I e R R S S
UNIX Programming Tools

£ -I"F-.
LT v, "-_.
i- b
» =

lex & yacc

fobn R. Levine,

O!REILLYm Tony Mason & Doug Brown

lex & yacc

John R. Levine
Tony Mason
Doug Brown

O’Reilly & Associates, Inc.
103 Morris Street, Suite A
Sebastopol, CA 95472

lex & yacc
by John R. Levine, Tony Mason and Doug Brown

Copyright © 1990, 1992 O’Reilly & Associates, Inc. All rights reserved.
Printed in the United States of America.

Editor: Dale Dougherty

Printing History:
May 1990: First Edition.
January 1991: Minor corrections.
October 1992: Second Edition. Major revisions.

Nutshell Handbook and the Nutshell Handbook logo are registered trademarks of O’Reilly
& Associates, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and O’Reilly and
Associates, Inc. was aware of a trademark claim, the designations have been printed in caps
or initial caps.

While every precaution has been taken in the preparation of this book, the publisher
assumes no responsibility for errors or omissions, or for damages resulting from the use of
the information contained herein.

&S
This book is printed on acid-free paper with 50% recycled content, 10-15% post-consumer

waste. O’Reilly & Associates is committed to using paper with the highest recycled
content available consistent with high quality.

ISBN: 1-56592-000-7 [8/94]

Table of Contents

Preface Xvii
What's New in the Second EQtionccooeeiiiiviiiiiieniere s xvii
Scope of This BOOKccceviriieiiiiiiiieeesrec ittt et xviii
Availability of Lex and YacC ...covcvvviiiiiiiiiciiecieeeececeee e XX
Sample PrOZIAIMSccccouiieiiiieniiiieieeeeeee et sre e XX
Conventions Used in This Handbookccccccevivevciiineciciec e, xxi
ACKNOWIEdGMENLSoiiiiieiiiiieee ettt xxii
1: Lex and Yacc 1
The Simplest LeX PIOZIAINccooveiiuiiiieieineetiireseesiene e sreensee et enan 2
Recognizing Words With LEXcccoccvvriiiniiniiniiiinees e 3

SYMDBOL TabIES ...eviiiiiiiieiiice et 9
GIAMIMATS ..ot str s e e b s e e baessrreeentaessbeteereesessteesns 13

Parser-Lexer COMMUIMICAUONccccvveieeiirinieiceiecinee e e 14

The Parts of Speech LEXErccoccoovviviiiiiienienicieecececcer et 15

A YACC PAISET .ttt e e a et e e e 17

The Rules SECHONcoveeuriiieieiecieeie ettt 18
RUNNING LeX and YACC ...ccoviiiiiiiiiiiiceie sttt 21
Lex vs. Hand-Writt€n LEXEISccccooviviiiurieiieiieeieeeeeee et eeeeeee e reee e 22
EXEICISES ..iiiiiiiiiii et r e e e st 25
2: Using Lex 27
Regular EXPIeSSIONSccoiiiiiiiiiieie et 28

Examples of Regular EXpressionsccccccovvieviivnienisiesiieeieesvecveenes 30
A Word Counting PTOZIAMcccviviieiciiiiiecie et eses e eesesns e 32
Parsing a Command LIN€cccccoooiviiiiiiiiiiiiii e 38

STATE SEALES ...oiiiiiiieiiic et e ebre e ee et r e et be s sabee s sabe s e stnseane 42
A C Source Code ANAlyZerccoocevveriiviiinriescc e 45
SUIMIMIATY ..oiiiiiiieit ittt ee et entb e st e e rab e e et et eeeneeeeenneeesee e 48
EXEICISES ..iiiiiiiiiiiiii e e 49

3: Using Yacc 51

@721 1171172 - OO P PP E TSP PO TOPIPPP: 51
RecUrsive RULEScccooiiiiiiiiiiiiiee e e s 53
Shift/REAUCE PATSINIEveeiiuieeirieeiieeiee et 53
What Yacc Cannot PArSEcccovveieiiininnisiis e 55
A YACC PATSEI .ooviieieeie ettt e 56
The Definition SECHON ..vviiviiciieeieiii et s 56
The RULES SECHON ...viiviiiieeieeiesiie ettt 56
Symbol Values and ACHONScoooviiiiniiiii 57
TRE LEXET ..voviiiiiiiee it eeiie e ettt e s siae e e et e ettt e s e e s e s s e e et e e anne s 58
Compiling and Running a Simple Parser ... 59
Arithmetic Expressions and AMDIgUILYcccooviniiiinininnn i 60
When Not to Use Precedence RUlesccccoovimiiiiiiiiiininnnnn 63
Variables and Typed TOKENScooviiiiiiiniiiiss e 64
Symbol Values and %union ..o 65
SymbOl TabLES ...vieeeiiiicie it 67
Functions and Reserved Words ... 71
Reserved Words in the Symbol Table ... 72
Interchangeable Function and Variable Names ..o 76
Building Parsers with Make ... 77
SUMIMATY .ovviiiiiiiniii i e e 78
EXEICISES oteiiiiiitiiis ittt e et bt a e e e e e e e e e e e 78
4. A Menu Generation Language 81
Overview of the MGL OO U SRRSO P PR URUPTOPOONt 81
Developing the MGL ... 83
Building the MGLcoooiiiiiiiiiciicicciniii i 92
Initializationccooociciiiininiiins RSP P PP UPROPP PPN 95
SCIEEN PrOCESSINE ...vviiiiiiiiiiiieeeeer et iee et e e e e 97
TEITUNAION .oiiitiiiie et e ettt e e et e e e s s e s e s aaa e 100
Sample MGL COAEcoociiimimiiiiiii e 102
EXEICISES ooiieiiiiiii ettt e e s e e e e e e e et 107
5: Parsing SQL 109
A Quick Overview Of SQLcoviiiiiiiiiiiicii i 109
Relational Data BasSesc.cccoooiieiiniieeriniiiiie e inniae e 110
Manipulating Relations ... 111
Three Ways to Use SQL ...t 112
The Syntax CheCKeTccooiiriiiiiii 114
THE LEXET it e e et et 114

vi

Error and Main ROULINESoovvvvieieieeeeeee ettt e 118

The PAISEr ...occviiiiiiiiii e 119
DEfINItIONS oiiiiiiiiiit ettt 119
TOP LeVEl RUIES ...ccvieiiiiiiiiiec ettt 120
The Schema Sublanguagecccciiiiiiiiiiiiec e, 121
The Module Sublanguagec...cccovviiiiiiiiiciie e 126
The Manipulation Sublanguageccooveieiviin e, 128
Odds and ENdS veovveriieeiiiic st s 139
Using the Syntax Checker ..., 140

Embedded SQLcooviiiiiieirt e 141
Changes to the LEXETccccoiiiiiiiiiiieieeniee e cee e 141
Changes to the Parsercccocoveviiviioiieiniiie e 143
Auxiliary ROUNES ... 144
UsiNg the PIEPIOCESSOT ..vccvvieiiieeiieiiiieieeeeeciiiitieatieeeeesree e sreaeaee s 145

EXEICISES ..veivieiiiiitiieiii ettt ettt e 146

6: A Reference for Lex Specifications 147

Structure of a LeX SPecifiCationccovveriirienieiieienieinie e, 147
Definition SECHOMccivviiiiiiiiiiii ettt 147
RUIES SECHON ..iiiiiiiiiii e 148
USer SUDIOULINES ..o.ooiiiiiiiiiiieitcce et 148

BEGIN ..ottt ettt ettt e s er et e 149

BUZS oottt 149
Ambiguous Lookaheadccccoiiiiiiiiii 149
ATET LEX oottt e et naaa s e s 149
FIEX o b 150

Character Translationscoocoiiiiiiiiiii e 150

Context SENSITIVILYoiiiiiiiiiiiiiiiiiiri e 151
Left CONEXL ..ocoiiviieiieicii ettt et et 152
Right CONEXT ..iiiiviiiiiiiiiii e 152

Definitions (SUDSHIULIONS)ovvviviiiiiirieniee e 153

BCOH O o e e e 154

Include Operations (Logical Nesting of Files)c.cccoovviviicrinnnnnn, 154
File Chaining with yywrap()cccoiiiiiiiiiinniinen e 154
File NESHNE ..oviiiiiiiiieiierie et enie et ee e e e e s eas e e e sanas 155

INPUL frOm STHNES ...oooviii it 156
ATET LEX oot et 156
FIEX oot 156
ADIaXas PCIEX .ooviiiiiiiicieei e et 157
MEKS LEX oottt e e 157
POSIX LEX ..oiiiiiiiiiee ittt ettt 158

Vit

Internal Tables (%N Declarations)ccvieeeooiiniininniir e 159
1EX LIDIATY .oooviiiiiii ettt r e s 160
MAINT) oot e e 160
Other Library ROULINES .ecooviviieeieiiiesieerecnie e e eeen s 160
Line Numbers and yylNeno ..., 160
Literal BIOCK .oviviiiiieoiiei ettt ss e eres cra e 161
Multiple Lexers in One PrOZLAIMNcocccoirmurmiemireorirerssineensecasssoreennenns 161
CombBINEd LEXEISoiiiiiiiiiiie ittt e 161
MUILPLIE LEXEIS ...ovviiviviieeresee ettt eie e eeie e eiesie et et eeenesee e 162
OULPULDD 1eutiitietirteste s et et et et eesess s etsete st esbe b e s es et s ems et emeemsemeenneaenneres eend 165
POrtability Of LEX LEXEISvvivvvieeiiiiiiiriniiii i e e sresinscenssreeens s 166
Porting Lex Specificationsccccocevnieierninsiencec e, 166
Porting Generated C LEXETScooviiviniicriiienierieeeeieenes e e ceneen 166
Regular EXPression SYNEAXc.ociviviiiiininnre s evcns s 167
METACRATACLETSveiiviieiiite ettt 167
POSIX EXTEIISIONIS .uovvieurnniirniniiinieniiisiirrinieessrieeseseeessssiseseesse e cenisines 170
REJECT vrveereet e eeeeeeeees e eee e st e e st etee e ee et eensenseent et entensereneseneneeenenesenteeeeene e 170
Returning Values from yylex()ocvcviiviiniiiiiiciiiicieicni e, 171
SEATT SEALES ...eiiiii ittt e e e e 171
UNPULC) 1oetiiiiiiis et en e et beer s s anr e s e e e n e s e n e 173
yyinput(), yyoutput(), YYUNPUL() ..ccovvirreieiiciecinieein e 174
FYLENG it 174
yyless() v, e et en e en et 174
1472 (O L OO U OO UR PP TP PR 175
User Code in yYIEX() .oiiiiiiiiiii e 176
D 21810 7= (5 T U TS T RO PR ORUUOPOPUPP 177
FYEEXL 1rettteeeeemmmerartentinnrretterarebbieeeeeneaaabaeeesen s b e e e r e b 177
Enlarging yYeXtocccoiiiiiiiiiiiniiiii i 178
PYWIAPU Y 1ottt etietieiiaeae e ese e e e e sie st aacaeceateaaeetenae b are s en e s et et eni e, 179
7. A Reference for Yacc Grammars 181
Structure of 2 Yace Grammarccoccceeiiiiiiiiiiien i e 181
SYMDOIS et e 181
Definition SECHION ...ccccciiiiiiiiierie e 182
RUles SECHON ..ottt 182
User SUBToUtines SECHOM ...oviiiiiiiiiie it 182
ACHONS it e 182
Embedded ACHONS ..vvvvveiceiiiiiiniciee et 183
Symbol Types for Embedded Actions ..., 184
Obsolescent FEAtUIEcccoieiiiiiriiieee et 184

viit

Ambiguity and CONfliCtSc.coooiiiiii e 184

Types of CONfICES ..ot 185
BUgs in YACC ..o e 186
REAL BUZS ..ottt e 186
Infinite RECUTSION ..ottt 187
UNreal BUZS .ooooiiiiicie et 187
ENd Marker ..o 188
Error Token and Error RECOVEIYoccooiiiiiiiiiiiiiicic e 188
Yident DEClarationocovieeiiiiiiiie ettt e, 189
Inherited Attributes ($0)oc.ooiiiiioiioeecee e 189
Symbol Types for Inherited Attributesccccooeviiirinieieeeennen, 190
Lexical FEedbackcocoviviioriieiiiic et 191
Literal BIOCKcooiiiiiiiiiiiiiiieiiii e, 192
Literal TOKEISooviiiiiiiiiiiiic et 192
Portability of YacC PArserscccccvviiiiiiciiicecee e 193
POIting YacC GIramMIMATSooviiiiiiiiiiii et 193
Porting Generated C LEXEISc.coveiieieriiie e e 194
Precedence, Associativity, and Operator Declarations 194
Precedence and ASSOCIALIVILYc..ooooeiiiiiiiiiiiiic i 195
Operator Declarationscccoovviivie i 195
Using Precedence and Associativity to Resolve Conflicts 196
Typical Uses of Precedencecccoovevveiiiiviiiieccie e, 196
Recursive RUIESccccniiniiniiie e 197
Left and Right RECUISION ..o 197
RULES ...ttt ettt 198
Special ChAaraCLerS ..oiiviiviiiicccic e e 199
Start DeClarationc.ooveiiiioieiicee e 201
SYMDBOI VAIUES ..ottt 201
Declaring Symbol TYPES ...ooiiviieiieeieecee et 201
EXAMPLE oo, 201
EXPLicit SYMbDOL TYPES ..oiiiiiiiiiiiiiieeeceeeee e 202
TOKEIS ..ottt ettt 202
Token NUMDETSociiiiiiiiiiieiccee e, 203
TOKen ValUes ... 203
%type DEClarationcocoivviiriiii ettt 204
%union Declarationcoocveiiiieiiiieoiie e 205
Variant and Multiple Grammarsc..c.ocooveiiiiieeeee e 205
CombiINed Parserscccooviiriiiiiiiiiiieieiie st ee e 206
Multiple PArserscccvovieviirieniiiiiiiieeicrineeees e ee e eve s 207
Recursive Parsingccoovviiiiiiiiiiee e 209
Lexers for Multiple Parserscccvvvvivrioviirionrieiieeiese e siee e eneas 210

V.output Files ... 210

oo F: 1 1oL () JUT OO P U PPPPRON 211
VYEITOT() coiiiiieeiee ettt et 212
A ;Y 210) 4 O P PP PPN 212
47 O G G P 212
YYBACKUPoviiviiiiiiieet et et isicet s n e e stt e sbs st b st aa et sh e et eerassreaaasaneasse s 213
YYCLEATIIL Lvviiiiiitii e 213
yydebug and YYDEBUGcccoiiiiiiniiiiiiiiien s 213
Y Y DEBUG o e e e e e e 214
YYAEDUG oo 214
35 (o) OO OO EOUO TP P PPPIPPUOTPPPP 214
T YERROR iiiiiioiiiiieiie et s et e et et et teesbe e s tas e s et er e e e s s s et a b taa s aar g rna s eees 215
TYEITOI() .vieveiverestossenrereaese st eet et seeneeu et s bt st s e st e bbbt en b b 215
TYDATSEU) 1o vvivtieiiteeieire e e e ee et et nt e e 216
YYRECOVERING() .oivetiviiriiieiet e etcescree st sae s se e 216
8: Yacc Ambiguities and Conflicts 217
The Pointer Model and ConfliCts ..o, 217
Types Of CONlICESviuviiniiiiriiiiiiienie e 220
PArSET STALES 1iviviveiiusiinriereerererieiersies e et este et s nena b s e eerasaraaaanranees 221
Contents Of Y.OUIPUL ...eiceiiiiieeccii e 223
Review of Conflicts in y.outputccooovimiiiiiiiiii e 228
Common Examples of Conflictscccoeiiviiiiiiiiininii 229
EXpPression GramimarS ... 229
IF—THEN—FELSE ... o ttiettiieieiiiieirerreneerasieanen e et ee i s essaai e reeres 231
Nested LiSt GIAIMUITIATS ...ocvivivvieiieeiteeesieeanneraine et ssnesinsaesoresassseees 232
How Do I Fix the COnfliCt?ccooviiiiiiiiicnee et 233
TF—THEN—ELSE (Shift/Reduce)ccooiiiiririiiiiiiiininnins 233
Loop Within a Loop (Shift/Reduce)cccoveiiiiniiiiiinini 235
Expression Precedence (Shift/Reduce) ..o 236
Limited Lookahead (Shift/Reduce or Reduce/Reduce) 237
Overlap of Alternatives (Reduce/Reduce) ... 238
SUIMMMIALY .eeovreiiieirt it siie st ie s ris et sir s e e abs e s be e st b e ans b e e aa b s e e e e e 240
EXEICISES uvvvvviieieiiurieeieeeeeiiintieeeeeanaeesbssseseesiibsbane e e s sabateeees e 241

9: Error Reporting and Recovery 243

Error REPOITNGvviiiiiiiiec ettt 243

Better Lex ErrOr REPOILS ..uviviiiiiriiriiiieiieiiieite e e necnis e scie s sreas 246
EITOT RECOVEIY ...viiiiiiiiiiiieiieit ettt et ettt een et 247

YacC Error RECOVEIY ..ot 248

Where to Put Error TOKENScviiiiiiiiiiiiiciiie e 251

Compiler Error RECOVETY c..ociiiiiviiiiiiiiiiiiiiiiicccc e 251
EXEICISES ..ouiiiiiiiiiiiiii ettt 252
A-‘ A‘ éT i 253
EITOr MESSAZESeiiiiiiiii et 254
B: AT&T Yacc 261
OPHOMS ... iitiiti et iat et este et et e e e st ts e st et e st ass e ats e st e e tsesbeebeesaesaessaasaesaearsanie 261
ETOr MESSAZES ..ooiviiiiiiiiiiieevii sttt aere ettt ant et anneneseenea 262
C: Berkeley Yacc 271
1O)0 15T} o - J O P 271
ETOF MESSAZES ...ttt 271

Fatal EITOIS ...ooiiiiiiiiiiiciet ettt e eea 271

ReGUIAT EITOIS tiiiiiiiiiiir ittt rr et e e et eesbe e e e 272

WATTHIIES oot evieeiiiiee ettt e bttt e e s et e s e eabea et ebb e e e seraneeaes 274

INfOrmative MESSAZES ...ovcvvverririirreiiieeeeninier e e e nianeesnnireeeeaareesranns 275
D: GNU Bison 277
DAfFEFENCES ... 277
E: Flex 279
FleX DIffErENCES ...viiiiiiiiiiiiiiiie et 279
OPUONS .. 280
ErTOr MESSAZES ...ttt ie ettt r e et et e e et e e e e e e ee e et e e s 281
Flex Versions of Lexer EXamplesccccocoieiiiiiniiininiioniie s 285
F: MKS lex and yacc 289
DIFEIENCESeiiii it e e 289
NEW FEATUTES ...ttt ittt et 290

Xt

G: Abraxas lex and yacc 291

INEW FOATULES ..noiineniieneeiiiisetaeeerriessenisstssserraresetsnaearesrnnestannassrnseraransssissss 201
H: POSIX lex and yacc 293
OPLIONS ..oeeiiiiiiiiiiiniiri e e 293
DITOIEINICES ooovvveeeeeeeee e e ettt ettt e sa e e e s ee e e e s b v b a bt tr s s e e e aaeaeeertr it oenaaaeeens 294
I: MGL Compiler Code 295
MGL YACC SOUTCE ..cenieneiiieiieriveeriaesatisatserastantanietiasrnnstansesasinseiriasaissans 295
MGL LEX SOULCE ..oviievreeeeieiretiieeeesieserrssetiesesnnesssernrersiasscassratnientseseennensannsns 299
SUPPOTLNG C COUEovviieriiiiiiitiiie it 300
J: SOL Parser Code 309
Y ACC PaATSEE ooovveieeees e e e e e et eeeeeseaaeeeteaesssssr s areteeeeeasbbberbeeeees eanrnnranaaesaanrentns 309

CLOSS-TEIOIOIICE ..one i e et e et ieeie e e e et ttes e e s abaeseeasaasssaanenn 320
LEX SCANTET «nvvvvvereeeeeieereessesaaenneereeesaassstastesssssirraesaseeassaasanstssassaasserenaesssas 326
SUPPOILNG COAE ...c..oovviiiiiiiiiiiiii s 329
Glossary - 333
Bibliography 339
Index 341

Xit

Figures

3: Using Yacc
3-1 A parse tree

3-2 A parse using recursive rules
3-3 Ambiguous input 2+3*4

5: Parsing SQL

5-1 Two relational tables

8: Yacc Ambiguities and Conflicts

8-1 Ambiguous input expr — expr — expr

51

52
54
61

109
110

217
230

Examples

1: Lex and Yacc 1
1-1 Word recognizer ch1-02.1 3
1-2 Lex example with multiple parts of speech ch1-03.1 7
1-3 Lexer with symbol table (part 1 of 3) ch1-04.1 10
1-4 Lexer with symbol table (part 2 of 3) ch1-04.1 11
1-5 Lexer with symbol table (part 3 of 3) ch1-04.] 12
1-6 Lexer to be called from the parser ch1-05.] 15
1-7 Simple yacc sentence parser ch1-05.y 17
1-8 Extended English parser ch1-06.y 19
1-9 A lexer written in C 22
1-10 The same lexer written in lex 23
2: Using Lex 27
2-1 Lex specification for decimal numbers 31
2-2 User subroutines for word count program ch2-02.1 34
2-3 Multi-file word count program ch2-03.] 36
2-4 Lex specification to parse command-line input ch2-04.1 39
2-5 Lex specification to parse a command line ch2-05.1 40
2-6 Lex command scanner with filenames ch2-06.1 42
2-7 Start state example ch2-07.1 44
2-8 Broken start state example ch2-08.] 44
2-9 Csource analyzer ch2-09.1 47
3: Using Yacc 51
3-1 The calculator grammar with expressions and

precedence ch3-02.y 63
3-2 Calculator grammar with variables and real values ch3-03.y 64
3-3 Lexer for calculator with variables and real values ch3-03.1 65
3-4 Header for parser with symbol table ch3hdr.h 68
3-5 Rules for parser with symbol table ch3-04.y 69
3-6 Symbol table routine ch3-04.pgm 69

Xiv

3-7 Lexer with symbol table ch3-04.1 ‘ 70

3-8 Final calculator header ch3hdr2.h 73
3-9 Rules for final calculator parser ch3-05.y 73
3-10 User subroutines for final calculator parser ch3-05.y 74
3-11 Final calculator lexer ch3-05.i 75
3-12 Makefile for the calculator 77
4: A Menu Generation Language 81
4-1 First version of MGL lexer 84
4-2 First version of MGL parser 85
4-3 Grammar with items and actions 86
4-4 Grammar with command identifiers 87
4-5 Grammar with titles 89
4-6 Complete MGL grammar 91
4-7 MGL lex specification 92
4-8 Alternative lex specification 93
49 MGL main() routine 96
4-10 Screen end code 101
5: Parsing SQL 109
5-1 Example of SQL module language 112
5-2 Example of embedded SQL 113
5-3 The first SQL lexer 114
5-4 Definition section of first SQL parser 119
5-6 Schema sublanguage, top part 121
5-7 Schema sublanguage, base tables 122
5-8 Schema view definitions 125
5-9 Schema privilege definitions 125
5-10 Cursor definition 126
5-11 Manipulation sublanguage, top part 128
5-12 Simple manipulative statements 128
5-13 FETCH statement 129
5-14 INSERT statement 130
5-15 DELETE statement 131
5-16 UPDATE statement 131
5-17 Scalar expressions 132

XU

5-18
5-19
5-20
5-21
5-22
5-23
5-24
5-25
5-26

SELECT statement, query specifications and expressions
Table expressions

Search conditions

Conditions for embedded SQL

Makefile for SQL syntax checker

Definitions in embedded lexer

Embedded lexer rules

Highlights of embedded SQL text support routines
Output from embedded SQL preprocessor

6. A Reference for Lex Specifications

6-1

Taking flex input from a string

E: Flex

E-1
E-2

Flex specification to parse a command line ape-05.1
Flex command scanner with filenames ape-06.1

133
134
136
139
140
141
142
144
145

147
157

279

285
286

Preface

Lex and yacc are tools designed for writers of compilers and interpreters,
although they are also useful for many applications that will interest the
noncompiler writer. Any application that looks for patterns in its input, or
has an input or command language is a good candidate for lex and yacc.
Furthermore, they allow for rapid application prototyping, easy modifica-
tion, and simple maintenance of programs. To stimulate your imagination,
here are a few things people have used lex and yacc to develop:

The desktop calculator bc

The tools egn and pic, typesetting preprocessors for mathematical equa-
tions and complex pictures.

PCC, the Portable C Compiler used with many UNIX systems, and GCC,
the GNU C Compiler

A menu compiler
A SQL data base language syntax checker

The lex program itself

What’s New in the Second Edition

We have made extensive revisions in this new second edition. Major
changes include:

Completely rewritten introductory Chapters 1-3
New Chapter 5 with a full SQL grammar

New, much more extensive reference chapters

xvit

lex & yacc

¢ Full coverage of all major MS-DOS and UNIX versions of lex and yacc,
including AT&T lex and yacc, Berkeley yace, flex, GNU bison, MKS lex
and yacc, and Abraxas PCYACC

* Coverage of the new POSIX 1003.2 standard versions of lex and yacc

Scope of This Book

Chapter 1, Lex and Yacc, gives an overview of how and why lex and yacc
are used to create compilers and interpreters, and demonstrates some small
lex and yacc applications. It also introduces basic terms we use throughout
the book.

Chapter 2, Using Lex, describes how to use lex. It develops lex applications
that count words in files, analyze program command switches and argu-
ments, and compute statistics on C programs.

Chapter 3, Using Yacc, gives a full example using lex and yacc to develop a
fully functional desktop calculator.

Chapter 4, A Menu Generation Language, demonstrates how to use lex and
yacc to develop a menu generator.

Chapter 5, Parsing SQL, develops a parser for the full SQL relational data
base language. First we use the parser as a syntax checker, then extend it
into a simple preprocessor for SQL embedded in C programs.

Chapter 6, A Reference for Lex Specifications, and Chapter 7, A Refer-
ence for Yacc Grammars, provide detailed descriptions of the features and
options available to the lex and yacc programmer. These chapters and the
two that follow provide technical information for the now experienced lex
and yacc programmer to use while developing new lex and yacc applica-
tions.

Chapter 8, Yacc Ambiguities and Conflicts, explains yacc ambiguities and

conflicts, which are problems that keep yacc from parsing a grammar cor-
“rectly. It then develops methods that can be used to locate and correct
such problems.

Chapter 9, Error Reporting and Recovery, discusses techniques that the

COmpiler or interpreter degigner can use to locate, recognize, and report

b TR PIeie sl L L all SR RLAL, il 1L

errors in the compiler input.

XUItL

Preface

Appendix A, ATET Lex, describes the command-line syntax of AT&T lex
and the error messages it reports and suggests possible solutions.

Appendix B, AT&T Yacc, describes the command-line syntax of AT&T yacc
and lists errors reported by yacc. It provides examples of code which can
cause such errors and suggests possible solutions.

Appendix C, Berkeley Yacc, describes the command-line syntax of Berkeley
yacc, a widely used free version of lex distributed with Berkeley UNIX, and
lists errors reported by Berkeley yacc with suggested solutions.

A emaminas Aler TV FOATTT DS
AP})CIIUM 17, vy D

e
Software Foundation'’s implementation of yacc.

o

O,

Appendix E, Flex, discusses flex, a widely used free version of lex, lists dif-
ferences from other versions, and lists errors reported by flex with sug-
gested solutions.

Appendix F, MKS Lex and Yacc, discusses the MS-DOS and OS/2 version of
lex and yacc from Mortice Kern Systems.

Appendix G, Abraxas Lex and Yacc, discusses PCYACC, the MS-DOS and
0S/2 versions of lex and yacc from Abraxas Software.

Appendix H, POSIX Lex and Yacc, discusses the versions of lex and yacc
defined by the IEEE POSIX 1003.2 standard.

Appendix I, MGL Compiler Code, provides the complete source code for the
menu generation language compiler discussed in Chapter 4.

Appendix J, SQL Parser Code, provides the complete source code and a
cross-reference for the SQL parser discussed in Chapter 5.

The Glossary lists technical terms language and compiler theory.

The Bibliography lists other documentation on lex and yacc, as well as
helpful books on compiler design.

We presume the reader is familiar with C, as most examples are in C, lex, or
yacc, with the remainder being in the special purpose languages developed
within the text.

xix

lex & yacc

Availability of Lex and Yacc

Lex and yacc were both developed at Bell laboratories in the 1970s. Yacc
was the first of the two, developed by Stephen C. Johnson. lex was
designed by Mike Lesk and Eric Schmidt to work with yacc. Both lex and
yacc have been standard UNIX utilities since 7th Edition UNIX. System V
and older versions of BSD use the original AT&T versions, while the newest
version of BSD uses flex (see below) and Berkeley yacc. The articles writ-
ten by the developers remain the primary source of information on lex and
yacc.

The GNU Project of the Free Software Foundation distributes bison, a yacc
replacement; bison was written by Robert Corbett and Richard Stallman.
The bison manual, written by Charles Donnelly and Richard Stallman, is
excellent, especially for referencing specific features. Appendix D dis-
cusses bison.

BSD and GNU Project also distribute flex (Fast Lexical Analyzer Generator),
“a rewrite of lex intended to right some of that tool’s deficiencies,” accord-
ing to its reference page. Flex was originally written by Jef Poskanzer; Vern
Paxson and Van Jacobson have considerably improved it and Vern currently
maintains it. Appendix E covers topics specific to flex.

There are at least two versions of lex and yacc available for MS-DOS and
0OS/2 machines. MKS (Mortice Kern Systems Inc.), publishers of the MKS
Toolkit, offers lex and yacc as a separate product that supports many PC C
compilers. MKS lex and yacc comes with a very good manual. Appendix F
covers MKS lex and yacc. Abraxas Software publishes PCYACC, a version of
lex and yacc which comes with sample parsers for a dozen widely used
programming languages. Appendix G covers Abraxas’ version lex and
yacc.

Sample Programs

The programs in this book are available free from UUNET (that is, free
except for UUNET’s usual connect-time charges). If you have access to
UUNET, you can retrieve the source code using UUCP or FTP. For UUCP, find
a machine with direct access to UUNET, and type the following command:

UWUCH Ul t\\ il J.u\.Suc.Ll/l
The backslashes can be omitted if you use the Bourne shell (sh) instead of

the C shell (¢csh). The file should appear some time later (up to a day or
more) in the directory /usr/spool/uucppublicourname.

Preface

You don’t need to subscribe to UUNET to be able to use their archives via
uucp. By calling 1-900-468-7727 and using the login “uucp” with no pass-
word, anyone may uucp any of UUNET's online source collection. (Start by

copying uunet! /Is-IR.Z, which is a compressed index of every file in the
archivac) Ac nf r]-uc writinag the ~ast is An Ccents ner mlﬂler The FhﬂfOPq

ALVIILY LY./ £330 UL Ul1o vy All.ll.l& UL WS A A AT Jo wrd SAAEL AT v - e SR 28

will appear on your next telephone bill.

To use fip, find a machine with direct access to the Internet. Here is a
sample session, with commands in boldface.

% ftp ftp.uu.net

Comnected to ftp.uu.net.

220 uwunet FIP server (Version 5.99 Wed May 23 14:40:19 EDT 1990) ready.
Name (ftp.uu.net:ambar): anonymous

331 Guest login ok, send ident as password.

pPassword: ambar@ora.com (use your user name and bost bere)

230 Guest login ok, access restrictions apply.

ftp> cd published/oreilly/nutshell/lexyacc

250 CWD command successful.

ftp> binary (you must specify binary transfer for compressed files)
200 Type set to I.

ftp> get progs.tar.Z

200 PORT command successful.

150 Opening BINARY mode data commection for progs.tar.Z.
226 Transfer complete.

ftp> quit

221 Goodbye.

%

The file is a compressed tar archive. To extract files once you have
retrieved the archive, type:

% zcat progs.tar.Z | tar xf -

System V systems require the following tar command instead:

% zcat progs.tar.Z | tar xof -

Conventions Used in This Handbook

The following conventions are used in this book:

Bold is used for statements and functions, identifiers, and program
names.
Italic is used for file, directory, and command names when they

appear in the body of a paragraph as well as for data types
and to emphasize new terms and concepts when they are
introduced.

xxt

lex & yacc

Constant s ysed in examples to show the contents of files or the out-
Width put from commands.

Constant s used in examples to show command lines and options that
Bold you type literally.

Quotes are used to identify a code fragment in explanatory text. Sys-
tpm mMaccaoac cinnc ’]ﬂf‘ ctrml’\r\]c AO rn]r'\h:xr‘ aQ “TF‘I]
ALlkk LAL\,ULJ“&\/LJ, Uléllu’ QLI U)’LAAL}\ILU (2% 9 W) \iu\ll\,u €A YY will

% is the Shell prompt.

[] surround optional elements in a description of program syn-
tax. (Don't type the brackets themselves.)

Acknowledgments

This first edition of this book began with Tony Mason’s MGL and SGL com-
pilers. Tony developed most of the material in this book, working with
Dale Dougherty to make it a “Nutshell.” Doug Brown contributed Chapter
8, Yacc Ambiguities and Conflicts. Dale also edited and revised portions of
the book. Tim O'Reilly made it a better book by withholding his editorial
blessing until he found what he was looking for in the book. Thanks to
Butch Anton, Ed Engler, and Mike Loukides for their comments on technical
content. Thanks also to John W. Lockhart for reading a draft with an eye
for stylistic issues. And thanks to Chris Reilley for his work on the graphics.
Finally, Ruth Terry brought the book into print with her usual diligence and
her sharp eye for every editorial detail. Though she was trying to work odd
hours to also care for her family, it seemed she was caring for this book all
hours of the day.

For the second edition, Tony rewrote chapters 1 and 2, and Doug updated
Chapter 8. John Levine wrote Chapters 3, 5, 6, 7, and most of the appen-
dices, and edited the rest of the text. Thanks to the technical reviewers, Bill
Burke, Warren Carithers, Jon Mauney, Gary Merrill, Eugene Miya, Andy
Oram, Bill Torcaso, and particularly Vern Paxson whose detailed
page-by-page suggestions made the fine points much clearer. Margaret
Levine Young’s blue pencil (which was actually pink) tightened up the text
and gave the book editorial consistency. She also compiled most of the
index. Chris Reilly again did the graphics, and Donna Woonteiler did the
final editing and shepherded the book through the production process.

xxif

In this chapter:

* The Stmplest Lex
Program

¢ Recognizing Words
with Lex

* Grammars

Lex and Yacc

* Running Lex and
Yacc

» lex vs. Hand-written
Lexers
s Exercises

P Tnle < P e & =T

Lex and yacc help you write programs that transform structure d input
includes an enormous range of applications—anything from a simple text
search program that looks for patterns in its input file to a C compiler that
transforms a source program into optimized object code.

In programs with structured input, two tasks that occur over and over are
dividing the input into meaningful units, and then discovering the relation-
ship among the units. For a text search program, the units would probably
be lines of text, with a distinction between lines that contain a match of the
target string and lines that don’t. For a C program, the units are variable
names, constants, strings, operators, punctuation, and so forth. This divi-
sion into units (which are usually called tokens) is known as lexical analy-
sis, or lexing for short. Lex helps you by taking a set of descriptions of pos-
sible tokens and producing a C routine, which we call a lexical analyzer, or
a lexer, or a scanner for short, that can identify those tokens. The set of
descriptions you give to lex is called a lex specification.

The token descriptions that lex uses are known as regular expressions,
extended versions of the familiar patterns used by the grep and egrep com-
mands. Lex turns these regular expressions into a form that the lexer can
use to scan the input text extremely fast, independent of the number of
expressions that it is trying to match. A lex lexer is almost always faster
than a lexer that you might write in C by hand.

As the input is divided into tokens, a program often needs to establish the
relationship among the tokens. AC compiler needs to find the expressions
nnnnnnnn Al | B P, ey v A rmao Thic +aal-

Dldl.ClllClllD, UCleld IS UJU\J&D auu PIU\,CUUECD 111 LllC p g 1. LI1iS tdSK

is known as parsing and the list of rules that define the latlonshlps that

lex & yacc

the program understands is a grammar. Yacc takes a concise description
of a grammar and produces a C routine that can parse that grammar, a
parser. The yacc parser automatically detects whenever a sequence of
input tokens matches one of the rules in the grammar and also detects a
syntax error whenever its input doesn’t match any of the rules. A yacc
parser is generally not as fast as a parser you could write by hand, but the
ease in writing and modifying the parser is invariably worth any speed loss.
The amount of time a program spends in a parser is rarely enough to be an
issue anyway.

When a task involves dividing the input into units and establishing some
relationship among those units, you should think of lex and yacc. (A
search program is so simple that it doesn’t need to do any parsing so it uses
lex but doesn’t need yacc. We’ll see this again in Chapter 2, where we
build several applications using lex but not yacc.)

By now, we hope we've whetted your appetite for more details. We do not
intend for this chapter to be a complete tutorial on lex and yacc, but rather
a gentle introduction to their use.

The Simplest Lex Program

This lex program copies its standard input to its standard output:

%
\n ECHO;
3%

It acts very much like the UNIX cat command run with no arguments.

Lex automatically generates the actual C program code needed to handle
reading the input file and sometimes, as in this case, writing the output as
well.

Whether you use lex and yacc to build parts of your program or to build
tools to aid you in programming, once you master them they will prove
their worth many times over by simplifying difficult input handling prob-
lems, providing more easily maintainable code base, and allowing for eas-
ier “tinkering” to get the right semantics for your program.

Lex and Yacc

Recognizing Words with Lex

Let’s build a simple program that recognizes different types of English
words. We start by identifying parts of speech (noun, verb, etc.) and will
later extend it to handle multiword sentences that conform to a simple
English grammar.

We start by listing a set of verbs to recognize:

is am are were
was be being been
do does did will
would should «can could

has have had go
Example 1-1 shows a simple lex specification to recognize these verbs.
Example 1-1: Word recognizer ch1-02.]

%{
/*

* this sample demonstrates (very) simple recognition:
* a verb/not a verb.

*/

%}
%%

[\t]+ /* ignore whitespace */ ;

is |

am |
are |
were |
was |
be |
being |
been |
do |
does |
did |
will |
would |
should |
can |
could |
has |
have |
had |
go { printf("%s: is a verb\n", yytext); }

lex & yacc

Example 1-1: Word recognizer ch1-02.1 (continued)

[a-zA-Z]+ { printf("%$s: is not a verb\n", yytext); }

.I\n { ECHO; /* normal default anyway */ }
%%

main()
{

yylex();
}

Here’'s what happens when we compile and run this program. What we
type is in bold.

% examplel
Aid T havea fun?

“aife o LadaVe

did: is a verb
I: is not a verb
have: is a verb

fun: is not a verb
?

“D

%

To explain what'’s going on, let’s start with the first section:
${
/*
* This sample demonstrates very simple recognition:
* a verb/not a verb.
*/

%}

This first section, the definition section, introduces any initial C program
code we want copied into the final program. This is especially important if,
for example, we have header files that must be included for code later in
the file to work. We surround the C code with the special delimiters “%{”
and “%}.” Lex copies the material between “%{” and “%}” directly to the
generated C file, so you may write any valid C code here.

In this example, the only thing in the definition section is some C com-
ments. You might wonder whether we could have included the comments
without the delimiters. Outside of “%{” and “%}", comments must be
indented with whxtespace for lex to recogmze them correctly We've seen

']
soime amaz;ng CUugs win peopsd f\')rgﬂt s

interpreted them as something else.

Lex and Yacc

The %% marks the end of this section.

The next section is the rules section. Each rule is made up of two parts: a
pattern and an action, separated by whitespace. The lexer that lex gener-

ates will execute the action when it recoonizes the pattern These patterns

Al S L1l Fel A2 A AR Rl e A (AR5 P 9 L v

are UNIX-style regular expressions, a slightly extended version of the same
expressions used by tools such as grep, sed, and ed. Chapter 6 describes all
the rules for regular expressions. The first rule in our example is the fol-
lowing:

I\NE 1+ /* ignore whitespace */ ;

The square brackets, “[]”, indicate that any one of the characters within the
brackets matches the pattern. For our example, we accept either “\t” (a tab
character) or “ ” (a space). The “+” means that the pattern matches one or
more consecutive copies of the subpattern that precedes the plus. Thus,
this pattern describes whitespace (any combination of tabs and spaces.)
The second part of the rule, the action, is simply a semicolon, a do-nothing
C statement. Its effect is to ignore the input.

The next set of rules uses the “|” (vertical bar) action. This is a special
action that means to use the same action as the next pattern, so all of the
verbs use the action specified for the last one.*

Our first set of patterns is:

is |

am |
are |
were |
was !
be |
being |
been |
do |
does |
did |
should |
can |
could |
has |
have |
had |
go { printf("$s: is a verb\n", yytext); }

*You can also use a vertical bar within a pattern, e.g., foo|bar is a pattern that matches either
the string “foo” or the string “bar.” We leave some space between the pattern and the vertical
bar to indicate that “bar” is the action, not part of the pattern.

lex & yacc

Our patterns match any of the verbs in the list. Once we recognize a verb,
we execute the action, a C printf statement. The array yytext contains the
text that matched the pattern. This action will print the recognized verb fol-

lowed by the string “: is a verb\n”.

The last two rules are:

[a-zA-2Z]+ { printf("%s: is not a verb\n", yytext); }
.I\n { BCHO; /* normal default anyway */ }

The pattern “[a-zA-Z]+” is a common one: it indicates any alphabetic string
with at least one character. The “~” character has a special meaning when
used inside square brackets: it denotes a range of characters beginning

wsith the charactar to the laft of ﬂ'\p “_n f)nri endina with the Cl'\ r tO) itg

¥Y ALl Uil uwiia u\- cr (C e et Of GLIG CIIelllg ¥Yilll o 1arac \.« (S O a9 3]

right. Our action when we see one of these patterns is to print the matched
token and the string “: is not a verb\n".

It doesn’t take long to realize that any word that matches any of the verbs
listed in the earlier rules will match this rule as well. You might then
wonder why it won't execute both actions when it sees a verb in the list.
And would both actions be executed when it sees the word “island,” since
“island” starts with “is”? The answer is that lex has a set of simple disambi-
guating rules. The two that make our lexer work are:

1. Lex patterns only match a given input character or string once.

2. Lex executes the action for the longest possible match for the current
input. Thus, lex would see “island” as matching our all-inclusive rule
because that was a longer match than “is

If you think about how a lex lexer matches patterns, you should be able to
see how our example matches only the verbs listed.

The last line is the default case. The special character “.” (period) matches
any single character other than a newline, and “\n” matches a newline
character. The special action ECHO prints the matched pattern on the out-
put, copying any punctuation or other characters. We explicitly list this
case although it is the default behavior. We have seen some complex
lexers that worked incorrectly because of this very feature, producing occa-
sional strange output when the default pattern matched unanticipated input
characters. (Even though there is a default action for unmatched input
characters, well-written lexers invariably have explicit rules to match all
possible input.)

Lex and Yacc

The end of the rules section is delimited by another %%.

The final section is the user subroutines section, which can consist of any
legal C code. Lex copies it to the C file after the end of the lex generated
code. We have included a main() program.

%%

main(}
{

yylex();
}

The lexer produced by lex is a C routine called yylex(), so we call it.*
Unless the actions contain explicit return statements, yylex() won’t return
until it has processed the entire input.

We placed our original example in a file called ch1-01.1 since it is our first
example. To create an executable program on our UNIX system we enter
these commands:

$ lex c¢chl-01.1
% cc lex.yy.c -o first -11

Lex translates the lex specification into a C source file called lex.yy.c which
we compiled and linked with the lex library —/. We then execute the
resulting program to check that it works as we expect, as we saw earlier in
this section. Try it to convince yourself that this simple description really
does recognize exactly the verbs we decided to recognize.

Now that we’ve tackled our first example, let’s “spruce it up.” Our second
example, Example 1-2, extends the lexer to recognize different parts of
speech.

Example 1-2: Lex example with multiple parts of speech ch1-03.1

${

/*

* We expand upon the first example by adding recognition of scme other
* parts of speech.

*/

%}
%%

[\t 1+ /* ignore whitespace */ ;

*Actually, we could have left out the main program because the lex library contains a default
main routine just like this one.

lex & yacc

Example 1-2: Lex example with multiple parts of speech ch1-03.1 (continued)

will |

would |

should |

can |

could |

has |

have |

had |

go { printf("%$s: is a verb\n", yvtext); }

very |

simply |

gently i

quietly |

calmly |

angrily { printf("%s: is an adverb\n", yytext); }

to |

from |

behind |

above |

below |

between |

below { printf("$s: is a preposition\n", yytext); }

if |

then |

and |

but |

or { printf("%s: is a conjunction\n", yytext); }

their |

my |

your |

his |

her |

its { printf("%s: is an adjective\n", yytext): }

I
you |
he |

Lex and Yacc

Example 1-2: Lex example with multiple parts of speech cb1-03.1 (continued)

she |
we |
they { printf("%s: in a pronoun\n", yytext); }
[a-zA-Z]+ {
printf{"%s: don’t recognize, might be a noun\n", yytext):
}
J\n { ECHO; /* normal default anyway */ }
%
main()
{
yylex();
}
Symbol Tables

Our second example isn't really very different. We list more words than we
did before, and in principle we could extend this example to as many
words as we want. It would be more convenient, though, if we could build
a table of words as the lexer is running, so we can add new words without
modifying and recompiling the lex program. In our next example, we do
just that—allow for the dynamic declaration of parts of speech as the lexer
is running, reading the words to declare from the input file. Declaration
lines start with the name of a part of speech followed by the words to
declare. These lines, for example, declare four nouns and three verbs:

noun dog cat horse cow
verb chew eat lick

The table of words is a simple symbol table, a common structure in lex and
yacc applications. A C compiler, for example, stores the variable and struc-
ture names, labels, enumeration tags, and all other names used in the pro-
gram in its symbol table. Each name is stored along with information
describing the name. In a C compiler the information is the type of symbol,
declaration scope, variable type, etc. In our current example, the informa-
tion is the part of speech.

Adding a symbol table changes the lexer quite substantially. Rather than
putting separate patterns in the lexer for each word to match, we have a
single pattern that matches any word and we consult the symbol table to
decide which part of speech we’ve found. The names of parts of speech

lex & yacc

(noun, verb, etc.) are now “reserved words” since they introduce a declara-

iy A A W,
tion line. We still have a separate lex pattern for each reserved word. We

also have to add symbol table maintenance routines, in this case
add_word(), which puts a new word into the symbol table, and
lookup_word(), which looks up a word which should already be entered.

In the program’s code, we declare a variable state that keeps track of

’ Ae g them, in
whether we'’re looking up words, state LOOKUP, or declar ng them, ir

which case state remembers what kind of words we're declarmg. When—
ever we see a line starting with the name of a part of speech, we set the
state to declare that kind of word; each time we see a \n we switch back to
the normal lockup state.

(-

Example 1-3: Lexer with symbol table (part 1 of 3) ch1-04.1

%{
/*
* Word recognizer with a symbol table.
*/
enum {
LOCKUP = 0, /* default - locking rather than defining. */
VERB,
ADJ,
ADVI
NOUN,
PREP,
PRON,
CONT
}i
int state;

int add _word(int type, char *word);
int lockup_word(char *word);
%}

We define an enum in order to use in our table to record the types of indi-
vidual words, and to declare a variable state. We use this enumerated type
both in the state variable to track what we're defining and in the symbol
table to record what type each defined word is. We also declare our sym-
bol table routines.

Example 1-4 shows the rules section.

10

Lex and Yacc

Example 1-4: Lexer with symbol table (part 2 of 3) ch1-04.1

%%
/* end of line, return to default state */
\n { state = LOOKUP; }

/* whenever a line starts with a reserved part of speech name */
/* start defining words of that type */
~verb { state = VERB; }
~adj { state = ADJ; }
~“adv { state = ADV; }
“noun { state = NOUN;
~prep { state = PREP;
~pron { state = PRON;
~conj { state = CONJ;

/* a normal word, define it or look it up */
[a—zA~Z]+ {
if (state != LOOKUP) {
/* define the current word */

add word(state, yytext):

} else {

switch (lookup _word{vytext)) {

case VERB: printf("%s: verb\n", vytext); break;

case ADJ: printf{"%s: adjective\n", yytext); break;
case ADV: printf("%s: adverb\n", yytext); break;

case NOUN: printf("%$s: noun\n", vytext); break;

case PREP: printf("%s: preposition\n®, yytext); break;
case PRON: printf("%s: pronoun\n", yytext); break;
case CONJ: printf("$s: conjunction\n", yytext); break;
default:

printf("%s: don’‘t recognize\n", yytext);
break;

}
1

}

/* ignore anything else */ ;
%%

For declaring words, the first group of rules sets the state to the type corre-
sponding to the part of speech being declared. (The caret, “*”, at the begin-
ning of the pattern makes the pattern match only at the beginning of an
input line.) We reset the state to LOOKUP at the beginning of each line so
that after we add new words interactively we can test our table of words to
determine if it is working correctly. If the state is LOOKUP when the pattern
“la-zA-Z]+” matches, we look up the word, using lookup_word(), and if
found print out its type. If we’re in any other state, we define the word
with add_word().

11

lex & yacc

The user subroutines section in Example 1-5 contains the same skeletal
main() routine and our two supporting functions.

Example 1-5: Lexer with symbol table (part 3 of 3) ch1-04.1

main{)
{

vylex();
}

/* define a linked list of words and types */
struct word {

char *word_name;

int word_type;

struct word *next;
}:

struct word *word_list; /* first element in word list */
extern void *malloc();

int
add_word(int type, char *word)

{
struct word *wp:

1f (lookup word (word) != LOCKUP) {
printf("!!! warning: word %s already defined \n", word);
return 0;

}

/* word not there, allocate a new entry and link it on the list */
wp = {(struct word *) malloc(sizeof (struct word));

wp—>next = word_list;

/* have to copy the word itself as well */

wp—>word name = (char *) malloc(strlen(word)+1);
stropy (wp—>word_name, word);
wp—>word_type = type;
word_list = wp;
return 1; /* it worked */
}

int
lookup word(char *word)

{
struct word *wp = word_list;

/* search down the list looking for the word */
for(; wp; wp = wp->next) {

12

Lex and Yacc

Example 1-5: Lexer with symbol table (part 3 of 3) ch1-04.1 (continued)

if (stremp (wp->word_name, word) == 0)
return wp->word_type;
}

return LOOKUP; /* not found */
}

These last two functions create and search a linked list of words. If there
are a lot of words, the functions will be slow since, for each word, they
might have to search through the entire list. In a production environment
we would use a faster but more complex scheme, probably using a hash
table. Our simple example does the job, albeit slowly.

Here is an example of a session we had with our last example:

verb is am are was were be being been do
is

Tas wvarh

noun dog oat horse cow
verb chew eat iiok
verb run stand sieep
dog run

dog: noun

run: verb

chew eat sieep cow horse
chew: verb

eat: verb

sleep: verb

cow: noun

horse: noun

verb tailk

taik

talk: verb

We strongly encourage you to play with this example until you are satisfied
you understand it.

Grammars

For some applications, the simple kind of word recognition we’ve already
done may be more than adequate; others need to recognize specific
sequences of tokens and perform appropriate actions. Traditionally, a
description of such a set of actions is known as a grammar. It seems espe-

13

lex & yacc

cially appropriate for our example. Suppose that we wished to recognize
common sentences. Here is a list of simple sentence types:

noun verb.
noun verb noun.

At this point, it seems convenient to introduce some notation for describing
grammars. We use the right facing arrow, “—”, to mean that a particular set
of tokens can be replaced by a new symbol.* For instance:

subject — noun | pronoun

would indicate that the new symbol subject is either a noun or a pronoun.
We haven't changed the meaning of the underlying symbols; rather we

have huilt our new symhn] from the more fundamental svmbols we've

idin AALALAL ANl AACYY 222 M2 L1020 XA LR g lliiilal YRS

already defined. As an added example we could define an object as fol-
lows:

object — noun

While not strictly correct as English grammar, we can now define a sen-
tence:

sentence — subject verb object

Indeed, we could expand this definition of sentence to fit a much wider
variety of sentences. However, at this stage we would like to build a yacc
grammar so we can test our ideas out interactively. Before we introduce
our yacc grammar, we must modify our lexical analyzer in order to return
values useful to our new parser.

Parser-Lexer Communication

When you use a lex scanner and a yacc parser together, the parser is the
higher level routine. It calls the lexer yylex() whenever it needs a token
from the input. The lexer then scans through the input recognizing tokens.
As soon as it finds a token of interest to the parser, it returns to the parser,
returning the token’s code as the value of yylex().

Not all tokens are of interest to the parser—in most programming lan-
guages the parser doesn’t want to hear about comments and whitespace,

*We say symbol rather than token here, because we reserve the name “token” for symbols re-
turned from the lexer, and the symbol to the left of the arrow did not come from the lexer. All
tokens are symbols, but not all symbols are tokens.

14

Lex and Yacc

for example. For these ignored tokens, the lexer doesn’t return so that it
can continue on to the next token without bothering the parser.

The lexer and the parser have to agree what the token codes are. We solve
this problem by letting yacc define the token codes. The tokens in our
grammar are the parts of speech: NOUN, PRONOUN, VERB, ADVERB, ADJEC-
TIVE, PREPOSITION, and CONJUNCTION. Yacc defines each of these as a
small integer using a preprocessor #define. Here are the definitions it used
in this example:

define NOUN 257

define PRONOUN 258

define VERB 259

define ADVERB 260

define ADJECTIVE 261

define PREPOSITION 262
define CONJUNCTION 263

MH M I W I A A

Token code zero is always returned for the logicai end of the input. Yacc
doesn’t define a symbeol for it, but you can yourself if you want.

Yacc can optionally write a C header file containing all of the token defini-
tions. You include this file, called y.tab.h on UNIX systems and ytab.b or
yytab.b on MS-DOS, in the lexer and use the preprocessor symbols in your
lexer action code.

The Parts of Speech Lexer

Example 1-6 shows the declarations and rules sections of the new lexer.
Example 1-6: Lexer to be called from the parser ch1-05.1

${

/*

* We now build a lexical analyzer to be used by a higher-level parser.
*/

#include ""y.tab.h" /* token codes from the parser */

#define LOCOKUP 0 /* default - not a defined word type. */

int state;

%}

%%

\n { state = TOOKUP; }

voaan state = LOOKUP;

15

lex & yacc

Example 1-6: Lexer to be called from the parser ch1-05.1 (continued)

return 0; /* end of sentence */

}

~verb { state = VERB; }

~adj { state = ADJECTIVE; }
~adv { state = ADVERB; }
“noun { state = NOUN; }

~prep { state = PREPOSITION; }
~pron { state = PRONOUN; }
~conj { state = CONJUNCTION; }

[a-zA-Z1+ {
if (state [= LOOKUP) {
add_word{state, yvtext);
} else {
switch({lookup_word(yytext)) {
case VERB:
return (VERB) ;
case ADJECTIVE:
return (ADJECTIVE) ;
case ADVERB:
return (ADVERB) ;
case NOUN:
return (NOUN) ;
case PREPOSITION:
return (PREPOSITICN) ;
case PRONOUN:
return (PRONOUN) ;
case CONJUNCTION:
return (CONJUNCTION) ;
default:
printf{"%s: don’t recognize\n", yytext);:;
/* don’t return, just ignore it */
B
}
}

%%
... same add_word() and lookup_word() as before ...

There are several important differences here. We've changed the part of
speech names used in the lexer to agree with the token names in the
parser. We have also added return statements to pass to the parser the
token codes for the words that it recognizes. There aren’t any return state-

[V SN § Y SALLS A7 AA WRALO WiA 111 1l

ments for the tokens that define new words to the lexer, since the parser
doesn’t care about them.

16

Lex and Yacc

These return statements show that yylex() acts like a coroutine. Each time
the parser calls it, it takes up processing at the exact point it left off. This
allows us to examine and operate upon the input stream incrementally.
Our first programs didn’t need to take advantage of this, but it becomes
more useful as we use the lexer as part of a larger program.

We added a rule to mark the end of a sentence:

\.\n { state = LOCKUP;
returmm 0; /* end of sentence */
}

The backslash in front of the period quotes the period, so this rule matches
a period followed by a newline. The other change we made to our lexical
analyzer was to omit the main() routine as it will now be provided within
the parser.

| Vg PP

A Yacc Parser
Finally, Example 1-7 introduces our first cut at the yac¢ grammar.

Example 1-7: Simple yacc sentence parser ch1-05.y

%(

/*

* A lexer for the basic grammar to use for recognizing English sentences.
*/

#include <stdioc.h>

%}

$token NOUN PRONOUN VERB ADVERB ADJECTIVE PREPOSITION CONJUNCTION

%%
sentence: subject VERB object{ printf("Sentence is valid.\n"); }

!

subject: NOUN

| PRONOUN
cbject: NOUN
%%

extern FILE *yyin;

main()
{
while(!feof (yyin)) {
yvyparsel();

}

17

lex & yacc

Example 1-7: Simple yacc sentenice parser ch1-05.y (continued)

H

Yyerror (s)
char *s;
{
fprintf(stderr, "%s\n", s):
}

The structure of a yacc parser is, not by accident, similar to that of a lex
lexer. Our first section, the definition section, has a literal code block,
enclosed in “%{” and “%}”. We use it here for a C comment (as with lex, C
comments belong inside C code blocks, at least within the definition sec-
tion) and a single include file.

Then come definitions of all the tokens we expect to receive from the lexi-
cal analyzer. In this example, they correspond to the eight parts of speech.
The name of a token does not have any intrinsic meaning to yacc, although
well-chosen token names tell the reader what they represent. Although
yacc lets you use any valid C identifier name for a yacc symbol, universal
custom dictates that token names be all uppercase and other names in the
parser mostly or entirely lowercase.

The first %% indicates the beginning of the rules section. The second %%
indicates the end of the rules and the beginning of the user subroutines sec-
tion. The most important subroutine is main() which repeatedly calls
yyparse() until the lexer’s input file runs out. The routine yyparse() is the
parser generated by yacc, so our main program repeatedly tries to parse
sentences until the input runs out. (The lexer returns a zero token when-
ever it sees a period at the end of a line; that'’s the signal to the parser that
the input for the current parse is complete.)

The Rules Section

The rules section describes the actual grammar as a set of production rules
or simply rules. (Some people also call them productions.) Each rule con-
sists of a single name on the left-hand side of the “.” operator, a list of sym-
bols and action code on the right-hand side, and a semicolon indicating the
end of the rule. By default, the first rule is the highest-level rule. That is,
the parser attempts to find a list of tokens which match this initial rule, or
more commonly, rules found from the initial rule. The expression on the
right-hand side of the rule is a list of zero or more names. A typical simple
rule has a single symbol on the right-hand side as in the object rule which

is defined to be a NOUN. The symbol on the left-hand side of the rule can

18

Lex and Yacc

then be used like a token in other rules. From this, we build complex
grammars.

In our grammar we use the special character “|”, which introduces a rule
with the same left-hand side as the previous one. It is usually read as “or,”
e.g., in our grammar a subject can be either a NOUN or a PRONOUN. The
action part of a rule consists of a C block, beginning with “{” and ending
with “}”. The parser executes an action at the end of a rule as soon as the
rule matches. In our sentence rule, the action reports that we’ve success-
fully parsed a sentence. Since sentence is the top-level symbol, the entire
input must match a sentence. The parser returns to its caller, in this case
the main program, when the lexer reports the end of the input. Subsequent
calls to yyparse() reset the state and begin processing again. Our example
prints a message if it sees a “subject VERB object” list of input tokens. What
happens if it sees “subject subject” or some other invalid list of tokens? The
parser calls yyerror(), which we provide in the user subroutines section,
and then recognizes the special rule error. You can provide error recovery
code that tries to get the parser back into a state where it can continue pars-
ing. If error recovery fails or, as is the case here, there is no error recovery
code, yyparse() returns to the caller after it finds an error.

The third and final section, the user subroutines section, begins after the
second %%. This section can contain any C code and is copied, verbatim,
into the resulting parser. In our example, we have provided the minimal
set of functions necessary for a yacc-generated parser using a lex-generated
lexer to compile: main() and yyerror(). The main routine keeps calling the
parser until it reaches the end-of-file on yyin, the lex input file. The only
other necessary routine is yylex() which is provided by our lexer.

In our final example of this chapter, Example 1-4, we expand our earlier
grammar to recognize a richer, although by no means complete, set of sen-
tences. We invite you to experiment further with this example—you will
see how difficult English is to describe in an unambiguous way.

Example 1-8: Extended English parser ch1-00.y

%{

#include <stdio.h>

%}

$token NOUN PRONOUN VERB ADVERB ADJECTIVE PREPOSITION CONJUNCTION
%%

sentence: simple_sentence { printf("pParsed a simple sentence.\n"}); }

19

lex & yacc

Example 1-8: Extended English parser ch1-06.y (continued)

] [o S S e i T e o

| campound sentence { printf{*Parsed a campound sentence.\n"); }

.
7

simple_sentence: subject verb cbject
| subject verb object prep_phrase

'wvr\ Aot (YRITITEYNTORT g e 1 ot aneo
ILTUILT LAY ULNG L avay DJ.LIyJ_': Dc.ul.-c.u\,t;

subject : NOUN

| ADJECTIVE subject

verb VERB
I ADVERB VERB
| verb VERB
object: NOUN

I ADJECTIVE object

prep phrase: PREPOSITION NOUN

%

extern FILE *yyin;

main()
{

while(!feof (yyin)) {

yyparse() ;

}
}
yyerror(s)
char *s;
{

fprintf (stderr, "%s\n", s);

}

o
‘<

mtroducmg a traditional grammar

aca. 1 Nntancsa can]"\D ait]’\
AJS. A o\, AL\,AA\.\, waii e \uLLLl\a

a simple sentence or a compound sentence which contains two or more
independent clauses joined with a coordinating conjunction. Our current

20

Lex and Yacc

lexical analyzer does not distinguish between a coordinating conjunction
e.g., “and,” “but,” “or,” and a subordinating conjunction (e.g., “if").

We have also introduced recursion into this grammar. Recursion, in which
a rule refers directly or indirectly to itself, is a powerful tool for describing
grammars, and we use the technique in nearly every yacc grammar we
write. In this instance the compound_sentence and verb rules introduce
the recursion. The former rule simply states that a compound_sentence is
two or more simple sentences joined by a conjunction. The first possible
match,

simple_sentence CONJUNCTION simple_sentence
defines the “two clause” case while
campound_sentence CONJUNCTION simple_sentence

defines the “more than two clause case.” We will discuss recursion in

P STy

o
¢
%
L
a
-
(o
a
ot
X
=
-
=
—_—
(8]
-t
o
-
E Y
)

o
=t
4]
]
w

Although our English grammar is not particularly useful, the techniques for
identifying words with lex and then for finding the relationship among the
words with yacc are much the same as we’ll use in the practical applica-
tions in later chapters. For example, in this C language statement,

if(a == b) break; else func(&a);

a compiler would use lex to identify the tokens if, (, a, ==, and so forth, and
then use yacc to establish that “a == b” is the expression part of an if state-
ment, the break statement was the “true” branch, and the function call its
“false” branch.

. .
Running Lex and Yacc
We conclude by describing how we built these tools on our system.

We called our various lexers ch1-V.l, where N corresponded to a particular
lex specification example. Similarly, we called our parsers ch1-M.y, where
again M is the number of an example. Then, to build the output, we did the
following in UNIX:

% lex chl-n.1l

% yacce -4 chl-m.y

% cc -¢ lex.yy.c y.tab.c
% c¢ -0 example-m.n lex.yy.o y.tab.o -11

The first line runs lex over the lex specification and generates a file,
lex.yy.c, which contains C code for the iexer. In the second line, we use

21

lex & yacc

yacc to generate both y.tab.c and y.tab.b (the latter is the file of token defi-
nitions created by the ~d switch.) The next two lines compile each of the
two C files. The final line links them together and uses the routines in the
lex library libl.a, normally in /usr/lib/libl.a on most UNIX systems. If you
are not using AT&T lex and yacc, but one of the other implementations,
you may be able to simply substitute the command names and little else
will change. (In particular, Berkeley yacc and flex will work merely by
changing the /ex and yacc commands to byacc and flex, and removing the
-1l linker flag.) However, we know of far too many differences to assure
the reader that this is true. For example, if we use the GNU replacement
bison instead of yacc, it would generate two files called chi1-M.tab.c and
ch1-M.tab.h. On systems with more restrictive naming, such as MS-DOS,
these names will change (typically ytab.c and ytab.h.) See Appendices A
through H for details on the various lex and yacc implementations.

Lex vs. Hand-written Lexers

People have often told us that writing a lexer in C is so easy that there is no
point in going to the effort to learn lex. Maybe and maybe not. Example
1-9 shows a lexer written in C suitable for a simple command language that
handles commands, numbers, strings, and new lines, ignoring white space
and comments. Example 1-10 is an equivalent lexer written in lex. The lex
version is a third the length of the C lexer. Given the rule of thumb that the
number of bugs in a program is roughly proportional to its length, we'd
expect the C version of the lexer to take three times as long to write and
debug.

