server with the hostname and
port.

45



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

If a connection is established, the telnet session will sit and wait for you to enter the
HTTP reguest information. The only information that you are required to enter is the first
line of the request, which tells the server what resource the client wants. Each line in the
request is a text line, separated by a newline character. The request header ends with a
blank line, so you actually have to press “enter” twice to let telnet know you are done
with the request. Figure 2-7 shows the HTTP response message returned from Tomcat
when arequest is made for the Redi r ect Ser vl et resource.

M
%MS-DOS Prompt - telnet

GET /zervlet/com.oreilly_struts.chapterZexamples _ Redirect8ervlet HTTP-1.8

HITP-1 .1 382 Moved Temporarily
Content—-Type: textshtml
: Sun, B3 Mar 2002 16:39:47 GMT
ion: http:/slocalhost:BABA/redirect. jsp?username =foodkpassword=har
: Apache Tomcat~s/4.@.2-bh1l (HITPr1.1 Connector’?
Connection: close

{html>*{head>{title>*Apache Tomcat-4.8.2-hl — Error report{ title>{STYLE>{*—H1i{fo
i : sans—serif . Arial.Tahomascolor = vhite;background-color : HBOBGL2;> B
: gans—serif . Arial.Tahomas;color : black;background—color : whi

» = yhite;;hackground-color : #OB86h2;> HR{color : HBBBEL2;:;> ——><{~ STYLE>

<shead><hody>{hi>Apache Tomcatr4.8.2-b1 — HITP Status 382 - Moved Temporarily<d~

hi><HR zize="1" noshade><{p>{(b>typelsh> Status reportl{ p>{p>{h> age<sh> <{u>Mou

ed Temporarilyl ul<{ p>{p><{b>description{/bh> {u>The requezted resource (Moved Ten|

porarilyd has moved temporarily to a new location.< ul{/p>{HR size="1" nozhade>{
shody><{ html>

Connection to host lost.

Press any key to continue...

Figure 2-7. Y ou can use a telnet session to inspect the HT TP response headers

In Figure 2-7, the first line of the request issues a GET and a path for aresource. The path
is the portion of the HTTP request that comes after the host name and includes the
preceding “/” character. The “HTTP/1.0" gring at the end of the GET reguest is the
HTTP version protocol.

HTTP version 1.1 added a number of optimizations over 1.0. However,
there are additional request headers that must be included, which would
make this example more complicated than necessary. Therefore, 1.0
was used to issue the request.

Everything after the first line is a response from the server. The entire HTML output at
the bottom comes from Tomcat. It informs anyone that is interested that the origina
request has performed a redirect and the client should request a new URL.

If you look at the Location response header, which is five lines down in Figure 2-7, you
can see that the server has informed the client what the URL should be for the new
request. Any URL parameters that were attached to the original request will still be
present in the new request. You can see this by looking at the value of the Location
response header in Figure 2.7. When the browser issues the new request, these parameters
will be sent.

46



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

The technique of using telnet provides a simple way of interacting with a web server and
viewing what responses it sends back to the client.

Hopefully, you now have a better understanding of how a redirect works. It should aso
be clearer why any objects placed into the original request are not available to the
redirected resource. This will become very important later when we discuss the Struts
framework.

One interesting thing may not catch your attention here. Notice back in
example 2-1, the redirect string didn’t explicitly contain the hosthame
and port that the client needed to use for the new request. It’s the job of
the servlet container to trandate the relative URL to a fully quaified
URL for transmission back to the client. Later in the Chapter 20, you'll
see away of overriding this behavior. This may be necessary if you're
using a proxy server and masquerading the server on another host or
port.

Using a Forward

A forward differs from a redirect is severa distinct ways. For one, when you invoke a
forward for a request, the request is sent to another resource on the server, without
informing the client that a different resource is going to process the request. This process
occurs completely within the web container and the client is never the wiser. Unlike a
redi r ect, objects can be stored into the request and passed along for the next resource to
make use of. Figure 2-8 illustrates the steps that take place when arequest is forwarded.

1-HTTR Web Container
-
Request 2:Process
Request
Web Browser
- 4HTTP 3:Perform
Respanse Forward

Figure 2-8. During a forward, the request is sent to a secondary
resource on the server without notifying the client

Since aforward takes place completely on the server and there is no communication with
the client, the performance is better than a redirect. However, there are some differences
in how aforward deals with relative URLs. Example 2-3 should make this clearer.

Example 2-3. A Java serviet that performs a forward when it receives a request
package comoreilly.struts. chapter2exanpl es;

47



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

inport java.io.|CException;

i nport javax.servlet. Servl et Exception;

inport javax.servlet.http. HtpServlet;

inport javax.servlet.http. HtpServl et Request;

i nport javax.servlet.http. HtpServl et Response;

i nport javax. servl et. Request D spat cher;

/**
* Performa forward to the page "redirect.jsp"
*/

public class ForwardServl et extends HtpServlet {

public voi d doGet (HtpServl et Request request, HtpServl et Response response)
throws Servl et Exception, |CException{
forward( request, response );

}

public void doPost (HtpServl et Request request, HtpServl et Response response)
throws Servl et Exception, | CException{
forward( request, response );

}

/**

* Set a few URL paraneters and objects for the request to see what happens
* to themduring a redirect.

*/

protected void forward(HtpServl et Request req, HtpServl et Response resp)
throws Servl et Exception, | CException{
log( "Arequest arrived for " + req.getServletPath() );

/1 Put some objects into request scope
req.setAttribute( "firstNane", "John" );
reg.setAttribute( "lastNane", "Doe" );

String redirectStr = "/result.jsp?user name=f oo&passwor d=bar";

this.log( "forwarding to " + redirectStr );
Request D spat cher di spat cher = req. get Request Di spat cher( redirectStr );
di spatcher.forward( req, resp );

}

}

When the serviet in example 2-3 receives either a GET or POST request, it calls the
forward() method and passes the HTTPServl et Request and
HTTPSer vl et Response objects to it. As with the redirect example, two St ri ng
objects are set into the request. However, in contrast with the redirect example, the
objects will be available after the forward. It next creates a redirect path that the request
will be passed to. A Request Di spat cher iscreated and the f or war d() method is
invoked on it. We'll use the same JSP page from example 2-2. In the browser, we enter a
URL like:

http://local host: 8080/ser vlet/com.oreilly.struts.chapter 2exampl es.Forwar dSer vl et

and the browser output should look similar to Figure 2-9.

48




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

/3 Struts Redirect,/Forward Example - Microsoft Internet Explorer -0l x|
J File Edit  ‘iew Fawotites Tools  Help ﬁ
= . = . @ at aQ >
Barck. Faryard Skop Refresh Harmng Search
J Address Iﬁj http: flocalhost; 3050 serviet/com . oreilly struts, chapter 2examples, ForwardServlet j
=
Powered by
k‘\_
TOMCAT

First Name: John
Last Mame: Doe

|® Done l_ l_ l_ Lacal intranet

Figure 2-9. The output page when the ForwardServiet is called

A

There are two interesting items that can be seen from Figure 2-9. The first is that the first
and last name fields have values. This is because the objects were placed into the request
before the forward occurred and the result.jsp was able to retrieve the values and use
them in the page.

The second interesting item is the URL in the address bar. Notice that the URL back in
Figure 2-6 showed the new URL that the client requested, whereas it didn’'t change in
Figure 2-9. This shows further that the client is not aware that a forward occurred. It
didn’t get a notice that the browser URL should change.

The forward method of the Request Di spat cher class can only be
called when output hasn't already been committed to the client. Writing
something to the response object and then calling forward will result in
anl || egal St at eExcept i on being thrown by the container.

Which onefor Struts?

It's difficult to decree whether you should use a redirect or a forward for Struts
applications, since we haven't discussed the framework yet. However, there are some key
points about using each approach. Both mechanisms have their pros and cons within
Struts and web applications in general. For many situations, a forwarded is recommended
over aredirect. Thisis chiefly due to the fact that when a forward is used, objects that are
stored in the request scope, are easily available to the presentation components. In fact,
using a forward is the default case for the Struts framework. Another advantage of a
forward is that it's must more efficient, since the client is not required to issue a new
request.

49



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

There are however, some situations where a redirect is necessary or preferred over using
aforward. The problem revolves around the fact that when forwards are used, the URL’s
are not always keep consistent with the state of the client application. If the browser’'s
refresh button is pressed, unexpected results can occur. This may not make too much
sense right now, but it will be explored further in Chapter 5.

[Editors: | wanted to mention something in here about HttpSession management, but |
wasn't sure if it belonged in here or say in the design chapter. Any feedback on this
question would be helpful.]

50



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

3

Overview of the Struts Framework

[Note to al editors. After my initial reading of this chapter, | realized that | need to
emphasize the new 1.1 features a little more. | will make those additions during author
review

It's finally time to introduce the Struts framework. Familarity with the material from the
previous two chapters will allow you to absorb the information here must faster. This
chapter will provide an overview of the Struts framework and not attempt to uncover al
of the features or in any significant depth. It will emphasize instead, how all of the pieces
fit into the MV C and Model 2 architecture presented in Chapter 1.

The rest of the book will be spent pulling back the layers and uncovering the details of
the framework, expending on the more basic concepts and terminology introduced here.
It is important that you have a firm grasp of the fundamentals presented in this chapter.
Even if you are familiar with the basic concepts of the Struts framework, it's
recommended that you take the time and immerse yourself in this chapter first.

If you are one of the many developers trying to convince your manager to switch to the
Struts framework, this should be an excellent chapter for them to read. Since the
discussion will be kept at an overview level, this chapter will not be filled with too many
boring technical details. Hopefully, it will provide a valuable overview for both them and
you.

A Banking Account Example

This section introduces an online banking application that we'll be using to familiarize
you to the world of Struts. It represents the proverbial “Hello World” application that you

51



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

find in many first examples. A banking will be used to make the discussion more
interesting and a little more applicable to the types of applications that Struts can be used
for. The example presented here will not be complete and will be kept purposely trivial,
but will nonetheless help provide a high-level overview of the major components that are
present in all Struts applications and how those components fit together. A more
comprehensive and thorough example based on a shopping cart paradigm will be used
throughout the rest of the book, but the banking example will be a good one to start with.
Almost everyone should be familiar with the concept of online banking and we can avoid
spending too much time on explaining the business requirements.

Our online banking application will allow an end-consumer to login to the financial
institution’s web site and view account information and transfer funds from one account
to another, assuming the user has more than one account of course. The user must present
avalid set of credentials to enter the site, which for this example will consist of both an
Access Number and a Pin Number.

If the user leaves one or both fields blank, the application will display a formatted
message informing the user that both fields are required. If the user enters values for both
fields, but the authentication fails, the login screen will be re-displayed along with a
formatted error message informing the user that the login has failed. Figure 3-1 showsthe
online banking login screen after an invalid login attempt has been detected.

52



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

a Struts Online Banking - Account Login - Microsoft Internet Explorer provided by Dell

J File Edit Wiew Favaorites Tools  Help |
= . 2 D al Q 7| >
Back Fariyard Stop Refresh Horne Search Fawvatites

J Address I@ http: }/localhost: 3080 bankingf actionflogin j ﬁGo

Online
Banking

+ Invalid Access Number and/or Pin Powered by

Access Number Struts
|3456-098

Pin Humber

e

Login |

@ Done l_ l_ l_ (=E Local intranet v

Figure 3-1. The Login screen for the online banking application

If the proper credentials are entered for an account, the user is taken to the account
information screen. This screen will show all of the accounts that the user has with the
financial institution, as well as the current balance for each account.

For this example, we are not going to provide a robust, full-fledge security service and
security realm. In fact, no time at all will be spent on developing a real security service.
This means that authentication and authorization will be hard-coded for simplicity.
Handling security in a web application can get very complicated and there’s no reason to
muddy the waters with it in this chapter. Chapter 14 will cover security in depth and it's
best to wait until then to discuss security. For the purposes of this chapter, a simple Java
interface will be used that contains a single | ogi n() method. This interface, or rather
an object that implements this interface, will be used to authenticate users. The
authentication interface is shown in Example 3-1.

Example 3-1. The | Authentication Interface used by the banking application
package comoreilly. struts. banki ng. servi ce;

inport comoreilly.struts. banki ng. vi ew User Vi ew,

53



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

/**
* Provides nmethods that the banking security service shoul d i npl erent.
*/

public interface | Authentication {

/**

* The login method is called when a user wi shes to login to
* the online banking application.
* @ar am accessNunber The account access nunber.
* @aram pi nNunber The account private id nunber.
* @eturns A Val ueHol der object representing the user's personal data.
* @hrows | nvalidLogi nException if the credentials are invalid.
*/
public UserView login( String accessNunber, String pi nNunber )
throws I nvalidLogi nExcepti on;

Since Java interfaces can’'t be instantiated, we need to have a class that implements this
interface.

The comoreilly.struts. banking. service. SecurityService class is
shown in Example 3-2. It implements the | Aut hent i cat i on interface and provides
the application the ability to authenticate users. Of course, since we are not realy going
to authenticate against a security realm, the Secur i t ySer vi ce class alows anyone to
login to the application.

Example 3-2. The SecurityService used by the banking application for authentication

package comoreilly. struts. banki ng. servi ce;

inport comoreilly.struts. banking.vi ew UserVi ew,

/**
* Used by the exanpl e banking application to similate a security service.
*/

public class SecurityService inplements | Authentication {

*

/
The login nmethod is called when a user w shes to loginto

the online banking application.

@ar am accessNunber The account access nunber.

@ar am pi nNunber The account private id nunber.

@eturns A Val ueHol der object representing the user's personal data.
@hrows | nvalidLogi nException if the credentials are invalid.

E I T I R

~

public WserView | ogin(String accessNor, String pinNor)
throws InvalidLogi nException {

/1 This exanple is hard coded to only let in 123/456

i f(
(accessNor !'= null && accessNor. equal sl gnoreCase("123")) &%
(pinNor !'= null &&% pinNor.equal sl gnoreCase("456")) ){

54

/1 Areal security service would check the |ogin against a security realm




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

/* Dummy a UserView for this exanple.
* This data/object would typically cone fromthe business |ayer
* after proper authentication/authorization had been done.
*/

User Vi ew newM ew = new UserView "John", "Doe" );

/1 Gve the user a primary key, which will be used later. ' course
/1 this would come fromthe data store in a real application.
newi ew. set 1 d( "39017" );

return newm ew,
}
el se {
/1 1f the user enters anything other than 123/456, throw this exception
t hrow new | nval i dLogi nExcepti on();
}
}

}

Remember, for this example application, we are only going to authorize the user if the
accessNumber entered is “123” and a pinNumber of “456". If the | ogi n() method is
successful, a comoreilly.struts. banking.view UserVi ew object is
created and returned. If an invalid set of credentias is passed to this method, a
comoreilly.struts. banking. service. | nvalidLogi nException is
thrown. The Logi nAct i on is comparing the values entered by the user against the
hard-coded values. Obviously, in a real application, you would check against some type
of asecurity realm, such as arelational database or an LDAP server.

Once the user has logged in successfully, they may perform one of three different actions:
View an account detail
Transfer funds from one account to another (if the user has two or more accounts)
Logout

Obvioudly, in areal online banking application, there would be much more functionality
included. However, for the purposes of the overview, this limited feature set will suffice.
Figure 3-2 shows the account information screen, which the user is taken to after a
successful login.

55




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Foriward .
@ http:/flocalhost: S0580,banking/ action/get accountinformation |—

Online
Banking

CHECKING $372.63
SAVINGS $1372.63
Total Assets $1,745.26

Figure 3-2. After the user successfully enters the banking application,
they are taken to the Account Information screen

The user can view detailed information about an account by clicking on the View Account
Detail link. Figure 3-3 shows the Account Detail Screen for one of the accounts listed in
Figure 3-2.

56



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

a Struts Online Banking - Account Detail - Microsoft Internet Explorer provided by Dell

J File Edit Wiew Favaorites Tools  Help |
= . 2 D al Q 7| >
Back Fariyard Stop Refresh Horne Search Fawvatites

J Address I@ http: fflacalbost:8080/banking) action/getaccountdetail?id=389-341 j ﬁGO

Online
Banking

$1372.63

Qpening Balance (Sat Jun 032 21:50:08 EDT 2000%

Deposits

Withdrawls

Total Available Balance

@ Done l_ l_ l_ (=E Local intranet v

Figure 3-3. The Account Detail screen for the online banking
application

They may also transfer funds from one account to another by clicking on the Transfer
Funds link next to the account they wish to transfer funds from. Figures 3-3 shows the
Account Detail screen. Because the purpose of this chapter is to familiarize you with the
components of the Struts framework and not teach you the correct functionality of a web
banking application, the funds transfer functionality will not actually be implemented.
This will be a nice feature for you to implement later on as a practical exercise if you
desire.

Finally, the user may simply logout of the application altogether by clicking on the logout
function. The user will be logged out of the application and returned to the login screen.

L ooking at the Big Picture

Now that we've shown an example that we can use as the basis of this Chapter's
discussion, it’s time to start looking at how we can solve it using the Struts framework.
Although Chapter 1 discussed the MV C pattern in the order of Model-View-Controller, it
doesn’'t necessarily make sense to follow that same order as we explore the Struts

57



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

components. Infact, it's more logical to cover the components in the same order that the
Struts framework uses them to process a request. For that reason, the components that
make up the controller portion of the framework will be discussed first.

The Struts Component Packages

The Struts framework is made up of approximately 200 Java classes, divided into 15 Java
packages. Approximately is an appropriate term because the framework is continuously
growing and being shaped. Appendix A provides a complete listing of the Struts API for
your convenience. For this chapter, we'll only focus on the top-level packages. Figure 3-4
shows the top-level packages for the Struts framework and their dependencies.

1 1 ]
actions | } action upload
r [
] O
| | [ I
validator |~ T | LT 1 i
1 [
| [
|
] o ]
config K—————~- : :' """ taglib
< ________________

Figure 3-4. The Struts framework consists of 7 top-level packages

The framework components are not arranged by what role they play in the MV C pattern.
They are actually arranged a little haphazardly. This has to do more with how fast the
framework has evolved, rather than poor decisions made by the designers. The act i on
package for example, contains classes for the controller, some that are used by the view
domain, and even a few that probably would have been better off in the ut i | package.
With that being said, it’s not that hard to get use to where everything is and after awhile,
it even gets comfortable. In many cases, you normally only have to import the act i on
package anyway. A Few of these top-level packages also contain sub-packages. These
sub-packages will be presented as we move through the book.

Struts Controller Components

As you saw in Chapter 1, the controller component in a MV C application has severa
responsibilities. Those responsibilities include receiving input from a client, invoking a
business operation, and coordinating the view to return back to the client. Of course,

58



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

there are many other functions that the controller may perform, but these are a few of the
primary ones.

You aso learned that, with the JSP Model 2 architecture, on which Struts was fashioned
the controller was implemented by a Java servlet. This servlet becomes the centralized
point of control for the web application. The controller servlet maps user actions into
business operations and then helps to select the view to return to the client based on the
request and other state information. Figure 3-5 shows the figure from Chapter 1 as a
reminder.

—Web Conlainer ™
Servlet
User _ | | (Controller) ——
Action Y z
A
_ﬁ; % Java Beans
Y ] (Model)
__ System <JSP>
Browser Response (View)

Figure 3-5.The Struts framework uses a Java serviet to handle the
controller responsibilities

In the Struts framework however, the controller responsibilities are implemented by
several  different components, one of which is an instance of the
org. apache. struts. action. Acti onServl et class.

The Struts ActionServlet

The Acti onServl et extends the j avax. servl et. http. Htt pServl et class
and is responsible for packaging and routing HTTP traffic to the appropriate handler in
the framework. The Act i onSer vl et classis not abstract and therefore can be used as
a concrete controller by your applications. Prior to version 1.1 of the Struts framework,
the Act i onSer vl et was solely responsible for receiving the request and processing it
by cdling the appropriate handler. In verson 1.1, a new class called
org. apache. struts. acti on. Request Processor has been introduced to
process the request for the controller. The main reason for decoupling the request
processing from the Act i onSer vl et isto provide you with the flexibility to subclass
the Request Processor with your own version and modify how the request is
processed. For the banking application example, we are going to keep it simple and
utilize the default Acti onSer vl et and Request Processor classes provided by
the framework. Chapter 5 will describe in detail how these classes can be extended to
modify the default controller behavior. For brevity in this chapter, we will refer to these

59



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

two components simply as the “controller”. In Chapter 5, the role and responsibilities of
each component will be explained.

Like any other Java servlet, the Struts Acti onSer vl et must be configured in the
deployment descriptor for the web application. We won't go into detail about the
deployment descriptor here, that's saved for Chapter 4 “Configuring the Struts
Application”.

Once the controller receives a client request, it delegates the handling of the request to a
helper class. This helper knows how to execute the business operation that is associated
with the requested action. In the Struts framework, this helper class is a descendant of the

|s the Action part of the Controller or
Model?

Throughout the various articles, tutorials, and other resources that are available
on the Struts framework, developers have a differing opinion on whether the
Acti on class is part of the controller or the model. The argument for it being
part of the controller is that it isn't part of the “real” business logic. If Struts
were replaced with an alternative framework, chances are the Action class
would be replaced with something else. Therefore, it realy isn't part of the
model domain, but rather tightly coupled to the Struts controller. It doesn’t make
sense to put business logic into the Action, since other types of clients can’'t
easily reuseit.

Another reason to consider the Struts Act i on class part of the controller is that
it has access to the Acti onSer vl et and therefore all of the controller resources,
which the domain model shouldn’t know about. Hypothetically, the Action class
behavior could have been left in the servliet and the servlet would just call the
appropriate method on itself. If this were the case, there would be no doubt
about whether this was controller or model functionality.

With al of this said, the Acti on class in many cases, does invoke an operation
on the business model and many developers end up trying to insert too much of
their business logic into the action classes. Eventualy, the line becomes very
blurry. Perhaps this is why some developers consider it part of the model. This
book will take the approach that the Act i on classis part of the controller.

org. apache. struts. acti on. Acti onclass.

60



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Struts Action Classes

An org. apache. struts. action. Action class in the Struts framework is an
extension of the controller component. It acts as an Adaptor” between a user action and a
business operation. The Act i on class decouples the client request from the business
model. This decoupling alows for more than a one-to-one mapping between the user
request and an Act i on class. The Act i on class can perform other functions, such as
authorization, logging, and session validation, before invoking the business operation.

The Struts Action class contains several methods, but the most important is the
execut e() method. Hereisthe method signature:

publ i c ActionForward execut e( Acti onMappi ng nappi ng,
ActionFormform
H t pSer vl et Request request,
H t pSer vl et Response response)
throws | CException, ServletException;

The execut e() method is called on an instance of an Act i on class by the controller
when a request is received from a client. The controller will create an instance of the
Act i on classif one doesn’t already exist. The Struts framework will only create asingle
instance of each Action class in your application. Since there is only one instance for all
users, you must ensure that all of your Action classes operate properly in a multi-threaded
environment. Figure 3-6 illustrates how the execut e() method is invoked by the
primary controller components.

(-—Web Container
ActionServlet execitnd]
User and = Action
— ™| | RequestProcessor |« (Controller)
Action (Controller) ‘
System . l ;E:
Response &

Browser

(View)

.

Figure 3-6. The execute() method of the Action classis called by the
primary controller

Although theexecut e() method is not abstract, the default implementation just returns
null so you will need to create your own Act i on class implementations and override
this method.

" The Adaptor pattern is a structural design pattern mentioned in the book “ Design Patterns’ written
by Gamma, Helm, Johnson, and Vlissides, affectionately known as the GangOfFour (GoF).

61



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

There is some debate over how best to implement Act i on classes using
Struts. Whether you create a different Acti on class for each and every
operation or whether you put several business operations in the same
Act i on classis subjective and has pros and cons on both sides.

In chapter 5, we'll discuss an action provided by the Struts framework
called org. apache. struts. acti ons. Di spat chActi on.
ThisAct i on givesyou the ability to create asingle Act i on classand
implement several similar operations like Create, Read, Update, and
Delete (CRUD) within it. This has the effect of creating a smaller
number of Action classes, but might make maintenance a little
harder. Chapter 21 will discuss some practices for designing your
Act i on classes.

As was mentioned previously, there are various ways to organize your Act i on classes.
For the banking application, we will create a unique Act i on class for each action that
the user can perform. Therefore, we will need to create the following actions:

Login
Logout
GetAccountlnformation

GetAccountDetail

Each one of the action classes that we'll create for the banking application will extend the
Struts Act i on class and override the execute method to carry out the specific operation.
In chapter 5, you'll learn that it's best to create an abstract base Act i on class for your
application that all of your other action classes extend.

This application specific base action would extend the Struts Act i on class and provide
you with added flexibility and extensibility that's hard to see the need for at the
beginning stages of development, but later you'll be glad that you did. For the banking
application however, things will be kept simple and the actions will direct descendants of
the Struts Act i on class.

Thecom oreilly. struts. banki ng. action. Logi nActi on classisshownin
Example 3-3. It extends the Struts Act i on class and is invoked by the controller when a
user attemptsto login to the banking application.

Example 3-3. The LoginAction used by the online banking application

package comoreilly. struts. banki ng. action;

inport javax.servlet.http. HtpServl et Request;
i nport javax.servlet.http. HtpServl et Response;
inmport javax.servlet.http. HtpSession;

62



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

i nport org.apache. struts. action. *;
inport comoreilly.struts. banking. | Constants;
inport comoreilly.struts. banking. service. | Authentication;
inport comoreilly.struts. banki ng. service. SecurityServi ce;
inmport comoreilly.struts. banki ng. service. | nval i dLogi nExcepti on;
inport comoreilly.struts. banking.vi ew UserVi ew,
import comoreilly.struts. banki ng. form Logi nForm
/**
* This Action is called by the Request Processor when a | ogin attenpt
* is made by the user. The ActionForm shoul d be an instance of
* a Logi nFormand contain the credential s needed by the SecurityService.
*/
public class LoginAction extends Action {
public ActionForward execute( ActionMappi ng nappi ng,
Act i onForm form
H t pSer vl et Request request,
H t pSer vl et Response response)
throws Exception {

User Vi ew userView = nul | ;

// Get the credentials fromthe Logi nForm
String accessNor = ((Logi nFornjforn).get AccessNunber ();
String pi nNor = ((Logi nForn)forn).getPi nNunber ();

/*

* In areal application, you would typically get a reference

* to a security service through something |ike JNDI or a factory.
*/

| Aut hentication service = new SecurityService();

// Attenpt to login
user Vi ew = service.logi n( accessNor, pinNor );

/1 Since an exception wasn't thrown, |ogin was successful

// Invalidate existing session if it exists
H t pSessi on sessi on = request . get Sessi on(fal se);
if(session !'=null) {
session.invalidate();
}

/] Oreate a new session for this user
session = request. get Session(true);

/] Store the WserViewinto the session and return
session.setAttribute( |Constants. USER VI ENKEY, userView);
return mappi ng. fi ndForward( | GConst ants. SUCCESS KEY );

}

}

The Logi nAct i on in Example 3-3 gets the credentials from the Act i onFor mthat
was passed in as an argument in the execut e() method.

63




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

The Act i onFor mclass will be discussed in the “The Struts View
Components” later in the Chapter.

A SecurityService is then created and the | ogi n() method and passed the
security credentials. If the login succeeds, anew Ht t pSessi on is created for the user
and the User Vi ewthat is returned from the | ogi n() method is put into the session. If
authentication fails, an | nval i dLogi nExcept i on will be thrown. Y ou should notice
that there' s no try/catch block for the | nval i dLogi nExcepti onintheexecut e()

method. Thisis because one of the new features of 1.1 is the built-in exception handling
capabilities of the framework. Even better is the fact that it's declarative. This is a great
new feature that removes much of the burden of exception handling from the developer.
With the declarative exception handling in Struts, you specify what exceptions can be
thrown from the actions and what you want the framework to do with them. Y ou specify
thisinformation in the configuration file like this:

<gl obal - excepti ons>
<exception
key="gl obal . error.invalidl ogi n"
pat h="/1ogi n.j sp"
scope="r equest "
type="comoreilly.struts. banki ng. service. | nval i dLogi nException"/>
</ gl obal - except i ons>

This fragment from the banking configuration file tells the framework that if an
I nval i dLogi nExcept i on isthrown by any action, it should forward to the login.jsp
resource and build an error message using the key “ global.error.invalidlogin” from the
resource bundle. You aso have the ability to override the default exception handling
behavior with whatever functionality that you need it to perform. Exception handling will
be covered at length in Chapter 10.

Mapping the Actions

At this point, you might be asking yourself, “ How does the cont r ol | er know which
Act i on instance to invoke when it receives arequest?’ The answer is by inspecting the
reguest information and utilizing a set of action mappings.

Action mappings are part of the Struts configuration information that is configured in a
special XML file. This configuration information is loaded into memory at startup and
made available to the framework at runtime. Each <act i on> element is represented in
memory by an instance of the or g. apache. struts. acti on. Acti onMappi ng
class. The Act i onMappi ng object contains a path attribute that is matched against a
portion of the URI of the incoming request. We'll talk more about action mappings and
the Struts configuration file in Chapter 4.

The following XML fragment illustrates the login action mapping from the configuration
file used by the banking application.

64



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

<action
pat h="/1 ogi n"
type="comoreilly. struts. banki ng. acti on. Logi nActi on"
scope="request"
nane="1 ogi nFor n{
val i dat e="true"
i nput="/1ogin.jsp">
<f orward name="Success" pat h="/action/getaccountinformation" redirect="true"/>
<forward name="Failure" path="/1ogin.jsp" redirect="true"/>
</ action>

The login action mapping shown here maps the path “/login” to the Acti on class
comoreilly.struts. banki ng. Logi nActi on. Whenever the controller
receives a request where the path in the URI contains the string “/login”, the
execut e() method of the Logi nAct i on instance will be invoked.

The Struts framework also uses the mappings to identify the resource to forward the user
to once the action has completed. We'll talk more about configuring action mappings in
chapter 4.

Determining the Next View

WEe' ve talked about how the controller receives the request and how the action mappings
and request information are used to determine the correct action instance to invoke and
pass the request to. What hasn’t been discussed is how or what determines the view to
return back to the client.

If you looked closely at the execut e() method signatureinthe Act i on class from the
previous section, you might have noticed that the return type for the method is an
org. apache. struts. acti on. Acti onForward class. The Acti onForward
class represents a destination to which the controller may send control once an Action has
completed. Instead of specifying an actual JSP page in the code, you can declaratively
associate an action forward mapping with the JSP and then use that Act i onFor war d
throughout your application.

The action forwards are specified in the configuration file, similar to action mappings.
They can be defined for a specific action as this forward is for the [ogout action mapping.

<action
pat h="/1ogout "
type="comoreilly. struts. banki ng. acti on. Logout Act i on"
scope="request ">
<forward nane="Success" path="/login.jsp" redirect="true"/>
</ acti on>

The logout action declares a <f or war d> element that is named “Success’, which
forwards to a resource of “/login.jsp”. Notice in this case, a redirect attribute is set to
“true”. Instead of performing aforward using a Request Di spat cher, the request that
invokes the logout action mapping will be redirected instead.

65




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

The action forward mappings can also be specified in a global section independent of any
specific action mapping. In the previous case, only the logout action mapping could
reference the action forward named “Success’. In the case of forwards declared in the
global forwards section, all action mappings can reference them. Here is an example
global forwards section from the banking configuration file:

<gl obal - f or war ds>
<forward name="Systentail ure" path="/systenerror.jsp" />
<forward nane="SessionTi meQut" pat h="/sessiontineout.jsp" />
</ gl obal - f or war ds>

The forwards defined in the global section are more general and don’t apply to a specific
action. Notice that every forward must have a name and path, but the redirect flag is
optional. If you don't specify a redirect attribute, its default value is false and thus
performs a forward. The forward behavior can be configured and we'll discuss it more in
the next chapter. The path attribute in an Act i onFor war d can aso specify another
Struts Action. You'll see an example of how to do thisin Chapter 5.

Now that you understand from a high-level how the Struts controller components operate,
it'stimeto look at next piece of the MV C puzzle, the Model.

Struts Model Components

There are several different ways to look at what constitutes a model for Struts. The lines
between business and presentation objects can get quite blurry when dealing with web
applications. One application’ s business objects are another’ s val ue objects.

It's important to keep the business objects separate from the presentation, so that the
application is not tightly coupled to one type of presentation. It’s very likely that the look
and feel of a web site will change over time. Studies show that the freshness of a web
site’s appearance helps to attract new customers and also keep existing customers coming
back. This may not be as true in the Business-to-Business (B2B) world, but it’s definitely
true for Business-to-Consumer (B2C) applications, which make up the majority of the
web applications used today.

66



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Using Value Objects

Vaue objects are often used to provide a coarse-grained view of remote, find-
grained data. For example, if your application were using entity beans, instead
of making several remote calls to get individual state about the object, you
would make a single call that returned a local value object that contained all of
the data that you need. There is sometimes a summary and a detailed value
object for the remote object to help soften how much datais returned.

Although the value object represents the remote business object, it doesn’t
necessary contain the same business logic. In fact, it might not contain any
business logic at al. It really represents a “snapshot” of the remote object at a
particular instance in time, namely when the client requested the data. Vaue
objects can a so be used to update the business object as well. However, it gets a
little more complicated because of issues like optimistic locking and
synchronization, which we will discuss later.

Value objects are also referred to as “ View” objects because they are primarily
used by the presentation views as presentation JavaBeans. Because of
performance reasons, using value objects in a distributed application is almost a
necessity. You might be better off by using the same technique for smaller
applications as well. so that the database or business objects are not the ones
used within the presentation views. This helps to decouple the business objects
from the presentation, making maintenance and future enhancements easier.

The type of model components that you use might also depend on whether you're
building a traditional two-tier application or a multi-tiered distributed application.
Typically with a two-tiered application, the business objects are collocated with the web
application. Collocation means that objects are deployed within the same Java Virtual
Machine. This makes it easier to utilize these business objects to retrieve data for the
views. However, just because it's easier doesn't naturally make this a smart thing to do.
The business objects may be made up of very deep object graphs and contain references
to many other non-presentational resources. If you're not careful, the business objects can
quickly become coupled to a specific presentation, which could mean unintended side
effects each time the look and feel of the web site changes.

Another benefit of separating your business objects from the presentation objects is that
you can build course-grained objects that your JSP pages and custom tags can have an
easier time dealing with. All of your business logic should remain separate from the
presentation and the presentation views should simply retrieve data from the value
objects and display it.

67




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

The Logi nActi on class that was shown in Example 3-3 didn't contain the actua
authentication logic. Since the action class is part of the controller functionality, it
delegates the handling of the business logic to another service. In the case of the
Logi nActi on, it reliesona SecurityServi ce component. This component could
have been a remote reference to a session EJB or maybe just a wrapper around some
JDBC code that performed the authentication. In either case, the Logi nAct i on doesn’t
know or care how the service is implemented. This is very helpful because the
implementation could change drastically and as long as the | Aut henti cati on
interface remained unchanged and was implemented by the service, little code would
have to change. This approach aso helps with reuse. Imagine if you have another type of
client, like a Swing GUI, that needed to be authenticated. Since the logic is encapsul ated
into a separate component and not in the Act i on class, you are free to reuse this
security service.

You should strive to keep business logic out of the Act i on classes to protect against
change. In the case of the Logi nAct i on, thel ogi n() method returned an object of
classcom oreil ly. struts. banki ng. vi ew. User Vi ew Thisisagood example
of how to use value objects effectively. Example 3-4 shows the User Vi ew used in the
example application.

Example 3-4. The UserView value object, used by the presentation tier

package comoreilly. struts. banki ng. vi ew,

inport java.util. Set;
inport java.util.HashSet;
/**
* A value object for that waps all of the user's security infornation
*/
public class UserView inplenents java.io. Serializable {
private String id;
private String | ast Nane;
private String firstNane;

/1 A unique collection of pernmission String objects
private Set pernissions = new HashSet ();

/**

* Constructors

*/

public UserView(String first, String last) {
this(first, last, new HashSet());

}
public UserMiewString first, String last, Set userPernissions) {
super () ;
firstNane = first;
| ast Nane = | ast;
perm ssi ons = user Per m ssi ons;
}

68




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

/**

* Returns true if the argunment is anong the col |l ection of
* pernmssions allowed for the user. Cherw se returns

* fal se.

*/

publ i c bool ean cont ai nsPer ni ssion(String pernissionNane) {
return perm ssions. contai ns(perm ssi onNane) ;

}

/**

* Retrieve the last name of the user

*/

public String getLast Nane() {
return | ast Nane;

}

/**

* Set the last nane of the user

*/

public void setlLast Name(String nane) {
| ast Nane = nane;

}

/**

* Retrieve the first nane of the user
*/

public String getFirstName() {
return firstNang;

}

/**

* Set the first nane of the user

*/

public void setFirstNane(String nane) {
firstNane = nane;

}
/**
* Retrieve the id of the user
*
/
public String getld() {
return id;
}
/**
* Set the id of the user
*
/
public void setld(String id) {
id=id;
}

}

The User Vi ew provides a course-grained view of a remote object. There might be five
security tables al joined by foreign keys that contain the data, but when the web tier gets
a User Vi ew, it has already been consolidated and made easy to access. In fact, one
implementation of this application could get the data from a relational database and
another from a Lightweight Directory Access Protocol (LDAP) instance. The nice thing
about encapsulating the authentication behind the security service is that the presentation
tier would not have to change when the security realm was switched. The Act i on isfree

69




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

to set the User Vi ew object into the request and then forward to a JSP, where the data
can be extracted and presented to the user.

The framework doesn’t have a great deal of support in the way of the model components.
This is better left for EJB, JDO, or some other type of persistence framework. Y ou can
also access a database directly from the framework, but you should till attempt to
separate that layer from all other parts of the framework. Y ou can do with by making use
of the appropriate design patterns to encapsulate the behavior.

The Struts View Components

The last of the MV C components to discuss are the Struts View components. Arguably,
it's the easiest to understand. The view components that are typically employed in a
Struts application are:

JavaServer Pages
Custom Tags

HTML

Java Resource Bundles
Struts Action Forms

Vaue Objects

Using the Struts ActionForm

Struts Act i onFor m objects are used in the framework to pass client input data back
and forth between the user and the business layer. The framework will automatically
collect the input from the request and pass this data onto an Act i on using a form bean,

which then can be passed along to the business layer. To keep the presentation layer
decoupled from the business layer, you should not pass the action form itself to the
business layer, but rather create the appropriate value objects using the data from the
form and pass these objects as argument to the business layer. The following steps
illustrate how the framework processes an Act i onFor mfor every request.

1. Check the mapping for the action and see if aform bean has been configured for it.
2. If so, use the name attribute to lookup the form bean configuration information.

3. Depending on the scope configured for the form bean for the action, check to see if
there’ s already an instance of the form bean at the appropriate scope.

4. If an Acti onFor minstance is present in the appropriate scope and it's the same
type as needed for this new request, reuse it.

70



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

5. Otherwise, create a new instance of the required form bean and store it into the
appropriate scope that is set by the scope attribute for the action mapping.

6. Thereset () methodiscaled onthe Act i onFor minstance.

7. lterate through the request parameters and for every parameter name that has a
corresponding set method name on the Act i onFor m populate it with the value for
that parameter.

8. Findly, if the validate attribute is set to true, then invoke the val i dat e() method
onthe Act i onFor minstance and return any errors.

For every HTML page where form data is posted, you should use an Act i onFor m The
action forms can be used for multiple pages if necessary to collect data over several

pages.

Example 3-5 showsthecom orei | | y. st ruts. banki ng. f orm Logi nFor mthat
is used with the banking application.

Example 3-5. The LoginForm used with the online banking application

package comoreilly. struts. banki ng.form

inport javax.servlet.http. HtpServl et Request;
i nport org.apache. struts. action.*;
i nport org.apache. struts. util.MessageResour ces;
/**
* This ActionFormis used by the online banking appliation to validate
* that the user has entered an accessNunber and a pi nNunber. |f one or
* both of the fields are enpty when validate is called by the
* ActionServlet, error nessages are created.
*/
public class Logi nForm ext ends ActionForm {
/1 The user's private id nunber
private String pi nNunber ;
/1l The user's access nunber
private String accessNunber;

/**
* Default Constructor
*/
public Logi nForn() {
super ();
reset F el ds();

}

/**

* Called by the framework to validate the user has entered the

* accessNunber and pi nNunber fi el ds.

*/

public ActionErrors validate(Acti onMappi ng mappi ng, HtpServl et Request req ){
ActionErrors errors = new ActionErrors();

71




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

/1 Get access to the nessage resources for this application
/1 There's not an easy way to access the resources froman Acti onForm

/1 This assumes our nessages are conming fromthe default MessageResources
MessageResour ces resources =
(MessageResources)req. get Attribute( Action. MESSACES KEY );

/1 Check and see if the access nunber is nissing
i f (accessNunber == null || accessNunber.length() == 0) {
String accessNunber Label = resources. get Message( "I abel . accessnunber"” );

/1 Create an error message for the nissing accessNunber val ue
ActionError newError =
new ActionError("global.error.login. requiredfield", "");
errors. add(ActionErrors. GCBAL_ERRCR newkError);
}

/1 Check and see if the pin nunber is nissing
i f(pi nNunber == null || pinNunber.length() == 0) {
String pi nNunber Label = resources. get Message( "I abel . pi nnunber" );

/1l Oreate an error nessage for the m ssing pi ngNunber val ue
ActionError newError =

new ActionError("global.error.login. requiredfield", "Pin Nunber");
errors.add(ActionErrors. G CBAL_ERRCR newkError);

/1l Return the ActionErrors, in any.
return errors;

}

/**

* Called by the framework to reset the fields back to their default val ues.
*/

public voi d reset (ActionMappi ng mappi ng, HtpServl et Request request) {

/1l Qear out the access nunber and pin nunber fields
reset F el ds();

}

/**

* Reset the fields back to their defaults.
*/

protected void resetFields() {

this.accessNunber = "";
this. pi nNunber = "";

}
public void set AccessNunber (String nbr) {
t hi s. accessNunber = nbr;

}
public String get AccessNunber () {
return this.accessNunber;

}

public String getPi nNunber () {
return this. pi nNunber;

72




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

}

public void setPi nNunber (String nbr) {
t hi s. pi nNunber = nbr;

}

}

The Act i onFor mclass provided by the Struts framework implements several methods,
but by far the two most important arether eset () andval i dat e() methods.

public void reset (Acti onMappi ng nappi ng, HtpServl et Request request);
public ActionErrors validate(Acti onMappi ng nappi ng, HtpServl et Request

The default implementation for both methods in the Struts Act i onFor mclass doesn’t
perform any default logic. You'll need to override thee two methods in your
Act i onFor mclasses aswas done in the Logi nFor mclass shown in Example 3-5.

The controller callsthe r eset () method right before it populates the Act i onFor m
instance with values from the request. It gives the form bean a chance to reset their
properties back to the default state. Thisis very important as the form bean instance may
be shared across different requests and different users, so this can be a very important
method to implement. However, if you are using an Act i onFor m instance across
multiple pages, you might not want to implement the r eset () method so that the
values don’'t get reset until you' re completely done with the instance. Another approachis
to implement your own r eset Fi el ds() method and call this method from the action
class after a successful update to the businesstier.

Theval i dat e() method is called by the controller after the values from the request
have been inserted into the form bean. The form bean should perform any field
validatation that can be done and return any detected errors back to the controller.
Business logic validation should be performed in the business objects, not in the
Act i onForm The validation that occurs in the Acti onForm is more about
presentation input validation. Where to perform certain types of validation logic will be
covered in detail in chapters6 and 7.

The val i dat e() method in the Logi nFor min Example 3-5 checks to see if the
access number and/or pin number is missing and creates error messages if they are. If no
errors are generated, the controller then passes the Act i onFor mon with severa other
objectsto the execut e() method. The Act i on instance can then pull the information
out of the form bean, as with any other Java object.

You might have noticed that the execut e() method in the Acti on
class contains an argument that is always of the type Act i onFor m
You will need to cast this argument to the appropriate subclass to
retrieve the needed properties. If you need to see an example of this,
look back at Example 3-3.

Once you've created your Act i onFor mclasses, you need to inform Struts that they
exist and which action mappings use which action forms. This is done in the

73

request);



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

configuration file, as you might have guessed. The first step isto configure all of the form
bean classes. This is done in the <f or m beans> section of the configuration file. The
following fragment from the banking configuration informs Struts of the three
Act i onFor mbeans used by the banking application:

<f or m beans>
<f orm bean name="|ogi nForm type="comoreilly.struts.banking.form Logi nForm'/>
<f or m bean
name="account | nf or mat i onFor m
dynam c="true"
type="or g. apache. strut s. acti on. DynaAct i onFor i >
<f orm property name="accounts" type="java.util.ArrayList"/>
</ f or m bean>
<f or m bean
name="account Det ai | For n{
dynam c="true"
type="or g. apache. strut s. act i on. DynaAct i onFor ni >
<f orm property
nane="vi ew'
type="comoreilly.struts. banki ng. vi ew. Account Det ai | Vi ew'/ >
</ f or m bean>
</ f or m beans>

The name attribute for each form bean must be unique and the type attribute must define
afully qualified Java class that extends the Struts Act i onFor m class.

The next step is to use one of the form bean names from the <f or m beans> section for
one or more action mappings. The following fragment shows the mapping for the
Logi nAct i on, which you've already seen earlier in this chapter.

<action
pat h="/1 ogi n"
type="comoreilly. struts. banki ng. acti on. Logi nActi on"
scope="r equest "
nane="1 ogi nFor m
val i dat e="true"
i nput="/1ogin.jsp">
<forward name="Success" pat h="/action/getaccountinformati on" redirect="true"/>
<forward name="Failure" path="/1ogin.jsp" redirect="true"/>
</ action>

Notice how the name attribute of the login mapping matches one of the names in the
<f or m beans> section. The Struts developers should have probably called this
attribute <f or m beans>, but hindsight is always 20/20. The names of the form beans
are case sensitive.

One of the new features with 1.1 is shown in the previous <f or m beans> fragment.
With previous versions of the framework, you had to always extend the Act i onFor m
class with your own subclass. Even is the action form performed very generic behavior.
With Struts 1.1, a new type of action form has been added -called
org. apache. struts. acti on. DynaActi onFor m This class can be configured
for an action form for an action mapping and will automatically handle the data passed

74




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

from the HTML form to the action. It's able to be generic because internally it uses a
Map to store the values. This allows it to store any object. Chapter 7 will cover the
dynamic action form in more detail.

WEe'll wrap up this section and talk about something that can be a little confusing—
what’s the difference between a form bean that we' ve seen here and the value objects that
we mentioned earlier? This is a good question and one that is a little confusing for
developers new to Struts.

The view components can utilize both form beans and value objects to populate dynamic
content. In cases where you don’'t have a form bean configured for a mapping, value
objects can be used to build the views. In cases where a form bean is defined for the
mapping, there are several different ways to handle extracting the data from the bean.
One approach is to always wrap a form bean around the value object or objects returned
from the business tier and force the Struts view components to access the value object
data through the form bean methods. Likewise, when a client submits an HTML page,
Struts will invoke the form bean setter methods, which can shove the data back into the
view objects after the validation method has completed successfully. This provides a
single cohesive interface for the views to retrieve and submit the HTML data to. We'll
discuss the various pros and cons to this and other approachesin Chapter 7.

Using JavaServer Pagesfor Presentation

JavaServer Pages make up the majority of what has to be built for the Struts view
components. Combined with custom tag libraries and HTML, it becomes easy to provide
a set of views for an application. Although JavaServer Pages make up the majority of
what organizations and developers are using to display the dynamic content, it's not the
only technology.

There are other forms of presentation technologies that can be combined with the Struts
framework. One very popular one is the XML/XSLT combination. This alternate model
is being referred to as Model 2X, which is a combination of the controller serviet from
the Struts framework and XSLT and beans serialized from the value objects to render the
views. Many developers feel that JSP has the following problems:

Developers are free to embed application logic into the JSP pages. This can lead to
an application that is difficult to maintain.

JSP syntax is not currently XML compliant, which may cause the XML or HTML
that gets generated, not to be “well formed” .

Developers must learn the JSP syntax and how to program custom tags.

Developing a processing pipeline where each node in the pipeline may modify the
data or layout is not possible with JSP pages. This makes it difficult to separate
layout and style.

75



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

A recompile of the JSP page is necessary for each change made to the page.

Some developers may see these issues as not any big deal. Many sites have been built
using the JavaServer Pages technology. However for those that want alternatives, they are
available. In Chapter 16 of the book, we'll ook at alternate presentation technologies can
used by the framework.

Custom Tag Libraries

The Struts framework provides five core tag libraries that can be used by your
applications. Each one has a different purpose and can be used individually or along side
the others. Y ou may also create your own custom tags and can even extend the Struts tags
if you need them to perform extra functionality. The custom tag libraries that are included
with the framework are:

HTML Tag Library
Bean Tag Library
Logic Tag Library
Template Tag Library
Nested Tag Library

Unless you are planning on using templates as part of your application, the Template Tag
library might not be necessary, but the others are invaluable to making your application
easy to develop and maintain.

To use the libraries in your application, you need to first register them with the web
application. To do this, you should add the following lines to the deployment descriptor
for each web application that you wish to use Struts for.

<web- app>

<tagli b>
<taglib-uri> WEB-INF/struts-htni.tld</taglib-uri>
<taglib-location> WEB-1N-/struts-htni.tld</taglib-I|ocation>
</taglib>
<tagli b>
<taglib-uri> WEB-|1 NF/ struts-bean.tld</taglib-uri>
<tagl i b-1ocation> WEB-| NF/ struts-bean. tld</taglib-I|ocation>
</taglib>
<tagli b>
<taglib-uri> WEB-|INF/struts-logic.tld</taglib-uri>
<taglib-location> WEB-1 NF/struts-logic.tld</taglib-Iocation>
</taglib>
<taglib>
<taglib-uri> WEB-IN-/struts-tenplate.tld</taglib-uri>
<taglib-location> WEB-|1 NF/struts-tenplate.tld</taglib-Iocation>

76




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

</taglib>
<taglib>
<taglib-uri> WEB-| NF/ struts-nested.tld</taglib-uri>
<taglib-1ocation> WEB-|1 N/ struts-nested.tld</taglib-Iocation>
</taglib>
</ web- app>

More information on installing and configuring Struts for your application can be found
in Appendix B.

The next step isto create your JSP pages and include the following lines.

<y@taglib uri="/WEB-I NF/ struts-bean.tld" prefix="bean" %
<v@taglib uri="/WEB-INF/struts-htm.tld" prefix="htm" %
<v@taglib uri="/VEB-IN-/struts-logic.tld" prefix="logic" %
<Y@taglib uri="/WEB-|INF/ struts-nested.tld" prefix="nested" %

Once this is done and the Struts JAR file is in the web application's CLASSPATH, you
are then able to use the custom tags in your JSP pages. Example 3-6 illustrates the usage
of several of the Struts custom tags inside the login.jsp page for the banking application.

Example 3-6. The login.jsp used by the online banking application
<Y@page | anguage="j ava" content Type="text/htm" %

<Y@taglib uri="/WEB-|I N/ struts-bean.tld" prefix="bean" %
<y@taglib uri="/WEB-INF/ struts-htm.tld" prefix="htm" %
<y@taglib uri="/WEB-INF/struts-logic.tld" prefix="Iogic" %

<htm : htn >
<head>

<htni : base/ >

<titl e><bean: nessage key="title.login"/></title>

<link rel ="styl esheet" href="styl esheets/|ogin_style_ie.css" type="text/css">
</ head>

<body topnargi n="0" | eftmargi n="5" margi nhei ght ="0" nargi nwi dt h="0"
bgcol or =" #6699FF" >

<htm : formaction="Iogi n" focus="accessNunber">

<t abl e border="0" cel | paddi ng="0" cel | spaci ng="0" wi dt h="100% bgcol or ="#6699FF" >
<tr><td>
<htn :ing srcKey="image. | ogo" w dth="79" hei ght="46"
al t Key="i nage. | ogo. al t" border="0"/>
</td></tr>
</tabl e>

<t abl e border="0" cel | paddi ng="0" cel | spaci ng="0" w dt h="100% >
<tr><td bgcol or="#000000" >
<t abl e border="0" cel | paddi ng="0" cel | spaci ng="0" wi dt h="1" hei ght ="2"></t abl e>
</td></tr>
</t abl e>

<tabl e border="0" cel | paddi ng="0" cel | spaci ng="0" wi dth="1" hei ght="1">

77




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

<tr><td></td></tr>
</tabl e>

<t abl e>
<tr><td></td></tr>
</t abl e>

<t abl e border="0" cel | paddi ng="0" cel | spaci ng="0" wi dt h="590">
<tr><td width="15" hei ght="31"></td><td wi dth="12"></td></tr>
<tr>
<td w dth="15"></td>
<td wi dth="575" bgcol or ="#FFFFFF" col span="2">
<tabl e cel |l paddi ng="0" cel |l spaci ng="0" border="0" wi dth="575" hei ght="3">
<tr><td></td></tr>
</t abl e>
</td>
</[tr>
</t abl e>

<tabl e border="0" cel | paddi ng="0" cel | spaci ng="0" w dt h="590" bgcol or="#ffffff">
<tr>
<td w dth="15" bgcol or ="#6699FF" ></ t d>
<td width="15"></td><td w dt h="379"></t d>
<td width="15"></td>
<td width="15"></td>
<td width="15"></td>
</tr>
<tr>
<td bgcol or ="#6699FF" wi dt h="15"></td>
<td></td>
<td valign="top">
<t abl e border="0" cel | paddi ng="0" cel | spaci ng="0">
<tr class="fieldl abel ">
<t d><bean: message key="I| abel . accessnunber"/></td>
</tr class="fieldl abel ">
<tr>
<td><htm :text property="accessNunber" size="9" naxl ength="9"/></td>
<td class="error"><htm:errors/></td>
</tr>
<tr class="fieldl abel "><td hei ght="10"></td></tr>
<tr class="fiel dl abel "><t d><bean: nessage key="1|abel . pi nnunber"/></td></tr>
<tr class="fieldl abel ">
<t d><ht m : password property="pi nNunber" si ze="4" naxl engt h="4"/></td>
</tr>
<tr><td hei ght="10"></td></tr>
<tr><td><htn:submt styled ass="fieldl abel" val ue="Login"/></td></tr>
<tr><td></td></tr>
</tabl e>
</td>
<td wi dth="151" valign="top">
<htm :inmg srcKey="inage. strutspower” altKey="inmage.strutspower.alt"/>
</td>
</tr>
</tabl e>
<y@ncl ude file="include/footer.jsp"%

78




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

<pbr>

</htm:fornp
</ body>
</htm:htm>

One of the first things that should strike you about the login page in Example 3-6 is just
how little Java code there is. In fact, there’s none. Instead you see mostly HTML
formatting tags and several uses of Struts tag libraries. This is exactly the purpose of
using custom tag libraries. Because there’'s no Java programming necessary, HTML
designers can work freely with the page layout without being burdened by the
programming aspects of the page. The other nice feature is that many JSP pages can use
the same tag. For more information on these and other tag libraries, see Chapter 8,
“ Custom Tag Libraries’.

As you can probably imagine by looking at the JSP page in Example 3-6, maintenance
and customization becomes very easy to support. In fact, one of the hardest
customizations that developers face is to quickly and effortlessly customize a web
application for multiple languages. There are several built-in features of the Java
language that help support Internationalization aspects, and Struts builds on top of that
support to provide more.

M essage Resour ce Bundles

The Java library includes a set of classes to support reading message resources from
either a Java class or a properties filee. The core class in this set is the
java. util.ResourceBundl e. The Struts framework provides a similar set of
classes, based around the or g. apache. struts. util. MessageResour ces class
that provides similar functionality, but provides for a little more flexibility that the
framework requires.

The standard Java support for Internationalization has grown with the past severa
releases and the Struts framework could probably use what's included with 1.2 and
newer, but since Struts was created before 1.2, they had to build in their own support for
severa key pieces.

With a Struts application, you must provide a Java message bundle for each language that
you wish to support. The name of class or properties file must adhere to the guidelines
listed in the JavaDocs for the j ava. uti| . Resour ceBundl e class. Example 3-7
shows the properties file used by the example banking application.

Example 3-7. The message resources used by the online banking application

# Label s

| abel . accessnunber =Access Nunber
| abel . pi nnunber =Pi n Nunber

| abel . account s=Account s

| abel . bal ance=Bal ance

79



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

| abel . tot al asset s=Total Assets

| abel . account =Account

| abel . bal ance=Avai | abl e Bal ance

| abel . descri pti on=Descri ption

| abel . anount =Anount

| abel . deposi t s=Deposi ts

| abel . wi t hdrawl s=Wt hdr awl s

| abel . openi ngbal ance=Cpeni ng Bal ance

# Links

Ii nk. cust oner agr eenent =Qust oner Agr eenent
I'i nk. privacy=Privacy

l'i nk.security=Security

I'i nk. vi enaccount det ai | =Vi ew Account Detai |

# Page Titles

title. login=Struts Online Banking - Account Login
title.accountinfo=Struts Online Banking - Account |nformation
title. accountdetail =Struts Online Banking - Account Detail

# Button Label s
| abel . but t on. | ogi n=Logi n

# Error nessages
gl obal . error.invalidl ogi n=<I'i > nval i d Access Nunber and/or PFin</li>

gl obal . error. | ogin.requiredfiel d=<i>The {0} is required for |ogin</li>
# | mages

i mage. | ogo=i mages/ | ogo. gi f

i mage. | ogo. al t=Struts nline Banking

i mage. | ogout =i mages/ | ogout . gi f
i mage. | ogout . al t =Logout

i mage. st rut spower =i nages/ strut s- power. gi f
i mage. strut spower. al t =Powered By Struts

i mage. transf er =i mages/transfer. gif
i mage. transfer.al t="Transfer Funds"

i mage. cl ear =i mages/ cl ear. gi f

If you look back at the login JSP page in Example 3-6, you can see how the messages
from the bundle are used. For example, the following fragment from the login JSP page
illustrates the key titlelogin from Example 3-6 being used and inserted between the
HTML <title> tagsin the page.

| <titl e><bean: nessage key="title.login"/></title>

The Struts or g. apache. struts.taglib. bean. MessageTag is one of several
custom tags included in the framework that can take advantage of the resource bundle.
JSP pages can retrieve values from the resource bundle using the MessageTag based on
akey as shown in the login JSP page from Example 3-6. The key in the message tag must

80




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

correspond to a value on the left side of the equal sign in the bundle. Case is very
important and the value must match exactly.

A message resource bundle is used for reasons other than just for
localization. It can also save time during application maintenance. For
example, if you use the same text messages or labels throughout
various parts of your web site or application, when one or more of these
values need to change, you only need to make the change in a single
location. Even if you don’t have requirements for Internationalization,
you should still utilize resource bundles.

With Struts 1.1, you now have the ability to define multiple MessageResour ces for
an application. This alows you isolate certain types of resources, into separate bundles.
For example, you might want to store the image resources for an application into one
bundle and the rest of the resources into another. How you organize your application’s
resources is up to you, but you now have the flexibility to separate them based on some
criteria. Some applications choose to separate along components lines. For example, all
resources relating to the catalog go into one bundle, order and shopping cart resources
into another, and so on. Chapter 21 “Struts Design Strategies’ will discuss these and
other strategies for organizing you resource bundles.

Multiple Application Support

Prior to version 1.1, each Struts application was limited to having a single configuration
file. The single instance of the file, which is normally caled struts-config.xml, was
specified in the web application deployment descriptor. It was the sole provider of the
configuration information for the Struts application. The fact that there was only a single
place to put configuration information made it very difficult for larger projects because it
often became a bottleneck and caused contentions to use and modify thisfile.

With the creation of 1.1, this problem has been alleviated with the advent of multi-
application support. You can now define multiple configuration files and allow
developers to work better in parallel. Multiple applications or multiple sub-apps as some
are calling this new feature will be discussed further in Chapters 4, 5, 6, and 7.

Summary

As you learned in this chapter, the Struts framework provides an implementation for the
MVC sructure, tailored for a web application. The Struts ActionServl et,
Request Processor, and Acti on classes provide the Controller components; the
Act i on communicates with your application's model components, and finaly the

81



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

combination of the Act i onFor m value objects, JSP pages, and tag libraries make up
the View.

This chapter focused on Struts at a very high level and left out many of the details that
make the framework even better. Struts, like other valuable software frameworks, allow
you to focus on developing the business logic, instead of spending expensive
development time on low-level infrastructure functionality like request dispatching and
field-level validation. Hopefully this peripheral discussion has enticed you to read on and
explore the framework details in the next several chapters.

82



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

A

Configuring the Struts Application

The Struts framework uses two separate, but somewhat related types of configuration
files, which must be properly configured before an application will function properly.
Due to the popularity and flexibility of the self-describing nature of XML, both of these
configuration files are based on XML.

The web application deployment descriptor web.xml is described fully in the Java Servlet
specification. This configuration file is necessary for all web applications, not just those
built with the Struts framework. There is however, Struts specific deployment
information that must be configured within it when building web applications using
Struts.

Although the Struts framework supports the 2.2 Servlet Specification,
many servlet containers aready have support for version 2.3. This book
will include coverage of the 2.3 Specification aswell as 2.2.

The second configuration file that this chapter will examine is the Struts configuration
file, commonly named struts-config.xml. As you'll see however, the name can be just
about anything that you want it to. The Struts configuration file makes it possible for you
to declaratively configure many of your application’s settings. Y ou can think of the Struts
configuration file as the rules for the web application.

Introduction to the Storefront Application

Throughout the rest of the book, we are going to be using a shopping cart type
application for all of the examples. The application will be built up along the way as we

83



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

go through the Chapters and at the end of the book, we should have a fairly complete

application that uses every 1.1 feature. Figure 4-1 shows the main page of the storefront
application.

/] Virtual Shopping with Struts - Microsoft Internet Explorer provided by Dell

=101 x|
J File Edit Wiew Favorites Tools Help ﬁ
« 03 Q@ al Q 3| ) i
Back Fatiwatd Stop Refresh Harne Search Favatikes Madia
J Address I@ http:{flocalhost:8050/storefront findex. jsp j @GU
-
Virtual Shopping Would you like to sign in?
with Strots ltems in shopping cart: 0 @[
Current Total: $0.00

_ INFORMATION CENTER - ABOUT U5 STORE LOCATOR

ORDER STATUS MY ACCOUNT

FREE SHIPPING e

ORDER NOW AND SAVE iy

4 &r Wabwre Cowers
Limited time offer &; Caboraars
Receive free shipping on purchases of any huffler. Water Prps

Can Shatts

Exhumst Pipes

5.5 ’
[ it ’ ,
(PR I — L w
Walue Cover Water Pump Carborator Exhaust Pipes Cam Shaft Tire
Price: $89.99 Price: $68.99 Price: $189.99 | Price: $179.99 | Price: $14899 | Price: $89.99
Wew! A really Wew release.
nice valve cover

Copyright & 2000-2002 OReily Strots.
To be uzed with the OReilly Struts book only.

4| | _’I_I
[€ y

l_ l_ l_ (28 Local intranst
Figure 4-1. The main page of the example storefront application

This storefront application will demonstrate an e-commerce automotive parts supplier,
but you can substitute any items that you want, as long as you have your own images and
data to put into the application. In the end, you'll have the storefront application as a

complete WAR file that can be deployed into any compliant web container and used as
an example for many different purposes.

84



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

What isa Web Application?

Applications built using the Struts framework are at their core, web applications. A web
application is a collection of individual components that once bound together, form a
complete application that can be installed and executed by a web container. The
components are tied together due to the fact that they reside in the same web context and
in many cases, may refer to one another, directly or indirectly. For example, if you have
an application that is rooted on a web server under a directory called storefront, then all
of the files that are in this directory and below are considered part of the storefront web
application. Any reference to a resource with the storefront prefix is routed to this web
application. So, if auser typed in the following URL:

http: //www.somehost.com/stor efront/index.jsp
then the JSP page would be served from the root of the storefront web application.

A web application can be installed and executed in multiple web containers concurrently.
For that matter, multiple instances of the same web application can be installed in the
same web container. However, because of the manner in which URL’s are matched to the
correct web application, each web application must have a unique name within the web
container. This means that you can’'t have two web applications running in the same web
container using the same name.

Let's take a closer look at exactly what type of components can reside in a web
application.

Elements of a Web Application

Obvioudly, not al web applications are created equal. They will not have the same
functional and non-functional requirements across organizations, departments, or even
the same vertical markets. Therefore, not all web applications will contain the same types
of resources. In general however, web applications can consist of one or more of the
following types of components:

Servlets

JSP Pages

Standard JavaBeans and Utility Classes

HTML Documents

Multimedia Files (Images, Audio and Video Files, CAD Drawings, etc...)
Client side Applets, Stylesheets, and JavaScript Files

Text Documents

85



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Metainformation that ties all of the above components together

TheWeb Application Directory Structure

A web application typically consists of a structured hierarchy of directories. Although the
servlet specification does not require servlet containers to support a hierarchical structure,
it is highly recommended and mosgt, if not al do. The root directory of the hierarchy
serves as the document root for the web application. As you saw earlier, requests that are
made using the web application’s root context path will be served out of the directory for
that web application.

Within the web application directory hierarchy, a special directory exists named WEB-
INF. This directory should contain meta-information relating to the web application. This
directory is a private directory and therefore no resource within this directory should be
able to be requested by a client. However the resources in the WEB-INF directory are
visible to servlets and Java classes that reside within the web application.

Because the servlet specification requires that the WEB-INF directory
not be visible to a web client, this is an ideal location to put files and
other resources that you do not wish to expose directly to a client.
Resources like XML configuration files and other private application
resources should be placed within this directory for the web
application. As you'll see later in this chapter, the Struts configuration
fileisaso normally located in this directory.

The WEB-INF directory is where the deployment descriptor for the web application
should be placed. The deployment descriptor is covered in detail in the next section.

There are two specia directories underneath WEB-INF that get special treatment by the
web container. The WEB-INF/classes directory is used to place servlets and utility classes
that can be used by the web application. If the Java classes are scoped within a Java
package, the classes directory must contain the proper sub-directories within it that match
the package name.

For example, suppose you had a Java servlet named
comoreilly.struts. framework. StorefrontControl | er for a web application hamed
storefront. The Storefront Controller.class file would have to be placed in the
framework directory as shown in Figure 4-2.

86



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

EH:I starefront
= WEB-INF
= dlasses
- com
EH:I oreilly
El{:l skruts

----- ‘2 Framewark

Figure 4-2. Java classes that are in a package must be in the proper
directories

The other special sub-directory underneath WEB-INF is the lib directory. The WEB-
INF/lib directory is an area where JAR files can be deployed and will be picked up by the
class loader for the web application.

Based on the 2.3 Servlet Specification, the web application class loader
must load classes from the WEB-INF/classes directory first, and then
from library JARS located in the WEB-INF/lib directory.

Other than these specia requirements, the directory structure for a web application is left
up to the developer. 1t should be based on the functional and non-functional needs of the
application. With smaller web applications, files and resources may be combined into a
few common directories. For larger web applications however, each component may
need to have a separate directory underneath the web application root directory. This will
allow for easier development and maintenance. Figure 4-3 shows a directory structure for
an example storefront web application.

storefronk
-1 cakalog
{1 comman
{:I cuskamer
l:l cuskamersuppork
{:I images
{7 include
{1 multimedia
{7 order
{2 shoppingcart
{1 stylesheets
=1+ WEE-INF

Figure 4-3. The directory structure for the storefront web application

87



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Here are a few things to consider when choosing the directories for your Struts
applications are:

Keep any of the components that are optional separated from the required ones so
that partial deployment will be easier to support

Take into account the size of the development team and the necessity to prevent file
and checkout contention

Be careful to consider file and resource dependencies and to make sure to take
advantage of reuse and include files

Other than these simple guidelines, the directory structure for your web application is
entirely up to you.

Web Application Archive Files

Web applications can be packaged into a format called Web ARchive format (WAR)
using the Java ARchive tool (JAR). The extension of the file must be .war. For example,
if we archived the storefront application, it would be named storefront.war. When aweb
application is packaged as a WAR file, it must maintain it's relative directory as
illustrated in Figure 4.3.

Web containers are capable of loading the WAR file and un-packing the resources back
into the necessary structure that can be loaded by the container. The WAR file format is
most useful when you need to distribute an application. It can also be part of a much
larger distributable file called Enterprise ARchive format (EAR). Chapter 20 will discuss
the best practices of packaging your application using these different formats.

Web Application Deployment Descriptor

The web application deployment descriptor helps to convey configuration information
between application developers, deployers, and assemblers. Web containers also utilize
the descriptor to help configure and load the web applications when the container is
started.

The following types of deployment information are required to be supported by all serviet
containers that are compliant to the Servlet 2.3 Specification.

Initialization Parameters
Session Configuration
Servlet Declaration

Servlet Mappings

88



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Application Lifecycle Listener Classes
Filter Definitions and Mappings
MIME Type Mappings

Welcome File List

Error Pages

Security configuration information is not required unless the servlet container is part of a
J2EE implementation. The following elements are not required unless the servlet
container isusing JSP pages or is part of a J2EE application server.

Tag libraries Mappings
JNDI References

Much of the functionality described in this list was added during the
2.3 version of the servlet specification. If you are using a 2.2 compliant
container, it will not be available to you. However, the Struts
framework currently supports 2.2 aswell as 2.3.

Web Application Deployment Descriptor DTD

The format for both the web deployment descriptor and the Struts configuration file is
based on a Document Type Definition (DTD), which defines the legal building blocks that
may be used in the XML files. From the DTD point of view, all XML documents,
including the web application deployment descriptor and the Struts configuration files,
are made up of the following elements:

Elements
Tags
Attributes
Entities
PCDATA
CDATA

89



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Using these components, DTDs help specify what is a vaid and well-formed” XML
document. The DTD for the 2.3 web application deployment descriptor can be
downloaded from the following URL :

http: //java.sun.com/dtd/index.html

The following DTD declaration shows the top-level elements that make up the
deployment descriptor for aweb application.
<! ELEMENT web-app (icon?, display-nanme?, description?,
di stributabl e?, context-parant, filter*, filter-nmapping*,
listener*, servlet*, servlet-napping*, session-config?, nime-
mappi ng*, wel cone-file-list?, error-page*, taglib*, resource-
env-ref*, resource-ref*, security-constraint*, |ogin-config?,
security-role*, env-entry*, ejb-ref*, ejb-local-ref*)
>

The web-app element is the root of the deployment descriptor for a web application. The
other elements inside the parenthesis are child elements, which must be placed inside the
root web-app element within the XML file. The symbols next to the child elements
indicate the allowed multiplicity of the child elements within the XML file. Table 4-1
provides a brief explanation of the symbols.

Table 4-1. Multiplicity symbols of child elements within a DTD

Symboal Meaning

No Symbol When there is no symbol next to the child
element, this indicates that the child must
occur once and only once within the parent
element.

+ The + sign declares that the child element
can occur one or more times within the
parent element.

* The* sign declares that the child element
can occur zero or more times within the
parent element. This symbol is used quite
often.

" A well-formed XML document is one that is properly formatted with all begin tags closing with
end tags, attributes are quoted properly, the entities are declared, and so on. When an XML
document is well-formed, it is easier for a computer program to parse it and possibly deliver it over
anetwork. A valid XML document is one declares a DTD and adheres to the rules set forth in that
DTD.

90



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

? The ? sign declares that the child element
occurs zero or one time within the parent
element. In other words, the child element
is optional. This symbol is used quite often.

Configuring the web.xml filefor Struts

Although the web.xml file is used for configuring any generic web application, there are a
few Struts specific configuration options that you must configure within this file when
using the Struts framework. The next section describes the necessary steps that you'll
need to perform to ensure that your Struts applications are properly configured.

M apping the Struts ActionServiet

The first and maybe most important step that you need to perform is to configure the
Struts Act i onSer vl et that will receive all incoming requests for the application.

You only need to configure a single ActionServiet, regardless of the
number of sub-applications that are being used. Some developers
choose to setup multiple controller servlets to handle different
functional areas of the application. Since servlets are multi-threaded,
you don’'t gain any real performance or scalability value by using
multiple ActionServl et mappings. Because Struts now supports
multiple sub-applications, arguably there might not be any reason to
have more than a single controller servlet for an application.

There are two steps in configuring the Struts controller servlet in the web.xml file. The
first step is to use the serviet element to configure the servlet instance that can later be
mapped in the serviet-mapping element. The child elements that are used in the serviet
element are shown here.

<! ELEMENT servl et (icon?, servlet-nane, display-name?, description?,

(servlet-class|jsp-file), init-parant, |oad-on-startup?, run-

as?, security-role-ref*)>

The child elements that we are most interested in for configuring Struts are serviet-name,
servlet-class, and the init-param. The following partial web.xml file illustrates how these
three elements are used to declare the Struts controller servlet instance.

<web- app>
<servl et>
<ser vl et - name>st or ef r ont </ ser vl et - nanme>
<servl et-class>omoreilly.struts.franework. StorefrontControl |l er</servl et-cl ass>
<init-paranm
<par am name>conf i g</ par am name>

91



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

<par am val ue>/ WEB- | NF/ st r ut s- conf i g. xni </ par am val ue>
</init-paran»
</ servl et>
</ web- app>

The serviet-name element specifies the canonical name that the servlet is referenced as
throughout the rest of the deployment descriptor. Each servlet instance element must
have a unique name within the web application. When configuring the serviet-class
element for a Struts application, this element must specify a fully qualified Java class that
extendsthe or g. apache. struts. acti on. Acti onServl et class.

Because the Struts Acti onSer vl et class is not abstract, you are free to
utilize that class and avoid having to create a subclass of the
ActionServlet for your application. With earlier versions of the
Struts, it was probably more important to extend the Acti onSer vl et
class with one of your own because most of the processing occurred
there and sub classing allowed you to override that functionality with
that of your own. With version 1.1 however, most of the processing
functionality has been moved to the Struts Request Processor class,
which you can configure declaratively asyou'll see later in this chapter,
and there is very little reason to create your own Act i onSer vl et class,
although you are still free to do so.

The other step that needs to be performed in order to configure the Struts controller
servlet in the deployment descriptor is to configure the servlet mapping. This is done
using the serviet-mapping element. The following partial deployment descriptor
illustrates how combining the serviet-mapping element with the serviet element shown
previously completes the Act i onSer vl et configuration.

<web- app>
<servl et>
<ser vl et - nane>st or ef r ont </ ser vl et - name>
<servl et-class>omoreilly.struts.franework. StorefrontControl |l er</servl et-cl ass>

</ servl et >
etc...

<servl et - mappi ng>
<servl et - nane>st or ef r ont </ ser vl et - name>
<url-pattern>*.do</url-pattern>
</ servl et - mappi ng>
</ web- app>

Notice that the name given to the Storefront Control | er servlet within the serviet
element is used in the serviet-mapping element. This tells the container that all requests
that have an extension of .do should be serviced by the St oref ront Cont rol | er serviet
instance.

92




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Mapping Request to Servlets

Thisis probably a good time to digress for a moment and discuss exactly how URLSs that
a user types in are mapped to the correct web application and servlet. When a web
application is installed into a container, the container is responsible for assigning a
Servl et Cont ext to it. There is a single instance of a Ser vl et Cont ext object for each
web application deployed in a container.

If the container is distributable and utilizes more than one JVM, the
web application may have a separate Servl et Cont ext instance for
each JVM.

The Ser vl et Cont ext provides an external view of the web application for the serviet. A
servlet can use the Servl et Cont ext object to gain access to external resources, log
events, and store attributes and objects that other servlet instances in the same context can
access. It's essentially an application-scope shared resource.

Since a servlet is associated with a specific web application, al regquests that begin with a
specific request path, otherwise known as the context path, are routed to the web
application and get associated with its Servl et Cont ext instance. Servlets that are
associated with the default application have an empty string “” as the context path.

When a web container receives a client request, it must determine the correct web
application to forward it to. It determines this by matching the request URL with the
longest context path that matches an installed web application. For example, if there are
two web applications instaled in a container and one is rooted at
http: //mww.somehost.convstorefront and the other at
http://mww.somehost.convstorfront_demo, if a client request arrived at the server with a
request URL of http://www.somehost.convstorefront_demo/login.do, then the server
would match it to the web application that had the closest match, which in this case
would be the storefront demo application.

Once the container determines the correct web application; it must next determine which
servlet from the web application should process the request. The web container uses the
request URL, minus the context path to determine the path that will be used to map the
request to the correct servlet. The web container uses the following guidelines. The first
successful match is used with no further matches attempted.

1. The web container will attempt to locate an exact match of the request path to the
path of a servlet.

2. The container will recursively try to match the longest path prefix. The servlet that
contains longest match, if any, is selected.

3. If the URL path contains an extension, for example .do, the servlet container will try
to match a servlet that handles requests for that extension. The extension is defined
asthe part of the last segment after thelast . character.

93



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

4. If none of the previous rules produced a match, the container will attempt to use a
default servlet if one is configured. Otherwise, the request will return an error
response.

The web container must use-case sensitive string comparisons when checking for a
match.

The concept of extension mappings was mentioned in step 3 of the matching guidelines.
There is another type of mapping that can be used, path mapping. A serviet-mapping that
utilizes a path mapping allows a URL that doesn’t contain an extension to match to the
servlet. Using the storefront serviet mapping from before, the following partial web.xml
illustrates how path mapping can be configured.
<web- app>
<servl et - mappi ng>
<ser vl et - name>st or ef r ont </ ser vl et - nanme>
<url-pattern>/action/*</url-pattern>
</ servl et - mappi ng>
</ web- app>

Using the path mapping here, all requests that get mapped to this web application and
contain the string /action in the request URL, will be serviced by the storefront servlet.
Thisisregardless of what isin place of the “*” character.

Specifying M ultiple Sub-Applications

As was briefly discussed in Chapter 3, the Struts 1.1 release has added the ability to
define multiple Struts configuration files, one for each sub-application that is supported.
In previous versions of the framework, you would configure a single Struts configuration
file in the web application deployment descriptor by specifying a relative path to the
configuration file using the config initialization parameter. With version 1.1 and the
concept of multiple sub-applications, you are now able to create multiple Struts
configuration files and specify them in the web.xml using multiple config initialization
parameters and the sub-application prefix. The next section discusses the initialization
parameters that can be configured for the servlet.

Declaring the I nitialization Parameters

Initialization parameters are used to make configuration options available to a servlet.
This alows the developer to declaratively affect the runtime environment of the servlet.
Initialization parameters are configured within the serviet element using <init -
par an> elements as shown in the following web.xml fragment.
<web- app>
<servl et>
<servl et - nane>st or ef r ont </ ser vl et - nane>

<servl et-class>comoreilly.struts.franmework. StorefrontControl |l er</servlet-class>
<ini t - parane

94



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

<par am nanme>conf i g</ par am nanme>
<par am val ue>/ WEB- | NF/ st r ut s- conf i g. xni </ par am val ue>
</init-parany
<init-param
<par am nane>host </ par am nane>
<par am val ue>| ocal host </ par am val ue>
</init-parany
<init-param
<par am name>por t </ par am name>
<par am val ue>7001</ par am val ue>
</init-parany
</ servl et >
etc...