Example 1-9: A lexer written in C

#include <stdio.h>
#include <ctype.h>
char *progname;

#define NUMBER 400
#define COMMENT 401
#define TEXT 402

#define COMMAND 403

main(argc,argv)
int argc;

char *argv(];
{

int val;

22

Lex and Yacc

Example 1-9: A lexer written in C (continued)

while(val = lexer()) printf("value is %d\n",val);
}
lexer()
{
int c¢;
while ((c=getchar()) == * ' || ¢ == *\t’)

if (¢ == ECF}

return 0;
if (¢ == .’ || isdigit(c)) { /* number */
while ((¢ = getchar()) != EOF && isdigit(c));
if (¢ == ’.’) while ({¢ = getchar()) != ECF && isdigit(c));

ungetc (¢, stdin);
return NUMBER;

}

if (¢ == ‘#') { /* comment */
int index = 1;
while ((c = getchar()) != EOF && c != ‘An‘);
ungetc (¢, stdin) ;
return COMMENT;

}

if (¢ == "’) { /* literal text */
int index = 1;
while {((c = getchar()) != EOF &&

cl="'"" && ¢ != '\n’);

if{c == ‘\n’) ungetc(c,stdin);
return TEXT;

}

if (isalpha(c)) { /* check to see if it is a command */
int index = 1;

while ({c = getchar()) != ECF && isalnum(c));
ungetc(c, stdin);
return COMMAND;

}

return c;

Example 1-10: The same lexer written in lex

%{

#define NUMBER 400
#define COMMENT 401
#define TEXT 402
#define COMMAND 403
%}

2%

[\t]l+ ;

23

lex & yace

Example 1-10: The same lexer written in lex (continued)

o7, 1
I+ |

(o-
[0-3]1+\. [0-9]+ |

\.[0-9]+ { return NUMBER; }
#* { return COMMENT; }
A"\ "\n]*\~ { return TEXT; }
[a-zA-Z] [a~-zZA-Z0-9]+ { return COMMAND; }
\n { return ‘\n’; }

£33
#include <stdio.h>

main(argc, argv)
int arge:

char *argv(];

{

int wval;

while(val = yylex()) printf("value is %d\n",val);
}

Lex handles some subtle situations in a natural way that are difficult to get
right in a hand written lexer. For example, assume that you're skipping a C
language comment. To find the end of the comment, you look for a “*”,
then check to see that the next character is a “/”. If it is, you’re done, if not
you keep scanning. A very common bug in C lexers is not to consider the
case that the next character is itself a star, and the slash might follow that.
In practice, this means that some comments fail:

/** camment **/

(We've seen this exact bug in a sample, hand-written lexer distributed with
one version of yacch

Once you get comfortable with lex, we predict that you'll find, as we did,
that it’s so much easier to write in lex that you'll never write another hand-
written lexer.

In the next chapter we delve into the workings of lex more deeply. In the
chapter following we’ll do the same for yacc. After that we’ll consider sev-
eral larger examples which describe many of the more complex issues and
features of lex and yacc.

24

Lex and Yacc

Exercises

1.

Extend the English-language parser to handle more complex syntax:
prepositional phrases in the subject, adverbs modifying adjectives, etc.

LI ¥ g

Make the parser handle compound verbs better, e.g., “has seen.” You
might want to add new word and token types AUXVERB for auxiliary
verbs.

Some words can be more than one part of speech, e.g., “watch,” “fly,”
“time,” or “bear.” How could you handle them? Try adding a new word

and token type NOUN_OR_VERB, and add it as an alternative to the rules

for subject, verb, and object. How well does this work?

When people hear an unfamiliar word, they can usually guess from the
context what part of speech it is. Could the lexer characterize new
words on the fly? For example, a word that ends in “ing” is probably a
verb, and one that follows “a” or “the” is probably a noun or an adjec-
tive.

Are lex and yacc good tools to use for building a realistic English-
language parser? Why not?

25

In this chapter:

* Regular Expressions
A Word Counting
Program

[2

L]

Parsing a
Command Line

A C Source Code US ing Lex

Analyzer
Summary

L

L

« Exercises

In the first chapter we demonstrated how to use lex and yacc. We now

show how to use lex by itself, including some examples ofa
which lex is a good tool. We’re not going to explam every last detail of lex

here; consult Chapter 6, A Reference for Lex Specifications.

D

lications for

Lex is a tool for building lexical analyzers or lexers. A lexer takes an arbi-
trary input stream and tokenizes it, i.e., divides it up into lexical tokens.
This tokenized output can then be processed further, usually by yacc, or it
can be the “end product.” In Chapter 1 we demonstrated how to use it as
an intermediate step in our English grammar. We now look more closely at
the details of a lex specification and how to use it; our examples use lex as
the fina] processing step rather than as an intermediate step which passes
information on to a yacc-based parser.

When you write a lex specification, you create a set of patterns which lex
matches against the input. Each time one of the patterns matches, the lex
program invokes C code that you provide which does something with the
matched text. In this way a lex program divides the input into strings
which we call tokens. Lex itself doesn’t produce an executable program;
instead it translates the lex specification into a file containing a C routine
called yylex(). Your program calls yylex() to run the lexer.

Using your regular C compiler, you compile the file that lex produced along
with any other files and libraries you want. (Note that lex and the C com-
piler don’t even have to run on the same computer. The authors have often
taken the C code from UNIX lex to other computers where lex is not avail-
able but Cis.)

27

lex & yacc

Regular Expressions

Before we describe the structure of a lex specification, we need to describe
regular expressions as used by lex. Regular expressions are widely used
within the UNIX environment, and lex uses a rich regular expression lan-
guage.

A regular expression is a pattern description using a “meta” language, a lan-
guage that you use to describe particular patterns of interest. The charac-
ters used in this metalanguage are part of the standard ASCII character set
used in UNIX and MS-DOS, which can sometimes lead to confusion. The
characters that form regular expressions are:
Matches any single character except the newline character (“\n”).
Matches zero or more copies of the preceding expression.
[] A character class which matches any character within the brackets.
If the first character is a circumflex (**”) it changes the meaning to
match any character except the ones within the brackets. A dash
inside the square brackets indicates a character range, e.g., “[0-9]”
means the same thing as “[01234567891”. A “~” or “]” as the first char-
acter after the “[” is interpreted literally, to let you include dashes
and square brackets in character classes. POSIX introduces other
special square bracket constructs useful when handling non-English
alphabets. See Appendix H, POSIX Lex and Yacc, for details. Other
metacharacters have no special meaning within square brackets
except that C escape sequences starting with “\” are recognized.
Matches the beginning of a line as the first character of a regular
expression. Also used for negation within square brackets.
$ Matches the end of a line as the last character of a regular expres-
sion.
{} Indicates how many times the previous pattern is allowed to match
when containing one or two numbers. For example:

Af1,3}

matches one to three occurrences of the letter A. If they contain a
name, they refer to a substitution by that name.

\ Used to escape metacharacters, and as part of the usual C escape
sequences, e.g, “\n” is a newline character, while “*” is a literal
asterisk.

28

Using Lex

O

Matches one or more occurrence of the preceding regular expres-
sion. For example:

[0-9]+
matches “1”, “111”, or “123456” but not an empty string. {if the plus
sign were an asterisk, it would also match the empty string.)

Matches zero or one occurrence of the preceding regular expression.
For example:

-2(0-9]+

matches a signed number including an optional leading minus.

Matches either the preceding regular expression or the following
regular expression. For example:

cow | pig | sheep

matches any of the three words.

Interprets everything within the quotation marks literally—meta-
characters other than C escape sequences lose their meaning.
Matches the preceding regular expression but only if followed by
the following regular expression. For example:

0/1

matches “0” in the string “01” but would not match anything in the
strings “0” or “02”. The material matched by the pattern following
the slash is not “consumed” and remains to be turned into subse-
quent tokens. Only one slash is permitted per pattem.

Groups a series of regular expressions together into a new regular
expression. For example:

(Y]

represents the character sequence 01. Parentheses are useful when
building up complex patterns with *, +, and |.

Note that some of these operators operate on single characters (e.g., [D
while others operate on regular expressions. Usually, complex regular
expressions are built up from simple regular expressions.

29

lex & yacc

Examples of Regular Expressions

We are ready for some examples. First, we've already shown you a regular
expression for a “digit”:

[0-5]

We can use this to build a regular expression for an integer:

—

0-9]

+

We require at least one digit. This would have allowed no digits at all:
[0-9]*

Let’s add an optional unary minus:

-?[0-91+

We can then expand this to allow decimal numbers. First we will specify a
decimal number (for the moment we insist that the last character always be
a digit):

[0-81*\.[0-9]+
Notice the “\” before the period to make it a literal period rather than a
wild card character. This pattern matches “0.0”, “4.5”, or “.31415”. But it

won’t match “0” or “2”. We'd like to combine our definitions to match them
as well. Leaving out our unary minus, we could use:

([0-9]+) | ([0-9]*\.[0-91+)
We use the grouping symbols “()” to specify what the regular expressions
are for the “1” operation. Now let’s add the unary minus:

=2 (([0-9]+) [([0-9]*\,[0-9]+))
We can expand this further by allowing a float-style exponent to be speci-
fied as well. First, let’s write a regular expression for an exponent:

[eE] [-+]?[0-9]+
This matches an upper- or lowercase letter E, then an optional plus or
minus sign, then a string of digits. For instance, this will match “e12” or

“E-3". We can then use this expression to build our final expression, one
that specifies a real number:

=2(([0-9]+) 1 ([0-91*\.[0-91+) ([eE] [-+}?[0-91+)?)

Our expression makes the exponent part optional. Let’s write a real lexer
that uses this expression. Nothing fancy, but it examines the input and tells
us each time it matches a number according to our regular expression.

30

Using Lex

Example 2-1 shows our program.
Example 2-1: Lex specification for decimal numbers

%%
[\n\t] ;

=2 (([0-91+) 1 ([0-9]1*\.[0-9]1+) ([eE] [-+1?2[0-91+)?) { printf("number\n"); }

ECHO;
%%
main()
{
yylex();
}

Our lexer ignores whitespace and echoes any characters it doesn’t recog-
nize as parts of a number to the output. For instance, here are the results
with something close to a valid number:

.65eal2
number
eanumber

We encourage you to play with this and all our examples until you are satis-
fied you understand how they work. For instance, try changing the expres-
sion to recognize a unary plus as well as a unary minus.

Another common regular expression is one used by many scripts and
simple configuration files, an expression that matches a comment starting
with a sharp sign, “#”.* We can build this regular expression as:

#o*
The “.” matches any character except newline and the “*” means match zero
or more of the preceding expression. This expression matches anything on
the comment line up to the newline which marks the end of the line.
Finally, here is a regular expression for matching quoted strings:

A" [*"\n]*["\n]
It might seem adequate to use a simpler expression such as:

\"LE

* Also known as a hash mark, pound sign, and by some extremists as an octothorpe.

31

lex & yacc

Unfortunately, this causes lex to match incorrectly if there are two strings
on the same input line. For instance:

"how" to "do"

would match as a single pattern since “*” matches as much as possible.
Knowing this, we then might try:

N[

This regular expression can cause lex to overflow its internal input buffer if
the trailing quotation mark is not present, because the expression “[*”]*”
matches any character except a quote, including “\n”. So if the user leaves
out a quote by mistake, the pattern could potentially scan through the
entire input file looking for another quote. Since the token is stored in a
fixed size buffer,* sooner or later the amount read will be bigger than the
buffer and the lexer will crash. For example:

"How", she said, "is it that I cannot find it.

would match the second quoted string continuing until it saw another quo-
tation mark. This might be hundreds or thousands of characters later. So
we add the new rule that a quoted string must not extend past one line and
end up with the complex (but safer) regular expression shown above. Lex
can handle longer strings, but in a different way. See the section on
yymore in Chapter 6, A Reference for Lex Specifications.

A Word Counting Program

Let’s look at the actual structure of a lex specification. We will use a basic
word count program (similar to the UNIX program wo).

A lex specification consists of three sections: a definition section, a rules
section, and a user subroutines section. The first section, the definition
section, handles options lex will be using in the lexer, and generally sets
up the execution environment in which the lexer operates.

*The size of the buffer varies a lot from one version to the next, sometimes being as small as
100 bytes or as large as 8K. For more details, see the section on yytext in Chapter 6.

32

Using Lex

The definition section for our word count example is:

{
unsigned charCount = 0, wordCount = 0, lineCount = 0;
%)

word [* \t\n]+
eol \n

The section bracketed by “%{” and “%}” is C code which is copied verbatim
into the lexer. It is placed early on in the output code so that the data defi-
nitions contained here can be referenced by code within the rules section.
In our example, the code block here declares three variables used within
the program to track the number of characters, words, and lines encoun-
tered.

The last two lines are definitions. Lex provides a simple substitution mech-
anism to make it easier to define long or complex patterns. We have added
two definitions here. The first provides our description of a word: any
non-empty combination of characters except space, tab, and newline. The
second describes our end-of-line character, newline. We use these defini-
tions in the second section of the file, the rules section.

The rules section contains the patterns and actions that specify the lexer.
Here is our sample word count’s rules section:

3
{word} { wordCount++; charCount += yyleng; }
{eocl} { charCount++; lineCount++; }

c¢harCount++;

The beginning of the rules section is marked by a “%%”. In a pattern, lex
replaces the name inside the braces {} with substitution, the actual regular
expression in the definition section. Our example increments the number
of words and characters after the lexer has recognized a complete word.

The actions which consist of more than one statement are enclosed in
braces to make a C language compound statement. Most versions of lex
take everything after the pattern to be the action, while others only read the
first statement on the line and silently ignore anything else. To be safe, and
to make the code clearer, always use braces if the action is more than one
statement or more than one line long.

It is worth repeating that lex always tries to match the longest possible
string. Thus, our sample lexer would recognize the string “well-being” as a
single word.

33

lex & yacc

Our sample also uses the lex internal variable yylcng which contains the
length of the string our lexer recognized. If it tched well-being, yyleng

L LIIC »ilil WLl ALALD ILLRIBE 115 LA R

would be 10.

When our lexer recognizes a newline, it will increment both the character
count and the line count. Similarly, if it recognizes any other character it
increments the character count. For this lexer, the only “other characters” it

ould recognize would be space or tab; anything else would match the first

cO Bl Spoce Lansy s 213230

regular expression and be counted as a word.

The lexer always tries to match the longest possible string, but when there
are two possible rules that match the same length, the lexer uses the earlier
rule in the lex specification. Thus, the word “I” would be matched by the

Iwrnrdl mile nnat by the . ru!e TIndere rxnr{ln

LW ULUy 1uss, UL Uy uial I‘}I\Pu"\lp will

o 21,
il u LAliviilie il Et AT A

make your lexers clearer and more bug free

The third and final section of the lex specification is the user subroutines
section. Once again, it is separated from the previous section by “%%”.
The user subroutines section can contain any valid C code. It is copied ver-
batim into the generated lexer. Typically this section contains support rou-
tines. For this example our “support” code is the main routine:

%

main()

{

yylex();
printf("$d $d %d\n", lineCount, wordCount, charCount);

}

It first calls the lexer’s entry point yylex() and then calls printf() to print the
results of this run. Note that our sample doesn’t do anything fancy; it
doesn’t accept command-line arguments, doesn’t open any files, but uses
the lex default to read from the standard input. We will stick with this for
most of our sample programs as we assume you know how to build C pro-
grams which do such things. However, it is worthwhile to look at one way
to reconnect lex’s input stream, as shown in Example 2-2.

Example 2-2: User subroutines for word count program ch2-02.1

main(arge,argv)
int argc;
char **argv;
{
if (arge > 1) {
FILE *file;

file = fopen(argv[l], "r"):
if (!file) {

34

Using Lex

Example 2-2: User subroutines for word count program cb2-02.1 (continued)

fprintf (stderr, "could not open %s\n",argv(l]);
exit(1l);
1
yyin = file:;
}
yylex();
printf ("%d %d %¥d\n", charCount, wordCount, lineCount);
return 0;
}

This example assumes that the second argument the program is called with
is the file to open for processing.* A lex lexer reads its input from the stan-
dard 1/O file yyin, so you need only change yyin as needed. The default
value of yyin is stdin, since the default input source is standard input.

We stored this example in ch2-02.], since it’s the second example in Chap-
ter 2, and lex source files traditionally end with .. We ran it on itself, and
obtained the following results:

% ch2-02 ch2-02.1
467 72 30

One big difference between our word count example and the standard
UNIX word count program is that ours handles only a single file. We'll fix
this by using lex’s end-of-file processing handler.

When yylex() reaches the end of its input file, it calls yywrap(), which
returns a value of 0 or 1. If the value is 1, the program is done and there is
no more input. If the value is 0, on the other hand, the lexer assumes that
yywrap() has opened another file for it to read, and continues to read from
yyin. The default yywrap() always returns 1. By providing our own ver-
sion of yywrap(), we can have our program read all of the files named on
the command line, one at a time.

Handling multiple files requires considerable code changes. Example 2-3
shows our final word counter in its entirety.

*Traditionally, the first name is that of the program, but if it differs in your environment you
might have to adjust our example to get the right results.

35

lex & yacc

Exampie 2-3: Multi-file word count program cb2-03.1

%
/*
* ch2-03.1

*

* The word counter example for multiple files

*

*/

unsigned long charCount = 0, wordCount = 0, lineCount = 0;

#undef yywrap /* sometimes a macro by default */

{word}

{ wordCount++; charCount += yyleng; }

{eol} { charCount++; lineCount++; }
charCount++;

%%

char **filelList;

unsigned currentFile = 0

~

unsigned nFiles;

unsigned long totalCC =
unsigned long totalWC
unsigned long totallC =

oo
(= el
~e we e

main{argc, argv)

int argc;

char **argv;

{

FILE *file;

fileList = argv+l;
nFiles = argc-l;

if

36

(argc == 2} {
/*
* we handle the single file case differently from
* the multiple file case since we don‘t need to
* print a summary line
*/
currentFile = 1;
file = fopen{argv[l], "r");
if {1file) {
fprintf (stderr, "could not open %s\n",argv([l]});
exit(l);
}
yyin = file;

Using Lex

Example 2-3: Multi-file word count program ch2-03.1 (continued)

}
if {argc > 2)
vywrap{}; /* open first file */

yylex();
/*
* once again, we handle zero or one file
* differently from multiple files.
x/
if (arge > 2) {
printf£{"%8lu %8lu %8lu %s\n", lineCount, wordCount,
charCount, fileList[currentFile-1]);
totalCC += charCount;
totalWC += wordCount;
totallC += lineCount;
printf("%81u %8lu %8lu total\n",totallC, totalWC, totalCC);
} else
printf("%81lu %8lu %8lu\n",lineCount, wordCount, charCount);:;

return 0;
}

/*

* the lexer calls yywrap to handle EOF conditions {e.g., to
* cornnect to a new file, as we do in this case.)

*/

yywrap ()
{
FILE *file;

if ((currentFile != 0) && (nFiles > 1) && (currentFile < nFiles)) {

/*

* we print out the statistics for the previous file.
*x/

print£("%$81lu %8lu %8lu %$s\n", lineCount, wordCount,

charCount, fileList[currentFile-1]);

totalCC += charCount;

totalWwC += wordCount;

totallC += lineCount;

charCount = wordCount = lineCount = 0;

fclose(yyin); /* done with that file */

while (fileList{currentFile] != (char *}0) {
file = fopen(fileList[currentFile++], "r");
if (file != NULL) {
yvyin = file;
break;
}
fprintf (stderr,
"could not open %$s\n",

37

lex & yacc

Example 2-3: Multi-file word count program ch2-03.1 (continued)

fileList [currentFile-1]);
}
return (file ? 0 : 1); /* 0 means there's more input */

}

Our example uses yywrap() to perform the continuation processing. There
are other possible ways, but this is the simplest and most portable. Each
time the lexer calls yywrap() we try to open the next filename from the
command line and assign the open file to yyin, returning O if there was
another file and 1 if not.

Our example reports both the sizes for the individual files as well as a
cumulative total for the entire set of files at the end; if there is only one file
the numbers for the specified file are reported once.

We ran our final word counter on both the lex file, ch2-03.], then on both
the lex file and the generated C file ch2-03.c.

% ch2-03.pgm ch2-03.1

107 337 2220

% ch2-03.pgm ch2-03.1 ch2-03.c
107 337 2220 ch2-03.1
405 1382 9356 ch2-03.c
512 1719 11576 total

The results will vary from system to system, since different versions of lex
produce different C code. We didn’t devote much time to beautifying the
output; that is left as an exercise for the reader.

Parsing a Command Line

Now we turn our attention to another example using lex to parse command
input. Normally a lex program reads from a file, using the predefined
macro input(), which gets the next character from the input, and unput(),
which puts a character back in the logical input stream. Lexers sometimes
need to use unput() to peek ahead in the input stream. For example, a
lexer can'’t tell that it’s found the end of a word until it sees the punctuation
after the end of the word, but since the punctuation isn't part of the word, it
has to put the punctuation back in the input stream for the next token.

In order to scan the command line rather than a file, we must rewrite
input() and unput(). The implementation we use here only works in
AT&T lex, because other versions for efficiency reasons don’t let you rede-
fine the two routines. (Flex, for example, reads directly from the input buf-

38

Using Lex

fer and never uses input().) If you are using another version of lex, see the
section “Input from Strings” in Chapter 6 to see how to accomplish the
same thing.

We will take the command-line arguments our program is called with, and
recognize three distinct classes of argument: help, verbose, and a filename.
Example 2-4 creates a lexer that reads the standard input, much as we did
for our earlier word count example.

Example 2-4: Lex specification to parse command-line inpur ch2-04.1

%{

ungigned verbose;
char *progName;
%)

5%

-h |
l_?l I
~-help { printf("usage is: %s [-help | -h | -?] {-verbose | -v] "
"[(-filel -£) filename]\n", progName);
}
-v |
-verbose { printf("verbose mode is on\n"); verbose = 1; }

%

main(argec, argv)

int argc;

char **argv;

{
progName = *argv;
yylex();

}

The definition section includes a code literal block. The two variables, ver-
bose and progName, are variables used later within the rules section.

In our rules section the first rules recognize the keyword —belp as well as
abbreviated versions —b and —?. Note the action following this rule which
simply prints a usage string.* Qur second set of rules recognize the key-
word —verbose and the short variant —v. In this case we set the global vari-
able verbose, which we defined above, to the value 1.

*Since the string doesn'’t fit on one line we've used the ANSI C technique of splitting the
string into two strings catenated at compile time. If you have a pre-ANSI C compiler you'll
have to paste the two strings together yourself.

39

lex & yacc

In our user subroutines section the main() routine stores the program
name, which is used in our help command’s usage string, and then calls
yylex().

This example does not parse the command-line arguments, as the lexer is
still reading from the standard input, not from the command line. Example
2-5 adds code to replace the standard input() and unput() routines with
our own. (This example is specific to AT&T lex. See Appendix E for the
equivalent in flex.)

Example 2-5: Lex specification to parse a command line ch2-05.1

%{

#undef input
#undef unput

int input(void);
void unput (int ch);
unsigned verbose;
char *progName;

%}

£33

-h |

e |

-help { printf(*usage is: %s [-help | -h | -?] [-verbose | -v]"
" [(-filel -f) filename]\n", progName);
}

- 1

-verbose { printf("verbose mode is on\n"); verbose = 1; }

%%
char **targv; /* remembers arguments */
char **arglim; /* end of arguments */

main(int argec, char **argv)

{
progName = *argv;
targv = argv+l;
arglim = argv+argc;
yylex();

}

static unsigned offset = 0;
int
input (void)
{
char c;

if (targv >= arglim)
return(0); /* EQOF */

40

Using Lex

Example 2-5: Lex specification to parse a command line ch2-05.1 (continued)

/* end of argument, move to the next */

if ((c = targv[0] [offset++]) I= *\0’)
return(c) ;

targv++;

offset = 0;

return(‘’ ');

}

/* simple unput only backs up, doesn’‘t allow you to */
/* put back different text */

void

unput (int ch)

{

/* AT&T lex sametimes puts back the ECF ! */

if(ch == 0)
return; /* ignore, can‘’t put back EQOF */
if (offset) { /* back up in current arg */
offset—-;
return;
}
targv——; /* back to previous arg */

offset = strlen(*targv);
}

In the definition section we #undef both input and unput since AT&T lex
by default defines them as macros, and we redefine them as C functions.

Our rules section didn’t change in this example. Instead, most of the
changes are in the user subroutines section. In this new section we've
added three variables—targv, which tracks the current argument, arglim,
which marks the end of the arguments, and offset, which tracks the posi-
tion in the current argument. These are set in main() to point at the argu-
ment vector passed from the command line.

The input() routine handles calls from the lexer to obtain characters. When
the current argument is exhausted it moves to the next argument, if there is
one, and continues scanning. If there are no more arguments, we treat it as
the lexer's end-of-file condition and return a zero byte.

The unput() routine handles calls from the lexer to “push back” characters
into the input stream. It does this by reversing the pointer’s direction, mov-
ing backwards in the string. In this case we assume that the characters
pushed back are the same as the ones that were there in the first place,
which will always be true unless action code explicitly pushes back some-

41

lex & yacc .

thing else. In the general case, an action routine can push back anything it
wants and a private version of unput() must be able to handle that.

Our resulting example still echoes input it doesn’t recognize and prints out
the two messages for the inputs it does understand. For instance, here is a
sample run:

% ch2-05 -verbose foo

verbose mode is on
foo %

Our input now comes from the command line and unrecognized input is
echoed. Any text which is not recognized by the lexer “falls through” to the
default rule, which echoes the unrecognized text to the output.

Start States

Finally, we add a —file switch and recognize a filename. To do this we use a
start state, a method of capturing context sensitive information within the
lexer. Tagging rules with start states tells the lexer only to recognize the
rules when the start state is in effect. In this case, to recognize a filename
after a —file argument, we use a start state to note that it’s time to look for
the filename, as shown in Example 2-0.

Example 2-6: Lex command scanner with filenames ch2-06.1

%{

#undef input
#undef unput
unsigned verbose;
unsigned fname;
char *progName;
%}

%s FNAME
%

[1+ /* ignore blanks */ ;
<FNAME>[]+ /* ignore blanks */ ;

-h |

n_nn |

-help { printf("usage is: %s [~-help | -h | -?] [-verbose | -v]"
" [{-filej -f) filename]\n", progName);
}

-v i

-verbose { printf ("verbose mode is on\n"); verbose = 1; }

42

Using Lex

Example 2-6: Lex command scanner with filenames ch2-06.1 (continued)

-f |
-file { BEGIN FNAME; fname = 1; }

<FNAME>["]+ { printf("use file %s\n", yytext); BEGIN 0; fname = 2;}

[*]+ ECHO;
%%
char **targv; /* remembers arguments */

char **arglim; /* end of arguments */

main{int argc, char **argv)
{
progName = *argv;
targv = argv+l;
arglim = argv+argc;
yylex();
if{fname < 2)
printf("No filename given\n");

}
... same input() and unput(J as Example 2-5 ...

In the definition section we have added the line “%s FNAME” which creates
a new start state in the lexer. In the rules section we have added rules
which begin with “<FNAME>". These rules are only recognized when the
lexer is in state FNAME. Any rule which does not have an explicit state will
match no matter what the current start state is. The —flag argument
switches to FNAME state, which enables the pattern that matches the
filename. Once it's matched the filename, it switches back to the regular
state.

Code within the actions of the rules section change the current state. You
enter a new state with a BEGIN statement. For instance, to change to the
FNAME state we used the statement “BEGIN FNAME;”. To change back to the
default state, we use “BEGIN 0”. (The default, state zero, is also known as
INITIAL.)

In addition to changing the lex state we also added a separate variable,
fname, so that our example program can recognize if the argument is miss-
ing; note that the main routine prints an error message if fname ’s value
hasn't been changed to 2.

Other changes to this example simply the filename argument. Our version
of input() returns a blank space after each command-line argument. The
rules ignore whitespace, yet without that blank space, the arguments -file
and -file would appear identical to the lexer.

43

lex & yacc

We mentioned that a rule without an explicit start state will match regard-
less of what start state is active (Example 2-7).

Example 2-7: Start state example ch2-07.1

%s MAGIC

%

<MAGIC>.+ { BEGIN (; printf("Magic:"); ECHO; }
magic BEGIN MAGIC;

%

main()
{

vylex();
}

We switch into state MAGIC when we see the keyword “magic.” Otherwise
we simply echo the input. If we are in state MAGIC, we prepend the string
“Magic:” to the next token echoed. We created an input file with three
words in it: “magic,” “two,” and “three,” and ran it through this lexer.

% ch2-07 < magic.input

Magic:two
three

Now, we change the example slightly, so that the rule with the start state
follows the one without, as shown in Example 2-8.

Example 2-8: Broken start state example ch2-08.]

%{
/* This example deliberately doesn‘t work! */
%}

%s MAGIC

%%

magic BEGIN MAGIC;

<MAGIC>.+ { BEGIN 0; printf("Magic:"); ECHO; }
%%

main ()
{

vylex();
}

44

Using Lex

With the same input we get very different results:

% ch2-08 < magic.input

two
three

Think of rules without a start state as implicitly having a “wild card” start
state—they match all start states. This is a frequent source of bugs. Flex
and other more recent versions of lex have “exclusive start states” which fix
the wild card problem. See “Start States” in Chapter 6 for details.

A C Source Code Analyzer

Our final example examines a C source file and counts the number of dif-
ferent types of lines we see that contain code, that just contain comments,
or are blank. This is a little tricky to do since a single line can contain both

i e o 3 e A pa | Liaxro ¢ PR P ¢ r

vl oM e An bhvtr 04 ~vr Qi H <
COLILLICTILS allll COUC, DO WO 1ldvO LW UCCIUC L1UVY {O COuU it sucn 1111 D

First, we describe a line of whitespace. We will consider any line with noth-
ing more than a newline as whitespace. Similarly, a line with any number
of blank spaces or tabs, but nothing else, is whitespace. The regular
expression describing this is:

AL \tl*\n
The “*” operator denotes that the pattern must start at the beginning of a

line. Similarly, we require that the entire line be only whitespace by requir-
ing a newline, “\n”, at the end. ‘

Now, we can complement this with the description of what a line of code
or comments is—any line which isn't entirely whitespace!

AL \t1*\n
\n /* whitespace lines matched by previous rule */
/* anything else */

We use the new rule “\n” to count the number of lines we see which aren’t
all whitespace. The second new rule we use to discard characters in which
we aren’t interested. Here is the rule we add to describe a comment:

/\[\t]*"/*".*.*/"[\t]*\n

This describes a single, self contained comment on a single line, with
optional text between the “/*” and the “*/”. Since “*” and “/” are both spe-

45

lex & yacc

cial pattern characters, we have to quote them when they occur literally.
Actually this pattern isn’t quite right, since something like this:

/* comment */ /* comment

« oy

won’t match it. Comments might span multiple lines and the “.” operator
excludes the “\n” character. Indeed, if we were to allow the “\n” character
we would probably overflow the internal lex buffer on a long comment.
Instead, we circumvent the problem by adding a start state, COMMENT, and
by entering that state when we see only the beginning of a comment.
When we see the end of a comment we return to the default start state. We
don’t need to use our start state for one-line comments. Here is our rule for

recognizing the beginning of a comment:
A[\t]*u/*n
Our action has a BEGIN statement in it to switch to the COMMENT state. It is

important to note that we are requiring that a comment begin on a line by
itself. Not doing so would incorrectly count cases such as:

int counter; /* this is
a strange comment */

because the first line isn’t on a line alone. We need to count the first line as
a line of code and the second line as a line of comment. Here are our rules
to accomplish this:

-+u/*n'*n*/u‘*\n
R VAL LS VLI

The two expressions describe an overlapping set of strings, but they are not
identical. The following expression matches the first rule, but not the
second:

int counter; /* comment */

because the second requires there be text following the comment. Simi-
larly, this next expression matches the first but not the second:

/* camment */ int counter;

They both would match the expression:

/* comment # 1 */ int counter; /* comment # 2 */

46

Using Lex

Finally, we need to finish up our regular expressions for detecting com-
ments. We decided to use a start state, so while we are in the COMMENT
state, we merely look for newlines:

. <COMMENT>\n

and count them. When we detect the “end of comment” character, we
either count it as a comment line, if there is nothing else on the line after
the comment ends, or we continue processing:

<COMMENT>"*/" [\t]1*\n

<COMMENT>"* /"
The first one will be counted as a comment line; the second will continue
processing. As we put these rules together, there is a bit of gluing to do
because we need to cover some cases in both the default start state and in
the COMMENT start state. Example 2-9 shows our final list of regular
expressions, along with their associated actions.

Example 2-9: C source analyzer ch2-09.1

%{
int comments, code, whiteSpace;
%}

%s COMMENT
%%
AL \t]*"/*» { BEGIN COMMENT; /* enter comment eating state */ }
AN A LLVALIE AL VAN BN o LAV < K|
comments++; /* self-contained comment */
}

<COMMENT>"*/"[\t]l*\n { BEGIN 0; comments++;} ‘

<COMMENT>"* /" { BEGIN 0; }
<COMMENT>\n { comments++; }
<COMMENT>.\n { comments++; }

AL \t]*\n { whiteSpace++; }

LA/ xnx/e x\n { codet++; }

JRm/kn ke ann { code++:)

LA"/*" . "\n { code++; BEGIN COMMENT; }

An { code++; }

. ; /* ignore everything else */
%

mainf()

47

lex & yacc

Example 2-9: C source analyzer ch2-09.1 (continued)

{
yyvlex():
printf ("code: %d, comments %d, whitespace %d0,
code, camments, whiteSpace);
}

We added the rules “<COMMENT>\n" and “<COMMENT>.\n" to handle the
case of a blank line in a comment, as well as any text within a comment.
Forcing them to match an end-of-line character means they won’t match
something like

/* this is the beginning of a comment

and this is the end */ int counter;

as two lines of comments. Instead, this will count as one line of comment
and one line of code.

Summary

In this chapter we covered the fundamentals of using lex. Even by itself,
lex is often sufficient for writing simpler applications such as the word
count and lines-of-code count utilities we developed in this chapter.

Lex uses a number of special characters to describe regular expressions.
When a regular expression matches an input string, it executes the corre-
sponding action, which is a piece of C code you specify. Lex matches these
expressions first by determining the longest matching expression, and then,
if two matches are the same length, by matching the expression which
appears first in the lex specification. By judiciously using start states, you
can further refine when specific rules are active, just as we did for the
line-of-code count utility.

We also discussed special purpose routines used by the lex-generated state
machines, such as yywrap(), which handles end-of-file conditions and lets
you handle multiple files in sequence. We used this to allow our word
count example to examine multiple files.

This chapter focused upon using lex alone as a processing language. Later
chapters will concentrate on how lex can be integrated with yacc to build
other types of tools. But lex, by itself, is capable of handling many other-
wise tedious tasks without needing a fuli-scale yacc parser.

48

Using Lex

Exercises

1.

N

Make the word count program smarter about what a word is, distin-
guishing real words which are strings of letters (perhaps Wlth a hyphen
or apostrophe) from blocks of punctuation. You shouldn't need to a
more than ten lines to the program.

Improve the C code analyzer: count braces, keywords, etc. Try to iden-
tify function definitions and declarations, which are names followed by
“(” outside of any braces.

Axr? DA,

D
=%

inct aoroh ammb cod or othe
oL C ’c‘l._l’ wwm, JC/UD’ sl ULAA

pattern matching programs you have. Write a lex specification that
looks for lines containing some string and prints the lines out. (For a
fair comparison, be sure to print the whole line.) Compare the time it
takes to scan a set of files to that taken by the other programs. If you
have more than one version of lex, do they run at noticably different
speeds?

49

In this chapter:
» Grammars
J Sbiﬁ/Reduée
Parsing
* A Yacc Parser €«

e Using Yacc

* Arithmetic
Expressions and
Ambiguity

* Variables and Typed
Tokens

« Symbol Tables

» Functions and
Reserved Words

* Building Parsers
with Make

s Summary
* Exercises

The previous chapter concentrated on lex alone. In this chapter we turn
our attention to yacc, although we use lex to generate our lexical analyzers.
Where lex recognizes regular expressions, yacc recognizes entire gram-
mars. Lex divides the input stream into pieces (tokens) and then yacc takes
these pieces and groups them together logically.

In this chapter we create a desk calculator, starting with simple arithmetic,
then adding built-in functions, user variables, and finally user-defined func-
tions.

Grammars

Yacc takes a grammar that you specify and writes a parser that recognizes
valid “sentences” in that grammar. We use the term “sentence” here in a
fairly general way-—for a C language grammar the sentences are syntacti-
cally valid C programs.*

*Programs can be syntactically valid but semantically invalid, e.g., a C program that assigns a
string to an #nt variable. Yacc only handles the syntax; other validation is up to you.

51

lex & yacc

As we saw in Chapter 1, a grammar is a series of rules that the parse

to T‘P(‘nopi?P syntacticallv valid input. For examnple, here is 2 vers

ALl o) a8l aulY vails iy CAQLLIRIIG, 1A

grammar we’ll use later in this chapter to build a calculator.

statement — NAME = expression

expression - NUMBER + NUMBER | NUMBER — NUMBER

The vertical bar, “1”, means there are two possibilities for the same symbol,
i.e., an expression can be either an addition or a subtraction. The symbol to
the left of the — is known as the left-band side of the rule, often abbrevi-
ated LHS, and the symbols to the right are the right-hand side, usually
abbreviated RHS. Several rules may have he same left-hand side; the verti-
cal bar is just a short hand for this. Symbols that actually appear in the
input and are returned by the lexer are termmal symbols or tokens, while
those that appear on the left-hand side of some rule are non-terminal sym-
bols or non-terminals. Terminal and non-terminal symbols must be differ-
ent; it is an error to write a rule with a token on the left side,

The usual way to represent a parsed sentence is as a tree. For example, if
we parsed the input “fred = 12 + 13” with this grammar, the tree would look
like Figure 3-1. “12 + 13” is an expression, and “fred = expression” is a state-
ment. A yacc parser doesn’t actually create this tree as a data structure,
although it is not hard to do so yourself.

Number
13 :

Figure 3-1: A parse tree

52

Using Yacc

Every grammar includes a start symbol, the one that has to be at the root of
the parse tree. In this grammar, statement is the start symbol.

Recursive Rules

Rules can refer directly or indirectly to themselves; this important ability
makes it possible to parse arbitrarily long input sequences. Let’s extend
our grammar to handle longer arithmetic expressions:

expression - NUMBER
| expression + NUMBER
| expression — NUMBER

Now we can parse a sequence like “fred = 14 + 23 — 11 + 7” by applying the
expression rules repeatedly, as in Figure 3-2. Yacc can parse recursive
rules very efficiently, so we will see recursive rules in nearly every grammar

e 1184
LA AY

A .

Shift/Reduce Parsing

A vacc parser works by looking for rules that might match the tokens seen
so far. When yacc processes a parser, it creates a set of states each of
which reflects a possible position in one or more partially parsed rules. As
the parser reads tokens, each time it reads a token that doesn’t complete a
rule it pushes the token on an internal stack and switches to a new state
reflecting the token it just read. This action is called a shift. When it has
found all the symbols that constitute the right-hand side of a rule, it pops
the right-hand side symbols off the stack, pushes the left-hand side symbol
onto the stack, and switches to'a new state reflecting the new symbol on
the stack. This action is called a reduction, since it usually reduces the
number of items on the stack. (Not always, since it is possible to have rules
with empty right-hand sides.) Whenever yacc reduces a rule, it executes
user code associated with the rule. This is how you actually do something
with the material that the parser parses.

Let’s look how it parses the input “fred = 12 + 13” using the simple rules in
Figure 3-1. The parser starts by shifting tokens on to the internal stack one
at a time:

fred

fred =

fred = 12
fred = 12 +
fred = 12 + 13

53

lex & yacc

Number §
7 :

Figure 3-2: A parse using recursive rules

At this point it can reduce the rule “expression — NUMBER + NUMBER” so it
pops the 12, the plus, and the 13 from the stack and replaces them with
expression:

fred = expression

Now it reduces the rule “statement — NAME = expression”, so it pops fred,

d Of [be input and the stack has been reduced to the start sy mhn]’ SO the

T EVALANA VAAS A wiA AR LAV AN A A A e et W e et LS LA A]"AAMVA RS waa

input was valid according to the grammar.

54

Using Yacc

What Yacc Cannot Parse

Although yacc’s parsing technique is general, you can write grammars
which yacc cannot handle. It cannot deal with ambiguous grammars, ones
in which the same input can match more than one parse tree.* It also can-

not deal with grammars that need more than one token of lookahead to tell
whether it has matched a rule. Consider this extremely contrived example:

phrase — cart_animal AND CART
| work_animal AND PLOW

cart_animal — HORSE | GOAT

work_animal — HORSE | OX

This grammar isn’t ambiguous, since there is only one possible parse tree

Ene namvr rnlid fnent bt wrn Z i i i
for any valid input, but yacc can’t handle it because it requires two symbols

of lookahead. In particular, in the input “HORSE AND CART” it cannot tell
whether HORSE is a cart_animal or a work_animal until it sees CART, and
yacc cannot look that far ahead.

If we changed the first rule to this:

phrase — cart_animal CART
| work_animal PLOW

yacc would have no trouble, since it can look one token ahead to see
whether an input of HORSE is followed by CART, in which case the horse is
a cart_animal or by PLOW in which case it is 2 work_animal.

In practice, these rules are not as complex and confusing as they may seem
here. One reason is that yacc knows exactly what grammars it can parse
and what it cannot. If you give it one that it cannot handle it will tell you,
so there is no problem of overcomplex parsers silently failing. Another rea-
son is that the grammars that yacc can handle correspond pretty well to
ones that people really write. As often as not, a grammatical construct that
confuses yacc will confuse people as well, so if you have some latitude in
your language design you should consider changing the language to make
it both more understandable to yacc and to its users.

* Actually, yacc can deal with a limited but useful set of ambiguous grammars, as we'll see
later.

55

lex & yacc

For more information on shift/reduce parsing, see Chapter 8. For a discus-
sion of what yacc has to do to turn your specification into a working C pro-
gram, see the classic compiler text by Aho, Sethi, and Ullman, Compilers:
Principles, Techniques, and Tools, Addison-Wesley, 1986, often known as
the “dragon book” because of the cover illustration.

A Yacc Parser

A yacc grammar has the same three-part structure as a lex specification.
(Lex copied its structure from yacc.) The first section, the definition sec-
tion, handles control information for the yacc-generated parser (from here
on we will call it the parser), and generally sets up the execution environ-

ment in which the parser will operate. The second section contains the

rules for the parser, and the third section is C code copied verbatim into the
generated C program.

We'll first write parser for the simplest grammar, the one in Figure 3-1, then
extend it to be more useful and realistic.

The Definition Section

The definition section includes declarations of the tokens used in the gram-
mar, the types of values used on the parser stack, and other odds and ends.
It can also include a literal block, C code enclosed in %{ %} lines. We start
our first parser by declaring two symbolic tokens.

$token NAME NUMBER

You can use single quoted characters as tokens without declaring them, so
we don't need to declare “=”, “+”, or “~”,

The Rules Section

The rules section simply consists of a list of grammar rules in much the
same format as we used above. Since ASCII keyboards don't have a — key,
we use a colon between the left- and right-hand sides of a rule, and we put
a semicolon at the end of each rule:

$token NAME NUMBER

%

statement: NAME ‘=’ expression

| expression

H

56

Using Yacc

expression: NUMBER ‘+’ NUMBER
l NUMBER ‘-‘ NUMBER
;
Unlike lex, yacc pays no attention to line boundaries in the rules section,
and you will find that a lot of whitespace makes grammars easier to read.
We've added one new rule to the parser: a statement can be a plain expres-
sion as well as an assignment. If the user enters a plain expression, we’ll

print out its result.

The symbol on the left-hand side of the first rule in the grammar is normally
the start symbaol, thnncrh vou can use a a %start declarati in the definition

Sya Ll ialAL010)

section to ov ernde that.

Symbol Values and Actions

Every symbol in a yacc parser has a value. The value gives additional infor-
mation about a particular instance of a symbol. If a symbol represents a
number, the value would be the particular number. If it represents a literal
text string, the value would probably be a pointer to a copy of the string. If
it represents a variable in a program, the value would be a pointer to a sym-
bol table entry describing the variable. Some tokens don’t have a useful
value, e.g., a token representing a close parenthesis, since one close paren-

thesis is the same as another.

Non-terminal symbols can have any values you want, created by code in
the parser. Often the action code builds a parse tree corresponding to the
input, so that later code can process a whole statement or even a whole
program at a time.

In the current parser, the value of a NUMBER or an expression is the numeri-
cal value of the number or expression, and the value of a NAME will be a
symbol table pointer.

In real parsers, the values of different symbols use different data types, e.g.,
int and double for numeric symbols, char * for strings, and pointers to
structures for higher level symbols. If you have multiple value types, you
have to list all the value types used in a parser so that yacc can create a C
union typedef called YYSTYPE to contain them. (Fortunately, yacc gives
you a lot of help ensuring that you use the right value type for each
symbol.)

In the first version of the calculator, the only values of interest are the
numerical values of input numbers and calculated expressions. By default

57

lex & yacc

yacc makes all values of type int, which is adequate for our first version of
the calculator.

Whenever the parser reduces a rule, it executes user C code associated with
the rule, known as the rule’s action. The action appears in braces after the
end of the rule, before the semicolon or vertical bar. The action code can
refer to the values of the right-hand side symbols as $1, $2, ..., and can set
the value of the left-hand side by setting $$. In our parser, the value of an
expression symbol is the value of the expression it represents. We add
some code to evaluate and print expressions, bringing our grammar up to
that used in Figure 3-2.

%$token NAME NUMBER

tement: NAME ‘=' expression

expression { printf("= %d\n", $1); }

expression: expression ‘+’ NUMBER { $§ = $1 + &3; }
| expression ‘- NUMBER { $$ = §1 - $3; }
i NUMBER {88 =61; 1}

i

The rules that build an expression compute the appropriate values, and the
rule that recognizes an expression as a statement prints out the result. In
the expression building rules, the first and second numbers’ values are $1
and $3, respectively. The operator’s value would be $2, although in this
grammar the operators do not have interesting values. The action on the
last rule is not strictly necessary, since the default action that yacc performs
after every reduction, before running any explicit action code, assigns the
value $1 to $$.

The Lexer

To try out our parser, we need a lexer to feed it tokens. As we mentioned
in Chapter 1, the parser is the higher level routine, and calls the lexer
yylex() whenever it needs a token from the input. As soon as the lexer
finds a token of interest to the parser, it returns to the parser, returning the
token code as the value. Yacc defines the token names in the parser as C
preprocessor names in y.tab.b (or some similar name on MS-DOS systems)
so the lexer can use them.

58

Using Yacc

Here is a simple lexer to provide tokens for our parser:

%{
#include "y.tab.h"
extern int yylval;
%}

3
[0-9]+ { yylval = atei (yytext); return NUMBER; }
[\t] ; /* ignore whitespace */
\n return 0; /* logical EOF */
return yytext[0];
%

Strings of digits are numbers, whitespace is ignored, and a newline returns
an end of input token (number zero) to tell the parser that there is no more
to read. The last rule in the lexer is a very common catch-all, which says to
return any character otherwise not handled as a single character token to
the parser. Character tokens are usually punctuation such as parentheses,
semicolons, and single-character operators. If the parser receives a token
that it doesn’t know about, it generates a syntax error, so this rule lets you
handle all of the single-character tokens easily while letting yacc’s etror
checking catch and complain about invalid input.

Whenever the lexer returns a token to the parser, if the token has an associ-
ated value, the lexer must store the value in yylval before returning. In this
first example, we explicitly declare yylval. In more comiplex parsers, yacc
defines yylval as a union and puts the definition in y.tab.b.

We haven’t defined NAME tokens yet, just NUMBER tokens, but that is OK
for the moment.

Compiling and Running a Simple Parser

On a UNIX system, yacc takes your grammar and creates y.tab.c, the C lan-
guage parser, and y.fab.h, the include file with the token number defini-
tions. Lex creates lex.yy.c, the C language lexer. You need only compile
them together with the yacc and lex libraries. The libraries contain usable
default versions of all of the supporting routines, including a main() that
calls the parser yyparse() and exits.

% yacc -d ch3-0l1l.y # makes y.tab.c and "y.tab.h

$ lex ch3-01.1 # makes lex.yy.cC

$ cc -c ch3-01 y.tab.c lex.yy.c -ly -11 # compile and link C files

% ch3-01

99+12

= 111
% ch3-01

59

lex & yacc

2 + 3-14433
24

aQ ~h2_N1
o LlldTu.L

100 + -50
syntax error

Our first version seems to work. In the third test, it correctly reports a syn-
tax error when we enter something that doesn’t conform to the grammar.

Arithmetic Expressions and Ambiguity

Let’s make the arithmetic expressions more general and realistic, extending
the expression rules to handle multiplication and division, unary negation,
and parenthesized expressions:

expression: expression ‘+’ expression { $$ = $1 + $3; }
! expression ‘- expression { $$ = $1 - $3; 1}
| expression ‘*’ expression { $$ = 81 * $3; 1}

! expression ‘/’ expression
{ if($3 == 0)
yyverror{"divide by zero");

else
$6 = $1 / $3;
} .
| ‘—' expression { 88 = -82; 1}
I ‘{* expression ‘)’ {88 =252; 1}
| NUMBER { $5 =51; 1)

.
i

The action for division checks for division by zero, since in many imple-
mentations of C a zero divide will crash the program. 1t calls yyerror(), the
standard yacc error routine, to report the error,

But this grammar has a problem: it is extremely ambiguocus. For example,
the input 2+3*4 might mean (2+3)*4 or 2+(3*4), and the input 3-4-5-6 might
mean 3-(4-(5-6)) or (3-4)-(5-6) or any of a lot of other possibilities. Figure
3-3 shows the two possible parses for 2+3*4.

If you compile this grammar as it stands, yacc will tell you that there are 16
shift/reduce conflicts, states where it cannot tell whether it should shift the
token on the stack or reduce a rule first.

For example, when parsing “2+3*4", the parser goes through these steps
(we abbreviate expression as E here):

2 shift NUMBER

E reduce E — NUMBER
E+ shift +

E+3 shift NUMBER

E+E reduce E — NUMBER

60

Using Yacc

Figure 3-3: Ambiguous input 2+3*4

At this point, the parser looks at the “*”, and could either reduce “2+3”
using:

expression: expression '+’ expression

to an expression, or shift the “*” expecting to be able to reduce:

expression: expression ‘*’ expresgsion
later on.

The problem is that we haven’t told yacc about the precedence and associa-
tivity of the operators. Precedence controls which operators to execute first
in an expression. Mathematical and programming tradition (dating back
past the first Fortran compiler in 1956) says that multiplication and division
take precedence over addition and subtraction, so a+b*c means a+(b*c) and
d/e—f means (d/e)-f. In any expression grammar, operators are grouped
into levels of precedence from lowest to highest. The total mamber of lev-
els depends on the language. The C language is notorious for having too
many precedence levels, a total of fifteen levels.

Associativity controls the grouping of operators at the same precedence
level. Operators may group to the left, e.g., a—b— in C means (a-b)—, or
to the right, e.g., a=b=c in C means a=(b=c). In some cases operators do
not group at all, e.g., in Fortran A.LE.B.LE.C is invalid.

61

lex & yace

There are two ways to specify precedence and associativity in a grammar,
implicitly and explicitly. To specify them implicitly, rewrite the grammar
using separate non-terminal symbols for each precedence level. Assuming
the usual precedence and left associativity for everything, we could rewrite
our expression rules this way:
expression: expression ‘+‘ mulexp
| expression ‘-‘ milexp
i mulexp

milexp: mulexp ‘*’ primary
| milexp ‘/‘ primary
| primary

primary: ' (' expression ‘)°’
| '~/ primary
| NUMBER

This is a perfectly reasonable way to write a grammar, and if yacc didn't
have explicit precedence rules, it would be the only way.

But yacc also lets you specify precedences explicitly. We can add these
lines to the definition section, resulting in the grammar in Example 3-1.
$left ‘+¢ /-t

%left + % l/l
%nonassoc UMINUS

Each of these declarations defines a level of precedence. They tell yacc that
“+” and “-” are left associative and at the lowest precedence level, “*” and
“/" are left associative and at a higher precedence level, and UMINUS, a
pseudo-token standing for unary minus, has no associativity and is at the
highest precedence. (We don’t have any right associative operators here,
but if we did they’d use %right.) Yacc assigns each rule the precedence of
the rightmost token on the right-hand side; if the rule contains no tokens
with precedence assigned, the rule has no precedence of its own. When
yacc encounters a shift/reduce conflict due to an ambiguous grammar, it
consults the table of precedences, and if all of the rules involved in the con-
flict include a token which appears in a precedence declaration, it uses pre-
cedence to resolve the conflict.

In our grammar, all of the conflicts occur in the rules of the form expression
OPERATOR expression, so setting precedences for the four operators allows
it to resolve all of the conflicts. This parser using precedences is slightly

62

Using Yacc

smaller and faster than the one with the extra rules for implicit precedence,
since it has fewer rules to reduce.

Example 3-1: The calculator grammar with expressions and precedence ch3-02.y

%token NAME NUMBER
$left - 4+
$left x+ /¢

%nonassoc UMINUS
%%
statement: NAME ‘=’ expression

} expression { printf ("= %d\n", $1i); }

r

—~—

Oy

Oy
il

expression: expression ‘+' expression = 81 + $3; }
| expression ‘- expression =81 - 83; 1}
| expression ‘*‘ expression { $$ = $1 * $3; }
| expression ‘/' expression
{ if($3 == 0)
yyerror("divide by zero");

-

Uy

Uy
|

else
88 = 81 / 83;
}
[‘-t expression %prec UMINUS { $$ = -$2;)
[‘(* expression '}’ { 88 =8%2;)
[NUMBER { 86 =51; }

%

The rule for negation includes “%prec UMINUS”. The only operator this rule
includes is “-”, which has low precedence, but we want unary minus to
have higher precedence than multiplication rather than lower. The %prec
tells yacc to use the precedence of UMINUS for this rule.

When Not to Use Precedence Rules

You can use precedence rules to fix any shift/reduce conflict that occurs in
the grammar. This is usually a terrible idea. In expression grammars the
cause of the conflicts is easy to understand, and the effect of the prece-
dence rules is clear. In other situations precedence rules fix shift/reduce
problems, but it is usually difficult to understand just what effect they have
on the grammar.

We recommend that you use precedence in only two situations: in expres-
sion grammars, and to resolve the “dangling else” conflict in grammars for
if-then-else language constructs. (See Chapter 7 for examples of the latter.)

63

lex & yacc

Otherwise, if you can, you should fix the grammar to remove the conflict.
Remember that conflicts mean that yacc can’t properly parse a grammar,
probably because it's ambiguous, which means there are multiple possible
parses for the same input. Except in the two cases above, this usually
points to a mistake in your language design. If a grammar is ambiguous to
yacc, it's almost certainly ambiguous to humans, too. See Chapter 8 for
more information on finding and repairing conflicts.

Variables and Typed Tokens

Next we extend our calculator to handle variables with single letter names.
Since there are only 26 single letters (lowercase only for the moment) we
can simply store the variables in a 26 entry array, which we call vbltable.

el alldy,

To make the calculator more useful, we also extend it to handle multiple
expressions, one per line, and to use floating point values, as shown in
Examples 3-2 and 3-3.

Example 3-2: Calculator grammar with variables and real values ch3-03.y

%{
double vbltable[26];
%}

$union {
double dval;
int vblno;

}

$token <vblno> NAME
$token <dval> NUMBER
$left -+ ‘4¢

$left **r 7/’
$nonassoc UMINUS

$type <dval> expression
%%
statement_list: statement ‘\n‘’
| statement_list statement ‘\n’

.
’

statement: NAME ‘=’ expression { vbltablel$l] = $3; }
| expression { printf("= %g\n", $1); }

-
’

expression: expression ‘+‘ expression { $$ = $1 + $3; }
| expression ‘-’ expression { $$ = $1 - $3;)
| expression ‘*‘ expression { $$ = $1 * $3; }

| expression ‘/' expression
{ 1£($3 == 0.0}

64

Using Yacc

Example 3-2: Calculator grammar with variables and real values ch3-03.y (con-
tinued)

yyerror ("divide by zero"}:

else
5% =31/ 63;
}
| ‘~¢ expression %prec UMINUS { $$ = -$2; }
| *(* expression ‘)’ {85 =252; }
| NUMBER
| NAME { §$ = vbltable[$1]; }

oe
oe

Example 3-3: Lexer for calculator with variables and real values ch3-03.1

%{

#include "y.tab.h"
#include <math.h>

extern double vbltable{26];

%}

%

([0-91+1 ({0-91*\.[0-9]1+) ([eE] [-+]1?[0-91+)?) {
yylval.dval = atof(yytext); return NUMBER;
}

[\t] ; /* ignore whitespace */
la-z] { yvlval.vblno = yytext([0] - ‘a‘; return NAME; }
"gn { return 0; /* end of input */ }

\n |
return yytext[0];
%%

Symbol Values and %union

We now have multiple types of symbol values. Expressions have double
values, while the value for variable references and NAME symbols are inte-
gers from O to 25 corresponding to the slot in vbltable. Why not have the
lexer return the value of the variable as a double, to make the parser
simpler? The problem is that there are two contexts where a variable name
can occur: as part of an expression, in which case we want the double
value, and to the left of an equal sign, in which case we need to remember
which variable it is so we can update vbltable.

65

lex & yacc

To define the possible symbol types, in the definition section we add a
%union declaration:
$union {
double dwval;

int vblno;
}

The contents of the declaration are copied verbatim to the output file as the
contents of a C union declaration defining the type YYSTYPE as a C typedef.
The generated header file y.tab.bh includes a copy of the definition so that
you can use it in the lexer. Here is the y.tab.h generated from this gram-
mar:

#define NAME 257

#define NUMBER 258

#define UMINUS 259
typedef union {
double dval;
int vblno;
} YYSTYFE;
extern YYSTYPE yylval;

The generated file also declares the variable yylval, and defines the token
numbers for the symbolic tokens in the grammar.

Now we have to tell the parser which symbols use which type of value.
We do that by putting the appropriate field name from the union in angle
brackets in the lines in the definition section that defines the symbol:

$token <vblno> NAME
$token <dval> NUMBER

$type <dval> expression

The new declaration %type sets the type for non-terminals which otherwise
need no declaration. You can also put bracketed types in %left, %right, or
%nonassoc. In action code, yacc automatically qualifies symbol value refer-
ences with the appropriate field name, e.g., if the third symbol is a NUMBER,
a reference to $3 acts like $3.dval.

The new, expanded parser was shown in Example 3-2. We've added a new
start symbol statement_list so that the parser can accept a list of statements,
each ended by a newline, rather than just one statement. We've also added
an action for the rule that sets a variable, and a new rule at the end that
turns a NAME into an expression by fetching the value of the variable.

66

Using Yacc

We have to modify the lexer a little (Example 3-3). The literal block in the
lexer no longer declares yylval, since its declaration is now in y.tab.h. The
lexer doesn’t have any automatic way to associate types with tokens, so
you have to put in explicit field references when you set yylval. We've
used the real number pattern from Chapter 2 to match floating point num-
bers. The action code uses atof() to read the number, then assigns the
value to yylval.dval, since the parser expects the number’s value in the dval
field. For variables, we return the index of the variable in the variable table
in yylval.vblno. Finally, we've made “\n” a regular token, so we use a dol-
lar sign to indicate the end of the input.

A little experimentation shows that our modified calculator works:

% ch3-03
2/3
0.666667
= 2/7

o

.285714
= a+l

LI " I I T I ||

1.28571
al/z

= 0.222222
$

Symbol Tables

Few users will be satisfied with single character variable names, so now we
add the ability to use longer variable names. This means we need a symbol
table, a structure that keeps track of the names in use. Each time the lexer
reads a name from the input, it looks the name up in the symbol table, and
gets a pointer to the corresponding symbol table entry. Elsewhere in the
program, we use symbol table pointers rather than name strings, since
pointers are much easier and faster to use than looking up a name each
time we need it.

Since the symbol table requires a data structure shared between the lexer
and parser, we created a header file ch3hdr.h (see Example 3-4). This
symbol table is an array of structures each containing the name of the vari-
able and its value. We also declare a routine symlook() which takes a
name as a text string and returns a pointer to the appropriate symbol table
entry, adding it if it is not already there.

67

lex & yacc

Example 3-4: Header for parser with symbol table ch3bdr.b
MS 20 /* maximum number of symbols */

struct symtab {
char *name;
double value;
} symtab[NSYMS] ;

b g Yy Y
SLLUCL Syllilal SYILWOOK |) 7

The parser changes only slightly to use the symbol table, as shown in
Example 3-5. The value for a NAME token is now a pointer into the symbol
table rather than an index as before. We change the %union and call the
pointer field symp. The %token declaration for NAME changes appropri-
ately, and the actions that assign to and read variables now use the token
value as a pointer so they can read or write the value field of the symbol
table entry.

The new routine symlook() is defined in the user subroutines section of the
yacc specification, as shown in Example 3-6. (There is no compelling rea-
son for this; it could as easily have been in the lex file or in a file by itself.)
It searches through the symbol table sequentially to find the entry corre-
sponding to the name passed as its argument. If an entry has a name string
and it matches the one that symlook() is searching for, it returns a pointer
to the entry, since the name has already been put into the table. If the
name field is empty, we’ve looked at all of the table entries that are in use,
and haven’t found this symbol, so we enter the name into the heretofore
empty table entry.

We use strdup() to make a permanent copy of the name string. When the
lexer calls symlook(), it passes the name in the token buffer yytext. Since
each subsequent token overwrites yytext, we need to make a copy our-
selves here. (This is a common source of errors in lex scanners; if you need
to use the contents of yytext after the scanner goes on to the next token,
always make a copy.) Finally, if the current table entry is in use but doesn't
match, symlook() goes on to search the next entry.

This symbol table routine is perfectly adequate for this simple example, but
more realistic symbol table code is somewhat more complex. Sequential
search is too slow for symbol tables of appreciable size, so use hashing or
some other faster search function. Real symbol tables tend to carry con-
siderably more information per entry, e.g., the type of a variable, whether it
is a simple variable, an array or structure, and how many dimensions if it is
an array.

Using Yacc

Example 3-5: Rules for parser with symbol table ch3-04.y

%{
#include "ch3hdr.h"

#include <string.h>
%}

funion {
double dval;
struct symtab *symp;
}
$token <symp> NAME
ftoken <dval> NUMBER
fleft -1 747
fleft '*r 7/
fnonassoc UMINUS

$type <dval> expression
%
statement_list: statement ‘\n‘
| statement_list statement ‘\n’

.
’

statement: NAME ‘=’ expression { $l->value = $3; }
| expression { printf("= %g\n", $1); }

.
‘

expression: expression ‘+’ expression { $$ = S1 + $3; }
| expression ’‘-‘ expression { $5 = 81 - $3; }
| expression ‘*‘ expression { $$% sl * §3; }
| expressicn ‘/‘ expression
{ 1£($3 == 0.0)
yyerror ("divide by zero"):

else
$$ = 81 / $3;
}
-+ expression ¥%prec UMINUS { S$$
(expression ‘)’ { $% = $2;
NUMBER
NAME { $$ = $l->value; }

= -$2; }
}

3%

Example 3-6: Symbol table routine ch3-04.pgm

/* look up a symbol table entry, add if not present */
struct symtab *

symlook(s)
char *s;
{
char *p;
struct symtab *gsp;

69

lex & yacc

Example 3-6: Symbol table routine ch3-04.pgm (continued)

for(sp = symtab; sp < &symtab{NSYMS]; sp++) {
/* is it already here? */
if (sp->name && [stranp(sp->name, 8))
return sp;

/* is it free */
if(!sp->name) {
sp—>name = strdup(s);
return sp;
}
/* otherwise continue to next */
}
yyerror ("Too many symbols");
exit(1); /* cannot continue */

1 /% enrmloonk */
¥ i SYITLOOK /

The lexer also changes only slightly to accommodate the symbol table
(Example 3-7). Rather than declaring the symbol table directly, it now also
includes ch3bdr.b. The rule that recognizes variable names now matches
“[A-Za-z]lA-Za-z0-9]*", any string of letters and digits starting with a letter.

Its action calls symlook() to get a pointer to the symbol table entry, and
stores that in yylval.symp, the token’s value.

Example 3-7: Lexer with symbol table ch3-04.1

%{

#include "y.tab.h"
#include "ch3hdr.h"
#include <math.h>
%}

%%
([0-91+1([0-91*\.[0-91+) ([eE] [-+]2[0-9]1+)?) {
yvylval.dval = atof (yvytext);
return NUMBER;
}

[\t] ; /* ignore whitespace */

[a-Za-z] [A-Za-z0-9]* { /* return symbol pointer */
yylval.symp = symlook(yytext);
return NAME;

}
g { return 0; }

\n |
return yytext[0];
%%

70

Using Yacc

There is one minor way in which our symbol table routine is better than
those in most programming languages: since we allocate string space
dynamically, there is no fixed limit on the length of variable names:*

% ch3-04

foo = 12

foo /5

- 2-4
thlslsanextremelylongvarlablenamewhlchnobodywouldwanttotype = 42
3 * thlslsanextremelylongvarlablenamewhlchnobodywouldwanttotype

126

e o

Functions and Reserved Words

The next addition we make to the calculator adds mathematical functions

for square root, exponential, and logarithm. We want to handle input like
this:

82 = gqQqrt(2)

82

= 1.41421

82*s2

=2

The brute force approach makes the function names separate tokens, and
adds separate rules for each function:

¥token SQRT LOG EXP

%%

expression: . .
| SQRT {‘ expression ‘)’ { $$ = sqgrt($3); }
| LOG ’(* expression ‘) { $$ = log($3); }
I EXP ‘(‘ expression ‘)‘ { $$ = exp($3); }

In the scanner, we have to return a SQRT token for “sqrt” input and so forth:

gsqrt return SQRT;
log return 10G;
exp return EXP;

[A-Za-z] [A-Za-z0-9]* {

* Actually, there is a limit due to the maximum token size that lex can handle, but you can
make that rather large. See “yytext” in Chapter 6, A Reference for Lex Specifications.

71

lex & yacc

(The specific patterns come first so they match before than the general
symbol pattern.)

e ol ol

This works, but it has problems. One is that you must hard-code every
function into the parser and the lexer, which is tedious and makes it hard to
add more functions. Another is that function names are reserved words,
i.e., you cannot use sqrt as a variable name. This may or may not be a

nroble den
problem, depending on your intentions.