<ser vl et - mappi ng>
<servl et - name>st or ef r ont </ ser vl et - nanme>
<url-pattern>*. do</url-pattern>
</ servl et - mappi ng>
</ web- app>

You can specify any parameters that you need within the init-param element as long as
it's a name/value pair. For example, the previous web deployment descriptor included
initialization parameters for a host and port. If you were using EJB, this might be a way
to include the server connection information. Zero or more init-param elements are
allowed.

There are specific initialization parameters that can be specified for the Struts serviet. In
earlier versions of Struts, many of the configuration options that are now in the Struts
configuration file, resided as init-param elements in the web deployment descriptor.
Although applications that were originally built and tested with version 1.0 will till
continue to work using the version 1.1, you may want to move some of the initialization
parameters that you currently have specified in the web deployment descriptor, to the
proper location in the Struts configuration file. Although the framework includes
functionality that will allow the previous initialization parameters to work in the
web.xml, we will be covering the 1.1 parameters here.

Table 4.1 identifiesthe initialization parameters that can be specified for Struts 1.1

Table 4-1. Initialization Parameters for web.xml using Sruts 1.1

Name Purpose/Default Value

config A context-relative path to the default struts configuration file. The
default value is /WEB-INF/struts-config.xml, which serves as the
default application.

95




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

config/subl

debug

detail

validating

For additional sub-applications, you can specify them by using the
value config/ and the prefix of the sub-application. In this example, the
init-param name would be config/subl and the value might be WEB-
INF/struts-subl1-config.xml. Thistells the controller to load the sub-
application subl from using the additional Struts configuration file.

Y ou can declare as many sub-applications as you need.

The debugging detail level for this servlet, which controls how much
information islogged. This parameter is optional and defaultsto O if
not specified, which is the lowest amount of logging information
possible.

The debugging detail level for the Digester, which logs information as
it parses the configuration files. This parameter is optional and defaults
to 0 if not specified, which is the lowest amount of logging information
possible.

A boolean value indicating whether to use a validating XML parser to
process the configuration file, which is strongly recommended. This
ensures that problems with the configuration files will be detected and
reported immediately. This parameter is optional and defaultsto true if
not specified.

If you are supporting a 1.0 Struts application using the 1.1 release, the
web.xml may still contain many of the configuration parameters that are
now defined in the Struts configuration file. The parameters apply only
to the default application and will eventually be removed in future
releases.

Configuringthe Tag Libraries

The Struts framework provides several JSP tag libraries that must be configured in the
web application deployment descriptor if you choose to use them. You inform the
container of these tag libraries by declaring one or more taglib elements within the web
deployment descriptor. The following partial web.xml file illustrates how the tag libraries
are configured.

<web- app>
<tagli b>

<tagli b>

<taglib-uri> WEB-|1 NF/ struts-bean.tld</taglib-uri>
<taglib-1ocation> WEB-| NF/ strut s-bean. t1d</taglib-1ocation>
</taglib>

<tagli b>
<taglib-uri> WEB-|1NF/struts-logic.tld</taglib-uri>

<taglib-uri> WEB-INF/struts-htni.tld</taglib-uri>
<taglib-location> WEB-1N-/struts-htni.tld</taglib-I|ocation>
</taglib>

96




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

<taglib-location> WEB-1 NF/struts-logic.tld</taglib-Iocation>
</taglib>

<tagli b>
<taglib-uri> WEB-IN-/struts-tenplate.tld</taglib-uri>
<taglib-location> WEB-|1 N-/struts-tenplate.tld</taglib-Iocation>
</taglib>
</ web- app>

The taglib element has two sub-elements, the taglib-uri and taglib-location. The taglib-
uri element specifies a URI identifying a tab library that is used by the web application.
The value may either be a relative or an absolute URI. It must be a valid URI, but here
it's used as a unique identifier for the tag library. The taglib-location element specifies
the location (as aresource) of the tag library descriptor file.

The Struts tag libraries are not the only ones that may be declared in the web application
deployment descriptor. If you create any of your own custom tag libraries, you should
create taglib elements for them here as well. Although the JSP specification allows for
both explicit and implicit mappings, it's best to list the tag libraries that are used within a
web application in the web.xml file so that all parties to the development of the web
application know exactly what the dependencies are.

Setting up the Welcome File List

The welcome-file-list element allows you to configure default resources that should be
used when a valid, but partial URI is entered for a web application. You can specify
multiple welcome files and they will be used in the order that they are configured.

To understand this better, suppose we configured the welcome-file-list element for the
storefront application asin example 4-1.

Example 4-1. A partial web.xml file showing the welcome files for the Storefront
application
<wel conme-file-list>

<wel corre-fi | e>i ndex. j sp</ wel cone-fil e>
</wel corme-file-list>

The welcome-file-list shown in example 4-1 indicates that a request to the server for
http://mww.somehost.com/storefront, which is the root of the storefront application,
should resolve to http://www.somehost.convstorefront/index.jsp. This is very beneficia
because most containers would by default look for index.html or index.htm instead. Y ou
can specify multiple welcome-file elements within the welcome-file-list. This might be
helpful if for example, you deployed your application on various types of containers and
the first welcome-file resource was not found on the server. The container would continue
to try to match the welcome files up to the request URI until it found one on the server
and served that resource to the client. The order of the welcome file entries in the
deployment descriptor is used for the matching process.

97




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

There should be no trailing or leading “/" characters in the welcome-file element. If there
are no welcome files configured for the web application or the URI entered by a client,
the web container may handle the request in a manner that is appropriate. This may mean
returning a 404 response or a directory listing. It's a good idea to configure a welcome
filefor at least the root web application.

Using a Struts Action in the welcome-file-list

Because the web containers don't use the servlet mappings for resources in the welcome-
file-list, you can't directly setup a <wel cone-fi | e> element to use a Struts action.
However, there is an aternate way that will allow you to meet the same goal.

Y ou need to create a global forward in the Struts configuration file for the action that you
would like to invoke:
<gl obal - f or war ds>

<forward name="wel cone" pat h="vi ewsi gni n. do"/>
</ gl obal - f or war ds>

Then create a JSP page called wel cone. j sp (the name can actually be anything that
you want) and use the Struts forward tag to forward to the global forward when the page
is accessed.

<y@taglib uri="/WEB-I N~/ struts-logic.tld" prefix="1ogic" %
<l ogi c: forward name="wel cone"/>

Those are the only two lines that you need to put in the wel come. j sp file. You will
then need to add a<wel cone-fi | e> element for thewel cone. | sp page:
<wel cone-file-list>
<wel core-fi | e>wel cone. j sp</wel cone-file>

<wel corre-fi | e>i ndex. j sp</ wel cone-fil e>
</wel corme-file-list>

When the container uses the wel cone. j sp resource, it will automatically forward to
the global forward named “ welcome’. Thisin turn invokesthe vi ewsi gni n. do action
and achieves the desired result.

Configuring Error Handling in web.xml

Although the Struts framework provides a suitable error handling mechanism, there are
times that problems can dlip through the exception-handling crack, and users are shown a
servlet or JSP exception. To absolutely prevent this from happening, you should use the
error-page element available to the web application deployment descriptor. Example 4-2
shows a partial web.xml file that utilizes the error-page element to prevent users from
seeing a404 or a 500 error.

Example 4-2. Using the error-page element will keep users from seeing unhelpful error
pages
<web- app>

98



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

<error - page>
<error-code>404</ err or - code>
<l ocat i on>/ conmon/ 404. j sp</| ocat i on>
</ error - page>

<error- page>
<err or - code>500</ err or - code>
<l ocat i on>/ conmon/ 500. j sp</| ocat i on>
</ error-page>
</ web- app>

When an error status code is set in the response, the container will consult the list of error
page declarations for the web application. If there is a match found, the container will
return the resource indicated by the location element. The value of the location element
must begin with a “/* character. It must also refer to a resource within the web
application. If you need to refer to a resource outside of the web application, you can use
the HTML Refresh META TAG. In the location element, refer to a static HTML
document that only contains the following line:

| <neta http-equi v="Refresh" content="0; URL=http: //wwv sonehost . coni 404. j sp" >

When the error occurs, the Refresh META tag will reload immediately, but it will use the
aternate URL provided. This strategy is also a good way to allow uses to refer to
resources with a static extension such as .htm, but then reload to a dynamic page such as
a JSP page.

Servlet can also generate exceptions, which you are able to declare an error page for.
Instead of specifying the error-code element, you can specify a fully qualified Java class
using the exception-type element. Since servlets can throw the following exceptions
during processing:

Runt i meExcepti onorError
Ser vl et Except i on or subclasses
| OExcept i on or subclasses

The Java exception class declared in the exception-type entry must be one of these types
of throwable’s.

Example 4-3 illustrates how you would substitute the exception-type element for the
error-code.

Example 4-3. Using the exception-type element instead of the error-code

<web- app>
<error - page>
<exception-type>j avax. servl et. Servl et Except i on</ excepti on-type>
<l ocat i on>/ conmon/ system error.jsp</location>
</ error-page>
</ web- app>

99




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

For the majority of this chapter, you have been shown partial deployment descriptors.
This was done mainly for space, but also so that we could ease our way into the various
supported elements. It's finally time to include a complete example of a web deployment
descriptor. Example 4-4 shows the web deployment descriptor for the storefront
application.

Example 4-4. A complete web.xml configured for Sruts 1.1
<?xm version="1.0" encodi ng="UTF- 8" ?>

<! DOCTYPE web- app
PUBLIC "-//Sun Mcrosystens, Inc.//DID Wb Application 2.3//EN'
"http://java. sun. coni dt d/ web-app_2_3. dtd">

<web- app>
<servl et >
<servl et - name>st or ef r ont </ ser vl et - name>
<servl et - cl ass>or g. apache. struts. acti on. Acti onServl et </ servl et - cl ass>
<init-param
<par am name>conf i g</ par am name>
<par am val ue>/ WEB- | NF/ st r ut s- conf i g. xni </ par am val ue>
</init-parany
<init-param
<par am nane>debug</ par am nane>
<par am val ue>3</ par am val ue>
</init-parany
<ini t - parane
<par am nanme>det ai | </ par am nanme>
<par am val ue>3</ par am val ue>
</init-paran»
<ini t - parane
<par am name>val i dat i ng</ par am nane>
<par am val ue>t r ue</ par am val ue>
</init-paran»
<l oad- on- st art up>1</ | oad- on- st ar t up>
</servl et>

<servl et - mappi ng>
<servl et - nane>st or ef r ont </ ser vl et - name>
<url-pattern>/action/*</url-pattern>

</ servl et - mappi ng>

<wel cone-file-list>
<wel cone-fil e>i ndex. j sp</wel cone-fil e>
</ wel core-file-list>

<error - page>

<error - code>404</ err or - code>

<l ocat i on>/ conmon/ 404. j sp</ | ocat i on>
</ error - page>
<error - page>

<error - code>500</ err or - code>

<l ocat i on>/ conmon/ 500. j sp</| ocat i on>
</ error-page>

100




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

<tagli b>

<taglib-uri> WEB-I N/ struts-htni.tld</taglib-uri>
<taglib-location> WEB-|1 N/ struts-htm .tld</taglib-1ocation>
</taglib>

<tagli b>

<taglib-uri> WEB-I N+ struts-bean.tld</taglib-uri>

<tagl i b-location> WEB-| NF/ strut s-bean. t| d</taglib-|ocati on>
</taglib>

<tagli b>

<taglib-uri> WEB-IN-/struts-logic.tld</taglib-uri>
<taglib-location> WEB-1 NF/struts-logic.tld</taglib-Iocation>
</taglib>

<tagli b>
<taglib-uri> WEB-I N/ struts-tenplate.tld</taglib-uri>
<taglib-location> WEB-1 N/ struts-tenpl ate.tld</taglib-1ocation>
</taglib>
</ web- app>

The Struts Configuration File

The Struts framework depends on one or more configuration files to be able to load and
create the necessary application specific components at startup. The configuration files
allow the behavior of the framework components to be specified declaratively, rather
than have the information and behavior hard-coded. This gives devel opers the flexibility
to provide their own extensions, which can be discovered dynamically by the framework.

The configuration file is based on the XML format and can be validated against the Struts
DTD struts-config_1_1.dtd. Although there are some similarities between the 1.0 and 1.1
versions of the framework with respect to the configuration file, there are as many
differences.  Fortunately, the designers of the framework have made backwards
compatibility a goal of the 1.1 release, therefore your 1.0.X applications should continue
to function properly with the new version.

Configuring M ultiple Sub-Applications still

Even though the overview that was given in Chapter 3 mentioned multiple sub-
applications briefly, we haven't fully introduced the new feature that the Struts 1.1
release has added to the framework. With sub-applications, you have the ability to define
multiple Struts configuration files, one for each sub-application that is supported. Each
sub-application can provide its own configuration information, including message
resources and be completely independent from other sub-applications.

101




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Sub-applications or multi-applications as some developers are referring to them, allow a
single Struts application to be split into separate projects, thus better supporting parallel
development.

Although the functionality for multiple sub-applications exists in the framework, you are
not required to implement more than one, the default application. We'll discuss sub-
applications later in the chapter and much more in Chapters 5, 6, and 7. For now, we are
going to concentrate on configuring the default application and then we'll show just how
easy it isto add multiple sub-applications.

The org.apache.struts.config Package

The org. apache. struts.config package was added to verson 1.1. The
framework uses these JavaBeans to hold onto in memory, the configuration information it
reads from the Struts configuration files. Figure 4-4 shows the main classes from the
config package.

MessageResourcesConfig ApplicationConfig | FluginGonfig
P — 0
a.r 1
ControllerConfig| 0.° m
0.
0.*
DataSourceConfig
0+
ActionConfig
FormBeanConfig
0.
0.*

1

o.*

FormPropertyConfig ConfigRuleSet ExceptionConfig

0.

Figure 4-4. The class diagram of the org.apache.struts.config package

Each JavaBean class in the confi g package holds onto information from a specific
section of the configuration file. After the configuration file has been validated and
parsed, the Struts framework uses instances of these JavaBeans, to represent in-memory
versions of the information that has been declared in configuration file. The JavaBean
classes act as runtime holders of the configuration information and are used by the
framework components when they need to determine what has been configured.

102



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

The or g. apache. struts. confi g. Confi gRul eSet class shown in Figure 4-1
has a dightly different, but related job. It contains the set of Digester rules that are
required to parse a Struts configuration file. Its job is to construct instances of the
configuration JavaBeans when the application is started.

The Appl i cati onConfi g class

A special introduction should be made for the
org. apache. struts. config. ApplicationConfig class, as it plays a very
important role in the framework. As Figure 4-4 indicates, it is central to the entire
confi g package and holds onto the configuration information that describes an entire
Struts application. If multiple sub-applications are being used, then there is one
ApplicationConfig object for each sub-application. The
Appl i cati onConfi guration class will surface throughout our discussion the
framework.

The Struts Configuration DTD

Asthe web application's DTD is used to validate the web.xml file, the Struts DTD is used
to validate the Struts configuration file. The following Struts DTD declaration indicates
that the struts-config element is the root element for the XML file and that it has seven
child elements.

< ELEMENT struts-config (data-sources?, formbeans?, global-exceptions?, global-
forwards?, action-mappi ngs?, controller?, nessage-resources*, plug-in*)>

The data-sources Element

The data-sources element allows you to setup a rudimentary data source that you can
utilize from within the Struts framework. A data source acts as a factory for database
connections. It provides a single point of control for handing out connections and many
data source implementations utilize a connection pooling mechanism to improve
performance and scalability.

There are many vendors that provide their own implementation of a data source object.
The Java language provides the javax.sgl.DataSource interface that all
implementations must implement. Most popular application servers provide built-in data
source components and you will also find that all of the major database vendors provide a
data source implementation as well.

The data-sources element can contain zero or more data-sour ce el ements as shown here.

| <! ELEMENT dat a- sources (dat a- source*)>

The data-source element allows for multiple set-property elements to be specified, which
allows you to configure properties that are specific to your data source implementation.

| <! ELEMENT dat a- sour ce (set-property*)>

103



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Throughout the discussion of the Struts configuration elements in the
rest of this chapter, you will notice a child element called set-property
in many of the major elements of the configuration file. The set-
property element specifies a name and value of an additional
JavaBeans configuration property whose setter method will be called
on the object that represents the surrounding element. Using this
element is especially useful for passing additional property information
to an extended implementation class. The set-property element is never
required and you will only use it if you need to pass properties to a
configuration class that does already an attribute predefined.

The set-property element defines 3 attributes, of which only two are
required. The property attribute is the name of the JavaBeans property
whose setter method will be called. The value attribute is a string
representing the value that will be passed to the setter method after
proper conversion. The next section on the data-sources element will
provide an example of using the set-property element. The same format
will be replicated wherever the set-property element is declared.

The attributes for the data-source element are illustrated in table 4-2.

Table 4-2. The attributes for the data-source element

Name Description

id Not currently used.

className The implementation class of the configuration bean that will hold the
data source information. If specified, it must be a descendant of
org. apache. struts. confi g. Dat aSour ceConf i g, which is the default
class when no value is specified. This attribute is optional .

key The servlet context attribute under which this data source will be
stored. The attribute is optional and the default valueis
Act i on. DATA SOURCE_KEY.

type A fully qualified Java class name of the data source implementation

class. The class represented by this value must implement

j avax. sql . Dat aSour ce and be configurable from JavaBeans
properties. This attribute is optional and the default value is
org. apache. struts. util. Generi cDat aSour ce.

Example 4-5 illustrates how you can configure a data source within the Struts

configuration file.

Example 4-5. Specifying a data source that can be used within the Sruts framework
<dat a- sour ces>

<dat a- sour

ce>

<set-property property="autoConmt" val ue="true"/>

104



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

<set-property property="description" val ue="M/Sgl Data Source"/>
<set-property property="driverd ass" val ue="com caucho. j dbc. nysql .Driver"/>
<set-property property="maxCount" val ue="10"/>
<set-property property="mnCount" val ue="2"/>
<set-property property="user" val ue="admn"/>
<set-property property="password" val ue="admn"/>
<set-property property="url"
val ue="j dbc: nysql - caucho: / /| ocal host : 3306/ storefront"/>
</ dat a- sour ce>
</ dat a- sour ces>

Example 4-5 illustrates a data-source element configured to connect to a MySql database
using a JDBC driver from Caucho Technology, which are the developers of the Resin™
servlet container. The Struts framework provides a default data source implementation
with the class or g. apache. struts. uti | . Generi cDat aSour ce. As Table 4-2 shows, you
can use your own implementation or one from a third-party by providing the class name
in the type attribute. In Example 4-5, the default data source implementation from Struts
is being used.

Y ou can specify multiple data sources within the configuration file and assign each one a
unique key and access a particular data source in the framework by its key. This gives
you the ability to access multiple databases if your requirements call for it.

Although the data source functionality provided by the framework does work, your
application may require a more robust data source implementation. There are several
other popular data source implementations that you can use. Table 4-3 lists several of the
more popular aternative implementations that other Struts developers have had success
using.

Table 4-3. Alternative data source implementations

Name Vendor URL

Poolman Open Source http: //sour cefor ge.net/projects/poolman/
Expresso Jcorporate http: //mww.j cor por ate.com/

JDBC Pool Open Source http: //mwww.bitmechani c.comvpr ojects/jdbepool

The creator of the Poolman open source libraries is not supporting it
anymore. Although it’s still available on SourceForge and works quite
well, it has not been updated for quite some time. Of course, since it's
open source, you can make necessary fixes and changesif you need to.

Theform-beans Element

The form-beans element allows you to configure multiple Act i onFor mclasses that are
used by the views. Within the form-beans section, you can configure zero or more form-
bean child elements. Each form-bean element also has several child elements of itself.

105




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

<! ELEMENT formbean (icon?, display-nane?, description?, set-property*, form
pr operty*) >

Each form-bean element also has five attributes that you can specify. Two of the
attributes are required and the rest are optional. Table 4-4 lists the attributes.

Table 4-4. The attributes of the form-bean element

Name Description
id Not currently used.
className If you don’t want to use the standard configuration bean

org. apache. struts. confi g. For mBeanConf i g, you can specify your
own class here. It must extend the FormBeanConfig class. This
attribute is optional and the framework will use an instance of the

For nBeanConf i g classif not specified.

dynamic If the class identified by the type attribute is an instance of
org. apache. struts. acti on. DynaAct i onFor m then this value should
be set to true. Otherwise this value is false. This attribute is optional
and the default value isfalse.

name A unique identifier for this bean, which is used to reference it
throughout the framework. This value is required and must be unique
within a sub-application.

type The fully qualified name of a Java classthat extends the Struts
Act i onFor mclass. If thisvalue is specified as
org. apache. struts. acti on. DynaAct i onFor m then Struts will
dynamically generate an instance of the DynaAct i onFor m which also
extends Act i onFor m This attribute is required.

As you learned from Chapter 3, a form bean is a JavaBean class that extends the
org. apache. struts. acti on. Acti onFor mclass. Example 4-6 shows how the form-
beans element can be configured in the configuration file.

Example 4-6. A partial struts-config.xml file showing the form-beans section

<struts-config>
<f or m beans>
<f or m bean
nane="1 ogi nFor ni
dynam c="true”
type="org. apache. struts. acti on. DynaAct i onFor ni >
<form property name="usernane" type="java.lang.String"/>
<form property name="password" type="java.lang. String"/>
</ f or m bean>

<f or m bean

nane="shoppi ngCart For n{

type="comoreilly. struts. order. Shoppi ngCart Forni/>
</ f or m beans>

106




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

| </ struts-config>

One of the <f or m bean> elements in Example 4-6 uses a new feature to Struts 1.1
called dynamic action forms. The purpose of dynamic action forms was discussed in
Chapter 3.

You can pass one or more dynamic properties to an instance of the
org. apache. struts. acti on. DynaAct i onForm class using the <f orm property>
element. It's only supported when the type attribute of the surrounding <form-bean>
element is “org.apache.struts.action.DynaActionForm”, or descendant.

Each form-bean element also has five attributes that you can specify. Two of the
attributes are required and the rest are optional. Table 4-4 lists the attributes.

Table 4-4. The attributes of the form-bean element

Name Description

className If you don’t want to use the standard configuration bean
org. apache. struts. confi g. For nPropertyConfi g, you
can specify your own class here. This attribute is not required.

initial A string representation of the initial value for this property. If not
specified, primitives will be initialized to zero and objects to null. This
attribute is not required.

name The JavaBeans property name of the property being described by this
element. This attributeis required.

type The fully qualified Java class name of the implementation class of this
bean property, optionally followed by "[ ]" to indicate that this property
isindexed. This attribute is required.

Thisis avery nice feature in 1.1 because it saves you development time from having to
create a bunch of Acti onFor mclasses that just pass data from the HTML pages to the
backend. The DynaAct i onFor mextends the Act i onFor mclass so you will need to perform
an explicit cast on the Act i onFor mobject within the execute method of your Action class
to retrieve the properties.

Since the DynaAct i onFor minstance is created dynamically, the val i dat e() method
doesn’'t provide any default validation behavior, so you may have to perform the
validation in your Acti onclass. Ther eset () method will till be called and the values
will be reset back to the default state. Action forms will be discussed further in Chapter
7.

107



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

The global-exceptions Element

The global-exceptions section allows you to configure exception handlers declaratively at
the application level. The global-exceptions element can contain zero or more exception
elements.

| <! ELEMENT gl obal - exceptions (exception*)>

As you'll see later in this chapter when we talk about the action mappings,
<except i on> elements can also be specified at the action level. If an <excepti on>
element is configured for the same type of exception both at a global level and at an
action level, the action level will take precedence. If no exception element mapping is
found at the action or application level, the framework will then look for exception
mappings defined for the exception’s parent class. Eventually, if a handler is not found, a
Ser vl et Except i on or | CExcept i on will be thrown, depending on the type of the original
exception. Chapter 10 deals with both declarative and programmatic exception handling
in detail. This section will illustrate how to configure declarative exception handling for
your applications.

The <excepti on> element describes a mapping between a Java exception that may
occur  during  processing  of a requet and an instance  of
org. apache. struts. acti on. Except i onHand| er that is responsible for dealing with the
thrown exception. The declaration of the <except i on> element illustrates that it also
has several child elements.

| <! ELEMENT exception (icon? display-nane? description? set-property*)>

Probably more important than the child elements are the attributes that can be specified in
the<except i on> element. The attributes are shown in table 4-5.

Table 4-5. The attributes of the exception element

Name Description
id Currently not used.
className The implementation class of the configuration bean that will hold the

exception information. If specified, it must be a descendant of
org. apache. struts. confi g. Excepti onConfi g, which is the default
class when no value is specified.

handler The fully qualified Java class name of the exception handler that will
process the exception. If no value is specified, the default exception
handling class org.apache.struts.action.ExceptionHandler will be used.
If aclassis specified for this attribute, it must be a descendant of the
Except i onHandl er class.

key A message key that is specified in the resource bundle for this sub-
application. Thisvalue is used by the Act i onEr r or instance.

108



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

path The application-relative path of the resource to forward to if this
exception occurs. This attribute is optional and the framework will
default to the input attribute for the action mapping if no valueis
specified here.

scope Identifier of the scope level, where the Act i onEr r or instance should be
stored. The attribute value must either be “request” or “session”. This
attribute is optional and will default to “request” scope if not specified.

type The fully qualified Java class name of the exception that isto be
handled. This attribute is required because it identifies the exception,
which can’t be assumed by the framework.

Example 4-7 showsa<gl obal - excepti on> element.

Example 4-7. Configuring the global-exceptions element

<gl obal - excepti ons>
<exception
key="gl obal . error.invalidl ogi n"
pat h="/security/signin.jsp"
scope="request"
type="comoreilly.struts.franework. exceptions. | nval i dLogi nException"/>
</ gl obal - except i ons>

Currently, there’s no way to specify which bundle the key attribute in
the <exception> element should come from. The only choice is the
default bundle. There is however, an enhancement request entered for
this feature to be added.

The global-forwards Element

The <gl obal - f or war ds> section allows you to configure application level mappings
of logical names to application relative URI paths. The <gl obal - f or war ds> section
consists of zero or more <f or war d> elements as shown here.

| <! ELEMENT gl obal -forwards (forward*)>

The <f or war d> element maps a logical hame to an application relative URI path. The
application can then perform aforward or redirect, using use the logical name rather than
the literal URI. This helps to decouple the controller and model logic from the view. The
<f or war d> element can be defined both at the global level and also at the action level.
If a forward with the same name is defined at both places, the action level will take
precedence.

The declaration of the <f or war d> element illustrates that it also has several child
elements.

| <! ELEMENT forward(icon?, display-nane?, description, set-property*)>

As with the exception element, the attributes are probably more interesting than the child
elements. The attributes for the <f or war d> element are shown in table 4-6.

109



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Table 4-6. The attributes of the forward element

Name Description

className The implementation class of the configuration bean that will hold the
forward information. If specified, it must be a descendant of
or g. apache. struts. confi g. Forwar dConfi g. The cl ass
org. apache. struts. acti on. Acti onFor war d is the default class when
no value is specified. This attribute is not required.

contextRelative  Set to true to indicate that the resource specified in the path attribute
should be interpreted as application relative if the path starts with a*/”
character. Thisis so the resource specified by the path attribute can
reside in another sub-application. This attribute is not required and the
default valueisfalse.

name A unique value that is used to reference this forward in the application.
This attribute is required.

path An application relative or content relative URI to which control should
be forwarded or redirected to. This attribute is required.

redirect A boolean value that determines whether the Request Pr ocessor

should perform aforward or a redirect when using this forward
mapping. This attribute is not required and the default valueis false,
which means that a forward will be performed.

The contextRelative attribute for the forward element is very important.
If the path attribute starts with a*“/” and doesn’t provide a value for this
attribute or specifies it as false, the controller will append the sub-
application prefix onto the path when it performs the actual forward
through the Request D spat cher. This may cause a 404 error if by
adding the sub-application prefix causes the resource not to be found.

The or g. apache. struts. acti on. Acti onForwar d class is used to hold the information
configured in the controller element. The ActionForward class now extends
org. apache. struts. confi g. Forwar dConf i g for backwards compatibility, but it has not
yet been deprecated.

The action-mappings Element

The <act i on- mappi ngs> element configures the mappings from submitted request
paths to the corresponding Acti on classes for a particular sub-application. The
<act i on- mappi ngs> element can contain zero or more <act i on> elements.

| <! ELEMENT acti on- nappi ngs (action*)>

The <action> element describes a mapping from a specific request path to a
corresponding Act i on class. The controller selects a particular mapping by matching
the URI path in the request with the path attribute for an action mapping.

110



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

The action element contains the following child elements.

<! ELEMENT action (icon?, display-name?, description, set-property*, exception*,
f orwar d*) >

There are two child elements that may stand out in the list of children for the <act i on>
element. They should stand out because you've already seen both of them earlier in the
chapter. They are the <except i on> element and the <f or war d> element, both of
which you have seen before.

Y ou saw the exception element earlier in this chapter when we discussed the <gl obal -
except i ons> element. We mentioned then that exception elements could be defined at
the global, or at the action level. The exception elements defined here within the action
element take precedence over the ones defined at the global level. The syntax and
attributes are the same when defined here asthey are in the global -exceptions element.

Y ou've also seen the forward element earlier in reference to the global-forwards element.
As with the exceptions, a forward element can be defined both at a global level and at the
action level. The action level will take precedence if the same forward is defined in both
locations.

The<act i on> element contains quite afew attributes. They are shown in table 4-7.

Table 4-7. The attributes for the action element

Name Description

className The implementation class of the configuration bean that will hold the
action information. If specified, it must be a descendant of
org. apache. struts. confi g. Acti onConfi gclass. The
org. apache. struts. acti on. Acti onMappi ng classisthe
default class when no value is specified. This attribute is optional.

attribute The name of the request or session scope attribute under which the
form bean for this action can be accessed. A valueis only allowed here
if there is aform bean specified in the name attribute. This attribute is
optional and has no default value.

forward Application-relative path of the servlet or JSP resource that will process
this request, instead of instantiating and calling the Act i on class
specified by the type attribute. The attributes forward, include, and type
are mutually exclusive and only one can be specified for an action. This
attribute is optional.

include Application -relative path of the servlet or JSP resource that will
process this request, instead of instantiating and calling the Act i on
class specified by the type attribute. The attributes forward, include, or
type are mutually exclusive and only one can be specified for an action.
This attribute is optional.

111



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

name The name of the form bean, if any, that is associated with this action.
This value must be the name attribute from one of the form-bean
elements defined earlier. This attribute is optional and has no default
value.

path The application-relative path of the submitted request, starting with a
“I" character and without the filename extension if extension mapping
isused. In other words, thisis the name of the action. For example,
“/addToShoppingCart” is an example of a path for an action. Thisvalue
isrequired. This attribute probably should have been called “name”
because it really is the name of the action.

parameter General purpose configuration parameter that can be used to pass extra
information to the action instance selected by this action mapping. The
core framework does not use this value in any way. If you provide a
value here, you can obtain it in your Act i on subclass by calling the
get Par anet er () method on the mapping passed to the
execut e() method.

prefix The prefix used to match request parameter names to form bean
property names. Y ou can only provide a value here if the name attribute
is specified.

scope This attribute is used to identify which scope level the form beanis

placed. It can either be “request” or “session”. It can only be specified
if the name attribute is present. The default valueis “session”.

suffix The suffix is used to match request parameter names to form bean
property names. Y ou can only provide avalue here if the name attribute
is specified.

type A fully qualified Java class name that extends

org. apache. struts. acti on. Acti on class, which is used to process
the request if the forward or include attribute is not specified. Only one
of these three attributes can be specified for a particular action
mapping.

unknown A boolean value indicating if this action should be configured as the
default for this application. If this attribute is set to true, this action will
handle any request that is not handled by another action. Only one
action per application can have this value set to true. This attribute is
optional and defaultsto false. Thisis agood place to setup a default
action that will catch any invalid action URL entered by the user.

validate A boolean value indicating whether the val i dat e() method of the
form bean, specified by the name attribute, should be called prior to

caling theexecut e() method of thisaction. Thisattributeis
optional and will default to true.

Theor g. apache. struts. acti on. Acti onMappi ng classis used to hold
the information configured in the controller element. The
Act i onMappi ng class now extends

112



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

org. apache. struts. config. Acti onConfi g for backwards
compeatibility, but has not yet been deprecated.

The controller Element

The <controll er> element is new to version 1.1. Prior to version 1.1, the
Act i onSer vl et contained the controller functionality and you had to extend that class
to override the functionality. In version 1.1 however, Struts has moved most of the
controller functionality to the new Request Processor class. The ActionServl et ill
receives the requests, but then delegates the request handling to an instance of the
Request Processor class that has been installed. This allows you to declaratively assign
the processor class and modify its functionality.

If you're familiar with version 1.0, you'll notice that many of the parameters that were
configured in the web.xml for the controller servlet are now configured for the
<control | er > element here. Since the controller and its attributes are defined in the
struts-config.xml, you can define a separate <control | er > element for each sub-
application. The declaration of the <control | er > element illustrates that is has a
single child element.

| <! ELEMENT control | er (set-property*)>

The <contr ol | er > element can contain zero or more <set - pr opert y> elements
and many different attributes. The attributes are shown in table 4-8.

Tabled-8. The attributes for the controller element

Name Description
id Currently not used.
className The implementation class of the configuration bean that will hold the

controller information. If specified, it must be a descendant of
org. apache. struts. config. Control | er Confi g, which isthe default
class when no value is specified. This attribute is not required.

bufferSize The size of the input buffer used when processing file uploads. This
attribute is optional and the default value is 4096.

contentType The default content type and optional character encoding that gets set
for each response. This attribute is not required and the default valueis
“text/html”. Even when avalueis specified here, an action or a JSP
page may overrideit.

debug The debugging level for this application. The value is used throughout
the framework to determine how verbose the logging information
should be for events that take place internally. The larger the value, the
more verbose the logging is. This attribute is not required and the
default value is 0, which causes little or no logging information to be
written out.

113



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

locale A boolean value indicating whether the user’s preferred Localeis
stored in the user’ s session if not already present. This attribute is not
required and the default value is true.

maxFileSize The maximum size (in bytes) of afileto be accepted as a file upload.
This value can be expressed as a number followed by a“K”, “M”, or
“G", whichisinterpreted to mean kilobytes, megabytes, or gigabytes
respectively. This attribute is not required and the default value is
“250M”.

multipartClass  The fully qualified Java class name of the multipart request handler
classto be used. Thisattribute is not required and the default value is
or g. apache. struts. upl oad. D skMil ti part Request Handl er.

nocache A boolean value indicated that the framework should set nocache
HTTP headersin every response. This attribute is not required and the
default value isfalse.

processorClass  The fully qualified Java class name of the request processor class to be
used to process requests. The value specified here should a descendant
of org. apache. struts. acti on. Request Processor. Thisattributeis
not required and the default value is
or g. apache. struts. acti on. Request Pr ocessor.

tempDir A temporary working directory that is used when processing file
uploads. This attribute is not required and the servlet container will
assign a default value for each web application.

The org.apache. struts.config. ControllerConfig class is used to hold the
information configured in the controller element. The following fragment shows an
example of how to configurethe <cont r ol | er > element.

<control | er
cont ent Type="t ext/ ht ni ; char set =UTF- 8"
debug="3"
| ocal e="true"
nocache="true"
processor A ass="comoreilly.struts.framework. Qust onRequest Processor "/ >

The message-resources Element

The <nmessage-resources> element specifies characteristics of the message
resource bundles that contain the localized messages for an application. Each Struts
configuration file can define one more message resource bundles. Each sub-application
can define its own bundles. The declaration of the <nessage- r esour ces> element
shows that it contains no child elements.

| <! ELEMENT nessage- r esour ces EMPTY>

The entire configuration for this element is done through the attributes as shown in table
4-9.

114



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Table 4-9. The attributes for the message-resources element

Name Description
id Currently not used.
className The implementation class of the configuration bean that will hold the

message-resources information. If specified, it must be a descendant of
org. apache. struts. confi g. MessageResour cesConf i g, which isthe
default class when no value is specified. This attribute is optional .

factory The fully qualified Java class name of the MessageResour cesFact ory
class that should be used. This attribute is optional. The default value is
org. apache. struts. util. PropertyMessageResour cesFact ory.

key The servlet context attribute key that this message resource bundle will
be stored under. This attribute is optional. The default value is specified
by the string constant Act i on. MESSAGES KEY.

null A boolean value indicating how the MessageResour ces subclass
should handle the case when a unknown message key is used. If this
valueis set to true, anull string will be returned. If set to false, a
message that looks something like this“ ???global.label.missing???”
will be returned. The actual message will contain the bad key. This
attribute is optional. The default value istrue.

parameter This attribute is the base name of the resource bundle. For example, if
the name of your resource bundle is ApplicationResources.properties,
you should set the parameter value to ApplicationResources. A better
name could have probably been found for this attribute. This attribute is
required.

The following example shows how to configure multiple <nessage-r esour ces>
elements for a single application. Notice that the second element had to specify the key
attribute, since there can be only one stored with the default key.

<nessage-r esour ces par anet er =" St or ef r ont MessageResour ces” nul | ="f al se"/ >
<message- r esour ces

key="1 MACE_RESOURCE_KEY"

par anet er =" St or ef r ont | nageResour ces"

nul | ="fal se"/>

The plug-in Element

The plug-in element specifies a fully qualified class name of a general-purpose
application plug-in module that receives notification of application startup and shutdown
events. An instance of the specified classis created for each element and the init method
is called when the application is started and the destroy method when the application is
stopped. The class specified here must implement the
org. apache. struts. action. Pl ugl n interface and implement the init and destroy
methods.

115



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

This behavior is very similar to what servlet filters and/or application event listeners can
provide based on the Servlet 2.3 specification. However, the difference is that the class
doesn't have to be coupled to a servlet container.

The declaration of the plug-in element shows that it may contain zero or more set-
property elements, so that extra configuration information may be passed to your class.

| <! ELEMENT pl ug-in (set-property*)>
The alowed attributes for the <pl ug- i n> element are shown in table 4-10.

Table 4-9. The attributes for the plug-in element

Name Description
id Currently not supported.
className The fully qualified Java class name of the plug-in class. It must

implement the Pl ugl n interface.

The following fragment shows how the plug-in element can be configured in the Struts
configuration file.

<pl ug-in cl assNanme="comoreilly.struts.framework. dat abase. Dat abaseP ugl n">

<set-property property="debug" val ue="true"/ >
<set-property property="pathnane" val ue="/WEB-| NF/ dat abase. properties"/>
</ pl ug-in>

Up to this point, you haven't seen a full example of a Struts configuration file. Example
4-8 provides a complete listing.

Example 4-8. A complete Struts configuration file

<?xm version="1.0" encodi ng="UTF-8" ?>

<! DOCTYPE struts-config PUBLIC
"~/ Apache Software Foundation//DID Struts Configuration 1.1//EN'
"http://jakarta.apache. org/struts/dtds/struts-config 1 1.dtd">

<struts-config>

<l--
<dat a- sour ces>
<dat a- sour ce>
<set-property property="autoCommt" val ue="true"/>
<set-property property="description" val ue="Resin Data Source"/>
<set-property property="driverd ass" val ue="com caucho. j dbc. nysql .Driver"/>
<set-property property="nmaxCount" val ue="10"/>
<set-property property="mnCount" val ue="2"/>
<set-property property="user" val ue="admn"/>
<set-property property="password" val ue="admn"/>
<set-property property="url" val ue="j dbc: nysql -
caucho: / /1 ocal host : 3306/ st orefront "/ >
</ dat a- sour ce>
</ dat a- sour ces>
-->

116




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

<f or m beans>
<f or m bean
nane="1 ogi nFor ni
type="comoreilly.struts.storefront. security.Logi nForni/>
<f or m bean
name="1it enDet ai | For mf
dynam c="true"
type="org. apache. struts. acti on. DynaAct i onFor ni >
<formproperty name="view' type="comoreilly.struts.catal og.view |tenM ew'/>
</ f or m bean>
</ f or m beans>

<gl obal - excepti ons>
<exception
key="gl obal . error.invalidl ogi n"
pat h="/security/signin.jsp"
scope="r equest "
type="comoreilly.struts.franework. exceptions. | nval i dLogi nException"/>
</ gl obal - excepti ons>

<gl obal - f or war ds>
<forward name="Logi n" path="/security/signin.jsp" redirect="true"/>
<forward name="Systentail ure" path="/comon/systenerror.jsp"/>
<f orwar d
nanme="Sessi onTi neQut "
pat h="/ common/ sessi ont i meout . j sp"
redirect="true"/>
</ gl obal - f or war ds>

<act i on- nappi ngs>

<action

pat h="/vi ewsi gni n"

par anet er ="/ securi ty/ si gnin.jsp"

type="or g. apache. struts. acti ons. Forwar dAct i on"
scope="request "

name="1 ogi nFor nt

val i dat e="f al se"

i nput ="/i ndex. j sp">
</ action>
<action

pat h="/si gni n"
type="comoreilly.struts.storefront.security.Logi nAction"
scope="request "

name="1 ogi nFor nt

val i date="true"

i nput ="/ security/signin.jsp">

<f orward nane="Success" path="/index.jsp" redirect="true"/>
<forward nane="Fail ure" path="/security/signin.jsp" redirect="true"/>
</ action>

<action

pat h="/si gnof f "
type="comoreilly.struts.storefront.security.Logout Action"
scope="request "

val i dat e="f al se"

i nput ="/security/signin.jsp">

117



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

<f orward nane="Success" path="/index.jsp" redirect="true"/>
</ action>
<action
pat h="/ hore"
par anet er ="/ i ndex. j sp"
type="or g. apache. strut s. act i ons. Forwar dAct i on"
scope="request "
val i date="fal se" >
</ action>
<action
pat h="/vi encart"
par anet er ="/ or der / shoppi ngcart . j sp”
type="or g. apache. struts. acti ons. Forwar dAct i on"
scope="request"
val i date="f al se">
</ action>
<action path="/cart"
type="comoreilly.struts.storefront. order. Shoppi ngCart Acti ons
scope="r equest "
i nput ="/ or der / shoppi ngcart.j sp"
val i date="f al se"
par anet er =" met hod" >
<f orward nane="Success" path="/action/viewart" redirect="true"/>
</ action>
<action
pat h="/vi ew tendetai | "
nane="i t enDet ai | For n{
i nput ="/1i ndex. j sp"
type="comoreilly.struts.storefront. catal og. GetltenDetail Action"
scope="request"
val i date="f al se">
<f orward nanme="Success" path="/catal og/itendetail.jsp"/>
</ action>

<action
pat h="/ begi ncheckout "
i nput ="/ or der / shoppi ngcart.j sp”
type="comoreilly.struts.storefront. order. Checkout Acti on"
scope="request "
val i date="f al se">
<f orward nanme="Success" pat h="/order/checkout.jsp"/>

</ action>

<action
pat h="/ get or der hi st ory"
i nput ="/ order/ orderhistory.jsp"
type="comoreilly.struts.storefront.order.Get O derH storyAction"
scope="request "
val i date="f al se">
<f orward nanme="Success" path="/order/orderhistory.jsp"/>

</ action>

</ act i on- mappi ngs>

<control | er
cont ent Type="t ext/ ht ni ; char set =UTF- 8"
debug="3"

118




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

| ocal e="true"
nocache="true"
processor d ass="comoreilly.struts.framework. Qust onRequest Processor"/ >

<nessage- r esour ces
par anet er =" St or ef r ont MessageResour ces”
nul | ="fal se"/>

<nessage- r esour ces
key="1 MACGE_RESCOURCE _KEY"
par anet er =" St or ef r ont | nageResour ces”
nul | ="fal se"/>

</ struts-config>

Using M ultiple Sub-Applications

Now that you've seen how to configure the default application for Struts, the last step is
to discuss how you include multiple sub-applications. Fortunately, it's very easy. The
steps necessary are to first create the additional Struts configuration files. Let’s suppose
that we created a second called struts-order-config.xml. The first step is to modify the
web.xml file for the application and add an addition init-param for the sub-application.
This was shown earlier in the chapter, but it’s repeated here for convenience. Example 4-
9 shows the servlet instance mapping from before with an addition init-param for the
second Struts configuration file.

Example 4-9. A partial web.xml that illustrates how to configure multiple sub-
applications

<servl et >
<servl et - nane>st or ef r ont </ ser vl et - name>
<servl et - cl ass>or g. apache. struts. acti on. Acti onServl et </ servl et - cl ass>
<ini t - parane
<par am nanme>conf i g</ par am nanme>
<par am val ue>/ WEB- | NF/ st r ut s- confi g. xn </ par am val ue>
</init-paran»

<ini t - parane

<par am name>conf i g/ or der </ par am nane>

<par am val ue>/ WEB- | NF/ st r ut s- or der - conf i g. xm </ par am val ue>
</init-paran»
<ini t - parane

<par am nane>debug</ par am nane>
<par am val ue>3</ par am val ue>
</init-parany
<init-param
<par am nane>det ai | </ par am name>
<par am val ue>3</ par am val ue>
</init-parany
<init-param
<par am name>val i dat i ng</ par am nane>
<par am val ue>t r ue</ par am val ue>
</init-parany
<l oad- on- st art up>1</ | oad- on- st art up>

119




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

| </servlet>

Notice that the param-name value for the non-default sub-application ex example 4-9
begins with config/ as in config/order. All non-default sub-application param-name
elements must begin with the config/ value. The default application contains the config
value alone. The part that comes after that is known as the sub-application prefix and is
used throughout the framework for intercepting requests and returning the correct
resources.

Fortunately, that is about all there isto configuring support for multiple sub-applications.
The last item of interest when configuring sub-applicationsis that you should pay special
attention to the configuration attributes available in the various Struts XML elements.
Some of them, as mentioned in this chapter, have a profound effect on how an application
operates in a multi-app environment.

Specifyinga DOCTY PE Element

To ensure that your Struts configuration file is valid, it can and should be validated
against the Struts DTD. To do this, you must include the DOCTYPE element at the
beginning of your Struts configuration XML file, similar to the following fragment.

<?xm version="1.0" encodi ng="1S0 8859-1" ?>

<I DOCTYPE struts-config PUBLIC

<struts-config>
etc...
</struts-config>

In earlier versions of the framework, there were some issues of applications not being
able to startup if they weren’t able to get to the Jakarta site and access the DTD from
there. However, thisis no longer true, since Struts provides local copies of the DTDs and
registers them with the Digester.

Although this is not recommended, there are some rare circumstances where you might
not want the framework to validate the Struts configuration file. Y ou can configure Struts
to bypass validation of the configuration file by adding an init-param to the web.xml file
with the name validating and a value of false. If there's no init-param with the name
validating, the default value is true and that’s why the configuration file is validated by
default.

Some users aso prefer to specify a SYSTEM DOCTY PE tag, rather than a PUBLIC one.
This allows you to specify an absolute path, over arelative one. Although this may solve
a short-term problem, it creates more long-term ones. You can’'t aways guarantee the
directory structure from one target environment to another. Also, different containers
seem to act differently when using a SYSTEM DOCTYPE tag. You are probably better

120

"-/1 Apache Software Foundation//DID Struts Configuration 1.1//EN
"http://jakarta. apache.org/struts/dtds/struts-config 1 1.dtd">




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

off not using it. However, if you decide that you need to do so, it should look something
similar to the following:

<?xm version="1.0" encodi ng="1S0O 8859-1" ?>
<! DOCTYPE struts-config SYSTEM “file:///c:/dtds/struts-config_1 1.dtd">

<struts-config>
etc...
</ struts-config>

As you can see, the location of the DTDs is an absolute path. If the path of the target
environment is not the same, you'll have to make modifications to the XML file. Thisis
why this approach is not recommended.

Struts Console T ool

When developing on a small application, the Struts configuration is manageable. It’s still
XML, but typicaly it's small enough not to be much of a problem. Some developers use
XML editors while others use ordinary text editors. Both of these are fine when the
application is relatively small, but when you are working on a Struts project made up of
many different developers, the size and complexity of the file is quite enormous.

This is one of the reasons that the Struts console application was created. The Struts
Console was created by James Holmes and is a Java Swing application that provides an
easy to use interface for editing the Struts configuration files.

[Editors — Because development | still going on for the console that supports Struts 1.1, ,
I’m not able to complete this section yet. | will do so during author review. | have spoken
with the creator of the tool and he will send me a beta copy when it’'s available so that |
can make changes during author review. | will also need to provide some screen shots
then because they are not currently available. Chuck]

You can download the Struts console for free, although it's not open source software.
There is no license necessary, but you should check the web site to make sure this hasn't
changed. Y ou can download the Struts console from the following web site:

http: //www.jameshol mes.comvstruts/consol e/

You should be cautioned that the formatting of your Struts
configuration file might be lost when saving the file using the Console.
This is because it uses an XML parser to read in the configuration file
and the parser can’'t maintain the complete knowledge of how the file
was formatted. The Console however does a decent job of formatting
thefileitself and thisreally isn't abig problem.

121



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Reloading the Configuration Files

The web deployment descriptor is loaded and parsed when the web container is first
started. By default, changes to the descriptor are not detected and re-loaded while the
container is running. In fact, not many containers even provide this functionality. Thisis
typically not a wanted feature anyway due to the possible security issues involved.

The Struts configuration files are also loaded and parsed when the container is launched.
Changes to these are also not automatically detected. The same security issues are
present. Another problem occurs for any user currently using the system. The session
information may be destroyed and the user will definitely get an ugly error the next time
they try to perform an action.

Some developers and products still may required or desire the ability to reload the Struts
configuration files without restarting the web container. If your application is one of
them, they are ways that you can do it. There are two distinct approaches that you can try.
One is where you create an actual Struts action that will re-initialize the ActionServlet.
You would obviously want to put some form of protection around which set of users
could call this action. Once the ActionServlet was re-initialized, everything would be new
and the application would service requests, just like before.

A different and more active approach would be to create a Thread that monitored the
lastModifiedTime of the configuration file. The Thread would sleep for a few seconds or
minutes and when awoke would compare the lastModifiedTime of the file against one
stored in a variable. If they were different, this means that the file has changed and it's
time to reload the application. This approach is nice because you don’t have to worry
about an unwelcome user reloading your application. However, the time that it gets
reloaded is entirely up to the Thread.

122



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

5

Struts Controller Components

As discussed in Chapter 1, the controller components are responsible for detecting user
input, possibly updating the domain model, and selecting the next view for the client. The
controller helps to separate the presentation of the model, from the actual model. This
separation gives you much more freedom to develop different types of presentations
based on the same domain model.

Using the concept of a controller allows provides a centralized point of control for the
application where al client requests can be processed first. Because the controller acts as
a mediator between the client input and the model, the controller is able to provide
common functionality such as security, logging, and other important services on behalf of
each client request.

Because al requests are filtered through the controller, the views are decoupled from the
business operations and from other view components. It's entirely up to the controller,
which view to return to the client. This might not seem like it adds much benefit, but it
creates flexibility for the application that you would otherwise not have.

The Struts framework uses a servlet to process incoming requests, however it relies on
many other components that are part of the controller domain, to help it carry out its
responsibilities. The Struts controller components have been briefly mentioned in
previous chapters, but it's time to take in-depth look at what components have
responsibility for the controller functionality in the framework.

123



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

The Controller Mechanism

As the J2EE design pattern Front Controller describes using a single controller to funnel
all client requests through a central point has many advantages. Services like security,
internationalization, and logging can then be centralized in the controller, which applies
these functions consistently for all requests. When the behavior of these services needsto
be modified, the change only needs to be made to an isolated area of the application.

You learned in Chapter 1 that the Struts controller has several responsibilities. Chiefly
among those are:

Intercept requests from the clients.
Trandate and map each request to a business operation.
Collect results from the business operation and make them available to the client.

Determine the view to display to the client based on the current state and result of the
business operation.

Within the Struts framework, there is not just one component that performs the controller
duties, there are actually several. Figure 5-1 illustrates a simple class diagram of the
components in the Struts framework that share some portion of that responsibility.

HttpServiet

BpplicationConfig

7N

|

\ActionServiet| 1

K7

1

\

Action RequestProcessor

I\ A

0. 1

Figure 5-1. Several different components have controller
responsibilities in the Sruts framework

124



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

[Editors: This diagramis a place holder for a better one that will be dropped in later]

There are other secondary components that are used by these controller components to
help fulfill their responsibilities. For now, let’s focus on the ones in Figure 5-1. Most all
of these classes have been introduced earlier in Chapters 2 and 3, but now will be
discussed in depth.

TheActi onSer vl et Class

The org.apache.struts.action.ActionServlet acts as the primary
controller for the Struts framework. All reguests from the client tier must pass through
this component before proceeding anywhere else in the application.

When the Act i onSer vl et receivesan Ht t pRequest , either through the doGet ()
or doPost () method, the process() method is called to handle the request. The
process() method of the Act i onSer vl et isshownin Example 5-1.

Example 5-1. The process() method in ActionServiet processes every Struts reguest

protected voi d process(HtpServl et Request request, HtpServl et Response response)
throws | CException, ServletException {

Request U0i | s. sel ect Application( request, getServletContext() );
get Appl i cat i onConfi g(request). get Processor (). process( request, response );

The process() method might not look very complicated, but the methods that are
being invoked within it, surely are. First, the static sel ect Appl i cati on() method
intheor g. apache. struts. util.RequestUtil s classis caled and passed the
current request and the Ser vl et Cont ext for the web application. The job of the
sel ect Appl i cation() method is to select a sub-application to handle the current
reguest, by matching the path returned from the r equest . get Servl et Pat h() to
the prefix of each sub-application that has been configured.

If you only use a single Struts configuration file, then you will only
have a single application. This is known as the default application. To
make processing requests for the default application and the sub
applications simple and consistent, the default application is treated as
just another sub application. Therefore, any requests that don’t contain
an application suffix will get routed and handled by the default
application.

This sel ect Application() method  will store the  appropriate
Appl i cationConfig and MessageResour ces objects into the request. This
makes it easier for the rest of the framework to know which application and application
components should be utilized for the request.

125



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Extending the Act i onSer vl et Class

Prior to version 1.1, the Act i onSer vl et contained much of the code to process each
user request. Starting with 1.1 however, most of that functionality has been moved to
org. apache. struts. acti on. Request Processor class, which will be
discussed in the next section. This new class has been added to help relieve the
Act i onSer vl et from most of the controller burden.

Although the framework still allows you to extend the Act i onSer vl et , the benefit is
not as great as with earlier versions, since most of the functionality lies in the new
Request Processor class. If you would till like to use your own version, you just
need to create a class that extends Act i onSer vl et and configure the framework to
use this class instead of the one from Struts. Example 5-2 shows a Java serviet that
extends the Struts Act i onSer vl et and overridesthei ni t () method.

Example 5-2. The Struts ActionServiet can be extended to perform custom initialization
package comoreilly.struts.storefront.framework;

i nport javax.servlet. Servl et Exception;

i nport javax.servl et. Unavai |l abl eExcepti on;

i nport org.apache. struts. action. ActionServl et;

inport comoreilly.struts.storefront.service.|Storefront Service;
inport comoreilly.struts.storefront. service. Storefront Servicel npl ;

inport comoreilly.struts.storefront.franework.util.|Constants;
inport comoreilly.struts.storefront.franework. exceptions. Dat ast or eExcepti on;
/**

* Extend the Struts ActionServlet to performyour ow speci al
* initialization.

*/

public class ExtendedActionServlet extends ActionServlet {

public void init() throws Servl et Exception {

/1 Make sure to always call the super's init() first
super.init();

/1 Initialize the persistence service

try{
Il Oreate an instance of the service interface
St orefront Servi cel npl servicelnpl = new Storefront Servicel npl ();

/1 Store the service into the application scope
get Servl et Context ().set Attribute( |Constants. SERVI CE | NTERFACE KEY,
servicelnpl );

}cat ch( Dat ast oreException ex ){
/1 1f there's a probleminitializing the service, disable the web app
ex. print StackTrace();
t hrow new Unavai | abl eExcepti on( ex. get Message() );

}

}

126




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Overriding the i ni t () method was chosen just as an example. You can override any
method that you need to. If you do override the i ni t () method as Example 5-2 does,
make sure that you call the super i ni t () method, so that the default initialization
OCCUrs.

Don't worry about what the code in Example 5-2 is doing for now. The
goal isto understand how to extend the Act i onSer vl et .

To configure the framework to use your Act i onSer vl et , instead of the default onein
the Struts framework, you'll also need to modify the web. xni file as was shown in
Chapter 4, and which is repeated here.

<servl et >
<servl et - nane>st or ef ront </ ser vl et - nane>
<servl et -cl ass>
comoreilly.struts.storefront.franework. Ext endedActi onSer vl et
</ servl et -cl ass>
</servl et>

StrutsInitialization Process

Depending on the initialization parameters configured in the web. xmi file, the serviet
container will either load the Struts Act i onSer vI et when the container is first started,
or when the first request arrives for the servlet. In either case, like any other Java servlet,
theinit () method is guaranteed to be called and must finish before any request is
processed by the serviet. The Struts framework performs all of the compulsory
initialization when this method is called. This section takes an inside ook at what all goes
on during that initialization process. Understanding these details will make debugging
and extending your applications that much easier.

There are many steps that occur when the init() method of the Struts
Act i onSer vl et isinvoked by the container.

1. Initiaize the framework’s internal message bundle. These messages are used to
output informational, warning, and error messages to the log files. The
org. apache. struts. action. Acti onResour ces bundle is used to obtain
the internal messages.

2. Load the initialization parameters from the web. xni file that control various
behaviors of the Act i onSer vl et . These parameters include conf i g, debug,
detail, and val i dati ng. For information on how these and other serviet
parameters affect the behavior of an application, refer to “ Declaring the Initialization
Parameters’ in Chapter 4.

3. Load and initidlize the servlet name and servlet mapping information from the
web. xm file. These values will be used throughout the framework, mostly by tag
libraries to output correct URL destinations when submitting HTML forms. During
this initialization, the DTDs that are used by the framework are also registered. The
DTDs are used to validate the configuration file in the next step.

127



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

4. Load and initialize the Struts configuration data for the default application, which is
specified by the conf i g initialization parameter. The default Struts configuration
file is parsed and an Appl i cati onConfi g object is created and stored in the
Servl et Context. The ApplicationConfig object for the default
application is stored in the ServletContext with a key value of
“ org.apache.struts.action.APPLICATION" .

5. Each message resource that is specified in the Struts configuration file for the default
application is loaded, initialized, and stored in the Ser vl et Cont ext at the
appropriate location based on the key attribute specified in each <nessage-
resour ces> element. If no key is specified, the message resource will be stored at
the key value “org.apache.struts.action.MESSAGE” . Obviously only one message
resource can be stored as the default, since keys have to be unique.

6. Next, load and initialize each data source that is has been declared in the Struts
configuration file. If no data sources are specified, this step is skipped.

7. Load and initialize each plug-in that is specified in the Struts configuration file. The
i ni t() method will be called on each and every plug-in specified.

8. Once the default application has been properly initialized, the servlet i nit ()
method will determine if there are any sub-applications specified and if so, it will
repeat steps 4 through 7 for each and every sub-application. The
Ser vl et Cont ext key where objects are stored will include the sub-application
suffix value, so as not to overwrite the default application values.

Figure 5-2 uses a sequence diagram to illustrate the 8 major steps that occur during the
initialization of the Act i onSer vl et .

128



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

it}

initntemal

:> initOther
D initServlet
[r— |
|> initApplicationCorfig
|
D initApplicationMessageResources

D initApplicationDataSources

D initApplicationPluglns

After the default application is initialized, each and every sub application is inftialized in the same mannar. ﬁ

Figure 5-2. Sequence Diagram of the init() method in the ActionServlet

You may be tempted to setup multiple Struts controller servlets for a
single application, in an attempt to achieve better performance. This
will most likely not result in better performance or scalability. Servlets
are multi-threaded and allow many clients to execute simultaneously. A
single servlet is capable of servicing many simultaneous clients.

The second step in Example 5-1 is to call the process() method of the
org. apache. struts. action. Request Processor. It's cdled by the
Act i onSer vl et instance and passed the current request and response objects.

TheRequest Processor Class

The org.apache.struts. action. Request Processor was added to
framework to alow developers to customize the request handling behavior for an
application. Although this type of customization was possible in previous versions by
extending the Act i onSer vl et it was necessary to introduce this new class to give
each sub-application the ability to have its own customized request handler. The
Request Processor class contains many methods that can be overridden if you need
to modify the default functionality.

129



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

As shown in Example 5-1, once the correct application for the request has been selected,
the process() method on the Request Processor is called to handle the request.
The behavior of the process() method in the Request Processor class is very
similar to how it looked in earlier versions of the Act i onSer vl et . It was just moved
to the new class. Exampl e 5-3 shows the implementation of the pr ocess() method

Example 5-3. The process() method of the RequestProcessor class handles every request

public void process(HtpServl et Request request, HtpServl et Response response)
throws | CException, ServletException {

// Wap multipart requests with a special w apper
request = processMil tipart(request);

/1 ldentify the path conponent we will use to select a mapping
String path = processPat h(request, response);
if (path == null) {

return;

}
if (log.islnfoEnabled()) {

Il Select a Locale for the current user if requested
pr ocessLocal e(request, response);

/1 Set the content type and no-cachi ng headers if requested
pr ocessCont ent (r equest, response);
pr ocessNoCache(request, response);

/1 General purpose preprocessing hook
if (!processPreprocess(request, response)) {
return;

}

/1 ldentify the mapping for this request
Act i onMappi ng nappi ng = processMappi ng(request, response, path);
if (mapping == null) {

return;

}

/1l Check for any role required to performthis action
if (!processRol es(request, response, mapping)) {
return;

}

/1 Process any ActionFormbean related to this request

Acti onForm form = processActi onForn{request, response, mnapping);

pr ocessPopul at e(request, response, form mapping);

if (!processValidate(request, response, form napping)) {
return;

}

130

log.info("Processing a '" + request.getMethod() + "' for path '" + path + "'

")




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

/'l Process a forward or include specified by this napping
if (!processForward(request, response, mapping)) {
return;

i f (!processlnclude(request, response, mapping)) {
return;
}

/Il Oreate or acquire the Action instance to process this request
Action action = processActi onCreat e(request, response, mapping);
if (action == null) {

return;
}

/1l Call the Action instance itself
ActionForward forward =
processActi onPer f or n{request, response, action, form napping);

/'l Process the returned ActionForward instance
pr ocessAct i onForwar d(request, response, forward);

}

As Example 5-3 shows, there’s quite a lot going on in the pr ocess() method of the
Request Processor . Let’s go through the method step by step.

1.

The first thing that occurs is a call to the pr ocessMul ti part () method. If the
Ht t pSer vl et Request method is a POST and the contentType of the request
starts with "multipart/form-data”, then the standard request object is wrapped with a
specia version from the Struts framework that deals exclusively with multipart
requests. If the request method is a GET or the contentType is not a multpart, the
original request is returned. Unless your application supports uploading files, you
will not need to worry about multipart functionality in Struts.

The processPat h() method is called to determine the path component from the
URI for the request. Among other things, this information is used to select the
appropriate Struts action to invoke.

The processLocal e() method is caled to determine the locae of the user
making the request and to store a Local e object into the user’s HttpSession object.
Depending on the locale attribute in the <cont r ol | er > configuration element, a
Locale may not be obtained and stored into the user's session in all cases. See
Chapter 4 for more details on the attributes of the <cont r ol | er > element.

Determine the content type and optional encoding of the request by calling the
processCont ent () method. The content type may be configured in the
configuration settings and also over-ridden by the JSP pages. The default content
type istext/html.

Thepr ocessNoCache() method iscalled to determine if the noCache attribute is
set to true. If it is, add the proper header parameters in the response object to prevent
the pages from being cached in the browser. The header parameters include
Pragma, Cache- Cont r ol , and Expi r es.

131




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

10.

11.

12.

13.

14.

The processPreprocess() method is caled next. It's a general-purpose pre-
processing hook that by default just returns true. However, subclasses can override
this method and perform conditional logic to decide whether or not to continue
processing the request. Because this method gets called before an Acton is invoked,
thisis agood place to validate whether or not the user contains avalid session. If this
method returns true, processing of the request will continue. If false, processing of
the request will stop.

Determine the Act i onMappi ng for the request using the path information by
calling the pr ocessMappi ng() method. If a mapping can't be found using the
path information, an error response will be returned.

Check to see if there are any security roles configured for the action and if so, that
the user has at least one of them. If this step fails, processing will end here. Chapter
14 covers implementing security within the Struts framework.

Cdl the processActi onForm() method to determine if an Acti onFor mis
configured for the Act i onMappi ng. If an Act i onFor mhas been configured for
the mapping, an attempt will be made to find an existing instance in the appropriate
scope. Once an Act i onFor mis either found or created, it will be stored within the
proper scope using akey that is configured in the name attribute for the mapping. If a
new Act i onFor minstance needs to be created, the reset () method will be
caled onit.

The processPopul at e() method is called next and if an Acti onFormis
configured for the mapping, it is populated from the request parameter values.

The processVal i dat e() method is called and if an Acti onFor mhas been
configured and if theval i dat e attributeis set to true for the mapping, then call the
val i dat e() method on the Act i onFor m If the val i dat e() method detects
errors, it will storean Act i onEr r or s object into the request scope and the request
is automatically forwarded to the resource specified by the input attribute for the
mapping. If no errors were detected from the val i dat e() method or there wasn't
an Act i onFor mfor the mapping, processing of the request will continue.

Determine if there is a forward or an include attribute configured for the mapping. If
s0, cal the f orward() ori ncl ude() method on the Request Di spat cher,
depending on which one is configured in the mapping. The processing of the request
would end at this point if either one of these are configured. Otherwise, continue to
process the request.

Call the processActi onCreate() method to create or acquire an Acti on
instance to process the request. An action cache will be checked to see if the
Act i on instance has aready been created. If so, that instance will be used to
process the request. Otherwise a new instance will be created and stored into the
cache.

Call the processActionPerforn() method, which in turn cals the
execut e() method on the Act i on instance. The execut e() cal is wrapped

132



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

with a try/catch block so that exceptions can be handled by the
Request Processor if necessary.

15. Call the processAct i onForwar d() method and passit the Act i onFor war d
object that was retuned from the execute() method. The
processAct i onForwar d() method determinesif aredirect or aforward should
occur by checking with the Act i onFor war d object, which in turn depends on the
<f or war d> element.

Extending the Request Pr ocessor Class

It's very easy to create your own custom Request Processor class. Let's look at an
example of how and why you might do this. Suppose your application had a requirement
to alow the user to change their Locale at anytime during the application. The default
behavior of the pr ocessLocal e() method inthe Request Processor isto set the
user's Locale only if it hasn't already been stored in the session, which typically happens
during the first request.

The default behavior of the Struts framework is not to store the Locale
in the user’'s session. This can be easily overridden using the locale
attribute of the <cont r ol | er > element.

Example 5-4 shows a customized Request Processor class that checks the request
each time and updates the user’s session if it has changed from the previous one. This
allows the user to change their locale preference at any point during the application.

Example 5-4. A customized RequestProcessor that overrides the processLocale method

package comoreilly.struts.franmework;

inport javax.servlet.http.*;

inport java.util.Locale;

i nport org.apache. struts. action. Acti on;

i nport org. apache. struts. acti on. Request Processor ;

/**

* fromthe request each time. If a Locale is not in the session or

* the one in the session doesn't match the request, the Locale in the
* request is set in the session.

*/

public class QustonRequest Processor extends RequestProcessor {

protected voi d processLocal e(H tpServl et Request request,
H t pSer vl et Response response) {

/1 Are we configured to select the Local e autonatically?
if (!appConfig.getControllerConfig().getLocale()) {
return;

133

* A custoni zed Request Processor that checks the user's preferred Local e




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

}

/1 Get the Locale (if any) that is stored in the user's session
H t pSessi on sessi on = request . get Sessi on();
Local e sessionLocal e = (Local e) sessi on. get Attri bute(Action. LOCALE KEY);

/1 Get the user's preferred Local e fromthe request
Local e request Local e = request. get Local e();

/1 If the Local e was never added to the session or it has changed, set it
if (sessionLocale == null || (sessionLocale != requestLocale) ){
if (log.isDebugEnabled()) {
| og. debug(" Setting user locale '" + requestlLocale + "'");

/1 Set the new Local e into the user's session
session.setAttribute( Action. LOCALE KEY, requestlLocale );
}
}

}

To configure the Cust om zedRequest Processor for your application, you will
need to add a <control | er > element to the Struts configuration and include the
processor Class attribute as shown in this fragment.

<control | er
cont ent Type="t ext/ ht ni ; char set =UTF- 8"
debug="3"
| ocal e="true"
nocache="true"
processord ass="comoreil ly. struts.framewor k. Qust onRequest Pr ocessor"/ >

You need to specify the fully qualified class name of the
Cust om zedRequest Processor as shown in the fragment. Although not every
application has a reason to create a custom request processor, having one available in
your application can act as a placeholder for future customizations. Therefore, it's a good
idea to go ahead and create one for your application and specify it in the configuration
file. It doesn't have to override anything in the beginning, but you can add to it as the
need unfolds. For more information on the <cont r ol | er > element, see “The Struts
Configuration DTD “ in Chapter 4.

TheAct i on Class

Theor g. apache. struts. acti on. Acti on classis at the heart of the framework.
Its purpose is to act as a bridge between the client request and the business operation.

Each Act i on classis typically designed to perform a single task or business operation
on behaf of a client. A single task doesn't mean that the action can only perform one
business operation, but rather the operations that it does perform, should be cohesive and
centered around a single functional unit. In other words, the business operations
performed by the Action should be related and have a purpose of fulfilling one functional
requirement for the application.

134




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

For example, you shouldn’t create an Action that performs Shopping Cart functionality as
well as handle login and logout responsibilities. These areas of the application are not
closely related and shouldn’t be combined. On the other hand, you might have one Action
class that handles the Login functionality and a separate Action class that handles the
Logout.

Later in this chapter, we'll introduce the Di spat chAct i on provided
by the framework, which supports multiple operations in a single class.
These multiple operations should still be cohesive and cover a common
functional unit of the application.

Once the correct Action instance is determined, the processActi onPer form()
method is invoked. The processActionPeform() method of the
Request Processor isshownin Example 5-5.

Example 5-5. The processActionPerform method of the RequestProcessor

protected ActionForward processActionPerforn{HtpServl et Request request,
H t pSer vl et Response response,
Action action,
Acti onForm form
Act i onMappi hg nappi ng)
throws | CException, ServletException {
try {
return (action. execute(nmappi ng, form request, response));
}catch (Exception e){
return (processException(request, response, e, form mapping));

}

}

The processAct i onPer f or () method is responsible for calling the execut e()
method on the Acti on instance. In earlier versions of the Struts framework, the
Acti on class only contained a perf orn() method. The perfornm() method has
been deprecated in favor of the execut e() method. This new method is necessary
because the per form() method declares that it only throws | OExcepti on and
Ser vl et Except i on. Due to the declarative exception handling that has been added,
the framework needs to catch al instances of j ava. | ang. Excepti on from the
Acti on class.

Instead of changing the method signature for the perf or n() method and breaking
backwards compatibility, the execute() method was added. Currently, the
execut e() method just turns around and invokes the per f or n{) method anyway.
You should use the execut e() method in place of the per f or m() method in al of
your Act i on classes.

If you look at the source code or documentation for the Act i on class,
you may have noticed that there are two different versions of the

135




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

methods execut e() and perforn(). One version takes a non-
HTTP request and response, while the second version contains the
HTTP versions. Generally, you'll only ever need to use the HTTP
version, unless you are using a non-HTTP serviet. For now, the non-
HTTP versions just attempt to cast the request and response objects to
their HTTP counterparts and invoke the HTTP version of their
respective method.

Although the or g. apache. struts. action. Acti on class is not abstract, the
execut e() method doesn't perform any useful functionality. You will need to extend
the Act i on class with ones of your own. Example 5-6 shows the Logi nAct i on from
the storefront application.

Example 5-6. The LoginAction from the Storefront Web Application
package comoreilly.struts.storefront. security;

inport java.util.Locale;

inport javax.servlet.http.*;

i nport org.apache. struts. action. *;

inport comoreilly.struts.storefront. custoner.view User\Vi ew,

inport comoreilly.struts.storefront.franework. exceptions. BaseExcepti on;
inport comoreilly.struts.storefront.franework. User Cont ai ner;

inport comoreilly.struts.storefront.franework. StorefrontBaseActi on;
import comoreilly.struts.storefront.framework. util.|Constants;

inport comoreilly.struts.storefront. service.|Storefront Service;

/**
* Inplements the logic to authenticate a user for the storefront application.
*/

public class Logi nAction extends StorefrontBaseAction {
/**

* Called by the controller when the a user attenpts to login to the
* storefront application.
*/
public ActionForward execute( ActionMappi ng nmappi ng,
ActionFormform
H t pSer vl et Request request,
H t pSer vl et Response response )
throws Exception{

/l Get the user's login name and password. They shoul d have al ready
/1 validated by the ActionForm

String enail = ((Logi nFormform.getEnail ();

String password = ((Logi nFormnjforn).getPassword();

/1 Login through the security service
| Storefront Service servicelnpl = getStorefrontService();
User Vi ew user Vi ew = servi cel npl . aut henti cate(enai |, password);

User Cont ai ner exi stingContai ner = null;
H t pSessi on sessi on = request. get Sessi on(fal se);
if ( session !=null ){

136




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

exi stingCont ai ner = get User Cont ai ner (request);
session.invalidate();

}el sef{
exi stingCont ai ner = new User Cont ai ner () ;

}

/1l Oreate a new session for the user

sessi on = request. get Session(true);

exi sti ngCont ai ner. set User Vi ew( user Vi ew) ;

session. set Attri but e(l Const ant s. USER CONTAI NER_KEY, exi stingCont ai ner);

return mappi ng. fi ndForwar d( 1 Const ant s. SUCCESS KEY) ;
}

}

When the execut e() method inthe Logi nAct i on is called, the email and password
values are retrieved and passed to the aut hent i cat e() method. If no exception is
thrown by the aut hent i cat e() business operation, a new HttpSession is created and
aJavaBean that contains user information is stored into the user’s session.

A common bug that inexperienced Struts developers sometimes
introduce into their applications, is to not implement the execut e()
method exactly. If you misspell it or don't implement the signature
exactly, the method will never be called. Unfortunately, you will not
get a compiler error or even a runtime error telling you of this. Thisis
due to the fact that the Struts Act i on class, which al action classes
must extend, has adefault execut e() method that just returns anull.

The User Vi ew contains simple properties like firstName and lastName that can be used
by the presentation. These types of presentation JavaBeans are commonly referred to as
value objects, but are more formally called data transfer objects because they are used to
transfer data from one layer to another. In this example, the data is being transferred
from the security service to the presentation layer. The User Vi ew class is shown in
Example 5-7.

Example 5-7. The UserView Data Transfer Object
package comoreilly.struts. storefront. custoner. view,

inport comoreilly.struts.storefront.franework. vi ew BaseVi ew,
/**
* Mitabl e data representing a user of the system
*/
public class UserVi ew extends BaseVi ew {
private String | ast Nane;
private String firstNane;
private String enail Address;
private String creditStatus;

public UserVi ew(){
super () ;

137




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

}

public String getFirstName() {
return firstNane;

}

public void setFirstNane(String firstNane) {
this.firstNanme = firstNang;

}

public void setlLast Nane(String |astNanme) {
this.lastName = | ast Nang;

}

public String getlLast Nane() {
return | ast Nane;

}

public String get Emai | Address() {
return enai | Address;

}

public void setEmail Address(String enai |l Address) {
this. enai | Address = enai | Addr ess;

}

public void setCeditStatus(String creditStatus) {
this.creditStatus = creditStatus;

}
public String getCeditStatus() {
return creditStatus;

}
}

Value objects or data transfer objects will be further discussed in the next chapter.

Example 5-6 also uses a class called User Cont ai ner . This class has
not been fully introduced yet; so don't worry about having missed
something. The User Cont ai ner is a wrapper around any data that
might normally be put directly into the user’s session. By using this
object and storing everything within it, retrieval and clean up becomes
much easier. It's not part of the Struts framework, but is a class that
we'll make a case for in Chapter 21 “ Struts Design Strategies’.

The Action Class Cache

Because Action instances are supposed to be thread-safe, only a single instance of each
Action class is created for an application. All client requests share the same instance and
are ableto invokethe execut e() method at the same time.

138




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

In actuality, client requests are not processed at exactly the same time
unless the server has multiple processors and the software is written to
take advantage of this. The CPU isreally context switching so fast; that
it seems like parallel processing is occurring. But for this discussion,
we'll assume that the requests are being processed at the same time.

The Request Processor containsaHashMap, where the keys are the names of all of
the Action classes that are specified in the configuration file, and the value for each key is
the single instance of that Action.

During the pr ocessAct i onCr eat e() method of the Request Processor class,
the framework checks the HashMap to see if an instance has aready been created. If it
has, this instance is returned. Otherwise, a new instance of the Act i on class is created,
put into the HashMap, and returned. The section of the code that creates a new Action
instance is synchronized to ensure that only one thread will create an instance. Once a
thread creates an instance and inserts it into the HashMap, all future threads will use the
instance from the cache.

TheAct i onForward Class

As you saw in the discussion of the Act i on class, the execut e() method returns an
Act i onFor war d object. The Act i onFor war d class represents a logical abstraction
of aweb resource. This resource istypicaly a JSP page or a Java servlet.

The Act i onFor war d class acts as a wrapper around the actual resource so that there’'s
less coupling of the application to the physical resource. The physical resource is
specified only in the configuration file and not in the code itself. The
Request Di spat cher may perform either a forward or redirect for an
Act i onForwar d, depending on what has been configured in the <f orward>
element.

Toreturnan Act i onFor war d froman Act i on, you can either create one dynamically
in the action class or use the action mapping to locate one that has been pre-configured in
the configuration file, which is more common The following code fragment illustrates
how you can use the action mapping to locate an Act i onFor war d based on its logical
name.

| return nmapping. findForward( “Success” );

The code fragment shows that an argument of “Success” is passed to the
f i ndFor war d method. The argument in the f i ndFowar d method must match one of
the names specified in either the <gl obal - f or war ds> section or one specific to the
action from where it's being called. The following fragment shows <f or war d>
elements defined for the “ /signin” action mapping:
<action
i nput ="/ security/signin.jsp"
name="1 ogi nFor nt

139



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

pat h="/si gni n"

scope="request "

type="comoreilly.struts.storefront.security.Logi nAction"

val i dat e="true" >

<forward nane="Success" path="/index.jsp" redirect="true"/>

<forward nane="Fai |l ure" path="/security/signin.jsp" redirect="true"/>
</ acti on>

The findFoward() method in the ActionMappi ng class first cals the
fi ndForwar dConfi g() method to seeif there’sa <f or war d> element specified at
the action level with the corresponding name. If not, the <gl obal - f or war ds> section
is checked. When an Act i onFor war d is found that matches, it's returned back to the
Request Processor from the execut e() method. Here's the f i ndFor war d()
method from the Act i onMappi ng class.
public ActionForward findForward(String name) {
Forwar dConfi g config = findForwardConfi g( hane);
if (config =null) {
config = getApplicationConfig().findForwardConfig(nane);

return ((ActionForward) config);

If the f i ndForwar d() method does not find a forward that matches
the name argument, it will not complain. A null will be returned and
you will receive a blank page because no output will be written to the
response.

Extending the Act i onMappi ng Class

Some developers find it necessary or desirable to extend the Act i onMappi ng classand
add more parameters or attributes that can be made available to their Acti on class.
Although thisisrare, it's not difficult to do. It basically involves three steps:

1. Create a class that extends the Acti onMappi ng class and add the addition
properties as instance variables to it. You can’'t extend Act i onConf i g because the
most of the APIs still require the Acti onMappi ng class, for example the
execut e() method has Act i onMappi ng asone of its parameters.

2. Setthe className attribute in the <act i on> element to be the fully qualified name
of your extension.

3. Usethe<set - propert y> element to initialize the properties of your instance.

Since the parameter type of the mapping in the execute() method is
Act i onMappi ng, you will need to cast the mapping object to your specialized class
before you can access the additional properties.

140



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Creating Multi-threaded Action Classes

A single Act i on instance is created for each Acti on class in the framework. Every
client request will share the same instance, just as every client request shares the same
Act i onSer vl et instance. Because of this, you must ensure that your Action classes
operate properly in a multi-threaded environment, just as servlets are required to do.

To be thread-safe, it's important that your Action classes not use instance variables to
hold client-specific state. You are free to use instance variables to hold state information;
it just shouldn't be specific to one client or request. For example, you might create an
instance variable of type or g. apache. conmons. | oggi ng. Log to hold onto a
logger, as the Struts Request Processor class does. The log instance can be used by
all requests because the logger is thread-safe and does not hold state for a specific client
or reguest.

For client-specific state however, you should declare the variables inside the
execut e() method. These local variables are allocated in a different memory space
than instance variables. Each thread that enters the execut e() method has its own
stack to put variables, and therefore there's less chance of overriding the state of other
threads.

Business L ogic and the Action Class

Some developers get confused about what logic belongsin an Act i on class. The Action
class is not the proper place to put your application’s business logic. If you look back to
Figure 3-6 from Chapter 3, you can see that the Action classis still part of the controller.
It's just been separated out from the Act i onSer vl et and Request Processor for
the sake of convenience.

Business logic belongs in the domain model. These may be EJBs, CORBA objects, or
maybe just a layer of services written on top of a data source and a connection pool. The
point is that that business domain should be unaware of the type of presentation that is
using it. This alows your model components to be more easily reused by other
applications. Example 5-8 illustrates the Get | t enDet ai | Act i on from the storefront
application that calls on the model to retrieve the detail information for an item in the
catalog.

Example 5-8.The Action class should delegate the business logic to a model component
package comoreilly.struts.storefront. catal og;

inport javax.servlet.http.*;

i nport org.apache. struts. action. *;

inmport comoreilly.struts.storefront.framework. exceptions. BaseExcepti on;
inport comoreilly.struts.storefront.franework. User Cont ai ner;

inport comoreilly.struts.storefront.franework. Storefront BaseActi on;
inport comoreilly.struts.storefront. catal og.view |tenDetail Vi ew,

141




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

inport comoreilly.struts.storefront.franework.util.|Constants;
inport comoreilly.struts.storefront. service.|Storefront Service;

/**
* An action that gets an ItenVi ew based on an id paraneter in the request and
* then inserts the iteminto an ActionFormand forwards to whatever
* path is defined as Success for this action napping.
*/
public class GetltenDetail Action extends StorefrontBaseAction {
publ i c ActionForward execute( ActionMappi ng nappi ng,
Acti onForm form
H t pSer vl et Request request,
H t pSer vl et Response response )
throws Exception {
/1 Get the primary key of the itemfromthe request
String itemd = request. get Paraneter( | Constants. | D KEY );

User Cont ai ner user Cont ai ner = get User Cont ai ner (request) ;

/1 Call the storefront service and ask it for an ItenMiew for the item
| Storefront Service servicelnpl = getStorefrontService();
ItenDetail MiewitenDetail View = servicelnpl.getltenDetail View itemd );

/1l Set the returned ItemMiewinto the Dynanmic Action Form
/1 The paraneter nane 'view is what is defined in the struts-config
((DynaActionFormformn.set("view', itenDetail View;

// Return the ActionForward that is defined for the success condition
return mappi ng. fi ndForward( | Gonst ant s. SUCCESS KEY ) ;

}

}

Although the CGetltenDetail Action class in Example 5-8 performs some
presentation logic, it delegates the real work of getting the item information to the
storefront service. The reason that thisis the best approach isthat the action doesn’t know
the internals of the storefront service or the get | t enDet ai | Vi ew() method. It could
be alocal object that performs JDBC calls, a session bean performing a remote call to an
application server, or some other implementation. If the model implementation changed,
the action would be protected from that change. Because the storefront service is unaware
of the type of client using it, other types of clients can use it, not just Struts. Decoupling
of the Action classes from the business objects will be explored further in the next
chapter.

Using the Pre-Built Struts Actions

The Struts framework includes five out-of-the-box Acti on classes, which you can
easily integrate into your applications and save yourself development time. Some of these
are more useful than others, but all of them deserve some attention. The classes are
contained within the or g. apache. st rut s. act i ons package. We'll briefly cover
each one and discuss the pros and cons of using these in your applications.

142




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Theor g. apache. struts. acti ons. Forwar dActi on

There are many situations where you just need to forward from one JSP page to another,
without really having a need to go through an Act i on class. However, caling a JSP
directly should be avoided. As the beginning of this Chapter explained, the controller has
the responsibility of selecting the application to handle the request, and to store the
Appl i cati onConfi g and MessageResour ces for that application in the request.
If this step is bypassed, functionality like selecting the correct messages from the
resource bundle may not work properly.

Another reason that calling a JSP directly is not a good idea is that it violates the
component responsibilities of MVC. The controller is supposed to process al requests
and select aview for the client. If your application were allowed to call the page directly,
the controller is not getting the opportunity to fulfill its obligations to the MV C contract.

To solve these problems and to prevent you from having to create an Action class that
just performs a simple forward, you can use the provided For war dAct i on. This
Act i on simply performs a forward to a URI that is configured for it. In the Struts
configuration file, you specify an <act i on> element using the For war dAct i on as
the type attribute:

<action
i nput ="/ i ndex. j sp"
nane="1 ogi nFor n{
pat h="/vi ewsi gni n"
par anet er ="/ security/signin.jsp"
scope="r equest"
type="org. apache. struts. acti ons. Forwar dActi on"
val i date="f al se"/>
</ action>

When the “/viewsignin” action is selected, the perform() method of the
Act i onFor war d class gets called.

Although the Act i onFor war d is part of 1.1 and it extends the Struts
Action class, it till uses the per forn() method, rather than the
execut e() method. At the time of this writing, Struts is still in beta
and this might be fixed by the time it's released for General
Availability (GA).

Notice that when using the For war dAct i on ina<acti on> element, the parameter
attribute is used to specify where to forward to, instead of an actual <f or war d>
element. Other than this difference, you call the action in the same way as any other
action in the configuration file.

The Act i onFor war d class comes in handy when you need to integrate your Struts
application with other servlets or JSP pages, but still take advantage of the controller

143




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

functionality. The Act i onFor war d class is one of the most valuable of the pre-built
Action classes included with the framework

The org.apache.struts.actions.I ncludeAction

The | ncl udeActi on is similar in some respects to the For war dActi on. The
I ncl udeAct i on was originally created to make it easier to integrate existing servlet-
based components into a Struts based web application. If your application is using the
i ncl ude() method on the Request Di spat cher, you can implement the same
behavior using the | ncl udeAct i on.

You specify the | ncl udeAct i on in an action mapping in the same manner that you do
for the For war dAct i on, except you usethe | ncl udeAct i on inthe type attribute.

<action
i nput ="/ subscri ption.jsp"
name="subscri pti onFor n{
pat h="/saveSubscri pti on"
par anet er ="/ pat h/ t o/ processi ng/ servl et"
scope="request "
type="org. apache. struts. actions. | ncl udeActi on"/ >

Y ou must include the parameter attribute and specify a path to the servlet that you wish
to include.

The org.apache.struts.actions.DispatchAction

The purpose of the Di spat chActi on is to allow multiple operations that would be
scattered throughout multiple Action classes, to reside in asingle class. The idea is that
there is related functionality for a service and instead of spreading this behavior in
multiple Action classes, it should be kept together in the same class. For example, if you
think about an application that contains a typical ShoppingCart service. It usually needs
the ability to add items to the cart, view the items in the cart, and update the items and
quantity of the cart. One design is to create three separate Actions classes,
Addl t emAct i on, Vi ewShoppi ngCart Acti on, and
Updat eShoppi ngCart Acti on.

Although this solution would work and would be a valid approach, there probably is
similar functionality that al three Act i on classes must perform before carrying out their
assigned business operation. By combining the functionality, you are also making it
easier to maintain the application. If the current ShoppingCart implementation was
exchanged for an alternate version, all of the codeislocated in asingle class.

Tousetheor g. apache. struts. acti ons. Di spat chAct i on, create a class that
extends the or g. apache. struts. acti ons. Di spat chActi on. Add a method
for each and every function that you need to perform on the service. Your class should
not contain the typica execute() method as other Action classes do. The
execut e() method isimplemented by the abstract Di spat chAct i on.

144



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Y ou must include one method in your Di spat chAct i on for every action you want to
invoke for thisDi spat chAct i on. Look at Example 5-9 to better understand this.

Example 5-9. The functionality of the ShoppingCart is put into a single DispatchAction

package comoreilly.struts.storefront. order;

inport java.io.lCException;

inport java.text.Format;

i nport java.text.Nunber Fornmat;

inport java.util.*;

i nport javax.servlet. Servl et Exception;

inport javax.servlet.http.*;

i nport org.apache. struts. action. *;

i nport org.apache. struts. acti ons. D spat chActi on;

inport comoreilly.struts.storefront. service.|Storefront Service;
inport comoreilly.struts.storefront. catal og.view |tenDetail Vi ew,
inport comoreilly.struts.storefront.franework. User Cont ai ner;
inmport comoreilly.struts.storefront.framework. util.|Constants;
inport comoreilly.struts.storefront.franework. Shoppi ngCart|tem
inport comoreilly.struts.storefront.franework. Shoppi ngCart ;
inport comoreilly.struts.storefront.franework. StorefrontD spatchActi on;

/**
* Inplenents all of the functionality for the Shoppi ngCart.
*/
public class Shoppi ngCart Actions extends StorefrontD spatchAction {
/**

* This nethod just forwards to the success state, which shoul d represent
* the shoppingcart.jsp page.
*/
public ActionForward vi ew Acti onMappi ng nappi ng,
ActionFormform
H t pSer vl et Request request,
H t pSer vl et Response response)
throws Exception {

// Call to ensure that the user container has been created
User Cont ai ner user Cont ai ner = get User Cont ai ner (request) ;
return mappi ng. fi ndForwar d( 1 Const ant s. SUCCESS KEY) ;
o
* This method updates the itens and quanties for the shopping cart fromthe
* request.
*/
publi c ActionForward updat e( Acti onMappi ng mappi ng,
Acti onForm form
H t pSer vl et Request request,
H t pSer vl et Response response)
throws Exception {

updat el t ens(request);
updat eQuanti ti es(request);
return mappi ng. fi ndForwar d( | Const ant s. SUCCESS_KEY) ;

}

145




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

/**

* This method adds an itemto the shopping cart based on an id and qty
* paraneters fromthe request.
*/
publi c ActionForward addlten{Acti onMappi ng rmappi ng,
Acti onForm form
H t pSer vl et Request request,

H t pSer vl et Response response)
throws Exception {

User Cont ai ner user Cont ai ner = get User Cont ai ner (request) ;

/l Get the id for the product to be added
String itemd = request. get Paraneter( | Constants. | D KEY );
String gtyParaneter = request.getParaneter( |Constants. QTY_KEY );

int quantity = 1; // Default value to add
if(qgtyParameter !'= null) {
Local e userLocal e = user Cont ai ner. get Local e();
Format nbr Format = Nunber For mat . get Nunber | nst ance( user Local €) ;
try {
(bj ect obj = nbrFornat. par seChj ect (qt yParaneter);
quantity = ((Nunber)obj).intVal ue();

cat ch(Exception ex) {
/1 Just use the default qty al ready set
}
}

/1 Call the storefront service and ask it for an ItenMiew for the item
| Storefront Service servicelnpl = getStorefrontService();
ItenDetail MewitenDetail View = servicelnpl.getltenDetail View itemd );

/1l Add the itemto the cart and return
user Cont ai ner. get Cart (). addl t en{ new Shoppi ngCartlten(itenbDetail Vi ew
quantity));
return mappi ng. f i ndFor war d( | Const ant s. SUCCESS KEY) ;
}
/**
* Update the itens in the shopping cart. Qurrently, only del etes occur
* during this operation.
*/
private void updateltens(HtpServl et Request request) {
/1 Miltiple checkboxes with the nane "del eteCartltent are on the
/1 form The ones that were checked are passed in the request.
String[] deletelds = request. getParaneterVal ues("del eteCartltent);

/1 Build a List of itemids to delete
if(deletelds !'= null &% deletelds.length > 0) {
int size = del etelds.|ength;
List itemds = new ArraylList();
for(int i =0;i <size;i++) {
itenlds. add(del etel ds[i]);

146




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

/1 Get the ShoppingCart fromthe UserContai ner and delete the itens
User Cont ai ner user Cont ai ner = get User Cont ai ner (request) ;
user Cont ai ner. get Cart (). renovel tens(itemds);
}
}
/**
* Update the quantieis for the itens in the shopping cart.
*/
private void updateQuantities(HtpServl et Request request) {
Enunerati on enum = request . get Par anet er Nanes() ;
Il lterate through the paraneters and | ook for ones that begin with
[l "qty_". The qty fields in the page were all naned "qty_" + itemd.
/1 Strip off of the id of each itemand the cooresponding qty val ue.
whi | e(enum hasMor eH enents()) {
String paramName = (String)enum next B erment () ;
i f (param\ane. startsWth("qty_")) {
String id = paraniNane. substring(4, parami\ane.|ength());
String qtyStr = request. get Par anet er (par aniNane) ;
if(id!'=null & qtyStr !'=null) {
Shoppi ngCart cart = get User Cont ai ner (request).getCart();
cart.updateQuantity(id, Integer.parselnt(qtyStr));
}
}
}
}

}

The comoreilly.struts.storefront. order. Shoppi ngCart Acti ons
class contains the methods addl t en(), update(), and vi ew(). Each of these
methods would normally be put into separate Action class. With the
Di spat chAct i on, they can al be kept together into asingle Action class.

There are two other methods in the Shoppi ngCart Act i ons class
that we didn't mention, updat el t ens() and
updat eQuantiti es(). These methods are private utility methods
used by the other action methods within the class. They are not called
outside of this Action class. You can tell this by noting they do not
have the required method signature.

To use your specialized Di spatchAction class, you need to configure each
<act i on> element that uses it, a little differently than other mappings. Example 5-10
illustrates how the Shoppi ngCart Act i ons class from Example 5-9 is declared in the
configuration file.

Example 5-10. The parameter attribute must be specified when using a subclass of the
DispatchAction
<action path="/cart"

i nput ="/ or der/ shoppi ngcart.j sp"
par anet er =" et hod"

147




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

scope="r equest"

type="comoreilly.struts. storefront. order. Shoppi ngCart Acti ons"

val i date="fal se">

<f orward name="Success" pat h="/order/shoppi ngcart.jsp" redirect="true"/>
</ action>

The “/cart” action mapping shown in Example 5-10 specifies the parameter attribute and
sets the value to be the literal string “ method” . The value specified here becomes very
important to the DispatchAction when invoked by a client. The
Di spat chActi on uses this attribute value to determine which method in your
specialized Di spat chActi on to invoke. Instead of just calling the action mapping
“/cart”, an additional request parameter is passed where the key is the value specified for
the parameter attribute from the mapping. The value of this request parameter must be
the name of the method to invoke. For example, to invoke the addl t en{) method, you
would do call the action like this:

| "cart . do?net hod=addl t ent

The request parameter and value method=addltem is used by the Di spat chActi on
class to determine which method to invoke. You must have a method in your
Di spat chAct i on subclass that matches the value on the right side of the equal sign.
The method name must match exactly and the method must include the parameters
normally found in the execut e() method. The following fragment highlights the
method signature for the addl t em() method from Example 5-9.

public ActionForward addlten{ ActionMappi ng nappi ng,
ActionFormform
H t pSer vl et Request request,
H t pSer vl et Response response)
throws Excepti on;

The Di spat chAct i on uses reflection to locate a method that matches exactly the
same name as the request parameter value and contains the same number and type of
arguments. Once found, the method will be invoked and the Act i onFor war d object
returned just as any other Act i on class does.

Although the Di spat chAct i on does use Java reflection to invoke
the correct method, the performance of the reflection APIs in Java 1.3
and newer are so much better that it's not a problem for this small
amount of work. Since reflection is being used however, the method
must be declared public or the per forn() method in the abstract
Di spat chAct i on will not be able to invoke it. You can till declare
other private or protected methods, but the ones to be called by the
Di spat chAct i on must be declared public.

148



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

The org.apache.struts.actions.L ookupDispatchAction

The LookupDi spat chActi on as you might have guessed, is a subclass of the
Di spat chActi on class. From a high level, it performs a similar task as the
Di spat chActi on.

Just like the Di spat chActi on, the LookupDi spat chActi on alows you to
specify a class with multiple methods, where one of the methods is invoked based on the
value of a specia request parameter that is specified the configuration file. That’s about
where the similarity ends. The Di spat chActi on uses the value of the request
parameter to  determine  which method to invoke, however, the
LookupDi spat chActi on uses the value of the request parameter to perform a
reverse lookup from the resource bundle using the parameter value, and match it to a
method in the class.

An example will help you understand this better. You first need to create a class that
extends the LookupDi spatchAction and which implements the
get KeyMet hodMap() method. This method returns a j ava. uti |l . Map, which
contains a set of key/value pairs.

The keys of this Map should match those from the resource bundle. The value that is
associated with each key in the Map should be the name of the method in your
LookupDi spat chAct i on subclass that will be invoked when a request parameter is
included that is equal to the message from the resource bundle for the key.

The following fragment shows an example of the get KeyMet hodMap() method for
the Pr ocessCheckout Act i on inthe storefront application.

protected Map get KeyMet hodVap() {
Map nap = new HashMap();

nap. put ("but ton. checkout", "checkout" );
nmap. put ("button. saveorder™, "saveorder" );
return nap;

}

For the purposes of this discussion, let’s suppose we have the following resources in the
message resource bundle:

but t on. checkout =Checkout
but t on. saveor der =Save O der

and that we have specified the following <act i on> element in the Struts configuration
file:

<action pat h="/processcheckout "
i nput ="/ checkout . j sp"
nane="checkout For n{
par anet er ="acti on"
scope="r equest "
type="comoreilly.struts.storefront. order. ProcessCheckout Acti on">
<forward name="Success" pat h="/order/orderconpl ete.jsp"/>

149



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

| </ acti on>

Then when you have a JSP page that performs a POST using the procescheckout action, a
URL parameter of action=Checkout will be sent in the request header. Example 5-11
shows the JSP page that calls the processcheckout action.

Example 5-11. The checkout.jsp which calls the ProcessCheckoutAction when posted

<y@taglib uri="/WEB-INF/ struts-htm.tld" prefix="htm" %
<y@taglib uri="/WEB-I N~/ struts-logic.tld" prefix="1ogic" %
<y@taglib uri="/WEB-I NF/ struts-bean.tld" prefix="bean" %

<htm : ht ni >

<head>

<title>Virtual Shopping with Struts</title>

<ht m : base/ >

<script |anguage=j avascript src="include/scripts.js"></script>

<link rel ="styl esheet" href="../styl esheets/format_w n_nav_nain. css"
type="text/css">
</ head>

<body topnargi n="0" | eftmargi n="0" bgcol or =" #FFFFFF" >

<!-- Header Page Information -->
<%@include file="../includel/ head.inc"%

<l-- Nav Bar -->
<%@i ncl ude file="../include/ menubar.inc"%

<br>
D spl ay order summary and take credit card infornmation here

<htm : f orm acti on="/ pr ocesscheckout " >
<htni:submt property="action">
<bean: nessage key="button. checkout"/>
</htm : subm t >
</htn:fornp

<br ><br >
<¥%@i nclude file="../includel/ copyright.inc"%
</ body>

</htm:htm>

The key to understanding how all of this worksis that the submit button in Example 5-11
will have a name of action and it's value will be the value returned from the
<bean: nessage> tag. This is more evident when you see the HTML source that is
generated from the JSP above. The following fragment only shows the source generated
insidethe <ht m : f or n> tag.

<form
nane="checkout For n¥
net hod="PCST"

150




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

action="/storefront/action/ processcheckout ">
<input type="submt" nane="action" val ue="Checkout" alt="Checkout">
</fornmp

You can see in this HTML source that when the form checkout For mis posted, the
action=Checkout URL parameter will be included. The Pr ocessCheckout Acti on
will take the value Checkout and find the message resource key that has this value. In the
case of this example, the key will be button.checkout which according to the
get KeyMet hodMap() method shown earlier, mapsto the method checkout () .

Whew! That's along way to go just to determine which method to invoke. The intent of
this classisto make it easier when you have an HTML form with multiple submit buttons
with the same name. One submit button may be a Checkout action and another might be a
Save Order action. Both buttons would have the same name, for example “ action” as
with the earlier example. But the value of each button would be different. This may not
be an Acti on class that you will use often, but in certain situations, it can save
development time for your applications.

The org.apache.struts.actions.SwitchAction

The Swi t chAct i on is new to the framework. It was added to support switching from
one sub-application to another and then forwarding control to a resource within the sub-
application.

There are two request parameters that are required to be present when this Action is
invoked. The prefix request parameter specifies the application prefix, beginning with a
“I", of the sub-application to which control should be switched. If you need to switch to
the default application, use a zero-length string “”. The appropriate
Appl i cati onConfi g object will be stored into the request, just as it is when a new
request arrives at the Act i onSer vl et .

The second request parameter that is required is the page parameter. This parameter
should specify an application-relative URI, beginning with a*“/”, to which control should
be forwarded to once the correct sub-application is selected. This Action is very
straightforward. However, you'll only have need for it if you use more than one Struts
sub-application.

The Utilities Classes

When building web applications, much of the tasks to retrieve and process requests are
quite repetitive. Like any good framework, Struts places most of this tedious functionality
into utility classes where it can be shared and used by many different components and
applications. This separation of utilitarian functionality from regular application specific
functionality allows for greater reuse and less redundancy throughout the framework and
within your own applications.

151



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

The utility classes used by Struts are located in severa packages. Several of the utility
components were so generic and beneficial to applications, that they have been moved
out of the Struts framework and into the larger Jakarta Commons Project. These packages
include BeanUtils, Collections, and the Digester component mentioned in Chapter 3.

One of the Java packages that remains in the Struts package hierarchy is the
org. apache. struts. util| package. Everything from the MessageResour ces
classto the St rut sVal i dat or Ut i |, which is part of the new validator component
added to the core framework in 1.1, is part of this package. This package contains many
different classes, with different purposes and responsibility. Although the Struts
framework classes have strong dependencies on the utility classes, in genera, utility
classes should only have dependencies on other utility classes and framework
components that are lower on the food chain. Thisis mostly true in the Struts framework,
with afew minor exceptions that are not too serious.

The utility classes within the ut i | package assist the rest of the framework in solving
mundane problems that al web applications encounter. We will not cover al of the
classes in the package, but instead will highlight some of the more often used
components.

RequestUtils

The or g. apache. struts. util.RequestUtil s class provides general-purpose
utility methods that are common when processing a servlet request within Struts. You
have already seen several examples that utilize the Request Ut i | s class. For example,
one of the most important and first to be invoked for a request is the
sel ect Appli cation() method that is caled by the ActionServiet when a new
reguest arrives. Every method in the Request Ut i | s classis designed to be thread-safe
and doesn’t declare any instance variables. In fact, every method in the classis aso static.

Y ou seldom have a need to modify any of the functionality within the Request Uti | s
class. However, you should get to know the functionality that does exist, to prevent you
from creating functionality in your application that might already exist there. Another
reason to get familiar with the methods is that it helps in understanding what the entire
framework is doing on your behalf.

ResponseUtils

The purpose of the org. apache. struts.util.RequestUtils class is very
similar to the Request Ut i | s class, except that its purpose is to aid in building a
response, rather than aiding with the request.

There are only a few methods within the class, but the JSP tag libraries included with
Struts use them extensively for filtering and writing data destined for the response object.

152



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

The Commons BeanUtils Package

The or g. apache. commons. beanut i | s package contains several classes that are
used throughout the Struts framework. From the standpoint of the Struts framework, the
two most important arethe BeanUt i | s and PropertyUti | s classes.

As you might have guessed, the BeanUt i | s class is used with JavaBeans. The Struts
components primarily use just three of the methodsin the BeanUt i | s class:

populate()
getProperty()
getArrayProperty()

Thepopul at e() method is used to fill a JavaBean with data, using a map of key/value
pairs. The method signature for the popul at e() method is shown here.

public static void popul ate( Chject bean, Map properties )
throws |1l egal AccessException, |nvocationTarget Excepti on;

The get Property() method returns a String representation of the property stored in
the variable with the name that matches the value of the name parameter.

public static String getProperty( bject bean, String name )
throws |11 egal AccessException, |nvocationTarget Exception, NoSuchMet hodExcepti on;

Regardless of the type of property that the name argument references, it will be converted
and returned as a String.

The get ArrayProperty() method returns the value of the specified array property
of the specified bean, as a String array. Here is the method signature for the
get ArrayProperty() method.

public static [] getArrayProperty(Chject bean, String nare)
throws |11 egal AccessException, |nvocationTarget Exception, NoSuchMet hodExcepti on;

Although the Java language provides reflection and introspection as part of its core
API's, theBeanUt i | s class provides convenience wrappers around these API’s.

The other class that is used by the Struts framework is that PropertyUti |l s class.
However, only one method is currently used, the get Pr opert y() method.

public static Cbject getProperty(Chbject bean, String nane)
throws |11 egal AccessException, |nvocationTarget Exception, NoSuchMet hodExcepti on;

The get Property() method in the PropertyUti | s class returns the value of the
specified property, without attempting to convert the type. Much of the code that isin the
PropertyUtil s class was originally implemented in the BeanUt i | s class. It was
moved to its own class dueto the sizethat BeanUt i | s was becoming.

153



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

The Commons Collection Package

Although starting with version 1.3, the Java core libraries included much requested and
needed collection classes, however there are a few holes left unfilled. These holes are
what the classes within the Commons Collection package aimsto fill.

Among the features of the collection package are:

Implementations of Lists and Maps that are designed for fast access.

Methods to utilize set-theory properties of collections, such as unions, intersections,
and the closure properties.

Adaptor classes that alow conversions between Java 1.1 containers and Java 1.2
style containers.

Currently, the Struts framework only uses the Fast HashMap class from the collections
package. The Fast HashMap is designed to operate in a multi-threaded environment,
where most of the cals ae read-only. The FastHashMap extends
java. util . HashMap and provides two different modes, slow and fast. In low mode,
all access is synchronized. This is appropriate for when initiaization is taking place.
Once initialization is complete and mostly read-only calls happen, the Map can be
switched to fast mode by calling the set Fast (tr ue) . In fast mode, read access is not
synchronized and write calls use cloning for performance.

Security in the Action Classes

Action classes, if designed and scoped properly, can perform some very important
functionality for an application. To prevent unauthorized users from finding a way to
execute an action, it seems reasonable that Action classes should have a way to authorize
a user to perform the intended action. The pr ocessRol es() method is designed to
check to see if there are any roles defined in the configuration file this the Action, and if
so, cal the i sUser | nRol e() method on the request. The problem with this approach
is that not all applications can defined their roles ahead of time. In some applications,
roles can be dynamically added and removed and they can’t be enumerated beforehand.
In this case, there must be an aternative approach to dealing with user, roles, and
permissions. Chapter 14 “Security in your Struts Web Applications’ will cover security
in depth, including an approach to handling rolesin a Struts application.

154



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

6

Struts Model Components

This chapter introduces the components that make up the model portion of a Struts
application. The model represents the business data for an application and should closely
resemble the real-world entities and business processes for the organization. We will
explore the roles and responsibilities of the model components within the Struts
framework and focus on building an architecturally correct implementation for the
storefront application. Specia attention will be given to using a persistence framework
that can be easily and effortlessly integrated into a Struts application.

[Editors. Because these chapters are being shown before the entire book is finished, the
source code within these will not be the final versions. The Storefront application is being
built as the book is written and the source code will undergo more and more functionality
aswe go along. You'll have to bear with me while this happens.]

The“*M” in MVC

As Chapter 1 outlined, the “M” in the acronym MVC, stands for Model. The model
components of an application are arguably the most valuable software artifacts to an
organization. The model includes the business entities and the rules that govern access
and modification of the data. It's vital that this is done in a single location in order to
maintain valid data integrity, reduce redundancy, and increase reuse.

The model should remain independent of the type of client that’s being used to access the
business objects and their associated rules. In fact, the components within the model
should not even be aware of what type of client or framework that’s using it. There's an
axiom that goes, “dependencies go down, data goes up.” The idea is that when using a
layered architecture, the upper layer may have dependencies on lower layers, but the

155



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

lower layers should not depend on those layers above them. Figure 6-1 illustrates how
this principle is applied to atypically Struts architecture.

Client Layer

Struts Framework

Layer

8

o

E

@

2

g_ Model Layar E
o

Persistence Layer

' MNetwork Layer

Figure 6-1.Application layers should only depend on lower layers

If you find yourself importing packages or classes from the Struts framework into your
model, then you are violating this principle. Coupling a lower layer to an upper one will
make maintenance, reuse, and future enhancements more difficult.

Before we get into the details of designing and building a model for a Struts application,
it's best to understand the different types of models and how each one is relevant to a

project.

156



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

The Different Types of Models

The term model has many different meanings. In very general terms, a model is a
representation of some aspect of reality. Whether the model represents a shop where
products are bought and sold, an auction house where bids are placed, or a way to predict
how a weather storm will move. All of these examples are based on real concepts. The
main purpose of creating a model is to help understand, describe, or simulate how things
work in the “real” world.

In software development, the term model is used to indicate both the logica
representation of real world entities, as well as the physical creation of classes and
interfaces that can be utilized by a program. The first step however, should always be to
perform a thorough analysis of the problem domain. Once use cases are complete, the
next step should be to develop a conceptual model.

Developing a Conceptual Model

During analysis of the problem domain, a conceptual model should be developed based
on the real-life entities within the problem space. The entities in a conceptual model have
less to do with the software components of the system and more to do with the physical
entities that are fundamental to the business. The conceptual model usualy illustrates the
concepts, the relationships between them, and the attributes that belong to each concept.
The behavior is not represented in this type of model.

The conceptual model is developed from the set of use-cases for the system. Its purpose
is to help to identify the entities that will most likely become classes in the design stage
and also to help understand the problem domain better. Figure 6-2 illustrates a conceptual
model for the storefront application.

157



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Customer Order Catalog
rstMame -isPlacedBy LorderMurnber -zﬁ”m'&ber
Lemiail otallinelemPrice de-s ol
-creditStatus -stateTax Crpton

-isFeaturad
-lastMame -canPlace FlocalTax
-shippingCost
1\ packinglnstructions
0.t -shippinglnstructions e -contained]
1 -isUsedBy FsubmittedDate comainedin

-status

-requiredDate

-purchaseOrderMumber

0. -isPartof
0. -contains
Q.1 -places items in Item
. l-name
-CONtaing | number
ShoppingCart -description
totalPrice 0 FbasePrice
items " Fnanufaciurer
-zize -sku
-Upc
FminSelinglUnits

FeelingUnitOMdeasura|
-contains HeadTimelin

Head Timalax
-onHandQuantity

o-* FproductFeatures

Figure 6-2. The Storefront Conceptual Model

In Figure 6-2, you'll notice that only relationships and the attributes for the entities are
shown. No methods are specified during the analysis stage.

If you are familiar with Entity-Relationship (E-R) diagrams, then you
shouldn't be too confused by the conceptual model. They are very
similar.

The value of a conceptual model is that it clearly shows the entities that are used by
problem domain. Everyone involved in the business, technical or not, should be able to
look at the conceptual model and make sense of it. They should also be able to quickly
point out problems wit the model. For example, maybe an item can’t belong to more than
one catalog at a time as Figure 6-2 indicates. By examining the conceptua model,
someone would be able to quickly point this out, and the analysts could make the change
early. Remember, the later in the design and devel opment cycle that a change is required,
the more costly that change becomes.

158



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

The Design M odel

The conceptual model is just one artifact of the analysis stage; there can be many others.
In smaller development groups or on smaller projects, the conceptua model may be
skipped in favor of moving to the design stage faster. The risk of doing this however is
that you might leave the analysis stage without a clear and concise understanding of the
requirements. The better you understand the requirements for a project, the closer the end
product will be.

Even if you build a conceptual model, you still will need to create the appropriate design
documents. This usually includes class diagrams, interaction diagrams, and possibly
others artifacts like state diagrams. At a very minimum, your design stage artifacts should
include a class diagram for the application’s business objects. Figure 6-3 illustrates a
class diagram based on the conceptual model for the storefront application illustrated in
Figure 6-2.

m:;ﬂmﬂr
it
e
chsplayLabal
rarrber
Foteseriptiom
- S
End2
CustomarBd OrderB0 CaulogE0 BemBg
HirstMame -oroerPrce iz Fecalures I =T
FlastMama -slabaTan wonlainE  Lgnulactn
Famal spurcahsalrers HocalTax Faku
passaord ippingCos: . . .| e
| rndiSiaues s b. Hein SedingLinia
¥ 2 nlinglinit i nasurs)
-subriliad et Haad Thraddin
] Head Tirefdas
| —orduredBy f———— LariHan d Ciuanttty
— ] Hisetiinad
Hieahure?
e Lineiiem Hissluned
ity L mallniagel
HinaheenP s Hangalmagelid
-Eam 1
Ehappingtar corilienms EhappingCantzm

ey |
FerlerdedPrice

Figure 6-3. The Class Diagram for the Storefront Business Objects

The class diagram in Figure 6-3 shows the business objects used within the Storefront
application. For brevity, only the attributes and relationships are shown here.

The way in which you arrive at the proper design for your application is definitely
beyond the scope of this book. There are a multitude of excellent analysis and design
books available. One of the more popular referencesis “Applying UML and Patterns’ by
Craig Larman.

159



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

The exact type and structure of business objects and processing rulesis
obviously dependant on the domain of your application, and not two
applications are exactly the same. Even within a single application, it's
understood that requirements do change. However, conducting a
thorough analysis of the problem domain and constructing a resilient
design goes a long way in protecting your application from unexpected
change.

What isa Business Object?

This question may sound a little too simplistic for a book on Struts. However, the term
“business object” unfortunately has many connotations. Some developers use the term
when they really mean something else. A Business Object (BO) is simply, a software
abstract of a real-world entity. It represents a person, place, thing, or concept from the
business domain. So, concepts like items, orders, and customers are all business objects
from the Storefront business domain.

Business objects consist of state and behavior. The Or der BO for example, is aware of
information relating to a single customer purchase order, including price, tax, and the
order status. You can aso ask an order business object who the customer is and it should
be available to provide this information. Having both state and behavior is one very
important criterion for a class to be considered a business object. Let’s examine a few
other business object characteristics.

What arethe Requirementsfor Business Objects

For a class to be a considered a Business Object, there are several conditions that should
be met.

Consists of state and behavior
Represent a person, place, thing, or concept from the business domain

Reusable

Business objects can also be grouped into different classifications. Generally, there are
three types:

Entity Business Object
Process Business Object

Event Business Object

160



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Probably the most familiar, an Entity BO represents a person, place, thing, or concept.
They are usually extracted straight from the business domain by considering the nounsin
the business. Again, these are concepts like customers, orders, items, and so on. In an
EJB application, these are modeled as entity beans, thus the name. In a more traditional
web application, these may be regular JavaBeans that contain the state and behavior of
the business application.

The Process BO represents business processes or workflow tasks within an application.
They are usually dependant on entity BO objects and are the verbs of the business. In an
EJB application, these are normally modeled as session beans, or in some cases, message-
driven beans. In a non-EJB application, these may be regular JavaBeans that contain
specialized behavior to operate as a manager or controller for the application. Even
though these types of business objects are used for processing workflow, they are still
allowed to hold state for an application. With EJB for example, there are stateless and
stateful session beans.

The final category of business object is the Event BO. An Event BO represents some
event in the application that causes an action or results from one. These might be
exceptions, aerts, timed events, and so on. In a Java Swing application for example,
when you press a button, an event is raised notifying the underlying framework, so that
an event handler can handle the button press.

[Editors: | would like your opinion on the above section. Does it add any value or should

it be chopped?

The Importance of Business Objects

Using business objects in an application has severa relevant benefits. Probably the most
important is that they provide common terminology and ideas that can be shared across
an organization for both technical and non-technical people alike. Because they represent
“real-world” concepts and ideas, they are very intuitive and should make sense to the
entire organization. If multiple applications from the same business domain exigt, it's
very likely that the same business objects exist across the application boundaries. This
reuse of information and behavior alows for faster application development and reduces
the redundancy.

Business objects also have the ability to evolve with the organization through
modifications to the original object, or through proper specialization. This is very
important because as an organization changes, the information and behavior must adapt
and change with it.

Finally, business objects have well-defined interfaces. Not interfaces in the Java sense,
but a very clear and cohesive set of functionality. The internal implementation should be
hidden from the client, in order to protect the callers from changes to the implementation
details. For example, suppose you had a business object that used a
java.util.ArraylList. Instead of exposing the type ArraylLi st, you should

161



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

expose java.util.List. If internally, the implementation changed from
ArrayLi st to Li nkedLi st, the caller would not be impacted, because the client is
programming against the Li st interface, not the implementation class.

By now, you should be full aware of the importance that business objects have in an
organization. They are present in al but the most trivial applications. You also learned
that they contain state and behavior, which in most cases, acts on that data. So the next
question should be, where does that state originate from and where does it go when the
application is stopped. Thisleads usinto the topic of object persistence.

Persistence

In general, persistence means that the data that is input into an application, either by a
human user, or by other means, will exist beyond the lifetime of the application. Even
though the application may exit, or the computer itself may shutdown, the information
will survive. This is obviously very important to an organization. Every small, medium,
and large organization, has the need to persist data.

Persisting Business Objects

When objects are created in memory for an application, they can't stay there forever.
Eventually, they must either be cleaned up or persisted to a data store. Memory is volatile
and an application might crash or need to be stopped for maintenance. In Java, the
garbage collector will reclaim the memory for any objects that don’t have any references.
Remember, the data is of the utmost importance to your organization. Without data
persistence, there’'s no record to indicate what was ordered or who to charge, for
example.

Business objects represent information that must be kept. Orders, items, and customer
information, must be persisted for an application like the Storefront to be of value.
Taking in a customer’s order and losing it is not going to make the customer a customer
for long. Once the data has been persisted, it can be retrieved and used to reconstruct the
business objects.

Storing Objectsinto a Relational M odel

Although there are many different types of data stores, relational databases are used quite
frequently to store the data for an organization, especialy with applications like the
Storefront example. Relational databases are a necessity and are very widespread.
However, there are several obstacles that must be overcome if you are going to be
successful in this endeavor. One of the biggest challenges to overcome is known as the
“Impedance Mismatch”.

162



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Thelmpedance Mismatch

Objects hold state and behavior and can be traversed through their relationships with
other objects. The relational paradigm on the other hand, is based on storing data and
joining sets of data, based on matching of overlapping fields. Essentially, a relational
database is a very “flat” view of the data. This difference leads to a very challenging
mismatch between the two worlds. Essentially, the objects must be flattened before they
can be stored into arelational database. The relationships that objects have to one another
must also be persisted, in order for the object hierarchy to be correctly reassembled.

There's not enough room in this chapter for a detailed tutorial on mapping objects to a
relational model. Suffice to say, there are many challenges. Fortunately, there are many
resources and references available to help in overcoming the challenges. A definitive
source of information on how to correctly map objects to a relational database can be
found in Scott Amblers white paper titled “ Mapping Objects to Relational Databases’.
The white paper can be found at:

http://mwww.ambysoft.comy/mappi ngObj ects.pdf

As you'll see shortly, there are many Object-to-Relational Mapping (ORM) frameworks
that make this job much easier for the Java developer. Using one of these frameworks
doesn’'t completely eliminate your need for a good understanding of the problems,
however the frameworks can hide many of the ugly chores that no developer wants to
have to perform.

What does Struts Offer For the M odel?

To be honest, the Struts framework doesn’'t offer much in the way of building model
components, but this is probably as it should be. There are many frameworks and
component models already available for dealing with the business domain of an
application, including Enterprise JavaBeans, Java Data Objects (JDO), or you can use
regular JavaBeans and an Object-to-Relational Mapping framework (ORM). The good
news is that the Struts framework does not limit you to one particular model
implementation. This chapter will present one approach and then in Chapter 13 “Struts
and Enterprise JavaBeans (EJB),” we Il take a completely different approach and see how
the framework is affected by this change.

163



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

ActionForms are not the M odel

Many developers get confused when they read and learn about the ActionForm
class. Although the ActionForm can hold state and behavior for an application,
the state that it holds should be limited and constrained to the “user input” that is
received from the client and should only hold it until it can be validated and
transferred to the business objects for an application.

You've already seen why it’simportant to use business objects in an application.
Business objects can be persisted and should contain the business logic for an
application. They should also be reusable. This set of criteria does not match up
well when compared against ActionForms. For one, the ActionForm class is
most certainly tied to the Struts framework and explicitly to a web container,
since it imports j avax. ser vl et packages. It would be very difficult or
problematic to port ActionForm classes to a different type of framework, like a
Swing application. There are also issues that would make persisting ActionForm
classes difficult.

As the next chapter will indicate, ActionForms are designed to capture the
HTML data from a client, allow “presentation validation” to occur, and to
provide a transport vehicle for the data back to the more persistent business
object. Chapter 7 will provide more details about the ActionForm class and its
limited role in the framework.

Before we discuss the model implementation for the Storefront application, it's a good
time to discuss Struts works with JavaBeans.

Building the Stor efront M odel

After al of this discussion of what constitutes a model for a Struts application, it’s finally
time to apply some hands on using the storefront application as the business domain.
Obvioudly, the storefront is a fictitious example and doesn’t represent a complete model
for what a “real” e-commerce application would need to support. However, it does
provide enough of an object model for you to understand the semantics of this chapter.

Accessing a Relational Database

The state of the Storefront application will be persisted using a relational database. This
isin fact, how it would be done if Storefront were a real application. Of course, an ERP
system is often used in conjunction, but many e-commerce applications use a relational

164



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

database closer to the front-end for performance and ease of development. When both are
deployed in an enterprise, there's usually a middleware service to keep the data between
the two synchronized, either in real-time or using batch mode.

As you probably are aware, there are many relational databases that one can choose from.
Depending on your particular criteria, you can choose from one of several major database
vendors or if your requirements don't call for such alarge and expensive implementation,
you can choose to use one of the cheaper products on the market. Since we will not be
building out every aspect of the application and our intended user load is small, our
requirements for a database are not very stringent. With that being said, the database-
specific examples that will be shown should be fine for most database platforms. If you
understand SQL Data Definition Language (DDL), you can tweak the DDL for the
database that’s available to you.

We have quite a bit of work to do before we can start using the Storefront model. In fact,
the following tasks need to be completed before we are even ready to involve the Struts
framework:

Create the Business Objects for the Storefront application
Create the Database for the Storefront application
Map the Business Object to the Database

Test that the Business Objects can be persisted in the Database

As you can see, hone of these tasks mention the Struts framework. This is intentional
because you should approach this part of the development phase without a particular
“client” in mind. The Struts Storefront web application is just one potential type of client
to the business objects. If designed and coded properly, many different types may be
used. The business objects are used to query and persist information regarding the
Storefront business, it should have no coupling to a presentation client.

To help insulate the Struts framework from changes that may occur in the business
objects, we will also look at using the Business Delegate Pattern within the Storefront
application. The Business Delegate acts as a client-side business abstraction. It hides the
implementation of the actual business service, which helps to reduce the coupling
between the client and the business objects.

Creating the Storefront Business Objects

Business objects contain data and behavior, this we know. They are a virtua
representation of one or more records within a database. In the Storefront application for
example, an Or der BO object represents a physical purchase order placed by a customer.
It also contains the business logic that helps to ensure that the data is valid and remains
valid.

165



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Where does Business Validation Belong?

Deciding where to put your validation logic in a Struts application can be
frustrating. On one hand, it seems like it belongs within the framework itself,
since this is the first place that the user data can be obtained and validated. The
problem with placing business logic validation within the Action or ActionForm
classesis that the validation then becomes coupled to the Struts framework. This
prevents the validation logic from being reused by any other clients.

Although business logic doesn’t belong in the Struts framework, there is a
different type of validation that can and should occur within the framework.
Thistype of validation is commonly referred to as Presentation Validation.

Presentation validation or “input validation” can be grouped into three distinct
categories.

Lexica
Syntactic
Semantic

Lexical validation checks to make sure data is well formed. For example, is the
guantity value an integer? Syntactic validation goes one step further and makes
sure that values made from a composite are valid and well formed. Date fieldsin
a browser are typically accepted as month/day/year values. Syntactic validation
ensures that the value entered is in the proper format. It doesn’t necessarily
ensure that the values make a valid date, but rather the format of the value is
correct. Ensuring that the date entered is valid and is meaningful is the job for
semantic validation. Semantic validation ensures that the values entered have
meaning for the application. For example, putting a quantity value of - 3 in the
order quantity field for an item is lexicaly and syntacticaly valid, but not
semantically.

Presentation validation belongs within the Struts framework, but business
vaidation does not. The business objects have the final responsibility of
ensuring the any data inserted into the database is valid and therefore, it should
have the rules necessary to perform this duty.

Thefirst step isto create the business objects that we'll need to interact with. For this
implementation, they will just be regular JavaBean objects. Many component models are
specific to a single implementation. Entity beans for example, will only work within an
EJB container. For this example, the Storefront business objects will not be specific to a
particular implementation. If later, we wanted to use these same business objects with an

166



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

EJB container, we could wrap them with entity beans or just delegate the call from a
session bean method to one of these objects. |n Chapter 13 “ Struts and Enterprise
JavaBeans’, we'll show an example of this can be done without impacting the Storefront
application. For now, we'll concentrate on building business objects that are not
dependant on any particular container implementation.

Because all the business objects share several common properties, we are going to create
an abstract super class for the business objects. Every business object will be a subclass
of the BaseBusi nessObj ect class shown in Example 6-1.

Example 6-1. The BaseBusinessObject is the super class for all business objects
package comoreilly.struts. storefront. busi nessobj ects;

/**
* An abstract super class that nmany business objects w |l extend.
*/
abstract public class BaseBusi nessChject inplements java.io.Serializable {
private Integer id;
private String displ ayLabel ;
private String description;

public Integer getld() {f
return id;

}

public void setld(Integer id) {
this.id =id;
}

public void setDescription(String description) {
this. description = description;

}

public String getDescription() {
return description;

}

public void setD splayLabel (String |abel) {
this. di spl ayLabel = | abel;

}

public String getD spl ayLabel () {
return displ ayLabel ;

}

}

TheBaseBusi nessObj ect prevents each business object from needing to declare the
same properties over and over. We can also put common business logic here, if the
opportunity presents itself.

Example 6-1 shows the Or der BObusiness object that is represents a customer purchase
order in the Storefront application. There's nothing that specia about the Or der BO

167




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

class. It'san ordinary JavaBean object that other thanther ecal cul at ePrice ()
method, just provides setter and getter methods for the order properties.

Example 6-2. The OrderBO business object represents an order placed by a customer
package comoreilly.struts. storefront. busi nessobj ects;

i nport java. mat h. Bi gDeci nal ;
i nport java.sql . Ti mestanp;
inport java.util.lterator;
inport java.util.List;
inmport java.util.LinkedList;

/**

* The Order Business (hject, which represents a purchase order that a custoner
* has or is about to place.
*/
public class O derBO extends BaseBusi ness(hj ect {
/1 Alist of lineitens for the order
private List |ineltens;
/1 The customer who pl aced the order
private Qustorer BO cust oner ;
/1 The current price of the order
private doubl e total Price;
/1 The id of the custoner
private |Integer custonerld;
/1l Wether the order is inprocess, shipped, canceled, etc...
private String orderStatus;
/1 The date and time that the order was received
private Ti mestanp subm ttedDate;

/**
* Default NoArg Constructor
*/
public OderBQ) {
super () ;
/1l Initialize the line itens as a linked list to keep themin order
lineltens = new LinkedLi st ();
}
/**
* Additional constructor that takes the neccessary argunments to initialize
*/
public OrderBQ Integer id, Integer custld, String orderStatus,
Ti nestanp subnittedDate, double price ){
this.setld(id);
this.setQustonerld(custld);
this. set O der Status(orderStatus);
this. set Subm ttedDat e(submttedDate);
this.setTotal Price(price);

}

public void set Qustoner( Qustoner BO owner ){
custoner = owner;
}

168




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

publ i ¢ Qust oner BO get Cust orer () {
return custorrer;

}

publi c doubl e get Total Price(){
return this.total Price;

}

private void setTotal Price( double price ){
this.total Price = price;

}

public void setLineltens( List lineltens ){
this.lineltens = |ineltens;

}

public List getLineltens(){
return |ineltens;

}

public void addLinelten{ LineltenBO lineltem){
lineltens.add( lineltem);

}

public void renoveLinelten{ LineltenBO lineltem){
lineltens.renove( lineltem);

}

public void setQustonerld(lnteger custorerld) {
this.custonerld = custonerld;

}

public Integer getQustonerld() {
return custonerld;

}

public void setOrderStatus(String orderStatus) {
this.orderStatus = order Status;

}

public String get OderStatus() {
return order Status;

}

public void set Subm ttedDat e(Ti mestanp submttedDate) {
this.subnttedDate = subm ttedDate;

}

public Tinestanp get SubnmittedDate() {
return subm ttedDat e;

}
/**

* Recal culate the price of the entire order. If one or nore of the line
* itens doesn't have a price for sone reason, set the total Price of the

169




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

order to null, since it can't be truely calculated. By setting it to null,
even if afewof the line itens have a price, this will alert someone
that there's a problem This should al so prevent orders from being
accepted by the systemwhen there was a problemw th one or nore line
itens. If this wasn't done in this manner, a custoner mght receive

goods for free.

/

private void recal cul atePrice(){

doubl e total Price = 0.0;

* % kX X X %

if ( getLineltens() !'=null ){

Iterator iter = getLineltens().iterator();

while( iter.hasNext() ){
/1 Get the price for the next line itemand nmake sure it's not null
Doubl e lineltenPrice = ((LineltenBOiter.next()).getUnitPrice();
/1 Check for an invalid lineltem If found, return null right here
if (lineltenPrice == null){

return;

}
/1 1t's not null, so add it to the total
total Price += |ineltenPrice. doubl eval ue();

/1 Set the price for the order fromthe cal cual ted val ue
setTotal Price( total Price );
}
}

}

We won't show all of the business objects here, they al have similar implementations to
the Or der BOclass.

When designing your business objects, you should not give any thought
to how they will be mapped to the database. There will be plenty of
time for that. Don’'t be afraid to use object-oriented techniques such as
inheritance and polymorphism, just as you would with any other object
model. The BaseBusi nessObj ect in Example 6-1 will not actually
be mapped to atable in the database, but its properties will get mapped
with the respective subclasses. Even though most persistence mapping
frameworks support multiple approaches to mapping inheritance in the
database, by adding the properties to each concrete table, the number of
SQL joins are fewer and this has a positive impact on performance.

The Storefront Data M odel

Once al of the business objects have been created for the Storefront application, we need
to create a database model and schema for them. The details of creating a database
schema for the Storefront application are beyond the scope of the lesson of this chapter
and obviously the book. Seemingly, it's easy to throw a bunch of tables into a database
and add columns to them. However, it's quite another thing to understand the tradeoffs

170




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

between database normalization and issues that surface due to the object-relational
mismatch that was discussed earlier in the chapter.

If the application is small enough, it's quite true that almost anyone can create a database
schema, especially with the tools that are available from the database vendors and third-
party sources. If your schema is more than just a few tables or the complexity of foreign
keys, triggers, and indexes are high, then it's best to leave creating a schema to the
experts. The Storefront schema is quite small, mainly because we've chosen to
implement only a portion of what would normally be required. Figure 6-4 shows the data

model that will be implemented for the storefront application.

lingitemnumber
extendedprice
baseprice
quantity

ITEM
PK |id
itemnumber
displaylabel
description CUSTOMER
baseprice
manufacturer PK |id
— sku
upc firstname
minsellingunits lastname
CATALOG sellinguom email
onhandquantity password
PK |id featuredesci description
featuredesc2 creditStatus
displaylabel featuredesc3 accountstatus
featuredcatalog smallimageaurl accountnumber
description largeimageur| A
A
PURCHASEORDER
CATALOGITEM_LNK
PK |id
PK,FK1 | catalogid
PK,FK2 |itemid FK1 |customerid
submitdttm
status
totalprice
LINEITEM
PK |id
FK2 |orderid
FK1 |itemid

Figure 6-4. The Storefront Data Model

The table definitions in Figure 6-4 are fairly self-explanatory. There are several items of
interest that should be pointed out. The first is that every table, except for the many-to-

171



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

many link table CATALOG TEM LNK, has been assigned an object identifier. An object
identifier (OID) simplifies the navigation between objects. Ol Ds should have no business
meaning at all. Vaues that are based on business semantics will sooner or later change
and basing your keys on values that change is very problematic. In the database world,
using the OID strategy is known as using surrogate keys.

To generate the schema for the data model shown in Figure 6-4, we need to create the
DDL. The SQL DDL is used to create Meta objects in the database. The Storefront SQL
DDL that will create the set of tablesin Figure 6-4 is shown in Example 6-3.

Example 6-3. The Storefront SQL DDL

# The SQL DDL for the Storefront Application
# (Apache Struts by OReilly)
# Chuck Cavaness

# Execute the next line if you need to clear the storefront database
DRCP DATABASE storefront;

# Oreates the initial database
CREATE DATABASE storefront;

# Make sure you are creating the tables in the storefront tabl espace
use storefront;

CREATE TABLE CATALOY

idint NOT NULL,

di spl ayl abel varchar (50) NOT NULL,
featuredcatal og char(1) NJLL,
description varchar(255) NULL

);

ALTER TABLE CATALGG ADD
QONSTRAI NT PK_CATALGG PRI MARY KEY(i d);

CREATE TABLE QUSTOMER (
idint NOT NULL ,
firstname varchar (50) NOT NULL,
| ast nanme var char (50) NOT NULL,
enai | varchar(50) NOT NULL ,
password varchar (15) NOT NULL,
descri ption varchar (255) NULL,
creditStatus char (1) NULL,
accountstatus char (1) NULL,
account nunber varchar (15) NOT NULL

)

ALTER TABLE QUSTOMER ADD
QONSTRAI NT PK_CUSTOVER PRI MARY KEY(i d);

CREATE TABLE | TEM (
idint NOT NULL ,
i temmunber varchar (255) NOT NULL ,

172




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

di spl ayl abel varchar (50) NOT NULL,
description varchar (255) NULL,
baseprice deci mal (9,2) NOTI' NULL,
nmanuf act urer varchar (255) NOT NULL,
sku varchar (255) NOT NULL,

upc varchar (255) NOT NULL,

mnsel lingunits int NOT NULL,

sel | i nguom var char (255) NOT' NULL,
onhandquantity int NOT NULL,

feat uredescl varchar (255) NUL,
featuredesc2 varchar (255) NULL,
feat uredesc3 varchar (255) NUL,
snal | i nageur| varchar (255) NULL,
| argei mageur| varchar (255) NULL

)

ALTER TABLE | TEM ADD
GONSTRAI NT PK_I TEM PRI MARY KEY(i d) ;

CREATE TABLE CATALOQ TEM LNK(
catal ogid int NOT NUL ,
itemd int NOT NULL

)

ALTER TABLE CATALOA TEM LNK ADD
CONSTRAI NT PK_CATALOQ TEM LNK PR MARY KEY(catal ogid, itenid);

ALTER TABLE CATALOG TEM LNK ADD
QONSTRAI NT FK_CATALCA TEM LNK_CATALGG FOREI GN KEY
(catal ogi d) REFERENCES CATALOZid);

ALTER TABLE CATALOG TEM LNK ADD
CONSTRAI NT FK_CATALOQ TEM LNK_| TEM FORE! GN KEY
(itemd) REFERENCES | TEM(i d);

CREATE TABLE PURCHASECRDER (
idint NOT NULL,
custonerid int NOT NULL,
submtdttmtinestanp NOT NULL ,
status varchar (15) NOT NULL,
total price decinmal (9,2) NOT NULL,

)

ALTER TABLE PURCHASECRDER ADD
CONSTRAI NT' PK_PURCHASECRDER PR MARY KEY(i d) ;

ALTER TABLE PURCHASECRDER ADD
CONSTRAI NT' FK_PURCHASECRDER CUSTOMER  FCREI GN KEY
(custoneri d) REFERENCES CUSTOMER(i d);

CREATE TABLE LI NEI TEM (
idint NOT NULL,
orderid int NOT NULL,
itemd int NOT NULL,

173




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

| i nei temmunber int NULL,
ext endedprice deci mal (9, 2) NOT NULL,
baseprice deci nal (9, 2) NOT NULL,
quantity int NOT NULL

)

ALTER TABLE LI NEl TEM ADD
QONSTRAI NT PK_LI NEI TEM PRI MARY KEY(i d);

ALTER TABLE LI NEI TEM ADD
CONSTRAI NT FK_LI NEI TEM CRDER FCREI GN KEY
(orderid) REFERENCES PURCHASECRDER(i d) ;

ALTER TABLE LI NEl TEM ADD
CONSTRAI NT FK_LI NEI TEM | TEM FOREl G\ KEY
(itemd) REFERENCES | TEMi d);

The DDL shown in Example 6-3 has been tested on Oracle 8.1.7 and
Microsoft SQL Server 2000. If you plan to use it with other database
platforms, it might be necessary to modify the ALTER statements. For
example, due to the limitations of foreign keys with MySQL, you may
have to eliminate the FOREIGN KEY statements entirely. The only
parts that are absolutely necessary to run the example are the CREATE
TABLE sections and the primary keys, which all databases should
accept.

Once you have executed the DDL from Example 6-3, you will need to insert some data
for the tables. To make it easier for you when it comes time to run the example, sample
data has been provided with the source code for this Chapter. The sample data is located
in afile called storefront-data.sgl located in the sour ce/ sql directory for this chapter.
To import the data, just open up a query tool for the proper database and execute the SQL
within this file. If your database vendor provides a batch mode, you can also import it
that way as well. The data will need to be in the database before the Storefront
application will work properly.

M apping the Business Objectsto the Database

When it comes time to connecting, or mapping, the business objects to the database, there
are a variety of approaches that you can choose from. Which one you choose depends on
severa factors that may change from application to application and situation to situation.
A few of the approaches to choose from are:

Use Straight JDBC calls
Use a“ Home-Grown” ORM approach (also known the roll-your-own approach)
Use a Proprietary Object-Relational Mapping Framework

Use a Non-Intrusive, Non-Proprietary Object-Relational Mapping Framework

174




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Use an Object Database

Keeping in mind that some tasks are better to do in-house and others are better left to the
experts, building a Java persistence mechanism is one that typically you should avoid
doing. Remember that the point of building an application is to solve a business problem.
In many cases, you are better off acquiring a persistence solution from a third-party.

There are many more complicated issues that must be dealt with than just issuing a SQL
select statement through JDBC, including transactions, nested transactions, primary key
increments, caching, and connecting pooling. Building a mapping and persistence
framework is an entire project in and of itself. Y ou shouldn’'t be spending valuable time
and resources on something that isn’'t the core business problem. The next section lists
several solutions that are available.

Object to Relational M apping Frameworks (ORM)

There is an overwhelmingly number of ORM products available for you to choose from
for a project. Some of them are commercially available and have a cost that is near or
exceeds that of most application servers. Others are open source and have no monetary
cost associated with them. Table 6-1 presents several of the commercial and non-
commercia solutions that you can choose from.

Table 6-1. Object-to-Relational Mapping Frameworks

Product URL

TopLink http: //Mmwww.obj ectwave.comyhtml/Main.html
CocoBase http: //www.cocobase.com

Torque http: //jakarta.apache.or g/turbine/tor que/index.html
ObJectRelationalBridge  http://objectbridge.sour ceforge.net

FrontierSuite http: //wwww.objectfrontier.com

Castor http://castor.exolab.org

FreeFORM http: //Amww.chimu.convproj ects/form

Expresso http://wwww.jcor porate.com

JRelationalFramework  http://jrf.sourceforge.net
VBSF http: //Mmwww.obj ectmatter.com
JGrinder http://sour ceforge.net/projects/jgrinder

Although Table 6-1 in not an exhaustive list of available products, it does present many
solutions to choose from. Regardless of whether you select a commercial or non-
commercial product, you should make sure that the mapping framework implementation
does not “creep” into your application. If you remember the idea from Figure 6-1 at the
beginning of this chapter, dependencies should always go down the layers and there

175



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

should not be atop layer depending on the persistence framework. It's even advantageous
to keep the business objects ignorant about how they are being persisted. Some
persistence frameworks force you to import their classes and interfaces in order for it to
work. This is very problematic if you ever need to change your persistence mechanism.
Later in the chapter, you'll see how the use of the Business Delegate pattern and a that
we'll introduce called Data Access Object (DAO), can be used to limit the intrusion of
the persistence framework.

You can find a product comparison between these and other mapping products at
http: //mww.obj ect-r el ational .com/object-relational .html. There is a cost for the compiled
information, but if your application is of decent size, it may be money well spent.

Another thing to be careful of isthat afew of the persistence frameworks need to alter the
Java byte code of the business objects after they are compiled. Depending on how you
feel about this, it could introduce some issues. Just make sure you fully understand how a
persistence framework needs to interact with your application before investing time and
resources into using it.

The Storefront Persistence Framewor k

We could have chosen ailmost any solution from Table 6-1 and successfully mapped the
storefront business objects to the database. Our requirements are not that stringent and the
model isn’t that complicated. Several were evaluated and one was finally selected for use
in the Storefront example. The selection process was very informal and quick, an
approach you should not follow for any serious project. The criteria that they were judge
against were:

The amount of intrusion the persistence mechanism needed
How good was the available documentation

The cost of the solution

Cost was a big factor. We needed a solution that could be distributed with the book and
you would not incur any monetary cost. All of the solutions evaluated for this example
performed pretty well and were relatively easy to wuse, but the product
ObJectRelational Bridge was finally chosen and that’s what the Storefront example will
use.

Just because this solution was chosen for this example, don’t assume
that it will be the best solution for your application. Make sure to take
the necessary time and evaluate the products on your specific set of
criteria.

The documentation for ObJectRelationalBridge is fairly good, considering its open
source and documentation for open source projects tend to be one of the last tasks to

176



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

complete. Essentialy, the entire mapping of the business objects to the database tables
take place in asingle XML file called repository_user.xml. Thefile is parsed at run time
by the mapping framework and used to execute SQL to the database. The portion of the
Storefront mapping file that maps the customer business object is shown in Example 6-4.

Example 6-4. The mapping XML for the CustomerBO Class

<d assDescri ptor id="120">
<cl ass. nane>comorei |l | y. struts. storefront. busi nessobj ects. Qust oner BO</ cl ass. narre
<t abl e. name>CUSTOMER</ t abl e. nane>

<Fi el dDescriptor id="1">

<fiel d. nane>i d</fi el d. nane>

<col um. nane>i d</ col um. nane>

<j dbc_t ype>l NTEGER</ j dbc_t ype>

<Pri mar yKey>t r ue</ Pri nar yKey>

<aut oi ncr enent >t r ue</ aut oi ncr enent >
</ Fi el dDescri pt or >

<Fi el dDescriptor id="2">
<field. name>first Nane</fi el d. nane>
<col um. nane>f i r st nanme</ col um. nanme>
<j dbc_t ype>VARCHAR</ j dbc_t ype>

</ Fi el dDescri pt or >

<Fi el dDescriptor id="3">
<fi el d. name>l ast Nane</fi el d. nane>
<col um. nane>| ast nane</ col urm. nane>
<j dbc_t ype>VARCHAR</ j dbc_t ype>

</ Fi el dDescri pt or >

<Fi el dDescri ptor id="4">
<fiel d. name>emai | </fi el d. name>
<col um. nane>enai | </ col umm. nane>
<j dbc_t ype>VARCHAR</ j dbc_t ype>
</ Fi el dDescri pt or >

<Fi el dDescri ptor id="5">
<fi el d. name>passwor d</fi el d. nane>
<col umn. namre>passwor d</ col unn. nanme>
<j dbc_t ype>VARCHAR</ j dbc_t ype>

</ Fi el dDescri pt or >

<Fi el dDescriptor id="6">
<fi el d. name>account St at us</fi el d. name>
<col um. nane>account st at us</ col unm. nane>
<j dbc_t ype>CHAR</ j dbc_t ype>

</ Fi el dDescri pt or >

<Fi el dDescriptor id="7">
<field.name>credi t Status</fiel d. nane>
<col um. nane>cr edi t st at us</ col urm. nane>
<j dbc_t ype>CHAR</ j dbc_t ype>

</ Fi el dDescri pt or >

177

\"4




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

<Col | ecti onDescriptor id="1">
<cdfi el d. name>subni t t edCOr der s</ cdf i el d. narme>
<itens.class>comoreilly.struts.storefront. busi nessobjects. O derBGC</itens. class
<i nverse_fk_descriptor_i ds>2</inverse_fk_descri ptor_i ds>
</ Col | ecti onDescri pt or >
</ d assDescri pt or >

The rest of the mappings are mapped in a similar manner. Once all of the mappings are
specified in the XML file, you must configure the database connection information to
adlow the JDBC driver to connect to the correct database. With the
ObJectRelationalBridge product, you configure the connection information in the
repository.xml file. Thisis shown in Example 6-5.

Example 6-5.The respository.xml file contains the Database Connection Information
<?xm version="1.0" encodi ng="UTF-8"?>

<l-- defining entities for include-files -->

<! DOCTYPE Mappi ngReposi tory SYSTEM "repository. dtd" [
</ ENTI TY user SYSTEM "repository_user.xm">

<IENTITY junit SYSTEM"repository_junit.xm">
<IENTITY internal SYSTEM "repository_internal.xm">
1>

<Mappi ngReposi t or y>

<JdbcConnect i onDescri ptor id="defaul t">
<dbns. name>M SQSer ver 2000</ dbns. name>
<j dbc. I evel >1. 0</j dbc. | evel >
<driver. name>com ddt ek. j dbc. sql server. SQServer Dri ver </ dri ver. name>
<url . protocol > dbc</url . prot ocol >
<url . subpr ot ocol >dat adi r ect : sqgl server </ url . subpr ot ocol >
<url . dbal i as>

/1l ocal host : 1433; Dat abaseNane=st or ef r ont ; Sel ect Met hod=cur sor

</url.dbalias>
<user . nane>sa</ user . nane>
<user . passwd></ user . passwd>

</ JdbcConnect i onDescri pt or >

<!-- include user defined nmappi ngs here -->
&user;

<l-- include ojb internal mappings here -->
& nternal ;

</ Mappi ngReposi t ory>

Y ou need to configure the settings in this file for your specific environment. That’s really
all thereisto configuring the persistence framework for your application. To initialize the
framework within your application, al you need to do is call three methods. This will be
shown later in the section.

The ObJectRelational Bridge offers two different APIs that you can use,
the PersistenceBroker and the ODMG implementation. You can read

178




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

the documentation to understand the differences, but the ODMG is
much more powerful, including having an Object Query Language
(OQL). However, with that extra functionality comes a little more
complexity. The Storefront application will use the ODMG API due to
its better features. The product also allows the framework to be used in
stand-alone mode and in client/server mode. The client/server mode is
useful when there are multiple servers in the same environment. For the
Storefront example, we have chosen to use it in stand-alone mode,
since the example application will not ever need to scale for multiple
servers. This means that the persistence framework is running within
the same JVM as the Storefront web application itself.

There's not enough room in this chapter for a better explanation of the framework than
what’s been given. For a better explanation, review the documentation for the product at
http: //objectbridge.sour ceforge.net.

Don't forgot that you will need to be sure to have an appropriate Database and a JDBC
driver in your classpath.

TheBusiness Delegate and DAO Patternsin Action

The final piece of the puzzle is to create a service interface that the Storefront Action
classes can use, instead of interacting with the persistence framework directly. Again, the
ideais to decouple the persistence from as much of the application as possible. Before we
show the details of how we are going to accomplish this for the Storefront example, we
need to briefly discuss the Data Access Object (DAO) pattern.

The purpose of the DAO pattern is to decouple the business logic of an application from
the data access logic. In the case where a persistence framework is being used, the pattern
should help to decouple the business objects from it. A secondary goal is to allow the
persistence implementation to easily be replaced with another, without negatively
affecting the business objects.

There are actually two independent design patterns contained within the DAO, the Bridge
and Adaptor, both of which are structural design patterns explained in “ Design Peatterns:
Elements of Reusable Object-Oriented Software”.

For the Storefront application, we are going to combine the DAO and Business Delegate
patterns to insulate the Acti on and business object classes from the persistence
implementation. The abstract approach is shown in Figure 6-5.

179



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

The cliant in the case of
ClientObject the Storefront application
i= an Action.

BusinessDelegatalnterface

In the case of the Storefront example,
each DADImplementation would use
a different pesistence framework. We A
coukd swap out the DAQImplementation ~ ~,
through the use of 8 configuration N
progerty, without affecting the rest
of the application. -~ ™

1 |
DAOImplementationA, DAOImplementationB

adapls adapts

DatabaseResource

Figure 6-5. The Business Delegate and the DAO Patterns combined

The client object in Figure 6-5 represents the Struts Act i on classes. They will acquire a
reference to a service interface, which is referred to in the diagram as the
Busi nessDel egat el nterface. The Storefront business interface is shown in
Example 6-6.

Example 6-6. The Sorefront business interface
package comoreilly.struts.storefront. service;

inport java.util.List;
inport comoreilly.struts.storefront. catal og.view |tenDetail Vi ew,
inport comoreilly.struts.storefront. catal og.vi ew |t enBumaryVi ew,

inport comoreilly.struts.storefront.franework.security.|Authentication;
/**
* The business interface for the Storefront Application. It defines all

of the methods that a client may call on the Storefront application.

cohesive interface for the Storefront application.

*
*
* This interface extends the |Authentication interface to create a
*
*/

180

inport comoreilly.struts.storefront.franework. exceptions. Dat ast or eExcepti on;




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

public interface | StorefrontService extends | Authentication {
public List getFeaturedltens() throws DatastoreException;

public ItenDetail View getltenDetail View String itenid )
throws Dat ast or eExcepti on;
}

The | St or ef ront Ser vi ce interface in Example 6-6 defines al of the methods a
client may call on the Storefront application. In our case, the client will be the set of
Action classes in the Storefront application. The | St or ef r ont Ser vi ce is designed
so that there is not a web dependency. It's feasible that other types of clients could use
this same service.

The implementation for the business interface is shown in Figure 6-5 as
DAQ npl ement ati onA and DAO npl enent ati onB. We could swap out
persistence implementations as long as the new implementation implemented the
| St oref ront Servi ce interface. No client would be affected because they are
programmed against the interface, not the implementation.

The persistence implementation for the chosen persistence  product,
ObJectRelational Bridge, is shown in Example 6-7.

Example 6-7. The Sorefront service implementation class
package comoreilly.struts.storefront. service;

i nport java.sql . Ti mestanp;

inmport java.util.List;

inport java.util.ArraylList;

inport comoreilly.struts.storefront. catal og.view |tenDetail Vi ew,

inport comoreilly.struts.storefront. catal og.vi ew | tenBumaryVi ew,

inport comoreilly.struts.storefront.franework.security.|Authentication;

inport comoreilly.struts.storefront. customner.view User\Vi ew,

inport comoreilly.struts.storefront. busi nessobj ects. *;

/1l 1nport the exceptions used

inport comoreilly.struts.storefront.franework. exceptions. Dat ast or eExcepti on;
inmport comoreilly.struts.storefront. framework. exceptions. | nval i dLogi nExcepti on;
inport comoreilly.struts.storefront.franework. exceptions. Expi r edPasswor dExcept i on
inport comoreilly.struts.storefront.franework. exceptions. Account LockedExcepti on;

/1 1nport the inplenmentation specific packages

i nport org.odny. *;
i nport oj b. odny. *;

public class StorefrontServicel npl inplenents |StorefrontServicef

/1 Inplementation specific references
I npl erentati on odng = nul | ;
Dat abase db = nul | ;

/**

* (reate the service, which includes initializing the persistence

181




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

* framework.

*/

public StorefrontServicelnpl () throws DatastoreException {
super ();
init();

}

/**

* Return a list of itens that are featured.

*/

public List getFeaturedltens() throws DatastoreException {
/]l Start a transaction
Transaction tx = odng. newlransaction();
tx. begi n();

List results = null;
try{
O Query query = odng. newOdQuery();
/] Set the OL sel ect statenent
query.create( "select featuredlitens from" + ItenBQ cl ass. get Nane() );
results = (List)query.execute();
tx.comit();
}catch( Exception ex ){
/1 Rol | back the transaction
tx.abort();
ex. print StackTrace();
t hr ow Dat ast or eExcept i on. dat ast or eError (ex) ;
}
int size =results.size();
List itens = new ArraylList();
for( int i =0; i <size; i++){
ItenBOitenBO = (ItenmBOresults.get(i);
It enBummar yVi ew newM ew = new | t enSunmar yM ew() ;
newi ew. setld( itenBQgetld().toString() );
newi ew. set Nanme( it enBQ get D spl ayLabel () );
newi ew. set Unit Price( itenBQ getBasePrice() );
newi ew. set Snal | | rageURL( itenBQ get Snal | | mrageURL() );
newM ew. set Product Feat ure( itenBQ get Featurel() );
i tens. add( newi ew );

}
return itens;
}
/**
* Return an detailed view of an itembased on the item d argunent.
*/

public ItenDetail View getltenDetai |l View String itemd )
throws Dat ast or eExcepti on{
// Start a transaction
Transaction tx = odng. newlransaction();
tx. begi n();

List results = null;

try{
GJ_QJel’y query = Odn'g neV\Q:LQJerY();

// Set the QQL sel ect statenent

182




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

String queryStr = "select itemfrom" + ItenBQ cl ass. get Nane();
queryStr += " where id = $1";

query. create(queryStr);

query. bind(itemd);

/1 Execute the transaction
results = (List)query.execute();
tx.comit();
}cat ch( Exception ex ){
/1 Rollback the transaction
tx.abort();
ex. print StackTrace();
t hr ow Dat ast or eExcept i on. dat ast or eError (ex);

}

11

if (results.isEnpty() ){
t hrow Dat ast or eExcept i on. obj ect Not Found() ;
}

ItenBOitenBO = (ItenBOresults. get(0);

// Build a Valuehject for the Item

ItenDetai |l View view = new |tenDetai | View();
viewsetld( itenBQgetld().toString() );

vi ew. set Description( itenBQ getDescription() );

vi ew. set Lar gel mageURL( itenBQ get Lar gel nageURL() );
vi ew. set Narre( i tenBQ get D spl ayLabel () );

vi ew. set Product Feat ure( itenBQ get Featurel() );
view set UnitPrice( itenBQ getBasePrice() );

vi ew. set Ti neQOreat ed( new Ti mestanp(SystemcurrentTimeMIlis() ));
vi ew. set Mbdel Nunber (i t enBQ get Model Nunber () );
return view,

}
/**

* Authenticate the user's credentials and either return a UserView for the
* user or throw one of the security exceptions.
*/
public UserView authenticate(String email, String password) throws
I nval i dLogi nExcept i on, Expi r edPasswor dExcept i on, Account LockedExcept i on,
Dat ast or eExcepti on {

/1l Start a transaction
Transaction tx = odng. newlransaction();
tx. begi n();

/1l Query the database for a user that matches the credentials
List results = null;
try{
O Query query = odng. newOdLQuery();
// Set the QQL sel ect statenent
String queryStr = "select customer from" + QustomnerBQ cl ass. get Nane() ;
queryStr += " where enail = $1 and password = $2";
query. create(queryStr);

183




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

// Bind the input paraneters
query.bind( enail );
query. bi nd( password );

/1 Retrieve the results and coomit the transaction
results = (List)query.execute();
tx.comit();
}cat ch( Exception ex ){
/1 Rollback the transaction
tx.abort();
ex. print StackTrace();
t hr ow Dat ast or eExcept i on. dat ast or eError (ex);

}

/1 1f no results were found, nust be an invalid |ogin attenpt
if (results.isBEmty() ){
throw new | nval i dLogi nException();

}

/1 Should only be a single custoner that matches the paraneters
Qust oner BO custoner = (CQustonerBOresults. get(0);

/1 Make sure the account is not | ocked

String account St at usCode = cust orrer. get Account St at us() ;

if ( account StatusCode != null && account StatusCode. equal s( "L" ) ){
t hr ow new Account LockedException();

}

/1 Popul ate the Val ue (hject fromthe Qustoner business object
User Vi ew user Vi ew = new User Vi ew() ;

userVi ew setld( custoner.getld().toString() );

user Vi ew set Fi r st Nane( cust oner. get First Name() );

user Vi ew. set Last Nane( cust orer . get Last Nane() );

user Vi ew. set Ermai | Address( customner.getEmail () );

userView set editStatus( custoner.getQeditStatus() );

return userVi ew,

}
/**
* Log the user out of the system
*/
public void | ogout (String enail){
/1 Do nothing with right now, but mght want to log it for auditing reasons
;**
* (pens the database and prepares it for transactions
*/

private void init() throws DatastoreException {
/1 get odng facade instance
odng = QIB. get | nstance();
db = odng. newbDat abase();
/I open dat abase

try{

184




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

db. open("repository. xm", Database. CPEN READ WR TE) ;
}catch( Exception ex ){
t hrow Dat ast or eExcept i on. dat ast or eError (ex);

}
}
}

The service implementation provides all of the reguired methods of the
| St orefront Servi ce interface. Since the | St orefront Service interface
extends the | Aut henti cati on interface, the St or ef r ont Ser vi cel npl class
must also implement the security methods. Again, notice that the implementation knows
nothing about the Struts framework or web containers in general. This allows it to be
reused across many different types of applications. This was our goal when we set out at
the beginning of this chapter.

We mentioned earlier that we have to call a few methods of the ObJectRelational Bridge
framework, so that the mapping XML can be parsed and the connections to the database
made ready. This initialization is shown in the i ni t () method in Example 6-7. When
the constructor of thisimplementation is called, the XML file isloaded and parsed. Upon
successful completion of the constructor, the persistence framework is ready to be called.

The constructor needs to be called by the client. In the case of the Storefront application,
we could configure it as a Struts plugin, a servlet filter if we were using a 2.3 container,
or just createitinthei ni t () method of the Act i onSer vl et . The first two choices
would force the St or ef r ont Ser vi cel npl class to become coupled to the servlet
container and although this might not be a huge problem, we are going to take the looser
coupling route and just instantiate it in the servlet i ni t () method and place the object
into the Ser vl et Cont ext . This helps to enforce the idea that upper layers should be
dependent on lower, but not the other way around.