Reserved Words in the Symbol Table

First we’ll take the specific patterns for function names out of the lexer and
put them in the symbol table. We add a new field to each symbol table

J T L - AN I e tla T
entry: funcptr, a pointer to the C function to call if this entry is a function

name.

struct symtab {
char *name;
double (*funcptr) ();
double value;

} symtab[NSYMS];

We have to put the function names in the symbol table before the parser
starts, so we wrote our own main() which calls the new routine addfunc()
to add each of the function names to the symbol table, then calls yyparse().
The code for addfunc() merely gets the symbol table entry for a name and
sets the funcptr field.

main()
{
extern double sqrt(), exp(}, log():

addfunc ("sqrt®, sart);
addfunc ("exp", exp):
addfunc("log®, log);
yyparse();

1

addfunc (name, func)

char *name;

double (*func) ();

{
struct symtab *sp = symlook(name);
sp->funcptr = func;

1

We define a token FUNC to represent function names. The lexer will return
FUNC when it sees a function name and NAME when it sees a variable
name. The value for either is the symbol table pointer.

72

Using Yacc

In the parser, we replace the separate rules for each function with one gen-
eral function rule:

$token <symp> NAME FUNC

%

expression: ...

| FUNC ‘(' expression ')’ { $$ = ($l->funcptr) ($3); }
When the parser sees a function reference, it can consult the symbol table
entry for the function to find the actual internal function reference.

In the lexer, we take out the patterns that matched the function names

asremli ttl. S d Sh hn artice ~oda FAs mameae tay re
e€xpiicilly, and change the action couac [or names (O ret

symbol table entry says that a name is a function name:

ey ETIN
uliL r

i if tha
VNG 11 LG

[A-Za-z] [A-Za-z0-9]* {
struct symtab *sp = symlook (yytext);

yylval.symp = sp:

31 f{arn-sfinonmtr) /*® 1o
1T {sp~->Iuncplr, / is

return FUNC;
else
return NAME;
}

These changes produce a program that works the same as the one above,
but the function names are in the symbol table. The program can, for
example, enter new function names as the parse progresses.

Interchangeable Function and Variable Names

A final change is technically minor, but changes the language significantly.
There is no reason why function and variable names have to be disjoint!
The parser can tell a function call from a variable reference by the syntax.

So we put the lexer back the way it was, always returning a NAME for any
kind of name. Then we change the parser to accept a NAME in the function
position:

$token <symp> NAME

%

expression: ...

| NAME ‘(‘ expression ‘)’ { ... }

The entire program is in Examples 3-8 through 3-11. As you can see in
Example 3-9, we had to add some error checking to make sure that when
the user calls a function, it’s a real function.

73

lex & yacc

Now the calculator operates as before, except that the names of functions

and variables can overlap.

a L R U R VA AT Y)

% ch3-05

sqrt (3)

= 1.73205

foo(3)

foo not a function
=0

sqrt = 5

sqrt (sqrt)

= 2.23607

Whether you want to allow users to use the same name for two things in
the same program is debatable. On the one hand it can make programs
harder to understand, but on the other hand users are otherwise forced to

invent names that do not conflict with the reserved names.

Either can be taken to extremes. COBOL has over 300 reserved words, so
nobody can remember them all, and programmers resort to strange conven-
tions like starting every variable name with a digit to be sure they don't
conflict. On the other hand, PL/I has no reserved words at all, so you can
write:

IF IF = THEN THEN ELSE = THEN; ELSE ELSE = IF;

Example 3-8: Final calculator beader ch3bdr2.h

#define NSYMS 20 /* maximum number of symbols */

struct symtab {
char *name;
double (*funcptr)();
double value;

} symtab[NSYMS];

struct symtab *symlook():

Example 3-9: Rules for final calculator parser ch3-05.y

%{

#include "ch3hdr2.h"
#include <string.h>
#include <math.h>

%}

$union {

double dval;

struct symtab *symp;
}
$token <symp> NAME

74

Using Yacc

Example 3-9: Rules for final calculator parser ch3-05.y (continued)

$token <dval> NUMBER
fleft '-' ‘4!

left
$nonassoc UMINUS

1% 2 l/l

stype <dval> expression

%

statement_list:

statement ‘\n‘

l statement_list statement ‘\n‘

.
F

statement: NAME ‘=’ expression { $1l->value = $3; }
| expression { printf ("= %g\n”", $1); }
expression: expression ‘+’ expression { $$ = 51 + $3; }
} expression ‘-’ expression { $§ = $1 - $3; }
t expression ‘*’ expression { $$ = $1 * $3; }
! expression ‘/’ expression
{ if(83 == 0.0)
yyerror(*divide by zero");
else
$$ = $1 / §3;
}
| ‘—+ expression %prec UMINUS { $$ = -52; }
§ *(* expression ‘)’ { §8 =82;)
f NUMBER
i NAME { 8% = §l->value; }
§ NAME (‘' expression ‘)’ {
if (S1->funcptr)
$$ = ($l->funcptr) ($3);
else {
printf{"%s not a function\n", $l->name);
5% = 0.0;
}
}
L1

Example 3-10: User subroutines for final calculator parser ch3-05.y

/* look up a symbol table entry, add if not present */

struct symtab *

symlook (s)
char *s;

{

char *p;

struct symtab *sp;

for(sp = symtab; sp < &symtab[NSYMS]; sp++) {
/* is it already here? */

75

lex & yacc

Example 3-10: User subroutines for final calculator parser ch3-05.y (continued)

if (sp->name && !strcmp(sp->name, s))
return sp;

/* is it free */

if (1sp->name) {
sp->name = strdup(s);
return sp;

}

/* otherwise continue to next */

}
yyerror ("Too many symbols”);
exit(l); /* cannot continue */

} /* symlook */

double (*func) ();

{
struct symtab *sp = symlook(name) ;
sp->funcptr = func;

}

main()

{
extern double sqrt(), exp{(), log();
addfunc ("sqrt”, sart);
addfunc ("exp", exp);
addfunc("log®, log);
yyparse();

}

Example 3-11: Final calculator lexer ch3-05.1

%{

#include "y.tab.h"
#$include "ch3hdr2.h"
#include <math.h>
%}

%%

([0-91+] ([0-9]1*\.[0-9]+) ([eE] {-+]2[0-9]1+)?) {
yylval.dval = atof (yytext);
return NUMBER;

}
[\l /* ignore whitespace */
[A-Za-z] [A-Za-2z0-91* { /* return symbol pointer */

struct symtab *sp = symlook(yytext);

76

Using Yacc

Example 3-11: Final calculator lexer ch3-05.1 (continued)

yylval.symp = sp;
return NAME;

}
g { return 0; }

\n I
return vytext [0];
%%

Building Parsers with Make

About the third time you recompile this example, you will probably decide
that some automation in the recompilation process is in order, using the

UNIX make program. The Makefile that controls the process is shown in
Examnle 3-12,

AGLLLPAN

Example 3-12: Makefile for the calculator

$LEX = flex -I
#YACC = byacc

CC = c¢c -DYYDEBUG=1

ch3-05: y.tab.o lex.yy.o
$(CC) -o ch3-05 v.tab.o lex.yy.o -ly -11 -1m

lex.yy.o: lex.yy.c "y.tab.h
lex.yy.0 y.tab.o: ch3hdr2.h

v.tab.c "y.tab.h: ch3-05.y
$(vacc) -d ch3-05.y

lex.yy.c : ch3-05.1
$ (LEX) ch3lex.l

At the top are two commented assignments that substitute flex for lex and
Berkeley yacc for AT&T yacc. Flex needs the —Iflag to tell it to generate an
interactive scanner, one that doesn’t try to look ahead past a newline. The
CC macro sets the preprocessor symbol YYDEBUG which compiles in some
debugging code useful in testing the parser.

The rule for compiling everything together into ch3 refers to three libraries:
the yacc library —Zy, the lex library -/, and the math library —/m. The yacc

lihrarv nrovides varrnr(\ and. in earlvy versions of the CZ](‘II]ZTOI‘ mam()

MUIGL § PNV IGCS YN AANAN S SN Lhs 8L L9 e S A VLLE Do LI LAl tiidAiiin, 114,

The lex library provides some internal support routines that a lex scanner

77

lex & yacc

needs. (Scanners generated by flex don’t need the library, but it does no
)

harm to leave it in.) The math library provides sqrt(), exp(), and log().

If we were to use bison, the GNU version of yacc, we’d have to change the
rule that generates y.tab.c because bison uses different default filenames:
y.tab.c "y.tab.h: ch3yac.y
bison -d ch3yac.yY

mv ch3yac.tab.c y.tab.c
mv ch3yac.tab.h "y.tab.h

(Or we could change the rest of the Makefile and the code to use bison’s
more memorable names, or else use —y which tells bison to use the usual
yacc filenames.)

For more details on make, see Steve Talbott’s

1A ivay L PSS § T Ve L LVILL

Make, published by O'Reilly & Associates.

Summary

In this chapter, we've seen how to create a yacc grammar specification, put
it together with a lexer to produce a working calculator, and extended the
calculator to handle symbolic variable and function names. In the next two
chapters, we'll work out larger and more realistic applications, a menu gen-
erator and a processor for the SQL data base language.

Exercises

1. Add more functions to the calculator. Try adding two argument func-
tions, e.g., modulus or arctangent, with a rule like this:

expression: NAME ‘(‘ expression ’,’ expression ‘}’

You should probably put a separate field in the symbol table for the
two-argument functions, so you can call the appropriate version of
atan() for one or two arguments.

2. Add a string data type, so you can assign strings to variables and use
them in expressions or function calls. Add a STRING token for quoted
literal strings. Change the value of an expression to a structure contain-
ing a tag for the type of value along with the value. Alternatively,
extend the grammar with a stringexp non-terminal for a string expres-
sion with a string (char *) value.

3. If you added a stringexp non-terminal, what happens if the user types
this?

78

Using Yacc

N

42 + "grapefruit”

How hard is it to modify the grammar to allow mixed type expressions?
What do you have to do to handle assigning string values to variables?
How hard is it to overload operators, e.g., using “+” to mean catenation
if the arguments are strings?
Add commands to the calculator to save and restore the variables to and
from disk files.
Add user-defined functions to the calculator. The hard part is storing
away the definition of the function in a way that you can re-execute
when the user calls the function. One possibility is to save the stream
of tokens that define the function. For example:
statement: NAME ‘(’ NAME ’)‘ ‘=‘ { start_save($l, $3); }

expression

{ end_save(); define func($1, $3); }
The functions start_save() and end_save() tell the lexer to save a list of
all of the tokens for the expression. You need to identify references
within the defining expression to the dummy argument $3.
When the user calls the function, you play the tokens back:

expression: USERFUNC ‘(' expression *}’ { start_replay($l, $3); }

expression/* replays the function */

{ $% = $6; }/* use its value */
While playing back the function, insert the argument value $3 into the
replayed expression in place of the dummy argument.
If you keep adding features to the calculator, you'll eventually end up
with your own unique programming language. Would that be a good
idea? Why or why not?

79

In this chapter:
* Overview of the
MGL

Developing the MGL
Building the MGL

Screen Processing A Menu

Termination

« Sample MGL Code Generation
» Exercises -
Lcmg uag e

[4

The previous chapter provided a simple example of an interpreter, a desk-
top calculator. In this chapter, we turn our attention to compiler design by
developing a menu generation language (MGI) and its associated com-
piler. We begin with a description of the language that we are going to cre-
ate. Then we look at several iterations of developing the lex and yacc
specifications. Lastly, we create the actions associated with our grammar
and which implement the features of the MGL.

Overview of the MGL

Wwe’'ll develop a language that can be used to generate custom menu inter-
faces. It will take as input a description file and produce a C program that
can be compiled to create this output on a user’s terminal, using the stan-
dard curses library to draw the menus on the screen.*

In many cases when an application requires a lot of tedious and repetitive
code, it is faster and easier to design a special purpose language and write
a little compiler that translates your language into C or something else your
computer can already handle. Curses programming is tedious, because you
have to position all of the data on the screen yourself. MGL automates
most of the layout, greatly easing the job.

*For more information on curses, see Programming with Curses by John Strang, published by
O'Reilly & Associates.

81

lex & yacc

The menu description consists of the following:

1. A name for the menu screen
2. A title or titles
3.

A list of menu items, each consisting of:

item

[command]
action

[attribute]

where item is the text string that appears on the menu, command is the
mnemonic used to provide command-line access to the functions of the
menu system, action is the procedure that should be performed when a
menu item is chosen, and attribute indicates how this item should be
handled. The bracketed items are optional.

4. A terminator

Since a useful application usually has several menus, a description file can
contain several different named menus.

A sample menu description file is:

screen myMenu
title "My First Menu®
title "by Tony Mason"

item "List Things to Do"
command "to-do"

action execute list-things-todo
attribute command

item "Quit-
command "quit"
action quit

end myMenu

The MGL compiler reads this description and produces C code, which must
itself be compiled. When the resulting program is executed, it creates the
following menu:

My First Menu
by Tony Mason

1) List Things to Do
2) Quit

82

A Menu Generation Language

When the user presses the “1” key or enters the command “to-do”, the pro-
cedure “list-things-todo” is executed.

A more general description of this format is:

CAVIOV ATV
screen <mame>

title <string>

item <string>

[command <string>]

action fexecute | menu | quit| ignore} <name>
{ attribute {visible | invisible]]

end <name>

As we develop this language, we will start with a subset of this functional-
ity and add features to it until we implement the full specification. This
approach shows you how easy it is to modify the lex-generated lexer and
the yacc-generated parser as we change the language.

Developing the MGL

Let’s look at the design process that led to the grammar above. Menus pro-
vide a simple, clean interface for inexperienced users. For these users, the
rigidity and ease of use provided by a menu system is ideal.

A major disadvantage of menus is that they keep experienced users from
moving directly into the desired application. For these people, a com-
mand-driven interface is more desirable. However, all but the most experi-
enced users occasionally want to fall back into the menu to access some
seldom used function.

Our MGL should be designed with both of these design goals in mind. Ini-
tially, suppose we start with the keyword command, which indicates a
menu choice or command that a user can issue to access some function.

This hardly constitutes a usable language. Nevertheless, we can sketch out
a lexical specification for it:

ws [\t]+
nl \n
L1
{ws} ;
command { returm COMMAND; }
{nl} { lineno++; }
{ return yytext[0];}

83

lex & yacc

and its corresponding yacc grammar:

%{

#include <stdio.h>
%)

$token COMMAND

%%

start: COMMAND

.
I

Our lexer merely looks for our keyword and returns the appropriate token
when it recognizes one. If the parser sees the token COMMAND, then the
start rule will be matched, and yyparse() will return successfully.

Each item on a menu should have an action associated with it. We can
introduce the keyword action. One action might be to ignore the item (for
unimplemented or unavailable commands), and another might be to exe-
cute a program; we can add the keywords ignore and execute.

Thus, a sample item using our modified vocabulary might be:

command action execute

We must tell it what to execute, so we add our first noncommand argu-
ment, a string. Because program names can contain punctuation, we will
presume that a program name is a quoted string. Now our sample item
becomes:

choice action execute "/bin/sh*®

Example 4-1 demonstrates that we can modify our lex specification to sup-
port the new keywords, as well as the new token type.

Example 4-1: First version of MGL lexer

ws [\El+
gstring \"["\"\n]*[\"\n]
nl \n
3
{ws} ;
{gstring} { yylval.string = strdup(yytext+l); /* skip open quote */
if(yylval.string[yylen-2] = ‘"’)
warning ("Unterminated character string*, (char *)0);
else
yylval.string[yylen-2] = ‘ ‘; /* remove close quote */

return QSTRING;

}
action { return ACTION;)}
execute { return EXECUTE; }

84

A Menu Generation Language

Example 4-1: First version of MGL lexer (continued)

command { return COMMAND; }
ignore { return IGNORE; }
{nl} { lineno++; }

{

return yytext[0]; }

Our complex definition of a gstring is necessary to prevent lex from match-
ing a line like:

"apples" and "oranges"

as a single token. The “[~\"\n]*" part of the pattern says to match
against every character that is not a quotation mark or a newline. We do
not want to match beyond a newline because a missing closing quotation
mark could cause the lexical analyzer to plow through the rest of the file,
which is certainly not what the user wants, and may overflow internal lex
buffers and make the program fail. With this method, we can report the

PR P e + +1 s .
error condition to the user in a more polite manner. When we copy the

string, we remove the opening and closing quotes, because it’s easier to
handle the string without quotes in the rest of the code.

We also need to modify our yacc grammar (Example 4-2).
Example 4-2: First version of MGL parser

%{
#include <stdio.h>
%}

$union {
char *string; /* string buffer */
}

$token COMMAND ACTION IGNORE EXECUTE
%token <string> QSTRING

%%

start: COMMAND action

.
I

action: ACTION IGNORE
| ACTION EXECUTE QSTRING

%
We defined a %union including the “string” type and the new token
QSTRING, which represents a quoted string.

We need to group information for a single command and choice combina-
together as a menu item. We introduce each new item as an item,

85

lex & yacc

using the keyword item. If there is an associated command, we indicate
that using the keyword command. We add the new keyword to the lexer:

%
item { return ITEM; }

Although we have changed the fundamental structure of the language,
there is little change in the lexical analyzer. The change shows up in the
yacc grammar, as shown in Example 4-3.

Example 4-3: Grammar with items and actions

%{
#include <stdio.h>
%)

Sunion {
char *string; /* string pointer */
}

$token COMMAND ACTICN IGNCRE EXECUTE ITEM
%token <string> QSTRING

%%

item: ITEM camand action

cormmand : /* empty */
| COMMAND

action: ACTION IGNORE
| ACTION EXECUTE QSTRING

%

Since each menu item need not have a corresponding command, one of the
command rules has an empty right-hand side. Surprisingly, yacc has no
trouble with such rules, so long as the rest of the grammar makes it pos-
sible to tell unambiguously that the optional elements are not there.

We still have not given any meaning to the keyword command. Indeed, it
is often a good idea to try writing the yacc grammar alone, because it can
indicate “holes” in the language design. Fortunately, this is quickly

86

A Menu Generation Language

remedied. We will restrict commands to strings of alphanumeric charac-
ters. We add an ID for “identifier” token to our lexical analyzer:

id [a-zA-Z] [a-2ZA-Z0-91*

%%
{id} { yylval.string = strdup(yytext);
return ID;

}

The value of an ID is a pointer to the name of the identifier. In general, itis
a poor idea to pass back a pointer to yytext as the value of a symbol,
because as soon as the lexer reads the next token it may overwrite yytext.
(Failure to copy yytext is a common lexer bug, often producing strange
symptoms as strings and identifiers mysteriously seem to change their
names.) We copy the token using strdup() and pass back a pointer to the
copy. The rules that use an ID must be careful to free the copy when they
are done with it.

In Example 4-4 we add the ID token to our yacc grammatr.
Example 4-4: Grammar with command identifiers

%{
#include <stdio.h>
%}

$union {
char *string; /* string buffer */
}

$token COMMAND ACTION IGNORE EXECUTE ITEM
$token <string> QSTRING ID

%%

item: ITEM caommand action

r

command : /* empty */
| COMMAND ID

’

action: ACTION IGNORE
| ACTION EXECUTE QSTRING

7

%%

87

lex & yacc

The grammar does not provide for more than a
add some rules for items that support multiple items:

%
items: /* empty */
| items item

.
r

item: ITEM command action

Unlike all our previous rules, these rely upon recursion. Because yacc pre-
fers left-recursive grammars, we wrote “items item” rather than the right-
recursive version “item items.” (See the section “Recursive Rules” in Chap-
ter 7 for why left-recursion is better.)

One of the rules for items has an empty right-hand side. For any recursive
rule, there must be a terminating condition, a rule that matches the same
non-terminal non-recursively. If a rule is purely recursive with no non-
recursive alternative, most versions of yacc will halt with a fatal error since
it is impossible to construct a valid parser under those circumstances. We
will use left-recursion many times in many grammars.

In addition to being able to specify items within the menu, you may want
to have a title at the top of the menu. Here is a grammar rule that describes
a title:

title: TITLE QSTRING

:

The keyword title introduces a title. We require that the title be a quoted
string. We add the new token TITLE to our lex specification:

%%
title { return TITLE; }

We might want more than a single title line. Our addition to the grammar
is:

titles: /* empty */
| titles title

H

title: TITLE QSTRING

88

A Menu Generation Language

A recursive definition allows multiple title lines.

The addition of title lines does imply that we must add a new, higher-level
rule to consist of either items or titles. Titles will come before items, so
Example 4-5 adds a new rule, start, to our grammar.

Example 4-5: Grammar with titles

%{
#include <stdio.h>
%}

$union {
char *string; /* string buffer */
}

$token COMMAND ACTION IGNORE EXECUTE ITEM TITLE
$token <string> QSTRING ID
%%

titles: /* empty */
| titles title

r

title: TITLE QSTRING
;
items: /* empty */
| items item
item: ITEM command action

’

cammand : /* empty */
| COMMAND ID

r

action: ACTION IGNORE
| ACTION EXECUTE QSTRING

%

After we'd used the MGL a little bit, we found that one menu screen wasn’t
enough. We wanted multiple screens and the ability to refer to one screen
from another to allow multi-level menus.

We defined a new rule screen, to contains a complete menu with both titles
and items. To add the handling of multiple screens, we can, once again,

89

lex & yacc

use a recursive rule to build a new screens rule. We wanted to allow for
empty screens, so we added a total of five new sets of rules:

screens: /* empty */
| screens screen

.
7

SCreen: sSCreen _name screen_contents screen terminator
[screen_name screen_terminator

H

screen_name: SCREEN ID
| SCREEN

-
)

screen_terminator: END ID
! END

H
screen contents: titles lines

We provide each screen with a unique name. When we wish to reference a
particular menu screen, say, “first,” we can use a line such as:

item "first" camand first action menu first

When we name screens, we must also indicate when a screen ends, so we
need a screen_terminator rule. Thus, a sample screen specification might
be something like this:

sCreen main

title "Main screen”

item "fruits" command fruits action menu fruits
item "grains" command grains action menu grains
item "quit" command quit action quit

end main

screen fruits

title "Fruits"®

item "grape" cammand grape action execute "/fruit/grape®
item "melon" command melon action execute "/fruit/melon”
item "main" command main action menu main

end fruits

screen grains

title "Grains"

item "wheat" command wheat action execute "/grain/wheat®
item "barley" command barley action execute */grain/barley”
item "main" command main action merm main

end grains

A Menu Generation Language

Our rule does provide for the case when no name is given; hence, the two
cases for screen_name and screen_terminator. When we actually write
actions for the specific rules, we will check that the names are consistent,
to detect inconsistent editing of a menu description buffer, for instance.

After some thought, we decided to add one more feature to our menu gen-
eration language. For each item, we wish to indicate if it is visible or invisi-
ble. Since of this is an attribute of the individual item, we precede the
choice of visible or invisible with the new keyword attribute. Here is the
portion of our new grammar that describes an attribute:

attribute: /* empty */

| ATTRIBUTE VISIBLE
| ATTRIBUTE INVISIBLE

We allow the attribute field to be empty to accept a default, probably visi-
ble. Example 4-6 is our workable grammar.

Example 4-6: Complete MGL grammar

screens: /* empty */
| screens screen

.
r

screen: gcreen name screen contents screen terminator
| screen_name screen terminator

screen name: SCREEN ID
| SCREEN

screen_terminator: END ID
| END

.
r

screen_contents: titles lines

.
’

titles: /* empty */
| titles title

.
2

title: TITLE QSTRING

’

lines: line
| lines line

;

91

lex & yacc

Example 4-6: Complete MGL grammar (continued)

command: /* empty */
| COMMAND ID

1

action: EXECUTE QSTRING
| MENU ID
| QUIT
| IGNORE

attribute: /* empty */
| ATTRIBUTE VISIBLE
| ATTRIBUTE INVISIBLE

r

We have replaced the start rule of previous examples with the screens rule
as the top-level rule. If there is no %start line in the declarations section, it
simply uses the first rule.

Building the MGL

Now that we have a basic grammar, the work of building the compiler
begins. First, we must finish modifying our lexical analyzer to cope with
the new keywords we introduced in our last round of grammar changes.
Our modified lex specification is shown in Example 4-7.

Hxample 4-7: MGL lex specification

ws [\t]+
comment #.*
gstring A" [*\"\n] *[\"\n]

id [a-2zA~Z] [a-2A-Z0-9] *
nl \n
%%
{ws} ;
{comment} ;
{gstring} { yylval.string = strdup(yytext+l);
if (yylval.string{yylen-2] != **’)
warning { "Unterminated character string®, (char *)0j;
else
yylval.string[yylen-2] = * 7; /* remove close quote */
return QSTRING;

}

92

A Menu Generation Language

Example 4-7: MGL lex specification (continued)

screen {. return SCREEN; }
title { return TITLE; }
item { return ITEM; }
carmand { return COMMAND; }
action { return ACTION; }
execute { return EXECUTE; }
menu { return MENU; }
quit { return QUIT; }
ignore { return IGNORE; }
attribute { return ATTRIBUTE; }
visible { return VISIBLE; }
invigible { return INVISIBLE; }
end { return END; }
{id} { vylval.string = strdup(yyvtext);

return ID;

}

{nl} { lineno++; }

. { return yytext[0]; }
%

An alternative way to handle keywords is demonstrated in Example 4-8.

Example 4-8: Alternative lex specification

id [a—zA-Z] [a—zA-Z0-9]*

%%

{id} { if(yylval.omd = keyword(yytext)) return yylval.cmd;
yylval.string = yytext;
return ID;
}

%%

/*

* keyword: Take a text string and determine if it is, in fact,

* a valid keyword. If it is, return the value of the kevword;

* if not, return zero. N.B.: The token values must be nonzero.
*/

static struct keyword {

char *name; /* text string */
int value; /* token */
} keywords[]l =

{

*screen", SCREEN,
"title", TITLE,

"item", ITma
"command”, COMMAND,
raction", ACTION,
"execute”, EXECUTE,
"menu®, MENU,

"quit", QUIT,

93

lex & yacc

Example 4-8: Alternative lex specification (continued)

"ignore", IGNCRE,
rattribute", ATTRIBUTE,
"visible", VISIBLE,
*invisible", INVISIBLE,
"end", END,

NULL, 0O,

};

int keyword(string)
char *string;
{

struct keyword *ptr = keywords;

while(ptr->name != NULL)
if (stramp (ptr->name, string

LI . T1Aamne

{
return ptr->value;

}

else
ptr++;

return 0; /* no match */
}

The alternate implementation in

Y == 0)

7

Example 4-8 uses a static table to identify

keywords. The alternative version is invariably slower, since a lex lexer’s
speed is independent of the number or complexity of the patterns. We
chose to include it here simply because it demonstrates a useful technique
we could use if we wished to make the language’s vocabulary extensible.
In that case, we would use a single loockup mechanism for all keywords,
and add new keywords to the table as needed.

Logically, we can divide the work in processing an MGL specification file

into several parts:
Initialization

Start-of-screen processing

Screen processing

Initialize all internal data tables, emit any
preambles needed for the generated code.

Set up a new screen table entry, add the
name of the screen to the name list, and
emit the initial screen code.

As we encounter each individual item, we

deal with it; when we see title lines, we
add tham tn the title lict

~ Tra Qo
Al UICIIL WU uiv uuv 1oL, alily

vvllen VY Dbe
new menu items, we add them to the item
list.

A Menu Generation Language

End-of-screen processing When we see the end statement, we pro-
cess the data structures we have built
while reading the screen description and
emit code for the screen.

Termination We “clean up” the internal state, emit any
final code, and assure that this termination
is OK; if there is a problem, we report it to
the user.

A certain amount of work must be performed when any compiler begins
operation. For instance, internal data structures must be initialized; recall
that Example 4-8 uses a keyword lookup scheme rather than the hardcoded
keyword recognition scheme used earlier in Example 4-7. In a more com-

U TP o 1 table as nart of initialization we would

JON [18 . VS P crriva e P
plex appiication with a symbol table as part of mitialization we wou

insert the keywords into the symbol table as we did in Example 3-10.

Our main() routine starts out simply:

main ()
{
yyparse() ;

}
We must also be able to invoke our compiler by giving it a filename.
Because lex reads from yyin and writes to yyout, which are assigned to the
standard input and standard output by default, we can reattach the input
and output files to obtain the appropriate action. To change the input or
output, we open the desired files using fopen() from the standard I/O
library and assign the result to yyin or yyout.

If the user invokes the program with no arguments, we write out to a
default file, screen.out, and read from the standard input, stdin. If the user
invokes the program with one argument, we still write to screen.out and
use the named file as the input. If the user invokes the program with two
arguments, we use the first arguemnt as the input file and the second argu-
ment as the output file.

After we return from yyparse(), we perform post-processing and then
check to assure we are terminating with no error condition. We then clean
up and exit.

95

lex & yacc

Example 4-9 shows our resulting main() routine.
Example 4-9: MGL main() routine

char *progname = "mgl";
int lineno = 1;

#define DEFAULT QOUTFLLE "screen.out"

main(int arge, char **argv)
{
char *outfile;
char *infile;
extern FILE *yyin, *yyout;

progname = argv(0];

if (argc > 3)
{
fprintf (stderr,usage, progname};
exit(l);
}
if(argc > 1)
{
infile = argv[l];
/* open for read */
yyin = fopen(infile, "r");
if(yyin == NULL) /* open failed */
{
fprintf (stderr, "%s: cannot open %s\n",
progname, infile);
exit(1l);
}
}
if(argc > 2)
{
outfile = argvl2];
}
else
{
outfile = DEFAULT CUTFILE;
}

yyout = fopen(outfile, "w");
if (yyout == NULL) /* open failed */
{

fprintf (stderr, "%s: cannot open %s\n",
progname, outfile);
exit (l);

A Menu Generation Language

Example 4-9: MGL main() routine (continued)

/* normal interaction on yyin and
yyout from now on */

vyparse();
end_file(); /* write out any final information */

/* now check EOF condition */

if (!screen_done) /* in the middle of a screen */

{
warning ("Premature EOF", (char *}0);
unlink(cutfile); /* remove bad file */
exit(1);

}

exit (0); /* no error */

}

warning (char *s, char *t) /* print warning message */
{
fprintf (stderr, "%s: %s", progname, s);
if (t)
fprintf (stderr, " %s", t);
fprintf (stderr, " line %d\n", lineno);

Screen Processing

Once we have initialized the compiler and opened the files, we turn our
attention to the real work of the menu generator—processing the menu
descriptions. Our first rule, screens, requires no actions. Our screen rule
decomposes into the parts screen_name, screen_contents, and screen_ter-
minator. screen_name interests us first:
screen name: SCREEN ID
| SCREEN

We insert the specified name into our list of names duplicates; in case no
name is specified, we will use the name “default.” Our rule becomes:

screen_name: SCREEN ID { start _screen($2); }
| SCREEN { start_screen(strdup("default")}; }

K

(We need the call to strdup() to be consistent with the first rule which
passes a string dynamically allocated by the lexer.) The start_screen rou-
tine enters the name into our list of screens and begin to generate the code.

97

lex & yacc

For instance, if our input file said “screen first”, the start_screen routine

would produce h ollowing code:

Wi LI LRSS Vil SRR

/* screen first */
mer_first()
{
extern struct item menu_first items[]:;

if(!init) menu_init();

clear();
refreshi();

When processing our menu specification, the next object is a title line:

title: TITLE QSTRING-

.

We call add_title(), which computes the positioning for the title line:

title: TITLE QSTRING { add_title($2); }

I

Our sample output for title lines looks like this:

move(0,37);
addstr({"First");
refresh();

We add a title line by positioning the cursor and printing out the given
quoted string (with some rudimentary centering as well). This code can be
repeated for each title line we encounter; the only change is to the line
number used to generate the move() call.

To demonstrate this, we make a menu description with an extra title line:

screen first
title "First"
title "Copyright 1992*

item "first" command first action ignore
attribute visible

item "second" command second action execute "/bin/sh*
attribute visible

end first

screen second

title *Second"

item "second” cammand second action meru first
attribute visible

item *first" command first action quit
attribute invisible

end second

A Menu Generaiion Language

Our sample output for title lines is:

move(0,37);
addstr("First");
refresh();

move(l,32);

addstr ("Copyright 1992");
refresh{();

Once we see a list of item lines, we take the individual entries and build an
internal table of the associated actions. This continues until we see the
statement end first when we perform post-processing and finish building
the screen. To build a table of menu items, we add the following actions to
the item rule:

line: ITEM gstring cammand ACTION action attribute

{
item str = $2;
add_line ($5, §6);

&d _ TN .

Py = Lilddi;

}
The rules for command, action, and attribute primarily store the token val-
ues for later use:

command: /* empty */ { ond_str = strdup(”""); }
| COMMAND id { omd_str = $2; }

r

A command can be null or a specific command. In the first case we save a
null string for the command name (using strdup() to be consistent with the
next rule), and in the second we save the identifier given for the command
in cmd_str.

The action rules and the associated actions are more complex, partially
because of the larger number of variations possible:

action: EXECUTE gstring
{ act_str = $2;

$$ = EXECUTE;
}
| MENU id

{ /* make "menu_" $2 */
act_str = malloc(strlen($2) + 6);
strcpy (act_str, "menu_") ;

strecat (act_str, $2);

free($2);
$$ = MENU;
}
| QUIT { $$ = QUIT; }
i I& { $5 = IGXORE; }

99

lex & yacc

Finally, the attribute rule is simpler, as the only semantic value is repre-
sented by the token:

attribute: /* empty */ { 8%
| ATTRIBUTE VISIBLE { $$ = VISIBLE;)
| ATTRIBUTE INVISIBLE { s8

r

The return values of the action rule and the attribute rule were passed to
the add_line routine; this call takes the contents of the various static string
pointers, plus the two return values, and creates an entry in the internal
state table.

Upon seeing the end first statement, we must the final processing of the
screen. From our sample output, we finish the menu_first routine:

menu_runtime (menu_first_items);

}

The actual menu items are written into the array menu_first_items:

/* end first */

struct item menu_first_items[]={
{"first","first",271,"",0,273},
{"second", "second", 267, "/bin/sh", 0,273},
{(char *)0, (char *)0, 0, (char *)0, 0, 0},

}:

The run-time routine menu_runtime will display the individual items; this
will be included in the generated file as part of the code at the end.

Termination

The final stage of dealing with a single screen is to see the termination of
that screen. Recall our screen rule:

screen: screen name screen contents screen terminator
| screen name screen terminator

7

The grammar expects to see the screen_terminator rule:

screen_terminator: END ID
| END

r

100

A Menu Generation Language

We add a call to our post-processing routine for end-of-screen post-pro-
cessing (not the end-of-file post-processing which we will discuss later in
this section). The resulting rule is:

screen_terminator: END id { end screen($2); }

r

| END { end_screen(strdup(*default")); }

It calls the routine end_screen with the name of the screen or “default” if no
name is provided. This routine validates the screen name. Example 4-10
shows the code that implements it.

Example 4-10: Screen end code

/*

* end screen:
* Finish screen, print out postamble.
*/

end_screen(char *name)

{

}

fprintf (yyout, "menu_runtime (menu %s_items);0,name);

if (strcmp (current_screen,name) != 0)
{
warning ("name mismatch at end of screen",
current_screen};
}
fprintf (yyout, "10);
fprintf (yyout, "/* end %s */0,current_screen);

process_items();
/* write initialization code out to file */
if (idone_end_init)
{
done_end init = 1;
dump_data(memnu_init);
}
current_screen[0] = * /;

screen done = 1;

returmn 0;

/* no current screen */

This routine handles a screen name mismatch as a nonfatal error. Since the

101

lex & yacc

This routine processes the data generated by our add_item() call by pro-
nnnnnn demdicid i al ftaees admtmiag writh faeacace itameal Thon it ~allg
\..CDDJJIS Iy idiual 1LC111 CIILLICY VWilLll PIULCDD].LLJ.]J.D\} 11111 1L Lallo
dump_data to write out some initialization routines; these initialization rou-
tines are really a static array of strings that are built into the MGL compiler.
We call dump_data() in several places to dump different code fragments to
the output file. An alternative approach is to simply copy these code frag-
ments from a “skeleton” file containing the boiler-plate code, as some ver-

sions of lex and yacc do.

Post-processing occurs after all input has been read and parsed. This is
done by the main() routine by calling end_file() after yyparse() has com-
pleted successfully. Our implementation is:

’/*

* this routine writes out the run-time support

*/

end_file()
{

dump_data (menu_runtime);
}
This routine contains a single call to dump_data() to write the runtime rou-
tines, which are stored in a static array in the compiler as the initialization
code was. All our routines that handle the boiler-plate code are sufficiently
modular in design that these could be rewritten to use skeleton files.

Once this routine has been called, the main routine terminates by checking
to determine if the end of input was detected at a valid point, ie., at a
screen boundary, and is not generating an error message.

Sample MGL Code

Now that we have built a simple compiler, let's demonstrate the basic
workings of it. Our implementation of the MGL consists of three parts: the
yacc grammar, the lex specification, and our supporting code routines. The
final version of our yacc grammar, lex lexer, and supporting code is shown
in Appendix I, MGL Compiler Code.

e do consider the sample code to be robust enough for serious use;
our attention was given to developing a first-stage implementation. The

102

A Menu Generation Language

resulting compiler will, however, generate a fully functional menu com-
piler. Here is our sample input file:

screen first
title "First"

item "dummy line" command dummy action ignore
attribute visible

item "run shell" command shell action execute "/bin/sh*
attribute visible

end first
screen second
title "Second"

item "exit program® command exit action quit
attribute invisible

item "other menmu" caommand first action menu first
attribute visible

end second

When that description file was processed by our compiler, we got the fol-
lowing output file:

/*
* Generated by MGL: Thu Aug 27 18:03:33 1992
*/

/* initialization information */
static int init;

#include <curses.h>
#include <sys/signal.h>
#include <ctype.h>
#include "mglyac.h”

/* structure used to store menu items */
struct item {
char *desc;
char *cmd;
int action;
char *act_str; /* execute string */
int (*act_menu) (): /* call appropriate function */
int attribute;
}:

/* screen first */
menu_first ()
{

extern struct item menu_first_items([]:

103

lex & yacc

if (Iinit) menu_init();

cleari);

refresh();

move(0,37);

addstr("First®);

refresh();

meny_runtime (menu_first_items);
1
struct item menu_first_jtems[]={
{"dummy line", "durmy",269,"",0,271)},
{"run shell®, "shell", 265, "/bin/sh", 0,271},
{(char *)0, (char *)Q, 0, {(char *)0, Q, 0},
};

menu_init()

o N

{
void menu_cleanup();
signal (SIGINT, menu_cleanup);
initser();
crmode() ;

}

mery_cleanup ()

{
mvcur (0, COLS - 1, LINES - 1, 0);
endwin();

}

/* screen second */

menu_second ()

{

extern struct item menu_second items[];
if(!init) menu_init();

clear();

refresh();

move{0,37);

addstr("Second");

refresh();

menu_runtime (menu_second_items):
}
/* end second */
struct item menu_sgsecond_items[]={
{*exit program®,*exit®,268,"",0,272},
{"other menu","first~,267, """, menu_first,271},
{{(char *)0, {(char *)0, 0, (char *)0, 0, 0},
}:

/* runtime */

104

A Menu Generation Language

menu_runtime (items)
struct item *items;

{

int visible = 0;
int choice = 0;

struct item *ptr;
char buf [BUFSIZ]:

for(ptr = items; ptr->desc != 0; ptr++) {
addch(’\n’); /* skip a line */
if(ptr->attribute == VISIBLE) {
visible++;
printw("\t$d) %s",visible,ptr->desc);

}

addstr("\n\n\t"): /* tab out so it looks nice */
refresh();

for(;:
{

int i, nval;
getstr(buf) ;

/* numeric choice? */
nval = atoi (buf);

/* command choice ? */
i=0;
for(ptr = items; ptr->desc != 0; ptr++) {
if (ptr->attribute != VISIBLE)
continue;
14++;
if(nval == i)
break;
if (lcasecmp (buf, ptr->cmd))
break;
}

if (!ptr->desc)
continue; /* no match */

switch(ptr—>action)

{

case QUIT:
return 0;

case IGNORE:
refresh();
break;

case EXECUTE:
refresh();
system(ptr->act_str);
break;

105

lex & yacc

case MENU:
refresh();
(*ptr->act_menu) () ;
break;
default:
printw("default case, no action\n");
refresh();
break;
}

refreshi};
}

casecmp (char *p, char *q)
{
int pe, qc:

for{; *p = 0; p++, g++) {
pc = tolower(*p):
gc = tolower(*q);

if{pc != qo)
break;

}
return pc-gc:
}

In turn, we compiled this code, generated by our compiler and written to
Jirst.c, with the following command:

S cat »>» first.c

main()

{

menu_second();

menu_cieanup();

}

“D

$ cc -o first first.c -icurses -itermcap

$

We had to add a main() routine to the generated code; in a revision of the
MGL, it might be desirable to include a command-line option or a specifica-
tion option to provide the name of a routine to call from within the main
loop; this a typical possible enhancement. Because we wrote our grammar
in yacc, this modification would be easy. For example, we might modify
the screens rule to read:

screens: /* nothing */
| preamble screens screen
| screens screen

.
1

106

A Menu Generation Language

preamble: START ID
| START DEFAULT

’

where we add appropriate keywords for START and DEFAULT.

Running our MGL-generated screen code, we see with the following menu
screen:

Second

1) other menu

We see the one visible menu entry, and when we enter “1” or “first” move
to the first menu:

First

1) dumy line
2) run shell

Exercises

1. Add a command to identify the main screen and generate a main rou-
tine, as outlined previously.

2. Improve the screen handling: read characters in CBREAK mode rather
than a line at a time, allow more flexible command handling, e.g.,
accept unique prefixes of commands rather than requiring the whole
command, allow application code to set and clear the invisible attribute,
etc.

3. Extend the screen definition language to let titles and command-names
come from variables in the host program, e.g.:

screen sample
title Stitlevar
item $labell command $cmdl action ignore
attribute visible
end sample
where titlevar and labell are character arrays or pointers in the host
program.
4. (Term project) Design a language to specify pulldown or pop-up

menus. Implement several translators based on the same parser so you
can use the same menu specification to create menus that run in differ-
ent environments, e.g., a terminal with curses, Motif, and Open Look.

107

lex

& yacc

108

Yacc is often used to implement “little languages” that are specific to an
application area and translate into lower-level, more general languages.
The MGL turns a menu specification into C, egrn turns an equation lan-
guage into raw troff. What are some other application areas that would
benefit from a little language? Design and implement a few of them
with lex and yacc.

In this chapter:
* A Quick Overview

of SQL
« The Syntax Checker
+ The Parser -
« Embedded SQL :
R Parsing SOL

SQL (which stands for Structured Query Language and is usually pro-
nounced sequel) is the most common language used to handle relational
data bases.* First we'll develop a SQL parser that checks the syntax of its
input but doesn’t do anything else with it. Then we’ll turn that into a

. .
preprocessor for SQL embedded in C programs.

This parser is based on the definition of SQL in C. J. Date, A Guide to the
SQL Standard, Second Edition, Addison-Wesley, 1989. Date’s description is
written in Backus-Naur Form or BNF, a standard form used to write formal
language descriptions. Yacc input syntax is similar to BNF except for the
punctuation, so in many places it was sufficient to transliterate the BNF to
get the corresponding yacc rules. In most cases we use the same symbol
names Date did, although in a few places we’ve deviated from his usage in
order to make the grammar suitable for yacc.

The ultimate definitions for SQL are the standards documents, ANSI
X3.135-1989 (which defines SQL itself) and ANSI X3.168-1989 (which
defines the way to embed SQL in other programming languages).

A Quick Overview of SQL

SQL is a special purpose language for relational data bases. Rather than
manipulating data in memory, it manipulates data in data base tables, refer-
ring to memory only incidentally.

*SQL is the Fortran of data bases—nobody likes it much, the language is ugly and ad hoc,
every data base supports it, and we all use it.

109

lex & yacc

Relational Data Bases

A data base is a collection of fables, which are analogous to files. Each
table contains rows and columns, which are analogous to records and
fields. The rows in a table are not kept in any particular order. You create
a set of tables by giving the name and type of each column:

CREATE TABLE Foods (
name CHAR(8) NOT NULL,
type CHAR(5),
flavor CHAR(6),
PRIMARY KEY (name)

}

CREATE TABLE Courses {
course CHAR(8) NOT NULL PRIMARY KEY,
flavor CHAR(6) ,
sequence INTEGER

)

The syntax is completely free-format and there are often several different
syntactic ways to write the same thing—notice the two different ways we
gave the PRIMARY KEY specifier. (The primary key in a table is a column or
set of columns that uniquely specify a row.) Figure 5-1 shows the two
tables we just created after loading in data.

Foods

name type flavor
peach fruit | sweet
tomato fruit | savory
lemon fruit | sour
lard fat bland
cheddar | fat savory

Courses

course flavor sequence
salad savory 1
main savory 2
dessert | sweet 3

Figure 5-1: Two relational tables

110

Parsing SQL

To use a data base, you tell the data base what you want from your tables.
It's up to the data base to figure out how to get it. The specification of a set
of desired data is a query. For example, using the two tables in Figure 5-1,
to get a list of fruits, you would say:

SELECT Foods.name, Foods.flavor

FROM Foods
WHERE Foods.type = "fruit"®

The response is:

name flavor

peach sweet

tomato | savory

lemon sour

You can also ask questions spanning more than one table. To get a list of

g . 1 - | ol (=

foods suitable to each course of the meal, you say:

SELECT course, name, Foods.flavor, type

FROM Courses, Foods

WHERE Courses.flavor = Foods.flaver
The response is:

course name flavor type

salad tomato savory | fruit

salad cheddar | savory | fat

main tomato savory | fruit
main cheddar | savory | fat
dessert | peach sweet | fruit

When listing the column names we can leave out the table name if the col-
umn name is unambiguous.

Manipulating Relations

SQL has a rich set of table manipulation commands. You can read and
write individual rows with SELECT, INSERT, UPDATE, and DELETE com-
mands. More commonly, you need to do something to each of a group of
rows. In that case a different variant of SELECT defines a cursor, a sort of
file pointer that can step through a set of rows to let you handle the rows
one at a time. You then use OPEN and CLOSE commands to find the rele-
vant rows and FETCH, UPDATE CURRENT, and DELETE CURRENT to do things

111

The SELECT statement has a very complex syntax that lets you look for val-
ues in columns, compare columns to each other, do arithmetic, and com-
pute minimum, maximum, average, and group totals.

Three Ways to Use SQL

In the original version of SQL, users typed commands into a file or directly
at the terminal and received responses immediately. People still sometimes
use it this way for creating tables and for debugging, but for the vast major-
ity of applications, SQL commands come from inside programs and the
results are returned to those programs.

The first approach to combining SQL with conventional languages was the
SQL module language, which let you define little routines in SQL that you
could call from conventional languages. Example 5-1 defines a cursor and
three procedures that use it.

Example 5-1: Exampile of SQL module language

MODULE LANGUAGE C AUTHORIZATION JOHNL

DECLARE flav CURSOR FOR
SELECT Foods.name, Foods.type
FROM Foods
WHERE Foods.flavor = myflavor
— myflavor is defined below

PROCEDURE open_flav
SQLCCODE
myflavor CHAR(6) ;
OPEN flav

PROCEDURE close_flav
SQLCCODE ;
CLOSE flav

PROCEDURE get_flav
SQLCCODE
myname CHAR(8)
mytype CHAR(5) ;
FETCH flav INTO myname, mytype

112

Parsing SQL

Within a C program one could use the routines in the module by writing:

char flavor{6], name[8], typel5];

main()
{
int icode:

scanf ("%s", flavor);
open_flav(&icode, flavor);
for(;;) {
get_flav(&icode, name, type);
if(icode != 0)
break;
printf("%8.8s %5.5s\n", name, type):;
} N
close_flav{&icode) :
}

This works, but it is a pain in the neck to use, because every SQL statement
you write has to be wrapped in a little routine. The approach people really
use is embedded SQL, which lets you put chunks of SQL right in your pro-
gram. Each SQL statement is introduced by “EXEC SQL” and ends with a
semicolon. References to host language variables are preceded by a colon.
Example 5-2 shows the same program written as embedded SQL.

Example 5-2: Example of embedded SQL

char flavor[6], name([8], typel5];
int SQLCODE; /* global status variable */

EXEC SQL DECLARE flav CURSCR FOR
SELECT Foods.name, Foods.type
FROM Foods
WHERE Foods. flavor = :flavor ;

main{)
{
scanf("%s", flavor);
EXEC SQL OPEN flav ;
for(;;) {
EXEC SQL FETCH flav INTC :name, :type ;
1f (SQLCODE != 0)
break;
printf("%8.8s %5.5s\n", name, type);
}
EXEC SQL CIOSE flav ;
}

To compile this, you run it through

a
~cda + n ~ i
code into calls to C routines, then co

chapter, we’ll write a simple version of such a preprocessor.

SQL preprocessor which turns SQ
tasal]

e the pure C program. Late, in

r—r
CIJ

i
111}}1 AL .L,LL

113

lex & yacc

The Syntax Checker

Writing a syntax checker in yacc is easy. You parse something, and if the
parse worked, the syntax must have been OK. (If we put some error recov-
ery into the parser, things wouldn’t be quite this simple. See Chapter 9 for
details.) We'll build a syntax checker for SQL, a task which consists almost
entirely of writing a yacc grammar for SQL. Since the syntax of SQL is so
large, we have reproduced the entire yacc grammar in one place in Appen-
dix J, with a cross-reference for all of the symbols in the grammar.

The Lexer

First we need a lexer for the tokens that SQL uses. The syntax is free for-
mat, with whitespace ignored except to separate words. There is a fairly
long but fixed set of reserved words. The other tokens are conventional:
names, strings, numbers, and punctuation. Comments are Ada-style, from a
pair of dashes to the end of the line. Example 5-3 shows the SQL lexer.

Example 5-3: The first SQL lexer
%{

#include "sgll.h"
#include <string.h>

int lineno = 1;
void yyerror (char *s);

%}
%e 1200
%%
/* literal keyword tokens */
ADA { return ADA; }
ALL { return ALL; }
AND { return AND; }
AVG { return AMMSC; }
MIN { return AMMSC; }
MAX { return AMMSC; }
SUM { return AMMSC; }
COUNT { return AMMSC; }
ANY { return ANY; }
AS { return As; }
ASC { return ASC; }
AUTHORIZATION { return AUTHORIZATICN; }
BETWEEN { return BETWEEN; }
BY { return BY; }
C { return C; }
CHAR (ACTER) ? { return CHARACTER; }
CHECK { return CHECK; }

114

Parsing SQL

Example 5-3: The first SQL lexer (continued)

CLOSE { return CLOSE; }

CCBOL { return COBOL; }

CoMMIT { return COMMIT; }
CONTINUE { return CONTINUE; }
CREATE { return CREATE; }
CURRENT { return CURRENT; }
CURSOR { return CURSOR; }
DECIMAL { return DECIMAL; }
DECLARE { return DECLARE; }
DEFAULT { return DEFAULT; }
DELETE { return DELETE; }
DESC { return DESC; }
DISTINCT { return DISTINCT; }
DOUBLE { return DOUBLE; }
ESCAPE { return ESCAPE; }
EXISTS { return EXISTS; }
FETCH { return FETCH; }

FLOAT { return FLOAT; }

FOR { return FOR; }

FOREIGN { return FOREIGN; }
FORTRAN { return FORTRAN; }
FOUND { return FOUND; }

FROM { return FROM; }

GO[\t]*T0 { return GOTO; }

GRANT { return GRANT; }

GROUP { return GROUP; }

HAVING { return HAVING; }
IN { return IN; }

INDICATOR { return INDICATOR; }
INSERT { return INSERT; }
INT(EGER)? { return INTEGER; }

INTO { return INTO; }

IS { return 1S; }

KEY { return KeY; }

LANGUAGE { return LANGUAGE; }
LIKE { return LIKE; }

MCDULE { return MODULE; }
NOT { return NOT; }

NULL { return NULLX; }
NUMERIC { return NUMERIC; }
OF { return OF; }

oN { return ON; }

OPEN { return OPEN; }

OPTICN { return OPTION; }
OR { return OR; }

ORDER { return ORDER; }

PASCAL { return PASCAL; }
PLI { return PLI; }
PRECISION { return PRECISION; }
PRIMARY { return PRIMARY; }

PRIVILEGES { return PRIVILEGES; }
PROCEDURE { return PROCEDURE; }

115

lex & yacc

Example 5-3: The first SQL lexer (continued)

PUBLIC { return PUBLIC; }
REAL { return REAL;
REFERENCES { return REFERENCES; }
ROLLBACK { return ROLLBACK; }

SCHEMA { return SCHEMA; }
SELECT { return SELECT; }
SET { return SET; }
SMALLINT { return SMALLINT; }
SOME { return SCME; }
SQLCODE { return SQLCODE; }
TABLE { return TABLE; }

TO { return TO; }

UNION { return UNION; }
UNIQUE { return UNIQUE; }
UPDATE { return UPDATE; }
USER { return USER; }

VALUES { return VALUES; }
VIEW { return VIEW; }
WHENEVER { return WHENEVER; }
WHERE { return WHERE; }

WITH { returm WITH; }

WCRK { return WORK; }

/* punctuation */

|
Il<>ll |
Il<l| I
l|>l| l
n<=n i
">=" { return COMPARISON; }
[-+*/:{),.:] { return yytext[0]; }

/* names */
[A-Za-z] [A-Za-20-9_]* { return NAME; }

/* numbers */
[0-91+ I
[0-9]1+"."[0-9]* |
"Lov[0-91* { return INTNUM; }

[0-9]+([eE] [+-17[0-9]1+ |
[0-9]+"."[0-9]*[eE] [+]"[0 91+
+ {

n o nr-51*[eF) {+-17210-
LTiUEITeR Al I Lu

/* strings */

int ¢ = input(};

116

Parsing SQL

Example 5-3: The first SQL lexer (continued)

unput(c); /* just peeking */
if(c 1= \")

return STRING;
else

yymore() ;

/* whitespace */

\n lineno++;
[\t\rl+ ; /* whitespace */
Rl : /* comment */

/* anything else */
. yyerror{"invalid@ character);
%%
void
yyerror (char *s)
{

printf("%d: %s at %s\n", lineno, s, yytext);
}

main{int ac, char **av)
{
if(ac > 1 && {yyin = fopen{av[1], *r")) == NULL) {
perror{av([1]);
exit(l);
}

if(lyyparse!{))
printf ("SQL parse worked\n");
else
printf("SQL parse failed\n");
} /* main */

The lexer starts with a few include files, notably sgl1.h, the token name
definition file generated by yacc. (We renamed it from the default y.tab.bh.)
All of the reserved words are separate tokens in the parser, because it is the
easiest thing to do. Notice that CHARACTER and INTEGER can be abbrevi-
ated to CHAR and INT, and GOTO can be written as one word or two. The
reserved words AVG, MIN, MAX, SUM, and COUNT all turn into a AMMSC
token; in the SQL preprocessor we'll use the token value to remember
which of the words it was.

117

lex & yacc

Next come the punctuation tokens, including the usual trick to match all of
the single-character operators with the same pattern. Names start with a
letter and are composed of letters, digits, and underscores. This pattern has
to follow all of the reserved words so the reserved word patterns take pre-
cedence.

SQL defines exact numbers, which may have a decimal point (but no expli-
cit exponent), and approximate numbers, which do have exponents. Sepa-

rate patterns distinguish the two.

SQL strings are enclosed in single quotes, using a pair of quotes to repre-
sent a single quote in the string. The first string pattern matches a quoted

string that contains no embedded quotes. Its action routine uses input()
and unput() to peek at the next character and see if it’s another quote

QL Lexipruany P G A LAWA Al aN Aalll Alliniet

(meaning that it found a doubled quote, not the end of the string). If so it
uses yymore() to append the next quoted string to the token. The next
pattern catches unterminated strings and prints a diagnostic when it sees
one.

The last few patterns skip whitespace, counting lines when the whitespace
is a newline, skip comments, and complain if any invalid character appears
in the input.

Error and Main Routines

This version of yyerror() reports the current line number, current token,
and an error message. This simple routine is often all you need for useful
error reports. For maximum portability we've put it in with the lexer
because it needs to refer to yytext, and only in the lexer’s source file is
yytext already defined. (Different versions of lex define yytext as an array
or a pointer, so you can’t portably write references to it anywhere else.)

The main() routine opens a file named on the command line, if any, and
then calls the parser. When the parser returns, the return value reports
whether the parse succeeded or failed. We put main() here because yyin is
already defined here, though putting main() in a file of its own and declar-
ing yyin an external “FILE *” would have worked equally well.

118

Parsing SQL

The Parser

The SQL parser is larger than any of the parsers we've seen up to this point,
but we can understand it in pieces.

Definitions
Example 5-4: Definition section of first SQL parser

%union {
int intwval;
double floatval;
char *strval;
int subtok;

}

$token NAME
$token STRING
$token INTNUM APPROXNUM

/* operators */

tleft OR

$left AND

$left NOT

$left COMPARISON /* = <> < > <= >= */
$left '+ *-*

tleft * '/’

$nonassoc UMINUS

/* literal keyword tokens */

$token ALL AMMSC ANY AS ASC AUTHORIZATION BETWEEN BY

$token CHARACTER CHECK CLOSE COMMIT CONTINUE CREATE CURRENT
$token CURSOR DECIMAL DECLARE DEFAULT DELETE DESC DISTINCT DOUBLE
$token ESCAPE EXISTS FETCH FLOAT FOR FOREIGN FOUND FROM GOTO
$token GRANT GROUP HAVING IN INDICATOR INSERT INTEGER INTO
%token IS KEY LANGUAGE LIKE MODULE NULLX NUMERIC OF ON

$token OPEN OPTION ORDER PRECISICON PRIMARY PRIVILEGES PROCEDURE
$token PUBLIC REAL REFERENCES ROLLBACK SCHEMA SELECT SET

$token SMALLINT SOME SQLCODE SQLERROR TABLE TO UNICN

%$token UNIQUE UPDATE USER VALUES VIEW WHENEVER WHERE WITH WORK
$token COBOL FORTRAN PASCAL PLI C ADA

Example 5-4 shows the definition section of the parser. First comes the
definition of the value union. The fields intval and floatval handle integer
and floating point numbers. (Actually, since SQL’s exact numbers can
include decimals, we'll end up storing all the numeric values as floatval s.)
Strings can be returned as strval, although in this version of the parser we
don’t bother to do so. Finally, subtok holds sub-token codes for the tokens

119

lex & yacc

that represen multiple input tokens, e.g., AVG, MIN, , SUM, and COUNT,
_ . W - 1.

o Tele JRE IRUE PUL TIPS TR DU A cvrtasw ~lanl-ae
although again we aon’t boiner to Ao so in tnc syintax CrCCxCr.

Next come definitions of the tokens used in the grammar. There are tokens
for NAME, STRING, INTNUM, and APPROXNUM, all of which we saw in the
lexer. Then all the operators appear in %left declarations to set their prece-
dence and associativity. We declare the literal + — * / tokens since we need

to set their precedence and the pseudo-token UMINUS which is used only in
%prec clauses later.

Finally come the token definitions for all of SQL'’s reserved words.

Top Level Rules
Example 5-5: Top level rules in first SQL parser”

sqgl_list:
Sq]_ I; ’
| sql_list sql ‘;*

n
2

/* schema definition language */
/* Note: other "sqgl:" rules appear later in the grammar */
sqgl: schema

/* module language */
sql: module_def

~

/* manipulative statements */

sql: manipulative_statement

Example 5-5 shows the top-level rules for the parser. The start rule is
sql_list, a list of sql rules, each of which is one kind of statement. There are
three different kinds of statements, a schema which defines tables, a
module_def module definition, and a manipulative_statement which
encompasses all of the statements such as OPEN, CLOSE, and SELECT that
actually manipulate a data base. We've put a sql rule at the beginning of

each of the sections of the grammar. (Yacc doesn’t care if all of the rules
with the same left-hand side appear together in the specification, and in

vith he same eit-hand sidce Gprprual WUgt it il iU SpPARALLIR GRS, &2

cases like this it is easier if they don’t. If you do this, be sure to include
comments explaining what you’ve done.)

120

Parsing SQL

The Schema Sublanguage
Example 5-6: Schema sublanguage, top part

schema:

ATMTAMT AOANITAIA ATETRIATDITIZFAMT AT o v £ STV i
TON user cpt_schema element 13

user: NAME

opt_schema element list:
/* empty */

| schema_element_list

.
r

schema_element _list:
schema_element
| schema_element_list schema_element

schema_element:
base_table_def

[view_def

I privilege_def
The schema sublanguage defines data base tables. As in the example
above, it starts with CREATE SCHEMA AUTHORIZATION “user”, followed by
an optional list of schema elements. Example 5-6 shows the top-level
schema definition rules. We have a rule saying that a user is a NAME. Syn-
tactically, we could have used NAME directly in the schema rule, but this
separate rule provides a convenient place for action code that verifies that

the name given is a plausible user name.

The schema element list syntax uses a lot of rules, but they’re not complex.
An opt_schema_element_list is either a schema_element_list or nothing, a
schema_element_list is a list of schema_elements, and a schema_element is
one of three kinds of definitions. We could have simplified these rules con-
siderably to this:
opt_schema_element list:
/* empty */

[opt_schema_element_list base_table_def

| opt_schema_element_listview_def

| opt_schema_element_listprivilege_def
although the more complex version turns out to be easier to use when we
add action code,

121

lex & yace

Base Tables

Example 5-7: Schema sublanguage, base tables

base_table def:

CREATE TABLE table ‘(‘ base_table_element commalist ‘)’
table:
NAME
| NAME ‘.’ NAME

.
i

base_table element_commalist:
base_table element
i base table element_commalist ‘,’ base_table element

’

base_table element:
column_def
i table_constraint_def

.
1

column_def:
column data_type column _def_opt_list

data_type:
' CHARACTER
| CHARACTER ‘(‘ INTNUM ‘)
i NUMERIC
i NUMERIC *(‘ INTNUM ‘)’
i NUMERIC ‘(‘ INTNUM ‘/,’ INTNUM ')’
| DECIMAL
i DECIMAL ‘(’ INTNUM ‘)’
i DECIMAL ‘(/ INTNUM ‘,’ INTNUM ’)°’
i INTEGER
| SMALLINT
i FLOAT
i FLOAT (' INTNUM ')’
| REAL
i

DOUBLE PRECISION

column_def_opt_list:
/* empty */
i colum_def opt_list celum_def_opt

i

column_def opt:
NOT NULLX
i NOT NULLX UNIQUE
i NOT NULLX PRIMARY KEY

122

Parsing SQL

Example 5-7: Schema sublanguage, base tables (continued)

| DEFAULT literal

| DEFAULT NULLX

| DEFAULT USER

| CHECK ‘(‘ search condition ')

| REFERENCES table

| REFERENCES table ‘{’ column_commalist ‘)’

r

table_constraint_def:
UNIQUE ‘(’ columm commalist ‘)’

] PRIMARY KEY ’{‘ colum commalist *)’

1 FOREIGN XEY ' (‘ column_commalist *}°
REFERENCES table

| FOREIGN KEY ’(‘ colum commalist ‘)’
REFFRENCES table ‘(' column_commalist)’

| CHECK ‘(' search_condition ‘)’

columm_commalist:
column
| colum_commalist ‘/,’ column

r

column: NAME

i

literal:

Example 5-7 shows the base table language. Again there is a lot of syntax,
but it isn’t complicated once you look at the parts. A base table definition
base_table_def is “CREATE TABLE,” the table name which may be a simple
name or 2 name qualified by a user name, and a comma-separated list of
base table elements in parentheses. Each base_table_element is a column
definition or a table constraint definition.

A column definition column_def is a column name, its data type, and an
optional list of column definition options. There are long lists of possible
data types and of column definition options. Each column has exactly one
data type, since there is one reference to data_type. Some of these tokens
are reserved words and some are numbers, so that a type like NUMERIC(5,2)
matches the fifth data_type rule. For the column definition options, col-
umn_def_opt_list allows zero or more options in any order. These options

state whether a column may contain null (undefined) values, state whether

123

lex & yacc

values must be unique, set default values, or set validity check conditions
or inter-table consistency (REFERENCES) conditions. The search_condition
is defined later, since it is syntactically part of the manipulation language.

We represent the reserved word NULL by the token NULLX, because yacc
defines all of the tokens as C preprocessor symbols, and the symbol NULL
already means something in C. For the same reason, avoid the token

5
o
3
ol
[¢,]
lwy]
o
™

=
o
c
|
n
2

N
[N
5
o
tr
O

g2
B,
5
B
=
D
¥,

"}3
D
@
=

4"
-t
o
o
T

2
w

~
3
o
)
Q.
w
-
&
w
(g
&
53

1

dard I/0 library.

Base table elements can also be table constraints in one of several forms.
SQL syntax is redundant here; these two forms are equivalent:

thing CHAR(3) NOT NULL UNIQUE

thing CHAR(3),
UNIQUE (some_name)

The first form is parsed as a column_def with “NOT NULL” and “UNIQUE”
each being a column_def_opt in a column_def opt_list. The second form
is a column_def followed by a table_constraint_def, with each then being a
base_table_element and the two combined in a base_table_element_list.

The SQL definition prohibits NULLs in unique columns, but is inconsistent
about whether you have to say so explicitly. It is up to the action code to
recognize that these two forms are equivalent, since syntactically they are
different and that’s all yacc knows about.

View Definition

A view is a virtual table defined by a query, whose contents are the result of
executing the query each time an application opens the view.* For
example, we could create a view of fruits in our food table:
CREATE VIEW fruits (frname, frflavor)
AS SELECT Foods.name, Foods.flavor

FROM Foods
WHERE Foods.type = "fruit-

Example 5-8 shows the syntax for a schema view definition.

*This is a slight oversimplification, since in many cases you can write rows into a view and
the data base updates the underlying tables appropriately.