Thei ni t () method of the Act i onSer vl et isshown in the following fragment.

public void init() throws ServletException {
/1l Make sure to always call the super's init() first
super.init();

// Attenpt to initialize the persistence service

try{
/Il Oreate an instance of the service interface
St orefront Servi cel npl servicelnpl = new Storefront Servicel npl ();

/1 Store the service into application scope
get Servl et Context (). set Attri but e(
| Const ant s. SERVI CE_| NTERFACE_KEY, servicelnpl );
}cat ch( Dat ast oreException ex ){
/1 1f there's a probleminitializing the service, disable the web app
ex. print StackTrace();
t hrow new Unavai | abl eExcepti on( ex. get Message() );

}

}

185




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

The final step that needs to be shown is how we invoke the Storefront service interface
froman Act i on class. The relevant methods are highlighted in Example 6-8.

Example 6-8. The LoginAction from the Sorefront application
package comoreilly.struts.storefront.security;

inport java.util.Locale;

inport javax.servlet.http.*;

i nport org.apache. struts. action.*;

inport comoreilly.struts.storefront. customner.view User\Vi ew,

inmport comoreilly.struts.storefront. framework. exceptions. BaseExcepti on;
inport comoreilly.struts.storefront.franework. User Cont ai ner;

inport comoreilly.struts.storefront.franework. StorefrontBaseActi on;
inport comoreilly.struts.storefront.franework.util.|Constants;

inmport comoreilly.struts.storefront. service.|Storefront Servi ce;

/**
* Inplements the logic to authenticate a user for the storefront application.
*/

public class Logi nAction extends StorefrontBaseAction {
/**

* Called by the controller when the a user attenpts to login to the
* storefront application.
*/
public ActionForward execute( ActionMappi ng nmappi ng,
Acti onForm form
H t pSer vl et Request request,
H t pSer vl et Response response )
throws Exception{

/1 Get the user's |ogin name and password. They shoul d have al ready
/1 validated by the ActionForm

String email = ((Logi nFornm)forn).getEnail ();

String password = ((Logi nForm)forn).getPassword();

/1 Login through the security service
| Storefront Service servicelnpl = getStorefront Service();
User Vi ew user Vi ew = servicel npl . aut henticate(enail, password);

User Cont ai ner exi stingContai ner = null;
H t pSessi on sessi on = request . get Sessi on(fal se);
if ( session!=null ){
exi stingCont ai ner = get User Cont ai ner (request);
session.invalidate();
}el sef
exi stingCont ai ner = new User Cont ai ner () ;

}

/1l Oreate a new session for the user

sessi on = request. get Session(true);

exi sti ngCont ai ner. set User Vi ew( user Vi ew) ;

session. set Attri but e(l Const ant s. USER CONTAI NER_KEY, exi stingCont ai ner);

return mappi ng. fi ndForwar d( 1 Const ant s. SUCCESS KEY) ;

186




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

}
}

Thefirst highlighted line callsthe get St or ef r ont Ser vi ce() method. This method
is located in the super class called St or ef r ont BaseAct i on, because every Action
class will need to cal this method. The implementation for the
get St or ef ront Ser vi ce() method just returns the St or ef r ont Ser vi cel npl

object that was created during thei ni t () method of the Act i onSer vl et .

The St or ef ront BaseAct i on class, which includes the
get St or ef ront Ser vi ce() method, is shown in Example 6-9.

Example 6-9. The StorefrontBaseAction class
package comoreilly.struts.storefront. framework;

inport java.util.Collection;
inport java.util.LinkedList;
inport java.util.List;
inport java.util.Locale;
inport java.util.lterator;
inport javax.servlet.http.*;
i nport org.apache. struts. action. *;
inmport comoreilly.struts.storefront.framework. util.|Constants;
inport comoreilly.struts.storefront.franework. exceptions. *;
inmport comoreilly.struts.storefront. service.|Storefront Servi ce;
/**
* An abstract Action class that all store front action classes shoul d
* extend.
*/
abstract public class StorefrontBaseAction extends Action {
protected | Storefront Service get Storefront Service()({
return (1 Storefront Service)
get Appl i cati onChj ect (| Const ant s. SERVI CE_| NTERFACE _KEY ) ;
}
/**
* Retrieve a session object based on the request and the attribute nare.
*/
protected (hj ect getSessionChject( HtpServl et Request req,

String attrNane) {
(pj ect sessionChj = null;

// Don't create a session if one isn't already present
H t pSessi on sessi on = req. get Sessi on(true);

sessionCh] = session.getAttribute(attrNane);

return sessionQhj ;

}

protected String getLogi nToken(H t pSessi on session) {
return (String)session.getAttribute(lConstants. LOd N TCKEN KEY);
}

187




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

publi c bool ean isLoggedl n( HtpServl et Request request ){
User Cont ai ner contai ner = this.getUserContainer(request);

return ( container != null &% container.getWserView) !=null );
}
/**
* Return the instance of the ApplicationContainer object.
*/

protected ApplicationContainer getApplicationContainer() {
return (ApplicationContainer)
get Appl i cati onChj ect (| Const ant s. APPLI CATI ON_CONTAI NER_KEY) ;
}

protected voi d removelLogi nToken(H t pSessi on session) {
session. renmoveAttribut e(l Constants. LOd N TCKEN KEY) ;
}
/ * %
* Retrieve the UserContainer for the user tier to the request.
*/
protected User Contai ner get User Cont ai ner (H t pServl et Request request) {
User Cont ai ner user Cont ai ner =
(User Cont ai ner) get Sessi onChj ect (request, | Const ants. USER_ CONTAI NER KEY) ;

|/l Oreate a WserContainer for the user if it doesn't exist already
if(userContainer == null) {

user Cont ai ner = new User Cont ai ner () ;

user Cont ai ner. set Local e(request . get Local e());

H t pSessi on sessi on = request . get Sessi on();

session. set Attri but e(| Constants. USER CONTAI NER KEY, user Cont ai ner) ;
}

return user Cont ai ner;

}

/**

* Retrieve an object fromthe application scope by its name. This is
* a convi ence et hod.

*/

protected Chbject getApplicati onCoject(String attrNane) {

return servlet.getServletContext().getAttribute(attrNane);
}

protected voi d setLogi nToken( H 't pSessi on sessi on,
String path) {
session.setAttribute(l Constants. LOd N TCKEN KEY, path);
}

}

The get Appl i cati onObj ect () method is just a convenience method for the
Storefront Action classes, which calls the get Attribute() method on the
Ser vl et Cont ext object.

188




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Finally, the second highlighted line in Example 6.8 actually invokes a service method on
the implementation. The aut hent i cat e() method is caled and a value object called
User Vi ewisreturned back to the Action.

| User Vi ew user Vi ew = servicel npl . aut henti cate(email, password);

This object is placed inside a session object and the Action returns. If a user isn’t found
with a matching set of credentials, the aut henti cat e() method will throw an
I nval i dLogi nExcept i on. Thiscan be seenin the in Example 6-7.

Notice that the Action class is programming against the | St or ef r ont Ser vi ce
interface, not the actual implementation object. As we said, this is important to prevent
aternate implementations from having a rippling effect on the Action classes. For
example, if we decided to use an alternate persistence framework, all we would have to
do is create a new class that implemented the | St or ef r ont Ser vi ce interface and
initialize it at runtime instead of the current one. If it was necessary to be able to switch
back and forth, it might be worthwhile to initialize the Storefront service using a different
approach than what was shown. Instead of hardcoding the service implementation in the
i nit() method of the Acti onSer vl et, you can read in a fully qualified class name
to instantiate and store in the application. This value could be added to the init parameters
of the webxml file and then nothing would have to change when alternate
implementations were used.

Conclusion

We covered alot of ground in this chapter. It may be little overwhelming if you are new
to the concept of a model and persistence mechanism. This is definitely one of the
chapters that you might want to go back and re-read again. The rest of the book will
assume that these topics are familiar to you and will not spend any time discussing them.
Make sure you understand this material before moving on.

189



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

v

Struts View Components

This chapter introduces the components that make up the view portion of the Struts
framework. The framework uses the view components to render dynamic content for the
client. Based primarily on JavaServer Pages, the components provide support for
internationalized applications, as well extensive support for user input acceptance,
validation, and error handling, all of which make it easier for the developer to focus on
business requirements. This chapter concludes the three-part discussion of how the Struts
framework implements the MV C pattern.

This chapter will also briefly discusses the up and coming JavaServer Faces specification.
Although dtill in early draft, it appears that this specification will impact the Struts
framework in the future.

What exactly isa View?

In a general sense, the view represents a display of the domain model in a Ul. There
doesn’t have to be just a single view of the model, there can actually be many different
ways to represent the same model. As you learned in Chapter 5, the domain model
contains the business entities, which hold state for the application. Metaphorically
speaking, a view is a window that clients can use to peek at the state of the model. The
perspective may be different depending on which window a client looks through. For
example, in the Storefront application, the front page shows a set of featured itemsin the
catalog. It doesn’t show all of the information about each item, only a small portion. This
“summary” view is used in the Storefront application where real estate is scarce asin the
first page. Figure 7-1 shows the main page of the Storefront application.

190



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

3 Yirtual Shopping with Struts - Microsoft Internet Explorer provided by Dell

J File Edit Yiew Favoritee Tool: Help |

- . 2 . B A a G @ >
Back e Stop Refrezh Home Search Favorites Media
J Address I@ http: Alacalhost: 8080/ storefrontfindex. jsp j
Wirtnal Shopping .
with Struts Would you like to signin?
ftemz in shopping cart: 0 @[
Current Total: $0.00
EEEEEE o ONCENER ABOUTUS  STORELOCATOR CRDER STATUS MY ACCOUNT
FREE SHIPPING s, e
Ies
ORDER NOW AND SAVE &’ Ve Coves
Limited time offer & Cabariars
Receive free shipping on purchases of any Muffler. Water Purpe
Carn Shatts
Ezhust Pipes

4
Omem— I
L —— »
Value Cover Water Pump Carborator Exhaust Pipes Carmn Shaft Tire

Price: $89.99 Price: $68 99 Price: §189.99 | Price: $179.99 | Price: $14899 | Price: {8909
Hew! & really

Hew release.
nice valve cover

Copyright & 2000-2002.
To be used with the OReilly Struts book only.

¥ | of

3
|@ l_ ’_l_ E Local intranet 4
Figure 7-1. The Storefront Main Page is One Perspective of the Model

When a user selects one of the items for sale, al of the details of the item are displayed.
The user is ill looking at the same business model, but the view is different. This
alternate view of the model is shown in Figure 7-2.

191



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

; ¥irtual Shopping with Struts - Microzoft Internet Explorer provided by Dell

J File Edt “iew Favorites Toolz Help |

j@,»-@ﬁ|@@@”

Back Eanarnd Stop Refresh Horme Search Favorites Media
J Address I’-Gj http: /Alacalhost 8080/ starefront actionAviewiterndetail ?id=116 j
-
virmal Shopping Would you like to signin?
with Struts tems in shopping cart: 0 U]‘E[
Current Total: $0.00

m INFORMATION CEMTER - ABOUT US  STORE LOCATOR ORDER STATUS MY ACCOUNT

Muflers Model: 123-04

!¢)’ & really hot muffler

In Stock - Usually $167.99 |

ships in 2-3 FREE SHIPPING!
business days.

PRODUCT FEATURES

Goes under iDUI’ (=]

Copyright @ 2000-2002 OReilly Struts.
T be used with the OReilly Struts book anly.

¥ | of

3
|:Bj Dane ’_’_’_ E Local intranet Az
Figure 7-2. An Alternate View of the Storefront Model

A more detailed view of the business model is necessary for this page. There may be
different JSP pages, images, multimediafiles, and other view related components. These
two different perspectives are in fact two different views of the same model.

Because business objects don't have a natural way of representing themselves externally,
it's up to the view components to present the domain model information to the clients.
This presentation may be in the form of XSLT and XML, Simple Object Access Protocol
(SOAP) messages returned to a web service client, or in the case of the Storefront
application, HTML rendered in a browser. In any case, the model is used to represent the
state of the application, while the views are used to present the model, or a portion of it,
to the client.

It wouldn't be hard to imagine a different type of client, a wireless device for example,
looking at a completely different set of views, but still using the same model. Although
the Storefront application shown throughout this book is geared towards B2C, it's
possible to have a B2B application using the same model to make part ordering
functionality available to partners. As long as the proper separation is maintained
between the model and the presentation layer, you can build any number of views for any
number of clients on top of the same domain model.

192



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Using Viewswithin the Struts Framework

Generally speaking, the views in the Struts framework are built using JSP pages. Other
presentation technologies can be used, but JSP is widely used within the Struts
community. The JSP technology is a very popular choice for generating dynamic content
using the Java language. There are other approaches and frameworks available for
performing the same behavior. The alternatives will be discussed in Chapter 16 Using
Alternate Presentation Technologies.

Although JSP pages are the main components used by most Struts applications to render
the views, there are additional components that can be used by or in conjunction with the
JSP pages.

HTML Documents

JSP Custom Tag Libraries
JavaScript and Style Sheets
Multimedia Files

Message Bundles

ActionForm Classes

HTML Documents

Although HTML documents are only able to generate static content, there’'s nothing
wrong with using standard HTML documents within your Struts applications. Obviously
they are unable to render any dynamic data, but they are still valid to use whenever the
view is static and you don’t need the dynamic capabilities of JSP.

For example, alogin page may just be an ordinary HTML document that invokes a Struts
login Acti on. To take advantage of many of the automatic features of the Struts
framework, especially ones related to custom tags, you would need to utilize JSP instead
of straight HTML.

JSP Custom Tags

The JSP custom tags can play a very important role within a Struts application. Although
an application is not required to use them, in some particular scenarios, it would be very
difficult without them. In future version of the framework, they will maintain their
importance, but the framework will make it easier to use alternate strategies.

193



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

JavaScript and Style Sheets

The Struts framework doesn’'t prevent you from using JavaScript within an application.
On the contrary, it provides functionality within the tag libraries to help facilitate using
JavaScript. The JavaScript support within custom tags will be discussed in Chapters 8.

Style sheets are used to help web designers gain more control over the appearance of a
web site. Features such as character size, color, font, and other look and feel
characteristics can be changed in a central location and will have an immediate effect
throughout the entire site.

The Struts framework does not prevent you from using style sheets. Just like with
standard HTML files, you can include style sheets in the JSP page and it will be rendered
on the browser just as they would be for standard HTML pages.

Multimedia Files

Multimedia files are used in just about every web application. These include but are not
limited to:

Images (.gif, .jpg, €tc.)
Audio (.wav, .mp3, €etc.)
Video (.avi, .mpg, €tc.)

Images are probably the most widely used, although for B2B applications, audio and
video files are aso prevalent. The Struts framework supports using multimedia files
within an application. The support is achieved mainly through the use of custom tags, but
you are also free to use standard HTML to render these types of resources.

There are a few sore spots when it comes to rendering images using the
custom tags. It mainly has to do with the differences between absolute
and relative associations. These issues however, are more related to
web applications in general, rather than a particular issue within the
Struts framework.

M essage Bundles

The message resources, or resource bundles as they are commonly referred, are a very
important component for Struts applications. Not only do they provide a means to support
localization, but they also help to reduce maintenance time and redundancy throughout an
application.

For example, suppose your web application uses certain text labels or messages in
multiple locations. Instead of hard-coding the string in every page, you can specify it in
the bundle and retrieve it using one of the custom tags. Then if the text label or message

194



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

needs to change, only the one in the bundle needs to be modified. This helps to reduce
mai ntenance time because it only needs to be changed in one location.

Some might consider the resource bundles belonging to the model,
rather than the view. However, because the bundle aso contains labels
and strings for such things as text fields and checkbox labels, page
titles, and so on, avalid argument can be made either way.

Using JavaBeans within the View Components

It might seem weird to talk about JavaBeans within a chapter on views. However, since
JavaBeans make up a large portion of how the model data is used within the framework,
it makes sense to briefly discuss them.

JavaBean Quick Refresher

JavaBeans itself is a portable, platform independent component model written in the Java
programming language. The JavaBeans component architecture allows developers to
create reusable components that can be used on any platform that supports a WM. The
JavaBeans model supports properties, events, methods, and persistence.

The extent to which the Struts framework and Java web applications in general, utilize
JavaBeans is much less than what's described by the JavaBeans specification. They are
used much more like ordinary Java objects, however they must follow certain guidelines
for them to be useful in Struts applications:

Must provide a zero-argument constructor

Should provide both a get <PropertyNane> and set <PropertyNanme>
method for all properties defined within the bean

For boolean properties, if the method i s<Pr opert yNanme> is present, it will be
used to read the property value

For indexed properties where there is a property defined like
<Pr opert yEl enent >[ ], then the methods get <Pr opert yName>(int a)
and set<PropertyNane>(int a, PropertyElenent b) should be
present

These guidelines are necessary for the beans to be introspected at runtime by the
framework.

One of the common traps that Struts developers fall into when dealing
with JavaBeans is to use a different return type from the parameter
type. If you create a method in a JavaBean that passes a String as an
argument:

195



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

public void setDescription( String newbescription );

then you must have a corresponding get method that returns the same
type:

public String getDescription();

If the return type differs from the parameter type, the Struts framework
may not recognize it as a bean and you will likely get an error message
stating that “ No getter method could be found” or “ No setter method
could be found” for the property name.

How are JavaBeans used by Struts Applications?

In a strict MV C architecture, the view gets updates directly from the model when it
receives a notification that something has changed within the model. Figure 7-3 shows a
diagram illustrating this.

Model
Query Update
Model Conlains model state Model
State Notifies view of state State
change
Change
* Motification
- View Controller

View
Selection

*  Maps user actions lo
model operations

=  Renders the model
= Reguests model

updates Determines the naxt
=  Sends user input to wiew
\__ centroller User

Input

Figure 7-3. The view queries the model for state information

With web applications, this notification is not possible, or at least is difficult to achieve.
Normally, it's up to the client to issue a request to the controller to refresh a view from
the model state. It’s up to the client to “pull” the view from the model, instead of the
model “pushing” changes out to the view.

196



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

The Data Transfer Object Pattern

Chapter 6 discussed one approach to building the model components for a Struts
application. The one thing that was left intentionally out until now is exactly how the
view accesses the data from the model. To understand this, it will help to understand the
Data Transfer Object pattern.

The Data Transfer Object (DTO) pattern is used quite frequently in J2EE applications,
where distributed components making remote calls can suffer serious performance
impacts from using too remote invocations. It also has been used in other technologies as
well, but under different names and disguises.

In some software literature, it is also referred to as the Value Object or
Replicate Object pattern.

A DTO is a course-grained view of what is typically fine-grained information. It
aggregates various attributes from one or more business entities and puts this information
into a JavaBean instance. This instance can then be passed throughout the local
application, or even serialized and sent over the network, and clients can retrieve the
model information from alocal object and not suffer any negative performance impact.

The DTO doesn’'t normally provide any business logic or validation, but does provide
access to the properties of the bean. Some documentation on this pattern suggests that the
bean should be immutable to help reinforce that the object is local and changes will not
be reflected in the system. However, this can cause problems because the JavaBean
specification requires that all private properties have a get XXX and set XXX method. It
is up to you to determine how best to handle the mutability of DTOs based on your
reguirements.

DTOs are effectively part of the model, since they are just local, possibly immutable
copies of the business objects. Within Struts applications, they are used by the view to
deliver the model datathat is rendered along with the static information in the page.

What are ActionForms?

Almost every web application has a requirement to accept input from users. Some
examples of user input are credit card information, billing and shipping address
information, or even something as small as a username and password. The HTML
language provides the necessary components to render the input fields in a browser,
including text boxes, radio buttons, check boxes, buttons, and many more. When building
these types of pages, the input components must be nested inside of an HTML form
element. Example 7-1 illustrates a very basic Signin page similar to the one used in the
Storefront application.

197



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Example 7-1. Form fields must be nested inside of a form element

<ht ml >

<title>Exanple 7-1. CReilly Struts Book</title>

<link rel ="styl esheet" href="styl esheets/nain.css" type="text/css">
</ head>

<body>
<f orm et hod="post" acti on="/action/ si gni n">

<!-- The Table layout for the email and password fields -->
<t abl e BORDER="0" cel | spaci ng="0" cel | paddi ng="0">
<tr>
<td>Email: </td>
<t d>&nbsp; </td>
<t d>
<input type="text" name="enail" size="20" naxl ength="20"/>
</td>
</tr>

<tr>
<t d>Passwor d: </ t d>
<t d>&nbsp; </td>
<td class="alignfornslist">
<input type="text" nane="password" size="20" naxl engt h="25"/>
</td>
</tr>

<l-- The Table layout for the signin button -->
<t abl e w dt h="250" border="0">
<tr>
<t d>
<input type="submt" nane="Subnit" val ue="S gnin" class="Buttons">
</td>
</[tr>
</tabl e>
</fornv
</ body>
</htn >

When the user presses the Signin button on the HTML form from Example 7-1, the
values within the fields are submitted along with the HTTP request. The server
application can retrieve the values that were entered, perform input validation on the data,
and then pass the data to another component in the application where the actual
authentication process can occur. If the input data fails the input validation rules, the
application should return back to the previous location, redisplay some or al of the
values entered, and display an error message that the login attempt failed.

Performing all of this functionality manually, retrieving the values, executing the
validation, returning back and displaying error messages on a failure, can be a daunting
task. This type of behavior is typically performed in many places throughout a web

198




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

application. It would be nice to have this functionality taken care of for you by the
framework and be able to reuse it across applications.

Fortunately, the Struts framework does provide this functionality and will handle these
tasks on behalf of your application. The Struts framework relies on the
org. apache. struts. action. Acti onForm class as the key component for
handling these tasks.

The Act i onFor mclassis used to capture input data from an HTML form and transfer it
tothe Act i on class. Since the HTML input components don’t natively include an input
buffer and users quite often enter invalid data, web applications need a way to store the
input data temporarily, so that it can be redisplayed when an error occurs. In this sense,
the Act i onFor mclass acts as a buffer to hold the state of what the user entered while it
is being validated. The Act i onFor malso acts as a “firewall” for your application in
that it helps to keep suspect or invalid input out of your business tier until it can be
scrutinized by the validation rules. Finally, the Act i onFor mis aso used to transfer data
fromthe Act i on class back to the HTML form. This allows more consistency for your
HTML forms, because they are always pulling datafrom the Act i onFor m

When the user input data does pass input validation, the Act i onFor mis passed into the
execut e() method of the Act i on class. From there, the data can be retrieved from
the Act i onFor mand passed on to the businesstier.

Because the Act i onFor mimports packages from the Servliet AP,
you shouldn’t pass the Act i onFor mto the business tier. Doing so
would couple the business methods to the Servlet APl and make it
more difficult to reuse the business tier components. Instead, the data
within the Act i onFor mshould be transferred to an object from the
domain model instead of being passed as an argument to the business
tier. A common approach is to create a data transfer object and populate
it with the data from the Act i onFor m

You don't have to declare an Act i onFor mfor every HTML form in your application.
The same Act i onFor m can be associated with one or more action mappings. This
means that they can be shared across multiple HTML forms. For example, if you had a
wizard interface, where a set of data was entered and posted across multiple pages, a
single Act i onFor mcan be used to capture all of this data, afew fields at atime.

ActionForms and Scope

ActionForms can have two different levels of scope, request and session. If request scope
is used, an ActionForm will only be available until the end of the request/response cycle.
Once the response has been returned to the client, the ActionForm and the data within it
isno longer accessible.

199



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

If you need to keep the form data around longer than the request, you can configure an
Act i onFor m to have session scope. This might be necessary if your application
captures data across multiple pages, similar to a wizard dialog. An Act i onFor mthat
has been configured with session scope will remain in the session until it's removed,
replaced with another object, or until the session times out. The framework doesn’'t have
a built-in facility for cleaning up session scoped Act i onFor mobjects automatically.
Like any other object placed into the Ht t pSessi on, it's up to the application to
routinely perform clean up on the resources stored there. This is dightly different from
objects placed into the request, because once the request is finished, they can be
reclaimed by the garbage collector since they can no longer be referenced.

Unless you need to specifically hold the form data across multiple requests, you should
use request scope for your Act i onFor mobjects.

If you don't specify the scope attribute for an act i on mapping, the
Act i onFor mwill default to session scope. To be safe, you should
aways explicitly specify the scope of the Act i onFor m To see how
to specify the scope for an action element, see “The Struts
Configuration DTD” in Chapter 4.

When the controller receives a request, it will attempt to recycle an Acti onForm
instance from either the request or the session, depending on the scope that the
Act i onFor mhasin the act i on element. If no instance is found, a new instance will
be created.

The Lifecycle of an ActionForm

The section “ Using the Struts ActionForm” in Chapter 3 described the steps that are taken
by the framework when an Act i onFor mis being used by an application. Understanding
these steps, it's easy to get a picture of the life cycle of an Acti onFor m Figure 7-4
illustrates the main steps that are taken by the framework that have some effect on the
ActionForm

200



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

(Reque:st Received by Cnntrollerj

[Crefate or Recycle ActionForm Call reset)

Store ActionFarm in the Proper Empa The processPopulate()
method in the 1.1 bata
"'-l/ called the reset()
) method again
(Populate ActionForm from Requesa needlessly, since it has
\L{ already been called for
this request. This
Ea"alidate the -ﬁ.ctimFunﬂj should be fixed in the
final version.

TR

Errors Found Mo Errors

(Fnrward back to Input with ActionForm in Scupe) EZaII execuia() with the Action Furm]

W
Eﬁ:mrard to Resource with ActicnForm in Scnp&j

Figure 7-4. The Life Cycle of an ActionForm

All of the steps that a request goes through during request processing are not shown in
Figure 7-4, only the ones that are relevant to an Act i onFor m Notice that when an
Act i onFor mdetects one or more validation errors, it performs a forward back to the
resource identified in the i nput attribute. The data that was sent in the request is left in
the Act i onFor mso that it can be used to re-populate the HTML fields.

Creating an ActionForm

The Act i onFor m class provided by the Struts framework is abstract. You need to
create subclasses of it to capture your application specific form data. Within your
subclass, you should define a property for each field that you wish to capture from the
HTML form. For example, suppose we want to capture the email and password fields
from aform, similar to the one in Example 7-1. Example 7-2 illustrates the Logi nFor m
for the Storefront application that can be used to store and validate the email and
password fields.

Example 7-2. The LoginForm Stores the Email and Password Fields
package comoreilly.struts.storefront.security;

201



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

inport javax.servlet.http. HtpServl et Request;
i nport org.apache. struts. action. *;
/**
* Formbean for the user signon page.
*/
public class Logi nForm extends Acti onForm {
private String email = null;
private String password = nul | ;

public void setEnail (String email) {
this.email = email;
}

public String getEmail () {
return (this.email);
}

public String get Password() {
return (this.password);
}

public voi d setPassword(String password) {
thi s. password = password;
}

/**
* Validate the properties that have been sent fromthe HITP request,
* and return an ActionErrors object that encapsul ates any

* validation errors that have been found. |f no errors are found, return
* an enpty ActionErrors object.
*/

public ActionErrors validate(Acti onMappi ng mappi ng, HtpServl et Request request){
ActionErrors errors = new ActionErrors();

if( getEnail () == null || getBmail ().length() <1 ){
errors.add("enai | ", new ActionError("security.error.enail.required"));
}
if( getPassword() == null || getPassword().length() < 1 ){
errors. add("password", new ActionError("security.error.password.required"));
}

return errors;

}

public void reset (ActionMappi ng nappi ng, HtpServl et Request request){
/** Because this ActionFormshoul d be request scope, do nothing here because
* the fields will be reset when a new instance is created. V¢ could
* have just not overrode the parent reset() method, but did so just
* to provide an exanple of the reset() nethod signature.
*/
}

}

When the form is submitted, an instance of the Logi nFor m will be created and
populated from the request parameters. The framework does this by matching each

202




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

request parameter name against the corresponding property name in the Act i onFor m
class.

The Act i onFor mis populated from request parameters, not request
attributes. If you are forwarding from one action to anther, you can't
add a request attribute and expect that the Acti onFor m will be
populated from it. Request parameters and request attributes are two
separate resources.

TheActionForm val i dat e() Method

[Note: Brett, how should a method name like above be formatted in a heading 37]

The val i dat e() method may be called by the Request Processor for every
request. Whether it's called or not depends on two things. First, an Act i onFor mmust
be configured for an acti on mapping. This means that the nane attribute for an
act i on element must correspond to the nane attribute of one of the f or m bean
elementsin the configuration file.

The second condition that must be met before the Request Pr ocessor will invoke the
val i dat e() method isthat the val i dat e attribute must have a value of “true’. The
following fragment shows an act i on element that uses the Logi nFor mfrom Example
7-2 and meets both requirements mentioned.

<action
pat h="/si gni n"
type="comoreilly.struts.storefront.security.Logi nAction"
scope="request "
nane="1 ogi nFor n{
val i dat e="true"
i nput ="/ security/signin.jsp">
<f orward nane="Success" path="/index.jsp" redirect="true"/>
<forward nane="Fail ure" path="/security/signin.jsp" redirect="true"/>
</ action>

When the signin action is invoked, the framework will populate an instance of a
Logi nFor musing values it finds in the request. Because the val i dat e attribute has a
value of “true’, theval i dat e() method inthe Logi nFor mwill be called. Even if
the validate attribute is set to “false”, the Act i onFor mwill still be populated from the
request if an Act i onFor mis configured for the action.

The val i dat e() method in the base Acti onFor m class simply
returns null. If you want to perform validation on the data that is
submitted with the request, you'll need to override the val i dat e()
method in your Act i onFor msubclasses, asin Example 7-2.

The val i dat e() method may return an Acti onErrors object, depending on
whether or not any validation errors were detected. You also can return null if there are

203




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

no errors; the framework will check for both null and an empty Act i onEr r or s object.
This saves you from having to create an instance of Act i onEr r or s when there are no
errors. The Acti onErrors class and its parent class, Acti onMessages, will be
discussed later in this chapter.

TheActionFormr eset () Method

The reset () method has been a bane for much of the Struts user community at one
time or another. Exactly when ther eset () method is called and what should be done
within it is almost always misinterpreted. This doesn't mean that one implementation is
more correct than another, but there are misconceptions that many new Struts developers
pick up and then have a hard time shaking regarding ther eset () .

As Figure 7-4 shows, the r eset () method is called for each new request, regardless of
the scope of the Act i onFor m It's called before the Act i onFor mhas been populated
from the request. The method was added to the Act i onFor mclass originally to help
facilitate resetting bool ean properties back to their defaults. To understand why they
need to be reset, it's helpful to know how the browser and the HTML form submit
operation processes checkboxes.

When an HTML form contains checkboxes, only the values for the checkboxes that are
checked are sent in the request. Those that are not checked are not included as a request
parameter. Therefore, ther eset () method was added to allow applications to reset the
bool ean properties in the Act i onFor mback to false, since false wasn't included in
the request and the bool ean values would possibly be stuck in the “true” state.

Thereset () method in the base Act i onFor mcontains no default behavior, since no
properties are defined in this abstract class. Applications that extend the Act i onFor m
class are allowed to override this method and reset the Act i onFor m properties to
whatever state they wish. This may include setting bool ean properties to true or false,
setting String values to null or some initialized value, or even instantiating instances of
other objects that the Act i onFor mholds on to. For an Act i onFor mthat has been
configured with request scope, the framework will essentially create a new instance for
each new request. Since a new instance is created, there’s not much need to r eset ()

the values back to any default state. ActionForms that are configured with session scope
are different however. Thisisthetimethat ther eset () method comesin handy.

Declaring ActionFormsin the Struts Configuration File

Once you have created a class that extends Act i onFor m you need to configure the
class in the Struts configuration file. The first step isto add anew f or m bean element
tothef or m beans section of thefile:

<f or m beans>

<f or m bean
nane="1 ogi nFor n

204



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

type="comoreilly.struts.storefront. security. Logi nForni/>
</ f or m beans>

The value for the type field must be a fully qualified Java class name that is a descendant
of Acti onForm

Once you have defined your f or m bean, you can now use it in one or more act i on
elements. It's very common to share one Act i onFor m across several actions. For
example, suppose there was an admin application that managed the items in the
Storefront application. There would need to be an HTML form where a new item could
be added to the system. This might be the createltem action. There would also need to be
a getltemDetail action to show the details of an existing item. Both of these HTML forms
would look similar, but maybe submit to a different action. Since the HTML forms
contained the same properties, both of these could use the same Act i onFor m

Tousean Act i onFor minanact i on element, you need to specify a few attributes for
each action mapping that uses the Act i onFor m These attributes are name, scope, and
validate:

<action
pat h="/si gni n"
i nput ="/ security/signin.jsp"
nane="1 ogi nFor m
scope="request"
type="comoreilly.struts.storefront. security. Logi nActi on"
val i dat e="true" >
<forward name="Success" path="/index.jsp" redirect="true"/>
<forward name="Fail ure" path="/security/signin.jsp" redirect="true"/>
</ acti on>

For more information on the attributes of the action element, see “The Struts
Configuration DTD” in Chapter 4.

Using an ActionForm in an Action

Once you have configured the Act i onFor mfor a particular Acti on, you can then
insert and retrieve values from it within the execut e() method, as Example 7-3
illustrates.

Example 7-3. The ActionForm s available within the execute() Method

publ i c ActionForward execute( ActionMappi ng nappi ng,
Acti onForm form
H t pSer vl et Request request,
H t pSer vl et Response response )
throws Exception{

/1 Get the user's |login name and password. They shoul d have al ready
/1 validated by the ActionForm

String email = ((Logi nFornm)forn).getEnail ();

String password = ((Logi nForm)forn).getPassword();

205




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

/1 Login through the security service
| Storefront Service servicelnpl = getStorefrontService();
User Vi ew user Vi ew = servi cel npl . aut henti cate(enai |, password);

User Cont ai ner exi stingContainer = null;
H t pSessi on sessi on = request. get Sessi on(fal se);
if ( session !=null ){
exi stingCont ai ner = get User Cont ai ner (request);
session.invalidate();
}el sef{
exi stingCont ai ner = new User Cont ai ner () ;

}

/1l Oreate a new session for the user

sessi on = request. get Session(true);

exi sti ngCont ai ner. set User Vi ew( user Vi ew) ;

session. set Attri but e(l Const ant s. USER CONTAI NER_KEY, exi stingCont ai ner);

return mappi ng. fi ndForwar d( 1 Const ant s. SUCCESS KEY) ;

It's not mandatory that you always use an Act i onFor mto capture the
data from an HTML form. Even if you don’t declare an Act i onFor m
for a form, the data is till available from the request. However, your
application will have to manually handle the process of validation and
error handling from the Action class.

Declaring ActionForm Propertiesas Strings

All request parameters that are sent by the browser are Strings. This is true regardless of
the type that the value will eventually map to in Java. For example, dates, times,
Booleans, and other values are all strings when they are pulled out of the request. They
will also be converted into strings when they are written back out to the HTML page.
Therefore, it makes sense that all of the Act i onFor mproperties where the input may be
invalid, should be of type String. The reason for this is to support displaying the data
back out in its origina form to the user, when there is an error. For example, if a user
types in “12Z" for a property expecting to be an Integer, there’s no way to store “12Z2”
intoani nt or | nt eger property. However, you can store it into a String until it can be
validated. This same value, which is stored in a String, can be used to render the input
field with the value, so the user can see their mistake. This is functionality that even the
most inexperienced users have come to expect and look for.

206




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

ActionForms are not the M odel

Many developers get confused when they learn about the Act i onFor mclass.
Although it can hold state for an application, the state that it holds should be
limited and constrained to the “user input” that is received from the client and
should only hold it until it can be validated and transferred to the business tier.

You've aready seen why it's important to separate the model from the
presentation tier in an application. Business objects can be persisted and should
contain the business logic for an application. They should also be reusable. This
set of criteria does not match up well when compared against Act i onFor ns.
For one thing, the Acti onFor m class is most certainly tied to the Struts
framework and explicitty to a web container, since it imports
j avax. ser vl et packages. It would be very difficult to port Acti onForm
classes to a different type of framework, like a Swing application.

ActionForms are exclusively designed to capture the HTML data from a client,
alow “presentation validation” to occur, and to provide a transport vehicle for
the data back to the more persistent business tier. You will be well served to
keep the Act i onFor ns separate from your business components.

Using ActionErrors

Earlier in the chapter, you saw that the validate() method returned an
Act i onErrors object. The Acti onErrors class encapsulates one or more errors
that have been discovered by the application. Each problem discovered is represented by
aninstance of or g. apache. struts. action. Acti onError.

AnActi onErrors object has request scope. Once an instance is created and popul ated
by the val i dat e() method, it is stored into the request. Later, the JSP page can
retrieve the object from the request and use the Act i onEr r or objects contained within
it to display errors messages to the user.

The Struts framework includes a JSP custom tag that makes retrieving
and displaying the errors messages very easy. This tag, called
Er r or sTag, will be discussed in Chapter 8.

207



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

An instance of Acti onErrors can be instantiated in the val i dat e() method and
populated by adding instances of the Act i onEr r or classtoit. The Logi nFor mfrom
Example 7-2 demonstrated this and isillustrated again here for convenience:

ActionErrors errors = new ActionErrors();

}

return errors,

}

The val i dat e() method in this fragment checks to make sure that the email and
password fields have been set with values other than an empty string. If not,
Act i onError objectsare added tothe Act i onEr r or s instance.

The Act i onErr or classcontains several useful constructors. Several are listed here:

public ActionError(String key);

public ActionError(String key, (bject val ue0);

public ActionError(String key, (bject value0, Cbject val uel);
public ActionError(String key, (bject[] val ues);

The key argument is a String value that corresponds to a key from one of the
application’s resource bundles. The custom tag Er r or sTag uses this value to lookup
the message to display to the user. The remaining arguments are used as parametric
replacement values for the message. For example, if you had a bundle message defined
like this:

| gl obal . error.1ogin.requiredfiel d=The {0} field is required for |ogin
then we could create an instance of an Act i onEr r or like this:

| ActionError error = new ActionError("global.error.!login.requiredfield",
The message displayed to the user after substituting in the “Email” string would be;

| The Enai | field is required for |ogin

If building 118N applications is a requirement for you, you must be
careful when using hard-coded string values as in the previous
example. The String “Email” can’'t be easily localized since it’s hard-
coded into the source code.

In this case, you should also get the localized value from the bundle as
well before passing it as an argument in Act i onEr r or constructor.

208

public ActionErrors validate(Acti onMappi ng mappi ng, HtpServl et Request request){

if( getEnail () == null || getBEmail().length() <1 ){
errors.add("enai |l ", new ActionError("security.error.email.required"));

}

i f( getPassword() == null || getPassword().length() <1 ){

errors. add("password", new ActionError("security.error.password.required"));

“Emai |

)5 |



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

When adding instances of the Act i onErr or classto the Acti onError s object, the
first argument in the add() method is a property that can be used to retrieve a specific
Act i onError instance. If al of your Acti onError instances can be treated the
same and you have no need to retrieve them individually, you can use the constant
ActionErrors. GLOBAL ERRORsimilar to this:

errors. add(ActionErrors. GLCBAL_ERRCR,
new ActionError("security.error.password.required"));

The ActionM essage Class

Starting with Struts 1.1, a new message class has been added that can also be used to
display messages to auser. The or g. apache. struts. acti on. Acti onMessage
class operates in the same manner that the Act i onEr r or class does, in fact, it's been
added asthe super classto the Act i onEr r or class.

The main reason that the Act i onMessage class was added to the framework was that
the name ActionError implies that it shouldn't be used for general purpose
informational or warning types of messages, athough it is used that way by many
developers. A more general-purpose message class made sense.

The Act i onMessage is used exactly like the Act i onEr r or class, except that it can
represent a less severe message that needs to be displayed to the user. Instances of this
class are created the same way and added to an Act i onMessages object, instead of an
Acti onErrors object. Because Acti onError is just a specialized message, it
extendsthe Act i onMessage class. Infact, the Act i onErr or s class aso extends the
Act i onMessages class. Figure 7-5 illustrates the relationship between these classes.

209



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

winterfacex
Serializable
7T
I
I
I
|
I I
ActionMessages |
[GLOBAL_MESSAGE e ActionMessage
- clear() R'kﬂ'ﬁ"
*empty() values
+get() 0.7 roetkey)
+size|) +oetValues()
+add()
ActionErrors ActionError
LGLOBAL ERROR
+add()

Figure 7-5. ActionErrors are Specialized ActionMessages

Creating ActionErrorsin the Action Class

The Act i onFor mis not the only place that you can create Acti onMessages or
Acti onErrors. You may also create them in other parts of the framework. If for
example, a business operation called from an Acti on raised an exception and you
wanted to insert an error message informing the user, you can create Act i onErrors
from the Act i on class itself. The Struts Act i on class includes functionality to help
support this.

When the business operation throws the exception, the Act i on class will catch it and
take the appropriate steps. This is usually to return to the previous page and display an
error message to the user. Returning to the previous state can be accomplished by
returning the appropriate Act i onFor war d, but the Act i onEr r or needsto be put in
the request before the forward occurs.

In Chapter 10 Exception Handling, you'll learn how to take advantage
of the new declarative exception handling and thus avoid having to deal
with the exceptionsin the Act i on class completely.

Example 7-4 illustrates how this is done within the Logi nAct i on class,

Example 7-4. Creating ActionErrors from the execute() Method
publ i c ActionForward execute( ActionMappi ng nappi ng,

210



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

ActionFormform

H t pSer vl et Request request,

H t pSer vl et Response response )
throws Exception{

/**

* Get the user's email and password, which shoul d have al ready been
* validated by the ActionForm

*/

String email = ((Logi nForn)forn).getEnail ();

String password = ((Logi nFormn)forn).getPassword();

/'l Login through the security service
| Storefront Service servicelnpl = getStorefrontService();

User Vi ew userView = nul | ;
try{
userVi ew = servicel npl . authenticate(enail, password);
}catch( I nvalidLogi nException ex ){
ActionErrors errors = new ActionErrors();
ActionError newerror = new ActionError( "security.login. failed" );
errors.add( ActionErrors. GCBAL_ERRCR newError );
saveErrors( request, errors );
/1 Return back to the previous state
return mappi ng. fi ndForwar d( mappi ng. get I nput() );
}

/1 Authenticate was successful
User Cont ai ner exi stingContainer = null;
H t pSessi on sessi on = request. get Sessi on(fal se);
if ( session !=null ){
exi stingCont ai ner = get User Cont ai ner (request);
session.invalidate();
}el sef
exi stingCont ai ner = new User Cont ai ner () ;

}

/1l Oreate a new session for the user

sessi on = request. get Session(true);

exi sti ngCont ai ner. set User Vi ew( user Vi ew) ;

session. set Attri but e(l Const ant s. USER CONTAI NER_KEY, exi stingCont ai ner);

return mappi ng. fi ndForwar d( 1 Const ant s. SUCCESS KEY) ;
}

}

In Example 7-4, when an InvalidLogi nException is thrown by the
aut henti cat e() method, the exception is caught and an Act i onEr r or is created.
The saveErrors() method exists in the Struts base Act i on class and stores the
Act i onErrors object into the request. A corresponding saveMessages() method
also exists for asimilar purpose.

211




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Oncethe Act i onErrors or Acti onMessages isstored in the request and control is
forwarded to a JSP page, the framework includes several JSP custom tags for printing out
the messages to the user. These will be discussed in the next chapter.

Performing Presentation Validation

This chapter has touched on performing your application’s input validation in the
val i dat e() method of the Acti onForm You can create whatever presentation
validation rules you need in this method. For example, the Logi nFor mfrom Example
7-2 validated that the email and password fields were entered and they were not empty
strings. Although this is trivial example, you have the freedom to validate anything that
you would like. A very common validation rule isto ensure that a string value that should
be a number is in fact a string representation of a valid number. The validate routine for
this rule might look like the one in Example 7-5.

Example 7-5. Performing a Number Validation Rule

public ActionErrors validate(Acti onMappi ng nappi ng, HtpServl et Request request) {
ActionErrors errors = new ActionErrors();

String orderQyStr = get Quantity();

if( order@yStr == null || orderQyStr.length() < 1 ){
errors.add( ActionErrors. ACBAL_ERRCR
new ActionError( "order.quantity.required" ));

}

/1l Validate that the qty entered was in fact a nunber
tryf
/'l Integer.parse was not used because it's not really I|18N safe
java.text.Format format = java.text. Nunber For mat . get Nunber | nst ance();
Nunber orderQy = (Nunber)fornat. parseChj ect( order@yStr );
}catch( Exception ex ){
/1 The Quantity entered by the user was not a valid qty
errors.add( ActionErrors. ACBAL_ERRCR
new ActionError( "order.quantity.invalid" ));

}

return errors;

}

As you can imagine, checking for required values or validating that data entered fits a
certain format or is of a certain type, is done quite often in web applications. Since all
data that is retrieved from arequest is of type String, you must ensure that the datais not
going to corrupt your business components.

Although you can perform the validation programmatically, the Struts framework
provides an alternative that can be external to the Acti onFormand val i dat e()
method. In fact, for most of the standard validation rules, you don’t have to write a line of
code because the rules are aready defined. All you need to do is to declaratively

212




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

configure the rules that you need in an extra XML file. The Struts Validator will be
covered in Chapter 11.

Using Dynamic ActionForms

Using the Act i onFor mclass has many advantages over performing the functionality
yourself inthe Act i on class or some set of helper utility classes. Since the behavior that
the Act i onFor mclass provides is needed in nearly every web application, as well as
many times in the same application, using the framework to perform the work can really
reduce the development time and your frustration level. Having stated the benefits of
using Act i onFor s, there are afew very important downsides to using them.

The first and foremost problem with using Act i onFor ns isthe sheer number of classes
that it can add to a project. Even if you share Act i onFor m definitions across many
pages, the additional classes make it more difficult to manage a project and provide
maintenance. This is why some developers might create a single Act i onFor m and
implement the properties for all of the HTML forms within these. The problem with this
of course, isthat combining the fields into this one class makes it a point of contention on
aproject that has more than just afew developers.

Another major liability is the requirement to define the properties in the ActionForm that
need to be captured from the HTML form. If a property is added or removed from the
HTML form, the Act i onFor mclass may need to be modified and recompiled.

For these reasons, a new type of Act i onFor mwas added to the framework, which is
dynamic in nature and allows you to avoid having to create concrete Act i onFor m
classes for your application. The dynamic Act i onFor mis implemented by the base
class org. apache. struts. action. DynaActi onForm which extends the
Act i onFor mclass. There are only three real differences among al Act i onFor s for
any application:

The propertiesthat the Act i onFor mdefines
Theval i dat e() method
Ther eset () method

The properties for a DynaAct i onFor mare configured in the Struts configuration file,
which you'll see how to do in the next section. Ther eset () method is called at exactly
the same time during request processing as it is for a standard Act i onFor m The one
difference is that you have a little less control over what you do during the method.
However, you can aways subclass the DynaActi onFor m to override the reset
behavior.

213



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

The validation of the presentation data is a little more complicated, because we'll need to
wait until we talk about the Struts Validator components before talking about how
validation occurs in adynamic form.

Configuring Dynamic ActionForms

To use the DynaAct i onFor min your Struts application, the first step is to add a
f or m bean element to the configuration file. There are two very important differences
between af or m bean element for aregular Act i onFor mand one that is dynamic.

First, a form-bean element for a dynamic Act i onFor mis required to have an attribute
called dynam c, which must have a value of “true’. This is necessary for the
framework to understand that it should handle this Act i onFor mdifferently. The second
difference is that you must include one or more f or m pr oper ty elementsin order for
the dynamic form to have properties. The DynaAct i onFor musesaj ava. uti | . Map
internally to store key/value pairs. The f or m pr operty elements are loaded into the
Map and become the properties that get populated by the framework.

The attributes for the form bean and form property are
discussed in more detail in Chapter 4.

Example 7-5. A Dynamic ActionForm must be specified in the Sruts Configuration File

<f or m beans>
<f or m bean
nare="1 ogi nFor n{
dynam c="t rue"
type="org. apache. struts. acti on. DynaAct i onFor ni >

<l-- Specify the dynamc properties of the form-->
<form property

name="enai | "

type="java.lang. String "/>
<form property

name="passwor d"

type="java.lang. String "/>

<l-- You can also set the initial value of a property -->
<form property
initial ="fal se”
nane="r emenber Me"
type="j ava. | ang. Bool ean "/ >
</ f or m bean>
<f or m beans>

The declarative properties are what make the Act i onFor mdynamic. At runtime, the
framework creates an instance of the DynaAct i onFor mclass and makes it possible to
set and get the configured property values. To add new properties, you only need to

214




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

modify the configuration file. No source code needs to be changed. The power and
flexibility that this provides for you isimmense.

As Chapter 4 outlined, the f or m beamelement also allows you to specify the initia
value for each property. The framework will set the property to that value when the
application is started. The initial value is also used when ther eset () method is called
to reset the values back to their origina state. If you don’t include the i niti al

attribute, then properties will be assigned default values based on the Java programming
language; numbers to zero (0) and properties of type Obj ect will be assigned a null
value by the framework.

The type attribute expects a fully qualified Java class name.
Therefore, you will need to use the wrapper classes for primitives. For
example, j ava. |l ang. Bool ean for a boolean property type,
java. | ang. | nt eger for anint property, and so on.

Performing Validation using Dynamic ActionForms

Since the DynaAct i onFor mis used for every dynamic Act i onFor mand you don’t
provide subclasses of Acti onFor m there's no way to override the val i dat e()
method. Fortunately, the framework comes to your aid again with a feature called the
Struts Validator.

The Struts Validator was created by David Winterfeldt and is now in the main Struts
distribution. The validator is a framework that was intended to work with Struts from the
beginning. It supports basic validation rules like checking for required fields, email, date
and time fields, and many others. One of the biggest benefits is that it provides many of
the validation rules that web applications need to perform. It is aso very easy to add your
own validator; thiswill be covered in Chapter 11.

L ooking Ahead to JavaServer Faces

JavaServer Faces (JSF) is designed to provide a standard set of JSP tags and Java classes,
which will make it easier to build Java server application GUIs. The problem that’s being
addresses with this technology is when creating web applications; the Servlet and JSP
technologies don't provide specific enough APIs for creating the client GUI. Developers
have to rely on HTML components and one of several aternatives to facilitate style and
behavioral changes to al of the views. The mechanism to manage all of this eventually
takes on a life of its own and overshadows the business of the application. Instead of
performing maintenance on business operations and logic, more and more time is heeded
to manage the presentation widgets.

215



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

JSF plans to fix this by creating a standard way to define complex HTML forms and
other GUI elements. This will enable developers to focus their attention on a single
component framework.

Thefirst release of the framework includes the following design goals:

1. Create a standard GUI component framework, which can be leveraged by
development tools to make it easier for tool users to both create high quality
GUIs and manage the GUI's connections to application behavior.

2. Define a set of simple lightweight Java base classes for GUI components,
component state, and input events. These classes will address GUI lifecycle
issues, notably managing a component's persistent state for the lifetime of its

page.

3. Provide a set of common GUI components, including the standard HTML
form input elements. These components will be derived from the simple set
of base classes (outlined in #1) that can be used to define new components.

4. Provide a JavaBeans model for dispatching events from client-side GUI
controls to server-side application behavior.

5. Define APIs for input validation, including support for client-side validation.
6. Specify a model for internationalization and localization of the GUI.

7. Automatic generation of appropriate output for the target client, taking into
account all available client configuration data, such as browser version, etc.

8. Automatic Generation of output containing required hooks for supporting
accessibility, as defined by WALI.

What does JSF haveto do with Struts?

JSF and Struts will fit together quite well, as developers will eventualy be able to
supplement or substitute the Struts custom tag libraries with JSF components. The rest of
the Struts framework, both model and controller components will remain relatively
unaffected by the JSF architecture.

JSF will aso include an event model, but the architecture will be
designed so that developers can choose to use the GUI components
with or without the event mechanism.

Because there is no public specification for JSF currently, it's hard to be specific on
exactly how the two will tie into each other. However, Craig McClanahan who is the
founder of the Struts framework is also now the specification lead for the JavaServer
Faces JSR. This means that we can look closely at Craig's comments on JSF and Struts
and know that he is speaking with subject matter expertise.

216



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Y ou can find the JavaServer Faces JSR at http://jcp.org/jsr/detail/127.jsp.

[Note: Add a note in here about how the regular ActionForm reset() doesn’t do anything,
but the dynamic one actually resets everything. This may cause a change upgrading to
them and you might need to extend and override the reset().]

See: http://www.mail-ar chive.convVstruts-user @jakarta.apache.org/msg30062.html

217



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

9

Extending the Struts Framework

One of the biggest advantages of using a framework is the ability to extend and
customize it based on the needs of the application. The Struts framework is no exception
and it provides several very important extension points for developers to extend. This
chapter takes a quick glance at several of those extension points and points out the
benefits and a few downsides when extending the framework.

What ar e Extension Points?

Think of a framework as a house that comes pre-built with a percentage of the structure
already complete, and then you have the option of modifying certain characteristics like
wallpaper, color, brick or stucco. If the default characteristics already suit your needs,
then you have the option of not changing anything. If you already like the color for
example, then that’s one less thing to worry about. This is similar to how a framework
functions and that's a big advantage when building applications. If functionality is
present in the framework and it suits the needs of your application, then you don’t have to
worry about that aspect of the application. This in turn, frees up developers and alows
them to focus on the core application, rather than the infrastructure.

This is not a perfect analogy, but it makes the point that a good framework should
provide much of the infrastructure, the foundation and the plumbing if you will, and
provides flexibility for you to customize certain behavior. The most important aspect of a
framework however, isthat it should provide extension points throughout.

Framework extension points, also referred to as “hooks’, alow you to extend the
framework in specific places, to adapt it to meet the application’s requirements. Where
and how a framework provides these hooks is very important. If not done correctly, or in

218



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

the wrong locations, then it becomes very hard for an application to adapt the framework,
which makes the framework less useful. The rest of this chapter focuses on where the
Struts framework provides these extension points, and how you can take advantage of
them, to build out specialized functionality for your application.

General Extension Points

This section discusses some extensions points that affect the overall framework, not
necessarily one particular layer. Arguably, the most important of these is the concept of
the plugin mechanism.

Using the Plugin M echanism

The Struts framework provides a mechanism to allow components to be plugged-in and
loaded dynamically. This feature was added in version 1.1 and is supported through the
use of the org. apache. struts. acti on. Pl ugl n interface. Any Java class can
function as a plugin, aslong asit implementsthe Pl ugl n interface.

The Pl ugl n interface contains two methods, as shown in Example 9-1.

Example 9-1. Theor g. apache. struts. acti on. Pl ugl n Interface
public interface Plugln {
/**
* Receive notification that the specified sub-applicaiton is being
* started up.

*/
public void init(ActionServlet servlet, ApplicationConfig config)
throws Servl et Excepti on;

/**
* Receive notification that our owni ng sub-application is being
* shut down.
*/
public void destroy();

}

During startup of a Struts application, the Acti onSer vl et will call theinit()
method for each and every Pl ugi n that is configured; the framework supports one or
more Pl ugi nsto be configured for each sub-application. Initialization routines that your
plugin needs to perform should be done during the i ni t () method. Thisis a good time
to initialize a database connection, or establish a connection to a remote system, for
example.

Initializing a database connection can also be done through the use of a
datasource.

219




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

The second method that your plugin must implement is the dest r oy() method. The
framework calls this method when the application is being shut down. You should
perform any necessary cleanup behavior during this time. For example, thisis the perfect
time to close database connections, remote sockets, or any other limited resource that the
plugin isusing.

Let's provide a concrete example of how to use the plugin mechanism of the Struts
framework. Suppose that your application needs the ability to communicate with an EJB
tier. One of the first things that must be done before that can occur isto get areference to
the Java Naming and Directory Interface (JNDI) service. INDI enables clients to have
access to various naming and directory services, like datasources, JavaMail sessions, and
also EJB home factories. Example 9-2 illustrates a simple example of acquiring an
I nitial Context foraJNDI service using the Struts plugin mechanism.

Example 9-2. An example of using the Struts Pl ugl n
package comoreilly.struts.storefront.franmework. ejb;

inport java.util.Hashtabl e;

i nport javax.naming.|nitial Context;

i nport javax. nam ng. Cont ext ;

i nport org.apache. struts. action. ActionServlet;

i nport org.apache. struts. config. ApplicationConfig;
i nport org.apache. struts. action. Pl ugl n;

i nport javax.servlet. Servl et Exception;

public class JNDI Connector P ugin inplenments Pl ugln {
private String jndi Fact oryd ass;
private String jdni UR
private Context initCGx = null;

publ i ¢ JNDI Gonnect or Pl ugi n() {
}

public void init(ActionServlet servlet, ApplicationConfig config)
throws Servl et Excepti on{
/1 Get the host and port where the JND service is running
j ndi Fact oryd ass = servlet. getlnitParaneter("jndi Factoryd ass");
jdni URL = servlet.getlnitParaneter("jndi URL");

try{
Hasht abl e props = new Hasht abl e();

/1 The EJB spec also allows these to be read fromjndi.properties file
props. put ( Context.| N TI AL_CONTEXT_FACTCRY, jndi Factoryd ass );
props. put ( Context. PROVIDER URL, jdni URL );
initGx = new Initial Context(props);
}cat ch( Exception ex ){
throw new Servl et Exception( ex );

/] Store the JNDI Context into the Servl et Cont ext
servlet.getServl et Context().setAttribute( "Storefront.InitGx", initGx );

220




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

public void destroy(){
try{
if (initax !'=null ){
initQax.close();
inftGx = null;
/1 No need to renove from Servl et Context since app is being shut down

}
}catch( Exception ex ){
ex. print StackTrace();
}
}

}

When the framework callsthe i ni t () method of the JNDI Connect or Pl ugi n class,
the plugin creates an Initial Context object and stores it into the
Ser vl et Cont ext. This allows the JNDI Context to be used by the entire
application, when needed.

Thisisjust a simple example; there are many possibilities that you can use the plugin for.
The Validator framework, which we'll discuss in Chapter 11, utilizes the plugin to
initialize the validation rules for an application.

Addingthe Pl ugl n tothe Configuration File

The plugin must be declared in the Struts configuration for the framework to be aware of

it and initialize it at startup. It's specified in the configuration file using the pl ug-in

element:

<plug-in
cl assName="comoreilly.struts. storefront. framework. ej b. IND Gonnect or Pl ugi n"/ >

You can also pass properties to your Pl ugl n class by using the set - property

element. For more information on configuring the Pl ugl n element or passing properties

to an instance, see The Struts Configuration DTD in Chapter 4.

Extending the Struts Configuration Classes

One of the biggest changes to version 1.1 of the Struts framework is the
org. apache. struts. confi g package. This package contains all of the classes that
are used as in-memory representations of the information stored in the Struts
configuration file. They represent everything from Act i on configurations to Pl ugl n
configurations.

If you look back at Chapter 4, you'll see that most of the configuration elements in the
Struts configuration file allow you to supply a fully qualified Java class name for the
configuration class through the cl assNane attribute. This gives you the freedom to
customize the configuration element and pass additional information.

221




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

For example, suppose that you want to pass an additional parameter to your Acti on
classes. By default, the Acti onMapping class is used, which extends
Act i onConfi g from the confi g package. If you wanted to pass an additiona
parameter called ssl - r equi r ed that controlled whether HTTP or HTTPS was used,
you could extend the Act i onMappi ng class and configure this extension through the
cl assName attribute. Through this mechanism, the ability to extend the Struts
configuration elements makes the framework extremely extensible and flexible to meet
just about any application need.

Controller Extension Points

The next set of possible extension points is within the controller layer. Some of these
have been briefly mentioned in previous chapters, but are repeated here for compl eteness.

Extending the Act i onSer vl et

In earlier versions of the Struts framework, it was almost a given that an application
needed to extend the Act i onSer vl et . Most of the controller functionality, excluding
the Act i on class behavior, was present in this class. With Struts 1.1, this is no longer
true. However, there are a few good reasons why you might need to extend the
ActionServl et.

Aswas pointed out in Chapter 5, the initialization routines that get invoked when a Struts
application is first launched, reside in the Act i onSer vl et . If you needed to modify
the way in which the framework initializes itself, this would be the place to change it. To
extend the ActionServlet, just create a subclass of @ the
org. apache. struts. action. ActionServl et class. You can then override the
method or methods that you need to function differently. Once this is done, you need to
modify the deployment descriptor, so that the Struts application will use your custom
ActionServl et:

<servl et>
<ser vl et - nanme>st or ef r ont </ ser vl et - name>
<servl et -cl ass>
comoreilly.struts. storefront. framework. Ext endedAct i onSer vl et
</ servl et -cl ass>
</ servl et >

Most of the runtime request processing behavior has been moved to the
Request Processor class. If you need to customize the manner in which your Struts
application processes arequest, it is discussed next.

222



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Extending the Request Pr ocessor

If you need to override the functionality within the Request Processor class, you
need to let the framework know that it should be using your customized version, rather
than the default. The framework can be made aware of your speciaized
Request Processor by modifying the configuration file for the Struts application. If
your configuration file doesn't already have a control | er element within it, you'll
need to add one. There are severa attributes that can be configured within the
control | er element. See chapter 4 for more details on these attributes:

<controller
cont ent Type="t ext / ht ni ; char set =UTF- 8"
debug="3"
| ocal e="true"
nocache="true"
processor d ass="comoreilly.struts.framework. Qust onRequest Processor"/ >

The processor Cl ass attribute allows you to specify the fully qualified Java class
name of your specialized Request Processor. The Struts framework will create an
instance of your specialized Request Processor at startup, and use it to process all of
the reguests for the application. Since each sub-application can have its own Struts
configuration file, you can specify a different Request Processor for each sub-
application.

Using the pr ocessPr eprocess() method

There are many methods that can be overridden within the Request Processor class.
One of the methods within the Request Processor class that is designed with
extension in mind is the pr ocessPreprocess() method. This method is called for
each and every request and by default, does nothing with the request. However, you can
utilize this method in various ways to change the default request processing behavior.
The method, which is shown here:

prot ected bool ean processPreprocess( HtpServl et Request request,

H t pSer vl et Response response) {
return (true);

}

is caled early in the request processing stage, before the Act i onFor mis called, and
also before the execut e() method is called on the Act i on object. By default, the
processPreprocess() method returns true, which tells the Request Pr ocessor
to continue processing the request. However, you can override this method and perform
some type of conditional logic, and if the request should not be processed any further,
you can return false. When false is returned from the processPreprocess()
method, the Request Processor will stop processing the request and smply return
from the doPost() or doGet() cal. Because of this, it's up to you to
programmatically forward or redirect the request somewhere.

223



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Example 9-3 illustrates an example of this approach. This example checks to see if there
is an existing user session for the request. If so, it will return true so the request will
continue. If there is no session, or if the session was just created, the request is redirected
to the login page and false is returned from the method.

Example 9-3. Using the pr ocessPr epr ocess() method

protected bool ean processPreprocess( HtpServl et Request request,
H t pSer vl et Response response) {

bool ean conti nueProcessing = true;
H t pSessi on user Sessi on = request . get Sessi on(fal se);
/l Check to see if there's a session for the user that wasn't just created
if ( userSession == null || userSession.isNew) ){
cont i nueProcessi ng = fal se;
response. sendRedi rect ( "/l ogin.jsp" );

/1 Tell the RequestProcessing to continue processing the request or not
return conti nueProcessi ng;

}

The processPreprocess() method in Example 9-3 checks to make sure that the
user has a valid session. Depending on the servlet container, it may not be enough just to
check whether there is a session or not. Some containers will create a new session for the
request, if one doesn't already exist. That's the reason that Example 9-3 is checking for
both conditions.

The most important thing to note from this example is that even though the
processPreprocess() isreturning false, it's till up to the method to take care of
redirecting the request. Returning false just lets the Request Processer know that it
doesn't need to continue, but it doesn't do anything with the request; that's the
responsibility of the pr ocessPr epr ocess() method.

The manner in which Example 9-3 specifies the path in the
sendRedi rect () method is not the best approach. This redirect
would only work if the example was running as the default web
application and there was al ogi n. j sp page in the root directory. It
was done this way to keep the example simple. A better approach
would be to retrieve the Act i onFor war d for the login page and use
the path from it in the sendRedi r ect () method. That way, if the
actual page changed for the forward, this method doesn’'t have to be
modified.

There are other ways that you can perform the same logic, without using the
processPreprocess() method. One alternative is to use a Servlet Filter that's part
of the Servlet 2.3 API. Filters allow you to inspect the request before it ever reaches the
Struts controller. However, there are two problems to be aware of with filters.

224




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

First, because filters are part of the 2.3 API, if you are using a Servlet container that only
supports 2.2, then you will not be able to use them. The second problem is that since the
filter inspects the request very early in the processing stage, filters don't have easy access
to the Struts API. It becomes very hard to lookup Act i onFor war ds or anything else
that you might normally use in the pr ocessPr epr ocess() method. In fact, since the
Struts controller hasn't even seen the request at the time the filter inspects it, the
controller hasn’t had a chance to select the proper sub-application

Extending the Base Action Class

There have been several places in previous chapters where I’ ve mentioned a technique of
creating a base Act i on that extends the Struts Act i on class, and then using it as a
superclass for other actions. One of the reasons for doing this is that in many
applications, there is common logic that must be implemented by most of the Act i on
classes. By letting this super Act i on class contain most of this code, the redundancy can
be eliminated. Example 9-4 provides a very simple version of a base Acti on that
performs this type of role.

Example 9-4. A Base Action Class

inport java.util.Collection;

inport java.util.LinkedList;

inmport java.util.List;

inport java.util.Locale;

inport java.util.lterator;

inport javax.servlet.http.*;

i nport org.apache. struts. action.*;

inmport comoreilly.struts.storefront.framework. util.|Constants;
inport comoreilly.struts.storefront.franework. exceptions. *;
inport comoreilly.struts.storefront.franework. User Cont ai ner;
inport comoreilly.struts.storefront. service.|Storefront Service;

/**
* An abstract Action class that all store front action classes can extend.
*/
abstract public class StorefrontBaseAction extends Action {
/**

* The default execute() nethod that all actions nust inplenent.
*/
public ActionForward execute( ActionMappi hg nappi ng,
ActionFormform
H t pSer vl et Request request,
H t pSer vl et Response response) throws Exception{

/1 1t just calls a worker method that contains the real execute | ogic
return execut eAction( napping, f ormrequest, response, get User Cont ai ner (r equest))

}
/**

* The actual do work nethod that nust be overridden by the subcl asses.
*/

225




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

abstract public ActionForward executeAction( ActionMappi ng nappi ng,
ActionFormform
H t pSer vl et Request request,
H t pSer vl et Response response,
User Cont ai ner user Cont ai ner )
throws Exception;

/1 Notice this super Action is also a good place to put conmon utility methods

publ i c bool ean isLoggedl n( HtpServl et Request request ){
User Cont ai ner contai ner = get User Cont ai ner (request);
return ( container !=null &% container.getUserView) !'=null );

}
/**
* Retrieve the UserContainer for the user tied to the request.
*/
protected User Cont ai ner get User Cont ai ner (H t pServl et Request request) {
H t pSessi on session = request . get Sessi on();
User Cont ai ner user Cont ai ner =
(User Cont ai ner) sessi on. get Attri but e(1 Const ants. USER_ CONTAI NER_KEY) ;

I/l Oreate a WserContainer if one doesn't exist already
if(userContainer == null) {

user Cont ai ner = new User Cont ai ner () ;

user Cont ai ner . set Local e(request . get Local e());

session. set Attri but e(| Constants. USER CONTAI NER KEY, user Cont ai ner) ;
}

return user Contai ner;

}

}

The St or ef ront BaseAct i on class shown in Example 9-4 illustrates how you can
use a base Act i on to perform repetitive behavior that all of the Act i on classes need
not perform.

Suppose for example that you al of your Acti on classes needed to obtain the
User Cont ai ner for the current user and use the information within in; like user ID or
security permissions, for example. One approach is to force all of the Act i on classesto
obtain the User Cont ai ner on their own, handle the situation where there isn’t one,
and so on. An alternate, more manageable approach is to put that behavior in a super
Act i on, and passthe User Cont ai ner to the subclasses.

Since the superclass must implement the execut e() method in order to be called
before the subclasses, we will need to invoke a different method on the subclasses. We' ve
called this additional method execut eAct i on(), since that is what its doing. You can
call it whatever you like.

As Example 9-4 shows, the St or ef r ont BaseAct i on implements the execut e()
method but inside the execut e() method, it gets an instance of a User Cont ai ner
and passes it as an argument to the execut eActi on() method. Each subclass

226




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

implements the abstract execut eAct i on() method and has the User Cont ai ner
passed in, instantiated, and guaranteed not to be null. This is only a trivial example of
what you can do. Any behavior that all actions need to perform should be a candidate for
being implemented in the super Acti on class. When it comes time to modify the
implementation or add additional, only the behavior in the super class and
execut eAct i on() needsto change.

Extending View Components

There is probably less reason or need to extend any of the components located within the
view layer. Typicaly, views are written exclusively for an application. For example, it's
unlikely that a JSP page written for one application will be used within a different
application. This is not always the case, but differences between look and feel and
content, makes it improbable. The one area within the Struts view layer where extensions
are often created isthe JSP tag libraries.

Extending Struts Custom Tags

The custom tags provided by the Struts framework can be reused across applications and
application domains. Therefore, it makes sense that customization and extensions are
more likely with these components than with JSP pages. Since the tag handlers are
regular Java classes, specialization is achieved through subclassing.

Although you can extend any tag that you need, generally speaking, the HTML tag
library will be the one that you'll most likely need to customize, if any; mainly because
the custom tags within this library have the greatest impact on the view content.

Regardless of the tag that you extend, you'll need to create your own tag library to hold
your tag extensions.

Y ou could actually modify the Struts tag libraries and include your new
tag class, but that would make upgrade to newer versions of the Struts
framework that much harder. Y ou're better off creating your own tag
library that contains just your application’s tags.

Once you've created a . t| d file for you extensions and registered it with the web
application deployment descriptor, you are free to use your tags, just as you would any
other one.

227



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Extending the Model Components

Since the Struts framework doesn’t provide a great deal of components for the model
layer, extensions to these components are better discussed in other Java programming
books. There are two classes that should be thrown into this category, although they
might not be the best representation of what a model component is; it does fall into that
classification since it’s holding model state.

User Cont ai ner and Appl i cati onCont ai ner Classes

We've made mention of the User Cont ai ner and Applicati onCont ai ner
throughout the previous chapters without defining exactly what these are. These two
classes have less to do with Struts applications and more to do with web applications in
general. The purpose of these classesis to store user and application specific information
in instances of these classes, rather than in the Ht t pSessi on and Ser vl et Cont ext
objects respectively.

One of the problems with storing data into the HttpSession for example, is that the
interface to store and retrieve data from the session object is not strongly typed. In other
words, the interface for any datais:

public void setAttribute( “perm ssionsKey”, pernissions );
public Cbject getAttribute( “perm ssionskKey” );

The client must know some magical key, in order to put and retrieve an object from the
storage. Some programmers desire a stronger-typed interface instead. Something like
this:

user Cont ai ner. set Per m ssi ons( perm ssions );
user Cont ai ner. get Per m ssi ons() ;

Here the client doesn’'t have to worry about what key the object is being stored under, or
in fact, how the datais being stored. It could be an Ht t pSessi on object, or some other
data store. The point is that the client is made aware of this because they are not forced to
use the methods of the Ht t pSessi on directly.

There's nothing really complicated about the User Cont ai ner class itself. It's an
ordinary JavaBean that contains instance variables, along with public getters and setters
for the properties. Example 9-5 illustrates abasic User Cont ai ner class.

Example 9-5. A Basic UserContainer Class

package comoreilly.struts.storefront.framework;

inport java.util.Locale;

inport javax.servlet.http. HtpSessi onBi ndi ngLi st ener;

inport javax.servlet.http. HtpSessi onBi ndi ngEvent;

inport comoreilly.struts.storefront. custoner.view User\Vi ew,

/**

228



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Wsed to store infornation about a specific user. This class is used
so that the information is not scattered throughout the HtpSession.
Only this object is stored in the session for the user. This class

i npl enents the HtpSessi onBi ndi ngLi stener interface so that it can
be notified of session tineout and performthe proper cleanup.

/

public class UserContainer inplenents HtpSessionBi ndi ngLi stener {

* % * % X %

/1 The user's shopping cart

private ShoppingCart cart = null;

/1 Data about the user that is cached

private UserVi ew userView = nul | ;

/**

* The Local e object for the user. Although Struts stores a Local e for
* each user in the session, the locale is al so maintained here.

*/

private Local e | ocal e;

/**
* Default Constructor
*/
public UserContainer() {
super () ;
initialize();

}

publ i ¢ Shoppi ngCart getCart() {
return cart;

}

public void setCart (Shoppi ngCart newCart) {
cart = newCart;

}
/**
* Set the locale for the user.
*/
public void setLocal e(Local e aLocal e) {
| ocal e = alocal €;

}
/**
* Retrieve the locale for the user.
*
/
public Local e getlLocal e() {
return | ocal e;

}

/**

* The container calls this nethod when it is being unbound fromthe
* session.

*/

public voi d val ueUnbound( H t pSessi onBi ndi ngEvent event) {
/1 Performresource cl eanup

cl eanWp();

229




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

}

}

/**

* The container calls this method when it is being bound to the
* sessi on.

*/

public void val ueBound( H t pSessi onBi ndi ngEvent event) {
/1 Don't need to do anything, but still have to inplenent the
/'l interface method.

}

public UserVi ew get UserVi ew() ({
return userVi ew,

}

public void setUserVi e User Vi ew newi ew) {
user Vi ew = newi ew,

}
/**
* Initialize all of the required resources
*/
private void initialize() {
/Il Oreate a new Shopping cart for this user
cart = new Shoppi ngCart();
}
/**
* ean up any open resources. The shopping cart is left intact
* intentionally.
*/
public void cleanU() {
setUserView null );
}

One thing to notice is that the User Cont ai ner class in Example 9-5 implements the
Ht t pSessi onBi ndi ngLi st ener interface. The methods of this interface allow the
User Cont ai ner to be notified when it is bound and unbound from the session. This
allowsit to perform any cleanup on the object that might be necessary.

The Appl i cati onCont ai ner is used for a similar purpose, but at the application
level, not the session. It’'s useful for storing or caching information that is needed by all
users across the application. Things like selection lists, configuration properties, and
other non-client specific data that you need to get once and hold onto is a candidate for
the Appl i cati onCont ai ner class.

230




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Downsidesto Extending the Framework

There are of afew downsides to customizing or extending a framework. This may seem
contradictory to the previous material, because it suggested that customization is a
forecasted goal of using a framework. However, like other things in software
development, there are tradeoffs.

When extending a framework, one of the biggest issues that you might have to face is
what to do when newer versions of the framework are made available. Unless careful
attention had been paid to backwards compatibility, your application might no longer
work correctly using a newer version of the framework. The Struts framework for
example, underwent some significant changes to its APIs between 1.0 and 1.1. In
particular, the per f or m() method is no longer the preferred method that the controller
uses to invoke the Act i on; instead the execut e() method is used. Fortunately, the
developers working on the Struts framework were careful and ensured the functionality
was compatible with applications built using earlier versions.

You must also take that same care when building your applications. If for example, you
override methods of the Struts framework to achieve speciaized behavior, it's not out of
the realm of possibility that the method is deprecated or removed in future versions. In
fact, there are quite a few comments in the framework source that indicate certain
portions of the Struts framework will eventually be retired. Although it's nearly
impossible to protect your application from all of potential changes, it's best that you go
into it with your eyes wide open. Using a framework, even one that is as good and as
complete as Struts currently is, is not asilver bullet. You will still have the same issues of
upgrades, whether you build your own framework, or use one provided by another
source.

231



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

10

Exception Handling

Throwing exceptions is Java's way of informing dependent clients that something
abnormal occurred during the processing of a method. The client is notified of the type of
problem by an instance of a specific exception being thrown. It's entirely up to the client
what course of action to take when an exception occurs. In some cases, the client may
choose not take any action, which causes the JVM to continue to search for a handler for
the exception.

Handling exceptions within your Struts applications is not much different. When an
abnormal condition occurs, an exception is thrown to the calling client to notify it of the
abnormality. Where things do get different for web applications, and specifically the
Struts framework, is what action is taken on behalf of the client and how these exceptions
are reported back to the end user.

This chapter will look at how you can properly use the Java exception handling
mechanism within your Struts applications to help make your applications more
industrial-strength and allow them to gracefully respond when things don't’ go as
expected. Specia attention will be given to the differences between performing the
exception handling programmatically and using the new declarative feature added to the
new version of Struts.

Java Exception Handling

Before we dive into how best to handle exceptions in the Struts framework, it would be a
good idea for you to get a picture in your mind of what actually occurs when a method
throws an exception. An understanding of the complications that take place in the VM
when exceptions occur, may enlighten you as to the importance of throwing exceptions

232



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

for the right reason as well as the importance of throwing the right exceptions. Because
there is additional overhead for the VM to handle an exception, you should always take
care to use exceptions correctly.

Java Exceptions

In Java, exceptions are objects that are created when an abnormal” condition occurs in a
running application. When a Java application throws an exception, it throws an object
that is a descendant of | ava. | ang. Thr owabl e. The Thr owabl e class has two direct
subclasses, j ava. | ang. Error andj ava. | ang. Excepti on. Figure 10-1 showsa
partial hierarchy tree for the Thr owabl e class.

Throwable

JaY

Errar Exception
VirtualMachineError 10Exception RuntimeException
OutCfMemoryError RemoteException ClassCastException

Figure 10-1. A partial class hierarchy for the Throwable class

Obvioudly not all of the descendants of the Thr owabl e class can be shown. There are
more than a hundred direct and indirect subclasses in the core Java library alone. The
members of the Except i on family tree are normally thrown to indicate an abnormal
condition that can usually be handled by the application. Most of the exceptions that your
Struts application creates and throws should be subclasses of the Except i on class. The
other branch of Thr owabl e, which is the Err or class and al of its descendants, is

" The abnormal condition is commonly referred to as an “exception condition”.

233



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

reserved for more serious problems that occur during an application’s life cycle. For
example, if theres no more memory available for an application, an
Qut OF Menor yEr r or will occur. Typically, there’'s nothing that a client can do when
this error occurs, therefore clients don’t generally worrying about handling the subclasses
of Error. In most cases, it's the VM itself that throws instances of Error or its
subclasses.

The Method I nvocation Stack

The JVM uses a Method Invocation Stack, also referred to as a call stack, to keep track of
the succession of method invocations of each thread. The stack is used to keep local
information about each method that has been called, going al of the way back to the
original mai n() method of the application. When each new method is invoked, a new
stack frame is pushed onto the top of the stack and the method becomes the current
executing method. The local state of each method is also saved with each stack frame.
Figure 10-2 illustrates an example Java call stack.

The Java Stack

current frame
and top of the

stack \

Stack frama for mathod
thU"MﬂI'BSS[} addrass gElFullﬁddrEE-sifl

\ current method

Stack frame for method
getCustomeraddress() customer. getAddrass()

Stack frame for static

mmaing) Example.main()

Figure 10-2. An example of a Java method invocation stack (call stack)

When a Java method completes normally, the VM pops the current method's stack
frame from the stack and continues processing in the previous method where it left off.

234



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

When an exception condition occurs however, the VM must find a suitable exception
handler for it. It first checks to see if the current method catches the exception or one of
its parent exceptions. If so, execution will continue in that catch clause. If the current
method doesn’t provide a catch clause to handle the exception raised, the VM will start
popping method frames off the call stack until it finds a handler for the exception.
Eventually, if it pops its way all the way back to the mai n() method and still doesn’t
find ahandler for the exception, the thread will terminate. If that thread is the main thread
and there are no other non-daemon running threads, the application itself may terminate.
If the VM does find an exception handler along the way, that method frame will become
the top of the stack and execution will continue on from there.

The importance of understanding how the JVM handles exceptions is to realize that
there's plenty going on underneath the hood when exceptions occur in your applications.
It can be a lot of work for the VM to locate an exception handler for a particular
exception, especialy if the handler is located far down the call stack. It's very important
that you provide sufficient exception handlers at the appropriate levels. If you let
exceptions go, it's very likely that they can halt your application.

What about the throws Clause?

When determining the method signatures for the classes that are part of the application,
deciding which exceptions will be thrown from the methods should get as much attention
as what the parameters are and what the return typeis.

You might have heard of the concept “Design by Contract”. The idea behind this
principleisthat the set of public methods that a class exposes represents a virtual contract
between a client and the class itself. The client has certain obligations in the way in
which it invokes the method. There may aso be requirements on the class itself as part
of the contract.

When something abnormal occurs and an exception is thrown from a method in the class,
the contract, in a sense, has been broken. The class is informing the client that it can’t
fulfill its terms of the contract. It's entirely up to the caller to decide how to handle the
exception. Thisiswhy the throws clause of a method signature is so important. It forces a
client to decide what it will do when one of these abnormal conditions occur. However,
asyou'll seeinthe next section, all Java exceptions are not equal.

Checked and Unchecked Exceptions

Java exceptions can be separated into two distinct, but important groups, checked and
unchecked. A checked exception signals an abnormal condition that you want the client
to have to deal with. All checked exceptions must either be caught and handled within the
calling method, or declared in the throws clause of the method. This is why they are
called checked. The compiler and the VM will verify that all of the checked exceptions
that can occur in a method are taken care of. The compiler and JVM don’t care if

235



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

unchecked exceptions are ignored, because these are exceptions that the client probably
couldn't do anything about anyway. Unchecked exceptions are usualy the result of
incorrect  logic or programming errors. These are exceptions like
java.l ang. Cl assCast Excepti on.

The determination of whether an exception is checked or unchecked is simply based on
its location in the exception hierarchy. All classes that are descendants of the
j ava. |l ang. Excepti on class, except for subclasses of Runt i mneExcept i on, are
checked exceptions and the compiler will ensure that they are either handled by the
method or listed in the throws clause. Runt i meExcepti on and its descendants are
unchecked exceptions and the compiler will not complain about these not being in a
throws clause for amethod or handled in a try/catch block.

Perfor mance | mpact of Exception Handling

In general, wrapping your Java code with try/catch blocks doesn't have a significant
performance impact on your applications. Only when exceptions actually occur, isthere a
negative performance impact to your applications. The impact is due to the lookup that
the VM hasto do to locate the proper handler for the exception. If the catch block for the
exception is located in the same method, the impact is not so bad. However, the further
down the call stack the JVM has to go to find the exception handler, the greater the
impact becomes.

This is why you should only use a try/catch block for error conditions that may occur in
your application. Y ou should never use exceptions for things such as controlling program
flow. The following use of a try/catch is probably fine, but getting very close to what
might be considered a waste of exception handling.

Doubl e basePrice = null;
String basePriceStr = request. getParaneter( "BASE PR CE_ AMOUNT" );

/1 Use a try/catch to nmake sure the value is a nunber

tryf
basePri ce = Doubl e. val uef ( basePriceStr );

}cat ch( Nunber For mat Exception ex ){
/1 The val ue could not be converted to a valid Double, set the default
basePrice = ApplicationDefaul ts. DEFAULT BASE PR CE;

}

The previous code fragment shows a try/catch block determining an error condition and
then taking corrective actions. The error condition is an invalid price value and the
corrective action is to assign a default value. There are other ways to determine whether a
string is a valid double value, but using this approach is fairly popular. Fortunately for
this approach, the exception handler is located in the same method and the JVM doesn’t
incur alarge penalty for this occurrence.

236




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Of course, the rules are somewhat subjective and what's a valid reason to one developer
may not be to another. Y ou should be aware of the issue and avoid using try/catch blocks
for something other than actual error conditions.

System versus Application Exceptions

Exceptions can further be classified into one of two categories, System Exceptions and
Application Exceptions. System exceptions are those exceptions that are more serious in
nature. These are typicaly low-level problems that aren’t related to the application logic
and ones that end-users are not expected to be able to recover from. In many cases,
system exceptions are unchecked and your application isn't supposed to catch them
because they are either programming errors or they are so severe that nothing can be done
about them.

Application exceptions are problems that occur that represent a violation of a business
rule or some other condition in the application logic. As an example, you might throw an
application exception when a user attempts to login to the application, but their account
has been locked. This isn't a catastrophic event, but it is a problem that needs to be
reported and dealt with.

Within Struts applications, and web applications in general, there are essentially two
approaches that you can take when an exception occurs. If the exception is an application
exception, where the end-user may be able to recover from, then you generally want to
return control back to the input page and display a user-friendly message to the user
informing them of the problem and some action that can be taken to resolve it.
Continuing with the locked account example from the previous paragraph, you could
throw an Account LockedExcept i on back to the action class, which would forward
control back to the login page informing the user that the account is locked.

If the thrown exception is a low-level exception like a Renpt eExcept i on, the only
real action that the application can take is to display a system error page. There's nothing
the user can do to fix the problem. It may be a programming error or some type of
network issue, but the point is that you don't want to let the user see the stack trace of the
exception, so you should instead forward to a system error page that’s more user-friendly
to look at and maybe informs the user to notify the system administrator. The exception
should also be logged to aid in determining the root cause of the problem.

Later in this chapter, you'll see examples of how to return control back to the input page
and show a localized message to the user. Y ou will also see ways of dealing with system
errors by forwarding control to a system error page. All of which, will add value to the
application and to the user experience.

237



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Using Chained Exceptions

It's often necessary and suitable to catch a particular type of exception and re-throw a
different one. This is sometimes necessary because a client might not know or care to
handle the original exception. For example, let’'s say that a client invokes an action on a
Struts application to upload an image file to a database. Let’s further assume that the
action class calls an update method whose signature looks like the following:

| publ i c void updatel mageFil e( String inagePath ) throws Upl oadException;

When the method is called with an image to upload and a problem occurs, an
Upl oadExcept i on will be thrown. However, the underlying problem will be more
specific like the file system is full or the database already has the image, depending on
the destination of the image upload. The origina exception thrown may be
| OExcepti on or SQLExcept i on, but the user doesn’t really know or care about this
level of detail. All they care about is the update function failed. Although the end-user
doesn’t care about the specific exception, the system administrator or the developers who
will be assigned the task to debug and fix the problem do care. That's the reason that you
don’'t want to throw away the root cause of the problem, when you create the alternate
exception.

Prior to version 1.4, Java didn't provide a built-in mechanism to wrap the original
exception with a new one. Developers were left to their own devices to solve the
problem. Most homegrown solutions looked something like the exception class in
example 10-1.

Example 10-1. An example of Exception class that supports chained exceptions

inport java.io.PrintStream
inport java.io.PrintWiter;
/**
* This is the conmon superclass for all application exceptions. This
* class and its subcl asses support the chained exception facility that allows
* a root cause Throwable to be wapped by this class or one of its

* descendants.

*/
publ i c cl ass BaseException extends Exception {

protected Throwabl e root Cause = nul | ;

prot ect ed BaseException( Throwabl e cause ) {

thi s. root Cause = root Cause;

}

publ i c voi d set Root Cause( Thr owabl e anException) {
root Cause = anExcepti on;

}

publ i ¢ Throwabl e get Root Cause() {
return root Cause;

}

public void printStackTrace() {

238




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

print StackTrace(Systemerr);

}

public void printStackTrace(PrintStreamout Strean) {
print StackTrace(new PrintWiter(outStrean));

}

public void printStackTrace(PrintWiter witer) {
super. print StackTrace(witer);

if ( getRootCause() !=null ) {
get Root Cause() . print StackTrace(witer);

witer.flush();

}

}

The exception class in example 10-1 allows you to wrap the original Thr owabl e with
an instance of this exception class or any of its descendants. The nice thing about this
feature is that it allows you to abstract out the ugly details of lower level exceptions,
while at the same time keeping those details available so they can printed out to alog and
used by developers. Because these exceptions can be chained together endlessly, this
concept is commonly referred to as exception chaining.

Exception chaining is an excellent way of not letting lower layer abstractions, like JDBC
access, to propagate outward to an end user. The end user doesn’t care about the lower
layer problem and abstracting the problem to a higher level exception will keep them
from seeing too much of the details.

Another benefit of using a higher layer exception class is so that the API of the upper
layer is not tied or coupled to the details of the implementation. Suppose that a file
system is initially used to store the images and therefore the throws clause of the
updat el mageFi | e method from before declares that it throws | OExcepti on. If
later the implementation changed to use JDBC instead, the throws clause and the clients
that invoked the method would have to be changed to declare or catch SQLExcept i on.
By using a higher level of abstraction, the client only needs to be concerned about the
Upl oadExcept i on, regardless of the underlying implementation.

Dealing with Multiple Exceptions

A dlight variation on the exception chaining idea is the concept of throwing multiple
exceptions from a method. For example, let's say a user is filling out a form that has
several price fields that must fall between some minimum and maximum values. Let's
further assume that the price values can only be validated on the backend and can’t be
validated in an ActionForm.

Unless you're application can throw multiple exceptions from a method, the user will
only see one exception at a time. This approach will work, but may become very

239




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

annoying for the end-user. They have to fix one field and then re-submit only to receive
the next error. It would be easier for the user if al of the errors are displayed and could be
fixed at the same time. Unfortunately, a Java method can only throw a single instance of
Thr owabl e.

One of the solutions to do thisisto allow an exception class to have a primary exception
and also support a collection of other exceptions. Each exception can be treated the same,
but the primary exception is used when only a single exception occurs and the client can
check the exception collection to see if there are more. Example 10-2 illustrates what the
BaseExcept i on class from example 10-1 would like with this feature added to it.

Example 10-2. An example of an exception class that supports multiple nested
exceptions
package comoreilly.struts.franmework. exceptions;

inport java.util.Collection;
inmport java.util.Arraylist;
inport java.io.PrintStream
inport java.io.PrintWiter;

/**

* This is the common superclass for all application exceptions. This

a root cause Throwabl e to be wapped by this class or one of its
descendants. This class al so supports multiple exceptions via the
exceptionLi st field.

/

public cl ass BaseException extends Exception{

protected Throwabl e root Cause = nul | ;

private Col | ection exceptions = new ArrayList();

* % 3k X *

publ i ¢ BaseException(){
super () ;

publ i c BaseException( Throwabl e cause ) {
thi s. root Cause = root Cause;

}

public Collection getCollection() {
return exceptions;

}

public voi d addException( BaseException ex ){
exceptions. add( ex );

}

publ i c voi d set Root Cause( Thr owabl e anException) {
root Cause = anExcepti on;

}

publ i ¢ Throwabl e get Root Cause() {
return root Cause;

240

class and its subcl asses support the chai ned exception facility that allows




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

}

public void printStackTrace() {
print StackTrace(Systemerr);

}

public void printStackTrace(PrintStreamoutStrean) {
print StackTrace(new PrintWiter(outStrean));

}

public void printStackTrace(PrintWiter witer) {
super. print StackTrace(witer);

if ( getRootCause() !'= null ) {
get Root Cause(). print StackTrace(witer);

witer.flush();

}

}

Notice in example 10-2 that aj ava. uti | . Col | ect i on has been added to the class.
If more than one exception occurs during the processing of a method, the additional
exceptions can be added to the collection and returned to the client. If the client wishes
only to deal with asingle exception, it doesn’t have to retrieve the additional ones.

[Note: Reviewers, I'm planning to strip out a great deal of the information from the
previous section to shorten this chapter, but also because this material can be found in
other Java books. If there is a certain section that you feel needs to stay in, make a
comment to me and | will try to keep that in. If you think most if not all, needs to be cut,
please let me know that as well.]

Exception Handling provided by Struts

Prior to version 1.1, the Struts framework provided very minimal exception handling for
applications. It was basically left up to you to extend the framework with your own
exception handling capabilities. This encouraged each and every development group to
come at the approach from different directions and made it difficult to discuss common
solutions.

Starting with version 1.1, Struts now provides a small, but effective exception-handling
framework for your applications. The approach that the Struts designers have taken
follows in the footsteps of the EJB and Servlet specifications have taken for handling
security, by alowing developers to use either a declarative and/or a programmatic
approach.

241




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Declar ative ver sus Programmatic Exception Handling

Declarative exception handling is done by expressing an application’s exception handling
policy, including which exceptions are thrown and how they are to be handled, in aform
that is completely external to the application code. This approach makes it easier to
modify the exception handling logic, without major recompilation of the code.

Programmatic exception handling is quite the opposite. It involves writing application-
specific code to handle the exceptions, rather than just configuring an external
configuration file.

As with other Struts configuration options, the declarative mappings are done in the
Struts configuration file. As you saw in chapter 4, you're able to specify the exceptions
that may occur and what to do if they do occur, both at a global level and for a specific
action mapping. For a more complete discussion of the parameters available for the
exception handling elements, refer back to chapter 4.

Example 10-3 shows a partial Struts configuration file that declares three different
exceptions that may be thrown from the login action.

Example 10-3. A Struts Configuration File that Uses Declarative Security Mappings

<?xm version="1.0" encodi ng="UTF-8" ?>

<! DOCTYPE struts-config PUBLIC
"-// Apache Software Foundation//DID Struts Configuration 1.1//EN'
"http://jakarta.apache. org/struts/dtds/struts-config_ 1 1.dtd">

<struts-config>
<act i on- mappi ngs>
<action

pat h="/1 ogi n"
type=" comoreilly.struts.storefront.security.Logi nAction"
nare="1 ogi nFor n{
scope="r equest "
i nput="/1ogin.jsp">

<l —Fhe foll owi ng exceptions can be thrown during the |login action -->
<exception
key="security. error. changepassword"
pat h="/ changePasswor d. j sp"
type=" comoreilly.struts.framework. exceptions. Expi redPasswor dExcepti on"/ >
<exception
key=" security.error.loginfailed "
type=" comoreilly.struts.framework. exceptions. | nvalidLogi nException”
pat h="/1ogin.jsp"/>
<exception
key=" security.error.account|ocked "
type=" comoreilly.struts.framework. exceptions. Account LockedExcepti on"
pat h="/account Locked. j sp"/ >

242




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

</ action>
</ act i on- mappi ngs>
</struts-config>

The except i on element that is defined either in the action mapping or in the global
exceptions section specifies the path to forward to when one the specified exception
occurs during the corresponding action invocation. For example, if during the login
action, an Expi r edPasswor dExcept i on is thrown, the controller will forward
control to the changePassword.jsp page. Likewise, if an Account LockedExcepti on
is thrown, control will forward to the accountLocked.jsp page.

When an exception is not programmaticaly handled in the action class, the
Request Processor gets a chance to see if there is an excepti on element
configured for that specific exception type. If there is, then control is forwarded to the
resource specified in the pat h attribute of the excepti on element. Example 10-4
showsthe pr ocessExcept i on() method fromthe Request Pr ocessor class.

Example 10-4. The pr ocessExcept i on method from the Struts Request Pr ocessor

protected ActionForward processException(HtpServl et Request request,
H t pSer vl et Response response,
Excepti on exception,
Acti onForm form
Act i onMappi ng nappi ng)

throws | CException, ServletException {

Il Is there a defined handl er for this exception?
Excepti onConfi g config = nappi ng. fi ndExcept i on(exception.getd ass());

if (config == null){
if (Iog.isDebugEnabl ed()){
| og. debug(get I nternal (). get Message( " unhandl edException", exception. getd ass()));

i f (exception instanceof |CException){
throw (I CException) exception;

}else if (exception instanceof ServletException){
t hrow (Servl et Exception) excepti on;

}el se{
t hrow new Ser vl et Excepti on(exception);
}
}
/1 Use the configured exception handling
try {

d ass handl erd ass = d ass. forName(config. get Handl er());

Excepti onHandl er handl er = (Excepti onHandl er) handl er d ass. new nst ance();

return (handl er. execut e(exception, config, mapping, formrequest, response));
}catch (Exception e){

throw new Ser vl et Exception(e);

}

}

243




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Notice how an ExceptionConfig object may be returned from the
findException() method a the beginning of the processException()
method. The ExceptionConfi g object is an in-memory representation of the
exception element specified in the configuration file. If the fi ndExcepti on()
method doesn’t find an exception element for the specific type of exception that occurred,
the exception is thrown back to the client without going through a Struts exception
handler. Unless the exception is an | OException or one of its subclasses, the
exception will be wrapped by aSer vl et Except i on instance and re-thrown.

If thereisan except i on element specified in the action mapping for the specific type
of exception that occurs, an Excepti onConfi g object is returned from the
findException() method. The get Handl er () method is then called on the
Excepti onConf i g object and this handler is used to process the exception.

The Struts framework has a default exception handler class that will be used to process
the exceptions unless you configure one of your own. The default handler class is
org. apache. struts. acti on. Excepti onHandl er. The behavior in the
execut e() method of this handler isto create an Act i onEr r or and store it into the
proper scope and return an Act i onFor war d object that is associated with the pat h
attribute specified in the excepti on element. To summarize, if you declare an
exception element inside an acti on element, the default exception handler will
create and store an Act i onError into the specified scope and return control to the
resource specified in the pat h attribute.

As you saw back in chapter 4, the exception element also allows you to override the
exception handler behavior if you want to modify the behavior taken when an exception
occurs. You can do this by specifying a fully qualified Java class that extends the
org. apache. struts. acti on. Excepti onHandl er class and that overrides the
execut e() method. For example, suppose that all of your application exceptions
extend the BaseExcept i on class shown in example 10-5.

Example 10-5. An Exception class that supports a message key and arguments
package comoreilly. struts.franework. exceptions;

inport java.util.Collection;
inport java.util.ArraylList;
inmport java.io.PrintStream
inport java.io.PrintWiter;

/**

* This is the common superclass for all application exceptions. This

a root cause Throwabl e to be wapped by this class or one of its
descendants. This class al so supports multiple exceptions via the
exceptionList field.

/

public cl ass BaseException extends Exception{

protected Throwabl e root Cause = nul | ;

private Col |l ection exceptions = new ArrayList();

* % 3k X *

244

class and its subcl asses support the chai ned exception facility that allows




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

private String messagekKey = null;
private (bject[] messageArgs = null;

publ i ¢ BaseException(){
super () ;

}

publ i c BaseException( Throwabl e cause ) {
thi s. root Cause = root Cause;

}

public Collection getCollection() {
return exceptions;

}

public voi d addException( BaseException ex ){
exceptions. add( ex );

}

public voi d set MessageKey( String key ){
t hi s. messageKey = key;

}

public String get MessageKey() {
return messageKey;

}

public void set MessageArgs( (hject[] args ){
thi s. messageArgs = args;

}

public (bject[] getMessageArgs(){
return nessageArgs;

}

public voi d set Root Cause( Thr owabl e anException) {
root Cause = anExcepti on;

}

publ i c Throwabl e get Root Cause() {
return root Cause;

}

public void printStackTrace() {
print StackTrace(Systemerr);

}

public void printStackTrace(PrintStreamout Strean) {
print StackTrace(new PrintWiter(outStrean));

}

public void printStackTrace(PrintWiter witer) {
super. print StackTrace(witer);

if ( getRootCause() !'=null ) {

245




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

get Root Cause() . print StackTrace(witer);

witer.flush();

}
}

The BaseExcept i on classin example 10-5 contains a nessageKey that can be used
as a key in the Struts resource bundle. This key can be passed into the constructor of the
Act i onError class and the Struts framework will match it to a message in the Struts
resource bundle. This class also contains an object array that the creator of the exception
can populate. These objects can then be used to substitute into a message from the bundle
that contains substitution parameters based on the MessageFor mat class. A message
in the bundle might look this like:

| gl obal . error.invalid. price=The price nust be between {0} and {1}.

When creating an Act i onEr r or object, you can pass an array of objects as the second
parameter and each object will be substituted into the parameters enclosed by the braces.
The 0™ argument in the array will be inserted into the {0} position, the object at index 1
into the {1} position, and so on. Chapter 12 “Internationalization and Localization”
covers thistopic in more detail.

Example 10-6 illustrates how to extend the default exception handler class and provide
specialized behavior for substituting the arguments from the exception into the
Act i onErr or constructor.

Example 10-6. A Specialized Exception Handler
package comoreilly. struts. chapter1l0exanpl es;

i nport javax.servlet. Servl et Exception;

inport javax.servlet.http. HtpServl et Request;
inport javax.servlet.http. HtpServl et Response;

i nport org.apache. struts. acti on. Excepti onHandl er;
i nport org.apache. struts. action. Acti onForm

i nport org.apache. struts. action. Acti onError;

i nport org.apache. struts. util.AppExcepti on;

i nport org. apache. struts. acti on. Acti onFor war d;

i nport org. apache. struts. acti on. Acti onMappi ng;

i nport org. apache. struts. confi g. Excepti onConfi g;

inport comoreilly.struts.franework. exceptions. BaseExcepti on;
public class Speci al Excepti onHandl er extends ExceptionHandl er {

protected ActionForward execut e( Exception ex,
ExceptionConfig confi g,
Act i onMappi ng nappi ng,
Act i onFor m f or ni nst ance,
H t pSer vl et Request request,
H t pSer vl et Response response)
throws Servl et Exception {
ActionForward forward = nul | ;

246




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

ActionError error = null;
String property = null;

/* Get the path for the forward either fromthe exception el enent
* or fromthe input attribute.
*/
String path = null;
if (config.getPath() !'=null) {
path = config. get Pat h();
}el sef
pat h = mappi ng. get | nput () ;
}
/1 Construct the forward obj ect
forward = new Acti onForwar d( pat h) ;

/* Figure out what type of exception has been thrown. The Struts
* AppException is not being used in this exanple.
*/
i f( ex instanceof BaseException) {
/1 This is the specialized behavior
BaseExcepti on baseException = (BaseExcepti on)ex;
String nmessageKey = baseExcepti on. get MessageKey();
hj ect[] exArgs = baseExcepti on. get MessageArgs();
if ( exArgs !'=null & exArgs.length > 0 ){
/1 If there were args provided, use themin the ActionError
error = new ActionError( messageKey, exArgs );
}el sef
/1 Oeate an ActionError wthout any argunents
error = new ActionError( messageKey );
}
}el sef
error = new ActionError(config.getKey());
property = error.getKey();

/1 Store the ActionError into the proper scope
/1 The storeException method is defined in the parent class
st oreException(request, property, error, forward, config.getScope());

return forward;

}

The specialized behavior that you perform in your handler class is up to you. The
behavior shown in example 10-6 is done so that arguments that go with the exception can
be inserted into the Acti onError and used to make the user messages more
informative.

For information on how to install a custom exception handler, see “The
Struts Configuration DTD” in Chapter 4.

There are plenty of other instances where you might need to override the default
behavior. The default exception handler provided by the Struts framework doesn’t

247




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

support an exception object holding on to multiple exceptions. |f your application needs
to support this behavior, you are going to need to create your own
Excepti onHandl er class.

In many cases however, the Struts exception handler will be sufficient Only when you
need specialized exception handling that can’t be obtained from the Struts exception
handler, should you bother to create your own. Figure 10-3 illustrates a sequence diagram
for the default exception handling mechanism of Struts.

requestProcessor inAction | | actionMapging | | ex fig | | exceptionHandler
T

D processActionPerform

I

I

1

1

| 1
execule I
]

I

I

1

1

1

InvalidLoginException s thrown

D processException

findException

getHandler

-

executa

|
| .
XCepi
raturn actionForward |> storeException

The execute method is B‘ The findException

T___-__.__._

The default behavior
Is to create and store
an ActionEmor into
the proper scope.

wrapped with a tryfcatch method really retums
block for Exception an ExceptionConfia, It's
poorly named

Figure 10-3. A Sequence Diagram for Struts Exception Handling

[Note: | will make thisfigure alittle more readable in the final version.]

Using the declarative exception handling mechanism of Struts does not preclude you
from also using a programmatic approach by itself or in conjunction with the declarative
option. In fact, they can work quite well together. Your action classes will get the first
opportunity to handle any specific exceptions and only if an exception is not caught and
handled by the action instance, will it be caught by the pr ocessAct i onPer f or n()
method in the Request Processor class. The Request Processor can then use
the declarative exception handling mechanism if the action instance wasn't interested in
handling the exception. The next section discusses how to handle exceptions using a
programmatic approach.

248



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Using Programmatic Exception Handling

The aternate approach to the declarative exception handling provided by Struts is to
build the application-specific exception handling into the code itself. This means that you
will have to extend the framework with behavior specific to your application.

As mentioned earlier in this chapter, there are two basic courses of action when an
exception is thrown within an action class. If the exception is an application exception,
the course of action is to log the exception, create and store an Act i onEr r or into the
appropriate scope, and forward control to the appropriate Acti onForwar d. You'll
remember from the discussion of declarative exception handling, this is the same
behavior that the Struts default exception handler performs, minus the logging.

In the case of the Storefront application, application exceptions would all be descendants
of BaseExcepti on, therefore it becomes very easy to detect when an application
exception occurs because you can simply have a catch block for BaseExcept i on. If
the exception is not an instance of BaseExcept i on, then it can be assumed that it's a
system exception and treated as such. The course of action for system exceptions is
normally to log the exception and return an Act i onFor war d for the system error page.

At first, you might be tempted to add a try/catch block in your action classes and perform
the exception handling like this.

try{

/1 Peformsome work that nay cause an application or a system exception

}cat ch( BaseException ex ){
/1 Log the exception

/1 Oeate and store the action error

ActionErrors errors = new ActionErrors();

ActionError newError = new ActionError( ex.getErrorCode(), ex.getArgs() );
errors.add( ActionErrors. @CBAL_ERRCR, newError );

saveErrors( request, errors );

/1 Return an ActionForward for the input resource
return mappi ng. get | nput () ;

}catch( Throwabl e ex ){
/1 Log the exception

/1 Create and store the action error

ActionError newError = new ActionError( ex.getErrorCode(), ex.getArgs() );
ActionErrors errors = new ActionErrors();

errors.add( ActionErrors. GOBAL_ERRCOR, newError );

saveErrors( request, errors );

// Return an ActionForward for the systemerror resoruce
return nappi ng. fi ndForward( | Constants. SYSTEM FAI LURE PACE );

249




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

The problem with the approach shown here is that you end up having the same redundant
code inside of almost every action class. This is one of the benefits of using the
declarative approach. However, if you don’'t want to use the declarative approach, or you
can’t because you're using an earlier version of Struts, there's an alternate approach that
you can use that doesn’t involve so much redundancy.

You've aready seen in Chapter 5 how the use of an abstract BaseAction class can reduce
the redundancy inside the action classes for other issues. You can also push the
programmatic exception handling functionally up to the BaseAct i on class and not
have to have it in al of your action classes. To do this, you will need to implement the
additional execut eAct i on() method that was discussed in Chapter 5. Example 10-7
showsthe execut e() method of the St or ef r ont BaseAct i on class.

Example 10-7. The execute method of the StorefrontBaseAction

publ i c ActionForward execut e( Acti onMappi ng nappi ng,
Acti onForm form
H t pSer vl et Request request,
H t pSer vl et Response response)
throws Exception {
Acti onForward forwardPage = nul | ;

try{
User Cont ai ner user Cont ai ner = get User Cont ai ner ( request );

/1 Informthe specific action instance to do its thing

f orwar dPage = execut eActi on(nappi ng, form request, response, userContai ner)
}cat ch (BaseException ex){

/1 Log the application exception using your |ogging framework

/1l Call the generic exception handl er routine

forwar dPage = processExceptions( request, napping, ex );
}catch (Throwabl e ex){

/1 Log the system exception using your |ogging framework

/1 Make the exception available to the systemerror page
request.set Attribute( Action. EXCEPTI ON KEY, ex );

/1 treat all other exceptions as a systemerror
forwar dPage = mappi ng. fi ndForwar d( | Const ant s. SYSTEM FAl LURE_KEY );

return forwardPage;

}

The execut e() method invokesthe execut eAct i on() method, which al Acti on
subclasses must override, and wraps the invocation with the appropriate try/catch blocks.
The St or ef ront BaseAct i on is abstract and provides an abstract version of the
execut eAct i on() method, which is shown here.

abstract public ActionForward executeAction( ActionMappi hg nappi ng,
Acti onForm form
H t pSer vl et Request request,
H t pSer vl et Response response,
User Cont ai ner user Cont ai ner )
throws BaseExcepti on;

250




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

When any application exception occurs, as long as it extends BaseAct i on, it will be
caught in the try/catch block inside the execut e() method. The subclasses don’t have
to worry about providing a catch block at all, unless they are planning to provide
specialized behavior for the exception.

The execut e() method passed the exception, along with the request and mapping
objects, to the processExcepti ons() method. The processExcepti ons()
method is shown in example 10-8.

Example 10-8. The processExceptions method in the StorefrontBaseAction

protected ActionForward processExceptions( HtpServl et Request request,
Act i onMappi ng nmappi ng,
BaseException ex ){
ActionErrors errors = new ActionErrors();
ActionForward forward = nul | ;

/1l Get the locale for the user

Local e | ocal e = get User Cont ai ner ( request ).getLocal e();

if (locale == null){
/1 1f it hasn't been configured, get the default for the environnent
| ocal e = Local e. get Defaul t ();

}
processBaseException(errors, (Fi el dException) ex, |ocale);

/1 Either return to the input resource or a configured failure forward
if ( mapping.getlinput() !'= null) {
forward = new Acti onForwar d( nappi ng. get | nput () );
telse if (mapping.findForward(l Constants. FAI LURE KEY) !'= null){
forward = nappi ng. findForward( | Constants. FAl LURE KEY );
}

/1 See if this exception contains a collection of sub exceptions

Col | ection exceptionCol | ection = ex.getCol |l ection();

if (exceptionCollection != null &% !exceptionCollection.isEnpty() ){
int size = exceptionCollection.size();
Iterator iter = exceptionCollection.iterator();

while( iter.hasNext () ){
/1 Al sub exceptions nust be BaseExcepti ons
BaseExcepti on subException = (BaseException)iter.next();
pr ocessBaseException(errors, subException, |ocale);
}
}

[l Tell the Struts framework to save the errors into the request
saveErrors( request, errors );

// Return the ActionForward
return forward;

}

251




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

The processExcepti ons() method seems to be quite busy, however it's really not
that bad. Here are the steps that the method is performing.

a c w NP

Obtain the Locale for the user.

Call thepr ocessBaseExcept i on() method to process the top-level exception.
Determine if there are sub exceptions and if so, process each one.

Save dl of the ActionError’s that were created.

Return control back to either the resource identified in the i nput attribute of the
action or to a“Failure” Act i onFor war d that has been configured for the action.

The processBaseExcepti on() method is where the Acti onError objects are
created. This method is shown in example 10-9.

Example 10-9. The processBaseException of the StorefrontBaseAction class

protected voi d processBaseException( ActionErrors errors,
BaseException ex,
Local e I ocal e) {

/] Holds the reference to the ActionError to be added
ActionError newActionError = null;

/1 The errorCode is the key to the resource bundl e
String errorCode = ex. get MessageKey();

/**

* |f there are extra arguments to be used by the MessageFor mat obj ect,

* insert theminto the argList. The argunents are context sensitive
* argunents for the exception, there may be 0 or nore.
*
/
(bj ect[] args = ex.get MessageArgs();

/**

* In an application that had to support |18N you nmight want to

* format each value in the argunent array based on its type and the
* user locale. For exanple, if there is a Date object in the array,
* would need to formatted for each | ocal e.

*/

/1 Now construct an instance of the ActionError class

if (args !'=null & args.length > 0 ){
/1 Use the argurments that were provided in the exception
newActionError = new ActionError( errorCode, args );

}el se{
newActi onError = new ActionError( errorCode );

}

errors.add( ActionErrors. ACBAL_ERRCR newActionError );

252




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

The processBaseException() method is responsible for creating the
Act i onError abject using the nessagekKey field to lookup a bundle message and if
there are any arguments included, include those in the Act i onEr r or constructor as
well.

As you can see, adding programmatic exception handling to your applications is
definitely more work than using the default behavior provided by the Struts framework. It
will make maintenance more difficult if you change your exception hierarchy drastically
or change how you want to handle certain exceptions. However, if you are using an
earlier version of Struts, this may be your only choice. You may have to extend these
examples for your own applications, but they do show a well-designed approach that you
can build upon.

Within the EJB and Servlet specifications, programmatic security is frowned upon
because it's too easy to couple your application to the physical security environment.
With exception handling, the possibility of needing to change the exceptions that are
thrown based on the target environment, is just not likely. Therefore, there isn't the same
stigma associated with programmatic exception handling as there is attached to
programmatic security. It is true however, that if you can take advantage of declarative
exception handling, you application will be easier to maintain than having the same
functionality in your source code. An application will have to be modified over time.
New exceptions will be thrown and will need to be caught. The more you can specify
declaratively about an application, the easier time you'll have trying to maintain it.

Tying Up the L oose Ends

Before we |leave the topic of exception handling there are several specia cases that we
should discuss. Each one of these is unique and you may or may not have a need for in
your applications.

Handling Remote Exceptions

When dedling with remote Java objects, it's possible that they can throw
j ava. rm . Renot e exceptions. In fact, every EJB method that is exposed to a remote
client must declare that it throws RenpteException. Deading with
Renmot eExcept i on isvery similar to handling system exceptions, except that it is not
a descendant of either j ava. | ang. Error or j ava. | ang. Runti neExcepti on,
as other system exceptions are.

Often, the application will not be able to recover from a Renot eExcept i on and will
have to display the system error page. If you're usng EJB and you get a
Renot eExcepti on, you could attempt to recover by acquiring a new remote
reference, but there’s probably some type of programming or environment error and the
end user will not be able to continue. Whether you're using a programmatic or a

253



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

declarative approach, you'll likely want to log the exception, create and store an
Act i onError object and then forward to the system error page. You could define the
exception handling behavior to forward the user back to the previous page and give them
the choice of trying again. If some type of network blip caused the remote exception, it
may be possible for the user to continue to use the application.

Exceptionsin Custom Tags

JSP custom tags usually throw JSPExcept i on objects or one of its descendants. Prior
to the JavaServer Pages 1.2 Specification, the JSPExcept i on class didn't support
exception chaining. Since Struts was introduced before the 1.2 Specification, there are
several places inside of the Struts custom tag libraries that still throw the original
exception away when aJSPExcept i on iscreated.

However, the tags do usualy store the exception in the request scope under the key
Action. EXCEPTI ON_KEY, which maps to a litera string  of
org. apache. struts. action. Acti on. EXCEPTI ON_KEY. If you need to get
access to the root cause, you can probably use this key to retrieve the exception object.

Version 1.2 of the JSP Specification modified the JSPExcept i on to support exception
chaining, however the Struts developers will probably choose to leave the current tags
alone for backwards compatibility and only take advantage of the new JSPExcepti on
for future tags. However, in the custom tags that you create, you should utilize the
r oot Cause field in the JSPExcepti on class when you re-throw exceptions as
different types.

| nter nationalized Exception Handling

Chapter 12 covers Internationalization in depth, but it’s relevant to say a few words about
how exception handling and Internationalization are connected. Often while throwing
exceptions in Java, developerswill do something like the following.

/1 Detect sone problemand throw an exception
t hrow new Exception( "An exception has occurred." );

The problem with hardcoding the string into the exception is that it’s only useful for the
developers who might read it that are from the same locale. If developers or system
administrators from different locales were to try and use the log files where these
exceptions are logged, it might be difficult and would probably not provide much help to
them. Instead of hardcoding the messages for the exceptions, you may be better served to
get the message from a resource bundle. Obvioudy, exceptions that are thrown from
third-party packages are not within your control, just as stack traces are hard to localize.
Many organizations don’'t worry about localizing the exception messages and that may be

254



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

fine as long as no one from locales other than your own will ever need to use the
information.

A good approach to localizing the exception message is to override the
get Local i zedMessage() method defined in j ava. | ang. Thr owabl e. You can
use this method to produce a local-sensitive message that can be shown to the user or
inserted into alog file.

Conclusion

The new declarative exception handling is a great new addition to the Struts framework
and one that should most certainly save developers time, during initial development and
maintenance. Whenever possible, you should make an all out effort to take advantage of
the declarative exception features, rather than attempting to write your own. The good
news is however, that if you do need to create your own customized exception handling,
the freedom and flexibility existsin the framework.

255



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

11

Using the Struts Validator

The Struts framework allows input validation to occur inside the Acti onForm To
perform validation on data passed to a Struts application, developers must code special
validation logic inside each Act i onFor mclass. Although this approach works, it has
some serious limitations. This chapter introduces the Validator framework by David
Winterfeldt, which was created specifically to work with the Struts components and to
help to overcome some of these limitations.

The Validator provides the ability to declaratively configure validation routines for a
Struts application, without requiring you to program special validation logic. The
Validator has become so popular and widely used by Struts developers, that is has been
added to list of Jakarta projects, as well as the main Struts distribution.

The Need for a Validation Framewor k

In Chapter 7, you learned how to provide validation logic inside the Act i onFor mclass.
For each property that you need to validate, a separate piece of validation logic needs to
be written to validate it. If an error is detected, you have to manualy create an
Act i onError object and add it to the Acti onErrors collection. Although this
solution works, there are a few problems with the approach.

The first problem is that coding validation logic within each Act i onFor m causes
redundant validation logic throughout your application. Within a single web application,
the type of validation that needs to occur across HTML formsisvery similar. The need to
validate required fields, dates, times, and numbers for example, typically occurs in many
places throughout an application. Most non-trivial applications have multiple HTML

256



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

forms that accept user input, which must be validated. Even if you use a single
Act i onFor m for your entire application, you might still wind up replicating the
validation logic.

The second major problem with this approach is one of maintenance. If you need to
modify or enhance the validation that occurs for an Act i onFor m recompilation of the
source code is necessary. This makes it very difficult to customize or configure an
application for specific needs.

The Validator framework allows you to move al the validation logic completely outside
of the Act i onFor mand declaratively configure it for an application through external
XML files. No validation logic is necessary in the Act i onFor s, and this makes your
application easier to develop and maintain. The other great benefit of the Validator is that
it's very extensible. It provides many standard validation routines out-of-the-box, but if
you require additional validation rules, the framework is easy to extend and provides the
ability to plug in your own rules; again without needing to modify your application.

Installing and Configuring the Validator

The Validator framework is now a part of the Jakarta Commons project. It's included
with the Struts main distribution, but you can also get the latest version from the
Commons download page at http://jakarta.apache.org/commons. Unless you need the
source code or the absolute latest version, the necessary files are included with the Struts
1.1 distribution.

Required Packages

The Validator depends on several other packages to function properly, the most important
of which is the Jakarta ORO package. The ORO package contains functionality for
regular expressions, performing substitutions, and text splitting, among other utilities.
The libraries were originally developed by ORO, Inc. and donated to the Apache
Software Foundation. Earlier versions of the Validator framework depended on a
different regular expression package called Regexp, which is aso a Jakarta Project.
However, ORO was considered the more complete of the two and the Validator that is
included with Struts 1.1, now depends on the ORO package.

Other projects that are required are Commons BeansUtils, Commons Logging, Commons
Collections, and Digester. All of the dependent packages for the Validator areincluded in
the Struts 1.1 download. The commons-validator.jar and jakarta-oro.jar files need to be
placed into the V\EB- | NF/ | i b directory for your web application. The other dependent
JAR files must also be present, but should aready be there due to Struts framework
reguirements.

257



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Configuring the Validation Rules

As was mentioned earlier in the chapter, the Validator framework alows the validation
rules for an application to be declaratively configured. This means that they are specified
external to the application source. There are two important configuration files for the
Validator framework.

Theval i dator-rul es. xm File

Thefirst configuration file is called validation-rules.xml. Thisfile contains a global set of
validation rules that can be used out-of-the-box by your application. This file is
application-neutral and can be used by any Struts application. You should only need to
modify thisfile if you plan to modify or extend the default set of rules.

If you do need to extend the default rules, you might be better served
to put your custom rules in a different XML file, so as to keep them
separate from the default ones. This will help when it comes time to
upgrade to a newer version of the Validator framework.

Eachval i dat or element describes one unique validation rule. The following fragment
from the validation-rules. xi file is the definition for the required validation rule for
example:

<val i dat or
narre="r equi r ed"
cl assnanme="or g. apache. struts. util.StrutsValidator"
net hod="val i dat eRequi r ed"
net hodPar ans="j ava. | ang. (bj ect,
or g. apache. conmons. val i dat or. Val i dat or Act i on,
or g. apache. conmons. val i dat or . Fi el d,
org. apache. struts. action. Acti onErrors,
javax. servlet. http. HtpServl et Request "
nsg="errors.required">
</val i dat or >

The val i dat or element also allows a j avascri pt sub-element,
but it is not shown here for brevity. The JavaScript support in the
Validator framework will be discussed later in the chapter.

The nane attribute assigns a logical name to the validation rule. It is used to reference
the rule from the other rules within this file and aso the application-specific validation
file that is discussed in the next section. The names must be unique.

The cl assnane and met hod attributes define the class and method that contains the
logic for the validation rule. For example, in the code fragment for the r equi r ed
Validator rule, the val i dat eRequi red() method inthe St r ut sVal i dat or class

258




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

will be invoked for the r equi r ed validation rule. The net hodPar ans attribute is a
comma-delimited list of parameters for the method defined in the net hod attribute.

The nsg attribute is a key from the resource bundle. The Validator framework will use
this value to lookup a message from the Struts resource bundle when a validation error
occurs. By default, the Validator framework uses the following values:

errors.requi red={0} is required.

errors. mnlength={0} can not be |less than {1} characters.
errors. maxl engt h={ 0} can not be greater than {1} characters.
errors.invalid={0} is invalid.

errors. byte={0} nust be an byte.

errors.short={0} nust be an short.

errors.integer={0} nust be an integer.

errors.long={0} nust be an | ong.

errors.float={0} nust be an float.

errors. doubl e={0} nust be an doubl e.

errors.date={0} is not a date.

errors.range={0} is not in the range {1} through {2}.
errors.creditcard={0} is not a valid credit card nunber.
errors.emai | ={0} is an invalid e-mail address

Y ou should add these to your application’s resource bundle, or change the key values in
the validation-rules.xml fileif you plan to use alternate messages.

The val i dat or element also supports an attribute called depends. It is used to
specify other validation rules that should be called before the rule specifying it. The is
illustrated in the m nLengt h validation rule:

<val i dat or
narme="m nl engt h"
cl assnanme="or g. apache. struts. util.StrutsValidator"
net hod="val i dat eM nLengt h"
net hodPar ans="j ava. | ang. (bj ect,
or g. apache. conmons. val i dat or. Val i dat or Act i on,
or g. apache. conmons. val i dat or . Fi el d,
org. apache. struts. action. ActionErrors,
javax. servlet. http. HtpServl et Request "
depends="r equi r ed"
nsg="errors. mnl ength">
</val i dat or >

Before the mi nLengt h validation rule is called, the required rule will be invoked, as
dictated by the depends attribute. Y ou can also setup arule to depend on multiple rules
by separating the rules in the depends attribute with a comma:

| depends="requi red, i nt eger "

If arulethat is specified in the depends attribute fails validation, the next rule will not
be called. For example, in the m nLengt h validation rule shown previoudly, the
val i dat eM nLengt h method will not be invoked if the r equi r ed validation rule
fails. This should stand to reason because there’s no sense in checking the length of a
value, if there’ s no value present.

259




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

The Validator framework is fairly generic. It contains very basic, atomic rules that can be
used by an application. As you'll see later in this chapter, it's this generic ability that
alows it to be wused with non-Struts applications as well. The
or g. apache. commons. Val i dat or. Generi cVal i dat or class implements the
generic rules as a set of public static methods. Table 11-1 lists the set of validation rules
availableinthe Generi cVal i dat or.

Table 11-1. Validation Rulesin the Gener i cVal i dat or Class

Method Name Description

i sBl ankOr Nul | Checks if thefield isn't null and length of the field is greater
than zero not including whitespace.

i sByte Checksif the value can safely be converted to a byte
primitive.

i sCreditCard Checksif thefield isavalid credit card number.

i sDat e Checksif thefield isavalid date.

i sDoubl e Checksif the value can safely be converted to a double
primitive.

i sSEmai | Checksif afield isavalid e-mail address.

i sFl oat Checksif the value can safely be converted to afloat
primitive.

i sl nRange Checksif avalue iswithin amin and max range.

i slnt Checksiif the value can safely be converted to aint primitive.

i sLong Checksiif the value can safely be converted to along
primitive.

i sShort Checksiif the value can safely be converted to a short
primitive.

mat chRegexp Checks if the value matches the regular expression.

maxLengt h Checksiif the value's length is less than or equal to the max.

m nLengt h Checksif the value's length is greater than or equal to the min.

Because the validation rulesin the Gener i cVal i dat or are so fine-grained, the Struts
developers added a utility class to the Struts framework called
org. apache. struts.util. StrutsValidator, which defines a set of higher-
level methods that are coupled to the Struts framework, but make its easier to use the
Validator when using it with Struts. They are listed here without descriptions because the
names are similar enough to the ones from Table 11-1.

val i dat eByt e

val i dat eCredi t Card

260



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

val i dat eDat e

val i dat eDoubl e
val i dat eEmmi

val i dat eFl oat

val di at el nt eger
val i dat eLong

val di at eMask
val di at eM nLength
val di at eMaxLengt h
val i dat eRange

val i dat eRequi r ed
val i dat eShort

The St rut sVal i dat or contains the concrete validation logic that’'s used by Struts.
It's this class and the methods listed above that are declaratively configured in the
validation-rules.xml file. When one of these methods is invoked and the validation fails,
anAct i onEr r or iscreated and added to the Act i onEr r or s object. These errors are
eventually stored into the request and made available to the view components.

Theval i dati on. xm File

The second configuration file that is required by the Validator framework is the
validation.xml file. Thisfile is application specific, and describes which validation rules
from the validation-rules.xml file are used by a particular Act i onFor m Thisiswhat is
meant by declaratively configured; you don't have to put code inside of the
Act i onFor mclass. The validation logic is associated to one or more Act i onFor m
classes through this external file.

There are currently no official DTDs for the two Validator
configuration files. There are several that have been created by the
Struts user community, but they have not been verified or added to the
Validator framework. Hopefully by the time this book is published the
Validator developerswill add aDTD for the configuration files.

The outermost element is the f or m val i dati on element. It can contain two child
elements, gl obal and f or nset . The gl obal element can be repeated zero or more
times, whilethef or nset element can be present one or more times.

261



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

The gl obal element allows you to configure const ant elements that can be used
throughout the rest of the file. This is analogous to how you might define a constant in a
Java file and then use it throughout the class. The following fragment shows a gl obal
fragment that defines two constants:

<gl obal >
<const ant >
<const ant - nane>phone</ const ant - nane>
<constant -val ue>™\ (?2(\d{3})\)?[-] 1?2(\d{3})[-] 1?2(\d{4})$</constant-val ue>
</ const ant >
<const ant >
<const ant - nane>zi p</ const ant - nane>
<const ant - val ue>"\ d{ 5}\ d*$</ const ant - val ue>
</ const ant >
</ gl obal >

This fragment includes two constants, phone and zi p, athough you can include as
many as you need. These constants are available to the elements within the f or nset
section. They can be reused many times within the f or nset , referring to them by name.
This is best illustrated with a smal example. Example 11-1 shows a simple
validation.xml file.

Example 11-1. A Smple validation.xml File

<formval i dation>
<gl obal >
<const ant >
<const ant - nane>phone</ const ant - nane>
<const ant -val ue>\ (?2(\d{3})\)?[-| 12(\d{3})[-| 1?2(\d{4})$</constant -val ue>
</ const ant >
</ gl obal >
<f or nset >
<f or m nane="checkout For m >
<field
pr oper t y="post al Code"
depends="r equi r ed, mask" >
<arg0 key="regi strati onFormfirstnare. di spl aynane"/>
<argl nane="mnl ength" key="${var: mnlength}" resource="fal se"/>
<var >
<var - name>nask</ var - nane>
<var - val ue>${ zi p} </ var - val ue>
</ var >
</field>
</ fornp
</fornset >
</formvalidation>

Notice in Example 11-1, the constant phone that's declared in the gl obal section, is
used inthevar element for the post al Code validation rule.

The f or nset element can contain two child elements, const ant and f orm The
const ant element is the same format as the one in the global section. It can also be

262




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

repeated here zero or more times. The f or melement can be repeated one or more times
withinthef or nset element.

The f or nset element supports two attributes that deal with 118N, | anguage and
count ry. If you don't have any internationalization requirements for your validation
routines and want to use the default locale, then you can leave these attributes off. The
section Internationalizing the Validation later in the chapter discusses this topic in more
detail.

The f or melement corresponds to a particular Act i onFor mdefinition that you want to
provide validation for. It contains a single attribute nane, which should match one of the
name attributes from the f or m beans section of the Struts configuration file. The
form element can contain one or more fiel d elements. The field element
corresponds to a specific property in the Acti onForm In example 11-1, the sole
fiel d element for the checkout form corresponds to the post al Code property in an
Act i onFor m cdled checkout For min the f or m beans section of the Struts
configuration file. The fi el d element supports several attributes. They are listed in
Table 11-2.

Table 11-2. The Attributes of the Validator f i el d element.

Attribute Description

property The property nameinthe Act i onFor msubclass.

depends Specifies one or more validation rules that are
executed for the property.

page Used to specify a page number in a multi-page

wizard-like Act i onFor m

i ndexedLi st Property Specifies a property namein the Act i onFor mthat
returns a Collection that can be indexed.

The nsg element allows you specify an alternate message for a field element. The
validation rule can use this value instead of the default message declared with the rule.
The value for the ns g element must be a key from the application resource bundle.

The field element allows up to four additional elements to be included. The elements,
named ar g0, ar g1, ar g2, and ar g3, are used to pass addition values to the message,
either from the resource bundle, var, or const ant elements. Example 11-1 included
elementsfor ar g0 and ar g1.

<arg0 key="regi strationForm firstnane.di spl aynane"/>
<argl nanme="mnl ength" key="${var: mnlength}" resource="fal se"/>

The ar g0 value uses a key attribute to specify a value from the resource bundle. The
ar g1 element on the other hand, is passing the value specified in the var element, to the
m nLengt h vaidation rule. The r esour ce attribute is set to false to indicate that the
framework should not attempt to retrieve this value from the resource bundle.

263



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

The var element is used to pass information to a validation method. In Example 11-1,
the substituted value for the zip constant is passed into the mask validation rule so that it
can be used to check whether or not the property value conforms to the proper zip mask.
Thevar element can be repeated zero or moretimesfor af i el d element.

Once you have the two XML resource files configured for your application, you need to
place them in the WEB- | NF directory. They will be referenced within the Struts
configuration file, as described in the next section.

Plugging in the Validator

Each Struts application needs to know that the Validator framework is being employed.
Using a technique that you learned about in Chapter 9, you can use the Pl ugl n
mechanism to hook the Validator framework into a Struts application.

Earlier versions of the Validator used an extra servlet to inform the
Struts application that the Validator components were present. The
Val i dat or Ser vl et has been deprecated and should not be used.

The following fragment illustrates how to setup the Validator asa Pl ugl n:

<pl ug-i n cl assNane="org. apache. struts. val i dat or. Val i dat or Pl ugl n" >
<set-property
pr oper t y="pat hnames"
val ue="/WEB- | NF/ val i dat or -rul es. xni , / WEB- | NF/ val i dat or . xm "/ >
</ plug-in>

There was some confusion in one of the earlier beta releases for the
Validator that used multiple set - property elements. That is no
longer supported and you should use a single set - property
element that specifies multiple Validator resource files, separated by a
comma. Also notice that the property valueisthe plural pat hnamnes.

The Struts framework will call the i ni t () method in the Val i dat or Pl ugl n class
when the application starts up. During this method, the Validator resources from the
XML files are loaded into memory, so that they will be available to the application.
Before calling the i ni t () method however, the pat hnanmes property value will be
passed to the Val i dat or Pl ugl n instance. This is how the Val i dat or Pl ugl n
finds out which Validator resources to load. For more information on how the Pl ugl n
mechanism works, see Using the Plugin Mechanism in Chapter 9.

264



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Overview of Regular Expressions

It would obviously be a waste of time to cover everything that you need to know about
regular expressions in this book. On the other hand, since the Validator framework relies
heavily on regular expressions, it would be beneficial to go over some basics.

[Note to Reviewers: | was planning on including a very brief introduction to regular
expression here. | wanted your opinion before including it. Chuck]

Using an Act i onFor mwith the Validator

You can't use the standard Struts Act i onFor mclass with the Validator. Instead, you
will need to use a subclass of the Act i onFor mclass that is specifically designed to
work with the Validator framework. There are two root subclasses to select from
depending on whether or not you are planning to use dynamic Act i onFor rs. Figure
11-1 shows the Act i onFor mand its descendants to help you visualize the hierarchy
better.

winterfaces
DynaBean
+ged|) —
+5alf) K _i
+ramova(] I DynadctionForm| | ActionForm
rgetDymaClassy) | -dynaClass
T “dynavalues rresel()
+reset() +validate()
DynaValidatorForm ValidatorForm
rage -page
-validatorResults FualidatlorResulis
+reset(] treset()
+yalidatar) +yalidate)
DynaValidatorActionForm ValidatorActionForm
=validata() +validate()

Figure 11-1. The Act i onFor mClass Hierarchy

If you are wusing dynamic ActionForns, then you should use the
DynaVal i dat or For m branch of the hierarchy. If you are using standard

265



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Act i onFor ns, then you can use the Val i dat or For m or one of its descendants
instead.

Whether you use dynamic Act i onFor s or regular Act i onFor ns,
the manner in which you configure the Validator is the same. Just be
sure that whichever Act i onFor msubclass you choose, you configure
the f or m bean section of the Struts configuration file using the fully
qualified class name. See The form-beans Element in Chapter 4 for
more details.

Dynamic or non-dynamic is only the first decision that you have to make. There is
another decision that you must make regarding choosing the proper Acti onForm
subclass. Notice that in both the dynamic and non-dynamic branch of the Act i onFor m
hierarchy in Figure 11-1, there are two versions of Val i dat or For mto choose from.
The parent class is just called Val i dat or For m or DynaVal i dat or For mfor the
dynamic branch.

Each one of these has a subclass that contains the name Act i on initstitle. The subclass
of the Val i dat or For mis called Val i dat or Acti onFor m and the one for the
dynamic version is called DynaVal i dat or Acti onFor m The reason for the two
different versions is whether you want to associate the validation with the form-bean
definition or the action definition. The versions of the classes in Figure 11-1 that contain
the word Act i on in their title pass the pat h attribute from the action element into the
Validator. Therefore, the Validator will use the action’s name to look up the validation
rules. If you use the Val i dat or For mor DynaVal i dat or For m the name of the
Act i onFor mis used to lookup the set of validation rules to use. The only reason for
using one or the other is have finer-grained control over which validation rules are
executed. For example, supposed that an Act i onFor mcontain three different validation
rules, but only two of them should get executed for a particular action. You could
configure the rules to only perform the subset of validation rules when that action gets
invoked. Otherwise, al of the rules would be invoked. In general, Val i dat or For mor
DynaVal i dat or For mwill be sufficient for your needs.

It would be helpful to provide a more complete example of using the Validator
framework. As with previous chapters, we'll employ the Storefront application to help us
understand the Validator better. In particular, we'll look at the HTML form used to
capture the shipping information during checkout of the Storefront application. This is
shown in Figure 11-2.

266



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

a wirlual Shopping wilh Sliuls - Miciosclt Inteimnet Edploiesn pievided by Dooll

| B Edt wew Fovoie: Took  Heln i
=L D : | 2 (24 @ *

| Back ] Siop Fialazh Hama ERp Frrm e Flacka
| egcres [ hiip: ¢ oc s SR cowiion A achion begincheck ok =l |
=

Wiirnial 8 haDaHag
with Brmts Helln Jnhn shynofi?

1ems in shopping et 1 m

Currert Totsl SE000

IEEDEEE oconeeron Sinma sacutud STOm LoSands CRDIR GTATUS T ACCOUNT
Shipping Address

Entar Shipping Sddiess
Fleszs completa tha fellewing shipping infermatien for thia ardar,

All shipping mfrrmation is roguirad,

First Kams I—
Lawt Fams I—
Struet Address I—
City I—
_— e =
e

- —

4 | o

] Do (¥ Local irare: o

Figure 11-2. Capturing the Shipping Address Information

For this example, we are going to use a dynamic form. Therefore we are going to use the
DynaVal i dat or For m class to capture the shipping address details. Because the
checkout process will span multiple pages, and we want to capture this information
across pages, we will need to configure the form bean to be session scope. We are also
going to capture all of the checkout propertiesin asingle Act i onFor mclass. Instead of
having a Shi ppi ngFor mand a Cr edi t Car dFor m we will have a single form that
captures all of it called Checkout For m

In our Struts configuration file, we setup the checkout For mas shown here:

<f or m bean
nane="checkout For n{
dynam c="t r ue"
type="org. apache. struts. val i dat or. DynaVal i dat or For m{ >
<formproperty name="firstName" type="java.lang. String"/>
<formproperty name="| ast Nane" type="java.lang. String"/>
<formproperty name="address" type="java.lang. String"/>
<formproperty name="city" type="java.lang. String"/>
<formproperty name="state" type="java.lang. String"/>
<form property name="postal Code" type="java.lang. String"/>

267




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

<formproperty name="country" type="java.lang.String"/>
<form property name="phone" type="java.lang. String"/>
</ f or m bean>

Notice that the t ype attribute specifies the exact Act i onFor msubclass that we chose
and have also set the dynami c attribute to true. These are two common setup mistakes
that newcomers to the framework make.

The next step is to edit the application-specific validation logic, which is done in the
validation.xml file. You must declare a validation rule for each property in the form that
you need to validate. In some cases, you might need to specify multiple ones. In Figure
11-2 for example, the phone field is required and it must fit a specific format. These are
two separate rules that must evaluate to true or the validation for the form fails. The
entire validation.xml file will not be shown, because it's too large and most of it is
redundant. A small section will be shown that will help you understand how things are
connected. Thisis shown in Example 11-2.

Example 11-2. A Sample validation.xml for the Checkout Form

<f or nset >
<const ant >
<const ant - nane>phone</ const ant - nane>

</ const ant >
<const ant >
<const ant - nane>zi p</ const ant - nane>
<const ant - val ue>"\ d{ 5} (-\ d{ 4}) ?$</ const ant - val ue>
</ const ant >
<f or m nane="checkout For m >
<field
property="first Nanme"
depends="r equi r ed, mask" >
<arg0 key="label . firstNane"/>
<var >
<var - nane>nask</ var - nane>
<var-val ue>"[ a- zA- Z] *$</ var - val ue>
</var >
</field>
<field
pr oper t y="post al Code"
depends="r equi r ed, mask" >
<arg0 key="regi strati onFormfirstnare. di spl aynane"/>
<argl nanme="m nl ength" key="${var: mnlength}" resource="fal se"/>
<var >
<var - nane>nask</ var - nane>
<var - val ue>${ zi p} </ var - val ue>
</var >
</field>
<field
pr oper t y="phone"
depends="r equi r ed, mask" >
<arg0 key="regi strati onFormfirstnare. di spl aynane"/>
<argl nane="mnl ength" key="${var:mnlength}" resource="fal se"/>

268

<const ant -val ue>\ (?2(\d{3})\)?[-| 1?2(\d{3})[-| 1?(\d{4})$</constant-val ue>




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

<var >
<var - nane>nask</ var - nane>
<var - val ue>${ phone} </ var - val ue>
</ var >
</field>
</ fornp
</ fornset >
</formvalidation>

Using the Validator Framework

Not that we have everything configure for the Storefront example, it's time to run the
example. The nice thing about using a declarative approach versus a programmatic one is
that, once you have everything configured, you're ready to go. The absence of
programming makes the declarative approach much simpler. This is especially true for
the Validator framework. There's nothing to code, as long as the default validation rules
satisfy your requirements.

When we submit the shipping address page with no information in the fields, the
validation ruleskick in and the result is shown in Figure 11-3.

269




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

/43 Virtual Shopping with Struts - Microsoft Internet Explorer provided by Dell
J File Edit ‘Wiew Favoites Toole Help |
b »
-0 QD A Q B> )
Back Fanwarnd Stop Refresh Home Search Favarites Media
J Address Iﬂj http: ##localhost 8080/ storefront/action/getPaymentinfo j
=l
WVirmal Shopping
with Struts Hello John sign off?
tems in shopping cart: 4 U]‘E[
Current Total: $89.00
m INFORMATION CEMTER  ABOUT US  STORE LOCATOR ORDER STATUS MY ACCOUNT
» First Name is required.
& Lagt Name is required.
o Address is required.
& City iz teguired.
& State iz required.
e Postal Code is required.
e County is reuired.
* Phone iz required.
Shipping Address
Enter Shipping Address |
Please complete the following shipping inforrnation for this arder,
All shipping information is required.
First Name I
Last Mame I
Stveat Addvass | T
4] | »
=) [ | [EE Localinmanet i

Figure 11-3. The Shipping Address Page using the VValidator Framework

Creating your own Validation Rules

The Validator framework is pre-configured with many of the most common rules that
you'll likely need for your Struts applications. If your application has validation
requirements that are not meet by the default ones, you have complete freedom to create
your own. There are severa steps that you must follow however, to create your own
customized rules.

1. Create aJava class that contains the validation methods.

2. Edit the validation-rules.xml file or create your own version. If you do create a new
validation resource file, be sure to add it to the list of resource files in the Validator
Pl ugl n.

3. Usethe new validation rulesin the validation.xml file for your application.

270



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

For each validation method you create, it needs to have the following signature:

public static bool ean validatexXXX( java.lang. bject,

or g. apache. conmons. val i dat or . Val i dat or Acti on,
or g. apache. conmons. val i dat or . Fi el d,

org. apache. struts. action. Acti onErrors,

javax. servl et. http. HtpServl et Request,

j avax. servl et. Servl et Cont ext ) ;

where val i dat e XXX can be whatever you want it to be, aslong as it's not a duplicate
rule name. Table 11-3 explains what the argumentsto the val i dat eXXX() method are

used for.

Parameter
oj ect

Table 11-3. Theval i dat eXXX() Method Arguments

Val i dat or Acti on

Field

ActionErrors

Ht t pSer vl et Request

Ser vl et Cont ext

Description
The JavaBean that validation is being performed on

Thecurrent Val i dat or Act i on being performed
TheFi el d object being validated

The errors objectsto add an Act i onEr r or toif the
validation fails

The current request object

The application's Ser vl et Cont ext

In most cases, the method should be static. However, you can define instance-level
methods, but you must ensure that the methods are thread-safe. Example 11-3 illustrates a
new validation rule that determines whether a String value is avalid boolean.

i nport
i nport
i nport
i nport
i nport
i nport
i nport

public

Example 11-3. A Validation Rule that Validates a Boolean Value

inport java.io.Serializable;

inport java.util.Locale;

inport javax.servlet. Servl et Cont ext;
inport javax.servlet.http. HtpServl
or g. apache.
or g. apache.
or g. apache.
or g. apache.
or g. apache.
or g. apache.
or g. apache.

commons. val i dat or
commons. val i dat or
commons. val i dat or
conmmons. val i dat or
commons. val i dat or
struts. action. Act
struts.util.Strut

et Request ;

.Field;

. Generi cTypeVal i dat or;
. GenericValidator;
.Val i dat or Acti on;
.ValidatorWil;
ionErrors;
sValidatorWil;

class Newval i dator inplenments Serializable {

String value = nul | ;
/1 The boolean is stored as a String val ue
if (field getProperty() !'= null

public static bool ean val i dat eBool ean( (bj ect bean,

Val idatorAction va, Field field,
ActionErrors errors,
H t pSer vl et Request request) {

&& field getProperty().length() > 0){

271




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

value = ValidatorWil.getVal ueAsString(bean, field.getProperty());
}

Bool ean result = null;
try {

result = Bool ean. val ue (val ue);
} catch (Exception e){

/1 Do Nothing on Purpose

Il Oreate an ActionkError for the failed validation
if (result == null) {
errors.add( field.getKey(),
StrutsValidatorWil.getActionError(request, va, field));

}

/!l Returns true if the value was successful converted, false otherw se
return (result !'=null);

}

}

Step 2 isto add this new rule to the validation-rules.xml file, or to a new file just to keep
your customized rules separate. The val i dat or element for the val i dat eBool ean
rule should look something like:

<val i dat or nane="bool ean"
cl assname="Newval i dat or "
met hod="val i dat eBool ean"
net hodPar ans="j ava. | ang. (bj ect,
or g. apache. conmons. val i dat or. Val i dat or Act i on,
or g. apache. conmons. val i dat or . Fi el d,
org. apache. struts. action. Acti onErrors,
javax. servlet. http. HtpServl et Request "
nsg="errors. bool ean" >

The final step isto utilize the new validation rule in the validation.xml file. Thisinvolves
creating af i el d element that matches to a boolean property on an Act i onFor m

<field
property="sendEnai | Confi rmation"
depends="r equi r ed" >
<arg0 key="|abel . emai | confirmation"/>
</field>

TheValidator and JSP Custom Tags

There are several JSP custom tags that are included within the Struts tag libraries that can
be used with the Validator framework. One of the tags is used to generate dynamic
JavaScript based on the validation rules. The other tags are part of the core Struts
framework and are used both with and without the Validator.

The tags listed in Table 11-4 are generic and can be used with or without the Validator
framework, but come in handy when using the Validator framework.

272




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Table 11-4. JSP Custom Tags that can be used with the Validator

Tag Name Description

Errors Tag Displays any validation errors found during processing
Error sExi st Tag Determines if there were any validation errors
Messages Tag Displays any messages found during processing

MessagesExi st Tag Determinesif there were any messages during processing

Thetagsin Table 11-4 allow JSP pages to detect and obtain access to messages or errors
that were detected in the Struts application. These tags were discussed in more detail in
Chapter 8.

Using JavaScript with the Validator

The Validator framework is also capable of generating JavaScript for your Struts
application using the same framework as it does for server-side validation. This is
accomplished by using a set of JSP custom tags that are designed specifically for this
purpose.

Configuringtheval i dati on-rul es. xm Filefor JavaScript

The Validator custom tag called Javasci pt Val i dat or isused to generate client-side
validation based on a j avascri pt attribute being present within the val i dat or
element. Before the JSP custom tag can be used, there must be aj avascri pt element
for the validation rule. The following code fragment illustrates the r equi r ed validation
rulethat includesaj avascri pt element:

<val i dat or
name="requi r ed"
cl assnanme="or g. apache. struts. util.StrutsValidator"
net hod="val i dat eRequi r ed"
net hodPar ans="j ava. | ang. (bj ect,
or g. apache. conmons. val i dat or. Val i dat or Act i on,
or g. apache. conmons. val i dat or . Fi el d,
org. apache. struts. action. Acti onErrors,
javax. servlet. http. HtpServl et Request "
nsg="errors.required">
<j avascri pt ><! [ CDATA
function validateRequi red(fornm {
var bvalid = true;
var focusField = null;
var i = 0;
var fields = new Array();
oRequi red = new required();

for (x in oRequired) {

if ((fornmfoRequired[x][0]].type == "text"' ||
fornfoRequired[x][0O]].type == "textarea' ||
fornfoRequired[ x][0]].type == 'sel ect-one' ||

273




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

fornfoRequired[x][0]].type == "'radi o' ||
fornfoRequired[x][0]].type == 'password ) &%
fornfoRequired[x][0]].value =="") {
if (i ==0)
focusField = fornfoRequired[x][0]];
fields[i++] = oRequired[x][1];
bvalid = fal se;
}
}

if (fields.length > 0) {
f ocusFi el d. f ocus() ;
alert(fields.join("\n"));

}
return bvalid;
HI1>

</javascri pt>
</val i dat or >

When the Javascri pt Val i dat or tag isincluded in the JSP page, the text from the
j avascri pt element iswritten to the JSP page to provide client-side validation. When
the user submits the form, the client-side validation is executed and any validation rules
that fail present messages to the user.

You will need to include the j avascri pt tag with the name of the Act i onFor mthat
it's going to validate against:
| <htm :javascript fornmNane="checkout Forni/>

The f or mMNane attribute is used to lookup the set of validation rules to include as
JavaScript in the page. You will manually have to add an onsubni t event handler for
the form:

| <ht i : formaction="get Payment | nfo" onsubm t="return val i dat eCheckout Forn{this);"> \

When the form is submitted, the val i dat eCheckout For n() JavaScript function
will be invoked. The validation rules will be executed and if one or more rules fail, the
form will not be submitted. The j avascri pt tag generates a function that has a name
of val i dat eXXX(), where XXX is the name of the Acti onForm So if your
Act i onFor mis caled checkout For m then the j avascri pt tag will create a
JavaScript function called val i dat eCheckout For n{) that executes the validation
logic. This is why the onsubmit() event handler was caling the
val i dat eCheckout For n() function.

By default, the Javascri pt Val i dat or tag generates both static
and dynamic JavaScript functions. If you would like to include a
separate file that contains static JavaScript functions to take advantage
of browser caching or to better organize your application, you can
utilize the dynam cJavascript and staticJavascri pt
attributes. By default, both of these are set to true. You can set the
staticJavascri pt attribute to false in your form and include a

274



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

separate JavaScript page with the dynam cJavascri pt set to false
andthest ati cJavascri pt attribute to true. See the documentation
fortheJavascri pt Val i dat or tag for more information.

| nter nationalizing the Validation

The Validator framework utilizes the application resource bundles to generate the error
messages, both for client-side and server-side validation. So from an 18N perspective,

much of the work to display language-specific messages to the user isincluded within the
frameworks.

It was mentioned earlier that the f or nset element in the validation.xml file supports
attributes related to internationalization. Those attributes are | anguage, count ry, and
variant. As you know, these attributes correspond to the j ava. util. Local e
class. If you don’'t specify these attributes, the default Local e is used.

If you application has 118N validation requirements, you will need to create separate
fornset elements, one for each Local e that you need to support, and for each form
that you need to validate. For example, if your application had the requirements to
support validation for a form called r egi st r at i onFor mfor both the default locale
and the French locale, the validation.xml file would contain two f or nset elements; one
for the default locale and the other for the French locale. This is shown in the following
example fragment:

<f or nset >
<f orm nane="regi strati onFor m' >
<field
property="first Nane"
depends="r equi r ed, mask, m nl engt h" >
<arg0 key="regi strati onFormfirstnare. di spl aynane"/>
<argl nane="mnl ength" key="${var:mnlength}" resource="fal se"/>
<var >
<var - nane>nmask</ var - nane>
<var - val ue>"\ w+$</ var - val ue>
</var>
<var >
<var - nane>ni nl engt h</ var - nane>
<var - val ue>5</ var - val ue>
</var>
</field>
</forne
</fornset >
<fornset |anguage="fr">
<f orm nane="regi strati onFor m' >
<field
property="1ast Narre"
depends="r equi r ed, mask" >
<nsg name="mnask" key="regi strationForm | ast narme. nasknsg"/ >

275




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

<arg0 key="regi strati onForm | ast nane. di spl aynane"/ >
<var >
<var - name>nask</ var - nane>
<var - val ue>"\ w+$</ var - val ue>
</ var>
</field>
</fornp
</ fornset >

[Note to Reviewers: | need your opinion on whether the following section adds any value
to this chapter. Obviously this book is about the Struts framework, so I’m not sure how
beneficial this next section is. My thinking is that everyone building a Struts application
has some other business layer that they have to deal with; whether its EJB or just a bunch
of Java Objects and JDBC. All business layers that I’ ve written need validation logic, so
thisiswhy | mentioned this material. After reading it, any thoughts would be appreciated.
Chuck]

Using the Validator Outside of Struts

Although the Validator was originally designed to work with the Struts framework, it can
be used to perform generic validation on any JavaBean. There are several steps that must
be performed before the framework can be used outside of Struts. Although the Validator
is not dependent on the Struts framework, there has been a considerable amount of work
done inside of Struts to make it easier to utilize the Validator. This behavior will need to
be replicated for your application, if you plan to use the Validator without Struts.

The package dependencies are exactly the same for Struts and non-
Struts applications alike. The ORO, Commons Logging, Commons
BeanUtils, Commons Collections, and Digester packages are al
required. You will also need an XML parser that conforms to the SAX
2.0 specification. You will not however, need to include the Struts
framework.

The first behavior to replicate is the functions for loading and initializing the XML
Validator resources. These are the two XML files that are used to configure the rules for
the Validator. When the Validator framework is used in conjunction with Struts, the
org. apache. struts. Val i dat or. Val i dat or Pl ugl n class performs this duty.
However, sincethe Val i dat or PI ugl n is dependent on Struts, you will need to create
an alternate approach for initializing the appropriate Validator resources. To do this, you
can create a simple Java class that performs the same behavior as the
Val i dat or Pl ugl n, but doesn’t have a dependency on the Struts framework. A simple
exampleis provided in Example 11-4.

Example 11-4. A Class that Loads and Initializes the Validator Resources

inport java.util.*;
inport java.io.*;

276




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

i nport org. apache. commons. val i dat or. Val i dat or Resour ces;
i nport org. apache. commons. val i dat or. Val i dat or Resour cesl niti al i zer;

public class ValidatorLoader{

private final static String RESOURCE DELIM=",";
protected Vali dat or Resources resources = nul | ;
private String pathnames = null;

public ValidatorLoader() throws | CException {
| oadPat hnanes() ;
i ni t Resources();

}

public Validat or Resources get Resources(){
return resources;

}

public String getPat hnanes() {
return pat hnanes;

}

public voi d setPat hnames(String pat hnanmes) {
thi s. pat hnames = pat hnanes;

}

protected voi d | oadPat hnanes(){
/1 Set a default just in case
String paths = "validation-rul es.xni,validation xm";
I nput Stream stream = nul | ;

try{
/1l Load sone properties file

stream = this.getd ass().get ResourceAsStrean( "validator. properties" );
if ( stream!=null ){

Properties props = new Properties();

props. | oad( stream);

/1 Get the pathnames string fromthe properties file

paths = props. get Property( "validat or-pat hnanes" );

}catch( | CException ex ){
ex. print StackTrace();

}
set Pat hnanes( paths );
}

protected voi d initResources() throws | CException {
resources = new Val i dat or Resour ces();

if (getPathnames() != null &&% getPathnanes().length() > 0) {
StringTokeni zer st = new StringTokeni zer (get Pat hnames(), RESOJURCE DELIN);
whi | e (st.hasMoreTokens()) {
String validatorRul es = st. next Token();
validatorRules = validatorRules.trin();

277




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

I nput Streaminput = nul | ;
Buf feredl nput Streambis = nul | ;
i nput = getd ass(). get Resour ceAsStrean{ val i dat or Rul es) ;

if (input !'=null){
bi s = new Buf f er edl nput St rean(i nput);

try {
/1 pass in fal se so resources aren't processed
[/ until last file is |oaded

}catch (Exception ex){
ex. print StackTrace();
}
}
}

/'l process resources
resour ces. process();
}
}

}

The work begin done in the Val i dat or Loader from Example 11-4 is very similar to
what the Val i dat or Pl ugl n does. That is, to load and initialize an instance of the
Val i dat or Resour ces class. The object is an in-memory representation of the
validation rules for an application. This example uses the get Resour ceAsSt r ean( )
method to find and load a properties file that contains the list of Validator resource files.

Once you create and initialize an instance of the Val i dat or Resour ces class, you
will need to cache this somewhere. In a Struts application, this is cached in the
Ser vl et Cont ext . Your application can hang onto this object, or you could even wrap
the resource inside of a Singleton.

Modifyingtheval i dati on-rul es. xm File

In the section Creating your own Validation Rules of this chapter, you saw how to extend
the Validator framework with your own customized rules. Y ou’'re going to have to do this
here as well, except that the method signatures will be different. The method signature in
Example 11-3 included parameters that are part of the Servlet and Struts APIs.

[Reviewers: | got stuck right here and instead of holding onto this chapter, | thought it
best to post it asis. This section will be completed soon and reposted. Chuck]

278

Val i dat or Resourceslnitializer.initialize(resources, bis, false);




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

12

| nternationalization and Struts

Companies can no longer afford to think only about local market places. Since the mid to
late 1990s, the business world has been overrun with ideas about a world economy. All
you have to do is to look at what's happening in Europe with the Euro. Businesses and
even countries are realizing that they just can’t think about their traditional markets and at
the same time continue to grow revenue and be successful. They must start thinking
globally and attempt to bring in these global customers for their products and services.

With the explosion of the World Wide Web (WWW) starting in the mid 1990s,
companies that are conducting business on the Internet are finding out that access to their
products and services via a web site is an ideal way of attracting new customers from all
over the world. One of the key reasons is 24/7 access. Regardless of the time zone the
business or the customers are in, the Internet, and more importantly the web, alows a
customer to shop and purchase goods and services any time of the day or night.
Traditional business hours are irrelevant when it comes to the web. What unlimited
access can mean to companies and their revenue is enormous. However, for the software
developers that have to build and maintain the applications to support global customers,
the task can be daunting.

This chapter focuses on what it takes to make a Struts application available to customers
from around the world, regardless of their language or geographical location. Like many
other things in software development, planning ahead is the most important thing that you
can do to help ensure success. After reading this chapter, you should be able to build
Struts applications that make it possible to support a broad reach of customers.

279



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

What is|nternationalization?

Traditionally, software developers have focused on building applications that solve an
immediate business problem. While doing so, it’s very easy and sometimes necessary to
make assumptions about the user’'s language or country. In many of the cases, these
assumptions are valid and there's never a question as to who the audience will be.
However, if you have ever had to reengineer an application because these assumptions
weren’t correct, then you know how hard it can be to go back and correct the application
design after the fact.

Internationalization (118N), simply stated, is the process of designing your software to
support multiple languages and regions ahead of time, so that you don’t have to go back
and reengineer your applications every time a new language or country needs to be
supported. An application that is said to support Internationalization has the following
characteristics:

Additional languages can be supported without requiring code changes.
Text elements, messages, and images are stored externally to the source code.

Culturally dependent data such as date and times, decimal values, and currencies are
formatted correctly for the user’s language and geographic location.

Has support for non-standard character sets.
Can quickly be adapted to new language and/or region.

When you internationalize an application, you can't afford to pick and choose which
options you want to support. You must implement all of them or the process breaks
down. If auser visited your web site for example, and all of the text, images, and buttons
were in the correct language, but the numbers and currency were not formatted correctly,
this would make for an unpleasant experience for the user.

Ensuring that the application can support multiple languages and regions is only the first
step. You still must create localized versions of the application for each specific language
and/or regions that you wish to support. Fortunately, here’ s where the benefits of 118N on
the Java platform pay off. For applications that have been properly internationalized, all
of the work to support a new language or country is done external to the source code.

A locale is a region (usually geographic, but no necessarily so) that shares customs,
culture, and language. Localization (L10N) is the process of adapting your application,
which has been properly internationalized, to a specific locale. For applications where
18N support hadn’t been planned or built in, this usually means changes to text, images,
and messages that are embedded within the source code. After the changes are applied,
the source code might need to be recompiled. Imagine doing this time and time again for
each new locale that you had to support. Applications that are written for a single locale
are commonly referred to as myopic.