124

Parsing SQL

Example 5-8: Schema view definitions

view_def:
CREATE VIEW table opt_column_commalist
AS query_spec opt_with_check option

opt_with_check_option:
/* empty */
| WITH CHECK OPTION

i

opt_colurm_commalist:

/* empty */
} t(* column_commalist ‘}°

i

A view definition is “CREATE VIEW,” the table name, an optional list of col-
umn names (the default being to use the names in the base table), the key-
word “AS,” a query specification (defined later), and an optional check
option that controls the amount of error checking when new rows are writ-
ten into the view.

Privilege Definitions
Example 5-9: Schema privilege definitions

privilege_def:
GRANT privileges ON table TO grantee_commalist
opt_with grant_option

.
7

opt_with grent_option:
/* empty */
I WITH GRANT OPTION

I

privileges:
ALl PRIVILEGES
| ALL
| operation_comralist

.
I

operation_commalist:
operation
I operation_commalist ’,’ operation

.
h

cperation:
SELECT

125

lex & yacc

Example 5-9: Schema privilege definitions (continued)
i INSERT
| DELETE
| UPDATE opt_column_commalist
| REFERENCES opt_column_commalist

’

grantee_commalist:

rrant o

| grantee_commalist ‘,‘ grantee

PUBLIC
] user

-

Example 5-9 shows the privilege definition sublanguage, the last of the
view definition sublanguages. The owner of a table or view can give other
users the authority to perform various operations on their tables, e.g.:

GRANT SELECT, UPDATE (address, telephone)
N employees TO PUBLIC

GRANT ALL ON foods TO tomy, dale WITH GRANT OPT'ION
GRANT REFERENCES (flavor) ON Foods TO PUBLIC

WITH GRANT OPTION allows the grantees to re-grant their authority to other
users. REFERENCES is the authority needed to create a table keyed to a col-
umn in an existing table. Otherwise both the syntax and meaning of the
GRANT statement are fairly straightforward.

The Module Sublanguage

Since the module language is for practical purposes cbsolete, we don't
cover it in detail here. You can find its yacc definition in the complete list-
ing of the SQL grammar in Appendix J.

Cursor Definitions

Example 5-10: Cursor definition

cursor_def:
DECLARE cursor CURSOR FOR query_exp opt_order by clause

opt_order_by_clause:

/* empty */
] ORDER BY ordering_spec_commalist

126

Parsing SQOL

Example 5-10: Cursor definition (continued)

.
r

ordering_spec_commalist: /* define sort order */
ordering_spec
| ordering spec_cammalist ’,‘ ordering spec

'

crdering spec:
INTNUM opt_asc_desc /* by column number */
| column_ref opt_asc_desc /* by column name */

’

opt_asc_desc:

/* empty */
| ASC
| DESC
Cursor: NAME
column_ref:
NAME /* colurm name */
| NAME ‘.’ NAME /* table.col or range.ccl */
I NAME ’.' NAME ’.' NAME /* user.table.ccl */

H

We do need the cursor definition statements from the module language for
use in embedded SQL. Example 5-10 shows the syntax for cursor defini-
tions. A typical cursor definition is:
DECLARE course_cur CURSOR FOR
SELECT ALL

FROM Courses
ORDER BY segquence ASC

Cursor definitions look a lot like view definitions, since both associate a
name with a SELECT query. The difference is that a view is a permanent
object that lives in the data base, while a cursor is a temporary object that
lives in an application program. Practically, views can have their own privi-
leges different from the tables on which they are built. (This is the main
reason to create a view.) You need a cursor to read or write data in a pro-
gram, to read or write a view you need a cursor on the view. Also, the
query expression used to define a cursor is more general than the query
specification used to define a view. We'll see both in connection with the
SELECT statement, in the following section.

127

lex & yacc

The Manipulation Sublanguage

The heart of SQL is the manipulation sublanguage, the commands that
search, read, insert, delete, and update rows and tables.

Example 5-11: Manipulation sublanguage, top part

sqgl: manipulative_statement

manipulative statement:
close_statement

| commit_statement

| delete statement_positioned

| delete statement_searched

| fetch _statement

| insert_statement

| open_statement

1 rollback_statement

| select_statement

| update_statement_positioned

| update_ statement_searched

7

There are 11 different kinds of manipulative statements, listed in the rules
in Example 5-11. SQL statements are executed one at a time although some
statements, particularly SELECT statements, can involve a lot of work on the
part of the data base.

Stmple Statements
Example 5-12: Simple manipulative statements

_statement :
OPEN cursor
H

close statement:
CLOSE cursor

i

commit_statement:
COMMIT WORK

.
?

rollback_statement:
ROLLBACK WORK

H
delete statement_positioned:
DELETE FROM table WHERE CURRENT OF cursor

128

Parsing SQL

Most manipulative statements are quite simple, so Example 5-12 shows
them all. OPEN and CLOSE are analogous to opening and closing a file.
DELETE ... WHERE CURRENT deletes a single record identified by a cursor.

The FETCH statement is the main way to retrieve data into a program. Its
syntax is slightly more complex than that of previous statements because it
says where to put the data, column by column.

FETCH Statements
Example 5-13: FEICH statement

fetch statement:
FETCH cursor INTO target_commalist

.
I

target_commalist:
target
| target_commalist *,’ target

.
r

target:
parameter_xref
parameter_ref:
parameter
| parameter parameter
| parameter INDICATOR parameter
parameter:

| ‘s* NAME /* embedded parameter */
Example 5-13 shows the rules for FETCH. FETCH is complicated because of
all the possible targets. Each target is one or two parameters, with the
optional second parameter being an indicator variable that says whether
the data stored was valid or null. A parameter is a host language variable
name preceded by a colon in embedded SQL. In a procedure in the
module language, a parameter can also be a name declared as a parameter
in the module header, but in that case the lexer must distinguish parameter
names from column and range names or yacc gets dozens of shift/reduce
conflicts because it can't tell which names are which. To keep our syntax
checker relatively simple, we’ll leave out the module language names. Ina
worked out example, the lexer would look up each name in the symbol

129

lex & yacc

table and return a different token, e.g., MODPARAM for module parameter
names, and we'd add a rule:

parameter: MODPARAM ;

INSERT Statements
Example 5-14: INSERT statement

insert_statement:
INSERT INTO table opt_colum commalist values or_query_spec

.
+

values_or_query_spec:
VALUES ’(’ insert_atom _cammalist /)

! query_spec

.
7

insert_atom commalist:
insert_atom
| insert_atom commalist ’,‘ insert_atom

-
’

insert_atom:
atom
| NULLX

.
I

atom:
parameter ref
| literal
! USER

The INSERT statement (Example 5-14), which inserts new rows into a table,
has two variants. In both cases it takes a table name and an optional list of
column names. (We can reuse opt_column_commalist which we already
used in CREATE VIEW.) Then comes either a list of values or a query specifi-
cation. The list of values is “VALUE” and a comma-separated list of
insert_atoms. Each insert atom is either NULL, a parameter, a literal string
or number, or “USER” meaning the current user’s ID. The query specifica-
tion query_spec, defined, selects existing data in the data base to copy into
the current table.

130

Parsing SQOL

DELETE Statements
Example 5-15: DELETE statement

delete_statement_positioned:
DELETE FROM table WHERE CURRENT OF curs

ikt ol I aNed LA Ly ~as]

delete_statement_searched:
DELETE FROM table opt_where clause

opt_where clause:
/* empty */
| where_clauge

.
2

where_clause:
WHERE search_condition

The DELETE statement deletes one or more rows from a table. Its rules are
listed in Example 5-15. The positioned version deletes the row at the cur-
sor. The searched version.deletes the rows identified by an optional
WHERE clause, or in the absence of the WHERE clause, deletes all rows from
the table. The WHERE clause uses a search condition (defined below) to

identify the rows to delete.

UPDATE Statements
Example 5-16. UPDATE statement

update_statement_pogitioned:
UPDATE table SET assigmment_commalist
WHERE CURRENT OF cursor

H

assigrmment_commalist :

| assignment
| assignment_cammalist ’,’ agsigmment

.
i

assigrnment :
colum ‘=’ scalar_exp
| colum ‘=’ NULLX

+
12

update_gtatement_searched:

UPDATE table SET assignment_coammalist opt_where clause

131

lex & yacc

The UPDATE statement (Example 5-16) rewrites one or more rows. There
ositioned and searched. like the two inds of DELETE. In

are two versions, positioned and searched, like the two kinds of DELETE. In

both cases, a comma-separated list of assignments sets columns of the
appropriate rows to new values, which can be NULL or a scalar expression.

Scalar Expressions

Example 5-17: Scalar expressions

e/ St e S L1 4d

scalar_exp ’‘+‘ scalar exp
scalar exp ‘-’ scalar exp
scalar exp ‘*’ scalar_exp
scalar_exp ‘/‘ scalar_exp
‘+’ scalar_exp %prec UMINUS
'-' scalar exp %prec UMINUS
atam

column_ref

function ref

'{’ scalar_exp ')’

scalar_exp commalist:
scalar exp
| scalar_exp commalist ’,’ scalar_exp

.
i

function_ref:

AMMSC /(* ‘* 1) /% COUNT(*) */
I AMMSC ‘(' DISTINCT colum_ref ‘)’
I AMMSC ‘(' ALL scalar_exp ‘)’
| AMMSC ‘(’ scalar exp ‘)’

scalar_exp commalist:
scalar_exp
| scalar_exp comalist ’, ’ scalar_exp

Scalar expressions (Example 5-17) resemble arithmetic expressions in con-
ventional programming languages. They allow the usual arithmetic opera-
tions with the usual precedences. Recall that we used %left to set prece-
dences at the beginning of the grammar, and a %prec gives unary “+” and
“~" the highest precedence. SQL also has a few built-in functions. The
token AMMSC is a shorthand for any of AVG, MIN, MAX, SUM, or COUNT. The
syntax here is actuaily somewhat iooser than SQL allows. “COUNT()”
counts the number of rows in a selected set, and is the only place where a
“*” argument is allowed. (Action code has to check the token value of the
AMMSC and complain if it's not a COUNT.) DISTINCT means to remove

132

Parsing SOL

duplicate values before performing the function; it only permits a column
reference. Otherwise functions can take any scalar reference.

We could have made the syntax rules more complex to better match the
allowable syntax, but this way has two advantages: the parser is slightly
smaller and faster; action routines can issue much more informative mes-
sages (for example, “MIN does not allow a * argument” rather than just
“syntax error”).

The definition of scalar functions is quite recursive, so these rules let you
write extremely complex expressions, e.g.:

b i

SUM((p.age*p.age) / COUNT(p.age)) - AVG(p.adge) * AVG(p.age)

which computes the mathematical variance of the age column in table p,
probably very slowly.

We also define scalar_exp_commalist, a comma separated list of scalar
expressions, for use later.

SELECT Statements
Example 5-18: SELECT statement, query specifications and expressions

select_statement:
SELECT opt_all distinct selection
INTO target_commalist
table _exp

1

opt_all_distinct:
/* empty */
| ALL
| DISTINCT

.
I

selection:

scalar_exp commalist
l Fx ¥}

query._term
| query_exp UNICN query. term
| query_exp UNION ALL query_term

query._spec
b query e

~

3

133

lex & yacc

Example 5-18: SELECT statement, query specifications and expressions (continued)

query_spec:
SELECT opt_all_distinct selection table_exp

The SELECT statement (Example 5-18) selects one row (possibly derived
from a lot of different rows in different tables) from the data base and
fetches it into a set of local variables, using a table_exp (defined in the next
section), which is a table-valued expression that selects a table or subtable
from the data base. The optional ALL or DISTINCT keeps or discards dupli-
cate rows.

A query expression, query_exp, and query specification, query_spec (also
in Example 5-18), are similar table-valued forms. A query specification has
almost the same form as a SELECT statement, but without the INTO clause,
since the query specification will be part of a larger statement. A query
expression can be a UNION of several query specifications; the results of the
queries are merged together. (The specifications must all have the same
number and types of columns.)

Table Expressions
Example 5-19: Table expressions

table exp:
from_clause
opt: where_clause

opt_group_by_clause
opt_having_clause

i

from clause:
FROM table ref_ commalist

.
7

table ref commalist:
table _ref
| table ref commalist ‘,‘ table_ref

F

table_ref:
table
| table range_ variable

H

range variable:
NAME

134

Parsing SQL

Example 5-19: Table expressions (continued)

where_clause:
WHERE search_condition

r

opt_group_by_clause:
/* empty */
] GROUP BY column_ref_commalist

.
’

column_ref_commalist:
column_ref
| column_ref_cammalist ’, ! colummn_ref

.

opt_having_clause:
/* empty */
| HAVING search_condition

Table expressions (Figure 5-19) are what gives SQL its power, since they let
you define arbitrarily elaborate expressions that retrieve exactly the data
you want. A table expression starts with a mandatory FROM clause, fol-
lowed by optional WHERE, GROUP BY, and HAVING clauses. The FROM
clause names the tables from which the expression is constructed. The
optional range variables let you use the same table more than once in sepa-
rate contexts in an expression, which is occasionally useful, e.g., managers
and employees both in a personnel table. The WHERE clause specifies a
search condition that controls which rows from a table to include. The
GROUP BY clause groups rows by a common column value, particularly
useful if your selection includes functions like SUM or AVG, since then they
sum or average by group. The HAVING clause applies a search condition
group by group; e.g., in a table of suppliers, part names, and prices, you
could ask for all the parts supplied by suppliers who sell at least three
parts:

SELECT supplier

FROM p

GROUP BY supplier
HAVING COUNT(*) >= 3

135

lex & yacc

Search Conditions
Example 5-20: Search conditions

search_ccnditicn:
| search_ccnditicn OR search_cendition
| search_ccnditicn AND search_cenditicn
| NOT search ccnditicn
| *(* search_conditicn *)/

!

predicate
predicate:
campariscn predicate
| between_predicate
| like_predicate
i test for nmull
| in predicate
| all_cr_any_predicate
| existence_test
campariscn_predicate:
scalar_exp COMPARISON scalar _exp
| scalar_exp COMPARISON subquery
7
between_predicate:
scalar_exp NOT BETWEEN scalar_exp AND scalar exp
f scalar_exp BETWEEN scalar_exp AND scalar exp
like predicate:
scalar _exp NOT LIKE atom opt_escape
| scalar_exp LIKE atam opt_escape
;
cpt_escape:
/* empty */
| ESCAPE atom

.
’

test_for_null:
cclumn_ref IS NOT NULLX
| cclumn_ref IS NULLX

.
r

in _predicate:

| scalar_exp IN ‘(’ subquery ‘)’

| scalar_exp NOT IN ‘(‘ atam commalist ‘)¢
| scalar_exp IN ‘(‘’ atam commalist ‘)
:

136

Parsing SQL

Example 5-20: Search conditions (continued)

atom _commalist:
atom
| atom_commalist ’,’ atom

.
’

all_or_any_predicate:
scalar _exp COMPARISON arny all same subquery

i

any_all_some:

existence_test:
EXISTS subquery

subquery:
s (+ SELECT opt_all _distinct selection table exp ‘)’

Search conditions specify which rows from a group you want to use. A
search condition is a combination of predicates combined with AND, OR,
and NOT. There are seven different kinds of predicates, a grab bag of
operations that people like to do on data bases. Example 5-20 defines their
syntax.

A COMPARISON predicate compares two scalar expressions, or a scalar
expression and a subquery. Recall that a COMPARISON token is any of the
usual comparison operators such as “=" and “<>". A subquery is a recursive
SELECT expression that is restricted (semantically, not in the syntax) to
return a single column.

A BETWEEN predicate is merely a shorthand for a pair of comparisons.
These two predicates are equivalent, for example:

p-.age BETWEEN 21 and 65

p.age >= 21 AND p.age <= 65

A LIKE predicate does some string pattern matching, comparing a scalar
expression to an atom, the latter being a literal string or a string parameter
reference. The atom to which an expression is compared is treated as a
simple pattern, similar to UNIX shell filename patterns. The optional ESCAPE

137

lex & yacc

clause lets you specify a quoting character analogous to “\” in filename pat-

terns

L il

The left operand of a LIKE predicate has to be a column reference, not a
?
general expression. We've used a scalar expression here to get around a
yacc limitation. A more natural syntax for LIKE predicates would be this:
like_predicate:
column_ref NOT LIKE atom opt_escape
| column_ref LIKE atom opt_escape

Yacc might see something like this in the context of a predicate:

Foods.flavor NOT ...

At the time it sees the NOT, it can't tell if it is in the middle of a NOT
BETWEEN or a NOT LIKE, so it can’t tell whether “Foods.flavor” is a col-
umn_ref for a LIKE predicate or a scalar_exp for a BETWEEN predicate. Yacc
reacts to this with a shift/reduce conflict since it can't tell whether or not to
reduce the rule that turns the column_ref into a scalar_exp. There are a
couple of ways around this problem. We've adjusted the grammar to take
the reduce side of the shift/reduce conflict, allowing a scalar_exp either
way, since action code can easily check the left operand of a NOT LIKE to
ensure it's a column reference. (This also gives an opportunity for a better
error message.) Another possibility would be a lexical hack. We could
define a token NOTLIKE which matches two words in the lexer:

NOT[\t]+LIKE { return NOTLIKE; }

and use that in the LIKE predicate:

like predicate:
column_ref NOTLIKE atom opt_escape
| column_ref LIKE atom opt_escape

This solves the problem because yacc can now tell as soon as it sees the
NOTLIKE token that it’s parsing a LIKE predicate. But the lexical hack is
ugly. (This version fails if NOT and LIKE are on separate lines. If we added
a “\n” to the whitespace between them, we’d need to check in the lexical
action to see if there are any newlines and, if so, update lineno, adding
more mess.)

A test for null is

P4 U % [| i

particular column are or are not null. We use the token
avoid colliding with the stdio NULL symbol in the lexer.

8
3
®
Z,
&
b
o

138

Parsing SQL

An IN predicate checks to see whether a value is one of a set specified
either explicitly or via a subquery. The explicit version is equivalent to a
group of comparisons:

g.Name IN (‘Tom’, ‘Dick’, ‘Harry’)
g.Name = 'Tom’ CR g.Name = ‘Dick’ OR q.Name = ‘Harry'’

An ANY or ALL predicate lets you test whether any or all values of an
expression satisfy a comparison with a subquery. These are sometimes
useful but always confusing; it's hard to write ANY and ALL predicates cor-
rectly. This example checks that all of the names in the Name column of
table p match names in the name column of table q:

p.Name =ALlL (SELECT g.Name from q)

Finally, an existence test lets you test whether there are any data that sat-
isfy some subquery.

Using all of the predicates and subqueries, you can create queries and table
expressions of truly awesome complexity which will take equally awesome
amounts of time to execute. In practice, most SQL SELECT expressions are
simple, but the ability to perform complex operations is there for people
who need it.

Odds and Ends

Example 5-21: Conditions for embedded SQL

/* embedded condition things */
sql: WHENEVER NOT FOUND when_action
| WHENEVER SQLERROR when_action

;

when_action: GOTO NAME
| CONTINUE

Example 5-21 defines some statements of use only in embedded SQL pro-
grams. They say that whenever a selection doesn't retrieve any data (NOT
FOUND) or some other error (SQLERROR) the program should either jump to
a specific label in the host program or else ignore the condition.

139

lex & yacc

Using the Syntax Checker
Example 5-22: Makefile for SQL syntax checker

LEX = flex -I
YACC = byacc -dv
CFLAGS = -DYYDEBUG=1

all: sqll

sqgll: sqgll.o scnl.o
${CC} -o %@ sgll.o senl.o

sqgqll.c sgll.h: sqgll.y
S{YACC} sqll.y
mv y.tab.h sgll.h
mv y.tab.c sqgll.c
mv y.output sgll.out

scnl.o: sgll.h

To compile the syntax checker, we just run the lexer and scanner through
lex and yacc and compile the resulting C programs together. Example 5-22
shows the Makefile. In this case we've used make rules to rename the out-
puts of lex and yacc to match the input files. Also, we use Berkeley yacc
and flex* and define our own main() and yyerror() so we don't need to use
either the lex or yacc library. To test the syntax checker we can either
check files full of SQL or else type in directly:

% sgll sglmod
SQL parse worked

% sqgll

FETCH foo INTQ

:a ,

b ¢, -- two names are legal

d e £-- but three aren’t
4: syntax error at f
SQL parse failed

*Bugs in AT&T lex make it unable to handle the SQL lexer, but all of the other versions of lex
accept it without trouble. All versions of yacc accept the parser.

140

Parsing SQL

Embedded SQL

We finish this chapter by turning our SQL syntax checker into a very simple
embedded SQL preprocessor. Let’s assume we have a SQL implementation
that can interpret SQL statements passed as text strings. The embedded
SQL preprocessor need only turn the SQL statements into C procedure calls
that pass the SQL statements to an interpreter routine.

This is a little more complex than it looks. The lexer must run in two differ-
ent states: normal state in which it just passes text through, and SQL mode
in which it buffers up a SQL statement to pass to the interpreter. We also
need to handle parameter references, since in the compiled program there
is no way for the interpreter to associate the string “:foo” with the variable
foo. We'll extract the parameters in the lexer, substituting “#/N” for the Nth
variable mentioned, and then pass all of the mentioned variables by refer-
ence in the argument list to the interpreter. For example, this embedded
SQL:

EXEC SQL FETCH flav INTO :name, :type ;:

should turn into this C:

exec_sql (" FETCH flav INTO #1, #2 ™, &name, &type);

Here we highlight the changes to the lexer and the parser. The full code is
in Appendix J.

Changes to the Lexer

Example 5-23: Definitions in embedded lexer
%({

#include "sgl2.h"

#include <string.h>

int lineno = 1;
void yyerror(char *s);

/* macro to save the text of a SQL token */
#define SV save_str(yytext)

/* macro to save the text and return a token */
#define TOK (name) { SV;return name; }

%}

$s SQL

141

lex & yacc

The lexer actually has the largest set of changes. Example 5-23 shows the
modified definitions. We have defined two C macros, SV that calls
save_str() to save the text of the current token, and TOK() which saves the
token text and returns a token to the parser. We've also added a new start
state called SQL, using the standard INITIAL state as the normal non-SQL

state.

Example 5-24: Embedded lexer rules

EXEC[\t]+SQL { BEGIN SQL; start_save{); }

/* literal keyword tokens */

<SQL>ALL TOK (ALL)
<SQL>AND TOK (AND)
<SQL>AVG TOK (AMMSC)

... all the other reserved words and tokens ...

/* names */
<SQL>[A-Za-z] [A-Za-z0-9_]* TOK (NAME)

/* parameters */
<SQL>":"[A-Za-z] [A-Za-2z0-9_]*{
save_param(yytext+1);
return PARAMETER;
}

/* numbers */

<SQL>[0-9]+ |
<SQL>[0-9]+"."[0-9]* |
<SQL>".,"[0-9]* TOK (INTNUM)

<SQL>[0-91+[eE] [+-]12[0-9]1+ |
<SQL>[0-91+"."[0-9]*[eE] [+-1?[0-9]+ |
<SQL>"."[0-9]* [eE] [+-]7?[0-9]+TOK (APPROXNUM)

/* strings */

<SQL>' [~*\n]** {
int ¢ = input();

unput (¢); /* just peeking */
if{c t= *\") {
SV;return STRING;
} else
yymore() ;
}

<SQL>*[*"\n]*$ { yyerror{"Unterminated string"); }

142

Parsing SQL

Example 5-24: Embedded lexer rules (continued)

<SQL>\n { save_str(* ");lineno++; }

\n { lineno++; ECHO; }

<SQL>[\t\rl+ save_str(® "); /* whitespace */
<SQL>"--".* ; /* comment */

. ECHO; /* random non-SQL text */
%
Example 5-24 shows the revised lexer rules. The first new rule matches the
“EXEC SQL” keyword and puts the scanner into SQL state. It also calls
start_save() to initialize the buffer where we’ll save the SQL command.
Then we prefix all of the existing token rules with “<SQL>" so they only
match in SQL mode, and change the actions to use SV or TOK() to save
each token. Since we need to treat parameter
tokens, we've added a new lex rule for parameters which matches a colon
followed by a name, and call save_param() to save the parameter refer-
ence. Our SQL rules that match a newline and whitespace each save a
single space; since all whitespace is equivalent in SQL this makes the saved
string shorter. Finally, we add two rules without the <SQL> prefix that
match and echo all characters when we’re not in SQL mode. In the user
subroutines section, we add a tiny routine un_sql() which switches the
lexer from SQL mode to INITIAL mode; this routine has to be in the lexer
since that’s the only place the BEGIN macro is defined.

< el nrnamtler Froyen

ali A3 £L ,
a littie dilferentiy romi other

/* leave SQL lexing mode */
un_sql ()
{

BEGIN INITIAL;

} /* un_sqgl */

Changes to the Parser

The changes to the parser are much smaller than the changes to the lexer.
We add a %token definition of PARAMETER. We add actions to the start
rules:
sql_list:
sql ‘;* { end sql(); }
| sql_list sql “;‘ { end sql(); }

i

143

lex & yacc

the routine end_sql() each time a complete SQL statement has

od tn cwriteh the lever
WL LU ¥V ILLLL LI IV A]

ur nof SOT mode
A" 3 L L}YL LALINICAN .

Since we now have a special token for parameters, we change our parame-
ter rule to refer to the new token:

parameter:
PARAMETER /* :name handled in parser */

Since embedded SQL doesn’t use the module language, we ripped out the
rules for the module language, leaving only the rules for cursor definitions,
and made a cursor definition a top-level SQL statement:
sql:
curgor_def

.
’

That's it—the parser is otherwise unchanged.

Auxiliary Routines
Example 5-25: Highlights of embedded SQL text support routines

char save_buf[2000]; /* buffer for SQL command */
char *savebp; - /* current buffer pointer */

#define NPARAM 20 /* max params per function */
char *varnames[NPARAM]; /* parameter names */

/* start an embedded command after EXEC SQL */
start_save(void);

/* save a SQL token */
save_str (char *s);

/* save a parameter reference */
save param(char *n);

/* end of SQL command, now write it out */
end_sql (void) ;

We wrote some string processing routines to buffer up and write out the
SQL commands as they are parsed. The data structures and entry points are
in Example 5-25, and the full text is in Appendix J. We save the commands
in a large fixed character buffer, save_buf[] and use the character pointer
savebp to track the current position in the buffer. Each variable name used
as a parameter is saved in varnames[]. If a variable is used twice in the
same command, we will only save it once.

144

Parsing SOL

Routine start_save() initializes the buffer pointer when the lexer sees “EXEC
SQL”. Each token is saved with save_str(), which appends its argument to
save_buf. Parameter references are handled by save_param() which looks
up its argument, the variable name, in varnames[], entering the name if not
already present, and then saves a reference of the form “#/N".

When the parser has seen an entire SQL command, it calls end_sql(), which
writes out a call to the run-time interpreter routine exec_sql(). It passes the
saved buffer as a quoted string, breaking it into lines as necessary, and also
passes the address of each variable in the parameter table. Finally, it calls
our lexer routine un_sql() to take the lexer out of the SQL state. All of the
output goes to yyout, the default lex output stream, just as the ECHO state-
ments in the lexer pass through non-SQL code.

Using the Preprocessor

We changed the Makefile to link in our auxiliary routines with the lexer and
parser. Since we haven’t changed the main routine, other than its messages
(a purely cosmetic change) we run the preprocessor the same way we ran
the syntax checker.

Example 5-26 shows the result of running the preprocessor on the embed-
ded SQL in Example 5-2.

Example 5-26: Output from embedded SQL preprocessor

char flavor[6], name([8], typel5]:
int SQLCODE; /* global status variable */

exec_sql (" DECLARE flav CURSCR FOR SELECT Foods.name, Foods.\
type FROM Foods WHERE Foods.flaver = #1 ",
&flavor);

main()

{
scanf ("$s", flavor):
exec_sqgl (" OPEN flav ");

for(;:;} {

exec_sql (" FETCH flav INTO #1, #2 ",
&name,
&type) ;

if (SQLCODE != 0)
break;
printf£("%8.8s %5.5s\n", name, type);
}
exec_sgl (" CLOSE flav "):

145

lex & yacc

Exercises

1. In several places, the SQL parser accepts more general syntax than SQL
itself permits. For example the parser accepts the invalid scalar expres-
sion “MIN(*)” and it accepts any expression as the left operand of a LIKE
predicate, although that operand has to be a column reference. Fix the
syntax checker to diagnose these erroneous inputs. You can either
change the syntax or add action code to check the expressions. Try
both and see which is easier, and which gives better diagnostics.

2. Turn the parser into a SQL cross-referencer, which reads a set of SQL
statements and produces a report showing for each name where it is
defined and where it is referenced.

3. (Term project) Modify the embedded SQL translator to interface to a real
data base on your system.

146

In this chapter:

s Structure of a Lex
Specification

« Topics Organized
Alpbabetically

A Reference for
Lex Specifications

In this chapter, we discuss the format of the lex specification and describe
the features and options available. This chapter summarizes the capabili-
ties demonstrated in previous chapters and covers features that have not

been discussed.

After the section on the structure of a lex program, the sections in this
chapter are in alphabetical order by feature.

Structure of a Lex Specification

A lex program consists of three parts: the definition section, the rules sec-
tion, and the user subroutines.

... definition section ...

%

... rules section ...

%%
... user subroutines ...

The parts are separated by lines consisting of two percent signs. The first
two parts are required, although a part may be empty. The third part and

the preceding %% line may be omitted. (This structure is the same as that
used by yacc, from which it was copied.)

Definition Section

The definition section can include the literal block, definitions, internal
table declarations, start conditions, and translations. (There is a section
on each in this reference.) Lines that start with whitespace are copied ver-
batim to the C file. Typically this is used to include comments enlosed in
“/*» and “*/”, preceded by whitespace.

147

lex & yacc

Rules Section

The rules section contains pattern lines and C code. A line that starts with
whitespace, or material enclosed in “%{” and “%}” is C code. A line that
starts with anything else is a pattern line.

C code lines are copied verbatim to the generated C file. Lines at the begin-
ning of the rules section are placed near the beginning of the generated
yylex() function, and should be declarations of variables used by code
associated with the patterns and initialization code for the scanner. C code
lines anywhere else are copied to an unspecified place in the generated C
file, and should contain only comments. (This is how you put comments in
the rules section outside of actions.)

Pattern lines contain a pattern followed by some whitespace and C code to
execute when the input matches the pattern. If the C code is more than
one statement or spans multiple lines, it must be enclosed in braces { }.*

When a lex scanner runs, it matches the input against the patterns in the
rules section. Every time it finds a match (the matched input is called a
token) it executes the C code associated with that pattern. If a pattern is
followed by a single vertical bar, instead of C code, the pattern uses the
same C code as the next pattern in the file. When an input character
matches no pattern, the lexer acts as though it matched a pattern whose
code is “ECHO;” which writes a copy of the token to the output.

User Subroutines

The contents of the user subroutines section is copied verbatim by lex to
the C file. This section typically includes routines called from the rules. If
you redefine input(), unput(), output(), or yywrap(), the new versions or
supporting subroutines might be here.

In a large program, it is sometimes more convenient to put the supporting
code in a separate source file to minimize the amount of material recom-
piled when you change the lex file.

*In the absence of braces, some versions of lex take the entire rest of the line, others just take
up to a semicolon. For maximum clarity and portability, use braces for all but the most trivial
C code.

148

A Reference for Lex Specifications

BEGIN

The BEGIN macro switches among start states. You invoke it, usually in the
action code for a pattern, as:

BEGIN statename;
The scanner starts in state 0 (zero), also known as INITIAL. All other states

must be named in %s or %x lines in the definition section. (See the section
“Start States” later in this chapter.)

Notice that even though BEGIN is 2 macro, the macro itself doesn’t take any
arguments, and the statename need not be enclosed in parentheses,

although it is good style to do so.

Bugs

Like any other computer programs, versions of lex have their share of bugs.
There are also a few common pattern matching peculiarities that are worth
mentioning.

Ambiguous Lookabead

Patterns that use the trailing context operator, where the end of the token
can match the same text as the beginning of the trailing context, don’t work
reliably. For example:

(alab) /ba

ZX* [xy*

This is a problem with the pattern matching algorithm usually used, so it is
unlikely to be fixed soon. flex will issue a warning when this problem
makes it impossible to generate a correct scanner.

ATET Lex

No two ways about it, AT&T lex is buggy. This is partly because it was the
first implementation, and partly because it was written by an undergraduate
summer intern. There is a bug with counted repetitions of character
ranges, so patterns like this don’t work:

[0-9]+-[0-9]{2}-[0-9]

149

lex & yacc

We've also had trouble with comments in the rules section. For example,
e

mple from Chapter 1 gets a spurious error m e from lex unless

8

you remove the two comment lines:

£%
\n { state = LOOKUP; } /* end of line, return to default state */

/* whenever a line starts with a reserved part of speech name */
/* start defining words of that tyvpe */

~verb { state
~adj { state = ADJ
~adv { state = AV

VERB; }

;)
;)

There is also an unfortunate tendency for complicated scanners generated
by AT&T lex to fail in hard-to-pinpoint ways.

Flex
flex is much more reliable than AT&T lex. As of version 2.3.7, the only bug
of which we are aware is an obscure one related to the “|” action. This

script looks for troffmacros that make the word “lex” italic and de-italicizes
them.

%%

“\.IN +lex$ |
“NLIN *\"lex\"$ { fputs("lex", yyout); }

%%
The input:
I lex

produces lexx rather than the correct lex. If you write out the action
twice, the bug goes away.*

Character Translations

Most versions of lex have character translations introduced by %T. Unfortu-
nately, what they do in different versions varies wildly.

*We've told the maintainer of flex about this, so by the time you read this it may already be
fixed.

150

A Reference for Lex Specifications

In AT&T lex and MKS lex, a lexer normally uses the native character code
that the C compiler uses, e.g., the code for the character “A” is the C value
“A”. Now and then it is convenient to use some other character code, either
because the input stream uses a different code, such as baudot or EBCDIC,
or because lex is looking for patterns in an input stream not consisting of
text at all. Lex character translations let you define an explicit mapping
between bytes that are read by input() and the characters used in lex pat-
terns. The translations are preceded and followed by lines consisting of
9%T. Fach translation line contains a number, some whitespace, and then

one or more characters. For example:

T
1 aA
2 bB
3 cC
8T

In this example, an input byte with value 1 will match anywhere there is an
“A” or “a” in a pattern, an input byte with value 2 will match anywhere
there is a “B” or “b”, and an input byte with value 3 will match anywhere

[1pe)}

there is a “C” or “c’.

You may need to modify the input() and unput() macros in AT&T lex or
yygetc() in MKS lex to produce appropriate values if they do not come
directly from a file.

If you use translations, every literal character used in a lex pattern must
appear on the right side of a translation line.

flex has a different, nearly useless, version of translations which we do not
document here. It is scheduled to be removed from future versions of flex.
The simplest application of flex’s translations, folding upper and lowercase
letters together, is available much more easily by using the —i flag with flex.

Context Sensitivity

Lex provides several ways to make your patterns sensitive to left and right
context, that is, to the text that precedes or follows the token.

151

lex & yacc

Left Context

There are three ways to handle left context: the special beginning of line
pattern character, start states, and explicit code.

The character “*” at the beginning of a pattern tells lex to match the pattern
only at the beginning of the line. The “*” doesn’t match any characters, it
just specifies the context.

Start states can be used to require that one token precede another:

%$s MYSTATE
%%
first { BEGIN MYSTATE; }

In this lexer, the token second is only recognized after the token first.
There may be intervening tokens between first and second.

In some cases you can fake left context sensitivity by setting flags to pass
context information from one token’s routine to another:

%{
int flag = 0;
%}
%%
a { flag = 1; }
b { flag = 2;: }
ZZZ {
switch(flag) {
case 1: a_zzz_token(); break;
case 2: b_zzz_token(); break;
default: plain_zzz_token(); break;
}
flag = 0;
}
Rigbt Context

There are three ways to make token recognition depend on the text to the
right of the token: the special end of line pattern character, the slash opera-
tor, and yyless().

The “$” character at the end of a pattern makes the token only match at the
end of a line, i.e., immediately before a \n character. Like the “*” character,
“$” doesn’t match any characters, it just specifies context. It is exactly
equivalent to “/\n”, and therefore, can’t be used with trailing context.

152

A Reference for Lex Specifications

The “/” characters in a pattern let you include explicit trailing context. For
instance, the pattern “abc/de” matches the token “abc”, but only if it is
immediately followed by “de”. The “/” itself matches no characters. Lex
counts trailing context characters when deciding which of several patterns

P

A e d
O UL appeal 1

5
L]
bl

S
d

], nor

has the longest match, but the character
they counted in yyleng.

w

The yyless() function tells lex to “push back” part of the token that was just
read. The argument to yyless() is the number of token characters to keep.
For example:

abcde { yyless(3); 1}

has nearly the same effect as “abc/de” does because the call to yyless()
keeps three characters of the token and puts back the other two. The only
differences are that in this case the token in yytext[] contains all five char-
acters and yyleng contains five instead of three.

Definitions (Substitutions)

Definitions (or substitutions) allow you to give a name to all or part of a
regular expression, and refer to it by name in the rules section. This can be
useful to break up complex expressions and to document what your
expressions are supposed to be doing. A definition takes this form:

NAME expression

The name can contain letters, digits, and underscores, and must not start
with a digit. Some implementations also allow hyphens.

In the rules section, patterns may include references to substitutions with
the name in braces, for example, “{NAME}”. The expression corresponding
to the name is substituted literally into pattern. For example:

DIG [0-9]
%%
{DIG}+ process_integer();

{DIG}+\.{DIG}* I
\.{DIG}+ process_real();

There is one small way that the treatment of substitutions varies among ver-
sions of lex. In most versions, when the pattern corresponding to the name
is substituted in, it is treated as though it were surrounded by parentheses.
In a few versions, though, it is not. This makes a difference in some cases
such as:

153

lex & yacc

If the pattern is treated as “(abc)+”, it matches any number of copies of
“abc”, while if it is “abc+”, it matches “abc” followed by any number of ¢’s.
To maximize portability, enclose the patterns in definitions in parentheses,
as shown here:

PAT (abc)

ECHO

In the C code associated with a pattern, the macro ECHO writes the token to
the current output file yyous. It is equivalent to:
fprintf(yyout, "%s", yytext);

The default action in lex for input text that doesn’t match any pattern is to
write the text to the output, equivalent to ECHO. In flex, the command-line
flag —s makes the default action abort, useful in the common case that the
scanner is supposed to include patterns to handle all possible input.

In some versions of lex, you can redefine ECHO to do something else with
the characters. If you redefine ECHO, you will also probably want to rede-
fine output(), which normally sends a single character to yyout,

Include Operations (Logical Nesting
of Files)

Many input languages have some sort of include statement that logically
inserts another file in place of the include statement. At the beginning of
your program, you can assign any open stdio file to yyin to have the scan-
ner read from that file. Unfortunately, there is no portable way in lex to
handle nested input files, but here are some hints for major implementa-
tions.

File Chaining with yywrap()

When a lexer reaches the end of the input file, it calls yywrap(). You can
write your own yywrap() that switches to a new input file by changing or
reopening yyin, and continue scanning. See the section “yywrap()” for

more details.

154

A Reference for Lex Specifications

File Nesting

You handle nested files differently in different versions of lex. We briefly
describe the facilities provided by the major implementations.

ATET Lex

In AT&T lex, you can redefine the standard input(} and unput() macros to
handle multiple input files. You'll need to keep a stack or linked list of
structures containing the FILE pointer, the pushback buffer and indices, and
line number in the file, and have input() and unput() use the top structure
on the stack. At the end of a file, close the file, remove the top structure
from the stack, and continue from the next file on the stack.

Flex

In flex you cannot redefine input() or unput(). (The lexer doesn’t even use
them itself, but takes characters from the underlying data structures for
speed.) But you can redefine YY_INPUT, which is the macro that flex calls
to read text from the input file. (See “Input from Strings.”) Even more use-
ful are flex buffers, defined as type YY_BUFFER STATE. The routine
yy_create_buffer(FILE*, sizez0), makes a new flex buffer of the given size,
usually YY_BUF SIZE,* reading from the stdio FILE. A call to
yy_switch_to_buffer(flexbuf) tells the scanner to read from the correspond-
ing file, and yy_delete_buffer(flexbuf) gets rid of a flex buffer. The current
buffer is YY CURRENT_BUFFER. Also helpful is the special token pattern
“<<EOF>>" which matches at the end of a file after the call to yywrap(Q).

MKS Lex

MKS lex defines routines yySaveScan() and yyRestoreScan() to save and
restore the current state of the scanner. They use an object of type
YY_SAVED that contains the state. To save the state, call yySaveScan(fife). It
returns a YY_SAVED object, and arranging to read from the stdio stream file.
To restore a previously saved state, call yyRestoreScan(saved) which
restores a previously saved state.

*See “yytext” for the implications of changing the flex buffer size.

155

lex & yacc

Abraxas Pclex

Al
1

1ough pclex is based on flex, pclex does not include the buffer-switch-
ing routines available in flex. Saving and restoring buffer states is so diffi-
cult as to be impractical,

One approach is to include multiple copies of the scanner and to switch
scanners when you need to handle an included file. For more information,
see “Muitiple Lexers in One Program.”

POSIX Lexxtags query replace

The POSIX.2 standard takes a simple approach to file inclusion: it doesn’t
support it at all. There is no standard way in POSIX lex to handie multiple
input files other than yywrap(). Most implementations will provide some
sort of support as an extension, but you’ll have to consult the documenta-
tion for your specific version.

Input from Strings

Normally lex reads from a file, but sometimes you want it to read from
some other source, such as a string in memory. All versions of lex make
this possible, but the details vary considerably.

ATET Lex

AT&T lex reads all of its input with the input() macro. To change the input
source, redefine the input() and unput() macros. For example:

%{

extern char *mystring;

#undef input
#undef unput

#define input{) {(*mystring++)
#define unput (¢) (*--mystring = <)
%)

At the end of the input data, input() should return 0.

Flex
Although flex provides an input() function, it gets Character" using optim-
ized in-line code. You can redefine YY_INPUT, the macro it uses to read

blocks of data. It is called as:

156

A Reference for Lex Specifications

YY_INPUT (buffer, result, max_size)

where buffer is a character buffer, result is a variable in which to
store the number of characters actually read, and max_size is the
size of the buffer. To read from a string, have your version of
YY_INPUT copy data from your string buffer (Example 6-1).

Example 6-1: Taking flex input from a string

%{

t#hundef YY INPUT

#define YY_INPUT(b, r, ms) (r = my_yyinput(b, ms))

%)

extern char myinput(];

extern char *myinputptr;/* current position in myinput */
extern int myinputlim; /* end of data */

int

my_yyinput (char *buf, int max_size)
{
int n = min(max_size, myinputlim - myinputptr);

if(n > 0) {
memcpy (buf, myinputptr, n);
myinputptr += n;

}

return n;

Abraxas Pclex

Since pclex is derived from flex, it uses the same input mechanism. Rede-
fine YY_INPUTQ) as described above to change the input source.

MKS Lex

MKS lex uses the macro yygetc() to read all input characters. To change
the input source, redefine yygetc(). MKS lexers handle pushback automati-
cally, so you need not worry about it. At the end of input, yygetc() returns

157

lex & yacc

m
o
ry
L
o]
o
7
)
o)
o]
@D
&,
=X
o
&
jnp)
2.
=
Q
1=
&,
&
=g
.
~
[}
S
<
c.
[
—
@)
(o
gl
o
o
(i
5
5o
O
ry
¢
=g
[¢]
o]

extern char *mystring;

#undef yygetc

#define yygetc() (*mystring? *mystring++ : EOF)
%}

POSIX Lex

The POSIX standard doesn’t define any way to change the input source, so
programs that read from some other place than yyin are not portable from
one implementation to another.

input()
The input()‘routine provides characters to the lexer. In some versions of

lex, e.g., AT&T lex, it is a macro, while others, e.g., flex, define it as a func-
tion.

When the lexer matches characters it conceptually calls input() to fetch
each character. Some implementations bypass input() for performance rea-
sons, but the effect is the same.

The most likely place to call input() is in an action routine to do something
special with the text that follows a particular token. For example, here is a
way to handle C comments:

n/En int ¢l = 0, ¢2 = input();
for(:;) {

if(c2 == EOF)
break;

if(cl == **/ && Cc2 == '/}
break;

¢l = ¢2;

c2 = input{);

}

The calls to input() process the characters until either end-of-file or the
characters “*/” occur. This approach is the easiest way to handle C style
comments in the absence of exclusive start states (see “Start States”), and is
always the best way to handle long quoted strings and other tokens that
might be too long for lex to buffer itself.

158

A Reference for Lex Specifications

In some versions of lex it is possible to redefine input() to take input from
something other than a stdio file. Other versions of lex don’t let you rede-
fine input(), but have other ways to change the input source.” See “Input
from Strings” for details. Remember that a redefined input() has to be able
to handle characters pushed back by unput(.

Internal Tables (%N Declarations)

AT&T and MKS lex use internal tables of a fixed size which may not be big
enough for large scanners, although they do allow the programmer to
increase the size of the tables explicitly. You increase the sizes of the
tables with “%a”, “%e”, “%k”, “%n”, “%o”, and “%p” lines in the definition
section, for example:

¥p 6000
%e 3000

To find out what the current statistics are, run lex with the —v flag. For
example, the MGL lexer in Example 4-7 produces this report:
151/2000 nodes(%e), 551/5000 positions(%p), 86/2500 (%n),

6182 transitions, 27/1000 packed char classes(%k),
234/5000 packed transitions(%a), 241/5000 output slots(%0)

Clearly, it normally takes a significantly larger grammar than this to fill the
default size of the tables.

It is possible to construct regular expressions that will lead to very large
state machines which need larger than normal tables. In general, it is better
to simplify these expressions by either writing them in a simpler form, split-
ting them into multiple expressions, or writing C code to handle more of
the work.

Except for very large projects, it should not be necessary to increase the
table sizes. Unless lex complains that one of the tables has overflowed, you
need not worry about them at all. To figure out optimal sizes for the tables,
significantly increase the sizes of the tables that overflow, run lex with the
—vflag, and adjust the values closer to the actual needs of the lexer.

Some very old versions of lex also accept “%r” to make lex generate a lexer
in Ratfor and “%c” for a lexer in C.

159

lex & yacc

lex Library

Most lex implementations come with a library of helpful routines. You can
link in the library by giving the ~/ flag at the end of the cc command line on
UNIX systems, or the equivalent on other systems. The contents of the
library vary among implementations, but it always contains main().

main()

All versions of lex come with a minimal main program which can be useful
for quickie programs and for testing. It’s so simple we reproduce it here:

main(int ac, char **av)

I
1

return yylex():

}

As with any library routine, you can provide your own main().

Other Library Routines

Many of the routines that you can call from lex scanners, e.g., yymore(),
yyless(), and yywrap() may also be in the library, along with routines that
support other lex features such as REJECT.

Any lex program can redefine yywrap() to change what happens at end of
file. Many implementations also let you redefine input(}, unput(), and out-
put(). See the sections on those routines for details.

Line Numbers and yylineno

If you keep track of the line number in the input file, you can report it in
error messages. Some versions of lex define yylineno to contain this line
number and automatically update it, but most do not.

Keeping track of the line number is easy. Initialize your line number vari-
able to 1, and increment it in any lex rule that matches a newline character,
as shown here:

%{
int lineno = 1;
%}
%%
\n { lineno++; }

160

A Reference for Lex Specifications

Lexers that handle nested include files have to save and restore the line
number associated with each file.

Literal Block

The literal block in the definition section is C code bracketed by the lines
“0/0{” and “0/0}”.
%{

... C code and declarations ..
%}

The contents of the literal block are copied verbatim to the generated C
source file near the beginning, before the beginning of yylex(). The literal
block usually contains declarations of variables and functions used by code
in the rules section, as well as #include lines for header files.

Multiple Lexers in One Program

You may want to have lexers for two partially or entirely different token
syntaxes in the same program. For example, an interactive debugging
interpreter might have one lexer for the programming language and use
another for the debugger commands.

There are two basic approaches to handling two lexers in one program:
combine them into a single lexer, or put two complete lexers into the pro-
gram.

Combined Lexers

You can combine two lexers into one by using start states. All of the pat-
terns for each lexer are prefixed by a unique set of start states. When the
lexer starts, you need a little code to put the lexer into the appropriate ini-
tial state for the particular lexer in use, e.g., the following code (which will
be copied at the front of yylex()):

%s INITA INITB INITC
3%
%{
extern first _tok, first_lex;

if (first _lex) {
BEGIN first_lex;
first lex = 0;
}
if(first_tok) {
int holdtok = first_tok;

161

lex & yacc

first_tok = 0;
return holdtok;

%)

In this case, before you call the lexer, you set first_lex to the initial state for
the lexer. You will usually use a combined lexer in conjunction with a
combined yacc parser, so you'll also usually have code to force an initial

+ Pe .V, O PR N
token to t o use. See “Variant and Multiple

ell the parser which grammar

Grammars” in Chapter 8.

The advantage of this approach is that the object code is somewhat smaller,
since there is only one copy of the lexer code, and the different rule sets
can share rules. Disadvantages are that you have to be careful to use the
correct start wtates everywhere, you cannot have both lexers active at once
(i.e., you can’t call yylex() recursively), and it is difficult to use different
input sources for the different lexers.

Multiple Lexers

The other approach is to include two complete lexers in your program. Lex
doesn’t make this easy, because every lexer it generates has the same entry
point: yylex(). Furthermore, most versions of lex put the scanning tables
and scanner buffers in global variables with names like yycrank and yysvec.
If you just translated two scanners and compiled and linked all the two
resulting files (renaming at least one of them to something other than
lex.yy.0), you would still get a long list of multiply defined symbols. The
trick is to change the names that lex uses for its functions and variables.

Using The p Flag

Some versions of lex, notably MKS lex, provide a command-line switch —p
to change the prefix used on the names in the scanner generated by lex.
For example, the command:

lex -p pdg myscan.y

produces a scanner with the entry point pdqlex(), which reads from file
pdqin and so forth. The names affected are yylex(), yyin, yyout, yytext,
yylineno, yyleng, yymore(), yyless(), yywrap(), as well as all of the imple-
mentation-specific variables. The other variables used in the lexer are

162

A Reference for Lex Specifications

renamed and are also made static. There is also a -o flag to specify the
name of the generated lexer, e.g.:

lex -p pdq -o pdgtab.c mygram.y

Faking It

Lex has no automatic way to change the names in the generated C routine,
so you have to fake it. On UNIX systems, the easiest way to fake it is with

ing you are using AT&T lex, create the file

H ixalia w220 142

the stream editor sed. Assum

1 NALid,

yy-Ised containing these sed commands. (Here we use the new prefix
“pdq”.)

s/yyback/pdaback/g
s/yybgin/pdabgin/g
s/yycrank/pdgcrank/g
s/yyerror /pdderror/g
s/yyestate/pdgestate/g
s/yyextra/pdgextra/g
s/yyfnd/pdafnd/g
s/yyin/pdgin/g
s/yyinput /pdginput /g
s/yyleng/pdgleng/g
s/yylex/pdglex/g
s/yylineno/pdglineno/g
s/yylook/pdgalock/g
s/yylsp/pdalsp/g
s/yylstate/pdglstate/g
s/yylval /pdglval/g
s/yymatch/pdgmatch/g
s/yymorfg/pdamorfg/g
s/yyolsp/pdgolsp/g
s/yyout/pdgout /g
s/yyoutput /pdaocutput /g
s/yyprevious/pdgprevious/g
s/yysbuf /pdasbuf/g
s/yysptr/pdasptr/g
s/yysvec/pdgsvec/g
s/yytchar/pdgtchar/g
s/yytext /pdgtext /g
s/yytop/pdgtop/g
s/yyunput /pdgunput /g
s/yyvstop/pdgvstop/g
s/yywrap/pdawrap/g

163

lex & yace

Then, after you run lex, this command edits the generated scanner:
sed -f yy-lsed lex.yy.c > lex.pdq.c
You would probably want to put these rules in a Makefile:

lex.pdg.c: myscan.l
lex -t myscan.l |} sed -f yy-lsed > $@

If you are using MS-DOS and don’t have access to sed, in the worst case
you can go through the generated C file by hand, changing the names.

Another approach that may be easier in some cases is to use C preprocessor
#define s at the beginning of the grammar to rename the variables:

%{

#define yyback pdaback
#define yybgin pdgbgin
#define yycrank pdqcrank
#define yyerror pdgerror
#define yyestate pdgestate
#define yyextra pdqgextra
#define yyfnd pdafnd
#define yvin pdgin

#define yyinput pdginput
#define yyleng pdgleng
#define yylex pdglex
#define yylineno pdglineno
#define yylook pdglook
#define yvlsp pdalsp
#define yylstate pdglstate
#define yylval pdglval
#define yymatch pdgmatch
#define yymorfg pdgmorfg
#¥define yyolsp pdgolsp
#define yyout pdgout
#define yyoutput pdgoutput
#define yyprevious pdgprevious
#define yysbuf pdgsbuf
#define yysptr pdgsptr
#define yysvec pdgsvec
#define yytchar pdgtchar
#define yytext pdqgtext
#define yytop pdgtop
#define yyunput pdqunput
#define yyvstop pdgvstop
#define yywrap pdgwrap

%)

This avoids using sed. In practice you will probably want to rename both
lex and yacc names, so put all of the definitions for both in a file, say

164

A Reference for Lex Specifications

pdgdefs.h. Wherever you use the names, include pdgdefs.h first, for
instance, in the lex source file:

%{
#include "pdgdefs.h"

[FURE N S -] -
#include "pdg.tab.h”

%}
In this case pdq.tab.b is the yacc-generated header that includes the token
name definitions. Since it usually defines yylval, it needs to follow
pdqdefs.h.

For flex lexers, the variables that need to be renamed are:

vy_create_buffer

vy _delete buffer
yy_init buffer

vy _load buffer state
vy _switch_to_buffer

yyin

yyleng
yylex
yyout
yyrestart
yytext

You can use either of the two techniques above to rename them.

output()

Some versions of lex define a function or macro output(c) that writes its
argument to the output file yyout. This is always equivalent to:

putc{c, yyout}

If it exists, you can use it in your actions, and the scanner may use it to
implement the default action that sends unmatched characters to the out-
put.

If output() is a macro, you may want to define it to do something different
with unmatched input characters.

A well-designed lexer usually has cases that match all possible input, in
which case output() should never be called automatically from inside the
lexer.

If you redefine output(), also redefine the macro ECHO which copies the
current contents of yytext to the output.

165

lex & yacc

Portability of Lex Lexers

Lex lexers are fairly portable among C implementations. There are two lev-
els at which you can port a lexer: the original lex specification or the C
source file generated by lex.

Porting Lex Specifications

As long as you can avoid using the implementation-specific features of one
implementation, you can usually write portable lex specifications. Particu-
lar issues are:

= . P g : I S
hd ?via)&uuulu LaADIC 351405 vdly, SU d

may be too big for another.

e Don't use exclusive start states if you want to port to AT&T lex.
1~
1<

xer that fits in one i111p1€1 ientation

* The size of the token buffer yytext varies from as little as 100 bytes up
to 8K bytes.

e Take input only from the usual input file yyin, since there is no stan-
dardization of taking input from anywhere else. See the sections “Input
from Strings” and “Include Operations” for details.

Porting Generated C Lexers

Most versions of lex generate portable C code, and you can usually move
the code to any C compiler without trouble.

Libraries

The lex library is usually provided only in object form. For the two stan-
dard library routines, main() and yywrap(), this is rarely a problem since
you can easily write your own versions. See “lex Library.” Some versions,
notably AT&T lex, put other routines such as yyreject() and yyless() into
the library. If you use them, you can’t port lexers unless you have the
library source. Flex uses no library, so its code is usually the most portable.

Buffer Sizes

You may want to adjust the size of some buffers. Flex uses two input buf-
fers, each by default 8K, which may be too big for some microcomputer
implementations. See “yytext” for details on adjusting buffer sizes.

166

A Reference for Lex Specifications

Character Sets

The knottiest portability problem involves character sets. The C code gen-
erated by every lex implementation uses character codes as indexes into
tables in the lexer. If both the original and target machine use the same
character code, such as ASCII, the ported lexer will work. You may have to
deal with different line end conventions: UNIX systems end a line with a
plain “\n” while MS-DOS and other systems use “\r\n”. You often can
have lexers ignore “\r” and treat “\n” as the line end in either case.

When the original and target machine use different character sets, e.g.,
ASCII and EBCDIC, the lexer won't work at all, since all of the character
codes used as indexes will be wrong. Sophisticated users have sometimes
been able to post-process the tables to rebuild them for other character
sets, but in general the only reasonable approach is to find a version of lex
that runs on the target machine, or else to redefine the lexer’s input routine
to translate the input characters into the original character set. See “Input
from Strings” for how to change the input routine.

The translation tables in AT&T lex and MKS lex provide a way to specify
character codes explicitly, so if you are willing to use fixed numeric codes
for all your characters, you can write very portable lexers. See “Character
Translations.”

Regular Expression Syntax

Lex patterns are an extended version of the regular expressions used by
editors and utilities such as grep. Regular expressions are composed of not-
mal characters, which represent themselves, and metacharacters which
have special meaning in a pattern. All characters other than these listed
below are regular characters. Whitespace (spaces and tabs) separate the
pattern from the action and so must be quoted to include them in a pattern.

Metacharacters
Matches any single character except the newline character
“\n".

(] Match any one of the characters within the brackets. A range of

characters is indicated with the “~” (dash), e.g., “{0-9]" for any
of the 10 digits. If the first character after the open bracket is a
dash or close bracket, it is not interpreted as a metacharacter. If
the first character is a circumflex “*” i

match any character except those within the brackets. (Such

HT My B . g Sy
IL LlldugCD UIC 1iiCalllilyg Lw
a

167

lex & yacc

168

character class will match a newline unless you explicitly
exclude it.) Other metacharacters have no special meaning
within square brackets except that C escape sequences starting
with “\” are recognized. POSIX lex adds more special square
bracket patterns for internationalization. See below for details.
Matches zero or more of the preceding expression. For
example, the pattern:

a.*z

matches any string that starts with “a” and ends with “z”, such
s “az” “abz” or “alcatraz”.

matches “x”, “xxx”, or “xxxxxx”, but not an empty string, and

(ab) +

matches “ab”, “abab”, “ababab”, and so forth.
Matches zero or one occurrence of the preceding regular
expression. For example:

-2[0-9]+

indicates a number with an optional leading unary minus.

Mean different things depending on what is inside. A single
number “{n}” means # repetitions of the preceding pattern, e.g.,

[(A-Z] (3}

matches any three uppercase letters. If the braces contain two
numbers separated by a comma, “{n,m}”, they are a minimum
and maximum number of repetitions of the preceding pattern.
For example:

A{1,3}

matches one to three occurrences of the letter “A”. If the second
number is missing, it is taken to be infinite, so “{1,}” means the

“okM

same as “+” and “{0,}” the same as “*”.

If the braces contain a name, it refers to the substitution by that
name.

If the following character is a lowercase letter, then it is a C
escape sequence such as “\t” for tab. Some implementations
also allow octal and hex characters in the form “\123” and

A Reference for Lex Specifications

O

<>

<<EQF>>

“\x3f". Otherwise “\” quotes the following character, so “*”
matches an asterisk.

Group a series of regular expressions together. Each of “*”, “+7,
and “{]” effects only the expression immediately to its left, and
“1” normally affects everything to its left and right. Parentheses
can change this, for example:

{ablcd) 7ef

matches “abef”, “cdef”, or just “ef”.
Match either the preceding regular expression or the subse-
quent regular expression. For example:

twelve|12

matches either “twelve” or “127.
Match everything within the quotation marks literally. Meta-
characters other than “\” lose their meaning. For exampie:

ll/*l‘

matches the two characters “/*”.
Matches the preceding regular expression but only if followed
by the following regular expression. For example:

0/1

matches “0” in the string “01” but does not match anything in
the strings “0” or “02”. Only one slash is permitted per pattern,
and a pattern cannot contain both a slash and a trailing “$”.

As the first character of a regular expression, it matches the
beginning of a line; it is also used for negation within square
brackets. Otherwise not special.

As the last character of a regular expression, it matches the end
of a line—otherwise not special. Same meaning as “/\n” when
at the end of an expression.

A name or list of names in angle brackets at the beginning of a
pattern makes that pattern apply only in the given start states.
(flex only) In flex the special pattern <<EOF>> matches the end
of file.

169

lex & yacc

POSIX Extensions

POSIX defines new regular expression syntax to handle character sets other
than ASCI and languages other than English in a portable and language-
independent way. These are supposed to be accepted by all utilities which
handle regular expressions such as sed and grep, as well as in lex. The
three new expressions are collating symbols, equivalence classes, and char-

JUUVRET [
dCLET CIAS5CS,

A coliating symbol is a multicharacter sequence which is treated as a single
character, such as Spanish “ch” and “Il” or Dutch “ij”. A collating symbol is
written inside square brackets and dots, e.g., “[.ch.]”. Collating symbols are

only recognized within character class expressions, such as “(abc[.ch.1d]”.

An equivalence class is a set of characters that sort together, typically
accented versions of the same letter such as “a”, “4”, and “4”. The characters
in the class are enclosed inside square brackets and equal signs; for
instance, “[=a=]" stands for any one of the characters in the class, in this

example the same as “[ad4]”.

A character class expression stands for any character of a named type han-
dled by the ctype macros, with the types being alnum, alpha, blank, cntrl,
digit, graph, lower, print, punct, space, upper, and xdigit. The class name
is enclosed in square brackets and colons. For example, “[:digit:]” would be
equivalent to “[0123456789)”.

As of this writing no versions of lex handle any of the POSIX extensions, but
flex will handle them in the near future.

REJECT

Usually lex separates the input into non-overlapping tokens. But some-
times you want all occurrences of a token even if it overlaps with other
tokens. The special action REJECT lets you do this. If an action executes
REJECT, lex conceptually puts back the text matched by the pattern and
finds the next best match for it. The example finds all occurrences of the
words “pink”, “pin”, and “ink” in a file, even when they overlap:

pink { npink++; F
ink { nink++; REJECT; }

pin { npin++; REJECT; }

. {

\n ; /* discard other characters */

EJECT; }

J

170

A Reference for Lex Specifications

If the input contains the word “pink,” all three patterns will match. Without
the REJECT statements, only “pink” would match.

Scanners that use REJECT may be much larger and slower than those that
don’t, since they need considerable extra information to allow backtracking

and re-lexing.

Returning Values from yylex()

The C code executed when a pattern matches a token can contain a return
statement which returns a value from yylex() to its caller, typically a parser
generated by yacc. The next time yylex() is called, the scanner picks up
where it left off.

When a scanner matches a token of interest to the parser (e.g., a keyword,
variable name, or operator) it uses return to pass the token back to the
parser. When it matches a token not of interest to the parser (e.g., whi-
tespace or a comment) it does not return, and the scanner immediately pro-
ceeds to match another token.

This means that you cannot restart a lexer just by calling yylex(). You have
to reset it into the default state using BEGIN INITIAL, discard any input text
buffered up by unput(), and otherwise arrange so that the next call to
input() will start reading the new input.

Flex makes restarting considerably easier. A call to yyrestart(fi/¢), where
fileis a standard I/O file pointer, arranges to start reading from that file.

In pclex you can reset the scanner’s state with the macro YY_INIT. You'll
probably want to rewind yyin or assign it to a new file.

In MKS lex you can use YY_INIT, a macro that only works within the scan-
ner file, or call yy_reset() which is a routine that you can call from any-
where.

Start States

You can declare start states, also called start conditions or start rules, in the
definition section. Start states are used to limit the scope of certain rules,

171

#include «somefile.h>

Normally, the angle brackets and the filename would be scanned as the five
tokens “<”, “somefile”, “.”, “h”, and “<”, but after “#include” they are a
single filename token. You can use a start state to apply a set of rules only
at certain times. Be warned that those rules that do not have start states
can apply in any state!* The BEGIN statement (q.v.) in an action sets the
current start state. For example:

~v#include" { BEGIN INCLMODE; }

<INCLMODE>"<" [*>\n]+">" { ... do something with the name ... }
<INCLMODE>\n { BECIN INITIAL; /* return to normal */ }

You declare a start state with %s lines. For example:

%$s PREFPROC

creates the start state PREPROC. In the rules section, then, a rule that has
<PREPROC> prepended to it will only apply in state PREPROC. The stan-
dard state in which lex starts is state zero, also known as INITIAL.

Flex and most versions other than AT&T lex also have exclusive start states
declared with %x. The difference between regular and exclusive start
states is that a rule with no start state is 7ot matched when an exclusive
state is active. In practice, exclusive states are a lot more useful than regu-
lar states, and you will probably want to use them if your version of lex
supports them.

Exclusive start states make it easy to do things like recognize C language
comments:

$x CMNT

%%

"/*" BEGIN CMNT; /* switch to comment mode */
<CMNT">. |

<CMNT>\n ; /* throw away comment text */
<CMNT>"*/"BEGIN INITIAL; /* return to regular mode */

This wouldn't work using regular start states since all of the regular token
patterns would still be active in CMNT state.

*Indeed, this is a singularly common lex programming mistake. This problem is fixed by ex-
clusive start states, as described in this section.

172

A Reference for Lex Specifications

In versions of lex that lack exclusive start states, you can get the same

effect more painfully by giving an explicit state to your normal state and by
putting a start state on each expression. Assuming that the normal state is

called NORMAL, the example above becomes:

%s NORMAL CMNT

%%
%{
BEGIN NORMAJ,; /* start in NORMAJL, state */
%}
<NORMAL>"/*" BEGIN CMNT; /* switch to comment mode */
<CMNT>. |
<CMNT>\n ; /* throw away comment text */
<CMNT>"*/" BEGIN NORMAL; /* return to regular mode */

This isn’t quite equivalent to the scanner above, because the BEGIN NORMAL
is executed each time the routine yylex() is called, which it will be
after any token that returns a value to the parser. If that causes a
problem, you can have a “first time” flag, e.g.:

%s NORMAL CMNT

%{
static int first_time = 1;
2}
%%
%{
if (first_time) {
BEGIN NORMAL;
first time = 0;
}
%}

unput()

The routine unput(c) returns the character cto the input stream. Unlike the
analogous stdio routine unputc(), you can call unput() several times in a
row to put several characters back in the input. The limit of data “pushed
back” by unput() varies, but it is always at least as great as the longest
token the lexer recognizes.

Some implementations let you redefine input() and unput() to change the
source of the scanner’s input. If you redefine unput(), you have to be pre-
pared to handle multiple pushed back characters. If the scanner itself calls
unput(), it will always put back the same characters it just got from
input(), but there is no requirement that calls to unput() from user code to
do so.

173

lex & yacc

When expanding macros such as C’s #define, you need to insert the text of

the macro in place of the macro call. One way to do this is to call unput()
to push back the text, e.g.:

... in lexer action code ...
char *p = macro_contents();
char *g = p + strlen(p);

while(q > p)
unput (*—-q) ; /* push back right-to-left */

yyinput(), yyoutput(), yyunput()

Some versions of lex, notably AT&T lex, provide the functions yyinput(),
yyoutput(), and yyunput() as wrappers for the macros input(), output(),
and unput(), respectively. These exist so that they can be called from
other source modules, in particular the lex library. If you need them, and

your version of lex doesn’t define them, define them yourself in the user
subroutines section:

int yyinput(void) { return input(); }
int yyoutput(int ¢) { output(c); }
int yyunput (int ¢) { unput(c); }

yyleng

Whenever a scanner matches a token, the text of the token is stored in the
null terminated string yytext and its length is in yyleng. The length in
yyleng is the same as the value that would be returned by strlen(yytext).

yyless()

You can call yyless(#) from the code associated with a rule to “push back”
all but the first » characters of the token. This can be useful when the rule
to determine the boundary between tokens is inconvenient to express as a
regular expression. For example, consider a pattern to match quoted

strings, but where a quotation mark within a string can be escaped with a
backslash:

AT { /* is the char before close quote a \ ? */
if{yytext[yyleng-2] == **) {
yyless (yyleng-1); /* return last quote */
yymore () ; /* append next string */
} else {

/* process string */

174

A Reference for Lex Specifications

}

If the quoted string ends with a backslash before the closing quotation
mark, it uses yyless() to push back the closing quote, and yymore () (q.v.)
to tell lex to append the next token to this one. The next token will be the
rest of the quoted string starting with the pushed back quote, so the entire
string will end up in yytext.

A call to yyless() has the same effect as calling unput() with the characters
to be pushed back, but yyless() is often much faster because it can take
advantage of the fact that the characters pushed back are the same ones
just fetched from the input.

Another use of yyless() is to reprocess a token using rules for a different
start state:

scmetoken { BEGIN OTHER_STATE: vvless(0); 1}

BEGIN tells lex to use another start state, and the call to yyless() pushes
back all of the token’s characters so they can be reread using the new start
state. If the new start state doesn’t enable different patterns that take pre-
cedence over the current one, yyless(0) will cause an infinite loop in the
scanner as the same token is repeatedly recognized and pushed back.

wlex()

The scanner created by lex has the entry point yylex(). You call yylex() to
start or resume scanning. If a lex action does a return to pass a value to the
calling program, the next call to yylex() will continue from the point where
it left off. (See “Returning Values from yylex()” for how to begin scanning
a new file.)

User Code in yylex()

All code in the rules section is copied into yylex(). Lines starting with
whitespace are presumed to be user code. Lines of code immediately after
the “%%” line are placed near the beginning of the scanner, before the first
executable statement. This is a good place to declare local variables used
in code for specific rules. Keep in mind that although the contents of these
variables are preserved from one rule to the next, if the scanner returns and
is called again, automatic variables will not keep the same values.

175

lex & yacc

Code on a pattern line is executed when that pattern is matched. The code
should either be one state n onc line, ending with a semicolon, or
else a block of code enclosed in braces. When code is not enclosed in
braces, some implementations copy the entire line, while others only copy
one statement. For example, in the following case:

[0-91+ vylval.ival = atoi (yytext); return NUMBER;
some versions will throw away the return statement. (Yes, this is poor
design.) As a rule, use braces if there is more than one statement:

[0-91+ { yvlval.ival = atoi(yytext); return NUMBER; }
If the code on a line is a single vertical bar, the pattern uses the same code
as the next pattern does:

%%
colour |
color { printf("Color seen\n");

Code lines starting with whitespace that occur after the first pattern line are
also copied into the scanner, but there is no agreement among implementa-
tions where they end up. These lines should contain only comments:

rulel { some statement; }
/* this comment describes the following rules */

rule?2 { other statement; }

yymore()

You can call yymore() from the code associated with a rule to tell lex to
append the next token to this one. For example:

%%
hyper yymore () ;

text printf("Token is %s\n", yytext);
If the input string is “hypertext,” the output will be “Token is hypertext.”

Using yymore() is most often useful where it is inconvenient or impractical
to define token boundaries with regular expressions. See “yyless()” for an
example.

176

A Reference for Lex Specifications

yytext

Whenever a lexer matches a token, the text of the token is stored in the null
terminated string yytext. In some implementations of lex, yytext is a char-
acter array declared by:

extern char yytext[];

In others it is a character pointer declared by:

extern char *yytext;

o +h oo e o Tiraxr 1t 1o
1 SALIIC way, LL 1>

Since the C language treats arrays and pointers in almost the
almost always possible to write lex programs that work either way. If you
reference yytext in other source files, you must ensure that they reference it
correctly. POSIX lex includes the new definition lines %array and %pointer
which you can use to force yytext to be defined one way or the other, for

compatibility with code in other source files.

The contents of yytext are replaced each time a new token is matched. If
the contents of yytext are going to be used later, e.g., by an action in a yacc
parser which calls the lex scanner, save a copy of the string by using
strdup(), which makes a copy of the string in freshly allocated storage, or a
similar routine.

If yytext is an array, any token which is longer than yytext will overflow the
end of the array and cause the lexer to fail in some hard to predict way. In
AT&T lex, the standard size for yytext[] is 200 characters, and in MKS lex it
is 100 characters. Even if yytext is a pointer, the pointer points into an I/O
buffer which is also of limited size, and similar problems can arise from
very long tokens. In flex the default I/O buffer is 16K, which means it can
handle tokens up to 8K, almost certainly large enough. In pclex the buffer
is only 256 bytes. This is why it is a bad idea to try to recognize multi-line
comments as single tokens, since comments can be very long and will often
overflow a buffer no matter how large.

Enlarging yytext

You can usually write lexers so that no single token is larger than the
default token buffer of your version of lex, but sometimes the default buffer
is just too small. For example, you may be handling a language that allows
128 character names with a lexer whose default size is 100 characters. The
technique for increasing the buffer size varies among versions.

177

lex & yacc

ATET and MKS Lex

Both of these versions make yytext a static character array whose size is set
by the compile-time symbol YYLMAX. In both cases, you can redefine YYL-
MAX in the definitions section of a scanner:

%{
#undef YYIMAX /* remove default definition */
#define YYIMAX 500 /* new size */
%)
Flex

Since the default flex token size is 8K bytes, it’s hard to imagine a situation
where vou need it to be bigger, but if memory is particularly tight you
might want to make the buffer smaller. Flex buffers are created on the fly
by a routine called yy_create_buffer(), and the current buffer is pointed to
by yy_current_buffer. You can create a buffer of any size by putting in the
user subroutines section a routine to create a smaller buffer, and calling it
before you start scanning. (The routine has to be in the scanner file
because some of the variables it refers to are declared to be static.)

%%

setupbuf (size)

int size;

{

yy_current_buffer = yvy_create_buffer(yyin, size);

}

Pclex

Abraxas pclex is based on flex so it uses a similar buffering scheme to flext,
but with much smaller statically declared buffers. The buffer size is
YY_BUF_SIZE which is defined to be twice F_BUFSIZ, which is by default 128.
You can change the buffer size by changing either. The maximum input
line length YY_MAX_LINE is also by default defined to be F_BUFSIZ so it is
probably easier to increase F_BUFSIZ which automatically increases the oth-
ers:

%{

#undef F_BUFSIZ /* remove default definition */
#define F_BUFSIZ 256 /* new size */

%)

For both of the MS-DOS versions of lex, keep in mind that most MS-DOS C
compilers have a 64K limit on the total amount of static data and stack, and
that a very large token buffer can eat up a lot of that 64K.

178

A Reference for Lex Specifications

yywrap()

When a lexer encounters an end of file, it calls the routine yywrap() to find
out what to do next. If yywrap() returns 0, the scanner continues scanning,
while if it returns 1 the scanner returns a zero token to report the end of
file.

The standard version of yywrap() in the lex library always returns 1, but
you can replace it with one of your own. If yywrap() returns 0O to indicate
that there is more input, it needs first to adjust yyin to point to a new file,
probably using fopen().

As of version 2.3.7, flex defines yywrap() as a macro which makes it
slightly harder to define your own version since you have to undefine the
macro before you can define your routine or macro. To do so, put this at
the beginning of the rules section:

%{

#undef yywrap

%)
Future versions of flex will conform to the POSIX lex standard which
declares that yywrap() is a routine in the library, in which case a version
that you define automatically takes priority.

179

In this chapter:

* Structure of a Yacc
Grammar

+ Topics Organized

PR ¥

Alpbabetically

A Reference for
Yacc Grammars

In this chapter, we discuss the format of the yacc grammar and describe the
various features and options available. This chapter summarizes the capa-
bilities demonstrated in the examples in previous chapters and covers fea-
tures not yet mentioned.

After the section on the structure of a yacc grammar, the sections in this
chapter are in alphabetical order by feature.

Structure of a Yacc Grammar

A yacc grammar consists of three sections: the definition section, the rules
section, and the user subroutines section.

... definition section ...

%

... rules section ...

%

... user subroutines section ...

The sections are separated by lines consisting of two percent signs. The
first two sections are required, although a section may be empty. The third
section and the preceding “%%” line may be omitted. (Lex uses the same
structure.)

Symbols

A yacc grammar is constructed from symbols, the “words” of the grammar.
Symbols are strings of letters, digits, periods, and underscores that do not
start with a digit. The symbol error is reserved for error recovery, other-
wise yacc attaches no a priori meaning to any symbol.

181

lex & yacc

Symbols produced by the lexer are called terminal symbols or tokens.
Those that are defined on the left-hand side of rules are called non-
terminal symbols or non-terminals. Tokens may also be literal quoted
characters. (See “Literal Tokens.”) A widely-followed convention makes
token names all uppercase and non-terminals lowercase. We follow that
convention throughout the book.

Definition Section

The definition section can include a /literal block, C code copied verbatim to
the beginning of the generated C file, usually containing declaration and
#include lines. There may be %union, %start, %token, %type, %left, %right,
and %nonassoc declarations. (See “%union Declaration,” “Start Declara-
tion,” “Tokens,” “%type Declarations,” and “Precedence and Operator Dec-
larations.”) It can also contain comments in the usual C format, surrounded
by “/*> and “*/”. All of these are optional, so in a very simple parser the def-
inition section may be completely empty.

Rules Section

The rules section contains grammar rules and actions containing C code.
See “Actions” and “Rules” for details.

User Subroutines Section

Yacc copies the contents of the user subroutines section verbatim to the C
file. This section typically includes routines called from the actions.

In a large program, it is sometimes more convenient to put the supporting
in a separate source file to minimize the amount of material recom-

Actions

An action is C code executed when yacc matches a rule in the grammar.
The action must be a C compound statement, e.g.:

date: month ‘/’ day ‘/‘ year { printf("date found"); } ;

182

A Reference for Yacc Grammars

The action can refer to the values associated with the symbols in the rule by
using a dollar sign followed by a number, with the first symbol after the
colon being number 1, e.g.:

date: month ‘/' day '/’ year
{ printf("date %d-%d-%d found", $1, $3, $5); }

The name “$$” refers to the value for the symbol to the left of the colon.
Symbol values can have different C types. See “Tokens,” “%type Declara-
tion,” and “%union Declaration” for details.

For rules with no action, yacc uses a default of:

{ 88 =81;)

Embedded Actions

Even though yacc’s parsing technique only allows actions at the end of a
rule, yacc automatically simulates actions embedded within a rule. If you
write an action within a rule, yacc invents a rule with an empty right hand
side and a made-up name on the left, makes the embedded action into the
action for that rule, and replaces the action in the original rule with the
made-up name. For example, these are equivalent:

thing: A { printf("seen an A"); } B ;

thing: A fakename B ;

fakename: /* empty */ { printf("seen an A"); } ;
Although this feature is quite useful, it has some peculiarities. The embed-
ded action turns into a symbol in the rule, so its value (whatever it assigns
to “$$”) is available to an end-of-rule action like any other symbol:

thing: A{$% =17,) BC
{ printf("%d", $2); }

r

This example prints “17”. Either action can refer to the value of A as $1, and
the end-of-rule action can refer to the value of the embedded action as $2,
and the values of B and C as $3 and $4.

Embedded actions can cause shift/reduce conflicts in otherwise acceptable
grammars. For example, this grammar causes no problem:

%
thing: abcd | abez ;

abcd: ‘A* ‘Bf 'C’ D’ ;
abcz: IAI IBI ICI IZI ’.

183

lex & yacc

But if you add an embedded action it has a shift/reduce conflict:

2%
thing: abed | abez ;
abed: ‘A’ 'BY { somefunc(); } ‘Cr ‘D’ ;

abcz: ‘A’ 'BY Cr 'Z¢

In the first case the parser doesn’t need to decide whether it's parsing an
abcd or an abcez until it's seen all four tokens, when it can tell which it’s
found. In the second case, it needs to decide after it parses the ‘B’, but at
that point it hasn’t seen enough of the input to decide which rule it is pars-
ing. If the embedded action came after the ‘C’ there would be no problem,
since yacc could use its one-token lookahead to see whether a ‘D’ ora ‘Z’ is
next.

Symbol Types for Embedded Actions

Since embedded actions aren’t associated with grammar symbols, there is
no way to declare the type of the value returned by an embedded action. If
you are using %union and typed symbol values, you have to put the value
in angle brackets when referring to the action’s value, e.g., $<type>$ when
you set it in the embedded action and $<#ype>3 (using the appropriate
number) when you refer to it in the action at the end of the rule. See “Sym-
bol Values.” If you have a simple parser that uses all inf values, as in the
example above, you don’t need to give a type.

Obsolescent Feature

Early versions of yacc required an equal sign before an action. Old gram-
mars may still contain them, but they are no longer required nor considered

onnd civle

B Sy,

Ambiguity and Conflicts

Yacc may fail to translate a grammar specification because the grammar is
ambiguous or contains conflicts. In some cases the grammar is truly ambig-
uous, that is, there are two possible parses for a single input string, and
yacc cannot handle that. In others, the grammar is unambiguous, but the
parsing technique that yacc uses is not powerful enough to parse the gram-
mar. The problem in an unambiguous grammar with conflicts is that the

184

A Reference for Yacc Grammars

See “Precedence, Associativity, and Operator Declarations” and Chapter 8, -
Yacc Ambiguities and Conflicts, for more details and suggestions on how to
fix these problems.

Types of Conflicts
There are two kinds of conflicts that can occur when yacc tries to create a
parser: “shift/reduce” and “reduce/reduce.”

Shift/Reduce Conflicts

A shift/reduce conflict occurs when there are two possible parses for an
input string, and one of the parses completes a rule (the reduce option) and
one doesn’t (the shift option). For example, this grammar has one
shift/reduce conflict:

%

For the input string “X+X+X” there are two possible parses,”(X+X)+X" or
“X+(X+X)". (See Figure 3-3 for an illustration of a similar conflict.) Taking
the reduce option makes the parser use the first parse, the shift option the
second. Yacc always chooses the shift unless the user puts in operator dec-
larations. See the “Precedence and Operator Declarations” section for more
information.

Reduce/Reduce Conflicts

A reduce/reduce conflict occurs when the same token could complete two
different rules. For example:

%%
prog: proga | progb ;

proga: ‘X’ ;

progb: ‘X'

An “X” could either be a proga or a progb. Most reduce/reduce conflicts
are less obvious than this, but in nearly every case they represent mistakes
in the grammar. See Chapter 8, Yacc Ambiguities and Cconflicts, for details
on handling conflicts.

185

lex & yacc

Bugs in Yacc

Although yacc is a fairly mature program (the source code for AT&T yacc
has been essentially unchanged for over ten years) one bug is commonly in
distributed versions and quite a few quirks are often misinterpreted as
bugs.

Real Bugs

There are a few real yacc bugs, particularly in AT&T yacc. (Thanks to Dave
Jones of Megatest Corp. for these examples.)

Error Handling

Some older versions of AT&T yacc mishandle this grammar:

$token a
%
s : oseq
oseq: /* empty */
| oseq a
| cseq error
The buggy version does a default reduction in the error state. In particular,
in the y.output listing file in state 2 there is a default reduction:

reduce 1

The correct default behavior is to detect an error:

error

The mistake is an off-by-one coding error in the yacc source. Any vendor

' alelgal :

with AT&T source can easily fix it.

Even with the fix, there is an unfortunate interaction between error recov-
ery and yacc’s default reductions. Yacc doesn't take the error token into
account when it computes its shift and reduce tables, and sometimes
reduces rules even when it has a lookahead token from which it could tell
that there is a syntax error and it shouldn’t reduce the rule. Look at the
y.output file if you plan on doing error recovery to see what rules will be
reduced before entering the error state. You may have to do more work to
recover than you had planned.

186

A Reference for Yacc Grammars

Declaring Literal Tokens

AT&T yacc fails to diagnose attempts to change the token number of a lit-
eral token:

$token ‘9’ 17

This generates invalid C code in the output file.

Infinite Recursion

A common error in yacc grammars is to create a recursive rule with no way
to terminate the recursion. Berkeley yacc, at least through version 1.8,
doesn’t diagnose this grammar:

%
xlist: xlist ‘X’ ;

Other versions do produce diagnostics.

Unreal Bugs

There are a few places where yacc seems to misbehave but actually is
doing what it should.

Interchanging Precedences

People occasionally try to use %prec to swap the precedence of two
tokens:

$token NUMBER

$left PLUS

$left MUL

%%

expr : expr PLUS expr %prec MUL
| expr MUL expr %prec PLUS
| NUMBER

.
’

This example seems to give PLUS higher precedence than MUL, but in fact it
makes them the same. The precedence mechanism resolves shift/reduce
contflicts by comparing the precedence of the token to be shifted to the pre-
cedence of the rule. In this case, there are several conflicts. A typical con-
flict arises when the parser has seen “expr PLUS expr” and the next token is
a MUL. In the absence of a %prec, the rule would have the precedence of
PLUS which is lower than that of MUL, and yacc takes the shift. But with
%prec, both the rule and the token have the precedence of MUL, so it

PO)
reauces

187

lex & yacc

One possibility would be to introduce pseudo-tokens, e.g., XPLUS and
XMUL, with their own precedence levels to use with %prec. A far better
solution is to rewrite the grammar to say what it means, in this case
exchanging the %left lines (see “Precedence, Associativity, and Operator

PPN RS PRt A
DCLl'dl dllUlls.)

Embedded Actions

When you write an action in the middle of a rule rather than at the end,
yacc has to invent an anonymous rule to trigger the embedded action.
Occasionally the anonymous rule causes unexpected shift/reduce conflicts.
See “Actions” for more details.

End Marker

Each yacc grammar includes a pseudo-token called the end marker which
marks the end of input. In yacc listings, the end marker is usually indicated
as $end.

The lexer must return a zero token to indicate end of input.

Error Token and Error Recovery

When yacc detects a syntax error, i.e., when it receives an input token that

it cannot parse, it attempts to recover from the error using this procedure:

1. It calls yyerror (“syntax error”). This usually reports the error to the
user.

2. Tt discards any partially parsed rules until it returns to a state in which
it could shift the special error symbol.

It resumes parsing, starting

(S N

4. If another error occurs before three tokens have been shifted success-
fully, yacc does not report another error but returns to step 2.

See Chapter 9, Error Reporting and Recovery, for more details on error
recovery. Also, see the sections about “YYERROR,” “YYRECOVERING(),”
“yyclearin,” and “yyerrok” for details on features that help control error
recovery,

Some versions of AT&T yacc contain a bug that makes error recovery fail.
See “Bugs in Yacc” for more information.

188

A Reference for Yacc Grammars

%ident Declaration

Berkeley yacc allows an %ident in the definitions section to introduce an
identification string into the module:

g$ident "identification string”

It produces an #ident in the generated C code. C compilers typically place
these identification strings in the object module in a place where the UNIX
what command can find them.

#ident "identification string"
%)

Inberited Attributes ($0)

Yacc symbol values usually act as inberited attributes or syntbesized attri-
butes. (What yacc calls values are usually referred to in compiler literature
as attributes.) Attributes start as token values, the leaves of the parse tree.
Information conceptually moves up the parse tree each time a rule is
reduced and its action synthesizes the value of its resulting symbol ($$)
from the values of the symbols on the right-hand side of the rule.

Sometimes you need to pass information the other way, from the root of the
parse tree toward the leaves. Consider this example:

declaration: class type namelist ;
class: GLOBAL {$ =1; 1}
I LOCAL {$6=2;1}
type: REAL {66 =1; }
I INTEGER {66 =2;1}
namelist: NAME { mksymbol ($0, $-1, $1); }

| namelist NAME { mksymbol ($0, $-1, $2);)}
It would be useful to have the class and type available in the actions for
namelist, both for error checking and to enter into the symbol table. Yacc
makes this possible by allowing access to symbols on its internal stack to
the left of the current rule, via $0, $-1, etc. In the example, the $0 in the

189

lex & yacc

call to mksymbol() refers to the value of the type which is stacked just
before the symbol(s) for the namelist production, and will have the value 1
or 2 depending on whether the type was REAL or INTEGER, and $-1 refers to
the class which will have the value 1 or 2 if the class was GLOBAL or LOCAL.

Although inherited attributes can be very useful, they can also be a source
of hard-to-find bugs. An action that uses inherited attributes has to take
into account every place in the grammar where its rule is used. In this
example, if you changed the grammar to use a namelist somewhere else,
you'd have to make sure that in the new place where the namelist occurs
appropriate symbols precede it so that $0 and $-1 will get the right values:

declaration: STRING namelist ; /* won’‘t work! */

Inherited attributes can occasionally be very useful, particularly for syntacti-
cally complex constructs like C language variable declarations. But in
many cases it is safer and nearly as easy to use synthesized attributes. In
the example above, the namelist rules could create a linked list of refer-
ences to the names to be declared and return a pointer to that list as its
value. The action for declaration could take the class, type, and namelist
values and at that point assign the class and type to the names in the name-
list.

Symbol Types for Inberited Attributes

When you use the value of an inherited attribute, the usual value declara-
tion techniques (e.g., %type) don’t work. Since the symbol corresponding
to the value doesn’t appear in the rule, yacc cannot tell what the correct
type is. You have to supply type names in the action code using an explicit
type. In the previous example, if the types of class and type were cval and
tval, the last two lines would actually read like this:

namelist: NAME { mksymbol (S<tval>0, $<cval>-1, $1); }
| namelist NAME { mksymbol ($<tval>0, S<cval>-1, $2); }

See “Symbol Values” for additional information.

190

A Reference for Yacc Grammars

Lexical Feedback

Parsers can sometimes feed information back to the lexer to handle cther-
wise difficult situations. For example, consider an input syntax like this:

message (any characters)

where in this particular context the parentheses are acting as string quotes.
(This isn’t great language design, but you are often stuck with what you've
got) You can't just decide to parse a string any time you see an open
parenthesis, because they might be used differently elsewhere in the gram-
mar.

A straightforward way to handle this situation is to feed context information
from the parser back to the lexer, e.g., set a flag in the parser when a con-
text-dependent construct is expected:

/* parser */

%{

int parenstring = 0;

1%

%%

statement: MESSAGE { parenstring = 1; } ‘(' STRING ')’ ;

and look for it in the lexer:

%{

extern int parenstring;
%}

$s PSTRING

%%

*message" return MESSAGE;
(" { if (parenstring)
BEGIN PSTRING;
return ‘(’;
}
<PSTRING>[")1* {
yylval.svalue = strdup(yytext); /* pass string to parser */
BEGIN INITIAL;
return STRING;
}

This code is not bullet-proof, because if there is some other rule that starts
with MESSAGE, yacc might have to use a lookahead token in which case the
in-line action wouldn’t be executed until after the open parenthesis had
been scanned. In most real cases that isn't a problem because the syntax
tends to be simple.

191

lex & yacc

In this example, you could also handle the special case in the lexer by set-
ting parenstring in the lexer, e.g.:

"message” { parenstring = 1; return MESSAGE; }

This could cause problems, however, if the token MESSAGE is used else-
where in the grammar and is not always followed by a parenthesized string.
You usually have the choice of doing lexical feedback entirely in the lexer
or doing it partly in the parser, with the best solution depending on how
complex the grammar is. If the grammar is simple and tokens do not
appear in multiple contexts, you can do all of your lexical hackery in the
lexer, while if the grammar is more complex it is easier to identify the spe-

cial situations in the parser.

This approach can be taken to extremes—one of the authors wrote a com-
plete Fortran 77 parser in yacc (but not lex, since tokenizing Fortran is just
too strange) and the parser needed to feed a dozen special context states
back to the lexer. It was messy, but it was far easier than writing the whole
parser and lexer in C.

Literal Block

The literal block in the definition section is bracketed by the lines %{ and
%]}.

%{
.. C code and declarations ...
%}

The contents of the literal block are copied verbatim to the generated C
source file near the beginning, before the beginning of yyparse(). The lit-
eral block usually contains declaramons of varlables and functions used by

i / lines for any necessary header

Literal Tokens

Yacc treats a character in single quotes as a token. In this example,
expr: ‘(' expr ‘)’ ;
the open and close parentheses are literal tokens. The token number of a

literal token is the numeric value in the local character set, usually ASCII,
and is the same as the C value of the quoted character.

192

A Reference for Yacc Grammars

The lexer usually generates these tokens from the corresponding single
characters in the input, but as with any other token, the correspondence
between the input characters and the generated tokens is entirely up to the
lexer. A common technique is to have the lexer treat all otherwise unrecog-
nized characters as literal tokens. For example, in a lex scanner:

return yytext[0];

this covers all of the single-character operators in a language, and lets yacc
catch all unrecognized characters in the input.

Some versions of yacc allow multiple character literal tokens, e.g., “<=", but
it is a bad idea to use them, as different versions of yacc treat them in differ-
ent, incompatible, ways. If a token’s input representation is more than one

character, it is better style to give it a name:

$token LE

and in the scanner:

"<«=" return LE;

Portability of Yacc Parsers

Yacc parsers are in general very portable among C implementations. There
are two levels at which you can port a parser: the original yacc grammar, or
the generated C source file.

Porting Yacc Grammars

Different versions of yacc are for the most part very compatible. Each has a
few unique features, but it’s usually possible to write a grammar that uses
only common features. (For example, a parser that uses bison s reentrant
parser feature will only work with bison.)

Different yacc versions handle errors slightly differently. In particular,
when a parser receives a token that is in error, the parser may or may not
reduce rules that ended with the previous token, depending on the way the
version of yacc produced the parser. The exact behavior of YYERROR()
varies. Again, some versions complete the reduction of the current rule and
remove the RHS tokens from the parse stack before starting error recovery,
and some don't.

Different versions of yacc have different translation limits: one that most

often is a problem is the maximum number of symbolic tokens, which ca

193

lex & yacc

be as low as 127 in AT&T yacc. You can usually evade this limit by using
literal characters as tokens; see “Character Sets.”

Porting Generated C Lexers

Most versions of yacc generate very portable C code, and you can usually
move the code to any C compiler without trouble.

Libraries

The only routines in the yacc library are usually main() and yyerror().
Most parsers use their own versions of those two routines, so the library
usually isn’t necessary.

Character Codes

Moving a generated parser between machines that use different character
codes can be tricky. In particular, you must avoid litera] tokens like “0”
since the parser uses the character code as an index into internal tables, so
a parser generated on an ASCII machine where the code for “0” is 48 will fail
on an EBCDIC machine where the code is 240.

Yacc assigns its own numeric values to symbolic tokens, so a parser that
uses only symbolic tokens should port sucessfully.

Precedence, Associativity, and Operator
Declarations

Normally, all yacc grammars have to be unambiguous. That is, there is only
one possible way to parse any legal input using the rules in the grammar.

Sometimes, an ambiguous grammar is easier to use. Ambiguous grammars
cause conflicts, situations where there are two possible parses and hence
two different ways that yacc can process a token. When yacc processes an
ambiguous grammar, it uses default rules to decide which way to parse an
ambiguous sequence. Often these rules do not produce the desired result,
so yacc includes operator declarations that let you change the way it
handles shift/reduce conflicts that result from ambiguous grammars. (See
also “Ambiguity and Conflicts.”)

194

A Reference for Yacc Grammars

Precedence and Associativity

Most programming languages have complicated rules that control the inter-
pretation of arithmetic expressions. For example, the C expression:

is treated as:

a=(={c+ ({d/e) /)

The rules for determining what operands group with which operators are
known as precedence and associativity.

Precedence

Precedence assigns each operator a precedence “level.” Operators at higher
levels bind more tightly, e.g., if “*” has higher precedence than “+”, “A+B*C”
is treated as “A+(B*C)”, while “D*E+F” is “(D*E)+F”.

Associativity

Associativity controls how the grammar groups expressions using the same
operator or different operators with the same precedence, whether they
group from the left, from the right, or not at all. If “-" were left associative,
the expression “A-B-C” would mean “(A-B)-C”, while if it were right asso-
ciative it would mean “A—(B-C)".

Some operators such as Fortran .GE. are not associative either way, ie.,
“A .GE. B .GE. C” is not a valid expression.

Operator Declarations

Operator declarations appear in the definitions section. The possible decla-
rations are %left, %right, and %nonassoc. (In very old grammars you may
find the obsolete equivalents %<, %>, and %2 or %binary.) The %left and
%right declarations make an operator left or right associative, respectively.
You declare non-associative operators with %nonassoc.

Operators are declared in increasing order of precedence. All operators
declared on the same line are at the same precedence level. For example, a
Fortran grammar might include:

tleft ‘+¢ -

%left '** /¢
$right POW

195

lex & yacc

The lowest precedence operators here are “+” and “-”, the middle prede-
cence are “*” and “/”, and the highest is POW which represents the “**”
power operator.

Using Precedence and Associativity to Resolve
Conflicts

Every token in a grammar can have a precedence and an associativity
assigned by an operator declaration. Every rule can also have a precedence
and an associativity, which is taken from a %prec clause in the rule or, fail-
ing that, the rightmost token in the rule that has a precedence assigned.

Whenever there is a shift/reduce conflict, yacc compares the precedence of
the token that might be shifted to that of the rule that might be reduced. It
shifts if the token’s precedence is higher or reduces if the rule’s precedence
is higher. If both have the same precedence, yacc checks the associativity.
If they are left associative it reduces, if they are right associative it shifts,
and if they are non-associative yacc generates an error.

Typical Uses of Precedence

Although you can in theory use precedence to resolve any kind of
shift/reduce conflict, precedence rarely resolves the conflict more cleanly
than rewriting the grammar. Precedence declarations were designed to
handle expression grammars, with large numbers of rules like:

expr OP expr
Expression grammars are almost always written using precedence.

The only other common use is if-then-else, where you can resolve the “dan-
gling else” problem more easily with precedence than by rewriting the

1111 AL BaallY 2332 LWL WS D L WL vl

grammar.

See Chapter 8, Yacc Ambiguities and Conflicts, for details. Also see “Bugs
in Yacc” for a common pitfall using %prec.

196

A Reference for Yacc Grammars

Recursive Rules

To parse a list of items of indefinite length, you write a recursive rule, one
that is defined in terms of itself. For example, this parses a possibly empty
list of numbers:
numberlist: /* empty */
| numberlist NUMBER

!

The details of the recursive rule vary depending on the exact syntax to be

parsed. The next example parses a non-empty list of expressions
separated by commas, with the symbol expr being defined elsewhere in
the grammar:
exprlist: expr
] exprlist *,’ expr
Any recursive rule must have at least one non-recursive alternative (one
that does not refer to itself). Otherwise there is no way to terminate the
string that it matches, which is an error. (Berkeley yacc fails to diagnose

this problem.)

Left and Right Recursion

When you write a recursive rule, you can put the recursive reference at the
left end or the right end of the right-hand side of the rule, e.g.:

exprlist: exprlist ‘,’ expr ; /* left recursion */
exprlist: expr ’,’ exprlist ; /* right recursion */

In most cases you can write the grammar either way. Yacc handles left
recursion much more efficiently than right recursion. This is because its
internal stack keeps track of all symbols seen so far for all partially parsed
rules. If you use the right recursive version of exprlist and have an expres-
sion with ten expressions in it, by the time the tenth expression is read
there will be 20 entries on the stack, an expr and a comma for each of the
ten expressions. When the list ends, all of the nested exprlist s will be
reduced, starting from right to left. On the other hand, if you use the left
recursive version, the exprlist rule is reduced after each expr, so the list will
never have more than three entries on the internal stack.

197

lex & yacc

A ten-element expression list poses no problems in a parser, but grammars
often parse lists hundreds of items long, particularly when a program is
defined as a list of statements:

$start program

%% :
program: statementlist ;
statementlist: statement
| statementlist statement
i
statement :

In this case, a 400 statement program is parsed as a 400 element list of
statements, and a right recursive list of 400 elements is too large for most
yacc parsers.

Right recursive grammars can be useful for a list of items which you know
will be short and which you want to make into a linked list of values:

thinglist: THING { $$ = $1; }
I THING thinglist { $l->next = $2; $3 = $1; }

With a left recursive grammar, either you end up with the list linked in
reverse order, or you need extra code to search for the end of the list at
each stage in order to add the next thing to the end. A compromise is to
create the list in the “wrong” order, then when the entire list has been
created, run down it and reverse it.

Rules

A yacc grammar consists of a set of rules. Each rule starts with a non-
terminal symbol and a colon, and is followed by a possibly empty list of
symbols, literal tokens, and actions. Rules by convention end with a semi-
colon, although in most versions of yacc the semicolon is optional. For
example,

date: month ‘/‘ day ‘/‘ year ;

a4 vear (Thea
slash, and a year. (ine

says that a date is 2 month, a
symbols month, day, and year must be defined elsewhere in the grammar.)
The initial symbol and colon are called the lefi-band side of the rule, and

the rest of the rule is the right-band side. The right-hand side may be
empty.

198

A Reference for Yacc Grammars

If several consecutive rules in a grammar have the same left-hand side, the
second and subsequent rules may start with a vertical bar rather than the
name and the colon. These two fragments are equivalent:

declaration: EXTERNAL name ;
declaration: ARRAY name ‘({’ size '}’ ;
declaration: EXTERNAL name

| ARRAY name ‘(' size ')’ ;

The form with the vertical bar is better style. The semicolon must be omit-
ted before a vertical bar.

An action is a C compound statement that is executed whenever the parser
reaches the point in the grammar where the action occurs:
date: month */' day '/’ year
{ printf(*Date recognized.\n"); }

The C code in actions may have some special constructs starting with “$”
that are specially treated by yacc. (See “Actions” for details.) Actions that
occur anywhere except at the end of a rule are treated specially. (See
“Actions Within Rules” for details.)

An explicit precedence at the end of a rule:

expr: expr ‘*‘' expr
| expr ‘-’ expr
I ‘-’ expr %prec UMINUS ;
The precedence is only used to resolve otherwise ambiguous parses. See
“Precedence, Associatjvity, and Operator Declarations” for details.

Special Characters

Since yacc deals with symbolic tokens rather than literal text, its input char-
acter set is considerably simpler than lex’s. Here is a list of the special
characters that it uses:

% A line with two percent signs separates the parts of a yacc grammar.
(see “Structure of a Yacc Grammar.”) All of the declarations in the def-
inition section start with %, including %(%}, %start, %token, %type,
%left, %right, %nonassoc, and %union. See “Literal Block,” “Start Dec-
laration,” “%type Declaration,” “Precedence, Associativity, and Opera-
tor Declarations,” and “%union Declaration.”

\ The backslash is an obsolete synonym for a percent sign. It also has its

95}
o}
)
©
:T
0

usual effect in C language strin

199

lex & yacc

200

In actions, a dollar sign introduces a value reference, e.g., $3 for the
value of the third symbol in the rule’s right-hand side. See “Symbol
Values.”

Literal tokens are enclosed in single quotes, e.g., ‘Z’. See “Literal
Tokens.”

Some versions of yacc treat double quotes the same as single quotes in
literal tokens. Such use is not at all portable.

In a value reference in an action, you can override the value’s default
type by enclosing the type name in angle brackets, e.g., $<xtype>3.
See “Symbol Types.” Also, $< and $> are obsolete equivalents for
%left and %right. See “Precedence, Associativity and Operator Decla-
rations.”

The C code in actions is enclosed in curly braces. (See “Actions.”) C
code in the literal block declarations section is enclosed in “%{” and
“%)”. See “Literal Block.”

Each rule in the rules section should end with a semicolon, except
those that are immediately followed by a rule that starts with a vertical
bar. In most versions of yacc the semicolons are optional, but they are
always a good idea. See “Rules.”

When two consecutive rules have the same left-hand side, the second
rule may replace the symbol and colon with a vertical bar. See “Rules.”
In each rule, a colon follows the symbol on the rule’s left-hand side.
See “Rules.”

Symbols may include underscores along with letters, digits, and
periods.

Symbols may include periods along with letters, digits, and under-
scores. This can cause trouble because C identifiers cannot include
periods. In particular, do not use tokens whose names contain
periods, since the token names are all #define ’d as C preprocessor
symbols.

Early versions of yacc required an equal sign before an action, and
most versions still accept them. They are now neither required nor
recommended. See “Actions.”

A Reference for Yacc Grammars

Start Declaration

Normally, the start rule, the one that the parser starts trying to parse, is the
one named in the first rule. If you want to start with some other rule, in the
deciaration section you can write:

%start somename
to start with rule somename.

In most cases the clearest way to present the grammar is top-down, with
h

-t

he start rule first, so no %start is needed.

Symbol Values

Every symbol in a yacc parser, both tokens and non-terminals, can have a
value associated with it. If the token were NUMBER, the value might be the
particular number, if it were STRING, the value might be a pointer to a copy
of the string, and if it were SYMBOL, the value might be a pointer to an entry
in the symbol table that describes the symbol. Each of these kinds of value
corresponds to a different C type, int or double for the number, char * for
the string, and a pointer to a structure for the symbol. Yacc makes it easy
to assign types to symbols so that it automatically uses the correct type for
each symbol.

Declaring Symbol Types

Internally, yacc declares each value as a C union that includes all of the
types. You list all of the types in a %union declaration, q.v. Yacc turns this
into a typedef for a union type called YYSTYPE. Then for each symbol
whose value is set or used in action code, you have to declare its type. Use
%type for non-terminals. Use %token, %left, %right, or %nonassoc for
tokens, to give the name of the union field corresponding to its type.

Then, whenever you refer to a value using $$, $1, etc., yacc automatically

uses the appropriate field of the union.

Calculator Example

Here is a simple although not particularly realistic calculator. It can add
numbers and compare strings. All results are numbers.

201

lex & yacc

$union {
double dval;
char *gval;
}

$token <dval> REAL

$token <sval> STRING

%type <dval> expr

%%

calc: expr { printf("$g\n*, $1); }

expr: expr '+’ expr { $$ = %1 + $3; }
| REAL { $$ = $1; }
| STRING ‘=’ STRING { $$ = stramp($l, $3) ? 0.0: 1.0; }

There are two value types: dval, which is a double, and sval, which is a
character pointer. The token REAL and the non-terminal expr automatically
use the union member dval, and the token STRING uses the union member
sval.

Yacc doesn’t understand any C, so any symbol typing mistakes you make,
such as using a type name that isn't in the union or using a field in a way
that C doesn’t allow, will cause errors in the generated C program.

Explicit Symbol Types

Yacc allows you to declare an explicit type for a symbol value reference by
putting the type name in angle brackets between the dollar sign and the
symbol number, or between the two dollar signs, e.g., $<xxx>3 or
$<zz2>8$.

The feature is rarely used, since in nearly all cases it is easier and more
readable to declare the symbols. The most plausible uses are when refer-
ring to inherited attributes and when setting and referring to the value
returned by an embedded action. See “Inherited Attributes” and “Actions”
for details.

Tokens

Tokens or terminal symbols are symbols that the lexer passes to the parser.
Whenever a yacc parser needs another token it calls yylex() which returns

the next token from the input. At the end of input yylex() returns zero.

202

A Reference for Yacc Grammars

Tokens may either be symbols defined by %token or individual characters
in single quotes. (See “Literal Tokens.”) All symbols used as tokens must
be defined explicitly in the definitions section, e.g.:

$token UP DOWN LEFT RIGHT

Tokens can also be declared by %left, %right, or %nonassoc declarations,
each of which has exactly the same syntax options as has %token. See
“Precedence.”

Token Numbers

Within the lexer and parser, tokens are identified by small integers. The
token number of a literal token is the numeric value in the local character
set, usually ASCII, and is the same as the C value of the quoted character.

Symbolic tokens usually have values assigned by yacc, which gives them
numbers higher than any possbile character’s code, so they will not conflict
with any literal tokens. You can assign token numbers yourself by follow-
ing the token name by its number in %token:

%token UP 50 DOWN 60 LEFT 17 RIGHT 25

It is a serious error to assign two tokens the same number, but most ver-
sions of yacc don’t even notice—they just generate bad parsers. In most
cases it is easier and more reliable to let yacc choose its own token num-
bers.

The lexer needs to know the token numbers in order to return the appropri-
ate values to the parser. For literal tokens, it uses the corresponding C
character constant. For symbolic tokens, you can tell yacc with the —d
command-line flag to create a C header file with definitions of all of the
token numbers. If you #include that header file in your lexer you can use
the symbols, e.g., UP, DOWN, LEFT, and RIGHT, in its C code. The header
file is normally called y.tab.h. On MS-DOS systems, MKS yacc calls it
ytab.b and pcyacc calls it yytab.b. Bison, POSIX yacc, and both MS-DOS
versions have command-line options to change the name of the generated
header file.

Token Values

Each symbol in a yacc parser can have an associated value. (See “Symbol
Values.”) Since tokens can have values, you need to set the values as the
lexer returns tokens to the parser. The token value is always stored in the

203

lex & yacc

variable yylval. In the simplest parsers, yylval is a plain izt variable, and
you might set it like this in a lex scanner:

{0-91+ { yylval = atoi(yytext); return NUMBER; }
In most cases, though, different symbols have different value types. See

“Y%union Declaration,” “Symbol Values,” and “%type Declaration.”

In the parser you must declare the value types of all tokens that have val-
ues. Put the name of the appropriate union tag in angle brackets in the
%token or precedence declaration. You might define your values types like
111§
funion {
enum optype opval;
double dval;
char *sval;
}

$token «dval> REAL
$token <sval> STRING
$nonassoc <opval> RELCP

(In this case RELOP might be a relational operator such as “==" or “>”, and
the token value says which operator it is.)

You set the appropriate field of yylval when you return the token. In this
case, you'd do something like this in lex:

%{
#include "y.tab.h"
%)

[0-8]+\. [0-9]* { yylval.dval = atof (yytext); return REAL; }
\"[AMIR\" { yylval.sval = strdup(yytext); return STRING; }
"o { yyval.opval = OPEQUAL; return RELOP; }

The value for REAL is a double so it goes into yylval.dval, while the value for
STRING is a char *so it goes into yylval.sval.

%type Declaration

Vet Aoclaaen
10U acdiar

the form:

o tha o
Ul ypes O

%type <type> name,name, ...

The type name must have been defined by a %union. (See “%union Decla-
ration.”) Each name is the name of a non-terminal symbol. See “Symbol
Types” for details and an example.

204

A Reference for Yacc Grammars

Use %type to declare non-terminals. To declare tokens, you can also use
%token, %left, %right, or %nonassoc. See “Tokens” and “Precedence, Asso-
ciativity, and Operator Declarations” for details.

%union Declaration

The %union declaration identifies all of the possible C types that a symbol
value can have. (See “Symbol Values.”) The declaration takes this form:
funion {

... field declarations ...
}

The field declarations are copied verbatim into a C union declaration of the
type YYSTYPE in the output file. Yacc does not check to see if the contents
of the %union are valid C.

You associate the types declared in %union with particular symbols using
the %type declaration.

Yacc puts the generated C union declaration both in the generated C file
and in the optional generated header file (usually called y.tab.h) so you can
use YYSTYPE in other source files by including the generated header file.
Conversely, you can put your own declaration of YYSTYPE in an include file
that you reference with #include in the definition section. In this case,
there must be at least one %type to wam yacc that you are using explicit
symbol types.

Variant and Multiple Grammars

You may want to have parsers for two partially or entirely different gram-
mars in the same program. For example, an interactive debugging inter-
preter might have one parser for the programming language and another
for debugger commands. A one-pass C compiler might need one parser for
the preprocessor syntax and another for the C language itself.

There are two ways to handle two grammars in one program: combine
them into a single parser, or put two complete parsers into the program.

205

lex & yacc

Combined Parsers

You can combine several grammars into one by adding a new start rule that
depends on the first token read. For example:

$token CSTART PPSTART
%%
combined: CSTART cgrammar
| PPSTART ppgrammar

cgrammar:
ppgrammar :

In this case if the first token is CSTART it parses the grammar whose start
rule is cgrammar, while if the first token is PPSTART it parses the grammar
whose start rule is ppgrammar.

You also need to put code in the lexer that returns the appropriate special
token the first time that the parser asks the lexer for a token:

%%
%{
extern first_tok;
if (first_tok) {
int holdtok = first_tok;
first_tok = 0;
return holdtok;
}
%}

... <the rest of the lexer>

In this case you set first_tok to the appropriate token before calling
yyparse().

One advantage of this approach is that the program is smaller than it would
be with multiple parsers, since there is only one copy of the parsing code.
Another is that if you are parsing related grammars, e.g., C preprocessor
expressions and C itself, you may be able to share some parts of the gram-
mar. The disadvantages are that you cannot usually call one parser while
the other is active (but see “Recursive Parsing,” later in this chapter) and
that you have to use different symbols in the two grammars except where
they deliberately share rules.

In practice, this approach is useful when you want to parse slightly differ-
ent versions of a single language, e.g., a full language that is compiled and

an interactive subset that you interpret in a debugger.

206

A Reference for Yacc Grammars

Multiple Parsers

The other approach is to include two complete parsers in a single program.
Yacc doesn’t make this easy, because every parser it generates has the
same entry point, yyparse(), and cails the same lexer, yylex(), which uses
the same token value variable yylval. Furthermore, most versions of yacc
put the parse tables and parser stack in global variables with names like
yyact and yyv. If you just translate two grammars and compile and link the
two resulting files (renaming at least one of them to something other than
y.tab.c) you get a long list of multiply defined symbols. The trick is to
change the names that yacc uses for its functions and variables.

Using the -p Flag

Modern versions of yacc (including bison, MKS yacc, and any POSIX-
compliant implementation) provide a command-line switch —p to change
the prefix used on the names in the parser generated by yacc. For
example, the command:

yacc -p pdqg mygram.y

produces a parser with the entry point pdgparse(), which calls the lexer
pdqglex() and so forth. Specifically, the names affected are yyparse(),
yylex(), yyerror(), yylval, yychar, and yydebug. (The variable yychar holds
the most recently read token, which is sometimes useful when printing
error messages.) The other variables used in the parser may be renamed or
may be made static or auto; in any event they are guaranteed not to collide.
There is also a ~b flag to specify the prefix of the generated C file; e.g.,

yvacc -p pdg -b pref mygram.y
would produce pref.tab.c assuming the standard name was y.tab.c.

You have to prO\}ide properly named versions of yyerror() and yylex().,

Faking It

Older versions of yacc have no automatic way to change the names in the
generated C routine, so you have to fake it. On UNIX systems, the easiest
way to fake it is with the stream editor sed. Assuming you are using AT&T
yacc, create the file yy-sed containing these 26 sed commands. (In this case
the new prefix is “pdq”.)

207

lex & yacc

s/yyact/pdgact/g
s/yychar /pdgchar /g
s/yychk/pdachk/g

s /yydebug/pdgdebug/g
s/yydef/pdgdef /g
s/yyerrflag/pdaerrflag/g
s/yyerror/pdgerror/g
s/yyexca/pdgexca/g
s/yylex/pdglex/g
s/yylval/pdqlval/g
s/yynerrs/pdanerrs/g
s/yypact /pdgpact/g
s/yyparse/pdgparse/g
s/yypgo/pdgpgo/g
s/yyps/pdaps/g
s/yypv/pdapv/g
s/yyrl/pdarl/g
s/yyr2/pdar2/g
s/yyreds/pdareds/g
s/yys/pdgs/g
s/yystate/pdgstate/g
s/yytmp/pdgtmp /g
s/yytoks/pdgtoks/g
s/yyv/pdav/g
s/yyval/pdgval /g

After you run yacc, these commands edit the generated parser:

sed -f yy-sed y.tab.c > pdg.tab.c
sed -f yy-sed y.tab.h > pdg.tab.h

You would probably want to put these rules in a Makefile:

pdg.tab.h pdg.tab.c: yvexamp.y
yacc -vd yvexamp.y
sed -f yy-sed y.tab.c > pdg.tab.c
sed -f yy-sed y.tab.h > pdg.tab.h

Another approach is to use C preprocessor #define s at the beginning of the
grammat to rename the variables:

%{

#define yyact pdgact
#define yychar pdgchar
#define yychk pdgchk
#define yydebug pdadebug
#define yydef pdgdef
#define vyerrflag pdgerrflag
#define yyerror pdgerror
#define yyexca pdgexca
#define yylex pdglex
#define yylval pdglval
#define yynerrs pdanerrs
#define yypact pdgpact
#define vyparse pdqgparse

208

A Reference for Yacc Grammars

#define yypgo pdgpgo
#define yyps pdgps
#define vypv pdgpv
#define yyrl pdagrl

#define yyr2 pdqgr2
#define vyreds pdgreds

elinc Tels DpAgrce!s

#define yys pdgs
#define yystate pdgstate

#define yytmp pdgtmp
#define yytoks pdgtoks

#define yvyv pdgv

#define yyval pdgval

%}
This avoids using sed, but has the disadvantage that the definitions do not
appear in the generated header file, but only the generated C file. To deal
with that problem, put all the definitions in a file, call it pdgdefs.b, and in
the parser put the following:

31{

#include "pdgdefs.h"

%}

In the files where you use the header file, include pdgdefs.b first, e.g., in the
lexer:

%{

#include "pdgdefs.h"

#include "y.tab.h"
%)

Recursive Parsing

A slightly different problem is that of recursive parsing, calling yyparse() a
second time while the original call to yyparse() is still active. This can be
an issue when you have combined parsers. If you have a combined C lan-
guage and C preprocessor parser, you'll want to call yyparse() in C lan-
guage mode once to parse the whole program, and call it recursively when-
ever you see a #if to parse a preprocessor exXpression.

Unfortunately, most versions of yacc provide no easy way to handle recur-
sive calls to the parser. If you really need recursive parsing, you will have
to do some non-trivial editing of the generated C file. In an AT&T yacc
parser, for example, you need to make the variables yyv, yypv, yys, and
yyps automatic variables local to the parser, and save and restore the values
of ystate, yytmp, yynerrs, yyerrflag, and yychar around the recursive call to
yyparse().

209

lex & yacc

The one version that does support recursive parsing is bison, when you
give it the %pure_parser declaration. This declaration makes the parser
reenterable and also changes the calling sequence to yylex(), passing as
arguments pointers to the current copies of yylval and yylloc. (The latter is
a part of an optional bison-specific feature that tracks the exact source posi-
tion of each token to allow more precise error reports.)

Lexers for Multiple Parsers

If you use a lex lexer with your multiple parsers, you need to make adjust-
ments to the lexer to correspond to the changes to the parser. (See “Multi-
ple Lexers” in Chapter 6.) You will usually want to use a combined lexer
with a combined parser, and multiple lexers with multiple parsers.

If you use multiple parsers and lexers and your versions of yacc and lex
don’t provide automatic renaming, you will probably want to combine the
sed or include files that rename yacc variables with those that rename lex
variables since the techniques are the same and some of the same names,
e.g., yylex() and yylval, need to be changed in both places.

y.output Files

Every version of yacc has the ability to create a log file, named y.output
under UNIX and y.out or yy.Irt on MS-DOS, that shows all of the states in the
parser and the transitions from one state to another. Use the —v flag to gen-
erate a log file.

The precise format of the file is specific to each version of yacc, but the fol-
lowing excerpt from an expression grammar is typical:

state 1
e : ID . (2)
reduce 2
state 2
e : ‘(" . e)y (3)
ID shift 1
‘(* shift 2
error
e goto 5
Tha At e ~L ,‘4-,. ﬂl-.,\ l-.,“-.. C P l-. nnnnnn .~ POV DU P
11IC WUl 111 acii siat a1l Nnow i1ar uic p41ac1 lldb BU cn pdl 1 lg d ITulc

ea WS
when it gets to that state. When the parser is in state 2, for example, if the

210

A Reference for Yacc Grammars

parser sees an ID, it shifts the ID onto the stack and switches to to state 1.
If it sees an open parenthesis it shifts the paren onto the stack and switches
back to state 2, and any other token is an error. In state 1, it always
reduces rule number 2. (Rules are numbered in the order they appear in
the input file.) After the reduction the ID is replaced on the parse stack by
an e and the parser pops back to state 2, at which point the e makes it go to

state 5.

When there are conflicts, the states with conflicts show the conflicting shift
and reduce actions.

9: shift/reduce conflict (shift 7, reduce 4) on '+’

state 9
e:e . ‘+' e (4)
e:e '+ e . (4)
‘4 ghift 7
‘;' reduce 4
‘y* reduce 4

In this case there is a shift/reduce conflict when yacc sees a plus sign. You
could fix it either by rewriting the grammar or by adding an operator decla-
ration for the plus sign. See “Precedence, Associativity, and Operator Dec-
larations.”

Yacc Library

Every implementation comes with a library of helpful routines. You can
include the library by giving the —/y flag at the end of the cc command line
on UNIX systems, or the equivalent on other systems. The contents of the
library vary among implementations, but it always contains main() and

yyerror().

main()

All versions of yacc come with a minimal main program which is sometimes
useful for quickie programs and for testing. It's so simple we can repro-
duce it here:

main{ac, av)

{

yyparse() ;
return 0;

211

lex & yacc

As with any library routine, you can provide your own main(). In nearly
any useful application you will want to provide a main() that accepts com-
mand-line arguments and flags, opens files, and checks for errors.

yyerror()
All versions of yacc also provide a simple error reporting routine. It’s also
simple enough to list in its entirety:

yyerror (char *errmsg)

{
fprintf (stderr, "%s\n®, errmsqg);

}

This sometimes suffices, but a better error routine that reports at least the
line number and the most recent token (available in yytext if your lexer is
written with lex) will make your parser much more usable.

YYABORT

The special statement

YYABORT;

in an action makes the parser routine yyparse() return immediately with a
non-zero value, indicating failure.

It can be useful when an action routine detects an error so severe that there
is no point in continuing the parse.

Since the parser may have a one-token lookahead, the rule action contain-
ing the YYABORT may not be reduced until the parser has read another
token.

YYACCEPT

The special statement

YYACCEPT;

in an action makes the parser routine yyparse{) returin immediately

value 0, indicating success.

It can be useful in a situation where the lexer cannot tell when the input
data ends, but the parser can.

212

A Reference for Yacc Grammars

Since the parser may have a one-token lookahead, the rule action contain-
ing the YYACCEPT may not be reduced until the parser has read another
token.

YYBACKUP

Some versions of yacc, including the original AT&T yacc, have a poorly
documented macro YYBACKUP that lets you unshift the current token and
replace it with something else. The syntax is:

Sym: newva!); }

It discards the symbol sym that would have been substituted by the reduc-
tion and pretends that the lexer just read the token newtok with the value
newval. If there is a look-ahead token or the rule has more than one sym-
bol on the right side, the rule fails with a call to yyerror().

It is extremely difficult to use YYBACKUP() correctly and it is not at all por-
table, so we suggest you not use it. (We document it here in case you
come across an existing grammar that does use it.)

yyclearin

The macro yyclearin in an action discards a lookahead token if one has
been read. It is most often useful in error recovery in an interactive parser
to put the parser into a known state after an error:

stmtlist: stmt | stmtlist stmt ;
stmt: error { reset_input(); yyclearin; } ;

After an error this calls the user routine reset_input() which presumably
puts the input into a known state, then uses yyclearin to prepare to start
reading tokens anew.

See the sections “YYRECOVERING()” and “yyerrok” for more information.

yydebug and YYDEBUG

Most versions of yacc can optionally compile in trace code that reports
everything that the parser does. These reports are extremely verbose but
are often the only way to figure out what a recalcitrant parser is doing.

213

lex & yacc

YYDEBUG

Since the trace code is large and slow, it is not automatically compiled into
the object program. To include the trace code, either use the —¢ flag on the
yacc command line, or else define the C preprocessor symbol YYDEBUG to
be non-zero either on the C compiler command line or by including some-
thing like this in the definition section:

%{

#define YYDEBUG 1
%)

yydebug

The integer variable yydebug in the running parser controls whether the
partser actually produces debug output. If it is non-zero, the parser pro-
duces debugging reports, while if it is zero it doesn’t. You can set yydebug
non-zero in any way you want, for instance, in response to a flag on the
program’s command line, or by patching it at run-time with a debugger.

yyerrok

After yacc detects a syntax error, it normally refrains from reporting another
error until it has shifted three consecutive tokens without another error.
This somewhat alleviates the problem of multiple error messages resulting
from a single mistake as the parser gets resynchronized.

If you know when the parser is back in sync, you can return to the normal
state in which all errors are reported. The macro yyerrok tells the parser to
return to the normal state.

For example, assume you have a command interpreter in which all com-
mands are on separate lines. No matter how badly the user botches a com-
mand, you know the next line is a new command.

andlist: cnd | cndlist and ;
cmd: error ‘\n’ { yyerrok; } ;

The rule with error skips input after an error up to a newline, and the yyer-
rok tells the parser that error recovery is complete.

See also “YYRECOVERING()” and “yyclearin.”

214

A Reference for Yacc Grammars

YYERROR

Sometimes your action code can detect context-sensitive syntax €rrors that
the parser itself cannot. If your code detects a syntax error, you can call the
macto YYERROR to produce exactly the same effect as if the parser had read

HIatClU I T ORI WU it WASA ALy 2558 S22 Bt B

a token forbidden by the grammar. As soon as you invoke YYERROR the
parser calls yyerror() and goes into error recovery mode looking for a state
where it can shift an error token. See “Error Token” and “Error Recovery”

for details.

yyerror()

Whenever a yacc parser detects a syntax error, it calls yyerror() to report
the error to the user, passing it a single argument, a string describing the
error. (Usually the only error you ever get is “syntax error.”) The default
version of yyerror in the yacc library merely prints its argument o n the stan-
dard output. Here is a slightly more informative version:

yyerror (const char *msg)

{
printf("%d: %s at ‘%s’\n", yylineno, msg, yytext) ;

}
We assume yylineno is the current line number. (See “Line Numbers” and
“yylineno” in Chapter 6.) and yytext is the lex token buffer that contains
the current token. Since different versions of lex declare yytext differently,
some as an array and some as a pointer, for maximum portability the best
place to put this routine is in the user subroutines section of the lexer file,
since that is the only place where yytext is automatically defined for you.

Since yacc doggedly tries to recover from errors and parse its entire input,
no matter how badly garbled, you may want to have yyerror() count the
number of times it’s called and exit after ten errors, on the theory that the
parser is probably hopelessly confused by the errors that have already been
reported.

You can and probably should call yyerror() yourself when your action rou-
tines detect other sorts of errors.

215

lex & yacc

yyparse()

The entry point to a yacc-generated parser is yyparse(). When your pro-
gram calls yyparse(), the parser attempts to parse an input stream. The

valiie of 7ern if the narce
CAL A UL L ~

1 If‘l‘ﬂﬂr‘l
LU L e ppals (S el e

< < 2
I L AL

Every time you call yyparse() the parser starts parsing anew, forgetting
whatever state it might have been in the last time it returned. This is quite
unlike the scanner yylex() generated by lex, which picks up where it left
off each time you call it.

See also “YYACCEPT” and “YYABORT.”

YYRECOVERING()

After yacc detects a syntax error, it normally enters a recovery mode in
which it refrains from reporting another error until it has shifted three con-
secutive tokens without another error. This somewhat alleviates the prob-
lem of multiple error messages resulting from a single mistake as the parser
gets resynchronized.

The macro YYRECOVERING() returns non-zero if the parser is currently in
the error recovery mode and zero if it is not. It is sometimes convenient to
test YYRECOVERING() to decide whether to report errors discovered in an
action routine.

See also “yyclearin” and “yyerrok.”

216

In this chapter:
» The Pointer Model
and Confflicls

» Common Examples
of Conflicts

p T rpereee

« How Do I Fix the

Conflice Yacc Ambiguities
e and Conflicts

» Exercises

This chapter focuses on finding and correcting conflicts within a yacc gram-
mar. Conflicts occur when yace reports shift/reduce and reduce/reduce
errors. Finding them can be challenging because yacc points to them in
y.output,* which we will describe in this chapter, rather than in your yacc
grammar file. Before reading this chapter, you should understand the gen-
eral way that yacc parsers work, described in in Chapter 3, Using Yacc.

The Pointer Model and Conflicts

To describe what a conflict is in terms of the yacc grammar, we introduce a
model of yacc’s operation. In this model, a pointer moves through the yacc
grammar as each individual token is read. When you start, there is one
pointer (represented here as an up-arrow, T) at the beginning of the start
rule:

%token A B C

3%
start: 1 A B C;

As the yacc parser reads tokens, the pointer moves. Say it reads A and B:

$token A B C
%%
start: A B 1 C;

* MS-DOS versions of yacc call the listing file y.out or yy.Jrt, and the format of the information
in them is different. All versions of yacc use the same parsing strategy and get the same con-
flicts, so the listing files contain the same information.

217

lex & yacc

At times, there may be more than one pointer because of the alternatives in
your yacc grammar. For example, suppose with the following grammar it
reads A and B:

%*token ABCDEF

%%

start: X

! Y
b & ABTCD;
Y: ABTEF;

(For the rest of the examples in this chapter, we will leave out the %token
and the %%.) There are two ways for pointers to disappear. One is for a
token to eliminate one or more pointers because only one still matches the
input. If the next token that yacc reads is C, the second pointer will disap-

pear, and the first pointer advances:

start: x

| Yi
X: ABC 1 D;
y: ABEF;

The other way for pointers to disappear is for them to merge in a common
subrule. In this example, z appears in both x and y:

start: X

I Y
X: A B z R;
Vi ABzS;
z:C D

After reading A, there are two pointers:

start: b4

| yi
x: A 0 B z R;
¥: A 1 Bz S;
Z: CcCD

After A B C, there is only one pointer:

start: X
| Y
X: A B 2z R;
y: ABzS;
Z: C 0 D;

218

Yacc Ambiguities and Conflicts

And after A B C D, there again are two:

start: X

| Yi
X: A Bz 0 R;
Y ABz T S;
zZ: C D;

When a pointer reaches the end of a rule, the rule is reduced. Rule z was
reduced when the pointer got to the end of it after yacc read D. Then the
pointer returns to the rule from which the reduced rule was called, or as in
the case above, the pointer splits up into the rules from which the reduced
rule was called.

There is a conflict if a rule is reduced when there is more than one pointer.
Here is an example of reductions with only one pointer:

start: X

| Yi
X: A 1 H
y: B ;

After A, there is only one pointer—in rule x—and rule x is reduced. Simi-
larly, after B, there is only one pointer—in rule y—and rule y is reduced.

Here is an example of a conflict:

start: bid
| yi

X: A T H

Y Aqi

After A, there are two pointers, at the ends of rules x and y. They both
want to reduce, so it is a reduce/reduce conflict.

There is no conflict if there is only one pointer, even if it is the result of
merging pointers into a common subrule and even if the reduction will
result in more than one pointer:

start: x
| Y
X: z R ;
¥ zZ S5 ;
Z: A B T ;

219

lex & yacc

After A B, there is one pointer, at the end of rule z, and that rule is reduced,
resulting in two pointers:

start: X

[v
Xz z 4 R;
y: z 1 SH
Z: A B;

But at the time of the reduction, there is only one pointer, so it is 7ot a con-
flict.

Types of Conflicts

There are two kinds of conflicts, reduce/reduce and shift/reduce. Conflicts
are categorized based upon what is happening with the other pointer when
one pointer is reducing. If the other rule is also reducing, it is a
reduce/reduce conflict. The following example has a reduce/reduce con-
flict in rules x and y:

start: X
i yi

X A T H

y A

If the other pointer is not reducing, then it is shifting, and the conflict is a
shift/reduce conflict. The following example has a shift/reduce conflict in
rules X and y:

start: X

| v R;
X: A T R,‘
y: A T

After yacc reads A, rule y needs to reduce to rule start, where R can then be
accepted, while rule x can accept R immediately.

If there are more than two pointers at the time of a reduce, yacc lists the
conflicts in pairs. The following example has a reduce/reduce conflict in
rules x and y and another reduce/reduce conflict in rules x and z:

start: x
' v
I z;

X A T ;

b'g A 13

4 A T :

220

Yacc Ambiguities and Conflicts

Let’s define exactly when the reduction takes place with respect to token
lookabead and pointers disappearing so we can keep our simple definition
of confiicts correct. Here is a reduce/reduce confiict:

start: X B
| v B;

X: A 1 H

y: A 1

But there is no confiict here:

start: x B
| y C;

X A T H

Yy A T H

The reason the second example is not a confiict is because yacc can look
ahead one token beyond the A. If it sees a B, the pointer in rule y disap-
pears before rule x is reduced. Similarly, if it sees a C, the pointer in rule x

disappears before rule y reduces.