280



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

According to Richard Gillam, from the Unicode Technology Group, whose group
designed much of the Internationalization support in the Java libraries,
“Internationalization is not a feature”. Users will expect that the products they use will
work for them, in their native language. Things go wrong and users get unhappy when
assumptions that you make are incorrect. Start planning early for 118N support in your
applications. Even if it doesn’t look like your going to need it, you'll be that much ahead
and it will not hinder or slow down development as long as you do it right from the start.

Obviously not every application needs support for Internationalization.
Some developers and development organizations frown on adding in
functionality that isn't part of the requirements. Even if your
application truly has no requirements to support more than a single
locale, there are till benefits that you can gain from including some
aspects of 118N. For example, by using resource bundles for al of your
static text, you can save development and more importantly
maintenance time. We'll see exactly how to accomplish this later in
this chapter.

Support for 118N in Java

Java provides a rich set of 118N features in the core library. This section will briefly
discuss a few of those core features. The 118N support in the Struts framework relies
heavily on these components. Having an understanding of how the Java 118N
components cooperate with each other will go a long way in understanding how to
internationalize your Struts applications. The topic of Internationalization is too broad to
cover in depth in this book. A good source on the topic is the book Java
Internationalization by Deitsch and Czarnecki published by O’ Reilly.

TheLocal e Class

Thejava. util. Local e classisundeniably the most important of all I18N classesin
the Java library. Almost al of the support for internationalization and localization in or
around the Java language relies on this class.

The Local e class provides Java instances of the locale concept mentioned earlier. A
particular instance of the Local e represents a unique language and region. When a class
in the Java library modifies its functionality during runtime based on a Local e object,
it's said to be locale-sensitive. For example, the j ava. t ext . Dat eFor nat islocae-
sengitive since it will format a date differently, depending on a particular Local e object.

TheLocal e objectsdon’t do any of the 118N formatting or parsing work. They are used
as identifiers by the locale-sensitive classes. When you acquire an instance of the
Dat eFor mat class, you can pass in a Locale object for the United States (US). The

281



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Dat eFor mat class does all of the locale-sensitive parsing and formatting; it only relies
ontheLocal e toidentify the proper format.

You should be very careful when using the j ava. t ext . For mat
class or any of its descendants, including DateFornat,
Nunber For mat , and Si npl eDat eFor nat because they are not
thread-safe. The thread-safety problem exists because an instance of
the Cal endar class is stored as a member variable and accessed
during the par se() and f or mat () method invocations. You will
need to use a separate instance for each thread or synchronize access
externally. Don’'t store a single instance somewhere like application
scope and allow multiple client threads to access it. You can however
store instances in the user’s session and use different instances for each
user to help ensure thread-safety. The thread-safety problem includes
al versions of Java, including 1.4. The APl documentation for the
For mat classes has been updated to indicate the known design issue.

When you create aLocal e object, you typically specify the language and country code.
The following code fragment illustrates the creation of two locale objects, one for the US
and the other for Great Britain.

Local e usLocal e = new Local e("en", "US");
Local e gbLocal e = new Local e("en", "GB");

The first argument in the constructor is the language code. The language code consists of
two lower-case letters and must conform to the 1SO-639 specification. You can see a
complete listing of the available language codes at
http: //mwwww.uni code.or g/unicode/onlinedat/languages.html.

The second argument is the country code. It consists of two upper-case letters that must
conform to the 1SO-3166 specification. The available country codes are available from
the same site at http://www.unicode.or g/unicode/onlinedat/countries.html.

The Local e class provides several static convenience constants that allow you to
acquire an instance of the most often used locales. For example, if you wanted to get an
instance of a Japanese locale, the following two are equivalent:

Local e. JAPAN
new Local e("ja", "JP");

Local e | ocal el
Local e | ocal e2

The Default Locale

The VM will query the operating system when first started, and set a default Local e
for the environment. Y ou can obtain the information for this default locale by calling the
get Def aul t () method ontheLocal e class:

| Local e defaul tLocal e = Local e. get Defaul t ();

282



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

The web container will normally utilize the default locale for its local environment, while
using the one passed from the client in the Ht t pSer vl et Request to display locae-
sensitive information back to the end user.

Determining the User Locale

In the last section, you saw how to create Local e objects in Java by passing in the
language and country code to the Local e constructor. Within web applications,
including those built using the Struts framework, you rarely ever have to create your own
locale instances because the container will do it for you. The Ser vl et Request
interface contains two methods that can be called to retrieve the locale preferences of a
client:

public java.util.Local e getlLocal e();
public java.util.Enuneration getLocal es();

Both of these methods utilize the Accept - Language header that is part of each client
reguest sent to the servlet container.

Since the web server doesn’'t keep a long-term open connection with a
browser, the client locale preference is sent to the servlet container with
each request. Although the user’s locale information may be sent with
each request, Struts by default, will only retrieve the information once
and store it into the user’s session. The Local e, if stored into the
session, is stored with a key of Acti on. LOCALE_KEY, which
trandatesto the string or g. apache. struts. acti on. LOCALE.

You can configure whether Struts stores the user’s locale into the
session or not by setting the locale attribute in the control | er
element within the Struts application configuration file. If you don't
provide a value for the | ocal e attribute, it defaults to false. See
chapter 4 for more information on configuring the locale.

The get Local e() method on the Htt pServl et Request object returns the
preferred locale of the client, while the get Local es() method returns an
Enuner at i on of preferred locales in decreasing order of preference. If a client doesn’t
have a preferred locale configured, the servliet container will return its default locale.
Example 12-1 illustrates how to determine thisinformation using a servlet.

Example 12-1. Determining the User’s Locale Information in a Serviet

inport java.io.|CException;

inport java.io.PrintWiter;

inport java.util.Enureration;

inmport java.util.Local e;

i nport javax.servlet. ServletConfig;

i nport javax.servlet. Servl et Exception;

inport javax.servlet.http. HtpServlet;

inport javax.servlet.http. HtpServl et Request;

283




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

inport javax.servlet.http. HtpServl et Response;

/**

* Prints out information about a user's preferred | ocal es
*

/

public class Local eServlet extends HtpServlet {

private static final String CONTENT _TYPE = "text/htm";

/**

* Initialize the servlet

*/

public void init(ServletConfig config) throws ServletException {
super.init(config);

}

/**
* Process the HITP Get request
*/
public void doGet (HtpServl et Request request, HtpServl et Response response)
throws Servl et Exception, |CException {
response. set Cont ent Type( CONTENT_TYPE) ;
PrintWiter out = response.getWiter();

out.println("<htm>");
out.println("<head><title>The Exanpl e Local e Servlet</title></head>");

out. println("<body>");

/1l Retrieve and print out the user's preferred |ocal e

Local e preferredLocal e = request. get Local e();
out.println("<p>The user's preffered Locale is " + preferredLocal e + "</ p>");

/1 Retrieve all of the supported |ocal es of the user
out.println("<p>A list of preferred Local es in descreasing order</p>");

Enunerati on al | User Support edLocal es = request. get Local es();

out.println("<ul>");

whi | e( al | User Support edLocal es. hasMr eH erment s() ) {
Local e supportedLocal e = (Local e)al | User Suppor t edLocal es. next El enent () ;
out.println("<li>Locale: " + supportedLocale + "</Ii>");

out.println("</ul>");

/1l Get the container's default |ocale
Local e servl et Cont ai ner Local e = Local e. getDefaul t();
out.println("<p>The containers Locale " + servletContainerLocale + "</p>");

out. println("</body></htm>");
}
}
When you execute the serviet from example 12-1, you should see output similar to the
browser output in Figure 12-1.

284




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

/3 The Example Locale Servlet - Microsoft Internet Explorer provided by Dell
J File  Edit  “iew Fawortes Tool: Help ‘
= s O A Q ?
Back Eanyard Stop Refresh Home Search
J Address I’.Gj hittp: / flocalhost: 8080/ zervlat/LocaleS erviet j
The uset's preffered Locale iz en T3
& list of preferred Locales in descreasing order
e Localeren 113
e Locale: de
# Locale:de_ LI
e Localeres T3
The containers Locale en 113
|2j Daone l_ l_ l_ Local intranet S

Figure 12-1. The browser output from Example 12-1

The output may be different if you have different locales configured for your system.
Most Internet browsers allow you to configure the locales you prefer to support. With
Microsoft Internet Explorer for example, you can edit the “languages’ from the Tools-
Internet Options pull down menu.

Getting the user’'s locale within the Struts framework is very easy. There are, in fact,
several ways of getting the stored Local e for the user, depending on where you are
trying to access it from. If you are within an Act i on class for example, you can simply
call theget Local e() method that’'s defined in the Struts base Act i on. You will need
to pass the request object to this method, since it will need to use the Ht t pSessi on to
obtain the locale.

Obtaining the user’s locale from anywhere else is also straightforward because you can
simply get it directly from the session using the Act i on. LOCALE KEY mentioned
earlier. Remember that the get Local e() method on the request object returns the
client's preferred locale, if one has been configured. However, the Struts framework
might have already obtained it and placed it into the user’s session for you. Y ou should
usethe Local e object configured in the user’s session, if present.

If your application alows a user to change locales on the fly, then you may have to call
the get Local e() method on each new request to see if the user has changed locales.
An example of doing this was shown in the Cust onRequest Processor class in
Example 5-4 of Chapter 5.

285



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Java Resour ce Bundles

The j ava. util . ResourceBundl e class provides the ability to group a set of
resources together for a given locale. The resources are usually textual elementslike field
and button labels and status messages, but can also be items such as image names, error
messages, and page titles.

The Struts framework does not use the Resour ceBundl e provided by the core
language. Instead, it provides similar functionality with the classes within its framework.
Theorg. apache. struts. util.MessageResour ces classand itsonly concrete
subclass, or g. apache. struts. util.PropertyMessageResour ces, are used
to perform parallel functionality to that of the Resour ceBundl e hierarchy. If you
understand the fundamentals of the Resour ceBundl e in the code library, then you
basically understand how the version with the Struts framework operates.

In retrospect, the MessageResour ces should have at least been a
subclass of the Java Resour ceBundl e.

You'll see an example of creating a resource bundle for a Struts application later in the
“ The Struts Resource Bundle” section of this chapter.

TheMessageFor mat Class

The Java Resour ceBundl e, aswell asthe Struts MessageResour ces class, alows
for both static and dynamic text. Static text is used for elements like field and button
labels where the localized strings are used exactly as they are in the bundle. In other
words, the text for the message is known ahead of time. With dynamic text, part of the
message may not be known until runtime. To help make the difference clearer, let’s look
at an example.

Suppose you needed to display a message to the user informing them that the name and
phone input fields were required to save a new user record. One approach would be to
add entries to the resource bundle like this:

error.requiredfield. name=The Nane field is required to save.
error.requiredfield phone=The Phone field is required to save.

/1l other resource nessages...

This approach works fine, but what if there were hundreds of required fields? The
resource bundle would become very large and would be difficult to maintain. Notice how
the only difference between the two messages is the name of the field that is required.

A much easier and more maintainable approach is to utilize the functionality of the
j ava. t ext . MessageFor mat class. Thiswould allow you to do something like this.

| error.requiredfiel d=The {0} field is required to save.

286



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

| abel . phone=Phone
| abel . nane=Narre

The values that are not known until runtime are substituted in the message by a set of
braces and an integer value. The integer inside the braces is used as an index into an
oj ect[] that is passed in with the f or mat () message of the MessageFor mat
class. Example 12-2 provides an example of this.

Example 12-2. Using the MessageFormat Class to Format Messages with Variable Text

inmport java.util.ResourceBundl e;
inport java.util.Locale;
inport java.text.MessageFor mat;

public class Fornat Exanpl e {

public static void nain(String[] args) {
// Load the resource bundl e
Resour ceBundl e bundl e = Resour ceBundl e. get Bundl e( " Appl i cati onResour ces"

/1 Get the message tenpl ate
String requiredFi el dvessage = bundl e.getString( "error.requiredfield" );

I/l Oreate a string array of size one to hold the argunents
String[] nessageArgs = new String[1];

/1 Get the "Nane" field fromthe bundle and load it in as an argunent
nessageArgs[ 0] = bundl e.get String( "I abel . nane" );

/1 Format the nessage using the nessage and the argunents
String formattedNanmeMessage =
MessageFor mat . for mat ( requi redFi el dMessage, nessageArgs );

Systemout. println( fornattedNaneMessage );

/1 Get the "Phone" field fromthe bundle and load it in as an argument
nessageArgs[ 0] = bundl e.get String( "I abel . phone" );

/1 Format the nessage using the nessage and the argunents
String formattedPhoneMessage =
MessageFor mat . for mat ( requi redF el dMessage, nessageArgs );

Systemout. println( fornattedPhoneMessage );

}

}

Messages that contain variable data are known as compound messages. Using compound
messages provides the ability to substitute application specific data into messages from
the resource bundle during run-time. It can also reduce the number of messages that your
application requires in the resource bundle, which can decrease the amount of time that it
takes to trandlate to other locales..

287




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Using compound messages in your resource bundles can make
trandation a little harder because the text contains substitution values
that are not known until runtime. Human translators must take into
account where the variable text goes in the localized message, because
the substitution values may need to be in different positions in the
message for different languages.

The Struts framework includes the capabilities of the MessageFor mat class, but
encapsul ates the functionality behind the components within the framework.

Multilingual Support

Most of us cringe at the thought of supporting user groups that are in one of several
possible locales. In many cases however, once an application has been installed and
localized, it's like any other single-locale application. The users that access the
application are either all from the same locale, or at least similar enough that the language
and cultural differences are insignificant.

Multilingual applications on the other hand take internationalization to the next level by
allowing users from different locales to access the same application. This means that the
application has to be flexible enough to detect the user’s locale and format everything
based on that locale. Believe it or not, this is much harder to do than just localize an
application. The issues dealing with currency alone can make you go screaming out of
the room.

The discussion of building multilingual applications is so large that it can’t be covered
satisfactorily in abook of thistype. For the remainder of this chapter, we'll stick with just
the everyday internationalization problems that you'll face and not focus on multilingual
support.

| nter nationalizing your Struts Applications

The internationalization support provided by the Struts framework focuses almost
exclusively on the presentation of text and images for the application. Functionality such
as accepting input from non-traditional languages is not covered within the Struts
framework.

As you've aready seen, depending on your Struts configuration settings, the framework
can determine the preferred locale for a user and store it into the user’s session. Once the
user's locale has been determined, Struts can use this locale to lookup text and other
resources from the resource bundle. The resource bundles are essential components in the
Struts framework.

288



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

The Struts Resour ce Bundle

Asyou saw in Chapter 4, each one of your Struts applications can be configured with one
or more resource bundles. The information within each bundle is available to actions,
action forms, JSP pages, and custom tags alike.

Creating a Struts Resour ce Bundle

You need to create a resource bundle that follows the conventions of the
Propert yResour ceBundl e class from the Java core library. That is, you need to
create a text file that has an extension “.properties’ and which adheres to the guidelines
discussed in the JavaDoc for thej ava. uti | . Properti es class. The most important
of these guidelinesis that the format of the messages within thisfileis:

| key=val ue

Example 12-3 illustrates a properties file called StorefrontResources.properties that can
be loaded by the Struts framework.

Example 12-3. A Smple Struts Resource Bundle

error.requiredfield=The {0} field is required to save.
| abel . phone=Phone
| abel . name=Nane

You must be sure to name the message resource file with the extension “.properties’ or
the Struts framework will not be able to load it.

Notice that the keys used in examples 12-3 are separated by a period ‘.’
character. We could have also used other characters in the keys or we
could have used a single-word key like labelPhone=Phone. Using
name spacing in your keysis a great way to organize the localized text
to make maintenance easier and to prevent name collisions. This is
similar to how Java classes utilize package names.

You have to be careful however when using characters other than the
period character as a separator. The colon “:” character for example can
also be used to separate the key and the value instead of the equal sign
“=" and will cause problems if you use it within your key. If you don’t
want to use the period character in your keys, you can aso safely use

the underscore or the hyphen characters.

Resour ce Bundle Naming Guidelines

The naming of the resource bundle is critical to it working properly. All resource bundles
have a base name that is selected by you. In example 12-3, the name
St or ef ront Resour ces was used as a base name. If you needed to provide an
additional localized resource bundle for the “French” language and the country “Canada’,

289



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

you would create a properties file caled
St oref ront Resouces_fr _CA. properti es withthe appropriate localized text.

When the Struts framework searches for a message from one of the bundles, it looks for
one that that is the closest match, based on the base name and the locale. If no locale is
provided, it will use the default locale for the VM. Only when it fails to find a resource
bundle with a specific language and country code as part of the name will it default to the
base resource bundle. The base resource bundle is the one without any language or
country code in its name.

You should always provide a base resource bundle with the set of
resource bundles for an application. If a user visits your site with a
locale that you don’t support, the application will select the base bundle
for the user.

The Resour ce Bundle and the Classpath

The resource bundle needs to be placed in a location where it can be found and loaded.
This means that the same class loader that |oads the web application must also be able to
locate and load the resource bundle. For web applications, this is generally the V\EB-
| NF/ cl asses directory.

If you provide a package name for the resource bundle, it must reside in the correct
package as well. For example, if you named your resource bundle
comoreilly.struts. Storefront Resources. properti es, then it must be
placed into the VEB- | NF/ cl asses/ com orei | | y/ strut s directory.

Accessing the Resour ce Bundle

The resource bundles for a Struts application are loaded at startup and each bundle is
represented in memory by an instance of
org.apache.struts.util.MessageResour ces class, or actualy its concrete
subclass Pr oper t yMessageResour ces.

Each MessageResour ces instance is stored in the Ser vl et Cont ext when the
application is initialized and can be accessed from just about any component within the
servlet container. However, it's more typical that you'll use a combination of the custom
tagsand the Act i onMessage or Act i onEr r or classes to access the resources, rather
than calling methods on the MessageResour ces class directly.

For example, to create an instance of an Acti onError object using one of the
messages from the default resource bundle, you can do something like this:

public ActionErrors validate(Acti onMappi ng nappi ng, HtpServl et Request
ActionErrors errors = new ActionErrors()

290

request) {



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

if(getBEmail () == null || getEnail ().length() < 1) {
errors.add("enai | ", new ActionError("security.error.enail.required"))
}
i f(getPassword() == null || getPassword().length() < 1) {
errors. add("password", new ActionError("security.error.password.required"));
}
return errors
}

The String argument passed into the constructor of the Act i onErr or class must be a
key in the resource bundle. The Acti onMessage and Act i onError classes have
several constructors, most of which allow you to pass substitution arguments in, for when
your messages are compound messages, as explained earlier in this chapter.

TheBean Tag Library MessageTag Class

The Struts framework contains several custom tags that can be used in conjunction with
the MessageResour ces for an application. One of the most important however, isthe
Message tagthat is part of the Bean tag library.

This custom tag retrieves a message string from one of the bundles for an application. It
supports optional parametric replacement if the JSP page requiresit. All you needto do is
to provide the key from the bundle and which application bundle, and the tag will write
out the information to the JSP. For example, the following JSP fragment uses the
MessageTag to write out the title of the HTML page:

<head>

<ht ni : base/ >

<titl e><bean: nessage key="global .title"/></title>

<scri pt |anguage=j avascri pt src="include/scripts.js"></script>

<l'ink
rel ="styl esheet"
href="../styl esheets/format_w n_nav_mnai n. css" type="text/css"/>
</ head>

This is one tag that you will find yourself using quite often within your Struts
applications.

Setting the Character Set

Supporting character sets other than the typical US default 1SO-8859-1 is a little tricky.
There are several steps that you must perform before your environment will be prepared
to support them. You will need to configure the application server and/or serviet
container to support the character-encoding scheme that you want to use. For example,
for Unicode you would tell the container to interpret input as UTF-8. Check with the
vendor’ s documentation, as each one will be configured differently. You can also setup a
Servlet filter to do this, but this requires a container that supports the 2.3 Serviet API.

291




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

The content Type property within the control |l er element in the Struts
configuration file needs to be set correctly. Set it to “ text/html; charset=UTF-8" for html
Unicode support. You can also specify thisin the JSP pages by putting the following line
at the top of the JSP page:

|<9&?page content Type="text/htm; charset=utf-8" %
and also thislinein the HTML head section:

<head>
<META HTTP- EQU V=" Cont ent - Type" CONTENT="text/htm ; charset=UTF-8">
</ head>

Another option is to set the content type and encoding scheme in the response object like
this:

|response.sethntentType("text/htni; char set =UTF-8") ;

But the problem is that you might have to do this is several different places, making
maintenance and customization more difficult.

The last step regarding the content type and encoding scheme is that you may have to tell
the browser to always send URLs as UTF-8. There's usualy a checkbox or option to do
this. In[E 5.5, it’s in the advanced options section.

There are two final steps to accomplish to ensure your application can fully support
Unicode. The first is to make sure your database is configured for Unicode. This is
usually the default, but check to be safe. And second, if you're using the JRE rather than
the SDK, you'll want to use the 118N version and not the US version.

Exception Handling and I nter nationalization

Exception handling was covered in detail back in chapter 10 and as you saw, there are
also 118N issues that need to be considered when building an exception-handling
framework for your application.

Unless you intend on localizing the exception messages that get thrown, you need to
isolate the exception messages and be sure that they are never shown to the end user. The
one thing that is probably more frustrating for an end user than getting an exception
message or stack trace printed out on the screen, is getting one that is not in your native
language.

As the chapter on exception handling pointed out, exceptions should be caught and
localized messages should be displayed to the user. This can be accomplished by using
the Struts message resource bundle and the Act i onError class. You should never
display a Java exception to the end user. Even when there's a system failure that can’t be
recovered from, you should still have a system error page that is localized for the user.

292



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

13

Struts and Enterprise JavaBeans
(EJB)

As you've seen so far, you can use Struts to build both the controller and the view
components of an MV C-based application. Strutsisn’t a framework for business logic or
data access, so it doesn’t play arole in the model component. First of all, this means that
business logic (other than presentation validation) would be out of place in an action or
form class. It also means that choosing to use Struts in an application shouldn’t place any
congtraints on the design of the model. The separation of responsibilities in a layered
architecture means that your Struts classes shouldn’t care about how your model is
implemented. Likewise, the model shouldn’'t care (or even know) that the controller and
view are built using Struts.

Up to this point, the example applications presented in this book have used the web tier to
provide everything needed from the middle tier, including the business logic and database
access. With this approach, the application model has consisted simply of regular Java
classes deployed in the web container. These classes have had complete responsibility for
servicing requests from the action classes that depend on the application model. This
architecture is common among web applications and it works well as long as the
reguirements in areas such as security, scalability, and transaction complexity stay within
the limits of what aweb container can do. Trying to do everything within the web tier can
prove to be a challenge when these requirements, which aren’t necessarily as high a
priority in the design of a web container as they are in other container types, become too
stringent.

The alternative to building the model into the web tier is to use a true application tier,
such as a J2EE application server. With this approach the web tier provides the controller
and view, and the application tier supplies the business data and its associated rules. Such

293



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

a design is appropriate when the scalability and transactional needs of an enterprise
application require a more robust container. This situation is what we want to consider in
this chapter. While it's true that the development of your Struts classes can be
independent of the model implementation, this won't happen without some effort on your
part. This chapter covers some of the issues you need to consider when developing an
interface between your Struts actions and an application tier. In particular, the focus here
ison interfacing to amodel built using Enterprise JavaBeans.

To EJB or Not to EJB?

As the J2EE architecture initially grew in significance for enterprise application
development, it was often assumed that an application that didn’t include EJB
wasn't a J2EE application at al. The rush was on to build enterprise-strength
systems backed by an EJB container and all it had to offer. For carefully
designed applications that required the type of infrastructure inherent with EJB,
the technology provided a standards-based approach that led to many successful
deployments. However, the focus on the EJB portion of J2EE also led to its use
in applications that could have been better served by more lightweight
approaches. This, along with some developers’ disappointments with the pace of
EJB’s evolution, has led to somewhat of a backlash against using EJB at all.
Developers fall on both sides of this issue, with some in the Struts community
being quite vocal in their criticism of EJB. The more moderate opinion is that
EJB offers value where its strengths are truly needed, but it can be costly both in
performance and complexity otherwise.

This chapter won't attempt to argue the pros and cons of EJB. That topic falls
outside the scope of this book. Instead, we'll simply presume that you‘ve been
asked to build a Struts-based web tier that needs to interface with an EJB
application tier. With that as a starting point, our only concerns will be to
identify the key issues to consider and come up with an effective approach for
addressing them.

294



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Implementing the Storefront Service Using
EJB

Even though this chapter is specific to EJB, the intent is till to keep the focus on Struts.
With that in mind, the discussion of EJB implementation details will be kept to a
minimum. Even though EJB is a complex topic, the nature of several design patterns
geared toward the interaction between EJBs and their clients makes this an easier task
than you might first think. After all, an overriding goal of this chapter is to demonstrate
how to design an application so that your Struts classes aren’t impacted by the choice to
use an EJB implementation of the model. Y ou aready have a head start on some of the
central issues here after seeing how the model component of a web application can be
hidden behind a service interface. In particular, you've seen through the Storefront
example how easy it isto swap a debug model with a full implementation that accesses a
database when this design approach is followed.

Throughout this chapter, the Storefront example will be used to illustrate how an EJB
application tier can be used with a Struts application. If it weren’t for the remote nature of
accessing an EJB from a client application, this implementation choice wouldn't make
any difference to you. However, the distributed aspects of EJB must be taken into
account when your web tier classes access this type of model. What you'll see in the
remainder of this chapter are some recommendations on how to best implement the code
needed to interface with the application tier. Key to this discussion is an approach for
isolating the code that handles what’s unique about EJB so that your action classes aren’t
affected.

A Quick EJB Overview

The Enterprise JavaBeans Specification defines entity, session, and message-driven as the
three EJB types. Each type of bean has a different purpose within an EJB application.
Entity beans provide transactional access to persistent data and are most often used to
represent rows stored in one or more related tables in a database. For example, you might
implement Cust onmer Bean, |tenBean, and Or der Bean entity classes, among
others, to support the Storefront application. These entity beans would incorporate the
functionality provided by the corresponding business object classes in the example
application. When entity beans are used, they take on the primary role of supplying the
application model. They are expected to provide both the required data persistence
operations and the business logic that governs the data they represent. Because the model
should be reusable across applications in an enterprise, entity beans need to be
independent of the type of clients that ultimately access the application tier.

Session beans are often described as extensions of the client applications they serve. They
can implement business logic themselves, but more often their role is to coordinate the
work of other classes (entity beans in particular). They are more closely tied to their
clients, so the precaution to keep entity beans reusable doesn’t apply to session beans to

295



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

the same extent. The application tier is primarily considered to be the application model,
but session beans are aso referred to as controllers because of the coordination they do.
Thisis especially true when session bean methods are used to implement transactions that
touch multiple business objects.

Session beans can be implemented as either stateless or stateful. A
stateless session bean maintains no state specific to its client, so a
single instance can be efficiently shared among many clients by the
EJB container. A stateful bean instance, on the other hand, is assigned
to a specific client so that state can be maintained across multiple calls.
Holding state in the application tier can simplify the client application
logic, but it makes it more difficult to scale to alarge number of clients.
Typical web applications maintain their client state in the user session,
and possibly the database, instead of making use of stateful session
beans. For this reason, we'll focus on stateless beans for our examples
here.

The EJB 2.0 Specification added message-driven beans as the third bean type so that EJB
could be integrated with the Java Message Service (JMS). Message-driven beans differ
from the other two types in that they respond asynchronously to reguests instead of being
called directly by a client application. The container invokes a message-driven bean
whenever a IMS message that meets the selection criteria of the bean is received. In a
more complex version of the Storefront example, a message-driven bean could be used to
respond to a notification that a delivery problem has resulted in an item becoming
backordered. The bean could be responsible for emailing any customers that had orders
aready in place for the item. Message-driven beans have no direct interaction with client
applications, so they are even less dependent on them than entity beans.

The Session Facade

Thefirst step in designing an interface to the application tier isto identify the entry points
that are exposed to a client application. Message-driven beans aren’t called directly, so
they don’t come into play here. However, atypical EJB application can include a number
of session and entity beans. As pointed out already, standard practice is to insulate entity
beans from the details of the client so that they can be reused in other applications. If
your Struts actions were to interact with entity beans directly, the web tier would quickly
become coupled to the object model implemented by the application tier. This tight
coupling combined with the distributed nature of EJB would lead to a number of issues:

Changes in the EJB object model would require corresponding changes in the web
tier

Action classes would often be required to execute multiple remote calls to the
application server to satisfy the business logic needs of a request

296



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

The business logic and transaction management code needed to orchestrate multiple
callswould have to exist in the web tier

To avoid these issues, the interface exposed to the clients of the application tier is limited
to the session beans in almost all cases. You'll see this approach referred to as either
Session Wraps Entity or a Session Facade. There are quite a few advantages to this
design. When aclient application makes a single call to a session bean method to perform
a required operation, the session bean can easily execute the request as a single
transaction and the implementation details can be hidden. This session bean method
might need to access a number of entity beans, or even other session beans, to satisfy the
request. No matter what the flow of control might be on the application server, the
complexity is hidden from the client. Because session beans become the only clients of
the entity beans when using a Session Facade, there's little chance of the entities
becoming tied to any particular type of external client.

Even though the discussion here assumes that the business objects are
implemented as entity beans, this doesn’t have to be the case in an EJB
application. The same concerns and advantages that support using a
Session Fagade apply when other implementations are used as well.
Just as some Java developers don't like EJB, not al EJB developers
like entity beans. Because the Session Fagade hides the object model
from the client, entity beans could be replaced with another approach,
such as Java Data Objects (JDO) or regular data access objects, without
impacting the interface exposed to the client.

The Business I nterface

When using a Session Fagade, you must first define the details of this interface between
the web and application tiers. Y ou might have some question here over which side should
be the primary driver of this contract between the two tiers. Early in the development of
the Storefront example, the | St or eFr ont Ser vi ce interface was introduced to define
the application tier functionality required to support the presentation needs of the
application. In particular, the presentation layer relies on the supporting service to
authenticate users and provide product descriptions needed to build the online catalog.
Taking a user-centered view of the application, it's easy to see how the service layer
reguirements can be driven by the web tier. After all, if a certain view is to be built, the
model functionality has to exist to support it. However, one of the main reasons to
implement an enterprise’s business logic within EJBs is to allow those business rules and
the supporting data to be used to across multiple applications. This includes providing
support for clients other than those associated with web applications. Thisisn’'t a problem
because the division of responsibility between session and entity beans helps protect the
reusability of businesslogic.

Treating session beans as extensions of the clients they serve means that there's nothing
wrong with defining a Session Fagade that’ s specific to a particular client application. As

297



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

long as your entity and message-driven beans remain independent of the client, it's
reasonable to implement a session bean interface in response to the requirements set forth
by a specific client. If multiple client views of the model are required, multiple facades
can be implemented to support them.

The fagade presented by a session bean can support either local or remote clients. Local
clients of a session or entity bean are restricted to being other EJBs deployed within the
same container. These clients are tightly coupled to the beans they access, but they offer
performance advantages when calls need to be made between EJBs. Thisis because these
method calls use pass-by-reference semantics instead of being treated as remote calls
between distributed components. Session beans are often local clients of entity beans, but
it's less common for them to have local clients of their own to support. Web tier
components obviously aren't EJBs running within the application tier, so we only care
about remote clients for our purposes here. What we need to do then is define the remote
interface for our Session Fagade.

Every session bean that supports remote clients must have a corresponding remote
interface that extends the j avax. ej b. EJBObj ect interface. It's this interface that
determines the business methods that are exposed by the session bean. It might seem
strange, but you'll almost never see a method explicitly declared in a remote interface.
Thisis because of an EJB design pattern known as the Business Interface.

When you think of a class and an interface that it's associated with, you would normally
expect that the class would explicitly implement that interface. Thisisn’t true with remote
(or local) interfaces in EJB. Instead, the container creates an intermediate object (often
referred to as an EJBObject) to implement the remote interface. This object intercepts
calls made by clients of the bean and than delegates them to the implementation class
after performing any operations such as security or transaction management that might be
required. Instead of the Java compiler verifying that the bean class implements each of
the business methods declared by the remote interface, that responsibility falls to the
deployment tools provided by the container. Even a bean class that compiles without any
errorswill fail at deployment if there's a mismatch between it and its remote interface.

If you declared a session bean to implement its remote interface you'd be guaranteed that
the compiler would catch any problems with its business method declarations. The
problem is that you'd aso have to provide dummy implementations of the non-business
methods declared by j avax. ej b. EJBObj ect . These methods would never be called
(they're called only on the intermediate object created by the container), but they would
have to be there to satisfy the compiler. Instead of taking this approach, most EJB
developers create a second interface, known as the Business Interface, that declares the
business methods that need to be exposed. By declaring the remote interface to extend
this interface and the bean class to implement it, the required methods are exposed and
the compiler can verify that the bean implements them. This pattern provides us a
convenient starting point for defining our client access mechanism.

298



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

The use of a Business Interface also prevents a programmer from
accidentally passing or returning a this reference to an instance of a
bean class that has been declared to implement its remote interface.
This topic is beyond the scope of this book, but the short explanation is
that the EJB container can only manage bean instances properly when
they're referred to using only their remote (or local) interfaces. A bean
reference can’t be returned in place of its remote interface if the bean
classimplements only its Business I nterface.

Returning to the | St or ef r ont Ser vi ce interface that must eventually be satisfied by
our implementation, recall that it contains methods related to both user authentication and
the product catalog. Even using a Session Facade, you would likely separate these
responsibilities into separate session beans. This would reduce the complexity of the
session beans involved and simplify their maintenance. However, given that EJB design
isn't our focus here, our first smplification will be to assume that our fagade will consist
of a single Storefront session bean. Y ou probably wouldn't do this in areal application,
but once you know how to interface with a single session bean, applying the same
technique to multiples session beans is straightforward. With this decision made, a
suitable Business Interface for the Storefront session bean is shown in Example 13-1.

Example 13-1. The Business Interface for the Sorefront session bean
package comoreilly.struts.storefront. service;

i nport java.rm . RenoteException;

inport java.util.List;

inport comoreilly.struts.storefront. catal og.view |tenDetail Vi ew,
inport comoreilly.struts.storefront. customner.view User\Vi ew,
inport comoreilly.struts.storefront.franework. exceptions. *;

/**

* The Business Interface for the Storefront Session Bean
*/

public interface | Storefront {

public UserView authenticate( String email, String password )
throws InvalidLogi nException, ExpiredPasswor dException,
Account LockedExcept i on, Dat ast or eExcepti on, Renot eExcepti on;
public List getFeaturedltens() throws DatastoreException, RenoteException;

public ItenDetail View getltenDetail View String itenid )
throws Dat ast or eExcepti on, Renot eExcepti on;

}

The first thing to notice about the | St or ef r ont interface is that its methods don’t
exactly match those declared by | St or ef r ont Ser vi ce. First of al, our Business
Interface doesn't include the | ogout () and dest r oy() methods found in the service
interface. The reason for this is that those methods represent web tier functionality and
not true business logic that needs to move to the application tier. Besides the missing

299




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

methods, you can also see that every method in | St or ef ront is declared to throw
Renot eException, which is not a pat of the declarations in
| St or ef ront Ser vi ce. All business methods exposed to a remote client of an EJB
must be declared to throw Renot eExcepti on. This is the one aspect of a remote
interface that can't be hidden by the Business Interface. Without this restriction, this
interface could be made to look very much like our service interface. Once we cover how
our example session bean will be implemented, we'll get to how these mismatches
between the interfaces can be handled.

It's also important to notice that our Business Interface is referencing the view classes
already created to support the service interface. The same Data Transfer Object (DTO)
pattern introduced in Chapter 7 applies to an EJB-based model. Instead of exposing the
actual business object implementation classes, or many fine-grained methods to access
their properties, simple JavaBean classes can be used to communicate the state of the
model with the client.

With our Business Interface defined, Example 13-2 shows the trivial remote interface
declaration we' Il need to eventually deploy our session bean.

Example 13-2. The remote interface for the Storefront session bean
package comoreilly.struts.storefront. service;

i nport javax.ejb. EJBOj ect;

public interface Storefront extends EIJBbject, |Storefront {

/**

* declared in the | Storefront Business |Interface.
*/

}
Stateless Session Bean | mplementation

Without getting into anything too elaborate, we next want to come up with an
implementation of our Session Facade. We'll make a few decisions here to simplify
things, but the result will be all we need to illustrate how to interface the web and
application tiers. It will also be good enough for you to deploy in an EJB container and
test your Struts interface.

If you were given the task of implementing the application tier of the Storefront
application using EJB, you would likely produce a design consisting of both session and
entity beans. You could represent the model components using entity beans and you'd
likely have a number of session beans to provide the functionality for security, catalog,
and order operations. The session beans would provide the workflow functionality
required from process business objects and the entity beans would serve as the
corresponding entity business objects.

300

* The renote interface for the Storefront session bean. Al nethods are




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

WEe've already made the decision to use only a single session bean for the example. The
Session Fagade makes our next simplification easy as well. Because we've isolated the
interface between our two tiers into a fagade, any division of responsibilities between
session and entity beans is of no concern to us as Struts developers. The web tier sees
only session bean methods and DTO classes, so hothing else about the implementation
will affect the web components. Given that, we'll implement our fagade using a single
statel ess session bean that does not require any other EJBs.

If you're starting with an EJB implementation that includes entity
beans, you might want to use XDoclet (available from
http: //mww.sour ceforge.net/projects/xdoclet) to automatically generate
Struts action forms from these beans. For more complex EJB
implementations than what we're looking at here, XDoclet also
provides an automated means of generating the various interfaces and
deployment descriptors required for a bean. This code generation is
performed based on special Javadoc tags that you include in your EJB
implementation classes.

Because entity beans are not being used, we can make use of the same ORM approach
and entity business object classes already used by the St or ef r ont Ser vi cel npl
class. In fact, our implementation will look very much like that class with the exception
of the callback methods required by the | avax. ej b. Sessi onBean interface. Thisis
shown in Example 13-3.

Example 13-3. The Storefront session bean
package comoreilly.struts.storefront. servi ce;

i nport java.sql . Ti nestanp;

inport java.util.ArraylList;

inmport java.util.List;

i nport javax.ejb. O eat eExcepti on;

i nport javax.ejb. EJBExcepti on;

i nport javax. ej b. Sessi onBean;

i nport javax. ej b. Sessi onCont ext ;

i nport org.odny. *;

i nport oj b. odny. *;

inport comoreilly.struts. storefront.busi nessobj ects. Qust oner BO

inmport comoreilly.struts. storefront. busi nessobj ects. |tenBQ

inport comoreilly.struts.storefront. catal og.view |tenDetail Vi ew,

inmport comoreilly.struts.storefront. catal og.vi ew |t enBunmar yMV ew,

inport comoreilly.struts.storefront. customner.view User\Vi ew,

inport comoreilly.struts.storefront.franework. exceptions. Account LockedExcepti on;
inport comoreilly.struts.storefront.franework. exceptions. Dat ast or eExcepti on;
inport comoreilly.struts.storefront.franework. exceptions. Expi r edPasswor dExcept i on
inport comoreilly.struts.storefront.franework. exceptions.|nvalidLogi nExcepti on;

/**

* This is a sinple Session Bean inplenmentation of the Storefront service
*/

301




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

public class StorefrontBean inpl enents SessionBean, |Storefront {
private SessionContext ctx;
private |nplementation odng = null;
private Database db = nul | ;

public UserView authenticate( String email, String password )
throws I nvalidLogi nException, ExpiredPasswordException,
Account LockedExcept i on, DatastoreException {

/1l Start a transaction
Transaction tx = odng. newlransaction();
tx. begi n();

/1l Query the database for a user that matches the credential s
List results = null;
try{
O Query query = odng. newOdLQuery();
// Set the QQL sel ect statenent
String queryStr = "select custonmer from" + QustomerBQ cl ass. get Nane() ;
queryStr += " where enmail = $1 and password = $2";
query. create(queryStr);

// Bind the input paraneters
query.bind( enail );
query. bi nd( password );

/1l Retrieve the results and coomit the transaction
results = (List)query.execute();
tx.comit();
}catch( Exception ex ){
/1 Rol |l back the transaction
tx.abort();
ex. print StackTrace();
t hrow Dat ast or eExcept i on. dat ast or eError (ex);

}

/1 1f no results were found, nust be an invalid |login attenpt

if (results.isEnpty() ){

throw new | nval i dLogi nExcepti on();
}

/1 Should only be a single custoner that matches the paraneters
Qust oner BO custoner = (QustonerBOresults. get(0);

/1 NMake sure the account is not |ocked

String account St at usCode = cust orrer . get Account St at us() ;

if ( accountStatusCode != null && account StatusCode. equal s( "L" ) ){
t hrow new Account LockedException();

}

/1 Popul ate the Val ue (hject fromthe Qustoner business object
User Vi ew user Vi ew = new User Vi ew() ;

user Vi ew set I d( custoner.getld().toString() );

user Vi ew. set Fi rst Nane( cust oner. get FirstNanme() );

302




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

user i ew. set Last Nane( cust orrer . get Last Nane() );
user Vi ew. set Ermai | Address( customner.getEmail () );
userView set OeditStatus( custoner.getQeditStatus() );

return userVi ew,

}

public List getFeaturedltens() throws DatastoreException {
/1l Start a transaction
Transaction tx = odng. newlransaction();
t x. begi n();

List results = null;
try{
O Query query = odng. newOdQuery();
/] Set the OL sel ect statenent
query.create( "select featuredlitens from" + ItenBQ cl ass. get Nane() );
results = (List)query.execute();
tx.comit();
}catch( Exception ex ){
/1 Rol | back the transaction
tx.abort();
ex. print StackTrace();
t hr ow Dat ast or eExcept i on. dat ast or eError (ex) ;
}
int size =results.size();
List itens = new ArraylList();
for( int i =0; i <size; i++){
ItenBOitenBO = (ItenmBOresults.get(i);
It enBummar yVi ew newM ew = new | t enSunmar yM ew() ;
newi ew. setld( itenBQgetld().toString() );
newi ew. set Nanme( it enBQ get D spl ayLabel () );
newi ew. set Unit Price( itenBQ getBasePrice() );
newi ew. set Snal | | mrageURL( itenBQ get Snal | | mrageURL() );
newM ew. set Product Feat ure( itenBQ get Featurel() );
i tens. add( newi ew );

}

return itens;

}

public ItenDetail View getltenDetai |l View String itemd )
throws Dat ast or eException {

// Start a transaction

Transaction tx = odng. newlransaction();

tx. begi n();

List results = null;

try{
GJ_QJel’y query = Odn'g neV\Q:LQJerY();

/1 Set the QL sel ect statenent

String queryStr = "select itemfrom" + ItenBQ cl ass. get Nane();
queryStr += " where id = $1";

query. create(queryStr);

query. bi nd(itenid);

303




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

/1 Execute the transaction
results = (List)query.execute();
tx.comit();
}catch( Exception ex ){
/1 Rollback the transaction
tx.abort();
ex. print StackTrace();
t hr ow Dat ast or eExcept i on. dat ast or eErr or (ex) ;

}

/1
if (results.isEnpty() ){

t hrow Dat ast or eExcept i on. obj ect Not Found() ;
}

ItenBOitenBO = (ItenBOresults. get(0);

// Build a Value(hject for the Item

ItenDetai |l View view = new | tenDetai | View();
viewsetld( itenBQgetld().toString() );

vi ew. set Description( itenBQ getDescription() );

vi ew. set Lar gel mageURL( it enBQ get Lar gel nageURL() );
vi ew. set Nane( itenBQ get D spl ayLabel () );

vi ew. set Product Feat ure( itenBQ get Featurel() );
view set Uni t Price( itenBQ getBasePrice() );

vi ew set Ti neQreat ed( new Ti nestanp(SystemcurrentTimeMIlis() ));
vi ew. set Mbdel Nunber (i t enBQ get Model Nunber () );
return view,

}
/**
* (pens the database and prepares it for transactions
*/
private void init() throws DatastoreException {
/1 get odny facade instance
odng = QIB. get | nstance();
db = odny. newbDat abase() ;
/I open dat abase
try{
db. open("repository. xm", Database. CPEN READ WR TE) ;
}catch( CDMException ex ){
t hr ow Dat ast or eExcept i on. dat ast or eError (ex) ;
}
}

public void ej bOreate() throws C eateBException {
try {
init();
}catch ( DatastoreException e ) {
t hrow new O eat eExcepti on(e. get Message() ) ;
}
}

public void ej bRenove() {

304




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

try {
db. cl ose();

}catch ( CDMcException e ) {}

public voi d set Sessi onCont ext ( Sessi onCont ext assi gnedContext ) {
ctx = assi gnedCont ext ;

}

public void ej bActivate() {
/1 nothing to do for a statel ess bean

}

public void ej bPassivate() {
/1 nothing to do for a statel ess bean

}

}

In our St or ef r ont Bean class, the business method implementations are unchanged
from the St or ef r ont Ser vi cel npl versions. Only the management of the database
connection needed to be modified. Whenever the EJB container creates a new instance of
this bean, the ej bCr eat e() calback method is invoked and a database connection is
established. This connection is closed in the corresponding ej bRenove() method that
is called prior to the instance being destroyed. The container never passivates stateless
session beans, so do-nothing implementations are supplied for the ej bPassi vat e()
and ej bAct i vat e() methods of the Sessi onBean interface.

A more correct EJB approach would be to open the database
connection using a j avax. sql . Dat asour ce connection factory
obtained from a JNDI lookup. This allows the container to manage
connection polling and transaction enlistment for you automatically.
Again, this doesn’t affect our interface so we can continue on using this
simple implementation.

Our session bean now has a remote interface and an implementation class. That leaves
the home interface, which is always simple in the case of a stateless session bean. All we
need is a single create method as shown in Example 13-4.

Example 13-4. The home interface for the Sorefront session bean
package comoreilly.struts.storefront. service;

i nport java.rm . RenoteException;
i nport javax.ejb. Oreat eException;
i nport javax. ej b. EJBHone;

/**

* The hone interface for the Storefront Session Bean
*/
public interface StorefrontHone extends EJBHome {

305




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

public Storefront create() throws C eateException, RenoteException;

}
JBoss Deployment

We need to select an EJB container and create the required XML deployment descriptors
before we can deploy and use our session bean. The open-source JBoss application server
fits our requirements perfectly here. This full-featured J2EE implementation complete
with EJB 2.0 support is a favorite among open-source developers. Y ou can download the
software for free from http://www.jboss.org.

With our minimal implementation, we don’'t need anything complicated as far as
deployment information for our session bean. Example 13-5 shows the standard eb-
jar.xml descriptor for our bean. For the most part, this file simplify identifies the home
and remote interfaces and the implementation class. It also declares that al of the
business methods should be executed within a transaction.

Example 13-5. Theej b-j ar. xnm deployment descriptor for the Storefront session
bean

<?xm version="1.0" encodi ng="UTF-8"?>

2.0/ / EN'
"http://java.sun.comdtd/ejb-jar_2 0.dtd">

<ejb-jar >

<descri pti on>

Generic deploynment information for the Storefront Session Bean
</ descri pti on>
<di spl ay- nane>St oref ront Sessi on Bean</ di spl ay- name>

<ent er pri se- beans>
<session >
<ej b- nane>St or ef r ont </ ej b- name>

<ej b-cl ass>
comoreilly.struts.storefront. service. Storefront Bean
</ ej b-cl ass>
<sessi on-type>St at el ess</ sessi on-type>
<transacti on-type>Cont ai ner </ transacti on-type>
</ sessi on>
</enterpri se- beans>

<assenbl y-descriptor >
<cont ai ner-transacti on >
<met hod >
<ej b- name>S$t or ef r ont </ €] b- nanme>
<net hod- name>* </ net hod- name>
</ net hod>
<trans-attribute>Requi red</trans-attribute>

306

<! DOCTYPE ej b-jar PUBLIC "-//Sun M crosystens, Inc.//DID Enterprise JavaBeans

<hone>comoreilly.struts. storefront. service. Storefront Hne</ hone>
<renote>comoreilly.struts.storefront. service. St orefront</renote>




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

</ cont ai ner-transacti on>
</ assenbl y- descri pt or >

</ejb-jar>

In addition to the gjb-jar.xml file, most containers require one or more vendor-specific
descriptors as part of a bean’s deployment information. In this case, all we need to do is
associate a INDI name with our bean. Example 13-6 shows how this is done with JBoss.
The fully-qualified name of the bean’s remote interface was chosen as the INDI name.
It's also common to see the home interface name used.

Example 13-6. The JBoss deployment descriptor for the Storefront session bean

<?xm version="1.0" encodi ng="UTF-8"?>
<! DOCTYPE | boss PUBLIC "-//JBoss// DID JBOSS/ / EN'
"http://ww jboss. org/j2ee/ dtd/j boss. dtd">

<j boss>

<ent er pri se- beans>
<sessi on>
<ej b- nane>St or ef r ont </ ej b- name>
<j ndi -nane>comoreilly.struts. storefront. service. Storefront</jndi - name>
</ sessi on>
</ enterpri se-beans>

</ j boss>
Deployment of an EJB requires packaging it into a JAR. The deployment JAR file for our
session bean needs to include the following files:

The home and remote interface class files
The bean implementation classfile

The two deployment descriptors (these files must be placed in a META-INF
directory)

The OJB.properties file and the various repository XML files used by the ORM
framework

The business object and DTO class files referenced by the Storefront bean

Once you've created this JAR file, you can deploy the bean by copying the file to the
server/default/deploy directory underneath your JBoss installation. You can place the
JAR files for your JDBC driver and the OJB classes in the server/default/lib directory. At
this point, you can start JBoss and verify that you have everything in place to execute the
application tier.

307




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Interfacing Strutsto EJB

It's now time to turn our attention back to the client side of our Session Fagade. In this
section, we'll first cover how to satisfy the requirements of our service interface with our
session bean implementation. We'll then look at how to better manage the JNDI |ookups
and home and remote interface management inherent with being a remote client to an
EJB.

Using a Business Delegate

As you saw when we defined the Business Interface for the Storefront session bean, we
still have some work to do to match it up to the Storefront service interface. Our Business
Interface doesn’t include all the methods of | St or ef r ont Ser vi ce and the methods
that are declared include Renpt eExcept i on intheir t hr ows clauses. The way we'll
address these differences is to go back to the Business Delegate pattern introduced in
Chapter 6. Remember that the purpose of this pattern is to hide the business service
implementation from the client application.

We'll start out with a fairly straightforward Business Delegate implementation and then
cover some specific ways to improve it. An initial implementation is shown in example
13-7.

Example 13-7.A Business Delegate for the Storefront session bean
package comoreilly.struts.storefront. service;

i nport java.rm . Renot eException;

inport java.util.Hashtabl e;

inmport java.util.List;

i nport javax.ejb. O eat eExcepti on;

i nport javax. nam ng. Cont ext ;

i mport javax.naming.|nitial Context;

i nport javax. nam ng. Nanmi ngExcept i on;

import javax.rm. Portabl eRenot e(hj ect ;

inport comoreilly.struts.storefront. catal og.view |tenDetail Vi ew,
inport comoreilly.struts.storefront. custoner.view User\Vi ew,
inport comoreilly.struts.storefront.franework. exceptions. *;

/**

* | Storefront Service interface using the Storefront session bean.
*/
public class Storefront EJIBDel egate i npl enents | StorefrontService {

private | Storefront storefront;

public Storefront EJBDel egate() {
init();

}

308

* This class is a Business Delegate that supports the inplenentation of the




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

private void init() {
try {
Hasht abl e props = new Hasht abl e();
props. put (Cont ext. | N Tl AL_OCONTEXT_FACTCRY,
"org.jnp.interfaces. N\am ngCont ext Factory");
props. put (Cont ext . PROVIDER URL, "l ocal host");

Initial Context ic = new Initial Context(props);
(bj ect hone = ic. | ookup(
"comoreilly.struts.storefront.service. Storefront");

St oref ront Hone sf Hone = (St or ef ront Hone)
Port abl eRenot e(hj ect . nar r ow horre, St or ef r ont Hone. cl ass) ;
storefront = sfHone.create();

}
cat ch (Nam ngException e) {
t hrow new Runt i meExcept i on(e. get Message());

catch (O eateException e) {
t hrow new Runt i meExcepti on(e. get Message());

}
cat ch (Renot eException e) {
t hrow new Runt i meExcept i on(e. get Message());
}
}

public UserView authenticate( String email, String password )
throws I nvalidLogi nException, ExpiredPasswordException,
Account LockedExcept i on, Dat ast or eException {

try {
return storefront. authenticate(enail, password);

}
cat ch (Renot eException e) {
t hr ow Dat ast or eExcept i on. dat astoreError(e);
}
}

public List getFeaturedltens() throws DatastoreException {

try {
return storefront. get Featuredl tens();

catch (Renot eException e) {
t hrow Dat ast or eExcepti on. datastoreError(e);
}
}

public ItenDetail View getltenDetail View String itenid )
throws Dat astor eException {

try {
return storefront.getltenbetail Viewitemd);

catch (Renot eException e) {
t hr ow Dat ast or eExcept i on. dat astoreError(e);
}

309




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

}

public void logout( String enail ) {
/1 Do nothing for this exanple
}

public void destroy() {
/1 Do nothing for this exanple

}

}

When an instance of the St or ef ront EJBDel egat e class is created, its i nit ()

method is called to obtain a remote reference to the Storefront session bean. This method
performs the required JNDI lookup using the naming service implementation provided by
JBoss. As written, the delegate assumes that the naming service is running on the local
machine. We'll look later at how to externalize the details of the JNDI lookup that must
be performed by a delegate. Once a remote reference is obtained, the delegate holds it as
part of its state. This field is declared to be of the Business Interface type because we
only need it for accessing business methods.

Other than what is required to obtain a remote reference, most of the code in our delegate
does nothing more than relay business method calls to the session bean implementation.
Thel ogout () anddestroy() methods have no counterpart in the application tier, so
they would be addressed by web tier functionality if we had anything we needed to do in
them for the example.

Exception Handling

The  exception handling found in  this implementation of the
St or ef ront EJBDel egat e class is worth noting. Besides hiding the details of JNDI
lookups, a Business Delegate used with a session bean should also hide the EJB-specific
exceptions that come with being a remote client. In the business methods of the delegate,
any Renot eException that gets thrown from a session bean call is caught and
reported to the client using a Dat ast or eExcept i on. Hiding the remote nature of the
model implementation addresses the mismatch in declared exceptions found between our
Business Interface and the | St or ef r ont Ser vi ce declarations.

If the inclusion of Renpt eExcepti on in our Business Interface had
been the only difference between this and the service interface, it might
have been tempting to simply add this exception to
| St or ef ront Ser vi ce and continue forward. However, this would
have unnecessarily cluttered the contract for whatever service
implementation might be used with implementation details.

The only reason our delegate uses a Dat ast or eException to respond to a
Renot eExcept i on is to leave the service interface unaffected by the implementation
approach. If this constraint were relaxed, a better approach would be to declare an
exception class whose sole purpose is to report exceptions from a delegate in a generic

310




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

fashion. If we were to declare an application exception named
Servi ceDel egat eExcept i on, we could throw that when a Renot eExcept i on
occurs. This new exception would be a more accurate indication of the type of error that
occurred when compared to using Dat ast or eExcept i on. The best part isthat adding
this new exception to our | St or ef ront Ser vi ce declarations still wouldn’t expose
the fact that the implementation was based on EJB. Instead of throwing a
Runt i neExcept i on to report afailure in obtaining a remote reference, the i ni t ()

method could also be updated to make use of Ser vi ceDel egat eExcepti on.

Swapping the Implementation

All that’s left to do is to swap the current Storefront service implementation with the
delegate we have created. The framework put into place with the
St or ef ront Ser vi ceFact ory in Chapter 6 makes this easy to do. We only need to
change the class specified for our service implementation in the web.xml file to the
following:
<init-paranme
<par am name>st or ef r ont - ser vi ce- ¢l ass</ par am nane>
<par am val ue>
comoreilly.struts.storefront. service. Storefront EIBDel egat e

</ par am val ue>
</init-parany

With this change made, an action will be creating a delegate instance whenever it cals
the get St oref ront Servi ce() method implemented in the
St or ef ront BaseAct i on. This method should only be called once during a request
to avoid the unnecessary overhead of creating additional remote references. Even taking
care to use the same delegate throughout a request |eaves us with an implementation that
isn't very efficient. The next section will cover some ways to improve our use of JNDI
and home interfaces.

Don't forget that you'll need to copy the JBoss client JARs to the lib
directory for your web application before using your delegate. You'll
also need the home and remote interface class files for the Storefront
session bean in the classes directory.

Managing EJB Home and Remote References

Implementing a Business Delegate clearly isolates and minimizes the dependencies
between the web and application tiers. We were able to implement our Storefront session
bean using a Business Interface that isn't tied to any particular client type. We were also
able to leave our Struts action classes untouched when switching to this implementation
of our model. We do have a couple of problems to address though to turn this into a
solution you would want to use in a real application. Most importantly, we need to
improve how we're obtaining our home interface references. We should also get rid of
the hard-coded parameters used by our INDI lookup.

311



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Performing a JINDI lookup to obtain a home interface reference is an expensive (meaning
slow) operation. We couldn’t do much about this overhead if we actually needed a new
home reference for each request, but that’s not the case. An EJB home is a factory object
that is valid throughout the lifetime of the client application. There is no state in this
object that prevents it from being used across requests or client threads. Our delegate
would be significantly improved if the home reference it needed were cached within the
web tier after being requested the first time.

As with any design problem, there is more than one technique we should consider for
caching our home reference. We're basically talking about application scope data in the
web tier, so modifying the delegate to store the reference in the Ser vl et Cont ext
after doing the required JNDI lookup is a potentia solution. This would prevent any
additional lookups, but it would require us to make the Ser vl et Cont ext available to
our delegate through its constructor. This one change would ripple out to our service
factory as well because it currently instantiates an | St oref ront Service
implementation using its no-argument constructor. It would be preferable to choose a
solution without such a strong tie to HTTP constructs. A more flexible approach is to
apply the EJBHoneFact or y pattern as away to cache the references we need.

Implementing an EJBHoneFact ory

The EJBHoneFact ory pattern is defined in the EJB Design Patterns book written by
Floyd Marinescu. Implementing this pattern allows you to create and cache any EJB
home reference needed by your application. Because it has no dependency on the
Ser vl et Cont ext, you can reuse this technique in non-web applications. Example 13-
8 shows the implementation of this pattern that we'll use for the Storefront application.

Example 13-8.EJBHoneFact or y implementation
package comoreilly.struts.storefront.franmework. ejb;

inport java.io.lnputStream

inport java.io.|CException;

inport java.util.*;

i nport javax.ejb.*;

i nport javax. nam ng. *;

i nport javax.rm. Portabl eRenot e(hj ect ;

/**

* This class inplenents the EIJBHomeFactory pattern. It perforns JNDI

*/

public class EJBHonmeFactory {
private Map hones;
private static EIJBHoneFactory singl eton;
private Context ctx;

private EJBHonmeFact ory() throws Nam ngException {
hores = Col | ecti ons. synchroni zedMap(new HashMap()) ;

try {

312

* | ookups to | ocate EIJB hones and caches the results for subsequent calls.




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

/1 load the properties file fromthe cl asspath root

I nput Stream i nput Stream = get A ass() . get Resour ceAsSt r ean(
"/jndi.properties" );

if (inputStream!= null) {
Properties jndi Paranms = new Properties();
j ndi Parans. | oad( i nput Stream);

Hasht abl e props = new Hasht abl e();
props. put (Cont ext. I N Tl AL_COCONTEXT_FACTCRY,
j ndi Par ans. get (Cont ext. | N TI AL_CONTEXT_FACTCRY) ) ;
props. put (Cont ext . PROVI DER_URL, j ndi Parans. get (Cont ext. PROVIDER URL));
ctx = new I nitial Context(props);
}
el se {
/'l use default provider
ctx = new Initial Context();

}
} catch( 1 CException ex ){
/1l use default provider
ctx = new Initial Context();
}
}

/**
* Get the Singleton instance of the class
*/
public static EIJBHoneFactory getlnstance() throws Nam ngException {
if (singleton == null) {
si ngl et on = new EJBHoneFact ory();

}

return singleton;
}
/**
* Specify the JNDI nane and class for the desired hone interface
*/
publ i c EJBHone | ookupHone(String jndi Nae, d ass honed ass)
throws Nani ngException {
EJBHorme hone = ( EJBHone) hones. get (honed ass) ;
if (hone == null) {
horre = (EJBHore) Por t abl eRenot eChj ect . nar r ow( ct X. | ookup(
j ndi Nane), honed ass);
/1 cache the horme for repeated use
horres. put (honed ass, hore) ;

return hone;

}

}

Notice that our EJBHoneFact or y class accepts the INDI name and class for the home
interface it is requested to locate. If we needed to access more than one session bean in
the application tier, we would simply implement a delegate class for each session bean
and use our factory to locate the corresponding home interface. Besides the performance

313




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

improvements the caching of homes gives us, all the ugly narrowing and exception
handling that goes along with looking up these referencesis kept in one place.

The EJBHonmeFact ory constructor also takes care of externalizing the provider and
factory parameters we need to access the naming service. A standard approach for doing
thisisto use ajndi.properties file that includes entries like the following:

java.namng.factory.initial =org.jnp.interfaces. Nam ngCont ext Fact ory
j ava. nam ng. provi der . url =l ocal host

If you call the no-argument constructor for the |l ni t i al Cont ext class, the classpath is
searched for a jndi.propertiesfile. If thisfile is found, its entries are used to initialize the
naming context. In our example, the factory class explicitly loads this file from the
classpath. Otherwise, classloader priorities within the web server could prevent these
settings from being picked up before the default values defined for the server.

The JNDI Connect or Pl ugi n example in Chapter 9 demonstrated
how the naming service parameters could be read from the web.xml file
and stored in the Ser vl et Cont ext . We're not using that approach
here because we want to keep our factory independent of the web tier.

Using an EJBHoneFact or y in a Business Delegate

Our Business Delegate can be simplified now that we have a standard approach for
locating the home interface. We can change the implementation of the i ni t () method
to the following:

private void init() {
try {
St oref ront Hone sf Hone = (St or ef r ont Hone) EJBHoneFact ory. get | nst ance() .
| ookupHone("comoreilly.struts.storefront.service. Storefront",
St or ef ront Hone. cl ass);
storefront = sfHone.create();

}
cat ch (Nam ngException e) {
t hrow new Runti meExcepti on(e. get Message());

}
catch (O eateException e) {
t hrow new Runt i meExcept i on(e. get Message());

catch (Renot eException e) {
t hrow new Runti meExcepti on(e. get Message());

}
}

What about the Remote Refer ences?

In our implementation, a remote reference to the session bean is created for each request.
This isn't a problem from a performance standpoint because the overhead attached to
creating a remote reference pales in comparison to that associated with the home.
However, this doesn’t mean that you can’t cache remote references if you want. In fact, if

314




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

you're interfacing with a stateful session bean, you can’'t keep creating new remote
references across requests or you won't be calling the same bean instance each time.

You can avoid creating a new remote reference per request by caching a Business
Delegate instance in the session. Unlike homes, you can’'t cache a remote reference as
application scope data. Even for stateless session beans, a remote reference holds
information tied to the client thread that created it. If you cache the Business Delegate,
there are some important changes to make. This is because the user session could be
seridlized and restored by the web container and a remote reference isn’t required to be
seridizable. For a stateless session bean, you need to be able to create a new remote
reference if necessary. For a stateful session bean, you need to hold an EJB handle in
your delegate instead of a remote reference so that you can always maintain a way to
access the same bean.

Using Dynamic Proxies

In this section we'll ook at one last example of something you might want to implement
within your Business Delegate. Our current implementation works well for the Storefront
application, but delegates tend to become cluttered with redundant-looking methods if
they have to support an interface with more than a few methods. We only have three
methods declared for our overly simple Storefront model, but even they follow a
somewhat monotonous pattern. With the exception of the | ogout () and dest roy()
methods, each business method in the delegate is implemented by calling the method
with the same name on the session bean and catching Renpt eExcept i on to replace it
with a Dat ast or eExcepti on. A dynamic proxy offers a way to get rid of this
redundancy.

If you ever find yourself performing the same additional steps as part of delegating a set
of method calls to another object, you should consider introducing a dynamic proxy. This
concept is a little difficult to grasp if you've never worked with one before, but its use
can do away with alot of repetitive code. Basically, a dynamic proxy is an object created
at runtime using reflection that implements one or more interfaces you specify. The
implementation of the interface methods consists of calling the i nvoke() method of an
object you aso specify. This invoke() method is declared by the
java.lang.refl ect.|nvocationHandl er interface, which must be explicitly
implemented by the object used to construct the proxy. The proxy passes parameters to
the i nvoke() method that identify the interface method that was caled and the
arguments that were passed to it. This idea is always easiest to explain by example, so
Example 13-9 shows a replacement for our Business Delegate that can be used with a
dynamic proxy.

Example 13-9 Dynamic proxy implementation of the Storefront service
package comoreilly.struts.storefront. service;

inport java.lang.reflect.*;
i nport java.rm . Renot eExcepti on;

315



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

inport java.util.*;

i nport javax.ejb. O eat eExcepti on;

i nport javax. nanm ng. *;

i nport javax.rni. Portabl eRenot e(hj ect ;

inport comoreilly.struts.storefront. catal og.view |tenDetail Vi ew,
inport comoreilly.struts.storefront. customner.view User\Vi ew,
inmport comoreilly.struts.storefront.framework. ej b. EJBHoneFact ory;
inport comoreilly.struts.storefront.franework. exceptions. *;

/**
* This class is a dynamc proxy inplenmentation of the | StorefrontService
* interface. It inplenents two of the |StorefrontService nethods itself and
* del egates the others to the nethods declared by the | Storefront Business
* Interface wth the same nane.
*
/
public class Dynam cStorefront EJBDel egate i npl enents | nvocati onHandl er {

private | Storefront storefront;
private Map storefront Met hodVap;

publ i c Dynam cStorefront EJBDel egate() {

init();

}

private void init() {
try {

/1 get the renote reference to the session bean

St or ef ront Home sf Home = (St or ef ront Hone) EJBHoneFact ory. get | nst ance() .
| ookupHone("comoreilly.struts.storefront. service. Storefront”,
St or ef ront Hone. cl ass) ;

storefront = sfHome.create();

/1 store the Business Interface nethods for |ater |ookups
st or ef ront Met hodMap = new HashMap() ;
Met hod[] storefront Methods = | Storefront. cl ass. get Met hods() ;
for (int i=0; i<storefrontMethods.|ength; i++) {
st or ef r ont Met hodMVap. put (st or ef ront Met hods[ i ] . get Narre()
storefront Met hods[i]);

}

}
cat ch (Nami ngException e) {
t hrow new Runt i meExcepti on(e. get Message());

}
catch (O eateException e) {
t hrow new Runt i meExcept i on(e. get Message());

catch (Renot eException e) {
t hrow new Runti meExcepti on(e. get Message());
}
}

public void |ogout(String email) {
/1 Do nothing for this exanple
}

316




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

public void destroy() {
/1 Do nothing for this exanple
}

public (bj ect invoke((hject proxy, Mthod nethod, bject[] args )
throws Throwabl ef
try {
/1 check for the two nethods inplenmented by this class
i f (nethod. get Nare() . equal s("l ogout")) {
| ogout ((String)args[0]);
return null;

el se if (nethod. get Nare(). equal s("destroy")) {
destroy();
return null;

el se {
/1 this method should match a nethod inpl enented by the
/1 session bean that has the sane nane and argurent |i st
Met hod st oref ront Met hod = ( Met hod) st or ef r ont Met hodMap. get (
net hod. get Nane() ) ;
if (storefrontMethod !'= null) {
/1 call the nethod on the renote interface
return storefront Method. i nvoke( storefront, args );
}
el se {
t hrow new NoSuchMet hodExcepti on("The Storefront does not inplement "
+ net hod. get Nane() ) ;
}

} catch( InvocationTarget Exception ex ) {
i f (ex.getTarget Exception() instanceof RenoteException) {
/1 RenoteBException isn't declared by the | Storefront nethod that was
/1 called, so we have to catch it and throw sonething that is
t hrow Dat ast or eExcept i on. dat ast or eEr r or ( ex. get Tar get Exception());
}
el se {
t hrow ex. get Tar get Exception();
}
}
}
}

The intent behind Dynani cSt or ef r ont EJBDel egat e is for a dynamic proxy that
is created as an implementation of the | St or ef r ont Ser vi ce interface to delegate all
those callsto the i nvoke() method declared here. Notice that this delegate class is not
declared to implement | St or ef r ont Ser vi ce. In fact, the only business methods
from | St oref ront Servi ce that appear in this class are the | ogout () and
destroy() methodsthat aren’'t implemented by our session bean.

To use the dynamic proxy-based delegate, we need to modify our approach for obtaining
an implementation of the service interface from the factory. Rather than devising

317




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

something elegant for a small part of this example, we'll ignore that here and just hard-
code the new approach we need. This is shown in the following version of the
creat eServi ce() method of St or ef r ont Ser vi ceFact ory:

public |StorefrontService createService(){
O ass[] servicelnterface = new Aass[] { | Storefront Service.class };
| Storefront Service proxy = (I Storefront Servi ce) Proxy. newPr oxyl nst ance(
Thread. current Thread() . get Cont ext A assLoader (), servicelnterface,
new Dynani cSt or ef ront EJBDel egate() );
return proxy,

}

When an action class asks for an implementation of the service interface, the factory now
creates a dynamic proxy that implements this interface using an instance of
Dynam cSt or ef r ont EJBDel egat e. When the action makes a call on the service
interface, the call goes to the proxy and is transformed into a call on the delegate's
i nvoke() method. The i nvoke() method checks the name of the method that was
called and either callsthe | ogout () or dest roy() method implemented in the class
or delegates it to the session bean method with the same name. This sequence of callsis
illustrated in Figure 13-1. The trapping and replacement of Renpt eExcept i on when
our Business Delegate calls a session bean method are now handled in a single place. No
matter how many methods are exposed by the session bean Business Interface, this single
i nvoke() method can handle them all without modification.

GetlternDeatallAction DynarnicProxy nami froni | StorefrontBean

| gatlemDatailyiew) I ! |

- invioke()
| |—..| getltemDetailvisw) |
| | | !

Called on the Called on the I1Storefront
IStorafrontService Business Inferface held by
interface retumed by the tha delegate
IStorefrontServiceFactory

Figure 13-1. Sequence diagram for retrieving item detail through a
dynamic proxy

In conclusion, not all web applications require the sophistication and complexity of an
EJB container. The well-documented benefits of using an EJB server versus the added
development and management complications must be seriously evaluated for each
project. Don't just assume that you have to utilize EJB for the model portion of a Struts
application. However, if you do decide that EJB is appropriate, as you've seen in this
chapter, it doesn’t have to impact the rest of the code. There are approaches that you can
take to limit the coupling of your application to EJB, and make it much easier use.

318



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

319



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

14

Using Tiles

Up to this point, not much has been said on how to organize and assembl e the content and
layout of JSP pages for an application. In many ways, that is outside the scope of the
topic of Struts. There are many excellent books that provide strategies for organizing web
the content and layout of pages.

In the Storefront application, we have used two different approaches to assembling web
pages. The first approach, sometimes referred to as a straight JSP-based approach, is
probably the most familiar to web designers. The JSP pages contain presentation logic,
along with HTML layout tags; there’' s no separation of the two. This approach is typically
used for smaller, less complicated web applications.

The second approach utilizes the JSP include directive. It's used by developers in larger
web applications or after developers realize how redundant the first approach can be. If
you have spent any amount of time maintaining web applications, you know how
frustrating it can be to update a site's look and feel. Using JSP's include directive alows
for some reuse, which reduces total development and maintenance cost.

A third approach, which isintroduced in this chapter, describes a far better way to reduce
the amount of redundant code a web application contains, and at the same time, allows
you to separate the content from the layout better than the previously mentioned
approaches.

Understanding Templates

Traditional GUI toolkits like VisuaWorks Smalltalk or Java Swing, al provide some
type of a layout manager that dictates how content should be displayed within the frame

320



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

or window. With typical web sites, the layout can undergo many changes, both small and
large, over its lifetime. Using a layout and layout manager, helps to encapsulate the
physical areas of the pages within an application so that they can be altered with minimal
impact to the rest of the application. Unfortunately, the JSP technology does not provide
any direct support for layouts or layout managers. There is why the template-based
approach was invented.

The concept of templatesis not a new one. It has been around for many yearsin one form
or another. Without templates, web designers must resort to a straight JSP-based
approach or at best, make use of the JSP include directive. A hybrid of these two
approaches is shown in Example 14-1.

Example 14-1. Thei ndex. j sp Page from the Storefront Application

<y@taglib uri="/WEB-INF/ struts-htm.tld" prefix="htm" %
<Y@taglib uri="/WEB-IN-/struts-logic.tld" prefix="Iogic" %
<y@taglib uri="/WEB-I NF/ struts-bean.tld" prefix="bean" %

<htm : ht ni >
<head>
<title><bean: nessage key="global .title"/></title>
<ht m : base/ >
<scri pt |anguage=j avascri pt src="include/scripts.js"></script>
<link rel ="styl esheet" href="styl esheets/fornmat_w n_nav_nai n.css" type="text/css"
</ head>

<body topnargi n="0" | eftnargi n="0" bgcol or =" #FFFFFF" >

<l-- Header Information -->
<%@i ncl ude fil e="i ncl ude/ head. i nc" %

<l-- Menu Bar -->
<%@i ncl ude fil e="incl ude/ nenubar.inc" %

<! — Include the special offer -->
<%@i ncl ude file="incl ude/ mai noffer.inc"%

<I-- Featured Itens Header Row -->
<tabl e w dt h="645" cel | paddi ng="0" cel | spaci ng="0" bor der ="0">
<tr>
<td w dth="21">
<htm:ing height="1" alt="" page="/images/spacer.gif" w dth="1" border="0"/>
</td>
<td wi dt h="534">
<htm :ing page="/inmages/ week_pi cks. gi f" al t Key="1 abel . f eat ur edpr oduct s"/ >
</td>
<td w dth="1" bgcol or =" #9E9EFF" >
<htm:ing height="1" alt="" page="/images/spacer.gif" w dth="1" border="0"/>
</td>
<td wi dth="1" bgcol or ="#9E9EFF">
<htm:ing height="1" alt="" page="/images/spacer.gif" w dth="1" border="0"/>
</td>
<td wi dt h="90" bgcol or ="#9E9EFF" al i gn="right">

321

\'4




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

</td>
</tr>
<tr>

<t d>

</td>
<td col span="4" bgcol or =" #9E9EFF" >

</td>
</tr>
</tabl e>

<l— Include the featured itens -->
<9%@include file="include/featureditens.inc"%

<l— Include the copyright statenent -->
<%@i ncl ude file="include/ copyright.inc"%
</ body>

</htm:htnm>

Example 14-1 shows the current i ndex. j sp page for the Storefront application.
Although the main page uses the JSP include directive, we can till see that the layout is
mixed with content in the page. For example, notice that the JSP page in Example 14-1
specifies explicitly that the head. i nc comes first, then the menubar . i nc, next the
mai nof f er. i nc include file, right down to the copyri ght. i nc include at the
bottom of the page. For every page that we wanted to have this particular layout, we
would need to contain the same statements, in the same order. If a customer wanted the
menu along the left side, instead of across the top for example, every page would have to
be changed.

The Storefront application uses the JSP include mechanism rather than a straight JSP
approach. Although the include mechanism is a step in the right direction, because it does
reduce redundancy (imagine if we included the copyright content for every page), it’s still
less attractive than a template-based approach.

322

<htm :ing height="1" alt="" page="/inages/spacer.gif" w dth="90" border="0"/>

<htm :ing height="1" alt="" page="/inages/spacer.gif" w dth="21" border="0"/>

<htm:ing height="1" alt="" page="/images/spacer.gif" w dth="1" border="0"/>

<htm :ing height="10" alt="" page="/i nages/spacer.gif" w dth="1" border="0"/><br>




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Static versus Dynamic Content

With JSP, there are two different ways to include content: static and dynamic.
Thei ncl ude directive shown here:

<%@ i nclude file="include/copyright.inc"%

includes the source of the target page at translation/compile time. Therefore, it's
not possible to include runtime content using the include directive. The JSP
include directive treats a resource as a static object, the context of the resourceis
included literally in the page.

In direct contrast, the include action shown here:
<j sp:include page="incl ude/ copyright.inc”/>
handl es the resource as a dynamic object. The request is sent to the resource and

the result of the processing is included. Templates utilize a dynamic approach so
that runtime expressions can be evaluated and included.

What isa Template?

A template is a JSP page that utilizes a JSP custom tag library in order to describe the
layout of a page. The template acts as a definition for what the pages of an application
will look like, without actually specifying the content. The content is inserted into the
template page at runtime. All of the pages within the site may reuse the same template,

but can also use different ones.

The purpose of atemplate is to get a consistent ook and feel within an
application. So it makes sense that most of the pages utilize the same
template. However, it’s not uncommon to have a different look and feel
for a few pages within an application and therefore require a different
template.

Example 14-2 illustrates a template for the Storefront application.

Example 14-2. A Basic Template for the Storefront Application

<y@taglib uri="/WEB-INF/ struts-htm.tld" prefix="htm" %
<y@taglib uri="/WEB-I NF/ struts-bean.tld" prefix="bean" %
<Y@taglib uri="/VEB-INF/tiles.tld" prefix="tiles" %

<htm : htn >
<head>
<titl e><bean: nessage key="global .title"/></title>
<htm : base/ >

323




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

</ head>
<body topnargi n="0" |eftnargi n="0" bgcol or =" #FFFFFF" >

<!-- Header Page Information -->
<tiles:insert attribute="header" />

<l-- Menu Bar -->
<tiles:insert attribute="nmenubar"/>

<l-- Main Body Information -->
<tiles:insert attribute="body-content"/>

<l-- Copyright Infornation -->
<tiles:insert attribute="copyright"/>
</ body>
</htm:htnm>

Interestingly enough, there are not many new concepts being introduced in the template
file in Example 14-2. The first thing that you should notice is that we are using Struts
custom tag libraries. The fact that we are using a Tiles tag library as well as the HTML
and Bean libraries shouldn’'t be too shocking; it's just like any other tag library. Don't
worry too much about this for now. It’s enough understand that they can be used together
just like any other set of tag libraries. We'll talk in detail about the Tiles tag library later
in the chapter.

The rest of the page is a mixture of HTML layout tags, along with Tiles and Struts tags.
You should notice that there's no content included, only i nsert tags where content
where be inserted during runtime. Y ou should aready be familiar with the Struts tags
shown here, so we won't say anything about them; they should be quite obvious in this
example anyway. Thei nsert tagis performing arole similar to that of the JSP include
directive. It's basically saying that somewhere there’'s a variable called header, for
instance. Pass the attribute value of “header” to the i nsert tag and insert the content
that is produced right here. The same thing for the nenubar, body- cont ent, and
copyri ght inserts as well. We'll explain very shortly how the “real” content is
substituted in for these attributes during runtime.

Notice that this layout is very similar to the one shown in Example 14-1. The only
difference is that instead of explicitly including the nai nof f er and f eat ur edi t em
includes as Example 14-1 does, the template fileincludesabody- cont ent section. By
doing this, we can reuse the template for any page that has this generic format. All you
have to do is to figure out how to supply the page-specific body-content and we can reuse
this template over and over again. The benefit is that the layout of the various pages that
use this template is is controlled by this one file. If we need to modify the layout of the
site, this is the only file that has to change. That's the real power of using a template-
based approach.