Yacc can only look ahead one token. The following is not a confiict in a
compiler that can look ahead two tokens, but in yacg, it is a reduce/reduce
confiict:

start: xBC

Parser States

Rather than telling where your confiicts lie in your yacc grammar, yacc tells
where they are in y.output, which is a description of the state machine it is
generating. We will discuss what the states are, describe the contents of
y.output, then discuss how to find the problem in your yacc grammar given
a confiict described in y.output. You can generate y.ouiput by running yacc
with the —v (verbose) option.

Each state corresponds to a unique combination of possible pointers in
your yacc grammar. Every nonempty yacc grammar has at least two unique
possible states: one at the beginning, when no input has been accepted,

221

lex & yacc

and one at the end, when a complete valid input has been accepted. The
following simple example has two more states:

start: A <one here> B <another here> C:

For future examples, we will number the states as a clear means of identifi-
cation. Although yacc numbers the states, the order of the numbers is not
significant:

start: A <state 1> B <state 2> C;

When a given stream of input tokens can correspond to more than one pos-
sible pointer position, then all the pointers for a given token stream corre-

WAoliinall, LIl 4 A

spond to one state:

start: a

| b;
a: X <state 1> Y <state 2> 7;
b: X <state 1> Y <state 2> Q;

Different input streams can correspond to the same state when they corre-
spond to the same pointer:
start: threeas;
threeAs: /* empty */
| threehs A <state 1> A <state2>
A <state 3>;

The grammar above accepts some multiple of three A’s. State 1 corre-
spondsto 1, 4, 7, ... A’s; state 2 corresponds to 2, 5, 8, ... A’s; and state 3
corresponds to 3, 6, 9, ... A’s. Although not as good design, we rewrite
this with right recursion in order to illustrate the next point.
start: threeas;
threeAs: /* empty */
| A A A threeas;
(The next example would have a conflict if we used left recursion.) A posi-
tion in a rule does not necessarily correspond to only one state. A given
pointer in one rule can correspond to different pointers in another rule,
making several states:
start: threeAs X
| twoAs Y;
threeAs: /* empty */
| A A A threeas;
twoAs: /* empty */
| A A twods;
The grammar above accepts multiples of 2 or 3 A’s, followed by an X for
muliiples of 3, or a Y for multiples of 2. (Without the X or Y, the grammar

222

Yacc Ambiguities and Conflicts

would have a conflict, not knowing whether a multiple of 6 A’s satisfied
threeAs or twoAs.) If we number the states as follows:

state 1: 1, 7, ... A's accepted
state 2: 2, 8, ... A‘s accepted
state 6: 6, 12, ... A's accepted

then the corresponding pointer positions are as follows:

start: threeAs X
| twoAs Y;
threeAs: /* empty */
| A <1,4> A <25> A <3,6> threeAs;

twoAs: /* empty */
| & <71,3,5> A <2,46> twoAs;
That is, after the first A in threeAs, yacc could have accepted 6i+1 or 6i+4
A's, where iis 0, 1, etc. Similarly, after the first A in twoAs, yacc could have
accepted 6i+1, 6i+3, or 6i+5 A’s.

Contents of y.output

Now that we have defined states, we can look at the conflicts described in
y.output. The format of the file varies among versions of yacc, but it always
includes a listing of all of the parser states. For each states, it lists the rules
and positions that correspond to the state, the shifts and reductions the
parser will do when it reads various tokens in that state, and what state it
will switch to after a reduction produces a non-terminal in that state. The
listings below come. from various versions of yacc, so you can see that the
differences are small. We'll show some ambiguous grammars and the
y.output reports that identify the ambiguities.

Reduce/Reduce Conflicts

Consider the following ambiguous grammar:

start: ay

| by:
a: X ;
b: X ;

When we run it through Berkeley yacc, a typical state description is:

state 3
start : a . ¥ (1)

Y shift 5
error

223

lex & yacc

In this state, the parser has already reduced an a. If it sees a Y it shifts the
Y and moves to state 5. Anything else (represented by a dot) is an error.
The ambiguity produces a reduce/reduce conflict in state 1:

1: reduce/reduce conflict (reduce 3, reduce 4) on Y

state 1
a: X . (3)
b:X. (4
reduce 3

The first line says that state 1 has a reduce/reduce conflict between rule 3
and rule 4 when token Y is read. In this state, i’s read an X which may be
an a or a b. The third and fourth lines show the two rules that might be
reduced. The dot* shows where in the rule you are before receiving the
next token. This corresponds to the pointer in the yacc grammar, For
reduce conflicts, the pointer is always at the end of the rule. The last line
shows that yacc chose to reduce rule 3, since it resolves reduce/reduce con-

flicts by reducing the rule that appears earlier in the grammar.

The rules may have tokens or rule names in them. The following ambigu-
Ous grammar:

start: Z
i b z;
a: Xy;
b: X v;
Y Y;

produces a parser with this state:

6: reduce/reduce conflict (reduce 3, reduce 4) on Z
state 6

a: Xy . (3)

b:Xy . {(4)

reduce 3

In this state, the parser has already reduced a Y to a y, but the y could com-
plete either a a or a b. Non-terminals can cause reduce/reduce conflicts just
like tokens can. It's easy to tell the difference if you use uppercase token
names, as we have.

*Yacc’s use of dot to show where you are in the rule can get confusing if you have rules with
dots in them. Some versions of yacc use an underscore rather than a dot, which can be equal-
ly confusing if you have rules with underscores in them.

224

Yacc Ambiguities and Conflicts

The rules that conflict do not have to be identical. The grammar:

start: ABX?Z
| v Z;

X C;

y: A BC;

when processed by AT&T yacc produces a grammar containing this state:

7: reduce/reduce conflict (red'ns 3 and 4) on 2

state 7
x: C_ (3)
vy : ABC_ (4)

reduce 3

In state 7, yacc has already accepted AB C. Rule x only has C in it, because
in the start rule from which x is called, A B is accepted before calling x.
The C could complete either an X or a y. Yacc again resolves the conflict
by reducing the earlier rule in the grammar, in this case rule 3.

Shift/Reduce Conflicts

Identifying a shift/reduce conflict is a little harder. To identify the conflict,
we will do the following:

e Find the shift/reduce error in y.output

e Pick out the reduce rule

¢ Pick out the relevant shift rules

e See where the reduce rule reduces to

¢ Deduce the token stream that will produce the conflict

This grammar contains a shift/reduce conflict:

start: X

| y R;
x: A R;
y: A;

AT&T yacc produces this complaint:
4: shift/reduce conflict (shift 6, red'n 4) on R

state 4
x: AR
y @ A_ (4)
R shift 6

error

225

lex & yacc

State 4 has a shift/reduce conflict between shifting token R, and moving to
state 6, and reducing rule 4 when it reads an R. Rule 4 is rule y, as shown
in the line:

Y : A (4)

You can find the reduce rule in a shift/reduce conflict the same way you
find both rules in a reduce/reduce conflict. The reduction number is in
parentheses on the right. In the case above, the rule with the shift conflict
is the only rule left in the state:

X: A R;
Yacc is in rule x, having accepted A and about to accept R. The shift con-
flict rule was easy to find in this case, because it is the only rule left, and it

shows that the next token is R. Yacc resolves shift/reduce conflicts in favor
of the shift, so in this case if it receives an R it shifts to state 6.

The next thing showing may be a rule instead of a token:

start: x1
| x2
I Y R;
x1 A R;
x2: A z;
Y A;
z R;

Berkeley yacc reports several conflicts, including this one:

1: shift/reduce conflict (shift 6, reduce 6) on R
state 1

X1 : A . R (4)

X2 :A.z (5

Y A . (6)

R shift 6
z goto 7

In the example above, the reduction rule is:

v :A. (6)

so that leaves two candidates for the shift conflict:

x1 : A.R (4)
X2 : A .z (5)

Rule x1 uses the next token, R, so you know it is part of the shift conflict,
but rule x2 shows the next non-terminal (not token). You have to look at
the rule for z to find out if it starts with an R. In this case it does, so there is

226

Yacc Ambiguities and Conflicts

a three-way conflict for an A followed by an R: it could be an x1, an x2
which includes a z, or a y followed by an R.

There could be more rules in a conflicting state, and they may not all accept
an R. Consider this extended version of the grammar:

start: x1
| x2
| x3
| Y R;
xl: AR;
X2 A zl;
x3: A z2;
y: A;
zl: R;
z2: S:

MKS yacc produces a listing with this state:

State 1
x1: A.R
X2 A.zl
x31 A.z2
(8) y: A, [R]

ghift/reduce conflict (10,8) on R
R shift 10

S shift 7
error

z2 goto 8

zl goto 9

(The R in brackets means that in the grammar, a y in this context must be
followed by an R.) The conflict is between shifting to state 10 and reducing
rule 8. The reduce problem, rule 8, is the rule for y. The rule for x1 is a
shift problem, because it shows the next token after the dot to be R. It is
not immediately obvious about x2 or x3, because they show rules z1 and 22
following the dots. When you look at rules z1 and z2, you find that z1 con-
tains an R next and z2 contains an S next, so x2 which uses z2 is part of the
shift conflict and x3 is not.

In each of our last two shift/reduce conflict examples, can you also see a
reduce/reduce conflict? Run yacc and look in y.output to check your
answer.

227

lex & yacc

Review of Conflicts in y.output

Let's review the relationship between our pointer model, conflicts, and
y.output. First, here is a reduce/reduce conflict:

The AT&T yacc listing contains:

7: reduce/reduce conflict (red'ns 3 and 4 }) on 2

state 7
x : C_ (3)
Y : ABC_ (4)

There is a conflict because if the next token is Z, yacc wants to reduce both
rules 3 and 4, the rules for both x and y. Or using our pointer model, there
are two pointers and both are reducing:
start: ABx2Z
| y Z;
X: C 1
y: ABC 1

Here is a shift/reduce example:

start: x

| Y R;
b 4 A R;
Y A;

Berkeley yacc reports this conflict:
1: shift/reduce conflict (shift 5, reduce 4) on R

state 1
X :A.R (3)
y:A. (4
R shift 5

There is a conflict, because if the next token is R, yacc wants to reduce the
rule for y and shift an R in the rule for x. Or there are two pointers and one
is reducing:

start: X

| Y R;
X A 1 R;
Y A

228

Yacc Ambiguities and Conflicts

Common Examples of Conflicts

The three most common situations that produce shift/reduce conflicts are
expression grammars, [F—THEN—ELSE, and nested lists of items. After we

see how to identify these three situations, we look at ways to get rid of the
conflicts.

Expression Grammars
Our first example is from the original UNIX yacc manual. We have added a
terminal for completeness:

expr: TERMINAL
| expr ‘-’ expr ;

The state with a conflict is:

4: shift/reduce conflict (shift 3, red‘n 2) on -

state 4
expr : expr_- expr
expr : expr - expr_ (2)

Yacc tells us that there is a shift/reduce conflict when you get the minus
token. Adding our pointers:

expr: expr 4 - eXpr ;

eXpr: expr - expr q ;
These are the same rule, not even different alternatives under the same
name. This shows that you can have a state where your pointers can be in
two different places in the same rule. This is because the grammar is recur-
sive. (In fact, all of the examples in this section are recursive. We have
found that most of the tricky yacc problems are recursive.)

After accepting two expr’s and “~”, the pointer is at the end of rule expr, as
shown in the second line of the pointer example above. But “expr — expr”
is also an expr, so your pointer can also be just after the first expr, as
shown in the first line of the example above. If the next token is not “-7,
then the pointer in the first line disappears because it wants “=" next, so
you are back to one pointer. But if the next token is “~”, then the second

line wants to reduce, and the first line wants to shift.

To solve this conflict, look at y.output, shown above, to find the source of
the conflict. Get rid of irrelevant rules in the state (there are not any here),

229

lex & yacc

and you get the two pointers we just discussed. It becomes clear that the
problem is:

o,

case the input is interpreted as:

(expr - expr) - expr
which is left associative, or might be the first expr in which case the input is
interpreted as:

expr - (expr - expr)

which is right associative. After reading “expr - expr”, the parser could
reduce if using left associativity or shift using right associativity. If not
instructed to prefer one or the other, this ambiguity causes a shift/reduce
conflict, which yacc resolves by choosing the shift. Figure 8-1 shows the

two possible parses.
expression
expression (expression} expressionk L (expression
expression} '1 -

expressionk . {expression}

Figure 8-1: Ambiguous input expr— expr— expr

Later in this chapter, we discuss what to do about this kind of conflict.

230

Yacc Ambiguities and Conflicts

IF—THEN—ELSE

Our next example is also from the UNIX yacc manual. Again we have
added a terminal symbol for completeness:

stmt: IF ‘{’ cond '}’ stmt
| IF (* cond ‘)’ stmt ELSE stmt
| TERMINAL;

cond: TERMINAL;

AT&T yacc complains:
8: shift/reduce conflict (shift 9, red‘n 1) on ELSE
state 8
stmt : IF (cond) stmt_ (1)

stmt : IF (cond) stmt ELSE stmt

In terms of pointers this is:

stmt: TIF cond) stmt ELSE stmt ;

stmt: IF (cond) stm 1 ;
(A E
(+ EL

The first line is the reduce part of the conflict, and the second, the shift
part. This time they are different rules with the same left-hand side. To fig-
ure out what is going wrong, we see where the first line reduces to. It has
to be a call to stmt, followed by an ELSE. There is only one place where that
can happen:

stmt: IF { cond) stmt <return to here> ELSE stmt ;
After the reduction, the pointer returns to the exact spot where it is for the
shift part of the conflict. In fact, that is the same as what was happening
with “expr — expr — expr” in the previous example. And using similar logic,
in order to reduce “IF (cond) stmt” into “stmt” and end up here:

stmt: IF (cond) stmt <bere> ELSE stmt ;

you have to have this token stream:

IF (cond } IF (cond) stmt ELSE

Again, do you want to group it like this:

IF (cond } { IF { cond } stmt } ELSE stmt

or like this:

IF (cond) { IF (cond) stmt ELSE stmt }

The next section explains what to do about this kind of conflict.

231

lex & yace

Nested List Grammars

Our final example is a simple version of a problem we have helped people
track down a number of times. Novice yacc programmers often run into it:

- - T
start: outerL

outerList: /* empty */
| outerList outerListItem ;

it 7 .
oL 4 g

outerListItem: imnmerList ;

innerList: /* empty */

| immerList immerlistTtem ;

innerListItem: I;

AT&T yacc reports this conflict:
2: ghift/reduce conflict (shift 3, red’n 5) on Z

state 2
start : outerlList Z
outerList : outerList_outerListItem
innerList : _ (5)

Let's go through the steps. The reduce rule is the empty alternative of
innerList. That leaves two candidates for the shift problem. Rule start is
one, because it explicitly takes Z as the next token. The nonempty alterna-
tive of outerList might be a candidate, if it takes Z next. We see that outer-
List includes an outerListltem, which is an innerList. The innerList can’t
include an innerListltem, because that includes an I, and this conflict only
occurs when the next token is a Z. But an innerList can be empty, so the
outerListItem involves no tokens, so we might actually be at the end of the
outerList as well, since as the first line in the conflict report told us, an
outerList can be followed by a Z.

This all boils down to this state: we have just finished an innerList, possibly
empty, or an outerList, possibly empty. How can it not know which list it
has just finished? Look at the two list expressions. They can both be
empty, and the inner one sits in the outer one without any token to say it is
starting or finishing the inner loop. Assume the input stream consists solely
of a Z. Is it an empty outerList, or it might be an outerLisp with one item,
an empty innerList ? That's ambiguous.

232

Yacc Ambiguities and Conflicts

The grammar is redundant. You have a loop within a loop, with nothing to
separate them. Since this grammar actually accepts a possibly empty list of
I's followed by a Z, you can write it using only one recursive rule:
start: outerlList Z ;
outerList: /* empty */
| outerList outerListTtem ;
outerListItem: I

Or perhaps you forgot some tokens in outerListltem to delimit the inner
from the outer loop.

How Do I Fix the Conflict?

The rest of this chapter describes what to do with a conflict once you've
figured out what it is. We'll discuss how to fix classes of conflicts that com-
monly cause trouble for yacc users. We welcome feedback from readers
about specific probiems they've had that can add to this section in futy
editions. Two examples in the second edition came from a reader in Min-

EP=Y

ure

neapolis.

When trying to resolve conflicts, consider changing the language you're
parsing. Sometimes you work with a language that’s already defined, but if
not, you can often simplify the yacc description a great deal by making
minor adjustments to the language. In fact, the location of a keyword in
your language could make the difference between the yacc description
being practical, impractical, or even impossible. Languages that yacc has
trouble parsing are often hard for people to parse in their heads; you’ll end
up with a better langauge design once you change your language to
remove the conflicts.

IF—THEN—ELSE (Shift/Reduce)

This is one of the examples from earlier in this chapter. Here we describe
what to do with the shift/reduce conflict once you've tracked it down. It
turns out that the default way that yacc resolves this particular conflict is
usually what you want it to do anyway. How do you know it's doing what
you want it to do? Your choices are to (1) be good enough at reading yacc
descriptions, (2) be masochistic enough to decode the y.output listing, or
(3) test the generated code to death. Once you've verified that you're get-
ting what you want, you ought to make yacc quit complaining. Conflict
warnings may confuse or annoy anyone trying to maintain your code, and

make it easier for

O O miss an important warning.

A Y
b A L IS /12 MAlpeitalll

233

lex & yacc

You can rewrite the grammar this way to avoid the conflict:

stmt: matched
I unmatched

matched: other_stmt
| IF expr THEN matched ELSE matched

unmatched: IF expr THEN stmt
| IF expr THEN matched ELSE unmatched

other stmt: /* rules for other kinds of statement */ ...

The non-terminal other_stmt represents all of the other possible statements
in the language. Although this works, it adds ugly complication to the
grammar.

You can set explicit precedences will stop yacc from issuing a warning.

$nonassoc LOWER_THAN_ ELSE
fnonassoc ELSE

%%

stmt s IF expr stmt %prec LOWER_THAN ELSE ;
| IF expr stmt ELSE stmt;

If your language uses a THEN keyword (like Pascal does) you can do this:

fnonasscoc THEN
fnonassoc ELSE

%%

stmt: IF expr THEN stmt
! IF expr stmt ELSE stmt

A shift/reduce conflict is a conflict between shifting a token (ELSE in the
example above) and reducing a rule (stmt). You need to assign a prece-
dence to the token (%nonassoc ELSE in our example) and to the rule
(%nonassoc THEN or %nonassoc LOWER_THAN_ELSE and %prec
LOWER_THAN_ELSE.) The precedence of the token to shift must be higher
than the precedence of the rule to reduce, so the %nonassoc ELSE must
come after the %nonassoc THEN or %nonassoc LOWER_THAN EISE. It
makes no difference for this application if you use %nonassoc, %left, or
%right.

The goal here is to hide a conflict you know about and understand, and not
to hide any others. When you're trying to mute yacc’s warnings about other
shift/reduce conflicts, the further you get from the example above, the

234

Yacc Ambiguities and Conjlicts

more careful you should be. Other shift/reduce conflicts may be amenable
to a simple change in the yacc description. And, as we mentioned above,
any conflict can be fixed by changing the language. For example, the
IF-THEN-ELSE conflict can be eliminated by insisting on BEGIN-END or

What would happen if you swapped the precedences of the token to shift
and the rule to reduce? The normal IF-ELSE handling makes the following
two equivalent:

if expr if expr stmt else stmt

if expr { if expr stmt else stmt }
It seems only fair that swapping the precedences would make the following
two equivalent, right?

if expr if expr stmt else stmt
if expr { if expr stmt } else stmt

Wrong! That's not what it does. Having higher precedence on the shift
(normal IF-ELSE) makes it always shift the ELSE. Swapping the precedences
makes it never shift the ELSE, so your IF-ELSE can no longer have an else.

Normal IF-ELSE processing associates the ELSE with the most recent IF. Sup-
pose you want it some other way. One possibility is that you only allow
one ELSE with a sequence of IFs, and the ELSE is associated with the first IF.
This would require a two-level statement definition, as follows:

fnonasso¢ LOWER_THAN_ELSE
$nonassoc ELSE

%

stmt: IF expr stmt2 %$prec LOWER_THAN_ELSE
| IF expr stmt2 ELSE stmt;

stmt2: IF expr stmt2;

We don’t encourage this; such a language is extremely counterintuitive.

Loop Within a Loop (Shift/Reduce)

start: outerList Z ;
outerList: /* empty */
| outerlList outerlListItem ;

outerListItem: innerList ;

235

lex & yacc

innerList: /* empty */
| innerList innerListItem ;

innerListItem: I;

Resolution depends on whether you want repetitions to be treated as one
outer loop and many inner loops, or many outer loops of one inner loop
each. The difference is whether the code associated with outerListltem
gets executed once for each repetition, or once for each set of repetitions.
If it makes no difference, arbitrarily choose one or the other. If you want
many outer loops, remove the inner loop:

start: outerList Z ;

outerList: /* empty */
| cuterlist innerListItem ;

innerListTItem: I;

If you want many inner loops, remove the outer loop:

start: innerlist Z ;

imnerList: /* empty */
| innerlist imnerListItem ;

innerListItem: I ;

Expression Precedence (Shift/Reduce)

expr: expr '+’ expr
| expr ‘-’ expr
{ expr ‘*’' expr
i

If you describe an expression syntax using the technique above, but forget
to define the precedences with %left and %right, you get a truckload of
shift/reduce conflicts. Assigning precedences to all of the operators should
resolve the conflicts. Keep in mind that if you use any of the operators in
other ways, e.g., using a “~” to indicate a range of values, the precedence
can also mask conflicts in the other contexts.

236

Yacc Ambiguities and Conflicts

Limited Lookabead (Shift/Reduce or
Reduce/Reduce)

A class of shift/reduce conflicts are due to yacc’s limited lookahead. That
is, a parse that could look farther ahead would not have a conflict. For
example:

rule: command optiocnal keyword ‘(‘ identifier list ‘)*

optional_keyword: /* blank */

| ‘“(* keyword ‘)’

The example describes a command line that starts with a required com-
mand, ends with a required identifier list in parentheses, and has in the
middle an optional keyword in parentheses. Yacc gets a shift/reduce con-
flict with this when it gets to the first parenthesis in the input stream, it
doesn’t know if it goes with the optional keyword or the identifier list. In
the first case yacc would shift the parenthesis within the optional_keyword
rule, and in the second it would reduce an empty optional_keyword and
1 L d it o~ 11ld

mnvae nn ta tha idantifRa
MOVE U1 (O ul 1GEMNLIILE

the difference between the two. But it can’t.

The default is for yacc to choose the shift, which means it always assumes
the optional keyword is there. (You can’t really call it optional that case.)
If you apply precedences you could get the conflict to resolve in favor of
the reduction, which would mean you could never have the optional key-
word.

Yacc cannot parse the command line with the example description above,
no matter how you fiddle with precedences, because yacc lacks the looka-
head depth required. Our only choice, if we can’t change the syntax of the
command language, is to flatten the description:
rule: command ‘(‘ keyword ‘)¢ ‘(‘ identifier list ‘)’
| command ‘(‘ identifier list ’)°

By flattening the list, we allow the parser to scan ahead with multiple pos-
sible pointers until it sees a keyword or identifier, at which point it can tell
which rule to use.

Flattening is a practical solution in this example, but when more rules are
involved it rapidly becomes impractical due to the exponential expansion
of the yacc description. You may run into a shift/reduce conflict from lim-

237

lex & yacc

ited look-ahead for which your only practical solutions are to change the
language, or not to use yacc.

It’s also possible to get a reduce/reduce conflict due to limited look-ahead.
One way is to have an overlap of alternatives:

rule: command_type 1 ‘:’ ‘[...
| command_type_2 “‘:’ ‘{’ ...

command_type 1: D1 | CMD_2 | CMD_COMMON ;

command type_2: CMD A | CMD_B | CMD_COMMON ;

The solutions for this are flattening, as we did above. or making the alterna-
tives disjoint, as described in the following section.

You can also get a reduce/reduce conflict from limited lookahead because
actions in the middle of a rule are really anonymous rules that must be
reduced:

rule: command_list { <action for [form>} *:* "[* ...
| command_list { <action for (' form>} *:* *{' ...

This is already flattened, so there’s nothing you can do to get it to work in
yacc. It simply needs a two token lookahead, and yacc doesn’t have that.
Unless you're doing some sort of exotic communication between the parser
and lexer, you can just move the action over:

rule: command_list ':' [’ { <action for ‘{’' form> } ...
| command_list ‘:* ‘(* { <action for ‘(' form> } ...

Overlap of Alternatives (Reduce/Reduce)

In this case, you have two alternative rules with the same LHS, and the
inputs accepted by them overlap partially. Your best bet is to make the
two input sets disjoint. For example:

rule: girls

2386

Yacc Ambiguities and Conflicts

DARRYL
You will get a reduce/reduce conflict on CHRIS and DARRYL because yacc
can't tell whether they're intended to be girls or boys. There are several

ways [0 resolve the conflict. One is:

rule: girls | boys | either;
girls: ALICE
| BETTY
boys: ALIFN
| BOB
H
either: CHRIS
f DARRYL

i

But what if these lists were really long, or were complex rules rather than
just lists of keywords, so you wanted to minimize duplication, and girls and
boys were referenced many other places in the yacc description? Here’s
one possibility:

rule: just_girls
| Jjust_boys

| either

girls: just_girls
] either

boys: just_boys

| either

just_girls: ALICE

| BOB

either: CHRIS

o “boys | girls” have to be fixed. There’s no way to avoid
either having to fix eferences to “boys | girls” or to fix the lists.

All references t

239

lex & yacc

But what if it’s impractical to make the alternatives disjoint? If you just can’t
figure out a clean way to break up the overlap, then you'll have to leave the
reduce/reduce conflict. Yacc will use its default disambiguating rule for
reduce/reduce, which is to choose the first definition in the yacc descrip-
tion. So in the first “boys | girls” example above, CHRIS and DARRYL would
always be girls. Swap the positions of the boys and girls lists, and CHRIS
and DARRYL are always boys. You’ll still get the reduce/reduce warning,
and yacc will make the alternatives disjoint for you, exactly what you were
trying to avoid. You have to rewrite the grammar.

Summary

Ambiguities and conflicts within the yacc grammar are just one type of cod-
ing error, one that is problematical to find and correct. This chapter has
presented some techniques for correcting these errors. In the chapter that
follows, we will largely be looking at other sources of errors.

Our goal in this chapter has been for you understand the problem at a high
enough level that you can fix it.

To review how to get to that point:

e Find the shift/reduce error in y.output

¢ Pick out the reduce rule

e Pick out the relevant shift rules

e See where the reduce rule will reduce back to

e With this much information, you ought to be able to deduce the token
stream leading up to the conflict.

Seeing where the reduce rule reduces to is typically as easy as we have
shown. Sometimes a grammar is so complicated that it is not practical to
use our “hunt-around” method, and you will need to learn the detailed
operation of the state machine to find the states to which you reduce.

240

Yacc Ambiguities and Conflicts

Exercises

1.

W

All reduce/reduce conflicts and many shift/reduce conflicts are caused
by ambiguous grammars. Beyond the fact that yacc doesn't like them,

biguous grammars usually a bad idea?

Find a grammar for a substantial programming language like C, C++, or
Fortran and run it through yacc. Does the grammar have conflicts?
(Nearly all of them do.) Go through the y.output listing and determine
what causes the conflicts. How hard would they be to fix?

¢}
8
=

L S e e L

usually defined and implemented with ambiguous grammars.

After doing the previous exercise, speculate about why languages are

241

In this chapter:
¢ Error Reporting
e Error Recovery

» Exercises
,

Error Reporting
and Recovery

The previous two chapters discussed techniques for finding errors within
yacc grammars. In this chapter, we turn our attention to the other side of
error correction and detection—how the parser and lexical analyzer detect
errors. This chapter presents some techniques to incorporate error detec-
tion and reporting into the grammar. To ground the discussion in a com-
plete example, we will refer to the menu generation language defined in
Chapter 4, A Menu Generation Language.

Yacc provides the error token and the yyerror routine, which are typically
sufficient for early versions of a tool. However, as any program begins to
mature, especially a programming tool, it becomes important to provide
better error recovery, which allows for detection of errors in the later por-
tions of the file, and better error reporting.

Error Reporting

Error reporting should give as much detail about the error as is possible.
The default yacc error only declares that a syntax error exists and to stop
parsing. In our examples, we typically added a mechanism for reporting
the line number. This provides the location of the error but does not report
any other errors within the file or where in the specified line the error
occeurs.

It is best to categorize the possible errors, perhaps building an array of error
types and defining symbolic constants to identify the errors. For example,
in the MGL a possible error is to fail to terminate a string. Another error
might be using the wrong type of string (quoted string instead of an identif-
ier or vice versa). Ata minimum, the MGL should report:

e General syntactic errors (e.g., a line that makes no sense)

e A nonterminated string

243

lex & yacc

» The wrong type of string (quoted instead of unquoted or vice versa)
» A premature end-of-file

e Duplicate names used

Our existing mechanism that reports a syntax error with the line number is
a good one; if we cannot identify the error, we will use this as a fallback.
We will place other more specific error reports where we recognize the
possibility of such an error. In general, this should be enough to point out
the offending line in the input file, which in turn is often enough to deter-
mine the nature of the error.

The duty for error correction does not lie with yacc alone, however. Many
fundamental errors are better detected by lex. For instance, the normal
quoted string matching pattern is:

A IANTAR] A"

We would like to detect an unterminated quoted string. One potential
solution is to add a new rule to catch unterminated strings as we did in the
SQL parser in Chapter 5. If a quoted string runs all the way to the end of
the line without a closing quote, we print an error:
RIEUIEI LTI
yylval.string = yytext;

return QSTRING;
}

\"[*\"\nl*$ {
warning ("Unterminated string");
yvylval.string = yytext;
return QSTRING;
1

This technique of accepting illegal input and then reporting it with an error
or warning is a powerful one that can be used to improve the error report-
ing of the compiler. If we had not added this rule, the compiler would have
used the generic “syntax error” message; by reporting the specific error, we
can tell the user precisely what to fix. Later in this chapter, we will
describe ways to resynchronize and attempt continuing operation after such
errors.

The yacc equivalent of accepting erroneous input is demonstrated by test-
ing for the improper use of a quoted string for an identifier and vice versa.

244

Error Reporting and Recovery

For instance, the following MGL specification fragment should generate
such an error:

screen "flavors"

instead of:

screen flavors

It is a lot more useful to tell the user that the string is the wrong type rather
than just saying “syntax error”; this is the type of error a beginning user
makes. To handle the wrong type of string, we modify the yacc grammar
to recognize the error condition and report it. Thus, we can introduce a
non-terminal to replace the currently used tokens QSTRING and ID. Cur-
rently, the MGL has the rules:

screen_name: SCREEN ID { start_screen($2); }
| SCREEN { start_screen(strdup("default")); }

i

screen_terminator: END ID { end_screen($2); }
| END { end _screen(strdup(“"default")); }

r

screen_contents: titles lines

I

titles: /* empty */
| titles title

’

title: TITLE gstring { add_title($2); 1}

i

Instead, use the following rules to replace the QSTRING and ID tokens:

id: 1D { 88 =381)
| QSTRING { warning("String literal inappropriate", $1);
$6 = $1; /* use it aryway */
}

gstring: QSTRING { $5 = $1; }
| ID { warning(*Non-string literal inappropriate", s$1);
$$ = $1; /* use it amyway */
}
Now when the yacc grammar detects an improper string literal or identifier,
it can pinpoint the type of error. We use the improper literal anyway; the
generated C code may be wrong but this lets the parser continue and look
for more errors. Sometimes error recovery is impossible; often it is

245

lex & yacc

desirable to issue a warning but not to actually do any error recovery. For
example, pcc, the portable C compiler, aborts when it sees an illegal char-
acter in the input stream. The compiler writers decided that there was a
point when resynchromzmg and continuing were not possible. However,

O Fon

bce rep recovers, as in this C frag-

tlvb leOLLS QUeS
ment:

int 1 = "oops";
In this case, it issues an error message but processing continues.

Our next example detects reused names. This illustrates a type of error
detection that occurs within the compiler code, rather than within the lexi-
cal analyzer or the parser; indeed, it cannot be implemented inside the
grammar or lexica] analyzer because it requires memory of the tokens pre-
viously seen. The approach we took with the MGL was straightforward. In
this instance, duplicate names are syntactically OK but cause duplicates in
the C code the MGL generates, so whenever we see a new name, we “regis-
ter” it in a list of used names. Prior to registration, we scan the list to see if
the name is already registered; if it is, we report a duplicate name error.
The full code is shown in Appendix [, MGL Compiler Code.

Better Lex Error Reports

Some simple lex hackery can let you produce better error reports than the
rather dull defaults. A very simple technique that we used in the SQL
parser reports the line number and current token. We track the line num-
ber on each \n character, and the current token is always available in

yytext.

\n lineno++;
%%
void yyerror(char *s)

printf("%d: %s at %s\n", lineno, s, yytext);

A slightly more complex trick saves the input a line at a time

%{

char linebuf([500];

%}

£1

\n.* { strcpy(linebuf, yytext+l); /* save the next line */
lineno++;
yyless(l); /* give back all but the \n to rescan */

246

Error Reporting and Recovery

%%

void yyerror{char *s)
{
printf("%d: %s at %s in this line:\n%s\n",
lineno, s, yvtext, linebuf);
}

The pattern “\n.*” matches a newline character and the entire next line.
The action code saves the line, then gives it back to the scanner with

yyless().

To pinpoint the exact position of an erroneous token in the input line, keep
a variable that records the current position in the line, setting it to zero on
each “\n.*” token and incrementing it by yyleng on each token. Assuming
the line position is in tokenpos, you can report the error position like this:
void yyerror(char *s)
{
printf("%d: %s:\n¥s\n",
lineno, s, linebuf);
printf (*%*s\n", l+tokenpos, """};
}

The second printf prints a caret at position tokenpos, like this:

3: syntax error:
CREATE TABLE sample (color CHAR{10) NOT DEFAULT ‘plaid’)

Error Recovery

We concentrated on error reporting in the previous section; in this section,
we discuss the problem of error recovery. When an error is detected, the
yacc parser is left in an ambiguous position. It is unlikely that meaningful
processing can continue without some adjustment to the existing parser
stack.

There is no reason efror recovery is necessary. Many programs do not
attempt to continue once an error has been detected. For compilers, this is
often undesirable, because running the compiler itself is expensive. For
example, a C compiler typically consists of several stages: the preproces-
sor, the parser, the data flow analyzer, and the code generator. Reporting
an error in the parser stage and ceasing operation will require that the
single problem be repaired and the process started again—but the work by

the preprocessor must be redone. Instead, it may be possible to recover

A% 23y LDt

from the error and continue examining the file for additional errors,

247

lex & yacc

stopping the compiler before invoking the next stage. This technique
improves the productivity of the programmer by shortening the edit-
compile-test cycle, since several errors can be repaired in each iteration of
the cycle.

Typically, error recovery becomes increasingly valuable as the compiler
becomes increasingly complex. However, the issues involved in error
recovery can be illustrated with a simple compiler such as the MGL.

Yacc Error Recovery

Yacc has some provision for error recovery, by using the error token.
Essentially, the error token is used to find a synchronization point in the
grammar from which it is likely that processing can continue. Note that we
said /ikely. Sometimes our attempts at recovery will not remove enough of
the erroneous state to continue, and the error messages will cascade. Either
the parser will reach a point from which processing can continue or the
entire parser will abort.

After reporting a syntax error, a yacc parser discards any partially parsed
rules until it finds one in which it can shift an error token. It then reads and
discards input tokens until it finds one which can follow the error token in
the grammar. This latter process is called resynchronizing.

In the MGL, we could use screens as synchronization points. For example,
after seeing an erroneous token, it could discard the entire screen record
and restart at the next screen. In Chapter 4, A Menu Generation Language,
our rule for a screen was:

screens: /* nothing */

| preamble screens screen
| screens screen

screen: SCreen_name screen_contents screen_terminator
| screen_name screen_terminator

We can augment this to synchronize in the screen rule:

screen: SCreen name sScreen_contents screen_terminator
| screen name screen terminator
| screen_name error screen_terminator
{ warning("Skipping to next screen”, (char *)0); }

248

Error Reporting and Recovery

This is the basic “trick” to error recovery—attempting to move forward in
the input stream far enough that the new input is not adversely affected by
the older input.

Error recovery is enhanced with proper language design. Modern program-
ming languages use statement terminators, which serve as convenient syn-
chronization points. For instance, when parsing a C grammar, a logical syn-
chronizing character is the semicolon. Error recovery can introduce other
problems, such as missed declarations if the parser skips over a declaration
looking for a semicolon, but these can also be included in the overall error
recovery scheme.

The potential for cascading errors caused by lost state (discarded variable
declarations, for example) discourages a strategy that throws away large
portions of the input stream. One mechanism for counteracting the prob-
lem of cascading errors is to count the number of error messages reported

11t

and abort the compilaiion process when the
number. For example, many C compilers abort after reporting ten errors

within a file.

ey avwro,
Lusugiy \,AL\,e

Like any other yacc rule, one that contains error can be followed action
code. Tt would be typical at this type of point to clean up after the error,
reinitialization of data state, or other necessary “housekeeping” activities,
so when recovery is done, processing can continue. For example, the pre-
vious error recovery fragment from MGL might be expressed as:
screen: screen _name screen_contents screen_terminator
| screen name screen terminator
| screen_name error
{ recover(); 1}

screen_terminator
{ warning ("Skipping to next screen", (char *)0); }

Unfortunately, this means the entire input must be parsed up to a
screen_terminator before the state machine has recovered. This means that
if the screen terminator were not found, the parser would throw away the
rest of the input file looking for it, causing a fatal syntax error. (Recall that
we have no error recovery at the level above the screen rule in this
example). Normally, the parser refrains from generating any more error
messages until it has successfully shifted three tokens without an interven-
ing syntax error, at which point it decides that it has resynchronized and
returns to its normal state. If we wish to force immediate resynchroniza-

249

lex & yacc

tion, we can use the special yacc action yyerrok. This informs the parser
that recovery is complete and resets the parser to its normal mode. Our
previous example then becomes:

SCreen_name screen _contents screen_terminator

.
:
.
A= =8 mea oo o =t
! Screen_name screen terminator

sScreen_name error
{ yyerrok; recover(); }
screen_terminator
{ warning("Skipping to next screen", (char *)0); }
The recover() routine should ensure that the next token read is an END,
which is what screen_terminator needs, or you may immediately get
another syntax error.

The most common place to use yyerrok is in interactive parsers. If you
were reading commands from the user, each starting on a new line:

commands: /* empty */
| commands command

{ error {
yyclearin; /* discard lockahead */
yyerrok;
printf ("Enter ancther cammand\n");
}

The macro yyclearin discards any lookahead token, and yyerrok tells the
parser to resume normal parsing, so it will start anew with the next com-
mand the user types.

If your code reports its own errors, your error routines should use the yacc
macro YYRECOVERING() to test if the parser is trying to resynchronize, in
which case you shouldn’t print any more errors, e.g.:

warning (char *errl, char *err2)

{

1£ (YYRECOVERING())
return; /* no report at this time */

()

250

Error Reporting and Recovery

Where to Put Error Tokens

Proper placement of etror tokens in a grammar is a black art with two con-
flicting goals. You want to be as sure as possible that the resynchronization
will succeed, so you want error tokens in the highest level rules in the
grammar, maybe even the start rule, so there will always be a rule to which
the parser can recover. On the other hand, you want to discard as little
input as possible before recovering, so you want the error tokens in the
lowest level rules to minimize the number of partially matched rules the
parser has to discard during recovery.

If your top level rule matches a list (e.g., the list of screens in the MGL) or a
list of declarations and definitions in a C compiler, make one of the alterna-
tives for a list entry contain error, as in the command and screen examples
above. This applies equally for relatively high-level lists such as the list of
statements in a C function.

If punctuation separates elements of a list, use that punctuation in error
rules to help find synchronization points. For example, ina C compiler, you
might write this:

stmt: . e
| RETURN expr ';’
| +{* opt_decls stmt_list *}*
i error ‘;’
I error '}’
Since each C statement ends with “;” if it's a simple statment or “}” if it's a

compound statement, the two error rules tell the parser that it should start

]

looking for the next statement after a “;” or “}”.

You can also put error rules at lower levels, e.g., as a rule for an expression,
but in our experience, unless the language provides punctuation or key-
words that make it easy to tell where the expression ends, the parser can’
rarely recover at such a low level.

Compiler Error Recovery

In the previous section, we described the mechanisms that yacc provides
for error recovery. In this section, we discuss external recovery mecha-
nisms, provided by the programmer.

The inherent difficulty with error recovery is that it usually depends upon
semantic knowledge of the grammar rather than just syntactic knowledge.
This greatly complicates complex recovery within the grammar itseif.

251

lex & yacc

Previously we suggested that a user-provided mechanism for resetting
internal data structures of the compiler might be in order; in addition, it
may be desirable for the recovery routine to scan the input itself and, using
a heuristic, perform appropriate error recovery. For instance, a C compiler

i 1 i 1 ho dasl +: s
writer might decide that errors encountered during the declarations section

of a code block are best recovered from by skipping the entire block rather
than continuing to report additional errors. She might also decide that an
error encountered during the code section of the code block need only skip
to the next semicolon. A truly ambitious writer of compilers or interpreters
might wish to report the error and attempt to describe potential correct
solutions.

Once the compiler has performed such error recovery, it should clear the
yacc lookahead buffer which contains the erroneous token, using yyclearin,
and probably also use yyerrok so the compiler immediately reports any
other errors found. (You might not call yyerrok if you're not confident that
you've recovered properly.)

Typically, sophisticated error correction uses both yacc error recovery for
fundamental syntactic errors and user-provided routines for semantic errors
and data structure recovery (e.g., discarding data for Joca) variables, nested
BEGIN blocks and loops if recovery skipped to the end of a routine.) Our
final version of MGL, in Appendix I, MGL Compiler Code, includes some of
these error recovery techniques.

Exercises

1. Add error recovery to the SQL grammar in Chapter 5 and Appendix J.
At the very least, you should resynchronize at the “” between SQL
statements. Create some deliberately wrong SQL and give it to your
parser. How well does it recover? Usually it takes several attempts to
get error rules that recover effectively.

2. (Term project) Yacc’s error recovery works by discarding input tokens
until it comes up with something that is syntactically correct. Another
approach inserts rather than discards tokens, because in many cases it is
easy to predict what token must come next. For example, in a C pro-
gram, every break and continue must be followed by a semicolon, and
every case must be preceded by a semicolon or an open brace. How
hard would it be to augment a yacc parser so that in case of an input
error, it can suggest appropriate tokens to insert?

You'll need to know more about the insides of yacc for this exercise.

See the Bibliography for suggested readings.

252

In this appendix:
» Error Messages

ATGT Lex

ATOT las
AT&T lex is the mos

not sure which version of lex you have, try running a lexer through it with
the —v flag. If the produces a terse two-line summary like this, it's AT&T
lex:

e-r

ion found on UNIX systems. If you

21 ANSveral il 22 LU §
P

5/2000 nodes(%e), 16/5000 positions(%p), 5/2500 (¥n),

4 transitions, 0/1000 packed char classes(%k}, 6/5000

packed transitions(%a), 113/5000 output slots(%o)
If produces a page of statistics with lex’s version number on the first line,
it's flex.
Lex processes a specification file and generates source code for a lexical
analyzer. By convention, the specification file has a ./ extension. The file
that lex generates is named lex.yy.c.

The syntax of the AT&T lex command is:
lex [options] file

where options are as follows:

—c Writes the lexer in C (default). The obsolescent flag is not present
in many versions.

-n Don't print the summary line with the table sizes. This is the
default unless the definition section changes the size of one of
lex’s internal tables.

—r Actions are written in RATFOR, a dialect of FORTRAN. This option
no longer works in most versions of lex, and is not even present
in many of them.

—t Source code is sent to standard output instead of to the default file
lex.yy.c. This is useful in Makefiles and shell scripts that direct the
output of lex to a named file.

—v Generates a one-line statistical summary of the finite state

e e e i PRV, Py
nachine. This option is implied when any of the tables sizes are

specified in the definitions section of the lex specification.

253

lex & yacc

-f Translate faster by not packing the generated tables. (Only practi-
cal for small lexers.) Present only in BSD-derived versions of lex.

You must specify options before the file on the command line. You can
specify one or more files, but they are treated as a single specification file.
Standard input is used if no file is specified.

The lex library libl.a contains yyreject, an internal routine required by any
lexer that uses REJECT, and default versions of main() and yywrap().

See Chapter 6, A Reference for Lex Specifications, for more information on

pecifications.

Error Messages

This section discusses correcting problems and errors reported by AT&T
lex. The error messages are listed alphabetically and are intended for refer-
ence use.

Action does not terminate
While processing an action, lex encountered the end of the file before
the action terminated. This usually means the closing brace of the
action is missing.
Solution: Add the missing brace.

bad state %d %o
This is an internal lex error.
Solution: Report problem to system’s software maintainer,

bad transition %d %d
This is an internal lex error.
Solution: Report problem to system’s software maintainer.

Can’t open %s
Lex was unable to open the output file lex.yy.c. This is usually
because you do not have write permission on the directory or the file
exists and is not writable.
Snliitinon: Remave th fla.

[MAV AVINLE} S N nCMove uie 1liv, Cllallge pef 1115310

change directories.

Can’t read input file %s
Lex was unable to open the file specified on the command line.
Solution: Invoke lex with a valid filename.

254

ATET Lex

ch table needs redeclaration
While reading a %T declaration from the lex file, the number of char-
acters defined exceeded the amount of space lex has allocated for
character tables.
Solution: Either remov om the translation table or, if
you have the lex source code, rebuild lex to maintain a larger transla-

tion table.

Coylirti . i
slhution: Either remove characters

Character '%c’ used twice

Character %o used twice
While processing a new translation table, a character was re
Solution: Remove the extraneous declaration.

Character value %d out of range
While processing a new translation table, lex saw an invalid character
value. Valid values are in the range 1 to 256.
Solution: Correct the invalid character value.

Definition %s not found
After seeing a {definition}, lex was unable to find it in the list of
declared substitutions. '
Solution: Replace substitution; define it in definition section.

Definitions too long
Lex has a limit on the size of a definition. The length of the definition
is too large.
Solution: Make the definition shorter (perhaps by breaking into two);
rebuild lex to allow longer definitions.

EOF inside comment
While processing a comment, lex encountered the end of the file.
This is usually caused because there is an unterminated comment.
Solution: Add the missing “*/”.

Executable statements should occur right after %
While processing the rules section, lex saw an action without an
associated pattern. It is legal to place executable code immediately
following the rules break (this code will then be executed on each
call to yylex()). Such code can’t appear anywhere else in the rules
section. Solution: Either fix the pattern associated with the action or
move the code to the beginning of the rules section.

255

lex & yacce

Extra slash removed
An invalid “/” character was ignored. This probably means that a lit-
eral “/” in a pattern wasn’t quoted.
Solution: Quote the “/”, or fix the error.

Invalid request %s
While processing the definition section, 2 lex declaration (beginning
with “%”) was seen, but the declaration was not valid. Valid requests
are either “%{” to start a literal block, or “%” followed by a letter. See
“Internal Tables” and “Literal Block” in Chapter 6.

Iteration range must be positive

Can’t have negative iteration
An iteration range (using {count,count}) was used with a negative
value, or a zero value for the second count.

No space for char table reverse
Internal lex error.
Solution: Report problem to system’s software maintainer.

No translation given - null string assumed
While processing the definition section, lex saw a substitution string
that had no substitution text. Lex uses an empty string. This is a
warning message only.

Non-portable character class
While scanning through a rule, a non-portable escape sequence was
specified. This occurs whenever an octal constant is used in a charac-
ter class.
Solution: Live with non-portability, or don’t use an octal constant
there.

Non-terminated string

Non-terminated string or character constant

EOF in string or character constant
While reading a rule or processing a string in action code, lex has
encountered a string that does not terminate before the end of line.
Solution: If the string is supposed to continue to the next line, add a
“\” continuation marker; if not, add the missing “.”.

OOPS - calloc returnsa 0
Internal error, or system out of virtual memory.
Solution: Report problem to system’s software maintainer.

256

ATET Lex

output table overflow
Internal error.
Solution: Report problem to system’s software maintainer.

arse tree too big %s
Lex has exhausted the parse tree space.
Solution: Simplify the lex specification; increase the parse tree space
with the %e declaration in the definition section.

Premature eof
While processing the defin

Solution: Add the missing “%)”.

Start conditions too long
The total length of the names of start states (also known as start con-
ditions) exceeds the size of an internal table.
Solution: Shorien the name of the start condition.

String too long
While reading a rule, lex encountered a string that is too long to store
inside its internal (static) buffer.
Solution: Shorten the string; rewrite the string expression to use a
more compact form; rebuild lex to allow larger strings.

Substitution strings may not begin with digits
While processing the definition section, lex saw a substitution string
name that began with a digit.
Solution: Replace the substitution string with one not beginning with
a digit. :

syntax error
Lex has seen a line that is syntactically incorrect.
Solution: Fix the error.

Too late for language specifier
While processing the definition section, lex saw a %c or %r (language
choice of C or RATFOR) after it had already started to write the output
file.
Solution: Declare the language earlier.

257

lex & yacc

Too little core for final packing
Too little core for parse tree
Too little core for state generation

Too little core 10 begin
Internal error, or system out of virtual memory.
Solution: Report problem to system’s software maintainer.

Too many characters pushed
Lex has exhausted the stack space available for an input token.
Solution: Shorten the size of the token; rebuild lex to accept la

sized tokens.

Too many definitions
While parsing the input file, lex has exhausted its static space for
storing definitions.
Solution: Remove some definitions; rebuild lex to use a larger defini-
tions table.

Too many large character classes
Lex has exhausted internal storage for large character classes. A large
character class is used to describe the ranges that occur inside
brackets ([]).
Solution: Shorten the number of different large character classes;
rebuild lex to allow more large character classes.

Too many packed character classes
Solution: Use the %k declaration.

Too many positions %s
Lex has exhausted the space for positions.
Solution: Use the %p declaration.

Too many positions for one state - acompute
Lex has used more than 300 positions for a single state, which is an
internal lex limit. This error indicates an overly complex state.
Solution: Simplify the lex specification; rebuild lex to allow more
positions per state.

Too many right contexts
Lex has exhausted the space for right contexts, the pattern text after
the “/” pattern character.
Solution: Decrease the number of right contexts used; rebuild lex to
allow more right contexts.

258

ATET Lex

Too many start conditions
While processing the definition section, the number of start condi-
tions exceeded the size of lex’s static internal table.

Solution: Use fewer start conditions; recompile lex with a larger
£

i
nditions

- |m1‘\ i e o
poLey 1 LU 111008,

moer o

Too many start conditions used
Too many start conditions were specified for a particular rule for lex
to handle.
Solution: Decrease the number of starting positions; rebuild lex to
aliow a larger number of start conditions per rule.

Too many states %S
Solution: Use the %n declaration.

Too many transitions %s

Clirts .
Solution: Use

Undefined start condition %s
A <start state> was used in a pattern, but lex was unable to find it in
the list of declared start state.
Solution: Declare the start state, or correct the name if it's misspelled.

Unknown option %c
Lex was invoked with an unknown switch. The valid switches are
listed above.

yacc stack overflow
Lex was written using a yacc grammar. The yacc-generated grammar
has exhausted its stack space. (We’ll be impressed if you see this
one!)
Solution: Shorten or reorder the expressions in the lex specification;
rebuild lex with a larger yacc stack area.

259

In this appendix:
« Optians
s Error Messages

ATET Yacc

Options

AT&T yacc is distributed with most versions of UNIX, except for the most
recent verions of Berkeley UNIX, which have Berkeley yacc. If you're not
sure which version of yacc you have, try running it with no arguments. If it
§ays:

fatal error: camnot open input file, line 1

it's AT&T yacc. If it gives you a summary of the command syntax, it's
Berkeley yacc.

Yacc processes a file containing a grammar and generates source code for a
parser. By convention, the grammar file has a .y extension. T he file that
yacc generates is named y.tab.c.

The syntax of the yacc command is:
yacc [options] file

where options are as follows:
—-d Generates the header file y.tab.b that contains definitions of token
names.
—I Omits #line constructs in the generated code.
—t Includes runtime debugging code when y.tab.c is compiled.

—v Produces the file y.output, which contains a listing of all of the
states in the generated parser and other useful information.

In order to compile the parser generated by yacc, you must supply a main
routine and a supporting routine, yyerror. The UNIX library liby.a contains
default versions of these routines.

See Chapter 7, A Reference for Yacc Grammars, for information on yacc
specifications.

261

lex & yacc

Error Messages

This section discusses correcting problems and errors reported by yacc,
aside from the shift/reduce and reduce/reduce errors discussed in Chapter
8, Yacc Ambiguities and Conflicis. The error messages are organized
alphabetically.

%d rules never reduced
Some rules in the grammar were never reduced, either because they
were never mentioned on the right-hand side of other rules or
because they were involved in reduce/reduce conflicts. Yacc reports
the number of rules that did not reduce.
Solution: Resolve the conflicts, or look for spelling errors.

000’ is illegal
An octal escape specified the null character, which AT&T yacc
reserves for its internal use.
Solution: Remove the offending escape.

action does not terminate
An action in the input runs off the end of the file, probably because of
an extra {’ or a missing '}.
Solution: Fix the erroneocus action.

action table overflow

no space in action table
While parsing the input file (or processing the input), the yacc static
action table overflowed.
Solution: Simplify actions; recompile yacc with a larger action table;
use bison or Berkeley yacc.

bad %start construction
A Y%start directive didn’t contain a non-terminal name.
Solution: Change the %start so it has an argument.

bad syntax in %type
The type argument to a %type directive was not valid. This occurs
because the directive had no arguments.
Solution: Remove the %type or give it arguments.

bad syntax on $<ident> clause
While reading an action, an invalid value type appeared.
Solution: Correct the invalid type declaration either by removing the
offending declaration or by fixing the type declaration.

262

ATET Yacc

bad syntax on first rule
The first rule was syntactically incorrect. For example, yacc never
found the colon following the first rule.
Solution: Fix the first rule.

bad tempfile
Internal error, or system ran out of disk space.
Solution: Rerun yacc; report problem to system’s software main-
tainer.

cannot open input file
Yace could not open the input file specified on the command line, or
no name appeared.
Solution: Correct the filename.

cannot open temp file
Yacc attempted to open the yacc.tmp temporary file but failed. This
probably occurred because the current directory was not writable or
because an unwritable yacc.tmp already exists.
Solution: Remove yacc.tmp or change the directory permissions.

cannot open y.output

cannot open y.tab.c

cannot open y.tab.h
Yacc attempted to open one of its output files but failed. This proba-
bly occurred because the current directory was not writable or
because an unwritable version of the file already exists.
Solution: Remove the file or change the directory permissions.

cannot place goto %d
Internal error.
Solution: Report problem to system’s software maintainer.

cannot reopen action tempfile
Yacc keeps all its actions in a temporary file called yacc.acts. This
file has disappeared; it was probably deleted while yacc was running.
Solution: Do not delete yacc’s temporary files while running yacc.

clobber of a array, pos’n %d, by %d
Internal error.
Solution: Report problem to system’s software maintainer.

263

lex & yacc

default action causes potential type clash
A rule has no action, so it uses the default “$$ = $1”, but the type of
$1 is different from that of $$. of the rule.
%$union{

int integer:

char *string;
}

$TOKEN <integer> int
%type <string> s
%

int: s ;
Solution: Add an explicit action or correct the types. The last line
might be corrected to:

int: s { $$ = atoi($1); } ;

eof before %
While reading the input file, yacc failed to find the rules section,
probably because the “%%” was omitted.
Solution: Add the “%%".

EOF encountered while processing %union
The file ended in the middle of a %union directive, probably because
of a missing “}".
Solution: Add the missing brace.

EOF in string or character constant

EOF inside comment
The file ended inside a string, character constant, or comment.
Solution: Add the closing quotation mark or “*/”.

Error; failure to place state %d
Internal error.
Solution: Report problem to system'’s software maintainer.

illegal %prec syntax
No symbol name follows a %
Solution: Add one.

illegal comment
A “/”, in the rules section outside an action is not followed by a “*”,

Solution: Remaove the slash or add an asterisk.

264

ATET Yace

illegal \nnn construction
An octal character escape contains something other than octal digits,
c.g.:
$left ‘\2z'

Solution: Correct the octal character escape.

illegal option: %c
Yacc was run with an option other than the valid ones listed above.

illegal or missing’ or”
While reading a string literal or character literal, yacc failed to find
the closing single or double quote.
Solution: Supply the closing quotation mark or marks.

illegal rule: missing semicolon or | ?
Yacc saw in invalid character such as a “%” in a rule.
Solution: Revise the rule.

internal yacc error: pyield %d
Internal error.
Solution: Report problem to system’s software maintainer.

invalid escape
The character after a “\” is not a valid escaped character.
Solution: Correct or remove the escape.

illegal reserved word: %s
The directive following a “%” is not one that yacc understands.
Solution: Fix the directive if possible. Also, check to see if the direc-
tive is a bison directive. See Appendix D, GNU Bison.

item too big
In the process of building the output strings, yacc has encountered an
item that is too large to fit inside its internal buffer.
Solution: Use a shorter name (this error occurs when the name of the
item was quite large; in the implementation we used, 370 characters
was the limib).

205

lex & yacc

more than %d rules
While reading rules in from the specified grammar, yacc has over-
flowed the static space allocated for rules.
Solution: Simplify the grammar; recompile yacc with larger state

Wi . | 394 - e
tabics; Us€ DIS0ON Of DETKTIey

o

must return a value, since LHS has a type
A rule with a typed left-hand side does not set “$$”.
Solution: Add a return value by assigning an appropriate value to

“$$”.

must specify type for %s
A %token directive, no type was specified for the directive.
Solution: Add a type.

must specify type of $%d
In an action, yacc has found a value reference usage which must be

typed.

Solution: Declare the type of the symbol in the definition section.

newline in string or char. const.
A string or character constant runs past the end of the line.
Solution: Add the closing quotation mark or marks.

nonterminal %s illegal after %prec
A %prec directive was followed by a non-terminal.
Solution: Correct the erroneous %prec.

nonterminal %s never derives any token string
A recursive rule loops endlessly, because there is no non-recursive
alternative for the left-hand side. Example:

x_list:‘X’ x list

with no other rule for x_list.
Solution: Remove the rule or add a non-recursive alternative. This
example could be rewritten:

x_list: X’

¢ list | ‘X’ ;

266

ATET Yace

nonterminal %s not defined!
A non-terminal symbol never appears in the left-hand side of the rule.
Yacc reports the line where the undefined non-terminal was used.
Solution: Define the symbol or fix the spelling error.

optimizer cannot open tempfile
The temporary file yacc uses cannot be opened.
Solution: Do not delete yacc temporary files while yacc is running.

out of space
While runnin

o o 1
While running through the optimizer, y 12s exhau
internal working space.
out of space in optimizer a array
a array overflow
out of state space

One of vace'e i
NAAA UL]u\'\' (o)

Solution: Simplify grammar; rebuil
array; use bison or Berkeley yacc.

yacc with more space in the “a”

[

Ratfor Yacc is dead: sorry.
The —rflag used to produce a RATFOR parser.
Solution: Stick with C.

redeclaration of precedence of %s
The specified token has its precedence declared in more than one
%left, %right, or %nonassoc directive.
$left PLUS MINUS

t$left TIMES DIVIDE
$left PLUS

Solution: Remove al] the extra declaration.

Rule not reduced: %s
A rules was never reduced, either because it was never mentioned on
the right-hand side of other rules or because they were involved in
reduce/reduce conflicts. This error message is reported in y.output.
Solution: Examine the rule and rewrite so that it does reduce.

syntax error
Yacc did not understand the statement.
Solution: Fix the statement.

267

lex & yacc

token illegal on LHS of grammar rule
A token was found on the left-hand side of the rule on the specified
line. Tokens can appear only on the right-hand side.

$token FOO

[-N- N
O

FOO: ;

Solution: Correct the rule.

too many characters in ids and literals
While processing the input file, yacc has exhausted the internal static

ctorace for identifiers and]itpra]s_

OUULGRRU 1L IWULERILICI S Gaive Aial

Solution: Simplify grammar; rebuild yacc with larger static tables; use
bison or Berkeley yacc.

too many lookahead sets
An internal buffer overflowed.
Solution: Simplify the grammar or rebuild yacc with more lookahead
set space.

too many nonterminals, limit %d
Yacc has found more non-terminals than fit in its table.
Solution: Simplify the grammar; rebuild yacc with larger internal
tables; use bison or Berkeley yacc.

too many states
An internal table overflowed.
Solution: Simplify the grammar (thus, it will take fewer states);
increase the number of allowed states by recompiling yacc; use bison
or Berkeley yacc.

too many terminals, limit %d
The grammar has found more tokens (terminal symbols) than fit in
yacc's statically defined buffer space. The limit may be as low as 127
tokens.
Solution: Simplify the grammar; rebuild yacc with larger internal
tables; use bison or Berkeley yacc.

268

ATET Yacc

type redeclaration of nonterminal %s
type redeclaration of token %s
The value type of the non-terminal token has been declared more
than once. Sample:
$union{
int integer;

char *string;
}

$type <string> foo
$type <integer> foo

Solution: Remove one of the the offending %type directives.
unexpected EOF before %

The file given to yacc was empty.
Solution: Put something in the file (preferably a yacc grammar).

unterminated < ... > clause
A type name (within angle brackets) runs off the end of the file.
Solution: Put in a closing bracket.

working set overflow
An internal table overflowed.
Solution: Simplify the grammar or rebuild yacc with more working
set space.

yacc state/nolook error
Internal error.
Solution: Report problem to system'’s software maintainer.

269

In this appendix:
¢ Options
* Error Messages

Berkeley Yacc

extra features.

Options
Berkeley yacc’s options are the same as AT&T yacc’s wi th these additions:
—bpref Uses prefas the prefix for generated files instead of y.

-r Generates separate files for code and tables. The code file is
named y.code.c, and the tables file is named y.tab.c.

There is no library for Berkeley yacc; you have to provide your own ver-
sions of main() and yyerror().

Error Messages

This section discusses correcting problems and errors reported by Berkeley
yacc, aside from the shift/reduce and reduce/reduce errors discussed in
Chapter 8, Yacc Ambiguities and Conflicts. Each error message starts with
a letter f for fatal error, € for error, or w for warning. Yacc gives up as soon
as it sees an error or fatal error. Most of the error message also include the
input filename and line number, which we omit here.

Fatal Errors

f - cannot open file
Yacc couldn’t open a file. If it’s a name you specified, make sure the
file exists and is readable. If it's one of yacc’s temporary or output
file, make sure that the appropriate ditectory is readable and there is
not already a read-only version of the given file.

271

lex & yacc

f - out of space
f - too many gotos
f - too many states

f - maximum table size exceeded
An internal table overflowed, or insufficient virtual memory was avail-
able. Unless you have a stupendously huge grammar with tens of
thousands of tokens and rules, this probably represents a bug in yacc.
Solution: Report problem to system’s software maintainer.

Regular Errors
¢ - unexpected end-of-file

The input file ended in a syntactically impossible place.
Solution: Check and fix the input.

€ - syntax error
Yacc didn’t find a mandatory syntax element, e.g., after a “%” it didn’t
find any of the possible words allowed there.
Solution: Check and fix the input.

€ - unmatched /*
The file ends in the middle of a comment, probably because the close
comment is missing or mistyped.
Solution: Check and fix the input.

¢ - unterminated string
A string runs past the end of a line, probably because the close quote
is missing.
Solution: Add the missing quote.

¢ - unmatched %{
The file ends in the literal block, probably because the “%}” is missing
Solution: Add the missing “%}”.

¢ - unterminated %union declaration
The file ends in the %union declaration, probably because the closing
brace is missing.
Solution: Add the missing “}".

€ - too many %union declarations
There are multiple %union declarations. Yacc only allows one.
Solution: Remove the extra one, or combine them.

272

Berkeley Yacc

¢ - illegal tag
Value type tags must be valid C identifiers, e.g.:

$token <ab&z> foo

The tag ab&z is illegal.

Solution: Change the tag name.
¢ - illegal character
An octal or hex escape sequence fepresents a value too large to fit in
a charvariable.
Solution: Use character values between 0 and 255.
e - illegal use of reserved symbol %s
The symbol names $accept, $end, any names of the form $$ N where
N is a2 number, and the name consisting of a single dot are reserved
for yacc’s internal use.
Solution: Pick another name.
e - the start symbol %s cannot be declared to be a token
A token appears in the %start declaration.
Solution: Don’t do that.
e - the start symbol %s is a token
The start symbol appears in a %token declaration.
Solution: Don’t do that.
e - no grammar has been specified
The rules section of the grammar contains no rules, probably because
of a missing or extra %% line.
Solution: Correct the error.
e - a token appears on the lhs of a production
The left-hand side of every rule must be a non-terminal, not a token.
Solution: Correct the error.
¢ - unterminated action
The grammar file ends in the middle of an action, probably because
of a mising close brace.
Solution: Add the missing brace.
e - illegal $-name
A value reference with an explicit tag is of an invalid form, e.g.,
$<foo>bar.
Solution: Correct the error.
e - $$ is untyped
An action contains a reference to $$, but the left-hand side symbol

hac no value tune get

LIGAT A7 VLW v pos O

Solution: Remove the reference to $$, or assign a type to the symbol.

273

lex & yacc

e - $%d (%s) is untyped
An action contains a reference to $N, but the corresponding right
hand side symbol has no value type set.
Solution: Remove the reference to $N, or assign a type to the symbol.
e - $%d is untyped
An out-of-range value reference, e.g., $0, needs an explicit type.
Solution: Use an explicit type, e.g., “$<sym>0".
e - the start symbol %s is undefined
There is no rule with the start symbol on its left-hand side.

[P NP, N P I AP Y |
SOIULION: AQQ Ofie, Or Correct spiil

Warnings

w - the type of %s has been redeclared
The type of symbol’s value has been set more than once, inconsis-
tently.
Solution: Only declare a symbol’s type once.

w - the precedence of %s has been redeclared
A token appears in more than one %left, %right, or %nonassoc decla-
ration.
Solution: Only set a symbol’s precedence once.

w -~ the value of %s has been redeclared
The token number of a token has been declared more than once.
Solution: Only declare a token’s number once. Better yet, let yacc
choose its own token numbers for non-literal tokens.

w - the start symbol has been redeclared
The grammar contains multiple inconsistent %start declarations.
Solution: Remove all but one of them.

w - conflicting %prec specifiers
A rule contains multiple inconsistent %prec specifiers. You can only
use a maximum of one per rule.
Solution: Remove extra predecence specifiers.

w - $%d references beyond the end of the current rule
The action contains a reference to a nonexistent right-han

bol, e.g., $9 when the right-hand side contains only eight symbols.
Solution: Correct the error.

274

Berkeley Yacc

w - the default action assigns an undefined value to $$
In a rule with no explicit action, $$ and $1 do not have the same
value type. For example:
$union{
int integer;
char *string;
}

$TOKEN <integer> int
%type <string> s
%%

int: s ;

Solution: Change the types, or add appropriate action code. For
example:

int: s { $$ = atoi($1); }

w - the symbol %s is undefined
There is no rule with the given non-terminal on its left-hand side.
Solution: Add one, or correct spelling errors.

Informative Messages

%s: %d rules never reduced
Some rules are never used, either because they weren't used in the
grammar or because they were on the losing end of shift/reduce or
reduce/reduce conflicts. Either change the grammar to use the rules
or remove them.

%d shift/reduce conflicts, %d reduce/reduce conflicts
The grammar contains conflicts, which you should fix if you weren't
expecting them. See Chapter 8, Yacc Ambiguities and Conflicts, for
more details.

275

In this appendix:
* Differences

GNU Bison

The GNU project’s yacc replacement is called bison. Briefly, GNU (Gnu’s
Not INIX) is the project of the Free Software Foundation and is an attempt
to create a UNIX-like operating system with source code available publicly
(although GNU is not public domain, it is freely available and has a license
intended to keep it freely available). Hence, bison is available to anyone.
For more information on how to obtain bison, GNU, or the Free Software
Foundation, contact:

Free Software Foundation, Inc.

675 Massachusetts Avenue

Cambridge, MA 02139

(617) 876-3296

Users with access to the Internet can FTP bison and all other GNU software
from prep.ai.mit.edu in the directory /pub/gnu.

Parsers generated with bison are subject to the GNU “copyleft” software
license which sets conditions on the distribution of GNU and GNU-derived
software. If you plan to use bison to develop a program distributed to oth-
ers, be sure to check the file COPYING included with the bison distribution
to see if you agree to the terms.

This description reflects bison version 1.18, which was released in May
1992.

Differences

In general, bison is compatible with yacc, although there are occasional
yacc grammars that do not work properly with bison. Bison is derived from
an early version of Berkeley yacc, but each has been developed indepen-
dently for several years and there are now many small differences. Never-
theless, bison can often be a boon when trying to deal with some of the
problems associated with yacc, notably yacc's use of internal static buffers.

277

lex & yace

Bison uses dynamic memory rather than static memory, so it can often
accept a yacc grammar that AT&T yacc will not.

Further, bison offers some minor enhancements that can prove to be of
value:

%expect in the definition section tells bison to expect a certain number
of shift/reduce conflicts. Bison refrains from reporting the number of
shift/reduce conflicts if it is exactly this number.

%pure_parser in the definition section tells bison to generate a reentrant
parser (one without global variables). This lets you use the parser in a
multi-threaded environment, and allows the parser to call itself recur-
sively. In a reentrant parser, the interface to yylex() is slightly different,
and the code in the actions and supporting routines must also be reen-
trant.

%semantic_parser and %guard are used in a semantic parser, one that
attempts more sophisticated error recovery based upon the meaning (or
contents) of the token, rather than the type of the token. Such a parser
is more complex but provides more functionality. Bison is distributed
with two model parser internals, one called bison.simple and the other
bison.bairy. The latter is used for the semantic parser. “Guards” control
the actions of the parser, handling reductions and errors. This feature is
rarely used and not documented in the online bison manual.

@N in actions maintains information about the source file line and col-
umn numbers of tokens in the current rule, which can be useful in error
messages. This information must be provided by the lexer. For a more
detailed explanation, see the bison manual.

Bison does not write out names to y.fab.c. Instead it writes to
Silename.tab.c for the file filename y. Command-line flag let you specify
other filenames, or use the traditional yacc names.

Bison has command-line options to change the prefixes of the symbols
in the generated parser from the default “yy.” This lets you include
more than one parser in the same program.

We've noted most of the places where bison and yacc differ, but bison
comes with about 100 pages of online documentation which quite com-
pletely explain the differences between bison and yacc.

278

In this appendix:

« Flex Differences
* Options

« Error Messages
*» Flex Versions of

Lexer Examples Fl e x

A freely available version of lex is flex. It is the version of lex distributed
with 4.4BSD and by the GNU project. Internet users can also FTP it from
ftp.ee.lbl.gov. The most significant advantages of flex are that it is much
more reliable than AT&T lex, generates faster lexical analyzers, and does
not have lex’s limitations upon table size. Flex may be redistributed with
no requirements other than reproducing the authors’ copyright and dis-

claimer, and there are no distribution restrictions at all on flex scanners.

Flex is highly compatible with lex. Some AT&T lex scanners will need to
be modified to work with flex, as detailed below.

This description reflects flex version 2.3.7, released in March 1991.

Flex Differences

We've noted differénces between flex and other versions of lex throughout

the text. Here is a summary of the most important differences:

e Flex does not need an external library (AT&T lex scanners must be
linked with the lex library by using -/ on the command line). The user,
however, must supply a main function or some other function which
calls yylex. For POSIX compatibility, flex 2.4 will change the default
yywrap() from a macro to a library routine, so scanners that do not
define their own yywrap() will need to be linked with the library.

e Flex has a different, nearly useless, version of lex’s translation tables
(the %t or %T declaration in the lex specification file).

e TFlex expands pattern definitions slightly differently than lex. Whenever
it expands a pattern, it places parentheses, “()”, around the expansion.
For example, the flex documentation lists the following:

NAME [A-Z] [A-Z0-9]*

%%

foo{NAME}? printf({ "Found it\n");
%%

279

lex & yacc

Lex will not match the string “foo” in this example but flex will. With-
out the grouping, the last parameter of the expansion is the target of the
question mark operator. With the grouping, the entire expansion is the
target of the “?” operator.

Flex doesn'’t support the undocumented internal lex variable yylineno.

Flex doesn’t let you redefine the macros input and output. See “Input
from Strings” in Chapter 6, for details. As in lex, ECHO output may be
redirected by modifying the flex file pointer yyout. Similarly, input may
be redirected by modifying the flex file pointer yyin.

Flex lets scanners read from multiple nested input files. See “Include
Operations” in Chapter 6.

Flex offers the following additional features:

Flex offers exclusive start conditions, that is, conditions which exclude
all other conditions when in that state.

The special pattern “<<EOQOF>>" matches at the end of a file.

Flex dynamically allocates tables, so table directives are not necessary
and are ignored if present.

The name and arguments of the scanning routine are taken from the
macro YY_DECL. You can redefine the macro to give the scanner a dif-
ferent name than yylex or to have it take argument, or return a value
other than an int.

Flex lets you write multiple statments on the same action line without
braces, “{}”, although it is dreadful style to do so.

Flex allows “%{” and “%]}” in actions. When it sees “%{” in an action, it
copies everything up to the “%}” to the generated C file, rather than
attempting to match braces.

Flex scanners can be compiled by C++ as well as by C, although they
take no advantage of the object-oriented features of C++.

Options

Flex has a lot more options than AT&T lex.

-b

Generates a report in lex.backtrack of the rules which required back-
tracking. Rules that backtrack are slow and you can usually adjust
your rules to avoid it. The online flex documentation discusses the
use of this option in considerable depth

Generates debugging code in the generated scanner.

280

Flex

—f Generates uncompressed “full” tables which are faster but larger.

—i Generates a case-insensitive scanner, one which matches upper and
lowercase characters regardless of the case of the letters in the pat-
temns in rules.

—p Produces a report of features used in the scanner that have a perfor-
mance impact.

—s Suppressses the default rule that echoes unmatched input, so the gen-
erated scanner instead aborts with an error on unmatched input.

—v Produces a summary report of scanner statistics.

—-Cx Controls the degree of table compression. Possible values for x are
efmF. See the flex documentation for details.

_F Generates “fast” tables which may be faster or smaller than full tables.

—I Generates an interactive scanner, one which matches tokens immedi-
ately on reading the input rather than looking one character ahead.

~L Does not put #lines in the generated C code.

-Sx Use the given lexer skeleton rather than the default. Of use mostly
for debugging flex itself.

—T Runs in trace mode, useful mostly for debugging flex itself.

-8 Generates a scanner that is 8-bit clean even if the local default is 7-bit
characters.

Error Messages

This section discusses correcting problems and errors reported by flex.

unrecognized %’ directive

In the definitions section, a % must be followed by “{” or “}” to
bracket user C code, one of the letters “s” or “x” to declare a start
state, one of “anpek” for an (ignored) table size declaration, or one of
“otcu” which are obsolete.

Solution: Remove or correct the directive.

illegal character

An illegal character appears in the definitions section
Solution: Remove or correct the character.

incomplete name definition _

A name definition (substitution) doesn’t contain a pattern.
Solution: Add one.

281

lex & yacc

unrecognized %used/%unused construct
The definition section contained an invalid form of the obsolete
%used or %unused declarations.
Solution: Remove it.

~ fam Ao am

| R pEp— mam el et e L1
DdU TUW U1 UUdIISIdLION LdDIC
Each line in the translation table must start with a number.

Solution: Remove or correct the row.

undefined {name)
A reference to a named pattern (substitution) in braces refers to a
name that is not defined.

Solution: Change the reference or define the name.

bad start condition name
A start condition prefix in < > has an invalid name. Names must be
valid C identifiers.
Solution: Correct the name.

missing quote
A quoted pattern runs past the end of a line.
Solution: Add the missing quote.,

bad character inside {}’s
Repeat counts in patters must consist only of digits, perhaps
separated by commas.
Solution: Correct the count.

missing }
A repeat count runs to the end of a line, presumably because the clos-
ing brace is missing.
Solution: Add the missing brace.

bad name in {}’s
A pattern name (substitution) must consist of letters, digits, under-
scores, and hyphens.
Solution: Correct the name

missing }
A pattern name in braces runs to the end of a line, presumably
because the closing brace is missing.
Solution: Add the missing brace.

EOF encountered inside an action
An action runs to the end of the file, presumably because the closing
brace is missing.
Solution: Add the missing brace.

282

Flex

warning - %used/%unused have been deprecated
These obsolete declarations no longer do anything.
Solution: Remove them.

fatal parse error
The yacc parser that parses the inpu
errof.
Solution: Correct the error.

multiple <<EOF>> rules for start condition %s
You can only have one EOF rule per start condition.
Solution: Remove all but one of them.

warning - all start conditions already have <<EOF>> rules
If all start states already have EOF rules, an EOF rule with no start
state can never match. ’
Solution: Remove the rule, or correct the state states.

start condition %s declared twice
Each start state may only be declared once.
Solution: Remove the duplicate declaration.

undeclared start state %s
A start state prefix in < > refers to an unknown state.
Solution: Declare the state or correct the spelling.

scanner requires -8 flag
The lexer spec contains 8-bit characters, but the local default is 7 bits.
Solution: Remove the 8-bit characters or use the —8flat.

REJECT cannot be used with f or -F
The —fand —F flags generate lexers that cannot handle the backtrack-
ing required by REJECT.
Solution: Either don’t use REJECT or don’t use those flags.

could not create lex.backtrack
The file couldn’t be created, probably because the directory or a pre-
vious version of the file is read-only.
Solution: Remove any previous version of the file, change directory
permissions, or change to another directory.

read() in flex scanner failed
1/O error on the input file.
Solution: FEither your disk is broken or there is an error in flex.

-C flag must be given separately
You cannot combine the —C flag with any others in the same argu-
ment.
Solution: Don’t do that.

283

lex & yacc

full table and -Cm don’t make sense together
full table and -I are (currently) incompatible

full table and -F are mutually exclusive
These are inconsistent table compression options.
Solution: Specify one or the other.

-8 flag must be given separately
You cannot combine the -§ flag with any others in the same argu-
ment.
Solution: Use separate arguments.

fatal error - scanner input buffer overflow

fatal flex scanner internal error— end of buffer missed

fatal flex scanner internal error—no action found

flex scanner jammed

flex scanner push-back overflow

out of dynamic memory in yy_create_buffer()

unexpected last match in input()
These are fatal internal errors in the flex scanner that flex itself uses.
All indicate an internal error of some sort.
Solution: Report problem to system’s software maintainer.

attempt to increase array size by less than 1 byte
attempt to increase array size failed

bad state type in mark_beginning_as_normal()

bad transition character detected in sympartition()
consistency check failed in epsclosure()
consistency check failed in symfoltowset

could not create unique end-of-buffer state

could not re-open temporary action file

dynamic memory failure building %t table

dynamic memory failure in copy_string()

dynamic memory failure in copy_unsigned_string()
dynamic memory failure in snstods()

empty machine in dupmachine()

error occurred when closing backtracking file
error occurred when closing output file

error occurred when closing skeleton file

error occurred when closing temporary action file
error occurred when closing temporary action file
error occurred when deleting output file

error occurred when deleting temporary action file

284

Flex

error occurred when writing backtracking file

error occurred when writing output file

error occurred when writing skeleton file

error occurred when writing temporary action file

found too many transitions in mixtion{)

memory allocation failed in allocate_array()

request for < 1 byte in allocate_array()

symbol table memory allocation failed

too many %t classes!
These all represent internal errors in flex. The file errors sometimes
mean that you are out of disk space.
Solution: Free up some disk space, or report problem to system’s

software maintainer.

Flex Versions of Lexer Examples

Two of the lex examples in Chapter 2 used code specific to AT&T lex to
take input from a string instead of from a file. Flex uses different methods
to change the input source. Examples E-1 and E-2 are the same examples
written for flex.

Example E-1: Flex specification to parse a command line ape-05.1

%{
unsigned verbose;
char *progName;

int myinput (char *buf, int max);

#hundef YY_ INPUT

#define YY_INPUT (buf,result,max) (result = my input (buf, max))
%}

%

-h |

n_2r |

-help { printf("usage is: %s [-help | -h | -?] [{-verbose | -v1"
" [(-file| -f) filename]\n", progName);
}

-v |

-verbose { printf("verbose mode is on\n"); verbose = 1; }

%%
char **targv; /* remembers arquments */
char **arglim; /* end of arguments */

main({int argc, char **argv)
{

285

lex & yacc

Example E-1: Flex specification to parse a command line ape-05.1 (continued)

progName = *argv;
targv = argv+l;
arglim = argv+argc;
vylex();

}

static unsigned offset = 0;

/* provide a chunk of stuff to flex */
/* it handles unput itself, so we pass in an argument at a time */
int
myinput (char *buf, int max)
{
int len, copylen;

if (targv >= arglim)
return 0; /* EOF */
len = strlen(*targv)-offset; /* amount of current arg */
if{len >= max)
copylen = max-1;
else
copylen = len;
if(len > 0)
memcpy (buf, targv[0]+offset, copylen);
if (targv([0] [offset+copylen] == “\0’) { /* end of arg */
buf[copylen] = * *;
copylen++;
offset = 0;
targv++;
}
return copylen;

Example E-2: Flex command scanner with filenames ape-0G.1

%{

unsigned verbose;
unsigned fname;
char *progName;

int myinput (char *buf, int max);

#undef YY_ INPUT

#define YY INPUT(buf,result,max) (result = myinput (buf,max))
%)

%s FNAME
%%

[1+ /* ignore blanks */ ;
<FNAME>[]+ /* ignore blanks */ ;

286

Flex

Example E-2: Flex command scanner with filenames ape-06.1 (continued)

-h |
u_?l |

-help { printf({"usage is: %s [~help | -h | -?] [-verbose | -v]"

» [(-file| -f) filename]\n", progName);

}

-v |

-verbose { printf(*verbose mode is on\n"); verbose = 1; }

-f |
~-file { BEGIN FNAME; fname = 1; }

<FNAME>[~ 1+ { printf("use file %s\n", yytext); BEGIN 0; fname

[*]+ ECHO;
%%
char **targv; /* remembers arguments */

char **arglim; /* end of arguments */

main{int argc, char **argv)

{

progName = *argv;

targv = argv+l;

arglim = argv+argc;

yylex(};

if (fname < 2)

printf("No filename given\n");

} .

static unsigned offset = 0;

/* provide a chunk of stuff to flex */

2;}

/* it handles unput itself, so we pass in an argument at a time */

int
myinput (char *buf, int max}
{

int len, copylen;

if (targv >= arglim)
return 0; /* EOF */

len = strlen{*targv)-offset; /* amount of current arg */

if (len >= max)

/* end of arg */

copylen = max-1;
else
copylen = len;
if(len > 0)
memcpy (buf, targv[0]+offset, copylen);
if(targv[0] [offset+copylen] == ‘\0‘) {
buf(copylen] = * *;
copylen++;
offget = 0;
targv++;

287

lex & yacc

Example E-2: Flex command scanner with filenames ape-06.1 (continued)

}
return copylen;

288

In this appendix:
+ Differences
o New Features

MKS lex and yacc

Mortice Kern Systems has 2 Jex and yacc package that runs under MS-DOS
and OS/2. It includes an excellent 450 page manual, so in this discussion
concentrates on the differences between MKS and other implementations.
It is available from:

Mortice Kern Systems

35 King Street North

Waterloo, ON N2J2W9

Canada

Phone: +1 519 884 2251
or in the U.S. (800) 265-2797
E-mail: inquiry@mks.com

Differences

Most of the differences are due to running under MS-DOS or OS/2 rather

than UNIX.

e The output files have different names: lex yy.c, ytab.c, ytab.b, and
y.out. rather than lex.yy.c, y.tab.c, y.tab.b, and y.output.

e MKS lex has its own method for handling nested include files. See
“Include Operations” in Chapter 6 for details.

e MKS lex has its own method for resetting a lexer into its initial state.
See “Returning Values from yylex()” in Chapter 6.

e MKS lex uses the macro yygetc() to read input. You can redefine it to
change the input source. See “Input from Strings” in Chapter 6.

e The standard lex token buffer is only 100 characters. You can enlarge it
by redefining some macros. See “yytext” in Chapter 6.

e The internal yacc tables are generated differently. This makes error
recovery slightly different; in general MKS yacc will perform fewer

289

lex & yacc

reductions than will UNIX yacc before noticing an error on a lookahead
token.

New Features

290

MKS lex and yacc can generate scanners and parsers in C++ and Pascal
as well as in C.

MKS provides the yacc tracker, a screen-oriented grammar debugger
that lets you single step, put breakpoints into, and examine a parser as
it works.

MKS lex and yacc both let you change the prefix of symbols in the gen-
erated C code from the default “yy,” so you can include multiple lexers
and parsers in one program.

MKS yacc can allocate its stack dynamically, allowing recursive and
reentrant parsers.

MKS yacc has selection preferences which let you resolve reduce/reduce
conflicts by specifying lookahead tokens that tell it to use one rule or
the other.

The MKS lex library contains routines that skip over C style comments
and handle C strings including escapes.

MKS yacc documents many more of its internal variables than do AT&T
or Berkeley yacc. This lets error recovery routines get access and
change much more of the parser’s internal state.

The package includes sample scanners and parsers for C, C++, dBASE,
Fortran, Hypertalk, Modula-2, Pascal, pic (the troff picture language),
and SQL.

In this appendix:
« Differences
» New Feagtiures

Abraxas lex and yacc

Y
]
jol
O
|97
RS
[\S]
<
[¢)]
=
2,
O
]
73
©
=n
~
o3
0
o}
oy
3
o
(@]
s
o
mh
XY
<
=
s B
El
(¢
=g
o}
=

Abraxas Software

7033 SW Macadam Avenue
Portland OR 97219

Phone: +1 503 244 5253

Pclex is based on flex, so much of what we have said about flex also
applies to pclex.

Differences

e The output files have different names: lex_yy.c, yytab.c, yytab.h, and
yy.lrt. rather than lex.yy.c, y.tab.c, y.tab.b, and y.output.

¢ The standard lex input buffer is only 256 characters. You can enlarge it
by redefining some macros. See “yytext” in Chapter 6.

New Features

e An option lets you just check the syntax of a yacc specification rather
than waiting for it to generate a complete parser.

e Each time it reduces a rule, a parser can write a line with the symbols in
that rule into a file. (Abraxas refers to this as the parse tree option.)

e An optional extended error recovery library allows more complete error
reporting and recovery.

o The package includes sample scanners and parsers for ANSI and K&R C,
C++, Cobol, dBase III and IV, Fortran, Hypertalk, Modula-2, Pascal, pic
(a demo language unrelated to troff) Postscript, Prolog, Smalltalk, SQL,
and yacc and lex themselves.

291

In this appendix:

s« Options
» Differences
The IEEE POSIX P1003.2 standard will define portable standard versions of

E t
lex and yacc. In nearly all cases the standards merely cod1fy long-standing
existing practice. POSIX lex closely resembles flex, minus the more exotic
features. POSIX yacc closely resembles AT&T or Berkeley yacc. The input
and output filenames are identical to those in flex and AT&T yacc.

Options
The syntax of the POSIX lex command is:

lex [oprions] [file .. .]

If multiple input files are specified, they are catenated together to form one
lexer specification.

The options are as follows:
—¢ Writes actions in C (obsolescent).
-n Suppresses the summary statistics line.
—t Sends source code to standard output instead of to the default file
lex.yy.c.

-v Generates a short statistical summary of the finite state machine.
This option is implied when any of the tables sizes are specified in
the definitions section of the lex specification.

The syntzix of the yacc command is:
yacc [options] file

where options are as follows:
—bxx Uses “xx” rather than the default “y)” as the prefix in generated
filenames.
—~d Generates header file y.tab.bh that contains definitions of token
names for use by lexical analyzer routine.

293

lex

& yacc

-l Does not include #line constructs in the generated code. These
constructs help identify lines in the specification file in error mes-
sages.

—pxx Uses “xx” rather than the default “yy” as the prefix in symbols in
the generated C code. This lets you use multiple parsers in one
program.

—t Includes runtime debugging code when y.tab.c is compiled.

—v Produces the file y.ousput, which is used to analyze ambiguities
and conflicts in the grammar. This file contains a description of
parsing tables.

Differences

The main differences are due to POSIX internationalization,

294

POSIX doesn’t standardize features that aren’t implemented in a consis-
tent way in most existing versions. Hence POSIX specifies no way to
change the lex input source (other than assigning to yyin) or to change
the size of internal buffers. It has no version of lex translation tables. A
POSIX-compliant implementation may offer any of these as an exten-
sion.

As in AT&T lex, yywrap() is a function which you can redefine, not a
macro.

You can force yytext to be an array or a pointer by using a %array or
%pointer declaration. In the absence of such a declaration, an imple-
mentation may use either.

POSIX lex defines extra character regular expressions which handle
extended non-English character sets. See “Regular Expression Syntax”
in Chapter 6.

POSIX yacc has a library with the standard versions of main() and yyer-
ror(). You can (and probably should) write your own versions of both.

Ch

In this appendix:

¢ MGL Yacc Source
o MGL Lex Source

* Supporting C Code

MGIL Compiler Code

apter 4, A Menu Generation Language, presented the lex and yacc gram-

mars for the MGL. Here we present the entire code of the MGL, including
runtime support code not shown in the chapter. Many improvements to the
runtime code are possible, such as:

Screen clearing after improper input.

Better handling of the system() call, particularly saving and restoring
terminal modes and screen contents.

Automatic generation of a main routine. Currently, it must be defined
outside the calling program. Furthermore, it must call the routine
menu_cleanup before exiting.

More flexible command handling, e.g., allowing unique prefixes of com-
mands rather than requiring the whole command.

Taking keyboard input a character at a time in cbreagk mode rather than
the current line at a time.

More flexible nesting of menus.

See the Preface for information on obtaining an online copy of this code.

MGL Yacc Source

This is file mglyac.c.

%{

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

int screen _done = 1; /* 1 if done, 0 otherwise */
char *act_str; /* extra argument for an action */
char *amd str; /* extra arqument for command */
char *item str; /* extra argument for

* jtem description */
%}

295

lex & yacc

$union {
char *string; /* string buffer */
int omd; /* command value */
}

%token <string> QSTRING ID COMMENT
$token <cmd> SCREEN TITLE ITEM COMMAND ACTION EXECUTE EMPTY
%token <cmd> MENU QUIT IGNORE ATTRIBUTE VISIBLE INVISIBLE END

$type <cand> action line attribute command
$type <string> id gstring

$start screens
%%

screens: screen
| screens screen

-

screen: screen_name screen_contents screen terminator
| screen_name screen terminator

screen_name: SCREEN id { start_screen($2); }
| SCREEN { start_screen(strdup("default"}); }

.
’

screen_terminator: END id { end_screen($2); }
| END { end_screen(strdup(*default”}); }

r

screen contents: titles lines

.
r

titles: /* empty */
| titles title

7

title: TITLE gstring { add_title($2); }

H

lines: line
| lines line

2 PR R

line: ITEM gstring command ACTION action attribute
{ item_str = §2
add line($5, $6
$$ = ITEM;

):

command: /* empty */ { and_str = strdup(""); }
| coMMAND id { omd_str = $2; }

296

MGL Compiler Code

.
’

action: EXECUTE gstring
{ act_str = $2;
$$ = EXECUTE;
}
| MENU id
{ /* make "menu_" $2 */
act_str = malloc(strlen(s$2) + 6);
strepy (act_str, "menu_") ;
strcat(act_str, $2);

free(S2);
$§ = MENU;
}
j Qurr { $$ = QUIT: }
= IGNORE; }

| IGNORE { $3% =

’

attribute: /* empty */ { $$ = VISIBLE; }
| ATTRIBUTE VISIBLE { $$ = VISIBLE; }
| ATTRIBUTE INVISIBLE { $5 = INVISIBLE; }

id: ID
{ 88 =81; 1}
| QSTRING
{ warning("String literal inappropriate”,
(char *)0);
$$ = $1; /* but use it anyway */

.
H

gstring: QSTRING { $$ = $1; }

| ID
{ warning (*Non-string literal inappropriate",
(char *}0);
$§ = 81; /* but use it anyway */
}

%3

char *progname = "mgl";
int lineno = 1;

#define DEFAULT_QUTFILE "screen.out”
char *usage = "%s: usage [(infile}l [outfilel\n";

main(int argc, char **argv)
{

char *outfile;

char *infile;

extern FILE *yyin, *yyout;

297

lex & yacc

progname = argv(0];

if(argec > 3)
{
fprintf (stderr,usage, progname);

exit(1);
}
if({argc > 1)
{
infile = argv(1];
/* open for read */
yyin = fopen(infile,"r");
if(yyin == NULL) /* open failed */
{
fprintf (stderr, "%s: cannot open %s\n",
progname, infile);
exit(1);
}
}
if(argc > 2)
{
outfile = argv[2];
}
else
{
outfile = DEFAULT OUTFILE;
}

yyout = fopen(outfile, "w");
if (yyout == NULL) /* open failed */

{
fprintf (stderr, "%s: cannot open %s\n",
progname, outfile);
exit(1l);
}

/* normal interaction on yyin and
yyout from now on */

yyparse() ;
end_file(); /* write out any final information */

/* now check BOF condition */
if(!screen_done) /* in the middle of a screen */

{
warning ("Premature EQF", (Char *)0);
unlink (outfile); /* remove bad file */
exit(1l);

}

exit (0); /* no error */

298

MGL Compfiler Code

warning(char *s, char *t) /* print warning message */
{
fprintf (stderr, "%s: %s", progname, S):;
if (t)
fprintf (stderr, " %s*, t);
fprintf(stderr, " line %d\n®*, lineno):

MGL Lex Source

This is file mgllex.L.

%(
#include *mglyac.h"
#include <string.h>

extern int lineno;
%}

wS [\t]+
comment #.*
gstring \"[*\"\n]l*[\"\n]

id [a-zA-Z] [a-zA-Z0-9]*
nl \n

%

{ws} :

{camment} ;

{gstring} { yylval.string = strdup(yytext+l); /* skip open qucte */
if (yylval.stringlyyleng-2] != ')
warning(*Unterminated character string", (char *)0);
elgse /* remove close quote */
yvylval.string[yyleng-2] = *\0‘;
return QSTRING;

}
screen { return SCREEN; }
title { return TITLE; }
item { return ITEM; }
cammand { return COMMAND; } .
action { return ACTICN; }
execute { return EXECUTE; }
menu { return MENU; }
quit { return QUIT; }
ignore { return IGNCRE; }
attribute { return ATTRIBUTE; }
visible { return VISIBLE; }
invisible { return INVISIBLE; }
end { return END; }
{id} { yylval.string = strdup(yytext);

return ID;

299

lex & yacc

{nl} { lineno++; }
. { return yytext({0]; }
%%
O .28 . .22 . ___ 7 r
Supporiing C C
This is file subr.c.
/* subr.c */

/*

S mmart i ne anbhron
SURPPOI LAY ST

language (MGL)

Tony Mason
November 1988

* %X % X X *

*/

/* includes */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "mglyac.h"

Completed by John Levine, August 1992

#include "mgl-~code" /* containg definitions of
* gkeleton file to be built */

extern FILE *yyin, *yyout;

/* imports */
extern int screen_done:;

extern char *cmd_str, *act_str,*item str;

/* exports */

/* local */

static char current_screen{100]; /* reasonable? */

static int done_start_init;
static int done_end init;
static int current_line;
struct item {

char *desc;
char *cmd;

int action;
char *act_str;
int attribute;
struct item *next ;

} *item list, *last_item;

/* macros */
#define SCREEN_SIZE 80

300

/*
/*
/*
/*
/*
/*

item description */
command */

action to take */
action operation */
vigible/invigible */
next member of list */

MGL Compiler Code

void cfree(char *}; /* free if not null */

/

/

s
{

}

* code */

*

start_screen:

This routine begins preparaticn of the screen. It
writes the preamble and modifies the global state
variable screen_done to show that a screen is in
progress (thus, if a screen is in progress when EOF
is seen, an appropriate error message can be given).

* 4 % ¥ % %

*/
tart_screen(char *name) /* name of screen to create */

long time(),tm = time((long *)0);
char *ctime():

if (!done start_init)
{

fprintf (yyout,
"/*\n * Generated by MGL: %s */\n\n",
ctime(&tm)};
dump_data(screen_init);
done_start_init = 1;
}
if (check_name (name) == 0)
warning ("Reuse of name”,name);
fprintf (yyout, */* gcreen %g */\n", name);
fprintf (yyout, "mema %s()\n{\n",name);
fprintf (yyout,
"\textern struct item menu %s_items[];\n\n",
name) ;
fprintf (yyout, *\tif(!init} menu_init();\n\n"};
fprintf (yyout, "\tclear();\n\trefresh():\n"};

if (strlen(name) > sizeof current_screen)
warning("Screen name is larger than buffer®, (char *)0};
strncpy (current_screen, name, sizeof (current screen) - 1);

screen_done = 0;
current_line = 0;

return 0;

/*

* add_title:
* Add centered text to screen code.
* / .

add_title(line)
char *line;

f
1

int length = strlen(line);

301

lex & yacc

int space = (SCREEN SIZE - length) / 2;

fprintf (yyout, "\tmove(%d, %d);\n",current_line, space);
current_line++;

fprintf (yyout, "\taddstr(\"%$s\"):\n",line);

fprintf (yyout, "\trefresh();\n");

/*

* add line:

* add a line to the actions table. It will be written
* out after all lines have been added. Note that some
* of the information is in giobal variables.

*/

add_line(action, attrib)
int action, attrib:
{

struct item *new;
new = (struct item *)malloc(sizeof (struct item));

if(!item list)
{ /* first item */

item list = last_item = new;
}

else

{ /* already items on the list */
last_item—>next = new;
last_item = new;

}

new—>next = NULL; /* mark end of list */

new->desc = item str;
new->cmd = cmd_str;
new->action = action;

switch(action)

{

case EXECUTE:
new->act_str = act_str;
break;

case MENU:
new->act_str = act_str;
break;

default:
new->act_str = 0;
break;

}

new->attribute = attrib;

302

MGL Compiler Code

/*
* end_screen:
* Finish screen, print out postamble.

*/
end_screen(char *name)
{
fprintf (yyout, "\tmenu_runtime(menu %s_items);\n",name);
if (strcmp (current_screen,name) != 0)
{
warning("name mismatch at end of screen”,
current_screen) ;
}
fprintf (yyout, "}\n");
fprintf(yyout, "/* end %s */\n",current_screen) ;
process_items();
/* write initialization code out to file */
if (!done_end_init)
{
done_end_init = 1;
dump_data (menu_init);
}
current_screen[0] = *\0‘; /* no current screen */
screen_done = 1;
return 0;
}
/*
* process_items:
* Walk the list of menu itemg and write them to an
* external initialized array. Also defines the symbolic
* constant used for the run-time support module (which
* is below this table).)
*/

process_items ()

{

int ent = 0;
struct item *ptr;

if(item list == 0)
return; /* nothing to do */

fprintf (yyout, "struct item menu %s_items[]={\n",current_screen);

ptr = item list;

/* climb through the list */
while (ptr)
{

303

lex & yacc

struct item *optr:

if(ptr->action == MENU)
fprintf (yyout,
"{\"%s\",\"%s\",%4,\"\",%s,%d},\n",
ptr->desc,ptr->cmd, ptr—>action,
ptr->»act_str,ptr->attribute);
elge
fprintf (yyout,
"(\"%s\",\"%s\",%d, \"%s\",0,%d}, \n",
ptr->desc, ptr->cmd, ptr->action,
ptr->act_str ? ptr-»act_str : "',
ptr->attribute);
cfree (ptr->desc};
cfree(ptr->cmd) ;
cfree(ptr->act_str);
optr = ptr;
ptr = ptr-=next;
free(optr);
cnt++;
}
fprintf (yyout,
*{ (char *)0, (char *)0, 0, (char *)0, 0, 0},\n"};
fprintf (yyout, "};\n\n"};
item list = 0;

/* next the run-time module that does all the "work" */;:

/*

* This routine takes a null-terminated list of strings

* and prints them on the standard out. Its sole purpose
* in life is to dump the big static arrays making up the
* runtime code for the menus generated.

*/

dump_data (array)
char **array;

{
while (*array)
fprintf (yyout, "%s\n",*array++);

}
/*

* this routine writes out the run-time support

*/
end _file()
{

) data{memu_runtime) ;

}

304

MGL Compiler Code

/*

* Check a name to see if it has already been used. If

* not, return 1; otherwise, return 0. This routine also
* squirrels away the name for future referenoe. Note

* that this routine is purely dvnamio. It would be

* easier to just set up a statio array, but less flexible.

*/

check_name (name)

ohar *name;

{
statio char **names = 0;
statio name_oocunt = 0;

char **ptr, *newstr;

if (Inames)

{
names = (ohar **)malloc(sizeof (char *));
*names = 0;

ptr = names;
while(*ptr)
{
if (strcmp (name, *ptr++) == 0) return 0;
}

/* not in use */

name_oount++;

names = (char **)realloc(names, (name oount+l) * sizeof(ohar *));
names [name_oount] = 0;

newstr = strdup(name);

names [name_oount-1] = newstr;

return 1;

}

void
ofree(ohar *p)
{
if(p)
free(p);
}

This is file mgi-code, the supporting code copied by the MGL into the gen-
erated C file.

/*
* MGL Runtime support oode
*/

char *soreen_init[] = {
/ initialization information */*",

[P

*statio int init;\n",
"#inolude <curses.h>",

305

lex & yacc

"#include <sys/signal.h>",

"#include <ctype.h>",

"#include \"mglyac.h\"\n",

"/* structure used to store menu items */",
"struct item {",

"\tchar *desc;",

"\tchar *cmd;",

"\tint action;",

"\tchar *act_str; /* execute string */",
"\tint (*act_menu) (); /* call appropriate function */*,
"\tint attribute;",

"}:\n",

0,

};

char *menu_init{] = {

"meny init ()",

n{u,

"\tvoid menu_cleanup();\n",
"\tsignal (SIGINT, menu_cleanup);",
"\tinitser();",

"\tcrmode(); ",

"I\n\n",

"menu,_cleanup()",

"{l’

"\tmvcur (0, COLS - 1, LINES - 1, 0);",
"\tendwin():",

"I\n",

OI

}:

char *menu_runtime[] = {
||/* mtjme */II’
"menu_runtime (items) ",
"struct item *items;",
n{",

"\tint visible = 0;",
"\tint choice = 0;",
"\tstruct item *ptr;",
*\tchar buf [BUFSIZ]:",

L]
!

"\tfor(ptr = items; ptr->desc != 0; ptr++) {",
"\t\taddch(‘\\n’); /* skip a line */",

"\t\tif (ptr->attribute == VISIBLE) {",

"\t\t\tvisible++;",

"Nt\t\tprintw(*"\\t%d) %s\",visible,ptr->desc);",

"\t\t}",

"\t}",

"\taddstr(\"\\n\\n\\t\"); /* tab out so it looks nice */-",
"\trefresh();",

nn
7

"\tfor(;:)",

306

MGL Compiler Code

"\te{",
*\t\tint i, nval;",

L]
’

*\t\tgetstr(buf);",

L3]
’

"\t\t/* numeric choice? */",
"\t\tnval = atoi (buf);".

LR
!

"\t\t/* camand choice ? */",
“\t\ti = 0;",

"\t\tfor (ptr = items; ptr—>desc != 0; ptr++) {",

"\t\t\tif (ptr—>attribute != VISIBLE)",
"\t\t\t\tcontinue;",

“\t\t\ti++; ",

"\t\t\tif(nval == i)",
"\t\t\t\tbreak;",
"\t\t\tif(!casecmp(buf, ptr->cmd))"*,
"\t\t\t\tbreak;",

"\t\t}",

L]
r

"\t\tif(iptr->desc)",
"\t\t\tcontinue;\t/* no match */",

L]
r

"\t\tswitch(ptr->action)*,
"\t\t{",

"\t\tcase QUIT:",
"\t\t\treturn 0;",

"\t\tcase IGNCRE:",
"\t\t\trefresh();",
"\t\t\tbreak:;",

"\t\tcase EXECUTE:",
"\t\t\trefresh();",
"\t\t\tsystem(ptr->act_str);",
"\t\t\tbreak;",

"\t\tcase MENU:",
"\t\t\trefresh();",

"\t\t\t (*ptr->act_menu) (); ",
"\t\t\tbreak;",
"\t\tdefault:",

"\t\t\tprintw{\"default case, no action\\n\");",

"\t\t\trefresh();",
"\t\t\tbreak; ",
*\t\t}",
"\t\trefresh();",
l\t} L] .

Il} n ;

LR]
’

"casecmp (char *p, char *q)",
",

"\tint pc, qc:".

"\tfor(; *p != 0; p++, g++) {7,
"\t\tpc = tolower(*p);",
"\t\tgc = tolower(*q);".

307

lex & yacc

"\t\tif(pc != go)",
*\t\t\tbreak;",
"\t}",

"\treturn pc-qc:",
"y,

0

}:

308

In tbis appendix:
« Yacc Parser

g
SQL Parser Code

Here we display the complete code for the embedded SQL translator,
including the lexer, the parser, and the supporting C code. Since the parser
is so long, we have numbered the lines and included a cross-reference of all
of the symbols by line number at the end.

4 +
at th

The main() and yyerror() routines are a nd of t

aa
LI L

Yacc Parser

In this printed listing, some of the lines have been split in two so they fit on
the page. The line numbers correspond to the original lines in the grammar
file.

/* symbolic tokens */

%union {
int intval;

5 double floatwval;
char *strval;
int subtok;

}

10 %tocken NAME
$token STRING
$token INTNUM APPROXNUM

/* operators */

15

$left OR

$left AND

$left NOT

$left <subtok> COMPARISON /* = <> < > <= >= */
20 %left '+ -

$left > /¢

fnonassoc UMINUS

/* literal keyword tokens */

309

lex & yacc

25

30

35

40

45

50

55

60

65

70

~!

Vil

310

$token ALL AMMSC ANY AS ASC AUTHORIZATION BETWEEN BY

%token CHARACTER CHECK CLOSE COMMIT CONTINUE CREATE CURRENT

%$token CURSOR DECIMAL DECLARE DEFAULT DELETE DESC DISTINCT
DOUBLE

$token ESCAPE EXTISTS FETCH FLOAT FOR FOREIGN FOUND FROM GOTO

%token GRANT GROUP HAVING IN INDICATOR INSERT INTEGER INTO

%token IS KEY LANGUAGE LIKE NULLX NUMERIC OF ON OPEN OPTION

%token ORDER PARAMETER PRECTSTON PRIMARY PRIVILEGES PROCEDURE

$token PUBLIC REAL REFERENCES ROLLBACK SCHEMA SELECT SET

$token SMALLINT SCME SQLCODE SQLERRCR TABLE TO UNION

%token UNIQUE UPDATE USER VALUES VIEW WHENEVER WHERE WITH WORK

%

sqgl_list:
sql ‘;' { end sqgl(); }
| sqgl list sqgl ‘;* { end sql(); }

.
i

/* schema definition language */
sql: schema

.
i

schema:
CREATE SCHEMA AUTHCRIZATION user
opt_schema_element_list

'

opt_schema_element_list:
/* empty */
i schema_element_list

i

schema_element_list:
schema_element
| schema_element_list schema_element

.
H

schema_element :
base_table def
| view_def
| privilege def

base_table_def:
CREATE TABLE table ‘(‘ base table element_commalist ‘}°*

.
r

base_table_element_commal ist:
base_table element
i base_table element_camnalist ‘,° base_table eleament

SQL Parser Code

80

85

95

100

105

110

115

120

125

130

base_table_element:
column_def
| table_constraint_def

i

column def:
column data type column_def_opt_list

.
I

column,_def opt_list:
/* emprty */
| colum_def cpt_list column_def opt

.
r

column_def_opt:
NOT NULLX

| NOT NULLX UNIQUE

| NOT NULLX PRIMARY KEY

| DEFAULT literal

| DEFAULT NULLX

| DEFAULT USER

| CHECK ' (' search_condition “}’

| REFERENCES table

] REFERENCES table ‘(‘ colum commalist ‘)

table_constraint_def:
UNIQUE ’(‘ column_commalist ‘)’

i PRIMARY KEY ‘(’ column commalist ')’

| FOREIGN KEY ‘(’ colum commalist ‘)
REFERENCES table

i FOREIGN KEY ‘(‘ column commalist /)
REFERENCES table ‘{‘’ column_commalist

| CHECK ‘(' search condition)’

.
!

columm _commalist:
columm
| column_commalist 7, colum

view_def:
CREATE VIEW table opt_column commalist
AS query_spec opt_with check_option

i

opt_with_check option:
/* empty */
| WITH CHECK OPTION

s

opt_column,_cammalist:
/* empty */
| (4 column_commalist)’

I)l

311

lex & yacc

.
.

privilege_def:
135 GRANT privileges CON table TO grantee commalist
opt_with_grant_option

opt_with_grant_option:
140 /* empty */
! WITH GRANT OPTION

.
I

privileges:
145 ALl PRIVILEGES
ALY,

operation commalist

.
K

150 operation _commalist:
operation
! operation_commalist ’,’ operation

.
7

155 operation:
SELECT
| INSERT
| DELETE
| UPDATE opt_colunn_commalist
160 | REFERENCES opt_columm_commalist

grantee_commalist:
165 grantee
| grantee _commalist ‘,’ grantee

r

grantee:
170 PUBLIC
! user

/* cursor definition */
175 sql:
cursor_def

180 cursor_def:
DECLARE cursor CURSOR FOR query_exp
opt_order_by_clause

i

opt_order by _clause:

312

SQL Parser Code

185 /* empty */
| ORDER BY ordering spec commalist

7

ordering_spec_commalist:
190 ordering_spec
| ordering_spec_commalist ‘,’ ordering_spec

’

ordering_spec:
195 INTNUM opt_asc_desc
| column_ref opt_asc_desc

.
!

opt_asc_desc:

200 /* empty */
J ASC
| DESC
205 /* manipulative statements */
sqgl: manipulative statement

.
’

210 manipulative statement:
close_statement
commit_statement

delete statement_positioned
delete_statement_searched
fetch statement

insert statement
opern,_statement
rollback_statement
select_statement

update statement positioned
update_statement_searched

215

220

- e e ———— -

close_statement:
225 CLOSE cursor

.
7

commit_statement:
COMMIT WORK
230 ;

delete_ statement_positioned:
DELETE FROM table WHERE CURRENT OF cursor
235
delete statement searched:

mrear ool P R T 2 7-C

DELETE FROM table opt_where clause

313

lex & yacc

240

245

250

255

260

265

270

275

280

285

290

314

fetch_statement:
FETCH cursor INTO target_commalist

.
?

insert_statement:
INSERT INTO table opt_colum_commalist
values_or_query spec

I

values or_query _spec:
VALUES ’(’ insert_atam commalist /)’
| query_spec

i

insert_atom_commalist:
insert_atom
| insert_atom_commalist ‘,‘ insert_atom

.
’

insert_atom:
atom
| NULLX

.
7

open_statement :
OPEN cursor

i

rollback_statement :
ROLLBACK WORK

i

select_statement:
SELECT opt_all distinct selection
INTO target_commalist
table_exp

opt_all_distinct:
/* empty */
f ALL
| DISTINCT

update_statement_positioned:
UPDATE table SET assigrment commalist
WHERE CURRENT OF cursor

.
K

assignment_commalist:
| assignment
] assignment_commalist ‘,’ assigmment

i

SOL Parser Code

295

300

305

310

315

320

325

330

335

340

W
7N
(¥

a

ssigrment:
column ‘=’ scalar_exp
I column ‘=‘ NULLX

H

update_gtatement_searched:

UPDATE table SET assigrment_commalist opt_where _clause

-
I

target_commalist:

target
| target_commalist ‘,’ target

.
r

target:

parameter_ref

.
i

opt_where_clause:

/* empty */
i where clause

-
’

/* query expressions */

query_exp:

query_term
| query_exp UNION guery_term
| query_exp UNION ALL query_term

.
?

query_term:

query_spec
i ' (' query_exp)

.
’

query._spec:

t

f

SELECT opt_all_distinct selection table_exp

.
’

election:

scalar exp_commalist
' X X

able_exp:
from_clause
opt_where_clause
opt_group by _clause
opt_having_clause

rom clause:
FROM table_ref_commalist

315

lex & yacc

.
7

table_ref_commalist:
250 table_ref
| table_ref commalist ‘,‘ table ref

table_ref:
355 table
| table range variable

where_clause:
360 WHERE search condition

.
7

opt_group_by_clause:
/* empty */
365 | GROUP BY column_ref commalist

i

column_ref commalist:
column_ref
370 | colum_ref_commalist /,’ colummn_ref

h

opt_having_clause:
/* empty */
375 | HAVING search _condition

7
/* search conditions */

380 search_condition:
| search_condition OR search condition
| search_condition AND search_condition
| NOT search_condition
| ‘(’ search_condition ’)’

385 | predicate

r

predicate:
comparison predicate
390 | between_predicate
| like_predicate
| test_for_null
| in predicate
| all_or_any_predicate
295 | existence_test

’
comparison_predicate:

scalar_exp COMPARISON scalar_exp
400 | scalar_exp COMPARTISON subguery

316

SQL Parser Code

405

410

415

420

425

430

435

440

445

450

.
H

between_predicate:
scalar_exp NOT BETWEEN scalar_exp AND scalar_ exp
! scalar_exp BETWEEN scalar_exp AND scalar_exp

like predicate:
scalar_exp NOT LIKE atcm opt_escape
| scalar_exp LIKE atom opt_escape

.
’

opt_escape:
/* empty */
[ESCAPE atom

.
1

test_for_null:
column_ref IS NCT NULLX
| column_ref IS NULLX

i

in_predicate:
scalar_exp NOT IN ‘{‘ subguery ‘)’
| scalar_exp IN ‘(’ subquery)‘
| scalar_exp NOT IN ’(’ atom commalist ¢) ¢

[scalar exp IN ’'{’ atom commalist ‘)’

atom_commalist:
atom
| atom_commalist 4, atom

.
3

all_or_any_predicate:
scalar exp COMPARISCN any_all same subquery

.
r

any_all_some:

exisgtence_test:
EXISTS subguery

N
’

subquery:
4(’ SELECT opt_all_distinct selection table_exp ‘)’

’

/* scalar expressions */

317

lex & yacc

455

460

465

470

475

480

485

490

495

500

505

318

scalar_exp:
scalar_exp ‘+‘ scalar_exp
| scalar_exp ‘-' scalar_exp
| scalar exp ‘*' scalar_exp
| scalar_exp ‘/' scalar_exp
| '+' gcalar exp ¥prec UMINUS
| ‘-’ scalar exp %prec UMINUS
| atam
| column_ref
| function ref
| ‘(* scalar_exp ‘)’

I

scalar_exp comalist:
scalar_exp

| scalar_exp commalist ‘,‘ scalar_exp

.
i

atom:

parameter_ ref
literal

USER

~ — —

parameter_ref:
parameter
I parameter parameter
| parameter INDICATOR parameter

function_ref:
AMMSC 1 (r 'R X [) [
AMMSC ‘(' DISTINCT column_ref ‘)°

I
| AMMSC ‘(' ALL scalar exp ‘)’
| AMMSC ‘(‘ scalar_exp ')’
literal:
STRING
| INTNUM
| APPROXNUM

/* miscellaneous */

table:
NAME
| NAME ‘.’ NAME
i
column_ref:

| NAME ’.‘ NAME /* needs semantics */

| NAME ‘.‘ NAME ‘.‘ NAME

SQL Parser Code

510

515

520

525

530

535

540

545

550

555

/* data types */

data_type:
CHARACTER
| CHARACTER ‘(‘ INTNUM ')’
| NUMERIC
| NUMERIC ‘(’ INTNUM ‘)’
| NUMERIC *(’ INTNUM ‘,‘ ININUM ‘)’
| DECIMAL
| DECIMAL ‘/(‘ INTNUM ‘)’
| DECIMAL ’(‘ INTNUM ’/,’ INTNUM '}’
{ INTEGER
| SMALLINT
| FLOAT
| FLOAT ’(’ INTNUM ‘)°‘
[REAL
{ DOUBLE PRECISION

.
i

/* the various things you oan name */

oolumn: NAME
cursor: NAME
parameter:

PARAMETER /* :name handled in parser */

range_variable: NAME

’

user: NAME

.
4

/* embedded ocndition things */
sqgl: WHENEVER NOT FOUND when_aotion
| WHENEVER SQLERRCR when_aotion

’

when_aotion: GOTO NAME
| CONTINUE

.
4

%

319

lex & yacc

Cross-reference

Since the parser is so long, we include a cross-reference of all of the sym-
bols by line number. For each symbol, lines where it is defined on the left-

hand side of a rule are in bold type.

A
ALL (26)
145, 146, 279, 321, 441, 488
all_or_any_predicate (435)
304
AMMSC (26)
480, 487, 488, 489
AND (17)
382, 404, 405
ANY (26)
440
any_all_some (439)
436
APPROXNUM (12)
495
AS (26)
121
ASC (26)
201
assignment (293)

289, 290
assignment_commalist (288)
284, 290, 299
atom (473)
259, 409, 410, 415, 431, 432, 462

atom_commalist (430)

426, 427, 432
AUTHORIZATION (26)
50

320

B
base_table_def (69)

64
base_table_element (78)

74,75
base_table_element_commalist
(73)

70,75
BETWEEN (26)

404, 405
between_predicate (403)

390
BY (26)
186, 365

C
CHARACTER (27)

514, 515
CHECK (27)

99, 111, 126
CLOSE (27)

225
close_statement (224)

211
column (532)

84, 115, 116, 294, 295
column_commalist (114)
101, 105, 106, 107, 109, 110, 116,

131

SQL Parser Code

column_def (83)

79
column_def_opt (92)

89
column_def_opt_list (87)

84, 89
column_ref (505)

196, 369, 370, 419, 420, 463, 487

column_ref commalist (368)
3065, 370

COMMIT (27)
229

commit_statement (228)

~ .

Z14
COMPARISON (19)

399, 400, 436

comparison_predicate (398)

389
CONTINUE (27)

554
CREATE (27)

50, 70, 120
CURRENT (27)

233, 285
CURSOR (28)

181
cursor (535)

181, 225, 233, 241, 264, 285
cursor_def (180)
176

D
data_type (513)

84
DECIMAL (28)

519, 520, 521

DECLARE (28)

181
DEFAULT (28)

96, 97, 98
DELETE (28)

158, 233, 237

delete_statement_positioned (232)

213

delete_statement_searched (236)

214
DESC (28)

202
DISTINCT (28)

280, 487

DOUBLE (28)
527

E
ESCAPE (29)

415
existence_test (445)

395
EXISTS (29)
446

F
FETCH (29)
241

fetch_statement (240)

215
FLOAT (29)

524, 525
FOR (29)

181
FOREIGN (29)

107, 109

321

lex & yacc

FOUND (29) insert_statement (244)
549 216
FROM (29) INTEGER (30)
233, 237, 346 522
from_clause (345) INTNUM (12)
339 195, 494, 515, 517, 518, 520, 521,
function_ref (485) 525
464 INTO (30)
241, 245, 273
G in_predicate (423)
GOTO (29) 393
553 ISGBD
GRANT (30) 419, 420
135, 141
grantee (169) K
165, 166 KEY (31)
grantee_commalist (164) 95, 106, 107, 109
135, 166 I
GROUP (30)
365 LANGUAGE (31)
LIKE (31)
H 409, 410
HAVING (30) like_predicate (408)
375 391
literal (492)
I 96, 475
IN 30)
424, 425, 426, 427 M
INDICATOR (30) manipulative_statement (210)
INSERT (30)
157, 245 N
insert_atom (258) NAME (10)
254, 255 501,502, 506, 507, 508, 532, 535,
insert_atom_commalist (253) 542, 545, 553

240 I8]%
&1, a3

322

SQL Parser Code

NOT (18)
93, 94, 95, 383, 404, 409, 419,
424, 4206, 549

NULLX (31)

93, 94, 95, 97, 260, 295, 419, 420
NUMERIC (31)
516, 517, 518

0]
OF 3D)
233, 285
ON (31
135
OPEN (31D
264
open_statement (263)
217
operation (155)
151, 152
operation_commalist (150)
147, 152
OPTION (31)
126, 141
opt_all_distinct (277)
272, 330, 450
opt_asc_desc (199)
195, 196
opt_column_commalist (129)
120, 159, 160, 245
opt_escape (413)
409, 410
opt_group_by_clause (363)
341
opt_having_clause (373)
342

opt_order_by_clause (184)
181
opt_schema_element_list (53)

50
opt_where_clause (311)

237, 299, 340
opt_with_check_option (124)
121
opt_with_grant_option (139)
136
OR (16)
381
ORDER (32)

104
160

ordering_spec (194)

190, 191
ordering_spec_commalist (189)
186, 191

P

PARAMETER (32)
539

parameter (538)
480, 481, 482

parameter_ref (479)
308, 474

PRECISION (32)

527
predicate (388)

385
PRIMARY (32)
95, 106
PRIVILEGES (32)

145
privileges (144)

-

135

323

lex & yace

privilege_def (134)

66
PROCEDURE (32)

PUBLIC (33)
170

Q

query_exp (318)
181, 320, 321, 326

query_spec (329)
121, 250, 325

query_term (324)
319, 320, 321

R

range_variable (542)
356

REAL (33)

526
REFERENCES (33)

100, 101, 108, 110, 160
ROLLBACK (33)

268
rollback_statement (267)
218

S

scalar_exp (455)
2904, 399, 400, 404, 405, 409, 410,
424, 425, 426, 427, 436, 450, 457,
458, 459, 400, 461, 465, 469, 470,
488, 489

scalar_exp_commalist (468)

334, 470

324

SCHEMA (33)

50
schema (49)

46

schema_element (63)

59, 60
schema_element_list (58)
55, 60
search_condition (380)
99, 111, 360, 375, 381, 382, 383,
384
SELECT (33)
156, 272, 330, 450
selection (333)
272, 330, 450
select_statement (271)
219
SET (33)

284, 299
SMALLINT (34)

523
SOME (34)

442
sql (46, 175, 207, 549)
40, 41
SQLCODE (34)
SQLERROR (34)

550
sql_list (39)

493
subquery (449)
400, 424, 425, 436, 446

SQL Parser Code

T
TABLE (34)

70
table (500)
70, 100, 101, 108, 110, 120, 135,
233,237, 245, 284, 299, 355, 356
table_constraint_def (104)

80
table_exp (338)

fC 4

274, 330, 450
table_ref (354)

350, 351
table_ref_commalist (349)
346, 351
target (307)
303, 304
target_commalist (302)
241, 273, 304
test_for_null (418)
392
TO (34
135

U

UMINUS (22)
460, 461

UNION (34)
320, 321

UNIQUE (35)
94, 105

UPDATE (35)

159, 284, 299
update_statement_positioned
(283)

220

update_statement_searched (298)
221

USER (35)
98, 476

user (545)
50, 171

v
VALUES (35)

249
values_or_query_spec (248)

245
VIEW (35)

120

1L

view_def (119)
65

w

WHENEVER (35)
549, 550

when_action (553)
549, 550

WHERE (35)
233, 285, 360

where_clause (359)
313

WITH (35)

126, 141
WORK (35)
229, 268

325

Lex Scanner

This is file scn2.1.

%{
#include "sgl2.h"
#include <string.h>

int lineno = 1;
void yverror(char *s);

/* macro to save the text of a SQL token */
#define SV save_str(yytext)

/* macro to save the text and return a token */
#define TOK(name) { SV;return name; }
%}
$s SQL
%%

EXEC[\t]+SQL { BEGIN SQL; start_save(); 1}

/* literal keyword tokens */

<SQL>ALL TOK {ALL)

<SQL>AND TOK {AND)

<SQL>AVG TOK {AMMSC}
<SQL>MIN TOK {AMMSC)
<SQL>MAX TOK (AMMSC)

<SQL>SUM TOK (AMMSC)
<SQL>COUNT TOK (AMMSC)
<SQL>ANY TOK (ANY)

<SQL>AS TOK (AS)
<SQI>ASC TOK (ASC)
<SQL>AUTHORTZATTON TOK (AUTHORIZATION)
<SQIL>BETWEEN TOK (BETWEEN)
<SQL>BY TOK (BY)
<SQL>CHAR (ACTER) ? TOK (CHARACTER)
<SQL>CHECK TOK {(CHECK)
<SQL>CLOSE TCK (CLOSE)
<SQL>COMMIT TOK (COMMIT)
<SQL>CONTINUE TOK (CONTINUE)
<SQL>CREATE TOK (CREATE)
<SQL>CURRENT TOK {CURRENT)
<SQL>CURSOR TOK {CURSOR)
<SQL>DECTIMAL TOK { DECIMAL)
<SQL>DECLARE TOK (DECLARE)
<SQI >DEFAULT TOK (DEFAULT)
<SQI>DELETE TOK {DELETE)
<SQL>DESC TCK (DESC)
<SQL>DISTINCT TOK (DISTINCT)
<SQL>DOUBLE TOK (DCUBLE)

326

SQL Parser Code

<SQL>ESCAPE
<SQL>EXISTS
<SQL>FETCH
<SQL>FLOAT
<SQL>FOR
<SQL>FOREIGN
<SQL>FOUND
<SQL>FROM
<SQL>GO[\t]*TO
<SQL>GRANT
<SQL:>GROUP
<SQL>HAVING
<SQL>IN
<SQL>INDICATOR
<SQL>INSERT
<SQL>INT (EGER) ?
<SQL>INTO
<SQL>IS
<SQL>KEY
<SQL>LANGUAGE
<SQL>LIKE
<SQL>NOT
<SQL>NULL
<SQL>NUMERIC
<SQL>OF
<SQL>CON
<SQL>0OPEN
<SQL>OPTION
<SQL>0OR
<SQL>ORDER
<SQL>PRECISION
<SQL>PRIMARY
<SQL>PRIVILEGES
<SQL>PROCEDURE
<SQL>PUBLIC
<SQL>REAL
<SQL>REFERENCES
<SQL>ROLLBACK
<SQL>SCHEMA
<SQL>SELECT
<SQL>SET
<SQL>SMALLINT
<SQL>SOME
<SQL>SQLCODE
<SQL>TABLE
<SQL>TO
<SQL>UNION
<SQL>UNIQUE
<SQL>UPDATE
<SQL>USER
<SQL>VALUES
<SQL>VIEW
<SQL>WHENEVER
<SQL>WHERE

TOK (ESCAPE)
TOK (EXISTS)
TOK (FETCH)
TOK (FLOAT}
TOK (FOR)
TOK (FOREIGN)
TOK (FOUND)
TOK (FROM}
TOK (GOTO)
TOK (GRANT)
TOK (GROUP)
TOK (HAVING)
TOK (IN)
TOK (INDICATOR})
TOK (INSERT)
TOK (INTEGER)
TOK (INTO)
TOK (IS)
TOK (KEY)
TOK (LANGUAGE)
TOK (LIKE)
TOK (NOT')
TOK (NULLX)
TOK (NUMERIC)
TOK (OF}
TOK (CN)}
TOK (OPEN)
TOK (OPTION)
TOK (CR})
TOK (ORDER)
TOK (PRECISION)
TOK (PRIMARY)
TOK (PRIVILEGES)
TOK (PROCEDURE)
TOK (PUBLIC)
TOK (REAL)
TOK (REFERENCES)
TOK (ROLLBACK)
TOK (SCHEMA)
TOK (SELECT)
TOK (SET)
TOK (SMALLINT)
TOK (SOME)
TOK (SQLCODE}
TOK (TABLE)
TOK (TO)
TOK (UNION)
TOK (UNIQUE)
TOK (UPDATE}
TOK (USER)
TOK (VALUES)
TOK (VIEW)
TOK {WHENEVER)

TOK (WHERE)

327

<SQL>WITH TOK (WITH)
<SQL>WORK TOK (WORK)

/* punctuation */

<SQL>"=* |
<SQL>"<>" |
<SQL>"<" |
<SQL>">" |
<SQL>"<=" |
<SQL>">=" TOK (COMPART SON)

<SQL>[-+*/(},.;] TOK(yytext[0])

/* names */
<SQL>[A-Za-z] [A-Za-2z0-9_]* TOK (NAME)

/* parameters */
<SQL>":"[A-Za-z] [A-Za-z0-9_1*{
save param(yvtext+l);
return PARAMETER;
}

/* numbers */

<SQL>[0-9]+ |
<SQL>[0-91+"."[0-91* |
<SQL>"."[0-91* TOK { INTNUM)

<SQL>[0-9]+[eE] [+-]12[0-9]+ |
<SQL>[0-9]+"."[0-9]*[eE] {+-]1?[0-9]+ |
<SQL>"." [0-9]1*[eE] [+-]17?{0-9]+TOK (APPROXNUM)

/* strings */

<SQL>’ [*'\n]*’ {
int ¢ = input();

unput (¢); /* just peeking */
if(c 1= "\'") |
SV:return STRING;

} else
yymore() ;
}
<SQL>' [~’\n]*$ { yyerror ("Unterminated string"); }
<SQL>\n { save_str(* ");lineno++; }
\n { lineno++; ECHO; }

<SQL>[\t\rl+ save_str(" "); /* whitespace */

<SQL>"--".* ; /* comment */

328

SQL Parser Code

. ECHO; /* random non-SQL text */
%
void
yyerror (char *s)
{

printf("%d: %s at %$s\n", lineno, s, yytext);
}

main(int ao, char **av)
{
if(ao > 1 && (yyin = fopen(av[l], "r")) == NULL} ({
perror(av(l]);
exit(l);
}

if (lyyparse(})
fprintf (stderr, "Embedded SQL parse worked\n");
else
fprintf (stderr, "Enbedded SQL parse failed\n");
} /* main */

/* leave SQL lexing mode */
un_sql ()
{

BEGIN INITIAL;

} /* un_sql */

Supporting Code

This is file sqltext.c.