The last piece of the puzzle is how the header, nenubar, body- cont ent, and
copyri ght sections, are put together to form the output that the user eventually sees.
The important point to remember is that the JSP page shown in 14-2 is the template. You

324




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

still require JSP pages that utilize the template and supply page-specific content that is
used by the template. For example, rewriting the i ndex. j sp page from Example 14-1
using the template from Example 14-2, it would look like the one in Example 14-3.

Example 14-3. The i ndex. j sp for the Storefront Application using a Template
<v@taglib uri="/VEB-INF/tiles.tld" prefix="tiles" %

<tiles:insert page="/|ayouts/storefrontDefaul tLayout.jsp" flush="true">
<tiles:put nanme="header" val ue="/comon/ header.jsp" />
<tiles:put name="menubar" val ue="/comon/ nenubar.jsp" />
<tiles:put nane="body-content" val ue="/index-body.jsp" />
<tiles:put nanme="copyright" val ue="/conmon/ copyright.jsp" />
</tiles:insert>

Let's explain what's going on in Example 14-3. The first thing to notice is that it's
including the Tiles tag library at the top. Every page (also called a Tile, as we'll learn
later) that needs to use the Tiles tag libraries, must include the library:

| <v@taglib uri="/VEB-INF/tiles.tld" prefix="tiles" %

There are two tags from the Tiles library being used in Example 14-3: i nsert and put .
You saw the insert tag already in Example 14-2. It's performing dlightly different
function in Example 14-3, however. There are two attributes being supplied to the tag:
page and f| ush. The page attribute is information to the tag that this JSP page is
using a particular template (or Layout in the Tiles world). Layouts will be discussed later
in the chapter. We ae cdling the template from Example 14-2
st orefront Def aul t Layout . j sp. The flush attribute informs the controller to
flush the page output stream before inserting.

The complete set of Tiles tags and their associated attributes will be
discussed later.

The put tag in Example 14-3 answers a question that we asked in the previous section.
That is, how does the page-specific content get supplied to the template? As you can see,
the attributes for the put tag in this example are nane and val ue. If you compare the
values of the different name attributes, you'll see that they match up to the ones that the
template file in Example 14-2 is expecting. When the i ndex. j sp page from Example
14-3 is executed, the template file is processed and dynamically passed the
header. | sp, menubar.jsp. index-tile.jsp, and copyright.jsp files
fromthe put tags:

<tiles:insert page="/|ayouts/storefrontDefaul tLayout.jsp" flush="true">
<tiles:put nanme="header" val ue="/comon/ header.jsp" />
<tiles:put name="menubar" val ue="/comon/ nenubar.jsp" />
<tiles:put nane="body-content" val ue="/index-body.jsp" />
<tiles:put name="copyright" val ue="/conmon/ copyright.jsp" />
</tiles:insert>

At runtime, the values of the put tags are dynamically substituted into the template file
and processed. The resulting output is what gets displayed to the client.

325




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

To wrap up the discussion of templates, we'll provide another page that uses the same
template from example 14-2, but which supplies a different body- cont ent . Example
14-4 showsthei t endet ai | . | sp page.

Example 14-4. Thei t endet ai | . | sp page for the Sorefront Application
<Y@taglib uri="/VEB-INF/tiles.tld" prefix="tiles" %

<tiles:put nane="header" val ue="../comon/ header.jsp"/>
<tiles:put name="menubar” val ue="../conmon/ menubar.jsp"/>

<tiles:put name="copyright" val ue="../common/copyright.jsp" />
</tiles:insert>

The only difference between the i ndex.jsp page in Example 14-3 and the
itendetail.jsp page in Example 14-4 is the different content supplied by the
body- cont ent put tag.

If you are still confused about the value of using templates, notice that
thei ndex. jspanditendetail.]jsp pagesin Example 14-3 and
14-4 respectively, do not specify anything about how the layout of the
content. They both reference the
storefront Defaul t Layout.jsp filee which has sole
responsibility for displaying the content in a prescribed format. If we
wanted to change the layout of the site, we would only have to modify
the st or ef ront Def aul t Layout . j sp file. Thisis the true power
and benefit of templates.

Installing and Configuring Tiles

Before you can utilize the Tiles framework, you must ensure that it's installed and
properly configured within your web container. The Tiles framework has no
dependencies on a specific container. You will need to obtain the required files and
ensure they are placed into their proper directories within the web application.

Downloading Tiles

The Tiles framework is now included with the Struts distribution. It had been previously
included in the contrib folder, but it now part of the core distribution. Y ou can aso find
the latest source and binary distribution, as well other useful information on the subject,
at http: //mww.lifl.fr/~dumoulin/tiles/index.html.

326

<tiles:insert page="../l|ayouts/storefrontDefaul tLayout.jsp" flush="true">

<tiles:put nane="body-content" val ue="../catal og/itendetail-body.|sp"/>




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Installing the Required JARsand Misc Files

The first required step isto install the necessary files. For Tiles, the following files must
be located in the WEB-INF/lib directory:

tiles.jar

comons-di gester.jar
conmons- beanutils.jar
comons-col | ections.jar
commons- | oggi ng. j ar

Most of these binaries should already be present if you are using Struts. You will aso
need to install the Tiles tag library descriptor filet i | es. t | d in the WEB-INF directory
for the application.

Don'taddtheti | es. j ar to the classpath of your serviet container in
an attempt to avoid placing it in the WEB-INF/lib directory of each
individual web app. Doing S0 might cause
Cl assNot FoundExcept i on exceptionsto be thrown.

Y ou should go ahead and put the tiles-config.dtd in the WEB-INF directory. ThisDTD is
used to validate Tiles definition files. We haven't introduced what these are yet, but we
will.

AddingtheTilesTag Library

Like any other JSP tag library, you must include it within the web application
deployment descriptor to useit. Add the following t agl i b element to the web.xml file:
<taglib>
<taglib-uri>WB-IN-/tiles.tld</taglib-uri>

<taglib-location>WB-IN-/tiles.tld</taglib-Iocation>
</taglib>

There should already be several t agl i b elements present if you are using any of the
standard Struts tag libraries. For each page that needs to use the Tilestag library, it needs
to include the following line at the top of the page:

| <¥@taglib uri="/VWEB-IN-/tiles.tld" prefix="tiles" %

327



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Configuring Tilesto Work with Struts

The Tiles framework can be used with or without the Struts. Depending on how you use
it, there are several options for configuring it for a web application. Since this book is
about Struts, we'll focus on how to bind it to a Struts application.

With earlier versions of the Tiles framework, you had to configure a
special Acti onServl et called Acti onConponent Servl et in
the web. xnm file. You were aso forced to configure a special
Request Processor inthe Strutscont r ol | er element. Thisisno
longer true and a Tiles Pl ugl n is now available and will take care of
all of theinitialization.

To configure Tiles to work with a Struts application, you must add a pl ug- i n element
in the Struts configuration file for the Ti | esPl ugi n:

<pl ug-in cl assNane="org. apache. struts.tiles. Ti | esP ugi n" >

<set-property property="definitions-config" value="/WEB-IN-/tiles-defs.xm"

<set-property property="definitions-debug" val ue="2" />

<set-property property="definitions-parser-details" value="2" />

<set-property property="definitions-parser-validate" value="true" />
</ pl ug-in>

Within the pl ug- i n element, you can specify one or more set - pr operty elements
to pass additional parameters to the Pl ugi n class. The definitions-config
initialization parameter specifies the XML file or files containing Tile definitions. If
multiple filenames are used, they must be comma-separated.

Thedef i ni ti ons- debug specifiesthe debug level. The allowed values are;

0—No debug information is written out
1—Partial debug information is provided

2—Full debug information is provided

The default valueis 0.

The definitions-parser-details parameter indicates the required level of
debug information while the definition files are being parsed. This value is passed to the
commons Digester. The allowed values are the same as those for the def i ni ti ons-
debug. The default value is 0.

The definitions-parser-validate parameter specifies whether the parser
should validate the Tiles configuration file. The allowed values are true and false. The
default istrue.

328

/>



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

There is an additional parameter not shown called def i niti ons-factory-cl ass.
You can create a custom definitions factory and supply the class name here. The default
isorg. apache. struts.tiles.xm Definition.|18NfactorySet.

Overview of Tiles

The Tiles framework provides a templating mechanism that alows you to separate the
responsibility of layout from those of content. Like the templates described earlier in the
chapter, you have the ability to establish a layout and dynamically insert the contents of
your pages into that layout at runtime. This offers a very powerful mechanism if you need
to customize your site based on such things as internationalization, user preferences, or
just look and feel changes that occur in every web application, sooner or later. The Tiles
framework provides the following features:

Template Capabilities

Dynamic Page Construction and Loading
Screen Definitions

Support for Tile and Layout Reuse
Support for Internationalization

Support for Multi-Channels

There has been a Template tag library within the Struts framework for quite some time.
These tags allow you to utilize a very basic templating approach to assembling your JSP
pages in aweb application. Although these tags are helpful in separating the content for a
web application from its prescribed layout, the Tiles framework goes much further and
actually provides a superset of the template tag library behavior, as well as many other
features.

The Tiles framework was previously called Components, but was
changed because the term is so overused. The Tiles documentation and
source code still makes reference to the term Components in some
places.

Cedric Dumoulin created the Tiles framework to extend the concept of templates and
provide developers more flexibility and freedom when creating web applications built
with JSP technology. The content for the web applications is still driven by JSP pages
and JavaBeans that are stored in the request and session. However, the layout is specified
within a separate JSP page, or as well see later in an external XML file.

329



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

What isaTile?

A Tileis an area or region within a web page. The region can be the entire web page, or
the page can be broken up into several regions. Figure 14-1 illustrates an example from
the Storefront application.

JSP Page

Header RegionTile

| Menubar Region/Tile

Body Content Regicn?Tile

Copyright Region/Tile

Figure 14-1. The Regions of the Storefront Application

A JSP page is typically made of severa regions or Tiles. There's nothing really that
specia about the page, other than the fact that it's designed to be used with the Tiles
framework and makes use of the Tiles tag libraries. The name Tile is more conceptual
than it is physical. The point of aTileisthat it isa JSP component that isreusable. Thisis
true for the layouts, as well as the JSP body content. Conceptually different from the way
that most JSPs are created, tiles are designed to be reused within an application and
possibly across different applications. Other than that, there’'s nothing that complicated
about a Tile. In fact, most of the examples you have seen so far can be classified as tiles,
including Examples 14-2, 14-3, and 14.4.

Using a Layout Tile

A layout from the Tiles world is what we have been referring to as a template. A layout
serves the exact same purpose as a template, to assemble a group of tiles together in order

330



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

to specify the format of a page. The example in 14-2 isin fact, a Tiles layout. The syntax
between Tiles and a template library, like the one included with Struts, is amost
identical.

Tiles provides a superset of the functionality included with the tags as
defined in Struts by David Geary. The Tilesframework takes the
concept of templates even further by providing additional functionality.

Layouts are also considered tiles. Many pages, as well as other applications, can reuse
layouts. It's very common to build a library of layouts that are used by many different
projects. The Tiles framework comes with several pre-built layout tiles that you can reuse
or modify as needed. The layouts that are included are:

Classic Layout— Renders a header, left menu, body and footer

Columns Layout—Renders a list of tiles in multi-columns. Each column renders its
tiles vertically stacked

Center Layout— Renders a header, left tile, right tile, body and footer
Menu Layout— Renders a menu with links
Tabs Layout—Renders severa tilesin atabs-like fashion

Vertical Box Layout—Renders alist of tilesin avertical column

Since one of the main goals of Tiles is reuse, you can reuse these layouts within your
application, with little or no modifications necessary. You aso have the freedom to
customize the layouts anyway that you need.

Planning your Layout

It's very important that you plan your layout requirements ahead of time. Trying to
decide how to your site is going to look, after it's already built, is definitely not the right
approach. This decision is typically made by a human factors team, product management,
or possibly by the web developers themselves. In any case, you need to develop the
layout (or layouts if you application requires more than one), well ahead of any actual
development.

You've dready seen the default layout for the Storefront application in Example 14-2.
Thislayout will be used throughout this chapter

Passing Parametersto the L ayout

The layout tile that was shown in Example 14-2 is generic. It doesn’'t know anything
about the i t endet ai | . j sp content for example, or any of the other pages for that

331



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

matter. This is intentional because it alows us to reuse this layout for many pages.
Instead of hardcoding the content within the layout page, the content is supplied or
“passed” as parameters to the layout page at runtime? Let's look at the si gni n tile for
the Storefront application. It's shown in Example 14-5.

Example 14-5. The si gni n. j sp Tilefor the Sorefront Application
<v@taglib uri="/VEB-INF/tiles.tld" prefix="tiles" %

<tiles:insert page="../l|ayouts/storefrontDefaul tLayout.jsp" flush="true">
<tiles:put nane="header" val ue="../comon/ header.jsp"/>
<tiles:put name="menubar” val ue="../conmon/ menubar.jsp"/>
<tiles:put nanme="body-content" val ue="../security/signin-body.jsp"/>
<tiles:put nane="copyright" val ue="../common/copyright.jsp" />
</tiles:insert>

The purpose of the put tag in Example 14-5 is to supply the layout tile, specified in the
enclosingi nsert tag, with content. The values of the name attributes in Example 14-5,
aswell in the other Tiles like Example 14-3 and 14-4, must match ones that the layout tile
is expecting.

Thei nsert tag can optionaly include an i gnor e attribute that will
cause the tag to not write anything out when it can't find a value for an
expected attribute. By default, a runtime exception is thrown when an
attribute has not been supplied.

TheTilesTagLibrary

This section introduces the JSP custom tags that are used by the Tiles framework. Table
14-1 lists the tags available to the framework. The tags are very similar to the ones
provided in any template-based framework, except that Tiles contains more functionality.

Table 14-1. The Tags Within the Tiles Tag Library

Name Description

i nsert Insert atiles component.

definition Create a Tile Component Definition.

put Put an attribute into a Tile context.

put Li st Declare alist that will be passed as an
attribute.

add Add an element to the surrounding list.

get Gets the content from request scope that was

put there by aput tag.

332




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

get AsString

useAttribute
i mportAttribute

Render the value of the specified
tile/component/templ ate attribute to the
current JspWriter.

Use an attribute value inside a page.
Import aTile's attribute in specified context.

i ni t Conponent Definitions Initialize a Tile definitions factory.

Thei nsert Tag

The i nsert tag is responsible for inserting content in a page. In a layout tile, the
i nsert tag prescribes where the content will go using attribute values. In a regular non-
layout tile, the insert tag is used to retrieve a layout and allow content to be passed to the
layout using put tags. Table 14-2 lists the attributes for thei nsert tag.

Table 14-2. The Attributes for thei nsert Tag

Attribute Name
tenpl ate

conponent

page

definition

attribute

nane

Description

A string representing the URI of atile or template. The
t enpl at e, page, and conponent attributes have exactly
the same behavior.

A string representing the URI of atile or template. The
t enpl at e, page, and conponent attributes have exactly
the same behavior

A string representing the URI of atile or template. The
t enpl at e, page, and conponent attributes have exactly
the same behavior.

Name of the definition to insert. Definitions are defined in a
centralized file. For now, only definition from factory can be
inserted with this attribute. To insert a definiton defined with

the definition tag, use beanName="".

Name of an attribute in the current tile/component context.
Vaue of this attribute is passed to the nane attribute.

Name of an entity to insert. Search is donein this order:
definition,attribute,page.

333



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

beanNane

beanPr operty

beanScope

flush

i gnore

role

controllerUrl

controll erd ass

Name of the bean used as avalue. Bean isretrieved from
specified context, if any. Otherwise, method

pageCont ext. fi ndAttri bute() isused. If the
beanPr operty attribute is also specified, retrieve value
from the corresponding bean property.

If the bean (or bean property value) is an instance of one of
Attribute class (Direct, Instance, ...), insertion is done
according to the classtype. Otherwise, thet oSt ri ng()
method is called on the bean, and returned String is passed to
the name attribute.

The name of the bean property. If specified, the valueis
retrieved from this property.

The scope into which the bean is searched. If not specified,
method pageCont ext . fi ndAttri but e() isused.
Scope can be any JSP scope, component, or template. In these
two later cases, bean is searched in tile/component/template
context.

True or false. If true, current page output stream is flushed
before tile insertion.

If this attribute is set to true, and the attribute specified by the
name does not exist, simply return without writing anything.
The default value is false, which will cause aruntime
exception to be thrown.

If the user isin the specified role, the tag is taken into account;
otherwise, the tag is skipped and the content is not written out.

Url of acontroller called immediately before page isinserted.
Url usually denote a Struts action. Controller (action) is used
to prepare data to be render by the inserted Tile.

Only oneof control l erUrl orcontrol |l erCl ass
should be used.

Class type of acontroller called immediately before pageis
inserted. Controller is used to prepare data to be rendered by
theinserted Tile. Only oneof control | er Ur| or
control | er C ass should be used. The Class must
implement or extend one of the following :
org.apache.struts.tiles.Controller

org.apache.struts.tiles.ControllerSupport
org.apache.struts.action.Action.

There have been several examplesof thei nser t tag earlier in the chapter.

334



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

ThedefinitionTag

The definition tag is used to create a tile (template) definition as a bean. The newly
created bean will be saved under the specified i d, in the requested scope. The
definition tag has the same syntax as the i nsert tag. The new definition can
extend a definition described in the definition factory (XML file), and may overload any
previously defined parameters. Table 14-3 lists the attributes supported by the
definition tag.

Table 14-3. The Attributes for thedef i ni ti on Tag

Attribute Name Description

id Specifies the name under which the newly created definition
bean will be saved. This attribute is required.

scope Specifies the variable scope into which the newly defined bean
will be created. If not specified, the bean will be created in
page scope.

tenpl at e A string representing the URI of atile/component/template (a
JSP page).

page URL of the template / component to insert. Same as
"template”.

role Role to check before inserting this definition. If roleis not

defined for current user, definition is not inserted. Checking is
done at insert time, not during definition process.

ext ends Name of a parent definition that is used to initialize this new
definition. Parent definition is searched in definitions factory.

The following fragment illustrates how to use thedef i ni t i on tagin aJSP page:

<tiles:definition
id="storefront.defaul t"
page="/1 ayout s/ st or ef r ont Def aul t Layout . j sp"
scope="request ">
<tiles:put nane="header" val ue="/comon/ header.jsp" />
<tiles:put nane="rmenubar" val ue="/comon/ nenubar.jsp" />
<tiles:put nane="copyright" val ue="/conmon/ copyright.jsp" />
</tiles:definition>

A complete example is shown later in the Declaring Definitions in a JSP Page section of
this chapter.

Theput Tag

The put tag is used to pass attributes to a tile component. This tag can only be used
inside the i nsert or definition tags. The value (or content) of the put tag is

335




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

specified using val ue attribute, or using the tag body. It is also possible to specify the
type of the value :

String— The content is literally translated

page or template— Content is included from specified URL. Name is used as an
URL

definition— Content come from specified definition (from factory). Name is used as
definition name

If thet ype isused, it istaken into account by the get ori nsert tagsinsidethe
inserted tile. If thet ype attribute is not specified, the content is ‘untyped', unlessit
comes from atyped bean. Table 14-4 lists the attributes for the put tag.

Setting the direct="true” is equivalent to setting type = “string”.

Table 14-4. The Attributes for the put Tag

Attribute Name Description
nane Name of the attribute.
val ue The attribute value. Could be a String or an Object. Value can

come from a direct assignement (value="aVvalue") or from a
bean. One of val ue, cont ent, or beanNane must be

present.

cont ent Content that's put into tile scope. This attribute is equivalent to
theval ue attribute. Attribute added for compatibility with
JSP Template.

di rect Determines how the content is handled: true means content is

printed directly; false, which is the default, means content is
i ncl uded. Thisisanother way to specify content type. If
'direct=true’ content is “string”, if ‘direct=false', content is
“page” . Attribute added for compatibility with JSP Template.

type Specify content type. Valid values are “string”, “page”,
“template” or “definition”.
beanNare Name of the bean used to retrieve the value from. The bean is

retrieved from the specified context, if any. Otherwise, the
method pageCont ext . fi ndAttri bute() isused. If
beanPr operty isspecified, retrieve value from the
corresponding bean property.

beanPr operty The property name in the bean. If specified, the valueis
retrieve from this property.

336



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

beanScope The scope used to search for the bean. If not specified, the
method pageCont ext . fi ndAttri but e() isused.
Scope can be any JSP scope, 'til€', ‘component’, or ‘template’.
In these three later cases, bean is search in
tile/component/template context.

rol e If the user isin the specified role, the tag is taken into account;
otherwise, the tag is skipped and the content is not written out.

Theput Li st Tag

The put Li st tag creates a list that will be passed as an attribute to a tile. The List
elements are added using the add tag. This tag can only be used inside the i nsert or
defini ti on tag. Table 14-5 lists the attributes for the put Li st tag.

Table 14-5. The Attributes for the put Li st Tag

Attribute Name Description
nane Name of the List. This attribute is required.
Theadd Tag

The add tag adds an element to the surrounding list. This tag can only be used inside
put Li st tag. The value can come from a direct assignement (value="aValue") or from
abean. One of val ue or beanName must be specified.

Table 14-6. The Attributes for theadd Tag

Attribute Name Description

val ue The value to be added. Can be a String or Object.

cont ent The value to be added. Can be a String or Object. Synonym to
value. Attribute added for compatibility with JSP Templ ate.

direct Determines how the content is handled: true means content is
printed directly; false, which is the default, means content is
included.

type Specify content type: st ri ng, page, t enpl at e or

definition.Ifthetype attributeis not specified, content
is'untyped’, unless it comes from atyped bean.

beanNane Name of the bean used to retrieve the value. Bean isretrieved
from specified context, if any. Otherwise, the method
pageCont ext. findAttribute() isused. If
beanProperty is specified, retrieve the value from the
corresponding bean property.

337



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

beanPr operty The bean property name. If specified, valueisretrieve from
this property.
beanScope The scope used to search for the bean. If not specified, method

pageCont ext.findAttri bute() isused. Thescope
can be any JSP scope, ‘component’, or ‘template’. In these two
later cases, bean is search in tile/component/templ ate context.

role If the user isin the specified role, the tag is taken into account;
otherwise, the tag isignored (skipped). Theroleisn't taken
into account if add tagisused in adefinition.

Theget Tag

Theget tag retrieves content from the tile context and includes it in the page. Table 14-7
lists the attributes for the get tag.

Table 14-7. The Attributes for the get Tag

Attribute Name Description

nane The name of the content to get from the tile scope. This
attribute is required.

i ghore If this attribute is set to true and the attribute specified by the

name does not exist, simply return without writing anything.
The default value is false, which will cause a runtime
exception to be thrown.

flush True or false. If true, the current page output stream is flushed
before insertion.

rol e If the user isin the specified role, the tag is taken into account;
otherwise, the tag isignored.

Theget AsStri ng Tag

The get AsSt ri ng tag retrieves the value of the specified tile attribute property and
renders it to the current JspWriter as a String. The usual t oSt ri ng() conversion is
applied on the value. If the named value is not found, a JSPExcept i on will be thrown.
Table 14-8 lists the attributes for the get AsSt r i ng tag.

Table 14-8. The Attributes for theget AsSt ri ng Tag

Attribute Name Description
nane The attribute name. This attribute is required.

338



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

i gnore If this attribute is set to true and the attribute specified by the
name does not exist, simply return without writing anything.
The default value is false, which will cause aruntime
exception to be thrown.

rol e If the user isin the specified role, the tag is taken into account;
otherwise, the tag isignored.

TheuseAttri bute Tag

TheuseAt t ri but e tag declares a Java variable and an attribute in the specified scope,
using tile attribute value. The variable and attribute will have the name specified by i d,
or the original name if not specified. Table 14-9 lists the attributes for the

useAt tri but e tag.

Table 14-9. The Attributes for theuseAt t ri but e Tag

Attribute Name Description

id Declared attribute and variable name.

cl assname The Class of the declared variable.

scope The scope of the declared attribute. Defaults to ‘page'.

nane Tile's attribute name. This attribute is required.

i gnore If this attribute is set to true, and the attribute specified by the

name does not exist, simply return without error. The default
value isfalse, which will cause a runtime exception to be
thrown.

Thei nport Attri bute Tag

Thei npor t Att ri but e tag imports the attribute from the tile to requested scope. The
nane and scope attributes are optional. If not specified, all tile attributes are imported
in page scope. Once imported, an attribute can be used as any other beans from the JSP
context. Table 14-10 liststhe attributes for the i nport At tri but e tag.

Table 14-10. The Attributes for thei nport Attri but e Tag

Attribute Name Description

nane Tile's attribute name. If not specified, all attributes are
imported.

scope Scope into which attribute isimported. Default to page.

339



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

i gnore If this attribute is set to true, and the attribute specified by the
name does not exist, simply return without error. The default
value is false, which will cause a runtime exception to be
thrown.

Thei ni t Conponent Defi nitions Tag

The i ni t Conponent Defi ni ti ons tag initializes the definitions factory. Table 14-
11 lists the attributes for the tag.

Table 14-11. Attributes for thei ni t Conrponent Defi ni ti ons Tag

Attribute Name Description

file The definition file name. This attribute is required.

cl assnane If specified, the cl assnane attribute of the factory to create
and initialize.

Using Definitions

The tiles that we have shown so far add value to an application because they organize the
layout of a page in a single resource, the layout JSP page. This can save development
time and more importantly, the time it takes to change the layout for an application.
However, there is a problem with the approach used in the Storefront application shown
earlier. In each of the non-layout tiles, there is redundant code that specifies what content
to use for the header, menubar, and copyri ght content. The same attributes are
being passed in every page. This may not always be the case, but in general, these values
will be constant throughout an application. For instance, the same copyright page is
typically shown on every page.

It's redundant to have to specify thesein every tile. It would be nice to declare what these
attributes are in one place and the tiles could include just the page-specific attributes
where needed. Fortunately, using Tile Definitions solves this. A definition allows you to
statically specify the attributes that are used by a template. This alows you to specify
only the page-specific attributes in your tile. Definitions add the following capabilities:

Screen definitions
Centralize declaration of page description

Avoid repetitive declaration of nearly the same pages (by using definitions
inheritance)

Avoid creation of intermediate components used to pass parameters

Specify the name of a definition asf or war d in the Struts configuration file

340



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Specify the name of a definition as component parameters
Overload definition attributes
Use a different copy of a component, depending on the local (i118n)

Use a different copy of a component, depending on a key (This might be used to
show different layouts depending on the client type)

Definitions can be declared in a JSP page or in an XML file. Regardless of which
approach you choose, you should strive to keep the definitions in a central place. If you
are planning on using a JSP page to specify your definitions, put al of them for an
application in a single JSP page. Don't spread your definitions throughout your site. This
will only make maintenance more difficult.

Declaring Definitionsin a JSP Page

As was previously mentioned, there are two locations you can specify definitions: a JSP
page or an XML file. We'll discuss the JSP page approach first.

Create a JSP page and declare all of your definitions in that file. For the Storefront
application, we've created a file called st or ef ront - def s. j sp and put the default
definition in it as Example 14-6 shows.

Example 14-6. Declaring Tiles Definitionsin a JSP Page
<y@taglib uri="/WEB-INF/tiles.tld" prefix="tiles" %

<tiles:definition
id="storefront.defaul t"
page="/1 ayout s/ st or ef r ont Def aul t Layout . j sp"
scope="request ">
<tiles:put nane="header" val ue="/common/ header.jsp" />
<tiles:put nane="menubar” val ue="/comon/ nenubar.jsp" />
<tiles:put nane="copyright" val ue="/conmon/ copyright.jsp" />
</tiles:definition>

The syntax for the definition tag was described earlier in the The Tiles
Tag Library section of this chapter.

The definition in Example 14-6 is using the same layout tile that was used earlier. The
common files that were spread through the various tiles, are now located in the definition
file. This makes changing the value for these much easier. For instance, if we wanted to
specify a different copyright page, the only place to change that would be in the
definition file. We would not have to modify every JSP page.

Thedefini ti on tag syntax looks very similar to the syntax for the insert tags shown
earlier. We just need to provide an id attribute and switch the pat h attribute to the page

341




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

attribute. Also, the default scope for the def i ni ti on tagispage. It was set to request
scope here to give it alittle broader scope.

To take advantage of the definition, the tile components need to be able to access the
definition. Since we have given the definition request scope, we need a way to include
the definition in the various JSP pages, since it will only exist for the lifetime of a
request. Fortunately, we aready know how to include a JSP page in another page using
the JSP include directive. Example 14-7 shows what the i ndex. j sp page looks like
using the JSP definition file.

Example 14-7. The si gni n. j sp Page Using a Tile Definition
<v@taglib uri="/VEB-INF/tiles.tld" prefix="tiles" %
<y@ncl ude file="../common/storefront-defs.jsp" %
<tiles:insert beanName="storefront.default" beanScope="request">

<tiles:put nanme="body-content" val ue="../security/signin-body.jsp"/>
</tiles:insert>

With this approach, the tile components only have to insert the page-specific content.
Compare example 14-7 to Example 14-5. Notice that the si gni n.j sp using the
definition only needs to provide the page-specific content, the si gn- body. j sp file.

Declaring Definitionsin a Configuration File

Y ou also have the option of declaring definitions in a centralized XML file. Whether you
use the JSP page or the XML alternative really depends on your requirements. With the
XML approach, you won't need to use the include directive shown earlier.

Creating a Definition Configuration File

To use this approach, create an XML file that follows the syntax of the tiles-config.dtd.
The definitions XML file should be placed in the WEB-INF directory as with the other
application meta-information. The DTD should also be placed in the WEB-INF directory.
Example 14-8 shows an example of a definition XML file.

Example 14-8. The Sorefront XML Definitions File

<! DOCTYPE tiles-definitions PUBLIC
“-// Apache Software Foundation//DID Tiles Configuration//EN
“http://jakarta. apache.org/struts/dtds/til es-config.dtd">

<tiles-definitions>

<put nanme="header" val ue="/common/ header.jsp" />
<put name="nenubar" val ue="/conmmon/ menubar.jsp" />
<put nane="copyright" val ue="/comon/ copyright.jsp" />
</definition>
</tiles-definitions>

342

<definition name="storefront.defaul t" path="/1ayouts/ st orefrontDef aul t Layout . ] sp"




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

You'll notice that there’'s not much difference between the definition format specified in
the JSP file in Example 14-6 and the one from the XML file in Example 14-8. The XML
file uses a dightly different syntax, but isvery similar.

The two formats are just similar enough to cause problems. Notice that
in the JSP definition, you use the put tag:
<tiles: put

nane="body-content"
val ue="../security/signin-body.jsp"/>

but in the XML definition, you use a put element:
<put

name="header"

val ue="/comon/ header.jsp" />

Make sure that you don’t get these two confused, as this can be an
annoying bug to track down.

Each definition should have a unique name. JSP tags and pages use the name to retrieve
the definition. It can’'t be used as a URL however. It's only a logical name for the
definition.

Extending Tile Definitions

One of the most powerful features of Tile definitions is the ability to create new
definitions by extending existing ones. All attributes and properties of the parent
definition are inherited and you have the ability to override any attribute or property. To
extend a definition, just add the ext ends attribute. Example 14-9 shows an example of
adefinition named st or ef r ont . cust oner extending the st or ef ront . def aul t
definition.

Example 14-9. Definitions can extend other Definitions

<tiles-definitions>
<definition name="storefront.defaul t" path="/1ayout s/ storefront Def aul t Layout . ] sp"
<put nane="header" val ue="/comon/ header.jsp" />
<put name="nenubar" val ue="/conmmon/ menubar.j sp" />
<put nane="copyright" val ue="/comon/ copyright.jsp" />
</definition>
</tiles-definitions>

<tiles-definitions>
<definition name="storefront.custon extends="storefront.default”>
<put name="copyright" val ue="/comon/ new copyright.jsp" />
</ definition>
</tiles-definitions>

In Example 14-9, al of the attributes in the st or ef ront . def aul t definition are
inherited. However, thest or ef r ont . cust oner definition overrides the value for the

343




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

copyright attribute with an alternate copyright page. This is a very powerful feature. If
you have multiple child definitions all extending aroot definition, changing avalue in the
root definition changes it for al children. You could change the layout in the root
definition and have it changed for al child definitions.

Using Definitions as Forwardsin Struts

Tiles definitions can also be used as Struts forwards, instead of actual URLS. To use
definitions in this manner, you first create the definitions:

<tiles-definitions>
<definition name="storefront. defaul t"
pat h="/1 ayout s/ st or ef r ont Def aul t Layout . j sp">
<put name="header" val ue="/comon/ header.jsp" />
<put name="nenubar" val ue="/conmon/ menubar.jsp" />
<put name="copyright" val ue="/comon/ copyright.jsp" />
</ definition>

<defini ti on name="storefront. superuser. mai n" extends="storefront.defaul t">
<put name="header" val ue="/comon/ super_header.jsp" />
<put nane="nenubar" val ue="/conmon/ super _nenubar . jsp" />
<put name="copyright" val ue="/comon/ copyright.jsp" />
</ definition>
</tiles-definitions>

The fragment shows two definitions, the standard default definition and a second one that
defines the layout for a“super” user. A “super” user might be someone that frequents the
site and places many orders. The “super” user might be given more options on the menu
bar to facilitate faster ordering.

In the Struts configuration file, we need to define the forwards that use these definitions:

<gl obal - f or war ds>
<f orward nane="Super_Success" pat h="storefront. superuser. mai n" />
</ gl obal - f or war ds>

You can then use the Super Success forward to send the user to the
storefront. superuser. nmai n definition just as you would for any other forward.

| nter nationalization Support with Tiles

Although the Struts framework provides certain 118N capabilities and that functionality
can be used with Tiles, Tiles also provides the ability to select a particular Tile based on a
Local e. To support this feature in your application, you need to create a different Tiles
definition file for each locale that you need to support. For example, if you needed to
support a set of definitions for the US locale and a separate set for the German locale, you
would need to create two separate definition files:

344




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

tiles-tutorial-defs_en.xml

tiles-tutorial-defs_de.xml

The suffix naming  conventions follow the ones set by the
java. util.Resour ceBundl e, whichisalso used by the resource bundle for Struts.
When a request for a definition is made, the correct definition is determined by the
included locale.

Similar to regular Java resource bundles, you should always provide a
base definition that is used when no locale is provided, or when one is
used that is not supported. The Tiles base definition file contains no
language or country suffix appended to the name.

Once you have the locale-specific definition files created and placed in the WEB-INF
directory, the only other necessary step isto ensure that a Local e isstored in the user’'s
HttpSession. The Tiles framework depends on the same Local e instance that is used by
Struts to determine which definition file to use. You will need to ensure that the Struts
framework is storing the user’s Local e in the session. This is accomplished by setting
the | ocal e attribute to “true” in the controller element. See The Struts Configuration
DTD in Chapter 4 for more information onthecont r ol | er element.

That's al there is to it. Note that you should still rely on the Struts resource bundle for
locale-sensitive resources like text, messages, and images. The 118N support is Tiles
should be used for differences in layout based on the locale. Struts and Tiles works very
well together to provide complete 18N support.

345



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

16

Addressing Performance

Achieving good performance with an application is absolutely critical to its acceptance
by the user community. Not many users are willing to appreciate a well thought-out
design and excellent programming standards, if the application is sluggish and slow to
respond. Even the most useful and desired application will quickly become the bane of a
user community if it's slow to respond to the user’s requests.

For web-based applications, organizations must test and measure how fast the various
web components are, the number of simultaneous hits the web site can handle, and how
scalable the software and hardware resources are. They must aso understand how the
performance of the application will be affected during peak loads.

This chapter explores the performance implications of using the Struts framework and its
associated technologies to build web applications, and how certain design and
programming decisions will affect the overal performance of the application. A
distinction will be made between performance, load, and stress testing, and what steps are
necessary to carry out each.

What is Good Perfor mance?

It's likely that every developer has had the unfortunate opportunity to build a slow
application. Obviously, developers don't set out to create a ow application, and there
probably isn’t a user group asking, “Could you please make the application run very slow
for us?” Too often, bad performance isn't discovered until the application is finished and
installed into a production environment. So why does it happen?

346



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

The simple truth is because not enough attention is given to performance matters during
design and construction. Thisis not to say that performance should be the primary focus
during design or even construction. If you focus on performance too exclusively or to
soon, it may affect the design and code negatively. On the other hand, if you wait too
long, you may find yourself with upset users complaining about the poor performance
and you'll be wondering what went wrong.

You may have heard of the axiom “Test soon, Test often”. This is a good principle to
follow to help ensure that you are not surprised at the end of construction with a poor
performing application. The sooner you can detect a performance problem, the more
likely that you'll get a chance to fix it before the application goes into production.
There's a saying, “ Don't leave any broken windows’. This statement means that when
you detect a problem, fix it and don’t let it linger. It's like a building that gets a broken
window that's not immediately fixed. If people are lead to believe that one broken
window is acceptable, they will eventually decide that it's all right to have many broken
windows. Before long, the building is in shambles, and the tenants have all moved out. If
you find obvious performance problems during early tests, fix them.

So how do you measure the performance of a web application? What's considered
acceptable or too slow? The answers to these questions are strictly related to the non-
functional” requirements of the application. There are very tangible and quantitative
measurements that can be taken. These measurements help to determine if the application
is not able to meet the minimum requirements set out in the non-functional requirements.

The problem is that each application is different and therefore has different non-
functional requirements. One application might have to have an average response time of
3.0 seconds and support 50 concurrent users, while another might have to support 500
simultaneous users. Unlike functiona testing, where it’s easy to see when the application
fails to meet the design specifications, performance testing is alittle more nebulous.

According to Alberto Savoia, who is the Directory of Software Research at Sun's
Microsystems Laboratories, there are four behavioral laws that make web page
performance critical to an organization’s success.

1. TheLaw of Stickiness—This law says that web users are sticky, but not loyal. If
they find aweb site that serves their needs, they tend to continue to use the site.
If the web site begins to respond slow and cause the users to wait, they will
move to another site that fulfills their same needs. The point is to strive to keep
the performance of the application strong in order to keep the users coming back

" The non-functional requirements are part of the analysis work that should be done for any non-
trivial application. These requirements describe the broader issues of the application, such as
availability, disaster recovery, package dependencies, and almost always, performance criteria

347



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

2. The Law of User Perspective—This law states that you should always measure
the performance of your application from a user’s point of view, not from yours.
The point here is that your environment may have a 100MB network with an
otherwise light load on it, but the user may be using a modem with a much
smaller bandwidth capability. When testing, always know what the user's
environment and network capability will be and test accordingly.

3. The Law of Responsibility—This law states that the user doesn’t care what or
who is at fault for poor web site performance, they will always blame the
application. The problem might be their ISP or other non-application issues, but
most users will not be able to isolate the problem to that level and will instead
blame the application or site. Y ou must be aware of al of factors that impact the
performance of your application.

4. The Law of Expectations—This last law states that user’s satisfaction is based
on their expectations, and their expectation is set by their persona experiences
with other similar web sites. When measuring the performance of your
application, don't rely just on arbitrarily numbers to indicate what's slow or fast,
compare your results with those of your competitors.

These simple common-sense laws explain the human behavior aspects of web site
performance. In general however, slow is slow and fast is fast. There are generalities that
can be made across applications and business domains. However, before we discuss how
to detect whether performance problems exist with an application, a distinction needs to
be made between the types of performance testing that should be conducted.

Performance versus Load Testing

There are many different types of software testing; functional, unit, integration, white
box, black box, regression, and so on. Performance and load testing are among the most
important, but usually get the least amount of attention. There are generally two reasons
why this might be. The first reason is that developers typically wait to the very end of the
development cycle to start testing the performance of the application. The end of the
cycle is when you have the least amount of time due to deadlines. This reduces the
amount of time available to spend on such an important part of application. It is true
however, that it's not always practical to conduct performance testing during every phase.
Early phases tend to focus on the architecturally significant pieces and there may not be
enough of the application built to test the performance of. You should however, gather
some preliminary performance measurements as early as possible, so as not to be
surprised.

Another reason that performance and |load testing don’t get much attention isit’s honestly
hard to do. It's true that there are many tools on the market, both free and commercial,
but it's quite another thing to utilize these tools to detect problems. These tools must be
able to simulate many simultaneous users of a system. But this involves understanding

348



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

what virtual uses are, different threading models and how this affects performance and
load, and then you must be able to look at the results and determine if they are acceptable
or not. All of this can be very overwhelming to the average developer. This is part of
what keeps developers from conducting the tests; they just don’t understand the necessary
steps or how or where to get started. Many organizations house a separate team that is
solely responsible for performance testing. Smaller groups might utilize the qual

Although performance, load, and stress testing are related, they are not the same thing
and they are not carried out in exactly the same manner. Performance testing involves
executing the functional behavior of the application and essentially timing how long it
takes for each result to complete. The amount of time that a single task takes to finish is
known as its response time. If you execute the method many times and then take the
average, thisisits average response time. The average response time for the signin action
in the storefront application for example, is roughly 250 milliseconds. Thisis for asingle
user using the system. Y ou should always conduct the initial performance testing using a
single user, in order to get a baseline. If there are performance bottlenecks for a single
user of the system, you can bet these problems will have an impact when multiple users
start logging in. In general, the faster the response time, the faster the application is. This
end-to-end time can also be thought of as the transaction time for the function being
tested.

Based on the response time, you are able to come up with a rough throughput time.
Throughput defines the number of transactions that can occur in a set amount of time.
The theoretical throughput that is calculated based on a single user, will probably differ
with real loads. Due to multi-processing and other hardware and software features,
applications can achieve a higher throughput by adding more hardware and software
resources. This enables the application to process more transactions per time period,
which increases the throughput numbers.

Load testing is analogous to volume testing. This type of testing is performed to see how
the application will react to a higher user load on the system. During this type of testing,
you can adjust the hardware and software configurations to determine which
configuration gives the best throughput for a given user load. Load testing is usualy the
harder of the two to conduct, because you are constantly going back and forth adjusting
configuration systems to see what gives you the higher throughput. No application can
sustain an infinite user load. The idea is to try and maximize the number of concurrent
users with an acceptable average response time.

Throughput is usually measured in transactions per second (tps), but it can also be
measured per minute, per hour, and so on. Armed with response times and throughput
numbers, you' re then able to make intelligent decisions about how the application should
be configured to ensure the best performance and scalability for the users. It's also a good
idea to share these numbers with the network engineers so they’ll understand how much
network bandwidth the application might require.

349



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Stress testing is the next logical extension. Stress testing is essentially load testing using
peak loads. When conducting stress testing, you are really trying to stress the application
to its limits to see how it reacts, how efficient the memory is used, and what other types
of problems will surface.

What arethe Benefits of Stress Testing?

Stressing you application under a heavy simulated load offers many benefits. Chiefly
among them are:

Identify bottlenecks in the application under a large user load before they occur in
the production environment.

Control risks and costs by being able to predict scalability and performance limits.
Increase uptime and availability of the application through proper resource planning.

Avoid missing go-live dates due to unexpected performance and scalability
problems.

Both performance and stress testing should be performed on an application to get the
complete picture. They can point to parts of the application that might become a
bottleneck, under normal loads and especially as the number of users climbs.

Performance and Stress Testing Tools

There is an abundant supply of performance and stress testing tools available on the
market today. Some are very inexpensive and others cost more than you can probably
imagine. While commercia testing products tend to offer more plentiful features, there's
really no correlation between cost and quality when it comes to these types of tools. For
most applications, you don’t need to “spend an arm and a leg” on a tool, when there are
free or cheaper ones available that will do the job. The best advice isto start out with one
of the free or inexpensive ones and see if it meets the projects needs. If not, then take a
look at one of the more commercial products to see what it hasto offer.

Many of the performance testing tools include functionality to test for a single user and

aso for multiples ones. For that reason, Table 19-1 lists several of the available
performance and stress testing tools.

Table 19-1. Available Performance and Stress Testing Tools

Company Product URL

Apache Group JMeter http://jakarta.apache.org/jmeter
Mercury Interactive LoadRunner http: //mww-svca.mer curyinter active.com
Rational SiteLoad http://www.rational.com

350



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

RadView WebL oad http: //wvww.radview.com
Empirix e-Test Suite http: //www.empirix.com
Seque Software Inc. SilkPerformer  http://www.segue.com
Microsoft WAS http://homer .rte.microsoft.com

Testing the Storefront Application

The Storefront application is a fictitious shopping cart application that you might see on
the Internet or might have actually built before. A normal application of this type would
be connecting to a database with tens of thousands of records, possibly even hundreds of
thousands.

By default, the Storefront application uses a debug implementation and
doesn’t connect to a database. This was done so you didn't’ have to
have a database installed just run the example application.

There's no rea point in going through the entire exercise of testing the Storefront
application; the numbers wouldn’t’ mean anything anyway. It would however be helpful
to show how to get started and what norma steps must be taken in order to get
performance numbers out of an application. The following are general steps that should
be followed:

1. Understand the performance goals.

2. Establish the performance baselines for the application.

3. Runteststo collect performance data.

4. Analyze the data to detect where the problems are

5.  Make necessary changesto increase performance.

6. Repeat steps 3 through 5 as necessary to reach the performance goals.
For this exercise, we are going to use a scaled-down version of the Mercury Interactive
Load Runner product. The product is called Astra Load Test and is alight version of the
Load Runner product. It isacommercia product that is feature rich. Y ou can download a

demo version that will support up to 10 virtual users. It's available for download at
http: //Mmwww-svca.mer curyinter active.convproducts/downl oads.html.

351



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Under stand the Perfor mance Goals

Before you begin any testing scenario, it's important to understand what the performance
goas of an application are. The performance goals are normally specified in the non-
functional reguirements for an application and are usually specified using the following
units:

Average Transaction Response Time
Transactions Per Second (tps)

Hits/Second

It's not absolutely critical that you know what the performances numbers need to be
before starting to test the application, but it can help to have a set of expectations for the
application. Sooner or later, someone is going to ask you, “So how does the application
perform?’ To be able to say, “it’s good” or “it stinks’, you’'re going to have to make it
relative to some set of goals.

Establishing a Performance Baseline

Once you're ready to get started testing, the first thing that you should do is establish a
baseline. A baseline is a snapshot of your application’s performance before anything has
been done to it. It's always a good idea to get a performance baseline before you starting
changing code to better the performance. Otherwise, how do you know if you' ve made it
better, or in fact worse?

Taking a Baseline

Most performance testing tools allow you to record the interaction sequence between a
browser and the web application. Although most tools allow you to also manually create
the testing scripts, using the automatic recording aspects of the tool is very convenient
and alleviates many of the tedious chores. Figure 19-1 illustrates the record screen of the
AstraLoadTest software.

352



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

S Sveeliont Test - Yistesl Urss Fepmdes

B Edl Wew jscd Teed Slep Debug Tock: Help
D@ & 2@ 0o |

|.thmd e W a it
EEREN: KN

- fcion! ==
- “italShoming® =
*
ksl L Wameal Skappin
L3 SigrinVitual Shapping 2 ik Sireis Would yeu like n@
21 L8 Vi llan Diadad "rbuad Shopprg 3° B o pir it @l
i Cadk ™ ual Shopping Corrend Tokak 300
1. L8 Add i Cat “WiualSh "
2 Chonae nany Vil Sk || S cesmscncis mouris son
?.5 u Doty "Vihs hoppis B RN IO CANEL.  ARDUVT WS STORE KA R LR §IA

Upschate Ghippang ekl Bhopping

8 Vo e i FREE SHIPPING
] Idwl'-‘agr'\'i'hu‘:howng_? Wurflers

M o ORDER NOW AND SAVE

Lésabied time aifer -
Feneive free shipping oo parthaies of uy KIHT.

= gih F Jg v

Ll T iAfTir FH EYe L e st M Bt
L]

CATET, Tree v Bt Wi A eh e uSoran £
[ Fieaty "

Figure 19-1. The Recording Screen of the Astra LoadTest Application

With Astra, as with most other web testing tools, each interaction with the web
application can be recorded as a separate transaction. In Figure 19-1, each element in the
tree view on the left-hand side of the screen represents a separate transaction that can be
played back and the performance metrics recorded for it.

Once you start recording, all interaction between the client and the server is recorded,
including request parameters and headers. You can then play back this recording and
modify the different parameters like the number of users executing the recording.

Once you have the necessary test scripts, you can establish the baseline. The baseline
measurement is normally taken with a single user using the application. Depending on
whether you are conducting performance tests or are concentrating more on load testing,
the number of virtual users can vary. It's typically a good idea to start off with one user
and scale upwards. If the application is slow with a single user, it's a good chance that
it'll be slow with multiple users. Figure 19-2 shows the testing script from Figure 19-1
running against the Storefront application with a single user.

353



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

A5 Asira LoadT ezt Conteolles - Scrnmind - [Aun]

bl Yeom Scepein Monio: Aesds Took Hep

Fs W% d 4

Seenarie Groups Scenario Status

U M w1l 2 R e 362 0 ol o tin snoppes] =4 | e 5 Soesiinal | Funning Yisers 1
1 ol ofoof1ofoofooal o] B o El=pzed Time ihihmim.s=) 0001:21
i . ! = Feges per Secand 2. 475 (l=e=i B0 seC)
Hi
Peesad Transadians 171 L8
Ay Murma.. Failed Trens=-ionz 1] )
Emnrs 1 0,
-
=- Hunkina Graphs & . . . .
Prurwireg W L e pensme e e St i | B et o e el e el
H Uz Drafevaad Data Poiels =
= Trarsacton Giape H.8 EH
Tranzachon Raspores Time E a L
Tranzachore por Soecond [P ) =
Transachores par Second [Faked! 5.1, . P L T o E,q.
Tookal Tramzactiors per Second [F B ¥ 'ﬂ " rRER p' HI b E_
= wiah Hesouies Giapke ) wikd B ngz
Hitz pan Sazond
1 |
o T L Y e [ 00 DI I 0
| i v Bl ecd Time [Hour blin Sec] Blayeecd Time [Hoo bin Sec]
[ | Scale | Trersachion IES | Hin | g | 51 [ Lasi L
. i ikl Shopping Qa0 0040 L06E iy b} =)
I Wirkaal_ Shepping 3 0150 (e 0054 007 0050
I 1 irkazl_Shopping B 010 0nsn oz Juife] =l :I
I——— . P - - e o o ENCEEN - —
[E] Desigh | Fun ]
Irwalid Growp name - Sionsfiont Test 4

Figure 19-2. Testing the Storefront Application with a Single User

Once the testing scenario is complete, the software gives you a summary report of the
performance of your application. The baseline report for the Storefront application with a
singleis shown in Figure 19-3.

354



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

[F=] Aaten Load| e Analysiz - Suszioni s

Da Ede Yaw Guph Feport: Iock Hak
D G ke 7 |8

= M Semonl ka Surmmanp Fepot | Runeirg West: | Hile pa1 Seoord | Theaughea | Tramsetion Suminan | Asciags Tiasction Famons Tin |
+

il o H i D L phoe =
Sumnany Alepost Analysis Sumimany Penod: 18/D7,/2002 20:22—)
Auming Viam!
':I"'M' 5‘:“"’ Scenarie Hamel Srenariol
hm;.gcs fon Feaulis | smamien: Z:ADocumerbs and Setbnge'coav sraetl ccal S Tamplran v b

Duratisn: Z rminutes and 1 sacand.

Acvmagm Tiarcaction Faspon:

|
(5) awimum Bennmg Yusess: L
() Tetal Threunbnud dbhylesk 10,703,473

@ T® o i Avarage: —
anAn

() Tetal Hits: 4,554
= Avarage:
(51 Hits per Secong: 17.87E ¥oom HTTF Respanses Summery
Tatal Total Total
(5 Transsctisns: pazsed; failad: Stoppad; Awersne Brapsnse Tims
1370 n
& FRnineun Awtrage Maksmam
Shartllp 0.0E 0.00E 029 0.11 a3 =
il I | E1 | _,J—I

Legeed | Graph Dty Lipsr Hitmr | Gragh Diata | Flaws Dlstn |

Figure 19-3. The Summary Report for the Storefront Application

Once you have the baseline numbers and it's determined that the performance needs to
increase, you can start to modify the application to increase the performance.
Unfortunately, it’s never that easy. Y ou have to know where the problems are in order to
determine where to focus on in the application. There’'s not much point in speeding up the
application in the places are already fast. You need to use the tools to help determine
where the bottlenecks are.

Finding the Trouble Areas

Sometimes you get lucky and you find the performance problems quickly. Other times,
you need to utilize different tools to locate and isolate the areas that are causing the
problems. Thisiswhere profile tools can help out.

Profiling your Application

Profiling your application is somewhat different than the performance tests that we've
been discussing. The tools and the tactics are somewhat different. Although performance
tools might be able to tell you that a particular web request tool the longest, it can't tell
which Java method took up the most time. Thisis the purpose of profilers.

Table 19-2 lists several profiling tools that can be useful in locating troubled areas of the
application.

355



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Table 19-2. Commercially Available Profiling Tools

Company Product URL

Rational Quantify http://wvww.rational.com

Intutive Systems Optimizelt http: //Amwww.borland.com/optimizeit
Sitraka Software JProbe http://www.sitraka.com

Profiling an application is pretty much like debugging one. Y ou see where the application
spends most of its time, how many calls are made to a specific function, how many
objects are created, how much memory is used, and so on. You start from a high level
and work your way down to the methods that are causing the performance or scalability
problem. Once you fix the problem areas, you run the tests again. This is repeated until
all of the problem areas are resolved, or until you have to ship the product.

The performance tools can also help you determine where the problem areas are. In
Figure 19-4 for instance, we see that the average transaction response time for one action
seems much higher than the rest.

T Asiia LoadT ezl Amalyst - Session] ia

Ei= Edt Wiew [Dragh Hepakr Joak Hep

O S0 e 7T Towld i B
= [ Sesscnl ks Surnma Repot | Aurving Vs | His per Second | Thioghout | Tranaction Sumnay Averape Tiorseclio 4 |
e chew Greph: g Aueraie Trarsoeden Response Time
Suwwnalp Rapoi 0357
Furning Yuszrs ¥
His pal Second 0.2
Theoughget

ois] b4
Traraacton Surmmep H \
Aiyerape Tisnsaclon Respon!

(EF
1= =

e
T

. L I
OO0 00606 00:10 0015 0020 0025 0030 D03 0040 DC05 DOEE0 OS5 01:00 M 106 T4 10 115
Elsiead aranain ire mmss

Awarags Responss Tima (Baco

| L
Lecerd | Graph Dutalle | s Wofas | Eraph Data | RawDaia |

Cokr | Scol | Mezswnreni
1

& Srailp
1 Vilel_Shopping
i Wil _Shopping 2
=l Vil Shopping 4 oM [T niE e 0o
\ih sl Shorninn 5 M [Tva nnr nie 11 1F, =l

Figure 19-4. Higher Average Response Times May Indicate a Problem

The numbers shown here are redly extraordinary good. The worse
average response time for the Storefront application is 0.25 seconds.
Most developers would kill to have a problem like that! That’s because
we aren’t doing anything “real” in the application. It's all an example
application that doesn't really connect to a backend system or
thousands of records to sift through. This brings up a good point
however. Just because one transaction is slower than the rest doesn’t
mean that it's slow. It just might be slow relative to other really fast
transactions. Don’t spend time speeding up something from very fast to

356



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

super fast. Concentrate on the parts of the application that are truly
slow. 0.25 seconds is very fast and if this were a“real” application, we
would ship it immediately.

The operation that shows the worst response time in Figure 19-4 is the view item detalil
action. With Astra, we can break the transaction down even further to see what’s going
on. Figure 19-5 breaks the view item detail page down into its constituent parts.

N

=|Asbia Loodl st Analpsis - Gorsion]. ba

Film Eci Yam Gich Aspalr Tocke Help

JEH SR wew 7| < |[E=E |5 B

= [Mj Gecemniba ]| His per Secord | Thimughpmat | Transaction Susmaiy | &werags Tranzacton Aespores Time Pt I
Dl e Grzphe Pane Component Breakdewn
([ Eumay Real — Wce.inige kg it 0003
FAunningizam
) e perse
T b LI [hoor ain.. emine Top 2 i 000 |
=+ [ Whab Pags Breakdorsy = | lloced chdescipis = 0007 | | locnl hoox. miclertd = 165 0002 |
#1-li Siaillp
* _-bl atusl_Shopping || —~ o — I
+ i poirg_2 o TG o
. ﬁ '*"l:::__g:m.ﬁﬂ_; = IIn:lhnl max hpparg it 0000 I
! [ pcalhcs., ndetaRK-11Bman LAL]  — Joraih, tredaicarh g 0.01
&-Jals Vilual_Shaprig_4
- Vil _Shorcing 5 =

Lagerd | Grah Ciokeis | Urni Moiss | Grach Babs | A Bata |

Color | Scale | Maasianard | Grapi's Micinim Grapha A Gr; [ ETT T} GEra e diar =
1 liecalh - A el gf x) o [x] [x]
loca b Sresges ! home gf a [x] a [x]

|ecah.. /meges'ogagl gz 002 0oz 022 -

Incah_ sgeciree Tops g oom nom oom oom

Incah_.magarbupnaegl TS oo oo onE

' locah . e e, 0l anl ool ool | om _ILI
4 L]

1
1
1
1 locah . chadalsoipts anm a0y a.noF QT
1
1

Figure 19-5. The Item Detail Page Broken Down into its Parts

From this, we might try looking at the download times of the various pages to see how
the ItemDetail page stacks up.

357



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

[F=] Aaten Load| e Analysiz - Suszioni s
[a Edt YSaw Owph FBepotr Took Huip
Ll S0 ke F - |8EL e Bow
Thecughrd 1| PagaConponont Bxuakocaan | e Pagn Brakiown | Fages Downkaciod pe Sacced | Pag Dowiced Tine Beskdien | 4 (4]

] Lvewegs Tiemmachon Aeapones T
|| "wab Paga Bresbockaars

k] P ege Conporend Bieakoosn

(i) b P Breskicoass

| Feger Dovlosded pet Secard
< TN
a4 13

# = b PageBmakdovwn

W] Tiremchion 5ureredp Pags Dives s Tame Braakiawn

Time [secands)

Incsdvart: B B rtorarinard i n LI LD

|
£
!
d
i

Iocal hars . AESEH 3 SCTZETAE (mesin LR

ool hovs . 5 B0 1932EE B fimasin LIRS
ool hre .3 B0 38 1F BS54 ijmesin LIRS

Tocaloes A F D34 20E 1520 (mesin LIRS

oty B D F ALESENI0ELT: (mesin LI R
. 1
Iorioe . F FOUGE 80 30 353 fmein LRI

Legerd | Graph Dbl | Ui oty | Grph D | R D3 |

Cokw | Grake | Mesturereen | Mininean | awemrage | Pasirmun | 5l e wiskion | =|
1 Dart Tira ] il FEu] L
1 Lonnacion Tire 1] 1] 1] {14 002G
1 MG Asedbion Tine 0 0 om Lol
1 Enct Tirsm ] i o o B

Figure 19-6. Page Download Times of the Storefront Application

The act of tracking down performance problems is like being a detective. You have to
look behind every corner and leave no stone unturned.

M ake the Necessary Changesto Software and Hardware

Once you think you've found the problem and made the necessary changes, it's back to
the testing scripts once again. You keep doing this over and over until al of the
performance issues are solved or until you run out of time, which usually comes first.

There's usualy not just one problem that you can fix and then everything is fixed. It's a
constant back and forth process that might go on forever, except for the fact that you've
eventually got to ship the product. Because time is usually fleeting, it's imperative that
you concentrate on the biggest performance areas and only tackle the smaller ones if you
have leftover time.

[Note: Reviewers, | got stuck with this section and decided to ask for you help. Do you
see value in discussing the following topics? If you have more that you would to see me
discuss, just add them to the list and I'll try to cover them. Chuck]

358



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Performance and Scalability Gotcha's

This section will present several well-known issues that may affect performance and
scalability for your Struts applications. This section is not meant to be exhaustive, but to
single out afew of the more serious concerns.

Bad Architectural Decisions
Too Many Componentson a Page
Request Scope versus Session

Usingthesynchr oni zed Keyword

Synchronization is used to control the access of multiple threads to a shared resource.
There are many situations where synchronization makes sense and is absolutely
necessary to keep multiple threads from interfering with one another, leading to
significant errors. Struts applications are inherently multi-threaded and one might think
that certain parts of the web application should be synchronized. However, using the
synchr oni zed keyword inside of your Struts applications can cause some significant
performance problems and reduce the overall scalability of the application

All of us have heard at one time or another that servlets should not contain any instance
variables. This is because there may only be a single instance of a servlet running, with
multiple client threads executing the same instance concurrently. If you store the state of
one client thread in an instance variable, and a different client thread comes along at the
same time, it may overwrite the previous threads state information. Thisis true for Struts
Act i on classes and session-scoped Act i onFor nsaswell. You must be sure to codein
a thread-safe manner throughout the application. This means to design and code your
application to alow for multiple client threads to run concurrently throughout the
application without interfering with one another. If you need to control access to a shared
resource, try to use a pool of resources instead of synchronizing on a single object. Also,
keep in mind that the Ht t pSessi on is not synchronized. If you have multiple threads
reading and writing to objects in the session, you may experience severe problems that
are very difficult to track down. It's up to the programmer to protected shared resources
stored in the user session.

Usingj ava. util.Vector andjava. util . Hashtabl e

Y ou must also be careful which Java classes you use throughout your Struts applications.
Especially, when it comes to selecting which collection class to use. The
java.util.Vector and java.util.Hashtabl e classes for example, are

359



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

synchronized internally. If you are using Vect or or Hasht abl e within your Struts
applications, this may have the same effect as if you used the synchr oni zed keyword
explicitly.

You should avoid using the synchronized version of these classes, unless you are
absolutely sure that you need to. Instead of using Vect or for example, you can use
java.util.ArraylLi st. Instead of Hasht abl e, use the j ava. uti | . HashMap

class. Both of these classes provide similar functionality as their counterparts, but without
the synchronization overhead.

Using too many Custom Tags
| mproperly Tuning the JVM
Too many Remote Calls

Too many Graphics

Dealing with Large ResultSets

360



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

18

Logging in a Struts Application

As dedicated and knowledgeable Java programmers, we always want to believe that the
software that we create will stand up to the utmost scrutiny. However, as human beings,
we are constrained somewhat and all have flaws in that respect. Therefore, it's never a
good practice to believe that your software contains no defects; it happens, so accept it.
The important thing is to use whatever means available to reduce the defects to an
acceptable amount, or eliminate them entirely. To help locate any defects that are present
in your software, it's beneficial to generate log messages that tell you what the
application is doing.

Logging is important for other reasons as well. Security and auditing might depend on
logging to provide information to the system administrators about what the authorized,
and more importantly unauthorized, users of the application are doing. By providing real-
time information about potential security attacks on the application, logging can give a
much-needed edge to the system administrators and alow for quicker reaction to attacks.

This chapter takes a close examination of how the use of logging in your Struts
applications can help identify defects before the application gets into production. And if
your software is aready being used in production, how logging can help identify
problems with the software much faster and arrive at a solution in a shorter amount of
time.

Loggingin aWeb Application

The importance of logging has been evident to experienced developers for many years.
Arguably, logging can be as important a part of your framework as exception handling or
even security, both of which may rely on logging functionality to help carry out their

361



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

responsibilities. Without logging in an application, maintenance can become a nightmare
for the developers. And as we all know, there's not a single “rea” application that
doesn’t go through a maintenance cycle periodically.

But the question remains, “ What about logging in a web application? |s it necessary and
as important as logging in other types of applications?’ Seeing that web applications can
sometimes be smaller and less complex than their enterprise application counterparts, you
might think that logging is less important. However, with non-trivial web applications,
thisis not the case and logging isjust as critical there asit isin an enterprise application.

362



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

System versus Application Logging

Log messages can be arbitrarily broken down into two categories, system and
application messages. System messages have to do more with the internal
operation of the application, rather than something specific to a user or data. An
example of a system message may be that the application is unable to send an
email because the SMTP host is not responding. On the other hand, an
application log message might be that user “Jane Doe” tried to submit a
purchase order that was above her company’s credit limit. The system message
in this case may be logged with a priority of “error”, whereas the application
message might only get a priority of “info”.

The importance of this is that we can have our logging environment set up so
that error messages generate an email or a pager message to the system
administrators for immediate attention, while the messages with a priority of
info go into afile for later auditing. There are different types and categories of
log messages and they are typically used for different purposes across
organizations. Although many applications may log messages with the priority
of “error”, what's an error to one organization may just be a warning to another.
There's not a great deal of consistency across organizations and may never be.
This is because organizations have different priorities and what’s critical to one
may not necessarily be critical to another.

For the sake of this chapter, we will generalize the discussion of system versus
application messages. Because of the differing views of what's considered an
error and what isn't, there's no way to specify what's an error, warning, or just
general information for your particular application. That's a decision that you,
your development team, and your product management group will have to make.
WEe'll keep our discussion at a higher level and not focus on these issues.

Using the Servlet Container for Logging

The servlet specification requires that every servlet container allow developers to log
events to the container log file. Although the location of the log file is container
dependant, the manner in which these events are logged is dictated by the specification
and is portable across web containers.

The j avax. servl et . Ser vl et Cont ext class contains two methods that can be
used for logging messages to the container’s log:

| public void log( String nsg );

363




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

| public void log( String nmsg, Throwabl e throwabl €);

You can use either of these methods by obtaining the Ser vl et Cont ext and passing
the appropriate arguments. Example 18-1 illustrates how this can be done using a Struts
Action.

Example 18-1. The Logi nAct i on using the Ser vl et Cont ext to log messages
public class Logi nAction extends StorefrontBaseAction {

public ActionForward execute( ActionMappi ng nmappi ng,
ActionFormform
H t pSer vl et Request request,
H t pSer vl et Response response )
throws Exception{

/1 Get the user's |login name and password. They shoul d have al ready
/1 validated by the ActionForm

String email = ((Logi nFornm)formn).getEnail ();

String password = ((Logi nForm)forn).getPassword();

/1 Cotain the Servl et Cont ext
Servl et Context context = getServlet().getServletContext();

/1 Log which user is trying to enter the site
context.log( "Login email: " + email );

/1 Login through the security service
| Storefront Service servicelnpl = getStorefrontService();
User Vi ew user Vi ew = servi cel npl . aut henti cate(enail, password);

/1 Log the WserView for auditing purposes
context.log( userViewtoString() );

User Cont ai ner exi stingContai ner = null;
H t pSessi on sessi on = request . get Sessi on(fal se);
if ( session !=null ){
exi stingCont ai ner = get User Cont ai ner (request);
session.invalidate();
}el sef
exi stingContai ner = new User Cont ai ner () ;

}

/1 Oreate a new session for the user

sessi on = request. get Session(true);

exi sti ngCont ai ner. set User Vi ew( user Vi ew) ;

session. set Attri but e(| Constants. USER OONTAI NER KEY, exi stingCont ai ner);

return mappi ng. f i ndFor war d( | Const ant s. SUCCESS KEY) ;

The Logi nAct i on in example 18-1 is a very simple example of sending log messages
to the container’s log file. It callsthe | og() method and passes a literal string message

364




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

that will be written to the log. As was mentioned earlier, the name and location of the log
is dependent on which web container being used.

Some web containers may assign a separate log file for each web application, while
others may use just a single log file. If only one log file is being used, messages from
different web applications will end up in the same log file and are usually prefixed with
the web application name.

Using Filters

Filters are a new feature of the Java Servlet specification starting with version 2.3. Servlet
filters alow you to inspect and/or transform the content of the HTTP request and
response objects. Because of the manner in which filters are invoked by the serviet
container, they are able to operate on dynamic as well as static content.

Struts 1.1 supports both the 2.2 and 2.3 Servlet Specifications. If you
are not using a 2.3 compliant container, you will not be able to take
advantage of Servlet filters.

Using filters, servlet developers are able to perform the following tasks:

Access aweb resource before arequest to it isinvoked.
Process arequest for aresource before it isinvoked.

Modify the request headers and data by wrapping the request with a customized
version of the request object.

Modify the response headers and data by wrapping the response with a customized
version of the response object.

Intercept a method call on aresource after it has been performed.

Perform actions on a servlet or group or servlets, by one or more filtersin a specified
order.

Based on the tasks required by servliet developers, the serviet specification describes
several possible uses for filters:

Authentication filters
Logging and auditing filters
Image conversion filters
Data compression filters

Encryption filters

365



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Tokenizing filters

Filters that trigger resource access events
XSLT filtersthat transform XML content
MIME-type chain filters

Caching filters

All of these possible uses for filters are rather interesting; however for this chapter we are
interested in the logging and auditing usage of filters. Using filters, it's possible to log
messages using any data that is contained in the request and response objects. Since the
filter is coupled tightly to the servlet container, you will likely still need logging
functionality elsewhere in your application. Using filters for logging will generally not be
enough for the entire application. However, it is a perfect place for auditing or tracking a
user’s actions through the system.

If you need to get an idea of which parts of the web site your users are visiting the most,
or where certain user groups are going most often, filters might be an ideal solution for
this. It might even be able to give you information about specific data the users are
viewing most often. For example, lets assume that you have an online catalog application
and you are interested in knowing which catalogs the users are browsing most often and
which ones are not getting much attention. Since the request and response objects contain
this information, you could easily track and store this information into a database for
further analysis.

There are three basic stepsto creating afilter:

1. Create a Java class that implements the j avax. servl et. Fi | t er interface and
that contains a no-argument constructor.

2. Declare the filter in the web application deployment descriptor using the fi | t er
element.

3. Package thefilter class along with the rest of the web application resources.

Creating the Filter Class

The first step in creating a servlet filter is to either create a new Java class or use an
existing one and have it implement the javax.servlet.Filter interface
Remember that Java classes can implement multiple interfaces, so you don’t necessarily
have to create a new class. However, the class will eventually need to be loaded by the
web container, therefore it shouldn’'t be one that is only installed on a backend system
like an EJB container.

TheFi | t er interface has three methods that must be implemented by your class:
public void init(FilterConfig fitlerGonfig) throws ServletException;

366



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

public void doFilter(ServletRequest request,
Ser vl et Response response,
FilterChain chain)
throws | CException, ServletException;

public void destroy();

The web container callsthei ni t () method when it’s ready to put the filter into service.
You can initialize any needed resources in this method. For example, this would be a
good place to initialize alogging service or acquire a database connection.

The destroy() method is the opposite of the i ni t () method. The web container
calls this method when it’ s taking the filter out of service. Y ou should clean up any open
resources that the filter may be using like database connections, inside this method.

Finally, the web container calls the doFi | t er () method every time a request is
received and the container determines that the filter instance should be notified. Thisis
the place that you should perform whatever functionality the filter is designed to perform.

Example 18-2 shows an example filter class that could be used to log to the servlet log
file or to initialize a third-party logging service.

Example 18-2. A Servlet Filter Example

inport java.io.|CException;
inport javax.servlet.Filter;
i nport javax.servlet.FilterChain;
inport javax.servlet.FilterConfig;
i nport javax.servlet. Servl et Request ;
i nport javax.servlet. Servl et Cont ext;
i mport javax.servlet. Servl et Response;
i nport javax.servlet. Servl et Exception;
/**
* An exanpl e servlet filter class
*/
public class Loggi ngFilter inplenents Filter{

public final static String LOG FILE PARAM = "l og_fil e_nane";
private FilterConfig filterConfig = null;
private Servl et Context servletContext = null;

public Loggi ngFilter() {
super ();

public void init( FilterConfig config ) throws ServletException {
/1l Initialize any neccessary resource here
this.filterGConfig = config;
this.servletContext = config. getServletContext();

/1 You can get access to initialization paraneters fromweb. xm
/1 although this exanple doesn't really use it

367




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

String | ogFi |l eNane = config.getlnitParaneter( LOG Fl LE PARAM);

/1 You can | og nessages to the servlet log like this
log( "Logging to file " + | ogFileNane );

/1 Naybe initialize a third-party |ogging framework |ike | og4j
}

public void doFilter( ServletRequest request,
Ser vl et Response response,
FilterChain filterChain)
throws | CException, ServletBException {

/1 Log a message here using the request data
log( "doFilter called on LoggingFilter" );

/1 Al request and response headers are available to the filter
I og( "Request received from" + request.get RenoteHost() );

// Call the next filter in the chain
filterChain.doFilter( request, response );

}

public void destroy(){
/1 Rermove any resources to the |ogging franework here
log( "Loggi ngFilter destroyed" );

protected void | og( String message ) {
get Servl et Context ().l og("Loggi ngFilter: " + nessage );
}

protected Servl et Context getServl et Context (){
return this.servl et Cont ext;

}

Just as you must be careful with multiple threads in Java servlets, you
must be careful not to violate any thread safety practices with filters.
The servlet container may send concurrent threads to a single instance
of afilter class and you must ensure that you don’'t do anything to cause
problems between the threads. In other words, there should be no
client-specific data stored in instance variables. Loca variables are
fine, just as they are in Java servlets, because they are stored on the
stack rather than the heap.

Declaring the Filter in the Deployment Descriptor

The second step in creating a servlet filter is to configure the proper elements in the
deployment descriptor for the web application. As you learned from chapter 4, the name
of the deployment descriptor for aweb application is called web.xml.

368




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

The first step in setting up the filter declaration in the web application’s deployment
descriptor isto create the actual f i | t er elements. Chapter 4 describes the filter element
in detail, but the following deployment descriptor fragment illustrates again how this
would look using the Loggi ngFi | t er classfrom the previous section:

<filter>
<filter-name>M/Loggi ngFilter</filter-name>
<filter-class>Loggi ngFilter</filter-class>
<init-param
<par am name>l og_f i | e_nane</ par am nane>
<par am val ue>l og. out </ par am val ue>
</init-parany
</filter>

You can also optionally specify initialization parameters, icons, a description, and a
display label. See Chapter 4 for more details on the attributes of thef i [ t er element.

Once the filter element is added, you then need to add afi | t er - mappi ng element
that will associate or link the specified filter to a servlet or static resource in the web
application. Filters can be applied to a single servlet, or groups of serviets and static
content, using two distinct mapping approaches. The following deployment descriptor
fragment illustrates a filter mapping to asingle servlet called MyExanpl eSer vl et :
<filter-nappi ng>
<filter-name>M/Loggi ngFilter</filter-name>

<ser vl et - name>M/Exanpl eSer vl et </ ser vl et - nane>
</filter-mappi ng>

Every time the web container receives a request for the MyExanpl eSer vl et resource,
thedoFi | t er () method inthe Logger Fi | t er classwill be invoked. The following
XML fragment illustrates how the example filter can be mapped to all requests sent to the
web application:
<filter-nappi ng>
<filter-nanme>M/Loggi ngFilter</filter-name>

<url-pattern>/*</url -pattern>
</filter-mappi ng>

The filter mapping in this case will map all requeststo the MyLoggi ngFi | t er because
every request URI will match the “/*” URL pattern.

Packaging the Filter

The final, and likely the easiest step, is to package the filter class with the rest of the
resources of the web application. As with any other Java resource that is part of a web
application, the filter class must be bundled with the WAR file and able to be loaded by
the web application’s class loader. In most cases, the filter class should be placed in the
WEB-INF/classes directory for the web application. Filter classes may also be inserted
into a JAR file and placed in the WEB-INF/lib directory.

369




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Using Event Listeners

Web application event listeners are Java classes that implement one or more of the serviet
event listener interfaces. Event listeners support event notifications for changesin state in
the Ser vl et Cont ext and Ht t pSessi on objects. Event listeners that are bound to
the Ser vl et Cont ext support changes at the application scope, while those that are
bound to the Ht t pSessi on objects are notified for state changes at the session level.

Multiple listeners can be setup for each event type and the servlet developer may offer a
preference regarding the notification order for the listeners based on event type.

Tables 18-1 and 18-2 list the event types and event listener interfaces available to the
servlet developer.

Table 18-1. ServietContext Application Event and Listener Interfaces
Event Type Description Listener Interface
Life Cycle The Ser vl et Cont ext is Ser vl et Cont ext Li st ener
about to service the first request
or is about to be shut down by
the servlet container.

Attributes Attributes on the Ser vl et Cont ext
Ser vl et Cont ext AtttributesListener
have been added, removed, or
replaced.

Table 18-2. HttpSession Application Events and Listener Interfaces

Event Type Description Listener Interface

Life Cycle AnHt t pSessi on object has Ht t pSessi onLi st ener
been created, invalidated,
or timed out.

Attributes Attributes have been added, Ht t pSessi on
removed, or replaced on an AtttributesListener

Ht t pSessi on object.

The steps for creating an event listener are very similar to that of creating filters. There
are three primary stepsto perform.

370



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

3.

Create a Java class that implements the event listener interface that you are interested
in receiving events for. The event listener class must contain a no-argument

constructor.

Declare the event listener in the web application deployment descriptor using the

| i st ener element.

Package the event listener class along with the rest of the web application resources.

Creating the Event Listener class

Similar to when creating filters, the first step is to create the Java class that implements
the appropriate listener interface. As an example, we'll create a Java class that
implements the ] avax. servl et . Servl et Cont ext Li st ener interface and will
be responsible for initializing the logging service when the web application is started.
Thisclassisillustrated in Example 18-3.

Example 18-3. The Example of a Ser vl et Cont ext Li st ener

inport javax.servlet. Servl et Cont ext;
i nport javax.servlet. Servl et Cont ext Event;
i nport javax.servl et. Servl et Cont ext Li st ener;
/**
* An exanpl e ServletContext Event Listener class that
* initializes a |ogging service.
*/
public class Loggi ngLi stener inpl ements Servl et Cont ext Li st ener{
private ServletContext context = null;

publi c Loggi ngLi stener () {
super ();

}

/**

* Called by the container before the first request is

* processed. This is a good tinme to initialize

* the | oggi ng service.

*/

public void contextlnitialized( ServletContextEvent event ){
this.context = event.get Servl et Context();

/1 Initialize the | ogging service here

/1 Log a message that the listener has started
l og( "Loggi ngListener initialized" );

/**

* Called by the container when the ServletContext is about
* ready to be renoved. This is a good tinme to clean up

* any open resour ces.

*/

371




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

public void contextDestroyed( ServletContextEvent event ){
/1 dean up the |ogging service here

/1 Log a message that the Loggi ngLi stener has been stopped
| og( "Loggi ngLi st ener destroyed" );
}

/**

* Log a message to the servlet context application |og or
* systemout if the ServletContext is unavail able.

*/
protected void | og( String message ) {
if (context !'= null){
context. | og("Loggi ngLi stener: " + message );
}el se{
Systemout. printl n("Loggi ngLi stener: " + nessage);
}
}
}

The event listener class in example 18-3 contains two methods that are invoked by the
web container:

public void contextlnitialized( ServletContextEvent event );
public void context Destroyed( Servl et Context Event event );

The web container will call the contextlnitialized() method before the first
request is processed. You should initialize any needed resources in this method. For
example, this is an idea location to initialize a logging service. The
cont ext Destroyed() method is called when the web application is taken out of
service. This is where any open resources that the listener class might be using should be
closed.

Since there can be multiple event listener classes for the same event, let’'s use another
Ser vl et Cont ext event listener class to make our example more realistic. Example
18-4 shows the DBConnect i onPool Li st ener class. Both the Loggi ngLi st ener
and the DBConnectionPool Li stener will receive event notifications when the
Ser vl et Cont ext isinitialized and destroyed.