/*
* Text handling routines for simple embedded SQL
*/

#include <stdio.h>
#include <string.h>
extern FILE *yyout; /* lex output file */

char save_buf[2000]; /* buffer for SQL command */
char *savebp: /* current buffer pointer */

#define NPARAM 20 /* max params per function */
char *varnames [NPARAM]; /* parameter names */

/* start an embedded command after EXEC SQL */
start_save(void)

{

savebp = save_buf;
} /* start_save */

329

/* save a SQL token */
save_str(char *s)
{

strcpy (savebp, s);
savebp += strlen(s);
} /* save_str */

/* save a parameter reference */
save_param(char *n)
{

int 1i;

char pbuf[10];

/* look up the variable name in the table */

for{i = 1; i < NPARAM; i++) {
if(lvarnames{i]} {

/* not there, enter it */
varnames [1] = strdup(n);
break;

}

if (!stromp (varnames(i},n))
break; /* already present */
}

if (i >= NPARAM) {
yyerror ("Too many parameter references*®):
exit(l);

}

/* save #n referece by variable number */

sprintf (pbuf, " #%d", 1i);
save_str(pbuf);

} /* save param */
/* end of SQL command, now write it out */
end sql(void)
{
int i;
register char *cp;
savebp--; /* back over the closing semicclon */
/* call exec_sql function */

fprintf (yyout, "exec_sqgl(\"");

/* write out saved buffer as a big C string
* gtarting new lines as needed

*/

330

SQL Parser Code

for(cp = save_buf, i = 20; cp < savebp; cp++, i++) {

if{(i > 70) { /* need new line */
fprintf (yyout, "\\\n");
i=0;

}

putc(*cp, yyout):;
}
putc(’"‘, yyout);

/* pass address of every referenced variable */
for(i = 1; 1 < NPARAM; i++) {

if ('varnames([i])

break;

fprintf (yyout, *,\n\t&%s*, varnames[i]);

free (varnames[i]);

varnames{i] = 0;
}

fprintf(yyout, ");:\n");

/* return scanner tc regular mode */
un,_sql();

} /* end_sql */

331

Glossary

cant terms are listed here.

action
The C code associated with a lex pattern or a yacc rule. When the
pattern or rule matches an input sequence, the action code is exe-
cuted.

alphabet
A set of distinct symbols. For example, the ASCII character set is a4
collection of 128 different symbols. In a lex specification, the alpha-
bet is the native character set of the computer, unless you use “%T” to
define a custom alphabet. In a yacc grammar, the alphabet is the set
of tokens and non-terminals used in the grammar.

ambiguity
An ambiguous grammar is one with more than one rule or set of rules
that match the same input. In a yacc grammar, ambiguous rules
cause shift/reduce or reduce/reduce conflicts. The parsing mecha-
nism that yacc uses cannot handle ambiguous grammars, so it uses
%prec declarations and its own internal rules to resolve the contflict
when creating a parser.

Lex specifications can be and usually are ambiguous; when two pat-
terns match the same input, the pattern earlier in the specification
wins.

ASCII
American Standard Code for Imformation hterchange; a collection of
128 symbols representing the common symbols found in the Ameri-
can alphabet: lower and uppercase letters, digits, and punctuation,
plus additional characters for formatting and control of data

333

lex & yacc

communication links. Most computers on which yacc and lex run use
ASCII, although some IBM mainframe systems use a different 256
symbol code called EBCDIC.

(0 L8t s Lixif

Backus-Maur Form; a method of representing grammars. It is com-
monly used to specify formal grammars of programming languages.
The input syntax of yacc is a simplifed version of BNF.

BSD
Berkeley Software Distribution. The University of California at Berke-
ley issued a series of operating system distributions based upon
Seventh Edition UNIX; typically, BSD is further qualified with the ver-
sion number of the particular distribution, e.g., BSD 2.10 or BSD 4.3.

compiler
A program which translates a set of instructions (a program) in one
language into some other representation; typically, the output of a
compiler is in the native binary language that can be run directly on a
computer. Compare to interpreter.

conflict
An error within the yacc grammar in which two (or more) parsing
actions are possible when parsing the same input token. There are
two types of conflicts: shift/reduce and reduce/reduce. (See also
ambiguity.)

empty string
The special case of a string with zero symbols, sometimes written €.
In the C language, a string which consists only of the ASCII character
NUL. Yacc rules can match the empty string, but lex patterns cannot.

finite automaton
An abstract machine which consists of a finite number of instructions
(or transitions). Finite automata are useful in modeling many com-
monly occurring computer processes and have useful mathematical

properties. Lex and yacc create lexers and parsers based on finite
automarta.

334

Glossary

input
A stream of data read by a program. For instance, the input to a lex
scanner is a sequence of bytes, while the input to a yacc parser is a
sequence of lokens.

interpreter
A program which reads instructions in a language (a program) and
decodes and acts on them one at a time. Compare to compiler.

language
Formally, a well- P
some set of instructions for describing tasks which can be executed

by a computer.

LALR(1)
IookAhead Ieft Recursive; the parsing technique that yacc uses. The
(1) denotes that the lookahead is limited to a single token.

left-hand side (LHS)
The left-hand side or LHS of a yacc rule is the symbol that precedes
the colon. During a parse, when the input matches the sequence of
symbols on the RHS of the rule, that sequence is reduced to the LHS
symbol.

lex
A program for producing lexical analyzers that match patterns defined
by regular expressions to a character stream.

lexical analyzer

A program which converts a character stream into a token stream.
Lex takes a description of individual tokens as regular expressions,
divides the character stream into tokens, and determines the types
and values of the tokens. For example it might turn the character
stream “a = 17;” into a token stream consisting of the name “a”, the
operator “=”, the number “17”, and the single character token *;”. Also
called a lexer or scanner.

lookahead
Input read by a parser or scanner but not yet matched to a pattern or
rule. Yacc patsers have a single token of lookahead, while lex scan-
ners can have indefinitely long lookahead.

335

lex & yacc

non-terminal
Symbols in a yacc grammar that do not appear in the input, but
instead are defined by rules. Contrast to tokens.

parser stack
In a yacc parser, the symbols for partially matched rules are stored on
an internal stack. Symbols are added to the stack when the parser
shifts and are removed when it reduces.

parsing
The process of taking a stream of fokens and logically grouping them
into statements within some language.

pattern
In a lex lexer, a regular expression that the lexer matches against the
input.

precedence
The order in which some particular operation is performed; e.g.,
when interpreting mathematical statements, multiplication and divi-
sion are assigned higher precedence than addition and subtraction;
thus, the statement “3+4*3” is 23 as opposed to 35.

production
See rules.

program
A set of instructions which perform a certain predefined task.

reduce
In a yacc parser, when the input matches the list of symbols on the
RHS of a rule, the parser reduces the rule by removing the RHS sym-
bols from the parser stack and replacing them with the LHS symbol.

reduce/reduce conflict
In a yacc grammar, the situation where two or more rules match the
same string of tokens. Yacc resolves the conflict by reducing the rule
that occurs earlier in the grammar.

336

Glossary

regular expression

A language for specifying patterns that match a sequence of charac-
ters. Regular expressions consist of normal characters, which match

the same character in the input, character classes which match any
and other characters which QnP(‘If:V the

110 ULl Ciikadveioad VY idahda Dponels

cinala ~ha i

Sifigic character in th

way that parts of the expression are to be matched against the input.

(D
¢
B
8
wn
n

right-hand side (RHS)

rule

The right-hand side or RHS of a yacc rule is the list of symbols that
follow the colon. During a parse, when the input matches the
sequence of symbols on the RHS of the rule, that sequence is reduced
to the LHS symbol.

In yacc, rules are the abstract description of the grammar. Yacc rules
are also called productions. A rule is a single non-terminal called the
LHS, a colon, and a possible empty set of symbols called the RHS.
Whenever the input matches the RHS of a rule, the parser reduces the
rule.

semantic meaning

shift

See value.

A yacc parser shifts input symbols onto the parser stack in expecta-
tion that the symbol will match one of the rules in the grammar.

shift/reduce conflict

In a yacc grammar, the situation where a symbol completes the RHS
of one rule, which the parser needs to reduce, and is an intermediate
symbol in the RHS of other rules, for which the parser needs to shift
the symbol. Shift/reduce conflicts occur either because the grammar
is ambiguous, or because the parser would need to look more than
one token ahead to decide whether to reduce the rule that the symbol
completes. Yacc resolves the conflict by doing the shift.

specification

A lex specification is a set of patterns to be matched against an input
stream. Lex turns a specification into a lexer.

start state

1 lay an N
In a lex specification, pattems can

which case the pattemn

o}
on
[
ot
%]

337

lex & yacc

start symbol
The single symbol to which a yacc parser reduces a valid input
stream. Rules with the start symbol on the LHS are called start rules.

symbol table
A table containing information about names occurting in the input, so
that all references to the same name can be related to the same

object.

symbol
In yacc terminology, symibols are either fokens or non-terminals. In
the rules for the grammar, any name found on the right-hand side of a

rule is always a symbol.

System V
After the release of Seventh Edition UNIX (upon which the BSD distri-
butions of UNIX are based), AT&T released newer versions of UNIX,
the most recent of which is called System V; newer versions bear
release numbers, so it is common to refer to either System V or Sys-
tem V.4.

token
In yacc terminology, tokens or terminals are the symbols provided to
the parser by the lexer. Compare to non-terminals, which are
defined within the parser.

tokenizing
The process of converting a stream of characters into a stream of
tokens is termed fokenizing. A lexer tokenizes its input.

value
Each token in a yacc grammar has both a syntactic and a semantic
value; its semantic value is the actual data contents of the token. For
instance, the syntactic type of a certain operation may be INTEGER,
but its semantic value might be 3.

yacc
Yet Another Compiler Compiler; a program that generates a parser
from a list of rules in BNF-like format.

338

Bibliograpby

Aho, Alfred V., Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,
Techniques, and Tools. Addison-Wesley, 1986.

The classic compiler text. It includes detailed discussions of the theory
behind yacc and lex along with sketches of their implementation.

American National Standards Institute. Programming Language C.
X3.159-1989. ANSI, December 1989.

The definition of modern ANSI C. Also known as Federal Information
Processing Standard (FIPS) 160.

Bennett, J.P. Introduction to Compiling Techniques—A First Course Using
Ansi C, Lex and Yacc. McGraw Hill Book Co, 1990.

Deloria. “Practical yacc: a gentle introduction to the power of this famous
parser generator.” C Users Journal. Nov 1987, Dec/Jan 1988, Mar/Apr
1988, Jun/Jul 1988, and Sep/Oct 1988.

Donnely and Stallman. The Bison Manual. Part of the online bison distri-
bution.

The definitive reference on bison.
Holub, Alan. Compiler Design in C. Prentice-Hall, 1990.

A large book containing the complete source code to versions of yacc
and lex, and to a C compiler built using them.

S. C. Johnson Yacc—Yet Another Compiler-Compiler. Comp. Sci. Tech.
Rep. No. 32. Bell Laboratories, July 1975.

The original description of yacc. Reprinted as part of the documenta-
tion with Seventh Edition UNIX and with most versions of BSD UNIX.

339

lex & yacc

Kernighan, Brian W. and Dennis M. Ritchie. The C Programming Lan-
guage. Prentice-Hall, 1978.
The standard reference for the “classic” C language.

M. E. Lesk Lex—A Lexical Analyzer Generator. Comp. Sci. 1.

39. Bell Laboratories, October 1975.

The original description of lex. Reprinted as part of the documentation

with Seventh Edition UNIX and with most versions of BSD UNIX.
Schreiner, Axel T. and H. George Friedman, Jr. Introduction to Compiler

Construction with UNIX. Prentice-Hall, 1985.

Develops a small subset-of-C compiler using lex and yacc with a rela-
tively theoretical approach and excellent coverage of error handling and

recovery. Beware of typographical errors in the examples.

340

: (colon), in yacc rules, 56, 200
(sharp sign), delimited com-
ments, 31
#define, 174
#include, 161
#line, omitting, 263, 283, 296
$ (doliar sign)
in regular expressions, 28,
153, 169
in yacc actions, 58, 183, 199
$%, 58, 183
$0, 189
$<
in embedded actions, 184
in yacc actions, 200
in yacc, 190, 202
$end, 188
% (percent sign)
%% section delimiter, 33, 199
in yacc token declarations, 56
%%, 5, 18, 33, 147, 181, 199
missing in yacc, 266
%2, in yacc definitions, 195
%<, in yacc definitions, 195
%a, in lex definition section, 159
%array, in POSIX lex
%c language choice, 259
%e, in lex definition section, 159
%expect, 280
%guard, 280
%ident, 189
%k, in lex definition section, 159
%left, 62, 66, 195, 201, 203, 205
%n, in lex definition section, 159
%nonassoc, 62, 66, 195, 201, 203,
205

Index

%0, in lex definition section, 159
%p, in lex definition section, 159
%pointer, in POSIX lex
%prec, 63, 199

conflicting, 276

missing symbol name, 266

quirks in, 187

without non-terminal, 268
%pure_parser, 210, 280
%r language choice, 259
%right, 62, 66, 195, 201, 203, 205
%s, in lex, 172
%semantic_parser, 280
%start, 57, 201

errors, 264

redeclaring, 276
%T, 151, 257, 335
%token, 201-205

no type specified, 268
%type, 66, 201, 204

errors, 264
%union, 66, 205

too many, 274

unterminated, 266, 274
%unused, 284-285
%used, 284-285
%x, in lex, 172
%{

in flex, 282

in lex, 4, 161

in yacc, 18, 192, 200
() (parentheses), in regular

expressions, 29, 169
* (asterisk), in regular expres-
sions, 28, 168

341

lex & yacc

+ (plus), in regular expressions,
29, 168
- (dash), in regular expressions,
28
/ (slash), in regular expressions,
29, 149, 153, 169, 260
/*, in yacc definition section, 182
; (semicolon), in yacc rules, 50,
198, 200
<<EOF>>, 155, 169
illegal, 285
in flex, 282
< > (angle brackets)
in lex rules, 43, 172
in regular expressions, 169
in yacc actions, 200
in yacc declarations, 66
missing around types, 271
= (equal sign), before yacc
actions, 184, 200
? (question mark), in regular
expressions, 29, 168
@B, 280
[] (square brackets)
in POSIX, 170
in regular expressions, 28,
167
. (period)
in regular expressions, 28,
167
in y.output, 224
in yacc, 200
\ (backslash)
in regular expressions, 28,
168
in yacc, 199
" (circumflex), in regular expres-
sions, 28, 152, 167, 169

_ (underscore), in y.output, 224

in yacc, 200
‘’ (single quotes), in yacc, 192,
200
{} (curly braces)
in lex actions, 33, 148
in regular expressions, 28, 33,
153, 168
in yacc actions, 58, 200

missing, 284

342

| (vertical bar)
after lex patterns, 5, 148
in regular expressions, 29,
169
in yacc rules, 52, 199-200

A

Abraxas
differences from AT&T, 293
extended error recovery, 293
new features, 293
pclex, 156-157
Software, 293
ACTION in MGL, 82, 84, 99
action table overflow, 264
actions, 333
%l in flex, 282
| inlex, 5
{}in lex, 33
$ in vace, 58, 183
$<in vacc, 190
@B in, 280
C code in yacc, 200
C compound statements in
lex, 33
default lex, 6, 154
default vacc, 58, 183
ECHO, 6
embedded in yacc rules, 183
lex, 5
missing yacc, 266
multiple lines in lex, 148
referring to left-hand side in
yacc, 58, 183
referring to right-hand side in
yacc, 58, 183
types of inherited attributes
in, 190
unterminated flex, 284
unterminated yacc, 264, 275
value references in yacc, 199
within yacc rules, 183
without patterns, 257
vacc, 19, 58, 182, 199
yyerrok in yacc, 249
alphabetic strings, matching, 6

Index

alphabets, 333
alternatives, overlapping,
238-240
ambiguities in y.output, 223
ambiguous
grammars, 55, 60, 184, 194,
333
lookahead, 149
AMMSC, 117, 132
angle brackets (< >)
in lex rules, 43, 172
in regular expressions, 169
in yacc actions, 200
in yacc declarations, 66
missing around types, 271
anonymous rules, with embed-
ded actions, 188
ANSI standards for SQL, 109
any character, 28, 167
apostrophe ('), in yacc, 192, 200
appending tokens, 177
arithmetic expressions, parsing,
60, 132
ASCIL, 28, 167, 170, 194, 203,
333
assigning precedence, 62
assigning token numbers, 66
assigminents in yacc rules, 50,
200
associative operators, 195
associativity, 61-62
for avoiding conflicts, 196
in yacc, 195
asterisk (*), in regular expres-
sions, 28, 168
atof(), 67
AT&T lex, 38, 41, 255-261
bugs, 140, 149
character codes, 151
command line, 255-256
error messages, 256-261
faster translation, 256
input(), 155-156
internal tables, 159
library, 256
macro wrappers, 174
options, 255-256

ottt in C 285

Vuipue i Sy &30

output in RATFOR, 255

standard output, 255

start states, 172

statistical summary, 255

translation tables, 167

with no summary lines, 255

yytext, 177-178
AT&T yacc, 263-271

command line, 263

declaring literal tokens, 187

error handling, 186

error messages, 204-271

generating header files, 263

generating y.output, 263

including runtime debugging

code, 263
number of symbolic tokens,
193

omitting #line, 263

options, 263

prefix for generated files, 207

recursive parsing in, 209
ATTRIBUTE in MGL, 82, 91, 100
attributes

inherited, 189

synthesized, 189
automaton, 336

B

backslash (\)
in regular expressions, 28,
168
in yacc, 199
backtracking, 282
Backus-Naur Form, 109, 334
bad states, 256
bad transitions, 256
base tables in SQL, 122
BEGIN, 149, 171-172
beginning of line, matching, 28,
152, 169
Berkeley Software Distribution,
336
Berkeley yacc, 22, 273-277
error messages, 273-277

fatal errors, 273
%ident, 189

eI,

Makefiles for, 77

343

lex & yacc

Berkeley yacc (cont'd)
options, 273
recursion, 187, 197
SQL parser, 140
-b flag
in Berkeley yacc, 273
in flex, 282
‘in POSIX yacc, 295
bison, 22, 279
differences from AT&T, 279
generated header filename,
203
generated prefix names, 207
Makefiles for, 78
options, 280
reentrant parsers, 193, 210
reference manual, 341
BNF, 109, 334
breakpoints, 292
BSD, 334
buffers
lex, 32, 85
sizes in lex, 166
yacc, 267
BUFSIZ, as token name
bugs, in lex, 149-150
in yacc, 186-188
building complex patterns, 29,
169
building lex and yacc, 21
building MGL compiler, 92

C

C++, 282, 292, 294
C code
delimiters, 4, 18
in lex definition section, 161
in lex rules section, 148
in lex user subroutines sec-
tion, 148
in lexers, 7, 34, 176
in yacc actions, 200
in yacc definition section,
182, 192
initial, 4

344

position in yylex(), 148
C comments, 4, 18, 24, 158, 172
matching, 45-47
C compound statements, 33
C escape sequences
iliegal, 264, 267, 275
in regular expressions, 28,
168
matching, 28, 168
non-portable, 258
C header file, creating, 203
C language output of lexers, 255
C source code analyzers, 45
C source file, lex, 7
calculator
lexer for, 59, 65, 76
parser for, 58, 62, 64, 75
cascading errors, 249
case of token names, 182
case-insensitivity, in flex lexers,
283
cat, 2
cc
-1l flag, 160
-ly flag, 211
-C flag, in flex, 283, 285-286
< flag, in AT&T lex, 255
in POSIX lex, 295
in yacc, 210
chaining files, 155
changing
input to lexer, 35
prefix for lex names, 162
prefix for yacc names, 207
start states, 149
states, 43
character classes, 28, 170
lex, 257
matching, 167
non-portable, 258
too many, 260
character codes
international, 170
lex, 167
yace, 194
character fetch routine, 158
character ranges

connted renetitiong of
counica repelitions orf

140
147

L]

matching, 28

Index

character translations, 151
in flex, 151
character values, 257
characters
counting, 34

illagal 2Q2
incgdi, 400

checking SQL syntax, 114
circumflex (), in regular expres-
sions, 28, 152, 167, 169
Cobol, 294
code section, (see user subrou-
tines section)
collating symbol, 170
colon (3), in yacc rules, 56, 200
columns, in SQL, 110
combined parsers, 200
COMMAND in MGIL, 82-83, 86,
99
nnnnnnnnnnnnn
command-driven mtetfaces, 83
comments, 172
C, 4, 18, 24, 158
in lex definition section, 147
in lex rules section, 148
in SQL, 114
in yacc, 182, 266
matching C, 45-47
starting with #, 31
unterminated in lex, 257
unterminated in yacc, 266,
274
compilers, 334
error recovery, 251-253
MGL, 81
compiling
lexers, 22, 27
parsers, 22, 59
complex patterns, building, 29,
169
compound statements, C, 33
compression, table, 283
conditions, start (see start states)
conflicts, 60, 184, 217, 334
associativity and, 194
avoiding, 196
embedded actions and, 183
error messages, 277
expecting, 280
in y.output, 221-227, 223

lookahead and, 221, 237-238

non-terminals in
reduce/reduce, 224

Y%prec, 276

precedence and, 194, 276

recursion and 220

TUUULIINIAR Garlia, L&/

reduce/reduce, 185, 219-220,
228, 336
resolving, 62, 233-240
shift/reduce, 185, 220,
228-229, 337
context, yacc feedback to lex,
191
context sensitivity, in lex, 152
copies, matching, 28-29, 168
copying tokens, 87
coroutines, 17
counted repetitions of character

ranoeg 140
ranges, 147

counting
characters, 34
lines, 34
words, 32
ctype macros in POSIX, 170
curly braces ({})
in lex actions, 33, 148
in regular expressions, 28, 33,
153, 168
in yacc actions, 58, 200
missing, 284
current lex statistics, 159
current lexer state, 155
current token, in lex error
reporting, 246
curses library, 81
cursor definitions for SQL,
126-127

D

dangling else, 196
danglmg-else conflict, 63
dash (), in regular expressions,
28
data bases, 110
relational, 109
data definitions, 33
dBASE, 292, 294

345

lex & yacc

debugging
breakpoints, 292
flex, 283
generating code in flex, 282
including code, 263
including runtime code, 296
interactively, 292
single-stepping, 292
yacc parsers, 213
decimal numbers
lex specification for, 31
matching, 30
declaration section, (see defini-
tion section)
declarations
in yacc definition section, 199
invalid, 258
%type, 204
%union, 205
declared patterns, (see substitu-
tions)
declaring
lex variables, 148
literal tokens in AT&T yacc,
187
non-terminal symbols with
types, 66
operators, 195
precedence, 62-63
start states, 43, 172
start symbols, 57
token precedence twice, 269
token types twice, 271
tokens, 56
unions, 66
default
lex action, 6, 154
lex pattern, 148
lex start state, 149
rules in flex, 283
state, 43
yacc action, 183
defined patterns, (see substitu-
tions)
defining variables, 33
definition section
% in yacc, 192

C ecnde in ley 16

a A1
L LUULT ai aTay 1V

comments in yacc, 182

346

lex, 4, 32, 147

missing in yace, 266

of SQL parser, 119

yacc, 18, 56, 182, 192
definitions, 33, 33, 153

errors in, 257, 260

(see also substitutions)
DELETE statement in SQL, 131
delimiters

Ccode, 4, 18

section, 33
detecting syntax errors, 215
-d flag

in AT&T yacc, 263

in flex, 282

in POSIX yacc, 295

in yacc, 203
digits, 30
disambiguating rules, lex, 6
discarding lookahead tokens, 213
doliar sign ($)

in regular expressions, 28,

153, 169

in yacc actions, 58, 183, 199

double quotation marks, (see
quotation marks)

duplicate names, 246

E

EBCDIC, 167, 194, 334
ECHO, 6, 154
default pattern in lex, 148
redefining, 165
8-bit characters, 285
8-bit clean lexers, 283
-8 flag, in flex, 283, 285
cither of two regular expres-
sions, 29, 169
embedded actions
$<in, 184
conflicts, 183
in anonymous rules, 188
in yacc rules, 183
symbol types for, 184
values of, 184

Index

embedded SQL, 113, 139
embedded SQL preprocessor,
141, 145
EXEC SQL, 143
lexer for, 141

start states, 142

text support routines, 144
empty rules section, 275
end marker, 188
end of file

errors, 274

in flex, 282

in lex, 179, 256

inside comment, 257

matching in flex, 169
end of line

characters, 167

matching, 28, 153, 169

end flary 102

end_file(), 102
ending rules, 56
end-offile processing

lex, 35

MGL, 102
end-ofinput token, 15, 59
end-of-screen processing in MGL,

101

English grammar, 3
enlarging token buffer, 178
enlarging yytext, 178
entry point

for lex lexers, 175

for yacc parsers, 216
EOF as token name, 124
equal sign (=), before vacc

actions, 184, 200

equivalence class, 170
error checking in SQL lexer, 118
error handling

bugs in yace, 186

in yace versions, 193
error messages

AT&T lex, 256-261

AT&T yacc, 264-271

Berkeley yacc, 273-277

flex, 283-287
€Iror recovery

compiler, 251

extended in pcyacc, 293

when necessary, 247

yacc, 188, 213-214, 216, 248
error reporting
lex, 246
yacc, 215
error routine, yacc, 60
error rule, 19, 243
error symbol, 181
error token, 188, 243, 248-249
placement, 251
errors
actions, 257, 264
%c language choice, 259
cascading, 249
character classes, 260
character out of range in lex,
257
characters used twice in lex,
257
conflicting %precs, 276
conflicts, 277
declaring token precedence
twice, 269
default action with
unmatched types, 277
definitions, 257, 260
empty rules section, 275
end of file in lex actions, 256
end of file in yacc, 274
end of file inside comment,
257
extra slash, 258
first rule, 265
illegal characters in flex, 283
illegal characters in yacc, 267
illegal comments in yacc, 266
illegal <<EOF>> rules, 285
illegal escape sequences, 267,
275
illegal REJECT, 285
illegal repeat counts, 284
illegal reserved words, 267
in lex, 149
invalid request, 258
invalid value type, 264
item too big, 267
iteration ranges, 258
lex.backtrack, 285
lookahead in yacc, 270
missing angle brackets, 271

347

lex & yacc

errors (cont'd)

missing patterns, 257

missing quotation marks,
267-268

missing start symbol rule, 276

missing symbol name after
%prec, 266

missing type for %token, 268

missing types, 275-276

missing yacc definition sec-
tion, 266

multiple <<EOF>> rules, 285

non-terminal not defined, 269

null characters in AT&T yacc,
264

opening files, 265, 273

out of disk space, 265

out of memory, 258, 260

out of yacc internal storage,
270-271, 274

overly complex states, 260

%prec without non-terminal,
268

%r language choice, 259

reading files, 256, 285

recovery, 247-253

recursion, 268

redeclaring start conditions,
285

redeclaring start symbols, 276

redeclaring token numbers,
276

redeclaring token types, 271

redeclaring types, 276

reporting, 243-247

reserved symbols in yacc, 275

right contexts, 260

rules never reduced, 264,
269, 277

rules without return value,
268

Ystart, 264

start conditions, 259, 261, 284

start symbols, 275

strings, 259

substitutions, 257-259,
283-284

348

tokens on left-hand side, 270,
275
too many states, 261
too many terminals in yacc,
270
t00 many transitions, 261
100 many yacc rules, 268
translation tables, 257, 284
%type, 264
undeciared start states, 285
undeclared types, 268
undefined non-terminal sym-
bols, 277
undefined start states, 261
undefined substitutions, 284
%unions, 274
unknown lex option, 261
unrecognized directive, 283
unterminated actions, 264,
275, 284
unterminated comments, 260,
274
unterminated patterns, 284
unterminated strings, 244,
258, 2606, 274
unterminated type names,
271
unterminated %union, 266,
274
%used or %unused, 284-285
value references, 275-276
writing files, 256
yacc options, 267
yacc temporary files, 269
escape sequences, (see C escape
sequences)
exclusive start states, 45, 1606,
172
simulating, 173
EXEC SQL, 113, 143
EXECUTE in MGL, 84
expanding #define, 174
expecting conflicts, 280
explicit associativity and prece-
dence, 62
explicit start states, 42
explicit symbol types, 202
explicitly trailing context, in lex
patterns, 153

Index

exponents, 30
expression grammars, 63, 196,
229, 236
expressions
parsing, 52

regular (see re

sions)

extended error recovery library,
293

extensible languages, 94

external error recovery mecha-
nisms, 251

extra slashes, 258

F

failure value, 212
fact tahlac in flavy 2Q2

fast tables in flex, 283
faster AT&T lex translation, 256
F_BUFSIZ, 179
FETCH statement in SQL, 129
-F flag, in flex, 283, 285-286
-f flag
in AT&T lex, 256
in flex, 283, 285
FILE as token name, 124
file chaining, 155
filenames
for MGL, 95
parsing in lex, 39
files, opening, 273
finite automaton, 334
fixing conflicts, 233-240
flex, 166, 178, 281
buffers, 155, 177
bugs, 149-150
C++ and, 282
character translations, 151
compatibility, 22
differences from AT&T,
281-282
end of file, 282
<<EQOF>> in, 169
error messages, 283-287
exclusive start states, 172
input, 38, 155, 157
libraries, 166, 281
Makefiles for, 77

multiple lexers in, 165
options, 282-283
patterns, 281
restarting, 171

-s flag, 154

scanning routine, 282
SQL lexer, 140
translation tables, 281
yywrap(), 179, 281
fopen, 95
foreign characters, 170
Fortran, 292, 294
Free Software Foundation, 279
full tables, in flex, 283
functions
hard-coding, 72
parsing, 71-72

G

generated files, prefix for, 273,
295
generated header file
creating, 203, 295
yacc option, 263
generated symbols, prefix for.
292, 296
generating menus, (see MGL)
generating yacc log files, 210
generating y.output, 263, 296
GNU, 279
GNU bison, (see bison)
grammars, 2, 13, 52
ambiguous, 55, 60, 184, 194,
333
combined, 206
conflicts in, 184, 217
designing, 83
expression, 236
for caiculator, 75
for MGL, 84-87, 89, 91
for SQL, 118, 120
IF-THEN-ELSE, 231, 233-235
multiple, 205, 207
nested list, 232-233, 235-236
portability of, 193
recursive, 88
redundant, 233

349

lex & yacc

grammars {cont’d)
structure of, 56, 181
grep, 1, 167
groups of expressions, 29, 169,
260
guards, 280

H

hand-written lexers, 22
hard-coding functions. 72

AAGASNT LIRS IRCLROILS,

header files
generating, 203, 263, 295
in lex, 4, 161
hex character codes, 169
hiding menu items, 91
Hypertalk, 292, 294

ID token in MGL, 87
identification string, 189
IEEE, 295
I flag, in flex, 283, 286
- flag, in flex, 283
IF-THEN-ELSE, 196, 231, 233-235
IGNORE in MGL, 84
illegal
characters, 267, 283
<<EQF>> rules, 285
REJECT, 285
repeat counts, 284
start conditions, 284
substitutions, 283-284
translation tables, 284
value references, 276
include file, 59
include operations, 154
including runtime debugging
code, 296
including yacc library, 211
increasing size
lex internal table, 159
token buffer, 178
infinite recursion, 187
inherited attributes, 189

symbol types for, 190

350

INITIAL state, 149, 172
initialization code, for lexer, 148
initializing MGL, 95
input, 334
end of, 188
from strings, 156
pushing back, 173-174
redirecting, 95
input files, lex, 19
logical nesting, 155
input(), 38, 41, 151, 158
calling, 158
in flex, 282
redefining, 148, 155-156, 159
INSERT statement in SQL, 130
integers, 30
interactive debugger, 292
interchangeable function and
variable names, 73
interfaces, designing, 83
internal stack, yacc, 53
internal tables, 159
international characters, 28, 170
interpreters, 335
interpretive lexers, 283
invalid requests, 258
INVISIBLE in MGL, 91
invisible menu items, 91
invoking MGL with filenames, 95
ITEM in MGL, 82, 85, 99
items rule in MGL, 88
iteration ranges, error in, 258

K

keywords, in static tables, 93

L

LALR, 335

Ianguages, 335

left associative operators, 195
left associativity, 62

Ieft context, in lex, 152

Index

left-hand side, 52, 57, 198, 335
setting value of, 58, 183
tokens on, 270, 275

left-recursive grammars, 88, 197

length of tokens, 174

lovwvale nf
levels of precedence, 61

lex
%%, 147, 255, 335
%a in definition section, 159
actions, 5, 148
BEGIN, 149
beginning of line character,
152
buffers, 32, 85, 166
bugs, 149
C code in rules section, 148
character classes, 257
character codes, 167

character fetch routine, 158

comments, 147-148

context sensitivity, 152

current statistics, 159

default action, 6, 154

default start state, 149

definition section, 4, 32, 147

definitions, 153

disambiguating rules, 6

%e in definition section, 159

ECHO, 148, 154

end of file, 35, 179

end of line character, 153

error reporting, 244, 246

exclusive start states, 172

explicitly trailing context in
patterns, 153

expression syntax, 167

include operations, 154

input file, 19

input from strings, 156

internal tables, 159

%k in definition section, 159

library, 77, 160

line numbers, 160

literal block, 161

lookahead, 38, 41, 153

main(), 160

multiple input files, 154

multiple lexers in one specifi-
cation, 161

%n in definition section, 159

no match, 148

-0 flag, 163

%o in definition section, 159

original description of, 342

output(), 165

overflowing buffers, 85

-p flag, 162

%p in definition section, 159

pattern-matching rules, 6

patterns, 27, 148, 167
(see also regular expres-
sions)

pcyacce scanner and parser,
294

porting lexers, 166

porting specifications, 166

prefix for names, 162

regular expressions, 167

REJECT, 170

renaming generated lexers,
163

renaming lex functions and
variables, 162

rules, 5

rules section, 3, 33, 148

running, 21

%s, 172

sections of specifications, 147

specifications, 1, 27

start states, 42, 152, 171

structure of specifications, 32,
147

%T, 151

token buffer, 177

translations, 151

unput(), 173

user subroutines section, 7,
34, 148

-v flag, 159, 255

whitespace, 147-148

yyleng, 174

yyless(), 174

yylex(), 175

yylineno, 160

yymore(), 177

yvytext, 174, 177

351

lex & yacc

lex (cont'd)

yywrap(), 179

(see also AT&T lex)
lex.backtrack, 282, 285
lexers, 1, 27, 335

2

C source code for, 7, 21, 59

case-insensitive, 283
changing input to, 35
compiling, 27

end of input, 202

entry point (see yylex)
for calculator, 59, 65, 76
for decimal numbers, 31

for embedded SQL prepro-

cessor, 141
for MGL, 83-84, 92

for multiple grammars, 210

for SQL, 114, 328-331
initialization code, 148
input to, 35
interpretive, 283
porting, 166

reporting statistics, 283
restarting, 171

returning values from, 171

routine name, 7, 27
running, 27
skeletons, 283
8-bit clean, 283
lexical analysis, 1

lexical analyzers, (see lexers)

lexical feedback, 191
lexical tokens, (see tokens)
lexing, 1
lex, input(), 158
lex.yy.c, 7, 21, 59, 256
lex_yy.c, 291, 293
1L flag, in flex, 283
-1 flag
in AT&T yacc, 263
in POSIX yacc, 296
LHS, 52, 335, 335
(see also left-hand side)
libraries
AT&T lex, 256
Berkeley yacc, 273
curses, 81

352

extended error recovery in
pcyace, 293
flex, 281
lex, 77, 160, 179
math, 77
MKS lex, 292
POSIX yacc, 296
yace, 77, 194, 211-212
limitations of yacc, 55
line numbers
in lex error reporting, 243
in lex input, 160
lines, counting, 34
linked lists, 198
linking
lex library, 160
lexers, 22
parsers, 22
listings, yacc, 210
literal block
lex, 161
yacc, 182, 192
literal text, matching, 29, 169
literal tokens, 192
and portability, 194
in yacc rules, 200
multiple character, 193
-l flag, in cc, 160
location of error tokens, 251
log files, yacc, 210

logical nesting of input files, 155

logical or
in lex, 148
in regular expressions, 29,
169
in yacc rules, 52, 199-200
lookahead, 337
and conflicts, 237-238
conflicts, 221
discarding tokens, 213
errors in yacc, 270
lex, 38, 41, 153
yacc, 55
-ly flag, in cc, 211

Index

M

macros, (see substitutions)
main(), 7, 18
in MGL lexer, 95-96

in MGCT narcar 1072

in MGL parser, 102
in SQL lexer, 118
lex library, 160
yacc library, 211
make program, 77
Makefiles, 77
for SQL syntax checker, 140
making parsers, 77
manipulating tables in SQL, 111
manipulation sublanguage in
SQL, 128
matching
all except character classes,
28, 167

all except ranges of charac-
ters, 28, 167

alphabetic string, 6

any character, 28, 167

beginning of C comments, 46

beginning of line, 28, 169

C comments, 45

C escape sequences, 28, 168

character classes, 28, 167

comments starting with #, 31

decimal numbers, 30

digits, 30

either of two regular expres-
sions, 29, 169

end of C comments, 47

end of file in flex, 169

end of line, 28, 169

escape sequences, 28

groups of expressions, 29,
169, 260

integers, 30

literal text, 29, 169

metacharacters, 28-29,
168-169

multiple occurrences, 28-29,
168

named patterns, 28

number of occurrences, 28,
168

numbers, 30

only in start states, 169
optional, 29, 168

quotation marks, 85

quoted strings, 31

ranges of characters, 28, 167

real numbers, 30

repetitions, 28, 168
single characters, 28, 167
substitutions, 168
whitespace, 45
Zero or more occurrences,
28-29, 168
math library, 77
maximum numbers
of repetitions, 168
of symbolic tokens, 193
menu descriptions, processing,

menu generation language, (see
MGL)

menu-driven interfaces, 83
menus, (see MGL)
metacharacters, 28, 167
matching, 28-29, 168-169
metalanguage, 28
MGL, 81-108
ACTION, 82, 84, 99
ATTRIBUTE, 82, 91, 100
building compiler, 92
COMMAND, 82-83, 86, 99
design, 83
END, 90
end-of-file processing, 102
end-of-screen processing, 101
enhancements, 106, 297
EXECUTE, 84
filenames for, 95
grammar, 84-87, 89, 91
hiding menu items, 91
ID token, 87, 97
IGNORE, 84
initialization code, 95
INVISIBLE, 91
invoking with filenames, 95
ITEM, 82, 85, 99
items rule, 88
lex source, 301-302
lexer, 83-84, 92
main() in lexer, 93-96

353

lex & yacc

MGL (cont'd)
main() in parser, 102
menu description, 82
menu items, 82, 85
multiple screens, 89
multiple ttle lines, 89
multiple-level menus, 89
multiple-line items, 88
NAME, 82
naming screens, 90
parser, 84-87, 89, 91
post-processing, 95
processing menu descrip-

tions, 97

program names, 84
QSTRING, 85, 98
gstring lexer rule, 85

library, 292

new features, 292
options, 292
restarting, 171
source, 291
transiation tables, 167
yyRestoreScan(), 155
yySaveScan(}, 155
yytext, 178

MKS yacc

differences from AT&T, 291
generated header file, 203
generated prefix names, 207
new features, 292

options, 292

source, 291

y.output, 227

quoted strings, 84
recursion, 88-89

sample input, 103
sample output, 103
SCREEN, 90, 97

screen names, 97
screen rules, 89, 97

start rule, 89

supporting C code, 302-310
terminating screens, 100
TITLE, 82, 88, 98

using, 102

VISIBLE, 91

yacc source, 297-301

Modula-2, 292, 294
module language for SQL, 112,
126
Mortice Kern Systems, 291
MS-DOS, 15, 22, 28, 164, 179,
203, 210, 291, 293
multiple
character literal tokens, 193
<<EOF>> rules, 285
files
grammars in one program,
205, 207
input files, lex, 154
input tokens in SQL, 119

mgl-code, 307-310
mgllex.], 301-302
mglyac.c, 297-301
minimum number of repetitions,
168
missing
angle brackets, 271
curly braces, 284

lexers in one lex specifica-
tion, 161

occurrences, matching, 29,
168

patterns in lex, 148

screens in menus, 89

title lines in menus, 89

types of values, 65

patterns, 257
quotation marks, 267-268,
274, 284

multiple-level menus, 89
multiple-line lex actions, 148
multiple-line menu items, 83

types, 275-276

MKS lex
character codes, 151
current lexer state, 155
differences from AT&T, 291
input, 151, 157
internal tables, 159

354

Index

N

NAME in MGL, 82
named patterns, (see substitu-
tions)
names
duplicate, 246
for regular expressions (see
substitutions)
for screens in MGL, 90
for substitutions, 259
in SQL, 118
reused, 246
nested list grammars, 232-233,
235-236
nesting input files, 155
-n flag
in AT&T lex, 255
in POSIX lex, 295
no associativity, 62
no match in lex, 148
non-associative operators, 195
non-English alphabets, 28
non-portable character classes,
258
non-terminal symbols, 52, 182
335
declaring types, 66
in reduce/reduce conflicts,
224
redeclaring types, 271
types, 204
undefined, 269, 277
NULL as token name, 124, 138
null characters, in AT&T yacc,
264
numbers
in regular expressions, 28
in SQL, 118-119
of occurrences, 28, 168
with exponents, 30
with unary minus, 30

O

occurrences, matching, 28, 168
octal character codes, 169
null characters in, 264
-o flag in lex, 163
omitting #line, 263, 283, 296
opening files, errors, 265
operators
associative, 195
deciarations, 195

in SOL, 119
optional, matching, 29, 168
options

Abraxas, 293

AT&T lex, 255-256

AT&T yacc, 263

Berkeley yacc, 273

bison, 280

flex, 282-283

illegal in yacc, 267

MKS lex and vacc, 292

pcyacc, 293

POSIX lex, 295

POSIX yacc, 295-296
or

in lex, 148

in regular expressions, 29,

169

in yacc rules, 52, 199-200
order of precedence, 195
08§/2, 291, 293
out of disk space, 265
out of memory, 258, 260
out of range, character value,

257

out of space, yacc, 269
output(), 165

redefining, 148, 154, 165
output, redirecting, 95
output files, yacc, 265
output language for lexer, 255
overflowing

lex buffers, 85

lex internal tables, 159
overlapping alternatives, 238-240
overlapping tokens, 170

355

lex & yacc

P

P1003.2 standard, 295
parentheses (), in regular
expressions, 29, 169
parse trees, 52-53
multiple, 55
option, 293
passing values, 189
space for, 259
parsers, 2
C source code for, 59
communication with lexer, 14
compiling, 59
debugging, 213
for calculator, 58, 62, 64
for MGL, 84-87, 89, 91
for SQL, 118-120
making, 77
portability of, 194
recursive, 292
reentrant, 209, 280, 292
running, 59
semantic, 280
SQL definition section, 119
stack, 336
states, 221
synchronizing, 214
trace code in, 214
yacc routine name, 18
parsing, 1, 330
arithmetic expressions, 60
command lines, 38
functions, 71
lists, 197
multiple files, 35
quoted strings, 85
recursive, 209
shift/reduce, 53
using symbol tables, 72
Pascal, 292, 294
patterns, 5, 27-28, 148, 167, 336
{}in, 153
beginning of line patterns,
152
end of line patterns, 153
explicitly trailing context in,
153
in flex, 281

356

matching, 6, 149
substitutions in, 153
unterminated, 284
(see also regular expressions)
pclex, (see pcyacc)
PCYACC, 171, 178-179
pcyace, 156-157, 293
differences from AT&T, 293
extended error recovery, 293
new features, 293
output filenames, 293

percent sign (%)

%% section delimiter, 33, 199
in yacc token declarations, 56
performance, reporting in flex,
283
period ()
in regular expressions, 28,
167
in yacc, 200
in y.output, 224
-p flag
in flex, 283
in lex, 162
in POSIX yacc, 296
in yacc, 207
pic, 292, 294
placement of error tokens, 251
plus (+), in regular expressions,
29, 168
pointer models, 217-228
pointers, yacc, 217
portability
lex, 166
of grammars, 193
of lex specifications, 166
of lexers, 166
of parsers, 194
vacc, 193
position of erroneous tokens,
247
POSIX lex, 177
character codes, 170
differences, 296
input, 158
multiple lexers, 156
options, 295
square brackets in, 28
standard, 295

Index

POSIX lex (cont'd)
yytext in, 296
yywrap() in, 179, 296
POSIX yacc
differences, 296
generated header file, 203
generated prefix names in,
207
library, 296
options, 295-296
standard, 295
post-processing in MGL, 95
Postscript, 294
precedence, 61, 269, 336
assigning, 62
conflicting, 276
declaring, 62
for avoiding conflicts, 63, 196
in expression grammars, 196
in yacc rules, 195, 199
interchanging, 187
levels, 61, 195
redeclaring, 276
specifying, 61-62
table of, 62
prefix
for generated files, 273, 295
for generated symbols, 292,
296
primary key in SQL, 110
privilege definitions in SQL, 125
processing menu descriptions in
MGL, 97
production rules, (see yacc
rules)
productions, (see yacc rules)
program names, in MGL, 84
programs, 336
Prolog, 294
prototyping, xvii
punctuation in SQL, 118
pushing input back, 41, 153,
173-174

Q

QSTRING in MGL, 85, 98
gstring rule in MGL lexer, 85
queries in SQL, 111
question mark (?), in regular
expressions, 29, 168
quirks in yacc, 187
quotation marks
in regular expressions, 29,
169
in yacc, 200
matching, 85
missing in flex, 284
missing in yacc, 267-268, 274
quoted characters in yacc, 192
quoted strings, 31
in MGL, 84
parsing, 85
unterminated, 244
quotes, (see quotation marks or
single quotes)

R

ranges of characters, 28, 167
RATFOR, 255, 259, 269
reading files, errors, 256
real numbers, 30
recognizing words, 3
recovery, (see error recovery)
recursion, 21, 53

conflicts and, 229

errors in, 268

in MGL grammar, 88-89

in SQL scalar function gram-

mar, 133

in yacc, 197

inflnite, 187

right, 222
recursive parsers, 209, 292
redeclaring

start conditions, 285

token precedence, 269

token types, 271

redefining
ECHO, 165

LA ANs, 4

input(), 148

357

lex & yacc

redefining (cont'd)
output(), 148, 165
unput(), 148, 173
reduce/reduce conflicts, 185,
219-220, 336
identifying, 223
in Berkeley yacc, 277
in y.output, 223, 228
lookahead and, 237
non-terminals in, 224
with overlapping alternatives,
22Q_ 240

238-240
reductions, 53, 219, 336
redundant grammars, 233
reentrant parsers, 209, 280, 292
regular expressions, 1, 27, 28,
336
all except ranges of charac-
ters, 28, 167
any character, 28, 167
beginning of line, 28, 169
C comments, 45-46
C escape sequences in, 28
comments starting with #, 31
decimal numbers, 30
defined (see substitutions)
digits, 30
either of two, 29, 169
end of C comments, 47
end of line, 28, 169
groups, 29, 169, 260
integers, 30
literal text, 29, 169
logical or in, 29, 169
maximum number of repeti-
tions, 168
metacharacters in, 28-29,
167-169
minimum number of repeti-
tions, 168
multiple copies, 28
multiple occurrences, 29, 168
named (see substitutions)
number of occurrences, 28,
168
numbers, 28, 30
quotation marks in, 29, 169
quoted strings, 31
ranges of characters, 28, 167

358

real numbers, 30

repetitions, 28, 168

single characters, 28, 167

special characters in, 28-29,
33, 167-169, 260

start states in, 169

syntax, 167

whitespace in, 45, 167

zero or more copies, 28, 168

Zero or one occurrence, 29,
168

(see also patterns)
REJECT, 160, 170

illegal, 285
relational data bases, 109
renaming

generated lexers, 163

lex functions and variables,

162

yacc generated names, 207
repeat counts, illegal, 284
repetitions, 28, 168
reporting lexer data, 283
reserved symbols in yacc, 275
reserved words

in SQL, 117,120

in symbol tables, 72
resolving conflicts, 233-240
restarting lexers, 171
resynchronizing, 248
return statement, 7, 171
returmng values from yylex(),

171

reused names, 246
-r flag

in AT&T lex, 255

in Berkeley yacc, 273
RHS, 52, 335, 337

(see also right-hand side)
right associative operators, 195
right associativity, 62
right contexts

in lex, 149, 152

too many, 260
right recursion, in yacc, 197
right-hand side, 52, 198, 337

empty, 88

refeiring io, 58, 183
right-recursive grammars, 88

Index

root rule, 201
rows, in SQL, 110, 130
rules, 337
i inlex, 5
<>inlex, 172

; in yacc, 198

assignments in yacc, 56, 200

disambiguating lex, 6

ending yacc, 56, 198, 200

<<EOF>> in flex, 285

error in first in AT&T yacc,
265

left-hand side in yacc, 52, 57,
198, 335

lex, 5

logical or in yacc, 52, 199-200

missing return value in AT&T
yacc, 268

Arvicad i
never reduced in AT&T yacc,

264, 269

never reduced in Berkeley
yacc, 277

recursive yacc, 53, 197

reducing yacc, 53, 219

requiring backtracking in flex,
282

right-hand side in yacc, 52,
198, 337

section in yacc, 182

start (see start states)

start symbol missing in
Berkeley yacc, 276

suppressing default in flex,
283

tokens on left-hand side in
AT&T yacc, 270

tokens on left-hand side in
Berkeley yacc, 275

too many in AT&T yacc, 268

unused in Berkeley yacc, 277

using same lex action, 5

with lex start states, 42

without actions in AT&T yacc,
266

without explicit lex start
states, 44

yacc, 18, 52, 198

rules section
bugs in lex, 150
empty in Berlekey yacc, 275
lex, 5, 33, 148
yacc, 50, 182
rules, | in yace, 52, 199-200
running
lex, 21
lexers, 27
parsers, 59
yace, 21
runtime debugging code, 263

S

scalar expressions in SQL, 132
scanners, (see lexers)
schema sublanguage in SQL, 120
scientific notation, 30
screens, in MGL
multiple, 89
names, 90, 97
rules, 89, 97
terminating, 100
search conditions in SQL,
136-137
section delimitets
lex, 5, 33
vacc, 18, 181, 199
sections
of lex specifications, 32, 147
of yacc grammars, 56, 181
sed, 163, 207
SELECT statement in SQL, 111,
133-134
selection preferences, 292
semantic
meaning, 339
parsers, 280
values, 338
semicolon (), in yacc rules, 56,
198, 200
sentences, 51
separate files for code and tables,
273
S flag, in flex, 283, 286

359

lex & yacc

s flag, in flex, 283
sharp sign (#), delimited com-
ments, 31
shifting, 337
shift/reduce conflicts, 60, 63,
185, 220, 337
avoiding, 196
embedded actions and, 183
identifying, 225
in Berkeley yacc, 277
in expression grammars, 229,
236
in IF-THEN-ELSE grammars,
231, 233
in nested list grammars, 232
in y.output, 225, 228
lookahead and, 237
shift/reduce parsing, 53
shifts, 53
single characters
as tokens, 192
matching, 28, 167
single quotes ("), in yacc, 192,
200
single-step debugging, 292
size of lex internal tables, 159
skeleton files, 102
slash (/), in regular expressions,
29, 149, 153, 169, 260
Smalltalk, 294
sort orders, 170
special characters
in regular expressions, 167
in yacc, 199
special purpose languages, 81
specifications, 1, 27, 337
porting, 166
structure of, 147
yacc (see grammars)
SQL, 109, 112
AMMSC token, 132
ANSI standards, 109
ANY and ALL predicates, 139
arithmetic operations, 132
base tables, 122-123
BETWEEN predicate, 137
columns, 110, 123

comments in. 114
comments 1n, 114

360

COMPARISON predicate, 137

cursor definitions, 126-127

data bases, 110

data types, 123

DELETE statement, 131

embedded, 113, 139, 141

embedded preprocessor (see
embedded SQL preproces-
sor)

error checking in lexer, 118

EXEC SQL, 113, 143

FETCH statement, 129

grammar, 118

GRANT option, 126

IN predicate, 139

INSERT statement, 130

lexer, 114

lexer for embedded, 141

lexer source code, 328-331

LIKE predicate, 137

main() in lexer, 118

Makefile for syntax checker,
140

manipuiation sublanguage,
128-129

MKS parser for, 292

module language, 112, 126

multiple input tokens, 119

names in, 118

NULL reserved word, 124,
138

numbers in, 118-119

operators in, 119

parser, 118

parser cross-reference,
322-327

parser source code, 311-321

pcyacce scanner and parser,
294

preprocessor, 113, 141

primary key, 110

privilege definitions, 125-126

punctuation in, 118

queries, 111

recursive scalar function
grammar, 133

reserved words, 117, 120
rows 11(\, 130

LYY, 1a

rules, 120

Index

SQL (cont'd)

rules for grammar, 322-327

scalar expressions in, 132

schema sublanguage, 120

schema view definitions, 124

search conditions, 136-137

SELECT statement, 111,
133-134

start states, 142

strings in, 118-119

subqueries, 137

sub-token codes, 119

supporting C source code,
331-333

symbols, 322-327

syntax, 110

syntax checker, 114, 140

table expressions, 134-135

PRSPV U i 111

table ur‘uupulé‘ttluu, 111
tables, 110
tokens, 119, 322-327
UPDATE statement, 131-132
validating, 114
view definitions, 124-125
views, 124
virtual tables, 124
whitespace in, 114
yyerror() for, 118

square brackets ([1D
in POSIX, 170
in regular expressions, 28,

167

stack
AT&T lex internal, 260
overflow in yacc, 261
yacc internal, 53

standard
input, 35
/0, 95
lex and yacc, 295
output for source code, 295
output from AT&T lex, 255
SQL, 109

start conditions
illegal, 259, 261, 284
redeclared, 285
(see start states)

start rules, 337

for multiple grammars, 206

in MGL grammar, 89
(see start states)
start states, 42, 152, 171-172,
337
changing, 149
creating, 43, 172

Lilauiilg, a0,

default, 149

exclusive, 45, 172

explicit, 42

for embedded SQL prepro-
cessor, 142

for multiple lexers, 161

in regular expressions, 169

rules with explicit, 44

undeclared, 261, 285

when matching, 169

wild card, 45

start symbols, 53, 337

declaring, 57
default, 57
illegal, 264, 275
redeclaring, 276
rule missing, 276
state zero, 43, 172
statements
lex return, 7
yace, 52
states
bad, 256
changing, 43
default, 43
INITIAL, 172
lex start, 42
numbers, 222
overly complex, 260
parser, 221
start (see start states)
summary from AT&T lex, 255
oo many, 261
yacce, 53
zero, 43, 172
static tables for keywords, 93
statistics
AT&T lex, 255
from POSIX lex, 295
lex, 159
stdin, 35
stdio, 159, 295

361

lex & yacc

strings
empty, 334
in SQL, 118-119
input to lex, 156
too long, 259
unterminated in yacc, 266,
274
wrong type, 244
structure
of grammars, 56, 181
of lex specifications, 147
structured input, 1
structured query language, (see
SQL)
substitutions, 33, 153
illegal, 258, 283-284
in patterns, 153
matching, 28, 168
named with digits, 259
not found, 257
undefined, 284
sub-token codes, 119
success value, 212
summaries, suppressing lines,
255
suppressing statistics, 295
support routines
lex, 34, 148
yacc, 182
suppressing
default rules, 283
summary lines, 255
summary statistics, 295
symbol tables, 9-13, 9, 67, 338
adding entries, 13, 68
adding reserved words, 72
declarations, 9, 11
lookups, 13, 68
maintenance routines, 10
pointers, 67
reserved words in, 72
searching, 68
space allocation for, 71
symbol types, 201, 204
explicit, 202
for embedded actions, 184
for inherited attributes, 190
symbol values, 57

declaring types, 205

362

symbolic tokens, 203
maximum number of, 193
symbols, 14, 181, 338
. in, 200
multiple value types, 65
non-terminai, 52, 182, 335
redeclaring types, 276
reserved in yacc, 2753
setting type for non-terminals,
66
start, 53, 57, 337
terminal, 52, 182
types, 201, 204
values, 87, 201
yacce, 181
(see also non-terminal sym-
bols and tokens)
synchronization point, 248
synchronizing parsers, 214
syntactic validation, 51
syntactic values, 338
syntax
of lex regular expressions,
167
of SQL, 110
syntax checker for SQL, 114, 140
syntax errors, 188
recovering from, 214, 216
reporting, 215, 243
user-detected, 215
synthesized attributes, 189
System V, 338

T

table expressions in SQL,
134-135
table of precedences, 62
tables
action in yacc, 264
base, 122
error in lex, 257
fast in flex, 283

Index

tables (cont’d)
for lex parse trees, 259
in SQL, 110-111
output in lex, 259
states in yacc, 270
temporary files in yace, 265, 269
terminal symbols, (see tokens)
terminals, (see tokens)
terminating MGL screens, 100
T flag, in flex, 283
-t flag
in AT&T lex, 255
in AT&T yacc, 263
in POSIX lex, 295
in POSIX yacc, 296
in vacc, 214
TITLE in MGL, 82, 88, 98
token buffer
enlarging, 178
lex, 177
token definition file, 15
token numbers, 66, 203
listing of, 203
redeclaring, 276
token values, 203
declaring types, 204
tokenizing, 27, 338
tokens, 52, 148, 182, 202, 338
. in names, 200
appending, 177
case of names, 182
codes, 15
copying, 87
current in lex, 246
defining, 36, 203
discarding lookahead, 213
end of input, 59
error, 188, 243, 247-249, 251
illegal start, 275
in SQL grammar, 119
length of, 174
literal, 192
lowercase names, 182
naming, 18
numbers, 203
on left-hand side, 270, 275
overlapping, 170
redeclaring numbers, 276
redeclaring precedence, 269

redeclaring types, 271
single character, 192
symbolic, 203
too large, 260
too many in yacc, 270
tvpes, 201
unshifting in yacc, 213
uppercase names, 182
values, 201, 203
zero, 59
trace code in parsers, 214
trace mode, 283
trailing context operator, 149
transitions
bad, 256
too many, 261
translation tables, 167, 257
errors, 257, 284
in flex, 281
in POSIX lex, 296
translations, 151
tree representation of parsing,
52
types
<> missing, 271
clash, 266
declaring, 264, 208
illegal for values, 275
missing, 275-276
multiple, 65
names in yacc, 200
not specified for %token, 268
of symbols, 204
redeclaring, 271, 276
setting for non-terminal sym-
bols, 66

U

uncompressed tables, in flex,
283
undefined
non-terminal symbols, 269,
277
start states, 261, 285
substitutions, 284

363

lex & yacc

underscore ()

in yacc, 200

in y.output, 224
unions, 66, 205
unput(), 38, 41, 151, 173

in flex 282

Al 1IvAy, &4UL

redefining, 148, 155-156, 173
unshift current token, 213
unterminated

acticns in flex, 284

actions in yacc, 264, 275

comments in lex, 257

comments in yacc, 266, 274

patterns in flex, 284

strings in input, 244

strings in lex, 258

strings in yacc, 2606, 274

type names, 271

%union, 266, 274
UPDATE statement in SQL,

131-132
user code
in lexers, 176
in yacc definition section,
182, 192
user subroutines section

lex, 7, 34, 148

vacc, 19, 182
user-detected syntax errors, 215

v

validating SQL, 114
validation, syntactic, 51
value references
illegal, 275-276
in yacc actions, 199
values, 57, 338
data types of, 57
default type, 57
illegal types, 264, 275
multiple data types, 57
of embedded actions, 184
of inherited attributes, 190
of non-terminal symbols, 57
of symbols, 57
of tokens, 203
pointers, 87

304

yacc symbols, 201
variables in lex, 33, 148
variant grammars, 205
verbose flag in yacc, 221
vertical bar (|)

after lex patterns, 5, 148

in regular expressions, 29,

169

in yacc rules, 52, 199-200
-v flag

in AT&T lex, 255

in AT&T yacc, 263

in flex, 283

in lex, 159, 255

in POSIX lex, 295

in POSIX yacc, 296

in yacc, 221
views in SQL, 124
virtual tables in SQL, 124
VISIBLE in MGL, 91

W

warning messages, 244
whitespace, 45
in lex definition section, 147
in lex patterns, 167
in lex rules section, 148
in SQL, 114
wild card start states, 45
words
counting, 32
recognizing, 3
working set, 271
writing files, errors, 256
wrong type of string, 244

Y

yacc, 263, 338
$ in, 199
<> in, 66
actions, 19, 58, 182, 199
ambiguity, 184
associativity, 195
bugs in, 186
C code in actions, 200

Index

yacc (cont'd)

changing prefix for generated
names, 207

character codes, 194

conflicts, 184, 194, 217

creating C header file, 203

-d flag, 203

debugging parsers, 213

default action, 58, 183

definition section, 18, 56,
182, 192

discarding lookahead tokens,
213

embedded actions, 183

ending rules, 200

entry point, 216

erfor recovery, 188, 213-214,
216, 248-251

erfor reporting,

error rule, 19

error symbol, 181

failure value, 212

feedback of context to lex,
191

generating log files, 210

how it parses, 53

%ident, 189

including library, 211

including trace code, 214

inherited attributes, 189

internal storage, 53, 270-271,
274

left recursion, 197

libraries, 77, 194, 211

limitations, 55

listings, 210

literal block, 182, 192

literal tokens, 192, 200

log files, 210

lookahead, 55

main(), 211

original description of, 341

-p flag, 207

pcyacc scanner and parser,
294

pointers, 217

portability, 193

precedence, 195

programs (see grammars)

f 4%
v

quirks, 187
quotation marks in, 200
quoted characters in, 192
recursion, 197
right recursion, 197
root rule, 201
rules, 18, 198
rules section, 56, 182
running, 21
special characters, 199
special characters in, 199-200
stack overflow, 261
%start, 201
states, 53
structure of grammars, 56,
181
success value, 212
support routines, 182
symbols, 181
syntax errors, 188
-t flag, 214
temporary files, 265, 269
tracker, 292
type names in, 200
unshift current token, 213
user subroutines section, 19,
182
—v flag, 210, 221
value references in actions,
199
values, 57
verbose flag, 221
YYABORT, 212
YYACCEPT, 212
YYBACKUP, 213
yyclearin, 213, 250, 252
YYDEBUG, 214
yydebug, 214
yyerrok, 214, 249, 252
YYERROR, 215
yyerror(), 215
yyparse(), 216
YYRECOVERINGOQ), 216, 250
(see also AT&T yacc)
yacc.acts, 265
yacc.tmp, 265
y.code.c, 273
y.out, 210, 217, 291
y.output, 210-211, 229, 265

365

lex & yacc

.in, 224

conflicts in, 221-227
contents, 217, 223
current location in, 224
generating, 203

generating in POSIX vace. 296
sl 5 ML ALY y 470

reduce/reduce conflicts in,
223, 228
rules never reduced, 269
shift/reduce conflicts in, 225,
228
y.tab.c, 22, 59, 265, 273
ytab.c, 291
y.tab.h, 22, 58-59, 66, 203
ytab.h, 203
y.tab.h, 205
error opening, 265
generating, 263, 295
ytab.h, 291
YYABORT, 212
YYACCEPT, 212
YYBACKUP, 213
YY_BUFFER_STATE, 155
YY_BUF_SIZE, 179
yyclearin, 213, 250, 252
YY_CURRENT_BUFFER, 155
yy_current_buffer, 178
YYDEBUG, 214
yydebug, 214
YY_DECL, 282
yyerrok, 214, 249, 252
YYERROR(), 193, 215
yyerror(), 19, 60, 188, 215, 243
for SQL, 118
yacc library, 212
yygetc(), 157, 291
yyin, 19, 35, 38, 95, 154-155
renaming, 162
YY_INIT, 171
YY_INPUT, 155, 157
yyinput(), 174
yyleng, 34, 153, 174
renaming, 162
yyless(), 153, 160, 166, 174
renaming, 162
yylex(), 7, 14, 27, 58, 175, 202
C code copied to, 148
renaming, 162
returning values, 171

366

user code in , 176
yylineno, 160
in flex, 282
renaming, 162
YYLMAX, 178
yy.lrt, 210, 217, 293
yylval, 59, 66, 203, 207
YY_MAX LINE, 179
yymore(), 160, 177
renaming, 162
yyout, 154, 165
renaming, 162
yyoutput(), 174
yyparse(), 18, 84, 207, 216
recursive, 209
YYRECOVERING(), 216, 250
yyreject(), 166, 256
yy_reset(), 171
yyrestart(), 171
vyRestoreScan(), 155
YY_SAVED, 155
yySaveScan(), 155
YYSTYPE, 57, 66, 201, 205
yytab.c, 293
yytab.h, 203, 293
yytext, 6, 87, 153, 174, 177
enlarging, 178
for error reporting, 215
in POSIX lex, 296
renaming, 162
size, 166
yyunput(), 174
yywrap(), 35, 38, 155, 160, 179
in flex, 281
in POSIX lex, 296
redefining, 160
renaming, 162

Z

zero or one occurrence, match-
ing, 29, 108

About the Authors

John R. Levine writes, lectures, and consults on UNIX and compiler topics. He
moderates the online comp.compilers discussion group on Usenet. He worked
on UNIX versions Lotus 1-2-3 and the Norton Utilities, and was one of the
architects of AIX for the IBM RT PC. He received a Ph.D in Computer Science
from Yale in 1984.

~velopiment teaim at Trannnrr\

Tony Mason is currently a member of the AFS development team a
Corporation, a small start-up company specializing in distributed systems soft-
ware. Previously, he worked with the Distributed Systems Group at Stanford
University in the area of distributed operating systems and data communications.
He received a B.S. in Mathematics from the University of Chicago in 1987.

Ao

Doug Brown has been developing software for circuit simulation, synthesis, and
testing for fifteen years. He is currently working on functional board testing at

Test Systems Strategies Inc. in Beaverton, Oregon. He received an M.S. in Elec-
trical Engineering from the University of Hlinois at Urbana-Champaign in 1976.

Colophon

Our look is the result of reader comments, our own experimentation, and distri-
bution channels.

Distinctive covers complement our distinctive approach to technical topics,
breathing personality and life into potentially dry subjects. UNIX and its atten-
dant programs can be unruly beasts. Nutshell Handbooks help you tame them.

The animal featured on the cover of lex & yacc is a Victorian crowned pigeon,
one of the largest members of the pigeon family. Unlike other birds, the
crowned pigeon drinks water by immersing its bill and sucking. Incubation of
the eggs (generally two) is shared by these monogamous birds, the male warm-
ing them by day, the female by night.

The Victorian crowned pigeon is light and dark blue with purple markings and a
fanlike head crest of lacy, light blue feathers. Though protected by law in its
native country of New Guinea, it is nonetheless an easy target for hunters for its
plumage and is in danger of extinction.

Edie Freedman designed this cover and the entire UNIX bestiary that appears on
other Nutshell Handbooks. The beasts themselves are adapted from 19th-century
engravings from the Dover Pictorial Archive. The cover layout was produced
with Quark XPress 3.1 using the ITC Garamond font.

The inside layout was fomatted in sqtroff using ITC Garamond Light and ITC
Garamond Book fonts, and was designed by Edie Freeman. The figures were
created in Aldus Freehand 3.1 by Chris Reilley.