Example 18-4. The DBConnect i onPool Li st ener C ass

i nport javax.servl et. Servl et Cont ext Li st ener;
import javax.servlet. Servl et Cont ext Event ;
/**
* An exanpl e Servl et Context Event Listener class that
* initializes the database connection pooling.
*/
public class DBConnecti onPool Li stener inplenents Servl et Cont ext Li st ener{
/**
* A no-argunent Constructor
*/
publ i ¢ DBConnect i onPool Li stener () {

372




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

super ();

/**
* Called by the container before the first request is
* processed. This is a good tinme to initialize
* the connection pooling service.
*/
public void contextlnitialized( ServletContextEvent event ){
/1 Initialize the connection pooling here

}
/ * %
* Called by the contai ner when the ServletContext is about
* ready to be renoved. This is a good tinme to clean up
* any open resour ces.
*
/
public void contextDestroyed( ServletContextEvent event ){
/1 Shut down the connection pooling and open database connecti ons

}

}

The servlet container will notify the listeners in the order that they are configured in the
deployment descriptor based on the event type. Since both the Loggi ngLi st ener and
DBConnect i onPool Li st ener are listening for the same type of application events,
they will be notified in the order that they are in the descriptor.

Declaring the Event Listener in the Deployment Descriptor

The following web application deployment descriptor fragment shows you how to setup
the event listener:

<web- app>
<listener>
<l'i stener-cl ass>Loggi ngLi st ener </ i st ener - cl ass>
</listener>

<l i st ener>
<l i st ener - cl ass>DBConnect i onPool Li st ener </ | i st ener-cl ass>
</listener>

<servl et >
<ser vl et - name>Exanpl eSer vl et </ ser vl et - nanme>
<servl et - cl ass>Exanpl eSer vl et </ servl et - cl ass>
</servl et >

<servl et - mappi ng>
<ser vl et - name>Exanpl eSer vl et </ ser vl et - nanme>
<url - pattern>/ exanpl e</ url - pattern>
</ servl et - mappi ng>
</ web- app>

This means that the Loggi ngLi st ener will be notified first, followed by the
DBConnect i onPool Li st ener instance. When the web application shuts down, the

373




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

listeners are notified in reverse order. The Ht t pSessi on event listeners are notified
prior to listeners for the application context.

Packaging the Event Listener

The packaging of the event listener classes follows the same guidelines as described in
the previous section for filters. That is, the classes must either be in the classes directory
underneath the WEB-INF directory or installed in a JAR file located in the lib directory
for the web application.

Jakarta Commons L ogging

The Commons Logging package is an open source Logging library that allows developers
to utilize a common logging API, while maintaining the freedom to utilize many different
third-party logging implementations. The Commons Logging APl insulates the
application and protects it from becoming coupled to a specific logging implementation.
The API provides a small set of Java classes and interfaces that an application imports
and relies upon, but which has no implicit dependencies on any one logging product.

The Logging library alows developers to declaratively configure the logging
implementation and the library will dynamically discover which implementation is being
used. An application that utilizes the Commons Logging APl does not have to be
modified when the logging implementation is changed; this is the greatest benefit of such
a package.

The Commons Logging package supports several different logging implementations out
of the box:

Log4J (http://jakarta.apache.org/log4)

JDK 1.4 Logging

LogKit (http://jakarta.apache.org/avalon/logkit)

SimpleLog (Writes Log Messagesto st dout and st derr)
NoOpLog (Log Messages are ignored)

The Commons Logging Package only includes the Si npl eLog and
NoOplLog implementations; it does not contain the other third-party
logging implementations. Y ou will need to download those separately.

Another powerful feature of the Commons Logging package is that it is completely
extensible. If you are using a logging package that is not yet supported, you can create an
adapter to implementation by extending the appropriate components, and your
application can utilize the Commons Logging API.

374



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Installing the Commons L ogging Package

You can download the latest source and binary for the Commons Logging package at
http://jakarta.apache.org/commons/logging.html.  Struts 1.1 aready includes the
commons-logging.jar, which is the only required binary file. Unless you want the
absolute latest from the nightly build, the version included with the Struts framework
should suit your needs. The commons-logging.jar should be placed into the WEB-INF/lib
directory for the web application.

You will also need to decide on a logging implementation. The Commons Logging
package includes an implementation called Si npl eLog that will write log messages to
st dout . If you don’t want to worry about getting log4j working and are not using Java
1.4, the Si npl eLog implementation is agood choice to get things started.

Once you decide on an implementation, you must configure the implementation class so
that the Commons logging factory component can discover it at application startup. There
are many different ways to do this, but the easiest is to create a properties file caled
commons-logging.properties that contains the class name of the logging implementation.
The properties file may contain configuration properties that will set configuration
attributes on the instantiated LogFact or y. The most important of these propertiesis the
org. apache. commons. | oggi ng. Log key. This key is used to set the
implementation class. The following illustrates how to setup the Commons Logging to
usethe Si npl eLog implementation:

| or g. apache. commons. | oggi ng. Log=or g. apache. conmons. | oggi ng. i npl . Si npl eLog

At runtime, the logging component will search for the commons-logging.properties file
and attempt to instantiate the fully qualified class name found there. The class name
specified must be available to the web application class |oader. The properties file should
be placed in the WEB-INF/classes directory. To switch to log4j, all you would need to do
is switch the class name in the commons-logging.propertiesfile like this:

| or g. apache. commons. | oggi ng. Log=or g. apache. conmons. | oggi ng. i npl . Log4JCat egoryLog |

You would still need to configure logdj for your environment,
including creating a log4j.properties file. Each logging implementation
may have different configuration requirements and are still required to
be completed.

Using the Commons L ogging API

Once the configuration steps are completed, your application is ready to utilize the
Commons Logging API. The first step is to include the following import statements in
each class or component that you wish to use the logging API within:

i nport org. apache. coomons. | oggi ng. Log;
i nport org. apache. commons. | oggi ng. LogFact ory;

375



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

To get an instance of alog component, for which you can send log messages to, you need
to use ether of the getlLog() factory  methods on  the
or g. apache. cormmons. | oggi ng. LogFact ory class:

public static Log getlLog(d ass clazz);
public static Log getlLog(String nare)

Both getlLog() methods retun an Object that implements the
or g. apache. comrmons. | oggi ng. Log interface. If we wanted to create a Log
instance to be used within the Logi nAct i on class for example, we could pass the class
nametotheget Log() method:

| Log | og = LogFactory. getLog( Logi nAction.class );
The Log instance isthen available to be used withinthe Logi nAct i on class:

if (log.islnfoEnabled()){
/1 Log which user is trying to enter the site
log.info( "Login enail: " + enail );

The Log interface implements the logging methods that you can use to send log
messages to the intended destination. The most important of these are:

debug()
error()
fatal ()
info()
trace()

war n()

Each one of these log methods has an overloaded version that takes a Thr owabl e.
There are also methods, which allow you to determine whether debug is enabled, or error
is enabled, and so on. Checking to see if a particular logging level is enabled before
attempting to log a message can increase performance of your application. For example,
if you have this code fragment:

StringBuffer buf = new StringBuffer();
buf . append( "Logi n Successful - " );

buf . append( "Nane: " );

buf . append( userVi ew. get Fi rst Nanme() );
buf . append( " " );

buf . append( user Vi ew. get Last Nane() );

buf . append( " - " );

buf . append( "Email: " );

buf . append( userVi ew. get Enai | Address() );

/1l Log the information for auditing purposes
| 0g. debug( buf.toString() );

376




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

It would increase the performance of the application if all of the append statements were
not executed when the logging threshold was set to not log debug statements. The
i sDebugEnabl ed() method can be used for this. So instead, our logging fragment
looks like:

if ( log.isDebugEnabl ed() ){
StringBuffer buf = new StringBuffer();
buf . append( "Logi n Successful - " );
buf . append( "Nane: " );
buf . append( user Vi ew get Fi rst Narme() );
buf . append( " " );
buf . append( user Vi ew. get Last Nane() );
buf . append( " - " );
buf . append( "Email: " );
buf . append( user Vi ew. get Emai | Address() );

/1 Log the UserView for auditing purposes
| og. debug( buf.toString() );

}

In this case, the application is not wasting time creating the St r i ngBuf f er only to
have it not be used.

Struts Framework and the Commons L ogging Package

The Struts framework does perform some limited internal logging. The framework uses
the Commons Logging API as well. This means that whichever logging implementation
you configure for your application, the Struts framework will also utilize it.

Other than for debugging purposes, there's no need for you to worry about the Struts
logs. They are a great way for you to see what’s going on inside Struts as it processes the
reguests. In most production environments however, the messages generated by the Struts
framework should be disabled. The manner in which you disable the framework-specific
log messages depends on which logging implementation you choose.

The rest of the chapter is devoted to one of the most populate logging implementations
used by developers. Because it's also supported by the Commons Logging package, it
makes an excellent choice for your Struts application logging needs.

Using the log4j Package

Y ou might have heard or read about the log4j library from other sources, but in case you
haven't we'll briefly discuss a little history about the library. Similar to Struts, logdj is an
open source project that is part of the Jakarta set of projects. It's essentially a set of Java
classes and interfaces that provide logging functionality to multiple types of output
destinations. It has been around for several years and is constantly being refined and
tuned for all types of Java development. In fact, log4j has been so successful that it has

377




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

been ported to several other very popular languages like C, C++, Python, and even one
for .NET.

At the time of this writing, log4j has released version 1.2.5, which is
the 22™ major public release of the library. The next major version 1.3
is in the works, but won't be released soon. Version 1.2 is backwards
compatible with earlier versions, so if you are using 1.1.3, this material
will still be relevant for you.

According to the creators of log4j, it was built with two central concepts in mind, speed
and flexibility. One of the distinctive features of the logging framework is its notion of
inheritance in Categories, or Loggers as they are now called. log4j supports a parent-child
relationship among the configured Loggers in the environment. To provide an example, if
we configured a logger for al classes in the com oreil |l y. struts package and
another logger for all classesinthecom orei |l ly. struts. st orefront package,
then the first logger would be the parent to the second. This hierarchical structure of
loggers gives us the flexibility to control what log messages are written out based on
things like our package structure.

You don’'t need to go this far if your requirements don’t call for it. If you like, you can
configure a single root logger for your entire environment. The nice thing is that you have
the flexibility to configure log4j for your specific needs. You can also change this
behavior whenever you like by simple editing an external configuration file, not the
application source code.

The discussion of log4j could possibly fill a small book itself. We are going to assume
that you are familiar with the basic concepts and only cover the essentials of how to
integrate log4j with the Struts framework. If you haven't taken the time to become
familiar with logdj, this is probably a good time to do so. Although you don’t have to
know everything there is to know about log4j, we will only be covering the basics from a
peripheral vantage point. For a more detailed discussion, you can download or view the
documentation at the Jakarta log4j website http://jakarta.apache.org/log4j.

I ntegrating log4j with Struts

To best ensure that the log4j libraries are available to your Struts applications, you should
place the log4j JAR in the WEB-INF/Iib directory for each web application that you
deploy. Resist the temptation to put it inside the container wide lib directory, even if you
have multiple web applications deployed using logdj. If you do attempt to install it at the
container level, you will most likely encounter one or more
Cl assNot FoundExcept i on problems.

Based on the requirements set forth in the Servlet 2.3 Specification, the web container
should automatically load all JARs in the WEB-INF/Iib directory, including the log4j

378



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

library. After thisinitial step is complete, you are then free to use the log4j as the logging
implementation for the Commons Logging package.

Keep in mind that the configuration of log4j is totally independent of
the configuration of the logging implementation for the Commons
Logging package. You still need to understand how to configure log4j
(if that's the implementation you choose) and perform the necessary
steps required by the log4j package.

What are L oggers?

Theor g. apache. | 0og4j . Logger isthe centra classin the log4j toolkit. Other than
configuration, most of the functionality is performed through this class. In earlier
versions of the log4j project, the or g. apache. | og4j . Cat egor y class implemented
this functionality. To promote backwards compatibility, the Logger extends the
Cat egory class. Although the methods in the Cat egory class have not been
deprecated, you should now always go through the Logger class itself. Eventually, the
Cat egor y classwill be removed from the library.

When using log4j with Struts, other than the configuration aspects of logdj, the majority
of the log4j classes and interfaces will be encapsulated within the Commons Logging
API.

Configuring log4j Appenders

With log4j, you can send log messages to multiple destinations. Log4j refers to a message
destination as an appender. There are various appenders provided by the logdj framework
out of the box. The following appenders are present in the framework for you to use:

Console Appender

File Appender

Socket Appender

Java Message Service (IMS) Appender
NT Event Logger Appender

Unix Syslog Appender

Null Appender

SMTP Appender

Telnet Appender

379



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Asynchronous Appender

The log4j framework allows one or more appenders to be established for a logging
environment. Y ou even have the flexibility to send log messages to particular appenders,
based on various conditions. The other nice feature about the appender architecture is if
none of these default appenders are what your application requires, you have the freedom
to create your own by extending the or g. apache. | og4j . Appender Skel et on
class.

Under standing thelog4j Log L evels

A log message in log4j can be assigned one of five different levels or priorities. The
levels provide a way to set a threshold for a particular Logger and filter out any log
messages that don’t reach the particular threshold that the Logger is configured for. The
fivelogging levels are:

DEBUG
INFO
WARN
ERROR
FATAL

An earlier version of log4j also defined the levels “ OFF’ and “ ALL",
however these seem to have been deprecated and probably should be
avoided completely. If you set the threshold to “DEBUG”, you'll get
the same results as “ALL”, and “OFF” isn't really necessary because
you can simply choose not to configure an appender for the
environment, which will stop all logging from occurring.

There is a cascading effect that causes only levels equal to the threshold and higher to be
logged. For example, if a threshold of WARN was configured, only messages with a
level of WARN, ERROR, and FATAL would make it to an output destination.

Initializing log4j

There are many properties that can be configured for the log4j toolkit. In fact, log4j is so
flexible that all of the configuration options can't be mentioned here. The best source of
information is the log4j manual itself. You can find the manual online at
http://jakarta.apache.org/logdj/docs/documentation.htm and it also available locally
when you download log4j.

380



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Because logdj doesn't make any assumptions about the environment in which it is
running, it's necessary for you to configure the environment for your particular needs. In
other words, there are no default appenders configured out of the box. There are also
various ways in which you can initialize the configuration properties for the logdj
environment. We will focus on two related, but distinct approaches here.

The first approach is to create a file called log4j.properties that contains the necessary
configuration elements for your logging needs. This file must follow the guidelines of the
java.util.Properties format. One of these guidelines is that each property isin
the format key=val ue. Example 18-7 illustrates a very simple log4j configuration file
that logs messages with a logging threshold of | NFO and higher to the console using an
or g. apache. | og4j . Consol eAppender.

Example 18-7. An Example logdj.properties File

# Oreate a single consol e appender that | ogs | NFO and hi gher
| og4j . r oot Logger =I NFQ st dout

# Configure the stdout appender to go to the Consol e
| og4j . appender . st dout =or g. apache. | og4j . Consol eAppender

# Configure the stdout appender to use the PatternlLayout
| og4j . appender . st dout . | ayout =or g. apache. | og4j . Pat t er nLayout

# Pattern to output the caller's file nane and |ine nunber.
| og4j . appender . st dout . | ayout . Conver si onPattern=%p [%] (% %) - %%

The configuration file shown in example 18-7 is a very simple example of setting up a
single appender. The appender used in that example is the Consol eAppender, which
directs log messages to System.out.

This log4j.properties must be installed in the WEB-INF/classes directory and the log4j
environment will be able to locate it and use it to configure the logging environment for
the web application. If you have multiple web applications, you can have a separate
log4).propertiesfile for each web application.

The log4j configuration file shown in example 18-7 only sent log messages to a single
destination, the console. Y ou can configure the log messages to go to multiple locations
and also have certain messages go to certain locations based on the level of the message
and other parameters. Example 18-8 shows another simple example of using two
appenders.

Example 18-8. A log4j Configuration File using Two Appenders
# A sanple log4j configuration file

# Oreate two appenders, one called stdout and the other called rolling
| og4j . root Logger =DEBUG st dout, rolling

381

# A basic log4j configuration file that creates a single consol e appender




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

# Configure the stdout appender to go to the Consol e
| og4j . appender . st dout =or g. apache. | og4j . Consol eAppender

# Configure the stdout appender to use the PatternlLayout
| og4j . appender . st dout . | ayout =or g. apache. | og4j . Pat t er nLayout

# Pattern to output the caller's file nane and |ine nunber.
| og4j . appender . st dout . | ayout . Conver si onPattern=%p [%] (%: %) - %Y

# Configure the rolling appender to be a RollingFi|eAppender
| og4j . appender. rol | i ng=or g. apache. | og4j . Rol | i ngFi | eAppender

# Configure the nane of the | ogout for the rolling appender
| og4j . appender.rol ling. Fi|e=output.l|og

# Set up the maxinumsize of the rolling log file
| og4j . appender.rol | i ng. MaxFi | eSi ze=100KB

# Keep one backup file of the rolling appender
| og4j . appender . rol | i ng. MaxBackupl ndex=1

# Configure the Layout pattern and conversion pattern for the rolling appender
| og4j . appender.rol | i ng. | ayout =or g. apache. | og4j . Pat t er nLayout
| og4j . appender.rol l'ing. | ayout. Conver si onPat t er n=%a{ ABSCLUTE} - % % - %%

The log4j configuration file in example 18-8 creates an appender that logs messages to
the console, just as in example 18-7. However, it aso creates an appender that logs
messages to a log file called output.log. Again, we won't try to explain al of the
configuration settings for log4j, but you can learn more from the log4j website.

As we said earlier in this section, there are two approaches for setting up the
configuration information for log4j that this section would focus on. Y ou’ ve seen the first
approach in examples 18-7 and 18-8. These configuration files used a properties format
to specify the configuration information. The second approach is to utilize an XML file
for the same purpose. Example 18-9 illustrates an XML file that configures the same
information asin example 18-7.

Example 18-9. A log4j Configuration File using an XML Format

<?xm version="1.0" encodi ng="UTF-8" ?>
<I DOCTYPE | 0g4j : configurati on SYSTEM "l og4j . dtd">

<l og4j : configuration xmns:|og4j = http://jakarta.apache.org/l og4j/"'>

<appender name="STDCQUT" cl ass="org. apache. | og4j . Consol eAppender " >
<l ayout cl ass="org. apache. | og4j. PatternLayout">
<par am nane="Conver si onPattern" val ue="%p [%] (% %) - %%"/>
</ | ayout >
</ appender >

<r oot >
<priority value ="debug" />
<appender -ref ref="STDOUT" />

382




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

</ root >
</l og4j : confi gurati on>

You normaly place this XML file in the WEB-INF/classes directory, just as with the
log4j.properties. However, in the case of the XML file, you must set the
log4j.configuration system property equal to the name of the file. This is so the log4j
environment knows which file to load. There's no default name when using the XML
format. We didn't have to do this with the properties file because the name
log4j.propertiesis part of logdj default initialization. If it locates this file anywhere in the
classpath, it will useit to initialize the log4j environment.

There are various ways to set the log4j.configuration property. The various containers
may also provide alternative methods as well. Tomcat for example, uses a variable called
CATALINA OPTS for version 4.0 that can be set to provide this information to the
logging environment. In order to use this approach, you would set the value for Tomcat
4.0 likethis:

| set CATALI NA CPTS=-D og4j . confi guration=l og4j . xn

You can then startup Tomcat and the log4j environment will be able to locate the XML
configuration file. Other containers may provide aternate methods for setting the value,
but you can always set the value on the Java command line as a system property. You
will probably need to modify the containers startup script using this approach however:

| j ava —D og4j . confi guration=l og4j . xm
If the log4j environment is unable to find a valid configuration file, either properties-

based or XML-based, you will see something similar to the following message as you
first attempt to initialize the logging environment.

| og4j : WARN No appenders coul d be found for |ogger XXX
|l 0g4j : WARN Pl ease initialize the |og4j system properly.

The XXX in the previous fragment will actually show the name of the logger that no
appenders were configured for.

This logdj warning is an indicator that it was unable to find the configuration file.
Because the log4j framework doesn’t make any assumption about the environment in
which it is running, there’'s no default appender created for it. Therefore, this is the only
message you'll get until it is able to locate the configuration file.

Specifying a Relative ver sus Absolute Path
When you use a system property to configure the log4j configuration file within a web
application, thefile is relative to the web application by default:

|j ava —D og4j . configuration=l og4j . xm

This means that the log4j will search for a file called log4j.xml in the WEB-INF/classes
directory for the web application. Most containers will use a separate class loader for

383



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

each web application and some containers may not allow the web applications to know
about classes or JARs loaded by the container itself.

However, if you need to use an absolute path, you can specify one like this:
|j ava —D og4j.configuration=file:/c:/dev/env/log4j.xm

Be careful when using an absolute path. Since the configuration file is not relative to a
web application, all web applications will share the same one.

Generally speaking, specifying a relative path will be much more flexible than an
absolute one. This is because you can't always guarantee the directory structure of all
your target environments.

Synchronization Issues

There’'s one more issue that you should be aware of when logging to resources like file
systems. Even though log4j is able to handle multiple client threads using the same
appender because all threads are synchronized, if you have multiple appenders writing to
the same resource or file, you will have unpredictable results. In other words, there is no
synchronization between appenders, even within the same VM.

This really has nothing to do with a deficiency in the log4j design; it's just a case of not
being able to easily synchronize multiple writers to a resource. The easiest way to solve
this problemisto ensure that if you have multiple appenders logging to the file system, or
more importantly multiple web applications, you should not allow them to log to the
same file or you will probably experience synchronization related issues.

Log File Rollover

In a normal production environment, log files can grow quite large if not managed
properly. If the logging threshold is set to low or if the files are not purged from time to
time, the files might grow without bounds.

It'sagood ideato periodically backup the log files and then start again with an empty log
file. For some production environments, this “rollover” period may be nightly; others
may only need to perform this routine weekly. Unless you're able to shut down the
application while you backup the log files, it's very cumbersome to backup the log files
manually. Fortunately, log4j provides a type of appender that will automatically swap the
log file out with a new one, while at the same time maintaining a backup of the old log
file.

The org. apache. | og4j . Dail yRol | i ngFi | eAppender class provides the
ability to log to a file and rollover or backup the log file while the application is still
running. You can also specify the rollover frequency and the date pattern that will be
used for the backup names. Having this functionality available out of the box makes |og4j
invaluable to any application that needs to roll over log files on a user-defined frequency.

384



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Using Commons L ogging in JSP Pages

So far, you've seen how to use the Commons Logging APl within Java components, but
we haven't discussed how to use them in JSP pages. Although there are a number of
ways to use the library within JSP pages, we'll cover the two easiest approaches here.

The first approach is to use the same three steps defined earlier, but only perform themin
the JSP page itself.

1. Import the Commons Log and LogFact or y classes.
2. Defineand initialize alogger variable for the page.
3. Start logging.

Example 18-10 illustrates thisin a basic JSP page.

Example 18-10. Using Commons Logging in a JSP Page

<Y@page i nport="org. apache. conmons. | oggi ng. Log" %
<Y@page i nport="org. apache. conmons. | oggi ng. LogFact ory" %

<%- Get a reference to the logger for this class --%
<% Log | ogger = LogFactory.getlLog( this.getdass() ); %

<% ogger . debug( "This is a debug nessage froma jsp" ); %

<ht nl >
<head>

<title>Wsing Coomons Logging in a JSP page</title>
</ head>

<body>
<%/l ogger.info( "This is another |og nmessage in the jsp" ); %

There shoul d be two | og nessages in the log file.
</ body>
</htnm >

Y ou must have the Commons Logging environment configured properly for this to work,
just as you do when using it in the Java classes. Any JSP page that is part of that web
application will be able to utilize the logging utilities. Remember, since most containers
use a different class loader for each web application, any JSP that is not part of the log4j
configured web application may not be able to use the logging utilities.

Although example 18-10 shows just how easy it can be use the Commons Logging API
in your JSP pages, there are a few issues with this approach. The most obvious one is that
your JSP pages will contain Java code. As we' ve talked about during several chapters of
this book, many devel opers see this as something that should be avoided. If you're one of
those devel opers, fortunately there is another way.

385




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

The Jakarta Taglibs project contains a custom JSP tag library that is designed for log4j.
It's called Log Taglib and is just one of many custom tags provided in the Jakarta Taglibs
library. You can view information and download the tag library from the Jakarta Taglibs
web site at http://jakarta.apache.org/taglibs/doc/log-doc/intro.html.

Just like any other custom tag library, you must properly configure it for your web
application. This means putting the log.tld file into the WEB-INF directory and installing
the log tag JAR file into the WEB-INF/lib directory. You will aso need to add the
appropriate t agl i b element to your web application’s deployment descriptor similar to
the manner in which the Struts tag libraries were added.
<taglib>
<taglib-uri> WEB-IN-/log.tld</taglib-uri>
<taglib-location> WEB-1N-/1og.tld</taglib-Iocation>
</taglib>

Once the log custom tag is installed and configured for you web application, you can now
useit in your JSP pages as shown in example 18-11.

Example 18-11. An Example JSP Page using the Log Tag
<y@taglib uri="/WEB-IN-/log.tld" prefix="Iogger" %

<ht nl >

<head>
<title>Wsing the Log Tag in a JSP page</title>

</ head>

<body>
<l ogger:info nessage="This is another nessage using the |og4j tag" />
There shoul d be two | og nmessages in the log4j log file

</ body>
</htnm >

Notice how the JSP page in example 18-11 contains no Java code. Although it doesn’t
seem like a huge difference between this example and the one in 18-15, with a much
larger and more complex JSP page, this approach is much cleaner.

Another nice feature of the Log tag is that it gives you the ability to perform a dump of
objects stored at the page, request, session, and application scopes. This is very useful
when you are in the middle of debugging your web application. Example 18-12 illustrates
how easy thisisto do.

Example 18-12. Using the log tag library to dump information
<Y@taglib uri="/WEB-IN-/1og.tld" prefix="1ogger" %

<ht m >

386

<l ogger: debug nessage="This is a debug message froma jsp using the Log tag"

/>




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

<head>
<title>Wsing the Log Tag in a JSP page</title>
</ head>

<body>
<l og: dunp scope="page"/>
<l og: dunp scope="request"/>
<l og: dunp scope="session"/>
<l og: dunp scope="application"/>

The page, request, session, and application dunps should be in the log file

</ body>
</htm >

Unfortunately, the Log tag doesn't work with the Commons Logging
yet. It depends on the logdj implementation. However, it's still a
valuable tag if you need to provide additional debugging in your JSP

Pages.

[Note: Reviewers, this next section will probably be taken out of the chapter during final
edits due to the current size of this chapter. | left it in case anyone wanted to read it.

chuck]

Creating an Email Appender

It was stated earlier that if none of the appenders included with log4j toolkit suite your
needs, you are free to create your own. This section will provide a quick example of how
to do exactly that.

Let’s assume that your tasked with sending email messages to an administrator when log
messages are produced that have a level of ERROR or FATAL. For our example, we'll
assume that we're using a J2EE environment and already have a IMS Queue configured
using Message-driven beans that handle the responsibilities of sending the email to a
SMTP server.

Message-driven beans were added to the Enterprise JavaBean (EJB)
Specification 2.0. Message-driven beans are an asynchronous JMS
message consumer that are managed by the container and make for
better JMS message scalability. Although many organizations are
cautious to jump on the EJB 2.0 bandwagon this early, message-driven
beans are an excellent addition to the EJB specification and can be a
very beneficial addition to your applications.

387




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

We're going to use a IMS Queue here instead of a IMS Topic because we only want to
send an email to a single recipient. Figure 18-1 illustrates the architecture for this
example.

/—J2EE Application Server

EmailServiceBean

IMS C ‘I'v'emgedmen. JavaMail TCP
Cueue beans

The onMessage
method is called
an the baan when
a JMS message
amives.

‘Web Container

Many different
types of clients
could send
emails using the
same logdj email
appender,

Swing Client - oy

Figure 18-1. Thelog4j Email Appender generates email messagesto a
SMTP server

Example 18-13 shows the message-driven bean class that is listening on the Email Queue
and sends emails to the SMTP server when the container calls the onMessage method.

Example 18-13. The Message-driven bean that Sends Emailsto a SMTP server

/**

* A Message-Driven bean that |istens on a javax.jns. Queue for
* messages and gets the enmail nmessage out and sends it off to
* a smp host.

*/

package comoreilly.struts. service. email;

inport java.util.Date;

inmport java.util.Properties;
i nport javax.ejb.*;

i nport javax.jns.*;

i nport javax. nam ng. *;

inport javax.mail.*;

inport javax.mail.internet.*;
i nport javax.activation.*;

public class Email Servi ceBean
i npl ement s j avax. ej b. MessageDri venBean, MessagelLi st ener {

/1 Instance ref for the beans context
MessageDri venCont ext context = null;

388




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

/] Default GConstructor
public Enail ServiceBean() ({
super () ;

/** The requi red onMessage nethod fromthe Messageli stener interface
* The onMessage nethod is not allowed to throw exceptions, so
* we will catch every checked exception and just print out a
* stack trace.

*/
publi c voi d onMessage( j avax.jns. Message nessage ){
/1 Local reference to the javax.nail.Session
javax. mail . Session nail Session = null;
try{
[/ Make sure it's a type (bj ect Message
if (!(message instanceof ChjectMessage))
return;
}
// Make sure it's an Enail Message
(hj ect obj = ((Chj ect Message) nessage) . get (oj ect () ;
if (!(obj instanceof Enailable)){
return,

}
Enai | abl e enai |l = (Email abl e) obj ;

Context ctx = new Initial Context();

/1 Get the properties fromthis bean fromthe environnent. The

/1 properties were specified in the env-entry tags in the depl oynent
/'l descriptor for this bean

Context nyEnv = (Cont ext)ctx. | ookup( "java: conp/ env" );

String snipHost = (String)nyEnv. | ookup( "smipHost” );

Properties props = new Properties();

props. put( "nail.sntp.host", sntpHost );

// Get a mail session. You would nornally get this from

/1 JNDI, but some servers have a problemwith this.

/1 Each Message Driven bean instance is responsible for

//getting its own unshared javax. mail . Sessi on.

nmai | Sessi on = javax. mai | . Sessi on. get Def aul t | nstance( props, null );
javax. mai | . Message nsg = new M neMessage( nail Session );

/1 Set the nail properties
nsg. set Fr onf
new j avax. mail . i nternet.|nternet Address( enail.getFromAddress() ) );

I nternet Address[] addresses =
{ new I nternet Addr ess(enai | . get ToAddress()) };

nsg. set Reci pi ent s( j avax. nai | . Message. Reci pi ent Type. TO addr esses );
nsg. set Subj ect ( emai | . get Subj ect () );
nsg. set Sent Date( new Date() );

/1 Oreate the body text

389




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Miltipart parts = new MnmeMil tipart();

M rmeBodyPart mai nBody = new M neBodyPart () ;
nai nBody. set Text ( enai | . get Body() );

parts. addBodyPart ( nmai nBody );

// it's coomented it out.

/*
M meBodyPart attachment Body = new M neBodyPart () ;
at t achnent Body. set Text ( "This is text in the attachnent" );
at t achnent Body. addBodyPart ( p2 );

*/

/'l Set some header fields

nsg. set Header ( "X-Priority”, "Hgh" );

nsg. set Header ( "Sensitivity", "Conpany-Confidential" );
nsg. set Content ( parts );

Systemout. println( "Sending mail to " + enail.get ToAddress() );
Transport.send( nsg );

}catch( Exception ex ){
/1 The onMessage nethod shoul d not throw any kind of exceptions
/1 according to the EIJB 2.0 specifiction.
ex. print StackTrace();

}

finally{
mai | Session = nul | ;

}

}

public void set MessageDri venCont ext ( MessageDri venContext ctx ){
context = ctx;

}

public voi d ej bRemove(){
/1 Not used for this bean

}

public void e bOreate(){
/1 Not used for this bean

}

}

Although example 18-13 might look complex, the only real work is going on in the
onMessage() method. The J2EE container will call this method whenever a message
arrives at the destination that this message-driven bean is configured for. In the case of
our example, the destination will be the JIJMS Queue on which the
Emai | Ser vi ceBean islistening.

The majority of code in the onMessage() method utilizes the JavaMail API to create
the appropriate mail object and then sends it to the SMTP server. The message-driven
bean gets the information for the email message from an object that is passed in as an
argument to the onMessage() method. This object should implement a Java interface
caled Enai | abl e, which is shown in example 18-14.

390

/1 Could al so have supported attachnents, but not for this version




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Example 18-14. The Enri | abl e interface

* %

* This interface defines methods that an object that w shses to
* represent an email nessage, nust inpl enment. <p>

*/

package comoreilly.struts.service.enail;

public interface Emailable extends java.io. Serializable {
public String get ToAddress();
public voi d set ToAddr ess(Stri ng newloAddress);
public voi d set FromAddr ess(String newrr omAddr ess) ;
public String getFronmAddress();
public voi d set Subject (String newsubject);
public String getSubject();
public voi d setBody(String newBody);
public String getBody();

}

By forcing the objects to implement the Enai | abl e interface, we are assured that the
message-driven bean will have the information it needsto create a full email message.

The rest of the configuration properties that the message-driven bean uses come from the
deployment descriptor that must accompany the bean when deployed into the container.
Example 18-15 provides an example of the generic deployment descriptor.

Example 18-15. The Message-driven bean Deployment Descriptor

<! DOCTYPE ej b-jar PUBLIC "-//Sun M crosystens, Inc.//DID Enterprise JavaBeans
2.0//EN" "http://java. sun.conij2ee/ dtds/ejb-jar_2 0.dtd">

<ej b-jar>
<ent er pri se- beans>
<nessage-dri ven>

<ej b- name>Emai | Ser vi ceBean</ ej b- nane>

<ej b-class> comoreilly.struts. service. enai | . Emai | Servi ceBean</ ej b- ¢l ass>

<transacti on-type>Cont ai ner </ transacti on-type>

<nessage-dri ven-desti nati on>
<j ns-desti nati on-type>j avax.j ms. Queue</j ns-desti nati on-type>

</ message- dri ven-desti nati on>

<env-entry>
<description>The | P of the sntp host</description>
<env- ent ry- nane>sni pHost </ env- ent r y- nane>
<env-entry-type>j ava. | ang. Stri ng</ env-entry-type>
<env-entry-val ue>127. 0. 0. 1</ env-ent ry- val ue>

</env-entry>

<security-identity>

<run-as-specified-identity>
<r ol e- nane></r ol e- nane>

</run-as-specified-identity>

</security-identity>

</ message- dri ven>
</ enterpri se- beans>
</ejb-jar>

391




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

When the message-driven bean is deployed, it has access to the information stored in the
env- ent ry tag elementsin the deployment descriptor.

The only thing left to show is the log4j appender that will receive log messages and send
the appropriate ones along to the IMS Queue. The IMS appender is shown in example
18-16.

Example 18-16. The IMSQueueAppender that Sends Email messages to a Queue
package comoreilly.struts.franework. | oggi ng;

i nport org. apache. | og4j . Appender Skel et on;
i mport org. apache. | og4j . spi . Loggi ngEvent ;
i nport org. apache. | og4j . spi. ErrorHandl er;
i nport org. apache. | og4j . spi . Error Code;

i nport org. apache. | og4j . hel pers. LoglLog;

import java.util.Hashtabl e;

inport java.util.Properties;

i nport javax.jns.*;

i nport javax.nami ng.lnitial Context;

i nport javax. nam ng. Cont ext ;

i nport javax. nam ng. NaneNot FoundExcept i on;
i nport javax. nam ng. Nam ngExcepti on;

inmport comoreilly.struts. service. email . Enail abl e;
inport comoreilly.struts. service. erail . Enai | Message;

/**

* A logdj appender that sends nessages to a JM5 Queue that will
* eventual |y send themto a SMIP server.
*/
public class JMsQueueAppender extends Appender Skel et on {
protected QueueConnecti on queueConnecti on;
prot ected QueueSessi on queueSessi on;
prot ected QueueSender queueSender;
protected Queue queue;
String icFactory;
String providerUl;
String queueBi ndi nghane;
String queueConnect i onFact or yBi ndi ngNarre;

publ i ¢ JVMBQueueAppender () {
super () ;

}

/**

* Set the Initial ContextFactory

*
/

public void setlnitial ContextFactory(String initial ContextFactory) {
i cFactory = initial ContextFactory;

}

/**

* Retrieve the Initial ContextFactory

392




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

*/
public String getlnitial ContextFactory() {
return icFactory;

}
/**
* Set the provider Ul
*/
public void setProviderUl (String providerWl) {
this.providerWl = providerUl;
}
/**
* Retrieve the provider Ul
*/
public String getProviderWl () {
return providerUl;
}
/**
* Set the nane of the JMS Queue Connection
*/
public voi d set QieueConnecti onFact or yBi ndi ngNanme( St ri ng queueConnect i onNane) {
t hi s. queueConnect i onFact or yBi ndi ngNane = queueConnect i onFact or yBi ndi ngNane;
}
/**
* Retrieve the nane of the JM5 Queue connection
*/
public String get QueueConnecti onFact or yBi ndi ngNane() {
return queueConnecti onFact or yBi ndi ngNane;
3**
* Set the nane of the JM5 Queue
*/
public void set QieueBi ndi ngNane( Stri ng queueBi ndi nghane) {
t hi s. queueBi ndi ngNane = queueBi ndi ngNane;
3**
* Retrieve the nane of the JMB Queue
*/
public String get QueueBi ndi ngNane() {
return queueBi ndi ngNane;

}

public void activateQotions() {
QueueConnect i onFact ory queueConnecti onFact ory;

try {
Context ctx = getlnitial Context();

gueueConnect i onFactory = (QueueConnecti onFact ory)
ct x. | ookup( queueConnect i onFact or yBi ndi nhgNane) ;
queueConnecti on = queueConnect i onFact ory. cr eat eQueueConnecti on();

queueSessi on = queueConnecti on. cr eat eQueueSessi on(fal se,
Sessi on. AUTO ACKNONLEDGE) ;

Queue queue = (Queue) ctx. | ookup(queueBi ndi nghane) ;

393




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

queueSender = queueSessi on. cr eat eSender (queue) ;

queueConnection. start();
ctx. cl ose();

}cat ch(Exception ex ){
errorHandl er. error(
"BError in activatetions", ex, ErrorCode. GENER C FAI LURE);

}

/**

* Return a new I nitial Context

*/

protected Initial Context getlnitial Context() throws Nam ngException {
try {

Hasht abl e ht = new Hasht abl e();

/1 Popul ate property hashtable with data to retrieve the context.
ht. put (Cont ext. | N TI AL_CONTEXT_FACTCRY, i cFactory);
ht . put (Cont ext . PROVI DER_URL, providerUl);

return (new Initial Context(ht));
}cat ch (Nami ngException ne){
LogLog. error("Initial Context failed");
t hr ow ne;
}
}
/**
* Return true if all of the neccessary resources are initialzed.
* O herw se return fal se.

*/
protected bool ean checkEntryConditions() {
String fail = null;
i f(this.queueConnection == null) {
fail = "No QueueConnection";
} else if(this.queueSession == null) {
fail = "No QueueSession";
} else if(this.queueSender == null) {
fail = "No QueueSender";
}
if(fail '=null) {
errorHandl er.error(fail +' for JVMBQueueAppender named ["+name+"].");
return fal se;
} else {
return true;
}
}
/**
* dose all the resources used by the appender.
*/

publ i ¢ synchroni zed void cl ose() {
i f(this.closed){
return;

}

394




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

LogLog. debug("d osi ng appender ["+nane+"].");
this.closed = true;

try {
i f (queueSession !'= null){

queueSessi on. cl ose() ;
}

i f (queueConnection !'= null){
queueConnecti on. cl ose();

}
} catch(Exception ex) {
LogLog. error ("Error while closing JMSQueueAppender”, ex );

/1 Hel p garbage coll ection
queueSender = null;
queueSessi on = nul | ;
queueConnection = nul | ;

}
/ * %
* This method is called by Appender Skel eton to do nost of the real
* appendi ng work. The Loggi ngEvent will be be wapped in an (bj ect Message
* to be put on the JM5 queue.
*/
public voi d append(Loggi ngEvent event) {
i f(!checkEntryConditions()) {
return;
}

try {
(bj ect Message nsg = queueSessi on. cr eat e(hj ect Message() ;

Enai | abl e enai | Msg = new Enai | Message() ;

enai | Msg. set ToAddr ess( " adni ni st rat or @onehost . coml' ) ;

enai | Msg. set Fr omAddr ess( "I ogMessageSer vi ce@onehost . cont’ ) ;
enai | Msg. set Subj ect ( "Log Message for application received" );
enai | Msg. set Body( event.toString() );

nsg. set Chj ect ( enai | Msg ) ;

queueSender . send( nsg );

} catch(Exception ex) {
errorHandl er. error ("Error sendubg nessage", ex, ErrorCode. GENERI C FA LURE);
}

}

publ i ¢ bool ean requiresLayout () {
return fal se;
}

}

395




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

The Performance I mpact of log4j

The potential performance impact of logging in an application is significant. For atypical
production application, there can be thousands of log messages logged every day,
depending on the logging threshold that’s configured. The consequences might even be
worse if exception stack traces are logged due to errors occurring in the application.

The log4j documentation states that much attention has been given to the performance
impact of logging using log4j, however, nothing is free and there still is an additional cost
associated with generating log messages. The question is how much of a cost and does
this cost outweigh the benefits gained from the additional logging information.

Thetime cost of creating alog message using log4j depends on several factors:

The type of Appender being used.
The log4j Layout being used to format the messages.
The parameter construction time to create the log message.

Depth of the Logger hierarchy and where the log threshold is assigned.

The type of appender has much to do with how long it will take to create a log message.
Logging a message using an SMTP appender will take a different amount of time than
logging to the file system. On atypical machine using Java 1.3, alog message to the file
system will take from 20 microseconds to upwards of 300 microseconds, depending on
which layout you use. It's true that thisis a very small number, but over time it can add

up.

Probably the most significant impact on logging is what information you attempt to log
and how you format that information. Log4j wuses a subclass of
org. apache. | og4j . Layout to determine how the message should be formatted in
the output destination. Using the Si npl eLayout class is probably the fastest layout
because it only logs the log level and the message. On the other hand, the
Pat t er nLayout class alows for a great amount of flexibility for the format of the
message. You can log all sorts of information such as the class creating the message, the
line number, and even the Java thread that is generating the message. However, al of this
additional information comes at a severe price in terms of performance. The log4j
documentation contains several warning messages in the JavaDocs for the
PatternLayout class stating that performance may suffer greatly if certain
information is written out with the log message.

You must be very particular and honest about what information you need placed in the
log message. Y ou should be able to get by with the class, the level, and the message. The
other information is nice to have, but in most ordinary cases, just superfluous.

396



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Creating the message that goes into the log statement can also have a lot to do with the
time and performance. Creating a message using values such as:

|Iogger.debug("Sessi onidis: " + sessld + " for user " + user.getFull Nane() );

can add significant time to the overall cost of logging. This obviously has nothing to do
with logdj, but rather the cost associated with making Java method calls and
concatenating the strings together before the actual log statement can be generated.

As mentioned earlier, loggers can be connected together in a parent/child relationship.
Since the logging threshold can be assigned at any level, the log4j environment might
have to search up the hierarchy to determine if the log message should be written or not.
If this hierarchy is very deep, this traversal could add significant time to the log statement
creation.

Generally, in the development stages of your application, the logging costs are not as
important. The performance of logging shouldn't matter that much while you're still
developing the application and debugging it. In fact, this is typically where you want the
as logging as the application can generate. When it' s time to go to QA or production, it's
time to turn down the logging levels.

With other languages, the logging code might not ever make it into the compiled binaries.
Preprocessors might remove the logging code to keep the binary size smaller and the log
messages from showing up. However, this is not necessary using log4j. You have the
flexibility of controlling how much logging, or none at al if you desire, just by changing
the configuration file. Of course, the log statements are still present in the binary code
onceit's compiled.

Third-Party log4j Extensions

There are several helpful third-party tools and utilities available for log4j. Most of them
are free to use or are open source. There are several Swing-based GUI applications that
alow you to view and filter log messages dynamically. This would be an ided
application for an administrator in a production environment.

There are also several other types of appenders that other developers have created that
might be helpful to you. You can find these third-party extensions in the log4j download
area at http://jakarta.apache.org/log4j/docs/download.html. It's definitely worth the time
to take alook at see what’ sthere. The list of available extensions is constantly growing.

Java 1.4 Logging API

Some of you might already be using Java 1.4. At least, many of you have heard of it and
the new features that have been included. One of the new featuresis the logging APl now

397



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

included with the core library. Y ou may be asking yourself what's the difference between
log4j and this new library and why shouldn’t you be using that instead.

Java 1.4 went final in early 2002. JSR47, which was the Java Specification Request (JSR)
for the logging specification, had gone through some changes since it was first made
public.

There seems to be several similarities between log4j and the 1.4 logging implementation.
However, there also seems to be a few major differences. Let's discuss what's similar
first. Both logdj and Java 1.4 logging implementation utilize a hierarchical name-space
for the loggers. This allows you to configure loggers that basically align along your
application’s package structure, although thisis not the only way to structure the loggers.

They aso both support multiple levels or priorities. Actualy the 1.4 logging
implementation contains a few more levels than logdj, although you might not ever use
the extra ones because they are so fine-grained.

The differences between the two implementations are generally not big enough to cause
you to miss out on important functionality. However, it does appear that logdj offers
more functionality for those that really need it. More importantly, log4j will work with
Javaversion 1.1 and above, while the 1.4 logging implementation is dependent on 1.4 to
work. There was talk about making it backwards compatible, but that hasn’t happened yet
and may never happen. Right now there are many more appenders types available for
log4j than Java 1.4. However the most important ones will be present in 1.4, so thisis not
a major issue. There seems to be much attention being paid to the logging APl in 1.4.
You'll have to wait until it'sfinal release to see how useful it will actually be.

Regardless of whether you use Log4J or Java 1.4 as your logging implementation, you
should leverage the Commons Logging API to protect your application from inevitable
change. Coupling your application to any single third-party implementation is not
recommended, whether we are talking about logging or anything else.

398



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

20

Packaging Y our Struts Application

Contrary to what many developers might assume, designing and building an application
is only half of the battle. When the application is finished, it must then be packaged and
deployed into the target environment. Many applications are built and packaged with the
intent of being installed into a customer’s production environment. For others, the target
deployment environment is an in-house need. For web applications fortunately, the work
that has to be accomplished in either case is very similar.

Internal deployments may be less forma and less nerve-racking. However, they till
should be taken serious and conducted in an efficient and professional manner. Whether
the customer is a “red” customer or another department within the organization, an
unprofessional deployment can leave a bad impression. By formalizing the packaging and
deployment process, the developers are more able to focus on building a quality
application, and spend less time worrying whether the application will install and run
correctly when it’ s finished.

This chapter discusses the best practices for packaging and deploying a Struts
application, including coverage of what it takes to automate the build process for your
environment. Special coverage will be given to Ant, the Java based build tool available
from Jakarta.

To Package or Not to Package

Applications need to be deployed to be useful. There's really no point in developing an
application that never gets deployed; athough this occurs more often than some might
think. The need for deployment is probably obvious to everyone, but what about

399



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

packaging? Does every Struts application have to be packaged before it gets deployed?
The short answer is yes. In this section, though, we'll examine the long answer.

Before we get into the details of packaging and deploying Struts applications, let’s define
exactly what these two concepts mean in the context of web applications that are built
using the Struts framework. Although the two concepts are closely related, they are not
the same thing.

What is Packaging?

Packaging a Struts application involves gathering all of the files and resources that are
part of the application and bundling them together in alogical structure. There are usually
many different types of resources that are included in a Struts application, and all of these
need to be bundled with the application. The following list provides some of the most
common types of resources that must be packaged with atypical Struts application:

HTML and/or XML Files
Images, Audio, and Video Files
Style Sheets

JavaServer Pages

Properties Files

Java Utility Classes
Configuration Files

Action and ActionForm classes
Third-party JARs

During the design stage, time and effort should be spent on deciding how you are going
to structure the application. Not every detail needs to be figured out and resolved before
construction begins, but you should generally understand the target environment
requirements and how these requirements will affect your packaging and deployment
strategy. Ideally, you should decide on the principal package and directory structure for
the application before construction gets underway. This will help to alleviate the normal
miscommunication between devel opers and reduce the redundant resource files.

What is Deployment?

As the previous section mentioned, packaging and deployment are closely related, but
involve different tasks. While packaging determines where the resource files will reside
in the package structure and how those resources will be bundled, deployment deals with

400



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

how the bundled application will be installed and configured inside a target web
container.

There are two approaches that you can use when deploying a web application into a
container. The first approach is to deploy the web application in a Web ARchive (WAR)
format file. Most web containers can take a WAR file, install it and make it available for
users, often without even requiring a restart of the container. This approach is convenient
because once you have the WAR file properly built, the rest of the work is handled by the
container. One of the downsides with this approach is that if there is a change made to
any file or resource within the web application, a new WAR must be created and
redeployed into the container. The details of how to deploy your Struts application as a
WAR file are discussed later in the chapter.

The second approach to deploying a Struts application puts more work on the developer.
It still involves packaging your application as a WAR file, but includes manually un-
packaging the WAR into a directory of the container. The exact location of the directory
is container dependant. In Tomcat and Resin for example, the default web applications
directory is webapps/. In the WebL ogic application server, you have to unpack the WAR
file underneath the applications/ directory.

All three of these containers allow you to specify alternate installation
directories.

When expanding the WAR file, you need to create a directory to unpack the files into.
The name of the directory is usually the name of the web application. So for example, if
the web application was caled st or ef r ont and you wanted to install it into Tomcat,
you could create a directory called storefront/ under the webapps/ directory and unpack
the WAR file there.

The WAR file should not contain the storefront directory as part of its
structure.

This deployment approach is referred to as an Exploded Directory Format, because the
WAR file is exploded back into its original structure within the container. The benefit
with this approach over deploying the WAR file itself is that when there are changes,
only the changed files need to be redeployed into the container. This is much easier
while you're still developing or debugging the application, but you may not want to leave
it like this for production.

When deploying a web application into production, it's a better
approach to leave the WAR packed because there' s less chance of one
or more files getting contaminated. Leaving it as a single WAR forces
you to replace the entire WAR entirely. There's no chance of a version
of afile getting out of synch with the rest of the application.

401



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Deciding on How to Package Y our Application

Because Struts applications are web applications, most of the questions about how to
package them are answered in the servlet and JavaServer Pages specifications. A web
application must follow a very strict set of guidelines and conventions, which are
completely specified, and which make the web application portable across other
compatible web containers.

Fortunately, packaging your Struts application in the web application format solves much
of the hassle regarding packaging. However, there are still many questions that you will
have to resolve. For example, where do al of the JSP pages go, whether you store your
Struts Acti on and Acti onFor m classes together or in separate action and form
packages, and other issues similar to these will have to be decided. Although there are
definitely best practices, there are no hard and fast rules for al of these questions. Some
of these will depend on your organization’ s requirements and policies.

Namespace M anagement

A namespace is simply a set of names. These names may or may not have an association
between each other. A namespace is normally used to prevent conflicts or collisions
between similar entities and to allow clients to reference these entities by some logical
name.

In software development, a namespace is a way to package classes, interfaces, and other
types of information into a hierarchical structure. There are many examples of
namespaces throughout the computer industry. The manner in which the Internet Domain
Name System (DNS) works is a type of namespace. When you look up a web site address
like http://mww.oreilly.com, the DNS doesn’t store the oreilly.com domain; it stores a
reference to the IP address that has been associated with this name. Within the
oreilly.com domain, there are other 1P addresses that are linked together in a hierarchal
fashion. All of this referencing helps prevent IP addresses from colliding. Another
example, which is more closely related to software development, is the namespace that is
used within JNDI. But by far the most familiar use of a namespace in Java development
isfor creating classes and interfaces that reside in a package.

As you know, Java applications are organized as a set of packages. Even when you don’'t
specify a package explicitly, it's still part of a package’. The purpose of the package is to
prevent name collisions and to help identity entities (in this case Java classes) easily.
When extending the Struts framework with you own classes and interfaces, you need to

! Any Java class that doesn’'t have a package statement declared in the source file is considered to
be part of the default package.

402



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

decide on how best to package these components for your application. Not every
application will be identical and contain the same classes and interfaces.

JSP File Placement

For many developers, where you place the JSP pages may seem like an easy question to
answer. Although you may have to decide which directory a particular JSP page belongs
in, that's normally all that has to be decided. However, there are situations where more
control may need to be placed on who and what has access to the JSP pages. One
suggestion has been to place JSP pages in a directory underneath the WEB-INF/
directory.

The purpose of this approach is three-fold:

Forces all requeststo go through Act i onSer vl et
Prevents user from book marking a page

The WEB-INF/ directory is protected and helps protect JSPs from being called
directly

This third approach has gained some popularity; however, there are a few problems with
it. First, not all containers support this. Although the Servlet 2.3 Specification seems to
indicate something to this effect may be possible, different vendors interpret the meaning
of the specification differently. WebLogic for example, interprets the specification
literally where it states in SRV.9.5 “ No file contained in the WEB-INF/ directory may be
served directly to a client by the container.

The contents of the WEB-INF/ directory are visible to the container using the
get Resource() and getResourceAsStrean() methods using the
Ser vl et Cont ext . Because of this, WebLogic will actually return 404 or 500 error
codes when you attempt to access a JSP underneath the WEB-INF/ directory.

Even though some containers do support this, you may not need to put the JSP pages
underneath the WEB-INF/ directory. If you only call Struts actions from your web
application and don’t link to JSP pages directly, which is a requirement for Struts 1.1,
then this approach will not add a great deal of benefit for your applications. There are
alternatives that you can use that are portable. For example, you can usethesecuri ty-
const rai nt element in the web.xml document. Just create the required directories for
the JSP pages that you wish to protect. In the storefront example, suppose users
shouldn't be able to access the JSP pages underneath the order/ directory. A
security-constraint element could then be added like this:

<security-constraint>
<web- r esour ce- col | ecti on>
<web- r esour ce- nane>Secur eQr der JSP</ web- r esour ce- nane>
<description>Protect the Order JSP Pages </description>
<url-pattern>/ order/*</url-pattern>

403



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

<ht t p- met hod>CGET</ ht t p- net hod>
<ht t p- net hod>PCBT</ ht t p- et hod>
</ web-resour ce-col | ecti on>
<aut h-constrai nt >
<r ol e- nane></r ol e- name>
</ aut h-constrai nt >
</ security-constraint>

Figure 20-1 shows what happens when a client attempts to access a JSP page directly
within the order/ directory.

) Apache Tamcat/40.4-h1 - Error repart - Miceosaft Internet Explorer pravided by Dell

] Fiz Edc  Yiew Faroies Tooks  Help
‘ = D 2 i e | Y 2
Bsck Foreerd Stop Rsfresh Home S=arch Favarkes fedis
| Address [{£] htim:)flocabest BB screfronticr derishoppingeart. isn x] e |

pache Tomcat/4.0.4-b1 - HTTP Status 500 -

onfiguration error: Cannot perform access
ontrol without an authenticated principal

s Status report

TreenE Corfiguration eror Cannct perom access comlal wthoul sn autherticsted pincpal
[T The serer encauntered an iltemal err |§urrr|gunalmn Bifor Cannol pamarm gccess corlrol Withou Sn
herii 3 at pravaris = -

) -
| €] ane [ acal pinanes W

Figure 20-1. The container will return a 500 error when attempting to
access a JSP page that has been protected.

Whenthe securi ty-constrai nt element isadded to the web.xml document for the
storefront, it says that no user without the proper authentication can access the order JSP
pages. However, in this example, the r ol e- nane element was left intentionally blank
and therefore will never match an actual role. You could aso have specified that only
users with an admin role could access the pages and then never give that role to an actual
user. The container is still able to access these pages through forwards and includes.

404



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

You must be careful in what you put in the ur | - patt er n element, however. If you
have resources like images in sub-directories, they will not be available when the browser
attempts to download them. Using the /order/* pattern means nothing under the order/
directory can be requested directly by the client; this includes images in sub-directories,
and the browser will have difficulty requesting the images for a returned HT TP response

message.

Pre-Compiling JavaServer Pages

If you are using JavaServer Pages as your Struts presentation technology, you are
probably very familiar with the compilation process that the JSP container performs on
the application’s behalf. When the web container receives arequest for aresource with an
extension of .jsp, the JSP container is selected to process the request. If this is the first
request for the JSP page or if the timestamp for the JSP page is newer than the existing
servlet class, the page will normally? be compiled.

The JSP container uses a two-step process. First, the JSP page is trandated from the JSP
code into a Java source file. Each container may have its own implementation to trandate
the JSP page. The second step takes the Java source file and compiles it into a serviet
classfile. Thisis done using whichever Java compiler isinstalled for the JSP container.

Although the just-in-time compilation is a nice feature while you are developing or
debugging an application, you may not want to make the JSP source available in a
deployment package. Thisis both an issue of security and licensing. Although the JSP
pages should only contain presentation logic, it's till intellectual property.

If thisisthe case, then you can pre-compile the JSP pages and not provide the JSP source
code to customers. The benefit is that you only have to distribute the compiled byte code,
making it harder for the source code to be seen. Once the JSP pages are compiled into
Java class files, you can even run them through an obfuscator to make it harder for them
to be viewed through decompilation tools. By pre-compiling the JSP pages, you have
more options for dealing with issues like these.

Like anything else, though, there are some downsides to pre-compiling JSP pages. For
one thing, you lose the ability to update or fix a problem quickly. Instead of just placing a
new JSP file onto the server and letting the JSP container compile it when it’'s accessed,
you must now do the recompilation by hand and deploy the servlet class. Another
downside is that when some containers detect a problem with a single JSP, that container
will stop processing the rest of the application's JSP pages. When this occurs, you must

2 Most containers have an option that disables detection and will not recompile pages that have
changed. Thisis usually done in a production environment because incremental changes should not
be introduced like thisin production. To allow this to occur would also amount to a security risk as
well.

405



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

make sure that every JSP page compiles successfully before the container will deploy the
web application. Developers may actualy consider this a benefit, rather than a
disadvantage, but it can be problematic in production environments if you are trying to
make a quick fix to a bug.

Unfortunately, there's not a standard way to pre-compile the JSP pages. Each container
has a different way of doing it. We'll briefly discuss how to pre-compile pages using
three of the available containers on the market, Tomcat 4.0, Resin 2.0, and WebLogic
7.0.

Precompiling JSP Pages with Tomcat

The JSP implementation in Tomcat, which is called Jasper, provides a reference
implementation for the latest specification. It's packaged along with Catalina, which is
the reference implementation of the latest servlet specification, inside of Tomcat. The JSP
to Java compiler is made available as a separate program that can be executed from the
command line. Its job is to convert a JSP page into a Java source file. From there, a
standard Java compiler can convert the source code into byte code.

The program is called jspc.bat (or jspc.sh, depending of which platform you're using) and
is located in the bin/ directory of the Tomcat install directory. There are many options
that can be set to configure everything from the output directory to the package name of
the Java source. There's even an option that will cause the compiler to create XML that
can be added to the web.xml document for each JSP page that gets precompiled. Y ou can
do one page at atime or specify an entire web application.

Precompiling JSP Pages with Resin
To precompile JSP pages using Resin, you can use the httpd.exe command from the
Resin bin/ directory like this:

| resin/bin/httpd —conf conf/resin.conf —conpile <URL>

Here, the URL is a JSP resource within aweb application installed in Resin.

Y ou can aso use the command line version like this:
| resin/bin/httpd —e <UR>
With this approach, you can only compile a single JSP page at a time, although you could

easily create a script that went through your entire web application. An easier way to
configure this would be to use Ant, which will be discussed later in this chapter.

Precompiling JSP Pages with WebL ogic

With WebL ogic 6.0, you have to includeacont ext - par amelement in the deployment
descriptor for each web application. This will instruct WebLogic to compile every JSP
page that is part of the web application when the application server starts up. The

406



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

following example shows the cont ext - par am element that must be added to the
web.xml file:

<cont ext - par an»
<par am nane>webl ogi c. j sp. pr econpi | e</ par am nane>
<par am val ue>t r ue</ par am val ue>

</ cont ext - par an®

WebLogic 6.0 is one of those containers that will not deploy the web application if any
one of the JSP pages fails to compile. Once it detects an error compiling a page, al
compilation stops and the web application will not be deployed. You will have to fix
whatever is causing the problem and then restart WebL ogic to start the process all over

again.

Packaging EJB Resour ceswith Struts

If you're communicating with EJBs in the middle tier, then it might be necessary to
package some of the EJB resources along with your web application package. Since the
web tier acts as a client to the EJB server, there are certain resources that are required to
connect and communicate with the beans.

The beans' home and remote interfaces, for example, will need to be packaged either in
the classes/ directory or asa JAR in the lib/ directory of the web application. Also, some
of the JNDI classes will need to be included so that clients can acquire a home and
remote object. The actual client-side EJB stub classes are not required, however. This
wasn't always the case, but the latest specification now describes a mechanism that will
allow these to be automatically downloaded when arequest is made using an EJB remote
interface.

In many cases, it's enough to put the EJB container JAR in the WEB-INF/lib/ directory.
For example, if you are using WebLogic 6.0 or higher, you can put the weblogic.jar in
the web tier, asit contains all of the necessary client-side resources.

Packaging the Struts Application asa WAR

Packaging your web applications using the WAR format is very convenient. The
structure is very precise and because it is specified very carefully, portability across the
various web containersis much easier. The next section describes the exact steps that you
must perform to package your web application asa WAR.

Creating the WAR File

The first step in packaging your application as a WAR is to create a root directory. In
most cases, this will be the name of your web application. For our example, we will
create adirectory called storefront/.

407



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

After deciding how your JSP and HTML pages will be placed within your application,
place them underneath the storefront directory, in their appropriate sub-directories. For
the storefront package example, our directory structure so far would look like Figure 20-
2.

storefronk
{2 catalog
~{_] comman
l:l cuskamer
{:I cuskomersuppork
{:I images
{7 include
{1 multimedia
{1 order
{:I security
{1 shoppingcart
-{] skwlesheets

Figure 20-2. The Sorefront Application Directory Sructure

Figure 20-2 shows eleven sub-directories, eight of which contain JSP pages for the
application. The images/ directory will contain images that are used globally throughout
the application. The stylesheets directory store cascading stylesheets for the application
and the include directory contains files that are included within the main JSP pages.

The next step in setting up the WAR is to ensure that you have a WEB-INF/ directory
underneath your root web application directory. The WEB-INF/ directory contains all of
the resources for the application that are used internally by the application. For example,
the TLD files for your custom tag libraries reside in this directory, as does the web
deployment descriptor. This is aso where the Struts configuration files belong. No
resource within this directory can be made public outside of the application.

Underneath the WEB-INF/ directory, create two sub-directories; one called classes and
the other called lib. In the classes/ directory, you should place all of your utility and
servlet classes. The lib/ directory contains JARSs that the application depends on.

Once al of the resources for the web application are accounted for and are inside the
appropriate directory, you need to use Java s archiving tool jar to package the directories
and files. From a command line, change to the root directory of your web application and
use thejar utility. You need to give the file a .war extension like this:

|jar cvf storefront.war .

Since we changed to the root directory, the storefront/ directory will not be included in
the WAR file. This is fine, because you may want to call the root directory something
else when it's installed. When you install the web application, if you plan to explode the
WAR file, all you need to do isto create adirectory and un-jar the files like this:

408



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

C \tontat \ webapps>nkdi r storefront

C \tontat \ webapps>cp storefront.war storefront

C \tontat \ webapps>cd st oref r ont

C \tontat \ webapps\ storefront > ar xf storefront.war
C \tontat \ webapps\ st or ef ront >

The location of where the WAR file gets expanded is dependant on the container. If you
plan to distribute the WAR without exploding it, all you have to do is place it in the
appropriate place for the container. Y ou don’t have to re-create the storefront/ directory.

Although section 9.8 of the Servlet 2.3 Specification is a little
ambiguous about replacing a web application without restarting the
server, most containers will allow you to drop in new WAR file or
replace certain files, without restarting. There’'s always a danger with
leaving this features on in a production environment, however while
still developing or debugging a problem, you'll quickly learn to
appreciate this functionality. Of course, with the containers that do
support this feature, there’ s always a way to disable it when you deploy
aweb application into production.

Building your Struts Applicationswith Ant

Although there are several different mechanisms to compile and deploy your Struts
application, by far the easiest and most flexible is the Ant build tool. This section
discusses how to use the open source tool to perform al of the compilation and
deployment for your project.

What isAnt?

Ant is a platform independent build tool that can be configured to compile your Java
source code files, build your deployment jar and WAR files, unit test your code, and
create your project Javadoc documentation. It has many other uses and can be expanded
to perform new tasks of your own creation.

Ant is similar to the Unix make utility (also known as gmake in Linux and nmake in
DOS/Windows). make utilities have been used for generations to manage projects for
many languages such as C and C++, but these utilities are platform dependent because
the rules they use are typically shell commands executed by the host operating system.
Unlike make, Ant’srules (or tasks, in ant terminology) are Java classes and can be run on
any platform with a supported JVM.

409



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

A Brief History of Ant

Ant is another Jakarta project along with Struts and Tomcat and was created by
James Duncan Davidson who also wrote the original Tomcat servlet container.
Initially Ant was written as a utility to build Tomcat in early 1998. Very quickly,
others saw the benefits of it over make, and it was moved to its own CV S project
and officially became a separate Jakarta project in 2000. The creators of Ant had
no idea how popular and widespread its use would eventually become.

Installing and Configuring Ant

Ant can be downloaded from the Apache/Jakarta website at http://jakarta.apache.org/ant.
The examples provided in this chapter were tested with Ant version 1.4, but should also
be compatible with at least Ant version 1.3. Download the binary zp file (for Windows)
or the tar.gz (for Unix) and uncompress the archive into your desired installation
directory. You should also download the 1.4.1 optional.jar and install it in the
ANT_HOME/lib/ directory. While not used in this project, the optional jar has many
extratasks that you may find useful in the future.

Ensure the ANT_HOME/bin/ directory is added to your system PATH. Your installation
may also require adding the environment variable, ANT_HOVE, which should be set to
the Ant installation directory. The Ant binary typically can determine what ANT_HOVE
should be, but if you get an error when trying to run Ant, set this environment variable.
There is also a caveat when running under Windows 95/98 — do not install in a directory
with long path names because the batch file used to run the installation script may not be
able to handle the long path names. See the Ant installation documentation for more
information.

Getting Started

Ant uses an XML file to read its build commands from. By default is looks for a file
called build.xml, but any XML file can be a build file by using the —bui | dfil e
<fi | e> option when running Ant. From a command prompt, change directories to the
base project directory for the storefront project, which is called storefront/. In here you
should see the build.xml file.

The Ant build file consists of a project that has one or more targets, and each target
consists of one or moretasks. The project element is defined at the top of the build file:

| <proj ect nane="storefront” defaul t="war" basedir=".">

410




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

The project isnamed st or ef r ont and the default target to execute isthe war target.
The default target is what gets executed if you only type ant from the command line,
without specifying a target. Because the project root directory is the same directory that
the build.xml fileislocated, “.” is used to indicate the base directory property.

The build directory structure for the storefront application is shown in Figure 20-3.

El{:l starefrant
=L build
foECO com

20 METAINF
=] sic
-0 com
=1 web

{:I catalog
{1 cormrman
-] images
1 include
{1 multimedia
-] order
-{23 FECUty
-{23 stylesheets

WEB-INF

Figure 20-3. The Build Structure for the Storefront Application

A target takes the form:

<target nane="dostuff">
<taskl parani="val uel" paran2="val ue2"/>
<task2 paran¥"val ue"/>

</target>

The target should consist of one or more tasks. A target must have a name and may have
several additional attributes that determine when and if the target actually gets executed.

A task, on the other hand, is an atomic unit of work in the Ant world. Each task is bound
to a Java class file that Ant executes passing to it any arguments or sub-elements defined
with that task. For this project, and most likely all projects you'll create, the built-in and
optional tasks included with the Ant distribution are all you will need. If, however, you
needed to create a new task, you could do so by defining the task in the build.xml file
using the t askdef task to bind the task name to a Java class file. The Java class file
must extend org.apache.tools.ant.Task and be locaed in the Ant

411



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

CLASSPATH. There are several other requirements that are beyond the scope of this
book, but details can be found in the Ant documentation.

Before you run Ant, there are a couple properties in the storefront build.xml file you may
have to change to suit your development environment:

<property nane="webserver. hore"
val ue="c:/toncat"/>
<property nane="webserver. depl oy"
val ue="${ webser ver . hone}/ webapps"/ >
<property nane="servlet.jar"
val ue="${ webser ver . hone}/ common/ | i b/ servlet.jar"/>

These three properties define where the servlet container is located, where its deployment
directory is located, and where it keeps the servlet APl classes. Firdt, the
webser ver . home property is set to the root directory of the servlet container. In this
case, the Tomcat 4.0 web server and servlet container is being used. The storefront
build.xml file supports severa other containers, but they are commented out. You'll just
need to uncomment the one that you wish to use. Tomcat’s deployment directory is the
webapps directory found just off the Tomcat root directory. Tomcat keeps the servlet
API classesin the common/lib/serviet.jar relative to the Tomcat root directory.

Lastly, we need to define our project CLASSPATH that will be used during compilation
of our project. Ant provides the capability to associate a set of files to a property name.
In the following build.xml fragment, the list of all the jars necessary to compile the
storefront example is bound to the bui | d. cl asspat h property. We could have used
i ncl ude elements to define the bui | d. cl asspat h property in far fewer lines,
however it's much more clear to explicitly list each jar used during the build process so
that nothing extrais added or omitted which might prevent a successful build:

<path id="buil d. cl asspat h">
<pat hel enent | ocation="${servlet.jar}"/>
<pat hel enent | ocation="${lib.dir}/comons-beanutils.jar"/>
<pat hel enent | ocation="${lib.dir}/conmons-col |l ections.jar"/>
<pat hel enent | ocation="${lib. dir}/comons-dbcp.jar"/>
<pat hel enent | ocation="${lib.dir}/conmons-di gester.jar"/>
<pat hel enent | ocation="${lib.dir}/comons-1ogging.jar"/>
<pat hel enent | ocation="${lib.dir}/conmons-pool .jar"/>
<pat hel enent | ocation="${lib.dir}/comons-services.jar"/>
<pat hel enent | ocation="${lib.dir}/conmons-validator.jar"/>
<pat hel enent | ocation="${lib.dir}/jdbc2 O-stdext.jar"/>
<pat hel enent | ocation="${lib.dir}/log4j.jar"/>
<pat hel enent | ocation="${lib.dir}/pool nan.jar"/>
<pat hel enent |ocation="${lib.dir}/struts.jar"/>
<pat hel enent |ocation="${lib.dir}/tiles.jar"/>
<pat hel enent path="${build.dir}"/>

</ pat h>

The bui | d. cl asspat h property can be used by the tasks by de-referencing the
property name using the Ant syntax ${ pr operty}. You'll see this used later in the
chapter within the Java compiler task to define the CLASSPATH.

412




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Compiling Java Source Files

The Java source files for the storefront application are compiled using the Ant j avac
task. The compiling target is called, smply enough, conpi | e, and only depends on the
pr epar e target:
<target name="conpile" depends="prepare">
<javac destdir="${build.dir}" deprecati on="on">
<cl asspath refid="buil d. cl asspath" />
<src path="${src.dir}" />
</j avac>
</target>

A target can depend on no other targets, or it can depend on multiple targets by using the
following syntax:

| <target nane="final-jar" depends="jars, wars">

By specifying a depends attribute, we can control the order in which Ant targets are
executed. Inthiscase, the conpi | e target is not executed until the pr epar e target has
been executed:
<target name="prepare">
<t stanp/ >
<nkdir dir="${build. dir}"/>
<nkdir dir="${dist.dir}/lib"/>
</target>

The pr epar e target generates timestamp values which could be turned into properties
and attached to compilation products such as jar and WAR files. For this small project
however, timestamps will not be used. The pr epar e target also creates the necessary
output subdirectories for our java classes and WAR file.

The conpi | e target instructs Ant to run the j avac compiler on al the files within the
source directory and send all the class files to the build directory. The deprecation option
is on so that you'll get a detailed message if you've accidentally included a deprecated
method in one of the source files:
<target name="conpile" depends="prepare">
<j avac destdir="${build.dir}" deprecation="on">
<cl asspat h refid="buil d. cl asspath" />
<src path="${src.dir}" />
</javac>
</target>

The j avac task uses the bui | d. cl asspat h property that was shown earlier in the
chapter.

Using Ant to build the WAR File

The Ant war task builds the web archive. The war target used to build the web archive
is shown here:

413



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

<target name="war" depends="conpile">
<echo>bui | di ng war. .. </ echo>
<war warfile="${dist.dir}/lib/storefront.war"
webxm =" ${web. di r}/ WEB- | N/ web. xm " >
<fileset dir="${web.dir}"/>
<classes dir="${build. dir}"/>
<classes dir="${lib.dir}">
<i ncl ude name="*. properties"/>
<i ncl ude nane="pool man. xm "/ >
</ cl asses>
<libdir="${lib.dir}">
<i ncl ude name="*.jar"/>
</1ib>
</ war >
</target>

As mentioned previoudly, the war target is the default target for the project. This means
when Ant is run from the command line without a target argument, the war target is
executed. The war target only runsif the conpi | e target has been ran first. The war
task requires you to define the name of the WAR file and the location of the web.xml
descriptor. All the other attributes are optional, but if you are interested in seeing them,
they are listed in the online Ant documentation
(http://jakarta.apache.org/ant/manual/CoreTasks/war.html). You should also check out
Ant: the Definitive Guide (O'Reilly), by Jesse Tilly and Eric Burke.

The nested elements tell the war task where the contents of the WAR file are located.
Thefil eset element defines the base web content of the WAR file. This element is
used to declare where the HTML files, JSPs, images, and such are located. The
cl asses element points to your Java class files that should be included in the WEB-
INF/classed directory in the WAR, and the | i b element declares which files should be
included in the WEB-INF/lib/ folder.

In the storefront example, everything in the web/ subdirectory is included. The various
sub-directories contain al of the necessary resources like HTML, JSPs, images, and so
on. All of the compiled classes in the build/ subdirectory are copied into the WAR’s
WEB-INF/classed directory along with the properties files. All of the third-party jarsin
the lib/ subdirectory are copied into the WAR's WEB-INF/lib/ directory. If the lib/
subdirectory contained one ore more jars that you didn't want to be included, you can
also use the following snippet:
<libdir="${lib.dir}">
<i ncl ude name="*.jar"/>

<excl ude nanme="dont _need.jar”/>
</lib>

Here, all the jars in lib/ except don’'t_need.jar would be copied into the WAR's WEB-
INF/lib/ directory. The last option, and often the most clear, is to explicitly include each
desired jar file. While slightly more verbose, it isimmune to changes to the lib/ folder if
other developersin the project start adding jars indiscriminately. It isalso much easier to
see exactly what is going to be included in the WAR file.

414




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Cleaning Up

The final two targets are trivial, but important. The cl ean target deletes the build/
directory, thus removing all the Java classfiles:

<t arget name="cl ean">
<delete dir="${build. dir}" />
</target>

<t arget name="di stcl ean">
<antcal | target="clean"/>
<delete dir="${dist.dir}" />
</target>

The di st cl ean target reverts the project back to its pristine “distribution” state. That
is, al build products — class files and WAR file — are removed so that the project
directory looks the same as it would have when the project directory tree was first
installed.

Note how the di st cl ean target callsthe cl ean target. While not really necessary for
this small project, it demonstrates more of the power of Ant, by invoking another target
viatheant cal | task. Infact, the ant cal | task can even call atarget with arguments,
but that is beyond the scope of this book.

There are various plugins that you can download that allow you to use
Ant inside of your specific IDE. For example, the AntRunner plugin
allows Ant to be used within the Jouilder IDE. For this and other
plugins, see the externa tools section of the Ant site
http://jakarta.apache.org/ant/external .html.

Creating an Automated Build Environment

Once you have put together a satisfactory build environment, you should go the extra step
to automate it. This means that there's no human interaction needed to execute new
builds. It's very common to need to modify the times that builds occur as you get closer
to the end of a construction phase. Y ou can of course, just manually kick off builds when
you need them, but a better, and much more efficient approach is to use a scheduling
mechanism to invoke your Ant build environment.

There are two scheduling mechanism that you can employ, depending on your
environment. In Unix, you can use the cron daemon and on the Windows platform, you
can take advantage of the Task Scheduler.

415




Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Using cron to Invoke Ant

cron is a program that allows you to automate tasks by running user-defined programs at
regular intervals. cron allows you to define both the program that is to be run, as well as
the exact time to run the program. The cron program is a daemon program, which means
that it runs in the background until it's needed. It wakes up every minute, checks to see if
there are any scheduled tasks that need to be performed, and after it runs the tasks, it goes
back to waiting.

The list of tasks for cron to execute comes from a file caled a cron table, which is
commonly referred to as crontabs. The crontabs is a schedule that lists the tasks to run
and the date and time to run them.

Some system administrators may disable cron from running on a
server, to save on processing power. If this is the case, you'll need to
ask them to allow cron to resume runing. You can verify that cron is
running and that you have permissions to access it by typing crontab —
from the command prompt.

All you need to do is edit the cron table and add an entry that calls your ant program,
which is turn will kick off the build. Check the Unix man pages for more information on
using cron.

Using Microsoft Task Scheduler

If you're using the Windows platform, it contains an application called Task Scheduler,
or Scheduled Tasks in newer versions of the platform. This program performs the same
function as cron, but for the Windows platform. It has a wizard that walks you through
setting up atask that gets fired off at regular intervals. Figure 20-4 is the main screen of
the scheduled task application. A task has been created that will invoked a batch file that
caninturn call Ant to perform abuild for your environment.

416



Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

B3 Scheduled Tasks [ _ O] x|
J File Edit Wiew Favorites Tools Adwanced Help ‘
£ 3 53
= (@ @ o I3 @ K X 9
Bach: Farsard Up Search Folderz  History | Move T Copy To. Delete Undao
| Address |81 Scheduled Tasks [ |
1 - Mame | Schedule | Mext Fun Time |
I—i Add Scheduled Task
L t aintenance-Defragment progr... At 1:00 AM everp The,  1:00:00 AM 7.
Scheduled Tasks M aintenance-Disk cleanup AE1Z30AM onday .. T23000AM .
{1 storefront-build AbE:01 PM every da..  8:01:.00PM 7.
Add Scheduled Task
The scheduled Task wizard walks you
skep-by-step through adding basks,
Just Follow the instruckions on each
SCrEEn,
1| | i
|'| object{z] selected i

Figure 20-4. The Scheduled Task Application on the Windows Platform

The amount of control that you have over the time intervals is not as granular asiit is on
the Unix platform. However, it is sufficient enough to kick off daily builds at a certain
time. See the Windows documentation for your specific version for more details.

FTPing and Restarting your Server

If your deployment server is located on a different server from the build environment
(and it really should be) you will need to get the deployment files moved over and
possibly restart the server. The easiest way to do thisis with the Ant f t p and t el net

tasks. Y ou can even have Ant email you reports on the result of the latest build using the
emai | task. See the Ant documentation for more information on these and other helpful

tasks.

417



